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PREFACE

In the 1950s several scientists including Joseph Mayer, John Coleman, Per-Olov

Lowdin, and Charles Coulson expounded on the possibilities for using the two-

electron reduced density matrix to compute the energies and properties of atomic

and molecular systems without the many-electron wavefunction. An N-electron

density matrix may be assembled from an N-electron wavefunction by multiply-

ing the wavefunction c by its adjoint c� to obtain cc�. Integrating the N-electron

density matrix over all save two electrons yields the two-electron reduced den-

sity matrix (2-RDM). Because electrons interact with each other in pairs by

Coulomb repulsion, the energies and other electronic properties of atoms and

molecules can be computed directly from a knowledge of the 2-RDM. The

fact that the 2-RDM is the repository of all the physically and chemically impor-

tant information in the many-particle wavefunction suggests the tantalizing pos-

sibility that for a given molecular system the 2-RDM can be computed directly

without constructing the many-electron wavefunction. For fifty years both scien-

tists and mathematicians have pursued the goal of a 2-RDM approach to mole-

cular electronic structure. Efforts, however, were stymied because the 2-RDM

must be constrained by nontrivial conditions to ensure that the 2-RDM derives

from an N-electron wavefunction. These restrictions on RDMs were given the

appellation N-representability conditions by John Coleman. Ten years ago the

calculation of the 2-RDM without the wavefunction seemed an impossibility.

Dramatic progress, however, has been made since then, and today two comple-

mentary approaches to the direct calculation of the 2-RDM have emerged. The

present book, with chapters from many of the scientists who contributed to these

advances, provides a detailed yet pedagogical tour of modern 2-RDM theory and

its present and potential applications to many-electron atoms and molecules.

I first became interested in 2-RDM theory when reading articles by Coleman

and ter Haar in the chemistry library at Princeton University in the summer of

1995. For someone who had just graduated college, reading Coleman and ter

Haar was rather ‘‘heady’’ material. However, despite some of the difficulties

from N-representability it seemed apparent that a 2-RDM theory would offer

a powerful bridge between the density functional methods, which were rapidly

gaining popularity after many years of development, and the ab initio wavefunc-

tion methods. At Harvard under the splendid guidance of Dudley Herschbach I

began to think about computing the 2-RDM without the wavefunction. In the
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summer of 1996 I began a long friendship with John Coleman through an innoc-

uous e-mail about a reference in one of his articles. A few months later I found a

typographical mistake in one of John’s papers. With his typical humor John pro-

claimed this mistake to be the ‘‘Mazziotti typo’’ since I had brought it to his

attention. (I suppose that I can accept greater responsibility for any typos in

the present volume!) Recently, John admitted that he began to take my interest

in the 2-RDM seriously after I had found a mistake in one of his papers. Because

of the difficulties with minimizing the energy with respect to the 2-RDM, I

began to think about what it would mean to contract the Schrödinger equation

onto the space of two particles, and I found articles related to this idea by Hir-

oshi Nakatsuji and Carmela Valdemoro. Meanwhile, Valdemoro and Nakatsuji

were making progress in solving the contracted Schrödinger equation (also

known as the density equation).

The present book is divided into five related parts. Part I contains historical

introductions by John Coleman and Mitja Rosina. Part II discusses the varia-

tional calculation of the 2-RDM including the development of a systematic hier-

archy of N-representability conditions known as the positivity conditions and the

design of effective semidefinite-programming algorithms for solving the 2-RDM

optimization problem. In Part III the nonvariational calculation of the 2-RDM by

the contracted Schrödinger equation (CSE) is presented including the recon-

struction of the 3- and 4-RDMs from the 2-RDM by cumulant theory and the

addition of N-representability conditions on the 2-RDM. Very recently devel-

oped methods that dramatically improve the accuracy from the CSE are pre-

sented in the last two chapters (12 and 13) of this part. Chapter 12, written by

me, presents the anti-Hermitian CSE method in which the anti-Hermitian part of

the CSE with cumulant reconstruction of the 3-RDM is solved for the ground-

state energy and its 2-RDM. Chapter 13 by Garnet Chan and Takeshi Yanai

incorporates RDM cumulant expansions into canonical diagonalization of the

Hamiltonian. Chan’s method, although it does not generate a 2-RDM, is

included in the book because it can be interpreted as a solution of the anti-Her-

mitian CSE in the Heisenberg representation. The electronic energies from the

anti-Hermitian CSE are competitive with the best wavefunction methods of simi-

lar computational expense. Both the second and third parts contain illustrative

applications of the 2-RDM methods to a variety of atoms and molecules. Part

IV of the book examines work on geminal, 1-RDM, and pair-density functional

theories that explore the possibilities between using the 1-density as in density

functional theory and using the 2-RDM. Each of these theories requires the

development of a subset of the customary density functional. Finally, in Part V a

parameterization of the 2-RDM with connections to quantum phase transitions

is presented and the role of the 2-RDM in studying entanglement is examined.

I wish to extend my gratitude to each of the authors for contributing their

ideas and enthusiasm to the present book. It was a great pleasure for me to
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work with everyone. I must also thank both Prof. Dudley R. Herschbach of

Harvard University and Prof. Herschel A. Rabitz of Princeton University, whose

support, encouragement, and example have been invaluable to me. I thank my

father, Dr. Alexander R. Mazziotti, for encouraging and supporting me and shar-

ing with me his love for science, especially chemistry. Finally, I would like to

thank my colleagues and students at The University of Chicago. During the past

four years I have had the pleasure of sharing my adventures in research with the

following students: John Farnum, Daniel Jordan, Gergely Gidofalvi, Tamas

Juhasz, Jeff Hammond, Eugene Kamarchik, Adam Rothman, Eugene De Prince,

Marc Benayoun, Aiyan Lu, and Brittany Rohrman. The present volume in

Advances in Chemical Physics surveys the recent advances in 2-RDM theory.

The authors and I hope that the reader will view this book as a helpful guide

in both understanding and exploring 2-RDM methods as the 2-RDM becomes

increasingly important as a fundamental variable in the quantum computation

of many-electron atoms and molecules.

DAVID A. MAZZIOTTI

Chicago, Illinois

October 2006
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INTRODUCTION

DAVID A. MAZZIOTTI

Department of Chemistry and The James Franck Institute,

The University of Chicago, Chicago, IL 60637 USA

In a famous after-dinner address at a 1959 conference in Boulder, Colorado,

Charles Coulson [1] discussed both the promises and the challenges of using

the two-electron reduced density matrix (2-RDM) rather than the many-electron

wavefunction as the primary variable in quantum computations of atomic and

molecular systems. Integrating the N-electron density matrix,

NDð1; 2; . . . ;N; 10; 20; . . . ;N 0Þ ¼ �ð1; 2; . . . ;NÞ��ð10; 20; . . . ;N 0Þ

over coordinates 3 to N defines the 2-RDM:

2Dð1; 2; 10; 20Þ ¼
Z

�ð1; 2; . . . ;NÞ��ð10; 20; . . . ;NÞd3 � � � dN

Because electrons are indistinguishable with only pairwise interactions, the

energy of any atom or molecule may be expressed as a linear function of the

2-RDM rather than the many-electron wavefunction, that is,

E ¼ Trð2K 2DÞ

where 2K is the two-electron reduced Hamiltonian matrix, which is the matrix

representation of the operator

2K̂K ¼ 1

N � 1
� 1

2
r2

1 �
X
j

Zj

r1j

 !
þ 1

2

1

r12

The expression of the energy for any N-electron system by a 2-RDM suggests

the tantalizing possibility that the ground-state energy for any many-electron

system can be computed through a two-electron calculation.
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As Coleman describes eloquently in his introductory chapter, in the summer

of 1951, as a young mathematician, with a derivation like the one above, he

announced somewhat prematurely to a gathering of physicists at Chalk River

that he had reduced the many-electron problem in quantum mechanics to a

two-electron calculation. A simple variational calculation on lithium with the

2-RDM rather than the wavefunction produced a ground-state energy that was

clearly too low. Coleman soon recognized that additional constraints must be

added to the 2-RDM to guarantee that it derives from an N-electron density

matrix (or wavefunction). Coleman called these constraints N-representability

conditions—a term that became standard after Coleman’s 1963 Review of Mod-

ern Physics article [2]. In 1955 both Joseph Mayer [3] and Per-Olov Löwdin [4]

wrote papers for Physical Review that examined the expression of the energy as

a function of the 2-RDM, and soon afterwards, several papers appeared that

examined the need for additional conditions on the 2-RDM—a challenge that

would become known as the N-representability problem. Coulson, Coleman,

and others inspired several generations of chemists, physicists, and mathemati-

cians to explore the 2-RDM conditions necessary for exploring many-particle

quantum mechanics on the space of two particles, and Rosina, a nuclear physi-

cist, describes in his chapter the unique interdisciplinary nature of the 2-RDM

conferences at Queens University in the late 1960s and early 1970s. Despite sig-

nificant efforts, however, the goal of computing the 2-RDM without the wave-

function remained elusive. Like John Coleman, Richard Feynman had been a

first-year graduate student at Princeton in 1939 (in fact, a picture taken later

by John of Feynman talking with Dirac is kindly reproduced with the permission

of Physics Today, which published it on the cover of their August 1963 issue). In

the late 1980s John wrote a letter to Feynman proposing that Feynman and he

collaborate on the N-representability problem. The letter returned unopened, for

Feynman had recently died. (At least, because the letter was unopened, we can

surmise that Feynman was not troubled by the N-representability problem in the

last days of his life!)

The present volume describes significant advances in 2-RDM mechanics (as

distinct from conventional wave mechanics where the wavefunction is the pri-

mary variable of the calculation) that are realizing the direct calculation of the

2-RDM without the wavefunction. Two related and yet distinct approaches for

computing the 2-RDM directly have emerged: (i) the variational calculation of

the ground-state energy with the 2-RDM constrained by N-representability con-

ditions, and (ii) the iterative solution of the contracted Schrödinger equation

(CSE) for a nonvariational ground-state 2-RDM. The second part of this

book explores the variational 2-RDM method while the third part of this book

develops the nonvariational solution of the CSE including new research on sol-

ving only the anti-Hermitian part of the CSE. Historically, the present wave of

advances in 2-RDM mechanics began with work by Carmela Valdemoro and her
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collaborators in the early 1990s on the solution of the CSE [5]. The CSE is a

projection of the N-electron Schrödinger equation onto the space of two elec-

trons. The CSE (also known as the density equation) was first formulated in

separate papers by Cohen and Frishberg [6] and Nakatsuji [7]. However, because

the CSE depends on not only the 2-RDM but also the 3- and 4-RDMs, the CSE

cannot be solved for the 2-RDM without additional information. Valdemoro

employed particle–hole duality to develop formulas for building the 3- and

the 4-RDMs from a knowledge of the 2-RDM. Nakatsuji and Yasuda improved

the formulas from their connection to Greens’ functions [8], and I showed that

the reconstruction of the 3- and 4-RDMs could be systematized through a cumu-

lant theory for RDMs and improved by contraction relations for the cumulants

[9–12]. Important techniques, known as correlated purification, have been devel-

oped for correcting the N-representability of the 2-RDM between iterations of

the CSE [13, 14]. Very recently, a significant advance has been made in CSE

theory with dramatic improvement in the accuracy of the energies and 2-RDMs.

In Chapter 12, I develop a system of initial-value differential equations for

solving the anti-Hermitian part of the CSE for the ground-state energy and its

2-RDM. The 3-RDM is reconstructed by its cumulant expansion including the

second-order corrections by Yasuda and Nakatsuji [8] and Mazziotti [11, 12].

Molecular energies with the second-order corrections to the 3-RDM are as accu-

rate as those from coupled cluster with single and double excitations. The anti-

Hermitian CSE method also directly generates accurate 1- and 2-RDMs where

the 2-RDMsvery nearly satisfy knownN-representability conditions. InChapter 13,

Chan and Yanai implement RDM cumulant expansions in the context of cano-

nical diagonalization. Although the method does not produce a 2-RDM, it can be

interpreted as a solution of the anti-Hermitian CSE in the Heisenberg represen-

tation. Because the method does not include second-order corrections to the

3-RDM, the energies computed from Hartree–Fock reference wavefunctions

are not as accurate as those from coupled cluster singles–doubles. If multi–refer-

ence self-consistent-field wavefunctions are employed as references, however,

the method generates very accurate energies at both equilibrium and nonequili-

brium molecular geometries. An important advantage of the anti-Hermitian CSE

methods is that their reference wavefunctions can readily be changed from

Hartree–Fock to include multireference correlation effects. The concepts behind

the CSE, the present-day CSE algorithms, the recently developed anti-Hermitian

CSE algorithms, and future research directions are carefully developed in a ser-

ies of chapters in Part III of this book by Valdemoro, Mazziotti, Alcoba, Herbert

and Harriman, Kutzelnigg and Mukherjee, and Chan and Yanai.

The original goal of Coleman, Coulson, Mayer, and others was to develop a

variational calculation of the ground-state energy as a functional of the 2-RDM.

The difficult problem of identifying sufficiently stringent N-representability con-

ditions on the 2-RDM had prevented this goal from being realized for fifty years.
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With advances in theory and optimization in the late 1990s, however, the situa-

tion was prepared to change. First, with research on the CSE providing new

insight into the structure of the necessary conditions, Erdahl and I developed a

systematic hierarchy of the N-representability constraints known as p-positivity

conditions [15]. The generalized uncertainty relations for all pairs of p-particle

operators were shown to be enforced by the 2p-positivity conditions. Second,

in the 1990s, significant advances were made in a special form of optimization

known as semidefinite programming for a variety of important problems in con-

trol theory, combinatorial optimization, and finance [16]. The minimization of

the ground-state energy with respect to a 2-RDM constrained by p-positivity

conditions constitutes a semidefinite program, where the process of solving a

semidefinite program is known as semidefinite programming. In 2001 and

2002, the algorithms from control theory and combinatorial optimization were

applied in separate works by Nakata et al. [17] and the author [18] to calcula-

tions of many-electron atoms and molecules (in minimal basis sets) with the

2-RDMconstrained by 2-positivity conditions. The 2-RDMmethodwith 2-positivity

conditions yielded accurate shapes for potential energy surfaces without the mul-

tireference difficulties exhibited by many approximate wavefunction methods.

(It should be mentioned that variational 2-RDM calculations with 2-positivity

conditions had been performed in the 1970s with an early form of semidefinite

programming by Rosina, Erdahl, Garrod, and their collaborators [19, 20],

although these calculations were limited to four-electron atoms and molecules.)

In 2004, Zhao et al. [21] applied a subset of the 3-positivity conditions, the T1
and T2 constraints, which had been proposed by Erdahl in 1978 [22], to closed-

and open-shell molecules in minimal basis sets with coupled-cluster accuracy at

equilibrium geometries. Later that year, I introduced a new, first-order algorithm

for solving the 2-RDM semidefinite program [23, 24], which, by using a matrix

factorization to enforce the positivity conditions, reduces the scaling for 2-posi-

tivity to r6 in floating-point operations and r4 in memory requirements (where r

is the rank of the one-particle basis set). This first-order method enables the

treatment of larger molecules and basis sets as well as the implementation of

complete 3-positivity conditions [25–28]. These advances as well as other

advances and applications are discussed in a series of chapters in Part II of

this book by Mazziotti, Erdahl, Braams, Percus, and Zhao, and Fukuda, Nakata,

and Yamashita.

In college I had a wonderful class in abstract algebra where the professor

began each lecture with the last ten minutes of the previous lecture—a definite

example of very useful deja vu. This book is organized around a similar

principle. No effort has been made to keep each chapter strictly orthogonal to

the preceding and proceeding chapters in the spirit that a certain degree of over-

lap is useful for the book to serve as both an instructional and a reference guide.

Representing the frontiers of the 2-RDM mechanics, the book covers a great deal
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of new and exciting material, which, it is believed, will spur many future endea-

vors and explorations in 2-RDM theory. The book is organized into five parts

with the second and third parts described above. The first part contains two his-

torical perspectives, one by John Coleman and one by Mitja Rosina. The fourth

part explores the connection between 2-RDMmethods and one-particle and pair-

density functional theories that aim to extend the well-known density functional

theory. In Chapter 14, Piris describes the efforts since 1998 to develop a func-

tional theory based on the one-particle RDM, and he shows how he has recently

made progress by incorporating ideas from 2-RDM mechanics into the function.

Rinderspacher reviews recent work on geminal functional theory, proposed by

me in 2000 [29, 30], where the correlation energy is expressed as a function

of a geminal. (A geminal denotes a two-electron function.) Rinderspacher

extends geminal functional theory to consider the use of multiple geminal func-

tions. In Chapter 16, Ayers and Davidson review the diagonal N-representability

problem and its application to pair-density functional theory. The final, fifth part

of the book, focusing on applications of 2-RDMs to entanglement and quantum

phase transitions, contains two chapters: a chapter by Coleman on an exact para-

meterization of the 2-RDM, which was used by Coleman to discuss quantum

phase transitions in a recent article [31], and a chapter by Kais that surveys

the many applications of RDM theory to quantum entanglement, including a

discussion of entanglement as a measure for correlation in electronic structure

theory.

This volume in Advances in Chemical Physics provides a broad yet detailed

survey of the recent advances and applications of reduced-density-matrix

mechanics in chemistry and physics. With advances in theory and optimization,

Coulson’s challenge for the direct calculation of the 2-RDM has been answered.

While significant progress has been made, as evident from the many contribu-

tions to this book, there remain many open questions and exciting opportunities

for further development of 2-RDM methods and applications. It is the hope of

the editor and the contributors that this book will serve as a guide for many

further adventures and advancements in RDM mechanics.
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4. P. O. Löwdin, Quantum theory of many-particle systems. 1. Physical interpretations by means of

density matrices, natural spin-orbitals, and convergence problems in the method of configuration

interaction. Phys. Rev. 97, 1474 (1955).

5. F. Colmenero and C. Valdemoro, Approximating q-order reduced density-matrices in terms of the

lower-order ones. 2. Applications. Phys. Rev. A 47, 979 (1993).

introduction xv



6. L. Cohen and C. Frishberg, Hierarchy equations for reduced density matrices. Phys. Rev. A 13, 927

(1976).

7. H. Nakatsuji, Equation for direct determination of density matrix. Phys. Rev. A, 14, 41 (1976).

8. K. Yasuda and H. Nakatsuji, Direct determination of the quantum-mechanical density matrix using

the density equation II. Phys. Rev. A 56, 2648 (1997).

9. D. A.Mazziotti, Contracted Schrödinger equation: determining quantum energies and two-particle

density matrices without wave functions. Phys. Rev. A 57, 4219 (1998).

10. D. A. Mazziotti, Approximate solution for electron correlation through the use of Schwinger

probes. Chem. Phys. Lett. 289, 419 (1998).

11. D. A. Mazziotti, Pursuit of N-representability for the contracted Schrödinger equation through

density-matrix reconstruction. Phys. Rev. A 60, 3618 (1999).

12. D. A. Mazziotti, Complete reconstruction of reduced density matrices. Chem. Phys. Lett. 326, 212

(2000).

13. D. A. Mazziotti, Correlated purification of reduced density matrices. Phys. Rev. E 65, 026704

(2002).

14. D. R. Alcoba and C. Valdemoro, Spin structure and properties of the correlation matrices corre-

sponding to pure spin states: controlling the S-representability of these matrices. Int. J. Quantum

Chem. 102, 629 (2005).

15. D. A. Mazziotti and R. M. Erdahl, Uncertainty relations and reduced density matrices: mapping

many-body quantum mechanics onto four particles. Phys. Rev. A 63, 042113 (2001).

16. L. Vandenberghe and S. Boyd, Semidefinite programming. SIAM Rev. 38, 49 (1996).

17. M. Nakata, H. Nakatsuji, M. Ehara, M. Fukuda, K. Nakata, and K. Fujisawa, Variational calcula-

tions of fermion second-order reduced density matrices by semidefinite programming algorithm.

J. Chem. Phys. 114, 8282 (2001).

18. D. A. Mazziotti, Variational minimization of atomic and molecular ground-state energies via the

two-particle reduced density matrix. Phys. Rev. A 65, 062511 (2002).
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CHAPTER 1

N-REPRESENTABILITY

A. JOHN COLEMAN

Department of Mathematics and Statistics, Queen’s University, Kingston,

Ontario K7L 3N6 Canada
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I. INTRODUCTION

Few distinctions in quantum mechanics are as important as that between fer-

mions and bosons. This distinction results from the fact that there are only

two one-dimensional linear representations, on the space of wavefunctions, of

the group, SN , of permutations of N � 2 objects. For all groups there is the iden-

tity representation, which leaves the wavefunction fixed, and for indistinguish-

able particles there is one other that leaves the function fixed or changes its

sign according to whether the permutation is even or odd. I do not have the

authority to assert that God agrees with me as to the importance of this distinc-

tion, but I am sure that most happy humans will since, as noted by Eddington, if

there were no fermions there would be no electrons, so no molecules, so no

DNA, no humans!

What has this to do with reduced density matrices?

For a system of N identical fermions in a state c there is associated a reduced

density matrix (RDM) of order p for each integer p, 1 � p � N, which deter-

mines a Hermitian operator Dp, which we call a reduced density operator

(RDO) acting on a space of antisymmetric functions of p particles. The case

p ¼ 2 is of particular interest for chemists and physicists who seldom consider

Reduced-Density-Matrix Mechanics: With Application to Many-Electron Atoms and Molecules,
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Hamiltonians involving more than two electron interactions. I shall use this to

illustrate the general case of arbitrary p. The second-order reduced density

matrix (2-RDM) of a pure state c, a function of four particles, is defined as fol-

lows:

D2ð12; 1020Þ ¼
Z

cð123 . . .NÞc�ð10203 . . .NÞdð3 . . .NÞ

This we interpret as the kernel of an integral operator, D2, which transforms an

arbitrary function f on 2-space into a function D2f on 2-space defined by

D2f ð12Þ ¼
Z

D2ð12; 1020Þf ð1020Þdð1020Þ

As we show later, the energy of the state of any system of N indistinguishable

fermions or bosons can be expressed in terms of the Hamiltonian and

D2ð12; 1020Þ if its Hamiltonian involves at most two-particle interactions. Thus

it should be possible to find the ground-state energy by variation of the 2-matrix,

which depends on four particles. Contrast this with current methods involving

direct use of the wavefunction that involves N particles. A principal obstruction

for this procedure is the ‘‘N-representability’’ conditions, which ensure that the

proposed RDM could be obtained from a system of N identical fermions or

bosons.

II. ACADEMIC HISTORY

I will sketch briefly my personal academic history that prepared me to discuss

these matters and then tell the story of how in the the summer of 1951 I hit upon

and named ‘‘N-representability.’’

During my undergraduate years, 1935–1939, in Honors Mathematics and

Physics at the University of Toronto, increasingly, I became interested in math-

ematical physics, picking up some elementary quantum mechanics and relativity.

My first encounter with Einstein’s general relativity theory (GRT) was in the

substantial treatise of Levi-Civita on differential geometry, which ends with a

150-page introduction to GRT. This is a beautiful theory, which I presented in

lectures from 1950 in Toronto because it had become the dominant orthodoxy

everyone should know!

However, I never became a ‘‘True Believer’’ since by chance (but fortunately)

I also read the principle of relativity (PR) by Whitehead, who pointed to a logical

problem for Einstein, which, as far as I am aware, has never been dealt with ade-

quately. Alfred North Whitehead (1860–1947) was a master of mathematical

logic, which he showed as senior author of the famous three-volume work on

the foundations of mathematics. As a mathematical Fellow and Tutor at Trinity
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College, Cambridge, it was also his duty to keep abreast of developments in

mathematical physics in the period 1885–1923. It was reported that when Ber-

trand Russell was asked ‘‘When did Whitehead become a Relativist?’’ he replied

‘‘At birth!’’

In 1939, the first year of the Second World War, I had the delicious, difficult

choice of graduate study at Harvard, Princeton, or St. John’s College with Dirac!

Because crossing the Atlantic was dangerous, and on the advice of the College

Registrar, I regretfully turned down Harvard, chose Princeton and found myself

sharing a first course in quantum mechanics with a student, nine days older than

myself, from MIT of whom I and the rest of the world had never heard, named

Richard Feynman!

The instructor in the first term was John A. Wheeler, who had begun his Prin-

ceton career the previous year; and in the second term, the famous authority on

group theory, Eugene Wigner. All that I recall of this course was that one day in

early January, Wigner arrived very excitedly saying that over the weekend he

had learned from Lamb that there is a minute error in Dirac’s formula for the

spectrum of hydrogen. This was the ‘‘Lamb shift’’ and the harbinger of quantum

field theory. At the time I had no idea why, but Wigner’s excitement left no doubt

for me, it was very important!

I assiduously attended all the lectures like a serious Torontonian even though

there was little in the first term that I had not learned from Leopold Infeld at

Toronto. I cannot remember seeing Feynman in class. He certainly knew more

QM than I did. However, we did enjoy arguing vigorously on several occasions

in the Discussion Rooms of Fine Hall Library. So much so that at least

twice Miss Shields, who ruled the Library with an iron hand, ordered us to mod-

erate our voices, which through the thick closed door were disturbing everyone

in the Library! He told me about his engagement to a girl in New York City

whose death from tuberculosis had been predicted and the opposition of his rela-

tives and friends to his determination to keep his word to her. I sympathized but

did not presume to advise. I became quite fond of him, admiring Feynman for

simplicity and integrity of spirit. After I left Princeton we met only once, in July

1962 in Poland at a Conference about gravitation. It was there that I took the

accompanying photo of him and Dirac, which was published on the cover of

Physics Today in August 1963 (see Fig. 1).

I returned to the University of Toronto in the summer of 1940, having com-

pleted a Master’s degree at Princeton, to enroll in a Ph.D. program under Leo-

pold Infeld for which I wrote a thesis entitled: A Study in Relativistic Quantum

Mechanics Based on Sir A.S. Eddington’s ‘‘Relativity Theory of Protons and

Electrons.’’ This book summarized his thought about the constants of Nature

to which he had been led by his shock that Dirac’s equation demonstrated that

a theory which was invariant under Lorentz transformation need not be

expressed in terms of tensors.

N-REPRESENTABILITY 5



Eddington’s final theory was dismissed by the physics establishment as philoso-

phical and speculative nonsense. Though I found a serious error in Eddington’s argu-

ment, the more errors I discovered the greater respect I developed for his physical

insight. My admiration for Whitehead’s gravitational theory and for Eddington’s

final work must cause orthodox physicists to dismiss me as espousing lost causes.

However, as evidenced by this book,my pursuit of the second-order reduced density

matrix appears in recent years to have gained some attention among chemists.

After obtaining a Ph.D. under Infeld at Toronto, I taught calculus and algebra

at Queen’s University for two years until the end of the War. Between 1945 and

1949, based in Geneva, I served as the University Secretary of the World’s Stu-

dent Christian Federation before joining the Mathematics Department of the

University of Toronto until 1960, when I became Head of Mathematics and Sta-

tistics at Queen’s University in Kingston, Ontario.

My years with the Federation provided a remarkable opportunity to

broaden my understanding of international relations and to begin to understand

Figure 1 Paul Dirac and Richard Feynman at the International Conference on Relativistic The-

ories of Gravitation, Warsaw, Poland, July 25–31, 1962. Photograph by A. John Coleman, courtesy

AIP Emilio Segre Visual Archives, Physics Today Collection.
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sympathetically the diversity of religious and political experiences in Europe,

Asia, Africa, and North America. But, what I had not expected, it also gave

me a chance to meet distinguished scientists such as Hadamard, the French

mathematician made famous for his discussion of the prime number theorem;

Werner Heisenberg, with whom I enjoyed two evenings in Goettingen during

the week in which I attended the funeral of Planck; W. Threlfall, the English

topologist, who, protected by his Nazi student, Seifert, lived safely in Germany

throughout the War during part of which he was housed inside a huge airplane

factory in a splended cottage provided in case the Minister of the Luftwaffe

came to inspect the factory, which he never did. He proudly told me that he

was probably unique in Germany, lecturing on the ‘‘Jewish’’ relativity theories

of Einstein during the courses he offered to engineers inside the factory!

III. SUMMER 1951

In the summer of 1951 it was my privilege to belong to the Research Institute of

the Canadian Mathematical Congress, which later became the Canadian Math-

ematical Society. The Institute had been created by R. L. Jeffery to encourage

young mathematicians to take time for research. I was working on Lie groups

and algebras. But as a diversion I started to read about second quantization in

Frenkel’s advanced treatise on quantum mechanics. This was the only decent

treatment of the topic in English available in 1951. I soon noticed that if the

Hamiltonian, H, of a system of N electrons involves the electrons in at most

two-particle interactions, the total energy of the ground state (GS) of the system

can be expressed in terms of the second-order reduced density matrix. This

mathematical object proved so important that it is also called the second-order

RDM, or for the sake of brevity, simply the 2-matrix. Unsaid but assumed is the

caveat ‘‘of the system.’’

We can justify the above conclusion as follows. If H involves at most two-

particle interactions, it is expressible as

H ¼
X
klij

Hklija
þ
k a
þ
l ajai

where ai and aj denote annihilators, whereas a
þ
k and aþl are creators. Therefore

the energy of the state, c, is

E ¼ hcjHjci
¼
X

Hklijhcjaþk aþl ajaijci
Thus the energy of the state is expressed in terms of coefficients of the Hamil-

tonian and the quantities hcjaþk aþl ajaijci, which are coefficients of the 2-matrix

which Dirac denoted by r2.
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I assume that the reader interprets the complex numbers hcjaþk aþl ajaijci as
elements of a matrix representing a reduced density operator on two-particle

space spanned by products of a fixed chosen complete set of orthonormal one-

particle functions, fi, in terms of which c can also be expanded. Then ai reduces

the occupancy of fi to zero, while aþi sets the occupancy at 1. For this reason

some physicists consider a name such as ‘‘occupation number notation,’’ used by

many Russians, as preferable to ‘‘second quantization notation,’’ which has an

almost mystical connotation to my mind.

The RDO, r2, is defined by

r2 ¼ NðN � 1ÞD2ð12; 1020Þ
¼
Z

cð123 . . .NÞc�ð10203 . . .NÞdð3 . . .NÞ

Since I have assumed that c is normalized to 1, the trace of D2 is also 1 and the

trace of r2 is NðN � 1Þ. We now define the reduced Hamiltonian operator

K ¼ Hð1Þ þ Hð2Þ þ ðN � 1ÞHð12Þ

where HðiÞ denotes the interaction between particle i and the fixed environment,

while HðijÞ denotes the interaction between the ith and jth particles. Note that

hcjHðijÞjci is independent of which pair of distinct integers ðijÞ denotes. Simi-

larly, hcjHðiÞjci is independent of i. It is then merely a question of counting to

show that the energy, E, of the system is given by

E ¼ hcjHjci
¼ 1

2
NðKD2Þ

Taking a hint from the treatment of helium by Hylleraas, I realized that one

merely had to choose D2ð12; 1020Þ to minimize the above expression for fixed

N and with K appropriate for any quantum system of N identical fermions to

obtain the ground-state energy level.

To impress physicists one needed to do this for a system more complicated

than helium. So I tried to find the ground state of lithium assuming that my guess

for D2ð12; 1020Þ was restricted only by the conditions that it be antisymmetric in

12 and 1020 and change these pairs under complex conjugation. I did too well,

obtaining a level about 10% BELOW the observed ground-state energy!

Impossible!

It did not take long, perhaps a day, to realize that I had not imposed some

limitation on the allowed 2-RDM additional to those mentioned above.
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I have no record of how long it took for me to realize that the needed condi-

tions were that the 2-matrix be derived from a function that is antisymmetric in

N particles. This led me to invent the term ‘‘N-representable’’ to point to a key

obstruction to solving N-electron problems by variation if N is larger than 2. I

believed that I had made a huge step forward and later in that summer brashly

claimed to a group of physicists at Chalk River that I had reduced the problem

for arbitrary N to a 2.5 particle problem. This claim is so intriguing that it

attracted several scientists, especially chemists, to attempt to use my approach.

I assured my audience at Chalk River that the obstacle of N-representability

would quickly be overcome by an able mathematician—presumably, like

myself! This proved the arrogant idea of a brash young scientist since the search

for a neat easy solution has not ended after 55 years.

The search was first pursued in a series of conferences organized by Bob

Erdahl, Hans Kummer, the late Vedene Smith, Jr., and myself. However, many

others have been involved, notably Prof. Valdemoro and her colleagues in Spain,

Prof. Nakatsuji and his associates in Japan, and since completing his Ph.D. at

Harvard, Prof. Mazziotti in Chicago.

This book shows that great progress has been made in using the 2-matrix

effectively, especially in chemistry. I believe that the role of RDM for condensed

matter physics is just as important as in chemistry. Some of these connections

will be explored in later chapters.
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I. A SHORT CHRONICLE

In the Pre-RDM Era, hominids made impressive progress in understanding the

principles of quantum mechanics and they were solving a limited set of relevant

physical problems at an unprecedented rate. The main tool became the wave-

function. However, the problems were more or less of a single-particle type

(independent particles in a potential, possibly a mean potential approximating

the influence of other particles). When many-body problems appeared, the

single-particle picture was no longer accurate enough and the calculation of a

many-body wavefunction was difficult, indeed.

Then, in the Old Ages (1940 or 1951–1967) some ingenious people became

aware that, in the case of two-body interactions, it is the two-particle reduced

density matrix (2-RDM) that carries in a compact way all the relevant informa-

tion about the system (energy, correlations, etc.). Early insight by Husimi (1940)

and challenges by Charles Coulson were completed by a clear realization and

formulation of the N-representability problem by John Coleman in 1951 (for

the history, see his book [1] and Chapters 1 and 17 of the present book). Then

a series of theorems on N-representability followed, by John Coleman and many

Reduced-Density-Matrix Mechanics: With Application to Many-Electron Atoms and Molecules,
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others (e.g., Fukashi Sasaki’s upper bound on eigenvalues of 2-RDM [2]).

Claude Garrod and Jerome Percus [3] formally wrote the necessary and suffi-

cient N-representability conditions. Hans Kummer [4] provided a generalization

to infinite spaces and a nice review. Independently, there were some clever prac-

tical attempts to reduce the three-body and four-body problems to a reduced

two-body problem without realizing that they were actually touching the varia-

tional 2-RDM method: Fritz Bopp [5] was very successful for three-electron

atoms and Richard Hall and H. Post [6] for three-nucleon nuclei (if assuming

a fully attractive nucleon–nucleon potential).

The Middle Ages (1967–1985) can be characterized by the six RDM confer-

ences and workshops, which are listed and discussed in the next section. These

meetings turned out to be a great catalyst among participants from different

branches of science: mathematicians, physicists, and chemists (at that time, com-

puter scientists were still missing!). They became aware that they were not alone

in RDM research and many collaborations started. In the Middle Ages, the list of

useful N-representability conditions was still insufficient and computer power

too weak. Regarding numerical results, RDMs could hardly compete with wave-

functions. There were, however, many new conceptual insights in atomic and

nuclear many-body systems, such as natural orbitals and geminals, the role of

symmetries, characterization of correlations, and pairing. In parallel, the highly

successful density functional method was evolving.

In the 1990s, the NewAges started, with the breakthrough of Hiroshi Nakatsuji,

Carmela Valdemoro, and David Mazziotti. They introduced improved N-

representability by means of a hierarchy of equations connecting p-RDMs with

(pþ 2)-RDMs (e.g., the contracted Schrödinger equation). Also, increased com-

puter power and improved algorithms in semidefinite programming allowed very

promising practical atomic and molecular calculations. References are given in

later chapters.

II. THE SEVEN INTERNATIONAL CONFERENCES/

WORKSHOPS ON REDUCED DENSITY MATRICES

1. Density Matrix Conference, Kingston, August 28–September 1, 1967.

Sponsored by: U.S. Air Force, Office of Scientific Research; U.S. Office

of Naval Research; National Research Council of Canada; Queen’s Uni-

versity. Co-organizers: A. J. Coleman and R. M. Erdahl. Proceedings: A. J.

Coleman and R. M. Erdahl, editors, Reduced Density Matrices with Appli-

cations to Physical and Chemical Systems, Queen’s Papers in Pure and

Applied Mathematics No. 11 (1967), 434 pp.

This was a great ‘‘coming together’’ of mathematicians, physicists, and quan-

tum chemists, and an exciting review of the progress already achieved with the
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RDM method. The participants learned about other researchers, the inter-

disciplinary nature of the problem, the existence of N-representability theo-

rems, and the availability of computational methods. Many collaborations

started.

2. Density Matrix Seminar, Kingston, June 17–July 12, 1968. Sponsored

by: U.S. Air Force, Office of Scientific Research; U.S. Office of Naval

Research; Queen’s University. Co-organizers: A. J. Coleman and R. M.

Erdahl. Proceedings: A. J. Coleman and R. M. Erdahl, editors, Report

of the Density Matrix Seminar, Queen’s Press (1968), 78 pp.

A beautiful month on Lake Ontario in a very friendly atmosphere. John

Coleman,BobErdahl,ClaudeGarrod,RichardHall,HansKummer, J. Lindenberg,

R. McWeeny, Yngve Ohrn, David Peat, Mitja Rosina, Mary-Beth Ruskai, Darwin

Smith, George Warsket, Antonio Ciampi, Ernest Davidson, and others discussed

N-representability, the interpretation of RDMs, and other unsolved problems.

3. Density Matrix Seminar II, Kingston, August 4–29, 1969. Sponsored by:

U.S. Air Force, Office of Scientific Research; Queen’s University. Co-

organizers: A. J. Coleman and R. M. Erdahl. Proceedings: A. J. Coleman

and R. M. Erdahl, editors, Report of the Density Matrix Seminar, Queen’s

Press (1969), 151 pp.

Some previous and some new participants continued to explore the character-

ization of RDMs, related conceptual problems, as well as practical problems to

incorporate correlations.

4. Reduced Density Operators Conference, Kingston, June 20–22, 1974.

Sponsored by: National Research Council of Canada; Queen’s University.

Organizer: R. M. Erdahl. Proceedings: R. M. Erdahl, editor, Reduced Den-

sity Operators with Applications to Physical and Chemical Systems—II,

Queen’s Papers in Pure and Applied Mathematics No. 40 (1974), 234 pp.

The Conference was followed by an extended workshop. The Density Matrix

Club had increased. The structure and symmetries of RDM were further studied,

and direct variational calculations were encouraged. Some new names were

Hubert Grudzinski, Everett Larson, and Vedene Smith. The lively workshop

encouraged the initiation of an informal newsletter to be distributed to old and

new participants. Three Editions of RDO News followed, edited by Bob Erdahl

(1975, 1976, 1977).

5. Reduced Density Matrices Conference, Université de Moncton, New

Brunswick, June 1977. Sponsored by: National Research Council of

Canada; Queen’s University. Co-organizers: A. J. Coleman, R. M. Erdahl,

and V. H. Smith, Jr. Proceedings: A. J. Coleman, R. M. Erdahl, and V. H.

Smith, Jr., editors, Proceedings of the Reduced Density Matrix Conference

at Moncton, New Brunswick, International Journal of Quantum Chemistry

13 (1978), 204 pp.
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Again a rich harvest of new ideas.

6. Density Matrices and Density Functionals, the A. John Coleman Sym-

posium, Kingston, August 25–29, 1985. Sponsored by: National Sciences

and Engineering Research Council of Canada; Queen’s University. Co-

organizers: R. M. Erdahl and V. H. Smith, Jr. Proceedings: R. M. Erdahl

and V. H. Smith, Jr., editors, Density Matrices and Density Functionals,

Reidel (1987), 600 pp.

During the lively symposium the history and concepts of RDM were

reviewed. Even small steps toward N-representability were welcomed. Many

details in calculated densities and correlations emerged. The comparison (or

competition) between RDM and density functionals was interesting. The sympo-

sium was followed by a seminar including a few enthusiasts.

7. Reduced Density Matrix Workshop, Kingston, August 29–31, 1999.

Sponsored by: Queen’s University. Organizer: A. J. Coleman. Monograph

(Instead of Proceedings): JerzyCioslowski, editor,Many-ElectronDensities

and Reduced Density Matrices, Kluwer Academic/Plenum (2000), 301 pp.

New optimism was brought into the field of RDMs by Hiroshi Nakatsuji,

Carmela Valdemoro, and DavidMazziotti with their cumulant expansion, the hier-

archy of equations connecting the 2-RDMwith 4-RDMs, and the contracted Schrö-

dinger equation. John Coleman continues to be the ‘‘motor’’ for further progress.

III. RECOLLECTIONS OF A NUCLEAR PHYSICIST

In the 1950s, many basic nuclear properties and phenomena were qualitatively

understood in terms of single-particle and/or collective degrees of freedom. A

hot topic was the study of collective excitations of nuclei such as giant dipole

resonance or shape vibrations, and the state-of-the-art method was the nuclear

shell model plus random phase approximation (RPA). With improved experi-

mental precision and theoretical ambitions in the 1960s, the nuclear many-

body problem was born. The importance of the ground-state correlations for

the transition amplitudes to excited states was recognized.

In Ljubljana, we participated in the measurements of the giant dipole reso-

nance in light nuclei (1958–1960) and we discovered its rich structure. To go

beyond RPA, we introduced a configuration interaction of the two-particle–two

hole type, which indeed split the resonance in rough agreement with experiment

(1962). However, for improvement, we needed some ground-state correlations

and we expressed [7] the ground-state energy (actually the G-matrix) in terms

of bilinear products of transition amplitudes to chosen excited states n:

G
a;b
c;d ¼

X
n

A
ðnÞ�
a;b A

ðnÞ
c;d ¼

X
n

hgjðâayaâabÞyjnihnjâaycâadjgi
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When applying the variational principle to the ground-state energy, we realized

that we have to satisfy some subsidiary relations for our variational parameters

A. And there we were, involved in the N-representability problem! We were very

excited, hoping to find an alternative to wavefunction calculations. Soon we

became aware that some other people such as Fritz Bopp, Fukashi Sasaki,

and, above all, John Coleman were already ahead of us, attacking this fortress.

My optimism suggested: let the mathematicians rigorously solve the mathema-

tical problem, and we physicists (and quantum chemists) will fruitfully apply it.

Fortunately, I was impatient to wait and I soon realized that we have to collabo-

rate. I was extremely lucky that John Coleman invited me to the very first RDM

Conference (1967), where I presented our variational calculation with transition

amplitudes (precursor of the RDM approach) and the one-to-one mapping from

the 2-RDM to the N-particle wavefunction in the case of the ground state of a

Hamiltonian with at most two-body interactions [8]. I participated in six of the

seven RDM conferences or seminars [9–10]. The search for N-representability

conditions on the 2-RDM and viable algorithms to implement the conditions

became team work (which I enjoyed very much). The progress was exciting

but slow, with its ups and downs. It was the infectious optimism of John

Coleman (and of my senior collaborator in Ljubljana, Miodrag Mihailović)

that kept me up [17, 18].

It was a fruitful period when I collaborated with Claude Garrod [19, 20].

He had also been excited by RDMs, and he had discovered (with Jerome Percus)

the importance of the G-matrix nonnegativity condition [3]; whichever simple

many-body problem they tried, they obtained exact results—they had thought

they had resolved the N-representability. However, with more complicated inter-

actions, the results were poorer, and Claude Garrod started the search for new

conditions. He realized, however, that the method should be computationally

viable and suggested a type of variational calculation in which D- and G-matrix

nonnegativity would be imposed iteratively by a converging infinite series of lin-

ear inequalities. This algorithm later became known as the cutting plane method,

an extension of dual simplex. It is amusing that the method has been rediscov-

ered recently under the name of semidefinite programming. Together, we devel-

oped the code and implemented the method to some atoms (Be) and light nuclei

(15;16;17O, 20Ne, 24S, 28Si). While it was excellent for the atom, it gave only 10%

precision for nuclei (compared to configuraton interaction calculations) [17, 21–

24]. Also, the imprecision and convergence time increased with the number of

particles. This means that the method is clever, and it is aware of the type of

interaction (Coulombic versus nuclear) as well as the number of particles

(even if it enters only as a parameter—the trace of the D-matrix).

An interesting application of the 2-RDM was the calculation of excited states

in the space of one-particle one-hole excitations [18, 25–30] with reasonably

good results, as well as the study of wavepacket dynamics [31].
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The partial sucess/failure slowed down the applications, especially as the

computers at that time were too slow to manage larger model spaces and addi-

tional, more complicated, N-representability conditions. Some hope was offered

by applying symmetries—orbital rotation, spin, isobaric spin—and it was stimu-

lating to explore them with Bob Erdahl and my younger collaborator Bojan Golli

[32]. However, new ideas were needed.

The final breakthrough came with the advent of powerful computers, which

enabled the algorithms of Hiroshi Nakatsuji, Carmela Valdemoro, and David

Mazziotti to come to life. I feel very happy about the revival of the RDM

approach to many-body problems.

I apologize to all those RDM contributors whose worthy works I did not men-

tion due to the limited space.
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I. INTRODUCTION

In 1927 Landau [1] and von Neumann [2] introduced the density matrix

into quantum mechanics. The density matrix for the N-electron ground-state

Reduced-Density-Matrix Mechanics: With Application to Many-Electron Atoms and Molecules,
A Special Volume of Advances in Chemical Physics, Volume 134, edited by David A. Mazziotti.
Series editor Stuart A. Rice. Copyright # 2007 John Wiley & Sons, Inc.
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wavefunction �ð1; 2; . . . ;NÞ, where the numbers represent the spatial and spin

coordinates for each electron, is given by

NDð1; 2; . . . ;N; 10; 20; . . . ;N 0Þ ¼ �ð1; 2; . . . ;NÞ��ð10; 20; . . . ;N 0Þ ð1Þ

Integrating the N-electron density matrix over coordinates 3 to N generates the

two-electron density matrix (2-RDM):

2Dð1; 2; 10; 20Þ ¼
Z

�ð1; 2; . . . ;NÞ��ð10; 20; . . . ;NÞd3 � � � dN ð2Þ

Because electrons are indistinguishable with only pairwise interactions, the

energy of any atom or molecule may be expressed as a linear functional of the

2-RDM [3, 4]. Formulating the energy as a linear functional of the 2-RDM, how-

ever, suggests the tantalizing possibility of employing the 2-RDM rather than the

many-electron wavefunction to compute the ground-state energy of atoms and

molecules. In 1955 Mayer [4] performed an encouraging pencil-and-paper calcu-

lation, but Tredgold [5] soon discovered that the energy for a simple system from a

trial 2-RDM could be optimized substantially below the exact ground-state

energy. Why did the Rayleigh–Ritz variational principle not hold for the 2-

RDM expression of the energy? Tredgold [5], Coleman [6], Coulson [7], and

others realized that for an N-electron problem the trial 2-RDM was assuming a

form that did not correspond to an N-electron wavefunction: that is, the trial 2-

RDM at the minimum energy could not be obtained from the integration of an

N-electron density matrix. The 2-RDM must be constrained by additional rules

(or conditions) to derive from an N-electron wavefunction. Coleman described

these necessary and sufficient rules as N-representability conditions [6].

The unsuccessful back-of-the-envelope 2-RDM calculations of Mayer and

Tredgold already employed four basic requirements for a density matrix of indis-

tinguishable fermions [6]: the matrix should be (i) normalized to conserve par-

ticle number, (ii) Hermitian, (iii) antisymmetric under particle exchange, and

(iv) positive semidefinite to keep probabilities nonnegative. A matrix is positive

semidefinite if and only if all of its eigenvalues are nonnegative. These condi-

tions are sufficient to guarantee that 2-RDM is a density matrix but not sufficient

for the matrix to be representable by an N-electron density matrix, or N-repre-

sentable. What additional conditions must be imposed on a 2-RDM to restrict it

to be N-representable? While a considerable research effort was initially made to

understand these conditions, interest in the 2-RDM approach to many-electron

atoms and molecules began to wane as the N-representability problem appeared

intractable.

Interest in the 2-RDM and its N-representability returned in the 1990s with

the direct calculation of the ground-state 2-RDM without the many-electron
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wavefunction from a self-consistent solution of the contracted Schrödinger

equation [8–15]. Recent progress has revealed the importance of a class of

N-representability constraints, called positivity conditions [16, 17]. Erdahl

and Jin [16] and Mazziotti and Erdahl [17] generalized these conditions, ori-

ginally discussed by Coleman [6] and Garrod and Percus [18], to a hierarchy

of N-representability conditions, and Mazziotti and Erdahl [17] showed that

each level of the hierarchy corresponds to enforcing the generalized uncer-

tainty relations for a class of operators. With the positivity conditions, an

accurate lower bound on the ground-state energy of many-electron atoms

and molecules can be computed through a variational calculation in which

the energy is directly parameterized as a linear functional of the 2-RDM

[16, 17, 19–37]. The method produces realistic energies and RDMs even

when the wavefunction becomes difficult to parameterize, as in transition-state

structures or other stretched geometries of a potential energy surface [21, 22,

28, 29, 31, 35, 37]. Variational solution of the 2-RDM with positivity con-

straints requires a special constrained optimization known as semidefinite pro-

gramming, which also has applications in control theory, combinatorial

optimization, and even finance.

II. THEORY

After the energy is expressed as a functional of the 2-RDM, a systematic hier-

archy of N-representability constraints, known as p-positivity conditions, is

derived [17]. We develop the details of the 2-positivity, 3-positivity, and partial

3-positivity conditions [21, 27, 34, 33]. In Section II.E the formal solution of N-

representability for the 2-RDM is presented through a convex set of two-particle

reduced Hamiltonian matrices [7, 21]. It is shown that the positivity conditions

correspond to certain classes of reduced Hamiltonian matrices, and conse-

quently, they are exact for certain classes of Hamiltonian operators at any inter-

action strength. In Section II.F the size of the 2-RDM is reduced through the use

of spin and spatial symmetries [32, 34], and in Section II.G the variational

2-RDM method is extended to open-shell molecules [35].

A. Energy as a 2-RDM Functional

Because electrons interact pairwise, the many-electron Hamiltonian for any

atom or molecule can be written

ĤH ¼
X
i; j;k;l

2K
i;j
k;la
y
i a
y
j alak ð3Þ

where the ay and the a are the second-quantized creation and annihilation

operators, the indices refer to members of a spin-orbital basis set, and the
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two-electron reduced Hamiltonian matrix 2K is the matrix representation of

the operator

2K̂K ¼ 1

N � 1
� 1

2
r2

1 �
X
j

Zj

r1j

 !
þ 1

2

1

r12
ð4Þ

The expectation value of the Hamiltonian operator yields the many-electron

energy

E ¼
X

2K
i;j
k;l

2D
i;j
k;l ð5Þ

E ¼ Trð2K 2DÞ ð6Þ

as a functional of the reduced Hamiltonian matrix and the two-electron reduced

density matrix (2-RDM), where

2D
i;j
k;l ¼ h�jayi ayj alakj�i ð7Þ

Both the energy as well as the one- and two-electron properties of an atom or

molecule can be computed from a knowledge of the 2-RDM. To perform a var-

iational optimization of the ground-state energy, we must constrain the 2-RDM

to derive from integrating an N-electron density matrix. These necessary yet suf-

ficient constraints are known as N-representability conditions.

B. 2-Positivity Conditions

General p-particleN-representability conditions on the 2-RDM are derivable from

metric (or overlap) matrices. From the ground-state wavefunction j�i and a set of
p-particle operators fĈCi1;i2;...;ipg, a set of basis functions can be defined,

h�i1;i2;...;ip j ¼ h�jĈCi1;i2;...;ip ð8Þ

for which the metric (or overlap) matrix M with elements

M
i1;i2;...;ip
j1;j2;...;jp

¼ h�i1;i2;...;ip j�j1;j2;...;jpi ð9Þ
¼ h�jĈCi1;i2;...;ip ĈC

y
j1;j2;...;jp

j�i ð10Þ

must be positive semidefinite. We indicate that a matrix has this property by the

notationM � 0. For a p-RDM that is parameterized by a wavefunction, these vec-

tor-space restrictions are always satisfied. More generally, however, these condi-

tions, known as p-positivity conditions, offer a systematic approach for imposing

N-representability conditions on an RDM without using the wavefunction.
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When p ¼ 2, we may choose the ĈCi;j in three distinct ways: (i) to create one

particle in the jth orbital and one particle in the ith orbital, that is, ĈCi;j ¼ a
y
i a
y
j ;

(ii) to annihilate one particle in the jth orbital and one particle in the ith orbital

(or create holes in each of these orbitals), ĈCi;j ¼ aiaj; and (iii) to annihilate one

particle in the jth orbital and create one particle in the ith orbital, that is,

ĈCi;j ¼ a
y
i aj. These three choices for the ĈCi;j produce the following three different

metric matrices for the 2-RDM:

2D
i;j
k;l ¼ h�jayi ayj alakj�i ð11Þ

2Q
i;j
k;l ¼ h�jaiajayl aykj�i ð12Þ

2G
i;j
k;l ¼ h�jayi ajayl akj�i ð13Þ

which must be positive semidefinite if the 2-RDM is N-representable [6, 17, 18].

All three matrices contain equivalent information in the sense that rearranging

the creation and annihilation operators produces linear mappings between the

elements of the three matrices; particularly, the two-hole RDM 2Q and the

particle–hole RDM 2G may be written in terms of the two-particle RDM 2D

as follows

2Q
i;j
k;l ¼ 2 2I

i;j
k;l � 4 1Di

k ^ 1I
j
l þ 2D

i;j
k;l ð14Þ

and

2G
i;j
k;l ¼ 1I

j
l
1Di

k � 2D
i;l
k;j ð15Þ

While all three matrices are interconvertible, the nonnegativity of the eigenva-

lues of one matrix does not imply the nonnegativity of the eigenvalues of the

other matrices, and hence the restrictions 2Q � 0 and 2G � 0 provide two impor-

tant N-representability conditions in addition to 2D � 0. These conditions phy-

sically restrict the probability distributions for two particles, two holes, and one

particle and one hole to be nonnegative with respect to all unitary transforma-

tions of the two-particle basis set. Collectively, the three restrictions are known

as the 2-positivity conditions [17].

Because 2D � 0 and 2Q � 0 imply 1D � 0 and 1Q � 0 by contraction

1Di
k ¼

1

N � 1

X
j

2D
i;j
k;j ð16Þ

1Qi
k ¼

1

r � N � 1

X
j

2Q
i;j
k;j ð17Þ
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the 2-positivity conditions imply the 1-positivity conditions. The r in the con-

traction of the two-hole RDM denotes the rank of the one-particle basis set.

In general, the p-positivity conditions imply the q-positivity conditions for

q � p. The 1-positivity conditions from the metric matrices for the one-particle

and one-hole RDMs, 1D and 1Q, restrict the occupation numbers ni (or eigenva-

lues) of the 1-RDM to lie in the interval ni 2 ½0; 1�. Coleman showed this condition

on the eigenvalues to be both necessary and sufficient for the N-representability

of the 1-RDM [6].

C. 3-Positivity Conditions

The conditions that a 3-RDM be 3-positive follow from writing the operators in

Eq. (8) as products of three second-quantized operators [16, 17]. The resulting

basis functions lie in four vector spaces according to the number of creation

operators in the product; the four sets of operators defining the basis functions

in Eq. (8) are

ĈC
D

i; j;k ¼ âa
y
i âa
y
j âa
y
k ð18Þ

ĈC
E

i; j;k ¼ âa
y
i âa
y
j âak ð19Þ

ĈC
F

i; j;k ¼ âaiâajâa
y
k ð20Þ

ĈC
Q

i; j;k ¼ âaiâajâak ð21Þ
Basis functions between these vector spaces are orthogonal because they are

contained in Hilbert spaces with different numbers of particles. Hence the

four metric matrices that must be constrained to be positive semidefinite for

3-positivity [17] are given by

3Di; j;k
p;q;r ¼ h�jâayi âayj âaykâarâaqâapj�i ð22Þ

3Ei; j;k
p;q;r ¼ h�jâayi âayj âakâayr âaqâapj�i ð23Þ

3Fi; j;k
p;q;r ¼ h�jâaiâajâaykâarâayqâaypj�i ð24Þ

3Qi; j;k
p;q;r ¼ h�jâaiâajâakâayr âayqâaypj�i ð25Þ

As in Eqs.(14) and (15) for the 2-positive metric matrices, the 3-positive metric

matrices are connected by linear mappings, which can be derived by rearranging

the second-quantized operators. A 2-RDM is defined to be 3-positive if it arises

from the contraction of a 3-positive 3-RDM:

2Di;j
p;q ¼

1

N � 2

X
k

3D
i;j;k
p;q;k ð26Þ
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Physically, the 3-positivity conditions restrict the probability distributions for

‘‘three particles,’’ ‘‘two particles and one hole,’’ ‘‘one particle and two holes,’’

and ‘‘three holes’’ to be nonnegative with respect to all unitary transformations

of the one-particle basis set. These conditions have been examined in variational

2-RDM calculations on spin systems in the work of Erdahl and Jin [16],

Mazziotti and Erdahl [17], and Hammond and Mazziotti [33], where they give

highly accurate energies and 2-RDMs.

D. Partial 3-Positivity Conditions

Two different partial 3-positivity conditions have been proposed: (i) the lifting

conditions of Mazziotti [21, 33], and (ii) the T1=T2 conditions of Erdahl [27,

34, 38]. The T1=T2 conditions have been implemented for molecules by Zhao

et al. [27] and Mazziotti [34].

1. Lifting Conditions

The lifted 3-RDMs [21] are defined by taking the expectation values of particle

(or hole) projection operators n̂nk ¼ âa
y
kâak (or 1� n̂nk ¼ âakâa

y
k) over the space

spanned by the basis functions in the three metric matrices for 2-positivity:

2D
ij
kl ¼ h�D

ij j�D
kli ¼ h�jâayi âayj âalâakj�i ð27Þ

2Q
ij
kl ¼ h�Q

ij j�Q
kli ¼ h�jâaiâajâayl âaykj�i ð28Þ

2Gik
lj ¼ h�G

ikj�G
lj i ¼ h�jâayi âakâayj âalj�i ð29Þ

where j�D
kli, j�Q

kli, and j�G
kli, are ðN � 2Þ-, ðN þ 2Þ-, and N-particle basis func-

tions, respectively. An example of this type of expectation value is

h�D
ij jð1� n̂nkÞj�D

lmi ¼ h�jâayi âayj âakâaykâamâalj�i ð30Þ

which is the 3E matrix in Eq. (22) with an upper index set equal to a lower set.

Summing over the particle projection operators for all orbital basis functions

gives the number operator N̂Nk ¼
P

k n̂nk. Hence, because Eq. (30) contracts to

the G-condition, it includes the N-representability restrictions from the G-

condition as well as additional constraints [21]. The lifted conditions are part

of the four 3-positivity conditions since every principal submatrix of a positive

semidefinite matrix must also be positive semidefinite. By inserting either the

particle or hole projection (or lifting) operator between the basis functions

j�Di, we generate two lifted metric matrices 3D and 3E. Similarly, from the basis
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functions for 2Q and 2G, we generate four more conditions for a total of six

partial 3-positive conditions:

h�D
ij jâaykâakj�D

lmi ¼ h�jâayi âayj âaykâakâamâalj�i ¼ 3D
ijk
lmk ð31Þ

h�D
ij jâakâaykj�D

lmi ¼ h�jâayi âayj âakâaykâamâalj�i ¼ 3E
ijk
lmk ð32Þ

h�G
ij jâaykâakj�G

lmi ¼ h�jâayi âajâaykâakâaymâalj�i ¼ 3eEEijk
lmk ð33Þ

h�G
ij jâakâaykj�G

lmi ¼ h�jâayi âajâakâaykâaymâalj�i ¼ 3eFFijk
lmk ð34Þ

h�Q
ij jâaykâakj�Q

lmi ¼ h�jâaiâajâaykâakâaymâayl j�i ¼ 3F
ijk
lmk ð35Þ

h�Q
ij jâakâaykj�Q

lmi ¼ h�jâaiâajâakâaykâaymâayl j�i ¼ 3Q
ijk
lmk ð36Þ

Three distinct sets of linear mappings for the partial 3-positivity matrices in Eqs.

(31)–(36) are important: (i) the contraction mappings, which relate the lifted metric

matrices to the 2-positive matrices in Eqs. (27)–(29); (ii) the linear interconversion

mappings from rearrangingcreation andannihilationoperators to interrelate the lifted

metric matrices; and (iii) antisymmetry (or symmetry) conditions, which enforce the

permutation of the creation operators for fermions (or bosons). Note that the correct

permutation of the annihilation operators is automatically enforced from the permu-

tation of the creation operators in (iii) by the Hermiticity of the matrices.

2. T1=T2 Conditions

Because the addition of any two positive semidefinite matrices produces a posi-

tive semidefinite matrix, the four 3-positivity conditions [17] imply the follow-

ing two less stringent constraints:

T1 ¼ 3Dþ 3Q � 0 ð37Þ
T2 ¼ 3E þ 3F � 0 ð38Þ

known as the T1 and T2 conditions [27, 34, 38]. These conditions can be written

as explicit linear functionals of the 2-RDM because the terms with six creation

and/or annihilation operators in 3D and 3Q (as well as 3E and 3F) cancel

upon addition due to opposite signs. If the metric matrices are expressed as

cumulant expansions [14, 15, 39, 40], it can be shown that it is precisely the con-

nected (or cumulant) parts of the metric matrices that cancel upon addition [33].

Hence the T1 and T2 matrices are unconnected. The T1 and T2 matrices corre-

spond to metric matrices, where the operators ĈCi;j;k in Eq. (9) are defined as

ĈC
T1

i; j;k ¼ a
y
i a
y
j a
y
k þ aiajak ð39Þ

ĈC
T2

i; j;k ¼ a
y
i a
y
j ak þ aiaja

y
k ð40Þ

respectively.
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In contrast to the 3E and 3F metric matrices in 3-positivity, the strength of the

T2 matrix as a 2-RDM N-representability condition is not completely invariant

upon altering the order of the second-quantized operators in ĈC
T2

i;j;k. For example, a

slightly different metric matrix ~TT2 can be defined by exchanging the operators ai
and a

y
k in Eq. (40) to obtain

ĈC
~TT2

i;j;k ¼ a
y
i a
y
j ak þ a

y
kajai ð41Þ

This dependence on ordering occurs because, unlike the set of operators ĈC
E

i;j;k

and ĈC
F

i;j;k in the 3-positivity conditions, the operators ĈC
T2

i;j;k do not include the

set of single-particle excitation and deexcitation operators, that is,

a
y
j ; aj

n o
=� ĈC

T2

i; j;k

n o
ð42Þ

To demonstrate the reason for this difference between 3E and T2, we note that

X
i

ĈC
E

i;j;i ¼ �ayj N̂N ð43Þ

where N̂N is the number operator, whileX
i

ĈC
T2

i; j;i ¼ � a
y
j þ aj

� �
N̂N ð44Þ

Rearranging the operators ĈC
T2

i;j;i to ĈC
~TT2

i;j;i produces a term with a single annihilation

operator. Because this term cannot be expressed in terms of the set of operators

fĈCT2

i;j;kg, the space spanned by the basis functions in the metric matrix T2 differs

slightly from the space spanned by the basis functions in the metric matrix ~TT2.

A generalized metric matrix �TT2, however, can be obtained by supplement-

ing the ĈC
T2

i;j;k operators from Eq. (40) with the set of single-particle excitation

and deexcitation operators:

ĈC
�TT2 2 a

y
i ; ai; a

y
i a
y
j ak þ aiaja

y
k

n o
ð45Þ

The generalized �TT2 matrix is contained in Erdahl’s original theoretical treatment

of these conditions [38], although the recent applications to atoms and molecules

[27, 34] employ either T2 or ~TT2. The condition �TT2 � 0 implies both T2 � 0 and
~TT2 � 0 as well as any other conditions from different orderings of the second-

quantized operators.
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E. Convex Set of Two-Particle Reduced Hamiltonian Matrices

The formal solution of N-representability for the 2-RDM is developed in terms

of a convex set of two-particle reduced Hamiltonian matrices. To complement

the derivation of the positivity conditions from the metric matrices, we derive

them from classes of these two-particle reduced Hamiltonian matrices. This

interpretation allows us to demonstrate that the 2-positivity conditions are exact

for certain classes of Hamiltonian operators for any interaction strength. In this

section all of the RDMs are normalized to unity. Much of this discussion

appeared originally in Refs. [21, 29].

1. Convex Set of N-Representable 2-RDMs

The energy for a system of N fermions with p-particle interactions may be writ-

ten as a linear functional of the p-RDM:

E ¼ Tr H ND
� � ¼ Tr pK pD½ � ð46Þ

where pK is the p-particle reduced Hamiltonian matrix. A contraction operator

L
p
N may be defined to integrate (or sum) the N-particle density matrix to the

p-RDM, where in this section we assume that all density matrices are normal-

ized to unity. Employing the contraction operator in Eq. (46) and taking its

adjoint

E ¼ Tr½pK L
p
NðNDÞ� ¼ Tr½�N

p ðpKÞ ND� ð47Þ

defines a lifting operator �N
p , which by comparison with Eq. (46) maps the

p-particle reduced Hamiltonian matrix to the N-particle Hamiltonian H [41, 42].

The lifting operator may be evaluated with a Grassmann wedge product of the

p-particle reduced Hamiltonian matrix with the ðN � pÞ-particle identity matrix

H ¼ �N
p ðpKÞ ¼ pK ^ ðN�pÞI ð48Þ

where the Grassmann wedge ^ denotes the antisymmetric tensor product

[13, 43]. The wedge product is computed by summing all distinct antisymmetric

permutations of the upper and lower indices and dividing by the total number of

permutations.

Direct minimization of the energy as a functional of the p-RDM may be

achieved if the p-particle density matrix is restricted to the set of N-represen-

table p-matrices, that is, p-matrices that derive from the contraction of at least

one N-particle density matrix. The collection of ensemble N-representable

p-RDMs forms a convex set, which we denote as PN
p . To define PN

p , we first

consider the convex set BN
p of p-particle reduced Hamiltonians, which are
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positive semidefinite (nonnegative eigenvalues) after being lifting to the N-

particle space:

BN
p ¼ pBjpB ^ ðN�pÞI � 0

n o
ð49Þ

When N ¼ p, the set Bp
p simply contains the p-particle reduced Hamiltonians,

which are positive semidefinite, but when N ¼ pþ 1, because the lifting process

raises the lowest eigenvalue of the reduced Hamiltonian, the set Bpþ1
p also con-

tains p-particle reduced Hamiltonians that are lifted to positive semidefinite

matrices. Consequently, the number of N-representability constraints must

increase with N, that is, BN
p � BNþ1

p . To constrain the p-RDMs, we do not actu-

ally need to consider all pB in BN
p , but only the members of the convex set BN

p ,

which are extreme A member of a convex set is extreme if and only if it cannot

be expressed as a positively weighted ensemble of other members of the set (i.e.,

the extreme points of a square are the four corners while every point on the

boundary of a circle is extreme). These extreme constraints form a necessary

and sufficient set of N-representability conditions for the p-RDM [18, 41, 42],

which we can formally express as

PN
p ¼ pDjTr½pB pD� � 0; 8 pB 2 BN

p

n o
ð50Þ

The set of N-representable p-RDMs becomes smaller as N increases, that is,

PNþ1
p � PN

p .

A significant class of p-particle reduced Hamiltonians in the set BN
p includes

those that are positive semidefinite pB � 0, and the extreme Hamiltonian matrices

that satisfy this positivity constraint may be parameterized as follows:

pBi
j ¼ cic

�
j ð51Þ

Substitution of this class of reduced Hamiltonians into Eq. (50) givesX
i;j

cic
�
j
pDi

j � 0 ð52Þ

which is one definition for restricting the p-RDM to be positive semidefinite
pD � 0. However, for p < N this does not exhaust the extreme elements of

the set BN
p . The task of determining the complete set of pB without checking

the conditions in Eq. (49) may appear daunting or even impossible. However,

in the next sections this set is described exactly for the 1-RDM at the one-par-

ticle level and approximately for the 2-RDM at the two-particle level. Special

emphasis is placed on the interpretation of positivity conditions as testing signif-

icant classes of extreme reduced Hamiltonians.
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2. Positivity and the 1-RDM

A quantum system of N particles may also be interpreted as a system of ðr � NÞ
holes, where r is the rank of the one-particle basis set. The complementary nat-

ure of these two perspectives is known as the particle–hole duality [13, 44, 45].

Even though we treated only the N-representability for the particles in the formal

solution, any p-hole RDM must also be derivable from an ðr � NÞ-hole density

matrix. While the development of the formal solution in the literature only con-

siders the particle reduced Hamiltonian, both the particle and the hole represen-

tations for the reduced Hamiltonian are critical in the practical solution of N-

representability problem for the 1-RDM [6, 7]. The hole definitions for the

sets Br�N
p and Pr�N

p are analogous to the definitions for particles except that

the number ðr � NÞ of holes is substituted for the number of particles. In defin-

ing the hole RDMs, we assume that the rank r of the one-particle basis set is

finite, which is reasonable for practical calculations, but the case of infinite r

may be considered through the limiting process as r !1.

The ground-state energy for the N-particle Hamiltonian defined with 1K in

Eq. (48) may be expressed from either the particle or the hole perspective:

E ¼ Tr½1K 1D� ð53Þ
¼ Tr½1 �KK 1 �DD�

where the 1-hole RDM and reduced Hamiltonian may be written in terms of the

1-RDM and the 1-particle reduced Hamiltonian through the rearrangement of

the creation and the annihilation operators:

ðr � NÞ 1 �DDþ N 1D ¼ 1I ð54Þ
and

1 �KK
i
j ¼

1

N
ðTr½1K�1Iij � ðr � NÞ 1Ki

jÞ ð55Þ

Any arbitrary one-particle reduced Hamiltonian shifted by its N-particle ground-

state energy must be expressible by the extreme Hamiltonian elements in the

convex set BN
1 . As we showed in Eq. (52), keeping the 1-RDM positive semide-

finite is equivalent to applying the N-representability constraints in Eq. (50) for

the class of extreme positive semidefinite 1B, which may be parameterized by

1Bi
j ¼ cic

�
j ð56Þ

Each extreme 1B matrix is a projector onto an orbital defined by the set of expan-

sion coefficients fcig. This class of Hamiltonians, however, is not complete,

as may be seen by shifting an arbitrary Hamiltonian 1K by its N-particle
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ground-state energy EN and then expanding the resulting matrix 1C in terms of

its eigenvalues fEig and eigenvectors fcig:
1C ¼ 1K � EN

1I ¼
X
i

Eicic�i ð57Þ

Because EN is the N-particle energy and not the lowest eigenvalue of 1K, some of

the eigenvalues of 1C will be negative, and this portion of the reduced Hamiltonian

cannot be represented by the positive semidefinite Hamiltonians in Eq. (56).

A similar argument, however, may also be made from the perspective of the

holes. Restricting the one-hole RDM to be positive semidefinite corresponds to

applying the N-representability constraints in Eq. (50) to the class of extreme

positive semidefinite 1�BB,

1�BB
i
j ¼ cic

�
j ð58Þ

or, after being mapped to the particle reduced Hamiltonian,

1Bi
j ¼

1

r � N
ð1Iij � N 1cic

�
j Þ ð59Þ

While the extreme Hamiltonians in either Eq. (56) or Eq. (59) alone are not suf-

ficient, together they provide all of the extreme Hamiltonians in the set BN
1 . Inde-

pendent of the correlation present in the 1-RDM, an ensemble of the extreme

elements in Eqs. (56) and (59) may generate any energy-shifted Hamiltonian
1C—both the positive and the negative parts of its spectrum. Proof of this impor-

tant idea was first given by Coleman [6, 7]. From the formal definition of the

N-representability constraints in Eq. (50), therefore, the positivity of the one-

particle and the one-hole RDMs is necessary and sufficient for the ensemble

N-representability of the 1-RDM [6]. This result highlights the importance of

examining different representations of the reduced Hamiltonian. Without wed-

ging to the N-particle space the particle- and the hole-reduced Hamiltonians pro-

vide a complete solution of ensemble representability for the 1-RDM on the one-

particle space.

3. Positivity and the 2-RDM

The ground-state energies of atoms and molecules where the N-particle Hamil-

tonian is defined by Eq. (48) may be expressed through three different represen-

tations of the 2-RDM and the two-particle reduced Hamiltonian:

E ¼ Tr½2K 2D� ð60Þ
¼ Tr½2 �KK 2Q�
¼ Tr½2 ~KK 2G�
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where the elements of the two-hole RDM are given by

2Q
i;j
k;l ¼

1

nq
h�jaiajayl aykj�i � 0 ð61Þ

or in terms of the 1- and the 2-RDMs

nq

2
2Q

i;j
k;l ¼ 2I

i;j
k;l � N 1Di

k ^ 1I
j
l þ

nd

2
2D

i;j
k;l ð62Þ

and the elements of the two-particle G-matrix are given by

2G
i;k
l; j ¼

1

ng
h�jayi akayj alj�i � 0 ð63Þ

or in terms of the 1- and the 2-RDMs

ng
2G

i;k
l; j ¼ Ndjk

1Di
l þ nd

2D
i;j
k;l ð64Þ

The factors nd , nq, and ng, which normalize the D-, the Q- and the G-matrices to

unity, are given by NðN � 1Þ, ðr � NÞðr � N � 1Þ, and Nðr � N þ 1Þ, respec-
tively. Because the D-, the Q-, and the G-matrices are expressible as metric

(or overlap) matrices M,

Mi
j ¼ h�ij�ji ¼ h�jĈCiĈCj

yj�i � 0 ð65Þ

each of them must be positive semidefinite for the 2-RDM to be N-representable.

These positivity conditions were originally proposed by Garrod and Percus [18].

Using the second-quantized definitions of the D-, the Q-, and the G- matrices,

the Q- and the G-reduced Hamiltonians 2 �KK and 2 ~KK in Eq. (60) may be expressed

in terms of the usual D-representation of the reduced Hamiltonian:

2 �KK
i;j
k;l ¼

2

nd
ðTr½2K� 2Ii;jk;l � ðr � NÞ L12½2K�ik ^ 1I

j
l þ

nq

2
2K

i;j
k;lÞ ð66Þ

and

2 ~KK
i;k

l; j ¼
ng

nd

2K
i;j
k;l þ djk=ðr � N þ 1Þ

X
m

2K
i;m
l;m

 !
ð67Þ

To the Q- and the G-reduced Hamiltonians, we may wish to affix the name gen-

eralized reduced Hamiltonians. Just as the D-form of the reduced Hamiltonian

may be lifted to an N-particle Hamiltonian, the Q-form of the reduced
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Hamiltonian may be lifted by Eq. (48) to an ðr � NÞ-hole Hamiltonian, which

shares the same ground-state as the N-particle Hamiltonian. A similar lifting

may be extended to the G-form of the reduced Hamiltonian, but the procedure

is slightly more subtle since the G-matrix combines the particle and the hole

perspectives.

The three complementary representations of the reduced Hamiltonian offer a

framework for understanding the D-, the Q-, and the G-positivity conditions for

the 2-RDM. Each positivity condition, like the conditions in the one-particle

case, correspond to including a different class of two-particle reduced Hamilto-

nians in the N-representability constraints of Eq. (50). The positivity of 2D arises

from employing all positive semidefinite 2B in Eq. (50) while the Q- and the G-

conditions arise from positive semidefinite 2�BB and 2~BB, respectively. To under-

stand these positivity conditions in the particle (or D-matrix) representation,

we define the D-form of the reduced Hamiltonian in terms of the Q- and the

G-representations:

2B
i;j
k;l ¼

2

nq
Tr½2�BB� 2Ii;jk;l � N L12½2�BB�ik ^ 1I

j
l þ

nd

2
2�BB

i;j
k;l

� �
ð68Þ

and

2B
i;j
k;l ¼

nd

ng

2~BB
i;k

l;j � djk=ðN � 1Þ
X
m

~BB
i;m

l;m

 !
ð69Þ

The Q- and the G-conditions are thus equivalent to the constraints in Eq. (50)

with the two-particle reduced Hamiltonians in Eqs. (68) and (69), where
2�BB � 0 and 2~BB � 0. Unlike the one-particle case, these reduced Hamiltonians

do not exhaust all of the extreme constraints in Eq. (50), and yet the explicit

forms of the Hamiltonians give us insight into the variety of correlated

Hamiltonians that can be treated accurately.

4. Strength of Positivity Conditions

Many methods in chemistry for the correlation energy are based on a form of

perturbation theory, but the positivity conditions are quite different. Traditional

perturbation theory performs accurately for all kinds of two-particle reduced

Hamiltonians, which are close enough to a mean-field (Hartree–Fock) reference.

There are a myriad of chemical systems, however, where the correlated wave-

function (or 2-RDM) is not sufficiently close to a statistical mean field. Different

from perturbation theory, the positivity conditions function by increasing the

number of extreme two-particle Hamiltonians in BN
2 , which are employed as

constraints upon the 2-RDM in Eq. (50) and, hence, they exactly treat a certain

convex set of reduced Hamiltonians to all orders of perturbation theory. For the
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D-, theQ-, and theG-conditions we have: If the two-particle reduced Hamiltonian

shifted by its N-particle ground-state energy can be written as an ensemble of

the reduced Hamiltonians in the set f2B � 0g as well as the Q- and the G-reduced
Hamiltonians parameterized in Eqs. (68) and (69), then the energy for an

N-particle systemmaybe computed exactly.

To gain an understanding of this mechanism, consider the Hamiltonian opera-

tor ðĤH � EgÎIÞ with only two-body interactions, where Eg is the lowest energy for

an N-particle system with Hamiltonian ĤH and the identity operator ÎI. Because Eg

is the lowest (or ground-state) energy, the Hamiltonian operator is positive semi-

definite on the N-electron space; that is, the expectation values of ĤH with respect

to all N-particle functions are nonnegative. Assume that the Hamiltonian may be

expanded as a sum of operators ÔOiÔOi
y

ĤH � EgÎI ¼
X
i

wiOiO
y
i ð70Þ

where each ÔOi operator is a sum of products of two creation and/or annihilation

operators and the weights wi are defined to be nonnegative. If the 2-RDM is con-

strained to be 2-positive, then upon evaluation with the 2-RDM every term in the

sum in Eq. (70) is nonnegative. For example, if the ÔOi operator is assembled from

products like aya, then the ith term may be written in terms of the G-matrix:

h�jÔOiÔO
y
i j�i ¼ �j

X
i;j

oi;ja
y
i aj
X
k;l

o�k;la
y
l akj�

* +
ð71Þ

¼
X
i; j;k;l

oi;jo
�
k;lh�jayi ajayl akj�i ð72Þ

¼
X
i; j;k;l

oi;jo
�
k;l

2G
i;j
k;l ð73Þ

If the G-matrix is positive semidefinite, then the above expectation value of the

G-matrix with respect to the vector of expansion coefficients oi;j must be nonne-

gative. Similar analysis applies to ÔOi operators expressible with the D- or Q-

matrix or any combination of D, Q, and G. Therefore variationally minimizing

the ground-state energy of a ðĤH � EgÎIÞ operator, consistent with Eq. (70), as a

function of the 2-positive 2-RDM cannot produce an energy less than zero. For

this class of Hamiltonians, we conclude, the 2-positivity conditions on the 2-

RDM are sufficient to compute the exact ground-state N-particle energy on

the two-particle space.

The G-reduced Hamiltonians are necessary and sufficient for at least three

important classes of Hamiltonians: (i) all one-particle Hamiltonians, (ii) bosons

or fermions with harmonic interactions [24], and (iii) all Hamiltonians with
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antisymmetrized geminal power (AGP) ground states. For 2G the operators

ĈC in Eq. (65) are chosen to be a
y
i aj. Selecting the operators ĈC to be aia

y
j

produces

2 ~GG ¼ 1

~nng
h�jaiayj alaykj�i � 0 ð74Þ

where ~nng ¼ ðN þ 1Þðr � NÞ. Because these two sets of basis functions may be

interconverted by the anticommutation relation, however, they merely represent

a different organization of the same functions. Hence positivity of one metric

matrix implies positivity of the other. Contraction of these two G-matrices

(2G and 2 ~GG) yields the positivity of the one-particle and the one-hole RDMs,

respectively, which proves that the G-condition alone forces the 1-RDM to be

N-representable. This proof is stronger than Rosina’s proof that the generalized

G-condition produces an N-representable 1-RDM [46]. While neither the D- nor

the Q-condition alone restricts the 1-RDM to be N-representable, it is well-

known that the combination of these conditions enforces N-representability of

the 1-RDM [6].

Gidofalvi and Mazziotti [24] have examined a harmonically interacting sys-

tem of bosons with application to Bose condensation. At any interaction strength

it was shown numerically that energy minimization with respect to a 2-RDM

constrained by 2-positivity conditions yielded the exact ground-state energy,

and theoretically, the Hamiltonian was proved to belong to the family character-

ized by Eq. (70). In contrast, other many-body methods including perturbation

theory and the connected-moments expansion [47] failed to give more than half

of the correlation energy at large interactions.

An AGP wavefunction [48, 49] is generated from wedge products involving a

single geminal gð1; 2Þ:

�AGP ¼ gð1; 2Þ ^ gð3; 4Þ ^ � � � ^ gðN � 1;NÞ ð75Þ

Coleman [50] has shown that the Hamiltonians bðgÞ 2 BN
2 , which have an AGP

ground-state wavefunction, are given by

bðgÞ ¼ 2I � ðN � 2Þ 1DðgÞ ^ 1I � ðN � 1Þgg� ð76Þ

where

1DðgÞ ¼ L12½gg�� ð77Þ

Erdahl and Rosina [51] have demonstrated that the set of bðgÞ Hamiltonians is

contained in the convex set defined by the extreme reduced Hamiltonians from
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the G-condition, and hence we conclude that the G-condition is sufficient to

obtain the correct ground-state energy for any system with an AGP ground-state

wavefunction.

Because an AGP wavefunction may be highly correlated, the G-condition’s

treatment of AGP Hamiltonians illustrates how the positivity conditions have

the ability to transcend the limitations of perturbation theory. For a mean-field

state the occupation numbers of the 2-RDM are equal to 1=½NðN � 1Þ� or 0. In
early work on N-representability, Bopp assumed that the occupation numbers

of the 2-RDM were bounded from above by 1=½NðN � 1Þ�. Yang, Sasaki, and
Coleman, however, showed that the maximum occupation number is actually

1=ðN � 1Þ, which is achieved by a certain class of AGP wavefunctions [6, 52,

53]. The appearance of a large occupation number in the 2-RDM may be asso-

ciated with long-range order and pair formation in superconductivity.

Although these highly correlated phenomena easily cause single-reference

perturbation theory to fail, they may be treated exactly within the framework

of G-positivity.

Our discussion may readily be extended from 2-positivity to p-positivity. The

class of Hamiltonians in Eq. (70) may be expanded by permitting the ÔOi opera-

tors to be sums of products of p creation and/or annihilation operators for p > 2.

If the p-RDM satisfies the p-positivity conditions, then expectation values of this

expanded class of Hamiltonians with respect to the p-RDM will be nonnegative,

and a variational RDM method for this class will yield exact energies. Geome-

trically, the convex set of 2-RDMs from p-positivity conditions for p > 2 is

contained within the convex set of 2-RDMs from 2-positivity conditions. In gen-

eral, the p-positivity conditions imply the q-positivity conditions, where q < p.

As a function of p, experience implies that, for Hamiltonians with two-body

interactions, the positivity conditions converge rapidly to a computationally suf-

ficient set of representability conditions [17].

F. Spin and Spatial Symmetry Adaptation

While previous variational 2-RDM calculations for electronic systems have

employed the above formulation [20–31], the size of the largest block diagonal

matrices in the 2-RDMs may be further reduced by using spin-adapted operators

ĈCi in Eq. (9). Spin-adapted operators are defined to satisfy the following math-

ematical relations [54, 55]:

½ŜSz; ĈCs;m� ¼ mĈC
s;m ð78Þ

and

½ŜS	; ĈCs;m� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ 1Þ � mðm	 1Þ

p
ĈC

s;m	1 ð79Þ
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where

ŜSþ ¼
X
i

âayp;aâap;b ð80Þ

ŜS� ¼
X
i

âa
y
p;bâap;a ð81Þ

ŜSz ¼ 1

2

X
i

ðâayi;aâai;a � âa
y
i;bâai;bÞ ð82Þ

ĈC
s;sþ1
i;j ¼ 0 and ĈC

s;�s�1
i;j ¼ 0, and the upper right superscripts s andm in C

s;m
i;j denote

the square of the total spin and the z-component of the total spin for the operators.

Theoperators ĈCi employed in the previous section aswell as earlierwork satisfy only

Eq. (78). The spin-adapted products of two creation operators are:

ĈC
0;0

i;j ¼
1ffiffiffi
2
p ðâayi;aâayj;b þ âa

y
j;aâa
y
i;bÞ ð83Þ

ĈC
1;0

i;j ¼
1ffiffiffi
2
p ðâayi;aâayj;b � âa

y
j;aâa
y
i;bÞ ð84Þ

ĈC
1;1

i;j ¼ âa
y
i;aâa
y
j;a ð85Þ

ĈC
1;�1
i;j ¼ âa

y
i;bâa
y
j;b ð86Þ

Inserting these four operators into Eq. (8), we can generate four sets of ðN þ 2Þ-
electron basis functions for the two-hole RDM (2Q matrix), jQ�0;0

i;j i, jQ�1;0
i;j i,

jQ�1;1
i;j i, and jQ�1;�1

i;j i, respectively. For a ground-state wavefunction with a defi-

nite total S and z-component M spin quantum numbers, the ðN þ 2Þ-electron
basis functions with different m are orthogonal. Furthermore, whenever the

ground-state wavefunction has M ¼ 0 for any definite S, it is readily shown

that the basis functions generated from operators with different s but the same

m are also orthogonal. Therefore, whenM ¼ 0 in the ground-state wavefunction,

the spin-adapted two-hole RDM has four blocks, with the singlet and triplet

blocks scaling as rsðrs þ 1Þ=2 and rsðrs � 1Þ=2, respectively [56, 57]. The singlet
block is symmetric in its spatial indices while each triplet block is antisymmetric

in its indices. If the ground-state wavefunction is also a singlet (S ¼ 0), the three

triplet blocks are equivalent, and hence only two distinct blocks must be con-

strained to be positive semidefinite.

By particle–hole duality, the same block structure appears in the spin-adapted

two-electron RDM. The four blocks of the 2-RDM have the following traces [57]:

Trð2D0;0Þ ¼ NðN þ 2Þ
4

� SðSþ 1Þ ð87Þ

Trð2D1;0Þ ¼ NðN � 2Þ
4

� 2M2 þ SðSþ 1Þ ð88Þ
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Trð2D1;1Þ ¼ N

2
þM

� �
N

2
þM � 1

� �
ð89Þ

Trð2D1;�1Þ ¼ N

2
�M

� �
N

2
�M � 1

� �
ð90Þ

When the ground-state wavefunction is a singlet, the three triplet blocks have the

same traces. In the variational 2-RDM calculations, these trace restrictions are

enforced as constraints. Because the 2Q and 2G matrices are related to 2D by

linear mappings, these trace conditions also produce the correct traces of the

spin-adapted 2Q and 2G matrices. As will be shown later, these trace conditions

also enforce the correct expectation value of the ŜS
2
operator.

To generate the spin-adapted 2G matrix, we spin-adapt the products of one

creation operator and one annihilation operator:

ĈC
0;0

i;j ¼
1ffiffiffi
2
p ðâayi;aâaj;a þ âa

y
i;bâaj;bÞ ð91Þ

ĈC
1;�1
i;j ¼ âa

y
i;bâaj;a ð92Þ

ĈC
1;0

i;j ¼
1ffiffiffi
2
p ðâayi;aâaj;a � âa

y
i;bâaj;bÞ ð93Þ

ĈC
1;1

i;j ¼ âa
y
i;aâaj;b ð94Þ

These operators satisfy the formal definition for spin-adapted operators in Eqs.

(79) and (78). Inserting these four operators into Eq. (8), we can generate four

sets of N-electron basis functions for the 2G matrix, jG�0;0
i;j i, jG�1;0

i;j i, jG�1;1
i;j i, and

jG�1;�1
i;j i, respectively. As in the case of the 2Q matrix, when M ¼ 0 in the

ground-state wavefunction, the spin-adapted two-electron RDM has four diago-

nal blocks, scaling as r2s . The blocks of the
2G matrix are neither symmetric nor

antisymmetric in the permutation of the spatial indices. If the ground-state wave-

function is also a singlet (S ¼ 0), the three triplet blocks are equivalent, and

hence only two distinct blocks must be constrained to be positive semidefinite.

Similar to spin adaptation each 2-RDM spin block may further be divided

upon considering the spatial symmetry of the basis functions. Here we assume

that the 2-RDM has already been spin-adapted and consider only the spatial

symmetry of the basis function for the 2-RDM. Denoting the irreducible repre-

sentation of orbital i as �i, the 2-RDM matrix elements are given by

2D
i�i ;j�j
k�k ;l�l

¼ h�jâayj;�j
âa
y
i;�i

âak;�k
âal;�l
j�i ð95Þ

These matrix elements are nonzero by spatial symmetry only if the direct pro-

ducts �i 
 �j and �k 
 �l share a common irreducible representation [58].
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Hence the 2-RDM is further divided into blocks according to the spatial symme-

try of the orbitals.

To illustrate the advantage of spin- and spatial-symmetry adaptation, consider

the BH molecule in a minimal basis set. If only ŜSz is considered, the largest

block of the two-electron RDM (i.e., 2D
a;b
a;b) is of dimension 36. Spin adaptation

divides 2D into two blocks, 2D
a;b
a;b ¼ 1

2
ð2D1;0 þ 2D0;0Þ, with sizes 15 and 21,

respectively. Furthermore, because there are three molecular orbitals (MOs)

with A1, one MO with B2, and one MO with B1 spatial symmetry, each spin

block is divided into four spatial blocks. In particular, the singlet spin block

has the structure

2D1;0 ¼

D
A1;A1

A1;A1
D

A1;A1

B2;B2
D

A1;A1

B1;B1
0 0 0

D
B2;B2

A1;A1
D

B2;B2

B2;B2
D

B2;B2

B1;B1
0 0 0

D
B1;B1

A1;A1
D

B1;B1

B2;B2
D

B1;B1

B1;B1
0 0 0

0 0 0 D
A1;B2

A1;B2
0 0

0 0 0 0 D
A1;B1

A1;B1
0

0 0 0 0 0 D
B1;B2

B1;B2

0BBBBBBBB@

1CCCCCCCCA
where the blocks have dimensions 12, 4, 4, and 1, respectively. The triplet block

has a similar structure, except that the largest block is of a smaller dimension

(i.e., dimension 6) because of the restriction (i < j) on the upper (and lower)

indices. By particle–hole duality, the two-hole or 2Q matrix has precisely the

same block structure. Similar arguments may be employed to show that the elec-

tron–hole or 2G matrix is partitioned into four blocks with sizes 18, 8, 8, and 2.

1. Spin Adaptation and S-Representability

An N-representable RDM is also defined to be S-representable if it derives from

an N-particle wavefunction or an ensemble of N-particle wavefunctions with a

definite spin quantum number S [57]. By definition, an S-representable two-

electron RDM yields the correct expectation value

h�S;MjŜS2j�S;Mi ¼ SðSþ 1Þ ð96Þ
of the total spin angular momentum operator

ŜS
2 ¼ ŜSz þ ŜS

2

z þ ŜS�ŜSþ ð97Þ

For anN-electronwavefunctionwith quantum numbers S andM, Eq. (96) reduces toX
i;j

2D
ia;jb
ja;ib ¼ N=2þM2 � SðSþ 1Þ ð98Þ
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where the ab block of the unadapted 2-RDM block is normalized according to

its definition in second quantization. Because the summation in Eq. (98) is not a

simple trace, if the basis functions for the 2-RDM are only eigenfunctions of ŜSz,

the S-representability condition in Eq. (98) must be enforced in addition to the 2-

positivity conditions of Eq. (11) as in previous 2-RDM calculations.

Using the definition of the spin-adapted 2-RDMs, however, we have the fol-

lowing relation between the ab block of the 2-RDM and the spin-adapted

2-RDMs:

2D
ia;jb
ka;lb þ 2D

ja;ib
la;kb ¼ 2D

0;0
i;j;k;l þ 2D

1;0
i;j;k;l ð99Þ

Dividing this equation by 2, setting k ¼ j and l ¼ i, and then summing over i and

j yields

X
i;j

2D
ia;jb
ja;ib ¼ 1

2

X
i;j

2D
0;0
i;j;j;i þ 2D

1;0
i;j;j;i

� �
ð100Þ

Because the singlet and triplet blocks are symmetric and antisymmetric in their

indices, respectively, we have

X
i;j

2D
ia;jb
ja;ib ¼ 1

2

X
i;j

2D
0;0
i;j;i;j � 2D

1;0
i;j;i;j

� �
ð101Þ

¼ 1
2
Tr 2D0;0
	 
� Tr 2D1;0

	 
� � ð102Þ
¼ N=2þM2 � SðSþ 1Þ ð103Þ

where the traces for the singlet and triplet blocks are evaluated from Eqs. (87)

and (88). Hence, as also discussed in reference [57], spin adaptation of the 2-

RDM automatically enforces the S-representability condition in Eq. (96) for a

general wavefunction with definite quantum numbers S and M. This result is

especially important for the variational 2-RDM method because it proves that

the constraint on the expectation value of ŜS
2
may be eliminated from the opti-

mization if the 2-RDM is spin-adapted.

G. Open-Shell Molecules

Open-shell molecules, or radicals, may readily be treated within the variational

2-RDM theory. Here we compute the radical’s energy and 2-RDM as the limit of

dissociating one or more hydrogen atoms from a molecule in a singlet state.

Calculation of the dissociated molecule’s energy yields the energy of the radical

plus the energy of one or more hydrogen atoms. The energy of the radical is then
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readily determined by subtracting the energy of the one-or-more hydrogen atoms

from the energy of the total dissociated system. In a complete basis set the

energy of each hydrogen atom would be �0.5 au, but in a finite Gaussian-orbital

basis set the energy is slightly higher. With this approach the energy and proper-

ties of a radical may be computed through a singlet calculation.

The spin of the radical is characterized by two spin quantum numbers, the

total spin S and the component of the total spin along the z-axis M. The simplest

type of radical has one unpaired electron, and hence S ¼ 1
2
and M ¼ 	 1

2
, where

the sign of M indicates the orientation of the electron spin in the z-direction. The

dissociated singlet molecule, described by the (N þ 1)-electron wavefunction,

consists of the radical and a hydrogen atom in orbital f at ‘‘infinity,’’

�0;0
Nþ1 ¼ cafa ^�

1=2;�1=2
N þ cbfb ^�

1=2;1=2
N ð104Þ

where ca and cb are expansion coefficients such as that c2a þ c2b ¼ 1, the right

superscripts on �Nþ1 and �N denote S and M, and the symbol ^ denotes the

antisymmetric tensor product known as the Grassmann (or wedge) product

[13]. How are the spin quantum numbers S and M of the radical determined

in the variational 2-RDM calculation of the singlet dissociated molecule?

The total spin of the radical is constrained implicitly by the search for the

minimum energy. As long as the hydrogen atom has one electron, the radical

will be in a doublet state S ¼ 1
2
. The doublet state of the radical will not be vio-

lated as long as neither of the following two events occurs: (i) the hydrogen atom

donates its electron to the radical, or (ii) the hydrogen atom takes the unpaired

electron of the radical. These two events, however, are energetically unfavorable

because the ionization energy of the hydrogen atom is much higher than the

electron affinities of radicals and the electron affinity of the hydrogen atom is

lower than the ionization energies of radicals. Hence, by the variational princi-

ple, minimizing the energy of the dissociated singlet molecule yields the radical

in its doublet state S ¼ 1
2
.

The 2-RDM for the radical may be computed from the (N þ 1)-electron den-

sity matrix for the dissociated molecule by integrating over the spatial orbital

and spin associated with the hydrogen atom and then integrating over N � 2

electrons. Because the radical in the dissociated molecule can exist in a doublet

state with its unpaired electron either up or down, that is, M ¼ 	 1
2
, the 2-RDM

for the radical is an arbitrary convex combination

2D
S¼1=2
radical ¼ wa

2D
1=2;�1=2
radical þ wb

2D
1=2;þ1=2
radical ð105Þ

where the right superscripts on the 2D denote S and M, respectively, wa ¼ c2a,

wb ¼ c2b, and wa þ wb ¼ 1. While we have examined the doublet case, a similar
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analysis is valid for radicals with higher spin states. If the total spin S of the radi-

cal is greater than 1
2
, the singlet calculation with more-than-one dissociated

hydrogen atom yields a 2-RDM for the radical that is a convex combination

2DS
radical ¼

XS
M¼�S

wM
2D

S;M
radical ð106Þ

of the allowed Sz eigenvalues M ¼ �S . . . S, where wM � 0. For example, if

the ground-state of the radical is a triplet state, the variational principle will

produce a triplet radical with the pair of ’’removed’’ hydrogen atoms also in a

triplet state to preserve the overall singlet symmetry of the dissociated molecule.

Treating a doublet radical by a singlet calculation requires the placement of a

hydrogen atom at ‘‘infinity.’’ Two approaches are: (i) computing the electron

integrals of the parent molecule with its hydrogen atom stretched to a large

distance (109 Å), and (ii) computing the electron integrals of the radical first

and then adding integrals for the hydrogen atom that, due to the ‘‘infinite’’

separation, do not couple with the radical. The second approach has several

advantages: (i) full spatial symmetry of the radical may be exploited in the inte-

grals, (ii) any roundoff coupling in the integrals between the hydrogen atom and

the radical is eliminated, and (iii) comparison with wavefunction methods is

facilitated. Because the radical and the hydrogen atom do not couple in the elec-

tron integrals, each 2-RDM spin block subdivides into a block for the radical and

an extremely small block for the spin entanglement of the hydrogen atom and

the radical. Consequently, the calculation of the radical by a singlet calculation,

dominated by the size of the largest block, is computationally less expensive

than the calculation of the parent molecule.

Although the 2-RDM of an open-shell molecule (radical) may be determined

variationally without considering a singlet parent molecule [20, 27], the present

approach has several advantages: (i) greater computational efficiency, (ii) more

consistent accuracy for the radical and its molecule, and (iii) easy implementa-

tion within 2-RDM code for singlet molecules. The 2-RDM for M 6¼ 0 has three

blocks [21] with the largest scaling as r2s , but the 2-RDM for a singlet state has

only two distinct spin-adapted blocks [32, 56, 57, 59–62] scaling as rsðrs � 1Þ=2
and rsðrs þ 1Þ=2. Similar savings exist for the other metric matrices 2Q and 2G

as well as the T2 matrix [32, 34]. The singlet calculation of a radical by disso-

ciation, therefore, uses one-quarter the memory and one-eighth the number of

floating-point operations as a direct calculation of the radical with M ¼ S. In

addition, because the radical 2-RDM from the dissociation limit in Eq. (106)

is more consistent with the spin of the radical moiety of the parent molecule

than the 2-RDM with a fixed M ¼ S, calculation of the radical by hydrogen dis-

sociation may improve the relative accuracy of the molecule/radical energies.
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Also the variational 2-RDM method for computing the 2-RDM of a singlet state

may be applied directly to open-shell molecules without significant modification.

III. SEMIDEFINITE PROGRAMMING

Variational calculation of the energy with respect to the 2-RDM constrained by

2-positivity conditions requires minimizing the energy in Eq. (46) while restrict-

ing the 2D, 2Q, and 2G to be not only positive semidefinite but also interrelated

by the linear mappings in Eqs. (14)–(16). This is a special optimization problem

known as a semidefinite program. The solution of a semidefinite program is

known as semidefinite programming [63–65].

A semidefinite program may be written in two complementary formulations,

which are known as the primal and dual programs. For convenience we define

the map M that transforms any vector jxi of length n2 into an n� n matrix MðxÞ
by creating each column of the matrix sequentially with the elements of the vec-

tor. The primal formulation of the semidefinite program may be expressed in

general notation as

minimize hcjxi
such that Ajxi ¼ jbi

MðxÞ � 0 ð107Þ

where the vector jci defines the system, the vector jxi denotes the primal solu-

tion, the m� n matrix A and the m-dimensional vector jbi enforce m linear con-

straints upon the solution jxi, and the matrix MðxÞ is restricted to be positive

semidefinite. Similarly, the dual formulation of the semidefinite program may

be expressed generally as

maximize hbjyi ð108Þ
such that jzi ¼ jci � AT jyi

MðzÞ � 0

where the vector jyi of lengthm is the dual solution, AT is the n� m transpose of the

matrix A, and the n� n matrixMðzÞ is constrained to be positive semidefinite.

In the variational 2-RDM method with 2-positivity the solution jxi of the pri-
mal program is a vector of the three metric matrices from the 2-RDM, the 2D,

the 2Q, and the 2G matrices

MðxÞ ¼
2D 0 0

0 2Q 0

0 0 2G

0@ 1A ð109Þ
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the vector jci holds specific information about the quantum system in the form of

the two-particle reduced Hamiltonian

MðcÞ ¼
2K 0 0

0 0 0

0 0 0

0@ 1A ð110Þ

and the matrix A and the vector jbi contain the linear mappings among the 2D,
2Q, and 2G matrices in Eqs. (14) and (15), the contraction (Eq. (16)), and trace

conditions ðTrð1DÞ ¼ NÞ, as well as any spin constraints. The constraint

MðxÞ � 0 in Eq. (107) restricts the 2D, 2Q, and 2G matrices to be positive

semidefinite.

Feasible jxi and jyi give upper and lower bounds on the optimal value of the

objective function, which in the 2-RDM problem is the ground-state energy in a

finite basis set. The primal and dual solutions, jxi and jyi, are feasible if they

satisfy the primal and dual constraints in Eqs. (107) and (108), respectively.

The difference between the feasible primal and the dual objective values, called

the duality gap m, which equals the inner product of the vectors jxi and jzi,

m ¼ hxjzi � 0 ð111Þ

vanishes if and only if the solution is a global extremum. This important result

was first proved by Erdahl in 1979 in the context of 2-RDM theory. For the var-

iational 2-RDM method the duality gap furnishes us with a mathematical guar-

antee that we have determined the optimal energy within the convex set defined

by the positivity conditions. With necessary N-representability conditions the

optimal energy is a lower bound to the energy from full configuration interaction

in the selected basis set.

In the mid-1990s a powerful family of algorithms, known as primal–dual

interior-point algorithms, was developed for solving semidefinite programs

[63]. The phrase interior point means that the method keeps the trial primal

and dual solutions on the interior of the feasible set throughout the solution

process. In these algorithms a good initial guess for the 2-RDM is a scalar

multiple of the two-particle identity matrix. Advantages of the interior-point

methods are: (i) rapid quadratic convergence from the identity matrix to the

optimal 2-RDM for a set of positivity conditions, and (ii) a rigorous criterion

in the duality gap for convergence to the global minimum. These benefits,

however, are accompanied by large memory requirements and a significant

number of floating-point operations per iteration, specifically Oðnm3þn2m2Þ,
where n is the number of variables and m is the number of constraints.

With m and n proportional to the number of elements in the 2-RDM (� r4),

the method scales approximately as r16, where r is the rank of the one-particle
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basis set [21, 23]. The variational 2-RDM method has been explored for mini-

mal basis sets with the primal–dual interior-point algorithm, but the computa-

tional scaling significantly limits both the number of active electrons and the

size of the basis set [20–23, 26, 27].

The author has recently developed a large-scale semidefinite programming

algorithm for solving the semidefinite program in the variational 2-RDM method

[28, 29]. The optimization challenge in the 2-RDM method is to constrain the

metric matrices to be positive semidefinite while the ground-state energy is

minimized. The algorithm constrains the solution matrix M to be positive semi-

definite by a matrix factorization

M ¼ RR� ð112Þ

where for the 2-positivity conditions M is given in Eq. (109). Such a matrix fac-

torization was previously considered in the context of 2-RDM theory by

Mihailović and Rosina [66] Harriman [67], and the author [13], and it was

recently employed for solving large-scale semidefinite programs in combinato-

rial optimization [68]. The linear constraints, including the trace, the contraction,

and the interrelations between the metric matrices, become quadratic in the new

independent variables R. Therefore the factorization in Eq. (112) converts the

semidefinite program into a nonlinear program, where the energy must be mini-

mized with respect to R while nonlinear constraint equalities are enforced.

We solve the nonlinear formulation of the semidefinite program by the

augmented Lagrange multiplier method for constrained nonlinear optimization

[28, 29]. Consider the augmented Lagrangian function

LðRÞ ¼ EðRÞ �
X
i

liciðRÞ þ 1

m

X
i

ciðRÞ2 ð113Þ

where R is the matrix factor for the solution matrix M;EðRÞ is the ground-state
energy as a function of R, fciðRÞg is the set of equality constraints, flig is the set
of Lagrange multipliers, and m is the penalty parameter. For an appropriate set of

multipliers flig the minimum of the Lagrangian function with respect to R cor-

responds to the minimum of the energy EðRÞ subject to the nonlinear constraints

ciðRÞ. The positive third term in the augmented Lagrangian function, known as

the quadratic penalty function, tends to zero as the constraints are satisfied.

The augmented Lagrange multiplier algorithm finds the energy minimum of

the constrained problem with an iterative, three-step procedure:

Step 1. For a given set of Lagrange multipliers flðnÞi g and penalty parameter

mðnÞ, minimize the Lagrangian function LðRÞ to obtain an improved

estimate Rnþ1 of the factorized 2-RDM at the energy minimum.
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Step 2. If the maximum absolute error in the constraints maxfciðRnþ1Þg is
below a chosen threshhold (i.e., 0:25maxfciðRnÞg), then the

Lagrange multipliers are updated by a first-order correction

lðnþ1Þi ¼ lðnÞi � ciðRnþ1Þ=mðnÞ

while the penalty parameter remains the same

mðnþ1Þ ¼ mðnÞ

Step 3. If Step 2 is not executed, then the penalty parameter is decreased to

better enforce the constraints

mðnþ1Þ ¼ 0:1mðnÞ

while the Lagrange multipliers remain the same

lðnþ1Þ ¼ lðnÞ

Steps 1–3 are repeated until the maximum absolute error in the constraints falls

below a target threshhold. Before the first iteration the Lagrange multipliers may

be initialized to zero and the penalty parameter set to 0.1. The constraints are not

fully enforced until convergence, and the energy in the primal program

approaches the optimal value from below.

The cost of the algorithm is dominated by r6 floating-point operations [28],

mainly from the matrix multiplication of the block-diagonal R matrix with itself,

where r is the rank of the one-particle basis set. Storage of the factorized 2-

RDM, several copies of its gradient, and the Lagrange multipliers scales as r4.

In comparison with the primal–dual interior-point approach, which scales as r16

and r8 in floating-point operations and memory storage, the first-order nonlinear

algorithm for the variational 2-RDM method [28, 29] provides a significant

improvement in computational efficiency.

IV. APPLICATIONS

The variational 2-RDM method has been applied to a variety of atoms and mole-

cules at both equilibrium and stretched geometries. We will summarize calcula-

tions on a variety of molecules: (i) the nitrogen molecule [31], (ii) carbon

monoxide with and without an electric field [37], (iii) a set of inorganic mole-

cules [34], (iv) the hydroxide radical [35], and (v) a hydrogen chain [28].
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A challenging correlation problem is the accurate description of the stretching

and dissociation of the triple bond in nitrogen. Six-to-eight-particle excitations

from the Hartree–Fock determinant are required to treat the nitrogen dissociation

correctly. Using a correlation-consistent polarized double-zeta basis set, we

compare in Fig. 1a and 1b the shape of the potential curve for nitrogen from

the variational 2-RDM method with the curves from several wavefunction meth-

ods including full configuration interaction (FCI) [31]. The 2-RDM energies are
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Figure 1. The shape of the potential curve for nitrogen in a correlation-consistent polarized

double-zeta basis set is presented for the variational 2-RDM method as well as (a) single-reference

coupled cluster, (b) multireference second-order perturbation theory (MRPT) and single–double con-

figuration interaction (MRCI), and full configuration interaction (FCI) wavefunction methods. The

symbol 2-RDM* indicates that the potential curve was shifted by the difference between the 2-

RDM and CCSD(T) energies at equilibrium.
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consistent lower bounds to the FCI energies throughout the stretch. In the figures

we present the 2-RDM curve shifted by the difference between the 2-RDM and

CCSD(T) energies at equilibrium. (The symbol 2-RDM* indicates that the

potential curve was shifted by the difference between the 2-RDM and CCSD(T)

energies at equilibrium.) The 2-RDM* method yields a potential energy curve

that is more accurate than the single-reference methods in Fig. 1a and equally

accurate as the multireference methods in Fig. 1b. The equilibrium bond distance

and the harmonic frequency from the 2-RDM method are 1.1167 Å and

2311 cm�1, which is in good agreement with the FCI numbers, 1.1172 Å and

2321cm�1. Multireference configuration interaction with single–double excita-

tions yields 1.1184 Å and 2311 cm�1 (see Table I).

The variational 2-RDM method with 2-positivity conditions, implemented by

a first-order nonlinear algorithm for semidefinite programming [28, 29], is

applied to compute the ground-state potential energy surface of the carbon mon-

oxide molecule in the absence and in the presence of electric fields. Even with-

out an electric field, the calculation of the potential energy surface of the carbon

monoxide molecule is a challenging task because proper treatment of the triple

bond requires six-to-eight-particle excitations from a single Slater determinant

or Hartree–Fock reference. We find that solving for the electronic structure of

carbon monoxide in the presence of an electric field can either diminish or

enhance the effects of the correlation along the bond dissociation curve. Model-

ing molecules within electric fields, therefore, provides a stringent test for elec-

tronic structure methods since we can increase the effects of correlation beyond

their role in the absence of the field. In the absence of an electric field, Fig. 2a

compares the 2-RDM*, coupled-cluster, MRPT2, and FCI potential energy

TABLE I

Equilibrium Bond Distance and the Harmonic Frequency for N2

from the 2-RDM Method with 2-Positivity (DQG) Conditions

Compared with Their Values from Coupled-Cluster Singles–

Doubles with Perturbative Triples (CCD(T)), Multireference

Second-Order Perturbation Theory (MRPT), Multireference

Configuration Interaction with Single–Double Excitations (MRCI),

and Full Configuration Interaction (FCI)a.

Method ReqðÅÞ oðcm�1Þ
CCSD(T) 1.1185 2344

MRPT 1.1176 2309

MRCI 1.1184 2311

2-RDM 1.1167 2311

FCI 1.1172 2321

aAll methods employ a correlation-consistent polarized double-zeta

basis set.

50 david a. mazziotti



surfaces of CO, where all valence electrons are correlated. 2-RDM* and MRPT2

accurately describe the features of the FCI potential energy surface. Figure 2b

shows the potential energy curve for carbon monoxide in an electric field of

strength 0.10 a.u. applied in the direction of the permanent dipole moment.

The direction of the electric field affects the accuracy of the 2-RDM* energies

much less than it affects the accuracy of the coupled-cluster methods.

The N-representability conditions on the 2-RDM can be systematically

strengthened by adding some of the 3-positivity constraints to the 2-positivity

conditions. For three molecules in valence double-zeta basis sets Table II shows
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Figure 2. Comparison of the 2-RDM*, coupled-cluster, MRPT2, and FCI potential energy sur-

faces of CO in a valence double-zeta basis set, where all valence electrons are correlated (a) without

an electric field and (b) with an electric field of strength 0.10 au applied in the direction of the per-

manent dipole moment. The 2-RDM* and MRPT2 methods accurately describe the features of the

FCI potential energy surface.
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that the 2-RDM method with the T2 condition (DQGT2) yields energies at

equilibrium geometries that are similar in accuracy as the coupled-cluster

method with single–double excitations and a perturbative triples correction.

The error is reported in millihartrees (mH). Table III displays the ground-state

energy of the nitrogen molecule as a function of bond length for the 2-RDM

method with 2-positivity (2POS), 2-positivity plus T1 and the generalized T2
(denoted �TT2), and 3-positivity (3POS) as well as both configuration interaction

and coupled-cluster wavefunction methods. The 2-RDM method with 3-positiv-

ity (3POS) has a maximum error of �1.4 mH at R ¼ 1:7 Å. Around equilibrium

the 3-positivity (3POS) improves the energies from 2-positivity plus T1�TT2 and

2-positivity (2POS) by one and two orders of magnitude, respectively; it is

an order of magnitude more accurate than CCSDT near equilibrium. Both

TABLE II

For Three Molecules in Valence Double-Zeta Basis Sets, a Comparison of Energies in Hartrees (H)

from the 2-RDM Method with the T2 Condition (DQGT2) with the Energies from Second-Order

Many-Body Perturbation Theory (MP2), Coupled-Cluster Method with Single–Double Excitations

and a Perturbative Triples Correction (CCSD(T)), and Full Configuration Interaction (FCI)

Total Error in (mH)

Molecule FCI Energy (H) MP2 CCSD(T) 2POSþT2
CH2 �38.9465 þ23.3 þ0.6 �0.1
BeH2 �15.8002 þ11.8 þ0.2 �0.2
H2O �76.1411 þ8.0 þ0.5 �1.8

TABLE III

Ground-State Energy of the Nitrogen Molecule as a Function of Bond Length Examined with 2-RDM

and Wavefunction Methodsa

Error in the Ground-State Energy (mH)

—————————————————————————————————

Wavefunction Methods 2-RDM Methods

Total FCI —————————————— —————————————————

R Energy (H) HF CISD CISDT CCSD CCSDT 2POS 2POSþ T1T2 3POS

1.0 �108.59599 131.0 8.2 6.6 2.7 1.1 �9.4 �1.2 �0.0
1.2 �108.72686 191.2 19.5 17.3 6.0 3.8 �14.9 �1.8 �0.1
1.5 �108.63545 311.3 55.6 53.2 13.8 11.7 �22.6 �4.4 �0.4
2.0 �108.81776 585.6 170.4 169.4 �103.5 �104.5 �15.9 �1.3 �0.5
aThe 2-RDMmethod with 3-positivity (3POS) has a maximum error of�1.4 mH at R ¼ 1:7Å. Around

equilibrium the 3-positivity (3POS) improves the energies from 2-positivity plus T1�TT2 and 2-positivity

(2POS) by one and two orders of magnitude, respectively; it is an order of magnitude more accurate

than CCSDT near equilibrium. Both configuration interaction and coupled-cluster methods have dif-

ficulty at stretched geometries, where multiple Slater determinants contribute to the wavefunction.
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configuration interaction and coupled-cluster methods have difficulty at

stretched geometries, where multiple Slater determinants contribute to the wave-

function.

Computation of open-shell energies and properties is important in many areas

of chemistry from combustion and atmospheric chemistry to medicine, and yet

such molecules are often challenging due to the appearance of multireference

spin effects. We have recently extended the variational 2-RDM method from

closed-shell to open-shell molecules [33]. The shape of the potential energy

curve of the OH radical is shown in Fig. 3 from the 2-RDM methods with 2-posi-

tivity (DQG) and 2-positivity plus T2 (DQGT2) conditions as well as the wave-

function methods unrestricted second-order many-body perturbation theory

(MBPT2), unrestricted coupled-cluster singles–doubles (UCCSD), and full con-

figuration interaction (FCI). The potential energy curves of the approximate

methods have been shifted by a constant to make them agree with the FCI curve

at equilibrium. In the bonding region, the 2-RDM/DQG, UCCSD, and FCI

curves are nearly indistinguishable, whereas in the stretched-bond region the

2-RDM/DQG and UCCSD curves move away slightly from the FCI solution

in opposite directions. Recently, we have implemented a spin- and symmetry-
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Figure 3. The shapes of the potential energy curves of the OH radical from the 2-RDM meth-

ods with DQG and DQGT2 conditions as well as the approximate wavefunction methods UMP2 and

UCCSD are compared with the shape of the FCI curve. The potential energy curves of the approx-

imate methods are shifted by a constant to make them agree with the FCI curve at equilibrium or

1.00 Å. The 2-RDM method with the DQGT2 conditions yields a potential curve that within the

graph is indistinguishable in its contour from the FCI curve.

variational two-electron reduced-density-matrix theory 53



adapted form of the T2 constraint within the large-scale semidefinite-program-

ming algorithm for the 2-RDM method [34]. For OH the 2-RDM method with

the DQGT2 conditions yields potential curves whose shapes in the figures are

indistinguishable from the shapes of the FCI curves. Metallic hydrogen is an infi-

nite chain of equally spaced hydrogen atoms. It can serve as a simple model for

polymers and crystals. We consider the equally spaced, finite chain H6, where

the hydrogen atoms are described by the valence triple-zeta basis set. A potential

energy curve may be formed by equally stretching the five bonds in H6. Ground-

state energies from the variational 2-RDM method and a variety of wavefunction

techniques are shown in Fig. 4 as functions of the distance R between adjacent

hydrogen atoms [28]. The 2-RDM method yields consistent energies with a

maximum error of �10.8 mH at 1.5 Å. While the coupled-cluster methods are -

accurate near the equilibrium geometry with errors at 1 Å of 1.3 mH (CCSD)

and 0.2 mH (CCSD(T)), their performance rapidly degrades as the bonds

are stretched. At 3.5 Å each of the coupled-cluster methods has an energy

error of at least �160 mH while the 2-RDM method has an error of only

�0.4 mH.

V. A LOOK AHEAD

Since the time that Coulson [7] discussed the promise and challenges of

computing the energies and properties of atoms and molecules without the

many-electron wavefunction, quantum chemistry has experienced many impor-

tant advances toward the accurate treatment of electron correlation including the
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Figure 4. Ground-state potential energy curves of H6 from 2-RDM and wavefunction methods

are shown. MP2 and MP4 denote second- and fourth-order perturbation theories, while CCSD and

CCSD(T) represent coupled cluster methods.
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development of density functional theory, coupled-cluster theory, Monte Carlo

methods, and multireference perturbation theory. The recent progress in the

2-RDM methods contributes both a new perspective and tool for describing

energies and properties of atoms and molecules in which correlation effects

are important. In this chapter we have developed the variational calculation

of the ground-state energy as a function of the 2-RDM constrained by

N-representability conditions [16, 17, 19–37].

A critical part of realizing a ‘‘quantum chemistry without wavefunctions’’

through the variational 2-RDM method is the development of robust algo-

rithms for large-scale semidefinite programming. As discussed in the chapter

a large-scale algorithm, developed by the author, reduces the computational

scaling of the 2-RDM method by orders of magnitude in both floating-point

operations and memory. A key feature of the algorithm is the expression of

the semidefinite program as nonlinear constrained optimization, which is then

solved by the method of augmented Lagrange multipliers. Zhao et al. [27]

have examined improving the performance of the primal–dual interior-point

methods by redefining the statement of the semidefinite program. Further

advances in large-scale semidefinite programming will have an important

impact on the variational 2-RDM method, and similarly, the problems in elec-

tronic structure offer fertile ground for testing and benchmarking new large-

scale algorithms. Advances will also have a broad impact on many other

scientific problems in areas like control theory, combinatorial optimization,

quantum information, and finance.

The variational calculation of the 2-RDM with necessary N-representability

conditions yields a lower bound on the ground-state energy in a given finite basis

set. The strict lower bound occurs because the 2-RDM is optimized over a set

that contains all correlated N-electron wavefunctions. Within wave mechanics

the challenge is to introduce sufficient variational flexibility into the wavefunc-

tion, but in reduced-density-matrix mechanics the challenge is to limit the 2-

RDM, which has the flexibility to model all correlated wavefunctions, to repre-

sent only realistic N-electron wavefunctions. A practical consequence is that the

2-RDM method has the potential to produce ground-state energies with useful

accuracy even if the wavefunction is challenging to parameterize as in transi-

tion-state structures or other stretched geometries of a potential energy surface

[21, 22, 28, 29, 31]. The calculation of the 2-RDM has important applications in

chemistry to studying reactivity [30, 31] as well as in other areas of correlation

such as spin systems like the Hubbard model, Bose condensation [24], and mole-

cular conductivity. The 2-RDM methods may be especially well suited for the

use of explicitly correlated basis sets for enhancing basis set convergence. While

still in its early stages, the 2-RDMmethod for computing energies and properties

without the many-electron wavefunction represents a new approach to investi-

gating the electronic structure of atomic and molecular systems.
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There are two recent developments that have turned the lower bound method of

density matrix theory into a powerful computational tool for electronic structure

theory, and thereby solved John Coleman’s N-representability problem [1].

These two developments are discussed here. First, it is now understood how

to achieve accurate results, even when two-body forces dominate; the picture

that has emerged through computational experiments by several authors is

described. Second, the central energy minimization problem of the lower bound

method belongs to a class called semidefinite programs, and effective algorithms

are now available to solve such problems. How the lower bound method and

semidefinite programming have come together is described, and at the same

time a self-contained treatment of the mathematical results at the core of semi-

definite programming is given. The treatment includes a new proof of the funda-

mental theorem of semidefinite programming.

I. INTRODUCTION

By replacing the wavefunction with a density matrix, the electronic structure pro-

blem is reduced in size to that for a two- or three-electron system. Rather than

solve the Schrödinger equation to determine the wavefunction, the lower bound

method is invoked to determine the density matrix; this requires adjusting para-

meters so that the energy content of the density matrix is minimized. More

precisely, the lower bound method requires finding a solution to the energy

problem,

min
P2S?\Pk

0

hP;Hik

where P is a matrix representation of the quantum state called a k-matrix, H is a

matrix representation of the Hamiltonian, and hP;Hik is the energy—the trace

scalar product of P withH. The k-matrix that minimizes the energy is an estimate

of the von Neumann density for the ground state, and the energy content of this k-

matrix is a lower bound to the ground-state energy. The variation is over the set of

k-matrices, S?\Pk
0, which is a section of the cone of positive semidefinite

matrices; Pk
0 is the convex set of positive semidefinite matrices with unit trace,

and S is the Pauli subspace—a subspace of symmetric matrices that encodes the

conditions imposed by the Pauli Principle. The compact convex set S?\Pk
0 is a

kth-order approximation of the set of von Neumann density matrices, and a var-

iant of the set of kth-order reduced density matrices. Included in the definition of
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k-matrix is the condition that P be k-positive, a condition that rapidly becomes

stringent as k increases. Details on how the sets S?\Pk
0; k ¼ 2; 3; 4; . . ., are con-

structed and the definition of k-positive are given in Section II.

One purpose here is to report on some recent computational experiments that

show that the rate of convergence to exact solutions with the order parameter k is

extraordinarily rapid—much faster than anticipated. This was first uncovered in

the doctoral dissertation of B. Jin, who studied a solid model where the Hamilto-

nian included two-body interactions alone. In his thesis, Jin [2] reported a striking

improvement in accuracy in going from second- to third-order estimates: second-

order estimates contained no useful information, even predicting wrong trends in

certain instances, but with third-order estimates four-figure accuracy was

achieved. It came as a surprise that second-order approximations were so poor,

and it was equally surprising that third-order approximations were so good. The

significance was immediately obvious, that convergence with k was extremely

rapid, and accurate solutions could be achieved while complexity was kept within

bounds. It is the condition that P be k-positive that accounts for this rapid conver-

gence and makes possible the characterization of increasingly complex correla-

tions. Several papers followed that filled out the picture on how accurate

solutions could be achieved [3–6]. These computational experiments showed

that when two-body interactions play a relatively minor role, as they do in atoms

andmolecules, approximations to second order and 2-positivity do an adequate job

for most purposes. It was also discovered that the accuracy of third-order estimates

in these cases exceeds that for all other approximate methods currently used. How-

ever, when two-body forces become more important, as they do in nuclear and

solid state problems, third-order approximations and 3-positivity are required.

The minimum energy problem is a semidefinite program, a new class of opti-

mization problems that emerged in the late 1980s and has been intensively stu-

died ever since. Semidefinite programming has applications that extend far

beyond the electronic structure problem we are considering, covering vast new

areas in applied mathematics; linear programming is a special case. That the var-

iation for the energy problem is over a section of the cone of positive semidefi-

nite matrices is the characteristic that identifies this problem as a semidefinite

program—and is the origin of the name. The recent development of effective

algorithms to solve semidefinite programming problems gives a second reason

why the lower bound method is emerging as an important computational tool.

For strongly interacting systems of electrons, approximations must be carried

through to at least third order, and these are typically large problems. It is the

recent and ongoing development of algorithms for semidefinite programming

that has made large-scale electronic structure problems feasible.

The energy problem is accompanied by the dual spectral optimization

problem,

max
S2S

l0ðHþ SÞ
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where l0ðHþ SÞ is the bottom eigenvalue of the matrix Hþ S; the variation is

over the Pauli subspace S, which is defined in Section II. Solutions of the energy

and spectral optimization problem occur simultaneously, which proves to be an

enormous asset when interpreting solutions. We will see that the dual spectral

optimization problem serves as a sharp tool in analyzing the correlations in

the ground state as it responds to the interactive forces experienced by the elec-

trons. The energy and spectral optimization problems are tied together by the

fundamental Euler equation for these problems,

PQ ¼ 0

where Q ¼ Hþ S� l0ðHþ SÞI; the Euler equation is a stability equation that

the optimal matrices P; S must satisfy. Any two matrices P;Q that satisfy this

equation provide optimal solutions to the energy and spectral optimization pro-

blems, as long as they have the correct form: P must be contained in the convex

set S?\Pk
0, and Q must have the form Q ¼ Hþ S� l0ðHþ SÞI. A self-

contained treatment is given of the theoretical results at the core of semidefinite

programming, which includes a new proof of the result that solution of the spec-

tral optimization problem is equivalent to solution of the Euler equation PQ ¼ 0.

The treatment uses only elementary matrix theory and convexity theory and has

the virtue of being brief. Moreover, the results are formulated in terms of the

energy problem for density matrices.

A. Brief History of the Lower Bound Method

The first accurate estimate of a 2-matrix using the lower bound method was

made by M. A. Fusco in his doctoral dissertation, directed by Claude Garrod

at the University of California, Davis; in his 1974 thesis [7], Fusco reported

on his work on the beryllium atom. There were two papers that quickly fol-

lowed, both reporting accurate lower bound calculations on the beryllium

atom. In their 1975 paper, Garrod, Mihailovic, and Rosina [8] reported a lower

bound to the energy that was only slightly below the exact ground-state energy

calculated using a complete configuration interaction treatment; the lower

bound they calculated was �14:60999 atomic units, and the configuration inter-

action energy was �14:609987; which represented seven-figure accuracy. In

this calculation the convex set of density matrices was approximated by a super-

scribing polytope, which was updated at each step. The energy minimization

problem was converted to a linear programming problem, and successively tigh-

ter lower bounds were computed as the polytope was adjusted to match the data

near the optimal solution. The thesis work of Fusco was reported in the 1976

paper of Garrod and Fusco [9]; in this work a penalty function method was

applied to minimize the energy. The conditions imposed by these authors

were that the associated P-, Q-, and G-matrices be positive semidefinite; these
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conditions did not ensure that the 2-matrix was N-representable, but were suffi-

ciently effective that seven-figure accuracy was achieved.

The second test of the lower bound method, and the first test for a molecule,

appeared in 1979 when Erdahl calculated a lower bound to the energy for a pair

of weakly bound helium atoms [10]. By requiring that the density matrix be 2-

positive, a lower bound was calculated that was accurate to five figures when

compared to a complete configuration interaction treatment (from now on we

refer to the condition that the P-, Q-, and G-matrices be positive semidefinite

as the condition that P be 2-positive; the notion of 2-positive, and more generally

k-positive, is defined in Section II). The Be and He2 calculations showed that

accurate lower bounds could be achieved for atoms and molecules and, in parti-

cular, showed the importance of the condition that P be 2-positive. The calcula-

tion on the weakly bound helium molecule was a side issue in Ref. [10], only

introduced to test a new method for solving the energy problem. The main result

was the derivation of the Euler equation PQ ¼ 0, which was then solved to

obtain the optimal solution of the energy problem. Thus this second test of

the lower bound method anticipated the development of semidefinite program-

ming by over ten years. The equation PQ ¼ 0 and its relation to the spectral

optimization problem are rediscovered by M. L. Overton and reported in his

1988 paper [11]. It is this paper that served as a precursor for the rapid devel-

opment of semidefinite programming that started in the early 1990s.

The promise of the early work on Be and He2 has recently been confirmed in

the work of Nakatsuji and Mazziotti, which started to appear in 2001. This work

showed that the lower bound method combined with second-order approxima-

tions yields accurate information for atoms and molecules. Nakatsuji and his

co-workers [12] did a series of computational experiments where accuracies

of between four and five figures were typically achieved. More precisely, they

reported the correlation energy as a percentage of the exact correlation energy

for a variety of atoms and molecules. They found these percentages ranged

between 100% and 110% for atoms and diatomic molecules, and between

110% and 120% for triatomic molecules; since these percentages are for lower

bounds they never go below 100%.

An even more exacting test of 2-positivity appeared in the work of Mazziotti

[13], who computed binding energy curves for LiH and H2O. These computa-

tional experiments showed that accurate binding energy curves could be calcu-

lated when second-order approximations are invoked; the curves he calculated

compared favorably with curves generated by a full configuration interaction

treatment. These results were compared with curves generated using second-

and fourth-order perturbation theory, and these deteriorated rapidly with increas-

ing bond length. These experiments showed that lower bounds can successfully

track energy shifts over a range of molecular geometries, subtle shifts that can-

not be tracked by perturbation theory.
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Another significant theme was reported on in the Mazziotti paper. Experi-

ments were made by selectively adding higher-order conditions to tighten the

lower bounds computed using 2-positivity. These were a portion of the

3- positivity conditions selected on the basis of physical intuition about correla-

tions and experience gained with second-order conditions. This strategy adds

flexibility and strength to the lower bound method in much the way the selection

of configurations adds to the configuration interaction method. These computa-

tional experiments were first steps in developing a systematic approach to hand-

ling the overwhelming array of higher-order conditions, the strategies used being

those proposed by Erdahl and Jin [3, 4] under the heading dual configuration

interaction.

The inclusion of some 3-positivity conditions along with the 2-positivity

was also used by Zhao and co-workers in their recent computational experiments

with the lower bound method [6, 14]; in addition to the P-, Q-, and G-conditions

they added the third-order conditions formulated in Section 8 of Ref. [15], which

they referred to as the T1 and T2 conditions. They compared the strength of the

various conditions they imposed by estimating the ground-state density matrix

for 38 small molecules. They noticed a ‘‘spectacular increase in accuracy’’

when these third-order conditions were imposed in their calculations: ‘‘We

find that including the T1 and T2 conditions results in a spectacular increase

in the accuracy of the results, and gives in the cases studied an accuracy better

than that of other more familiar approximate methods: singly and doubly substi-

tuted configuration interaction (SDCI), Brueckner doubles (with triples) (BD(T))

and coupled cluster singles and doubles with perturbational treatment of triples

(CCSD(T)).’’

B. Strong Two-Body Forces

The optimism generated by the Be and He2 calculations was tempered by

another line of investigation in the 1970s. Mihailovic and Rosina applied the

methods they developed for the beryllium atom to light nuclei [16] and found

lower bounds falling below exact values by as much as 15%. For example,

the series of nuclei 15O, 16O, 17O, and 18O have 3; 4; 5, and 6 valence nucleons

above a 12C core. The greatest errors they observed were for the last in this ser-

ies, where they computed a lower bound of �60:06 MeV, which was 8:55 MeV

below the configuration interaction energy of �53:91 MeV, representing an error

of 15.86%. For this series the percentage errors are given, respectively, by

5.82%, 3.76%, 14.93% and 15.86%, showing that errors increase as half-filled

structures are approached. The results for 15O and 16O were reasonable, but

for 17O and 18O they commented that ‘‘new relevant conditions’’ should be found

to supplement 2-positivity. In response to the dominating two-body terms,

the nucleons in a shell form highly correlated arrangements that are inade-

quately characterized by second-order approximations. That second-order
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approximations can effectively characterize electron correlations but not nucleon

correlations can be explained as follows. The electrons in atoms and molecules

configure themselves largely in response to the nuclear attraction terms in the

Hamiltonian, but protons and neutrons in the nucleus configure themselves in

response to the nucleon–nucleon attraction terms. That is, for atoms and mole-

cules correlations are largely driven by one-body operators, whereas for nuclei

correlations are driven by two-body operators. The simpler correlations in atoms

and molecules are effectively characterized by second-order approximations, but

the more complex nuclear correlations are not. In Section VI a review is given of

recent work on strongly interacting fermion systems that resolve the difficulties

that Mihailovic and Rosina faced. Jin and Erdahl [2–4] studied a lattice model,

where electrons interact through two-body forces alone, and Mazziotti and

Erdahl [5] studied the Lipkin model for electrons, where the strength of the

two-body forces can be turned on by adjusting a parameter V. There is convin-

cing evidence [2–4] supporting the comment of Mihailovic and Rosina that

‘‘new relevant conditions’’ are required beyond 2-positivity. The articles make

it abundantly clear that 2-positivity cannot effectively characterize the correla-

tions induced by strong two-body forces. These three papers systematically

explore higher-order conditions and show that by requiring the reduced density

matrix to be 3-positive the problems faced by Mihailovic and Rosina are com-

pletely resolved. Both 3-positivity and 4-positivity were explored, and when the

reduced density matrix is required to be 4-positive the lower bound estimates are

accurate to ten figures. Very recently, Mazziotti [17] has applied the complete

3-positivity conditions to atoms and molecules with spectacular accuracy in

energy and properties that substantially improves upon even the highly accurate

T1 and T2 conditions. At the equilibrium geometry of N2 the lower bound

method with 2-positivity, 2-positivity plus T1 and T2, and 3-positivity deviates

from full configuration interaction by 0.0149, 0.0018, and 0.0001 atomic units,

respectively. The 3-positivity conditions, therefore, improve upon the accuracy

of 2-positivity plus T1 and T2 by an order of magnitude. As a side issue, the

work of Jin and Erdahl involved developing methods for solving the Euler equa-

tion PQ ¼ 0 of semidefinite programming.

II. K th-ORDER APPROXIMATIONS FOR STATES

A Hermitian operator p is a von Neumann density if it is nonnegative and has unit

trace. In more concrete terms, ifF is the finite-dimensional Fock space for a quan-

tum model where electrons are distributed over a finite number of states, then p is

a von Neumann density if (i) hv; pviF � 0 for all operators v on F; and (ii)

hp; 1iF ¼ 1. By the formula hv; pviF we mean the trace scalar product of the

operators v and pv, that is, hv; pviF ¼ trace Fðv�pvÞ; since hp; 1iF ¼ traceFp ¼
1 we have used this scalar product to express the trace condition. More generally,
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if x; y are operators on F, then hx; yiF ¼ traceðx�yÞ. We denote by P the cone of

nonnegative operators on F, and by P0 the convex set of all von Neumann den-

sities. The elements of P0 are the quantum states for the model.

We discuss a lattice model where spin-up, spin-down electrons move on a

one-dimensional lattice � of size j�j ¼ r, so that dimF ¼ 22r. An annihilator

for a spin-up electron on lattice site m 2 � is denoted by am, and that for a

spin-down electron by bm. An arbitrary operator on F can be written as a poly-

nomial in the 2r annihilation and 2r creation operators.

A. Approximating States by k-Densities

By relaxing the condition that a von Neumann density be positive semidefinite, a

graded family of approximations can be constructed. Since an operator can be

represented as a polynomial in the annihilation and creation operators, it can be

assigned a degree; for example, if v ¼Pm vma
y
m þ

P
m;n;r vmnra

y
mb
y
nbr, then

degðvÞ ¼ 3. We say that a Hermitian operator p is k-positive if it satisfies the

condition that hv; pviF � 0 for all operators v where degðvÞ � k.

Definition 1 A Hermitian operator p is a k-density if (i) hv; pviF � 0 for all

operators v, where deg v � k; and (ii) hp; 1iF ¼ 1:

The k-densities approximate von Neumann densities to kth order; they are k-

positive with unit trace. We denote the cone of all k-positive operators by Pk
,

and the convex set of all k-densities by Pk
0. The k-densities satisfy the relations

P0 � � � � � P3
0 � P2

0 � P1
0 and

T
k P

k
0¼ P0.

B. Matrix Representations

Let Vk be the linear space of operators v satisfying the condition degðvÞ � k. We

take the monomial basis M¼ fm1;m2;m3; . . .g for Vk, namely, all possible

monomials in the factors a�m þ am; a
�
m � am; b

�
m þ bm; b

�
m � bm; m 2 �, so that

degðmiÞ � k; we append the scale factor 1=
ffiffiffiffiffiffiffiffiffiffi
dimVk
p

to each of the monomials.

Since ða�m þ amÞ�ða�m þ amÞ ¼ 1, and similarly for the other factors, we choose

monomials with no repeated factors. It is easy to deduce that this monomial basis

has the following properties: (1)
PdimVk

i¼1 mi m
�
i ¼ 1, which follows from the

equality mi m
�
i ¼ 1=ðdimVkÞ; (2) hmi;mjiF ¼ ðdimF=dimVkÞdij.

Definition 2 Suppose that p is a k-density. Then the k-matrix for p, relative to

the monomial basis M¼ fm1;m2;m3; . . .g, is the matrix P with entries

Pij ¼ hmi; pmjiF.

The k-matrix is a dimVk � dimVk matrix representation for p and is a variant of

the kth-order reduced density matrix.
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Proposition 3 Let P be the k-matrix for the k-density p. Then P is Hermitian,

positive semidefinite, and has unit trace .

Proof. Pji ¼ hmj; pmiiF ¼ traceðm�j pmiÞ ¼ ðtraceðm�i PmjÞÞ� ¼ hmi;pmji�F ¼ P�ji.
Therefore P is Hermitian. Let v ¼PdimVk

i¼1 vimi be an arbitrary element of Vk.
Then the inequality 0 � hv; pviF ¼

PdimVk
i;j¼1 v�i hmi; pmjiFvj ¼ v�Pv shows that

P is positive semidefinite; v is the column vector of coefficients in the expa-

nsion. The equalities 1 ¼ hp; 1iF ¼ hp;
PdimVk

i¼1 mim
�
i iF ¼

PdimVk
i¼1 hmi; pmiiF ¼PdimVk

i¼1 Pii establish that P has unit trace; we have used the identityPdimVk
i¼1 mim

�
i ¼ 1, which was established above. &

C. Expectation Values

If x is an operator on F, and if x can be written as x ¼PdimVk
i;j¼1 Xijmim

�
j , then we

take the matrix X, with entries Xij, to be the matrix representation of x. With this

definition, expectation values can be written

hp; xiF ¼ hP;Xik

where hP;Xik ¼ traceP�X is the trace scalar product of the two matrices P;X;
the subscript k is added to indicate that the trace is over the linear space of coef-

ficients of the elements of Vk. This equality is achieved by the following

sequence of steps: hp; xiF ¼ hp;
PdimVk

i;j¼1 Xijmim
�
j iF ¼

PdimVk
i;j¼1 hmj; pmiiFXij ¼PdimVk

i;j¼1 PjiXij ¼
PdimVk

i;j¼1 P�ijXij ¼ hP;Xik.

D. The Pauli Subspace

It follows from the fermion commutation relations that the entries of a k-matrix

are related by a system of linear equalities. For example, consider the pair trans-

port operator T2
mn ¼ 2ðb�ma�manbn þ b�na

�
nambmÞ, which moves a spin-up, spin-down

pair of electrons between sites m; n of �. If we define v	0 ¼ ambm 	 anbn,

v	1 ¼ a�mbn 	 bma
�
nr, v	2 ¼ amb

�
n 	 b�man, v3 ¼ a�man  bmb

�
n , and v4 ¼ama

�
n

b�mbn, then, by the commutation relations, it follows that

T2
mn ¼ vþiv�þi � v�iv��i; i ¼ 0; 1; 2

¼ v�iv��i � vþiv�þi; i ¼ 3; 4

This system of equalities is equivalent to the following linear conditions on the

k-matrix:

v�þ0Pvþ0 � v��0Pv�0 ¼ v�þiPvþi � v��iPv�i; i ¼ 1; 2

¼ v��iPv�i � v�þiPvþi; i ¼ 3; 4
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The column vector v	i is the coordinate vector for v	i referred to the fixed basis

for Vk, and the equivalence is established using the identities hv	i; pv	iiF ¼
v�	iPv	i. The coordinate vectors v	i are linearly independent by the indepen-

dence of the operators v	i. It follows that these equalities represent four indepen-
dent conditions on the k-matrix P.

The linear conditions on P can be rewritten

P ? vþ0v�þ0 � v�0v��0 � vþiv�þi þ v�iv��i; i ¼ 1; 2

? vþ0v�þ0 � v�0v��0 � v�iv��i þ vþiv�þi; i ¼ 3; 4

so that P is orthogonal to a four-dimensional subspace of Hermitian matrices

with respect to the trace scalar product. There are many other such linear con-

ditions on P, and taken together they are equivalent to requiring that P lie in the

orthogonal complement of a real linear space of Hermitian matrices, which we

denote by S. We call S the Pauli subspace since it encodes the content of the

Pauli principle.

Since an arbitrary k-matrix is orthogonal to S, the matrix representation for

a Hermitian operator is far from unique. Suppose that H is the matrix repre-

sentation of some Hamiltonian, and that S is an arbitrary matrix in S. Then
Hþ S is an equally valid representation since the identity hp; hiF ¼
hP;Hik ¼ hP;Hþ Si clearly holds for all k-matrices P. The explanation for

such a large number of representations is straightforward: the operator s cor-

responding to a matrix S 2 S is equal to the zero operator. The operator s

is constructed by taking the matrix elements to be coefficients in an expan-

sion but can then be reduced to the zero operator using the commutation

relations.

We summarize this discussion with the following theorem characterizing the

convex set of k-matrices. In the statement of this theorem we introduce Pk
0, the

symbol we use to denote the convex set of positive semidefinite matrices with

unit trace on the linear space of coefficients of the elements of Vk; similarly, we

use Pk to denote the cone of positive semidefinite matrices.

Theorem 4 The set of k-matrices is given by Pk
0 \ S?:

The convex set of k-matrices Pk
0 \ S? is compact, but the corresponding convex

set of k-densities Pk
0 is not; each k-matrix corresponds to an affine space of

k-densities.

E. Additional Properties of Matrix Representations

At this point we list several useful properties of the matrix representation we

have just constructed; these properties will be used in subsequent sections.
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R1. The k-matrix for the von Neumann density ð1=dimFÞ1 is ð1=dimVkÞ I :
Using the properties of the monomial basis for Vk, the entries for the

matrix representation are given by

mi;
1

dimF
1mj

� �
F

¼ 1

dimF
hmi;mjiF ¼

1

dimF

dimF

dimVk dij ¼
1

dimVk dij

R2. The operator 1 is represented by I: This follows from the formula

1 ¼PdimVk
i¼1 mi m

�
i .

R3. Each Hermitian operator x admitting an expansion of the form

x ¼
XdimVk
i;j¼1

Xijmim
�
j

has a unique representation that is orthogonal to S: If X is an arbitrary

representation, and pS is an orthogonal projection onto the Pauli space,

then X� pSðXÞ ¼ pS?ðXÞ is an equally valid representation that is

orthogonal to S and uniquely determined by x.

R4. Assume that X is an arbitrary representation of the traceless oper-

ator x; then trace ðXÞ ¼ 0: This follows from the equalities 0 ¼
traceðxÞ¼h1; xiF¼dimFhð1=dimFÞ1; xiF¼dimFhð1=dimVkÞI;Xik ¼
ðdim =FdimVkÞhI;Xik ¼ ðdim =FdimVkÞ trace ðXÞ.

R5. If S 2 S, then trace ðSÞ ¼ 0: This follows directly from R4 since S is a

matrix representation of the zero operator, which is traceless.

F. Energy Lower Bounds

Since the convex set of k-densities contains the convex set of von Neumann den-

sities, the following inequality holds:

min
p2Pk

0

h p; hiF � min
p2P0

hp; hiF

where h is the Hamiltonian. An energy lower bound and a kth order appro-

ximation for the state are found by varying over the set of k-densities.

Since the k-densities satisfy the relations P0 � � � � � P3
0 � P2

0 � P1
0 andT

k P
k
0¼ P0, these lower bounds converge to the exact ground-state energy

from below.

min
p2P2

0

hp; hiF � min
p2P3

0

h p; hiF � min
p2P4

0

h p; hiF � � � � � min
p2P0

h p; hiF
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If P is a k-matrix and H is a matrix representation of the Hamiltonian, as

described above, then the equality

hP;Hik ¼ hp; hiF

holds. It follows that the lower bounds can be computed using k-matrices, and

the sequence of lower bounds can be written

min
P2P2

0\S?
hP;HiF � min

P2P3
0\S?
hP;HiF � min

P2P4
0\S?
hP;HiF � � � �

and the corresponding sequence of k-matrices converge to k-matrices for the von

Neumann density for the ground-state. A question of great practical importance

is the speed of convergence of these lower bounds to the ground-state energy,

and this will be thoroughly discussed later.

III. SEMIDEFINITE PROGRAMMING

The central problem in electronic structure theory is to determine the ground

state of a system of electrons, which is typically done variationally by minimiz-

ing the energy. The lower bound method can be invoked to achieve a kth-order

approximation by replacing the variation minp2P0
hp; hiF by the semidefinite

program

min
P2Pk

0\S?
hP;Hik

where the minimum is taken over the the set of k-matrices that represent quan-

tum states; H is a matrix representation of the Hamiltonian h. This is called a

semidefinite program because the variation is over a section of the cone of posi-

tive semidefinite matrices, namely, Pk
0 \ S?.

A. Lagrange Duality

Rather than minimize the energy function E0ðPÞ ¼ hP;Hik by varying over the

set of k-matrices, there is a dual formulation where the bottom eigenvalue

l0ðHþ SÞ of the matrix Hþ S is maximized over the set of Pauli matrices

S 2 S. The dual formulation can be derived using Lagrange’s method, which

requires converting the constrained energy problem to an unconstrained one. If
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fS1; S2; S3; . . .g is a basis for the Pauli space S, then

min
P2Pk

0\S?
E0ðPÞ ¼ min

P2Pk
0\S?
hP;Hik

� max
b

min
P2Pk


hP;Hik þ b0ðhP; Iik � 1Þ þ

X
i

bihP;Siik
�

¼ max
b


� b0 þ min

P2Pk

�
P;Hþ b0Iþ

X
i

biSi

�
k

�
¼ max

b


l0 þ min

P2Pk

�
P;Hþ

X
i

biSi � l0I
�

k

�
¼ sup

S2S
l0ðHþ SÞ

where l0ðHþ SÞ is the bottom eigenvalue of the matrix Hþ S. The last two

steps require first noting that the value of

min
P2Pk

�
P;Hþ b0Iþ

X
i

biSi

�
k

is negative infinity unless Hþ b0Iþ
P

i biSi is positive semidefinite, and then

observing that the maximum over the vector of parameters b is achieved

when �b0 is the bottom eigenvalue l0 of the matrix HþPi biSi. By passing

to the dual the energy minimization problem is converted to the problem of opti-

mizing the spectrum, namely, the problem of maximizing the bottom eigenvalue.

If P 2 Pk
0 \ S is an arbitrary k-matrix, and S 2 S an arbitrary element of the

Pauli space, Lagrange’s argument shows that

� ¼ E0ðPÞ � l0ðHþ SÞ � 0

The gap between the energy and bottom eigenvalue is nonnegative. If the

k-matrix P moves to further decrease the energy, and if the Pauli matrix S moves

to further increase the bottom eigenvalue, the gap narrows and possibly shrinks

to zero. It is important to note that there are semidefinite programs where this

gap cannot shrink to zero; we discuss such an example later. However, In our

special case where we vary k-matrices and Pauli matrices, as we have defined

them, the gap shrinks to zero. This is an important result for both theoretical

and practical reasons; a proof is supplied below.

B. The Gap Formula

The semidefinite program we are considering is formulated in terms of the sym-

metric matrix H and the linear subspace of symmetric matrices S. For the
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moment we consider a general situation where the matrix H and the subspace S
are specified, but not as defined in Section II where kth-order approximations to

the von Neumann density were considered. We only impose the condition that

I;H;S be linearly independent, so that there are no nontrivial linear relations of

the form aIþ bHþ S ¼ 0, where S 2 S. In such a general setting, it is possible

that the energy problem does not have an optimal solution, or that the spectral

optimization problem does not have an optimal solution.

Theorem 5 If P 2 Pk
0 \ S, and S 2 S are chosen arbitrarily, then

� ¼ E0ðPÞ � l0ðHþ SÞ � 0

This gap inequality follows from Lagrange’s derivation of the dual spectral opti-

mization problem, but there is a more direct proof that we now present.

Proof. Define

Q ¼ Hþ S� l0ðHþ SÞI

where l0ðHþ SÞ is the bottom eigenvalue of the matrix Hþ S. Then the equal-

ity hP;Qik ¼ hP;Hik � l0ðHþ SÞ ¼ � follows from the conditions hP;Sik ¼
0; hP; Iik ¼ 1, which are assumed to hold. Since both P and Q are positive semi-

definite, this scalar product hP;Qik is nonnegative. &
The search for optimal solutions to both the energy problem and the spectral

optimization problem typically starts with matrices P and S that have a positive

gap. Iterations are designed to move P so that the energy is decreased, and to

move S so that the bottom eigenvalue is increased, and such motions cause

the gap to narrow. It is important that there are semidefinite programs where

this gap cannot shrink to zero, and we discuss such an example later. However,

in our special case where we vary k-matrices and Pauli matrices, as we have

defined them, the gap shrinks to zero. This is an important result for both theo-

retical and practical reasons; a proof is supplied below.

Corollary 6 Assume that for P 2 Pk
0 \ S, and S 2 S, the gap � ¼ E0ðPÞ�

l0ðHþ SÞ ¼ 0. Then P solves the energy problem, and S solves the spectral

optimization problem.

Proof. This follows immediately from the gap inequality � ¼ E0ðPÞ � l0ðHþ
SÞ � 0. &

Corollary 7 Let P 2 Pk
0 \ S, and let S 2 S. Then� ¼ E0ðPÞ � l0ðHþ SÞ ¼ 0

if and only if PQ ¼ 0, where Q ¼ Hþ S� l0ðHþ SÞI.
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Proof. For this result we use the identity � ¼ hP;Qik. Since P and Q are posi-

tive semidefinite, hP;Qik ¼ 0 if and only if PQ ¼ 0. &

The equation PQ ¼ 0 requires that the range spaces for P and Q lie in comple-

mentary orthogonal subspaces.

The energy and spectral optimization problems are convex programs so when

there are multiple solutions the solution sets form a convex set. The following

corollary characterizes how these convex sets of solutions relate to solutions of

the Euler equation. In the formulation of this corollary we use the notion of opti-

mal gap �0—the gap achieved by optimal P and S. The optimal gap is a char-

acteristic of the energy problem, depending only on H and S.

Corollary 8 Let P0 be the convex set of solutions of the energy problem, and let

S0 be the convex set of solutions of the spectral optimization problem. If the opti-
mal gap �0 ¼ 0, then P 2 P0, S 2 S0 if and only if PQ ¼ 0, where

Q ¼ Hþ S� l0ðHþ SÞI.

Proof. This follows from Corollary 7. &

IV. THE FUNDAMENTAL THEOREM

In this section we continue the discussion of the energy and spectral optimiza-

tion problems,

min
P2Pk

0\S?
E0ðPÞ; max

S2S
l0ðHþ SÞ

giving conditions that characterize the class of problems where optimal solutions

can be found by solving the Euler equation

PQ ¼ 0 where Q ¼ Hþ S� l0ðHþ SÞI

This class is important since the most effective algorithms for solving semide-

finite programs take as their starting point the Euler equation. As in the previous

section the setting is general, the only condition initially imposed being that

I;H;S are linearly independent. Throughout our discussion the positive semide-

finite matrix P is required to satisfy the conditions hP;Sik ¼ 0; hP; Iik ¼ 1, and

the positive semidefinite matrix Q is required to have the form Hþ S�
l0ðHþ SÞI, where S 2 S and l0ðHþ SÞ is the bottom eigenvalue of Hþ S.

A. Fundamental Theorem

To prove our main theorem, establishing that the existence of a solution of the

spectral optimization problem is equivalent to the existence of a solution of the
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Euler equation, we need the following lemma. In the statement of the lemma K�

denotes the polar cone of the cone K � Rp, which is given by

K� ¼ fv 2 RpjkTv � 0; 8k 2 Kg
kTv is the Euclidean scalar product of k with v.

Lemma 9 Let L � Rn be a subspace and let K � Rn be a closed pointed cone

with nonempty interior and vertex at the origin. Assume that b 2 qK. Then
exactly one of two alternatives must hold: (A1) there is a nonzero element

u 2 ðbþ LÞ \ int K; (A2) there is a nonzero element v 2 fb; Lg? \ K�.

Proof. We prove this result by showing that alternative A2 is equivalent to the

statement ðbþ LÞ \ int K is empty. Suppose that ðbþ LÞ \ int K is empty. By

the celebrated separation theorem of convex analysis there is a hyperplane H

separating bþ L and int K. Since b 2 qK; b 2 H. It follows that H is a support-

ing hyperplane of K and that bþ L � H. Since K is a cone, more is true: H

passes through the vertex of K, the origin, and is a subspace. For this reason

b; L � H. Let v be nonzero, normal to H, and pointing into the closed half-space

containing K. Since vTk � 0 for all k 2 K, it follows that v 2 K�; since

v ? fb; Lg alternative A2 holds.

Now assume that statement A2 holds. Since v ? b; L, and since vTk > 0 for

all k 2 intK, it follows that ðbþ LÞ \ intK is empty. &

The preceeding lemma does most of the work in establishing the following

fundamental theorem of semidefinite programming.

Theorem 10 Let S 2 S, and let Q ¼ Hþ S� l0ðHþ SÞI, where l0ðHþ SÞ is
the bottom eigenvalue of Hþ S. Then S maximizes l0 if and only if there is a

positive semidefinite matrix P satisfying the following conditions: (E1) PQ ¼
0; (E2) hP;Sik ¼ 0; (E3) hP; Iik ¼ 1.

Proof. It is clear that S 2 S maximizes l0 if and only if ðQþ SÞ \ intPk is

empty, where Q ¼ Hþ S� l0ðHþ SÞI. By making the identifications

b ¼ Q; L ¼ S;K ¼ K� ¼ Pk (since Pk is self-polar), and applying the above

lemma a more useful characterization is achieved: S 2 S maximizes l0 if

and only if there is a nonzero element P 2 fQ;Sg? \ Pk ¼ ðQ? \ PkÞ\
ðS? \ PkÞ. Since Q 2 Pk the condition P 2 Q? \ Pk is equivalent to the condi-

tion PQ ¼ 0, which is condition E1. The condition P 2 S? \ Pk is equivalent to

condition E2. SinceP is nonzero it can be scaled so that condition E3 is satisfied.&

The virtue of this theorem is that it reduces the dual problem to the question

of solving the Euler equation PQ ¼ 0, a second-order algebraic equation for the
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entries of P and Q. Earlier proofs [10, 11] of this result made use of elements of

nonsmooth analysis, but the proof given here draws only on standard ideas from

matrix theory and convexity theory.

Corollary 11 If the spectral optimization problem has an optimal solution S,

then there is an optimal solution P of the energy problem, and PQ ¼ 0, where

Q ¼ Hþ S� l0ðHþ SÞI.
Proof. This result follows directly from Theorem 10 and Corollaries 6 and 7. &

B. Existence Theorems

If the subspace S contains a positive definite element Sþ, neither the energy pro-
blem nor the spectral optimization problem has an optimal solution: since there

is no positive semidefinite matrix P satisfying both the conditions

hP; Sþik ¼ 0; hP; Iik ¼ 1, the convex set Pk
0 \ S is empty, and the energy pro-

blem has no solution. Since the values of l0ðHþ aSþÞ increase indefinitely as

a 2 R goes to positive infinity, the spectral optimization problem has no solu-

tion. When S contains positive semidefinite elements, but no positive definite

elements, the spectral optimization problem can have a solution, but need not,

as is illustrated by the following example. Consider the data

H ¼ 1 1

1 0

� �
; S ¼ span

0 0

0 1

� � �
and the associated energy problem. The conditions hP;Sik ¼ 0; hP; Iik ¼ 1

uniquely determine P to be

P ¼ 1 0

0 0

� �
The minimum energy is then given by E0ðPÞ ¼ hP;Hik ¼ 1.

For the spectral optimization problem we must calculate the bottom eigenva-

lue of

Hþ aS ¼ 1 1

1 a

� �
It is easy to see that inequality l0ðHþ aSÞ < 1 holds for all a 2 R. For a > 1

l0ðHþ aSÞ ¼ 1

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

a� 1

� �2
s24 35þ a

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

a� 1

� �2
s24 35

� � 1

a� 1
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and l0ðHþ aSÞ approaches 1 asymtotically with increasing a. Therefore the

spectral optimization problem has no solution. The gap is given by

� ¼ E0ðPÞ � l0ðHþ aSÞ

� 1� 1� 1

a� 1

� �
� 1

a� 1

which is always positive, but decreases asymtotically to zero as a increases.

Theorem 12 The energy minimization problem has an optimal solution if and

only if S \ intPk ¼ �.

Proof. In our introductory comments to this subsection we have argued that the

energy problem has no solution when S \ intPk 6¼ �. It remains to argue that

the energy problem has a solution when S \ intPk ¼ �. After making the iden-

tifications b ¼ 0; L ¼ S;K ¼ K� ¼ Pk, we apply Lemma 9 to show that there is

a nonzero element P in S \ Pk. We can then scale P so that it has unit trace and

conclude that the convex set determined by the two conditions hP;Sik ¼ 0;
hP; Iik ¼ 1 is not empty. Since this set is also compact, the energy problem

necessarily has a solution. &

Theorem 13 The spectral optimization problem has an optimal solution if

S \ Pk ¼ 0.

Proof. We first consider the condition S \ Pk ¼ 0. After making the identifi-

cations b ¼ 0; L ¼ S;K ¼ K� ¼ Pk, we apply Lemma 9 to show that this con-

dition is equivalent to the existence of a nonzero element in S \ intPk, which we

scale to yield the matrix I� satisfying the condition hI�; Iik ¼ 1. We then replace

H by a translate H0 ¼ H� kI so that the condition hI�;H0ik ¼ 0 is satisfied.

Since we have assumed that I;H;S are linearly independent, the projection of

H0 onto the orthogonal complement of fI;Sg is nonzero, so it can then be scaled
to give the matrix H�0 satisfying the conditions hH�0; Iik ¼ 0; hH�0;H0ik ¼ 1. We

next introduce the subspace K ¼ fI;H0;Sg? to achieve the following symme-

trical situation: just as the matrices I;H0;S span K?, the matrices I�;H�0;K span

S. Moreover, I�; I are positive definite and the conditions hI�; Iik ¼ 1; hI�;
H0ik ¼ 0; hH�0; Iik ¼ 0; hH�0;H0ik ¼ 1 hold.

By Theorem 12 the condition S \ Pk ¼ 0 ensures that the energy problem has

an optimal solution P, which we write as P ¼ I� � aH�0 þK, where K 2 K.
Since P minimizes the energy it follows that a > 0 in this expansion. Since P
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is optimal we also conclude that the condition ðPþKÞ \ intPk ¼ � must hold.

Otherwise, there would be an element �K 2 K, and a positive real number e, so
that P0 ¼ P� eH�0 þ�K 2 S \ Pk

0. It would then follow that hP0 � P;H0ik ¼
h�eH�0 þ�K;H0ik ¼ �ehH�0;H0ik ¼ �e < 0, which cannot hold since P is

optimal.

After making the identifications b ¼ P; L ¼ K;K ¼ K� ¼ Pk, we apply

Lemma 9 to convert the condition ðPþKÞ \ intPk ¼ � to a more useful

form: there is a nonzero element Q in fP;Kg? \ Pk ¼ P? \ fI;H;Sg \ Pk.

Since hI�0;Qik > 0, we initially scale Q so that it can be written Q ¼
Iþ gH0 þ S0, where S02S. The condition hP;Qik ¼ hI��aH�0 þK; Iþ gH0þ
S0ik ¼ 1� ag ¼ 0 requires that g ¼ 1=a > 0. Rescaling by a converts Q to

the form H0þ aS0þ aI ¼ Hþ aS0 þ ða� kÞI. The final form is Q ¼ Hþ S�
l0ðHþ SÞI, where S ¼ aS0 2 S, and l0ðHþ SÞ ¼ �ða� kÞ is the bottom

eigenvalue of Hþ S; this is the form required by the spectral optimization

problem.

Since � ¼ hP;Qik ¼ E0ðPÞ � l0ðHþ SÞ ¼ 0, an application of Corollary 6

shows that Q is a solution of the spectral optimization problem. &

Corollary 14 Assume that S is the Pauli subspace as defined in Section II. Then

the energy minimization and spectral optimization problems have optimal solu-

tions P; S, and PQ ¼ O, where Q ¼ Hþ S� l0ðHþ SÞI.

Proof. By property R5 listed at the end of Section II, the elements of the Pauli

subspace S are traceless, from which we infer by Theorems 12 and 13 that the

energy problem and the spectral optimization problem have optimal solutions.

By Theorem 10 these solutions are characterized by the Euler equationPQ ¼ 0.&

V. ALGORITHMS

In order to further develop the lower bound method, more effective algorithms

need to be devised to solve the Euler equation PQ ¼ 0, and attention is now

focused in this direction. For electronic structure calculations the matrices P;Q
are large, and in many cases out of range for the current generation of

algorithms—the next generation will make use of particular features inherent

in electronic structure theory so that larger problems can be accommodated. In

this section we give a brief treatment of algorithms for semidefinite programming.

A. Standard Formulation

We now return to the original formulation of the energy problem,

min
P2S?\Pk

0

E0ðPÞ

the lower bound method for density matrices 79



where E0ðPÞ ¼ hP;Hik, and the k-matrix P and Hamiltonian matrix H are

referred to the original monomial basisM. This representation has many nice

properties, including the five properties listed toward the end of Section II. We

first note that by property R5 the elements S of the Pauli space S are traceless. It

is convenient to assume that the original Hamiltonian h on Fock space is trace-

less, in which case the matrix representation H is traceless by property R4. It is

also convenient to choose a representation H that is orthogonal to the Pauli

space, which is possible by property R3. By introducing the subspace K ¼
fI;H;Sg?, we have the following orthogonal decomposition of the set of sym-

metric matrices:

I ? H ? S ? K

The matrices P and Q then belong to the following subspaces of symmetric

matrices:

P2S? ¼ spanfI;H;Kg
Q2K? ¼ spanfI;H;Sg

By introducing bases fS1; S2; S3; . . .g; fK1;K2;K3; . . .g for S;K the matrices P

and Q can be written

P ¼ 1

jIj2 Iþ
E0

jHj2 Hþ
X
i

aiKi and Q ¼ Hþ
X
i

biSi � l0I

The coefficients of I and H are treated separately in P so that the trace condition,

hP; Iik ¼ 1, holds and so that the energy is given by hP;Hik ¼ E0; the coefficient

of I in Q becomes the bottom eigenvalue l0 when parameters are adjusted so that

Q is optimal. The optimal values for E0 and l0 are equal.

Finding a solution for the energy problem and spectral optimization problem

is reduced to solving a system of quadratic equations obtained by substituting P

and Q into the Euler equation PQ ¼ 0. It is easy to devise algorithms to deter-

mine the parameters E0; a1;a2; . . ., l0; b1;b2; . . ., but there is an important

caveat—the only meaningful solutions are ones where the parameters deter-

mine positive semidefinite P and Q. The goal of current research is to develop

algorithms that both converge superlinearly and converge to positive semidefi-

nite solutions P and Q; an enormous effort has been expended in this direction.

Moreover, since the applications of semidefinite programming are wide ran-

ging, the efforts expended in algorithm development are broad based. The

observation that linear programming is a special case of semidefinite program-

ming, and that the difficulties faced in developing interior point methods
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are common to both theories, has served to intensify efforts in algorithm

development.

B. Alternate Formulations

With the basic problem in standard form it is easy to switch to an alternate for-

mulation by scaling the matrices P and Q. By scaling P by jHj2=E0 and scaling

Q by 1=l0jIj2, we obtain

P0 ¼ Hþ jHj
2

E0

X
i

aiKi � jHj
2

E0jIj2
I; Q0 ¼ 1

jIj2 Iþ
1

l0jIj2
Hþ

X
i

biSi

so that P0 has the required form for a spectral optimization problem, and Q0 the
form for an energy minimization problem. If P0;Q0 are optimal, so that

P0Q0 ¼ 0, the corresponding optimal values of the bottom eigenvalue and energy

are given by jHj2=E0jIj2 and jHj2=l0jIj2.
That we can so easily pass between the two forms of optimization problem

without worrying about the existence of optimal solutions follows from the fact

that the matrices in the two subspaces S and K are traceless: Theorems 12 and

13 can then be applied to ensure existence of solutions. This can also be seen

directly by noting that the optimal values for E0 and l0 are negative, and there-

fore nonzero, so that the scale factors jHj2=E0; 1=l0jIj2, used in passing to the

primed matrices P0;Q0, are well defined.

C. Algorithms

Here we briefly sketch two directions in research on algorithms for semidefinite

programming. A more complete discussion can be found in M. Todd’s Semide-

finite Optimization [18], or in the Handbook of Semidefinite Programming edited

by Wolkowicz et al. [19].

The bottom eigenvalues for optimal P and Q are typically multiple, with

many additional eigenvalues concentrated in a narrow band at the bottom end

of the spectrum, and this structure is particularly difficult for algorithms to

resolve. Although solutions of the equation PQ ¼ 0 are sought where all eigen-

values are nonnegative, there are many nearby solutions with small negative

eigenvalues. As semidefinite programming emerged in the early 1990s increased

efforts were made, that are ongoing, to devise algorithms that avoid these spur-

ious solutions. That the bottom end of the spectrum for P and Q is compressed is

easily understood by considering the spectral optimization problem. If S ¼
b1S1 þ b2 S2 þ � � � þ bsSs, then the function l0ðHþ SÞ can be considered a

function l0ðbÞ of vector variable b ¼ ½b1; b2; . . . ; bs� 2 Rs. As b moves toward

the position of the maximum, the bottom eigenvalue is pushed up, compressing
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the bottom part of the spectrum. Thus at the maximum there are typically multi-

ple eigenvalues with the same maximal value, and many additional eigenvalues

nearby.

1. Primal–Dual Interior Point Methods

Starting with Karmarker’s 1984 paper where he proposed an interior point

method for linear programming, a new line of research on algorithms was

started. Rather than deal with the detailed structure of the boundary of a poly-

tope, Karmarker devised a search method that proceeds through the interior,

making contact with the boundary at only the last moment, when the optimal

solution is reached. Search directions need not be informed of details of the

boundary structure, but must be devised so that the boundary is avoided. The

ideas of Karmarker were steadily improved upon until the primal–dual path-

following methods emerged as the dominant class of algorithms. These algo-

rithms can be applied equally to semidefinite programming problems and linear

programming problems. For semidefinite programming the primal–dual algo-

rithms replace the equation PQ ¼ 0 by the equation PQ ¼ tI, where t is a posi-
tive number. When the right-hand side is 0 the equation determines P;Q on the

boundary of the cone of positive semidefinite matrices, but when the right-hand

side is set equal to tI the equation determines positive definite P;Q. As t
approaches zero the solutions Pt;Qt track along the interior of the cone of posi-

tive semidefinite matrices, arriving at the boundary at the last moment, when t
converges to zero. When this happens we arrive at a solution of the Euler equa-

tion PQ ¼ 0.

2. Boundary Methods

The recent papers of Mazziotti show that boundary methods can be effective in

solving the semidefinite program that accompanies electronic structure theory.

His algorithm seems to outperform standard primal–dual path-following algo-

rithms in terms of both the complexity of the basic step and number of steps

to convergence [20–22]. Central to boundary methods, and to Mazziotti’s algo-

rithm, is a parameterization of P, or Q, or possibly both, that ensures the positive

semidefinite property. For example, to ensure that P remains positive semidefi-

nite, it is simply written P ¼ RR�, and the entries of R become the variational

parameters. By imposing the positive semidefinite condition in this way, the

algorithm can track along the boundary by directly invoking the equation

PQ ¼ 0.

Information on the ranks of the optimal matrices P and Q can be used to gain

efficiency since then the factor R need not have full rank, and the number of

parameters is reduced accordingly. In the problem of quantum phases discussed

in the following sections, the ranks of both P and Q can be predicted, which

allows such efficiencies to be deployed in the solution process.
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D. Interpreting the Solution

By the spectral theorem the optimal matrix Q can be written

Q ¼ Hþ S� l0ðHþ SÞI ¼
X

gig
�
i

which by passing to the operator representation becomes

h� l01 ¼
X

gig
�
i

gi is the coordinate vector for the operator gi referred to the fixed basis forQ
k. The

vectors gi belong to the kernel of the k-matrix P, and the operators gi are annihi-

lators for the corresponding approximate von Neumann density: gip ¼ 0. Both gi
and gi give a dual description of a type of correlation present in the ground state;

these are the ‘‘killers’’ of the ground state. The P and Q matrices are typically

block diagonal, with the blocks varying in size and type—the blocks are labeled

by quantum numbers, which serve to classify the blocks. For symmetrical pro-

blems the number of labels increases, and the blocks become smaller and more

numerous. The coordinate vectors gi are associated with a particular block and

therefore can be labeled by such quantum numbers. These serve to classify the

possible types of correlations present in the ground state. It is important that

the number of types of blocks that appear when k-matrices are used to represent

the ground state is far greater than when a wavefunction is used, so k-matrices add

precision to the discussion of correlations. The example we conclude with is the

calculation of the ground-state k-matrix for the superconducting phase. This is a

very symmetrical problem, so the number of types of correlations is large. As

model parameters are varied, and the superconducting phase is traversed, the

number and types of ‘‘killers’’ gi remain constant, so the types of correlation

that characterize the ground state remain constant. The coordinate vectors them-

selves vary smoothly, but the ranks of the various blocks remain constant. This

property, that the ranks remain constant, vividly illustrates the stability that

accompanies quantum phases and even serves to characterize quantum phases.

The electronic structure of atoms shows a similar stability since the shell

structure remains constant over a wide range of experimental environments.

However, with molecules this picture must be modified. The electronic structure

of a diatomic molecule varies with bond length, the limit being that of a pair of

separated atoms. Accordingly, the ranks of the blocks in the k-matrix description

vary with bond length.

VI. MODELING A ONE-DIMENSIONAL SUPERCONDUCTOR

We first review the two papers [3, 4] where, using semidefinite programm-

ing, the 3-matrix of a one-dimensional superconductor was calculated for a
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two-parameter family of Hamiltonians. This work was the first to reveal the

importance of the order of accuracy k, and to give a clear picture of how

order of accuracy relates to the balance between one- and two-body forces

in the Hamiltonian. It was established that convergence to exact values is

extremely rapid with k, with third-order estimates being sufficiently accurate

for most purposes. More specifically, these papers showed poor results when

calculations are carried through to second order but showed three-figure accu-

racy when calculations are carried through to third order. The improvement

with order of accuracy k was dramatic, suggesting that the accuracy of

fourth-order estimates would be in the range of ten figures; this was later

confirmed [5]. It is this characteristic, rapid convergence with k that converts

the lower bound method into an effective computational tool, even when the

correlations are induced by strong two-body forces. These papers also showed

how order of accuracy k relates to the balance between one- and two-body

forces in the Hamiltonian. The Hamiltonian for the superconducting model

contains two-body forces alone—the opposite extreme from atoms and mole-

cules where one-body forces dominate. Two-body forces alone provided a

severe test—the second-order estimates contained no useful information. It

came as somewhat of a surprise that the second-order estimates were so

poor, and it was equally surprising that the third-order estimates were so

good.

A. Details of the Model

In the superconducting model studied by Erdahl and Jin [2–4] spin-up, spin-

down pairs of electrons wander on a one-dimensional periodic lattice �. The
local Hamiltonian,

hmn ¼ a2EEmn þ a2TTmn

where m; n 2 � are nearest neighbors, determines how the pairs interact along a

nearest neighbor bond and the Hamiltonian is formed by summing these bond

contributions:

h ¼
X
jm�nj¼1

hmn

There are an even number of lattice points equispaced on a ring, which are

represented by the integers f1; 2; . . . ; j�jg. The restriction jm� nj ¼ 1 limits

the summation to nearest neighbor contributions, and since � is periodic the

identity j�j þ 1 ¼ 1 holds. Along a bond the pairs interact through an electro-

static force a2EEmn, the magnitude and sign determined by the coefficient aE. The
pairs also respond to a transport term a2TTmn, which moves pairs between
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adjacent lattice sites. The details of these interactions are given by the

expressions

2Emn ¼ 1
4
ðeamean þ ebmebn þ eamebn þ ebmeanÞ

2Tmn ¼ 2ðbymaymanbn þ byna
y
nambmÞ

The operator am annihilates a spin-up electron at m 2 �, and the operator bm anni-
hilates a spin-down electron; eam ¼ aymam � ama

y
m. The electrostatic operator

has expected valueþ1 for states when sites m; n are either both occupied or unoc-
cupied, and expected value �1 in the other case where one site is occupied, the

other not.

The superscript 2 is added to emphasize that these interactions are two-body.

That is, these operators are orthogonal to all scalar and one-body operators

with respect to the trace scalar product.

Definition 15 A k-body operator is a Hermitian operator that can be repre-

sented as a polynomial of degree 2 k in the annihilation and creation operators,

and is of even degree in these operators. In addition, a k-body operator must be

orthogonal to all ðk � 1Þ-body operators, all ðk � 2Þ-body operators, . . ., and all

scalar operators, with respect to the trace scalar product.

B. Results

As p varies over the set of von Neumann densities P0, the vector of matrix

elements b ¼ ½bT ; bE� ¼ ½hp2; Tmni; hp2;Emni� fills in the representable region

R pictured in Fig. 1. Each von Neumann density p 2 P0 is represented by

0

0.4

–0.4 

0.8

–0.8 

βT

βE

0.4–0.4 0.8–0.8 1.2–1.2

β*

α

Figure 1. The representable region R.
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a point in R, and each point in R represents at least one von Neumann

density.

Each point b 2 R corresponds to a quantum state with total energy given by

E ¼ hp; hi ¼ j�jhp; hmni ¼ j�jðaThp2; Tmni þ aEhp2;EmniÞ ¼ j�ja � b, where a ¼
½aE; aT �; the number of lattice sites j�j is equal to the number of bonds in the

ring, and therefore equal to the number of like contributions of bond energy.

The minimum energy state for a Hamiltonian with coefficients a ¼ ½0; aT �;
aT < 0, is represented by the point b� 2 R that is pictured. This follows since

b� is a point of tangency for a line that is tangent to R, and perpendicular to a;
the energy is constant along the tangent line, and the vector a points in the direc-

tion of increasing energy.

The open circles slightly outside R in Fig. 2 are third-order estimates of

boundary points obtained by the lower bound method and are accurate to three

figures. These results are for three spin-up, spin-down pairs of electrons wander-

ing on a ring with six lattice sites.

As the number of lattice sites increases, the electrons experience additional

correlations, so the representable region shrinks. That is, if Ri is the representa-

ble region for a lattice with i ¼ j�j sites, thenR4 � R6 � R8 � R10 � � � �. This
phenomenon is accurately tracked by the third-order estimates, and Fig. 3 shows

that convergence to the limiting case where j�j ! 1 is rapid.

C. Convergence with Order k

Second-order estimates of the representable region R were also made for the

cases j�j ¼ 4; 6. These are the pentagonal regions R2
4 � R2

6 that appear in

Fig. 4. Not only do the pentagonal regions poorly represent the corresponding

representable regions, they increase in size in going from four to six lattice sites
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Figure 2. Accuracy of the lower bound method.
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rather than shrink! The limiting case, when j�j ! 1, is the triangle with ver-

tices at ½0; 1�; ½2;�1�; ½�2;�1�. Thus the second-order estimates completely mis-

represent the physical situation and are of little value. The two representable

regions R4 � R6 have been added for comparison.

These results confirm the observation of Mihailovic and Rosina that second-

order methods cannot characterize the correlations induced by two-body forces,

0
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–0.4

0.8

–0.8

βT

βE

0.4–0.4 0.8–0.8 1.2–1.2

Figure 3. The representable regions R4� R6� R8� R10.
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Figure 4. The estimates R2
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6.
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and show that third order can. The vast difference between the second- and third-

order estimates shows that convergence to the exact representable region is rapid

in k—it is clear that fourth-order estimates would give a very precise description

of these correlations.

D. The Lipkin Model

The extraordinary speed of convergence with k was confirmed in the recent work

of Mazziotti and Erdahl [5], where the Lipkin model was studied using the lower

bound method. Second-, third-, and fourth-order approximations were studied

for a range of strengths of the two-body forces. The jump in accuracy in going

from second- to third-order approximations was again impressive, and the

fourth-order estimates effectively removed all remaining errors. The accuracy

goes from about four to ten figures when third-order estimates are replaced by

fourth. A significant observation was that fourth-order estimates were an order of

magnitude more accurate than estimates calculated using other many-body

methods, showing that convergence in k is rapid enough to be of enormous prac-

tical significance. These results show that 4-positivity gives a solution to the cor-

relation problem for strong two-body forces. The Lipkin model was introduced

to study the strong two-body forces that dominate the dynamics of protons and

neutrons in the nucleus. This is a two-level system where the energy levels �1
and þ1 are each N-fold degenerate, and the strength of a two-body term can

be adjusted by varying the parameter V. When V is zero all N fermions occupy

the ground state, but when V is turned on pairs are promoted to the excited state;

the action of the two-body term is to move pairs of fermions between the ground

and excited states. For large interaction strengths both levels are nearly equally

occupied; there are two half-filled shells, which is the configuration Mihailovic

and Rosina found most difficult. In modeling nuclear systems V is chosen to be

negative so the two-body forces are attractive, but in the work of Mazziotti and

Erdahl V was positive, the two-body forces were repulsive, and an electronic

system was modeled.

Convergence in order k was tracked for three different particle numbers, N ¼
10; 30; 75, and for two values of the interaction strength, V ¼ 0:8; 1:6. Compar-

isons were made by recording the percentage of the correlation accounted for

using second-, third-, and fourth-order approximations, with the results recorded

in Table I.

The third column contains the exact correlation energy computed using a full

configuration interaction treatment. As anticipated, convergence in k is very fast:

the accuracy of the fourth-order approximations of the energy exceeded ten fig-

ures in some instances. A significant comparison is with other wavefunction and

many-body perturbation methods currently employed in quantum theory. These

comparisons are made in Table II, where correlation energies are tabulated for a

variety of methods.

88 robert m. erdahl



Comparisons are made with: (i) a configuration interaction wavefunction cal-

culation with single, double, triple, and quadruple excitations (SDTQCI);

(ii) fourth-order many-body perturbation theory (MP4); (iii) solution of

the single–double coupled-cluster equations (CCSD); and (iv) the contracted

Schrödinger equation (CSE). Of the comparison methods the single–double

coupled-cluster treatment gives the best results, but failed to converge in the

strong interaction case where V ¼ 1:6. The energies computed using the lower

bound method are four orders of magnitude more accurate than those computed

using single–double coupled clusters. These comparisons show that the rate of

convergence of the lower bound method in k is fast enough that when k ¼ 4

accuracies are achieved they are superior to other many-body techniques by sev-

eral orders of magnitude. The correlations induced by two-body interactions are

given a precise characterization by 4-positivity.

VII. CONCLUDING REMARKS

It is now firmly established that the lower bound method can be relied on for

accurate electronic structure calculations for atoms and molecules. The recent

TABLE I

Convergence of Correlation Energy with k

N V Ecorr P2
0 P3

0 P4
0

10 0.8 �0.0384 104.6640 100.0376 100.000103

30 0.8 �0.0130 102.4673 100.0103 100.0000670

75 0.8 �0.00526 101.1621 100.00167 100.0000113

10 1.6 �0.186 122.3515 101.85 100.0958

30 1.6 �0.128 119.6154 102.86 101.90

75 1.6 �0.117 108.9054 100.644 100.428

Source: Mazziotti and Erdahl [5].

TABLE II

Comparison with Other Many-Body Methods

N V Ecorr SDTQCI MP4 CCSD CSE P4
0

10 0.8 �0.0384 98.85 99.703 101.07 99.9856 100.000103

30 0.8 �0.0130 95.94 96.43 101.08 99.9860 100.0000670

75 0.8 �0.00526 94.25 94.5 100.642 99.9092 100.0000113

10 1.6 �0.186 88.9 100.224 * 100.0336 100.0958

30 1.6 �0.128 47.5 53.9 * 100.486 101.90

75 1.6 �0.117 20.9 23.6 * 99.9657 100.428

Source: Mazziotti and Erdahl [5].
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computational experiments [5, 6, 12, 14] have shown that second-order approx-

imations are adequate for most purposes, even giving accurate binding energy

curves in many instances. This last observation indicates that the correlations

are treated uniformly over a range of molecular geometries, a characteristic

that is particularly valuable and not shared by other approximation methods.

Moreover, these experiments establish that if approximations are carried through

to third order, the lower bound method is more accurate than other approximation

methods currently used. This picture was filled out by studies of model systems

where two-body forces dominate [2–5], providing a more severe test for the lower

bound method. This second group of experiments show that with strong two-body

forces second-order approximations fall far short of acceptable accuracies, but

that with third-order approximations four-figure accuracy can be achieved.

That is, these experiments show that convergence in the order k is so rapid that

target accuracies can be achieved in all cases while complexity is kept within

bounds. It is this rapid convergence, requiring that for kth-order approximations

be k-positive, that stands behind the claim that the N-representability problem

now has a satisfactory solution. The second theme we pursued is how semidefi-

nite programming and the lower bound method have come together so that the

calculations required for the energy minimum problem are ‘‘within grasp.’’

Within grasp means that calculations carried to third order are now possible

for small molecules. Attention is now moving toward semidefinite algorithms

that exploit special features of the electronic structure problem so that larger sys-

tems can be studied [20–22], and this is where a rapid advance is possible.

We have focused on the lower bound method, but density matrix research has

moved forward on a much broader front than that. In particular, work on the con-

tracted Schrödinger equation played an important role in developments. A more

complete picture can be found in Coleman and Yukalov’s book [23]. It has taken

55 years and work by many scientists to fulfill Coleman’s 1951 claim at Chalk

River that ‘‘except for a few details which would be easily overcome in a couple

of weeks—the N-body problem has been reduced to a 2.5-body problem!’’
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I. INTRODUCTION AND BACKGROUND

The starting point for all investigations of the classical RDM method (determi-

nation of the 1-RDM and 2-RDM by constrained optimization of the energy as a

linear functional of these RDMs) are the representability conditions obtained

from positivity of AþA, where A is any one-body or two-body operator [1, 2].

Positivity of AþA when A is a p-body operator likewise provides constraints

on the p-RDM, and they have been called p-positivity conditions [3]. The T1

and T2 conditions that are the subject of this chapter are obtained as special

positive linear combinations of 3-positivity conditions in which terms involving

the 3-RDM cancel out. These conditions were introduced by Erdahl in the con-

cluding section of his 1978 survey paper [4]. He presents them in a general Fock-

space setting in the concise form 0 � yþy, where the operator y is a polynomial

containing terms of degrees 1 and 3 in the annihilation and creation operators

and having the property that yþy involves terms only up to degree 4. Erdahl’s

presentation is clear, but no further reference to these conditions is found in

the 25 years following Ref. [4]. Part of the reason may be that a computationally

efficient implementation of the classical 2-positivity conditions presented

enough of a challenge already, and another part of the reason may be that Erdahl

did not spell out the precise semidefinite conditions obtained after specialization

to fixed particle number.

The conditions were rederived and explored by us in a 2004 paper [5] and

they have been further investigated in Refs. [6–8]. In the present chapter we pre-

sent these conditions, including a slight modification and strengthening of the

T2 condition as compared to Ref. [5]. We also make precise the relation between

the present T1 and T2 conditions and the Fock-space positivity condition given

by Erdahl, and we show the effect of the strengthening of the T2 condition rela-

tive to our earlier paper [5] by recalculating the most difficult cases of that work.

A brief review of the derivation of the classical positivity conditions of Refs.

[1, 2] and an overview of the well-known diagonal conditions [9, 10] will set

the stage.

In analytical investigations it is often desirable to leave the particle number

free and consider operators that fix only the parity, but in applications to elec-

tronic structure theory one deals with fixed particle number and one may

restrict A to have a definite action on the particle number N, so that AþA is par-

ticle conserving. There are then two cases for the one-body operator A: consid-

eration of A ¼Pi fiai with undetermined coefficients fi gives rise to the

condition 0 � g, while consideration of A ¼Pi fia
þ
i gives rise to the condition

0 � I � g; here the ai form a (finite-dimensional) basis of annihilation opera-

tors, g is the 1-RDM, and I is the identity matrix of the appropriate size. If the

density matrices are known to be real symmetric then the fi may be assumed

real, otherwise they should be assumed complex. For fixed particle number
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there are three kinds of two-body operators to consider: letting A ¼Pi;j fi;jaiaj
one obtains the condition 0 � �, consideration of A ¼Pi;j fi;ja

þ
i a
þ
j leads to the

condition 0 � Q, and consideration of A ¼Pi;j fi;ja
þ
i aj leads to the condition

0 � G. Here, � is the 2-RDM, and matrices Q and G are expressed in terms

of g and � by

Q
i;j
k;l ¼ �i;j

k;l � dikg
j
l � djlg

i
k þ dilg

j
k þ djkg

i
l þ dikd

j
l � dild

j
k ð1Þ

G
i;j
k;l ¼ �j;k

i;l þ dikg
j
l ð2Þ

(where d denotes the Dirac delta function). The Q matrix is antisymmetric in

each pair of indices and is understood as a matrix of size r
2

	 
� r
2

	 

, where r

is the dimension of the one-particle basis. The G matrix is of dimension r2 � r2.

Conditions 0 � g, 0 � I � g, 0 � �, and 0 � Q are found in Ref. [1] and the

condition 0 � G is from Ref. [2], where the unity of this family of conditions is

emphasized. (For the history of the subject the less well-known paper by Mayer

[11] deserves notice, and for reviews we mention Refs. [4, 12].) Garrod and

Percus [2] developed condition 0 � G in a more general form by considering

the positivity of AþA, where A ¼ cþPi;j fi;ja
þ
i aj; however, for the case of fixed

particle number N the free constant c can be absorbed into the sum using the

operator identity
P

i;j d
i
ja
þ
i aj ¼ N̂N, and this has always been done in computa-

tional work. The implementation of the RDM method subject to these positivity

conditions belongs to semidefinite programming and this is shown in a beautiful

way by Rosina and Garrod [13], which presents—even before the name semide-

finite programming was in use—a cutting-plane method applied to a linear pro-

gramming relaxation and also a barrier function approach that looks ahead to

present-day interior-point methods.

Beyond the semidefinite conditions on g, I � g, �, Q, and G, one other class

of representability conditions for the 2-RDM has long been studied: these are the

‘‘diagonal’’ conditions, which include the three-index conditions due to

Weinhold and Wilson [9] and which were systematically investigated by McRae

and Davidson [10]. The simplest, one-index, diagonal conditions are 0 � gii and
0 � 1� gii (for all i), and these obviously specialize the conditions 0 � g and

0 � I � g. The two-index diagonal conditions are 0 � �i;j
i;j, 0 � 1� gii � gjj þ �i;j

i;j,

and 0 � gii � �i;j
i;j (for all i, j; i 6¼ j), and these specialize 0 � �, 0 � Q, and

0 � G. Next in the hierarchy are the three-index (Weinhold–Wilson) diagonal con-

ditions: 0 � 1� gii � gjj � gkk þ �i;j
i;j þ �i;k

i;k þ �j;k
j;k and 0 � gii þ �j;k

j;k � �i;j
i;j � �i;k

i;k

(with i, j, k all distinct). The hierarchy continues, but as observed by McRae

and Davidson the conditions become progressively more unwieldy. The

3-index and higher diagonal conditions have not played much of a role in

RDM computations, although it would not be hard to incorporate any number

of them into an SDP formulation via a cutting-plane approach. They depend
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on the choice of basis, and an invariant choice would be the basis that makes

the 1-RDM diagonal. (It is a bit more challenging if one insists that the con-

ditions must hold after any transformation of the one-electron basis.) In Ref.

[14] violation of the 3-index conditions was tested, but the conditions were not

then used to improve the solution, and in Ref. [15] the same authors incorpo-

rated the diagonal conditions but found only a weak improvement for the sys-

tems studied.

The complexity of the diagonal representability problem is now understood in

a manner that was not available to McRae and Davidson: the diagonal conditions

of RDM theory are recognized in combinatorial optimization as conditions char-

acterizing the Boolean quadric polytope (BQP) and, after a simple transforma-

tion, the cut polytope [16]. Optimization over BQP is NP-hard and a concise

characterization of the polytope is not available unless P ¼ NP [16, p. 397; 17].

These fundamental complexity results tell us that we should not look for a con-

cise complete solution to the fermion representability problem. On the other

hand, the original full configuration interaction eigenvalue problem looks expo-

nentially hard in any case, and therefore the analytical challenge for the RDM

method is to develop representability conditions that provide high accuracy even

if they will not form a complete family.

II. ERDAHL’S T1 AND T2 CONDITIONS

Following Ref. [5] the T1 condition is obtained by considering an operator

A ¼Pi;j;k gi;j;kaiajak, where the gi;j;k are arbitrary real or complex coefficients

totally antisymmetric in the three indices. (We view g as a vector of dimension
r
3

	 

, where r is the size of the one-electron basis.) The contractions h�jAþAj�i

and h�jAAþj�i both involve the 3-RDM, but with opposite sign, and so the non-

negativity of h�jAþAþ AAþj�i for all three-index functions g provides a repre-

sentability condition involving only the 1-RDM and 2-RDM. In explicit form the

condition is of semidefinite form, 0 � T1, where the Hermitian matrix T1 is

defined in terms of g and � by

T1
i;j;k
i0;j0;k0 ¼ A½i; j; k�A i0; j0; k0½ � 1

6
dii0d

j
j0d

k
k0 � 1

2
dii0d

j
j0g

k
k0 þ 1

4
dii0�

j;k
j0;k0

� �
ð3Þ

We are using A½i; j; k�fi;j;k to denote anti symmetrization with respect to ði; j; kÞ:
fi;j;k summed over all permutations of the indices with each term multiplied by

the sign of the permutation. The dimension of the T1 matrix is r
3

	 
� r
3

	 

.

The T2 condition, slightly strengthened from Ref. [5], but in the real

case already contained in Ref. [4], is obtained by considering operators

A ¼Pi;j;k gi;j;ka
þ
i ajak and B ¼Pl hlal for arbitrary real or complex coefficients

gi;j;k and hl, with gi;j;k antisymmetric in ðj; kÞ. (So this g may be compressed to
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a vector of dimension r r
2

	 

.) Operators A and B both lower the particle number

by 1. Similar to the case above, the contractions h�jAþAj�i and h�jAAþj�i
involve the 3-RDM with opposite sign, and so the combination

h�jðAþ BÞþðAþ BÞ þ AAþj�i involves again only the 1-RDM and 2-RDM

and is, of course, nonnegative and also particle conserving. This provides a semi-

definite representability condition 0 � T20, where the matrix T20 has the block

form

T20 ¼ T2

Xþ
X

g

� �
ð4Þ

The T2 diagonal subblock has dimension r r
2

	 
� r r
2

	 

and acts on the coefficients

gi;j;k, the 1-RDM is the other diagonal subblock, of dimension r � r, and acts on

the coefficients hl, and the off-diagonal blocks X and Xþ mix the two sets of

coefficients; Xþ is, of course, the Hermitian adjoint of X. Specifically,

T2
i;j;k
i0;j0;k0 ¼ A½j; k�A j0; k0½ � 1

2
djj0d

k
k0g

i0
i þ 1

4
dii0�

j;k
j0;k0 � djj0�

i0;k
i;k0

� �
ð5Þ

Xl
i0;j0;k0 ¼ �i0;l

j0;k0 ð6Þ

In our earlier work [5] we did not include the contribution from the one-body

operator B, and so we obtained only the main T2 subblock. It might be thought,

briefly, that the condition could be further strengthened by considering an inde-

pendent pair of one-body annihilator operators B and C and then developing the

positivity of ðAþ BÞþðAþ BÞ þ ðAþ CÞðAþ CÞþ. However, this yields noth-

ing stronger in the case of fixed particle number, because if N � 2 then the

operator C can be absorbed into A, much like the constant term c could be

absorbed into the two-body operator used in defining the G condition, while if

N ¼ 1 then effectively A ¼ 0 and again the extreme conditions require only the

operator B.

Let us make clear now the correspondence between our treatment here and

Erdahl’s 1978 treatment [4, Sec. 8]. Erdahl works in general Fock space and

his operators conserve only the parity of the number of nuclei. He exhibits

two families of operators that are polynomials in the annihilation and creation

operators containing a three-body and a one-body term. Generic instances of

these operators are denoted y and w. The coefficients are real, and Erdahl stresses

that this is essential for his treatment. The one-body term is otherwise unrest-

ricted, but the three-body term must satisfy conditions to guarantee that yþy
or wþw does not contain a six-body term. For the first family the conditions

amount to the three-body term being even under taking the adjoint, and for
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the second family the three-body term must be odd under taking the adjoint.

Writing out the polynomials one obtains the general form

y ¼
X
i;j;k

f1i;j;kaiajak þ
X
i;j;k

ðf1i;j;kaiajakÞþ

þ
X
i;j;k

f2i;j;ka
þ
i ajak þ

X
i;j;k

ðf2i;j;kaþi ajakÞþ

þ
X
i

giai þ
X
i

hia
þ
i ð7Þ

w ¼
X
i;j;k

f1i;j;kaiajak �
X
i;j;k

ðf1i;j;kaiajakÞþ

þ
X
i;j;k

f2i;j;ka
þ
i ajak �

X
i;j;k

ðf2i;j;kaþi ajakÞþ

þ
X
i

giai þ
X
i

hia
þ
i ð8Þ

One may now proceed to write out yþy and wþw and, to make the connection to

the present work, retain only the terms that are particle conserving. The result

are representability conditions, and they include terms quadratic in f1 and terms

quadratic in f2, but no mixed terms. It will be clear then that the extreme con-

ditions—and they are all that matter—involve either f1 or f2, but not both;

moreover, one will observe that 0 � yþy and 0 � wþw lead to the same condi-

tions, which are the real cases of the T1 and the strengthened T2 conditions.

In summary, Erdahl’s treatment is more general and allows a more concise

formulation because he works in Fock space, conserving only the parity of the

number of particles; however, he finds it necessary to restrict the coefficients to

be real. We work at fixed particle number and have no reason for the restriction

to real coefficients. If the Hamiltonian should be general Hermitian, in which

case the RDM must likewise be assumed to be general Hermitian, then our

approach leads to Hermitian semidefinite conditions.

III. NUMERICAL RESULTS

In our first exploration of the T1 and T2 conditions [5] we obtained results of the

RDM method for the ground-state energy and dipole moment for a collection of

small molecules and molecular ions, both closed-shell and open-shell systems.

(We don’t mean ‘‘closed shell’’ in a strict sense, and we only constrained the

spin and spin multiplicity eigenvalues, not the elements of the RDM.) The

choice of molecules and configurations largely followed Ref. [18]—a paper

that, we think, reinvigorated the classical RDM approach. We showed that the

addition of the T1 and T2 conditions (T2 without the off-diagonal block X)
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provided a significant improvement in accuracy over that obtained using only the

classical 2-positivity conditions denoted P, Q, and G. The worst cases for the

energy in our sample were the Oþ2 molecule, for which the RDM method subject

to the P, Q, G, T1, and T2 conditions gave an error of 2.8 mH relative to the full

configuration interaction (FCI) benchmark, and the CF molecule, giving an error

of 0.9 mH relative to FCI. For the dipole moment the worst case was the CF

molecule, for which the error was 0.0045 a.u. relative to FCI. All our results,

including these worst cases, were competitive in accuracy with those obtained

from the best standard methods: coupled-cluster singles and doubles with pertur-

bative correction of triples [CCSD(T)] for the energy and singly and doubly sub-

stituted configuration interaction (SDCI) for the dipole. Further demonstrations

of the strength of these conditions are provided in Refs. [6, 7]. Reference [8]

provides a detailed description of our present implementation of the SDP

approach.

The strengthened T2 condition presented here involves only a very slightly

larger matrix: matrix T20 of Eq. (4) is of size ðr r
2

	 
þ rÞ � ðr r
2

	 
þ rÞ, whereas
the T2 subblock is of size r r

2

	 
� r r
2

	 

, and so really this T20 matrix should

replace T2 in any use of these conditions. (We thought of changing the name

and calling the strengthened conditions the T20 conditions, but for the long

haul that seems a poor choice.) We recalculated five cases from Ref. [5] for which

the worst accuracy was obtained and found that the strengthening of T2 to the T20

matrix improved the accuracy further, as displayed in Tables I and II; in particu-

lar, the Oþ2 energy error decreased from 2.8 mH to 2.1 mH, the CF energy error

went down from 0.9 mH to 0.5 mH, and the CF dipole error decreased from

0.0045 au to 0.0037 a.u. In the table, subscript PQG refers to the three classical

2-positivity conditions, PQGT refers to those conditions and also the T1 and T2

conditions as used in Ref. [5], and PQGT 0 refers to the classical 2-positivity con-
ditions and the T1 and strengthened T2 condition as presented here.

TABLE I

Ground-State Energies (in Hartree Units) Relative to the Full CI Result, Calculated by the RDM

Method Subject to Three Sets of Representability Conditions (Column 6: P, Q, G; Column 7: PQG

and T1, T2 as in Ref. [5]; Column 7: PQG and T1, T2 as in Eq. (4) and Calculated by CCSD(T)

Using Gaussian 98 [19] (Column 9), and the Full CI Reference Value (Last Column)a

System State NðNaÞ r 2Sþ 1 �EPQG �EPQGT �EPQGT 0 �ECCSDðTÞ EFCI

NH3
1A1 10(5) 16 1 �0.0109 �0.0003 �0.0002 þ0.0018 �56.0142

H3O
þ 1A1 10(5) 16 1 �0.0073 �0.0002 �0.0002 þ0.0002 �76.1046

CF 2	 15(8) 20 2 �0.0076 �0.0009 �0.0005 þ0.0010 �136.6775
Oþ2

2	g 15(8) 20 2 �0.0167 �0.0028 �0.0021 þ0.0033 �148.7933
aHere r is the basis size, N is the electron number, Na the number of spin-up electrons, and 2Sþ 1 is

the multiplicity. The geometries used are the experimental ones from Ref. [20]. The basis set is STO-

6G for all systems.
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IV. CONCLUSION

In this chapter we reviewed the semidefinite extension of the three-index diag-

onal conditions which is due originally to Erdahl [4], but was long ignored. The

RDM method subject to these conditions appears to provide an accuracy very

much better than that obtained using only the traditional 2-positivity conditions

and competitive with that of the best standard methods of ab initio theory. A

strengthening of the T2 condition was described here relative to our earlier deri-

vation [5], and the T1 and T20 pair is, in the real and particle conserving case,

equivalent to Erdahl’s condition. The semidefinite matrix associated with the

revised T2 condition is only very slightly larger than the original T2, and the

revised condition provides a further noticeable improvement in accuracy.
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I. INTRODUCTION

In 2001, Nakata and co-workers presented the results of realistic fermionic sys-

tems, like atoms and molecules, larger than previously reported for the varia-

tional calculation of the second-order reduced density matrix (2-RDM) [1].

Reduced-Density-Matrix Mechanics: With Application to Many-Electron Atoms and Molecules,
A Special Volume of Advances in Chemical Physics, Volume 134, edited by David A. Mazziotti.
Series editor Stuart A. Rice. Copyright # 2007 John Wiley & Sons, Inc.
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They employed a general-purpose semidefinite programming (SDP) software [2]

for these calculations.

Considering such recent relevance of SDP in quantum chemistry, this chapter

discusses some practical aspects of this variational calculation of the 2-RDM

formulated as an SDP problem. We first present the definition of an SDP

problem, and then the primal and dual SDP formulations of the variational cal-

culation of the 2-RDM as SDP problems (Section II), an efficient algorithm to

solve the SDP problems: the primal–dual interior-point method (Section III), a

brief section about alternative and also efficient augmented Lagrangian methods

(Section IV), and some computational aspects when solving the SDP problems

(Section V).

The SDP problem is a convex optimization problem that stimulated intensive

research since the 1990s for two main reasons: generalization of the exciting

new method called the interior-point method for linear programming, and its

wide-range applications in many diverse areas [3–7]. The SDP problem consists

in computing a maximization or a minimization solution of a real-valued linear

function definedon the space of positive semidefiniteHermitianmatrices (i.e., Her-

mitian matrices with nonnegative eigenvalues) restricted by linear equality and/or

inequality constraints on the same space. This mathematical description of an SDP

problem is quite general. However, due to historical reasons, there is a preferred

formulation in which it has been ‘‘popularized’’ in mathematical programming.

Let us denote by S the space of block-diagonal real symmetric matrices (i.e.,

multiple symmetric matrices arranged diagonally in a unique large matrix) with

prescribed dimensions, and by Rm the m-dimensional real space. Given the con-

stants C;A1;A2; . . . ;Am 2 S, and b 2 Rm, an SDP problem is usually defined

either as the primal SDP problem,

max hC;Xi
subject to hAp;Xi ¼ ½b�p; p ¼ 1; 2; . . . ;m

X � O

8<: ð1Þ

or equivalently (under mild conditions, e.g., the Slater condition) as the dual

SDP problem,

min bty

subject to
Pm
p¼1

Ap½y�p � C � O

y 2 Rm

8>><>>: ð2Þ

Here hC;Xi denotes the inner product
P

ij CijXij; b
t the transpose of the vector

b; ½y�p the pth coordinate of the vector y, and X � O means that the matrix X is

a positive semidefinite symmetric matrix. The variables for the primal SDP pro-

blem in Eq. (1) and the dual SDP problem in Eq. (2) are X 2 S and y 2 Rm,
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respectively. Therefore the size of an SDP problem depends on the size of each

block-diagonal matrix of X and m. We should also mention that the problem as

represented by Eq. (1) is the preferred ‘‘format’’ for the primal SDP formulation

of the variational calculation, which we present in the next section.

We can also define a more general SDP problem as follows. Let us consider

now the constants ðC; cÞ; ðA1; a1Þ; ðA2; a2Þ; . . . ; ðAm; amÞ 2 S� Rs, and b 2 Rm.

Then we can define the primal SDP problem with free variables,

max hC;Xi þ ctx

subject to hAp;Xi þ atpx ¼ ½b�p; p ¼ 1; 2; . . . ;m
X � O; x 2 Rs

8<: ð3Þ

and equivalently (under mild conditions, e.g., the Slater condition), the dual SDP

problem with equality constraints,

min bty

subject to
Pm
p¼1

Ap½y�p � C � OPm
p¼1

ap½y�p ¼ c; y 2 Rm

8>>>><>>>>: ð4Þ

In this case, the variables for the primal SDP problem with free variables

(Eq. (3)) and the dual SDP problem with equality constraints (Eq. (4)) are

ðX; xÞ 2 S� Rs and y 2 Rm, respectively. Therefore the size of an SDP problem

depends now on the size of each block-diagonal matrix of X, m, and s. We should

also mention that the problem as represented by Eq. (4) is the preferred ‘‘for-

mat’’ for the dual SDP formulation of the variational calculation, which we pre-

sent in the next section, too.

The primal–dual pair of SDP problems Eqs. (1)–(2) or Eqs. (3)–(4) is a nat-

ural extension of linear programming problems [3–6]. Therefore, owing to the

primal–dual ‘‘nature,’’ if ð�XX;�xxÞ satisfies the constraints in Eq. (3) and �yy satisfies

the constraints in Eq. (4), we can simply verify that bt�yy� ðhC; �XXi þ ct�xxÞ ¼
h�XX; �SSi � 0, where �SS ¼Pm

p¼1 Ap½�yy�p � C. Furthermore, h�XX; �SSi ¼ 0 (or equiva-

lently �XX�SS ¼ O) holds if and only if the maximum and minimum values of the

respective problems, Eqs. (3) and (4), are attained (and they are the same).

The same results are valid for the particular case of Eqs. (1)–(2).

II. FORMULATION AS AN SDP PROBLEM

In this section, we focus on how to formulate the variational calculation of the

2-RDM as an SDP problem. In fact, it can always be formulated as a primal SDP

problem (Eq. (1)) [1, 8–13] or as a dual SDP problem with equality constraints
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(Eq. (4)) [14–16]. A key point here to understand the difference between these

two formulations is that the dual SDP formulation (Eq. (4)) is not the dual of the

primal SDP formulation (Eq. (1)). Both formulations produce two distinct pairs

of primal and dual SDP problems, which mathematically describe the same fer-

mionic system. Since their mathematical formulations differ, this implies differ-

ences in the computational effort to solve them.

As an instructive example, we consider the primal SDP formulation in detail.

First, we show that the variational minimization of a two-particle system can be

trivially formulated as a primal SDP problem. Next, we show how we constrain

the eigenvalues of the 1-RDM between zero and one, and finally, how we set the

SDP constraints to satisfy P and Q conditions simultaneously.

First consider a two-particle system. In this simplest case, the 2-RDM � is N-

representable if it is positive semidefinite and the number of particles is fixed to

two. It can easily be cast as the following SDP problem:

min hH;�i
subject to hN̂N;�i ¼ 2

� � O

8<:
where H is the Hamiltonian of the system, and N̂N is the number operator.

For the next step, we show how we consider the N-representability conditions

for the 1-RDM g for a system with N particles; that is all of its eigenvalues

should be between zero and one [17]. In other words, this condition is equivalent

to saying that g and I � g are positive semidefinite, where I is the identity matrix.

Assuming that H1 is the one-body Hamiltonian, we have

min hH1; gi
subject to hN̂N; gi ¼ N

g � O and I � g � O

8<: ð5Þ

The difficulty here is how to simultaneously constrain g and I � g to be positive

semidefinite. To formulate it as a primal SDP problem (Eq. (1)), we should

express these two conditions as a positive semidefinite constraint over a single

matrix: let egg be a block-diagonal matrix in which two symmetric matrices eg1g1 andeg2g2 are arranged diagonally, and let us express the interrelation between these two

matrices via linear constraints defined by the matrices Ap and the constants ½b�p
as in Eq. (1). That is,

egg ¼ egg1 O

O egg2
� �

where eg1g1 and eg2g2 should satisfy eg1g1 ¼ g and eg2g2 ¼ I � g. These conditions can be

equivalently rewritten as ½eg1g1�ij þ ½eg2g2�ij ¼ dij for i; j ¼ 1; 2; . . . ; r, where dij denotes
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the Kronecker delta and r is the dimension of g. Now for i; j ¼ 1; 2; . . . ; r and

i � j, let us define the r � r symmetric matrix Eij whose ði; iÞ element is one,

ði; jÞ and ðj; iÞ elements are 1
2
for i < j, and zero otherwise. By taking the inner

product of Eij and an arbitrary symmetric matrix X, we can pull out the ði; jÞ
element (or the ðj; iÞ element) of X, that is, hEij;Xi ¼ ½X�ij. Additionally, we
define the matrices

eHH1 ¼ H1 O

O O

� �
; eNN ¼ N̂N O

O O

� �
; and Aij ¼ Eij O

O Eij

� �
Notice that by taking the trace of egg with Aij it becomes hAij;eggi ¼ hEij; eg1g1iþ
hEij; eg2g2i ¼ ½eg1g1�ij=2 þ ½eg1g1�ji=2 þ ½eg2g2�ij=2þ ½eg2g2�ji=2 ¼ ½eg1g1�ij þ ½eg2g2�ij ¼ dij: Finally,

Eq. (5) can be rewritten as the following primal SDP problem (Eq. (1)):

max h�eHH1;eggi
subject to heNN;eggi ¼ N

hAij;eggi ¼ dij; i; j ¼ 1; 2; . . . ; r; i � jegg � O

8>><>>:
where eNN;Aij and N; dij take the role for the Ap and ½b�p in Eq. (1), respectively.

Summing up, the main points when formulating this variational calculation as

a primal SDP problem are:

� Prepare a block-diagonal matrix in which g and I � g are placed diagonally.

� Define the constraint matrices Ap and the constants ½b�p for each element of

g and I � g to satisfy the linear relations between these two matrices.

Finally, we show how to consider the Q condition [17]:

min hH;�i
subject to hN̂N;�i ¼ N

� � O and Q � O

8<: ð6Þ

and convert it into the primal SDP problem (Eq. (1)). The relation between g, �,
and Q is as follows:

Qi1i2
j1j2
þ ðdi1j1gi2j2 þ di2j2g

i1
j1
Þ � di1j2g

i2
j1
þ di2j1g

i1
j2
Þ��i1i2

j1j2
¼ ðdi1j1di2j2 � di1j2d

i2
j1
Þ;

i1; i2; j1; j2 ¼ 1; 2; . . . ; r ð7Þ

Let e�� be a block-diagonal matrix where � and Q are diagonally arranged:

e�� ¼ � O

O Q

� �
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� and Q have four indices and they should be mapped to matrices with two

indices, respectively. This mapping is clear from the context. For i1; i2; j1; j2 ¼
1; 2; . . . ; r, ii � j1 and i2 � j2, let us define the r

2 � r2 symmetric matrix Ei1i2;j1j2

whose (i1 þ ði2 � 1Þr; i1 þ ði2 � 1Þr) element is one, (i1 þ ði2 � 1Þr; j1þ
ðj2 � 1Þr) and (j1 þ ðj2 � 1Þr; i1 þ ði2 � 1Þr) elements are 1

2
for i1 < j1 or

i2 < j2, and zero otherwise. Additionally, define the matrices with the same

dimension eEEi2i2; j1j2 ¼
Pr

k¼1 ðdi1j1Ei2k; j2k þ di2j2Ei1k; j1k � di1j2Ei2k; j1k � di2j1 Ei1k; j2kÞ
=ðN � 1Þ. Letting

eHH ¼ H O

O O

� �
; eNN ¼ N̂N O

O O

� �
Ai1i2; j1j2 ¼

eEEi1i2; j1j2 � Ei1i2; j1j2 O

O Ei1i2; j1j2

 !

and bi1i2; j1j2 ¼ di1j1d
i2
j2
� di1j2d

i2
j1
, we obtain the linear constraints

hAi1i2; j1j2 ;
e��i ¼ bi1i2; j1j2 ; i1; i2; j1; j2 ¼ 1; 2; . . . ; r; i1 � j1; i2 � j2

which express the Q condition (Eq. (7)) since gij ¼
Pr

k¼1 �
ik
jk=ðN � 1Þ.

Finally, the problem represented by Eq. (6) can be reduced into the primal

SDP problem (Eq. (1)):

max h�eHH; e��i
subject to heNN; e��i ¼ N

hAi1i2; j1j2 ;
e��i ¼ bi1i2; j1j2 ; i1; i2; j1; j2 ¼ 1; 2; . . . ; r;

i1 � j1; i2 � j2e�� � O

8>>>><>>>>:
Furthermore, we can make use of the antisymmetric properties and generic spin

symmetries to reduce the sizes of above problems [1, 9, 14].

The inclusion of other known N-representability conditions like G, T1, and

T2 [14] in the variational calculation can be embedded into the primal SDP pro-

blem in a similar way.

Table I (which can be deduced from Ref. [15]) shows the dimensions of the

block-diagonal matrices of X and the number of linear equalities m in Eq. (1)

relative to the number r of spin orbitals of a generic reference basis when

employing the primal SDP formulation. It also considers conditions on a electron
number, total spin, and spin symmetries of the N-representability. In the table

a

b

� �
¼ a!

b!ða� bÞ! for integers a � b > 0

For example, the eigenvalue restrictions on the 1-RDM, g � O and I � g � O,

correspond to four block-diagonal matrices of dimensions r=2� r=2 in X (see
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first line in Table I). The largest block-diagonal matrices in X correspond to the

T2 condition and its number of rows/columns scales as 3r3=16. The number of

equality constraints m in Eq. (1) depends on the N-representability conditions

considered in the variational formulation. For instance, if we employ the P, Q,

and G conditions, m scales as 15r4=64, while if we further add the T1 and T2

conditions, it will scale as 25r6=576. Furthermore, these sizes can be reduced if

spatial and spin symmetries peculiar to each atom or molecule are incorporated

[12, 13, 18], but even these symmetries will not change the order of magnitude

of the SDP problems.

The dual SDP formulation [14–16] follows a similar spirit but seems less

obvious at a first sight. In general lines, it can be briefly described as follows.

Let us represent all nonrepeating elements of the 2-RDM � (after considering

the antisymmetric condition on it) by a vector y 2 Rm. Then, defining an appro-

priate vector b 2 Rm from the Hamiltonian for the corresponding system, the

ground-state energy of the fermionic system can be computed by min bty

restricted to Eq. (4). In this case, the P, Q, G, T1, and T2 conditions will

correspond to the block-diagonal matrices of
Pm

p¼1 Ap½y�p � C when C;A1;A2;
. . . ;Am are appropriately defined [14–16]. The other equalities as the restriction

on the a electron number, total spin, and so on will be defined by

TABLE I

Dimensions of the Primal SDP Formulation for the Variational Calculation of the 2-RDM

N-Representability Conditions Dimensions of Each Block-Diagonal Matrix of X

Restrictions on 1-RDM r=2� r=2 (4 blocks)

P condition ðr=2Þ2 � ðr=2Þ2 (1 block),
r=2

2

� �
� r=2

2

� �
(2 blocks)

Q condition ðr=2Þ2 � ðr=2Þ2 (1 block),
r=2

2

� �
� r=2

2

� �
(2 blocks)

G condition 2ðr=2Þ2 � 2ðr=2Þ2 (1 block), ðr=2Þ2 � ðr=2Þ2 (2 blocks)

T1 condition
r

2

r=2

2

� �
� r

2

r=2

2

� �
(2 blocks),

r=2

3

� �
� r=2

3

� �
(2 blocks)

T2 condition
r

6

3r=2

2

� �
� r

6

3r=2

2

� �
(2 blocks),

r

2

r=2

2

� �
� r

2

r=2

2

� �
(2 blocks)

Conditions Considered Size m in Eq. (1)

in the Formulation

P, Q, G conditions 5þ 6
r=2þ 1

2

� �
þ 3

r2=4þ 1

2

� �
þ 2

rðr=2� 1Þ=4þ 1

2

� �
þ r2=2þ 1

2

� �
P, Q, G, T1 conditions Above line þ2 r2ðr=2� 1Þ=8þ 1

2

� �
þ 2

rðr=2� 1Þðr=2� 2Þ=12þ 1

2

� �
P, Q, G, T1, T2 Above line þ2 r2ð3r=2� 1Þ=8þ 1

2

� �
þ 2

r2ðr=2� 1Þ=8þ 1

2

� �
conditions
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c; a1; a2; . . . ; am 2 Rs in Eq. (4) [15, 16]. We omit its details here. More details

of the formulation can be found in Refs. [14–16].

Table II shows the dimensions of the block-diagonal matrices ofPm
p¼1 Ap½y�p � C, the dimension m of the variable vector y, and the number of

equality constraints s in Eq. (4) relative to the number r of spin orbitals of a gen-

eric reference basis [15].

If we employ the dual SDP formulation and include the P, Q, G, T1, and T2

conditions, the number of rows/columns of the largest block-diagonal matrices

scale as 3r3=16 again, while m scales as 3r4=64 and s as r2=4.
The advantages of the dual SDP formulation are clear when comparing

Tables I and II. First, notice that the sizes of the block-diagonal matrices are

unchanged in both formulations. There is also an additional constraintPm
p¼1 ap½y�p ¼ c in the dual SDP formulation, which is absent in the primal

SDP formulation. Then, while the size m of equality constraint in the primal

SDP formulation (see Eq. (1)) corresponds to the dimensions of the Q;G; T1,
and T2 matrices included in the formulation and scales as 25r6=576, the dimen-

sion m of the variable vector y 2 Rm in the dual SDP formulation (see Eq. (4))

corresponds to the dimension of the 2-RDM and scales merely as 3r4=64. The
difference becomes more remarkable when more N-representability conditions

are considered in these primal or dual SDP formulations. Computational impli-

cations when solving the SDP problems employing the primal and dual SDP for-

mulations are discussed in Section V.

III. THE PRIMAL–DUAL INTERIOR-POINT METHOD

Interior-point methods for SDPs were independently proposed by Nesterov and

Nemirovskii [19] and Alizadeh [20] in the early 1990s. These methods were pri-

mal or dual only interior-point methods. Several variants of interior-point meth-

ods have been proposed so far, but after a decade of theoretical maturation

TABLE II

Dimensions of the Dual SDP Formulation for the Variational Calculation of the 2-RDM

Dimensions of Each Block-Diagonal Matrix of

N-Representability Conditions
Pm

p¼1 Ap½y�p � C

Restrictions on 1-RDM and Same as Table I

P, Q, G, T1, T2 conditions

Conditions Considered

in the Formulation Size m in Eq. (4) Size s in Eq. (4)

m and s do not depend on the
r2=4þ 1

2

� �
þ 2

rðr=2� 1Þ=4þ 1

2

� �
5þ 2

r=2þ 1

2

� �
N-representability conditions

considered in the formulation
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followed by successful implementations, the widely accepted and most

efficient variant is the infeasible primal–dual path-following Mehrotra-type

predictor–corrector interior-point method. Henceforth, we restrict ourselves to

present its basic idea. See Refs. [4–7] and references therein for more details

and a partial list of other variants.

In order to simplify the discussion, we consider, for a while, the primal–dual

pair of SDPs Eqs. (1)–(2) instead of Eqs. (3)–(4). We also assume that the space

S is formed by single block-diagonal symmetric matrices with size n� n.

Let us assume henceforth that the Slater condition is valid for Eqs. (1)–(2); that

is there exist X̂X 2 S and ŷy 2 Rm such that hAp; X̂Xi ¼ ½b�p ðp ¼ 1; 2; . . . ;mÞ,
X̂X � 0, and

Pm
p¼1 Ap½ŷy�p � C � O (i.e., all of their eigenvalues are positive).

Under this assumption, ðX; yÞ 2 S� Rm must be an optimal solution; that is,

the solution that maximizes and minimizes the functions, respectively, for

Eqs. (1)–(2) if and only if it satisfies the Karush–Kuhn–Tucker condition:

hAp;Xi ¼ ½b�p; p ¼ 1; 2; . . . ;m

S � Pm
p¼1

Ap½y�p � C

XS ¼ O

X � 0; S � 0

8>>>><>>>>: ð8Þ

Note that only the third equation is nonlinear. Let us now perturb this nonlinear

equation by introducing a positive parameter m 2 R:

hAp;Xi ¼ ½b�p; p ¼ 1; 2; . . . ;m

S ¼ Pm
p¼1

Ap½y�p � C

XS ¼ mI
X � 0; S � 0

8>>>><>>>>: ð9Þ

where I 2 S is the identity matrix. The basic idea of primal–dual interior-point

methods is to apply the damped (or modified) Newton’s method to the perturbed

system in Eq. (9) with a fixed m from an initial guess ð�XX;�yy; �SSÞ such that �XX � 0 and
�SS � 0 (which does not necessary satisfy the two linear equations in Eq. (9)).

Along the major iterations, the parameter m is decreased until zero in order to

obtain Eq. (8), and the variables X and S are maintained positive definite to

have the Newton’s system solvable (that is why it is called interior-point method).

The first-order approximations for the first two equations of Eq. (9) for a fixed

(X, y, S) are

hAp;�Xi ¼ ½r�p � ½b�p � hAp;Xi; p ¼ 1; 2; . . . ;mPm
p¼1

Ap½�y�p ��S ¼ R � C � Pm
p¼1

Ap½y�p þ S

8<: ð10Þ
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where ð�X;�y;�SÞ, is the first-order contribution for the linearization, called

search direction. Furthermore, a naive linearization of the third equation in

Eq. (9) gives

X�Sþ�XS ¼ mI � XS ð11Þ
and together with Eq. (10) are clearly an undefined system since there are more

equations than variables (notice that �X must be a symmetric matrix belonging

to S and not to Rn�n). This arbitrariness to choose a specific solution for the

search direction gives rise to the existence of different search directions in

SDP theory. One of the several alternatives to remedy it is to introduce a scaling

nonsingular matrix E 2 Rn�n and replace Eq. (11) by

1

2
ðEX�SE�1 þ E�XSE�1 þ E�t�SXEt þ E�tS�XEtÞ

¼ mI � 1

2
ðEXSE�1 þ E�tSXEtÞ ð12Þ

Different choices for E result in different search directions. However, the most

successful implementations are the NT (search) direction with E ¼ W�1=2,
where W ¼ X1=2ðX1=2SX1=2Þ�1=2X1=2, and the HRVW/KSH/M (search) direction

with E ¼ S1=2. Here S1=2 is the unique positive definite decomposition of the

positive definite matrix S such that S ¼ S1=2S1=2.

Once again, we restrict ourselves to the HRVW/KSH/M direction for simpli-

city, and then Eq. (12) can be rewritten

d�X�XSþ X�S ¼ K � mI � XS

�X ¼ ðd�X�X þd�X�XtÞ=2

(
ð13Þ

where d�X�X 2 Rn�n is an auxiliary matrix not necessarily symmetric. Under the

linear independence assumption of the data matrices fA1;A2; . . . ;Amg, and for

arbitrary X � O, S � O, and K, the system of linear equations (10) and (13) has a

unique solution ð�X;�y;�SÞ. This system can be further reduced to the recur-

sive system of linear equations

B�y ¼ g

�S ¼ Pm
p¼1

Ap�y� R

d�X�X ¼ ðK � X�SÞS�1; �X ¼ ðd�X�X þd�X�XtÞ=2

8>><>>: ð14Þ

where

Bpq � hXApS
�1;Aqi; p; q ¼ 1; 2; . . . ;m

½g�p � hðK þ XRÞS�1;Api � ½r�p; p ¼ 1; 2; . . . ;m
ð15Þ
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Finally, the general algorithm framework of the infeasible primal–dual

path-following Mehrotra-type predictor–corrector interior-point method is the

following.

Primal–Dual Interior-Point Method

Input: ð�XX;�yy; �SSÞ with �XX � O and �SS � O.

Set e > 0, k ¼ 0, and ðXk; yk; SkÞ ¼ ð�XX;�yy; �SSÞ.
Convergence Test. We iterate the following sequential computations until

ðXk; yk; SkÞ satisfies the constraints in Eqs. (1)–(2) with Sk ¼Pm
p¼1

Ap½yk�p � C, and btyk � hC;Xki < e.

Predictor Step. Set 0 � bp � 1, and solve Eqs. (14) and (15) for K ¼ bp
ðhXk; Ski=nÞI � XS and obtain ðg�X�X; f�y�y; f�S�SÞ.

Corrector Step. Set 0 � bc � 1 such that bc > bp, and solve Eqs. (14) and

(15) for K ¼ bcðhXk; Ski=nÞI � XkSk �g�X�Xf�S�S to obtain ð�X;�y;�SÞ.
Step Length. Take ax 2 fa 2 ½0; 1� : Xk þ a�X � Og, as 2 fa 2 ½0; 1� : Skþ
a�S � Og and set Xkþ1 ¼ Xk þ ax�X, ykþ1 ¼ as�y, Skþ1 ¼ Sk þ as�S,

and k ¼ k þ 1.

Note that the parameter m has been replaced by hXk; Ski=n above because m is

equal to hXk; Ski=n whenever ðXk; yk; SkÞ satisfies the constraints in Eqs. (1)–

(2) with Sk ¼Pm

p¼1Ap½yk�p � C, and XkSk ¼ mI is valid.
We can prove that the above algorithm converges in polynomial time (i.e., the

number of floating-point operations is proportional to a polynomial in the pro-

blem sizes m and n) by choosing appropriately bp, bc, ax, and as.
1See Refs.

[4–7]. The computational cost of each major iteration is at most proportional

to mn3 þ m2n2 þ m3 þ n3 floating-point operations, and the maximum number

of iterations is proportional to
ffiffiffi
n
p

ln e�1.
The above analysis is just of theoretical interest and real implementation

codes including the ones listed in Section V perform much faster in practice.

These codes frequently ignore conservative choices for the above parameters,

taking ambitious values, and compute the solution in a much shorter time.

Also, the use of efficient numerical linear algebra libraries and the exploration

of several sparsity properties of C;A1;A2; . . . ;Am [21] have tremendously

reduced the computational time of these codes every few months.

Primal–Dual interior-point methods always compute the desired solution

within a guaranteed time complexity framework. Moreover, we can always

1Strictly speaking, we additionally need to ‘‘control’’ the distance between the initial guess (�XX;�yy; �SS)

and the region formed by the variables ðX; y; SÞ, which satisfies the constraints in eqs. (1)–(2) along

the major iterations.
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check the reliability of the computed solution ðX; y; SÞ by substituting in Eq. (8).

Another great advantage of these methods is the possibility to parallelize their

computation. It is known that two major routines are the most time consuming

ones in these algorithms: forming the matrix B in Eq. (15) and solving the sys-

tem of linear equations B�y ¼ g in Eq. (14). The parallel versions of the

Primal–Dual interior-point methods explore the parallelization of these two

major routines and have given notable results [14, 15, 22, 23].

Finally, all of the above algorithm can be extended trivially to matrices with

several diagonal blocks (matrices) without the restriction to a single diagonal

block (matrix) as we did at the beginning of this section. Problems with extra

data c; a1; a2; . . . ; am 2 Rs, and the variable x 2 Rs as in Eqs. (3)–(4) can be

reduced to the form of Eqs. (1)–(2) in the following way. The variable x 2 Rs

in Eq. (3) can be replaced by a difference of two nonnegative variables

xþ; x� 2 Rs, with x ¼ xþ � x� and xþ; x� � 0. This is also equivalent to repla-

cing the equality
Pm

p¼1 ap½y�p � c ¼ 0 in Eq. (4) by two inequalitiesPm
p¼1 ap½y�p � c � 0 and

Pm
p¼1 ap½y�p � c � 0. Then Eqs. (3)–(4) can be reduced

to Eqs. (1)–(2) as

max

C 0 0

0 c 0

0 0 �c

0@ 1A;

X 0 0

0 xþ 0

0 0 x�

0@ 1A* +

subject to

Ap 0 0

0 ap 0

0 0 �ap

0@ 1A;

X 0 0

0 xþ 0

0 0 x�

0@ 1A* +
¼ ½b�p;

p ¼ 1; 2; . . . ;m
X 0 0

0 xþ 0

0 0 x�

0@ 1A � O

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
and

min bty

subject to
Pm
p¼1

Ap 0 0

0 ap 0

0 0 �ap

0@ 1A½y�p � C 0 0

0 c 0

0 0 �c

0@ 1A � O

y 2 Rm

8>>>>><>>>>>:
ð16Þ

A careful reader will observe that this algebraic transformation will produce a

dual SDP problem that does not have y 2 Rm such that the matrix in Eq. (16) has

all of its eigenvalues positive and, therefore, will not satisfy the Slater condi-

tions. However, numerical experiments have shown that practical algorithms still

can solve these problems efficiently [16].
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IV. OTHER METHODS FOR SDP PROBLEMS

The success of Primal–Dual interior-point methods is due to its feature of com-

puting reliable and highly precise solutions in a guaranteed time framework,

although its computational cost can become prohibitively expensive for large-

scale SDP problems.

Another recent approach that has demonstrated effectiveness is based on the

augmented Lagrangian method for SDPs and was successfully implemented by

Kočvara and Stingl [24]. The basic difference from the standard augmented

Lagrangian methods [25] is in the definition of the augmented Lagrangian func-

tion, which is defined employing a penalty/barrier function with special proper-

ties. We omit its details here.

A more recent approach was described by Mazziotti [10, 11], which reformu-

lates the SDP problem (Eq. (1)) as a nonlinear and nonconvex optimization pro-

blem and applies a combination of the augmented Lagrangian method with the

quasi-Newton method [25]. He calls this method the first-order method and it is

implemented in RRSDP. In this reformulation, the variable X 2 S in Eq. (1) is

replaced by a full-rank factorization RRt, where R is a nonsymmetric matrix and

has the same number of rows/columns as X. In this sense, it can be viewed as a

special case of the Burer–Monteiro low-rank factorization method [26–28] since

this latter employs a low-rank factorization VVt ¼ X 2 S, where V can have

fewer columns than R. Since both reformulations produce nonconvex optimiza-

tion problems, there was no guarantee that these algorithms could find an opti-

mal solution of an SDP problem. However, Burer and Monteiro further showed

that these algorithms indeed converge and find the exact solution certifying the

validity of these methods [27]; although it is not proved so far that these algo-

rithms have theoretical bounds on the number of iterations required to converge

as interior-point methods do.

V. SOLVING SDP PROBLEMS IN PRACTICE

Currently, there are several open source free software packages that can solve

SDP problems in the form of Eqs. (1)–(2) and/or Eqs. (3)–(4) by Primal–Dual

interior-point methods [3–7]: SDPA [2] is written in Cþþ, CSDP [29] is written

in C, and SeDuMi [30] and SDPT3 [31] have interfaces in MATLAB. Further-

more, SDPA and CSDP have their respective parallel versions: SDPARA [22, 23]

which can solve larger problems in a more reasonable time. It is also possible to

solve SDP problems without installing these software packages in your own

computer. NEOS Server [32] and CaNEOS Server for Optimization [33] provide

free services in solving these SDP problems submitted through a web browser,

and SDPA Online for Your Future [34] allows one even to solve larger problems

by the parallel SDP solver SDPARA [22] on a PC cluster.
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Software based on the augmented Lagrangian method (Section IV) is also

available: PENSDP by Kočvara and Stingl [24] (unique commercial code) and

SDPLR by Burer, Monteiro, and Choi [26–28].

For the SDP problems arising from the variational calculation, in which we

are interested, the theoretical number of floating-point operations required by

parallel Primal–Dual interior-point method-based software scales as m2u2=dþ
m3=d þ n3 þ mn2 per iteration [15], while the number of major iterations is at

most proportional to
ffiffiffi
n
p

ln e�1 (but requires many fewer iterations in practice).

Here u denotes the maximum number of nonzero elements of each Ap ðp ¼
1; 2; . . . ;mÞ, n the number of rows/columns of the largest block-diagonal matrix

of the above matrices, d the number of processors used by the parallel code, and

e the difference between the approximate value of the primal and dual functions

in Eqs. (1) and (2) (or Eqs. (3) and (4)). Notice that this number of floating-point

operations per iteration is less than mn3 þ m2n2 þ m3 þ n3 (see Section III)

because we can explore the sparsity of the data [21]. Let r be the number of

spin orbitals of a generic reference basis. Since u is constant and it scales as

r2 for the primal and dual SDP formulations, respectively [15], we obtain

Table III based on the information in Tables I and II. Table III also shows the

memory usage of parallel Primal–Dual interior-point methods.

Let us analyze now the first-order method: RRSDP [10, 11]. This method

usually requires a number of floating-point operations that scale as n3 þ mu

per iteration. However, as we mentioned before, there is no theoretical bound

on the number of major iterations required for its convergence. Once again,

let r be the number of spin orbitals. Considering the information from Tables I

and II, and remembering that u is constant and scales as r2 for the primal and

dual SDP formulations, respectively, we can obtain the following number of

floating-point operations and the memory usage for the first-order method and

presented in Table III.

TABLE III

Theoretical Number of Floating-Point Operations per Iteration (FLOPI), Maximum Number of Major

Iterations, and Memory Usage for the Parallel Primal–Dual Interior-Point Method (pPDIPM) and for

the First-Order Method (RRSDP) Applied to Primal and Dual SDP Formulationsa.

N-Representability P, Q, G, T1 or

Conditions P, Q, G P, Q, G, T1, T2

Formulation algorithm FLOPI # Iterations Memory FLOPI # Iterations Memory

Primal SDP pPDIPM r12=d r ln e�1 r8 r18=d r3=2 ln e�1 r12

formulation RRSDP r6 — r4 r9 — r6

Dual SDP pPDIPM r12=d r ln e�1 r8 r12=d r3=2 ln e�1 r8

formulation RRSDP r6 — r4 r9 — r6

ar denotes the number of spin orbitals, and d the number of processors used for the parallel

computation.
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From the table, we can see that the first-order method usually requires fewer

floating-point operations and memory storage if compared with the Primal–

Dual interior-point method. The unique drawback of the former method is that

we cannot guarantee a convergence of the method in a certain time frame.

We can also conclude that if we employ the Primal–Dual interior-point

method, the dual SDP formulation provides a more ‘‘reduced’’ mathematical

description of the variational calculation of the 2-RDM than employing the pri-

mal SDP formulation. The former formulation also allows us to reach a faster

computational solution. On the other hand, the number of floating-point opera-

tions and the memory storage of RRSDP do not depend on the primal or dual

SDP formulations.

Even with the existence of these efficient methods to solve SDP problems, we

recognize that we still need to pursue the development of new methods to solve

these problems and provide low-cost computations for variational calculations

involving RDMs.
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I. INTRODUCTION

The many-body Hamiltonian operator is the sum of one- and two-electron opera-

tors, which is the reason why the energy of an N-electron system can be

expressed as a functional of a mathematical object which only depends on the

variables of two electrons, the second-order reduced density matrix (2-RDM).

The quest for a method of studying the structure of electronic systems by deter-

mining the 2-RDM instead of using the N-electron wavefunction dates from the

1950s [1–5]. Since then, a rich bibliography on the 2-RDM theory has been

developed, in particular, several books and proceedings [6–12] describe the pro-

gress achieved. The incomplete knowledge of the 2-RDM mathematical proper-

ties has greatly hindered this progress but, in spite of it, recent new developments

have reawakened this line of research.

One question that several people, independently and at different times, have

asked themselves may probably be stated as: Can the Schrödinger equation be

mapped into the two-electron space? And what would be the properties of

the resulting equation? The answer to this double question was obtained by

following two essentially different approaches. Thus Cho [13], Cohen and

Frishberg [14,15], and Nakatsuji [16], by integrating the Schrödinger equation,

obtained in first quantization the density equation; and Valdemoro [17], by

applying a contracting mapping to the matrix representation of the Schrödinger

equation, obtained the contracted Schrödinger equation (CSE). Although

these two equations are apparently very different, they are in fact equivalent.

An important feature of these equations is that they constitute a hierarchy of

equations. Thus the contraction of the Schrödinger equation to the p-electron

space generates a p-order CSE that depends on the ðpþ 1Þ-CSE and on the

ðpþ 2Þ-CSE. This hierarchy dependence causes the p-CSE to depend not

only on the p-RDM but also on higher-order RDMs, which renders the equa-

tion indeterminate [18]. In 1992 Valdemoro [19] showed that a reasonable

approximation of the 2-RDM could be obtained in terms of the 1-RDM by

a method that could be extended to higher-order RDMs [20, 21]. In this

way, Colmenero and Valdemoro solved approximatly the CSE [21]. The aim

of this chapter is to give an overview of the CSE theory and of the construction

algorithms for the high-order RDMs, which are the basic part of the methodology
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that has been developed, in order to obtain a good approximate solution of the

2-CSE.

II. THEORETICAL BACKGROUND

In order to have a self-contained chapter, the well-known definitions and con-

cepts that are used in the rest of the chapter are recalled in this section. Other

matters, not so widely known but also basic for later developments, are also

described here.

A. Notation and Definitions

In what follows, the number N of particles is assumed to be a constant. The one-

electron basis is assumed to be finite and formed by 2K orthonormal spin orbi-

tals denoted by the italic letters i; j; k; l . . . or, when the spin is considered expli-

citly by is or ia . . ..

1. The Hamiltonian

The electronic many-body Hamiltonian is

ĤH ¼
X
i; j

hi; j a
y
i aj þ

1

2

X
i; j;k;l

hijjkli ayi ayj alak ð1Þ

where h is a matrix formed by the one-electron integrals and hijjkli is the two-

electron integral matrix in the Condon and Shortley notation. It is useful to trans-

form the form of the Hamiltonian to

ĤH ¼ 1

2

X
i;j;k;l

Ki;j;k;l a
y
i a
y
j alak ð2Þ

where

Ki;j;k;l ¼ 1

N � 1
ðhi;kdj;l þ hj;ldi;kÞ þ hijjkli

� �
ð3Þ

The matrix K is the reduced Hamiltonian [22, 25] and has the same symmetry

properties as the two-electron matrix; that is,

Ki;j;k;l ¼ Kj;i;l;k ¼ K�k;l;i;j ¼ K�l;k;j;i ð4Þ
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2. The Reduced Density Matrices

The p-order reduced density matrix (p-RDM) is defined as

pD��0
i1;i2;...;ip;; j1; j2;...; jp

¼ 1

p!
h�jayi1ayi2 . . . a

y
ip
ajp . . . aj2aj1 j�0i ð5Þ

When � 6¼ �0, this expression defines an element of the p-order transition den-

sity matrix (p-TRDM) [2]. In what follows when � ¼ �0, one instead of two

upper indices denoting � will be used.

The complementary matrix to the p-RDM is the p-order holes reduced density

matrix

p �DD
�
i1;i2;...;ip;; j1; j2;...; jp

¼ 1

p!
h�jajp � � � aj2aj1ayi1ayi2 � � � ayip j�i ð6Þ

The concept of hole here implies that � itself is the state of reference, not the

Fermi sea or other state models.

For some purposes it is convenient to use the following global operators [26]:

pB
y
� ¼ a

y
i1
a
y
i2
� � � ayip ð7Þ

and

pB
 ¼ ajp � � � aj2 aj1 ð8Þ

where the indices must have a unique ordering: that is, i1 < i2 < � � � < ip and

j1 < j2 < � � � < jp. That is,

pB
y
�j0i � j�i � ji1i2 � � � ipi ð9Þ

and the p-RDM can be written

pD�
�;
 ¼ h�jpBy�pB
j�i ð10Þ

B. Properties of the 2-RDM and the N-Representability Problem

The N-representability problem was defined in a remarkable paper by Coleman

in 1963 [27]. This problem asks about the necessary and sufficient conditions

that a matrix represented in a p-electron space must satisfy in order to be N-

representable; that is, the conditions that must be imposed to ensure that there

exists an N-electron wavefunction from which this matrix may be obtained by

integration over N-p electron variables. All the relations and properties

that will now be described are the basis of a set of important necessary
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N-representability conditions [28]. Let us start this description by focusing on

the RDM’s properties, which may be deduced from their definition as expecta-

tion values of density fermion operators. Thus the RDMs are Hermitian, are

positive semidefinite, and contract to finite values that depend on the number

of electrons, N, and in the case of the HRDMs on the size of the one-electron

basis of representation, 2K. Thus

Tr ðpD�Þ ¼ N

p

� �
ð11Þ

Tr ðp �DD�Þ ¼ 2K� N

p

� �
ð12Þ

Also, the fermion anticommutation rules interrelate the RDMs with the HRDMs;

they render these matrices antisymmetric with respect to odd permutations of the

row or column indices; and, finally, they interrelate them with two other families

of matrices: the G-matrices and the correlation matrices.

Let us recall here the less obvious of these properties

� The anticommutator of a creator with an annihilator is

½aj; ayi �þ ¼ di;j ð13Þ
and its expectation value gives

1 �DD
�
i;k þ 1D�

i;k ¼ di;k ð14Þ

which relates the value of an element of the 1-RDM to the same element of

the 1-HRDM. Since both the 1-RDM and the 1-HRDM are positive semi-

definite, relation (14) imposes that the eigenvalues of these matrices are

bounded by the numbers 0 and 1. To be positive semidefinite, together

with these bounds, constitutes a necessary and sufficient condition for the

1-RDM to be ensemble N-representable [27].

� The second-order commutator is

½al ak; ayi ayj �� ¼ dl;jdk;i � dl;idk;j � dl;ja
y
i ak

� dk;ia
y
j al þ dk;ja

y
i al þ dl;ia

y
j ak ð15Þ

and its expectation value gives the second-order fermion relation [26]

2 �DD
�
ij;kl �2D�

ij;kl ¼ dl; jdk;i�; dl;idk; j � dl; j 1D�
i;k

� dk;i 1D�
j;l þ dk; j 1D�

i;l þ dl;i 1D�
j;k

ð16Þ
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which interrelates the 2-HRDM with the 2-RDM. The condition that the

2-HRDM, as defined by this relation in terms of the 1- and 2-RDMs, be

positive semidefinite constitutes what is called the necessary N-

representability Q-condition [28–33].

� Let us reorder the fermion operators of a 2-RDM element

2! 2D�
i;j;k;l � h�jayi ayj al akj�i
¼ �dk;j h�jayi alj�i þ h�jayi ak ayj alj�i

ð17Þ

and let us now insert the unit operator in the middle of the second term

2! 2D�
i;j;k;l ¼ �dk;j h�jayi alj�i

þ h�jayi akj�ih�jayj alj�i
þ
X
�0 6¼�
h�jayi akj�0ih�0jayj ; alj�i

ð18Þ

This may be rewritten as

2! 2D�
i;j;k;l ¼1 D�

i;k
1D�

j;l � dk;j 1D�
i;l þ2 C�i;j;k;l ð19Þ

where C was defined by Valdemoro et al. [34, 35] as correlation matrix

(CM) because it cannot be factorized in terms of the 1-RDM. It can be inter-

preted as describing the virtual excitations undergone by the electrons in

order to avoid each other. Note that the row and column labels of the

CM coincide with those of the 2-RDM from which it is derived. The proper-

ties of this matrix have recently been studied in detail [36–38].

The same elements appearing in the CM, but in a different ordering, form

the G-matrix; thus

2C�i;j;k;l � 2G�i;k;l;j ð20Þ
An equivalent equation to Eq. (19) in terms of the G-matrix was first

published in 1969 by Garrod and Rosina [39] and also later reported by

Valdemoro et al. [35].

The G-matrix that has been obtained here by decomposing the 2-RDM

was defined by Garrod and Percus [29] as

2G�i;j;k;l ¼ h�jayi aj ayl akj�i � h�jayi ajj�i h�jayl akj�i ð21Þ
The G-matrix is also Hermitian and positive semidefinite. The condition

2G� � 0 ð22Þ
is called the G-condition.
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The 2-RDM, the 2-HRDM, and the G-matrix are the only three second-order

matrices which (by themselves) are Hermitian and positive semidefinite; thus

they are at the center of the research in this field. Recently, a formally exact solu-

tion of the N-representability problem was published [12] but this solution is

unfeasable in practice [40].

C. The Matrix Contracting Mapping

The contraction of a q-RDM to get a p-RDM with p < q was formally defined by

Kummer [41] as

pD� � Lpq
qD� ð23Þ

where Lpq represents the contraction operation and N � q > p.

It is simple to contract an RDM by applying the expression of the N̂N operator.

Thus

h�jayi ajj�i � h�jayi
X
l

a
y
l al

N � 1

 !
ajj�i ð24Þ

but when the matrix that must be contracted represents an operator that, while

being related to the density operator, is a different one ( i.e., the Hamiltonian),

the question is more complicated. This general case was solved in 1983 by

Valdemoro [17, 24, 26, 42, 43], who obtained the general matrix contracting

mapping (MCM)

pMl;o �
N
p

� �
q
p

� �
N
q

� �X
	;�

p D	 �
l;o

qM	;� ð25Þ

where qM is the q-order matrix that must be contracted into the p-electron space

and where the 	 and � letters represent q-electron configurations.

III. THE CONTRACTED SCHRÖDINGER EQUATION

As mentioned in Section I, Cho [13], Cohen and Frishberg [14, 15], and Nakatsuji

[16] integrated the Schrödinger equation and obtained an equation that they

called the density equation. This equation was at the time also studied by

Schlosser [44] for the 1-TRDM. In 1986 Valdemoro [17] applied a contracting

mapping to the matrix representation of the Schrödinger equation and obtained

the contracted Schrödinger equation (CSE). In 1986, at the Coleman Symposium

where the CSE was first reported, Löwdin asked whether there was a connection

between the CSE and the Nakatsuji’s density equation. It came out that both
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equations, although different, are completely equivalent. In 1998, Mazziotti [45]

showed that one could obtain the same equation directly by considering the den-

sity operator as a probe. The direct connection of the CSE with the Schrödinger

equation is, however, best understood by contracting the matrix representation of

this fundamental equation and this is the derivation that will now be given [46].

A. Matrix Representation of the Schrödinger Equation and Its

Contraction

Let us consider the Schrödinger equation

ĤHj�i ¼ E�j�i ð26Þ
or equivalently

ĤHj�ih�j ¼ E�j�i h�j ð27Þ
and let us represent this operatorial equation in a basis of N-electron functions,

that is, Slater determinants

h�jĤHj�i h�j
i ¼ E�h�j�i h�j
i ð28Þ
That is,

h�jĤHj�i h�j
i ¼ E�
ND�

�
 ð29Þ
This equation is the matrix representation of the Schrödinger equation in the N-

electron space. In order to contract it into the two-electron space, we will apply

the MCM to both sides of the equation and getX
�


2D�

i1;i2;j1;j2

ðH ND�Þ�
 ¼ E�
2D�

i1;i2;j1;j2
ð30Þ

When this equation is developed, one obtains

h�jĤH a
y
i1
a
y
i2
aj2 aj1 j�i ¼ E�

2D�
i1;i2;j1;j2

ð31Þ

This equation is the CSE in compact form, which was the starting point of

Mazziotti’s derivation [45]. By replacing ĤH by relation (2), and transforming

the string of operators into its normal form, one obtains one of the usual forms

of the CSE:

ðK2D�Þr;s;t;u þ 3
X
i;k;l

ðKi;s;k;l
3D�

t;u;i;r;l;k þ Ki;r;k;l
3D�

t;u;i;l;s;kÞ

þ 6
X
i;j;k;l

Ki;j;k;l
4D�

t;u;i;j;r;s;k;l ¼ E�
2D�

r;s;t;u

ð32Þ
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A simple inspection of this equation shows that it not only depends on the

2-RDM but also on the 3- and 4-RDMs, which causes it to be indeterminate.

Besides this difficulty, which will be discussed at length later on, one may ask

whether the solutions of this equation coincide with those of the Schrödinger

equation. Indeed, the derivation given above for the 2-CSE shows that the

Schrödinger equation implies the 2-CSE. But does the inverse relation hold?

The answer to this question was given by Nakatsuji, who showed that the

p-CSE for p � 2 is equivalent to the Schrödinger equation [16] by stating and

proving the following theorem.

Theorem[Nakatsuji] If the RDMs are N-representable, then the p-CSE is sati-

sfied by the p-, ðpþ 1Þ-, and ðpþ 2Þ-RDM if and only if the N-electron density

matrix (N-DM), preimage of these matrices, satisfies the Schrödinger equation.

An elegant proof, in second quantization, that the 2-CSE implies the

Schrödinger equation, was given by Mazziotti and is as follows.

Proof. The Schrödinger equation is satisfied if and only if the well-known

dispersion relation [47]

h�jĤH2j�i � h�jĤHj�i2 ¼ 0 ð33Þ

is satisfied

Let us now consider the 2-CSE as given by Eq. (31). It can be written

1

4

X
i;j;k;l

Ki;j;k;lh�jayi ayj al ak ayr ays au atj�i ¼ E�
2D�

r;s;t;u ð34Þ

and multiplying both sides of this equation by the element Kr;s;t;u and adding

over repeated indices, one has

h�j 1

2

X
i;j;k;l

Ki;j;k;la
y
i a
y
j al ak

 !
1

2

X
r;s;t;u

Kr;s;t;ua
y
r a
y
s au at

 !
j�i

¼ E�

X
r;s;t;u

K2
r;s;t;u D

�
r;s;t;u

 ! ð35Þ

which is the dispersion relation and what had to be proved. Since for p > 2 the

p-CSE implies the 2-CSE, the demonstration is also valid for these higher-order

equations. &

It should be noted that what has been demonstrated for the p-CSE does not

hold for the 1-CSE because the Hamiltonian includes two-electron terms. In fact,
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it is easy to see that the 1-CSE is satisfied not only by the RDMs corresponding

to the FCI solution but also by the 1-, 2-, and 3-RDMs corresponding to a

Hartree–Fock solution.

An important consequence of the equivalence of the 2-CSE and higher-order

CSEs with the Schrödinger equation is that the CSEs may be applied to the study

not only of the ground-state but also of excited states.

B. The Role of the Spin

Until now the electron spin has not been explicitly taken into account. In this

section we analyze the differences introduced in the 2-CSE when the spin prop-

erties are considered.

In the absence of spin interactions, the Hamiltonian may be written

ĤH ¼
X

r<s;k<l

Kaa
r;s;k;l a

y
ra
aysaalaaka þ

X
u;v;m;n

Kab
u;v;m;n a

y
ua
ayvbanbama

þ
X

r<s;k<l

K
bb
r;s;k;l a

y
rb
aysbalbakb

ð36Þ

where

Kaa
r;s;k;l ¼ Kr;s;k;l � Kr;s;l;k ð37Þ

Kab
u;v;m;n ¼ Ku;v;m;n ð38Þ
K

bb
r;s;k;l ¼ Kr;s;k;l � Kr;s;l;k ð39Þ

In this representation the 2-CSE is formed by the following three equations:

E�
2D� aa

i;j;p;q

ði<j;p<qÞ
¼

2D� aa
i;j;r;s Kaa

r;s;p;q

� 3D� aaa
i;j;m;q;r;s K

aa
r;s;p;m þ 3D� aaa

i;j;m;p;r;s K
aa
r;s;q;m

þ 3D
� aab
i;j;m;p;u;v K

ab
u;v;q;m � 3D

� aab
i;j;m;q;u;v Kab

u;v;p;m

þ4D� aaaa
i;j;k;l;p;q;r;sK

aa
r;s;k;l þ4D

� aabb
i;j;k;l;p;q;r;sK

bb
r;s;k;l

þ4D
� aaab
i;j;m;n;p;q;u;vK

ab
u;v;m;n

8>>>>>><>>>>>>:
ð40Þ

E�
2D

� ab
i;j;p;q ¼

2D
� ab
i;j;u;v K

ab
u;v;p;q

�3D
� aab
m;i;j;r;s;q K

aa
r;s;p;m þ3D

� abb
i;j;m;p;r;s K

bb
r;s;q;m

�3D
� aab
m;i;j;p;u;v K

ab
u;v;m;q �3D

� abb
i;j;n;u;v;q K

ab
u;v;p;n

þ4D
� aaab
k;li;j;r;s;p;q K

aa
r;s;k;l þ4D

� abbb
i;j;k;l;p;q;r;s K

bb
r;s;k;l

þ4D
� aabb
i;m;j;n;p;u;q;v K

ab
u;v;m;n

8>>>>>>>><>>>>>>>>:
ð41Þ
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E�
2D

� bb
i;j;p;q

ði<j;p<qÞ
¼

2D
� bb
i;j;r;s K

bb
r;s;p;q

�3D
� bbb
m;i;j;q;r;s K

bb
r;s;p;m þ3 D

� bbb
m;i;j;p;r;s K

bb
r;s;q;m

�3D
� abb
m;i;j;u;v;p K

ab
u;v;m;q þ3 D

� abb
m;i;j;u;v;q K

ab
u;v;m;p

þ4D
� bbbb
i;j;k;l;p;q;r;s K

bb
r;s;k;l þ4 D

� aabb
k;l;i;j;r;s;p;q K

aa
r;s;k;l

þ4D
� abbb
m;n;i;j;u;v;p;q K

ab
u;v;m;n

8>>>>>>>><>>>>>>>>:
ð42Þ

with the restriction r < s and k < l. An implicit sum over repeated indices has

been assumed.

In these equations, the different 2-RDM blocks are defined [46]:

2D� ss0
i;j;k;l � 2D�

is;js0 ;ks;ls0
¼ h�jayisa

y
js0
als0aks j�i ð43Þ

These three block equations are only partially independent. Thus one cannot

solve them separately because there are 3- and 4-RDM spin blocks appearing

in more than one of the partial equations. Although an exact solution of these

block equations would give the same energy when solving each of them, in prac-

tice this is not so. In consequence, one obtains different values of the energy for

each of the block equations during the iterative process. Obviously, these differ-

ences should disappear or at least be negligible at convergence.

1. The Spin Contracted Equation

It is evident that a 2-RDM that corresponds to a Hamiltonian eigenstate also cor-

responds to a pure-spin state. However, when one is working with an approxi-

mated RDM, it is important that this RDM should correspond to a spin

eigenstate.

Let us therefore consider, by analogy with the Hamiltonian (Eq. (31)) the

compact form of the contracted spin equation (CSpE) [46]:

h�jŜS2 ayi ayj alakj�i ¼ SðSþ 1Þ h�jayi ayj alakj�i ð44Þ

Replacing into this equation the ŜS
2
by its second quantization expression

ŜS
2 ¼ ŜS

2

z � ŜSz þ ŜS þ ŜS� ¼ �
X
i;j

a
y
ia
a
y
jb
aib aja

þ 1

2

X
i

ðayia aia � a
y
ib
aibÞ

 !2

þ 1

2

X
i

ðayia aia � a
y
ib
aibÞ

ð45Þ
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and transforming the string of one-electron operators into its normal form, one

obtains

2D� aa
p;q;s;r ¼ C

X
i

ð�3D
� aab
i;q;p;s;r;i þ 3D

� aab
i;p;q;s;r;iÞ �

X
i;j

4D
� aaab
p;q;i;j;s;r;j;i

 !
ð46Þ

2D� ab
p;q;s;r ¼ C

�2D� ab
q;p;s;r þ

X
i

ð�3D
� aab
p;q;i;s;i;r þ 3D

� abb
i;p;q;s;r;iÞ

�
X
i;j

3D
� aabb
i;p;j;q;s;j;r;i

0BB@
1CCA ð47Þ

2D� bb
p;q;s;r ¼ C

X
i

ð�3D
� abb
p;i;q;i;s;r þ 3D

� abb
q;i;p;i;s;rÞ �

X
i;j

4D
� abbb
jpqi;i;s;r;j

 !
ð48Þ

where

C ¼ 1

N=2þ ðNa � NbÞ2=4� SðSþ 1Þ ð49Þ

By analogy with Nakatsuji, Alcoba [48] demonstrated the following theorem.

Theorem [Alcoba] Assuming that the RDMs are N-representable, then the 2-

CSpE is satisfied by the 2-, 3-, 4-RDMs if and only if the N-DM, preimage of

these matrices, satisfies the spin equation

h�jŜS2j�ih�j
i ¼ SðSþ 1Þ ND�
�;
 ð50Þ

The demonstration of this theorem follows in a parallel form that of the CSE.

In order to satisfy both the CSpE and the CSE, Valdemoro et al. [46] replace

the 2-RDM spin blocks appearing on the right-hand side (rhs) of Eqs. (40), (41),

and (42) by the corresponding expression in Eqs. (46), (47), and (48).

The aa spin block of the resulting equations has the following form:

E�
2D� aa

i;j;p;q

ði<j;p<qÞ
¼

�Kaa
r;s;p;m

3D� aaa
i;j;m;q;r;s þ Kaa

r;s;q;m
3D� aaa

i;j;m;p;r;s

þKab
u;v;q;m

3D
� aab
i;j;m;p;u;v � Kab

u;v;p;m
3D

� aab
i;j;m;q;u;v

þKaa
r;s;k;l

4D� aaaa
i;j;k;l;p;q;r;s þ K

bb
r;s;k;l

4D
� aabb
i;j;k;l;p;q;r;s

þKab
u;v;m;n

4D
� aaab
i;j;m;n;p;q;u;v

þC Kaa
r;s;p;q f�3D

� aab
v;j;i;r;s;v þ3 D

� aab
v;i;j;r;s;v

�4D
� aaab
i;j;v;t;r;s;t;vg

8>>>>>>>>>><>>>>>>>>>>:
ð51Þ

The other spin blocks, ab and bb , have a similar structure.

132 c. valdemoro



The main difference between the spin-adapted 2-CSE and the nonadapted one

is that in the rhs of the spin-adapted 2-CSE, the 2-RDM only appears in the ab
block.

2. The Singlet Case

The studies on the spin properties of the 2-RDM and of the second-order corre-

lation matrix [38, 49, 50] have shown that for singlet states the ab block of the 2-

RDM completely determines the other two spin blocks of the 2-RDM. In con-

sequence, in these cases, the iterative solution of the 2-CSE may be carried out

by working only with the ab block of the 2-CSE, and the aa and the bb blocks of

the 2-RDM are determined in terms of the ab one.

This simplification can reduce significantly the computational effort but it has

its drawbacks. Thus, in our experience, the ss blocks of the 2-CSE converge

better than the ab block. This is probably due to a lower efficiency of the con-

struction algorithms for the higher matrices involved in the ab block. The reason

for the better performance of the algorithms involved in the ss blocks is that, as

will be seen later on, the electron exchange plays a large role in them, and the

correlation effects are relatively less dominant. No calculations have as yet been

carried out on singlet states by using just the ab block of the 2-CSE but it is

possible that for large systems the computational reduction may be advanta-

geous, even at the cost of losing some accuracy.

C. Iterative Solution of the Contracted Schrödinger Equation

The dependence of the 2-CSE on the 3- and 4-RDMs renders indeterminate this

equation [18, 52]. This is the reason why the interest in this equation was initi-

ally lost. However, after the encouraging results obtained in the construction of

the 2-RDM in terms of the 1-RDM [19], the possibility arose of constructing

good approximations of the high-order RDMs in terms of the lower-order

ones. This permitted one to remove the indeterminacy and opened the way to

build an iterative method for solving the 2-CSE.

Let us represent the 2-CSE in a symbolic form.

2M� � function ðK ; 2 D� ; 3 D� ; 4 D�Þ ¼ E�
2D� ð52Þ

In a schematic way the different steps of the basic procedure proposed by

Colmenero and Valdemoro in 1994 [53] are as follows:

� Let us choose a reasonable and N-representable 2-RDM and 1-RDM as

initial probes, and let us use them to approximate first the 3-RDM and

then the 4-RDM.

� Let us correct as finely as possible the N-representability defects of the

4-RDMand then contract it in order to obtain a new set of 1-, 2-, and 3-RDMs.
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� Let us replace all these matrices into the expression ofM:

� Let us take the trace of both sides of the CSE equation, and one has

E0 ¼ Trð2MÞ
N

2

� � ð53Þ

� Using this energy value, one can obtain a new 2-RDM,

2D0 ¼
2M
E0

ð54Þ

This process is repeated until convergence. Although the above steps describe

in a schematic way a process that will be later analyzed in more detail, it is con-

venient at this stage to comment on the second of these steps. As we saw, the

equivalence between the Schrödinger equation and the 2-CSE exists only when

the RDMs appearing in the equation are N-representable. Although the initial 2-

RDM is chosen to beN-representable, or closely so, the approximation algorithms

for the higher-ordermatrices only preserve some of the necessary conditions. Thus

the 4-RDMmust be purified as much as possible. Also, there must be consistency

among the 4-, 3- and 2-RDMs; which is why the 4-RDM must be contracted

in order to obtain a new set of the lower-order matrices. In this way, the

N-representability corrections carried out on the 4-RDM are transmitted not

only to the lower-order matrices but also to the partial traces. Thus, denoting as
2Mi the part of 2M depending on the i-RDM, one has

Trð2Mð2ÞÞ ¼ E� ð55Þ
Trð2Mð3ÞÞ ¼ 2ðN � 2Þ E� ð56Þ

Trð2Mð4ÞÞ ¼ ðN � 3ÞðN � 2Þ
2

E� ð57Þ

and these traces continue to hold for the approximated equation.

In order to avoid keeping in computer memory all the 4-RDM elements, the

contraction of the 4-RDM in order to get a consistent 3-RDM is simulated by

another algorithm. Thus the only 4-RDM elements to be stored are the diagonal

elements. All the elements are only calculated once and entered in all the places

where they appear.

IV. THE REDUCED DENSITY MATRICES CONSTRUCTION

ALGORITHMS

As has been mentioned earlier, the indeterminacy of the 2-CSE may be removed

by approximating the 3- and 4-RDMs in terms of the 1- and 2-RDMs. These
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approximation algorithms and the higher-order corrections proposed by several

authors are described in this section. Comparative results obtained with the dif-

ferent methods and concerning the 3-RDM and the 4-RDM are discussed at the

end of the section.

In order to better analyze the interplay of the different terms appearing in the

algorithms, we start by considering the construction of the 2-RDM, which was at

the origin of the development [19].

A. The 2-RDM Construction Algorithm

In Section II we saw that, according to the second-order fermion relation,

Eq. (16), the difference between the 2-HRDM and the 2-RDM, was a functional

of the 1-RDM, which involved also Kronecker deltas. When replacing in that

equation the Kronecker deltas in terms of the 1-RDM and the 1-HRDM,

Eq. (14), one obtains

2!2 �DD
�
i;j;p;q

�
2!2D�

i;j;p;q

9=; ¼
1 �DD

�
i;p

1 �DD
�
j;q � 1 �DD

�
i;q

1 �DD
�
j;p

�
1D�

i;p
1D�

j;q � 1 D�
i;q

1D�
j;p

8<: ð58Þ

which may be written in a more compact form as

2! 2 �DD
�
i;j;p;q

�
2!2D�

i;j;p;q

9=; ¼
P
P
ð�1ÞP P 1 �DD

�
i;p

1 �DD
�
j;q

�P
P
ð�1ÞP P 1D�

i;p
1D�

j;q

8>><>>: ð59Þ

where
P
P ð�1ÞP P antisymmetrizes the column labels of the 1-RDMs and of

the 1-HRDMs.

This duality of holes and particles allows us to write

2! 2D�
i;j;p;q ¼

X
P
ð�1ÞP P ð 1D�

i;p
1D�

j;qÞ þ 2! 2��
i;j;p;q ð60Þ

and

2! 2 �DD
�
i;j;p;q ¼

X
P
ð�1ÞP P ð 1 �DD�

i;p
1 �DD

�
j;qÞ þ 2! 2��

i;j;p;q ð61Þ

where the matrix 2� is thus defined as

2! 2��
i;j;p;q ¼ 2! 2D�

i;j;p;q �
X
P
ð�1ÞP P ð 1D�

i;p
1D�

j;qÞ

¼ 2! 2 �DD
�
i;j;p;q �

X
P
ð�1ÞP P ð 1 �DD�

i;p
1 �DD

�
j;qÞ

ð62Þ
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This error was originally approximated by an iterative purification renormalizing

procedure, focusing on rendering the 2-RDM and the 2-HRDM positive-semide-

finite and correctly normalized [19].

In order to identify the structure of 2��, let us recall the relation linking the

2-RDM (Eq. (19)),

2! 2D�
i;j;p;q ¼ 1D�

i;p
1D�

j;q � dj;p 1D�
i;q þ 2C�i;j;p;q ð63Þ

and replace the Kronecker delta as before:

2! 2D�
i;j;p;q ¼ 1D�

i;p
1D�

j;q � 1D�
j;p

1D�
i;q � 1�DD

�
j;p

1D�
i;q þ 2C�i;j;p;q ð64Þ

When comparing this equation with Eq. (60) one finds

2! 2��
i;j;p;q ¼ �1 �DD

�
j;p

1D�
i;q þ 2C�i;j;p;q ð65Þ

which is formed by two terms describing correlation effects. The 1 �DD
� 1D� term

may be interpreted as part of a self-repulsion term and is easily evaluated; while

the CM term, which was discussed in Section II, is an unknown that can only be

approximated. These two kinds of correlation terms balance each other and it is

the CM term that causes the difficulties. It is interesting that the 2�� is common

to both the 2-RDM and the 2-HRDM, which is why it is cancelled out when one

takes the difference of these two matrices.

B. Higher-Order RDMs Construction Algorithms

The arguments just described for the construction of the 2-RDM were extended

without difficulty to the higher-order RDMs. The algorithms for these high-order

RDMs were originally reported by Colmenero et al. [20] in a spin-free basis; and

Valdemoro et al. [46] obtained later on the algorithms in a spin-orbital basis. For

the 3-RDM, the algorithm in a spin-orbital basis is

3! 3D�
i;j;k;p;q;r ¼ �2

X
P
ð�1ÞP P ð1D�

i; p
1D�

j;q
1D�

k;rÞ

þ
X
P0
ð�1ÞP0 P0 2! ð 1D�

i;p
2D�

j;k;q;r

þ1 D�
j;q

2D�
i;k;p;r þ1 D�

k;r
2D�

i;j;p;qÞ
þ 3! 3��

i;j;k;p;q;r

ð66Þ

where
P
P ð�1ÞP P antisymmetrizes the column indices of the three 1-RDM

involved and
P
P0 ð�1ÞP

0 P0 antisymmetrizes the column index of the 1-RDM

with the column indices of the 2-RDM.
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In a similar way one obtains the 4-RDM construction algorithm [20, 46]:

4! 4D�
i;j;k;l; p;q;r;s ¼

X
P
ð�1ÞP P 3! ð1D�

i;p
3D�

j;k;l;q;r;s þ1 D�
j;q

3D�
i;k;l;p;r;s

þ3 D�
i;j;l;p;q;s

1D�
k;r þ3 D�

i;j;k;p;q;r
1D�

l;sÞ
þ 3

X
P0
ð�1ÞP0 P0 ð1D�

i;p
1D�

j;q
1D�

k;r
1D�

l;sÞ

�
X
P00
ð�1ÞP00 P00 2! ð1D�

i;p
1D�

j;q
2D�

k;l;r;s

þ1 D�
i;p

2D�
j;l;q;s

1D�
k;r þ1 D�

i;p
2D�

j;k;q;r
1D�

l;s

þ2 D�
i;l;p;s

1D�
j;q

1D�
k;r þ2 D�

i;k;p;r
1D�

j;q
1D�

l;s

þ2 D�
i;j;p;q

1D�
k;r

1D�
l;sÞ

þ 4! 4��
i;j;k;l;p;q;r;s

ð67Þ

In what follows this set of algorithms, based on the separation of particles and

holes, will be referred to as VCP.

In 2001 Valdemoro et al. [54] proposed a generalization of the VCP basic

approach. It exploits the fact that the 2-RDM has more information than the

1-RDM; and instead of replacing one Kronecker delta in terms of 1-RDM and

1-HRDM, one can replace functions of Kronecker deltas in terms of higher-order

RDMs and HRDMs. In this way, one partly avoids the cancelation of the correc-

tion terms pointed out by Mazziotti [45].

Let us therefore rewrite Eq. (16):

2! 2 �DD
�
i; j;k;l � 2! 2D�

i; j;k;l

þdi;k 1D�
j;l þ dj;l 1D�

i;k � di;l 1D�
j;k � dj;k 1D�

i;l

)
¼ di;k dj;l � di;l dj;k ð68Þ

This equation expresses an antisymmetrized product of two Kronecker deltas in

terms of RDMS and HRDMs. By combining it with the expression of the simple

Kronecker delta previously used (Eq. (14)), one can replace the antisymmetrized

products of three/four Kronecker deltas, which appear when taking the expecta-

tion values of the anticommutator/commutator of three/four annihilators with

three/four creator operators. With the help of the symbolic system Mathematica

[55], and by separating as in the VCP approach the particles from the holes part,

one obtains

4! 4D�
i;j;k;l; p;q;r;s ¼

X
P
ð�1ÞP P 3! ð1D�

i;p
3D�

j;k;l;q;r;s þ1 D�
j;q

3D�
i;k;l;p;r;s

þ1 D�
k;r

3D�
i;j;l;p;q;s þ3 D�

ijk; p;q;r
1D�

l;sÞ
�
X
P0
ð�1ÞP0 P0 2! 2! ð2D�

i;j;p;q
2D�

k;l;r;s

þ2 D�
i;l;p;s

2D�
j;k;q;r þ2 D�

i;k;p;r
2D�

j;l;q;sÞ þ 4! 4��
i;j;k;l;p;q;r;s
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This generalized particles–holes separating approach generates an algorithm

(GP-H) that emphasizes the role of the 2-RDM—the variable of the 2-CSE—

and it is computationally more economical [54].

C. Other Approaches

Nakatsuji and Yasuda [56, 57] derived the 3- and 4-RDM expansions, in analogy

with the Green function perturbation expansion. In their treatment the 2� error

played the role of the perturbation term. The algorithm that they obtained for the

3-RDM was analogous to the VCP one, but the 3� matrix was decomposed into

two terms: one where two 2� elements are coupled and a higher-order one.

Neither of these two terms can be evaluated exactly; thus, in a sense, the differ-

ence with the VCP is just formal. However, the structure of the linked term sug-

gested a procedure to approximate the 3� error, as will be seen later on.

In the 4-RDM case the Nakatsuji–Yasuda algorithm adds a new term to the

VCP one (Eq. (67)). This new term is formed by an antisymmetrized product of

two 2� elements. These authors’ algorithm may thus be expressed as

4! 4D�
i;j;k;l; p;q;r;s ¼

X
P
ð�1ÞP P 3! ð1D�

i;p
3D�

j;k;l;q;r;s þ1 D�
j;q

3D�
i;k;l;p;r;s

þ3 D�
i;j;l;p;q;s

1D�
k;r þ3 D�

i;j;k;p;q;r
1D�

l;sÞ
þ 3

X
P0
ð�1ÞP0 P0 ð1D�

i;p
1D�

j;q
1D�

k;r
1D�

l;sÞ

�
X
P00
ð�1ÞP00 P00 2! ð1D�

i;p
1D�

j;q
2D�

k;l;r;s

þ1 D�
i;p

2D�
j;l;q;s

1D�
k;r þ1 D�

i;p
2D�

j;k;q;r
1D�

l;s

þ2 D�
i;l;p;s

1D�
j;q

1D�
k;r þ2 D�

i;k;p;r
1D�

j;q
1D�

l;s

þ2 D�
i;j;p;q

1D�
k;r

1D�
l;sÞ

þ
X
P000
ð�1ÞP000 P000 2! 2! ð2��

i;j;p;q
2��

k;l;r;s

þ2 ��
i;l;p;s

2��
j;k;q;r þ2 ��

i;k;p;r
2��

j;l;q;sÞ
þ 4! 4��

i;j;k;l;p;q;r;s ð70Þ

Following Martin and Schwinger [58], Mazziotti [59] derived in 1998 a gener-

ating function for constructing a p-RDM. By differentiating this functional with

respect to the p Schwinger variables, and taking the limit, he obtained a Taylor

series whose coefficients were the different RDMs. By analogy with Kubo

cumulant expansion [60], Mazziotti identified the p-RDM with the p-order

moment of this expansion; and he identified the connected part of his RDM

expansion (what is called here the p�) with the corresponding cumulant. The
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algorithm thus obtained [45, 59, 61–63], which Mazziotti expressed using the

Grassmann products notation [23], is the same as that of Nakatsuji and Yasuda.

His developments therefore confirm the form of the previous algorithms. More-

over, Mazziotti’s approach permits one to carry out the error analysis within the

framework of the cumulant theory. Since all the terms of the Nakatsuji–Yasuda

expansion for the 4-RDM also appear in Mazziotti’s, this algorithm is denoted

NYM in what follows.

It is interesting to note that GP-H (derived by Valdemoro et al. [54]) contains

in an implicit form the correction terms proposed by Nakatsuji and Yasuda and

by Mazziotti (except for a sign).

There are several other studies of cumulant expansions of the RDMs. Thus

Kutzelnigg and Mukherjee also published in 1999 [64] an RDM expansion

that is similar to Mazziotti’s. An extended study of this cumulant approach

was given by Ziesche [65]. Also, a particularly interesting analysis of the cumu-

lant expansions was given by Harris [66], who proposed a systematic way for

obtaining the different terms of the expansion.

An interesting generalization of the construction algorithms was proposed by

Herbert and Harriman [67]. In this algorithm, each of the Grassmann products

appearing were multiplied by a parameter. The set of these unknown parameters

was evaluated by fitting the results of the algorithm with those of a CI calculation.

From the beginning it was clear that the different RDMs involved in the

2-CSE had to be consistent with each other. These matrices had also to be as

closely positive semi-definite as possible and had to have a correct trace. The

renormalization procedure used by Valdemoro et al. [54] renders the diagonal

elements of the 4-RDM positive and makes sure that the trace is the adequate

one. Then it contracts this diagonal to obtain the diagonals of the lower-order

RDMs. When contracting the 4-RDM algorithm (Eq. (67)), one obtains the algo-

rithm with which the off-diagonal elements of the 3-RDM are directly calcu-

lated, by entering as data the 1-, 2- and 3-RDMs previously obtained. In this

way one can avoid keeping the 4-RDM in computer memory. Although this pro-

cedure has been subsequently refined, the basic idea has remained invariant and

in what follows will be refered to as normalization procedure. Mazziotti’s

approach is conceptually similar, the main difference being that he seeks the

consistency among the 3- and 4-RDMs in a different manner. He realized that

by using a basis set of natural orbitals the expression obtained for the 3-RDM

by contracting the 4-RDM no longer depends on more 3-RDM elements than the

one being evaluated. In this way he gets an uncoupled system of equations that

may be solved directly. Mazziotti’s approach is laborious because a basis trans-

formation of the reduced Hamiltonian matrix must be carried out at each

iteration; but it gave excellent results [45, 62, 63]. In fact, the calculations car-

ried out with the various approaches just seen, both for the ground and excited

states of a series of atoms and molecules, have generally yielded good results

[45, 68–70].
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D. A Unifying Algorithm

The approach that will now be described expresses in a single algorithm the

VCP, the GP-H, and the NYM expansions for the 4-RDM.

Alcoba had the idea to combine the two algorithms obtained by separating the

particles and holes expressions—the GP-H algorithm (Eq. (69)) and the VCP one

(Eq. (67))—and he obtained [48]

4! 4D�
i;j;k;l;p;q;r;s ¼

X
P
ð�1ÞPP 3! ð1D�

i;p
3D�

j;k;l;q;r;s þ1 D�
j;q

3D�
i;k;l;p;r;s

þ1 D�
k;r

3D�
i;j;l;p;q;s þ3 D�

i;j;k;p;q;r
1D�

l;sÞ
�
X
P0
ð�1ÞP0 P0 2! 2! ð2D�

i;j;p;q
2D�

k;l;r;s

þ2 D�
i;l;p;s

2D�
j;k;q;r þ 2D�

i;k;p;r
2D�

j;l;q;sÞ
þ n

X
P00
ð�1ÞP00 P00 2! 2! ð2��

i;j;p;q
2��

k;l;r;s

þ2 ��
il;ps

2��
j;k;q;r þ 2��

i;k;p;r
2��

j;l;q;sÞ
þ 4! 4��

i;j;k;l;p;q;r;s

ð71Þ

where x is an arbitrary parameter that reproduces the VCP algorithm for x ¼ 1

and the NYM for x ¼ 2. Also, for x ¼ 0 it reproduces the GP-H [48, 54].

In general, this approach generates a parametric algorithm for a p-RDM with

p� 3 associated arbitrary parameters leading to a whole family of approxima-

tions. In what follows this unifying algorithm is denoted by UA.

1. A Criterion for Selecting the Parameter Value for the 4-RDM

The structure of the parametric UA for the 4-RDM satisfies the fourth-order fer-

mion relation (the expectation value of the commutator of four annihilator and

four creator operators [26]) for any value of the parameter x, which is a basic and
necessary N-representability condition. Also, the 4-RDM constructed in this way

is symmetric for any value of x. On the other hand, the other N-representability

conditions will be affected by this value. Hence it seems reasonable to optimize

this parameter in such a way that at least one of these conditions is satisfied.

Alcoba’s working hypothesis [48] was the determination of the parameter value

by imposing the trace condition to the 4-RDM. In order to test this working

hypothesis, he constructed the 4-RDM for two states of the BeH2 molecule in

its linear form D1h. The calculations were carried out with a minimal basis

set formed by 14 Hartree–Fock spin orbitals belonging to three different symme-

tries. Thus orbitals 1, 2, and 3 are sg; orbitals 4 and 5 are su; and orbitals 6 and 7
are degenerate p orbitals. The two states considered are the ground state, where
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j1�112�224�44i is the dominant Slater determinant, and the singlet excited state, j�IVi,
which has a shared dominancy of the two Slater determinants j1�112�224�66i and
j1�112�226�44i. The 4-RDM was calculated for these states for different values of

the parameter x; and then, by contraction of this matrix, the corresponding 3-,

2-, 1-RDMs were obtained. In Figs. 1 and 2 is represented the RMS deviation of

these matrices with respect to the values obtained with the FCI method for each

of these two states.

When calculating the trace error for different x values, one finds that this error
vanishes for x ¼ 1:957 in the ground state and for x ¼ 1:215 in the excited state.

These x values coincide with those corresponding to the minimal RMS deviations

of the matrices. Therefore the selection criterion for x seems to be adequate.

E. Estimating the Error Matrix 3D

A great deal of work has been dedicated by different authors [45, 56, 57, 62, 71–

74] to estimate the error matrix 3�, which was the unknown term in the con-

struction algorithm for the 3-RDM. In fact, the experience of the different

authors showed that it was crucial to have a good approximation of this matrix

since the error matrix 4� is less determinative in order to achieve convergence in

the iterative solution of the CSE.

The 3� matrix is Hermitian and antisymmetric with respect to the permuta-

tion of its indices. These properties significantly reduce the number of elements
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Figure 1. RMS deviation of the RDMs corresponding to the ground state of BeH2 for different

values of the UA parameter.
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that must be calculated. This number is still further reduced in states with a sing-

let spin symmetry, since it has been found that in this case the blocks 3�aaa and
3�bbb have negligible values. Moreover, for states with spin quantum number

Ms ¼ 0, the 3�aab block and the 3�abb are equal. In consequence, the research

was centered on obtaining the 3�aab block.

Nakatsuji and Yasuda [56, 57] focused on the term appearing in 3�, which

according to the perturbative expansion could be interpreted as a linked diagram

of two 2� elements. In analogy to the Dyson equation, they proposed to estimate

the 3� with a procedure whose main step, expressed in a spin-orbital basis, may

be written

3! 3��
i;j;r;k;s;p �

X
P
ð�1ÞP P

X
l;t

2! 2��
i;j;k;l ð1Dl;t �1 �DDl;tÞ 2! 2��

t;r;s;p ð72Þ

where the 1-RDM and 1-HRDM appearing in this formula correspond to a

Hartree–Fock calculation. In what follows this algorithm is denoted NY .

The results obtained with this algorithm were very good except when the

indices fijrg corresponded to occupied orbitals in a Hartree–Fock state and

fkspg to unoccupied ones (and vice versa); that is, when the 3-RDM element

corresponded to the expectation value of a three-body elemental excitation.
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Figure 2. RMS deviation of the RDMs corresponding to the excited state of BeH2 for different

values of the UA parameter.
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In 1999 Valdemoro, Tel, and Pérez-Romero proposed a modification of the

NY approximation, which gives slightly more accurate values for the 3� and

which is computationally more economical [72, 73]. Moreover, the analysis of

this new algorithm, which in what follows is denoted VTP, clarified the factors

determining the 3� value.

Let us now see which were the observations leading to this VTP algorithm.

When analyzing the values of the 3� elements obtained by decomposing the 3-

RDM corresponding to a FCI calculation of the ground state of the molecule

BeH2, several significant features came out. Thus it was found that the error

is not of the same order for all the matrix elements; and that, in fact, only

some few elements of the 3� had nonnegligible values. Moreover, the elements

having relevant values were those involving occupied and unoccupied frontier

orbitals. This same observation was reported when approximating the 2-RDM

[19] for the ground state of the beryllium atom. In the BeH2 molecule the ele-

ments involving the highest occupied molecular orbital, homo (h), for each orbi-

tal symmetry, and the lowest unoccupied one, lumo (l), were those that showed

significant 3� errors. Thus it was found that only the three following types

of elements needed to be considered: 3��
h1;l1;�hh2;h3;l2;�hh4

, 3��
l1;h1;�ll2;l3;h2;�ll4

, and
3��

h1;h2;�hh3;l1;l2;�ll3
. The state of reference used to define the homo and lumo orbitals

is the Slater determinant, which dominates in �.

The next step in this analysis was to find out whether the values obtained for

these elements with the NY algorithm came out as the result of a sum of several

factors or whether only a few terms of the sum appearing in Eq. (72) were con-

tributing to each of the 3� elements value. It came out that only one of the sum

terms contributed significantly; and, consequently, a new and simpler algorithm

than the NY one could be devised. This new approximating procedure can be

described as follows:

� Elements with two homo and one lumo orbitals in the column and row

labels

3! 3��
h1;l1;�hh2;l2;h3;�hh4

¼ �2! 2��
h1;�hh2;l2;�xx

2! 2��
l1;�xx;h3;�hh4

ð73Þ

where x is the lumo. When, due to symmetry reasons, the product is null the

index x that should be selected should be the next unoccupied frontier orbital.

� The 3� elements whose row and column labels have indices corresponding

to two lumo and one homo

3! 3��
l1;h1;�ll2;h2;l3;�ll4

¼ 2! 2��
l1;�ll2;h2;�yy

2! 2��
h1;�yy;l3;�ll4

ð74Þ

where y denotes the homo. Again, when the product, due to symmetry rea-

sons, is null, y should be the closest occupied orbital to the homo.
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Due to the antisymmtry property of the 3� matrix,

3��
h1;l1;�hh2;h3;l2;�hh4

¼ �3��
h1;l1;�hh2;l2;h3;�hh4

ð75Þ

thus the other elements are obtained from those considered above.

As can be seen, the essence of these rules is to replace the nonnegligible 3�
elements by a product of two 2� elements corresponding to a double excitation

and to a double deexcitation, respectively. In the case examined, the other pro-

ducts considered by Nakatsuji and Yasuda do not contribute. However, a sum

over x=y should be employed when the basis set is large and several orbitals

have very close energy values to the homo and lumo of each orbital symmetry.

In these cases the previous formulas are replaced by

3! 3��
h1;l1;�hh2;l2;h3;�hh4

¼ �
X
x

2! 2��
h1;�hh2;l2;�xx

2! 2��
l1;�xx;h3;�hh4

ð76Þ

and

3! 3��
l1;h1;�ll2;h2;l3;�ll4

¼
X
y

2! 2��
h1;�yy;l3;�ll4

2! 2��
l1;�ll2;h2;�yy

ð77Þ

respectively, where x=y is the set of frontier spin orbitals and their neighbors’

un-occupied/occupied ones.

1. Analytical Contraction of the Unifying Algorithm

As mentioned previously, the off-diagonal elements of the 3-RDM are deter-

mined by an algorithm obtained by contracting the 4-RDM. For simplicity

sake, the expression given here for the contraction of the 4-RDM (Eq. (71)) cor-

responds to the spin block 3D� sss,

3! 3D� sss
i; j;k;p;q;r ¼ ðA1 þ A2 þ A3 þ A4 þ A5 þ A6Þ=ðNs � 3Þ ð78Þ

where

A1 ¼ �3
X
P0
ð�1ÞP0 P0 2! f1D� s

i;p
2D� ss

j;k;q;r

þ1 D� s
j;q

2D� ss
i;k;p;r þ1 D� s

k;r
2D� ss

i;j;p;qg ð79Þ

A2 ¼ x 3
X
P0
ð�1ÞP0 P0 2! fðð1D� sÞ2i;p �1 D� s

i;p Þ 2�� ss
j;k;q;r

þ ðð1D� sÞ2j;q �1 D� s
j;q Þ 2�� ss

i;k;p;r ð80Þ
þ ðð1D� sÞ2k;r �1 D� s

k;r Þ 2�� ss
i;j;p;qg
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A3 ¼ �2! 2! f2D� ss
i;j;p;s

2D� ss
k;s;q;r �2 D� ss

i;j;q;s
2D� ss

k;s;p;r

�2 D� ss
i;j;r;s

2D� ss
k;s;p;q �2 D� ss

i;k;p;s
2D� ss

j;s;q;r

þ2 D� ss
i;k;q;s

2D� ss
j;s;p;r �2 D� ss

i;k;r;s
2D� ss

j;s;p;q ð81Þ
þ2 D� ss

i;s;p;q
2D� ss

j;k;r;s �2 D� ss
i;s;p;r

2D� ss
j;k;q;s

þ2 D� ss
i;s;q;r

2D� ss
j;k;p;sg

A4 ¼ x 2! 2! f2�� ss
i;j;p;s

2�� ss
k;s;q;r �2 �� ss

i;j;q;s
2�� ss

k;s;p;r

�2 �� ss
i;j;r;s

2�� ss
k;s;p;q �2 �� ss

i;k;p;s
2�� ss

j;s;q;r

þ2 �� ss
i;k;q;s

2�� ss
j;s;p;r �2 �� ss

i;k;r;s
2�� ss

j;s;p;q ð82Þ
þ2 �� ss

i;s;p;q
2�� ss

j;k;r;s �2 �� ss
i;s;p;r

2�� ss
j;k;q;s

þ2 �� ss
i;s;q;r

2�� ss
j;k;p;sg

A5 ¼ �3! f3D� sss
i;j;k;p;q;s

1D� s
s;r þ3 D� sss

i;j;s;p;q;r
1D� s

k;s

�3 D� sss
i;j;k;p;r;s

1D� s
s;q �3 D� sss

i;k;s;p;q;r
1D� s

j;s ð83Þ
þ3 D� sss

i;j;k;q;r;s
1D� s

s;p þ3 D� sss
j;k;s;p;q;r

1D� s
i;s g

A6 ¼ Ns 3! 3D� sss
i;j;k;p;q;r ð84Þ

and Ns is the number of electrons with spin s. An implicit sum over repeated

indices is assumed.

Following Mazziotti’s reasonings [45,62,63], Alcoba has considered Eq. (78)

as a system of equations where the variables are the 3-RDM elements, which can

be decoupled when the off-diagonal 1-RDM elements are null, that is, when the

matrices are represented in a natural basis of orbitals.

The NYM algorithm is therefore a particular case for x ¼ 2 of Alcoba’s para-

metric expression. It must be noted, that as happens with the NY and the VTP,

the UA does not correct the error in the elements whose indices correspond to a

three-body elemental excitation.

The values, obtained with the different methods just decribed, of the more

significant elements of 3� are given in Table I. The test system has been the

BeH2 molecule in its linear form D1h. The state � considered is the ground

state, and the basis set used is the same as previously. As can be seen, the results

have been very satisfactory in all the approaches. However, a detailed analysis of

these values indicates that the algorithm giving the best approximation for 3� is

the VTP followed by Alcoba’s UA for the value x ¼ 1:957. Hence the 3-RDM

obtained with Eq. (66) together with the VTP estimations for 3� yield very

good results for those states whose orbitals have occupations close to 0 or

1, except for those few elements involving three-body frontier excitations.
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F. The N-Representability Problem: Introducing Bounds Correction

Until now the focus has been on the construction algorithms for the 3- and 4-RDMs

and the estimation of the� errors. However, the question of how to impose that the

RDMs involved as well as the high-order G-matrices be positive must not be over-

looked. This condition is not easy to impose in a rigorous way for such large

matrices. The renormalization procedure of Valdemoro et al. [54], whichwas com-

putationallyeconomicalbutonlyapproximate, actedonlyon thediagonalelements.

For the 3- and 4-G matrices, the approach can be to apply adequate bounds to

these matrices’ diagonal elements. This question was studied thoroughly by sev-

eral authors [26, 29, 54, 75–77] and there are a large number of inequalities

derived from the D, Q, and GN-representability conditions. In practice, one

must select a small number of these inequalities with the criterion that they should

be as restrictive as possible. In the calculations of Valdemoro et al. [54] the selected

conditions for the fourth-order G-matrix lead to the three following inequalities:

1. A bound for the 4-RDM diagonal elements involving off-diagonal 3-RDM

elements which presents nonlinear terms:

4! 4D�
k;l;i;j;k;l;i;j �� ð1D�

i;jÞ2 1D�
k;k � 2! 2D�

k;i;k;i

þ 2! 2D�
k;l;k;l ð1D�

i;jÞ2 þ 3! 3D�
k;l;i;k;l;i

þ 3! 3D�
k;i;j;k;i;j þ 2 2! 2D�

i;k;j;k
1D�

i;j ð85Þ
þ ð2! 2D�

j;l;k;i þ1 D�
i;j

1D�
k;lÞ2

� 3! 2 3D�
i;k;l;j;k;l

1D�
i;j

TABLE I

Most Significant Elements of the Matrix 3�aab

Algorithm

Matrix VTP UA

Element 3� NY Value x or y Mazziotti ðx ¼ 1:957Þ
233; 233 �0.00300 �0.00284 �0.00309 2 �0.00333 �0.00316
253; 343 0.00255 0.00242 0.00258 2 0.00269 0.00255

266; 266 �0.00317 �0.00304 �0.00310 2 �0.00308 �0.00293
266; 277 �0.00320 �0.00306 �0.00310 2 �0.00310 �0.00295
233; 453 �0.00340 �0.00327 �0.00344 4 �0.00349 �0.00332
232; 232 0.00300 0.00283 0.00309 3 0.00334 0.00318

344; 344 0.00670 0.00630 0.00675 3 0.00700 0.00665

234; 454 0.00341 0.00328 0.00344 3 0.00359 0.00341

232; 344 �0.00455 �0.00437 �0.00457 3 �0.00486 �0.00462
342; 454 �0.00384 �0.00364 �0.00382 3 �0.00392 �0.00373
254; 452 0.00194 0.00185 0.00194 3 0.00199 0.00190

234; 234 0.00217 0.00194 0.00216 5 0.00223 0.00211

262; 262 0.00306 0.00295 0.00310 6 0.00348 0.00330
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2. A condition for the 4-RDM diagonal elements involving the square of an

off-diagonal element of the 2-RDM:

4! 4D�
k;l;i;j;k;l;i;j �� 2! 2D�

k;l;k;l þ 3! 3D�
k;l;j;k;l;j

þ 3! 3D�
k;l;i;k;l;i þ ð2! 2D�

k;l;i;jÞ2
ð86Þ

3. An upper bound for the 4-RDM diagonal elements involving a 3-RDM

off-diagonal element:

4! 4D�
k;l;i;j;k;l;i;j � 2! 2D�

k;l;k;l ð1D�
i;jÞ2 þ 3! 3D�

k;l;i;k;l;i

� 2 3! 3D�
i;k;l;j;k;l

1D�
i;j

ð87Þ

Other families of inequalities were looked into [26, 73] but they were not

used in the calculations reported here.

G. Some Comparative Results

The results obtained with the different approaches described in this section are

shown in Tables II–V. As before, the test probe is the linear BeH2 molecule.

The 4-RDMs for the ground state and first excited singlet state were calcu-

lated with the UA (Eq. (71)) for different values of the x parameter. The first

three columns correspond, respectively, to the GP-H, the VCP, and to the

NYM algorithms. The different RDM elements were analyzed in order to find

out if they satisfied the bounds inequalities. If this were not the case, these ele-

ments’ values would be given the values corresponding to the upper or lower

bound which had been unsatisfied. In order to examine the performance of the

different algorithms and of the bounds without the influence of the quality of the

data used, the 1-, 2- and 3-RDMs employed to calculate the 4-RDM were obta-

ined in an FCI treatment. The different results were then compared with the FCI

TABLE II

Ground-State: Error of the 4D
� aaab
i;j;k;l;i;j;k;l Elements with the UA and Imposing N-Representability

Bounds

Indices Algorithm Error Algorithm Errorþ Bounds (B)

i j k l x ¼ 0 x ¼ 1 x ¼ 2 x ¼ 0þ B x ¼ 1þ B x ¼ 2þ B

2 3 4 2 �0.0001847 �0.0000743 0.0000012 �0.0000001 �0.0000001 0.0000012

2 3 4 4 �0.0001985 �0.0001171 �0.0000357 0.0000000 0.0000000 0.0000000

2 4 5 2 �0.0001153 �0.0000675 �0.0000198 �0.0000006 �0.0000006 �0.0000006
2 4 6 4 �0.0001123 �0.0000851 �0.0000579 0.0000000 0.0000000 0.0000000

3 4 6 6 �0.0001114 �0.0000829 �0.0000543 0.0000000 0.0000000 0.0000000
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4-RDM. The results for each spin block of the 4-RDM are presented in

Tables II–V. It should be mentioned that, before carrying the comparison with

the FCI 4-RDM, the renormalization procedure previously mentioned was

applied.

The results of the three last columns correspond to calculations with the same

algorithm after application of the bound conditions given by the inequalities

(85), (87), and (86), denoted as B in the Tables II–V.

As can be seen, while for the ground state the NYM algorithm corresponding

to the parameter value x ¼ 2 gives the most satisfactory results, this is not the

case for the first singlet excited state, where the errors in some of the 4-RDM

elements are nonnegligible. This applies also to the algorithm given by

Eq. (69), which is obtained with the parameter value x ¼ 0. However, it should

TABLE III

Ground State: Error of the 4D
� aabb
i;j;k;l;i;j;k;l Elements with the UA and Imposing N-Representability

Bounds

Indices Algorithm Error Algorithm Errorþ Bounds (B)

i j k l x ¼ 0 x ¼ 1 x ¼ 2 x ¼ 0þ B x ¼ 1þ B x ¼ 2þ B

2 3 2 4 �0.0001827 �0.0000707 0.0000015 �0.0000222 �0.0000222 0.0000001

2 3 3 4 0.0000012 �0.0000495 �0.0001801 0.0000001 �0.0000495 �0.0001801
2 3 4 5 0.0017676 0.0017676 �0.0000661 0.0000991 0.0000991 0.0000000

2 4 2 4 0.0002840 0.0001361 �0.0000117 0.0000219 0.0000219 �0.0000117
2 4 4 6 �0.0001123 �0.0000851 �0.0000579 0.0000000 0.0000000 0.0000000

2 5 2 5 0.0013544 0.0007780 �0.0000123 0.0000571 0.0000571 �0.0000032
2 5 3 4 0.0021823 0.0017539 �0.0000488 0.0000897 0.0000897 �0.0000029
3 4 3 4 0.0031281 0.0031281 �0.0004268 0.0001789 0.0001789 �0.0000063
3 6 4 6 �0.0001127 �0.0000829 �0.0000530 0.0000000 0.0000000 0.0000000

4 5 4 5 0.0007380 0.0007380 �0.0000207 0.0000733 0.0000733 0.0000000

4 6 4 6 0.0001660 0.0001381 0.0001102 0.0000000 0.0000000 0.0000000

TABLE IV

Excited State: Some Significant Errors of the 4D
� aaab
i;j;k;l;i;j;k;l Elements with the UA and Imposing

N-Representability Bounds

Indices Algorithm Error Algorithm Errorþ Bounds (B)

i j k l x ¼ 0 x ¼ 1 x ¼ 2 x ¼ 0þ B x ¼ 1þ B x ¼ 2þ B

2 3 4 6 �0.0151279 �0.0052737 0.0000007 0.0000000 0.0000000 0.0000002

2 3 6 4 �0.0145106 �0.0048784 0.0000030 0.0000000 0.0000000 0.0000005

2 3 6 6 0.0000000 0.0000000 �0.0053446 0.0000000 0.0000000 0.0000000

2 4 6 2 �0.0063085 �0.0033265 �0.0003444 �0.0000002 �0.0000002 �0.0000002
2 4 6 3 0.0000015 �0.0019269 �0.0080394 0.0000015 �0.0000005 �0.0000005
2 4 6 4 �0.0011146 0.0000005 0.0000005 �0.0000015 0.0000005 0.0000005

3 4 6 2 0.0000001 �0.0021817 �0.0082845 0.0000001 0.0000000 0.0000000

3 4 6 3 �0.0047042 �0.0026740 �0.0006437 0.0000000 0.0000000 0.0000000
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be noted that although the original VCP algorithm obtained with the parameter

value x ¼ 1 is not good either, its errors for the excited state are lower than those

obtained with the other algorithms.

When considering the effect due to imposing bounds, the results for the 4-

RDM become excellent independently of the parameter value selected. More-

over, these good results occur both in the ground and in the excited state.

Let us now see what the situation is for the 3-RDM. As has been described,

the 3-RDM is obtained by contraction from the 4-RDM. On the other hand, in

order to construct the 4-RDM one needs the 3-RDM. According to the results

reported in Table I, the estimation of the 3� for the ground state is satisfactory.

Also, the UA for x ¼ 0 together with the bounds inequalities

3! 3D�
i;p;j;i;p;j � 2! 2D�

i;p;i;p � 2 2! 2D�
i;p;j;p

1D�
i;j þ ð1D�

i;jÞ2 1D�
p;p ð88Þ

and

3! 3D�
i;k;l;i;k;l ð2 1D�

i;i � 1Þ � ð1D�
i;iÞ2 ð 2! 2D�

k;l;k;l �1 D�
k;kÞ

þ 2! 2D�
i;k;i;k ð2 1D�

i;i � 1Þ ð89Þ
þ ð 2! 2D�

i;l;i;k �1 D�
i;i

1D�
l;kÞ2

give very good results for the ground state [48]. However, the results obtained for

the first singlet excited state of the BeH2 molecule were not good [48] since

imposing bounds did not sufficiently improve the situation. From the study car-

ried out by Alcoba, the situation with respect to the 3-RDM may be summarized

as follows:

1. For those states having orbital occupations close to 0 or 1, the UA with

x ¼ 0 together with the bounds constitutes an efficient method for

TABLE V

Excited State: Some Significant Errors of the 4D
� aabb
i;j;k;l;i;j;k;l Elements with the UA and Imposing

N-Representability Bounds

Indices Algorithm Error Algorithm Errorþ Bounds (B)

i j k l x ¼ 0 x ¼ 1 x ¼ 2 x ¼ 0þ B x ¼ 1þ B x ¼ 2þ B

2 3 2 3 0.0000012 0.0000012 �0.0018960 0.0000012 0.0000012 �0.0000002
2 3 4 6 0.0145106 0.0048784 �0.0047539 0.0000000 0.0000000 �0.0000005
2 4 2 4 �0.0041440 �0.0019392 0.0000007 �0.0000060 �0.0000060 0.0000007

2 4 2 6 0.0063085 0.0033265 0.0003444 0.0000002 0.0000002 0.0000002

2 4 3 6 �0.0041857 0.0019269 0.0033128 �0.0000015 0.0000005 0.0000005

2 4 4 6 0.0000061 �0.0017806 �0.0046758 0.0000000 �0.0000005 �0.0000005
2 6 2 4 0.0063085 0.0033265 0.0003444 0.0000002 0.0000002 0.0000002

2 6 2 6 �0.0057041 �0.0030819 �0.0004596 0.0000000 0.0000000 0.0000000

2 6 3 4 �0.0039210 0.0021817 0.0064365 �0.0000001 0.0000000 0.0000000

2 6 4 6 �0.0014689 �0.0027143 �0.0039598 0.0000000 0.0000000 0.0000000
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constructing the 3-RDM. Alternatively, the UA with x ¼ 1 together with

the 3� corrections also produces good results, except for the off-diagonal

elements describing three-frontier electron excitations.

2. For those states having orbital occupations clearly different from 0 or 1—

that is, when the orbital occupations play simultaneously the role of par-

ticles and holes—the problem of obtaining a good 3-RDM still remains

open. Consequently, the 4-RDM is also affected, notwithstanding the

fact that its algorithm is efficient. However, in this case the bounds correct

very well the errors in the diagonal elements.

In spite of these satisfactory results, it should be noted that being able to obtain

very good results for the most significant elements when using FCI input data

does not guarantee obtaining good results throughout the iterative process.

Thus, in practice, when the input data for obtaining the bounds were not the

FCI ones the results of the iterative process were not as good as when the bounds

were not imposed. Another reason for these disapointing applicative results may

be the appearance of inconsistencies among the different spin blocks of the

RDMs. At present, when rather satisfying purification procedures have been

devised for the 2-RDM, this analysis should be repeated, since the input data

have been improved. In this way, one may either confirm or discard one of

the hypothetical reasons for the bad performance in the practice of the applica-

tion of bounds.

V. FACTORS AFFECTING THE CONVERGENCE OF THE

ITERATIVE SOLUTION OF THE CSE

A. Influence of the Algorithms on the 2-CSE Convergence

As has been shown, the UA with x ¼ 2 for the 4-RDM—which corresponds to

the inclusion of the correction term introduced by Nakatsuji and Yasuda and by

Mazziotti—gives rather accurate results. The importance that the value of this

parameter has on the convergence of the iterative process is now examined.

As mentioned, the optimal value of the parameter is x ¼ 1:957, but for sim-

plicity’s sake, the curves shown in Fig. 3 correspond to the integer values x ¼ 0,

x ¼ 1, and x ¼ 2.

As may be observed, the curve corresponding to the value x ¼ 2, which is

very close to the optimized parameter value, reaches a minimal value of the

energy very close to the FCI one.

Besides the influence of the parameter x on the energy, it is important to ana-

lyze how the different values of the parameter x affect the 1-RDM, since this

matrix is directly connected with the electronic density. Thus the elements of

the 1-RDM for each value of x obtained at the minimum of each curve are shown
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in Table VI. Since the matrix is symmetric, only the superior half of the matrix is

given. Also, since the ground state is a singlet, only the a spin block is reported.

These results show that all three values of x give good results but it is the

value x ¼ 2 that performs best.

B. Influence of the N- and S-Representability of the 2-RDM on the

Convergence of the 2-CSE Iterative Process

Initially, in order to partially correct the N-representability defects of the 2-RDM

obtained at each iteration, this matrix was diagonalized and rendered positive by

applying to the eigenvalues the same operations described previously, when cor-

recting the 4-RDM diagonal elements. When carrying out these operations, it

was observed that the appearance of the divergence was retarded but in many

cases it was not prevented. Mazziotti [78] realized that further purifying the

2-RDM substantially improved the convergence of the 2-CSE iterative process.

He applied a 2-RDM purification procedure based on Coleman’s unitarily invar-

iant decomposition of a second-order matrix. He then imposed the D and Q

N-representability conditions and obtained very satisfactory results. By focusing

not only on imposing the D- and Q-conditions but also the G-condition as well as

the S-representability conditions, Alcoba et al. [38, 51] proposed two very com-

plete procedures that permitted one to obtain smoothly convergent processes,

leading to highly accurate solutions. The theoretical developments leading to
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Figure 3. Values of the energy obtained for each iteration in the self-consistent solution of the

2-CSE for different values of x in the ground state of the BeH2 molecule.
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the purification procedures are not trivial and constitute in themselves a line of

study. This is the reason why a whole chapter of this book is dedicated to this

very important area, which is not further considered here. Another factor that

strongly enhances the convergence of the iterative process is the shifting of

the origin of energy. This matter will also be examined in the same chapter as

the 2-RDM purification procedures.

TABLE VI

Ground-state 1-RDM Elements

1.00 0.00 0.00 0.00 0.00 0.00 0.00

9.99� 10�1 �1.74� 10�4 1.28� 10�4 0.00 0.00 0.00 0.00

9.99� 10�1 �1.24� 10�4 1.31� 10�4 0.00 0.00 0.00 0.00

9.99� 10�1 �1.30� 10�4 1.99� 10�4 0.00 0.00 0.00 0.00

9.99� 10�1 �2.05� 10�4 1.99� 10�4 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00

9.95� 10�1 7.73� 10�4 0.00 0.00 0.00 0.00

9.95� 10�1 8.97� 10�4 0.00 0.00 0.00 0.00

9.89� 10�1 4.01� 10�3 0.00 0.00 0.00 0.00

9.85� 10�1 1.27� 10�2 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

4.98� 10�3 0.00 0.00 0.00 0.00

4.96� 10�3 0.00 0.00 0.00 0.00

1.09� 10�2 0.00 0.00 0.00 0.00

1.43� 10�2 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00

9.94� 10�1 �6.50� 10�4 0.00 0.00

9.94� 10�1 �5.71� 10�4 0.00 0.00

9.90� 10�1 �3.17� 10�4 0.00 0.00

9.87� 10�1 �5.57� 10�3 0.00 0.00

Hartree–Fock 0.00 0.00 0.00

2-CSE (x ¼ 0) 3.16� 10�3 0.00 0.00

2-CSE (x ¼ 1) 3.09� 10�3 0.00 0.00

2-CSE (x ¼ 2) 5.66� 10�3 0.00 0.00

FCI 6.20� 10�3 0.00 0.00

0.00 0.00

1.29� 10�3 0.00

1.12� 10�3 0.00

2.32� 10�3 0.00

3.30� 10�3 0.00

0.00

1.29� 10�3

1.12� 10�3

2.32� 10�3

3.30� 10�3
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VI. AN EXACT FORMAL SOLUTION TO THE CONTRACTED

SCHRÖDINGER EQUATION’S INDETERMINACY

In previous sections the construction algorithms aimed to obtain good approxi-

mations of the high-order RDMs appearing in the 2-CSE in terms of the lower-

order ones. Here, the approach is to obtain a set of equations, equivalent to the

CSEs, which are not formally indeterminate. The most important equation of

this family is a self-contained equation represented in the four-electron space.

The cost of removing the indeterminacy of the CSEs is an increase in the size

of the problem. The formal aspects of this treatment are very enlightening and,

although at present the operativity of this approach is limited, the results

obtained for a family of four electron compounds are excellent. These new equa-

tions, which are called modified contracted Schrödinger equations (MCSEs) are

combinations of lower-order CSEs [79, 80]. They involve explicitly high-order

correlation matrices (CMs), which, as will be seen, play an important theoretical

role.

A. Decomposition of High-Order RDMs and a Basic Cancellation Relation

We have seen that the second-order CM is one of the terms resulting from the

decomposition of the 2-RDM. Similarly, when decomposing the 3- and 4-RDMs

the third- and fourth-order CMs are obtained. Thus, for instance, one of the pos-

sible decompositions of the 3-RDM is

3! 3D�
i;k;m;j;l;n ¼ � 2! 2D�

i;k;j;n dm;l þ 2! 2D�
i;k;l;n dj;m

þ 2! 2D�
i;k;j;l

1D�
m;n þ ð3;2;1Þ C�i;k;m;j;l;n ð90Þ

where the elements of the third-order CM, ð3;2;1ÞC, have the following structure:

ð3;2;1ÞC�i;k;m;j;l;n ¼ 2!
X
�0 6¼�

2 D��0
i;k;j;l

1D�0�
m;n ð91Þ

In order to refer to the p-order correlation matrices with p > 2, the notation

needs to become more precise. Thus a left superscript has to be introduced.

As can be seen from the definition, Eq. (91), the first index of this left superscript

denotes the global order of the matrix, and the following indices denote the order

of the different TRDMs involved. The right subscripts, denoting the element

labels, coincide with those of the 2-RDM from which they derive.

At the basis of the theoretical developments leading to the MCSEs lie a set of

relations reported by Tel et al. [81], which link CMs of different orders among

themselves. These C-relations establish a set of necessary conditions that the

CMs must satisfy when they correspond to a Hamiltonian eigenstate. The
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most important of these relations, which is essential in the derivation of the

MCSEs, can be expressed as

ðp;2;x;y;...ÞO�
v1;...;vx;t1;...;ty;...;w1;...;wx;z1;...;zy;...

� 1

2

X
i;j;k;l

Ki;j;k;l
ðp;2;x;y;...ÞC�i;j;v1;...;vx;t1;...;ty;...;k;l;w1;...;wx;z1;...;zy;...

¼ 0
ð92Þ

where p ¼ 2þ xþ yþ � � �. Note that the labeling of the symbol ðp;2;x;y;...ÞO coin-

cides with that of the CMs involved in the sum.

Alcoba [80] reported four theorems showing that the cancellation of these

types of terms is a sufficient condition to guarantee that these matrices correspond

to eigenstates of the system. In particular, his first theorem states the following.

Theorem[Alcoba] Assuming that the four-electron CM, ð4;2;2ÞC�, can be

derived by decomposition of an N-representable 4-RDM, then

ð4;2;2ÞO� ¼ 0 ð93Þ
will be satisfied by this 4-CM if and only if the N-DM, preimage of the 4-RDM,

satisfies the Schrödinger equation.

The first part of the demonstration of this theorem is contained in Eq. (92).

The second part of the demonstration is as follows. Using the unit operator it is

easy to see that

0 ¼ð4;2;2Þ O� ¼ Ec 2! 2D2 � 2! 2M� ð94Þ
This equation is equivalent to the 2-CSE, which by Nakatsuji’s theorem

implies that the Schrödinger equation is satisfied.

B. Derivation of the Fourth-Order MCSE

Aswill nowbe shown, the4-CSEcanbe transformed into a self-containedequation,

the 4-MCSE. Let us therefore consider the 4-CSE in the following compact form:

E� 4! 4D�
i;j;k;l;p;q;r;s ¼ h�jĤH a

y
i a
y
j a
y
k a
y
l as ar aq apj�i

� 4! 4M�
i;j;k;l;p;q;r;s

ð95Þ

Remembering that

2M¼ h�jĤH a
y
i a
y
j as arj�i ð96Þ

one proceeds to change the order of the fermion operators in expression (95)

having in mind that one wishes to have a term with the ordering a
y
i a
y
j aqap
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a
y
ka
y
l asar . Then, inserting the unit operator at the convenient places, as in the

RDMs’ decompositions ( after the ĤH and between an annihilator and a creator

operator), one obtains

E� 4! 4D�
i;j;k;l;p;q;r;s ¼ ðdq;l dk;p � dp;l dk;qÞ 2! 2M�

i;j;r;s

þ ðdq;l dk;s � dk;q 1D�
l;sÞ 2! 2M�

i;j;p;r

þ ðdl;r dk;q � dq;l 1D�
k;rÞ 2! 2M�

i;j;p;s

� ðdl;p dk;s � dk;p 1D�
l;sÞ 2! 2M�

i;j;q;r

� ðdk;p dl;r � dlp 1D�
k;rÞ 2! 2M�

i;j;q;s

þ 2! 2M�
i;j;p;q 2!

2D�
k;l;r;s

� dq;l ðE�
ð3;2;1ÞC�i;j;k;p;s;r þ ð5;2;2;1Þ O�

i;j;k;p;s;rÞ
� dk;q ðE�

ð3;2;1ÞC�i;j;l;p;r;s þ ð5;2;2;1Þ O�
i;j;l;p;r;sÞ

þ dl;p ðE�
ð3;2;1ÞC�i;j;k;q;s;r þ ð5;2;2;1Þ O�

i;j;k;q;s;rÞ
þ dk;p ðE�

ð3;2;1ÞC�i;j;l;q;r;s þ ð5;2;2;1Þ O�
i;j;l;q;r;sÞ

þ E�
ð4;2;2ÞC�i;j;k;l;p;q;r;s þ ð6;2;2;2Þ O�

i;j;k;l;p;q;r;s

¼ 4! 4M�
i;j;k;l;p;q;r;s

ð97Þ

The important feature of this hierarchy equation is that the dependence of the

4-CSE upon the 5-CSE and 6-CSE has been replaced by the fifth- and sixth-

order O cancellation terms, Eq. (92). These high-order terms can therefore be

omitted and it follows that

E� 4! 4D�
i;j;k;l;p;q;r;s ¼ ðdq;l dk;p � dp;l dk;qÞ 2! 2M�

i;j;r;s

þ ðdq;l dk;s � dk;q 1D�
l;sÞ 2! 2M�

i;j;p;r

þ ðdl;r dk;q � dq;l 1D�
k;rÞ 2! 2M�

i;j;p;s

� ðdl;p dk;s � dk;p 1D�
l;sÞ 2! 2M�

i;j;q;r

� ðdk;p dl;r � dl;p 1D�
k;rÞ 2! 2M�

i;j;q;s

þ 2! 2M�
i;j;p;q 2!

2D�
k;l;r;s

� dq;l E�
ð3;2;1ÞC�i;j;k;p;s;r

� dk;q E�
ð3;2;1ÞC�i;j;l;p;r;s

þ dl;p E�
ð3;2;1ÞC�i;j;k;q;s;r

þ dk;p E�
ð3;2;1ÞC�i;j;l;q;r;s

þ E�
ð4;2;2ÞC�i;j;k;l;p;q;r;s

ð98Þ

which is the 4-MCSE.
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The iterative procedure for solving the 4-MCSE follows a very similar gen-

eral scheme to that of the 2-CSE. Thus one starts with an intial set of 3-, 2-, 1-

RDMs , a 4C matrix, and the energy E that corresponds to this set of matrices.

These initial data must correspond to a reasonable approximation of the eigen-

state under study. This set of matrices is replaced in the 4-MCSE and, after sym-

metrizing the resulting matrix, 4 ~MM, its trace is divided by that of the 4-RDM,
N
4

	 

, which gives a new energy E0. Then a new 4D is obtained by dividing 4 ~MM by

E0. All the lower-order RDMs are obtained by contraction of this 4-RDM and

then, by decomposing this same 4-RDM, the 4C is evaluated. All these opera-

tions are straightforward and no approximated algorithm is needed. With this

new set of data, a new iteration is started.

Alcoba demonstrated an important theorem concerning this equation.

Theorem[Alcoba] Assuming that the matrices ð3;2;1ÞC� and ð4;2;1;1ÞC� can be

obtained, respectively, by decomposing the set of the N-representable 3- and 4-

RDMs, then the MCSE Eq. (98) will be satisfied by this set of RDMs if and only

if the density matrix ND�, preimage of the 3- and 4-RDMs, satisfies the Schrö-

dinger equation.

When the initial 4-RDM has been obtained from an FCI treatment, then the

iterative procedure described above can proceed indefinitely without variation.

That is, the solution is a fixed point, as is to be expected in view of Alcoba’s

theorem.

Therefore the 4-MCSE is not only determinate but, when solved, its solution

is exact. As already mentioned, the price one has to pay is the fact of working in

a four-electron space; and the difficulty, as in the 2-CSE case, is that the matrices

involved must be N-representable. Indeed, in order to ensure the convergence of

the iterative process, the 4-RDM should be purified at each iteration, since the

need for its N-representability is crucial. In practice, the optimizing procedure

used is to antisymmetrize the 4 ~MM at each iteration. This operation would not

be needed if all the matrices were N-representable; but, if they are not, this con-

dition is not satisfied. In order to impose that the 4-RDM, from which all the

lower-order matrices are obtained, be positive semidefinite, the procedure fol-

lowed by Alcoba has been to diagonalize this matrix and to apply to the eigen-

values the same purification as that applied to the diagonal elements in the

2-CSE case, by forcing the trace to also have a correct value.

C. Some Significant Results

A set of calculations on the beryllium atom and its isoelectronic series have been

carried out [48]. The starting basis set used was Clementi’s double-zeta [82].

This basis was then transformed into the Hartree–Fock one, and the initial

RDMs corresponded to Slater determinants built with this basis. Note that in
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these four-electron sytems the 4-RDM coincides with the N-electron N-DM,

which simplifies the calculation of the FCI 4-RDM with which the MCSE cal-

culations are compared. Moreover, in the N-DM case, the only and sufficient

conditions that must be satisfied by this matrix are to be Hermitian, positive

semidefinite, antisymmetric, and having a correct trace. These were the condi-

tions imposed in the calculations reported here. The positive semidefiniteness of

the 4-RDM together with the trace were imposed after each iteration by acting

on the eigenvalues of the 4-RDM by applying a similar procedure to the one

used for the 4-RDM diagonal in the 2-CSE iterative solution.

In Fig. 4 the values of the energy at each iteration are shown for the beryllium

atom; and the root mean square deviations of the 2-RDM and the 4-RDM with

respect to the FCI values are shown in Fig. 5.

As can be observed there is a smooth and complete convergence toward both

the exact energy (FCI) and the exact RDMs.

The general performance of the method for the ions of the beryllium isoelec-

tronic series is very similar to that for the beryllium atom; therefore only the

most significant values for the series are reported in Table VII. The results

obtained for the singlet excited state corresponding to the dominance of the

j1�112�33i and j1�113�22i Slater determinants are given in Fig. 6. As can be observed,

the convergence value is close to the FCI value, although the accuracy is not as

good as in the ground state. Also, when continuing with the iterations, the
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Figure 4. Energy values for the ground state of the Be atom with the MCSE.
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process falls into the ground state. It should be noted that when the regulating

device previously mentioned was applied, the number of iterations needed to

attain convergence was reduced to 10% of the number needed without this reg-

ulating device. When performing similar calculations for the BeH2 molecule,
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Figure 5. Root mean square deviations of the 2-RDM and the 4-RDM obtained for the ground

state of the Be atom with the MCSE.

TABLE VII

Results Obtained with the Iterative 4-MCSE Method for the Ground State of Some Ions of the

Beryllium Isoelectronic Series

Deviation of

System Method Energy (a.u.) 2D 4D Iteration

Bþ Hartree–Fock �24.23383 3.815� 10�3 1.691� 10�3

full CI �24.24840 0.0 0.0

4-MCSE �24.24811 8.217� 10�6 1.370� 10�5 6000

C2þ Hartree–Fock �36.40072 2.804� 10�3 1.245� 10�3

full CI �36.41489 0.0 0.0

4-MCSE �36.41466 3.409� 10�6 8.670� 10�6 6000

N3þ Hartree–Fock �51.06981 2.222� 10�3 9.869� 10�4

full CI �51.08378 0.0 0.0

4-MCSE �51.08359 1.698� 10�6 5.872� 10�6 6000

O4þ Hartree–Fock �68.23818 1.849� 10�3 8.213� 10�4

full CI �68.25196 0.0 0.0

4-MCSE �68.25179 9.634� 10�7 4.195� 10�6 6000
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where the positive semidefiniteness is no longer a sufficient N-representability

condition, the process was not smooth. Thus, after two initial oscillations, the

curve converged toward a minimum and then rapidly diverged. It must be noted

that, when examining the 1-RDM at the minimum of the curve, the matrix was

found to be extremely close to the FCI one. This imperfect performance must be

due to the fact that in this case the N-representability conditions imposed on the

4-RDM were no longer sufficient. Therefore, for systems with more than four

electrons, a strict purification procedure for the 4-RDM at each iteration must

be applied. This renders the method rather expensive, which reduces its useful-

ness, particularly when the size of the system imposes the use of a large

basis set.

VII. SOME FINAL REMARKS

The outlook given in this chapter on the theory of the second-order contracted

Schrödinger equation and on its methodology has been aimed mostly at convin-

cing the reader that this theory is not difficult to understand and that its metho-

dology is now ready to be applied. That is, in the author’s opinion, this

methodology can be considered as accurate and probably more economical

than the best standard quantum chemical computational methods for the study

of states where the occupation number of spin orbitals is close to one or zero,
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Figure 6. Energy values for the excited state of the Be atom with the MCSE.
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in particular, when the refinements involving the 2-RDM purification and

the device for accelerating convergence described by Alcoba in this book are

used.

The most important question that remains open concerns the search for an

appropriate approach to the study of states having some spin orbitals with occu-

pation numbers close to 0:5. The structure of the algorithms is what causes the

difficulty, since the leading terms of the 2-RDM involve products of the type

0:5� 0:5 ¼ 0:25, which is much too small. In consequence, the value of the

unknown 2� elements is of the same order and can no longer be considered a

small error. This is the case of many excited states for which the results have not

been satisfactory up to now.

Since this chapter was centered on the CSE, only the most relevant aspects

of the MCSE theory and practice have been treated here. It is nevertheless to

be hoped that the brevity of this exposition has been sufficient to show the

importance of this theory. Indeed, by considering the properties of the cancel-

lation terms [81] jointly with Alcoba’s theorems and the structure of the

4-MCSE, it can be concluded that an N-body eigenproblem is just a four-

electron one. Moreover, the basic variable of this equation is the 2-CSE and

through it the 2-RDM. Because the FCI 4-RDM determines a fixed point in

the iterative process, the results obtained in the calculations reported here

and in some other unpublished ones confirm the exactness of the 4-MCSE

solution.

It is true that one must work in a four- or in a three-electron space; however,

the reward is tantalizing: to get an exact, not approximate solution. The difficulty

is of course the high computational cost of introducing all the known N-

representability conditions. The question whether one could relax the N-

representability conditions to be imposed while keeping the procedure conver-

gent is still open.

Although the excited states can also be studied with the MCSE method, the

results are not as clear as those for the ground state. The difficulty in this case is

that while the iterative process seems to stabilize itself close to the value of the

excited state energy, this value finally falls toward the ground-state energy.

Although for brevity’s sake the 3-MCSE has not been considered here, it may

be convenient to mention it in these final comments. This equation, which

depends on the 1-CSE, does not have a unique solution. Indeed, this equation

is satisfied not only by the FCI 3-RDM but also by the Hartree–Fock one. Alcoba

[48] performed a series of calculations with the 3-MCSE for the beryllium iso-

electronic series. Alcoba took as initial data a set of RDMs that corresponded to

a state that had already some correlation and whose energy was below the

Hartree–Fock’s one. The results of these calculations showed that there was a

smooth although very slow convergence toward the exact solution. For larger

systems the situation will probably be similar to the 4-MCSE one and a strict
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purification should be applied to the 3-RDM. Also, in this case, enhancement of

the convergence rate is necessary. Since the purification of the 3-RDM should be

more economical than that of the 4-RDM, this approach seems to be more attrac-

tive. However, one must have as initial data a correlated and closely N-represen-

table 3-RDM. Moreover, the question whether the iterative process of the 3-

MCSE would be sufficiently accelerated when applying the regulating device

is still an open question.
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an arbitrary number N of electrons. For a quantum system, fully characterized by

a single N-particle wavefunction, the N-particle density matrix N D is the kernel

of the wavefunction’s projection operator. By integrating the density matrix N D

over N � 2 particles, we obtain the 2-RDM, which contains enough information

to calculate the expectation values for any operator with only two particle inter-

actions like the electronic Hamiltonian [1–4]. Calculation of the 2-RDM without

the many-electron wavefunction is challenging because not every two-particle

density matrix derives from an N-particle density matrix. Restricting the 2-

RDM to represent an N-particle density matrix requires nontrivial constraints

known as N-representability conditions [3, 5–13]. A new approach to the direct

calculation of the 2-RDM was developed in the 1990s through a projection of the

Schrödinger equation onto the space of two particles known as the contracted

Schrödinger equation (CSE) (or density equation) [14–20, 22–37].

Nakatsuji [37] in 1976 first proved that with the assumption of N-

representability [3] a 2-RDM and a 4-RDM will satisfy the CSE if and only if

they correspond to an N-particle wavefunction that satisfies the corresponding

Schrödinger equation. Just as the Schrödinger equation describes the relation-

ship between the N-particle Hamiltonian and its wavefunction (or density

matrix N D), the CSE connects the two-particle reduced Hamiltonian and the

2-RDM. However, because the CSE depends on not only the 2-RDM but also

the 3- and 4-RDMs, it cannot be solved for the 2-RDM without additional con-

straints. Two additional types of constraints are required: (i) formulas for build-

ing the 3- and 4-RDMs from the 2-RDM by a process known as reconstruction,

and (ii) constraints on the N-representability of the 2-RDM, which are applied in

a process known as purification.

Employing the particle–hole duality, Valdemoro derived formulas for recon-

structing the 3- and the 4-RDMs from the 2-RDM to remove the indeterminacy

of the CSE [14, 15, 20, 38]. Yasuda and Nakatsuji [19] added an additional term

to each of these formulas by considering the decoupling diagrams for Green’s

functions. The author systematized these reconstruction functions in the CSE

by applying the theory of cumulants to the RDMs [21, 22, 24–26, 39, 40]. After

presenting Rosina’s theorem, which justifies the reconstruction of the higher

RDMs from the 2-RDM, we derive in Sections III.B and III.C the reconstruction

formulas for the 3- and 4-RDMs from the perspectives of the particle–hole dua-

lity [14, 15, 20, 38] and cumulant theory [21, 22, 24–26, 39, 40], respectively. In

Section III.D the cumulant expansion for the 3-RDM is improved by two differ-

ent corrections.

In addition to reconstruction within the CSE, it is important to constrain the

2-RDM to remain approximately N-representable. The process of correcting a

2-RDM to satisfy N-representability constraints is known as purification. In

the context of an iterative solution of the CSE, early algorithms by Valdemoro

checked that the 2-RDM satisfies a number of fundamental inequalities such as
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the nonnegativity of the diagonal elements [17]. The author developed a more

general purification algorithm that corrects the 2-RDM so that two

N-representability constraints known as the D- and Q-conditions are satisfied

[28]. Alcoba and Valdemoro [34] recently extended the author’s algorithm to

include explicitly another N-representability constraint known as the G-

condition. Purification of the 2-RDM is described in detail in Section IV.

The ingredients of (i) CSE, (ii) reconstruction of the 3- and the 4-RDMs, and

(iii) purification of the 2-RDM are combined in an iterative algorithm for solving

the CSE in Section VI. Applications of the CSE algorithm to a variety of atoms

and molecules from Refs. [28, 29] are presented. Purification of the 2-RDM is

seen to be critical for an accurate solution of the CSE [28, 29].

II. CONTRACTED SCHRÖDINGER EQUATION

A quantum system of N fermions may be characterized by the Schrödinger equa-

tion (SE)

Hjcni ¼ Enjcni ð1Þ

in which the wavefunction cn depends on the coordinates for the N particles.

Beginning with the SE, we will obtain Valdemoro’s form of the contracted

Schrödinger equation (CSE) in second quantization [16, 42–44]. The derivation

emphasizes the use of test functions for performing the projection (or contrac-

tion) of the SE onto the lower particle space [20]. By Nakatsuji’s theorem [37]

there is a one-to-one mapping between N-representable RDM solutions of the

CSE and wavefunction solutions of the SE. In 1998 the author proved Nakatsuji’s

theorem [37] for the second-quantized CSE [20].

A. Derivation in Second Quantization

Within second quantization [41] the Hamiltonian operator may be expressed as

H ¼ 1

2

X
p;q;s;t

2Kp;q
s;t a

y
pa
y
qatas ð2Þ

where the elements of the two-particle reduced Hamiltonian 2 K are given by

2Kp;q
s;t ¼ 2Vp;q

s;t þ
1

N � 1
ðdq;tEp;s þ dp;sEq;tÞ ð3Þ

The repulsion between electrons 1 and 2 is represented by

2Vp;q
s;t ¼ hfpð1Þfqð2Þj

1

r12
jfsð1Þftð2Þi ð4Þ
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while one-electron portions of the Hamiltonian are included in the matrix E:

Ep;s ¼ �hfpð1Þj
r2

1

2
þ
X
l

Zl

r1;l
jfsð1Þi ð5Þ

Because the N-particle Hamiltonian (H) contains only two-electron excitations,

the expectation value of H yields a formula for the energy involving just the

2-RDM,

E ¼
X
p;q;s;t

2Kp;q
s;t

2Dp;q
s;t ¼ Trð 2K 2DÞ ð6Þ

where

2Dp;q
s;t ¼

1

2!
hcjaypayqatasjci ð7Þ

In general, the p-RDM in second quantization is defined as

pD
i1;i2;:::;ip
j1; j2;:::; jp

¼ 1

p!
hcjayi1a

y
i2
� � � ayipajpajp�1 � � � aj1 jci ð8Þ

and the normalization is N!=ðp!ðN � pÞ!Þ. Variation of 2D to produce the lowest

energy will generate the ground-state energy of the reduced Hamiltonian 2K,

which will usually be much lower than the energy of the many-particle Hamil-

tonian H. To obtain the correct energy E of the N-electron Hamiltonian H, we

must impose additional N-representability constraints on the 2-RDM to ensure

that it is derivable from an antisymmetric N-particle wavefunction c through the

integration of its associated density matrix.

To derive the CSE rather than the expectation value, we define functions h�i;j
k;lj

to test the two-electron space

h�i;j
k;lj ¼ hcjayi ayj alak ð9Þ

Taking the inner product of the test functions with the SE produces

hcjayi ayj alakHci ¼ Ehcjayi ayj alakjci ¼ 2E 2D
i; j
k;l ð10Þ

If we substitute for the Hamiltonian operator in Eq. (2), we obtain the relationX
p;q;s;t

2Kp;q
s;t hcjayi ayj alakaypayqatasjci ¼ 4E 2D

i;j
k;l ð11Þ

168 david a. mazziotti



Rearranging creation and annihilation operators on the left-hand side to produce

RDMs, we generate Valdemoro’s 2,4-CSE [16]:

ð2K 2DÞi;jk;l þ 3
X
p;q;t

2K
p;q
i;t

3D
p;q;j
k;t;l þ 2K

p;q
j;t

3D
p;q;i
l;t;k

� �
þ 6

X
p;q;s;t

2Kp;q
s;t

4D
p;q;i;j
s;t;k;l

� �
¼ E 2D

i;j
k;l

ð12Þ

Evaluation of the first term in the above equation involves multiplying matrices
2K and 2D and then selecting the element of the resulting matrix, specified by

the indices. We have derived the 2,4-CSE through test functions rather than the

generalized matrix contraction mapping [16, 42–44]. A 1,3-CSE may also be

produced by replacing the doubly excited test functions in Eq. (9) with test func-

tions formed by single excitations of the ground-state wavefunction. Similarly, a

3,5-CSE and a 4,6-CSE may be created with test functions using triple and quad-

ruple excitations, respectively. Since the 2,4-CSE is the focus of this chapter, we

simply refer to it as the CSE.

B. Nakatsuji’s Theorem

While early work [16, 19] on the CSE assumed that Nakatsuji’s theorem [37],

proved in 1976 for the integrodifferential form of the CSE, remains valid for the

second-quantized CSE, the author presented the first formal proof in 1998 [20].

Nakatsuji’s theorem is the following: if we assume that the density matrices are

pure N-representable, then the CSE may be satisfied by 2D and 4D if and only if

the preimage density matrix N D satisfies the Schrödinger equation (SE). The

above derivation clearly proves that the SE implies the CSE. We only need to

prove that the CSE implies the SE. The SE equation can be satisfied if and

only if

hcjH2jci � hcjHjci2 ¼ 0 ð13Þ

known as the dispersion condition [45]. Multiplying both sides of the CSE in

Eq. (11) by the reduced Hamiltonian elements 2K
i;j
k;l and summing over the

remaining indices produces

hcj 1

2

X
i; j;k;l

2K
i; j
k;la
y
i a
y
j alak

 !
1

2

X
p;q;s;t

2Kp;q
s;t a

y
pa
y
qatas

 !
jci

¼ E
X
i; j;k;l

2K
i; j
k;l

2D
i; j
k;l

 ! ð14Þ
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By Eq. (6) the sum on the right-hand side of the above equation is equal to the

energy E, and from Eq. (2) we realize that the sums on the left-hand side are just

Hamiltonian operators in the second-quantized notation. Hence, when the

2-RDM corresponds to an N-particle wavefunction c, Eq. (12) implies

Eq. (13), and the proof of Nakatsuji’s theorem is accomplished. Because the

Hamiltonian is defined in second quantization, the proof of Nakatsuji’s theorem

is also valid when the one-particle basis set is incomplete. Recall that the SE

with a second-quantized Hamiltonian corresponds to a Hamiltonian eigenvalue

equation with the given one-particle basis. Unlike the SE, the CSE only requires

the 2- and 4-RDMs in the given one-particle basis rather than the full N-particle

wavefunction. While Nakatsuji’s theorem holds for the 2,4-CSE, it is not valid

for the 1,3-CSE. This foreshadows the advantage of reconstructing from the

2-RDM instead of the 1-RDM, which we will discuss in the context of Rosina’s

theorem.

III. RECONSTRUCTION OF THE 3- AND 4-RDMs

The CSE allows us to recast N-representability as a reconstruction problem. If

we knew how to build from the 2-RDM to the 4-RDM, the CSE in Eq. (12)

furnishes us with enough equations to solve iteratively for the 2-RDM. Two

approaches for reconstruction have been explored in previous work on the

CSE: (i) the explicit representation of the 3- and 4-RDMs as functionals of the

2-RDM [17, 18, 20, 21, 29], and (ii) the construction of a family of higher

4-RDMs from the 2-RDM by imposing ensemble representability conditions

[20]. After justifying reconstruction from the 2-RDM by Rosina’s theorem, we

develop in Sections III.B and III.C the functional approach to the CSE from two

different perspectives—the particle–hole duality and the theory of cumulants.

A. Rosina’s Theorem

Proving that the ground-state 2-RDM contains enough information to generate

the higher RDMs provides theoretical justification for reconstruction functionals

for the 3- and 4-RDMs in terms of the 2-RDM. Early work [14] on the CSE

appealed to the well-known theorem of Hohenberg–Kohn (HK), which demon-

strates that the 1-density and the particle number N are theoretically sufficient to

determine the ground-state energies and wavefunctions for atoms and molecules

[46, 47]. If the 1-density is enough to generate the wavefunction, it may seem

that the 1-RDM or 2-RDM must be more than sufficient to build a unique series

of higher RDMs leading to the wavefunction. However, as we will show, this

argument neglects an implicit assumption in the HK theorem. The proof that

the ground-state 1-density determines the ground and excited wavefunctions

depends on a theoretic construction of the Hamiltonian from the 1-density

[48]. For electronic structure problems the particle number N alone completely
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determines the form of the kinetic energy and electron repulsion terms within the

Hamiltonian while the unknown one-particle part of the potential is specified

through the given 1-density. When we construct the higher RDMs from lower

RDMs or densities, neither the Hamiltonian nor any specific information about

electronic systems appears in the reconstruction formulas. In addition to a

knowledge of the particle number N and the 1-density, however, the theorem

of Hohenberg and Kohn implicitly assumes a knowledge of the kinetic and

repulsion terms within the Hamiltonian. Without more explicit knowledge of

the Hamiltonian in a reconstruction functional, the 1-density cannot determine

the wavefunction as it is not difficult to illustrate. Consider the 1-density from a

wavefunction that is not a Slater determinant. Both Gilbert [49] and Harriman

[50], however, have shown that every 1-density may be represented by an

N-particle Slater wavefunction. Hence the 1-density clearly corresponds to at

least two N-representable wavefunctions—one Slater wavefunction and one

non-Slater wavefunction. Furthermore, convex combinations of these pure den-

sity matrices yield an infinite family of ensemble N-representable density

matrices, which contract to the correct 1-density.

Although the 1-density alone is not sufficient to determine the ground-state

wavefunction for an unknown Hamiltonian with two-particle interactions, the

2-RDM is enough to build the wavefunction, and the proof of this lies not in

the HK theorem but in an important, less famous result, originally discussed

by Rosina. Let us consider the 2-RDM 2 DðcÞ for the antisymmetric nonde-

generate ground state of an N-particle Hamiltonian H with two-particle inter-

actions. By D2ðcÞ we indicate the 2-RDM from the contraction of a pure

density matrix formed with c. The 2-RDM determines the energy of the eigen-

state c by Eq. (6). If 2DðcÞ may be obtained from two antisymmetric wave-

functions c, the ground state will be degenerate since by Eq. (6) they must

have the same energy. Because this contradicts the assumption that the ground

state is nondegenerate, we have that 2DðcÞ has only one pure N-representable

preimage, NDðcÞ. Furthermore, because all of the other states of the system

have higher energies, minimizing over the larger class of N-ensemble repre-

sentable matrices will always produce the pure density matrix, corresponding

to the ground state. For this reason the 2D of the ground state also has only one

preimage in the larger family of ensemble density matrices. Hence we have

the reconstruction theorem, originally proved by Rosina at the 1967 confer-

ence on reduced density matrices at Queen’s University [51] and developed

by the author in the context of the RDM reconstruction problem for the

CSE in 1998.

Theorem 1 The 2-RDM for the antisymmetric, nondegenerate ground state of

an unspecified N-particle Hamiltonian H with two-particle interactions has a

unique preimage in the set of N-ensemble representable density matrices N D.
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B. Particle–Hole Duality

Many-body problems in quantum mechanics are usually described by the num-

ber of particles N in the system and the probabilities of finding those particles at

different locations in space. If the rank of the one-particle basis is a finite number

r, an equally valid description of the system may be given by specifying the

number of holes r � N in the system and the probabilities of finding these holes

at different locations in space. This possibility for an equivalent representation of

the system by particles or holes is known as the particle–hole duality. By using

the fermion anticommutation relation

aja
y
i þ a

y
i aj ¼ dij ð15Þ

to rearrange the creation and annihilation operators in the definition Eq. (2) of

the Hamiltonian such that all of the annihilators appear to the left of the creators,

we generate a hole representation of the Hamiltonian �HH whose expectation value

with the ðr � NÞ-hole density matrix ðr�NÞ �DD produces the energy E

E ¼ Trð�HHðr�NÞ �DDÞ ð16Þ
¼ Trð2 �KK2 �DDÞ ð17Þ

As shown in the second line, like the expression for the energy E as a function of

the 2-RDM, the energy E may also be expressed as a linear functional of the

two-hole reduced density matrix 2 �DD (2-HRDM) and the two-hole reduced

Hamiltonian 2 �KK. Direct minimization of the energy to determine the 2-HRDM

would require ðr � NÞ-representability conditions. The definition for the p-hole

reduced density matrices in second quantization is given by

p �DD
j1;j2;:::;jp
i1;i2;:::;ip

¼ 1

p!
hcjaj1aj2 � � � ajpayi1a

y
i2
� � � ayip jci ð18Þ

Normalizationof thep-HRDMin secondquantization is ðr � NÞ!=ðp!ðr � N � pÞ!Þ.
Because the hole and particle perspectives offer equivalent physical descrip-

tions, the p-RDMs and p-HRDMs are related by a linear mapping [52, 53]. Thus

if one of them is known, the other one is easily determined. The same linear

mapping relates the p-particle and p-hole reduced Hamiltonian matrices (2K

and 2 �KK). An explicit form for the mapping may readily be determined by using

the fermion anticommutation relation to convert the p-HRDM in Eq. (18) to the

corresponding p-RDM. For p ¼ 1 the result is simply

1 �DD
j
i ¼ 1dij � 1Di

j ð19Þ
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which is equivalent to taking the expectation of the fermion anticommutation

relation. Similarly, for p ¼ 2 we obtain the relation

2 �DD
j1;j2
i1;i2
¼ ðdi1j1di2j2 � di2j1d

i1
j2
Þ=2� 1Di1

j1
di2j2 þ 1Di1

j2
di2j1 þ 2D

i1;i2
j1;j2

ð20Þ

which contains a sum of three different kinds of terms that have (i) one 2-RDM,

(ii) one 1-RDM multiplying one d, and (iii) two d’s. This expression represents

the commutation relation for a composite particle consisting of two fermions. By

anticommuting the creation and annihilation operators, we can generate analo-

gous expressions for composite particles consisting of more than two fermions.

Before introducing the general expression, we express Eq. (20) more con-

cisely through the antisymmetric wedge product ^ from Grassmann algebra

[54]. The wedge product between two matrices p D and q D involving p and q

particles produces an antisymmetric matrix involving pþ q particles defined by

pD ^ qD ¼ ÂAN
pD
 qD ÂAN ð21Þ

where the ÂAN is the N-particle antisymmetrization operator and 
 is the tensor

product. More details about evaluating wedge products are given in the Appen-

dix. For the 2-HRDM as a functional of RDMs we obtain

2 �DD
j1;j2
i1;i2
¼ 2I

i1;i2
j1;j2
� 21Di1

j1
^ 1Ii2j2 þ 2D

i1;i2
j1;j2

ð22Þ

where 1 I is the identity matrix

1Ii1j1 ¼ di1j1 ð23Þ

and

2I
i1;i2
j1;j2
¼ 1Ii1j1 ^ 1Ii2j2 ð24Þ

In general, the linear relation between the p-HRDM and p-RDM may be

expressed as

p �DD ¼ pI þ
Xp�1
n¼1
ð�1Þn p

n

� �
nD ^ ðp�nÞI þ ð�1Þp pD ð25Þ

Indices for the RDMs are not shown for notational clarity. The p-RDM as a func-

tional of the p-HRDM may easily be obtained by switching p �DD and p D in the

above equation.
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Valdemoro and co-workers [14] realized that these particle–hole relations

could be written in the following form:

p �DDþ ð�1Þpþ1 pD ¼ f ðp�1 �DDÞ þ ð�1Þpþ1f ðp�1DÞ ð26Þ

where f ðp�1 �DDÞ is a functional of the ðp� 1Þ-HRDM and lower HRDMs and

f ðp�1DÞ has the same functional form as f ðp�1 �DDÞ with the HRDMs replaced

with the corresponding RDMs. With the appropriate f functional for each p,

the relation in Eq. (26) is exact and equivalent to Eq. (25). Valdemoro and

co-workers then obtain functionals for the p-RDM and p-HRDM by assuming

that

pD � pDVald ¼ f ðp�1DÞ ð27Þ

and

p �DD � p �DDVald ¼ f ðp�1 �DDÞ ð28Þ

These formulas are approximate because some of the terms for the particle and

hole RDMs cancel in relation (26). Rearranging Eq. (25) for each p as originally

described by Valdemoro will produce the functionals f . We have found an easier

method [20, 22] for extracting the functionals f , which, however, does not show

the equivalence between Eqs. (25) and (26). Since Valdemoro’s method appears

in the literature [14], we explain our technique, which generates f from Eq. (25)

through the following two substitutions: (i) replace 1I with 1D, which is equiva-

lent to assuming that 1 �DD ¼ 0 in Eq. (19), and (ii) set p �DD ¼ 0. The technique

works because it assumes a separation of particles and holes by setting all of

the hole matrices in the expression to zero to produce f . For p from 2 to 5 the

resulting RDM functionals are represented by the portions of the functionals in

Table I, which are not underlined [20–22]. The right superscripts p in Table I

indicate that an RDM is wedge with itself p times; for example, 1D2 represents
1D ^ 1D. The underlined corrections will be determined below through an exten-

sion of the particle–hole arguments and later through cumulant expansions.

TABLE I

Approximate Reconstruction Functionals for the p-RDMs in Terms of Lower

RDMs Where Corrections to Valdemoro’s Functionals Are Underlined

2D � 1D2

3D � 32D ^ 1D� 21D3

4D � 43D ^ 1D� 62D ^ 1D2 þ 31D4 þ 32� ^ 2�
5D � 54D ^ 1D� 103D ^ 1D2 þ 102D ^ 1D3 � 41D5 þ 103� ^ 2�
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Corrections for the 4-RDM and 5-RDM functionals may be obtained by

searching for some terms involving the wedge products of lower RDMs, which

cancel with the corresponding corrections for the HRDM functionals [20]. Con-

sider the matrices 2� and 3� describing the errors in Valdemoro’s reconstruction

functionals for the 2- and 3-RDMs as well as the matrices 2 ��� and 3 ��� describing

the errors in Valdemoro’s reconstruction functionals for the 2- and 3-HRDMs

2� ¼ 2D� 2DVald ð29Þ
¼ 2 �DD� 2 �DDVald ð30Þ
¼ 2 ��� ð31Þ

and

3� ¼ 3D� 3DVald ð32Þ
¼ �ð3 �DD� 3 �DDValdÞ ð33Þ
¼ �3 ��� ð34Þ

An appropriate correction for the 4-RDM and 4-HRDM functionals is

4Dcorr ¼ k4
2� ^ 2� ð35Þ

¼ k4
2 ��� ^ 2 ��� ð36Þ

¼ 4 �DDcorr ð37Þ

because this term has the same functional form for particles and holes and

yet, since they are equal, they cancel in the commutation relation (26). The

proportionality factor k4 is equal to the number of distinct ways of distributing

the four particles in two groups of two particles. The possibilities are

f12g f34g; f13g f24g, and f14g f23g; hence k4 ¼ 3. The 5-RDM and

5-HRDM functionals have the following corrections:

5Dcorr ¼ k5
3� ^ 2� ð38Þ

¼ �ðk53 ��� ^ 2 ���Þ ð39Þ
¼ �5 �DDcorr ð40Þ

Again this term has the same functional form for particles and holes. Note that

for odd p the corrections must have opposite signs to cancel in the anticommuta-

tion relation (26). As with k4, the proportionality factor k5 is equal to the number

of distinct ways of distributing the five particles between a group of three par-

ticles and a group of two particles; thus k5 ¼ 10.
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C. Cumulants

The reconstruction functionals, derived in the previous section through the

particle–hole duality, may also be produced through the theory of cumulants

[21, 22, 24, 26, 39, 55–57].Webeginbyconstructing a functionalwhosederivatives

with respect to probe variables generate the reduced density matrices in second

quantization. Because we require that additional derivatives increase the number

of second quantization operators, we are led to the following exponential form:

GðJÞ ¼ hcjOðexpð
X
k

Jka
y
k þ J�k akÞÞjci ð41Þ

where Jk and its conjugate J�k are Schwinger probe variables. For fermions these

Schwinger probes have the property that they anticommute, fJk; Jlg ¼ 0. Differ-

entiation of GðJÞ with respect to the probes leads to the accumulation of creation

and annihilation operators before the exponential. Because the annihilation and

creation operators do not commute, we need to impose a specific ordering for

these operators, which appear before the exponential after differentiation. Since

we wish to form functionals for RDMs, we define that the creation operators

should always appear to the left of the annihilation operators independent of

the order in which we differentiate with respect to the probes. If we wished to

produce the corresponding HRDM functionals, we would order the annihilators

to the left of the creators. We represent this ordering convention through the

ordering operator O in the definition of GðJÞ. This ordering process is analogous

to the time ordering of the creation and annihilation operators, which appears in

the theory of Green’s functions [58].

The general relation between the differentiation of GðJÞ with respect to the

Schwinger probes and the RDMs may be characterized as

pD
i1;i2;:::;ip
j1;j2;:::;jp

¼ lim
J!0

1

p!

q pG

qJip :::qJi2qJi1qJ
�
j1
:::qJ�jp�1qJ

�
jp

ð42Þ

¼ 1

p!
hcjayi1a

y
i2
:::ayipajpajp�1 :::aj1 jci ð43Þ

The coefficients of the multivariable Taylor series expansion of GðJÞ about the
point where the Schwinger probes vanish are elements of the RDMs. Thus GðJÞ
is known as the generating functional for RDMs. Mathematically, the RDMs of

the functional GðJÞ are known as the moments. The moment-generating func-

tional GðJÞ may be used to define another functional WðJÞ, known as the

cumulant-generating functional, by the relation

GðJÞ ¼ expðWðJÞÞ ð44Þ
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Just as the moments are formed from GðJÞ as in Eq. (43), the cumulants p� are

produced from WðJÞ by

p�
i1;i2;:::;ip
j1;j2;:::;jp

¼ lim
J!0

1

p!

qpW
qJip :::qJi2qJi1qJ

�
j1
:::qJ�jp�1qJ

�
jp

ð45Þ

and the cumulants are defined as the coefficients of the multivariable Taylor ser-

ies expansion of WðJÞ about the point where the Schwinger probes vanish. The

introduction of another generating functional WðJÞ in Eq. (44) may seem unne-

cessary. The set of cumulants p� for p ranging from 1 to q contains the same

information as the set of moments pD for the same range of p, but the informa-

tion is distributed differently. This different distribution of information will

allow us to determine the reconstruction functionals for building higher RDMs

from lower RDMs.

As explained by Kubo [55], cumulants have the special property that they

vanish if and only if one of their particles is statistically independent of the

rest. Thus for a mean field approximation (Hartree–Fock) where each of the N

particles is treated independently, all cumulants except 1� vanish. Another way

of interpreting this property of cumulants is to say that the p-particle cumulant
p� represents the part of the p-RDM that cannot be written as a simple wedge

product of lower RDMs. The formula for 3DVald from Table I accounts for situa-

tions where two of the particles are close enough to interact while the remaining

particle is sufficiently separated in space for us to assume that it is statistically

independent of the others. Therefore, approximating the 3-RDM as a functional

of the lower RDMs is equivalent to assuming that 3� vanishes. Similarly, the

remaining functionals in Table I, which express the given p-RDM as a functional

of lower RDMs, do not accurately represent configurations in which all p parti-

cles are close enough to be simultaneously influenced by pairwise interactions.

They assume that p� vanishes. By analogy with the convention for Green’s func-

tions in quantum field theory [58], we define the unconnected p-RDM as the part

of the p-RDM that can be written as wedge products of lower RDMs while the

connected (or cumulant) p-RDM is the remaining portion of the RDM that can-

not be expressed as antisymmetrized products of lower RDMs. Hence the con-

nected RDMs are just the cumulants.

We may express the p-RDM in terms of the connected q-RDMs for q between

1 and p by differentiating Eq. (44) with respect to the Schwinger probes as in

Eq. (42) and taking the limit as the probes approach zero. The derivatives of

the generating functional GðJÞ produce the p-RDM while differentiation of

expðWÞ on the right side produces products of elements from the connected

RDMs according to Eq. (45). Because the formula for elements of the p-RDM

must treat the permutation of the upper and lower indices antisymmetrically, the

products between elements of connected RDMs may be replaced with wedge

contracted schr€oodinger equation 177



products. As before, this allows us to write the formulas concisely through the

wedge products of Grassmann algebra. The results for the p-RDMs through

p ¼ 4 are summarized in Table II. These functionals for the p-RDMs are exact,

but they include the connected p-RDM. An approximation for the p-RDM in

terms of lower RDMs may be achieved by setting the connected portion p�
to zero. In this way we recover the functionals for the p-RDMs in Table I

with corrections. Thus, through the particle–hole duality, we were able to gen-

erate the unconnected portion of the p-RDM exactly. Again, the terms missing in

Valdemoro’s approximation are denoted by an underline. In general, any terms

involving only q�, where q > 1, will cancel with the corresponding p-HRDM

correction and not appear in Valdemoro’s approximation.

The reconstruction functionals may be understood as substantially renorma-

lized many-body perturbation expansions. When exact lower RDMs are

employed in the functionals, contributions from all orders of perturbation theory

are contained in the reconstructed RDMs. As mentioned previously, the recon-

struction exactly accounts for configurations in which at least one particle is sta-

tistically isolated from the others. Since we know the unconnected p-RDM

exactly, all of the error arises from our imprecise knowledge of the connected

p-RDM. The connected nature of the connected p-RDM will allow us to estimate

the size of its error. For a Hamiltonian with no more than two-particle interac-

tions, the connected p-RDM will have its first nonvanishing term in the ðp� 1Þ
order of many-body perturbation theory (MBPT) with a Hartree–Fock reference.

This assertion may be understood by noticing that the minimum number of pair-

wise potentials V required to connect p particles completely is ðp� 1Þ. It follows
from this that as the number of particles p in the reconstructed RDM increases,

the accuracy of the functional approximation improves. The reconstruction for-

mula in Table I for the 2-RDM is equivalent to the Hartree–Fock approximation

since it assumes that the two particles are statistically independent. Correlation

corrections first appear in the 3-RDM functional, which with 3� ¼ 0 is correct

through first order of MBPT, and the 4-RDM functional with 4� ¼ 0 is correct

through second order of MBPT.

Because the reconstruction of the 3-RDM with 3� ¼ 0 has a second-order

error, the evaluation of the CSE with the unconnected 3- and 4-RDM cumulant

TABLE II

Reconstruction Functionals for the p-RDMs in Terms of the Connected p-RDM and Lower

Connected RDMs, Where Corrections Beyond Valdemoro’s Approximation Are Underlined

1D ¼ 1�
2D ¼ 1� ^ 1�þ 2�

3D ¼ 1�3 þ 32� ^ 1�þ 3�
4D ¼ 1�4 þ 62� ^ 1�2 þ 43� ^ 1�þ 32�2 þ 4�
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expansions has a second-order error. To correct the CSE through second order,

we require a second-order estimate for the connected 3-RDM. In the next section

we examine two approximations for the connected 3-RDM.

D. Approximation of the Cumulant 3-RDM

Rosina’s theorem states that for an unspecified Hamiltonian with no more than

two-particle interactions the ground-state 2-RDM alone has sufficient informa-

tion to build the higher RDMs and the exact wavefunction [20, 51]. Cumulants

allow us to divide the reconstruction functional into two parts: (i) an uncon-

nected part that may be written as antisymmetrized products of the lower

RDMs, and (ii) a connected part that cannot be expressed as products of the

lower RDMs. As shown in the previous section, cumulant theory alone generates

all of the unconnected terms in RDM reconstruction, but cumulants do not

directly indicate how to compute the connected portions of the 3- and

4-RDMs from the 2-RDM. In this section we discuss a systematic approximation

of the connected (or cumulant) 3-RDM [24, 26].

The theory of cumulants allows us to partition an RDM into contributions that

scale differently with the number N of particles. Because all of the particles are

connected by interactions, the cumulant RDMs p� scale linearly with the num-

ber N of particles. The unconnected terms in the p-RDM reconstruction formulas

scale between N2 and Np according to the number of connected RDMs in the

wedge product. For example, the term 1�p scales as Np since all p particles

are statistically independent of each other. By examining the scaling of terms

with N in the contraction of higher reconstruction functionals, we may derive

an important set of relations for the connected RDMs.

In the contraction of any wedge product the position of the upper and lower

indices generates two types of terms in Grassmann algebra [26]: (i) pure contrac-

tion terms where the upper and lower contraction indices appear on the same

component of the wedge product, and (ii) transvection terms, where the upper

and lower contraction indices appear on different components of the wedge pro-

duct. To illustrate, we consider the contraction of the wedge product between 3�
and 1�:

P̂Pð3� ^ 1�Þ þ T̂Tð3� ^ 1�Þ ð46Þ

where the P̂P and the T̂T operators denote the pure contraction and transvection

terms, respectively. By having contraction indices on different connected

RDMs, the transvection sum joins the two terms to produce a completely con-

nected piece that scales linearly with N. In contrast, in the pure case where the

indices are on the same RDM, the resulting unconnected expression scales as N2.

Therefore the contraction of unconnected functionals may yield connected terms

through transvection.

contracted schr€oodinger equation 179



The 3- and 4-RDMs are related by the linear contraction mapping

N � 3

4
3D ¼ L̂L

3

4ð4DÞ ð47Þ

Only the connected RDMs 3� and 4� scale linearly with N in the reconstruction

formulas for the 3- and 4-RDMs. However, the contraction of the 4-RDM recon-

struction formula in Table I generates by transvection additional terms that scale

linearly with N. Without approximation the terms that scale linearly with N on

both sides of Eq. (47) may be set equal. These terms must be equal to preserve

the validity of Eq. (47) for any integer value of N. In this manner we obtain a

relation that reveals which terms of the 4-RDM reconstruction functional are

mapped to the connected 3-RDM [26]:

� 3

4
3� ¼ 4T̂Tð3� ^ 1�Þ þ 3T̂Tð2� ^ 2�Þ þ L̂L

3

4ð4�Þ ð48Þ

Equation (48) is an exact system of equations [20, 24, 26] relating the elements

of 3� to the elements of 1�, 2�, and 4�. Because 4� vanishes until third order,

Eq. (48) suggests that a second-order approximation of 3� may be obtained

from solving this system of equations with 4� ¼ 0.

Additional insight may be obtained by writing the system of equations in the

natural-orbital basis set, that is, the basis set that diagonalizes the 1-RDM. In this

basis set the two terms with the connected 3-RDM may be collected to obtain the

formula for the elements of the connected (or cumulant) 3-RDM [26],

ni; j;kq;s;t
3�i; j;k

q;s;t ¼ �
1

6

X
l

ÂAð2�i;l
q;s

2�j;k
l;t Þ þ L̂L

3

4ð4�Þi; j;kq;s;t ð49Þ

where

ni;j;kq;s;t ¼ 1Di
i þ 1D

j
j þ 1Dk

k þ 1Dq
q þ 1Ds

s þ 1Dt
t � 3 ð50Þ

and the operator ÂA performs all distinct antisymmetric permutations of the

indices excluding the summation index l. The formula in Eq. (49) is exact. By

setting 4� ¼ 0, we obtain an approximation for the matrix elements of 3� which

is correct through second order of perturbation theory except when three of the

six indices are occupied in the zero-order (Hartree–Fock) wavefunction.

The two types of cumulant 3-RDM elements that cannot easily be constructed

from elements of the 2-RDM are [24, 26]

f3�x;x;x
o;o;og and f3�x;x;o

x;o;og ð51Þ
where o and x denote occupied and virtual orbitals at zero order, respectively.

For these classes of elements the sum of the six occupation numbers minus
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the scalar three in n
i;j;k
q;s;t vanishes until first order of RDM perturbation theory, and

hence the connected 4-RDM divided by n
i;j;k
q;s;t has a nonvanishing second-order

contribution. Because the errors in the cumulant reconstruction formulas, includ-

ing this correction for the connected 3-RDM, are invariant under unitary trans-

formations of the one-particle basis set, the same part of the 3-RDM (after

unitary transformation to another one-particle basis set) cannot be determined

by the system of equations in Eq. (48). For these classes of 3-RDM elements

we assume that the connected 3-RDM is zero. In the CSE these elements may

not be too important. For example, the first class of three-particle excitations do

not affect the 2-RDM from the CSE until third order while the elements of the

second class have been shown in calculations to be numerically small.

Nakatsuji and Yasuda have proposed a different second-order formula for the

connected 3-RDM, which they derived from Feynman perturbation theory

[19, 24]. Their correction may be written

3�i;j;k
q;s;t �

1

6

X
l

slÂAð2�i;l
q;s

2�j;k
l;t Þ ð52Þ

where sl equals 1 if l is occupied in the Hartree–Fock reference and �1 if l is not

occupied. Computational experience shows that the Nakatsuji–Yasuda correction

also does not improve the classes of cumulant 3-RDM elements in Eq. (51), and

in fact, like the correction in Eq. (49), it often makes these elements worse than

assuming that they are zero. Hence in the CSE we assume that these elements are

zero.

To complete our discussion of the formulas for the connected 3-RDM, we

mention that the system of equations in Eq. (48) and the formula in Eq. (49),

which is often called the Mazziotti correction [24, 26, 29] to distinguish it

from the Nakatsuji–Yasuda correction [19, 24] for the 3-RDM, can also be

derived from a contracted Schrödinger equation for the number operator:

hcjayi ayj aykatasaqN̂Njci ¼ Nð3! 3Di;j;k
q;s;tÞ ð53Þ

where in second quantization the number operator is given by

N̂N ¼
X
l

a
y
l al ð54Þ

The right-hand side of the CSE does not scale linearly with N because N times

the 3-RDM scales between N2 and N4. Taking the part of the equation that scales

linearly with N, we obtain

hcjayi ayj aykayt aysayqN̂NjciC ¼ 0 ð55Þ
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in which the notation h iC indicates the connected part of the expectation value.

Writing Eq. (55) in terms of the cumulant parts of the 1-, 2-, 3-, and 4-RDMs

yields precisely the system of equations in Eq. (48), and upon unitary transfor-

mation to a natural-orbital basis set we can obtain the formula in Eq. (49). The

only difference in the two derivations is the placement of the number operator. In

second quantization the contraction in Eq. (47) is

1

4!
hcjayi ayj aykN̂Natasaqjci ¼

N � 3

4
3Di;j;k

q;s;t ð56Þ

Taking the connected part of both sides yields

1

4!
hcjayi ayj aykN̂NatasaqjciC ¼ �

3

4
3�i;j;k

q;s;t ð57Þ

Upon simplification it is not difficult to show that Eq. (57) is equivalent to Eqs.

(48) and (55). Therefore the position of the number operator does not affect the

relation that we have derived for the cumulant 3-RDM. More general relations

for the cumulant p-RDM may similarly be derived by contracting the ðpþ 1Þ-
RDM to the p-RDM.

E. Cumulant Structure of the CSE

Cumulant theory offers a systematic approach to reconstructing the 3- and

4-RDMs within the CSE from the 2-RDM, but it also provides insight into the

structure of the CSE. Let us define 1C as the connected part of the left-hand side

of the 1,3-CSE,

1Ci
k ¼ hcjayi akĤHjciC ð58Þ

and 2C as the connected part of the left-hand side of the CSE,

2C
i;j
k;l ¼

1

2
hcjayi ayj alakĤHjciC ð59Þ

As in the previous section, by connected we mean all terms that scale linearly

with N. Wedge products of cumulant RDMs can scale linearly if and only if they

are connected by the indices of a matrix that scales linearly with N (transvec-

tion). In the previous section we only considered the indices of the one-particle

identity matrix in the contraction (or number) operator. In the CSE we have the

two-particle reduced Hamiltonian matrix, which is defined in Eqs. (2) and (3).

Even though the one-electron part of 2K scales as N2, the division by N � 1 in

Eq. (3) causes it to scale linearly with N. Hence, from our definition of

connected, which only requires the matrix to scale linearly with N, the transvection
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terms involving 2K will be connected. Alternatively, one could define the Hamil-

tonian operator as

H ¼
X
p;s

Eps a
y
pas þ

1

2

X
p;q;s;t

2Vp;q
s;t a

y
pa
y
qatas ð60Þ

and then the transvection terms would be defined with respect to the linear-in-N-

scaling and local matrices E and 2V .

It is not difficult to show that the CSE has the following structure in terms of

its connected parts 1C and 2C and the 1- and 2-RDMs:

E 2Dþ 1D ^ 1C þ 2C ¼ E 2D ð61Þ
For any choice for the 2-RDM the first unconnected term on the left-hand side of

the CSE precisely cancels with the right-hand side. This part of the CSE, there-

fore, does not contain any information about the 2-RDM, and the CSE is satis-

fied if and only if

1D ^ 1C þ 2C ¼ 0 ð62Þ
These two terms, 1D ^ 1C and 2C, however, scale as N2 and N, respectively.

Hence they cannot cancel each other, and we have the result that the CSE is

satisfied if and only if the connected 1,3-CSE and the connected CSE vanish:

1C ¼ 0 ð63Þ
2C ¼ 0 ð64Þ

The connected structure of the CSE has also been explored by Yasuda [23] using

Grassmann algebra, by Kutzelnigg and Mukherjee [27] using a cumulant version

of second-quantized operators, and by Herbert and Harriman [30] using a dia-

grammatic technique.

IV. PURIFICATION OF THE 2-RDM

The concept of purification is well known in the linear-scaling literature for one-

particle theories like Hartree–Fock and density functional theory, where it denotes

the iterative process by which an arbitrary one-particle density matrix is projected

onto an idempotent 1-RDM [2, 59–61]. An RDM is said to be pure N-representable

if it arises from the integration of an N-particle density matrix ���, where � (the

preimage) is an N-particle wavefunction [3–5]. Any idempotent 1-RDM is N-

representable with a unique Slater-determinant preimage. Within the linear-scaling

literature the 1-RDM may be directly computed with unconstrained optimization,

where iterative purification imposes the N-representability conditions [59–61].

Recently, we have shown that these methods for computing the 1-RDM directly
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are related to the solution of the 1,2-CSE (1,2-CSE is the contraction of the Schrö-

dinger equation onto the one-particle space) [62].

While purification for noninteracting 1-RDMs was first pioneered by

McWeeny in the late 1950s [2], the concept was not extended to correlated den-

sity matrices until 2002 [29]. We define purification of correlated RDMs as the

iterative process by which an arbitrary p-particle density matrix is projected onto

a p-RDM that obeys several necessary conditions for N-representability [28].

Note that the word necessary is used since the full set of N-representability con-

ditions for the p-RDM (p > 1) is not known. Although there is a considerable

literature on minimizing the energy with respect to a 2-RDM that is constrained

by N-representability conditions [4, 63–74], the literature on correcting a

2-RDM that is not N-representable is not large [17, 28, 29, 34, 35, 51, 53,

75]. The need for such techniques is suggested by the iterative nature of the

CSE. The extension of purification to the 2-RDM plays a role in the solution

of the 2,4-CSE, which is analogous to the role of 1-RDM purification in the solu-

tion of the 1,2-CSE [28, 29].

A. N-Representability of the 1-RDM

Some of the most important N-representability conditions on the 2-RDM arise

from its relationship with the 1-RDM. A 2-RDM must contract to a 1-RDM that

is N-representable,

1D ¼ 2

N � 1

� �
L̂L
1

2ð2DÞ ð65Þ

where the operator L̂L
1

2 denotes the contraction operator that maps the 2-RDM to the

1-RDM. The factor of ðN � 1Þ=2 arises from the normalization of the 1-RDM and

2-RDM to N and NðN � 1Þ=2, respectively. The N-representability conditions for
the 1-RDM arise from the particle–hole duality [7, 53, 63]. The expectation value

of the anticommutation relation for fermions in Eq. (15) yields the relation between

the elements of the 1-RDM 1Di
j and the elements of the one-hole RDM 1 �DD

i
j,

1 �DD
i
j þ 1Di

j ¼ 1Iij ð66Þ

where 1I is the identity matrix. Any 1-RDM is ensemble N-representable if and

only if it is Hermitian with trace N and both the 1-RDM and its one-hole RDM

are positive semidefinite [3, 4, 7, 53, 63], which is denoted by

1D � 0 ð67Þ

and

1 �DD � 0 ð68Þ
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A matrix is positive semidefinite if and only if all of its eigenvalues are nonne-

gative. Because the 1-RDM and the one-hole RDM share the same eigenvectors,

these two positivity restrictions are equivalent to constraining the occupation

numbers of the 1-RDM to lie between zero and one [3].

Purification of a trial 2-RDM with the 1-RDM conditions may be accom-

plished by contracting the 2-RDM as in Eq. (65) and checking that the eigenva-

lues of the 1-RDM lie between zero and one. If the eigenvalues fall outside this

interval, neither the 1-RDM nor the 2-RDM can be N-representable. Any

method for adjusting the 1-RDM occupation numbers must preserve the trace

of the 1-RDM, which is the number N of particles. We have employed the fol-

lowing algorithm to effect this purification: (i) set all of the negative 1-RDM

eigenvalues to zero; (ii) correct the trace by decreasing the occupation number

for the highest occupied orbital; (iii) set all 1-RDM eigenvalues greater than one

to one; and (iv) correct the trace by increasing the occupation number for the

lowest unoccupied orbital. We decrease the highest occupied orbital and increase

the lowest unoccupied orbital since these changes are unlikely to produce occu-

pation numbers outside the zero-to-one interval. This is only one reasonable

approach to ensuring that the occupation numbers of the 1-RDM are N-

representable; many variations on this simple strategy may also be employed.

Once the 1-RDM has been adjusted to be N-representable, we need a method

for modifying the 2-RDM so that it contracts by Eq. (65) to the updated 1-RDM.

B. N-Representability of the 2-RDM

The appropriate modification of the 2-RDM may be accomplished by combining

N-representability constraints, known as positivity conditions, with both the uni-

tary and the cumulant decompositions of the 2-RDM.

1. Unitary and Cumulant Decompositions of the 2-RDM

Any two-particle Hermitian matrix 2A may be decomposed into three compo-

nents that exist in different subspaces of the unitary group. These components

reveal the structure of the matrix with respect to the contraction operation

[4, 76–80],

2A ¼ 2A0 þ 2A1 þ 2A2 ð69Þ

where

2A0 ¼ 2Trð2AÞ
rðr � 1Þ

2I ð70Þ

2A1 ¼ 4

r � 2
1A ^ 1I � 4 Trð2AÞ

rðr � 2Þ
2I ð71Þ
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and

2A2 ¼ 2A� 4

r � 2
1A ^ 1I þ 2Trð2AÞ

ðr � 1Þðr � 2Þ
2I ð72Þ

The one-particle matrix 1A is the contraction of the two-particle matrix 2A,

1A ¼ L̂L
1

2ð2AÞ ð73Þ

the symbol r denotes the rank of the one-particle basis set, and

2I ¼ 1I ^ 1I ð74Þ

The zeroth component 2A0 contains the trace information for 2A,

L̂L
0

2ð2A0Þ ¼ Trð2A0Þ ¼ Trð2AÞ ð75Þ

and the first component 2A1 contains the one-particle information for 2A except

for the trace:

L̂L
1

2ð2A0 þ 2A1Þ ¼ 1A ð76Þ

The two-particle component of 2A carries information that vanishes upon con-

traction,

L̂L
1

2ð2A2Þ ¼ 0 ð77Þ

where 0 in this equation represents the zero matrix.

The unitary decomposition may be applied to any Hermitian, antisymmetric

two-particle matrix including the 2-RDM, the two-hole RDM, and the two-

particle reduced Hamiltonian. The decomposition is also readily generalized to

treat p-particle matrices [80–82]. The trial 2-RDM to be purified may be written

2D ¼ 2D0 þ 2D1 þ 2D2 ð78Þ

Note that if 2A ¼ 2D in Eqs. (70), (71), and (72), then from Eqs. (65) and (76) we

have that

1A ¼ N � 1

2

� �
1D ð79Þ
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Using Eq. (71) and the adjusted 1-RDM from the last section, we can construct a

modified one-particle portion of the 2-RDM 2Da
1. Then the appropriate 2-RDM

that contracts to the adjusted 1-RDM is readily expressed as

2Da ¼ 2D0 þ 2Da
1 þ 2D2 ð80Þ

Both the trace and one-particle subspaces of the 2-RDM are now N-representa-

ble. Does the 1-RDM tell us anything about the two-particle component of the

2-RDM, which vanishes when it is contracted to the one-particle space? Before

examining additional N-representability conditions, we address this question.

As discussed in Sections III. B and III. C the unitary decomposition is not the

only approach for expressing an RDM in terms of lower RDMs. The cumulant

decomposition (or expansion) of the 2-RDM [21, 22, 24, 26, 39, 40] is

2D ¼ 1D ^ 1Dþ 2� ð81Þ

The portion of the 2-RDM that may be expressed as wedge products of lower

RDMs is said to be unconnected. The unconnected portion of the 2-RDM

contains an important portion of the two-particle component from the unitary

decomposition 2D2, and similarly, the trace and one-particle unitary components

contain an important portion of the connected 2-RDM 2�, which corrects the

contraction. Both decompositions may be synthesized by examining the unitary

decomposition of the connected 2-RDM,

2� ¼ 2�0 þ 2�1 þ 2�2 ð82Þ
The trace and the one-particle components of the connected 2-RDM are comple-

tely determined by the 1-RDM. Hence, it is the two-particle unitary subspace of

the connected 2-RDM that may require further purification.

Similarly, the cumulant decomposition for the two-hole RDM is

2 �DD ¼ 1 �DD ^ 1 �DDþ 2 ��� ð83Þ

With the anticommutation relation for fermions in Eq. (15) and the second-

quantized definitions, it has been shown that the connected portions of the

two-particle and two-hole RDMs are equal [14, 20, 38]:

2 ��� ¼ 2� ð84Þ

It follows that

2 ���2 ¼ 2�2 ð85Þ
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Therefore we have the important fact that for a fixed 1-RDM any correction to the

2-RDM will also be a correction to the two-hole RDM. In the next section we use

this fact in purifying the 2-RDM to satisfy two N-representability restrictions.

2. Positivity Conditions on the 2-RDM

Two significant N-representability conditions on the 2-RDM are that both the

two-particle and the two-hole RDMs must be positive semidefinite:

2D � 0 ð86Þ
and

2 �DD � 0 ð87Þ
In the N-representability literature these positivity conditions are known as the

D- and the Q-conditions [5, 7, 63]. The two-particle RDM and the two-hole

RDM are linearly related via the particle–hole duality,

2 �DD ¼ 2I � 2 1D ^ 1I þ 2D ð88Þ
If the trial 2-RDM does not obey the D-condition, then it has a set of eigenvec-

tors fvig whose associated eigenvalues are negative. Hence we can construct a

set of two-particle matrices f2Oig
2Oi ¼ viv

y
i ð89Þ

for which

Trð2Oi
2DÞ < 0 ð90Þ

Each member of the set f2Oig is said to expose the 2-RDM [4, 52]. Similarly, if

the trial 2-RDM does not obey the Q-condition, then the two-hole RDM has a set

of eigenvectors f�vvig whose associated eigenvalues are negative. The bar in �vvi
simply distinguishes the eigenvectors of the two-hole RDM from those of the

2-RDM; it does not denote the adjoint. A set of two-hole matrices f2 �OOig may

be generated

2 �OOi ¼ �vvi�vv
y
i ð91Þ

for which

Trð2 �OOi
2 �DDÞ < 0 ð92Þ

As with the D-condition, each member of the set f2 �OOig is said to expose the two-
hole RDM.
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The 2-RDM may be made positive semidefinite if each of the negative eigen-

values is set to zero, but this alters not only the positivity but also the contraction

of the 2-RDM to the 1-RDM and even the 2-RDM trace. How can we modify the

2-RDM to prevent it from being exposed by the set f2Oig and yet maintain con-

traction to the N-representable 1-RDM? Again we can employ the unitary

decomposition. For a matrix 2Oi the decomposition is

2Oi ¼ 2Oi;0 þ 2Oi;1 þ 2Oi;2 ð93Þ
Zeroing the 2-RDM eigenvalue associated with vi is equivalent to adding an

appropriate amount of 2Oi to the 2-RDM. However, this also changes the trace

and the underlying 1-RDM because 2Oi contains the zeroth and the first compo-

nents of the unitary decomposition. We can modify the two-particle component

only by adding just 2Oi;2 rather than 2Oi. The adjusted 2-RDM may then be

expressed as

2Da ¼ 2Dþ
X
i

ai 2Oi;2 ð94Þ

where the set of coefficients is determined from the system of linear equations

Trð2Oi
2DaÞ ¼ 0 8i ð95Þ

Although the adjusted 2-RDM is not exposed by any of the matrices in the set

f2Oig, in general there will be new eigenvectors with negative eigenvalues.

However, these negative eigenvalues are in general smaller than those of the

unadjusted 2-RDM. Hence, by repeating this process iteratively, the 2-RDM

may be purified so that the D-condition is satisfied without modifying the

contraction.

Analogously, the two-hole matrices in the set f2 �OOig may be decomposed:

2 �OOi ¼ 2 �OOi;0 þ 2 �OOi;1 þ 2 �OOi;2 ð96Þ
To impose only the Q-condition, we have an adjusted two-hole RDM

2 �DDa ¼ 2 �DDþ
X
i

bi
2 �OOi;2 ð97Þ

whose coefficients are determined from the system of linear equations

Trð2 �OOi
2 �DDaÞ ¼ 0 8i ð98Þ

One possibility for imposing both the D- and the Q-conditions is to update the

2-RDM via Eqs. (94) and (95), convert the 2-RDM to the two-hole RDM, update

the two-hole RDM via Eqs. (97) and (98), and then to repeat this process until

contracted schr€oodinger equation 189



convergence. However, this alternating approach does not usually show good

convergence since the 2-RDM changes often damage Q-positivity and the

two-hole RDM changes often adversely affect D-positivity. A better approach

would be to impose both the D- and the Q-updates simultaneously.

A simultaneous purification with respect to both the D- and the Q-conditions

may be achieved by using the fact that for a fixed 1-RDM any correction to the

2-RDM will also be a correction to the two-hole RDM and vice versa. This sug-

gests that we write the adjusted 2-RDM as

2Da ¼ 2Dþ
X
i

ai 2Oi;2 þ
X
i

bi
2 �OOi;2 ð99Þ

where the expansion coefficients are determined by solving the linear equations

in both Eqs. (95) and (98) simultaneously. Note that the linear mapping between

the 2-RDM and the two-hole RDM must be employed in Eq. (98). The resulting

adjusted 2-RDM will not be exposed by either the operators f2Oig or, in its two-

hole form, the operators f2 �OOig. Repeated application of this purification pro-

duces a 2-RDM that satisfies, to a specified tolerance, theD- and theQ-conditions.

3. Spin Blocks of the 2-RDM

The RDMs for atoms and molecules have a special structure from the spin of the

electrons. To each spatial orbital, we associate a spin of either a or b. Because
the two spins are orthogonal upon integration of the N-particle density matrix,

only RDM blocks where the net spin of the upper indices equals the net spin of

the lower indices do not vanish. Hence a p-RDM is block diagonal with ðpþ 1Þ
nonzero blocks. Specifically, the 1-RDM has two nonzero blocks, an a-block and
a b-block:

1D
a;i
a;j 6¼ 0 1D

b;i
b;j 6¼ 0 ð100Þ

and the 2-RDM has three nonzero blocks, an a=a-block, an a=b-block, and a

b=b-block:

2D
a;i;a;k
a;j;a;l 6¼ 0 2D

a;i;b;k
a;j;b;l 6¼ 0 2D

b;i;b;k
b;j;b;l 6¼ 0 ð101Þ

The spin structure enhances computational efficiency since each of the blocks

may be purified separately.

For the remainder of this section we treat closed-shell atoms and molecules,

where the a- and the b-spins are indistinguishable. Because the a- and the

b-blocks of the 1-RDM are equal, we need only purify the eigenvalues for

one of these blocks.
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As in Section IV.A. the eigenvalues of the 1-RDM must lie in the interval

½0; 1� with the trace of each block equal to N=2. Similarly, with the a=a- and
the b=b-blocks of the 2-RDM being equal, only one of these blocks requires pur-

ification. The purification of either block is the same as in Section IV.B.2 with

the normalization being NðN=2� 1Þ=4. The unitary decomposition ensures that

the a=a-block of the 2-RDM contracts to the a-component of the 1-RDM. The

purification of Section IV.B.2, however, cannot be directly applied to the a=b-
block of the 2-RDM since the spatial orbitals are not antisymmetric; for exam-

ple, the element with upper indices a; i; b; i is not necessarily zero. One possibi-

lity is to apply the purification to the entire 2-RDM. While this procedure

ensures that the whole 2-RDM contracts correctly to the 1-RDM, it does not gen-

erally produce a 2-RDM whose individual spin blocks contract correctly.

Usually the overall 1-RDM is correct only because the a=a-spin block has a con-

traction error that cancels with the contraction error from the a=b-spin block.

A better strategy is to introduce a modified unitary decomposition for the

a=b-block. An appropriate decomposition is

2D
a;b
0 ¼

Trð2Da;bÞ
r2s

1Iaa
1I

b
b ð102Þ

2D
a;b
1 ¼

1

rs

1Da
a �

Trð1Da
aÞ

rs

1Iaa

� �
1I

b
b þ

1

rs

1Iaa
1D

b
b �

Trð1Db
bÞ

rs

1I
b
b

 !
ð103Þ

and

2D
a;b
2 ¼ 2Da;b � 2D

a;b
1 � 2D

a;b
0 ð104Þ

where rs denotes the number of spatial orbitals, which equals half the number r

of spin orbitals. Like the unitary decomposition for antisymmetric matrices in

Section IV.B.1, the zeroth component 2D
a;b
0 contains the trace information,

L̂L
0

2ð2Da;b
0 Þ ¼ Trð2Da;b

0 Þ ¼ Trð2Da;bÞ ð105Þ
and the first component 2D

a;b
1 contains the one-particle information except for

the trace,

L̂L
1

2ð2Da;b
0 þ 2D

a;b
1 Þ ¼

N

2
1Da

a ð106Þ

The two-particle component of 2Da;b carries information that vanishes upon con-

traction,

L̂L
1

2ð2Da;b
2 Þ ¼ 0 ð107Þ
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where the 0 represents the zero matrix. The purification process for the 2-RDM’s

a=b-block remains the same as described in Section IV.B.2 except that the

decomposition in Eqs. (102)–(104) is employed.

V. SELF-CONSISTENT ITERATION

A fundamental approach to computing the ground-state wavefunction and its

energy for an N-electron system is the power method [20, 83]. In the power

method a series of trial wavefunctions j�ni are generated by repeated application
of the Hamiltonian

j�nþ1i ¼ Hj�ni ð108Þ

The Hamiltonian gradually filters the ground-state wavefunction from the trial

wavefunction. To understand this filtering process, we expand the initial trial

wavefunction in the exact wavefunctions of the Hamiltonian j�ii. With n itera-

tions of the power method, we have

j�nþ1i ¼ Hnj�1i ð109Þ
¼ En

1c1j�1i þ En
2c2j�2i þ � � � þ En

i cij�ii ð110Þ

As long as the jE1j is greater than jEij for any i 6¼ 1, the power method upon

normalization will converge to j�1i. The rate of convergence depends on the

ratio of the energy with second largest magnitude to the energy with the largest

magnitude, that is, jE2j=jE1j.
The power method for the wavefunction may be adapted to a power method

for the N-particle density matrix:

NDnþ1 ¼ 1
2
ðHNDn þ NDnHÞ ð111Þ

If j�i ¼ j�nþ1i � j�ni, then the wavefunction update in Eq. (108) corresponds

to the following density-matrix update,

NDnþ1 ¼ j�n þ�ih�n þ�j ð112Þ
¼ NDn þ j�ih�nj þ j�nih�j þ j�ih�j ð113Þ

while the density-matrix update in Eq. (111) is

NDnþ1 ¼ NDn þ 1
2
j�ih�nj þ 1

2
j�nih�j ð114Þ
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The two updates differ only by a factor of one-half before the first-order change

from � and the second-order change. Unlike the wavefunction power method,

the N-particle density matrices from each iteration in Eq. (111) are not exactly

positive semidefinite until convergence.

A contracted power method for the 2-RDM may be developed by projecting

the N-particle power method onto the space of two particles

2D
i;j;k;l
nþ1 ¼

1

4E

	h�njayi ayj alakHj�ni þ h�njHayi ayj alakj�ni

 ð115Þ

where E is the energy associated with the nth trial 2-RDM. From the CSE we can

write Eq. (115) as

2D
i;j;k;l
nþ1 ¼

1

4E

X
m;n;p;q

ð4Gi;j;k;l
m;n;p;q þ 4G

m;n;p;q
i;j;k;l Þ2Km;n

p;q ð116Þ

where the generalized G-matrix 4G is expressible in terms of the 3- and the

4-RDMs as follows:

4Gi;j;k;l
m;n;p;q ¼ 4! 4Di;j;m;n

k;l;p;q þ 3!ð3Di;j;m
l;p;qd

n
k � 3D

i;j;m
k;p;qd

n
l Þ ð117Þ

þ 3!ð3Di;j;n
k;p;qd

m
l � 3D

i;j;n
l;p;qd

m
k Þ þ 22Di;j

p;qðdmk dnl � dml d
n
kÞ ð118Þ

The 2-RDM is automatically antisymmetric, but it may require an adjustment of

the trace to correct the normalization. The functionals in Table I from cumulant

theory allow us to approximate the 3- and the 4-RDMs from the 2-RDM and,

hence, to iterate with the contracted power method. Because of the approximate

reconstruction the contracted power method does not yield energies that are

strictly above the exact energy. As in the full power method the updated

2-RDM in Eq. (116) moves toward the eigenstate whose eigenvalue has the lar-

gest magnitude.

VI. ALGORITHM FOR SOLVING THE CSE

Here we synthesize the concepts of the last four sections, (i) CSE, (ii) recon-

struction, (iii) purification, and (iv) a contracted power method, to obtain an

iterative algorithm for the direct calculation of the 2-RDM.

CSE Algorithm

1. Select an initial 2-RDM such as the Hartree–Fock 2-RDM.

2. Reconstruct the 3- and 4-RDMs from the 2-RDM.

contracted schr€oodinger equation 193



3. Evaluate the 2-RDM update in Eq. (116).

4. Purify the new 2-RDM.

5. Repeat steps 2, 3, and 4 until convergence.

In practice, the reconstruction of the 3- and 4-RDMs is performed while the CSE

is being evaluated in step 3. With fast summation the scaling of the CSE algo-

rithm is r6 with the connected 3-RDM set to zero and r7 with connected 3-RDM

corrections.

VII. APPLICATIONS

With the CSE both the N-particle energy and the 2-RDM may be computed for

quantum systems of fermions. In this section we illustrate the contracted power

method for several molecular systems. Each of the molecules in Table III is trea-

ted in its equilibrium geometry [84], where the integrals are computed with PC

Gamess [85], an implementation of the quantum chemistry package GAMESS

(USA) [86]. The molecules in Tables III to V are represented with Slater-type

orbitals expanded in six Gaussian functions while the molecules in Table VI

are treated in a split-valence double-zeta basis set [87]. Spin orbitals are

employed, and none of the core orbitals is frozen. The wavefunction methods

and their abbreviations are: (i) Hartree–Fock (HF), (ii) second- and third-order

many-body perturbation theory (MP2 and MP3, respectively), and (iii) full con-

figuration interaction (FCI). The contracted power method with purification is

applied with three different choices for reconstructing the RDMs in the CSE:

(i) the first-order (or unconnected) formula (U), (ii) the second-order (Nakatsuji–

Yasuda) formula (N), and (iii) the second-order (Mazziotti) formula (M).

For all molecules in Table III the U energies are better than those obtained

from MP2. The U method yields 99.4% and 101.6% of the correlation energy

TABLE III

Molecular Energies from the CSE (STO Basis)

% of Correlation Energy

Energy c Methods CSE Methods

Molecule HF FCI MP2 MP3 U N M

BeH2 �15.7233 �15.7590 65.2 86.8 107.4 105.8 106.4

CH4 �39.7144 �39.7926 74.2 91.3 118.6 105.9 103.6

CO �112.3033 �112.4430 92.1 89.1 99.4 85.1 83.8

H2O �75.6788 �75.7289 71.4 90.9 110.9 99.7 93.3

N2 �108.5418 �108.7005 97.9 94.4 101.6 87.5 86.2

NH3 �55.7200 �55.7890 76.0 91.8 119.7 100.4 99.3
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(CE) for CO and N2, while MP3 produces only 89.1% and 94.4% of the CE for

these molecules. Figure 1 presents the energy for CO as a function of the number

of contracted power iterations. All of the molecules except CO and N2 have even

better energies with the second-order methods. For the molecules BeH2, CH4,

H2O, and NH3, both the M and the N methods generate more of the CE than

either MP2 or MP3. With MP2 the percentage of CE ranges from a low of

65.2% for BeH2 to a high of 76% for NH3; in contrast, the ranges for M and

N are from 93.3% (H2O) to 99.3% (NH3) and from 94.1% (CH4) to 99.7%

(H2O). Even for CO and N2 the CEs of the N method differ from those of

MP3 by only 0.006 au and 0.011 au while the absolute values of the CEs are

0.140 au and 0.159 au, respectively. The N and M methods are rather similar

in accuracy with the methods differing in the percentage of CE by as little as

0.6% (BeH2) and by a maximum of 6.4% (H2O). For the molecules in

Table III the energies from N are a little better than those from M except for

CH4. Both the ability of the first-order U to yield better energies than MP2

and the ability of the second-order methods (M and N) to improve the energies

of MP3 reflect the perturbative renormalization within the CSE.

For each molecule the errors in the a=a- and the a=b-blocks of the 2-RDM are

reported in Table IV. The 2-RDM errors are measured through a least-squares

norm, which is defined by

Error ¼ ðTr½ð2Dexact � 2DapproxÞ2�Þ1=2 ð119Þ

where the 2-RDMs are normalized to unity. Except for CO the a=b-block of the

Hartree–Fock 2-RDM has more error than the a=a-block. Both the N and the M
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Figure 1. The energy for themoleculeCO is given as a function of the number of contracted power

iterations. With first-order (U) reconstruction the CSE obtains the correlation energy within 1%.
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methods improve the a=b-block of the Hartree–Fock 2-RDM by half an order of

magnitude. As with the energies in Table III, both the N and the M methods yield

better 2-RDMs than U except for CO and N2. Hence other two-particle properties

may be expected to mirror the energetic accuracy for CO and N2 offered by U.

In Table V we check the N-representability of the CSE 2-RDMs through three

well-known positivity conditions, the D-, the Q-, and the G-conditions [4, 5, 63].

The D- and the Q-conditions are given in Eqs. (86) and (87), while the

G-condition states that the following matrix (known as the G-matrix)

2G
i;j
k;l ¼ h�jayi ajayl akj�i ð120Þ

must be positive semidefinite. These conditions are necessary but not sufficient

for the 2-RDM to be N-representable. In Table V the D-, the Q- and the

G-matrices are normalized to unity. Note that the energetic similarity between

the N and the M methods is further reflected in positivity errors, which are quite

close when compared with the positivity errors from the U approximation. We

TABLE IV

2-RDM Error from the CSE

jj2Da;b
CSE � 2D

a;b
FCIjj

Molecule HF U N M

BeH2 0.0151 0.00567 0.00401 0.00363

CH4 0.00655 0.00240 0.00143 0.00146

CO 0.00520 0.00202 0.00273 0.00277

H2O 0.00519 0.00228 0.00100 0.00116

N2 0.00515 0.00182 0.00247 0.00250

NH3 0.00633 0.00211 0.00113 0.00131

TABLE V

Positivity of the CSE 2-RDMs

Positivity Error Measured by the Lowest Negative Eigenvalue

D-Matrix Q-Matrix G-Matrix

Molecule U M U M U M

BeH2 �2.5e�5 �3.1e�5 �7.4e�6 �9.4e�6 �1.2e�4 �1.3e�4
CH4 �1.9e�7 �1.3e�7 �5.7e�6 5.1e�7 �8.0e�5 �1.1e�4
CO �6.7e�8 �7.1e�14 �1.4e�5 �5.9e�7 �5.9e�5 �1.4e�4
H2O �1.5e�5 �1.2e�13 �6.0e�5 �1.7e�6 �2.2e�4 �1.3e�4
N2 �3.3e�7 �4.3e�14 �1.0e�5 �6.3e�7 �6.7e�5 �1.4e�4
NH3 �8.7e�7 �3.4e�8 �2.5e�5 �1.5e�6 �8.1e�5 �8.9e�5
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expect the 2-RDM to satisfy the D- and the Q-conditions since they are enforced

at each iteration of the contracted power method through purification. However,

it is quite important that within the framework of the CSE and reconstruction the

enforcement of the D- and Q-conditions also causes the G-condition to be satis-

fied within 10�4. As shown in Fig. 1, without purification the CSE obtains only

half of the correlation energy before diverging.

In Table VI we apply the CSE algorithm to several molecules in a double-zeta

basis set [87]. The first-order reconstruction U within the CSE yields energies

that are similar to those from MP2 for BeH2, BH, CH4, HF, H2O, and NH3.

Again, the first-order reconstruction captures second-order accuracy in the ener-

gies. The second-order N and M methods improve on the energies of the U

method except for HF, CO, and N2. Both N and M are significantly better

than MP2 for BeH2, BH, and CH4; for example, with BeH2 MP2 yields

69.5% while N and M give 90.5% and 88.8%, respectively. For NH3 and H2O

the M and the N methods produce more than 90% of the CE, which is similar to

the accuracy of MP2 and MP3. Even for N2, CO, and HF the percentage of CE

from N trails the percentages from MP3 by only 5.7%, 4.7%, and 4.3%. The

energies from the N and the M methods are quite similar with the energies

from N being slightly more accurate for the double-zeta molecules considered;

the percentages of CE from the two methods differ by as little as 0.4% for HF

and only by as much as 3.8% for N2.

VIII. A LOOK AHEAD

An algorithm for solving the CSE has been developed with emphasis on three

key features: (i) reconstruction of the 3- and 4-RDMs, (ii) purification of the

TABLE VI

Molecular Energies from the CSE (Double-Zeta Basis)

% of Correlation Energy

Energy c Methods CSE Methods

Molecule HF FCI MP2 MP3 U N M

BeH2 �15.7602 �15.8008 69.5 89.0 71.9 90.5 88.8

BH �25.1134 �25.1740 59.7 81.3 51.3 73.5 71.1

CH4 �39.8951 �40.0182 83.3 94.0 79.7 92.5 90.6

CO �112.6848 �112.8934 97.3 89.4 81.3 84.7 81.1

HF �100.0219 �100.1464 96.6 94.9 103.2 90.6 90.2

H2O �76.0091 �76.1419 93.5 94.4 91.8 95.5 92.8

N2 �108.8781 �109.1043 100.9 90.6 80.7 84.9 81.1

NH3 �55.9648 �56.0988 89.4 94.2 83.2 94.0 90.8
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2-RDM, and (iii) optimization by self-consistent iteration. The CSE method

allows the direct calculation of the electronic energies and 2-RDMs without cal-

culation or storage of the many-electron wavefunction. While significant pro-

gress has been made in the last decade in using the CSE to compute the 2-

RDM, there remain many open questions and directions for improving both

the efficiency and accuracy of the calculations. We believe that important pro-

gress will be made in the three key areas of reconstruction, purification, and opti-

mization, where purification will benefit from the recent advances in the

variational optimization of the 2-RDM via semidefinite programming [63, 66–

74], which is discussed in the next part of the book. A related, interesting area

for future research is the anti-Hermitian part of the CSE [27, 31, 63], which may

be written with a commutator as

hcj½aypayqatas; ĤH�jci ¼ 0 ð121Þ
Importantly, the anti-Hermitian CSE may be evaluated through second order of a

renormalized perturbation theory even when the cumulant 3-RDM is neglected

in the reconstruction. The anti-Hermitian part of the CSE [27, 31, 63] is the sta-

tionary condition for two-body unitary transformations of the N-particle wave-

function [31, 32], and hence the two-body unitary transformations may easily be

evaluated with the anti-Hermitian CSE and RDM reconstruction without the

many-electron Schrödinger equation. The contracted Schrödinger equation in

conjunction with the concepts of reconstruction and purification provides a

new, important approach to computing the 2-RDM directly without the many-

electron wavefunction.
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APPENDIX: GRASSMANN PRODUCTS

The Grassmann (or wedge) product [20, 54, 78] of a q-RDM with a ðp� qÞ-
RDM may be expressed as

qD ^ ðp�qÞD ¼ AN
qD
 ðp�qÞDAN ðA1Þ

where AN is the N-particle antisymmetrization operator and 
 is the tensor pro-

duct. To utilize this formula in a calculation, we must understand the technique
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for evaluating wedge products of matrices. Let us first consider the wedge pro-

duct C of two one-particle matrices, 1A and 1B,

2C ¼ 1A ^ 1B ðA2Þ

The elements c
i;j
k;l of the matrix 2C may be obtained from aik and b

j
l by summing

the distinct products arising from all antisymmetric permutations of the upper

indices and all antisymmetric permutations of the lower indices. With the wedge

product of one-particle matrices, there are only four distinct possibilities:

c
i;j
k;l ¼ aik ^ b

j
l ¼ 1

4
ðaikbjl � a

j
kb

i
l � ailb

j
k þ a

j
lb

i
kÞ ðA3Þ

More generally, we can write the elements of the wedge product as

a
i1;i2;:::;ip
j1;j2;:::;jp

^ b
ipþ1;:::;iN
jpþ1;:::;jN ¼

1

N!

� �2X
p;s

EðpÞEðsÞpsai1;i2;:::;ipj1;j2;:::;jp
b
ipþ1;:::;iN
jpþ1;:::;jN ðA4Þ

in which p represents all permutations of the upper indices and s represents all

permutations of the lower indices, while the function EðpÞ returns þ1 for an even
number of transpositions and �1 for an odd number of transpositions. Since both

the upper and the lower indices have N! permutations, there are ðN!Þ2 terms in

the sum. Hence normalization requires division by ðN!Þ2. If, however, the ele-

ments a
i1;i2;...;ip
j1;j2;...;jp

and b
ipþ1;...;iN
jpþ1;...;jN are already antisymmetric in their upper and lower

indices, only ðN!=ðp!q!ÞÞ2 of the above terms will be distinct. This allows us to

decrease the number of numerical operations required for computing the wedge

product. For wedge products between matrices with the same number of upper

and lower indices, we have an important commutation relation

pA
i1;i2;...;ip
j1;j2;...;jp

^ qB
ipþ1;...;iN
jpþ1;...;jN ¼ qB

i1;...;iq
j1;...;jq

^ pA
iqþ1;...;iN
jqþ1;...;jN ðA5Þ

or without the indices

pA ^ qB ¼ qB ^ pA ðA6Þ

If the sum ðpþ qÞ is odd, exchanging the p upper indices with q upper indices

will produce a minus sign, but this will be cancelled by another minus sign pro-

duced by exchanging the lower indices. In many cases it will be easier and

clearer to write the wedge products as in the second form, Eq. (A6), without spe-

cifying a particular element through indices.
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I. INTRODUCTION

The possibility of describing a many-body system of N electrons through the use

of the second-order reduced density matrix (2-RDM) [1–6] was proposed by

Husimi [7], Löwdin [8], Mayer [9], McWeeny [10], Ayres [11], Coulson [12],

and Coleman [13] in the 1950s. Such a description implies a simpler approach

to the many-body problem, where explicit calculation of the N-electron

wavefunction is abandoned in favor of a direct computation of the 2-RDM

[1–6]. The difficulty of this approach lies in that even after many years of

research, the set of conditions which such mathematical–physical objects must

fulfill in order to ascertain that they can be derived from a well-behaved pure

spin N-electron wavefunction, the so-called N- and S-representability conditions

[1–6, 13, 14], cannot yet be claimed to be complete. However, the search of

stringent N-and S-representability conditions has been intense and fruitful

[1–6, 15–20]. Thus, although an exact procedure for determining directly an

N- and S-representable 2-RDM has not been found, many mathematical proper-

ties of these matrices are now known and several variational [21–34] and non-

variational [15, 35–69] methods for approximating RDMs and for employing

them have been developed.

Recently, two different general strategies for correcting the representability

defects of an approximated 2-RDM have emerged [70–72]. The common idea

underlying these approaches is to try to ‘‘purify’’ a trial 2-RDM while keeping

the corresponding 1-RDM fixed, which should be N- and S-representable. Since

the 1-RDM derives by contraction from the 2-RDM, the purification may be

achieved by acting on the 2-RDM pure two-body component with a vanishing

contraction into the one-body space. In other words, the aim is to render N- and

S-representable a pure two-body matrix, which is the matrix responsible for the

N- and S-representability defects. One of these purification strategies, proposed

by Mazziotti [70], uses the unitarily invariant decomposition of the 2-RDM

reported in 1974 by Coleman [73] and extended by other authors [74–77]. Apart

from other mathematically significant properties, this decomposition guarantees

that there is no contribution of the 2-RDM pure two-body term to the 2-RDM

contraction into the one-body space. The second purification strategy, initially
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developed by Valdemoro, Alcoba, and Tel [71] and subsequently extended by

Alcoba and Valdemoro [72], is based on the decomposition of the 2-RDM

into two matrices: a matrix that only depends on the 1-RDM, and a pure two-

body correlation matrix [6, 18, 60, 64, 71, 72, 78–87] whose contribution to the

2-RDM contraction vanishes.

Although these purification strategies present a broad field of application, the

original aim was to combine them with the iterative method for solving the

second-order contracted Schrödinger equation [1, 6, 45, 47–52], so that the con-

vergence and stability of its iterative solution would be both accelerated and

enhanced [87]. This question has recently been studied and the results that con-

firm this hypothesis were reported in Refs. [70, 88]. Indeed, the iterative process

is improved and its stability is achieved. This showed not only the effectiveness

of the purification strategies on several atomic and molecular systems but also

their critical role within this methodology.

The aim of this chapter is to review, both from theoretical and practical points

of view, the work done in this direction in the last years.

II. GENERAL NOTATION, BASIC DEFINITIONS,

AND THEORETICAL BACKGROUND

A. General Notation and Basic Definitions

In what follows a two-particle interacting system having a fixed and well-defined

number of particles N will be considered. It will also be considered that the one-

electron space is spanned by a finite basis set of 2K orthonormal spin orbitals.

Under these conditions the 1-RDM and 2-RDM elements are defined in second

quantization language as

1Dis;ks ¼ h�jâayis âaks j�i ð1Þ
and

2! 2Disjs0 ;ksls0 ¼ h�jâayis âayjs0 âals0 âaks j�i ð2Þ

respectively. In these expressions, � represents the N-electron state whose obser-

vables are being investigated; the indices i; j; k; l represent orthonormal orbitals;

and s; s0 represent the spin functions (a or b).
Similarly, the elements of the first- and second-order hole reduced density

matrices (HRDMs) are defined, respectively, as

1Qis;ks ¼ h�jâaks âayis j�i ð3Þ
and

2! 2Qisjs0 ;ksls0 ¼ h�jâals0 âaks âa
y
is
âa
y
js0
j�i ð4Þ

purification of correlated reduced density matrices 207



B. The Energy, the Reduced Density Matrices, and

the N-Representability Problem

In this formalism the spin-independent many-body Hamiltonian may be written

ĤH ¼ 1

2

X
s;s0

X
i;j;k;l

2Kisjs0 ;ksls0 âa
y
is
âa
y
js0
âals0 âaks ð5Þ

where 2K is the reduced Hamiltonian matrix [37,89]

2Kisjs0 ;ksls0 ¼
1

N � 1
ðEis;ksdj;l þ Ejs0 ;ls0di;kÞ þ hisjs0 jksls0 i ð6Þ

Here the symbol E represents the one-electron integral matrix and hisjs0 jksls0 i is
the usual two-electron repulsion integral in the Condon and Shortley notation.

Thus the second-quantized expression of the energy of the state � in terms of

the 2-RDM is

E ¼ h�jĤHj�i ¼
X
s;s0

X
i;j;k;l

2Kisjs0 ;ksls0
2Dksls0 ;isjs0 ð7Þ

This equation implies that if the 2-RDM corresponding to a given state is

known, the energy and, in fact, all its other observables can be obtained. That

is so because the Hamiltonian only has one- and two-electron operators and

therefore the many-body problem may, in principle, be considered an effective

two-body problem. This is only possible if the 2-RDM can be obtained directly,

without previous knowledge of the N-electron wavefunction, which is a difficult

mathematical–physical problem. One therefore needs to know the necessary and

sufficient conditions that a 2-RDM—and, in general, a p-RDM—must satisfy

in order to ensure that there exists an N-electron wavefunction from which it

may be derived. To determine such conditions constitutes the N-representability

problem defined by Coleman [13] in 1963, which is at the origin of a wide

literature [1–6]. This problem has been solved for the 1-RDM and 1-HRDM

by Coleman [13], who reported the set of necessary and sufficient ensemble

N-representability conditions for these matrices. Thus the 1-RDM and

1-HRDM must be Hermitian, must be positive semidefinite, and must be normal-

ized as X
i

1 Dis;is ¼ Ns ð8ÞX
i

1 Qis;is ¼ ðK � NsÞ ð9Þ

208 d. r. alcoba



where Ns denotes the number of electrons with s spin function. Also, these

matrices must be linked as follows:

1Dis;ks þ 1Qis;ks ¼ di;k ð10Þ

Although a formal solution of the N-representability problem for the 2-RDM

and 2-HRDM (and higher-order matrices) was reported [1], this solution is not

feasible, at least in a practical sense [90]. Hence, in the case of the 2-RDM and

2-HRDM, only a set of necessary N-representability conditions is known. Thus

these latter matrices must be Hermitian, Positive semidefinite (D- and Q-

conditions [16, 17, 91]), and antisymmetric under permutation of indices within

a given row/column. These second-order matrices must contract into the first-

order ones according to the following relations:

2!
X
j

2 Disjs0 ;ksjs0 ¼ ðNs0 � ds;s0 Þ 1Dis;ks ð11Þ

2!
X
j

2 Qisjs0 ;ksjs0 ¼ ðK � Ns0 � ds;s0 Þ 1Qis;ks ð12Þ

and must be normalized as [1, 2]

2!
X
i;j

2 Disjs0 ;isjs0 ¼ Ns ðNs0 � ds;s0 Þ ð13Þ

2!
X
i;j

2 Qisjs0 ;ksjs0 ¼ ðK � NsÞ ðK � Ns0 � ds;s0 Þ ð14Þ

Also, these matrices must be related to each other through the second-order

fermion relation [15],

2! 2Qisjs0 ;ksls0 ¼ 2! 2Disjs0 ;ksls0 þ di;kdj;l � 1Djs0 ;ls0di;k � 1Dis;ksdj;l

� ds;s0 ðdi;ldj;k � 1Djs;ksdi;l � 1Dis;lsdj;kÞ ð15Þ

whose semidefinite positiveness expresses the previously mentioned Q-condition

[16, 17, 91].

Equation (15) implies that the 2-RDM and 2-HRDM matrices contain the

same information. Indeed, these matrices are two of the three different matrix

representations of the 2-RDM on the two-body space, the third one being the

second-order G-matrix (2-G) [16]. This matrix, which may be written [24, 25]

2Gisjs0 ;ks00 ls000 ¼ 2! 2Disls000 ; js0 ks00 � ds;s0ds00;s000 1Dis; js
1Dks00 ;ls00 þ ds;s00ds0;s000dj;l 1Dis;ks

ð16Þ
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or equivalently [15]

2Gisjs0 ;ks00 ls000 ¼
X
�0 6¼�

h�jâayis âajs0 j�0ih�0jâa
y
ls000

âaks00 j�i

�
X
�0 6¼�

1 D��0
is;js0

1D�0�
ls00 ;ks000

ð17Þ

where 1D��0 is the First-order transition reduced density matrix (1-TRDM),

must be Hermitian, must be positive semidefinite (G-condition [16, 17, 24, 25,

27, 91]), and must contract into the one-body space according to [71, 79, 83]X
j

2 Gisjs0 ;ksjs0 ¼ ðK � Ns0 Þ 1Dis;ks þ ds;s0 ð1D� 1D
2Þis;ks ð18ÞX

j

2 Gjsis0 ; jsks0 ¼ Nsðdi;k � 1 Dis0 ;ks0 Þ þ ds;s0 ð1D� 1D
2Þis0 ;ks0 ð19Þ

where 1D2 represents the square of the 1-RDM. Also, this matrix must be

normalized asX
i; j

2 Gisjs0 ;isjs0 ¼ Ns ðK � Ns0 þ ds;s0 Þ � ds;s0
X
i

ð1D2Þis;is ð20Þ

Thus it is essential to constrain these three different matrix representations of

the 2-RDM to accomplish all the basic properties just reported when considering

the N-representability of the 2-RDM.

C. The G-Matrices and the S-Representability Problem

As an extension of the N-representability problem, Valdemoro and co-workers

introduced the S-representability problem [14], that is, the incomplete knowl-

edge of the set of necessary and sufficient conditions that a p-RDM must fullfil

in order to ensure that it derives from an N-electron wavefunction having well-

defined spin quantum numbers:

ŜS
2j�S;Mi ¼ SðSþ 1Þj�S;Mi ð21Þ
ŜSzj�S;Mi ¼ Mj�S;Mi ð22Þ

These S-representability conditions, by extension of the N-representability

terminology, have recently been analyzed in depth by reconsidering the spin

structure of the 2-G matrices [72].
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1. Spin Structure of the Second-Order G-Matrices

As shown in Eq. (17), the 1-TRDMs are the basic building elements in the 2-G

matrices. Since the 1-TRDMs only connect two states whose spin numbers differ

at most in one unit, the structure of the 2-G matrices may be rewritten in terms of

separate spin components characterized by the spin quantum number S0 of the
states j�0i appearing in the 1-TRDMs [72]. Thus

2Gisjs0 ;ks00 ls000 ¼
X

�0
S;M0 6¼�S;M

1 D
�S;M�

0
S;M0

is;js0
1D

�0
S;M0�S;M

ls000 ;ks00

þ
X

�0
Sþ1;M0

1 D
�S;M�

0
Sþ1;M0

is;js0
1D

�0
Sþ1;M0�S;M

ls000 ;ks00
þ
X

�0
S�1;M0

1 D
�S;M�

0
S�1;M0

is;js0
1D

�S�1;M0�S;M

ls000 ;ks00

ð23Þ
with

M0 ¼
M � 1 for s ¼ s00 ¼ a; s0 ¼ s000 ¼ b
M for s ¼ s0 ¼ s00 ¼ s000 or s ¼ s0; s00 ¼ s000

M þ 1 for s ¼ s00 ¼ b; s0 ¼ s000 ¼ a

8<: ð24Þ

In what follows, the compact notation that will be used for each of these spin

components is

fS0;M0g2Gisjs0 ;ks00 ls000 �
X

�0
S0 ;M0 6¼�S;M

1 D
�S;M�

0
S0 ;M0

is;js0
1D

�0
S0 ;M0�S;M

ls000 ;ks00
ð25Þ

where S0 may take the values S, Sþ 1, and S� 1.

2. Spin Properties of the Second-Order G-Matrices

From their definition, it follows that each of the spin components of the 2-G

matrix are positive semidefinite. The semidefinite positiveness of these matrices

constitutes a much more exacting set of conditions than the well-known single

N-representability G-condition, since the former conditions imply the latter one

but not conversely.

Furthermore, properties of the spin components of the 2-G can be obtained

by reconsidering the spin properties of the 1-TRDMs. Thus the different spin-

blocks of the 1-TRDMs can be related among themselves through the action

of the operator ŜS
2
on pure spin states. One therefore has

SðSþ 1Þ 1D�S;M�
0
S0 ;M0

is;js0
¼ h�S;MjŜS2 âayis âajs0 j�0S0;M0 i ð26Þ
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By moving the ŜS
2
operator to the right on the right-hand side (rhs) of Eq. (26), a

set of equations linking the different spin-blocks of the 1-TRDMs is obtained.

These equations lead to a set of relations linking different elements of the

spin components of the 2-G matrices. The resulting relations can be classified

as follows:

(a) Case S ¼ S0; M ¼ 0.

fS;0g2Gibjb;kblb ¼ fS;0g2Giaja;kblb

¼ fS;0g2Gibjb;kala ¼ fS;0g2Giaja;kala ð27Þ
fS;1g2Gibja;kbla ¼ fS;�1g2Giajb;kalb ðS 6¼ 0Þ ð28Þ

(b)Case S ¼ S0; M 6¼ 0.

4M2

ðS�MÞðSþM þ 1Þ fS;Mþ1g
2Gibja;kbla

¼ 4M2

ðS�M þ 1ÞðSþMÞ fS;M�1g
2Giajb;kalb

¼ fS;Mg2Giaja;kala þ fS;Mg2Gibjb;kblb

� fS;Mg2Giaja;kblb � fS;Mg2Gibjb;kala ð29Þ

(c) Case S 6¼ S0.

ðSðSþ 1Þ � S0ðS0 þ 1Þ þ 2MÞ2
4 ðS0 �MÞðS0 þM þ 1Þ fS0;M�1g 2Giajb;kalb

¼ ðSðSþ 1Þ � S0ðS0 þ 1Þ � 2MÞ2
4 ðS0 �M þ 1ÞðS0 þMÞ fS0;Mþ1g 2Gibja;kbla

¼ fS0;Mg2Gibjb;kblb ¼ �fS0;Mg2Giaja;kblb

¼ �fS0;Mg2Gibjb;kala ¼ fS0;Mg2Giaja;kala ð30Þ

Similarly, application of the properties of the spin-shifting operators, ŜS	,
allows one to obtain the relations connecting the 1-TRDMs corresponding to dif-

ferent multiplet states. Thus, by considering the action of the spin-shifting opera-

tor ŜSþ on pure spin states,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS�MÞðSþM þ 1Þ

p
1D

�S;M�
0
S0 ;M0

is;js0
¼ h�S;Mþ1jŜSþâayis âajs0 j�0S0;M0 i ð31Þ
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and by moving the ŜSþ operator to the right on the rhs of Eq. (31), a set of recur-

rence relations among the 1-TRDMs corresponding to different multiplet states is

obtained. The resulting equations lead to setting up the interconnections among

the different spin components of the 2-G matrices corresponding to different

states of a given multiplet. These connections can be summarized as follows:

(a) Case S0 ¼ S.

fS;M0g2Gisjs0 ;ks00 ls000 ¼
X
g;g0

yðg; g0; s; s0; s00; s000Þ fS;Sg2Gð�S;SÞ
igjg;kg0 lg0

ð32Þ

where

yðg; g0; s; s0; s00; s000Þ � ds;s0ds00;s000 ðmþdg;s þ m�ð1� dg;sÞÞ
� ðmþdg0;s00 þ m�ð1� dg0;s00 ÞÞ
þ ds;s00ds0;s000 ð1� ds;s0 Þð2dg;g0 � 1Þ
� ðn2�ds;a þ n2þds;bÞ ð33Þ

and

m	 �
1	M=S

2
ð34Þ

n	 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðSMÞðS	M þ 1Þp

2S
ð35Þ

(b)Case S0 ¼ Sþ 1.

fSþ1;M0g2Gisjs0 ;ks00 ls000 ¼ y0ðs; s0; s00; s000Þ fSþ1;Sþ1g2Gð�S;SÞ
ibja;kbla

ð36Þ
where

y0ðs; s0; s00; s000Þ � ds;s0ds00;s000 ð2ds;s0 � 1Þx2
þ ds;s00ds0;s000 ð1� ds;s0 Þ
� ðx2�ds;a þ x2þds;bÞ ð37Þ

and

x � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS�M þ 1ÞðSþM þ 1Þ
ð2Sþ 1Þð2Sþ 2Þ

s
ð38Þ

x	 � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS	M þ 1ÞðS	M þ 2Þ
ð2Sþ 1Þð2Sþ 2Þ

s
ð39Þ
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(c) Case S0 ¼ S� 1.

fS�1;M0g2Gisjs0 ;ks00 ls000 ¼ y00ðs; s0; s00; s000Þ fS�1;S�1g2Gð�S;SÞ
iajb;kalb

ð40Þ

where

y00ðs; s0; s00; s000Þ � ds;s0ds00;s000 ð2ds;s00 � 1Þx02

þ ds;s00ds0;s000 ð1� ds;s0 Þ
� ðx02�ds;a þ x02þds;bÞ ð41Þ

and

x0 � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS�MÞðSþMÞ

2Sð2S� 1Þ

s
ð42Þ

x0	 � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSM � 1ÞðSMÞ

2Sð2S� 1Þ

s
ð43Þ

The above relations, which are represented in a spin-orbital basis, are espe-

cially relevant; they are analytical results that describe all the conditions that a

2-G corresponding to any pure spin state must satisfy; hence they constitute a

complete set of S-representability conditions. Their generality implies a general

usefulness within the framework of any RDM methodology.

III. PURIFICATION PROCEDURES BASED ON

UNITARY DECOMPOSITIONS OF SECOND-ORDER

REDUCED DENSITY MATRICES

A. The Mazziotti Purification Procedure

The description of the two-electron correlation effects within the 2-RDM form-

alism is not unique. Indeed, different approaches have been reported in the

literature [53, 61, 73–83, 86, 89, 92–96] and different aspects of this exciting

subject have been analyzed. At the basis of all these descriptions of the two-

body correlation effects lies a decomposition of the 2-RDM. However, as men-

tioned in Section I, any purification strategy that maintains the 1-RDM fixed

requires that the contribution of the pure two-body term arising from the consid-

ered 2-RDM decomposition should vanish upon contraction into the one-body

space. This requirement, a very strong one, significantly reduces the list of

possible descriptions of the correlation term. Thus one of the only two

approaches leading to a 2-RDM decomposition satisfying this requirement is

the unitarily invariant partition of antisymmetric second-order matrices reported
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by Coleman [73]. This partitioning, which has been applied extensively in quan-

tum chemistry in order to decompose and analyze the structure of several

second-order matrices of physical interest [70, 86, 89, 97–99], is at the basis

of an iterative purification procedure recently proposed by Mazziotti [70]. The

method that he proposed, hereafter called the MZ purification procedure, aims at

guaranteeing the positive semidefiniteness of the 2-RDM and of the 2-HRDM

(D- and Q-conditions) while retaining the original 1-RDM. Before revi-

ewing the procedure, Coleman’s decomposition and its properties will be

addressed.

1. Unitary Decomposition of Antisymmetric Second-Order Matrices

In 1974 Coleman [73] proposed to decompose any Hermitian antisymmetric

second-order matrix 2A as

2Aij;kl ¼ 2
0Aij;kl þ 2

1Aij;kl þ 2
2Aij;kl ð44Þ

where

2
0Aij;kl ¼ Aðdi;kdj;l � di;ldj;kÞ

KðK � 1Þ ð45Þ

2
1Aij;kl ¼

1Pi;k dj;l þ 1Pj;l di;k � 1Pi;l dj;k � 1Pj;k di;l
K � 2

� 2Aðdi;k dj;l � di;l dj;kÞ
KðK � 2Þ ð46Þ

2
2Aij;kl ¼ 2Aij;kl � 2

0Aij;kl � 2
1Aij;kl ð47Þ

with

A ¼
X
m;n

2 Amn;mn ð48Þ

1Pi;j ¼
X
m

2 Aim;jm ð49Þ

If the second-order Hermitian matrix follows the transformation rule for a (2,2)

tensor, then this decomposition is the only possible manner of expressing these

matrices as a sum of simpler parts so that the decomposition remains invariant

under unitary tranformations of the basis [73].

The three parts of this decomposition reveal the structure of the matrix with

respect to the contraction operations. These parts have been called the 0-, 1- and

2-body part of the second-order matrix 2A, respectively. Following the notation

introduced in Ref. [73], each of these parts have been identified by a left-lower

index.
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While the 0-body part of this decomposition contains the 0-body information

for 2A, X
m;n

2
0 Amn;mn ¼ A ð50Þ

the 1-body part contains the 1-body information for 2A,X
m

ð20Aim;jm þ 2
1Aim;jmÞ ¼ 1Pi;j ð51Þ

and the 2-body part contains information that vanishes upon contraction,X
m

2
2 Aim;jm ¼ 0 ð52Þ

2. The Purification Procedure

As has been mentioned, the MZ purification procedure is based on Coleman’s

unitary decomposition of an antisymmetric Hermitian second-order matrix

described earlier. When applied to singlet states of atoms and molecules, the

computational cost of this purification procedure is reduced, since the 2-RDM

(and thus the 1-RDM obtained by contraction) presents only two different

spin-blocks, the aa- and ab-blocks (and only one spin-block for the 1-RDM).

For the remaining part of this section only this type of state will be treated.

According to this unitarily invariant decomposition, the different spin-blocks

of the trial 2-RDM, which must be corrected, are decomposed as follows:

2Disjs0 ;ksls0 ¼ 2
0Disjs0 ;ksls0 þ 2

1Disjs0 ;ksls0 þ 2
2Disjs0 ;ksls0 ð53Þ

with

2
0Diaja;kala ¼

ðPp;q
2 Dpaqa;paqaÞ ðdi;kdj;l � di;ldj;kÞ

KðK � 1Þ ð54Þ

2
1Diaja;kala ¼

ðN=2� 1Þð1Dia;ka dj;l þ 1Dja;la di;kÞ
2ðK � 2Þ

� ðN=2� 1Þð1Dia;la dj;k þ 1Dja;ka di;lÞ
2ðK � 2Þ

� ðN=2� 1Þ ðPp
1 Dpa;paÞðdi;k dj;l � di;l dj;kÞ
KðK � 2Þ ð55Þ

2
2Diaja;kala ¼ 2Diaja;kala � 2

0Diaja;kala � 2
1Diaja;kala ð56Þ

where the a-block of the 1-RDM is obtained from the contraction of the 2-RDM

into the 1-body space, Eq. (11).
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For the ab-block of the 2-RDM the decomposition was generated ad hoc [70].

This is because this block is not antisymmetric under permutation of the orbital

indices within the row or column subsets of indices; and thus the unitary decom-

position reported by Coleman cannot be applied. Hence the ad hoc decomposi-

tion is given here by

2
0Diajb;kalb ¼

	P
p;q

2 Dpaqb;paqb



di;kdj;l

K2
ð57Þ

2
1Diajb;kalb ¼

ðN=2Þð1Dia;ka dj;l þ 1Djb;lb di;kÞ
K

� ðN=2Þ
	P

p ð1Dpa;pa þ 1Dpb;pbÞ


di;kdj;l

K2
ð58Þ

2
2Diajb;kalb ¼ 2Diajb;kalb � 2

0Diajb;kalb � 2
1Diajb;kalb ð59Þ

In accordance with Coleman, the 0-particle part of this decomposition,

Eqs. (54) and (57), contains the 0-body information for the 2-RDM,X
p;q

2
0 Dpsqs0 ;psqs0 ¼

X
p;q

2 Dpsqs0 ;psqs0 ð60Þ

the 1-particle part, Eqs. (55) and (58), contains the 1-body information for the

2-RDM,

2!
X
m

ð20Disms0 ;jsms0 þ 2
1Disms0 ;jsms0 Þ ¼

N

2
� ds;s0

� �
1Dis;js ð61Þ

and the 2-particle part, Eqs. (56) and (59), contains information that vanishes

upon contractions into the 1-body space,X
m

2
2 Disms0 ;jsms0 ¼ 0 ð62Þ

By decomposing the trial 2-RDM in this way, it is possible to act upon the

N-representability defects of this matrix.

1. When the 1-RDM—obtained from the contraction of the 2-RDM into the

1-body space—is not N-representable, this matrix is corrected by employ-

ing any one of the methods described in Refs. [70, 71]. With this new 1-

RDM, 1 ~DD, the 1-particle part of the 2-RDM is recalculated. Thus

2 ~DDisjs0 ;ksls0 ¼ 2
0Disjs0 ;ksls0 þ 2

1
~DDisjs0 ;ksls0 þ 2

2Disjs0 ;ksls0 ð63Þ
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By doing so, the updated 2-RDM, 2 ~DD, presents N-representable contrac-

tions into the 1-body space

2!
X
m

2 ~DDisms0 ;jsms0 ¼
N

2
� ds;s0

� �
1 ~DDis;js ð64Þ

It also presents correct contractions into the 0-body space, since in this

purification procedure it is assumed that the trace condition Eq. (13) is ful-

filled by the initial 2-RDM.

2. In order to impose the D and Q N-representability conditions on the

2-RDM and its 2-HRDM, these two matrices are diagonalized. From

the eigenvectors fjxp ss0;ss0 ig corresponding to the negative eigenvalues

fxp ss0;ss0 g of the ss0-block of the 2-RDM, and the eigenvectors

fj�xxq ss0;ss0 ig corresponding to the negative eigenvalues f�xxq ss0;ss0 g of the

ss0-block of its 2-HRDM, a set of second-order matrices is constructed,

2Xp isjs0 ;ksls0 ¼ hisjs0 jxp ss0;ss0 ihxp ss0;ss0 jksls0 i ð65Þ
2 �XXq isjs0 ;ksls0 ¼ hisjs0 j�xxq ss0;ss0 ih�xxq ss0;ss0 jksls0 i ð66Þ

where jisjs0 i and jksls0 i are two-electron Slater determinants.

The 2-RDM is corrected by adding a correcting-matrix 2�ss0;ss0 ,

2 ~DDisjs0 ;ksls0 ¼ 2Disjs0 ;ksls0 þ 2�isjs0 ;ksls0 ð67Þ

which is given by

2�isjs0 ;ksls0 ¼
X
p

gp ss0;ss0
2
2Xp isjs0 ;ksls0 þ

X
q

Eq ss0;ss0
2
2
�XXq isjs0 ;ksls0 ð68Þ

where 2
2Xp ss0;ss0 and

2
2
�XXq ss0;ss0 are the two-particle and two-hole parts of

the matrices Eqs. (65) and (66), respectively. The parameters gp ss0;ss0 and

Eq ss0;ss0 of
2�ss0;ss0 are chosen to satisfy the linear system

xp ss0;ss0 þ
X
i;j;k;l

2 Xp isjs0 ;ksls0
2�ksls0 ;isjs0 ¼ 0 ð8 pÞ ð69Þ

�xxq ss0;ss0 þ
X
i;j;k;l

2 �XXq isjs0 ;ksls0
2�ksls0 ;isjs0 ¼ 0 ð8 qÞ ð70Þ

The addition of the correcting-matrix 2�ss0;ss0 does not modify the con-

tractions of the 2-RDM.
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This step is repeated until the positivity of the 2-RDM and its 2-HRDM is

satisfied up to a specified tolerance.

This procedure has been applied to several trial 2-RDMs corresponding to

different molecular systems [67], thus obtaining very accurate energies and clo-

sely N-representable 2-RDMs. Unfortunately, the S-representability of the result-

ing 2-RDMs has not been analyzed.

Thus let us consider some particular relations that must be satisfied by the 2-

RDM spin-blocks corresponding to a singlet state. It is well known that in this

case the aa- and ab-blocks of the 2-RDM are related as follows [100]:

2Diaja;kala ¼ 2Diajb;kalb � 2Diajb;lakb ð71Þ

This relation imposes severe conditions on the ab-block of the 2-RDM. Thus this

spin-block must satisfy the relationsX
m

2 Diamb;majb ¼
X
m

h�jâayia âaymb
âajb âama j�i

¼ h�jâayia âaja j�i �
X
m

h�jâayia âajb âaymb
âama j�i

¼ 1Dia; ja � h�jâayia âajb ŜS�j�i ¼ 1Dia;ja ð72Þ

and X
m

2Dmaib;jamb ¼ 1 Dib;jb ð73Þ

which follow from the fact that ŜSþj�0;0i ¼ ŜS�j�0;0i ¼ 0. In order to keep track

of the first-order matrices, we will denote them as 1D0ia;ja and
1D0ib;jb .

Moreover, these conditions imply that

X
m;n

2Dmanb;namb ¼
N

2
ð74Þ

which is directly related to the expectation value of the ŜS
2
operator, hŜS2i; that is

[14, 101],

hŜS2i ¼ SðSþ 1Þ ¼ hŜS2z i þ
N

2
�
X
m;n

2Dmanb;namb ð75Þ

Taking into account the results just mentioned, let us now reconsider the two

steps of the procedure for the ab-block of the 2-RDM, 2Dab;ab. In the first step,
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the ab-block of the 2-RDM is recalculated, thus yielding an updated ab-block of

the 2-RDM 2 ~DDab;ab, which presents N-representable contractions given by

Eq. (11). However, this is not the case for the contractions given by Eqs. (72)

and (73). For example, one of these latter contractions of the updated ab-block
of the 2-RDM is given byX

m

2 ~DDiamb;majb ¼
X
m

ð20Diamb;majb þ 2
1
~DDiamb;majb þ 2

2Diamb;majbÞ

¼ 1D0ia;ja þ
ðN=2Þð1 ~DDia; ja þ 1 ~DDib; jb � 1Dia;ja � 1Dib;jbÞ

K
ð76Þ

where it has been assumed that the initial 2Dab;ab satisfies the condition Eq. (72).

Thus it follows that the updated ab-block of the 2-RDM violates the condition

Eq. (72). A similar reasoning can be followed for the second step, where the

addition of the correcting-matrix 2�ab;ab to 2Dab;ab also produces errors in the

contractions given by Eqs. (72) and (73). Moreover, the expectation value of

the ŜS
2
operator will also present a deviation from its original value, since the

contraction Eq. (74) will also be affected. Consequently, both steps of the MZ

purification procedure introduce S-representability defects in the 2-RDM when

correcting the N-representability defects of this matrix. Thus this procedure

yields purified 2-RDMs that do not correspond to pure spin wavefunctions.

B. Improving the Mazziotti Purification Procedure

The S-representability defects of the MZ purification procedure can be corrected

by generalizing Coleman’s unitarily invariant decomposition. Thus a new proce-

dure—based on a different generalized unitarily invariant decomposition of the

2-RDM recently reported in Ref. [77]—will now be described here.

1. Unitary Decomposition of Arbitrary Second-Order Matrices

Recently, a unitarily invariant decomposition of Hermitian second-order matrices

of arbitrary symmetry under permutation of the indices within the row or column

subsets of indices has been reported by Alcoba [77]. This decomposition, which

generalizes that of Coleman, also presents three components that are mutually

orthogonal with respect to the trace scalar product [77]:

2Aij;kl ¼ 2
0Aij;kl þ 2

1Aij;kl þ 2
2Aij;kl ð77Þ

where

2
0Aij;kl ¼ ðKA� A0Þdi;kdj;l þ ðKA0 � AÞdi;ldj;k

KðK2 � 1Þ ð78Þ
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2
1Aij;kl ¼ ð4A

0 � 2KAÞdi;kdj;l þ ð4A� 2KA0Þdi;ldj;k
KðK2 � 4Þ

þ 2ð1Pj;ldi;k þ1P0i;kdj;l þ1Rj;kdi;l þ1R0i;ldj;kÞ
KðK2 � 4Þ

þ ðK
2 � 2Þð1Pi;kdj;l þ1P0j;ldi;k þ1Ri;ldj;k þ1R0j;kdi;lÞ

KðK2 � 4Þ

þ
1Pi;ldj;k þ1Pj;kdi;l þ1P0i;ldj;k þ1P0j;kdi;l

4� K2

þ
1Ri;kdj;l þ1Rj;ldi;k þ1R0i;kdj;l þ1R0j;ldi;k

4� K2
ð79Þ

2
2Aij;kl ¼ 2Aij;kl � 2

0Aij;kl � 2
1Aij;kl ð80Þ

with

A ¼
X
m;n

2Amn;mn ð81Þ

A0 ¼
X
m;n

2Amn;nm ð82Þ

1Pi; j ¼
X
m

2Aim; jm ð83Þ

1P0i; j ¼
X
m

2Ami;mj ð84Þ

1Ri; j

X
m

2Aim;mj ð85Þ

1R0i; j
X
m

2Ami;jm ð86Þ

It must be noted that, due to the arbitrary symmetry under permutation of

indices of this second-order matrix, a larger set of contractions into the 0- and

1-body space must be taken into account.

If the second-order Hermitian matrix follows the transformation rule for a

(2, 2) tensor, then this decomposition is the only possible manner of expressing

these matrices as a sum of simpler parts such that the decomposition remains

invariant under unitary tranformations of the basis [77].
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While the 0-part of this decomposition contains the 0-body information for 2A,X
m;n

2
0 Amn;mn ¼ A ð87ÞX

m;n

2
0 Amn;nm ¼ A0 ð88Þ

the 1-part contains the 1-body information for 2A,X
m

ð20Aim; jm þ 2
1Aim; jmÞ ¼ 1Pi; j ð89ÞX

m

ð20Ami;mj þ 2
1Ami;mjÞ ¼ 1P0i;j ð90ÞX

m

ð20Aim;mj þ 2
1Aim;mjÞ ¼ 1Ri;j ð91ÞX

m

ð20Ami;jm þ 2
1Ami;jmÞ ¼ 1R0i;j ð92Þ

and the 2-part contains information that vanishes upon contraction,X
m

2
2 Aim;jm ¼

X
m

2
2 Ami;mj ¼

X
m

2
2 Aim;mj ¼

X
m

2
2 Ami;jm ¼ 0 ð93Þ

2. Improved Version of the Mazziotti Purification Procedure

The independence with respect to the type of permutation-symmetry of the

decomposition just reported allows one to treat the different spin-blocks of the

2-RDM on an equal footing. Moreover, this decomposition leads to a partition-

ing of these blocks into three orthogonal parts, which reveal the structure of

these blocks with respect to all contraction operations.

If this decomposition is applied to the aa-block of the 2-RDM, then it reduces

itself to that given by Eqs. (54)–(56). However, if the ab-block of the 2-RDM is

considered, then this decomposition becomes

2Diajb;kalb ¼ 2
0Diajb;kalb þ 2

1Diajb;kalb þ 2
2Diajb;kalb ð94Þ

with

2
0Diajb;kalb ¼

P
p;q ðK 2Dpaqb;paqb � 2Dpaqb;qapbÞ di;kdj;l

KðK2 � 1Þ

þ
P

p;q ðK 2Dpaqb;qapb � 2Dpaqb;paqbÞ di;ldj;k
KðK2 � 1Þ ð95Þ
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2
1Diajb;kalb ¼

P
p 2 ð1D0pa;pa þ 1D0pb;pbÞ di;kdj;l

KðK2 � 4Þ

�
P

p K
N

2
ð1Dpa;pa þ 1Dpb;pbÞ di;kdj;l

KðK2 � 4Þ

þ
P

p N ð1Dpa;pa þ 1Dpb;pbÞ di;ldj;k
KðK2 � 4Þ

�
P

p K ð1D0pa;pa þ 1D0pb;pbÞ di;ldj;k
KðK2 � 4Þ

þ N ð1Dja;ladi;k þ 1Dib;kbdj;lÞ
KðK2 � 4Þ

þ
2ð1D0ja;kadi;l þ 1 D0ib;lbdj;kÞ

KðK2 � 4Þ

þ
ðK2 � 2ÞN

2
ð1Dia;kadj;l þ 1Djb;lbdi;kÞ
KðK2 � 4Þ

þ
ðK2 � 2Þð1D0ia;ladj;k þ 1D0jb;kbdi;lÞ

KðK2 � 4Þ

þ
N

2
ð1Dia;ladj;k þ 1Dja;kadi;lÞ

4� K2

þ
N

2
ð1Dib;lbdj;k þ 1Djb;kbdi;lÞ

4� K2

þ
1D0ja;ladi;k þ 1D0ia;kadj;l

4� K2

þ
1D0jb;lbdi;k þ 1D0ib;kbdj;l

4� K2
ð96Þ

2
2Diajb;kalb ¼ 2Diajb;kalb � 2

0Diajb;kalb � 2
1Diajb;kalb ð97Þ

where the matrices 1Da;a,
1Db;b,

1D0a;a, and
1D0b;b appearing in Eq. (96) are

obtained from the different contractions of the 2-RDM into the 1-body space,

Eqs. (11), (72), and (73), respectively.

The different parts of this new decomposition reveal the structure of the 2Dab;ab

with respect to all contracting operations into the 0- and 1-body space. Thus,

while the first part of this new decomposition, Eq. (95), contains the information
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of the two different contractions of 2Dab;ab into the 0-body space,X
m;n

2
0Dmanb;manb ¼

X
m;n

2Dmanb;manb ð98Þ
X
m;n

2
0Dmanb;namb ¼

X
m;n

2Dmanb;namb ð99Þ

the second one, Eq. (96), contains the information of the four possible contrac-

tions of 2Dab;ab into the 1-body space,

X
m

ð20Diamb;jamb þ 2
1Diamb;jambÞ ¼

N

2
1Dia; ja ð100Þ

X
m

ð20Dmaib;majb þ 2
1Dmaib;majbÞ ¼

N

2
1Dib; jb ð101ÞX

m

ð20Diamb;ma jb þ 2
1Diamb;ma jbÞ ¼ 1D0ia; ja ð102ÞX

m

ð20Dmaib;jamb þ 2
1Dmaib; jambÞ ¼ 1D0ib; jb ð103Þ

and the third one, Eq. (97), contains information that vanishes upon contractions,X
m

2
2Diamb;jamb ¼

X
m

2
2Dmaib;majb ¼

X
m

2
2Diamb;majb ¼

X
m

2
2Dmaib;jamb ¼ 0 ð104Þ

Moreover, each of these parts are related to those of the 2Daa;aa, Eqs. (54)–

(56), as follows:

2
pDiaja;kala ¼ 2

pDiajb;kalb � 2
pDiajb;lakb ðp ¼ 0; 1; 2Þ ð105Þ

which is a consequence of the condition Eq. (71).

Thus we propose to use the new decomposition given by Eqs. (95)–(97)

instead of that given by Eqs. (57)–(59) for correcting the ab-block of an approxi-
mated 2-RDM. This leads to a new iterative procedure, hereafter called the I-MZ

purification procedure, which can be summarized as follows:

1. While the aa-block of the 2-RDM to be corrected is decomposed by

following Eqs. (54)–(56), the ab-block of this matrix is decomposed by

following Eqs. (95)–(97).

2. When the contractions of the 2-RDM into the 0-body space do not satisfy

Eqs. (13) and/or (74), these contractions are corrected by modifying the
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0-part of the decompositions of the different spin-blocks of this matrix.

Thus the 2-RDM is recalculated as follows:

2 ~DDisjs0 ;ksls0 ¼ 2
0
~DDisjs0 ;ksls0 þ 2

1Disjs0 ;ksls0 þ 2
2Disjs0 ;ksls0 ð106Þ

As mentioned earlier, in the MZ purification procedure it is assumed that

the trace condition Eq. (13) is satisfied by the initial 2-RDM; but this is not

generally the case when considering approximated 2-RDMs.

3. The aa-block of the 2-RDM is further corrected by following the two steps

of the MZ purification procedure since the decomposition for this block

remains unchanged.

4. When the matrices 1Da;a,
1Db;b,

1D0a;a, and
1D0b;b—obtained from the dif-

ferent contractions of 2Dab;ab—are not N-representable, these matrices

undergo the corresponding correction. With these new matrices the one-

particle part of 2Dab;ab is recalculated, thus yielding a new 2-RDM:

2 ~DDiajb;kalb ¼ 2
0Diajb;kalb þ 2

1
~DDiajb;kamb þ 2

2Diajb;kalb ð107Þ

5. The positivity of the ab-block of the resulting 2-RDM and its 2-HRDM is

imposed as in the MZ purification procedure, but the new decomposition

is used when calculating the correcting-matrix 2�ab;ab.

With this procedure no S-representability defects are introduced into the trial

2-RDM. Thus, for instance, in the fourth step of this procedure the ab-block of

the updated 2-RDM will present the following contractions into the 1-body

space: X
m

2 ~DDiamb; jamb ¼
X
m

ð20Diamb; jamb þ 2
1
~DDiamb; jamb þ 2

2Diamb; jambÞ

¼ N

2
1 ~DDia;ja ð108ÞX

m

2 ~DDiamb;majb ¼ 1 ~DD
0
ia;ja

ð109Þ

and similarly for the other contractions. The matrices 1 ~DDa;a,
1 ~DDb;b,

1 ~DD
0
a;a, and

1 ~DD
0
b;b stand for the corrected N-representable first-order matrices. Note that the

most difficult case has been assumed; that is, neither the condition Eq. (11) nor

the conditions Eqs. (72) and (73) are satisfied by the trial 2Dab;ab, which implies

that the matrices 1Da;a,
1Db;b,

1D0a;a, and
1D0b;b are not N-representable. A similar

reasoning can be followed for the last step of the new procedure, where the addi-

tion of the new correcting-matrix will not affect the different contractions of the

2-RDM into the 0- and 1-body space. Thus this new procedure permits one to

correct both the N- and S-representability defects of an approximated 2-RDM.
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It must be emphasized that the ab-block of the 2-RDM may also be decom-

posed into two subblocks, the singlet and the triplet one. This clearly enhances

the computational efficiency of the purification of the 2-RDM, since these

subblocks may be corrected separately. On the other hand, since the singlet

and triplet subblocks are symmetric and antisymmetric, respectively, under per-

mutation of the orbital indices within the row or column subsets of labels, it

would be possible to use the unitarily invariant decomposition of Coleman

[73] and that of Sun et al. [102] to correct both the N- and S-representability

defects of these subblocks. However, this would be formally equivalent to use

the decomposition given by Eqs. (94)–(97), since this latter decomposition

implicitly presents the former ones as particular cases [77].

C. Test Calculations and Results

In order to analyze the performance of the I-MZ purification procedure and to

compare it with the MZ one, a set of calculations have been carried out. The

probes selected have been the beryllium atom, the isoelectronic ions Bþ, C2þ,
N3þ, and O4þ, and the Li2 (Li—Li bond length of 2.75 au) and linear BeH2

(Be—H bond length of 2.54 au) molecules. The basis sets used were formed

by Hartree–Fock molecular orbitals built out of minimal Slater orbital basis

sets. The states studied were the ground states, which present a dominant

closed-shell Slater determinant configuration.

In order to get significant results, the initial data must be formed by a set of

clearly non-N-representable second-order matrices, which would generate upon

contraction a closely ensemble N-representable 1-RDM. It therefore seemed rea-

sonable to choose as initial data the approximate 2-RDMs built by application of

the independent pair model within the framework of the spin-adapted reduced

Hamiltonian (SRH) theory [37–45]. This choice is adequate because these

matrices, which are positive semidefinite, Hermitian, and antisymmetric with

respect to the permutation of two row/column indices, are not N-representable,

since the 2-HRDMs derived from them are not positive semidefinite. Moreover,

the 1-RDMs derived from these 2-RDMs, although positive semidefinite, are

neither ensemble N-representable nor S-representable. That is, the correction

of the N- and S-representability defects of these sets of matrices (approxi-

mated 2-RDM, 2-HRDM, and 1-RDM) is a suitable test for the two purifi-

cation procedures. Attention has been focused only on correcting the N- and

S-representability of the ab-block of these matrices, since the I-MZ purification

procedure deals with a different decomposition of this block.

Since the performance of the procedures was found to be very similar in all

the cases studied, attention here will mainly be focused on the beryllium atom.

Although the contractions of the approximated 2-RDM into the 0-body space

were those given by Eqs. (13) and (74), respectively, none of the different con-

tractions of this matrix into the 1-body space was N-representable. Thus the MZ
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and the I-MZ purification procedures were applied. The correction of these

N-representability defects was carried out by using the method described in

Ref. [71]. Although the updated ab-block of the 2-RDM obtained with the

MZ purification procedure presented N-representable contractions given by

Eq. (11), those given by Eqs. (72) and (73) were not N-representable. In conse-

quence, the updated 2-RDM was not S-representable. Thus the updated ab-block
of the 2-RDM obtained with the I-MZ procedure has been used as data when

correcting the positivity defects of the 2Dab;ab and the 2Qab;ab.

In Figs. 1 and 2, the values of the lower eigenvalue of each of the two

matrices 2Dab;ab and 2Qab;ab are plotted on the ordinate; and the iteration num-

bers appear on the abscissa. The results obtained when employing both the I-MZ

purification procedure and the MZ purification procedure are given in Figs. 1 and

2, respectively. As can be seen, the convergence toward positive matrices is

attained in both cases. Moreover, the procedures show similar convergence rates.

In order to study to what extent the contractions given by Eqs. (72) and (73)

of the 2Dab;ab reproduce the initial N-representable 1-RDMs when correcting

the positivity defects of the 2Dab;ab and the 2Qab;ab by using the MZ purification

procedure, its root mean square (RMS) deviation with respect to the initial

N-representable 1-RDMs has been calculated at each iteration. The results,

which are reported in Fig. 3, show that this type of contraction deviates from

the initial ones. Therefore it is clearly seen that the MZ purification procedure

also introduces S-representability defects when imposing these N-representability
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Figure 1. Lowest eigenvalue of the 2-RDM and the 2-HRDM matrices at each iteration of the

I-MZ purification procedure for the ground state of the beryllium atom.
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conditions. Furthermore, when iterating the MZ purification procedure, the

expectation value of the ŜS
2
operator—calculated by using Eq. (75)—presented

a deviation from its initial value hŜS2i ¼ 0. Thus in Fig. 4 this value is plotted at

each iteration.
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Figure 2. Lowest eigenvalue of the 2-RDM and the 2-HRDM matrices at each iteration of the

MZ purification procedure for the ground state of the beryllium atom.
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As mentioned earlier, similar behaviors to that of the berillyum atom were

found when studying the Bþ, C2þ, N3þ, O4þ, Li2, and BeH2 cases. The results

obtained in these calculations are reported in Tables I and II, where the perfor-

mances of the purification procedures are compared.

Finally, in order to illustrate the role of the I-MZ purification procedure in

improving the approximated 2-RDMs obtained by application of the indepen-

dent pair model within the framework of the SRH theory, all the different

spin-blocks of these matrices were purified. The energy of both the initial

(non-purified) and updated (purified) RDMs was calculated. These energies

and those corresponding to a full configuration interaction (full CI) calculation

are reported in Table III. As can be appreciated from this table, the nonpurified

energies of all the test systems lie below the full CI ones while the purified ones

lie above and very close to the full CI ones.

On the whole, these results show that the I-MZ purification procedure is very

suitable for acting upon both the N- and S-representability defects of an approxi-

mated 2-RDM.

IV. PURIFICATION PROCEDURES BASED

ON THE CORRELATION MATRIX DECOMPOSITION

OF SECOND-ORDER REDUCED DENSITY MATRICES

A very different purification strategy was initiated by Valdemoro et al. [71] in

2003 and extended by Alcoba and Valdemoro [72] in 2005. Thus these authors
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Figure 4. Expectation value of the ŜS
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operator at each iteration of the MZ purification

procedure for the ground state of the beryllium atom.
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developed an alternative iterative purification procedure, hereafter called the AV

purification procedure, aimed at rendering positive semidefinite the three

second-order matrices 2-RDM, 2-HRDM, and 2-G while ensuring that they

reproduce by contraction the same ensemble N- and S-representable 1-RDM.

This procedure also ensures that this 2-RDM is S-representable in the singlet

case. What renders it possible is that this purification procedure is focused on

correcting the N- and S-representability defects of the pure two-body correlation

matrix [6, 18, 60, 64, 71, 72, 78–87]. As will be shown, this latter matrix

describes the pure two-body correlation effects present not only in the 2-RDM

but also in the 2-HRDM. Furthermore, this matrix is intimately related to the

2-G matrix; and the 1-RDM can be deduced from their different contractions.

TABLE I

Performances of the MZ and the I-MZ Purification Procedures When Applied to

Approximated 2-RDMs of Several Test Systems in Their Ground State

Purification Lowest Eigenvalue

System Procedure Iteration 2Dab;ab
2Qab;ab

Be MZ 1 �1:386� 10�2 �2:216� 10�1

20 �3:366� 10�4 �6:463� 10�4

I-MZ 1 �1:386� 10�2 �2:216� 10�1

20 �2:285� 10�4 �5:778� 10�4

Bþ MZ 1 �7:468� 10�3 �1:534� 10�1

20 �2:187� 10�4 �3:371� 10�4

I-MZ 1 �7:468� 10�3 �1:534� 10�1

20 �2:148� 10�4 �2:799� 10�4

C2þ MZ 1 �6:083� 10�3 �1:163� 10�1

20 �1:825� 10�4 �2:850� 10�4

I-MZ 1 �6:083� 10�3 �1:163� 10�1

20 �9:543� 10�5 �1:694� 10�4

N3þ MZ 1 �5:252� 10�3 �9:298� 10�2

20 �1:878� 10�4 �2:276� 10�4

I-MZ 1 �5:252� 10�3 �9:298� 10�2

20 �8:222� 10�5 �1:127� 10�4

O4þ MZ 1 �4:679� 10�3 �7:771� 10�2

20 �4:835� 10�5 �9:018� 10�5

I-MZ 1 �4:679� 10�3 �7:771� 10�2

20 �4:001� 10�5 �8:876� 10�5

Li2 MZ 1 �4:533� 10�2 �4:026� 10�1

20 �1:808� 10�4 �3:717� 10�3

I-MZ 1 �4:533� 10�2 �4:026� 10�1

20 �5:101� 10�7 �5:115� 10�4

BeH2 MZ 1 �1:770� 10�2 �2:080� 10�1

20 �3:489� 10�3 �7:321� 10�3

I-MZ 1 �1:770� 10�2 �2:080� 10�1

20 �2:266� 10�3 �1:683� 10�3
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That is, all the information about the three important matrices 2-RDM, 2-

HRDM, and 2-G is contained and available in the pure two-body correlation

matrix. Moreover, the spin properties of both the pure two-body correlation

matrix and the 2-G matrices play a central role in this purification procedure.

A. The Pure Two-Body Correlation Matrix Within

the 2-RDM Formalism

Reconsider a 2-RDM element

2! 2Disjs0 ;ksls0 ¼ h�jâayis âa
y
js0

âals0 âaks j�i ð110Þ

TABLE II

Performances of the MZ and the I-MZ Purification Procedures When

Applied to Approximated 2-RDMs of Several Test Systems in Their Ground State

Purification RMS Deviation

System Procedure Iteration 1D0a;a
1D0b;b hŜS2i

Be MZ 1 3:311� 10�2 3:311� 10�2 �1:375� 10�1

20 2:876� 10�3 2:876� 10�3 1:495� 10�2

I-MZ 1 0 0 0

20 0 0 0

Bþ MZ 1 1:931� 10�2 1:931� 10�2 �7:277� 10�2

20 1:161� 10�3 1:161� 10�3 5:975� 10�3

I-MZ 1 0 0 0

20 0 0 0

C2þ MZ 1 1:407� 10�2 1:407� 10�2 �5:859� 10�2

20 7:495� 10�4 7:495� 10�4 3:759� 10�3

I-MZ 1 0 0 0

20 0 0 0

N3þ MZ 1 1:276� 10�2 1:276� 10�2 �6:606� 10�2

20 2:995� 10�4 2:995� 10�4 1:334� 10�3

I-MZ 1 0 0 0

20 0 0 0

O4þ MZ 1 1:057� 10�2 1:057� 10�2 �5:591� 10�2

20 2:765� 10�4 2:765� 10�4 1:444� 10�3

I-MZ 1 0 0 0

20 0 0 0

Li2 MZ 1 1:324� 10�1 1:324� 10�1 �1:333� 10�1

20 1:250� 10�3 1:250� 10�3 �7:553� 10�3

I-MZ 1 0 0 0

20 0 0 0

BeH2 MZ 1 2:120� 10�2 2:120� 10�2 �1:879� 10�1

20 4:966� 10�3 4:966� 10�3 5:646� 10�2

I-MZ 1 0 0 0

20 0 0 0
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and reorder the operators of the rhs term in such a way that one has a string

of alternating creator and annihilator operators. One of the possible reorderings

is

h�jâayis âayjs0 âals0 âaks j�i ¼ dj;l h�jâayis âaks j�i � h�jâayis âals0 âayjs0 âaks j�i ð111Þ

Inserting the unity operator

ÎI ¼ j�ih�j þ
X
�0 6¼�
j�0ih�0j ð112Þ

between the operators âals0 and âa
y
js0

in the last term of Eq. (111), it follows that the

2-RDM may be decomposed as

2! 2Disjs0 ;ksls0 ¼ 2Aisjs0 ;ksls0 þ 2Cisjs0 ;ksls0 ð113Þ
where the matrices 2A and 2C have, as in any tensor decomposition, the same

row and column indices as the 2-RDM from which they derive. The structure of

these matrices, is respectively,

2Aisjs0 ;ksls0 ¼ 1Dis;ks
1Djs0 ;ls0 � ds;s0 1Djs;ks

1Dis;ls þ ds;s0 1Dis;ls
1Qjs;ks ð114Þ

and

2Cisjs0 ;ksls0 ¼
X
�0 6¼�

h�jâayis âaks j�0ih�0jâayjs0 âals0 j�i

¼
X
�0 6¼�

1 D��0
is;ks

1D�0�
js0 ;ls0

ð115Þ

TABLE III

Calculated Energies from Non purified and Purified Approximated 2-RDMs

Corresponding to Several Test Systems in their Ground State When Applying

the I-MZ Purification Procedurea

Energy (au)

System Nonpurified 2-RDM Purified 2-RDM Full CI

Be �14.669 �14.583 �14.587
Bþ �24.358 �24.247 �24.248
C2þ �36.525 �36.413 �36.414
N3þ �51.195 �51.083 �51.085
O4þ �68.364 �68.251 �68.252
Li2 �14.997 �14.836 �14.847
BeH2 �15.914 �15.741 �15.764
aFull CI energies are quoted as references.
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According to Eq. (114), the 2A matrix depends only on the 1-RDM; it is a

sum of three terms: while the first term describes a classical system of indepen-

dent particles, the second and third terms may be connected with the electron

self-repulsion. These self-repulsion terms, represent respectively, the exchange

and that part of the correlation effects that may be described in terms of the

1-HRDM [79]. On the other hand, the 2C matrix—first reported in 1997 [78]

and subsequently thoroughly studied [79–83, 86]—describes a dynamic correla-

tion mechanism where two electrons undergo virtual excitations and deexcita-

tions in order to avoid each other [79], causing the polarization effects of the

electron cloud. This matrix was called pure two-body correlation matrix

(2-CM) because, as shown in Eq. (115), it cannot be factorized into one-body

RDMs/HRDMs; and, as will be shown, it does not contribute to the contraction

of the 2-RDM into the one-electron space.

1. Basic Properties of the Pure Two-Body Correlation Matrices

A very important property of the 2-CM is that [15, 83] the decomposition of

the 2-HRDM yields a two-body hole correlation matrix that coincides with

the 2-CM. Thus

2! 2Qisjs0 ;ksls0 ¼ 2 �AAisjs0 ;ksls0 þ 2Cisjs0 ;ksls0 ð116Þ
where

2 �AAisjs0 ;ksls0 ¼ 1Qis;ks
1Qjs0 ;ls0 � ds;s0 di;l 1Qjs;ks ð117Þ

Contrary to the 2-RDM and 2-HRDM, the 2-CM is neither positive semide-

finite nor antisymmetric. Indeed, the permutation of an index leads to the follow-

ing relation:

2Cisjs0 ;ls0 ks ¼ 1Dis;ks
1Qjs0 ;ls0 þ ds;s0 1Dis;ls

1Qjs;ks � 2Cisjs0 ;ksls0 ð118Þ

Since the 2-CMs are not antisymmetric, four different contracting operations

canbeperformedon them[71, 79, 83].Twoof these contractions,which canbecon-

sidered ‘‘natural’’ because theyderive fromthecontractionof relationEq. (113), areX
j

2 Cisjs0 ;ksjs0 ¼ 0 ð119Þ

and X
j

2 Cjsis0 ;jsks0 ¼ 0 ð120Þ

It is because of these two relations that no contribution of the 2C appears in the

contractions of Eq. (113).
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The other two less obvious contractions areX
j

2 Cisjs0 ;js0 ks ¼ ðK � Ns0 Þ 1Dis;ks þ ds;s0 ð1D� 1D
2Þis;ks ð121ÞX

j

2 Cjsis0 ;ks0 js ¼ Ns ðdi;k � 1Dis0 ;ks0 Þ þ ds;s0 ð1D� 1D
2Þis0 ;ks0 ð122Þ

These last two contractions (Eqs. (121) and (122)) are also very important since

they lead to the 1-RDM and therefore the corresponding 2-RDM and 2-HRDM

[24, 25, 83]. Hence it follows that the 2-RDM N-representability problem may

be studied equivalently by focusing on the N-representability conditions for the

2-CM matrix [71, 83]. Thus the set of relations given above constitutes a set of

N-representability conditions—strongly exacting and necessary conditions—not

only for the 2-CM matrix but also for the 2-RDM as well as for the 2-HRDM.

Another important property of the 2-CM matrices is that they are closely

related with the positive semidefinite 2-G matrix [15, 83]. The interrelations

between these two matrices are

2Cisjs0 ;ksls0 ¼ 2Gisks;ls0 js0 ð123Þ
and,

2Cisjs0 ;ls0 ks ¼ 2Gisls0 ;ksjs0 ð124Þ

That is, both the 2-CM and the 2-G matrix have common elements, but a

given element occupies different positions in each matrix. In other words,

while the labels of the row/column of the 2-CM refer, as in the 2-RDM, to

two particles/two holes, the labels of the row/column of the 2-G matrix refer

to particle–hole/hole–particle. Thus, although both the 2-CM and the 2-G

matrices describe similar types of correlation effects, only the 2-CM describes

pure two-body correlation effects. This is because the 2-CM ‘‘natural’’ tensorial

contractions vanish, and thus there is no contribution to the natural contraction

of the 2-RDM into the one-body space; whereas the 2-G ‘‘natural’’ tensorial con-

tractions are functionals of the 1-RDM.

2. Spin Structure and Properties of the Pure Two-Body

Correlation Matrices in the Singlet Case

Because the 2-CM and 2-G matrices are directly related through Eqs. (123) and

(124), the 2-CM may also be decomposed into a sum of spin components. Thus

one may write

2Cisjs0 ;ks00 ls000 ¼ fS;M0g2Cisjs0 ;ks00 ls000 þ fSþ1;M0g2Cisjs0 ;ks00 ls000 þ fS�1;M0g2Cisjs0 ;ks00 ls000 ð125Þ
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where

fS0;M0g2Cisjs0 ;ks00 ls000 �
X

�0
S0 ;M0 6¼�S;M

1 D
�S;M�

0
S0 ;M0

is;ks00
1D

�0
S0 ;M0�S;M

js0 ;ls000
ð126Þ

and S0 may take the values S, Sþ 1, and S� 1. Furthermore, each of these spin

components are interrelated with those of the 2-G matrix according to

fS0;M0g2Cisjs0 ;ks00 ls000 ¼ fS0;M0g2Gisks00 ;ls000 js0 ð127Þ

Hence the general relations addressed in Section II are also valid for the

2-CM. Thus the different spin components of a 2-CM are also related when this

matrix corresponds to a pure spin state with spin quantum numbers S andM; and

similarly for the 2-CMs corresponding to different states of a given multiplet.

In the particular case of singlet states, it can be shown that all the spin-blocks

of the 2-CM are proportional to 2Cab;ab. Thus only this spin block is needed to

determine the two-body correlation matrix.

According to Eq. (125), this 2-CM spin-block may be decomposed as

2Ciajb;kalb ¼ f0;0g2Ciajb;kalb þ f1;0g2Ciajb;kalb ð128Þ

In order to be able to correct each of these 2-CM spin components separately, it is

necessary to obtain a relation where a component is given in terms of the 2-CM

and eventually also of the 1-RDM. These relations, which have recently been

reported in Ref. [72], are

f0;0g2Ciajb;kalb ¼ 2Ciajb;kalb þ 1
2
ð1Dia;la

1Qjb;kb � 2Ciajb;lakbÞ ð129Þ

and

f1;0g2Ciajb;kalb ¼ 1
2
ð2Ciajb;lakb � 1Dia;la

1Qjb;kbÞ ð130Þ

Conversely, it follows that

2Ciajb;kalb ¼ 2
3
ð2 f0;0g2Ciajb;kalb þ f0;0g2Ciajb;lakbÞ
� 1

3
ð1Dia;ka

1Qjb;lb þ 2 1Dia;la
1Qjb;kbÞ ð131Þ

and

2Ciajb;kalb ¼ 1
2
ð1Dia;ka

1Qjb;lb þ 1Qib;kb
1Dja;laÞ

þ f1;0g2Ciajb;lakb þ f1;0g2Cjaib;kalb ð132Þ
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These relations show that each of the spin components presents a one-to-one

correspondence with the 2Cab;ab spin-block, and therefore with the entire corre-

lation matrix. This is because the 1-RDM—and, consequently, the 1-HRDM—

appearing in Eqs. (131) and (132) can be obtained from the different contrac-

tions of the spin components. Thus, while it follows from Eqs. (118), (119),

(120), (129), and (130) thatX
j

f0;0g 2Ciajb;kajb ¼
X
j

f0;0g 2Cjaib;jakb ¼ 0 ð133ÞX
j

f1;0g 2Ciajb;kajb ¼
X
j

f1;0g 2Cjaib;jakb ¼ 0 ð134Þ

Eqs. (118), (121), (122), (129), and (130) lead to

X
j

f0;0g 2Ciajb;jakb ¼
ð2K � NÞ

4
1 Dia;ka þ ð1D� 1D

2Þia;ka ð135Þ

X
j

f0;0g 2Cjaib;kajb ¼
N

4
ðdi;k � 1 Dib;kbÞ þ ð1D� 1D

2Þib;kb ð136Þ

X
j

f1;0g 2Ciajb;jakb ¼ �
ð2K � NÞ

4
1 Dia;ka ð137Þ

X
j

f1;0g 2Cjaib;kajb ¼ �
N

4
ðdi;k � 1Dib;kbÞ ð138Þ

and therefore

X
i;j

f0;0g 2Ciajb;jaib ¼
N

8
ð2K � N þ 4Þ �

X
i

ð1D2Þia;ia ð139Þ
X
i;j

f1;0g 2Ciajb;jaib ¼ �
N

8
ð2K � NÞ ð140Þ

Equations (135)–(138) describe a set of unusual contractions, since the sum

labels run over orbitals, which multiply different spin functions. In fact, they are

exact only in the singlet case, where ŜSþj�0;0i ¼ ŜS�j�0;0i ¼ 0, 1Da;a ¼ 1Db;b,

and Na ¼ Nb ¼ N=2.
In order to solve Eqs. (135) and (136), one may follow the method reported in

Refs. [24, 25]. Thus each of these equations has two solutions but one of the solu-

tions can be ignored, since it does not correspond to an ensemble N-representable

1-RDM.
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When the 2-CM is exact, all the 1-RDMs obtained from Eqs. (135)–(138)

coincide; however, in practice one can only hope that the differences among

these matrices are small. These latter properties constitute important

S-representability conditions in the singlet case and are at the center of the N-

and S-representability purification procedure, which will now be described. In

what follows we will identify 1Dp, 1Dq, 1Dr, and 1Ds with the solutions of

Eqs. (135), (136), (137), and (138), respectively while keeping the symbol 1D

for the initial 1-RDM, which remains fixed throughout the iterations of the

AV purification procedure.

B. The Alcoba–Valdemoro Purification Procedure

In order to be as precise as possible, the different steps of the AV N- and

S-representability purification procedure will be described in the same order

as they appear in the flowchart of the computer code.

1. Initial Data.

(a) The initial data are the trial 2D
ð0Þ
ab;ab and the corresponding 1-RDM, 1D,

which has previously been rendered ensemble N-representable. This is

achieved as follows: the 1-RDM matrices are diagonalized. Then the

negative eigenvalues are made equal to zero, and the matrix is renorma-

lized iteratively while keeping all the eigenvalues equal or less than

one. The subroutine that performs this task is very efficient and obtains

an N-representable 1-RDM extremely close to the initial one.

(b) From the initial 2-RDM spin-block, the corresponding 2C
ð0Þ
ab;ab is

obtained by applying formula (113).

2. Imposing the D/Q N-Representability Condition on the 2-RDM/2-HRDM.

(a) The 2Q
ð0Þ
ab;ab is now formed using relation (116).

(b) The 2-RDM and the 2-HRDM are diagonalized. Let us call fjxpig/
fxpg the eigenvectors/eigenvalues of the 2D

ð0Þ
ab;ab spin-block. Similarly,

let us call fj�xxqig/f�xxqg the eigenvectors/eigenvalues of the 2Q
ð0Þ
ab;ab

spin-block. The new 2-RDM and 2-HRDM are then reconstructed as

2D
ð1Þ
iajb;kalb

¼
X
p

0 xp hiajbjxpihxpjkalbi ð141Þ

and

2Q
ð1Þ
iajb;kalb

¼
X
q

0 �xxq hiajbj�xxqih�xxqjkalbi ð142Þ

where jiajbi and jkalbi are two-electron Slater determinants. The sym-

bol � 0 indicates that only the positive eigenvalues are considered.
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The 2D
ð1Þ
ab;ab and 2Q

ð1Þ
ab;ab are then multiplied by a factor in order to

renormalize their trace to the value ðNaNbÞ and ðK � NaÞðK � NbÞ,
respectively.

3. Implications of the D- and Q-Conditions on the 2-CM. The errors of the

2-RDM and 2-HRDM are

2�iajb;kalb ¼ 2D
ð1Þ
iajb;kalb

� 2D
ð0Þ
iajb;kalb

ð143Þ
2���iajb;kalb ¼ 2Q

ð1Þ
iajb;kalb

� 2Q
ð0Þ
iajb;kalb

ð144Þ

Since the 1-RDM is kept fixed, these errors should necessarily correspond

to those of the 2C
ð0Þ
ab;ab. Thus the new approximation for the 2-CM is

obtained as follows:

2C
ð1Þ
iajb;kalb

¼ 2C
ð0Þ
iajb;kalb

þ 1
2
ð2�iajb;kalb þ 2���iajb;kalbÞ ð145Þ

4. Imposing S-Representability Conditions on the 2-CM. In order to impose

the S-representability conditions on the 2-CM, we proceed by correcting

its spin components in a sequential manner.

(a) The f0;0g2C spin component.

(i) Due to Eq. (129), the f0;0g2C
ð1Þ
ab;ab is obtained.

f0;0g2C
ð1Þ
iajb;kalb

¼ 1
2
ð1Dia;la

1Qjb;kb � 2C
ð1Þ
iajb;lakb

Þ þ 2C
ð1Þ
iajb;kalb

ð146Þ

(ii) The f0;0g2G
ð1Þ
aa;bb matrix is obtained according to the relation

f0;0g2Giaka;lbjb ¼ f0;0g2Ciajb;kalb ð147Þ
This matrix is rendered positive by carrying out the same opera-

tions described in step 2 for the 2-RDM. The renormalization fac-

tor in this case is chosen so as to yield the trace given in Eq. (139).

(iii) From the resulting f0;0g2G
ð2Þ
aa;bb a new f0;0g2C

ð2Þ
ab;ab is obtained.

(iv) From Eqs. (135) and (136) the corresponding 1Dp and 1Dq are

obtained.

(v) Equation (131) leads to a new 2Cð2Þ

2C
ð2Þ
iajb;kalb

¼ 2
3
ð2f0;0g2Cð2Þiajb;kalb

þ f0;0g2Cð2Þiajb;lakb
Þ

� 1
3
ð1Dp

ia;ka
1Q

q
jb;lb
þ 2 1D

p
ia;la

1Q
q
jb;kb
Þ ð148Þ
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Note that only at convergence does this relation coincide with

Eq. (131).

(b) The f1;0g2C spin component. The key equations in this part of the pro-

cedure are Eqs. (130), (137), and (138), while the underlying reason-

ing linking them is similar to that applied in steps (a) (i)–(iv). Note

that in this case the f1;0g2G
ð2Þ
aa;bb, which is obtained according to the

relation

f1;0g2Giaka;lbjb ¼ f1;0g2Ciajb;kalb ; ð149Þ
must be rendered negative semi-definite [72] and must be renorma-

lized to present the trace given by Eq. (140). Moreover, the

1-RDMs obtained from the contractions of this 2-CM spin compo-

nent are 1Dr and 1Ds. Equation (132) leads to a new 2Cð2Þ:

2C
ð2Þ
iajb;kalb

¼ 1
2
ð1Dr

ia;ka
1Qs

jb;lb
þ 1Qs

ib;kb
1Dr

ja;la
Þ þ f1;0g2Cð2Þiajb;lakb

þ f1;0g2Cð2Þjaib;kalb

ð150Þ
Note that at convergency 1Dr ¼ 1Ds ¼ 1D.

5. Obtaining the Final RDMs at Each Iteration. The RDMs constituting the

initial data for the next iteration are recalculated by aplying Eqs. (113) and

(116).

6. Consistency Tests. A set of consistency tests are carried out at the end of

each iteration. These tests check the extent of coincidence of the five

1-RDMs 1D, 1Dp, 1Dq, 1Dr, and 1Ds, as well as the convergence toward

the value zero of the RMS deviations of the natural contractions of the

spin components of the 2-CM.

The results obtained in the calculations of the ground states of several test

molecules are reported in the next section.

C. Test Calculations and Results

In order to analyze the performance of this purification procedure and to com-

pare it with those reported in the previous section, the same atomic and mole-

cular systems in their ground state were selected as test systems. Again, the basis

sets used were formed by Hartree–Fock molecular orbitals built out of minimal

Slater orbital basis sets and the initial data were chosen to be the approximate

2-RDMs built by application of the independent pair model within the frame-

work of the SRH theory.

Since the results obtained for each of the test systems studied show a very

similar performance, only the results obtained for the beryllium atom will be

reported in detail.

purification of correlated reduced density matrices 239



The rate of convergence toward positivity may easily be appreciated by plotting

the lowest eigenvalue of each of the different matrices at each iteration. Thus the

simultaneous convergence toward positivity of the 2-RDM and 2-HRDM is shown

in Fig. 5. As can be seen, convergence in both curves is smooth and rapid. After

twenty iterations the negativity of these matrices is negligible (the lowest eigen-

values of the 2-RDM and 2-HRDM are �0:00023 and �0:00044, respectively).
Figure 6 shows how the S-representability is attained. Thus it can be seen

from this figure that the f0;0g2Gaa;bb=f1;0g2Gaa;bb spin-block converges very satis-

factorily on a positive/negative semidefinite matrix. After twenty iterations the

lowest/highest eigenvalue of these two matrices is �0:00010 and 0.00022,

respectively. As was mentioned in Section II, these conditions are much more

exacting than the well-known G-condition.

A very important reliability consistency test of the procedure is shown in

Fig. 7, where it can be seen that the convergence of the four initially very dif-

ferent matrices 1Dp, 1Dq, 1Dr, 1Ds toward the 1D, which is kept fixed throughout

the iterations, is clearly excellent; indeed, after twenty iterations the RMS devia-

tion of these matrices from 1D are 0.00008, 0.00008, 0.00005, and 0.00010,

respectively. Another set of tests confirming the consistency of the results is

provided by Fig. 8. In this figure the RMS deviations from zero of the natural

contractions of the spin components of the 2-CM—and hence of the 2-CM—

are shown. Clearly, these deviations converge toward zero very rapidly; at itera-

tion 20 the RMS deviations of the natural-left and natural-right contractions of
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Figure 5. Lowest eigenvalue of the 2-RDM and 2-HRDM at each iteration of the AV purifica-

tion procedure for the ground state of the beryllium atom.
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f0;0g2Cab;ab are 0.00015 and 0.00015, respectively, while those of f1;0g2Cab;ab are

0.00013 and 0.00013, respectively.

As mentioned earlier, similar behaviors to that of the beryllium atom case

were found when applying the procedure to the approximated 2-RDMs of

the Bþ, C2þ, N3þ, O4þ, Li2, and BeH2 cases. The results obtained in these

Figure 6. Lowest eigenvalue of the f0;0g2Gaa;bb and highest eigenvalue of the f1;0g2Gaa;bb at

each iteration of the AV purification procedure for the ground state of the beryllium atom.

Figure 7. RMS deviation of the 1Dp, 1Dq, 1Dr , and 1Ds from the fixed 1-RDM 1D at each itera-

tion of the AV purification procedure for the ground state of the beryllium atom.
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calculations are reported in Tables IV–VI. These results show that the D- and

Q-conditions as well as the spin G-conditions are efficiently imposed in all

the cases studied. Moreover, while part of the set of S-representability conditions

is also explicitly imposed in the procedure, the rest of these conditions

are only indirectly taken into account. The test calculations at the end of the
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Figure 8. RMS deviation of the natural-left and natural-right contractions of the f0;0g2Cab;ab and

f1;0g2Cab;ab from the null vector at each iteration of the AV purification procedure for the ground state

of the beryllium atom.

TABLE IV

Performances of the AV Purification Procedure When Applied to Approximated 2-RDMs of Several

Test Systems in Their Ground State

Lowest (Highest) Eigenvalue

System Iteration 2Dab;ab
2Qab;ab f0;0g2Gaa;bb f1;0g2Gaa;bb

Be 1 0 �2:247� 10�1 �6:604� 10�2 3:820� 10�2

20 �2:296� 10�4 �4:380� 10�4 �1:031� 10�4 2:229� 10�4

Bþ 1 0 �1:540� 10�1 �4:772� 10�2 2:778� 10�2

20 �1:058� 10�4 �3:068� 10�4 �6:615� 10�5 1:442� 10�4

C2þ 1 0 �1:167� 10�1 �3:729� 10�2 2:127� 10�2

20 �5:765� 10�5 �1:874� 10�4 �3:994� 10�5 8:482� 10�5

N3þ 1 0 �9:322� 10�2 �3:050� 10�2 1:712� 10�2

20 �3:420� 10�5 �1:236� 10�4 �2:573� 10�5 5:385� 10�5

O4þ 1 0 �7:795� 10�2 �2:589� 10�2 1:434� 10�2

20 �2:269� 10�5 �8:652� 10�5 �1:758� 10�5 3:669� 10�5

Li2 1 0 �4:089� 10�1 �9:866� 10�2 5:194� 10�2

20 4:129� 10�4 �1:483� 10�4 �3:581� 10�5 5:958� 10�5

BeH2 1 0 �2:147� 10�1 �7:884� 10�2 4:986� 10�2

20 �2:433� 10�3 �1:041� 10�3 �4:683� 10�4 2:800� 10�4
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procedure iterations yield highly satisfying results, since not only the

S-representability conditions imposed are satisifed but also the spin conditions

not imposed are nevertheless satisfied by the resulting 2-CM. These results

show that after twenty iterations the convergence towards the set of all the

TABLE V

Performances of the AV Purification Procedure When Applied to

Approximated 2-RDMs of Several Test Systems in Their Ground State

RMS Deviation

System Iteration 1Dp 1Dq 1Dr 1Ds

Be 1 2:906� 10�2 2:906� 10�2 1:903� 10�2 1:353� 10�2

20 8:087� 10�5 8:087� 10�5 5:198� 10�5 9:996� 10�5

Bþ 1 2:178� 10�2 2:178� 10�2 1:404� 10�2 1:034� 10�2

20 3:678� 10�5 3:678� 10�5 4:208� 10�5 6:240� 10�5

C2þ 1 1:729� 10�2 1:729� 10�2 1:112� 10�2 8:350� 10�3

20 1:971� 10�5 1:971� 10�5 2:690� 10�5 3:707� 10�5

N3þ 1 1:423� 10�2 1:423� 10�2 9:145� 10�3 6:933� 10�3

20 1:142� 10�5 1:142� 10�5 1:830� 10�5 2:393� 10�5

O4þ 1 1:212� 10�2 1:212� 10�2 7:793� 10�3 5:942� 10�3

20 7:478� 10�6 7:478� 10�6 1:295� 10�5 1:658� 10�5

Li2 1 3:991� 10�2 3:991� 10�2 5:382� 10�2 1:803� 10�2

20 7:065� 10�5 7:065� 10�5 7:171� 10�5 4:116� 10�5

BeH2 1 2:095� 10�2 2:774� 10�2 5:772� 10�3 5:269� 10�3

20 2:205� 10�4 3:288� 10�4 5:909� 10�5 1:216� 10�4

TABLE VI

Performances of the AV Purification Procedure When Applied to

Approximated 2-RDMs of Several Test Systems in Their Ground State

RMS Deviation of Natural Contractions

f0;0g2Cab;ab f1;0g2Cab;ab

System Iteration Left Right Left Right

Be 1 1:357� 10�2 1:357� 10�2 4:928� 10�3 4:928� 10�3

20 1:521� 10�4 1:521� 10�4 1:309� 10�4 1:309� 10�4

Bþ 1 9:617� 10�3 9:617� 10�3 3:756� 10�3 3:756� 10�3

20 8:480� 10�5 8:480� 10�5 7:627� 10�5 7:627� 10�5

C2þ 1 7:352� 10�3 7:352� 10�3 3:062� 10�3 3:062� 10�3

20 4:930� 10�5 4:930� 10�5 4:457� 10�5 4:457� 10�5

N3þ 1 5:947� 10�3 5:947� 10�3 2:565� 10�3 2:565� 10�3

20 3:152� 10�5 3:152� 10�5 2:830� 10�5 2:830� 10�5

O4þ 1 5:018� 10�3 5:018� 10�3 2:217� 10�3 2:217� 10�3

20 2:187� 10�5 2:187� 10�5 1:949� 10�5 1:949� 10�5

Li2 1 2:650� 10�2 2:650� 10�2 4:603� 10�3 4:603� 10�3

20 6:093� 10�5 6:093� 10�5 5:290� 10�5 5:290� 10�5

BeH2 1 1:602� 10�2 1:602� 10�2 2:312� 10�3 2:312� 10�3

20 9:434� 10�5 9:434� 10�5 2:446� 10�5 2:446� 10�5
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properties, which, to our knowledge, characterize a well-behaved 2-RDM, is

achieved in a consistent and simultaneous way.

All these results have been compared with those obtained by applying the

I-MZ purification procedure (Tables I and II). Although the results are very simi-

lar from a global point of view, it has been found that in certain cases (e.g., BeH2

molecule) the latter procedure yields 2-RDMs and 2-HRDMs that oscillate

markedly before converging toward positive matrices. Another important differ-

ence betweeen the results concerns the spin G-conditions. Thus, although these

conditions are not imposed in the I-MZ procedure, the negativity/positivity of

the spin components of the 2-G matrix are corrected as effectively as the

2-RDMs and 2-HRDMs. This may be due to the fact that the different spin-

blocks of these matrices are forced to contract correctly; and therefore an indir-

ect action on the spin components of the 2-G matrix may occur. On the other

hand, the correction of the negativity of the spin components of the 2-G matrix

in the AV purification procedure is carried out still more effectively than the

negativity correction of the 2-RDM and 2-HRDM. This is illustrated for Li2
and BeH2 molecules in Table VII. The conditions imposed on the spin

components of the 2-G and their contractions are essential for the N- and

S-representability of this matrix and, hence, for those of the 2-RDM and

2-HRDM.

V. PURIFICATION WITHIN THE FRAMEWORK OF THE

SECOND-ORDER CONTRACTED SCHRÖDINGER EQUATION

Among the several 2-RDM-oriented methods that have been developed for the

study of chemical systems, one of the most recent and promising techniques is

based on the iterative solution of the second-order contracted Schrödinger equa-

tion (2-CSE) [1, 6, 15, 18, 36, 45–60, 62–65, 68, 70, 79–85, 103–111]. The

2-CSE was initially derived in 1976 in first quantization in the works of Cho

[103], Cohen and Frishberg [104, 105], and Nakatsuji [106] and later on

deduced in second quantization by Valdemoro [45] through the contraction of

TABLE VII

Study of the Spin G-Conditions in the I-MZ and the AV Purification Procedures

When Applied to Approximated 2-RDMs of Li2 and BeH2 Systems in Their Ground States

I-MZ Purification AV Purification

System Iteration f0;0g2Gaa;bb f1;0g2Gaa;bb f0;0g2Gaa;bb f1;0g2Gaa;bb

Li2 1 �1:598� 10�1 1:277� 10�1 �9:866� 10�2 5:194� 10�2

20 �4:286� 10�4 2:823� 10�4 �3:581� 10�5 5:958� 10�5

BeH2 1 �9:880� 10�2 8:057� 10�2 �7:884� 10�2 4:986� 10�2

20 �5:256� 10�3 2:240� 10�3 �4:683� 10�4 2:800� 10�4
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the matrix representation of the Schrödinger equation into the two-electron

space. This equation was shown to be equivalent to the Schrödinger equation

(by the necessary and sufficient condition) within the N-representable space

of RDMs [106]. The drawback of this very attractive equation is that its solution

is indeterminate [63, 107]. This is due to the fact that, although in an ave-

rage way, RDMs of orders higher than 2 (the 3-RDM and the 4-RDM) appear

in it.

The indeterminacy of the 2-CSE had caused this equation to be overlooked

for many years. In 1992 Valdemoro proposed a method to approximate the

2-RDM in terms of the 1-RDM [108], which was extended in order to approx-

imate the 3- and 4-RDMs in terms of the lower-order matrices [46, 47] and in

1994 Colmenero and Valdemoro [48] applied these approximate constructing

algorithms to avoid the indeterminacy problem and solve iteratively the 2-

CSE. Since then, the study of improved constructing algorithms as well as alter-

native strategies in the iterative procedure have been proposed [1, 6, 15, 18, 36,

49–57, 59, 60, 62–65, 68, 70, 71, 79–85, 109–111]. Also, good results of several

calculations have been reported [6, 49–52, 55, 56, 68, 70, 88, 109, 111].

One of the critical points that affect the success of the iterative solution of the

2-CSE is that of the possible N- and S-representability defects of the 2-

RDM. Thus the N-representability of the initial trial 2-RDM as well as its

S-representability are partially lost during the iterative process [87]. As pointed

out in Refs. [15, 70, 88, 111], the divergence that appears at a certain point of the

iterative process can be prevented by correcting the small representability

defects of the resulting 2-RDM as the iterations proceed. Thus the 2-CSE itera-

tive process has been linked with several iterative purification procedures [50,

70, 88, 111]. In the method that we apply here, we couple the iterative 2-CSE

process with the AV purification procedure and with a regulating convergence

device recently reported [88]. These two implementations render this method

highly efficient. In what follows this method will be referred to as the regulated

CSE-NS method.

A. The Second-Order Contracted Schrödinger Equation
and Its Iterative Solution

Since most of the different steps of the method have previously been published

[48, 50, 60, 82], a detailed study will only be given of the new regulating device,

which was introduced in Ref. [88].

1. The Second-Order Contracted Schrödinger Equation

When contracting the matrix form of the Schrödinger equation into the two-

electron space and transforming into normal form the resulting equation, one

obtains the 2-CSE [45, 50]. In the spin-orbital representation, the 2-CSE splits
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into the three following coupled equations (summation over all possible values

of common indices is implicit with the restrictions r < s and k < l):

E 2Diaja;paqa ði<j;p<qÞ ¼

2Krasa;paqa
2Diaja;rasa

�2Krasa;pama
3Diajama;qarasa

þ2Krasa;qama
3Diajama;parasa

þ2Kuavb;qamb
3Diajamb;pauavb

�2Kuavb;pamb
3Diajamb;qauavb

þ2Krasa;kala
4Diajakala;paqarasa

þ2Krbsb;kblb
4Diajakblb;paqarbsb

þ2Kuavb;manb
4Diajamanb;paqauavb

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

ð151Þ

E 2Diajb;paqb ¼

2Kuavb;paqb
2Diajb;uavb

�2Krasa;pama
3Dmaiajb;rasaqb

þ2Krbsb;qbmb
3Diajbmb;parbsb

�2Kuavb;maqb
3Dmaiajb;pauavb

�2Kuavb;panb
3Diajbnb;uavbqb

þ2Krasa;kala
4Dkalaiajb;rasapaqb

þ2Krbsb;kblb
4Diajbkblb;paqbrbsb

þ2Kuavb;manb
4Diamajbnb;pauaqbvb

8>>>>>>>>>>>><>>>>>>>>>>>>:

9>>>>>>>>>>>>=>>>>>>>>>>>>;
ð152Þ

The relation for the M ¼ �1 spin-block follows directly from Eq. (151) by

exchanging the spin functions.

As can be seen, the 2-CSE depends not only on the 2-RDM but also on the

3- and 4-RDMs. This fact lies at the root of the indeterminacy of this equation

[63, 107]. As already mentioned, in the method proposed by Colmenero and

Valdemoro [46–48] and in those further proposed by Nakatsuji and Yasuda

[49, 51] and by Mazziotti [52, 111], a set of algorithms for approximating the

higher-order RDMs in terms of the lower-order ones [46, 47, 108] allows this

equation to be solved iteratively until converging to a self-consistent solution.

In the approach considered in this work, the spin-adapted 2-CSE has been

used. This equation is obtained by coupling the 2-CSE with the second-order

contracted spin equation [50].

2. The Regulated Iterative Self-Consistent Solution.

Initially, the main features of the iterative self-consistent solution of the 2-CSE

were the following [48]:

1. Starting from an initial set of 1- and 2-RDMs, the 3- and 4-RDMs are app-

roximated by applying the constructing algorithms [18, 46–52, 60, 81].
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The algorithms that will be used here are those reported in Ref. [18],

which emphasize the role played by the 2-RDM—the basic variable of

the 2-CSE—while the original ones emphasized the role played by the

1-RDM. Another advantage of these algorithms is that they are more eco-

nomical than the original ones, since they have fewer terms.

2. Once the 3- and 4-RDMs are evaluated, these trial matrices, jointly with

the 2-RDM obtained by contracting them, are replaced in the rhs of the

spin-adapted 2-CSE coupled equations, which become a matrix repre-

sented in the two-electron space, 2Rss0;ss0 , such that

E 2Disjs0 ;psqs0 ¼ 2Risjs0 ;psqs0 ð153Þ

3. Then an intermediate energy and a new 2-RDM are obtained as follows:

E ¼ 1

N

2

� �X
s�s0

X
i;j

2Risjs0 ;isjs0 ð154Þ

2Disjs0 ;psqs0 ¼
1

E
2Risjs0 ;psqs0 ð155Þ

4. After contracting the new 2-RDM to obtain the corresponding 1-RDM, a

new iteration starts by calculating new trials for the 3- and 4-RDMs.

5. The procedure is repeated until convergence is obtained.

In order to regulate the convergence of the iterative process by damping or

accelerating its rate according to convenience, the basic procedure has been

further refined [88]. This is achieved by substituting the numerical reduced

Hamiltonian matrix by a new one

2Ksisjs0 ;ksls0 ¼ 2Kisjs0 ;ksls0 �
a

N

2

� � di;k dj;l ð156Þ

where the quantity a is an amount of energy. The net result of this replacement is

that the electron distributions of the stationary states are not modified, but the

energy levels are shifted to new values

Es ¼ E � a ð157Þ

This energy shifting does not modify the RDMs, which constitute the solution at

convergence, that is, the full CI RDMs. On the other hand, the value of a influ-

ences the rate of convergence of the process. Denoting the 2-RDM entering the
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iterative process as 2Dð0Þ and calling 2Dð1Þ its outcome, the 2-CSE is now

expressed as

Es
2Dð1Þs isjs0 ;psqs0

¼ 2Rs isjs0 ;psqs0

¼ 2Risjs0 ;psqs0 � a 2D
ð0Þ
isjs0 ;psqs0

ð158Þ

because the only action of the Kronecker deltas appearing in relation (156) is to

contract the 3- and 4-RDMs into the 2-RDM. The outcome of the shifted equa-

tion, Eq. (158), is related to the nonshifted one as follows:

2Dð1Þs isjs0 ;psqs0
¼ E

E � a
2 D
ð1Þ
isjs0 ;psqs0

� a

E � a
2 D
ð0Þ
isjs0 ;psqs0

ð159Þ

Thus, when analyzing Eq. (159) in detail, one observes the following:

� For a=E > 1 the process does not converge to the solution aimed at but to a

different one since the direction of the searching flow is reversed.

� For 0 < a=E < 1 the convergence of the process is accelerated and what is

more it converges toward a more accurate value. This acceleration is neces-

sary in the cases where the convergence is smooth but slow. In general, as the

energy value improves, the 1- and 2-RDMs become closer to the full CI

ones. This is so because with a rapid convergence fewer errors are accumu-

lated. However, there is a limit to the regulating parameter. Thus, if the

regime becomes too rapid, the RDMs of different orders do not optimize

to a similar extent. In general, the optimum accelerating parameter lies close

to, though above, the (negative) full CI energy value. In fact, a good value

of this parameter is given by the mean energy of a bielectronic confi-

guration times the number of geminals appearing in an N-electron Slater

determinant:

a ¼
N

2

� �
2K

2

� �X
s�s0

X
i;j

2 Kisjs0 ;isjs0 ð160Þ

� For a=E < 0 the convergence of the process is damped. This damping is

necessary in the cases where large oscillations appear at the beginning of

the iterative process. By introducing the damping, the modifications in the

RDMs, from one iteration to the next one, are sufficiently small to allow the

easy correction of the deviations of the N- and S-representability, thus

avoiding the appearance of oscillations.
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This regulating device, which acts, according to its sign, as either a damping

or an accelerating agent, greatly fosters the convergence of the iterative process

[88].

B. Analysis of the Effects of the N- and S-Purification on
the Regulated CSE Iterative Process

The regulated CSE iterative process has been linked with several iterative pur-

ification procedures [50, 70, 88, 111]. In the analysis carried out here the perfor-

mance of the regulated CSE is compared with the one obtained by coupling the

AV purification procedure to the regulated CSE—the regulated CSE-NS iterative

process.

In order to carry out this analysis, the Li2 (Li—Li bond length of 5.50 au) and

the linear BeH2 (Be—H bond length of 2.54 au) molecules, each in its ground

state, were calculated. The basis set is formed by Hartree–Fock molecular orbi-

tals built out of a minimal basis set of Slater orbitals. In all the calculations

reported in this section, the integrals were evaluated with an adapted version

of the program SMILES [112, 113] and the initial RDMs are those correspond-

ing to a Hartree–Fock calculation.

The reference calculation in the analysis of the Li2 molecule consists of per-

forming 160 iterations of the regulated CSE process with a regulating parameter

of a ¼ �11:5 au, while that of the BeH2 molecule consists of performing

40 iterations of the regulated CSE process with a regulating parameter of

a ¼ �13 au. The other calculations consist of carrying out 15, 35, and 55 itera-

tions of the AV N- and S-purification process at each iteration of the reference

calculations.

As an illustrative example, the energy curves showing the convergence of

the overall process for both the regulated CSE process without purification

and the regulated CSE process with 15 purification iterations of the calculations

of the Li2 molecule are shown in Fig. 9. The two horizontal lines correspond to

the Hartree–Fock and the full CI energy values. As can be noticed, both the

accuracy and the convergence rate are remarkably improved when purification

is carried out.

The results of the complete set of calculations are given in Table VIII, where

we report the values of the largest negative eigenvalues of the 2-RDM, the

2-HRDM, and the 2-G matrix, as well as the energy error with respect to the

full CI energy value. As can be seen, there is a clear and general improvement

when the N- and S-purification procedure is added to the CSE process. The

initial N- and S-representability defects, which manifest themselves either by

producing a premature minimum in the energy followed by divergence or by giv-

ing a total energy below the full CI one, are corrected. Consequently, the energy

error after purification becomes smaller and positive, and the absolute values

of the negative eigenvalues of the three matrices, which must be positive
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semidefinite, diminish in one, two, or three orders of magnitude according to the

system and quantity involved. As can also be seen in Table VIII, this effect is

enhanced if the number of iterations of the N- and S-representability purification

procedure is augmented.

C. Application of the Regulated CSE-NS Method to the Study

of Potential Energy Curves

In order to judge the performance of the regulated CSE-NS method, the calcula-

tion of the potential energy curves (PECs) of small molecules such as Li2 and

BeH2 is very illuminating.

The results obtained for the stretching PEC of the ground state of the Li2
molecule are given in Fig. 10. In this figure we compare the results of the

Hartree–Fock, of the regulated CSE-NS, and of the full CI calculations within

a range of the Li—Li bond length of 4.6–8.0 au. As can be seen, the results are

excellent since the regulated CSE-NS curve closely reproduces the full CI one.

Indeed, the correlation energy obtained in this calculation is within the range of

97.45–99.21%.

The symmetric-stretching PEC of the ground state of the BeH2 molecule

within the range of the Be—H bond length of 2.34–2.94 au was also calculated

using a minimal basis set, and the results are shown in Fig. 11. Here again, we
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Figure 9. The ground-state electronic energy for Li2 is shown as a function of the regulated

CSE-NS iterations both with and without purification. The regulated CSE-NS with purification cap-

tures 99:12% of the correlation energy, while the regulated CSE-NS without purification achieves

only 51:61% of the correlation energy before diverging.
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TABLE VIII

Representability Defects of the 2-RDM, 2-HRDM, and 2-G and Energy Error Obtained When Solving

the Regulated CSE with and Without the N-, S-Purification Procedure for Li2 and BeH2 Molecules

System Quantity Representability Defect

Without Purification

Li2
2-RDM �1:90� 10�4

2-HRDM �3:86� 10�3

2-G �1:73� 10�3

Energy error (au) þ0:0070
BeH2

2-RDM �1:79 10�4

2-HRDM �6:89 10�4

2-G �1:32 10�3

Energy error (au) �0:0018
With Purification

(15 Iterations) (35 Iterations) (55 Iterations)

Li2
2-RDM 7:04� 10�6 2:91� 10�7 3:56� 10�8

2-HRDM �3:08� 10�5 �2:05� 10�5 �1:62� 10�5

2-G �7:55� 10�6 �5:30� 10�6 �4:22� 10�6

Energy error (au) þ0:0001 þ0:0001 þ0:0001
BeH2

2-RDM �1:06 10�5 �6:42 10�6 �4:31 10�6

2-HRDM �1:99 10�5 �1:10 10�5 �3:92 10�6

2-G �2:02 10�5 �1:35 10�5 �1:22 10�5

Energy error (au) þ0:0006 þ0:0006 þ0:0006
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Figure 10. Stretching potential energy curve of Li2 calculated by the Hartree–Fock, regulated

CSE-NS, and full CI methods.
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compare the Hartree–Fock, the regulated CSE-NS, and the full CI calculation.

The correlation energy obtained in this calculation is within the range of

98.43–99.20%.

Although in both cases the results are very good, it must be noted that as the

interatomic distance augments, the PECs obtained by the regulatedCSE-NS slightly

separate from those of the full CI. This is due to the fact that in those zones of the

PECs the dominance of a single configuration is not so clear and the constructing

algorithms thus become less efficient. Similar behaviors have been reported by

Ehara et al. [56] and by Mazziotti [111] when studying other compounds.

The calculations reported here reproduce with a high precision and in very few

iterations the full CI results. These results, as well as others reported by Nakatsuji

and co-workers [6, 49, 51, 56, 109],Mazziotti [70, 111], andAlcoba and co-workers

[88], render us confident that the moment has arrived when thismethodology can be

competitively applied with the standard quantum chemistry methods in the study of

electronic states that have a clear dominance of a single configuration.

VI. DISCUSSION AND FINAL REMARKS

From the begining of the development of the RDM theory the need to render N-

and S-representable a 2-RDM obtained by an approximative method was patent.

The development first of the spin-adapted reduced Hamiltonian methodology

and, more recently, that of the second-order contracted Schrödinger equation

rendered the solution of this problem urgent. The purification strategies
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Figure 11. Symmetric-stretching potential energy curve of BeH2 calculated by the Hartree–

Fock, regulated CSE-NS, and full CI methods.
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described in this chapter constitute a conclusive solution to this problem. From

the results reported here it is clear that these purification procedures, in particular

the AVone, achieve a nearly perfect purification of the 2-RDM corresponding to

a singlet state. Moreover, the good performance of this procedure is accom-

plished in only a few iterations, which enhances considerably the applicability

of the procedure. Clearly, other spin symmetries have now to be considered in

order to complete the 2-RDM study.

Another extension of this theoretical study is the consideration of both an

economical and an effective purification strategy for the 4-RDM. The need

for such a purification scheme is motivated by the need to have an N- and

S-representable 4-RDM if one wishes to solve the fourth-order modified con-

tracted Schrödinger equation [62, 64, 87]. There have already been several

attemps to purify both the 3-RDM and 4-RDM [18, 34, 52]. In particular, a

set of inequalities that bound the diagonal and off-diagonal elements of these

high-order matrices have been reported [18]. However, the results obtained

with this approach within the framework of the fourth-order modified contracted

Schrödinger equation (and the second-order contracted Schrödinger equation)

were not fully satisfactory because the different spin-blocks of the matrices

did not appear to be properly balanced [87, 114].

Let us finally comment on the effectiveness of the coupling of the purification

procedure with the regulating device implemented within the iterative solution of

the second-order contracted Schrödinger equation. It has been shown here that these

two implementations highly improve the performance of the iterative method. In

fact, the regulating device, which acts, according to its sign, as either a damping

or an accelerating agent, greatly fosters the convergence of a purification process.

In view of all the results presented here it can be concluded that the coupling

of any RDM-oriented method with the purification procedure augments its

applicability in a significant way. In particular, the coupling of the purification

procedure and regulating device with the iterative solution of the 2-CSE renders

this approach not only reliable but also highly effective.
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I. INTRODUCTION

In recent years, several groups [1–16] have explored the possibility of circum-

venting the wavefunction and the electronic Schrödinger equation in quantum

chemical calculations, instead solving the so-called contracted Schrödinger

equation (CSE) [16–19] for the two-electron reduced density matrix

(2-RDM). Within the set of N-representable [20–24] RDMs, the CSE is an

equivalent [16–18] formulation of the N-electron, clamped-nuclei Schrödinger

equation, and couples the 2-, 3-, and 4-RDM elements via a linear equation

that does not involve the electronic wavefunction explicitly. Direct calculation

of the 2-RDM, and thereby electronic properties, is accomplished using approx-

imate reconstruction functionals [7–9, 15, 25–27], by means of which the 3- and

4-RDMs are expressed in terms of the 2-RDM, leading to closed nonlinear

equations for matrix elements of the latter.

Much of the recent literature on RDM reconstruction functionals is couched

in terms of cumulant decompositions [13, 27–38]. Insofar as the p-RDM repre-

sents a quantum mechanical probability distribution for p-electron subsystems

of an N-electron supersystem, the RDM cumulant formalism bears much simi-

larity to the cumulant formalism of classical statistical mechanics, as formalized

long ago by by Kubo [39]. (Quantum mechanics introduces important differ-

ences, however, as we shall discuss.) Within the cumulant formalism, the

p-RDM is decomposed into ‘‘connected’’ and ‘‘unconnected’’ contributions,

with the latter obtained in a known way from the lower-order q-RDMs,

q < p. The connected part defines the pth-order RDM cumulant (p-RDMC).

In contrast to the p-RDM, the p-RDMC is an extensive quantity, meaning that

it is additively separable in the case of a composite system composed of non-

interacting subsystems. (The p-RDM is multiplicatively separable in such cases

[28, 32]). The implication is that the RDMCs, and the connected equations that

they satisfy, behave correctly in the limit of noninteracting subsystems by

construction, whereas a 2-RDM obtained by approximate solution of the CSE

may fail to preserve extensivity, or in other words may not be size-consistent

[40, 42].

In this work, we derive—via explicit cancellation of unconnected terms in

the CSE—a pair of simultaneous, connected equations that together determine

the 1- and 2-RDMCs, which in turn determine the 2-RDM in a simple way.

Because the cancellation of unconnected terms is exact, we have in a sense

done nothing; the connected equations are equivalent to the CSE and, given

N-representability boundary conditions, they are also equivalent to the electro-

nic Schrödinger equation. The important difference is that the connected equa-

tions for the cumulants automatically yield a size-consistent 2-RDM, even when

solved approximately, because every term in these equations is manifestly

extensive.
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The derivation of the connected equations that is presented here is an

expanded version of the one we published previously [43]. Our derivation

utilizes a diagram technique and a ‘‘first-quantized’’ formalism, in which the

CSE is expressed in terms of position-space kernels and Hilbert-space operators.

Equations that couple the RDMCs have also been published in second quantiza-

tion, by Kutzelnigg and Mukherjee [29, 31] and by Nooijen et al. [44], but the

derivation presented here has the conceptual advantage that it explicitly demon-

strates the cancellation of all unconnected terms, and furthermore does not

require the introduction of a basis set (as is tacitly assumed in second quantiza-

tion). Our derivation thus proves that the final, connected equations are equiva-

lent to the CSE as well as to the ordinary electronic Schrödinger equation.

Moreover, our derivation clarifies several important differences between the

connected and the unconnected equations. As explained in Section V.B, the

connected CSE is in fact a pair of implicit equations for the 1- and 2-RDMCs,

whereas the original CSE is an explicit equation for the RDMs. In addition, the

electronic energy—an explicit parameter in the CSE—is absent from this equa-

tion’s connected analogues. Formally speaking, the connected equations that we

ultimately obtain are equivalent to the ‘‘irreducible’’ CSEs introduced by Kut-

zelnigg and Mukherjee [29, 31], who derived connected equations starting from

the fermion anticommutation relations, in a manner that does not rely on the ori-

ginal CSE at all.

The remainder of this chapter is organized as follows. Section II introduces

the CSE as a special case of a more general class of reduced eigenvalue equa-

tions, and Section III formally defines the RDMCs. In the interest of motivating

our derivation of connected CSEs, we include in Section III a survey of the quan-

tum-mechanical cumulant formalism and the basic properties of the RDMCs,

focusing especially on their additive separability for noninteracting subsystems.

In Section IV, we develop a diagram technique to facilitate formal manipulation

of terms that appear in the CSE. These diagrams also clarify the relationship

between the CSE and older, Green’s function methods in many-body theory, a

connection that is examined in Section V. In that section we also present the

main result of this work, a derivation of the connected form of the CSE, along

with a discussion of procedures for solving the connected equations.

II. REDUCED EIGENVALUE EQUATIONS

Employing the abbreviated notation ‘‘j’’ � xj for the composite space/spin coordi-

nates of the jth electron, let

ŴW ð1;...;NÞ ¼
XN
j¼1

ĥhðjÞ þ
XN
j<k

ĝgðj;kÞ ð1Þ
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be a symmetric operator on the N-electron Hilbert space. This implies that

ĝgðj;kÞ ¼ ĝgðk;jÞ, which reflects the indistinguishability of electrons. We wish to

consider RDM analogues of the N-electron eigenvalue equation

ŴW� ¼ w� ð2Þ
Let the eigenvalue w be fixed and assume that � is nondegenerate and unit-

normalized. The restriction to nondegenerate eigenstates will be relaxed in Sec-

tion V, but for now we consider only pure-state density matrices. The N-electron

density matrix for the pure state � is

DNð1;...;N;10;...;N 0Þ¼def�ð1;...;NÞ��ð10;...;N 0Þ ð3Þ

For p < q � N, we define a partial trace operator

trpþ1;...;q¼def
Z

dxpþ1 � � � dxq dx0pþ1 � � � dx0q dðxpþ1 � x0pþ1Þ � � � dðxq � x0qÞ ð4Þ

that generates the p-RDM from the q-RDM,

Dp ¼ q!ðN � qÞ!
p!ðN � pÞ!
� �

trpþ1;...;qDq ð5Þ

and furthermore establishes the normalization

trDp � tr1;...;p Dp ¼ N

p
ð6Þ

This is the convention that is most convenient for calculating expectation values,

since in this case h�jŴW j�i ¼ trðŴW2D2Þ, where

ŴW2ð1;2Þ¼defĝgð1;2Þ þ
ĥhð1Þ þ ĥhð2Þ
N � 1

ð7Þ

is the two-electron reduced operator corresponding to ŴW [45, 46].

Most of this chapter utilizes the first-quantized formulation of the RDMs

introduced above. However, some concepts related to separability and extensiv-

ity are more easily discussed in second quantization, and the second-quantized

formalism is therefore employed in Section III. Introducing an orthonormal spin-

orbital basis jfji ¼ âa
y
j j0i, the elements of the p-RDM are expressed directly in

second quantization as

Di1;...;ip; j1;...; jp ¼
1

p!
h�j âayi1 � � � âayip âajp � � � âaj1 j�i ð8Þ
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We denote the tensor of such elements as Dp, which is the tensor representation

of the kernel Dp in a basis of p-electron direct products of the spin orbitals fjfjig
[46]. The convention introduced in Eq. (8), that the number of indices implicitly

specifies the tensor rank, is followed wherever tensors are used in this chapter.

From the N-electron Hilbert-space eigenvalue equation, Eq. (2), follows a

hierarchy of p-electron reduced eigenvalue equations [13, 17, 18, 47] for

1 � p � N � 2. The pth equation of this hierarchy couples Dp;Dpþ1, and

Dpþ2 and can be expressed as


pð1;...;p;10;...;p0Þ � 0 ð9Þ

in which 
p is the p-electron kernel [11]


pð1;...;p;10;...;p0Þ¼def
Xp
j¼1

ĥhðjÞ þ ð1� dp;1Þ
Xp
j<k

ĝgðj;kÞ � w

" #
Dp

þ ðpþ 1Þtrpþ1 ĥhðpþ1Þ þ
Xp
j¼1

ĝgðj;pþ1Þ

" #
Dpþ1

( )
ð10Þ

þ pþ 2

2

� �
trpþ1;pþ2fĝgðpþ1;pþ2ÞDpþ2g

Here Dn ¼ Dnð1;...;n;10;...;n0Þ. The quantity 
p is called the pth-order energy density

matrix.

Following Kutzelnigg and Mukherjee [29–31], we refer to Eq. (9) the pth-

order CSE, or CSE(p) for brevity. (CSE(p) has also been called the ðp; pþ 2Þ-
CSE [13].) Strictly speaking, the term ‘‘CSE’’ implies that ŴW is an electronic

Hamiltonian, which is clearly the most important case, but the formal structure

of Eqs. (9) and (10) is the same for any ŴW having the form specified in Eq. (1). In

the case of spin eigenstates, for example, the reduced equations for ŴW ¼ ŜS
2
may

be useful as boundary conditions to enforce while solving CSE(p) [3].

The remarkable fact, first demonstrated by Nakatsuji [18], is that for each

p � 2, CSE(p) is equivalent (in a necessary and sufficient sense) to the original

Hilbert-space eigenvalue equation, Eq. (2), provided that CSE(p) is solved sub-

ject to boundary conditions (N-representability conditions) appropriate for the

ðpþ 2Þ-RDM. CSE(p), in other words, is a closed equation for the ðpþ 2Þ-
RDM (which determines the ðpþ 1Þ- and p-RDMs by partial trace) and has a

unique N-representable solution Dpþ2 for each electronic state, including excited

states. Without N-representability constraints, however, this equation has many

spurious solutions [48, 49]. CSE(2) is the most tractable reduced equation that is

still equivalent to the original Hilbert-space equation, and ultimately it is CSE(2)

that we wish to solve. Importantly, we do not wish to solve CSE(2) for
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the 4-RDM, as this quantity is an eight-index tensor subject to four-electron

N-representability conditions. Rather, we wish to solve CSE(2) in terms of the

2-RDM, via reconstruction of the 3- and 4-RDMs.

III. REDUCED DENSITY MATRIX CUMULANTS

In this section we introduce the p-RDMC,�p, which encapsulates the part of the

p-RDM that is additively separable in the limit of noninteracting subsystems.

Although the RDMCs have been discussed at length in the literature [27–38],

this section provides an introduction and summary of the most important points.

In this section we use the second-quantized formulation of the RDMs

(see Eq. (8)), as separability properties are most easily introduced using this

formalism.

A. Additive Versus Multiplicative Separability

Although the RDMs provide a compact and appealing description of electronic

structure, this description is unsatisfactory in at least one respect, namely, expec-

tation values calculated from RDMs are not manifestly extensive, so do not

necessarily become additively separable in the limit of noninteracting subsys-

tems. This basic flaw ultimately arises because the RDMs are multiplicatively

separable rather than additively separable [28–32].

To illustrate this point, consider a composite system composed of two non-

interacting subsystems, one with p electrons (subsystem A) and the other with

q ¼ N � p electrons (subsystem B). This would be the case, for example, in the

limit that a diatomic molecule A—B is stretched to infinite bond distance.

Because subsystems A and B are noninteracting, there must exist disjoint sets

BA and BB of orthonormal spin orbitals, one set associated with each subsystem,

such that the composite system’s Hamiltonian matrix can be written as a direct

sum,

H ¼ HA �HB ð11Þ

where HXðX 2 fA;BgÞ consists of matrix elements between determinants �X

constructed exclusively from spin orbitals in BX. Thus h�AjĤHj�Bi ¼ 0.

Let �X be an eigenfunction of HX, normalized to unity. Then the wavefunc-

tion for the composite system is

�ð1;...;NÞ ¼ 1ffiffiffiffiffi
N!
p P̂PNð�Að1;...;pÞ�Bðpþ1;...;NÞÞ ð12Þ

in which the operator P̂PN antisymmetrizes the product function �A�B by gener-

ating all N! signed permutations of the coordinates x1; . . . ; xN . In Dirac notation,

266 john m. herbert and john e. harriman



j�i ¼ j�A�Bi, and one says that � is multiplicatively separable in the two sub-

systems, recognizing that in quantum mechanics j�i is separable only up to an

overall antisymmetrization (or a symmetrization, in the case of bosons) that ren-

ders all coordinates equivalent. The separation of the wavefunction in Eq. (12) is

equivalent, in a necessary and sufficient sense, to the block structure of the

Hamiltonian in Eq. (11) [32, 50–52].

Because subsystems A and B do not interact, it must be that �A consists of a

determinantal expansion in functions �A taken solely from the set BA, and simi-

larly �B uses only those spin orbitals in BB. It follows that �A and �B are

strongly orthogonal [53]. Two antisymmetric functions f ðx1; . . . ; xpÞ and

gðy1; . . . ; yqÞ are said to be strongly orthogonal ifZ
dz f �ðx1;...; xp�1;zÞ gðy1;...;yq�1; zÞ � 0 ð13Þ

Note that the integral above is nominally a function of pþ q� 2 coordinates.

Furthermore, because the functions of interest are antisymmetric, it does not

matter which coordinates are chosen for the dummy integration variable z.

Consider the RDMs obtained from the separable wavefunction in Eq. (12).

Since �A and �B are strongly orthogonal, it follows from Eq. (8) that

h�A�Bjâayi âajj�A�Bi ¼ 0 unless fi andfj are associated with the same subsystem.

Thus the 1-RDM separates into subsystem 1-RDMs,

D1ðx; x0Þ ¼ DA
1 ðx; x0Þ þ DB

1 ðx; x0Þ ð14Þ

The case p ¼ 1 is the unique example for which Dp is additively separable. This

is equivalent to the statement that D1 equals its own cumulant (see Section

III.B).

To obtain D2, we need to evaluate matrix elements h�A�Bjâayi âayj âal âakj�A�Bi.
For reasons that will become clear, let us introduce the quantity

Dij;kl¼defDij;kl � 1

2
ðDi;kDj;l � Di;lDj;kÞ ð15Þ

The interesting scenario is when two of the four indices in this equation refer to

subsystem A and the other two refer to subsystem B. Suppose, for definiteness,

that fi;fj 2 BA and fk;fl 2 BB. Then the strong orthogonality of �A and �B

implies that Dij;kl ¼ 0. More interesting is the case when fi;fk 2 BA and

fj;fl 2 BB. In this case Dij;kl is generally nonzero; hence the 2-RDM mixes

indices from different non-interacting subsystems, and thus fails to be additively

separable. What about Dij;kl? According to Eq. (14), Di;l ¼ 0 since i and l refer to

different subsystems, and therefore Dij;kl ¼ Dij;kl � 1
2
Di;k Dj;l. The 2-RDM part
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of this expression can be simplified using the anticommutation relations, noting

that i 6¼ l and j 6¼ k. The result is

Dij;kl � 1

2
h�A�Bjâayi âak âayj âalj�A�Bi

¼ 1

2
h�Ajâayi âakj�Ai h�Bjâayj âalj�Bi

ð16Þ

which is a product of 1-RDM elements from different subsystems. It follows that

Dij;kl ¼ 0 for the case in question, and since Dij;kl as defined in Eq. (15) is anti-

symmetric, this quantity must in fact be zero unless all four indices refer to the

same subsystem. Thus, unlike Dij;kl, the quantity Dij;kl is additively separable in

the two noninteracting subsystems A and B,

�2ðx1; x2; x01; x02Þ ¼ �A
2 ðx1; x2; x01; x02Þ þ�B

2 ðx1; x2; x01; x02Þ ð17Þ

�2 is precisely the 2-RDMC, and from Eq. (15) we note that expectation values

for the composite Aþ B system can be computed using either D2 alone, or

D1 � �1 together with �2. From the standpoint of exact quantum mechanics,

either method yields exactly the same expectation value and, in particular,

both methods respect the extensivity of the electronic energy. If D2 is calculated

by means of approximate quantum mechanics, however, one cannot generally

expect that extensivity will be preserved, since exchange terms mingle the coor-

dinates on different subsystems, and exact cancellation cannot be anticipated

unless built in from the start. Methods that respect this separability by construc-

tion are said to be size-consistent [40–42].

In careful usage, extensivity is actually a more general concept than size

consistency [42]. The former term implies a complete absence of unconnected

terms in one’s working equations, while size-consistency merely indicates that

the energy is additively separable for noninteracting subsystems, a necessary

consequence of extensivity. Methods that violate extensivity will yield per-par-

ticle correlation energies that tend to zero in the limit of an infinite system [42].

Hence the conventional wisdom is that use of manifestly extensive methods

(coupled-cluster theory being the canonical example) is crucial for ‘‘large’’ sys-

tems containing subunits so distant as to be essentially noninteracting. It is not

entirely clear how large one can go before this becomes a problem, though the

effective range of the spin-traced 1-RDM may provide an indication. Computa-

tional studies suggest that for linear alkanes (i.e., one-dimensional insulators)

the effective range jr� r0j over which D1ðr; r0Þ is nonnegligible is about

15–20 carbon atoms [54], depending on drop tolerances, and we may judge

that for larger systems extensivity violations may have important consequences.

Lack of size-consistency is also a concern when breaking bonds, dissociating
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clusters, or comparing correlation energies between systems with different num-

bers of electrons.

In the present context, the way to ensure extensivity is to reformulate the CSE

so that the RDMCs and not the RDMs are the basic variables. One can always

recover the RDMs from the cumulants, but only the cumulants satisfy connected

equations that do not admit the possibility of mixing noninteracting subsystems.

Connected equations are derived in Section V. Before introducing that material,

we first provide a general formulation of the p-RDMC for arbitrary p.

B. Cumulant Formalism

Following Ziesche [35, 55], in order to develop the theory of cumulants for non-

commuting creation and annihilation operators (as opposed to classical vari-

ables), we introduce field operators f ðxÞ and f yðxÞ satisfying the anticom-

mutation relations for a Grassmann field,

½f ðxÞ; f ðx0Þ�þ ¼ 0 ð18aÞ
½f ðxÞ; f yðx0Þ�þ ¼ 0 ð18bÞ

These field operators are sometimes termed probe variables because they func-

tion as dummy placeholders in the formal differentiations that follow but do not

appear in the final expressions for the cumulants, which are obtained formally in

the limit that f ; f y ! 0.

First, we define a functional G½f ; f y� whose derivatives generate the RDMs. In

terms of the usual field operators ĉcðxÞ and ĉc
yðx0Þ,

ĉcðxÞ ¼
X
k

fkðxÞ âak ð19Þ

the RDM generating functional is [55]

G½f ; f y� ¼ � N̂N exp

Z
dx ½ f ðxÞ ĉcyðxÞ þ f yðxÞ ĉcðxÞ�

� ����� ������ �
ð20Þ

This is an analogue of the classical moments-generating functional discussed by

Kubo [39]. Upon expanding the exponential as a power series, the operator N̂N
acts to place each term in so-called normal order, in which all creation operators

ĉc
y
are to the left of all annihilation operators ĉc. By virtue of this ordering (and

only by virtue of this ordering),

G½f ; f y� ¼ exp

Z
dx f ðxÞ ĉcyðxÞ

� �
exp

Z
dx0 f yðx0Þ ĉcðx0Þ

� �� �
¼ 1þ F½f ; f y� ð21Þ
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where h� � �i ¼ h�j � � � j�i and

F½f ; f y� ¼
X1
p¼1

1

p!2

Z
dx1 � � � dxp dx01 � � � dx0p f ðx1Þ ĉcyðx1Þ � � � f ðxpÞ ĉcyðxpÞ
� f yðx0pÞ ĉcðx0pÞ � � � f yðx01Þ ĉcðx01Þ

+
ð22Þ

*

The expectation value in Eq. (21) eliminates terms that do not conserve particle

number; hence the two exponentials in Eq. (21) yield only a single summation in

Eq. (22). The factor of 1=p!2 ensures that trDp ¼ ð Np Þ.
Formally, the logarithm lnG provides a generating functional for the cumu-

lants. That is, a formal expression for the p-RDMC is

�pð1;...;p;10;...;p0Þ ¼ 1

p!

�
lim

f ;f y!0

d2p

df ð1Þ df yð10Þ � � � df ðpÞ df yðp0Þ lnG
�

ð23Þ

(The normalization of the cumulants is more complicated than that of the RDMs,

but some specific examples are given in Section III.C.) Although ostensibly

tedious, the above definition of �p is operationally easy to use. In a formal

expansion of lnG ¼ lnð1þ FÞ, the functional derivatives in Eq. (23) serve to

select all terms consisting of exactly p creation operators ĉc
y
and exactly p anni-

hilation operators ĉc, while at the same time eliminating the integrals and repla-

cing the dummy integration variables with particle coordinates x1; . . . ; xp and

x01; . . . ; x0p.
As introduced above, the functional lnG½f ; f y� generates the cumulants as

position-space kernels. As an alternative, Mazziotti [13, 33] has introduced a

generating functional for the expansion coefficients Di1;...;ip; j;...; jp of �p in a basis

ffkg of orthonormal spin orbitals. Mazziotti’s formalism can be obtained from

the expressions above by expanding the Grassmann fields f and f y in this basis,

f ðxÞ ¼
X
k

Jk fkðxÞ ð24Þ

The Jk are the probe variables in this formulation (which Mazziotti [33] terms

‘‘Schwinger probes’’). We mention also Kutzelnigg and Mukherjee’s treatment

of RDMCs [28], which utilizes an antisymmetrized logarithm function, along

with some special creation and annihilation operators, to generate the elements

Di1;...;ip; j1;...; jp .

270 john m. herbert and john e. harriman



Using either Eq. (23) or Mazziotti’s adaptation of it, one may derive exact

expression for the RDMs in terms of their cumulants. The first few such expres-

sions are

D1 ¼ �1 ð25aÞ
D2 ¼ �^21 þ�2 ð25bÞ
D3 ¼ �^31 þ 3�2 ^�1 þ�3 ð25cÞ
D4 ¼ �^41 þ 6�2 ^�^21 þ 3�^22 þ 4�3 ^�1 þ�4 ð25dÞ
D5 ¼ �^51 þ 10�2 ^�^31 þ 10�3 ^�^21 þ 5�4 ^�1 ð25eÞ

þ 15�1 ^�^22 þ 10�2 ^�3

Here ‘‘^’’ denotes an antisymmetrized product (Grassmann product [47–56])

ð�p ^�qÞð1;...;pþq;10;...;ðpþqÞ0Þ ¼
1

ðpþ qÞ!2 P̂Ppþq P̂0P0pþq

�
�
�pð1;...;p;10;...;p0Þ ��qðpþ1;...;pþq;ðpþ1Þ0;...;ðpþqÞ0Þ

�
ð26Þ

where P̂0P0pþq and P̂Ppþq indicate sums over signed permutations of the primed and

unprimed coordinates, respectively (cf. Eq. (12)). ‘‘Wedge’’ exponents appearing

in Eqs. (25a)–(25e) are defined according to

�^np ¼def �p ^�p ^ � � � ^�p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n factors

ð27Þ

and should not be confused with matrix products such as �n
1, the matrix product

of n copies of �1.

The decomposition of D2 in Eq. (25b) is sometimes called the Levy–Lieb

partition of the 2-RDM [57,58]. Formulas essentially equivalent to Eqs. (25a)–(25e)

were known long ago, in the context of time-dependent Green’s functions [59–61],

but this formalism was rediscovered in the present context by Mazziotti [33].

Implicit in Eqs. (25a)–(25e) are definitions of the cumulants in terms of the

RDMs, for example,

�2 ¼ D2 � D1 ^ D1 ð28aÞ
�3 ¼ D3 � 2D^31 � 3D1 ^ D2 ð28bÞ
�4 ¼ D4 þ 13D1 ^ D3 þ 6D^21 ^ D2 � 4D1 ^ D3 ð28cÞ
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These equations define the RDMCs in terms of the RDMs and do not depend on

the validity of perturbative expansions of the RDMs, although insofar as pertur-

bation theory is applicable,�p is precisely the sum of connected diagrams in the

expansion of Dp.

The cumulant formulas in Eqs. (28a)–(28c) can be generated easily using

a convenient mnemonic introduced by Harris [62]. To obtain the cumulant

decomposition of Dpþ1 from that of Dp, one sums—for each term in the

Dp—all possible ways in which the particle number can be increased by one.

Particle number can be increased either by replacing �n with �nþ1, or by
incorporating an additional Grassmann product with �1. As an example, con-

sider generating D3 (Eq. (25c)) from D2 (Eq. (25b)). Given the first term in

Eq. (25b), �1 ^�1, one can increase particle number in three ways, and from

these one obtains �2 ^�1 þ�1 ^�2 þ�1 ^�1 ^�1. The second term in

Eq. (25b), �2, affords �3 þ�2 ^�1 upon increase in particle number.

Together, these terms afford Eq. (25c).

This mnemonic emphasizes the combinatorial nature of the cumulants. For

example, the term 3D2 ^ D1 in D3 carries a coefficient that reflects the fact

that there are three ways to obtain a three-particle distribution from one- and

two-particle distributions, namely, D1 ^ D1 ^ D1, D1 ^ D2, and D2 ^ D1. In con-

trast, the term D^31 in D3 has a coefficient of unity because there is only one way

to combine one-particle distributions.

The combinatorial point of view is reminiscent of the classical cumulant

formalism developed by Kubo [39], and indeed the structure of Eqs. (25) and

(28) is essentially the same as the equations that define the classical cumulants,

up to the use of an antisymmetrized product in the present context. In further

analogy to the classical cumulants, the p-RDMC is identically zero if simulta-

neous p-electron correlations are negligible. In that case, the p-RDM is precisely

an antisymmetrized product of lower-order RDMs.

C. Extensivity

For a multiplicatively separable wavefunction like the one in Eq. (12), the

matrix elements of �p vanish unless all indices correspond to the same sub-

system [28, 32]. Using the notation introduced previously, this means that

Dj1;...;jp;k1;...;kp ¼ 0 unless fm 2 BA for each index m or else fm 2 BB for each

m. This is the essential difference that allows for an extensive formulation of

quantum mechanics in terms of the RDMCs but not in terms of the RDMs.

From the standpoint of extensivity, the basic problem with the RDMs is the man-

ner in which the exchange terms in their unconnected parts mix the coordinates

corresponding to noninteracting subsystems. Such exchange terms are identified

by the presence of a Grassmann product. Examining the cumulant decomposi-

tions of the RDMs in Eqs. (25a)–(25e), it is evident that any term containing a
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Grassmann product scales asymptotically (N !1) like Nn, for some n > 1. For

example, the Grassmann product

½�1 ^�1�ð1;2;10;20Þ ¼
1

2

�
�1ð1;10Þ�1ð2;20Þ ��1ð1;20Þ�1ð2;10Þ

�
ð29Þ

appearing as part of D2 has a trace given by

trð�1 ^�1Þ ¼ N2 � trð�2
1Þ ð30Þ

As N !1, trð�1 ^�1Þ � N2. One says that �1 ^�1 scales like N2.

One convenient consequence of binomial normalization for the RDMs (Eq.

(6)) is that when this convention is followed, extensive quantities such as �p

have traces proportional to N, while nonextensive quantities possess traces

that scale as some higher power of N (e.g., trDp � Np). Let us define a set of

quantities

tk¼def trð�
k
1Þ

N
ð31Þ

that satisfy the property

1 ¼ t1 � t2 � t3 � � � � � 0 ð32Þ

which follows from the fact that all eigenvalues of �1 lie in the interval ½0; 1�.
Equation (32) is valid even for extended systems, where N !1. In fact, with-

out loss of generality one may assume that tk > 0 for each k, since the N-elec-

tron wavefunction can always be expanded in terms of natural spin orbitals

having strictly positive occupation numbers [24]. The limiting case in which

tk ¼ 1 for all k is obtained if and only if the two-electron interaction ĝg � 0.

In this case, the wavefunction is a single determinant, D1 is idempotent, and [45]

Dp ¼ D
^p
1 ðsingle determinantÞ ð33Þ

This form of Dp implies that �p � 0 for each p > 1, a reflection of the fact that

an independent-electron wavefunction consists of one-electron subsystems

coupled only by exchange.

Traces of the RDMCs can be expressed conveniently in terms of the tk. For
example,

tr�2 ¼ 1

2
Nðt2 � 1Þ ð34Þ
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and

tr�3 ¼ 1

3
Nð1� 3t2 þ 2t3Þ ð35Þ

Given the inequalities in Eq. (32), these trace expressions make it clear that

tr�2 � N and tr�3 � N, even as N !1, and furthermore they demonstrate

that the normalization of the p-RDMC depends on the system in question. (In

particular, the traces depend on how far D1 deviates from idempotency.) A

few absolute bounds can be derived, such as

� 1

2
N � tr�2 � 0 ð36Þ

These inequalities do not exclude the possibility that �2 has both positive and

negative eigenvalues, which is generally the case. Traces of �2 and �3 have

been examined for some model problems by Kutzelnigg and Mukherjee [28].

Partial traces of cumulants are also extensive, unlike those of the RDMs

themselves. Starting from Eq. (25c), for example, one may show that

tr3�3 ¼ � 2

3
�2 þ 1

6

�
P̂0P02ð�1�2Þ þ P̂P2ð�2�1Þ

�
ð37Þ

where the matrix products are defined, for example, as

ðD1D2Þi1; i2 ; j1; j2 ¼
X
k

Di1; kDi2; k ; j1; j2 ð38Þ

One may verify directly that trð�1�2Þ ¼ Nðt3 � t2Þ=2 and therefore

trð�1�2Þ � N.

Aword about notation is in order, regarding Eq. (37). Previously (cf. Eq. (26)),

P̂0P0n and P̂Pn were defined to act upon primed and unprimed coordinates of n-

electron kernels. Where tensors are involved, such as in Eq. (37), P̂0P0n represents
signed permutations over the row indices, (i.e., the first set of indices) and P̂Pn
denotes signed permutations over column indices. Thus, for example, when

P̂0P02 acts on �1�2 in Eq. (37), this operation antisymmetrizes the indices i1
and i2 appearing in Eq. (38). The column indices (j1 and j2) of this product

are already antisymmetric, having inherited this property from �2.

As noted earlier, tr�n � N when binomial normalization is used for the

RDMs, while nonextensive terms have traces that scale as higher powers of

N. This is certainly a convenient means to recognize terms that are not extensive,

but in some sense this trick overlooks the physical picture behind extensivity,
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which does not depend on any particular normalization convention. Similarly,

insofar as perturbation theory is applicable, the fact that the RDMCs scale as

N can be viewed as a consequence of the linked-cluster theorem [63, 64], but

the deeper concept of extensivity does not depend on the validity of perturbation

theory. Mathematically, extensivity is a statement about connectivity in the sense

of matrix products, as in Eq. (38). In Section V, we introduce a nonperturbative

diagram notation that emphasizes connectivity and extensivity, and demonstrates

that Dn (as opposed to �n) contains unconnected products, up to and including

the product of n unconnected one-electron diagrams.

Thus far we have discussed connectivity and extensivity in terms of the

RDMs and RDMCs, but our ultimate goal is to apply these concepts to

CSE(2). Replacing the RDMs in 
2 with their cumulant decompositions eluci-

dates the unconnected terms in CSE(2). Consider, as an example, the following

term in 
2ð1;2;10;20Þ:

ĥhð1ÞD2ð1;2;10;20Þ ¼ ĥhð1Þ

�
�2ð1;2;10;20Þ þ 1

2
�1ð1;10Þ�1ð2;20Þ � 1

2
�1ð1;20Þ�1ð2;10Þ

�
ð39Þ

(This is the first term on the right-hand side of Eq. (10), for the case p ¼ 2.) The

first term on the right-hand side in Eq. (39) is obviously connected, and we may

deduce that the second term is unconnected because its trace equals N2hĥhi=2.
The third term, which constitutes a transvection [27, 62] of �1 with itself, is

actually connected, but differs from the second term by a coordinate permuta-

tion. If the second term is removed from CSE(2), then the third term ought to

be removed as well, for otherwise we destroy the antisymmetry of 
2. This

example illustrates the complexity of formulating an extensive version of

CSE(2). It is not enough to eliminate unconnected terms; one must eliminate

their exchange counterparts as well.

D. Independence of the Cumulants

Before deriving equations that determine the RDMCs, we ought to clarify pre-

cisely which are the RDMCs of interest. It is clear, from Eqs. (25a) and (25b),

that �1 and �2 contain the same information as D2 and can therefore be used to

calculate expectation values hŴWi, where ŴW is any symmetric two-electron opera-

tor of the form given in Eq. (1). Whereas the 2-RDM contains all of the infor-

mation available from the 1-RDM, and affords the value of hŴWi with no

additional information, the 2-RDMC in general does not determine the

1-RDM [43, 65], so both �1 and �2 must be determined independently in order

to calculate hŴWi. More generally, �1; . . . ;�n are all independent quantities,

whereas the RDMs D1; . . . ;Dn are related by the partial trace operation. The

n-RDM determines all of the lower-order RDMs and lower-order RDMCs, but
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�n alone is insufficient to specify any of the other cumulants, or any RDMs at all

(save for the trivial n ¼ 1 case).

A simple proof that �1 and �2 are independent proceeds as follows. First,

observe that

tr2�2 ¼ 1

2
ð�2

1 ��1Þ ð40Þ

from which it follows that �1 and tr2�2 share a common set of eigenvectors,

namely, the natural spin orbitals. Let fnkg be the natural occupation numbers

(eigenvalues of �1), and for each nk, let ek be the eigenvalue of tr2�2 associated

with the same eigenvector. These two eigenvalues are related according to

ek ¼ 1

2
nkðnk � 1Þ ð41Þ

or in other words,

nk ¼ 1

2
ð1	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8 ekÞ

p
ð42Þ

Thus nk is a double-valued function of ek, as depicted in Fig. 1. Strictly speaking,

then, the eigenvalues of tr2�2 do not determine those of �1, and consequently

�1 cannot be determined from �2 alone.

0

0.2

0.4

0.6

0.8

1.0

–0.125 –0.100 –0.075 –0.050 –0.025 0

n k

ek

Figure 1. An eigenvalue nk of �1 as a (double-valued) function of the corresponding eigenvalue

ek of tr2�2.
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That being said, in reality each eigenvalue of�1 will likely be near either 0 or

1, except in certain open-shell systems with significant multideterminant character.

Excluding such cases, it may be possible that, given �2 (and thus the ek), one

can choose, for each k, one of the two solutions nk in Eq. (42), based on whether

the kth natural spin orbital is expected to be strongly or weakly occupied. (This

could be determined by its expansion in Hartree–Fock orbitals.) Suppose that

either nk ¼ e or nk ¼ 1� e, where e is small. Upon calculating ek corresponding

to each, and substituting this back into Eq. (42), one obtains in either case a

choice between solutions nk ¼ 1� eþ Oðe2Þ and nk ¼ eþ Oðe2Þ. As long as

e2 � e, and assuming that one can ascertain which natural spin orbitals are

strongly occupied, �2 effectively does determine �1. In such cases, hŴWi can
be determined from �2 alone.

IV. DIAGRAMMATIC REPRESENTATIONS

As outlined earlier, our task is to eliminate from CSE(2) both the unconnected

terms and their exchange counterparts. These are readily identified using dia-

grammatic representations of 
1 and 
2 that we introduce in this section. The

diagrams are not strictly necessary, but are quite convenient and (in the authors’

opinion) easier to check for mistakes than lengthy algebraic formulas. In addi-

tion, certain reconstruction functionals for the 3- and 4-RDMs have been derived

using diagrammatic many-body perturbation theory [7, 8, 11], and a diagram-

matic representation for CSE(2) clarifies the role of this equation in improving

approximate reconstruction functionals (see Section V.C). Our diagram conven-

tions are conceived with this purpose in mind and are unrelated to the CSE dia-

grams introduced by Mukherjee and Kutzelnigg [30, 31].

The basic diagram elements representing D1 � �1; ĝg; ĥh, and �p (for p � 2)

are illustrated in Fig. 2. Recall that CSE(p) is given by the equation 
p � 0,

where 
p is the p-electron kernel defined in Eq. (10). The terms in this kernel

consist of ĥh and ĝg acting on RDMs, followed in some cases by a trace over one

or two coordinate indices. Upon replacing the RDMs with their cumulant

1 ′

1

(a) (d)(b) (c)

1 2 1

2′

2

1′

1

p′

p

Figure 2. Basic diagram elements used in this work: (a) D1ð1;10Þ; (b) ĝgð1;2Þ; (c) ĥhð1Þ; and

(d) �pð1;...;p;10 ;...;p0 Þ, for p � 2.
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expansions (Eqs. (28a)–(28c)), we construct a diagrammatic representation of

each term by connecting operator diagrams to cumulant diagrams, at the coor-

dinates on which the operators act. For instance,

ð43Þ

is obtained by attaching a ĝg diagram at the lower endpoints of a �2ð2;3;10;30Þ dia-
gram, since according to Fig. 2(d) these endpoints represent coordinates x2 and

x3. A factor of �1ð1;20Þ is present, as indicated, but because ĝgð2;3Þ operates on

neither x1 nor x02, this part of the diagram is not connected to the rest. Inspection

of either the diagram or the algebra in Eq. (43) reveals that this term is uncon-

nected.

A trace over coordinate xn is indicated by connecting the line labeled n to the

line labeled n0. The labels n and n0 are then deleted, since these coordinates

become a single dummy integration variable. Diagrammatically, this creates a

loop in the case that both xn and x0n are arguments of the same cumulant. As

an example, we apply tr3 to Eq. (43) to obtain

ð44Þ

If, on the other hand, xn and x0n are arguments of different cumulants, then a

trace over xn serves to connect two cumulant diagrams:

ð45Þ

Note carefully the subtle difference between this diagram and the previous one,

at the position labeled ‘‘2.’’ These two examples illustrate that internal operator

vertices (those not appearing at the endpoint of a cumulant line) are each asso-

ciated with a coordinate integration, whereas a vertex that appears at the end-

point of a cumulant line does not imply an integration. Thus, in Eq. (45), both

ends of the ĝg diagram are internal vertices, reflecting the fact that both arguments

of ĝg are integration variables. In Eq. (44), only one argument of ĝg is an integration
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variable and thus the ĝg diagram has one internal and one external vertex, the lat-

ter associated with x2.

In close analogy to diagrammatic perturbation theory (although our diagrams

are not perturbative), we have transformed the problem of generating terms in 
p

into a problem of generating topologically distinct diagrams, which makes it

relatively easy to incorporate symmetries such as ĝgðj;kÞ ¼ ĝgðk;jÞ that reduce the

number of terms in 
p. The nontrivial terms in 
1 and 
2 that involve only

the one-electron cumulant are

ð46Þ

ð47Þ

ð48Þ

and

ð49Þ

These expressions are highly compact compared to brute-force expansions of the

Grassmann products �^31 and �^41 . For example, �^41 ostensibly contains

4!2 ¼ 576 terms, as compared to the 14 terms that appear in Eq. (49) if one

writes out all permutations.

Certain diagrams in the expressions above have no coordinate dependence

and are related to the eigenvalue w in Eq. (2). Let us decompose w ¼ w1 þ w2

into a one-electron contribution

w1 ¼ Nhĥhi ð50Þ

and a two-electron contribution

w2 ¼ N

2

� �
hĝgi ð51Þ
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with hĥhi ¼ tr ðĥh D1Þ and hĝgi ¼ trðĝg D2Þ. These equations are expressed diagram-

matically as

ð52Þ

and

ð53Þ

When w is the electronic energy, the first two terms on the right-hand side of Eq.

(53) are the Coulomb and exchange energies, respectively, while the third term

defines what we term the cumulant correlation energy. The cumulant decompo-

sition of D2 thus provides universal, extensive definitions for the exchange and

correlation energies, and these definitions do not depend on any independent-

electron (Hartree–Fock or Kohn–Sham) reference state. According to this

definition, the (exact) Coulomb and exchange energies are available from the

(exact) 1-RDM, while the cumulant correlation energy requires the 2-RDM.

For expressions involving higher-order cumulants, one can utilize the

antisymmetry of �p to reduce the number of terms. For example, the identity

ð54Þ

is obtained by exchanging the lines entering the top of �2, which corresponds to

a permutation of the primed coordinates in �2. After gaining some facility with

the diagrams, one can write down the remaining terms in 
2:

ð55Þ

ð56Þ
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ð57Þ

ð58Þ
and

ð59Þ
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V. THE CONNECTED EQUATIONS

Recall that the equation CSE(p) is written as 
pð1; . . . ; p; 10; . . . ; p0Þ � 0, where


p is the pth-order energy density matrix. Yasuda [11] has introduced a gener-

ating functional for the energy density matrices and used this functional to

demonstrate that 
p ¼ 
C
p þ 
U

p can be decomposed into a connected part 
C
p

and an unconnected part 
U
p . The diagrammatic technique introduced in the pre-

vious section brings this to the forefront, and in this section we use diagrammatic

representations of 
1 and 
2 to formulate connected versions of CSE(1) and

CSE(2). Whereas CSE(1) is necessarily satisfied if CSE(2) is satisfied (since

the former is merely a partial trace of the latter [47]), the connected versions

of CSE(1) and CSE(2) are independent conditions on the 1- and 2-RDMCs,

which must be satisfied simultaneously.

A. Cancellation of Unconnected Terms

Clearly 
1, as defined in Eq. (10), contains unconnected terms, including, for

example,

ð60Þ

but these terms cancel exactly and 
U
1 � 0. Since an approximate solution of

CSE(1) may not lead to exact cancellation of the unconnected terms, instead of

solving the equation
1 � 0, one ought to solve the manifestly extensive equation


C
1 � 0 ð61Þ

The connected part of 
1 is found to be

ð62Þ
Since the unconnected terms cancel exactly, Eq. (61) is equivalent, in a necessary

and sufficient sense, to CSE(1). Following Kutzelnigg and Mukherjee [29–31]
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we refer to Eq. (61) as the first-order irreducible contracted Schrödinger equa-

tion, ICSE(1). To obtain an equation that is equivalent, within a finite basis set, to

our ICSE(p), one must solve the Kutzelnigg–Mukherjee version [30] of ICSE(p)

simultaneously with its adjoint equation, whereas our version of ICSE(p) is equal

to its own adjoint, thus ensuring that its solution �p is self-adjoint.

Neither CSE(1) nor ICSE(1) is equivalent to the original Hilbert-space eigen-

value equation; for that we need CSE(2). The unconnected part of 
2 is [11]


U
2 ¼ D1 ^ 
1 ¼ D1 ^ 
C

1 ð63Þ
This relationship can be verified directly using the expressions in the previous

section. Thus, if D1 satisfies CSE(1)—a necessary condition if D2 is to satisfy

CSE(2)—then 
U
2 ¼ 0 and we obtain the extensive equation


C
2 � 0 ð64Þ

which we call ICSE(2). Carrying out the cancellation is relatively easy using

diagrams, and one obtains

ð65Þ
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Including permutations, this expression for 
C
2 contains 68 terms, a significant

reduction as compared to the unsimplified Grassmann products.

Equations (62) and (65), expressed in diagrammatic notation, are the only forms of

ICSE(1) and ICSE(2) that appear in our original publication of the connected equa-

tions [43], although a short time later a connected, algebraic version of CSE(2) was

published byNooijen and co-workers [44]. Here, we translate our diagrammatic ver-

sion equations into algebraic ones, using the diagram rules introduced in Section IV.

Forpedagogical purposes, and owing to the complexity of the result,webreakupEqs.

(62) and (65) line-by-line and present each line as a separate algebraic expression. In

addition, certain obvious factorizations are bypassed in the algebraic formulation that

follows, in order that diagrams on the left-hand side of the equality match up with

algebraic expressions on the right-hand side term-by-term and in the same order.

This facilitates comparison between the diagrammatic and the algebraic equations.

The algebraic form of 
C
1 is contained in the equations

ð66aÞ

ð66bÞ
and

ð66cÞ
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The kernel 
C
2 ð1;10Þ is equal to the sum of the terms given in Eqs. (66a)–(66c).

The various terms in ICSE(2) are

ð67aÞ

ð67bÞ

ð67cÞ

ð67dÞ
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ð67eÞ

and

ð67fÞ

The kernel 
C
2 ð1; 2; 10; 20Þ is equal to the sum of the terms given in Eqs.

(67a)–(67f).

B. Discussion of the Connected Equations

Perhaps the most striking feature of ICSE(1) and ICSE(2) is the absence of the

eigenvalue w in these equations. In hindsight its disappearance should not be sur-

prising, sincew appears in
p as the productwDp. The observablew scales asN, as

does the connected part of Dp; hence no part of wDp exhibits correct scaling, and

this entire term must cancel with some other part of CSE(p). (This is analogous to

the fact that the coupled-cluster amplitude equations, which are extensive, contain

the cluster amplitudes but not the electronic energy.) Certainly, w is specified

implicitly in ICSE(1) and ICSE(2), insofar as the cumulants �1 and �2 together
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determine D2 and thus also determine w ¼ trðŴW2 D2Þ. The absence of w in

ICSE(p) has important consequences, to which we shall return later in this section.

In deriving ICSE(1) and ICSE(2) from the corresponding CSEs, we have

merely identified and removed terms that cancel exactly; as such, these two con-

nected equations, when solved simultaneously, are entirely equivalent to CSE(2)

and thus equivalent to the original Hilbert-space eigenvalue equation (Schrödin-

ger equation), provided that appropriate N-representability constraints are

enforced. Since necessary and sufficient N-representability constraints are not

known, one must in practice contend with an infinite number of spurious solu-

tions to these equations. Recent calculations [7, 9, 34, 66] in which CSE(2) is

solved starting from an N-representable (actually, Hartree–Fock) 2-RDM indi-

cate that, for ground states, the solution usually converges to a 2-RDM that is

nearly consistent with the necessary P-, Q-, and G-conditions [24, 66, 67] for

N-representability. (These conditions demand that the two-particle density

matrix, the two-hole density matrix, and the particle–hole density matrix, respec-

tively, be positive semi–definite, and by ‘‘nearly consistent’’ we mean that any

negative eigenvalues are small in magnitude.)

Even given a hypothetical set of necessary and sufficient N-representability

constraints, however, the solution of CSE(2) is only unique provided that the

eigenvalue w is specified and fixed. Because w does not appear in the ICSEs,

a unique solution of ICSE(1) and ICSE(2) is obtained only by simultaneous solu-

tion of these equations subject not only to N-representability constraints but also

subject to the constraint that w ¼ trðŴW2 D2Þ remains fixed. For auxiliary

constraint equations, such as the reduced eigenvalue equation for the operator

ŜS
2
, one would know the target expectation value hŜS2i in advance and could there-

fore constrain hŜS2i ¼ trðŜS22 D2Þ. In the basic equations of our theory, however, ŴW

is an electronic Hamiltonian and such a constraint would require us to know the

electronic energy in advance. Foregoing the energy constraint, ICSE(1) and

ICSE(2) possess N-representable solutions corresponding to the ground state,

the excited states, and also all superposition states that can be formed from

degenerate eigenfunctions of ŴW . This is again analogous to coupled-cluster

theory, whose connected working equations do not contain the electronic energy

explicitly, and have solutions corresponding to both ground and excited

electronic states [68]; the ground-state solution is selected by means of the initial

guess. Compared to CSE(2), the absence of the electronic energy in the ICSEs is

not a serious disadvantage, since in the former case the energy is not known a

priori, and therefore w appearing in CSE(2) must be iteratively updated during

the course of achieving a self-consistent solution.

Before discussing further how ICSE(1) and ICSE(2) can be solved, let us first

discuss the solution of CSE(2). For w 6¼ 0, CSE(2) may be written

D2 ¼ w�1Fw½D2;D3;D4� ð68Þ
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where the functional Fw � 
2 þ wD2 (cf. Eq. (10)). Assuming that one posesses

approximate reconstruction functionals D3½D2� and D4½D2�, Eq. (68) can be

solved for D2 by one of two means. The first option is to substitute the recon-

struction functionals directly into Fw, effectively making Fw a functional of D2

only. Upon expanding Eq. (68) in a finite basis set, this leads to a closed set of

nonlinear equations for the tensor elements of D2, and these equations can be

solved, for example, by a Newton–Raphson procedure [7, 9, 11]. Alternatively,

Eq. (68) can be solved by self-consistent iteration, employing the reconstruction

functionals at each iteration to generate updated 3- and 4-RDMs from the current

2-RDM, and using the current 2-RDM to estimate w. Several algorithms for

carrying out this iteration scheme have been described [1, 2, 6, 14].

It does not appear that the ICSEs can be solved by self-consistent iteration,

however. In Eq. (68), CSE(2) is expressed in a form that affords the 2-RDM as

an explicit functional of the 2-, 3-, and 4-RDMs, but no analogous formulation of

ICSE(1) or ICSE(2) is possible, since the 1- and 2-RDMCs appearing in these

equations are always acted upon by ĥh or ĝg (cf. Eqs. (66) and (67)). Thus the

ICSEs are implicit equations for the cumulants.

Using cumulant reconstruction functionals �3½�1;�2� and �4½�1;�2�, one
can certainly derive closed, nonlinear equations for the elements of �1 and �2,

which could be solved using an iterative procedure that does not exploit the

reconstruction functionals at each iteration. Of the RDM reconstruction func-

tionals derived to date, several [7, 8, 11] utilize the cumulant decompositions

in Eqs. (25c) and (25d) to obtain the unconnected portions of D3 and D4 exactly

(in terms of the lower-order RDMs), then use many-body perturbation theory to

estimate the connected parts �3 and �4 in terms of �1 and �2, the latter essen-

tially serving as a renormalized pair interaction. Reconstruction functionals of

this type are equally useful in solving ICSE(1) and ICSE(2), but the reconstruc-

tion functionals introduced by Valdemoro and co-workers [25, 26] cannot be

used to solve the ICSEs because they contain no connected terms in D3 or D4

(and thus no contributions to �3 or �4).

C. Reconstruction and Solution of the Reduced Equations

Next, we present some observations concerning the connection between the

reconstruction process and the iterative solution of either CSE(p) or ICSE(p).

The perturbative reconstruction functionals mentioned earlier each constitute a

finite-order ladder-type approximation to the 3- and 4-RDMCs [46, 69]; exam-

ples of the lowest-order corrections of this type are shown in Fig. 3. The hatched

squares in these diagrams can be thought of as arising from the 2-RDM, which

serves as an effective pair interaction for a form of many-body perturbation

theory. Ordinarily, ladder-type perturbation expansions neglect three-electron

(and higher) correlations, even when extended to infinite order in the effective

pair interaction [46, 69], but iterative solution of the CSEs (or ICSEs) helps to

288 john m. herbert and john e. harriman



build these correlations back into the cumulants. This becomes clear upon exam-

ination of the diagrammatic representations of these equations, together with

diagrammatic representations of the reconstruction functionals.

In Fig. 4(a) we show a typical diagram in the expansion of �3 that cannot be

incorporated into any ladder-type diagram because it involves simultaneous cor-

relation between three particles [69]. As it appears in CSE(2) and ICSE(2), how-

ever, �3 is always traced over coordinate x3, and in Fig. 4(b) we show the effect

of tr3 on the diagram in Fig. 4(a). Diagram 4(b) is included in the partial trace of

a third-order ladder-type diagram, namely, the one shown in Fig. 4(c). Thus the

presence of tr3 in the two-particle equations allows one to incorporate three- and

higher-body effects that would not otherwise be present in a ladder approxima-

tion for the three- and four-electron cumulants.

Actually three-particle correlations such as that in Fig. 4(a) are introduced by

the CSEs and ICSEs, even within a second-order ladder approximation. To

understand why, consider the diagram in Fig. 4(d), which represents one of

the terms in 
C
2 . Within a second-order ladder approximation to �3, diagram

4(b) is included within diagram 4(d). Thus three- and higher-body effects are

incorporated into the cumulants �3 and �4 by the CSEs or ICSEs, even when

(a) (b)

1′ 2′ 3′ 1′ 2′ 3′ 4′

1 2 3 41 2 3

Figure 3. Lowest order connected corrections to (a) �3 and (b) �4, within a renormalized lad-

der-type approximation.

1′ 2′ 1′ 2′
1′ 2′

3′ 1′ 2′ 3′

(a)

1 2 3

21

(d)

1 2

(b) (c)

1 2 3

Figure 4. Diagrams illustrating the connection between reconstruction and solution of the CSEs

or ICSEs. See the text for an explanation.
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these effects are absent from approximate reconstruction functionals. In effect,

solution of these equations corresponds to a partial summation of the perturba-

tion series for D2, in the case of CSE(2), or �1 and �2, in the case that ICSE(1)

and ICSE(2) are solved simultaneously. The connection between reconstruction

and solution of coupled Green’s function equations of motion, which are time-

dependent hierarchies analogous to the CSE(p) hierarchy, has received some

attention [70, 71], though a more thorough exploration of this connection would

be welcome.
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I. INTRODUCTION

A product of annihilation and creation operators is said to be in normal order if all

creation operators are left of all annihilation operators. Any Fock-space operator

can, according to Wick’s theorem [1], be expanded into a sum of normal-ordered

operators. If one wants to privilege a particular single Slater determinant reference

function �, one can redefine normal ordering with respect to � as a physical

vacuum, introducing hole creation and hole annihilation operators. It is, however,

possible [2, 3], though not yet very popular, to generalize the concept of normal

ordering with respect to arbitrary reference functions �, and also to formulate a

generalization of Wick’s theorem for these. In this generalized formulation

contractions appear, which involve the density cumulants kk corresponding to

�. For a single Slater determinant reference function, this reduces to the tradi-

tional particle–hole formalism with only one-particle or one-hole contractions.

Formulating conditions for the energy to be stationary with respect to varia-

tions of the wavefunction � in this generalized normal ordering, one is led to the

irreducible Brillouin conditions and irreducible contracted Schrödinger equa-

tions, which are conditions on the one-particle density matrix and the k-particle

cumulants kk, and which differ from their traditional counterparts (even after

reconstruction [4]) in being strictly separable (size consistent) and describable

in terms of connected diagrams only.

In terms of these conditions, a k-particle hierarchy of approximations can be

defined, with Hartree–Fock as the one-particle approximation for closed-shell

states. Unfortunately, the stationarity conditions do not determine the kk fully,

and for their construction additional information is required, which essentially

guarantees n-representability. Nevertheless, the k-particle hierarchy based on

the irreducible stationarity conditions opens a promising way for the solution

of the n-electron problem.
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II. MANY-BODY THEORY IN FOCK-SPACE FORMULATION

A. Excitation Operators

In our formalism [5–9] excitation operators play a central role. Let an orthonor-

mal basis fcpg of spin orbitals be given. This basis has usually a finite dimen-

sion d, but it should be chosen such that in the limit d !1 it becomes complete

(in the so-called first Sobolev space [10]). We start from creation and annihila-

tion operators for the cp in the usual way, but we use a tensor notation, in which

subscripts refer to annihilation and superscripts to creation:

ap; aq ¼ ayq ð1Þ
These operators satisfy the anticommutation relations

½ap; aq�þ ¼ 0; ½ap; aq�þ ¼ 0; ½ap; aq�þ ¼ dqp ð2Þ
The Kronecker delta is written here in a tensor notation. One can define excita-

tion operators as normal products (or products in normal order) of the same

number of creation and annihilation operators (normal order in the original

sense means that all creation operators have to be on the left of all annihilation

operators).

apq ¼ apaq ð3Þ
apqrs ¼ aqaparas ð4Þ
apqrstu ¼ araqapasatau; . . . ð5Þ

These operators are particle-number conserving, that is, action of any excitation

operator on an n-electron wavefunction (with n arbitrary) leads again to an

n-electron wavefunction (or deletes it).

In order to define excitation operators, one need not start from the creation

and annihilation operators; one can instead simply require that action of, for

example, apq on a Slater determinant � with cq occupied and (for p 6¼ q) cp

unoccupied replaces cq by cp. Otherwise it annihilates �.
Any particle-number conserving operator can be expanded in the apq; a

pq
rs , and

so on. Let a Hamiltonian defined in configuration space be given:

Hn ¼ Hð1; 2; . . . ; nÞ ¼
Xn
k¼1

hðkÞ þ
Xn
k<l¼1

gðk; lÞ; gðk; lÞ ¼ 1

rkl
ð6Þ

If we define the matrix elements of the one-electron and two-electron parts of H

hpq ¼ hcqjhjcpi ð7Þ
gpqrs ¼ hcrð1Þcrð2Þjgð1; 2Þjcpð1Þcqð2Þi ð8Þ
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then the Fock-space Hamiltonian H, corresponding to Hn, is

H ¼ hpqa
q
p þ 1

2
gpqrs a

rs
pq ð9Þ

where the Einstein summation convention over repeated indices has been

implied [6].

We keep in mind the option to extend the one-electron basis, in terms of

which H is defined, to the limit where it becomes complete [10].

The Fock-space Hamiltonian H is equivalent to the configuration-space

Hamiltonian Hn insofar as both have the same matrix elements between n-

electron Slater determinants. The main difference is that H has eigenstates of

arbitrary particle number n: it is, in a way, the direct sum of all Hn. Another dif-

ference, of course, is that Hn is defined independently of a basis and hence does

not depend on the dimension of the latter. One can also define a basis-independent

Fock-space Hamiltonian H, in terms of field operators [11], but this is not

very convenient for our purposes.

Any product of two or more excitation operators can be written as a sum of

excitation operators, for example,

apqa
r
s ¼ aprqs þ drqa

p
s ð10Þ

apqa
rs
tu ¼ aprsqtu þ drqa

ps
tu þ dsqa

rp
tu ð11Þ

(The Kronecker d in the tensor notation has an obvious meaning.) Each product

gives rise to the normal product (maximum excitation rank), that is, the first

term on the right-hand side (rhs) of Eqs. (10), (11), and so on and all possible

contractions. The latter involve an upper right and a lower left label. In the

contractions the original pairing of upper and lower labels must be kept as

much as possible. The relations (10) and (11) are generalizations of Wick’s

theorem [1], which was originally formulated for general products of creation

and annihilation operators (ap and aq) rather than for products of excitation

operators. Note that in our formulation of the generalized Wick’s theorem there

is no sign rule to be observed (unlike in the traditional Wick theorem). Of

course Eqs. (10) and (11) follow directly from the anticommutation relations,

but they can alternatively be derived from the indicated ‘‘direct’’ definition of

the excitation operators.

B. k-Particle Density Matrices

Consider a state described by the wavefunction �, normalized to unity. Then

we define the k-particle (reduced) density matrices as expectation values of
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the excitation operators:

c ¼c1: gpq ¼ h�japqj�i ð12Þ
c2: gpqrs ¼ h�japqrs j�i ð13Þ
c3: gpqrstu ¼ h�japqrstu j�i ð14Þ

We use boldface letters like c2 for the respective full matrices. The matrix ele-

ments are defined in terms of spin-orbital labels. For the normalization one

easily gets

Tr c1 ¼ gpp ¼ n ð15Þ
Tr c2 ¼ gpqpq ¼ nðn� 1Þ ð16Þ
Tr ck ¼ n!=ðn� kÞ! ð17Þ

These definitions are easily generalized from a pure state, described by �, to
ensemble states, described by a system density matrix P, for which an expecta-

tion value is

hAi ¼ TrfAPg ¼
X
p

cph�pjAj�pi; P ¼
X
p

cpj�pih�pjX
p

cp ¼ 1; for all cp > 0 ð18Þ

It is convenient to use a one-electron basis of natural spin orbitals (NSOs) in

terms of which c is diagonal.

gpq ¼ npd
p
q; 0 � np � 1 ð19Þ

One calls np the occupation number of the pth NSO.

A proof of the bounds for the occupation numbers will be given in Section II. F.

Expectation values of (particle-number conserving) operators are easily

expressed in terms of the density matrices. For example, for the energy

E ¼ h�jHj�i ¼ hpqg
q
p þ 1

2
gpqrs g

rs
pq ð20Þ

C. Spin-Free Excitation Operators and k-Particle Density Matrices

Most Hamiltonians of physical interest are spin-free. Then the matrix elements

in Eq. (9) depend only on the space part of the spin orbitals and vanish for

different spin by integration over the spin part. Then it is recommended to elim-

inate the spin and to deal with spin-free operators only. We start with a basis of

spin-free orbitals jP, from which we construct the spin orbitals jPa and jPb.
All excitation operators carry orbital labels (capital letters) and spin labels
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(Greek letters). We define spin-free excitation operators carrying only orbital

labels, by summation over spin

EP
Q ¼ aPaQa þ a

Pb
Qb ð21Þ

EPQ
RS ¼ aPaQaRaSa þ a

PaQb
RaSb þ a

PbQa
RbSa þ a

PbQb
RbSb ; . . . ð22Þ

It would be in the spirit of a systematic formulation with lowercase letters for

spin-orbital labels and capital letters for labels of spin-free orbitals, to choose

the symbols AP
Q. . . rather than EP

Q. . . . We use EP
Q. . . nevertheless for the spin-

free counterparts of the apq, in particular, since the symbol EP
Q has some tradition

[13] (though not in a tensor notation). The EP
Q are often called generators of the

unitary group UðnÞ [13].
The Fock-space Hamiltonian, Eq. (9), then becomes

H ¼ hPQE
Q
P þ 1

2
gPQRS E

RS
PQ ð23Þ

with matrix elements over spin-free orbitals in analogy to Eq. (8).

Spin-free density matrices are obtained as

G1 : �P
Q ¼ gPaQa þ gPbQb ¼ h�jEP

Qj�i ð24Þ
G2 : �PQ

RS ¼ gPaQaRaSa þ gPaQbRaSb þ gPbQaRbSa þ gPbQbRbSb ¼ h�jEPQ
RS j�i ð25Þ

The spin-free one-particle density matrix G1 ¼ G is diagonal in the basis of the

(spin-free) natural orbitals (NOs)

�P
Q ¼ nPd

P
Q ð26Þ

The occupation numbers nP lie between 0 and 2:

0 � nP � 2 ð27Þ
The spin-free two-particle excitation operators EPQ

RS and density matrices �PQ
RS are

symmetric with respect to simultaneous exchange of the upper and lower

indices, but neither symmetric nor antisymmetric with respect to exchange of

either upper or lower indices separately:

E
PQ
RS ¼ E

QP
SR ; E

QP
RS 6¼ E

PQ
RS ; E

QP
RS 6¼ �EPQ

RS ð28Þ
�PQ
RS ¼ �QP

SR ; �QP
RS 6¼ �PQ

RS ; �QP
RS 6¼ ��PQ

RS ð29Þ

Note that EPQ
RS and �PQ

RS usually do not vanish for P ¼ Q and/or R ¼ S. Two elec-

trons can be in the same spin-free orbital. One can define operators and density
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matrices that are symmetry adapted to the separate exchange of upper or lower

labels [8].

ðEþÞPQRS ¼ 1
2
ðEPQ

RS þ EQP
RS Þ; ðE�ÞPQRS ¼ 1

2
ðEPQ

RS � EQP
RS Þ ð30Þ

ð�þÞPQRS ¼ 1
2
ð�PQ

RS þ �QP
RS Þ; ð��ÞPQRS ¼ 1

2
ð�PQ

RS � �QP
RS Þ ð31Þ

One finds [14] that ðfor eigenstates of ŜS2 with eigenvalue SðSþ 1ÞÞ

TrðGþÞ ¼ ð�þÞPQPQ ¼ 1
4
nðnþ 2Þ � SðSþ 1Þ ð32Þ

TrðG�Þ ¼ ð��ÞPQPQ ¼ 3
4
nðnþ 2Þ þ SðSþ 1Þ ð33Þ

The eigenstates of Gþ are symmetric spin-free two-electron functions corre-

sponding to singlet pairs; those of G� are antisymmetric spin-free two-electron

functions corresponding to triplet pairs. TrðGþÞ is the probability that two elec-

trons are coupled to a singlet pair, while TrðG�Þ is the probability that two elec-

trons are coupled to a triplet pair.

For spin-free k-particle excitation operators and density matrices, linear com-

binations that transform as irrep of the symmetric group Sk can be defined in an

analogous way [15].

The expectation value of the Hamiltonian in Eq. (23) becomes

E ¼ hPQ�
Q
P þ 1

2
g
PQ
RS �

RS
PQ ¼ hPQ�

Q
P þ 1

2
ðgþÞPQRS ð�þÞRSPQ þ 1

2
ðg�ÞPQRS ð��ÞRSPQ ð34Þ

ðgþÞPQRS ¼ gPQRS þ gQPRS ; ðg�ÞPQRS ¼ gPQRS � gQPRS ð35Þ

There is also a spin-free Wick theorem [3, 5, 16],

EP
QE

R
S ¼ EPR

QS þ dRQE
P
S ð36Þ

EP
QE

RS
TU ¼ EPRS

QTU þ dRQE
PS
TU þ dSQE

RP
TU ð37Þ

that formally agrees with its spin-dependent counterpart, Eqs. (10) and (11).

D. Cumulants of the k-Particle Density Matrices

The k-particle density matrices, in particular, c1 and c2, are extremely useful

quantities. They are much simpler than the wavefunction but contain all relevant

information. Yet, except c1, they have one important drawback. They are not
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additively separable (extensive). For a supersystem AB consisting of two nonin-

teracting subsystems A and B, we have

ckðABÞ 6¼ ckðAÞ þ ckðAÞ; for k � 2 ð38Þ

The equality sign will hold for the cumulants, which we introduce now.

The cumulant k2 — with matrix elements lpqrs — of the two-particle density

matrix c2 — with matrix elements gpqrs — is the difference between c2 and what

one expects for independent particles that obey Fermi statistics [71]:

k2 : lpqrs ¼ gpqrs � gprg
q
s þ gpsg

q
r ð39Þ

Cumulants of any order can be defined via a generating function [17, 18].

Consider the expectation value of the exponential of an arbitrary one-particle

operator ~kk:

A ¼ h�j : exp k̂k : j�i ¼ h�j1þ k̂k þ 1
2
: k̂k2 : þ � � � j�i

k̂k ¼ kpqa
q
p ð40Þ

Double dots (: � � � :) mean normal products (with respect to the genuine

vacuum), for example, apqa
r
s :¼ aprqs: We get

A ¼ 1þ kpqg
q
p þ 1

2
kpqk

r
sg

qs
pr þ � � �

¼ 1þ kpqg
q
p þ

1

2

X
p<r

ðkpqkrs � kps k
r
qÞgqspr þ � � � ð41Þ

and realize that gqp is the coefficient of k
p
q, g

qs
pr is the coefficient of

1
2
ðkpqkrs � kps k

r
qÞ,

and so on. Let us now define the antisymmetrized logarithm of an expression like

A, in terms of the Taylor expansion of lnð1þ xÞ, but with products of g-factors
replaced by the corresponding antisymmetrized products: for example,

gqpg
s
r ! detfgqpgsrg ¼ gqpg

s
r � gqrg

s
p ð42Þ

gqpg
s
rg

u
t ! detfgqpgsrgut g ð43Þ

gqpg
su
rt !

X
ð�1ÞPgqpgsurt ¼ gqpg

su
rt þ gsrg

qu
pt þ gut g

qs
pr

� gqr g
su
pt � gqt g

su
rp � gstg

qu
pr � gspg

qu
rt � gupg

qs
tr � gur g

qs
pt ð44Þ

In the last expression the sum goes over all nontrivial partitions of the lower

labels, and of the upper labels, with a sign factor ð�1ÞP depending on the parity
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P of the partition. The determinant detf� � �g is a special case for the partition into
single elements, that is, a permutation. Then

B ¼ lna A ¼ kpqg
q
p þ 1

4
ðkpqkrs � kps k

r
qÞfgqspr � gqpg

s
r þ gqrg

s
pg þ � � �

¼ kpqg
q
p þ 1

4
ðkpqkrs � kps k

r
qÞlqspr þ � � � ð45Þ

Now gqp is the coefficient of k
p
q, and lqspr that of

1
2
ðkpqkrs � kps k

r
qÞ, and so on. So B is

the generating function for the kk in the same sense as A is the generating func-

tion for the ck. To take first the expectation value of an exponential and then the

logarithm is a standard way to arrive at cumulants [19].

For the higher-order cumulants k3 and k4 we get

k3 : lprtqsu ¼ gprtqsu �
X
ð�1ÞPgpqlrtsu � det fgpqgrsgtug ð46Þ

k4 : lprtvqsuw ¼ gprtvqsuw �
X
ð�1ÞPgpqlrtvsuw �

1

2
�ð�1ÞPlprqsltvuw

�
X
ð�1ÞPgpqgrsltvuw � detfgpqgrsgtugvwg ð47Þ

with the sums going over all partitions of lower labels, as explained after

Eq. (44). A more compact formulation is in terms of the Grassmann (or wedge)

products

k2 ¼ c2 � c1 ^ c1 ð48Þ
k3 ¼ c3 � c1 ^ k2 � c1 ^ c1 ^ c1 ð49Þ
k4 ¼ c4 � c1 ^ k3 � k2 ^ k2 � c1 ^ c1 ^ k2 � c1 ^ c1 ^ c1 ^ c1 ð50Þ

The two-particle cumulant is a correlation increment. It describes Coulomb

correlation, since the Fermi correlation is already contained in the description

in terms of c1 only. In terms of the cumulants, the energy expectation value

can be written

E ¼ 1
2
ðhpq þ f pq Þgqp þ 1

2
gpqrs l

rs
pq ð51Þ

f pq ¼ hpq þ �ggprqsg
s
r; �ggprqs ¼ gprqs � gprsq ð52Þ

Here the generalized Fock operator f with matrix elements f pq appears for the first

time. It looks familiar and resembles the Fock operator of Hartree–Fock theory.

However, now the gsr are matrix elements of the exact one-particle density matrix
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c1, which, unlike in Hartree–Fock theory, is not assumed to be idempotent (cor-

responding to a single Slater determinant).

E. Properties of Density Cumulants

The cumulants of the density matrices, for short density cumulants, have a few

nice properties [17]. We note in particular the Hermiticity, for example,

lpqrs ¼ ðlrspqÞ� ð53Þ

and the antisymmetry,

lpqrs ¼ �lqprs ¼ �lpqsr ¼ lqpsr ð54Þ

Density cumulants are separable in the following sense.

For � ¼ Af�Að1; 2; . . . ; nAÞ�BðnA þ 1; . . . ; nA þ nBÞg with �A and �B

strongly orthogonal, and A the antisymmetrizer, lpqrs ¼ 0 unless all labels refer

either to subsystem A or B.

lpqrs ¼ ðlAÞpqrs þ ðlBÞpqrs ð55Þ

The cumulants have the important property (and this holds for the cumulants kk
of arbitrary particle rank) of being additively separable. For a noninteracting

supersystem AB we have

kkðABÞ ¼ kkðAÞ þ ckðBÞ; for all k ð56Þ

One further sees easily that (in an NSO basis) matrix elements of a cumulant are

nonvanishing only if all its labels refer to partially occupied (active) NSOs with

occupation number different from 0 or 1.

lpqrs ¼ 0; in an NSO basis if any np ¼ 0 or ¼ 1 ð57Þ

There are trace relations [20] like

Trðk1Þ ¼
X
k

nk ¼ n ð58Þ

Trðk2Þ ¼ Trðc21 � c1Þ ¼
X
k

ðn2k � nkÞ ¼ OðnÞ ð59Þ

Trðk3Þ ¼ Trð�4c31 þ c21 � 2c1Þ ð60Þ
¼ 6

X
k

nkðnk � 1
2
Þðnk � 1Þ ¼ OðnÞ ð61Þ
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and partial trace relations

lprqr ¼ �gpq þ gprg
r
q ¼ ðc2 � cÞpq ð62Þ

lprtqst ¼ 2lprqs � gpt l
rt
sq � grtl

pt
qs � gtql

pr
ts � gtsl

pr
qt ð63Þ

lprstqrst ¼ ð�2c3 þ 4c2 � 2cÞpq � grtl
tp
rq � gtrl

pr
qt ð64Þ

One notes that the traces of all kk are of OðnÞ, while the traces of the correspond-
ing ck are of OðnkÞ.

Particularly noteworthy is the particle–hole symmetry. Let us define (one- and

two-) hole density matrices [17]

Zpq ¼ h�jaqapj�i ¼ dpq � gpq ð65Þ
Zpqrs ¼ h�jasarapaqj�i
¼ dprd

q
s � dpsd

q
r � dpr g

q
s � gprd

q
s þ dpsg

q
r þ gpsd

q
r þ gpqrs ð66Þ

Zpq ¼ dpqð1� npÞ in an NSO basis ð67Þ

These gm matrices have the same irreducible components (cumulants) as the

corresponding cm matrices, just with gpq replaced by Zpq and with some sign

changes, for example,

Zpqrs ¼ lpqrs þ ZprZ
q
s � ZpsZ

q
r ð68Þ

Zpqrstu ¼ �lpqrstu þ Zps qrtu þ � � � þ ZpsZ
q
t Z

r
u þ � � � ð69Þ

One can further define a particle–hole density matrix, which also has the same

two-particle cumulant

bp;qr;s ¼ h�jðapr � gpr Þðaqs � gqs Þj�i ¼ Zqrg
p
s þ lpqrs ð70Þ

The special cases of APSG (antisymmetrized product of strongly orthogonal

geminals) and AGP (antisymmetrized geminal power) functions have been ana-

lyzed [17]. Among other things, conditions were found for vanishing of the

three-particle cumulant k3 [17].

F. Bounds and Other Inequalities

Some important inequalities for the matrix elements of c and k2 can be derived.

Actually all ck with k < n must be nonnegative.

Let us express c1 in terms of its NSOs. Then

np ¼ gpp ¼ h�japap�i ¼ hap�jap�i � 0 ð71Þ
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(This is formulated here for a pure state, but the generalization to an ensemble

state is straightforward.) Also the one-hole density matrix must be nonnegative

[21]:

1� np ¼ Zpp ¼ h�japap�i ¼ hap�jap�i � 0 ð72Þ

hence

0 � np � 1 ð73Þ
This is necessary for pure-state n-representability. Together withX

p

np ¼ n ð74Þ

it is necessary and sufficient for ensemble n-representability.

For k ¼ 2 we have the nonnegativity of the diagonal elements of c2 [21, 22]:

gpqpq ¼ hapaq�japaq�i � 0 ð75Þ

Similar inequalities hold for the two-hole and particle–hole densitymatrices [21, 22]:

Zpqpq ¼ hapaq�japaq�i � 0 ð76Þ
bq;pp;q ¼ h~aapq�j~aapq�i � 0 ð77Þ

In the literature on n-representability [21, 22], the nonnegativity of c2, g2, and b2
is referred to as D-,Q-, and G-conditions respectively [22]. Also known are a B-

and a C-condition [21, 22], but these are implied by the G-condition [22, 23].

From the nonnegativity of c2, g2, and b2, some important inequalities for the

diagonal matrix elements of k2 can be derived:

0 � gpqpq ¼ lpqpq þ gppg
q
q � gpqg

q
p ð78Þ

0 � Zpqpq ¼ lpqpq þ ZppZ
q
q � ZpqZ

q
p ð79Þ

0 � bp;qq;p ¼ lqppq þ Zqqg
p
p ¼ �lpqpq þ Zqqg

p
p ð80Þ

0 � bq;pq;p ¼ lqppq þ Zppg
q
q ¼ �lpqpq þ Zppg

q
q ð81Þ

Especially in an NSO basis we obtain

lpqpq � max f�npnq;�ð1� npÞð1� nqÞg � � 1
4

ð82Þ
lpqpq � min fnpð1� nqÞ; nqð1� npÞg � þ 1

4
ð83Þ
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There are Cauchy–Schwarz-type relations between the diagonal and nondia-

gonal elements of c2, g2, and b2:

gpqrs g
rs
pq ¼ hapaq�jaras�iharas�japaq�i
� hapap�japaq�iharas�jaras�i ¼ gpqpqg

rs
rs ð84Þ

Zpqrs Z
rs
pq ¼ hapaq�jaras�iharas�japaq�i
� hapaq�japaq�iharas�jaras�i ¼ ZpqpqZ

rs
rs ð85Þ

bp;rq;sb
s;q
r;p ¼ h~aapq�j~aars�ih~aars�j~aaqp�i
� h~aapq�j~aapq�ih~aars�j~aars�i ¼ bp;qq;pb

s;r
r;s ð86Þ

Somewhat weaker conditions are obtained by summing the Cauchy–Schwarz

inequalities over fr; sg, for example,

gpqrs g
rs
pq � nðn� 1Þgpqpq ð87Þ

In Eq. (87) the equality sign holds for a pure state of a two-electron system. In

terms of Møller–Plesset perturbation theory (see Section V. D) one gets, inde-

pendently of n [24, 25],

lijij ¼ � 1
2
labij l

ij
ab þ Oðm3Þ ð88Þ

labab ¼ 1
2
lijabl

ab
ij þ Oðm3Þ ð89Þ

where m is the perturbation parameter.

There is an interesting pairing relation between the eigenvalues nðpÞk of the

p-particle density matrix cp (with eigenfunctions, i.e., natural p-states, wðpÞk )

and those nðn�pÞk of cn�p:

ðn� pÞ!nðpÞk ¼ p!nðn�pÞk ð90Þ

This is closely related to the possibility of writing the n-electron wavefunction� as

�ð1; 2; . . . ; nÞ ¼
X
k

ckw
ðpÞ
k ð1; 2; . . . ; pÞwðn�pÞk ðpþ 1; . . . ; nÞ ð91Þ

jckj2 ¼ ðn� pÞ!
n!

nðpÞk ¼
p!

n!
nðn�pÞk ð92Þ
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where wðpÞk and wðn�pÞk are conjugate natural p- and n� p states. This is a special

case [26] of a theorem derived a century ago by Erhard Schmidt [27]. From Eq.

(92) and the Cauchy–Schwarz inequality one gets

ck ¼ h�jwðpÞk ð1; . . . ; pÞwðn�pÞk ðpþ 1; . . . ; nÞi
¼ hA�jwðpÞk ð1; 2; . . . ; pÞwðn�pÞk ðpþ 1; . . . ; nÞi
¼ h�jAwðpÞk ð1; 2; . . . ; pÞwðn�pÞk ðpþ 1; . . . ; nÞi ð93Þ

jckj2 � hwðpÞk ð1; . . . ; pÞwðn�pÞk ðpþ 1; . . . ; nÞj
� AwðpÞk ð1; . . . ; pÞwðn�pÞk ðpþ 1; . . . ; nÞi ð94Þ

where A is the idempotent antisymmetrizer

A ¼ 1

n!

X
p

EpP ¼ A2 ð95Þ

in which the sum goes over all permutations of n elements and where Ep is the

parity of the permutation. Using a lemma, based on combinatorial arguments,

probably first found by Sasaki [28],

hf ð1; . . . ; pÞgðpþ 1; . . . ; nÞjAf ð1; . . . ; pÞgðpþ 1; . . . ; nÞi � 1

n� pþ 1
ð96Þ

one gets an upper bound for the eigenvalues of ck,

v
ðpÞ
k �

n!

ðn� pþ 1Þ! ¼
Tr cp

n� p� 1
ð97Þ

especially

nk ¼ v
ð1Þ
k � 1 ð98Þ
v
ð2Þ
k � n ð99Þ
v
ð3Þ
k � nðn� 1Þ ð100Þ

The upper bound n for the eigenvalues v
ð2Þ
k of c2 is rather large compared to the

value v
ð2Þ
k ¼ 2 for the nonzero eigenvalues of c2 for a single Slater determinant.

However, one can construct a wavefunction, namely, an antisymmetrized gem-

inal power of extreme type for which such a large eigenvalue is actually realized.

Such wavefunctions play an important role in the theory of superconductivity

[21]. For a well-closed shell state a large eigenvalue of c2 is rather unlikely.

We cannot go into details here [22].
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G. Density Cumulants for Degenerate States

For degenerate states a problem arises with the definition of cumulants. We con-

sider here only spin degeneracy. Spatial degeneracy can be discussed on similar

lines. For S 6¼ 0 there are (2Sþ 1) different MS-values for one S. The n-particle

density matrix rðMSÞ ¼ j�MS
ih�MS

j of a single one of these states does not

transform as an irreducible representation (irrep) of the spin rotation group

SU2. However, the ð2Sþ 1Þ2-dimensional set of n-particle density matrices

and transition density matrices

rðMS;M
0
SÞ ¼ j�MS

ih�M0
S
j ð101Þ

span a ð2Sþ 1Þ2-dimensional reducible representation of SU2. One can

construct the irreducible tensor components rs with s ¼ ð0; 1; . . . ; 2SÞ as linear
combinations of the rðMS;M

0
SÞ. Especially the (normalized) totally symmetric

component is given as

r0 ¼ ð2Sþ 1Þ�1=2
XS

MS¼�S
j�MS
ih�MS

j ð102Þ

Except for the normalization factor this is equal to the spin-averaged n-particle

ensemble state. The spin-free density matrices (24), (25), and so on defined pre-

viously (in Section II.C) correspond to such an ensemble averaging.

Examples for non-totally-symmetric components in the decomposition of

density matrix into irreducible tensor components are the one-particle spin den-

sity matrices:

ðD0ÞPS ¼ 1=ð
ffiffiffi
2
p
Þ h�jaPaSa � a

Pb
Sb j�i

ðDþÞPS ¼ h�jaPaSb j�i
ðD�ÞPS ¼ h�jaPbSa j�i ð103Þ

which transform as a vector, that is, an irreducible tensor operator of rank 1. For

a singlet state all these components vanish.

If one tries to apply the definition (39) naively to degenerate states, one is faced

with the problem that, for example, gpqrs and gpr g
q
s have a different transformation

behavior with respect to the spin rotation group SU2; hence lpqrs would have no

acceptable transformation behavior at all. The way out of this dilemma is to define

the irreducible tensor components of lpqrs in terms of those of gpqrs and gpr .
The easiest and, in many respects, the most satisfactory way is to consider

only the totally symmetric tensor components (i.e., the spin-free density

matrices) and to define the spin-free cumulants in terms of these [17, 30].

This corresponds to replacing the considered state by an MS-averaged ensemble.
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We arrive then at the definitions

�PQ
RS ¼ �PQ

RS � �P
R�

Q
S þ 1

2
�P
S�

Q
R ð104Þ

�PQR
STU ¼ �PQR

STU � �P
S�

QR
TU � �Q

T�
PR
SU � �R

U�
PQ
ST

þ 1
2
�P
T�

QR
SU þ 1

2
�P
U�

QR
TS þ 1

2
�Q
S�

PR
TU þ 1

2
�Q
U�

PR
ST

þ 1
2
�R
S�

PQ
UT þ 1

2
�R
T�

PQ
SU � �P

S�
Q
T�

R
U

� 1
4
�P
T�

Q
U�

R
S � 1

4
�P
U�

Q
S �

R
T þ 1

2
�P
T�

Q
S �

R
U

þ 1
2
�P
U�

Q
T�

R
S þ 1

2
�P
S�

Q
U�

R
T ð105Þ

For the symmetry-adapted two-particle cumulants we get

ð�þÞPQRS ¼ ð�þÞPQRS � 1
4
�P
R�

Q
S � 1

4
�P
S�

Q
R ð106Þ

ð��ÞPQRS ¼ ð��ÞPQRS � 3
4
�P
R�

Q
S þ 3

4
�P
S�

Q
R ð107Þ

The definitions given in this section are valid both for degenerate and non-

degenerate states.

H. Intrinsic Definition of the Correlation Energy

Let us start from the energy expression (34). We write it as a sum of a

one-electron energy E1 and an electron interaction energy E2.

E ¼ E1 þ E2 ð108Þ
E1 ¼ hPQ�

Q
P ð109Þ

E2 ¼ 1
2
� PQ

RS g
RS
PQ ¼

Z
%ð2Þð1; 2Þ

2r12
dt1dt2 ð110Þ

The electron interaction energy E2 can be further decomposed into the following

contributions:

ECoul ¼
Z

%ð1Þ%ð2Þ
2r12

dt1dt2 ð111Þ

Ex ¼ �
Z

�ð1; 2Þ�ð2; 1Þ
4r12

dt1dt2 ð112Þ

Ecorr ¼
Z

lð2Þð1; 2Þ
2r12

dt1dt2 ð113Þ
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with the cumulant lð2Þð1; 2Þ in configuration space defined in analogy to its

counterpart k2 in Fock space. This decomposition differs from that common

in both ab initio quantum chemistry and density functional theory (DFT). It

has the advantage of being intrinsic, that is, referring to a single wavefunction,

and not depending on any approximation.

Actually the sum E1 þ ECoul þ Ex is of the form of a Hartree–Fock energy,

except that 1
2
G is not necessarily idempotent. Since this sum is minimized for

an idempotent 1
2
G, the value of this sum is slightly above the Hartree–Fock

energy. So the correlation energy defined by Eq. (113) will usually be somewhat

larger in absolute value than that defined by Löwdin [31]. However, one will not

expect a very large difference, provided that we are in a closed-shell situation,

where 1
2
G is not very far from idempotent. The sum E1 þ ECoul þ Ex will, unlike

the Hartree–Fock energy, not satisfy a virial theorem. The correlation energy in

Eq. (113) is purely a two-electron potential energy term and does not, unlike in

the traditional definition, consist of two-electron and one-electron contributions,

the latter even split into a kinetic and a potential part.

In density functional theory (DFT) one uses the same definition (111) for the

Coulomb energy (including self-interaction) as we propose here. However, both

E1 and the exchange energy (including self-exchange) are defined differently.

These are not evaluated in terms of the exact 1
2
G, but in terms of that correspond-

ing to the Kohn–Sham determinant, which is idempotent. The errors due to this

replacement are then absorbed into the correlation energy, which can therefore

not be identified with that defined here.

III. GENERALIZED NORMAL ORDERING

A. Particle–Hole Formalism

We introduce the generalized normal ordering in various steps, starting with the

traditional particle–hole formalism.

The particle–hole formalism has been introduced as a simplification of many-

body perturbation theory for closed-shell states, for which a single Slater deter-

minant � dominates and is hence privileged. One uses the labels i; j; k; . . . for
spin orbitals occupied in � and a; b; c; . . . for spin orbitals unoccupied (virtual)

in �.
Then one redefines the annihilation operator ai for an occupied spin orbital as

the hole creation operator b
y
i , and the creation operator a

y
i for an occupied spin

orbital as the hole annihilation operator bi. The fermion operators for the virtual

spin orbitals remain unchanged.

The essential step is to define a new normal ordering with respect to �
regarded as a physical vacuum. Now a product of a and b operators is said to

be in normal order with respect to �, if all aa and bi are right of all aya and b
y
i .

generalized normal ordering 309



This convention is in conflict with our tensor notation, that we do not want to

abandon [8]. However, what really matters is only the change of the definition of

normal ordering, and this can easily be formulated in our language as well.

In fact, it turns out that the excitation operators in normal order in the

particle–hole sense can be written as linear combinations of operators in (the

original) normal order with respect to the genuine vacuum. We put a tilde on

operators in the new normal ordering. We get then

~aapq ¼ apq � dpqnp ð114Þ
~aapqrs ¼ apqrs � dpr npa

q
s � dqs nqa

p
r þ dps npa

q
r þ dqr nqa

p
s þ dpqrs npnq ð115Þ

np ¼ 1 for cp occupied in �; np ¼ 0 for cp unoccupied in � ð116Þ
dpqrs ¼ dprd

q
s � dpsd

q
r ð117Þ

We note in particular that

h�j~aapqj�i ¼ 0; h�j~aapqrs j�i ¼ 0 ð118Þ

that is, expectation values of ~aa operators with respect to � vanish, as do the

expectation values of a operators with respect to the genuine vacuum j0i,

h0japqj0i ¼ 0; h0japqrs j0i ¼ 0 ð119Þ

For products of ~aa operators one finds again a generalized Wick theorem like

Eqs. (10) and (11), but in addition to particle contractions we also have hole

contractions and combined contractions, even full contractions, that is, simple

numbers:

~aapq~aa
r
s ¼ ~aaprqs þ drqð1� nqÞ~aaps � dps np~aa

r
q þ drqd

p
s npð1� nqÞ ð120Þ

~aapq~aa
rs
tu ¼ ~aaprsqtu þ drqð1� nqÞ~aapstu þ dsqð1� nqÞ~aarptu � dpt np~aa

rs
qu

� dpunp~aa
rs
tq þ drqð1� nqÞdpt np~aasu � drqð1� nqÞdpunuast

� dsqð1� npÞdpt np~aaru þ dsqð1� nqÞdpunp~aart ð121Þ

While particle contractions connect an upper right with a lower left label ðand
are associated with a factor ð1� npÞÞ, hole contractions go from upper left to

lower right, with a factor �np. Closed loops introduce another factor �1. A
graphical interpretation is possible, in agreement with that for the conventional

particle–hole picture. We postpone this to the more general case of an arbitrary

reference function (Section III.E).

310 werner kutzelnigg and debashis mukherjee



Expectation values of products of ~aapq operators with respect to � are simply

the sum of all full contractions, for example,

h�j~aapq~aarsj�i ¼ drqd
p
s npð1� nqÞ ð122Þ

h�j~aaia~aaai j�i ¼ 1 ð123Þ

This result represents the most important advantage of the particle–hole formal-

ism. Many-body perturbation theory (MBPT) consists mainly in the evaluation

of expectation values (with respect to the physical vacuum) of products of

excitation operators. This is easily done by means of Wick’s theorem in the

particle–hole formalism.

B. Particle–Hole Formalism in an Arbitrary Basis

The results of the last section, which are essentially a reformulation of the tradi-

tional particle–hole formalism for excitation operators, were first presented in

1984 [8]. At that time it was not realized that only two very small steps are

necessary to generalize this formalism to arbitrary reference states. Only after

Mukherjee approached the formulation of a generalized normal ordering on a

rather different route [2], did it come to our attention how easy this generaliza-

tion actually is, when one starts from the results of the last section.

As in the previous section we consider a single Slater determinant reference

function � with the spin orbitals ci occupied. However, we express our excita-

tion operators in a completely arbitrary basis of spin orbitals cp, which is no

longer the direct sum of occupied and unoccupied spin orbitals. Then the follow-

ing replacements must be made [3]:

dpqnp ) h�japqj�i ¼ gpq ð124Þ
npnqd

pq
rs ) h�japqrs j�i ¼ gpqrs ð125Þ

In the original basis fci;cag, in which gpq is diagonal, we retrieve, of course,
the results of the last section, but in a general basis we get the ~aa operators in the

following form:

~aapq ¼ apq � gpq ð126Þ
~aapqrs ¼ apqrs � gpr a

q
s � gqs a

p
r þ gps a

q
r þ gqr a

p
s þ gpqrs ð127Þ

~aapqrstu ¼ apqrstu � gps a
qr
tu þ gqs a

pr
tu þ grsa

qp
tu þ gpt a

qr
su

� gqt a
pr
su þ grt a

pq
su þ gpua

qr
ts þ gqua

pr
st þ grua

pq
st

þ gpqst a
r
u þ gprsua

q
t þ gqrtu a

p
s � gpqsu a

r
t � gpqut a

r
s

� gprst a
q
u � gprtu a

q
s � gqrts a

p
u � gqrsua

p
t � gpqrstu ð128Þ

generalized normal ordering 311



It is easily checked that

h�j~aapqj�i ¼ h�japqj�i � gpq ¼ 0 ð129Þ
h�j~aapqrs j�i ¼ gpqrs � 2gpr g

q
s þ 2gpsg

q
r þ gpqrs ¼ 0; . . . ð130Þ

that is, expectation values of ~aa operators with respect to � vanish, provided that

gpqrs ¼ gprg
q
s � gps g

q
r ð131Þ

which is, of course, the case for a single Slater determinant reference state.

C. Normal Ordering with Respect to Arbitrary Reference Function

In order to generalize the concept of normal ordering such that it is valid with

respect to any arbitrary reference function �, we start from the following guid-

ing principles:

(i) Normal order operators ~aa should be expressible as linear combinations of

the operators a in normal order with respect to the genuine vacuum.

~aapqrs ¼ aapqrs þ bapr þ gaps þ daqr þ eaqs þ Z ð132Þ

On the r-h-s there should be excitation operators of the same and of lower par-

ticle ranks.

(ii) Expectation values of normal order operators ~aa with respect to the refer-

ence function � should vanish.

h�j~aapqrs j�i ¼ 0 ð133Þ
(iii) The known results, valid when � is single Slater determinant, must be

recovered.

One meets these requirements, if one rewrites the definitions (126) – (128) in

a recursive way.

~aapq ¼ apq � gpq ð134Þ
~aapqrs ¼ apqrs � gpr ð~aaqs þ gqs Þ � gqs ð~aapr þ gpr Þ

þ gps ð~aaqr þ gqr Þ þ gqr ð~aaps þ gps Þ þ gpqrs
¼ apqrs � gpr~aa

q
s � gqs~aa

p
r þ gps~aa

q
r þ gqr~aa

p
s � gpqrs ð135Þ

~aapqrstu ¼ apqrstu � gps~aa
qr
tu þ gqs~aa

pr
tu þ grs~aa

qp
tu þ gpt ~aa

qr
su

� gqt ~aa
pr
su þ grt~aa

pq
su þ gpu~aa

qr
ts þ gqu~aa

pr
st � gru~aa

pq
st

� gpqst ~aa
r
u � gprsu~aa

q
t � gqrtu~aa

p
s þ gpqsu~aa

r
t þ gpqut ~aa

r
s

þ gprst ~aa
q
u þ gprtu~aa

q
s þ gqrts ~aa

p
u þ gqrsu~aa

p
t � gpqrstu ð136Þ
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This is, of course, just a trivial reformulation for �, a single Slater determinant.

However, only in this special case are we free to use the identity (131) to rewrite

Eqs. (134)–(136) to get back Eqs. (126)–(128). Otherwise Eqs. (134)–(136) are

not identical to Eqs. (126)–(128). Fortunately, it turns out that Eqs. (134)–(136)

are the searched-for generalizations.

In fact, let us evaluate the expectation values of the operators (134) – (136)

with respect to an arbitrary �! For Eq. (134) we get

h�j~aapqj�i ¼ h�japqj�i � gpq ¼ 0 ð137Þ

provided that gpq is consistent with �. We now use Eqs. (137) and (135) to get

h�j~aapqrs j�i ¼ h�japqrs j�i � gpqrs ¼ 0 ð138Þ
provided that gpqrs is consistent with �. So we find recursively that all these

expectation values vanish, provided that the g-elements that arise in the defini-

tions (134) – (136) are those corresponding to �. Equations (134)–(136) hence

provide the searched-for generalization of normal ordering to an arbitrary refer-

ence function. A formulation for any particle rank is possible if we introduce the

short-hand notation

�ð�1ÞPAp1p2...pk
q1q2...qk

Bpkþ1...pn
qkþ1...qn ð139Þ

for the sum over all partitions of both the n upper labels pi and the n lower labels

qi into respective subsets of k and n� k labels, keeping the original pairing of

the pi and qi as much as possible, with appropriate sign factors, depending on the

parity P of the partition, for example, a factor ð�1Þ for each permutation of a

pair ðpj; qj; pl; qlÞ to ðpj; ql; pl; qjÞ. An example is

�ð�1ÞPgpqartsu ¼ gpqa
rt
su þ grsa

pt
qu þ gtua

pr
qs � gps a

rt
qu � gpua

rt
sq � grqa

pt
su

� grua
pt
qs � gtqa

rp
su � gtua

pr
qs

ð140Þ

Then the excitation operators in generalized normal ordering are in a compact

form:

~aapq ¼ apq � gpq ð141Þ
~aaprqs ¼ aprqs �

X
ð�1ÞPgpq~aars � gprqs ð142Þ

~aaprtqsu ¼ aprtqsu �
X
ð�1ÞPgpq~aartsu �

X
ð�1ÞPgprqs~aatu � gprtqsu ð143Þ

~aaprtvqsuw ¼ aprtvqsuw �
X
ð�1ÞPgpq~aartvsuw �

X
ð�1ÞPgprqs~aatvuw

�
X
ð�1ÞPgprtqsu~aa

v
w � gprtvqsuw ð144Þ
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Note that these expressions as such are never needed explicitly. What one does

need are the contraction rules (i.e., the generalized Wick theorem) derived from

these expressions. These will be given in the next section.

D. Generalized Wick Theorem

For the formulation of the generalized Wick theorem corresponding to the

generalized normal ordering, we need the matrix element Zpq, Eq. (65), of the
one-hole density matrix and the cumulants kk, Eqs. (39)–(47), of the k-particle

density matrices.

For products of operators ~aa in the generalized normal order we then get

~aapq~aa
r
s ¼ ~aaprqs þ Zrq~aa

p
s � gps~aa

r
q þ gpsZ

r
q þ lprqs ð145Þ

~aapq~aa
rs
tu ¼ ~aaprsqtu þ Zrq~aa

ps
tu þ Zsq~aa

pr
ut � gpt ~aa

rs
qu � gpu~aa

rs
tq

þ fZrqgpt þ lprqtg~aasu � fZrqgpu þ lprqug~aast
� fZsqgpt þ lpsqtg~aaru þ fZsqgpu þ lpsqug~aart
� lrstq~aa

p
u � lrsqu~aa

p
t � lprut~aa

s
q � lpstu~aa

r
q

þ Zrql
ps
tu þ Zsql

pr
ut � gpt l

rs
qu � gpul

rs
tq þ lprsqtu ð146Þ

The elements of the cumulants lprqs and lprtqsu vanish if � is a single Slater deter-

minant. Then we retrieve the known result, Eqs. (120) and (121).

For a more general reference function there are not only particle and hole

contractions, but also contractions that involve cumulants. Again it holds that

the expectation value of a product of ~aa operators with respect to the reference

function � is equal to the sum of all full contractions:

h�j~aapq~aarsj�i ¼ gpsZ
r
q þ lprqs ð147Þ

Although the theory has been formulated in terms of excitation operators only,

the extension to arbitrary Fock-space operators is straightforward.

E. Diagrammatic Representation

The Fock-space expressions are conveniently illustrated by diagrams. A

matrix element, say, �ggpqrs , is represented by a vertex—in this case by a dot

(�)—with two ingoing lines (with arrows toward the vertex) corresponding

to the lower labels ðrsÞ, and two outgoing lines (with arrows leaving the

vertex) corresponding to the upper labels ðpqÞ. A line between two vertices

(carrying a spin-orbital label) means a contraction. For a line connecting two

vertices directly (i.e., not involving a k element) an upgoing (particle) line is

associated with a factor (1� np), while a downgoing (hole) line is associated
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with a factor �np. In contractions involving a l element, the latter is repre-

sented by an open circle.

The diagrams that we use represent contractions of operators. Unlike in the

diagrams of traditional MBPT no energy denominators are implied. Such

denominators arise in the special context of perturbation theory and must then

be indicated explicitly [5–7].

As an example we give in Fig. 1 the diagrammatic illustration of the terms

that contribute to the IBC1 of Eq. (167), together with the corresponding alge-

braic expressions. (Commutators are split into differences of two products.) On

Fig. 2 the diagrams for the IBC2 of Eq. (169) are given without their algebraic

counterparts.

Note that a dot (�) always means a matrix element of the antisymmetrized

electron interaction �gg, a cross (�) a matrix element of the one-particle operator

f , while an open square (�t) collects the free labels in any of these contractions. If
the reference function is a single Slater determinant, all cumulants k vanish; one

is then left with particle and hole contractions, like in traditional MBPT in the

particle–hole picture.

The diagrams just discussed—with antisymmetrized vertices at spin-orbital

level — are of Hugenholtz type [32]. One can alternatively define [30] diagrams

of Goldstone type [33] with spin-free vertices.

Figure 1. Diagrammatic representation of the terms that contribute to the irreducible one-particle

Brillouin conditions, Eq. (167), with their algebraic equivalents. The last line represents the commu-

tators (i.e., the difference of the above values).
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In these diagrams self-contractions are forbidden; that is, one line cannot

enter and leave the same vertex. The lines entering or leaving a k vertex cannot

all connect to the same vertex.

Contraction rules: A contraction by a single line (not involving a k vertex)

implies a factor np (in terms of NSOs) for a single-hole contraction (downgoing

line), and a factor 1� np for a single-particle contraction (upgoing line). More

than one multiple contraction or combinations of single and multiple contrac-

tions are allowed.

Sign rule: Write the diagram in Goldstone form with line vertices (instead of

point vertices), to recognize which ingoing line corresponds to—or is paired

with—which outgoing line. Another factor (�1) arises for (a) any down going

single contraction, (b) any closed loop, including those in partial self-contractions,

(c) any lambda matrix element of odd particle rank (e.g. lpqrstu ), and (d) any odd

permutation of the original pairing of external lines.

F. Hamiltonian in Generalized Normal Order

The Hamiltonian in normal order with respect to its own exact eigenfunction (of

full-CI type) is

H ¼ E þ f pq ~aa
q
p þ 1

2
gpqrs ~aa

rs
pq ð148Þ

The energy (to be evaluated from Eq. (51)) appears as a constant term, consistent

with the fact that the expectation values of the last two terms with respect to �
automatically vanish. The f pq are the matrix elements of the generalized Fock

operator, Eq. (52).

(a) (b) (c) (d) (e) ( f ) (g) (h)

(i) ( j) (k) (l) (m) (n) (o) (p)

Figure 2. Diagrammatic representation of the terms that contribute to the irreducible two-parti-

cle Brillouin conditions, Eq. (169).
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IV. STATIONARITY CONDITIONS FOR THE ENERGY

A. Contracted Schrödinger Equations

Before we come to the irreducible stationarity conditions for the energy—our

main concern—let us have a short look at the traditional stationarity conditions.

We start from the Hamiltonian (in normal order with respect to the genuine

vacuum)

H ¼ hpqa
q
p þ 1

2
gpqrs a

rs
pq ð149Þ

and we ask for the condition that the energy expectation value

E ¼ h�jHj�i ¼ hpqg
q
p þ 1

2
gpqrs g

rs
pq ð150Þ

is stationary with respect to arbitrary variations of �

�! ð1þ XÞ� ¼ �þ d� ð151Þ

We get

dE ¼ h�jðH � EÞXj�i ¼ 0 ð152Þ

where E plays the role of a Lagrange multiplier. We can now consider that X is

a one-particle, two-particle, and so on excitation operator, and so get the hier-

archy of k-particle contractred Schrödinger equations. The one-particle CSE

reads

0 ¼ h�japqðH � EÞj�i ¼ hrsg
qs
pr þ hrpg

q
r þ 1

2
�ggrsptg

qt
rs þ 1

2
�ggrstug

qtu
prs ð153Þ

while the two-particle CSE is

0 ¼ h�japqrs ðH � EÞj�i ð154Þ

(For the explicit expression see Ref. [20].) This is a hierarchy of equations, first

proposed independently by Nakatsuji [35] and Cohen and Frishberg [36]. In

Eq. (153) c1 is expressed through c2 and c3, in Eq. (154) c2 is expressed through

c3 and c4, and so on. This hierarchy is of no direct practical use, because there is no
justification for a truncation of the ck at some k. Valdemoro [4] found an ingenious

way to approximate the ck for higher particle rank k in terms of those of lower k

and was so able to achieve a truncation of the hierarchy. This reconstruction
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was later refined by Nakatsuji and Yasuda [37], and analyzed by Mazziotti [18],

who showed that the reconstruction can be rationalized if one intermediately

expresses the ck in terms of the cumulants lk, and truncates the lk at some k, which

is justified for the lk, but not the ck. The method based on this reconstruction has

been called contracted Schrödinger equations by Valdemoro [4], the density

equation by Nakatsuji and Yasuda [37], and VNM-method (for Valdemoro,

Nakatsuji, Mazziotti) by Coleman and Yukalov [22]. It is described elsewhere

in this book and we cannot go into details.

We could, of course, start from the CSEk, express the ck in terms of the kk,
and so arrive at a hierarchy of equations for the kk that can be truncated at some

particle rank k. We prefer, however, to derive such a hierarchy directly, bypass-

ing that in terms of the ck, as will be done in Section IV.C.

B. k-Particle Brillouin Conditions

Let us now consider the stationarity of the energy with respect to unitary

variations

�! eZ�; Z ¼ �Zy ð155Þ
fZg ¼ fapq; apqrs ; apqrstu ; . . .g ð156Þ

The stationarity conditions are the k-particle Brillouin condition BCk

h�j½H; Z�j�i ¼ 0 ð157Þ
h�j½H; apq�j�i ¼ 0 ð158Þ
h�j½H; apqrs �j�i ¼ 0; . . . ð159Þ

While the (one-particle) Brillouin condition BC1 has been known for a long

time, and has played a central role in Hartree–Fock theory and in MC-SCF the-

ory, the generalizations for higher particle rank were only proposed in 1979 [38],

although a time-dependent formulation by Thouless [39] from 1961 can be

regarded as a precursor.

The BC1 (Eq. (158)) and BC2 (Eq. (159)) are explicitly

hpsg
s
q � gpr h

r
q þ 1

2
�ggprtu gtuqr � 1

2
gpurs �gg

rs
qu ¼ 0 ð160Þ

hpug
uq
rs þ hqug

pu
rs � gpqts h

t
r � gpqrt h

t
s

þ 1
2
�ggpqvwg

vw
rs � 1

2
gpqtu �ggturs þ 1

2
�ggptvwg

vwq
rts

þ 1
2
�ggquvwg

vwp
sur � 1

2
�ggturwg

wpq
uts � 1

2
�ggtursg

vpq
tru ¼ 0 ð161Þ
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with �gg the antisymmetrized electron interaction. As for the CSEk, there is no

obvious truncation of the hierarchy of k-particle equations, so like the latter

they are of no direct use.

While the CSEk expresses ck in terms of ckþ1 and ckþ2, the BCk only needs

ckþ1. The BCk are obviously simpler than the CSEk. On the other hand, the BCk

can be derived order by order from the CSEk, while the converse is not true.

Only if one goes up to k ¼ n, do the two sets of stationarity conditions become

equivalent.

A reconstruction in analogy to that for the CSEk has, to the authors’ knowl-

edge, never been tried. It is, however, straightforward to express the ck through
the kk and so get a hierarchy for the latter. Again we prefer the direct way, to be

described in Section IV.C.

C. Irreducible Contracted Schrödinger Equations

Generally, the irreducible counterparts ICSEk of the CSEk are obtained (consider

also the Hermitian conjugates!) if one replaces the excitation operators by those

in normal order with respect to �:

h�j~aapqðH � EÞj�i ¼ 0 ð162Þ
h�j~aapqrs ðH � EÞj�i ¼ 0; . . . ð163Þ

The Lagrange multiplier E cancels with the constant part of H in Eq. (148) such

that the ICSE1 in Eq. (162) becomes

0 ¼ f sr h�j~aapq~aarsj�i þ 1
2
gs1s2r1r2
h�j~aapq~aar1r2s1s2

j�i
¼ f sr flprqs þ gpsZ

r
qg

þ 1
2
�ggs1s2r1r2


1
2
lpr1r2qs1s2

� gps1l
r1r2
q s2
þ Zr1q l

p r2
s1s2

� ð164Þ

The result in an NSO basis is

0 ¼ f sr l
pr
qs þ f pq ð1� nqÞnp þ 1

4
�ggs1s2r1r2

lqs1s2pr1r2

� 1
2
np�gg

s1p
r1r2

lr1r2s1q
þ 1

2
ð1� nqÞ�ggs1s2r1q

lr1ps1s2

ð165Þ

Let us point out, without going into detail, that the generalized normal ordering

can, of course, also be formulated in a spin-free form [30].

The ICSEk of this section are essentially equivalent to the CSEk of section

IV.A, provided that one expresses the latter in terms of c and kk for k � 2 rather

than the ck. There are, however, two subtle differences.
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The CSE2 imply the CSE1 (or generally the CSEk all CSEl with l < k). The

ICSEk for different k, however, are linearly independent. The CSE2 turns out to

be a linear combination of the ICSE2 and the ICSE1. This is why we refer to the

ICSEk as irreducible conditions. One may alternatively call these conditions

separable. For a supersystem consisting of two noninteracting subsystems,

one need only consider the ICSEk for the subsystems. In a diagrammatic repre-

sentation, the ICSEk only contain connected diagrams, while the CSEk contain

disconnected diagrams as well.

D. Irreducible Brillouin Conditions

The condition for E to be stationary with respect to unitary one-particle transfor-

mations in generalized normal order is

h�j½H; ~aapq�j�i ¼ 0 ð166Þ

This is nothing but the Brillouin condition of MC-SCF theory. Explicitly, in an

NSO basis it reads

f pq ðnq � npÞ þ 1
2
�ggp s1
r1r2

lr1r2q s1
� 1

2
lr1ps1s2

�ggs1s2r1q
¼ 0 ð167Þ

In the ordinary Hartree–Fock case (with � a single Slater determinant) the lrspq
vanish. A graphical representation is given in Fig. 1.

One can formulate a two-particle analogue of the Brillouin condition, the

IBC2 (‘‘I’’ stands for irreducible, which essentially means connected. For details

see Refs. [20, 29].)

h�j½H; ~aapqrs �j�i ¼ 0; . . . ð168Þ

Its explicit form is

f p2r lp1rq1q2
þ f p1r lr p2q1q2

� lp1p2s q2
f sq1 � lp1p2q1s

f sq2

þ �ggp1p2q1q2


ð1� np1Þð1� np2Þnq1nq2 � ð1� nq1Þð1� nq2Þnp1np2

�
þ 1

2
�ggp1p2r1r2

lr1r2q1q2
ð1� np1 � np2Þ � 1

2
�ggs1s2q1q2

lp1p2s1s2
ð1� nq1 � nq2Þ

þ ðnp2 � nq1Þ�ggp2s1r1q1
lp1r1s1q2
� ðnp2 � nq2Þ�ggp2s1r1q2

lp1r1s1q1

� ðnp1 � nq1Þ�ggp1s1r1q1
lp2r1s1q2
þ ðnp1 � nq2Þ�ggp1s1r1q2

lp2r1s1q1

þ 1
2
�ggp2s2r1r2

lr1r2p1q2s2q1
þ 1

2
�ggp1s2r1r2

lr1r2p2q1s2q2

� 1
2
�ggs1s2r1q1

lp1p2r1s2q2s1
� 1

2
�ggs1s2r1q2

lp1p2r1q1s2s1
¼ 0

ð169Þ
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A graphical representation is given in Fig. 2.

The relation of the IBCk to the BCk is the same as that of the ICSEk to the

CSEk. Irreducible has essentially the same meaning. Further more, the IBCk are

related to the ICSEk, in the same way as the BCk are related to the CSEk; that is,

the ICSEk imply the IBCk, and not conversely.

V. TOWARD THE SOLUTION OF THE IBCk AND CSEk

A. General Considerations

1. We have already discussed the relations between the four stationarity con-

ditions. In view of their separability, the two irreducible conditions are the

right choice in the spirit of a many-body theory in terms of connected

diagrams.

2. For any of the four conditions, a k-particle hierarchy is possible, with the

k-particle approximation defined by the neglect of all kl with l > k.

3. Any of the four conditions has an infinity of solutions. Actually, the energy

is stationary for any eigenstate of the Hamiltonian, so one has to specify in

which state one is interested. This will usually be done at the iteration

start. Moreover, the stationarity conditions do not discriminate between

pure states and ensemble states. The stationarity conditions are even inde-

pendent of the particle statistics. One must hence explicitly take care that

one describes an n-fermion state. The hope that by means of the CSEk or

one of the other sets of conditions the n-representability problem is auto-

matically circumvented has, unfortunately, been premature.

4. It is straightforward to solve the hierarchy of equations iteratively. How-

ever, the simplest iteration schemes converge only linearly (i.e., poorly).

One should better consider quadratic iteration schemes.

5. As we shall see, the stationarity conditions determine essentially the

non-diagonal elements of c and the kk, while the diagonal elements

are determined by the specification of the considered state and the n-

representability.

6. There is a price to pay for the separability, or equivalently for the presence

of only connected diagrams. Somewhat like in traditional many-body

theory, one must be ready to accept so-called EPV (exclusion-principle

violating) cumulants. Typical EPV cumulants are nonvanishing kk for

k > n, while ck ¼ 0 for k > n.

7. This means that the two-particle approximation in terms of the IBCk or

the ICSEk is not exact for a genuine two-electron system. For this a

theory based on the CSE2 is the right choice, but this not recommended

for n > 2.
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B. One-Particle Approximation

Let us consider the IBC1, Eq. (166), and assume that k2 ¼ 0. This is one

possibility to define the one-particle approximation. We get

½c; f� ¼ 0 ð170Þ

that is, c and f commute and have common eigenfunctions. In terms of the

eigenstates of f with eigenvalues ep, we have

gpqðeq � epÞ ¼ 0; gpq ¼ 0 for ep 6¼ eq ð171Þ

The stationarity condition (170) does not give any information on the diagonal

elements gpp, not even on the gpq with ep ¼ eq. We must get this information from

another source. Fortunately, for an n-electron state, vanishing of k2 is only com-

patible with kk ¼ 0 for k > 2 and with idempotency of c,

c2 ¼ c; na ¼ 0 or ni ¼ 1 ð172Þ

Occupied spin orbitals are labeled as ci, unoccupied (virtual) spin orbitals as ca.

We are thus led automatically to closed-shell Hartree–Fock theory with

f pq ¼ hpq þ gprqsg
s
r ¼ hpq þ g

pi
qi ð173Þ

If we start from the ICSEk rather than the IBCk, the result is the same.

Let us now consider a generalized one-particle approximation. We no longer

require that k2 ¼ 0, but only that k3 ¼ 0. Then we can use the following partial

trace relations, which hold for k3 ¼ 0 in an NSO basis [25]:

0 ¼
X
t

lprtqst ¼ lprqsfnp þ nq þ nr þ ns � 2g ð174Þ

0 ¼
X
rt

lprtqrt ¼ ð2n3p � 4n2p þ 2npÞdpq þ 2
X
r

nrl
pr
qr ð175Þ

0 ¼
X
prt

lprtprt ¼ 4
X
q

nqðnq � 1
2
Þðnq � 1Þ ð176Þ

Obviously, lprqs vanishes, unless np þ nq þ nr þ ns ¼ 2. Sufficient though not

necessary for Eq. (176) is that the np are equal to 0; 1
2
, or 1; that is, now

open-shell states with fractional NSO occupation numbers are also possible.

This implies via Eq. (174) that the only nonvanishing elements of k2 are those
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lxyzu, where all labels x; y; z; u refer to an NSO with occupation number 1
2
. These

are determined by spin coupling [30] rather than by stationarity conditions.

For closed-shell states there is no difference with respect to the standard

hierarchy.

C. Two-Particle Approximation

Let us now take the IBC2, Eq. (169) in a basis in which both c and f are diagonal
and neglect k3.

fep1 þ ep2 � eq1 � eq2glp1p2q1q2
¼ Fðg; k2Þ ð177Þ

Fðg; k2Þ ¼ ��ggp1p2q1q2


ð1� np1Þð1� np2Þnq1nq2 þ ð1� nq1Þð1� nq2Þnp1np2

�
� 1

2
�ggp1p2r1r2

lr1r2q1q2
ð1� np1 � np2Þ þ 1

2
�ggs1s2q1q2

lp1p2s1s2
ð1� nq1 � nq2Þ

� ðnp2 � nq1Þ�ggp2s1r1q1
lp1r1s1q2
þ ðnp2 � nq2Þ�ggp2s1r1q2

lp1r1s1q1

þ ðnp1 � nq1Þ�ggp1s1r1q1
lp2r1s1q2
� ðnp1 � nq2Þ�ggp1s1r1q2

lp2r1s1q1
ð178Þ

We limit ourselves to the closed-shell case. We try to solve this system itera-

tively, inserting ni ¼ 1 and na ¼ 0 and neglecting k2 on the rhs in the first itera-

tion. Then we obtain in the first iteration

lijab ¼ fei þ ej � ea � ebg�1�ggijab ð179Þ
labij ¼ fei þ ej � ea � ebg�1�ggabij ð180Þ

while all other elements of k2 vanish. Even in higher iterations we only get an

information for those elements of k2, for which ei þ ej 6¼ ea þ eb. Before we con-
tinue the iterations, we have to update c. In principle, this is possible either from

the partial trace relations (Eq. (62)) or from the IBC1 (Eq. (166)). In either case,

we need the diagonal elements of k2, especially lijij and labab, which are obviously

undetermined by the IBC2. As in the one-particle approximation, we must try to

get another source of information. This is more difficult than in the one-particle

approximation.

There are three possibilities that are more easily understood in a perturbative

analysis, which we discuss in the next section.

1. We try to impose exact n-representability conditions.

2. We update c and the kk by means of a unitary transformation and regard

the latter as unknown. This has the big advantage that a unitary transfor-

mation preserves n-representability. So it only matters to have an n-

representable start.

3. We use the ICSEk rather than the IBCk. In fact, we do get information

on the diagonal elements of k2 from the ICSEk. However, this requires
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knowledge of the diagonal elements of k2, so the problem is shifted to the

next particle rank. We shall see from a perturbative analysis that in order

to get the energy correct to second order (or in a revised form to third

order) in a perturbation parameter m, one has to go up to the three-particle

approximation. This makes methods based on the ICSEk by far inferior to

traditional coupled-cluster methods. If one wants to compete with the lat-

ter, one cannot but choose the IBCk combined with at least approximative

n-representability.

D. Perturbative Analysis

We expand the Hamiltonian and the IBCk in terms of a perturbation parameter

m in the spirit of Møller–Plesset perturbation theory [34]. Details are found in

Ref. [25]. We need not worry about the particle rank to which we have to go,

since this is fully controlled by the perturbation expansion. We limit ourselves

to a closed-shell state, such that the zeroth order is simply closed-shell Hartree–

Fock.

IBC
ð0Þ
1 : ðf0Þps ðg0Þsq � ðf0Þrqðg0Þpr ¼ 0 ð181Þ

ðf0Þpq ¼ðf0Þpq þ �ggprqsðg0Þsr ð182Þ
E0 ¼ 1

2
fhpq þ ðf0Þpqgðg0Þqp ð183Þ

To zeroth order k2 and all kk of higher particle rank vanish, while c is idempotent

and has eigenvalues 0 or 1. There is no first-order contribution to c or E. The

only first-order contribution is in k2:

ðl1Þijab ¼ feð0Þi þ eð0Þj � eð0Þa � eð0Þb g�1�ggijab ð184Þ
ðl1Þabij ¼ feð0Þi þ eð0Þj � eð0Þa � eð0Þb g�1�ggabij ð185Þ

In order not to overcharge the notation, we indicate the order in perturbation the-

ory (PT) for a matrix element by a subscript (that we otherwise reserve for the

particle rank), if the particle rank is obvious from the labels. For matrices like k2
we indicate the order of PT by a subscript such as k

ð1Þ
2 .

The second-order energy is

E2 ¼ 1
2
fhpq þ ðf0Þpqgðg2Þqp þ 1

2
ðf2Þpqðg0Þqp þ 1

2
gpqrs ðl1Þrspq

¼ ðf0Þpqðg2Þqp � 1
2
�ggprqsðg0Þsrðg2Þqp þ 1

2
�ggprqsðg2Þsrðg0Þqp þ 1

2
gpqrs ðl1Þrspq

¼ eð0Þp ðg2Þpp þ 1
4
�ggpqrs ðl1Þrspq

ð186Þ
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The contribution involving kð1Þ2 is easily evaluated as

1
2
gpqrs ðl1Þrspq ¼ 1

4
�ggpqrs ðl1Þrspq ¼ 1

2
feð0Þi þ eð0Þj � eð0Þa � eð0Þb g�1�ggijab�ggabij ð187Þ

This will turn out to be equal to 2E2, that is, half of Eq. (187) will be compen-

sated by the first term in the last expression in Eq. (186). To evaluate this, we

need cð2Þ, and here we are faced with the problem that the IBC
ð2Þ
1 does not give

information on the diagonal elements of cð2Þ.
Let us now discuss three routes for the construction of these diagonal

elements.

The n-particle density matrix of an n-particle state is pure-state n-representable

if—for unit trace—it is idempotent. Since we normalize cn as

TrðcnÞ ¼ n! ð188Þ

the pure-state n-representability condition is

ðcnÞ2 ¼ n!cn ð189Þ

For the perturbation expansion in powers of m we get

ðcð0Þn Þ2 ¼ n!cð0Þn ð190Þ
cð0Þn cð1Þn þ cð1Þn cð0Þn � n!cð1Þn ¼ 0 ð191Þ
cð0Þn cð2Þn þ cð2Þn cð0Þn � n!cð2Þn ¼ �ðcð1Þn Þ2 ð192Þ

In a slightly tedious but elementary way [25], we finally arrive at

ðg2Þaa ¼
1

2

X
i;j;b

ðl1Þijabðl1Þabij ð193Þ

ðg2Þii ¼ �
1

2

X
a;b;j

ðl1Þijabðl1Þabij ð194Þ

That is, we can express the second-order corrections cð2Þ to c through the first-

order corrections kð1Þ2 to k2. This allows us to evaluate E2. One can also evaluate

the second-order corrections kð2Þk to the diagonal elements of k2 and k3 in terms
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of the first-order corrections of k2 and show that there are no second-order cor-

rections to kk for k � 4.

ðl2Þabab ¼
1

2

X
i;j

ðl1Þijabðl1Þabij ð195Þ

ðl2Þijij ¼¼
1

2

X
a;b

ðl1Þijabðl1Þabij ð196Þ

ðl2Þiaia ¼ �
X
j;b

ðl1Þijabðl1Þabij ð197Þ

ðl2Þiabiab ¼ �
X
j

ðl1Þijabðl1Þabij ð198Þ

ðl2Þijaija ¼
X
b

ðl1Þabij ðl1Þijab ð199Þ

We do get information on the second-order corrections to c from the perturbation

expansion of the CSEk [25]. However, in order to evaluate ðg2Þpp we need to know
ðl2Þprpr, which is not yet known, when one needs it. One can construct ðl2Þprpr in
terms of ðl2Þprsprs, that is, from the three-particle approximation, and one might

expect that this continues ad infinitum. Fortunately, ðl2Þprstprst vanishes, and one

does not have to go beyond the three-particle approximation, in order to finally

get ðg2Þpp and from it E2, but this is bad enough, and a disqualification of ICSEk-

based methods.

In the method based on the unitary transformation, we start by writing the

‘‘exact’’ wavefunction � in terms of the ‘‘reference function’’ � and a unitary

transformation operator er in Fock space:

� ¼ er� ð200Þ

The cluster expansion of r (which is additively separable and hence extensive) is

r ¼ r1 þ r2 þ � � � ¼ spq~aa
q
p þ 1

4
spqrs ~aa

rs
pq þ � � � ð201Þ

The tilde now indicates normal ordering with respect to the reference function �.
The energy and the Brillouin conditions BCk become

E ¼ h�je�rHerj�i
¼ h�jH þ ½H; r� þ 1

2
½½H; r�; r� þ � � � j�i ð202Þ

0 ¼ h�je�r½H; ~XXk�erj�i
¼ h�j½H; ~XXk� þ ½½H; ~XXk�; r� þ 1

2
½½½H; ~XXk�; r�; r� þ � � ��i ð203Þ
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with both H and ~XXk (a k-particle excitation operator) written in normal order

with respect to �.
If one could solve Eq. (203) exactly for r and insert this into Eq. (202), one

would, of course, get the exact energy—provided that the reference function is

n-representable (e.g., is a normalized Slater determinant). The unitary transfor-

mation preserves the n-representability. Equation (203) is an infinite-order non-

linear set of equations and not easy to solve. However, the perturbation expansion

terminates at any finite order. We have [6, 12]

H ¼ H0 þ mV; E ¼ E0 þ mE1 þ m2E2 þ � � � ð204Þ
r ¼ mrð1Þ þ m2rð2Þ þ � � � ð205Þ
rk ¼ mrð1Þk þ m2rð2Þk þ � � � ð206Þ
E0 ¼ h�jH0j�i ð207Þ
E1 ¼ h�j½H0; r

ð1Þ� þ Vj�i ð208Þ
E2 ¼ h�j½H0; r

ð2Þ� þ 1
2
½½H0; rð1Þ�; rð1Þ� þ ½V; rð1Þ�j�i ð209Þ

E3 ¼ h�j½H0; r
ð3Þ� þ 1

2
½½H0; rð1Þ�; rð2Þ� þ 1

2
½½H0; rð2Þ�; rð1Þ�

þ 1
6
½½½H0; rð1Þ�; rð1Þ�; rð1Þ� þ ½V ; rð2Þ� þ 1

2
½½V ; rð1Þ�; rð1Þ�j�i ð210Þ

0 ¼ h�j½H0; ~XXk�j�i ð211Þ
0 ¼ h�j½½H0; ~XXk�;rð1Þ� þ ½V ; ~XXk�j�i ð212Þ
0 ¼ h�j½½H0; ~XXk�;rð2Þ� þ 1

2
½½½H0; ~XXk�; rð1Þ�; rð1Þ� þ ½½V; ~XXk�; rð1Þ�j�i ð213Þ

If the stationarity conditions (211)–(213) are satisfied, the energy expressions are

simplified to

E1 ¼ h�jVj�i ð214Þ
E2 ¼ 1

2
h�j½V ; rð1Þ�j�i ð215Þ

E3 ¼ 1
6
h�j½½½H0; rð1Þ�; rð1Þ�; rð1Þ�j�þ 1

2
h�j½½V; rð1Þ�; rð1Þ�j�i ð216Þ

provided that the rðkÞ are expressible in the basis of operators ~XXk for which

Eqs. (211)–(213) hold.

Equation (211) is obviously satisfied for all ~XXk if � is a closed-shell Hartree–

Fock function. We get rð1Þ from Eq. (212). The matrix elements h�j½V ; ~XXk�j�i
vanish (for � a Slater determinant), except for ~XXk ¼ ~aarspq, a two-particle operator.
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Hence rð1Þ consists only of rð1Þ2 . We obtain it from

h�j½½H0; r
ð1Þ
2 �; ~XXk��i ¼ �h�j½V ; ~XXk�j�i ð217Þ

The only nonvanishing expressions are actually

h�j½½H0; r
ð1Þ
2 �; ~aaijab�j�i ¼ �ðs1Þijabðeð0Þi þ eð0Þj � eð0Þa � eð0Þb Þ ð218Þ

h�j½V; ~aaijab�j�i ¼ ��ggijab ð219Þ
h�j½½H0; r

ð1Þ
2 �; ~aaabij j�i ¼ ðs1Þabij ðeð0Þi þ eð0Þj � eð0Þa � eð0Þb Þ ð220Þ

h�j½V ; ~aaabij j�i ¼ �ggabij ð221Þ

hence

ðs1Þijab ¼ �ðeð0Þi þ eð0Þj � eð0Þa � eð0Þb Þ�1�ggijab ð222Þ
ðs1Þabij ¼ ðeð0Þi þ eð0Þj � eð0Þa � eð0Þb Þ�1�ggabij ð223Þ

Equation (217) only determines the nondiagonal elements of rð1Þ2 . However, unlike

for the kð1Þ2 , there is no loss of generality [6] to impose that the diagonal elements of

rð1Þ2 vanish.

Knowing rð1Þ2 , we can easily construct the nonvanishing elements of kð1Þ2 and

of the diagonal part of cð2Þ that we need for the evaluation of E2.

ðl1Þijab ¼ h�j½~aaijab; sð1Þ2 �j�i ¼ ðs1Þijabh�j½~aaijab; ~aaabij �j�i ¼ ðs1Þijab ð224Þ
ðl1Þabij ¼ h�j½~aaabij ; sð1Þ2 �j�i ¼ ðs1Þabij h�j½~aaabij ; ~aaijab�j�i ¼ �ðs1Þabij ð225Þ
ðg2Þii ¼ 1

2
h�j½½~aaii; sð1Þ2 �; sð1Þ2 �j�i ¼ 1

2
ðs1Þijabðs1Þabij ð226Þ

ðg2Þaa ¼ 1
2
h�j½½~aaaa; sð1Þ2 �; sð1Þ2 �j�i ¼ � 1

2
ðs1Þijabðs1Þabij ð227Þ

This is consistent with Eqs. (184), (185), (193) and (194), but obtained in a much

simpler way. One also reproduces easily the expressions (197)–(198) and finds

that the d.e. of kð2Þ4 vanish. In terms of the rk the two-particle-approximation

(i.e., the truncation at k ¼ 2) appears to work better than in terms of kk. Taking
the rk up to the particle rank k, we get the energy correct to E2k�1.

VI. CONCLUSIONS

The concept of generalized normal ordering is very powerful, but still waiting to

become a standard tool in many-body physics. It is the natural generalization of
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the particle–hole formalism for those states, which are not well described by a

single Slater determinant reference state (i.e., for open-shell or multireference

states). Using the generalized normal ordering it is possible to develop a

coupled-cluster formalism starting from a multireference function, which bears

a close resemblance to the single-reference coupled-cluster formalism [40, 41].

The concept of generalized normal ordering has recently been applied in quan-

tum field theory and has been formulated in the context of Hopf algebras [42].

Generalized normal ordering is intimately linked to the cumulants kk of the k-
particle density matrices ck (for short, density cumulants). The contractions in

the sense of the generalized Wick theorem involve the kk.
If one formulates the conditions for stationarity of the energy expectation

value in terms of generalized normal ordering, one is led to either the irreducible

k-particle Brillouin conditions IBCk or the irreducible k-particle contracted

Schrödinger equations (IBCk), which are conditions to be satisfied by c ¼ c1
and the kk. One gets a hierarchy of k-particle approximations that can be trun-

cated at any desired order, without any need for a reconstruction, as is required

for the reducible counterparts.

There are also some unexpected problems, related to the fact that the stationarity

conditions do not discriminate between ground and excited states, between pure

states and ensemble states, and not even between fermions and bosons. The IBCk

give only information about the nondiagonal elements of c and the kk, whereas for
the diagonal elements other sources of information must be used. These elements

are essentially determined by the requirement of n-representability. This can be

imposed exactly to the leading order of perturbation theory. Some information on

the diagonal elements is obtained from the ICSEk, though in a very expensive and

hence not recommended way. The best way to take care of n-representability is

probably via a unitary Fock-space transformation of the reference function, because

this transformation preserves the n-representability.
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I. INTRODUCTION

Molecular electronic energies and two-electron reduced density matrices

(2-RDMs) from the contracted Schrödinger equation (CSE) [1–26] can be

significantly improved by solving only the anti-Hermitian part of the equa-

tion, also known as the Brillouin condition [21, 23]. The anti-Hermitian con-

tracted Schrödinger equation (ACSE) [27] has two significant attributes:

(i) the 2-RDMs and energies from solving the ACSE with only a first-order

approximation to the 3-RDM are correct through second and third orders

of perturbation theory, and (ii) the 2-RDMs from solving the ACSE are nearly

N-representable without imposing N-representability conditions. In the first

two sections of this chapter the ACSE and the reconstruction of the 3-RDM

are presented, and in the third section a system of initial-value differential

equations is derived whose solution coincides with the solution of the

Reduced-Density-Matrix Mechanics: With Application to Many-Electron Atoms and Molecules,
A Special Volume of Advances in Chemical Physics, Volume 134, edited by David A. Mazziotti.
Series editor Stuart A. Rice. Copyright # 2007 John Wiley & Sons, Inc.
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ACSE for the 2-RDM [27]. The ACSE method is illustrated for the atom Be

and a variety of molecules BH, H2O, NH3, HF, and N2 as well as dissociation

of BeH2. Correlation energies are obtained within 98–100% of full configura-

tion interaction, and the 2-RDMs closely satisfy the known N-representability

conditions [28]. The ACSE energies are competitive with those from wave-

function methods like coupled-cluster singles–doubles (CCSD). Advantages

of the ACSE in comparison with wavefunction methods include (i) the direct

calculation of the 2-RDM and (ii) flexibility in the initial 2-RDM that allows

the implicit reference wavefunction to be a Salter determinant or any approx-

imate correlated wavefunction such as the wavefunction from a multiconfi-

guration self-consistent-field calculation. In the last section connections are

drawn between the ACSE and other methods including canonical diagonaliza-

tion [29, 30], the effective valence Hamiltonian [31, 32], unitary coupled clus-

ter [33–35], and the variational 2-RDM method [36–39].

II. ANTI-HERMITIAN CONTRACTED SCHRÖDINGER
EQUATION

The ACSE in a finite basis of spin orbitals can be expressed as

hcj½ayi ayj alak; ĤH�jci ¼ 0 ð1Þ

where the brackets denote the quantum mechanical commutator, a
y
i and ai are

the second-quantized creation and annihilation operators, and the Hamiltonian

operator ĤH is

ĤH ¼
X
p;s

1Kp
s a
y
pas þ

X
p;q;s;t

2Vp;q
s;t a

y
pa
y
qatas ð2Þ

The reduced matrices 1K and 2V represent a partitioning of the Hamiltonian into

one- and two-electron parts. Rearranging the second-quantized operators and

using the definition of the 2- and 3-RDMs,

2D
i;j
k;l ¼

1

2
hcjayi ayj alakjci ð3Þ

3Di;j;k
q;s;t ¼

1

6
hcjayi ayj aykatasaqjci ð4Þ

we can write the ACSE in terms of the 2- and 3-RDMs only:X
s

1Kk
s

2D
i;j
s;l �

X
s

1Kl
s
2D

i;j
s;k ð5Þ

þ
X
p

1K
p
j

2D
p;i
k;l �

X
p

1K
p
i

2D
p;j
k;l ð6Þ

332 david a. mazziotti



þ 6
X
p;s;t

2Vp;k
s;t

3D
i;j;p
s;t;l � 6

X
p;s;t

2Vp;l
s;t

3D
i;j;p
s;t;k ð7Þ

þ 6
X
p;q;s

2V
p;q
s;j

3D
p;q;i
k;l;s � 6

X
p;q;s

2V
p;q
s;i

3D
p;q;j
k;l;s ð8Þ

þ 2
X
s;t

2Vk;l
s;t

2Di;j
s;t þ 2

X
p;q

2V
p;q
j;i

2D
p;q
k;l ¼ 0 ð9Þ

Importantly, the 3-RDM appears only in terms with the perturbative part 2V of

the Hamiltonian, which is responsible for the improved accuracy of the ACSE in

comparison with the CSE.

III. RECONSTRUCTION OF THE 3-RDM

Because the ACSE depends on both the 2- and the 3-RDMs, the 3-RDM must

be approximated as a functional of the 2-RDM. As with the CSE method, the

3-RDM can be reconstructed from the 2-RDM by its cumulant expansion [8, 9,

11, 13–15, 21],

3Di;j;k
q;s;t ¼ 1Di

q ^ 1Dj
s ^ 1Dk

t þ 3 2�i;j
q;s ^ 1Dk

t þ 3�i;j;k
q;s;t ð10Þ

where

2�i;j
k;l ¼ 2D

i;j
k;l � 1Di

k ^ 1D
j
l ð11Þ

and the operator ^ denotes the antisymmetric tensor product known as the

Grassmann wedge product [7]. The cumulant (or connected) parts p� of

p-RDMs vanish unless all p particles are statistically dependent. Hence the

cumulant RDMs scale linearly with the number N of particles in the system.

Neglecting the cumulant 3-RDM,

3�i;j;k
q;s;t ¼ 0 ð12Þ

yields a first-order reconstruction of the 3-RDM from the 1- and 2-RDMs,

which we call Valdemoro’s (V) reconstruction [1]. Some important second-order

contributions can be included by approximating the cumulant 3-RDM. Such

approximations have been introduced by Nakatsuji and Yasuda [5] and Mazziotti

[11, 15], which we will denote as NY and M. The NY reconstruction for 3� is

3�i;j;k
q;s;t �

1

6

X
l

slÂAð2�i;l
q;s

2�j;k
l;t Þ ð13Þ

where sl equals 1 if l is occupied in the Hartree–Fock reference and �1 if l is not

occupied and the operator ÂA performs all distinct antisymmetric permutations of
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the indices excluding the summation index l. In a natural-orbital basis set the M

reconstruction is

ni;j;kq;s;t
3�i;j;k

q;s;t � �
1

6

X
l

ÂAð2�i;l
q;s

2�j;k
l;t Þ ð14Þ

where

ni;j;kq;s;t ¼ 1Di
i þ 1D

j
j þ 1Dk

k þ 1Dq
q þ 1Ds

s þ 1Dt
t � 3 ð15Þ

Each of the reconstructions contains many contributions from higher orders of

perturbation theory via the 1- and 2-RDMs and thus may be described as highly

renormalized. The CSE requires a second-order correction of the 3-RDM func-

tional to generate second-order 2-RDMs and energies, but the ACSE can pro-

duce second-order 2-RDMs and third-order energies from only a first-order

reconstruction of the 3-RDM.

IV. OPTIMIZATION OF THE 2-RDM

By examining a sequence of infinitesimal unitary transformations applied to the

wavefunction, we can derive a system of differential equations for solving the

ACSE for the ground-state energy and its 2-RDM. We order these transforma-

tions by a continuous time-like variable l. After an infinitesimal transformation

over the interval E, the energy at lþ E is given by

Eðlþ EÞ ¼ hcðlÞje�ESðlÞĤHeESðlÞjcðlÞi
¼ EðlÞ þ EhcðlÞj½ĤH; ŜSðlÞ�jcðlÞi þ OðE2Þ ð16Þ

This equation becomes a differential equation in the limit that E! 0,

dE

dl
¼ h�ðlÞj½ĤH; ŜSðlÞ�j�ðlÞi ð17Þ

With the two-body operator �̂�i;j
k;l ¼ a

y
i a
y
j alak the change in 2-RDM with l can be

written

d 2D
i; j
k;l

dl
¼ h�ðlÞj½�̂�i; j

k;l; ŜSðlÞ�j�ðlÞi ð18Þ

If ŜSðlÞ is restricted to be an anti-Hermitian operator with no more than

two-particle interactions, the variational degrees of freedom of ŜSðlÞ can be
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represented by the two-particle reduced matrix 2S
i;j
k;lðlÞ, which we choose at each

l to minimize the energy along its gradient:

2S
i; j
k;lðlÞ ¼ h�ðlÞj½�̂�

i; j

k;l; ĤH�j�ðlÞi ð19Þ

Equations (17)–(19) can then be evaluated with only the 2- and the 3-RDMs,

where the right-hand side of Eq. (19) is the residual of the ACSE in Eqs.

(5)–(9) and the right-hand side of Eq. (18) is the residual of the ACSE with ĤH

replaced by the anti-Hermitian ŜSðlÞ. This system of differential equations pro-

duces energy and 2-RDM trajectories in l that minimize the energy until the

ACSE is satisfied.

V. APPLICATIONS

In this section we examine the accuracy of the ACSE method with calculations

on a variety of molecules. Calculations are performed at equilibrium geometries

[40] in a valence double-zeta basis set [41] with frozen cores, and electron inte-

grals are computed with GAMESS (USA) [42]. The energy and 2-RDM of the

ACSE are optimized by integrating Eqs. (17)–(19) with an extrapolated Euler’s

method. At l ¼ 0 the energy and 2-RDM are initialized to their values from a

Hartree–Fock (mean-field) calculation. The evolution of the energy and the 2-

RDM with l continues until either (i) the energy or (ii) the least-squares error

in the ACSE or the 1, 3-CSE ceases to decrease. Figure 1 displays the energy as

a function of l for Be where the 3-RDM in Eqs. (17)–(19) is reconstructed with

the M functional. The ACSE energy converges to 0.2 mH above the full config-

uration interaction (FCI) energy.

HF

FCI

MP2
ACSE

–14.62

–14.61

–14.6

–14.59

–14.58

–14.57

Ε

2 4 6 8
λ

Figure 1. For Be the ACSE energy converges to 0.2 mH above the FCI energy.
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For the beryllium atom and five molecules, Table I presents the errors in the

ground-state correlation energies from the ACSE with the V, NY, and M 3-RDM

reconstructions as well as several wavefunction methods, including Hartree–

Fock (HF), second-order many-body perturbation theory (MP2), coupled-cluster

singles–doubles (CCSD), and FCI. The ACSE methods are not variational, but

the ACSE with V reconstruction consistently yields a lower bound on the

ground-state energy. Supplementing the V reconstruction with either the NY

or M estimate of the cumulant 3-RDM greatly improves the energy of each

molecule with the largest improvement being observed for the triple-bonded

N2. The ACSE with NY or M reconstruction produces 98–100% of the correla-

tion energy, which markedly improves upon the 71–96% recovered by the CSE

with NY or M reconstruction [18]. Using the second-order NY or M reconstruc-

tion is critical for consistently matching or exceeding the energy accuracy of

CCSD. The difference between the ACSE and the MP2 energies highlights

that each of the ACSE methods contains all second- and third-order as well as

higher-order correlation effects.

Earlier iterative solutions of the CSE for the 2-RDM often required that the 2-

RDM be adjusted to satisfy important N-representability conditions in a process

called purification [18, 24]. The solution of the ACSE automatically maintains

the N-representability of the 2-RDM within the accuracy of the 3-RDM recon-

struction. Necessary N-representability conditions require keeping the eigenva-

lues of three different forms of the 2-RDM, known as the 2D, 2Q, and 2G

TABLE I

Ground-State Energies from the ACSE with V, NY, and M 3-RDM Reconstructions Compared with

the Energies from Several Wavefunction Methods, Including Hartree–Fock (HF), Second-Order

Many-Body Perturbation Theory (MP2), Coupled-Cluster Singles–Doubles (CCSD), and Full

Configuration Interaction (FCI), for Molecules in Valence Double-Zeta Basis Sets.a

Energy Error (mH)

Wavefunction Methods Anti-Hermitian CSE Methods

System FCI Energies (H) HF MP2 CCSD V NY M

Be �14.615569 44.663 21.615 0.020 �3.124 0.589 0.221

BH �25.173472 60.076 23.910 0.775 �6.964 �1.282 0.317

H2O �76.141146 132.000 7.964 1.658 �3.172 1.199 0.988

NH3 �56.303459 127.751 14.654 1.773 �2.835 1.052 0.942

HF �100.145846 123.952 3.669 1.592 �0.825 2.137 2.064

N2 �109.104089 225.950 �2.310 8.311 �12.640 �0.297 0.321

a The ACSE with N or M reconstruction produces 98–100% of the correlation energy, which mark-

edly improves upon the 71–96% recovered by the CSE with N or M reconstruction [18]. Using the

second-order N or M reconstruction is critical for consistently matching or exceeding the energy

accuracy of CCSD. The difference between the ACSE and the MP2 energies highlights that each

of the ACSE methods contains all second- and third-order as well as higher-order correlation effects.
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matrices, nonnegative [36]. For H2O and CH4, Table II shows the lowest eigen-

values of these matrices, normalized to NðN � 1Þ, ðr � NÞðr � N � 1Þ, and

Nðr � N þ 1Þ, where r is the rank of the spin-orbital basis set. The largest nega-

tive eigenvalue for each of these matrices is three-to-five orders of magnitude

smaller than the largest positive eigenvalue, which is near unity. For NH3 the

NYand M 3-RDM reconstructions decrease the absolute value of the most nega-

tive eigenvalue from the V reconstruction by an order of magnitude. Results

similar to Table II are obtained for the other molecules in Table I.

Figure 2 shows the energy of BeH2 as a function of the asymmetric stretch

of one hydrogen, where the energy is computed by the ACSE with NY

TABLE II

The 2-RDMs from Solving the ACSE Very Nearly Satisfy Known

N-Representability Conditions, Which Require the Eigenvalues of Three

Forms of the 2-RDM Matrix, Known as 2D, 2Q, and 2G, to be Nonnegative.a

Lowest Eigenvalue of 2-RDM Matrices

System Method 2D 2Q 2G

BeH2 V �0.00092 �0.00011 �0.00054
NY �0.00002 0.00012 �0.00003
M �0.00009 0.00002 �0.00009

NH3 V �0.00113 �0.00022 �0.00038
NY �0.00000 0.00004 �0.00000
M �0.00001 0.00006 �0.00002

aIn general, the NY and M reconstructions of the 3-RDM decrease the abso-

lute value of the most negative eigenvalue by an order of magnitude.

CCSD

MP4

FCI

ACSE

–15.8

–15.79

–15.78

–15.77

–15.76

–15.75

–15.74

E
ne
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y 

(a
.u

.)

1.2 1.4 1.6 1.8 2

Be-H Distance (Angstroms)

Figure 2. The asymmetric stretch in BeH2 from the ACSE with NY reconstruction is compared

with the stretch from MP4, CCSD, and FCI.
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reconstruction, fourth-order many-body perturbation theory (MP4), coupled-

cluster with single and double excitations (CCSD), and full configuration inter-

action (FCI). The absolute error in the energy from the ACSE ranges in the inter-

val [0.083, 2.0] from a minimum of 0.02 mH at R ¼ 1:6 Å to a maximum of

0.3 mH at R ¼ 2:0 Å. The ACSE with NY reconstruction is slightly more accu-

rate than CCSD, with CCSD having a maximum error of 0.9 mH at R ¼ 2:0 Å.

The significant improvement of the MP4 curve by the ACSE illustrates the phy-

sical significance of higher-order correlation effects included in the solution of

the ACSE.

VI. SOME CONNECTIONS AND A SECOND LOOK AHEAD

As the applications demonstrate, the ACSE significantly enhances the accuracy

of the CSE method for the direct determination of the ground-state 2-RDM and

its energy without the many-electron wavefunction. The ACSE is solved by pro-

pagating a system of initial-value differential equations whose solution opti-

mizes the 2-RDM with a series of infinitesimal unitary transformations.

Unlike the CSE, the ACSE translates the first-order reconstruction of the 3-

RDM (V) into molecular energies that contain all third-order and many

higher-order correlation effects. The accuracy and N-representability of the ener-

gies and 2-RDMs can be enhanced further with the second-order reconstructions

of Nakatsuji–Yasuda (NY) and Mazziotti (M). The ACSE with these second-

order reconstructions produces energies that are competitive with the best wave-

function methods of comparable computational efficiency.

The ACSE has important connections to other approaches to electronic struc-

ture including: (i) variational methods that calculate the 2-RDM directly [36–39]

and (ii) wavefunction methods that employ a two-body unitary trans-

formation including canonical diagonalization [22, 29, 30], the effective valence

Hamiltonian method [31, 32], and unitary coupled cluster [33–35]. A 2-RDM

that is representable by an ensemble of N-particle states is said to be ensemble

N-representable, while a 2-RDM that is representable by a single N-particle state

is said to be pure N-representable. The variational method, within the accuracy

of the N-representability conditions, constrains the 2-RDM to be ensemble N-

representable while the ACSE, within the accuracy of 3-RDM reconstruction,

constrains the 2-RDM to be pure N-representable. The ACSE and variational

methods, therefore, may be viewed as complementary methods that provide

approximate solutions to, respectively, the pure and ensemble N-representability

problems.

Both the effective valence Hamiltonian method [31, 32] and unitary coupled

cluster [33–35] employ a single two-body unitary transformation. In the effec-

tive valence Hamiltonian method [31, 32], the unitary transformation, selected

by perturbation theory, is applied to the Hamiltonian to produce an effective
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valence Hamiltonian that can be diagonalized in a truncated Hilbert space of

valence (or active) orbitals. The aim of the effective valence Hamiltonian

method is to produce both ground- and excited-state wavefunctions and ener-

gies that include multireference correlation effects. In unitary coupled cluster

[33, 35], the transformation, computed from the stationary condition for the

ground-state energy, is applied to the Hartree–Fock wavefunction to produce

a correlated approximation of the wavefunction and its energy. The unitary

coupled cluster is a variant of the traditional coupled cluster method in which

the exponential transformation is restricted to be unitary. In canonical diagona-

lization the Hamiltonian is transformed by a series of two-body unitary

transformations [29]. Canonical diagonalization and the cumulant expansion

from the CSE literature [8, 9, 11, 13–15] have recently been combined

as discussed in the next chapter [30]. This approach to canonical diago-

nalization [30], which can be interpreted as a solution of the ACSE in

the Heisenberg representation, is similar to the solution of the ACSE with V

reconstruction.

Both canonical diagonalization and the ACSE differ significantly from the

effective valence Hamiltonian method and the unitary coupled-cluster method

in their use of a series of unitary transformations. The ACSE method differs

from the cumulant approach to canonical diagonalization in that (i) the ACSE,

formulated in the Schrödinger representation, produces both an energy and a

2-RDM, (ii) second-order formulas for the cumulant 3-RDM by Nakatsuji and

Yasuda [5, 6] and Mazziotti [11, 15] are implemented in the reconstruction of

the 3-RDM, and (iii) the infinitesimal unitary transformations are selected in

the ACSE to minimize the energy along its gradient. Calculation of the

2-RDM is important for not only computing properties but also checking the

N-representability of the ACSE solution.

Future research will (i) optimize the present implementation of the ACSE

and (ii) explore the use of different initial 2-RDMs to initiate the solution of

the ACSE. In an optimized form, the ACSE scales in floating-point operations

as r6 and in memory as r4, where r is the number of spatial orbitals. While the

calculations in this chapter employ an initial 2-RDM from the Hartree–Fock

method, the ACSE method permits the selection of any initial 2-RDM, includ-

ing a 2-RDM from a multi-reference self-consistent-field calculation. With this

flexibility the ACSE method can be adapted to treat strong multireference

correlation effects that are often important at nonequilibrium geometries.

Building on the CSE, the ACSE yields 98–100% of the correlation energy

and accurate 2-RDMs. Both the accuracy and the N-representability of the

2-RDMs are controlled by the reconstruction without any additional purifica-

tion. The ACSE in conjunction with the variational 2-RDM method opens

a new frontier for the accurate calculation of many-electron quantum

mechanics.
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by the presence of significant amounts of nondynamic correlation. We have

recently developed a canonical transformation (CT) theory that targets dynamic

correlations in bonding situations, where there is also significant nondynamic

character. When combined with a suitable nondynamic correlation method,

such as the complete-active-space self-consistent field or density matrix renor-

malization group theories, it achieves quantitative accuracies typical of equili-

brium region coupled-cluster theory and better than that of multireference

perturbation theory, for the complete potential energy surface ranging from

equilibrium to dissociation. In this chapter, expanding on our earlier account

[1], we describe the basic ideas and implementation of the canonical transforma-

tion theory and its relation to existing coupled-cluster and effective Hamiltonian

theories, and we present and analyze calculations on several molecular bond-

breaking reactions.

I. INTRODUCTION

In quantum chemistry, it is useful to distinguish between two kinds of electron

correlation. The first is nondynamic, or strong, correlation. This is associated

with the overlap of near-degenerate valence degrees of freedom and is character-

ized by multireference wavefunctions containing several determinants with large

weights. A good treatment of nondynamic correlation is necessary to establish the

correct qualitative electronic structure for a problem. The second kind of correla-

tion is dynamic, or weak, correlation. This is associated with the scattering and

relaxation of electrons into nonbonding degrees of freedom. A good treatment of

dynamic correlation is necessary for fully quantitative predictions.

Many of the systems that are challenging for current ab initio quantum chem-

istry—for example, transition metal chemistry, molecular properties away from

equilibrium geometries, open-shell molecules, and highly excited states—

involve wavefunctions containing significant nondynamic character. For an

accurate description of these systems, a theory must satisfy two requirements.

First, it should be sufficiently flexible to encompass the very general types of

wavefunctions associated with nondynamic correlation. Second, it should effi-

ciently capture the many short-range dynamical scatterings necessary for quan-

titative accuracy, but whose treatment is complicated by the presence of

nondynamic correlation.

In modest sized systems, we can treat the nondynamic correlation in an active

space. For systems with up to 14 orbitals, the complete-active-space self-consistent

field (CASSCF) theory provides a very satisfactory description [2, 3]. More

recently, the ab initio density matrix renormalization group (DMRG) theory

has allowed us to obtain a balanced description of nondynamic correlation for

up to 40 active orbitals and more [4–13]. CASSCF and DMRG potential energy
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surfaces are qualitatively well behaved from equilibrium to dissociation. How-

ever, quantitative accuracy is not achieved in these theories since dynamic cor-

relation is neglected. We understand that dynamic correlation is well captured by

high-order perturbative approaches and, in particular, coupled-cluster (CC) the-

ory [14–17]. However, coupled-cluster theory in its usual form does not describe

nondynamic correlation. Thus coupled-cluster potential energy curves are quan-

titatively accurate near equilibrium, but not at stretched geometries. Multirefer-

ence perturbation theories [18–21] present an approach to include both

nondynamic and dynamic correlations, but they do not attain quantitative ‘‘che-

mical’’ accuracy—say, equal to that of coupled-cluster theory in the equilibrium

region—because the perturbation theory can only practically be applied to low

order. Thus the challenge remains to construct a general purpose theory with a

complete, quantitative description of dynamic and nondynamic correlation that

is appropriate to all bonding situations.

In the present chapter, we describe our recent progress in developing such a

theory—which we call canonical transformation or CT theory—to describe

dynamic correlation in situations where there can also be significant nondynamic

character. As a starting point we assume that a suitable description of nondy-

namic correlation (e.g., through a CASSCF or DMRG calculation) can be

obtained. When this is then combined with the CT theory, a complete and quan-

titative description of a potential energy surface from equilibrium to stretched

geometries is achieved. The CT theory is size consistent and uses a unitary expo-

nential description of dynamic correlation. The computational cost is of the

same order as a single-reference coupled-cluster method with the same level

of excitations. Our theory employs a generalized cumulant expansion to simplify

the complicated expressions in the energy and amplitude equations. In this way,

we avoid the difficulties of working with a complex multireference wavefunc-

tion. The work described here was first presented in Ref. [1], and this chapter

is intended to provide an expanded account.

The most direct influence on the current work is the recent canonical diago-

nalisation theory of White [22]. This, in turn, is an independent redevelopment

of the flow-renormalization group (flow-RG) of Wegner [23] and Glazek and

Wilson [24]. As pointed out by Freed [25], canonical transformations are them-

selves a kind of renormalization, and our current theory may be viewed also

from a renormalization group perspective.

We will not attempt to survey the vast existing literature for the problem of

constructing dynamic correlations when nondynamic correlations are present.

Instead, we refer the reader to a number of excellent recent reviews [17, 26].

The many different theories in the literature all share common elements but

typically employ different approximations or adopt different points of view.

It is common to stress either a wavefunction ansatz picture or an effective
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Hamiltonian picture and while these pictures are essentially equivalent, we can

usefully classify previous contributions along these lines. Of those that empha-

size a wavefunction language, multireference coupled-cluster theories are

most closely related to our current work. These have been reviewed in the arti-

cle by Paldus and Li [17]. In these methods difficulties can arise from the need

to handle very complicated multireference wavefunctions in the coupled-

cluster equations. In the CT theory, by using a cumulant expansion, we avoid

a direct manipulation of the multireference wavefunction and instead charac-

terize the nondynamic correlation in the reference using only the one- and

two-particle reduced density matrices. A recent multireference CC ansatz

with a similar emphasis on simplicity, but that uses the T1 and T2 amplitudes

to characterize the nondynamic correlation in the reference, is the tailored CC

theory of Kinoshita et al. [27, 28]. Coupled-cluster theories based on the uni-

tary operators used in the CT theory are less common. We mention in parti-

cular the work of Hoffmann and Simons [29], who formulated a unitary

multireference coupled-cluster theory. Also in this context, we refer to the

earlier work of Kutzelnigg [30, 31], Bartlett et al. [32, 33], and Pal and

co-workers [34, 35] on single-reference unitary coupled-cluster theory.

Methods that emphasize the effective Hamiltonian perspective have been

reviewed in an article by Hoffmann [26]. We mention, in particular, the

pioneering work on effective valence shell Hamiltonians by Freed [25], and

also the work on generalized Van Vleck transformations by Kirtman [36].

These methods are both based on perturbation theory. In our CT theory, we

do not use a perturbative approach. Rather, through the use of a cumulant

closure, we construct effective Hamiltonians with infinite order contributions.

The work of Freed has also been concerned with developing an ab initio route

to the simple descriptions of electron correlation embodied in semiempirical

Hamiltonians. While this is not directly addressed in the current chapter, this

concern also motivates our current work.

In Section II we present the basic ideas and equations of the canonical

transformation theory. We introduce two numerical models, namely, the line-

arized canonical transformation (L-CTD and L-CTSD) models, and carry out

a perturbative analysis of the two. We also demonstrate that CT theory can be

interpreted as a familiar generalization of Hartree–Fock theory to a two-

particle mean-field theory that includes electron correlation. In Section III

we describe the computational implementation of the canonical transformation

theory and discuss some issues of convergence. In Section IV, we report

ground-state calculations on the water and nitrogen potential energy curves,

the BeH2 insertion reaction, and hydrogen fluoride and boron hydride bond

breaking. Finally, our conclusions and future directions of the theory are

presented in Section V.
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II. THEORY

A. General Considerations

The generic chemical problem involving both dynamic and nondynamic correla-

tion is illustrated in Fig. 1. The orbitals are divided into two sets: the active orbi-

tals, usually the valence orbitals, which display partial occupancies (assuming

spin orbitals) very different from 0 or 1 for the state of interest, and the external

orbitals, which are divided into the core (largely occupied in the target state) or

virtual (largely unoccupied in the target state) orbitals. The asymmetry between

Active space
(active orbitals)

External space
(core orbitals)

External space
(virtual orbitals)

CASCI 
CASSCF
DMRG

MR-PT/CC/CT/…

DYNAMICAL
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Figure 1. Multireference problems involve both dynamical and nondynamical correlation. The

nondynamical correlation is accounted for by the CASCI/CASSCF/DMRG wavefunction, which is

made of multiple configurations generated in the active space with a fixed number of active electrons.

The dynamical correlation is recovered on top of the multiconfigurational reference by correlating the

active orbitals with orbitals in the external space (i.e., core and virtual orbitals.)
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the core and virtual orbitals can formally be removed by transforming to a core

Fermi vacuum, where all core states are filled (although in our numerical work,

we retain the distinction between core and virtuals for reasons of efficiency). The

electronic Hamiltonian can be separated into active and external contributions via

ĤH ¼ ĤHact þ ĤHact�ext þ ĤHext ð1Þ

Nondynamic correlation is associated with active–active space correlations,

while dynamic correlation is associated with correlations between the active–

external and external–external spaces.

We begin by assuming that we have a reference wavefunction �0, which

accounts for the nondynamic correlation and which (relative to the core Fermi

vacuum) exists only in the active space. (In general, we work with a single start-

ing state, although extensions to multiple starting states are easily considered.)

An exact eigenfunction � of ĤH that incorporates the remaining dynamical cor-

relations out of the active space can be obtained by an appropriate canonical

transformation of �0,

� ¼ ÛU�0 ð2Þ

A canonical transformation, which may be single particle or many particle in

nature, is one that preserves the commutation relations of the particles involved.

Strictly speaking, it need not be unitary (it need only be isometric; e.g., see Ref.

[37]), but this distinction is less important for calculational purposes and we

shall henceforth consider only unitary canonical transformations where ÛU satis-

fies ÛUÛU
y ¼ 1̂1.

If �0 is itself an eigenfunction of ĤHact, then no active–active rotations are

necessary and ÛU rotates only between the active–external and external–external

spaces. Without loss of generality, we can write ÛU in exponential form, namely,

ÛU ¼ eÂA ð3Þ
ÂA ¼

X
ae

Aa
ec
y
ace þ

X
e1e2

Ae1
e2
cye1ce2

þ
X

a1a2e3e4

Aa1a2
e3e4

cya1c
y
a2
ce3ce4

þ
X

a1a2a3e4

Aa1a2
a3e4

cya1c
y
a2
ca3ce4

þ
X

a1e2e3e4

Aa1e2
e3e4

cya1c
y
e2
ce3ce4

þ
X

e1e2e3e4

Ae1e2
e3e4

cye1c
y
e2
ce3ce4 þ � � � þ h:c: ð4Þ
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where a; e denote active, external indices, respectively, and all amplitudes A are

anti-Hermitian to ensure unitarity. ÂA may be decomposed as the difference of an

operator and its Hermitian conjugate, ÂA ¼ T̂T � Ty. The terms in Eq. (4) include

not only the usual single and double excitations, but also semi-internal excita-

tions that couple relaxation in the active space with external excitations.

Equivalently, the unitary operator can be viewed as transforming the refer-

ence Hamiltonian. This yields an effective Hamiltonian that has �0 as an eigen-

function and the exact eigenenergy E of the target state as its eigenvalue. Thus

�̂HH�HH ¼ e�ÂAĤHeÂA ð5Þ
�̂HH�HH�0 ¼ E�0 ð6Þ

E ¼ h�0j �̂HH�HHj�0i ð7Þ

Note that in contrast to a general similarity transformation (e.g., as found in the

usual coupled-cluster theory) the canonical transformation produces a Hermitian

effective Hamiltonian, which is computationally very convenient. When ÛU is

expressed in exponential form, the effective Hamiltonian can be constructed

termwise via the formally infinite Baker–Campbell–Hausdorff (BCH) expan-

sion,

�̂HH�HH ¼ ĤH þ ½ĤH; ÂA� þ 1
2
½½ĤH; ÂA�; ÂA� þ � � � ð8Þ

The two pictures above (where ÛU is viewed as acting on the wavefunction or

acting on the Hamiltonian) are clearly mathematically equivalent. However, it is

worth considering their physical equivalence in the language of canonical trans-

formations. (A similar discussion of this issue may also be found in White [22].)

In the first picture the Hamiltonian ĤH, wavefunctions �0 and �, and transforma-

tion ÛU are associated with particles defined by the operators c
y
i ; cj; thus

H ¼
X
ij

tijc
y
i cj þ

X
ijkl

vijklc
y
i c
y
j ckcl ð9Þ

�0 ¼ �0ðcyi ; cyj ; . . .Þj�ic ð10Þ
� ¼ �ðcyi ; cyj ; . . .Þj�ic ð11Þ
ÛU ¼ eÂAðc

y
i
;cjÞ ¼ e

P
ij
Aijc

y
i
cjþ
P

ijkl
Aijklc

y
i
c
y
j
ckclþ��� ð12Þ

The transformation ÛU incorporates the additional correlations when going from

the reference wavefunction �0 to the target wavefunction �. In the second

picture, we appear to have a different Hamiltonian �̂HH�HH and eigenstate �0.
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However, they represent the same physical quantities as in the first picture, and

only our choice of coordinates has changed. We can define a new set of creation

and annihilation operators �ccyi ;�ccj through

�ccyi ¼ eÂAðc
y
i
;cjÞcyi e

�ÂAðcy
i
;cjÞ ð13Þ

�ccj ¼ eÂAðc
y
i
;cjÞcje�ÂAðc

y
i
;cjÞ ð14Þ

c
y
i ¼ e�ÂAð�cc

y
i
;�ccjÞ�ccyi e

ÂAð�ccy
i
;�ccjÞ ð15Þ

cj ¼ e�ÂAð�cc
y
i
;�ccjÞ�ccjeÂAð�cc

y
i
;�ccjÞ ð16Þ

Compared to the original particles, the new particles associated with �ccyi ;�ccj have
been dressed by the dynamic correlations in ÛU. Consequently, we can represent

the exact wavefunction as a simpler function of the new particles,

�0ð�ccyi ;�ccyj ; . . .Þj�i�cc ¼ �ðcyi ; cyj ; . . .Þj�ic ð17Þ

with the equivalence between the two established by

�0ð�ccyi ;�ccyj ; . . .Þj�i�cc ¼ �0ðeÂAcyi e�ÂA; eÂAcyj e�ÂA; . . .Þj�i�cc
¼ eÂA�0ðcyi ; cyj . . .Þe�ÂAj�i�cc
¼ �ðcyi ; cyj . . .Þj�ic

ð18Þ

Similarly, the Hamiltonian, in terms of the new particles, must involve different

matrix elements and thus

�̂HH�HHð�ccyi ;�ccjÞ ¼ ĤHðcyi ; cjÞ
¼ e�ÂAð�cc

y
i
;�ccjÞĤHð�ccyi ;�ccjÞeÂAð�cc

y
i
;�ccjÞ

¼ e�ÂAð�cc
y
i
;�ccjÞ

X
ij

tij�cc
y
i�ccj þ

X
ijkl

vijkl�cc
y
i�cc
y
j�cc
y
k�cc
y
l

" #
eÂAð�cc

y
i
;�ccjÞ

¼
X
ij

�ttij�cc
y
i�ccj þ

X
ijkl

�vvijkl�cc
y
i�cc
y
j�cc
y
k�cc
y
l þ � � �

ð19Þ

The last relation is simply our original Eq. (5), demonstrating the equivalence of

the two Hamiltonians.

If ÛU is obtained exactly, the effective Hamiltonian �̂HH�HH has no matrix elements

between the active and external spaces—that is, the two spaces are completely

decoupled—and all matrix elements containing both active and external indices
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are zero. Although the initial Hamiltonian only contains two-particle interactions

between the active and external spaces, to achieve a full decoupling the exact ÂA

must contain contributions from single-particle to N-particle operators. This is

because the decoupling of lower-particle rank terms in the Hamiltonian reintro-

duces matrix elements of higher-particle rank.

B. Canonical Transformation Theory

Up to this point our discussion of canonical transformations has been exact. We

now proceed to the specific approximations that characterize our formulation of

CT theory and discuss their relationship with approximations commonly made in

other theories involving canonical (i.e., unitary) transformations.

First, we note that the determination of the exact many-particle operator ÛU is

equivalent to solving for the full interacting wavefunction �. Consequently,

some approximation must be made. The ansatz of Eq. (2) recalls perturbation

theory, since (as contrasted with the most general variational approach) the tar-

get state � is parameterized in terms of a reference �0. A perturbative construc-

tion of ÛU is used in the effective valence shell Hamiltonian theory of Freed and

the generalized Van Vleck theory of Kirtman. However, a more general way for-

ward, which is not restricted to low order, is to determine U (and the associated

amplitudes in ÂA) directly. In our CT theory, we adopt the projection technique as

used in coupled-cluster theory [17]. By projecting onto excited determinants, we

obtain a set of nonlinear amplitude equations, namely,

h�0j �̂HH�HHĝgaj�0i ¼ 0 ð20Þ

where ĝga denotes the operator cye2c
y
e1
ca2ca1 and a denotes the indices a1a2; e1e2.

From the Hermiticity of �̂HH�HH, and the fact that (relative to the core Fermi vacuum)

�0 exists only in the active space, it follows that

h�0j½ �̂HH�HH; ĝga � ĝgya�j�0i ¼ 0 ð21Þ

In this form, the amplitude equations (21) have been previously studied by

Kutzelnigg and named the generalized Brillouin conditions [38].

The primary questions that remain to be answered are the following: to eval-

uate the energy and amplitude equations (7) and (21), we need to (i) construct �̂HH�HH
and (ii) have some means of evaluating expectation values of operators ÔO with

the reference �0.

Let us first discuss (i). The primary difficulty associated with the infinite BCH

expansion comes from the fact that each term in the expansion generates opera-

tors of greater particle rank (i.e., involving a longer string of creation and anni-

hilation operators) than the previous term. Thus it is necessary to assume some

closure or truncation when constructing �̂HH�HH. This is commonly cited as an obstacle
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to the adoption of unitary coupled-cluster theory, but as we shall see, a simple

yet accurate closure can be found. More recently, this concern has also arisen in

studies of generalized two-body exponential theories of correlation [39–42].

The approach typically taken in unitary coupled-cluster theories is to truncate

either by stopping the BCH expansion at some low order (e.g., second) [29] or

by keeping terms in the effective Hamiltonian such that it is correct through a

given order of perturbation theory [33]. The accuracy of such a truncation is

therefore tied to the accuracy of the underlying perturbation series. We start

with a different nonperturbative approach used in the theory of canonical diag-

onalization, that is, to restrict the form of �̂HH�HH to contain only certain classes of

operators [22]. (In our numerical work, we restrict �̂HH�HH to contain only one- and

two-particle operators.) If we then neglect all the higher particle-rank operators,

we obtain the approximation used in canonical diagonalization. In CT theory, we

go one step further and account for the higher particle-rank operators appearing

in �̂HH�HH in an approximate way. We achieve this by using an analogue of the cumulant

decomposition to express highparticle-rank operators in termsof lower particle-rank

operators and effective fields. This may be regarded as generalizing Hartree–Fock

theory, where the effective Hamiltonian (the Fock operator) contains an average

over the two-body interaction with a density field (see also Section II.E).

The procedure is clearest with the aid of an example. Consider the first com-

mutator in the BCH expansion, ½ĤH; ÂA�. Let ÂA be the two-particle operator,X
a1a2e1e2

Aa1a2
e1e2

cya1c
y
a2
ce1ce2

and consider a two-particle term in the Hamiltonian, Vg1g2
g3g4

cyg1c
y
g2
cg3cg4 , where g

denotes a general index (i.e., a or e). Then the commutator of the two terms

yields both two-particle (through double contraction) and three-particle (through

single contraction) operators. We wish to decompose the new three-particle

operators in terms of one- and two-particle quantities. Recall that the cumulant

decomposition in statistical mechanics offers the best statistical decomposition

of a high-particle-rank correlation function in terms of lower-particle-rank func-

tions. In the context of reduced density matrices, it has been studied extensively

by Valdemoro, Nakatsuji, Mazziotti, and others [43–48]. The cumulant decom-

position for a three-particle density matrix element hcyi cyj cykclcmcni is

hcyi cyj cykclcmcni ) 9hcyi cyni ^ hcyj cykclcmi
� 12hcyi cni ^ hcyj cmi ^ hcykcli

ð22Þ

This is not quite what we need, as in the current context, we require a

cumulant decomposition of a three-particle operator. We can construct an
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operator cumulant expansion by (i) requiring it to yield the same expectation

value as the cumulant expansion for a reduced density matrix element, and

(ii) keeping two-particle operators rather than single-particle operators, when

the choice arises. This gives

c
y
i c
y
j c
y
kclcmcn ) 9hcyi cyni ^

	
c
y
j c
y
kclcm


� 12hcyi cni ^ hcyj cmi ^
	
c
y
kcl



¼ hcyi cnicyj cykclcm þ hcyj cmicykcyi cncl þ hcykclicyi cyj cmcn
� hcyi clicyj cykcncm � hcyj cnicykcyi cmcl � hcykcmicyi cyj clcn
� hcyi cmicyj cykclcn � hcyj clicykcyi cncm � hcykcnicyi cyj cmcl
� 2

3

�	hcyi cnihcyj cmi � hcyi cmihcyj cni
cykcl
þ 	hcyj cmihcykcli � hcyj clihcykcmi
cyi cn
þ 	hcykclihcyi cni � hcykcnihcyi cli
cyj cm
� 	hcyi clihcyj cmi � hcyi cmihcyj cli
cykcn
� 	hcyj cnihcykcli � hcyj clihcykcni
cyi cm
� 	hcykcmihcyi cni � hcykcnihcyi cmi
cyj cl
� 	hcyi cmihcyj cni � hcyi cnihcyj cmi
cykcl
� 	hcyj clihcykcmi � hcyj cmihcykcli
cyi cn
� 	hcykcnihcyi cli � hcykclihcyi cni
cyj cm�

ð23Þ

where ^ denotes an antisymmetrization over all indices with an associated factor

1=ðP!Þ2 (P is the particle rank of the original operator) and h� � �i denotes an aver-
age with the reference wavefunction �0 (this yields McWeeny normalization for

the density matrices, i.e., Trhcyi cyj cmcni ¼ NðN � 1Þ, where N is the number of

particles).

Unlike the density cumulant expansion, which can in principle be exact for

certain states (such as Slater determinants), the operator cumulant expansion is

never exact, in the sense that we cannot reproduce the full spectrum of a three-

particle operator faithfully by an operator of reduced particle rank. However, if

the density cumulant expansion is good for the state of interest, we expect the

operator cumulant expansion to also be good for that state and also for states

nearby.

With the above decomposition, the commutator ½ĤH; ÂA� is reduced to an

expression containing only terms of the form we wish to keep (i.e., one- and

two-particle operators). Let us denote this approximate form of the commutator

as ½ĤH; ÂA�ð1;2Þ, to indicate that the cumulant decomposition retains only one- and

canonical transformation theory 353



two-particle operators. Then we can apply the procedure recursively, and thus

the next commutator in the BCH expansion is approximated as

½½ĤH; ÂA�; ÂA� ¼ ½½ĤH; ÂA�ð1;2Þ; ÂA�ð1;2Þ ð24Þ

Consequently, we can carry out the BCH expansion to arbitrarily high order

without any increase in the complexity of the terms in the effective Hamiltonian.

In practice, the expansion is carried out until convergence in a suitable norm of

the operator coefficients is achieved, as illustrated in Table I. Rapid convergence

is usually observed. Note that through the decomposition (23), the effective

Hamiltonian depends on the one- and two-particle density matrices and there-

fore becomes state specific, much like the Fock operator in Hartree–Fock theory.

Size-consistency is a desirable feature of any approximate theory. Since we

truncate in the operator space (as opposed to the Hilbert space of wavefunc-

tions), the current approximation is naturally size-consistent. Consider two

widely separated systems X and Y . Then we can construct two bases of

creation/annihilation operators c
y
X ; c
y
Y that generate/destroy the Fock spaces

of X and Y , respectively, and that commute by virtue of separation. In terms

of these operators, the starting Hamiltonian is separable into components that

act only on X and Y , respectively, ĤH ¼ ĤHX þ ĤHY , and so too is the exponential

operator expðÂAÞ ¼ expðÂAX þ ÂAYÞ ¼ expðÂAXÞ expðÂAYÞ. Consequently, the effective
Hamiltonian is also separable �̂HH�HH ¼ �̂HH�HHX þ �̂HH�HHY . The amplitude equations (21) are

solvable separately in the X and Y spaces. Consequently, the total effective

Hamiltonian is the sum of the corresponding effective Hamiltonians for the

TABLE I

Expansion of �̂HH�HH ¼ expð�ÂAÞĤH expðÂAÞ for H2O (ROH ¼ 1:0Re) with

cc-pVDZ Basis Seta

n EðnÞ (Eh) EðnÞ � Eð0Þ jj½. . . ½½ĤH; ÂA�; ÂA� . . .�=n!jj2
0 �76.075 858

1 �76.408 264 �0.332 406 3:545

2 �76.238 122 �0.162 264 4:338� 10�1

3 �76.238 259 �0.162 401 2:272� 10�2

4 �76.238 185 �0.162 327 1:275� 10�3

5 �76.238 187 �0.162 329 6:812� 10�5

6 �76.238 187 �0.162 329 3:367� 10�6

7 �76.238 187 �0.162 329 1:164� 10�7

8 �76.238 187 �0.162 329 4:025� 10�9

9 �76.238 187 �0.162 329 1:092� 10�10

aThe 2-norm of amplitudes (A ¼ A1 þ A2): jjA1jj2 ¼ 5:97� 10�2 and

jjA2jj2 ¼ 1:48� 10�1.
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systems X and Y considered in isolation, the total wavefunction is a product, and

the total energy is additive, as is required in a size-consistent theory.

We now discuss (ii), the evaluation of operator expectation values with the

reference �0. We are interested in multireference problems, where �0 may be

extremely complicated (i.e., a very long Slater determinant expansion) or a com-

pact but complex wavefunction, such as the DMRG wavefunction. By using the

cumulant decomposition, we limit the terms that appear in the effective Hamil-

tonian to only low-order (e.g., one- and two-particle operators), and thus we only

need the one- and two-particle density matrices of the reference wavefunction to

evaluate the expectation value of the energy in the energy expression (7). To

solve the amplitude equations, we further require the commutator of ½ �̂HH�HH; ĝga�,
which, for a two-particle effective Hamiltonian and two-particle operator ĝga,
again involves the expectation value of three-particle operators. We therefore

invoke the cumulant decomposition once more, and solve instead the modified

amplitude equation

h�0j½ �̂HH�HHð1;2Þ; ĝga�ð1;2Þj�0i ¼ 0 ð25Þ

This modified amplitude equation does not correspond to the minimization of

the energy functional Eq. (7), and thus the generalized Hellmann–Feynman the-

orem [49] does not apply.

Consequently, with the simplifications above, all the working equations of the

canonical transformation theory can be evaluated entirely in terms of a limited

number of reduced density matrices (e.g., one- and two-particle density

matrices) and no explicit manipulation of the complicated reference function

is required.

C. The Linearized Model

To summarize the theory: dynamic correlations are described by the unitary

operator exp ÂA acting on a suitable reference function, where ÂA consists of exci-

tation operators of the form (4). We employ a cumulant decomposition to eval-

uate all expressions in the energy and amplitude equations. Since we are

applying the cumulant decomposition after the first commutator (the term ‘‘lin-

ear’’ in the amplitudes), we call this theory linearized canonical transformation

theory, by analogy with the coupled-cluster usage of the term. The key features

of the linearized CT theory are summarized and compared with other theories in

Table II.

In the current work, we consider primarily two theoretical models: the line-

arized canonical transformation with doubles (L-CTD) and linearized canonical

transformation with singles and doubles (L-CTSD) theories. These are defined

by the choice of operators in ÂA. The L-CTD theory contains only two-particle
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operators (including also the two-particle semi-internal excitations) and the

L-CTSD theory contains both one- and two-particle operators; thus

ÂAðL-CTSDÞ ¼ ÂA1 þ ÂA2

ÂAðL-CTDÞ ¼ ÂA2

ÂA1 ¼
X
ae

Aa
ec
y
ace þ

X
e1e2

Ae1
e2
cye1ce2

ÂA2 ¼
X

a1a2e3e4

Aa1a2
e3e4

cya1c
y
a2
ce3ce4

þ
X

a1a2a3e4

Aa1a2
a3e4

cya1c
y
a2
ca3ce4

þ
X

a1e2e3e4

Aa1e2
e3e4

cya1c
y
e2
ce3ce4

þ
X

e1e2e3e4

Ae1e2
e3e4

cye1c
y
e2
ce3ce4 þ � � � þ h:c:

Although L-CTD theory does not include explicit one-particle single excitations

(it does include two-particle semi-internal single excitations), in most of the

applications in this work it is combined with a CASSCF reference, which is

already based on optimized orbitals.

D. Perturbative Analysis and Relation to Coupled-Cluster Theory

Perturbative analyses have yielded many insights into single-reference coupled-

cluster theory. Although we generally are using the canonical transformation

TABLE II

Features of Some Theories that Use the Language of Canonical/Unitary Transformations

Theory Reference How to Obtain ÂA? Exponential Type BCH Expansion?

EVHa N.A.b Perturbation theory N.A. Perturbation theory

UCC(n)c Slater Projection equation eÂA Perturbation theory

determinant

CDd N.A. Minimize off-diagonals e
^EAaEAa e

^EAbEAb . . . Truncated operator

in second-quantized �̂HH�HH manifold

CTe Multireference Projection equation eÂA Truncated operator

state (e.g., manifold, cumulant

CASSCF) decomposition

aEffective valence-shell Hamiltonian [19, 25].
bAssumes degenerate valence space.
cUnitary coupled-cluster theory [33, 50].
dCanonical diagonalization [22].
eCanonical transformation (this work).
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theory together with a multireference wavefunction, it is informative to

carry out the analogous perturbative analysis for the single-reference canonical

transformation theory, to highlight the connections with existing coupled-

cluster methods. The analysis in this section follows that of Bartlett et al.

[32, 33, 50].

First consider a Hartree–Fock reference function and transform to the Fermi

vacuum (all occupied orbitals are in the vacuum). Then all particle density

matrices are zero and the cumulant decomposition, Eq. (23), based on this refer-

ence corresponds to simply neglecting all three and higher particle-rank opera-

tors generated by commutators. This type of operator truncation is used in the

canonical diagonalization theory of White [22].

Now write the Hamiltonian as

ĤH ¼ EHF þ F̂F þ ŴW ð26Þ

where F̂F is the one-particle Fock operator and ŴW is the two-particle fluctuation

potential. From Brillouin’s theorem, we recognize that ÂA2 is first order in ŴW , while

ÂA1 is second order in ŴW . (To make contact with the analysis of unitary coupled-

cluster theory in Refs. [32, 33], write ÂA1 as ðT̂T1 � T̂T
y
1Þ and ÂA2 ¼ ðT̂T2 � T̂T

y
2Þ.) Then

consider the expectation value of the energy E ¼ hexp ÂAyĤH exp ÂAi without using
any cumulant decomposition. Expanding in powers of the fluctuation operator,

we have

E ¼ E0 þ E1 þ E2 þ E3 þ E4 þ � � � ð27Þ

where these are defined as

E0 ¼ hEHF þ F̂Fi ð28Þ
E1 ¼ hŴWi ð29Þ
E2 ¼ h½ŴW ; ÂA2� þ ½F̂F; ÂA1� þ ½½F̂F; ÂA2�; ÂA2�i ð30Þ
E3 ¼ h1

2
½½ŴW ; ÂA2�; ÂA2� þ ½ŴW ; ÂA1� þ 1

2
½½F̂F; ÂA2�; ÂA1� ð31Þ

þ 1
2
½½F̂F; ÂA1�; ÂA2�i ð31Þ

E4 ¼ h1
6
½½½ŴW ; ÂA2�; ÂA2�; ÂA2� þ 1

2
½½ŴW ; ÂA1�; ÂA2�

þ 1
2
½½W ; ÂA2�; ÂA1� þ 1

2
½½F̂F; ÂA1�; ÂA1�

þ 1
24
½½½½F̂F; ÂA2�; ÂA2�; ÂA2�; ÂA2�i ð32Þ
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Now consider the effect of the cumulant decomposition on the different

orders of energy contribution. First, no decomposition is involved in computing

E0;E1. For E2, the cumulant decomposition corresponds to

E2 ) h½ŴW ; ÂA2�ð1;2Þ þ ½F̂F; ÂA1� þ ½½F̂F; ÂA2�; ÂA2�ð1;2Þi ð33Þ

We have used the subscript (1, 2) only when the commutator generates three-

particle terms; for example, ½F̂F; ÂA2� generates only two-particle terms and thus

no decomposition is applied. We can illustrate the different terms diagrammati-

cally using the coupled-cluster-type diagrams popularized by Bartlett [51].

Figure 2 illustrates a three-particle term that appears in ½ŴW ; ÂA2�. Additional
‘‘double’’ lines are used to indicate contractions with a reduced density matrix.

When these double lines are cut and rotated, one recovers the usual CC type dia-

gram. (The cumulant decomposition of ½ŴW ; ÂA2�ð1;2Þ yields four kinds of diagrams

for one- and two-particle operators, shown in Fig. 3, but for the single reference

case we are considering, all these terms vanish since all particle density matrices

are zero from the Fermi vacuum.) Now h½F̂F; ÂA1�i vanishes (from Brillouin’s the-

orem). Both ½ŴW ; ÂA2� and ½½F̂F; ÂA2�; ÂA2� generate three-particle operators that are

approximated in the cumulant decomposition, but these have no expectation

value with the Fermi vacuum and thus do not contribute to the energy. Thus

no error is made in Eq. (33) for E2.

In the expression for E3, we apply the cumulant decomposition twice for the

double commutator ½½ŴW ; ÂA2�ð1;2Þ; ÂA2�ð1;2Þ. Once again, only the fully contracted

term contributes to the energy. The only way fully contracted terms arise is

from double contractions in ½ŴW ; ÂA2� to produce a two-particle operator, which

then doubly contracts with the final ÂA2 commutator, to contribute to the energy.

Since double contractions are involved in each step, no cumulant decomposition

is involved for this term. There is no contribution from the three-particle

Figure 2. An example of a diagram of the three-particle operator appearing in ½ŴW; ÂA2�.
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operators generated by either commutator, and the cumulant-decomposition

approximation is exact for E3 (see Fig. 4).

In the expression forE4 we find our first error from using the cumulant decompo-

sition. Here, the three-particle operator arising from the first commutator ½ŴW ; ÂA2�,

Figure 3. A diagrammatic representation of the cumulant decomposition (½ŴW; ÂA2�ð1;2Þ) for the
three-particle operator drawn in Fig. 2. Four kinds of one- and two-particle operators are obtained.

The double line is the contraction for the particle-rank reduction (closure), where the correlation is

averaged with the effective field (i.e., density matrices).

Figure 4. Two connected diagrams in the term h½½ŴW ; ÂA2�; ÂA2�i, which contribute to E3 (Eq. (31)).
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which is dropped in the cumulant decomposition, can contract successively with

two other ÂA2 terms, in ½½ŴW ; ÂA2�; ÂA2�; ÂA2�, to yield a fully contracted term and a

contribution to the energy. Although the cumulant decomposition misses this

contribution, it does, however, contain the contribution that arises from contract-

ing the two-particle operators generated in the first commutator ½ŴW ; ÂA2�. A dia-

grammatic illustration of the same result is shown in Fig. 5. By a similar

analysis, we find that the cumulant decomposition also provides an incomplete

evaluation of ½½½½F̂F; ÂA2�; ÂA2�; ÂA2�; ÂA2�, arising from intermediate three-particle

operators.

In the usual coupled-cluster hierarchy,
P2

i¼0 Ei is the MP2 energy func-

tional, while
P3

i¼0 Ei is the linearized coupled-cluster single–doubles (L-

CCSD) energy functional.
P4

i¼0 Ei is the unitary CCSD energy functional.

The linearized CTSD energy is correct up to third order in perturbation theory,

like the linearized CCSD theory. However, unlike linearized CCSD theory,

fourth-order terms (such as ½½½½ŴW ; ÂA2�; ÂA2�; ÂA2�) are not completely neglected

but partly included as discussed previously. From this, we might expect the

single-reference L-CTSD theory to perform intermediate between linearized

CCSD and the full CCSD theory. But in fact there are an infinite number of

additional diagrams that are included in linearized CTSD theory as compared

to the usual CC and UCC(n) theories, because the energy functional does not

terminate at finite order, but contains further partial contributions from E5;E6,

and indeed to infinite order. For example, all terms involving pure orbital rota-

tions (i.e., ÂA1) are included to all orders in the energy functional. Terms invol-

ving ÂA2, where all ÂA2 operators are at least doubly contracted with one other

operator, are also included to all orders. Examples of these additional

Figure 5. A diagram in h½½½ŴW ; ÂA2�; ÂA2�; ÂA2�i that yields nonzero energy in E4 (Eq. (32)) and that

is missed in the cumulant decomposition in L-CTSD theory. In this diagram, the three-particle opera-

tor arising from ½ŴW; ÂA2� contracts successively with two other ÂA2 terms.
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diagrams contained in L-CTSD, but not in the usual CC theories, are shown in

Fig. 6. One might speculate that these additional diagrams would yield an

improved theory, but in the general case, and certainly when we extend the

discussion to cases where a multideterminantal reference wavefunction is

used, the significance of these additional contributions can only be assessed

numerically.

E. Variation of the Reference

A further point is of interest in the formal discussion of the canonical transfor-

mation theory. So far we have assumed that the reference function is fixed and

have considered only solving for the amplitudes in the excitation operator. We

may also consider optimization of the reference function itself in the presence of

the excitation operator ÂA. This consideration is useful in understanding the nat-

ure of the cumulant decomposition in the canonical transformation theory.

Figure 6. An example of two diagrams in ½½. . . ½½ŴW; ÂA2�; ÂA2� . . .�; ÂA2� (upper) and

½½. . . ½½F̂F; ÂA2�; ÂA2� . . .�; ÂA2� (lower) that appear at higher orders in linearized CTD and CTSD. The dia-

grams involve ÂA2, where all ÂA2 operators (here six ÂA2) are at least doubly contracted with one other

operator.
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Using the energy functional (7) and the cumulant decomposition, and making

the energy stationary with respect to variations in ��0, we find that the optimal

reference �0 satisfies

�̂HH�HHð1;2Þ�0 þ h�0j
d �̂HH�HHð1;2Þ
d��0

j�0i ¼ �̂FF�FF�0 ¼ 0 ð34Þ

where the second term arises because the effective Hamiltonian is state depen-

dent through the usage of the cumulant decomposition. Thus the optimal refer-

ence function is an eigenfunction not of the effective Hamiltonian, but a

correlated two-particle ‘‘Fock’’ operator �̂FF�FF.
To understand this more clearly, consider a simpler model where ÂA consists of

single excitations, only single-particle operators are retained in the effective

Hamiltonian, and we choose the reference function �0 to be a single determi-

nant. Then, from a cumulant decomposition of the two-particle terms, the effec-

tive Hamiltonian becomes

�̂HH�HHð1Þ ¼
X
ij

Tijc
y
i cj þ 1

2

X
ijkl

Vijkl½hcyi clicyj ck � hcyj clicyi ck� ð35Þ

Note this resembles the (N-particle) Fock operator that appears in Hartree–Fock

theory, but the contribution of the two-electron term is only half the normal con-

tribution in the Fock operator. However, if we consider making the energy sta-

tionary w.r.t. variations in the reference, we must also consider the second term

in Eq. (34), where we find

d �̂HH�HHð1Þ
d��0

¼ 1
2

X
ijkl

½Vijklðhcyi clicyj ck � hcyj clicyi ckÞ��0 ð36Þ

and thus the final Fock operator �̂FF�FF that determines the optimal reference function

is identical to the usual Hartree–Fock operator

�̂FF�FF ¼
X
ij

Tijc
y
i cj þ

X
ijkl

Vijkl½hcyi clicyj ck � hcyj clicyi ck� ð37Þ

Thus we see that Hartree–Fock theory is identical to a canonical transformation

theory retaining only one-particle operators with an optimized reference, and the

canonical transformation model retaining one- and two-particle operators

employed in the current work, if employed with an optimized reference, is a nat-

ural extension of Hartree–Fock theory to a two-particle theory of correlation.
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Finally, we note that if we retain two-particle operators in the effective

Hamiltonian, but restrict ÂA to single-particle form, we recover exactly the orbital

rotation formalism of the multiconfigurational self-consistent field. Indeed,

this is the way in which we obtain the CASSCF wavefunctions used in this

work.

III. IMPLEMENTATION OF THE LINEARIZED CANONICAL

TRANSFORMATION THEORY

A. Computational Algorithm

Considering the one- and two-particle operators in Eq. (25) separately, we obtain

equations for the L-CTSD and L-CTD models:

Rp
q ¼ h½ �̂HH�HHð1;2Þ; ĝgpq � ĝgpyq �i ¼ 0 L-CTSD ð38Þ

Rpq
rs ¼ h½ �̂HH�HHð1;2Þ; ĝgpqrs � ĝgpqyrs �ð1;2Þi ¼ 0 L-CTD=L-CTSD ð39Þ

where ĝgpq ¼ cypcq and ĝgpqrs ¼ cypc
y
qcscr. These nonlinear equations must be solved

for the amplitudes A that define the effective Hamiltonian. A sketch of our

implementation is as follows:

Step 1. Given the electronic Hamiltonian ĤH (Eq. (1)), determine the refer-

ence function in the active space (e.g., CASSCF, CASCI, or HF).

Compute the one- and two-particle density matrices gpq ¼ hcypcqi
and gpqrs ¼ hcypcyqcscri of the reference function.

Step 2. Compute the preconditioner for the amplitude equations, given by

the diagonal linear terms of the amplitude equations (Eqs. (38) and

(39)).

Dp
q ¼ h½½ĤH; ĝgpq � ĝgpyq �; ĝgpq � ĝgpyq �i ð40Þ

Dpq
rs ¼ h½½ĤH; ĝgpqrs � ĝgpqyrs �ð1;2Þ; ĝgpqrs � ĝgpqyrs �ð1;2Þi ð41Þ

Step 3. Choose the initial amplitudes A (which we set as zero).

Step 4. Compute the transformed Hamiltonian �̂HH�HH via the BCH equation

(Eq. (8)). This is done by iterating a subroutine that computes the

cumulant-decomposed commutator �̂HH�HH
ðnþ1Þ ¼ ½ �̂HH�HHðnÞ; ÂA�ð1;2Þ, which

contains only one- and two-particle operators, and where �̂HH�HH
ð0Þ ¼

ĤH. The full �̂HH�HH is then obtained as a sum of one- and two-

particle operators �̂HH�HH ¼Pn¼0 �̂HH�HH
ðnÞ
=n!. The sum is truncated after

the norm of coefficients of the nth term �̂HH�HH
ðnÞ
=n! is less than a given

threshold, which we set as 10�9. As illustrated in Table I, exponential
convergence is observed. The energy is then computed as E ¼ h �̂HH�HHi
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with the density matrix elements gpq and gpqrs of the reference

wavefunction.

Step 5. Compute the new residuals of the amplitude equations, Rp
q (Eq. (38))

and Rpq
rs (Eq. (39)).

Step 6. Correct the amplitudes by adding the preconditioned residuals.

Ap
q  Ap

q þ Rp
q=D

p
q ð42Þ

Apq
rs  Apq

rs þ Rpq
rs =D

pq
rs ð43Þ

Step 7. Repeat steps 4–6 until convergence.

Within the above scheme, we implemented the generalized minimal residual

(GM-RES) method [52], which is a robust linear solver that ensures convergence

of the iterative solution.

B. Computational Scaling

In active-space calculations, the total orbital space is usually partitioned into

external core orbitals (c), active orbitals (a), and unoccupied virtual (external)

orbitals (v). (There can additionally be some frozen core orbitals that remain

doubly occupied throughout the calculation.)

In the iterative algorithmoutlined in Section III.A the computational scalings are

n2n2can
2
av for step 4, and nncan

4
av and nn2can

3
av for step 5, where n ¼ nc þ na þ nv,

nca ¼ nc þ na, and nav ¼ na þ nv. Note that, unlike conventional multireference

methods, these scalings do not depend on the number of configurations in the

expansion of the reference wavefunction. In fact, the scaling is roughly

�Oðn2an4vÞ, which is essentially the sameas that of single-reference coupled-cluster
theory.

C. Classes of Excitations for the Exponential Operator

Iterative multireference descriptions of dynamic correlation must carefully

consider the problem of convergence. There are two reasons why these calcula-

tions are more difficult than single-reference calculations of dynamic correla-

tion. First, dynamic excitations from an active space can give rise to intruder

states, which are configurations that lie inside the range of energies spanned

by the active space. Thus these states are associated with negative or small pre-

conditioner elements, giving rise to convergence problems. Second, there can be

near-linear dependency associated with states generated by the excitation opera-

tors ÂA1 and ÂA2. For example, internal single-type excitations of the form

c
y
o0c
y
vco0co generated by ÂA2 become exactly degenerate with the single excitations

of the form cyvco, created by ÂA1, when the starting reference is a single determi-

nant and the orbital o is occupied.
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To improve the convergence in the iterative solution of the CT amplitude

equations, we have adopted a simple scheme, where we classify the amplitude

equations by the type of excitation operators involved and solve the classified

sets of the amplitude equations in successive steps, which achieves some decou-

pling between different scales of variation. The smallest preconditioner elements

for each class of excitation are shown in Table III for a calculation on the water

molecule. Generally, convergence was harder to achieve near equilibrium geo-

metries, which is consistent with the larger spread of valence orbital energies

(and consequently increased importance of intruder states), and the higher linear

dependency of the excitation manifold. In future work we will investigate more

robust convergence algorithms such as the augmented Hessian techniques used

in multiconfigurational SCF theory [53].

First number the orbitals thus: core orbitals range from 1 through the number of

core orbitals Ncore, that is, c ¼ 1; . . . ;Ncore. Active orbitals range from Ncore þ 1 to

Ncore þ Nactive, and the virtual orbitals start fromNcore þ Nactive þ 1. Then we divide

the equations into eight classes (see also Tables IV and V): (i) internal double

excitations ccaa, (ii) external double excitations (ccvv, cavv, and aavv) where

the indices of ca, ca and aa are � the number of electrons Nelec, (iii) external

double excitations where either of the indices of ca, ca and aa is �Nelec and

the other is >Nelec, (iv) external double excitations where the indices of ca,

ca and aa are >Nelec (v) single excitations (ca, cv, and av), (vi) semi-internal

excitations (ccav, caav, and aaav) where the indices of ca, ca and aa are

�Nelec, (vii) semi-internal excitations where either of the indices of ca, ca

and aa is �Nelec and the other is >Nelec, and (viii) semi-internal excitations

where the indices of ca, ca and aa are >Nelec. When solving for a given class

TABLE III

The Smallest Nonzero Elements of Dpq
rs Used for Preconditioning,

as Defined and Used in Eqs. (41), (38), and (39), for the Different

Classes of Operatorsa

Internal excitation

ccaa 1:05� 10�5

caaa 2:62� 10�6

Semi-internal excitation

ccav 1:43� 10�2

caav 2:57� 10�3

aaav 3:50� 10�5

Double excitation

ccvv 1:25� 102

cavv 2:15� 10�1

aavv 2:30� 10�2

aTaken from a calculation on H2O at the equilibrium structure with

a 6-31G basis set.
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of amplitudes, the amplitudes in all previous classes are also allowed to vary,

while the amplitudes in all later classes are 0. The excitation operators for

caaa are entirely neglected, and those for (i), (vi), (vii), and (viii) are partially

neglected when the corresponding preconditioner element Dpq
rs (Eq. (41)) is

smaller than the truncation threshold 0.5. Note that this separation scheme

may break the orbital invariance of the CT theory.

IV. NUMERICAL RESULTS

A. Simultaneous Bond Breaking of Water Molecule with

6-31G and cc-pVDZ Basis Sets

As a prototype multireference application, we performed calculations of poten-

tial curves for the symmetric breaking of the water molecule H2O in which the

two O–H bonds are stretched simultaneously. We used both the 6-31G [54] and

cc-pVDZ [55] basis sets. The results of L-CTD and L-CTSD calculations,

together with a number of conventional methods—Hartree–Fock (HF), full

TABLE IV

Classification of One-Particle Excitation Operatorsa

Classified Operator ÂA
p

q ¼ ĝgpq � ĝgpyq

ca ĝga
0
1
c1
¼ c

y
a0
1
cc1

cv ĝgv
0
1
c1
¼ c

y
v0
1
cc1

av ĝgv
0
1
a1
¼ c

y
v0
1
ca1

ac, a, and v denote active core, active, and virtual (external) orbitals.

TABLE V

Classification of Two-Particle Excitation Operatorsa

Classified Operator ÂA
pq

rs ¼ ĝgpqrs � ĝgpqyrs

Internal excitation

ccaa ĝga
0
1
a0
2

c1c2
¼ c

y
a0
1
c
y
a0
2
cc2cc1

caaa ĝga
0
1
a0
2

c1a2
¼ c

y
a0
1
c
y
a0
2
ca2cc1

Semi-internal excitation

ccav ĝgv
0
1
a0
2

c1c2
¼ c

y
v0
1
c
y
a0
2
cc2cc1

caav ĝgv
0
1
a0
2

c1a2
¼ c

y
v0
1
c
y
a0
2
ca2cc1

aaav ĝgv
0
1
a0
2

a1a2
¼ c

y
v0
1
c
y
a0
2
ca2ca1

Double excitation

ccvv ĝgv
0
1
v0
2

c1c2
¼ c

y
v0
1
c
y
v0
2
cc2cc1

cavv ĝgv
0
1
v0
2

c1a2
¼ c

y
v0
1
c
y
v0
2
ca2cc1

aavv ĝgv
0
1
v0
2

a1a2
¼ c

y
v0
1
c
y
v0
2
ca2ca1

ac, a, and v denote active core, active, and virtual (external) orbitals.
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configuration interaction (FCI), multireference second-order perturbation theory

(MRMP) [20, 21], and coupled-cluster theory (CCSD/CCSDT)—are presented

in Tables VI and VII. All multireference calculations used a CAS with six active

electrons in five active orbitals (denoted by (6e, 5o)). The 1s orbital in the O

atom was held frozen in all calculations. The FCI and MRMP calculations

were carried out using GAMESS [56], and the CC calculations were carried out

using the TCE [57] implemented in UTCHEM [58].

Figures 7 and 8 plot deviations of total energies from FCI results for the

various methods. It is clear that the CASSCF/L-CTD theory performs best out

of all the methods studied. (We recall that although the canonical transformation

operator exp ÂA does not explicitly include single excitations, the main effects are

already included via the orbital relaxation in the CASSCF reference.) The abso-

lute error of the CASSCF/L-CTD theory at equilibrium—1.57 mEh (6-31G),

2.26 mEh (cc-pVDZ)—is slightly better than that of CCSD theory—1.66 mEh

(6-31G), 3.84 mEh (cc-pVDZ); but unlike for the CCSD and CCSDT theories,

the CASSCF/L-CTD error stays quite constant as the molecule is pulled apart

while the CC theories exhibit a nonphysical turnover and a qualitatively incor-

rect dissociation curve. The largest error for the CASSCF/L-CTD method occurs

at the intermediate bond distance of 1.8Re with an error of �2.34 mEh (6-31G),

�2.42 mEh (cc-pVDZ). Although the MRMP curve is qualitatively correct, it is

not quantitatively correct especially in the equilibrium region, with an error of

6.79 mEh (6-31G), 14.78 mEh (cc-pVDZ). One measure of the quality of a dis-

sociation curve is the nonparallelity error (NPE), the absolute difference

between the maximum and minimum deviations from the FCI energy. For

MRMP the NPE is 4 mEh (6-31G), 9 mEh (cc-pVDZ), whereas for CASSCF/

L-CTD the NPE is 5 mEh (6-31G), 6 mEh (cc-pVDZ), showing that the

CASSCF/L-CTD provides a quantitative description of the bond breaking with

a nonparallelity error competitive with that of MRMP.

We now discuss the other CT calculations on water that are presented here.

The CASSCF/L-CTSD method incorporates an additional orbital rotation on top

of those contained in the CASSCF optimization, by the inclusion of one-particle

operators in the excitation operator ÂA. Comparison of the CASSCF/L-CTSD

with the CASSCF/L-CTD results shows that although the broad features of

the potential energy curves are similar (small errors near in and far out, larger

errors in the intermediate region), the absolute errors of CASSCF/L-CTSD are

often larger than that of CASSCF/L-CTD. We suggest that this may arise from a

lack of balance between the one-particle single excitations (which are always

treated exactly) and the semi-internal single excitations, which are treated

approximately both from the cumulant decomposition (Section II.B) and due

to the use of the numerical cutoff in solving the amplitude equations (Section

III.C). This cutoff also makes the CT calculation not orbital invariant (w.r.t. to

active–active, external–external rotations), and this is probably the reason for the
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Å
.

368



T
A
B
L
E
V
II

T
o
ta
l
E
n
er
g
ie
s
(E

h
)
fo
r
th
e
S
im

u
lt
an
eo
u
s
B
o
n
d
B
re
ak
in
g
o
f
th
e
H

2
O
M
o
le
cu
le
w
it
h
cc
-p
V
D
Z
B
as
is
S
et
sa

M
et
h
o
d

L
-C
T
S
D

L
-C
T
S
D
(2
)

L
-C
T
D

R
ef
er
en
ce

C
A
S
S
C
F

C
A
S
S
C
F

C
A
S
S
C
F

M
R
M
P

r O
H

C
A
S

C
A
S
S
C
F

(6
e,

5
o
)

(6
e,

5
o
)

(6
e,

5
o
)

C
A
S
S
C
F

(R
e
)

O
rb
it
al
s

H
F

F
C
I

(6
e,

5
o
)

N
O
s

N
O
s

N
O
s

(6
e,

5
o
)

C
C
S
D

C
C
S
D
T

1
.0

�7
6
.0
2
1
6
7

�7
6
.2
3
8
8
5

�7
6
.0
7
5
8
6

�7
6
.2
3
8
1
9

�7
6
.2
3
8
1
2

�7
6
.2
3
6
6
0

�7
6
.2
2
4
0
7

�7
6
.2
3
5
0
1

�7
6
.2
3
8
3
4

(2
1
7
.1
8
)

(1
6
2
.9
9
)

(0
.6
6
)

(0
.7
3
)

(2
.2
6
)

(1
4
.7
8
)

(3
.8
4
)

(0
.5
1
)

1
.4

�7
5
.8
4
1
1
2

�7
6
.0
9
9
0
2

�7
5
.9
4
5
5
7

�7
6
.0
9
8
8
0

�7
6
.0
9
8
7
5

�7
6
.0
9
7
1
4

�7
6
.0
8
9
4
6

�7
6
.0
9
0
4
6

�7
6
.0
9
7
7
8

(2
5
7
.8
9
)

(1
5
3
.4
5
)

(0
.2
2
)

(0
.2
7
)

(1
.8
8
)

(9
.5
6
)

(8
.5
5
)

(1
.2
3
)

1
.8

�7
5
.6
5
1
8
6

�7
5
.9
7
8
1
4

�7
5
.8
4
0
0
2

�7
5
.9
8
4
1
1

�7
5
.9
8
4
0
1

�7
5
.9
8
0
4
7

�7
5
.9
7
0
9
8

�7
5
.9
6
0
1
9

�7
5
.9
7
6
8
0

(3
2
6
.2
8
)

(1
3
8
.1
2
)

(�
5
.9
7
)

(�
5
.8
8
)

(�
2
.3
4
)

(7
.1
6
)

(1
7
.9
4
)

(1
.3
4
)

2
.2

�7
5
.5
1
0
3
8

�7
5
.9
2
7
2
2

�7
5
.7
9
9
4
6

�7
5
.9
2
6
6
5

�7
5
.9
2
6
4
9

�7
5
.9
2
4
8
9

�7
5
.9
1
9
8
6

�7
5
.9
0
3
6
3

�7
5
.9
3
8
7
1

(4
1
6
.8
4
)

(1
2
7
.7
6
)

(0
.5
8
)

(0
.7
4
)

(2
.3
4
)

(7
.3
7
)

(2
3
.6
0
)

(�
1
1
.4
8
)

2
.6

�7
5
.4
0
8
7
7

�7
5
.9
1
3
4
1

�7
5
.7
8
9
3
8

�7
5
.9
1
0
6
6

�7
5
.9
1
0
3
1

�7
5
.9
1
0
2
4

�7
5
.9
0
5
4
7

�7
5
.8
9
6
4
6

�7
5
.9
4
3
9
7

(5
0
4
.6
4
)

(1
2
4
.0
4
)

(2
.7
5
)

(3
.1
0
)

(3
.1
7
)

(7
.9
4
)

(1
6
.9
5
)

(�
3
0
.5
6
)

3
.0

�7
5
.3
3
6
3
8

�7
5
.9
1
0
0
3

�7
5
.7
8
7
0
2

�7
5
.9
0
7
0
2

�7
5
.9
0
6
6
0

�7
5
.9
0
7
0
6

�7
5
.9
0
1
9
0

�7
5
.9
0
0
3
6

�7
5
.9
5
1
0
9

(5
7
3
.6
5
)

(1
2
3
.0
1
)

(3
.0
1
)

(3
.4
3
)

(2
.9
7
)

(8
.1
3
)

(9
.6
7
)

(�
4
1
.0
6
)

3
.4

�7
5
.2
8
5
6
2

�7
5
.9
0
9
0
8

�7
5
.7
8
6
3
7

�7
5
.9
0
5
8
0

�7
5
.9
0
5
4
7

�7
5
.9
0
6
0
5

�7
5
.9
0
0
9
1

�7
5
.9
0
3
8
1

�7
5
.9
5
5
3
3

(6
2
3
.4
6
)

(1
2
2
.7
1
)

(3
.2
8
)

(3
.6
1
)

(3
.0
3
)

(8
.1
7
)

(5
.2
7
)

(�
4
6
.2
5
)

3
.8

�7
5
.2
5
0
4
3

�7
5
.9
0
8
7
8

�7
5
.7
8
6
1
7

�7
5
.9
0
5
6
0

�7
5
.9
0
5
2
3

�7
5
.9
0
5
9
2

�7
5
.9
0
0
6
0

�7
5
.9
0
5
9
8

�7
5
.9
5
7
6
9

(6
5
8
.3
6
)

(1
2
2
.6
1
)

(3
.1
8
)

(3
.5
5
)

(2
.8
6
)

(8
.1
8
)

(2
.8
0
)

(�
4
8
.9
1
)

a
T
h
e
v
al
u
e
in

p
ar
en
th
es
es

is
th
e
d
if
fe
re
n
ce

fr
o
m

th
e
F
C
I
to
ta
l
en
er
g
y
in

m
E
h
.
T
h
e
b
o
n
d
an
g
le

is
fi
x
ed

at
ffH

O
H
¼

1
0
9
:5
7
� .
R
e
¼

0
:9
9
2
9
Å
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observed differences between calculations using a CASSCF density matrix

expressed in the CASSCF natural-orbital basis, and a density matrix expressed

in the canonical CASSCF orbital basis. Generally, the canonical CASSCF

orbital-based calculations perform less well at longer bond lengths. Finally,

the importance of choosing a reasonable set of active-space orbitals is reinforced

by the CASCI/L-CTD curve, which does not include any direct mechanism for

orbital relaxation. The energy computed with this method breaks down in the

intermediate region, past 1.8 Re.

Table VIII lists the norms of internal, semi-internal, and external excitation

amplitudes obtained in the CASSCF(6e, 5o, NO)/L-CTSD calculations with

the 6-31G basis set. The percentage of retained amplitudes for internal and

semi-internal excitations are also shown in the table. The norm of the external

amplitudes, which primarily contribute to dynamic correlation, does not fluctuate

much across the potential curve. The maximums of the internal and semi-internal

amplitudes are found at the intermediate bond region. More internal and semi-

internal excitation operators are retained as the bond length rOH is increased.

We also measured the energy contributions from the different classes of

excitation operators used in solving the amplitude equations (Section III.C).
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Figure 7. Energy differences E � EðFCIÞ for the simultaneous bond breaking of H2O molecule

with 6-31G basis sets.
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The changes in the total energy occurring during the solution of the eight classes

of amplitudes are shown in Table IX. The external excitation operators give the

largest contribution to the correlation energy. The contributions from steps (iii)

and (iv), which correlate non-HF configurations with the external orbitals,

grow larger with the longer OH bond. This reflects the importance of a
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Figure 8. Energy differences E � EðFCIÞ for the simultaneous bond breaking of H2O molecule

with cc-pVDZ basis sets.

TABLE VIII

Norms and Nontruncation Ratios of Amplitudes in CASSCF(6e, 5o)/L-CTSD

with NOs for H2O Molecule with 6-31G Basis Sets

Norm� 102 Nontruncation Ratio

rOH Internal Semi-internal External Internal Semi-internal

1.0Re 0.57 2.88 5.07 16% 34%

1.4Re 5.76 3.31 4.84 32% 65%

1.8Re 3.70 6.41 4.77 64% 79%

2.2Re 3.60 3.52 4.77 64% 80%
3.8Re 1.87 1.87 4.69 64% 80%
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multiconfigurational description for dissociation. The energy contribution from

semi-internal operators is significant and is largest at the equilibrium structure.

Finally, to assess the convergence of the commutator expansion in the

effective Hamiltonian as the bond is stretched, we computed a ‘‘second-order’’

energy using the L-CTSD amplitudes, denoted CASSCF/L-CTSD(2). Here the

energy expression is evaluated as hĤHð0Þ þ ĤH
ð1Þ þ ĤH

ð2Þi. As seen from Tables VI

and VII and Figs. 7 and 8, the second-order energy curve faithfully follows the

parent CASSCF/L-CTSD curve. This is promising for the development of hybrid

CT–perturbation theories, along the lines of CC(2) theory [59, 60].

B. Bond Breaking of Nitrogen Molecules with 6-31G Basis Sets

The second application focuses on the dissociation of the triple bond in the nitro-

gen molecule N2, which has been chosen by many multireference studies as a

simple multireference model that is difficult to solve. For these calculations,

we used the 6-31G basis set and froze the 1 s orbitals. We chose two types of

CAS space, (6e, 6o) and (10e, 8o). The triple bonding in N2 is primarily formed

by three valence orbitals, one s and two p orbitals. The bond breaking is basi-

cally a chemical reaction that involves these three bonding orbitals and the cor-

responding higher-lying antibonding orbitals. The CAS(6e, 6o) is thus the

smallest active space that allows for a qualitatively correct treatment of the

bond breaking. We also look at CAS(10e, 8o), which includes the valence 2 s

occupied orbitals in addition to CAS(6e, 6o). This allows a correct description

of the primary 2s-2p relaxation effects during bond breaking.

Table X shows the total energies as a function of bond length rNN using sev-

eral CT methods, as well as those using the HF, FCI, CASSCF, MRMP, CCSD,

and CCSDT methods. Figure 9 plots the energy differences from the FCI results.

TABLE IX

Energy Changes (in millihartree) in the Eight Steps Used in Solving the CT Equationsa

rOH (i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

ccaab ccvvþ cavvþ aavvc ÂA
d

1 ccavþ caavþ aaave

1.0Re �1.38 �43.88 �0.39 þ0.01 þ0.13 �37.11 þ0.00 þ0.00
1.4Re �2.08 �45.41 �1.91 �0.04 þ0.16 �29.98 þ0.05 �0.15
1.8Re �1.08 �44.82 �5.53 �0.19 þ0.59 �19.61 �1.88 �4.90
2.2Re �0.40 �43.16 �9.85 �0.27 þ0.80 �10.67 �0.50 �1.35
3.8Re �0.00 �41.05 �14.12 �0.29 þ0.95 �5.48 þ0.00 þ0.04
aValues are from CASSCF(6e, 5o)/L-CTSD calculations with NOs for the H2O molecule with 6-31G

basis sets.
bStep (i) solves the equations for ccaa.
cSteps (ii)–(iv) solve the equations for ccvv, cavv, and aavv.
dStep (v) solves the equations for one-particle operators.
eSteps (vi)–(viii) solve the equations for ccav, caav, and aaav.
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Comparing the different methods we see once again that the CASSCF/L-CTD

method yields the most accurate description of the potential energy curve out of

all the theories. The error at equilibrium (5.99 mEh) is better than that of CCSD

(11.03 mEh) and once again this error stays roughly constant across the curve,

while that of the CC-based approaches exhibit a nonphysical turnover. For com-

parison, the MRMP error at equilibrium is 15.41 mEh. The nonparallelity errors

for CASSCF/L-CTD and MRMP are 8.9 and 8.3 mEh, respectively, demonstrat-

ing again that CASSCF/L-CTD yields quantitatively accurate curves with NPEs

competitive with that of MRMP theory.

A source of error in the CASSCF(6e, 6o)-based methods is an incomplete

treatment of the active–core relaxation. Although some effects of active–core

relaxation are incorporated via the exponential operator in the CT calculations,

this is incomplete due to the truncation of some operators in the ccaa class as

explained in Section III.C. Comparing CAS(10e, 8o) with CAS(6e, 6o) shows us

the effects of the truncation. At the equilibrium structure (rNN ¼ 1:15A), we
observe that the L-CTSD energy with CAS(6e, 6o) is 3.5 mEh higher than

that with CAS(10e, 8o). For comparison, the MRMP energy with CAS(6e, 6o)

is 6.7 mEh higher that that with CAS(10e, 8o). Thus the truncated ccaa operators
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Figure 9. Energies differences (E � E (FCI) for the bond breaking curve of the N2 molecule

with 6-31G basis sets.
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capture much, but not all, of the active–core relaxation. In the region far from the

equilibrium structure, the discrepancy in energies between the two types of CAS

disappears, as the active–core relaxation is less important.

In the nitrogen molecule, we found no significant difference in the CT ener-

gies between using NOs and canonical CAS orbitals over the potential curve,

unlike in the H2O case. However, it is still important to optimize the orbitals,

as the CASCI-based L-CTD does not yield a correct potential curve. Finally,

as in the water calculations, the L-CTSD(2) approximation recovers most of

L-CTSD correlation energy across the potential energy curve.

C. Comparison with MR-CISD and MR-LCCM on the Two-Configuration

Reference Insertion of Be in H2 Molecule

Several authors have studied the insertion of Be in H2 as an example of a true

two-configuration multireference problem [21, 29, 61]. Laidig and Bartlett pre-

sented a multireference coupled-cluster method, which they called MR-LCCM,

in which they applied a linearized form of coupled-cluster theory to a two-

configuration reference [61]. Table XI shows the multireference results obtained

in that work using the MR-LCCM and multireference configuration interaction

(MR-CISD) methods at three structures in the C2v insertion of Be into H2. The

details of multiconfigurational MR-CISD and MR-LCCM calculations are

described in Ref. [61]. For comparison, the corresponding CASSCF-based line-

arized CT calculations with the same Gaussian basis set are also presented.

Figure 10 plots the total energies.

Comparing the different calculations, we see that MR-LCCM generally over-

estimates the correlation energy, while MR-CISD generally underestimates

the correlation energy. The CASSCF/L-CTD method yields the best energies

out of all the methods, at all points, with a maximum absolute error of 1.23

mEh. In agreement with our previous findings, the CASSCF/L-CTSD method

is less accurate, with a maximum error of 4.86 mEh. The nonparallelity errors

are 2.0 mEh (CASSCF/L-CTD), 2.2 mEh (MR-CISD), and 3.1 mEh (MR-

LCCM). From this (admittedly small) sample of results, we can say that the

CASSCF/L-CTD theory outperforms both the MR-LCCM and MR-CISD

methods.

D. Single- and Multireference Linearized CT for HF and BH Molecules

We have so far examined the performance of the canonical transformation theory

when paired with a suitable multireference wavefunction, such as the CASSCF

wavefunction. As we have argued, because the exponential operator describes

dynamic correlation, this hybrid approach is the way in which the theory is

intended to be used in general bonding situations. However, we can also examine

the behavior of the single-reference version of the theory (i.e., using a Hartree–

Fock reference). In this way, we can compare in detail with the related
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single-reference coupled-cluster theory, and make contact with the perturbative

analysis of the cumulant decomposition in Section II.D.

In Tables XII and XIII we present calculations using single-reference linear-

ized (HF/CTD) and (HF/CTSD) theories on several geometries of the HF and

BH molecules. Note the HF/CTD theory does not include any semi-internal

two-particle excitations, since the active space is completely occupied. The

results of calculations using both standard CC theories (CCSD, CCSDT, and

linearized CCSD), as well as two alternative coupled-cluster theories, called

the expectation value CC (XCC) method and the unitary CC (UCC) method

(introduced in Refs. [33, 49, 61]), are also shown. The CC energies were

obtained from Ref. [33]. CASSCF/L-CTD and CASSCF/L-CTSD calculations

are presented for comparison. All calculations used the Dunning DZP basis

sets and the geometries described in Ref. [33].

In both the HF molecule and BH molecules, the HF/L-CTSD and HF/L-CTD

theories give energies comparable to CCSD at the equilibrium geometry. How-

ever, as the bond is stretched, they both display significantly increased errors,

typical of a single-reference theory. At stretched geometries, the errors of the

HF/L-CTSD method are worse than those of CCSD and comparable to those

of the linearized CCSD theory.

The perturbative analysis in Section II.D showed that single-referenceL-CTSD is

exact through third order in the fluctuation potential, much like L-CCSD theory, and

our results are consistent with this analysis. This suggests that one of the things we
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Figure 10. Plots of total energies of BeH2 (
1A1 state) at three structures.
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can do to improve the linearized CT results would be to treat properly some of the

higher-order particle terms inE4 (seeEq. (32)),which the present linearized theories

approximate using the cumulant expansion. The importance of these high-order

terms is lessened with a multireference starting point, as illustrated by the

CASSCF/L-CTSD and CASSCF/L-CTD results, where even a very small active

space restores the correct quantitative behavior across the entire potential energy

curve, aswehave found in our earlier calculations. Further information on the cumu-

lant decomposition can be obtained by recalculating our CASSCF/L-CTD results

using a more approximate expansion, where the two-particle reduced density

matrices in Eq. (23) are replaced by their one-particle cumulant expansion

(hcyi cyj ckcli ) 1
4
½hcyi cli ^ hcyj cki � hcykcli ^ hcyj cli�). In this way, we would be char-

acterizing the reference state by its one-particle density matrix alone. Results from

these calculations are presented in the last columnofTableXII.Herewe observe that

the one-particle reduced densitymatrix provides a goodcharacterization of the refer-

ence state at equilibrium, but, as we expect, this description becomes progressively

worse as the bond is stretched.

V. CONCLUSIONS

We have proposed a canonical transformation (CT) theory to describe dynamic

correlation in bonding situations where there is also significant nondynamic

TABLE XII

Energy Differences E � E(FCI) for the HF Molecule (Units Are mEh)
a

Method

Reference

CAS

rHF Orbitals HF CCSDb CCSDTb L-CCSD XCCSD(4) XCC(4)b UCCSD(4) UCC(4)b

1.0Rc
e 203.88 3.01 0.26 0.81 2.65 �0.38 0.96 �4.11

1.5Re 227.17 5.10 0.65 �2.45 4.62 �0.51 2.25 �3.00
2.0Re 263.54 10.18 1.12 �47.34 8.60 �3.00 8.51 �2.69

Method L-CTSD L-CTD d-CT-Dd d-CT-Dd

Reference CASSCF CASSCF CASSCF d-CASSCFd

CAS L-CTSD L-CTD CASSCF (2e, 2o) (2e, 2o) [2e, 2o] d-CASSCFd [2e, 2o]

rHF Orbitals HF HF (2e, 2o) NOs NOs NOs [2e, 2o] NOs

1.0Re 2.87 0.46 180.78 1.67 2.01 0.41 201.93 �1.18
1.5Re 7.00 0.66 173.97 1.85 2.30 �8.37 197.99 �10.71
2.0Re 11.93 3.59 160.12 �0.93 1.42 20.85 179.52 �21.95
aFCI energy:Eð1:0ReÞ¼�100:250 97Eh, Eð1:5ReÞ ¼ �100:160 39Eh, and Eð2:0ReÞ¼�100:081 11 Eh.
bThe numbers for CCSD, CCSDT, XCC, and UCC are from Ref. [33].
cRe ¼ 1:733 bohr.
dNatural orbitals are used. The 2-RDM is then decomposed into the 1-RDM through the cumulant

expansion.
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character. By pairing this theory with a suitable multireference description of the

nondynamic correlation, such as provided by the CASSCF wavefunction, we

have obtained consistently quantitative descriptions for a variety of molecules

over a wide range of different geometries. The best-performing method we

have found is the linearized CT with doubles model with a CASSCF reference

(CASSCF/L-CTD). Using this method, the accuracy obtained is comparable to

or better than that of CCSD theory in the equilibrium region of a potential

energy curve, but unlike in coupled-cluster theories, this accuracy persists all

the way out to bond dissociation. The CASSCF/L-CTD nonparallelity errors

are competitive with, or better than, those obtained with multireference

perturbation theory.

In addition to the encouraging numerical results, the canonical transformation

theory has a number of appealing formal features. It is based on a unitary expo-

nential and is therefore a Hermitian theory; it is size-consistent; and it has a cost

comparable to that of single-reference coupled-cluster theory. Cumulants are

used in two places in the theory: to close the commutator expansion of the

unitary exponential, and to decouple the complexity of the multireference wave-

function from the treatment of dynamic correlation.

There are a number of clear areas where the current theory can be improved.

First, our perturbative analysis demonstrates that the linearized CT method used

here is an approximation to a ‘‘full’’ CT theory, since it neglects certain higher-

order terms, in much the same way that linearized coupled-cluster theory

neglects certain terms in the full coupled-cluster equations. This may be reme-

died by including additional classes of operators into our effective Hamiltonian.

For example, by retaining the diagonal four-particle operator ninjnknl (where n

denotes a number operator), we obtain an improved CTSD theory that is accu-

rate through the same order of single-reference perturbation theory as CCSD

theory. In addition, the numerical solution of the CT equations is currently chal-

lenging due to the presence of low-energy intruder excitations and degeneracy in

the excitation manifold. Here, we note that CASSCF theories also suffered from

convergence problems before the development of sophisticated second-order

convergence techniques, and we can incorporate these modern algorithms into

our CT calculations.

Building on the investigations in this work, we can imagine many generaliza-

tions and applications of the CT theory. Excited states are well accommodated

within the theoretical framework. There will be the choice of performing single-

state or state-averaged calculations. In the latter case, a single effective Hamil-

tonian using an average of the density matrices from several states would be con-

structed, much in the same spirit as state-averaged CASSCF. State-averaged CT

calculations would also provide a starting point for deriving model effective

Hamiltonian parameters (which need to be appropriate to multiple bonding

situations), which could then be reused independently of the initial nondynamic
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calculation. The ability to describe dynamic correlation in a cleanly separated

fashion from nondynamic correlation also opens up the possibility of reduced

scaling theories of dynamic correlation out of an active-space reference. For a

suitably complete active space, this would avoid problems of orbital localization

in the reference, and furthermore we would expect the correlation length asso-

ciated with the remaining dynamic contributions to be quite short. Finally, CT

theory is naturally linked to time-dependent theories, as the time-evolution

operator is itself a canonical transformation. Here, the cumulant decompositions

used in CT theory will be useful in reducing the complexity of the time-

dependent description of many-body electron dynamics.
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I. INTRODUCTION

In the last few years, the improvements in computer hardware and software have

allowed the simulation of molecules and materials with an increasing number of

atoms. However, the most accurate electronic structure methods based on N-

particle wavefunctions, for example, the configuration interaction (CI) method

or the coupled-cluster (CC) method, are computationally too expensive to be

applied to large systems. There is a great need for treatments of electron correla-

tion that scale favorably with the number of electrons.

As discussed in previous chapters of this book, since the interactions between

electrons are pairwise within the Hamiltonian, the energy may be determined

exactly from a knowledge of the two-particle reduced density matrix

(2-RDM) 2D. The 2-RDM carries all the relevant information if one is interested

in expectation values of one- and two-particle operators. In this manner, the

N-particle dependence can be avoided given that the 2-RDM is a much more

economic storage of information. There remains, however, the long standing

problem that not every 2-RDM is derivable from an N-particle wavefunction

(the N-representability problem) [1]. As we have seen in the last few chapters,

realistic variational 2-RDM calculations have recently become possible through

the use of both the contracted Schrödinger equation and the optimization tech-

niques known as semidefinite programming. Nevertheless, even the best first-

order algorithms of semidefinite programming scale as r6, where r is the rank

of the one-electron basis set.

In 1964, Hohenberg and Kohn (HK) [2] demonstrated that the ground-state

energy could be expressed as a functional of the one-electron density r only.

This result led to density functional theory (DFT) [3], which has become very

popular thanks to its relatively low computational cost. Practical implementa-

tions of DFT are based mainly on the formulation of Kohn–Sham (KS) [4], in

which the kinetic energy is not constructed as a functional of r but rather from

an auxiliary Slater determinant. Since the noninteracting kinetic energy differs

from the many-body kinetic energy, there is a contribution from a part of the

kinetic energy contained in the correlation potential. This correlation kinetic

energy is the main source of problems of present-day KS functionals.

It seems that there is no N-representability problem since the conditions that

ensure that a one-particle density comes from an N-particle wavefunction are

well known [5]. Here, the obstacle is the construction of the functional E [r]
capable of describing a quantum mechanical N-electron system. This functional

N-representability is still related to the N-representability problem of the

2-RDM. Many currently available functionals are not N-representable [6]. Con-

sequently, the energies produced by these functionals can lie below the exact

value. Even though these energy values may lie quite close to the exact ones,

they do not guarantee, however, that the calculations are accurate.
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Another drawback of the most popular correlation functionals is that they

exhibit an incorrect behavior for N-electron atoms as the nuclear charge Z

increases [7]. Recently, the accuracy of DFT has been improved by using

approximations constructed to satisfy exact constraints on the exchange-correla-

tion energy functional [8]. Despite the great success achieved for high-Z atomic

ions with density functionals of this new generation, they cannot as yet ade-

quately describe highly degenerate systems [9]. This corroborates the fact that

KS functionals are better suited for describing dynamic correlation due to the

short-range interelectronic repulsion than static correlation due to near degener-

acy effects. The inability of approximate density functionals to account for the

dispersion interactions constitutes a serious drawback. The density functional for

the correlation kinetic energy remains unknown and how important it is for the

dynamics of chemical reactions is an open question [9].

A direction for improving DFT lies in the development of a functional theory

based on the one-particle reduced density matrix (1-RDM) 1D rather than on the

one-electron density r. Like 2-RDM, the 1-RDM is a much simpler object than

the N-particle wavefunction, but the ensemble N-representability conditions that

have to be imposed on variations of 1D are well known [1]. The existence [10]

and properties [11] of the total energy functional of the 1-RDM are well estab-

lished. Its development may be greatly aided by imposition of multiple con-

straints that are more strict and abundant than their DFT counterparts [12, 13].

The major advantage of a 1-RDM formulation is that the kinetic energy is

explicitly defined and does not require the construction of a functional. The

unknown functional in a 1D-based theory only needs to incorporate electron cor-

relation. It does not rely on the concept of a fictitious noninteracting system.

Consequently, the 1D scheme is not expected to suffer from the above mentioned

limitations of KS methods. In fact, the correlation energy in 1-RDM theory

scales homogeneously in contrast to the scaling properties of the correlation

term in DFT [14]. Moreover, the 1-RDM completely determines the natural orbi-

tals (NOs) and their occupation numbers (ONs). Accordingly, the 1D functional

incorporates fractional ONs in a natural way, which should provide a correct

description of both dynamical and nondynamical correlation.

II. GROUNDWORK TOWARD A 1D-FUNCTIONAL THEORY

The idea of a 1-RDM functional appeared some decades ago. At the commence-

ment, the main effort was focused on the existence of this functional. In 1974,

Gilbert proved the analog of the Hohenberg–Kohn (HK) theorem for the

1-RDMs including nonlocal external potentials [15]. Berrondo and Goscinski

[16] added a nonlocal external potential to the Hamiltonian and obtained a var-

iational principle involving the 1-RDM for a local external potential by eliminat-

ing the nonlocal external source. Donnelly and Parr [17] proved that the
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existence was already implied in the original HK theorem. They discussed

extensively the properties of this energy functional and derived the Euler

equations associated with the exact ground state [17, 18].

In 1979, an elegant proof of the existence was provided by Levy [10]. He

demonstrated that the universal variational functional for the electron–electron

repulsion energy of an N-representable trial 1-RDM can be obtained by search-

ing all antisymmetric wavefunctions that yield a fixed 1D. It was shown that

the functional does not require that a trial function for a variational calculation

be associated with a ground state of some external potential. Thus the

v-representability is not required, only N-representability. As a result, the

1-RDM functional theories of preceding works were unified. Ayear later, Valone

[19] extended Levy’s pure-state constrained search to include all ensem-

ble representable 1-RDMs. He demonstrated that no new constraints are needed

in the occupation-number variation of the energy functional. Diverse con-

strained-search density functionals by Lieb [20, 21] also afforded insight into

this issue. He proved independently that the constrained minimizations exist.

It is well known that the exact electronic energy can also be given explicitly

in terms of the spinless 1-RDM and the two-particle charge density (2-CD). This

suggests an alternative viewpoint regarding 1D-functional theory. One could

employ the exact functional but with an approximate 2-CD that is built from
1D using a reconstruction functional 2D[1D]. Perhaps the first explicit approxi-

mate relation between 2D and 1D containing one free parameter was that pro-

posed by Müller in 1984 [22]. The case where the parameter was set to 1
2
was

discussed years later by Buijse [23], who performed self-consistent calculations

for the H2 molecule.

Zumbach and Maschke [24] discussed the 1D functional using ensemble

search. They derived the set of self-consistent equations that include the eigen-

values of the 1-RDM, and clarified Gilbert’s relation between these eigenvalues

and the chemical potential. Ludeña et al. [25] considered alternatively a varia-

tional procedure with built-in pure-state N-representability conditions. The N-

representability of the 1-RDM was accomplished by taking into account the con-

ditions for the mapping of the nth-order density operator into a given 1D. They
arrived at Valone’s result: the problem of obtaining a pure-state N-representable

1-RDM requires only the known ensemble constraints, if the proper functional is

known.

Levy identified the unknown part of the exact universal 1D functional as the

correlation energy Ec[
1D] and investigated a number of properties of Ec[

1D],

including scaling, bounds, convexity, and asymptotic behavior [11]. He

suggested approximate explicit forms for Ec[
1D] for computational purposes

as well. Redondo presented a density-matrix formulation of several ab initio

methods [26]. His generalization of the HK theorem followed closely Levy’s
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demonstration of a 1-RDM functional. López-Sandoval and Pastor [27] investi-

gated Levy’s functional Ec[
1D] on lattice models.

Valdemoro [28] achieved a close approximation to the 2-RDM by using the

anticommutating relation of fermion operators, or what is equivalent, the

N-representability conditions. This work indicated that the development of

1-RDM functional theories should be couched in terms of explicitly antisym-

metric reconstructions of the 2-RDM.

More recently, a renewed interest has appeared in the literature. An approx-

imate exchange-correlation functional based on the diagonal elements of 1D and

(1D)2 was proposed by Carlsson [29]. This functional was derived within tight-

binding theory and used successfully in simple model calculations of several

physical properties. Klein and Dreizler [30] developed a correlated 1-RDM

theory with close connections to DFT perturbation theory. They derived

formulas for first-order corrections to the Hartree–Fock (HF) 1-RDM and wrote

down a formally exact expression for the correlation energy by using the linked-

cluster expansion. Cioslowski and Lopez-Boada obtained by application of the

hypervirial theorem an approximate functional of the HF 1-RDM in terms of

three-electron integrals and an unknown screening function [31]. Their for-

malism incorporated dispersion effects and yielded two distinct asymptotics of

the correlation energy of atoms and monoatomic ions at the limit of a large

nuclear charge. Nooijen explored the possibility of using Green’s functions

and the extended Koopman’s theorem (EKT) [32, 33] to arrive at a 1-RDM

formulation [34].

The 1-RDM functional is called natural orbital functional (NOF) when it is

based on the spectral expansion of 1D. The first parameter-free NOF constructed

and tested on real physical systems is probably the one by Goedecker and

Umrigar (GU) [35]. The basic form of this functional can be traced to Müller

[22] but self-interaction corrected. The GU functional considering diagonal terms

coincides with the Buijse and Baerends (BB) reconstruction [23, 36]. By opti-

mizing typically 50 NOs and ONs for a variety of atoms and ions, it was found

that the GU functional yielded energies and densities that were comparable to or

better than those from the generalized-gradient approximation (GGA) in the DFT.

The GU functional does not suffer from dissociation problems. It satisfies the

Hermiticity and particle permutation conditions but violates the nonnegativity

condition for the diagonal elements of the 2-RDM. Moreover, the GU functional

gives a wrong description of the ONs for the lower occupied levels and overes-

timates correlation effects in jellium at intermediate and high densities.

Following these first encouraging numerical results, several authors suggested

new approximations to the 1-RDM functional. Holas [37] and Cioslowski and

Pernal [38] proposed different generalizations of GU functional. These func-

tionals were analyzed in detail from the perspective of the homogeneous electron
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gas (HEG) [39]. Csanyi and Arias (CA) [40] proposed another functional from

the condition that the two-matrix is a tensor product of one-particle operators

and that it satisfies the Hermiticity and particle-permutation constraints. Unfor-

tunately, the CA functional gives almost vanishing correlation energies in

contrast to the GU functional. Expressions for the second-order energy varia-

tions in the 1-RDM theory were derived, resulting in a formalism for time-

independent response properties and stability conditions [41]. The derivatives

of the electronic energy with respect to the number of electrons were found to

be very sensitive to the used 1D functional.

Another route to construction of the approximate 1-RDM functional involves

employment of expressions for E and 1D afforded by some size-consistent form-

alism of electronic structure theory. Mazziotti [42] proposed a geminal func-

tional theory (GFT) where an antisymmetric two-particle function (geminal)

serves as the fundamental parameter. The one-matrix-geminal relationship

allowed him to define a 1D-based theory from GFT [43]. He generalized Levy’s

constrained search to optimize the universal functionals with respect to 2-RDMs

rather than wavefunctions.

Csanyi and Arias [40] classified the above mentioned NOFs into two types:

corrected Hartree (CH) and corrected Hartree–Fock (CHF). The performance of

CH and CHF approximations in molecular calculations was investigated, taking

molecules H2, Li2, and LiH as examples [44]. A 1D-based functional combining

the properties of the CH and CHF approximations was also proposed [45]. An

improved CHF-type functional leading to better results for the free-electron gas

was suggested too [46]. The 2-CDs, intraculate and extraculate densities,

N-representability, and variational stability obtained with reconstruction func-

tionals 2D[1D] that yield these 1D-based theories were investigated in detail [47].

The CA functional is similar to the Hartree–Fock-Bogoliubov (HFB) energy

expression but differs by the sign of the post-HF correction term [48]. Existence

of an HFB-type 1-RDM for systems with repulsive interactions was anticipated

by other authors [49]. Different HFB-like functionals were proposed before for

describing electronic structure [50–54].

Yasuda [55] obtained a correlation energy functional Ec[
1D] from the first-

and second-order density equations together with the decoupling approximations

for the 3- and 4-reduced density matrices. The Yasuda functional is capable of

properly describing a high-density HEG [56] and encouraging results were

reported for atoms and molecules [55]. Some shortcomings of this functional

were also pointed out [57].

Piris and Otto (PO) achieved a reconstruction functional 2D[1D] satisfying the

most general properties of the 2-RDM [58]. They kept the spin structure from

Refs. [52, 53], but introduced a new spatial dependence in the correction term

of the 2-RDM. Calculated values for polarizabilities [59], ionization energies,

equilibrium geometries, and vibrational frequencies [60] in molecules were
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obtained. An extension of this functional to periodic polymers was also consid-

ered [61]. In this line of constructing the 2-RDM from formal criteria, Kollmar

and Hess [62] obtained an implicit functional where the elements of an idempo-

tent matrix were used as variational parameters. The first application of the

1-RDM functional theory to open-shell molecular systems was presented using

the PO functional [60]. Recently, an open-shell formulation of the GU functional

considering spin-dependent ONs was applied to the first-row atoms [63]. This

approach conserves the z component, but not the total spin. A study of the

partitioning of the 1-RDM according to the theory of atoms in molecules has

been reported too [64].

An extension of the antisymmetrized product of strongly orthogonal geminals

(APSG) theory provided a ‘‘JK-only’’ expression for the electron–electron repul-

sion energy Vee of a closed-shell system [65]. An implicit NOF involving pair-

excitation coefficients instead of the ONs was proposed by Kollmar and Hess

[66]. They considered a size-consistent extension of a limited multiconfiguration

self-consistent-field wavefunction taking into account only pair excitations

(PEMCSCF). In the case of four-electron systems, an approximate expression

for Vee was proposed [67] using a permanent-based parameterization of coeffi-

cients in a pair-excitation configuration interaction (CI) expansion. Moreover, a

particular parameterization of coefficients in a CI expansion led to an explicit

functional in terms of the Coulomb and exchange integrals over NOs, and an

idempotent matrix, whose diagonal elements equal the ONs [68]. The obtained

functional cannot, however, be employed in practical calculations due to the

necessity to carry out minimizations over a large number of possible combina-

tions of CI coefficient signs (phase dilemma). The size and volume extensivity of

such functionals has also been analyzed by applying them to the HEG [69]. A

JK-only 1-RDM functional starting from the PEMCSCF method and using

necessary N-representability conditions for the 2-RDM has recently been

derived [70]. This functional gives a small fraction of the total correlation energy

for the water molecule at the equilibrium distance, indicating that the accuracy

of the JK-only functional form may be limited. Nevertheless, two new JK-only

approximations that recover a reasonable fraction of the total correlation energy

at the equilibrium geometries have recently been proposed.

Gritsenko et al. [71] have introduced several physical motivated repulsive

corrections to the BB functional (BBC). With these corrections, they improved

the quality of the BB potential energy curves for prototype few-electron mole-

cules and with BBC3 the average error of correlation energies for atomic sys-

tems at the equilibrium geometry was only 6%. The ionization potentials

produced by the GU and BBC functionals have also been investigated [72] using

the EKT.

Piris [73] has recently proposed an explicit form for the cumulant [74, 75] of

the 2-RDM in terms of two symmetric matrices, D and K. The suggested form of
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these matrices (as functions of the ONs) produces a NOF that reduces to the

exact expression for the total energy in two-electron closed-shell systems

[76, 77]. One can generalize it to the N-electron systems, except for the off-

diagonal elements of D. Alternatively, the mean value theorem and the partial

sum rule for matrix D provided a prescription for deriving a practical NOF.

An assessment of this practical functional in molecules for calculating molecular

properties, namely, polarizabilities [78], equilibrium bond distances, harmonic

vibrational frequencies, and vertical and adiabatic ionization potentials [79],

has been performed. An extension of this functional to open-shell systems has

also been considered [80].

We continue this chapter with a presentation of the basic concepts and nota-

tions relevant to 1D-functional theory (Section III). We then review the funda-

ments of the NOF theory (Section IV) and derive the corresponding Euler

equations (Section V). The Gilbert [15] and Pernal [81] formulations, as well

as the relation of Euler equations with the EKT, are considered here. The follow-

ing sections are devoted to presenting our NOF theory. The cumulant of the 2-

RDM is discussed in detail in Section VI. The spin-restricted formulations

for closed and open-shells are analyzed in Sections VII and VIII, respectively.

Section IX is dedicated to our further simplification in order to achieve a

practical functional. In Section X, we briefly describe the implementation the

NOF theory for numerical calculations. We end with some results for selected

molecules (Section XI).

III. 1- AND 2-REDUCED DENSITY MATRICES

The electronic energy E for N-electron systems is an exactly and explicitly

known functional of the 1- and 2-RDMs. The energy expression in spin-orbital

(SO) representation is given by

E ¼
X
ik

1Di
kh

k
i þ

X
ijkl

2D
ij
klhkljiji ð1Þ

where hki are the one-electron matrix elements of the core Hamiltonian,

hki ¼
Z

dxf�kðxÞ �
1

2
r2 �

X
I

ZI

jr� rI j

" #
fiðxÞ ð2Þ

and hkljiji are the two-electron integrals of the Coulomb interaction,

hkljiji ¼
Z

dx1 dx2 f
�
kðx1Þf�l ðx2Þr�112 fiðx1Þfjðx2Þ ð3Þ
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Atomic units are used. Here and in the following x � ðr; sÞ stands for the

combined spatial and spin coordinates, r and s, respectively. The SOs ffiðxÞg
constitute a complete orthonormal set of single-particle functions,

hfkjfii ¼
Z

dxf�kðxÞfiðxÞ ¼ dki ð4Þ

with an obvious meaning of the Kronecker delta dki . Every normalizable function

fðxÞ of a single coordinate x may be expanded in the form

fðxÞ ¼
X
i

fiðxÞci; ci ¼
Z

dxf�i ðxÞfðxÞ ð5Þ

We employ Löwdin’s normalization convention [82] in which the trace of the

1-RDM equals the number of electrons,

Tr 1D ¼
X
i

1 Di
i ¼ N ð6Þ

and the trace of the 2-RDM gives the number of electron pairs in the system,

Tr 2D ¼
X
ik

2Dii
kk ¼

NðN � 1Þ
2

¼ N

2

� �
ð7Þ

The 1- and 2-RDMs can be obtained in the coordinate-space representation

via the expansion theorem:

1Dðx01jx1Þ ¼
X
ik

1Di
kf
�
i ðx01Þfkðx1Þ ð8Þ

2Dðx01; x02jx1; x2Þ ¼
X
ijkl

2D
ij
klf
�
i ðx01Þf�j ðx02Þfkðx1Þflðx2Þ ð9Þ

The diagonal elements of 1D and 2D are always nonnegative, since 1Dðx1jx1Þ
is related to the probability of finding one electron at x1, and

2Dðx1; x2jx1; x2Þ is
related to the probability of finding one electron at x1 and another at x2. The

diagonal elements 1Di
i and

2Dii
kk may be interpreted analogously: 1Di

i is related

to the probability of finding one electron in the spin orbital i when all the other

electrons occupy arbitrary spin orbitals, 2Dii
kk is related to the probability of find-

ing one electron in the spin orbital i and another in the spin orbital k, when all

other particles may occupy arbitrary spin orbitals.

As discussed in preceding chapters of this book, the 2-RDM is Hermitian:

2Dðx01; x02jx1; x2Þ ¼ 2D�ðx1; x2jx01; x02Þ ½2Dij
kl ¼ ð2Dkl

ij Þ�� ð10Þ
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It is antisymmetric in each set of indices,

2Dðx01; x02jx1; x2Þ ¼ �2Dðx01; x02jx2; x1Þ ð2Dij
kl ¼ �2D

ij
lkÞ ð11Þ

2Dðx01; x02jx1; x2Þ ¼ �2Dðx02; x01jx1; x2Þ ð2Dij
kl ¼ �2D

ji
klÞ ð12Þ

and symmetric with respect to particle permutation,

2Dðx01; x02jx1; x2Þ ¼ 2Dðx02; x01jx2; x1Þ ð2Dij
kl ¼ 2D

ji
lkÞ ð13Þ

There is an important contraction relation between 1- and 2-RDMs that is in

agreement with the previous normalization,

1Dðx01jx1Þ ¼
2

N � 1

Z
dx 2Dðx01; xjx1; xÞ 1Di

k ¼
2

N � 1

X
j

2 D
ij
kj

 !
ð14Þ

This implies that the energy functional (1) is just of the 2-RDM, because 2D

determines 1D. However, attempts to determine the energy by minimizing E[2D]

are complicated due to the lack of a simple set of necessary and sufficient con-

ditions for ensuring that the two-matrix corresponds to an N-particle wavefunc-

tion (the N-representability problem) [1]. Nevertheless, some necessary

conditions have been derived (see Chapter 9). The so called D-condition is

equivalent to the requirement that the 2-RDM be positive semidefinite

(2D � 0). This constraint prevents the probability distribution for finding two

particles in two SOs from being anywhere negative. The G- and Q-conditions

state that the electron–hole density matrix G and the two-hole density matrix

Q must be positive semidefinite too. The constraint G � 0 (Q � 0) enforces

likewise this nonnegativity for a particle and a hole (two holes).

A. Spin Structure

The N-electron Hamiltonian bHH corresponding to the expectation value in Eq. (1)

does not contain any spin coordinates; hence both operators bSSz and bSS2 commute

with bHH. Consequently, the eigenfunctions of the Hamiltonian are also eigenfunc-

tions of these two spin operators. In particular, according to Löwdin’s expres-

sions [82], we have

hbSSzi ¼ Z dx1 bSSz1Dðr1s1jr1s1Þ ¼ MS ð15Þ

hbSS2i ¼ �NðN � 4Þ
4

þ
Z

dx1 dx2
2Dðr1s1; r2s2jr1s2; r2s1Þ ¼ SðSþ 1Þ ð16Þ
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where MS and S are the spin quantum numbers describing the z component and

the total spin of an N-electron eigenstate. A state with total spin S has multipli-

city ð2Sþ 1Þ.
The SOs are direct products jfii ¼ jjpi 
 jsi, so the set of SOs ffiðxÞg may

be split into two subsets: fja
pðrÞaðsÞg and fjb

pðrÞbðsÞg. Given a set of 2R spin

orbitals ffiji ¼ 1; . . . ; 2Rg, we have two sets of R orthonormal spatial functions,

fja
pðrÞg and fjb

pðrÞg, such that in general the first set is not orthogonal to the

second one. Nevertheless, the original set

f2p�1ðxÞ ¼ ja
pðrÞaðsÞ; p ¼ 1; . . . ;R

f2pðxÞ ¼ jb
pðrÞbðsÞ; p ¼ 1; . . . ;R

ð17Þ

continues being orthonormal via the orthogonality of the spin functionsZ
ds a�ðsÞbðsÞ ¼

Z
ds b�ðsÞaðsÞ ¼ 0 ð18Þ

For bSSz eigenstates, only density matrix blocks that conserve the number of

each spin type are nonvanishing. It is easily seen that two components of the

1-RDM, namely, 1Da
b and 1Db

a ; must vanish. One obtains

1Dðx01jx1Þ ¼ 1Da
aðr01jr1Þa�ðs01Þaðs1Þ þ 1D

b
bðr01jr1Þb�ðs01Þbðs1Þ ð19Þ

From Eq. (15), considering the normalization condition for the 1-RDM (Eq.

(6)), it then follows that

hbSSzi ¼ Z dr1Qzðr1jr1Þ ¼ Na � Nb

2
¼ MS ð20Þ

where Ns is the number of electrons with s spin and Qzðr1jr1Þ represents the

spin density [83],

Qzðr1jr1Þ ¼ 1
2
½1Da

aðr1jr1Þ � 1D
b
bðr1jr1Þ� ð21Þ

On the other hand, the 2-RDM generally has 16 spin blocks. As a result of the

requirement msð1Þ þ msð2Þ ¼ msð10Þ þ msð20Þ for bSSz eigenstates, only six spin

components are nonzero. Expanding the 2-RDM by spin components, we have

2Dðx01; x02jx1; x2Þ ¼ ð2Daa
aaÞa�a�aaþ ð2Dab

abÞa�b�abþ ð2Dba
baÞb�a�ba

þ ð2Dab
baÞa�b�baþ ð2Dba

abÞb�a�abþ ð2Dbb
bbÞb�b�bb

ð22Þ
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In fact only three of these components are independent, for example (see

Eq. (11)),

2D
ab
abðr01; r02jr1; r2Þ ¼ �2D

ab
ba ðr01; r02jr2; r1Þ ð2Dpa;qb

ra;tb ¼ �2D
pa;qb
tb;ra Þ ð23Þ

We may take the independent components to be 2Daa
aa,

2D
ab
ab,

2D
bb
bb. The

parallel-spin components must be antisymmetric, but 2D
ab
ab possesses no special

symmetry. Each of these two-matrix blocks must contract to the appropriate one-

matrix block, namely, X
q

2Dps;qs
rs;qs ¼

ðNs � 1Þ
2

1Dps
rs ð24Þ

X
q

2D
pa;qb
ra;qb ¼

Nb

2
1Dpa

ra ð25Þ

It is readily demonstrated that the sum rules (24) and (25) are compatible with

the Eq. (14). The traces of these two-matrix components read

Tr2Dss
ss ¼

NsðNs � 1Þ
2

; Tr2Dab
ab ¼

NaNb

2
ð26Þ

From Eqs. (16) and (22), taking into account the orthonormality conditions in

Eq. (4) for each spin type, one obtains

hbSS2i ¼ �NðN � 4Þ
4

þ
X
pq

ð2Dpa;qa
pa;qa þ 2D

pb;qb
pb;qbÞ � 2

X
pqrt

2D
pa;qb
ra;tb S

pa
tb S

qb
ra ð27Þ

where S
ps
ts0 ¼ hjs

p jjs0
t i is the overlap matrix.

In this chapter, we later consider spin-polarized systems. One avenue of

approach is to apply the spin unrestricted formalism, where SOs have different

spatial orbitals for different spins. However, this procedure can introduce impor-

tant spin contamination effects through the last term of Eq. (27) since the overlap

matrix S
pa
tb 6¼ dpt . These effects can be avoided by the use of spin-restricted

theory. In this case only a single set of orbitals is used for a and b spins,

ja
pðrÞ ¼ jb

pðrÞ ¼ jpðrÞ ð28Þ

The orthonormality requirement (S
pa
tb ¼ dpt ) leads to the expectation value of

the total spin

hbSS2i ¼ �NðN � 4Þ
4

þ
X
pq

ð2Dpa;qa
pa;qa þ 2D

pb;qb
pb;qb � 22D

pa;qb
qa;pbÞ ð29Þ
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By combining Eq. (1) with Eqs. (19) and (22), one arrives at the energy expression

E ¼
X
pr

hrpð1Dpa
ra þ 1D

pb
rbÞ

þ
X
pqrt

hrtjpqið2Dpa;qa
ra;ta þ 2D

pa;qb
ra;tb þ 2D

qa;pb
ta;rb þ 2D

pb;qb
rb;tb Þ

ð30Þ

We must note that the two nonzero blocks 2D
pa;qb
rb;ta and 2D

pb;qa
ra;tb do not contri-

bute to Eq. (30) since the corresponding two-electron matrix elements of the

Coulomb interaction vanish. It is convenient now to introduce spinless density

matrices [83]:

1eDDp
r ¼

X
s

1Dps
rs ¼ 1Dpa

ra þ 1D
pb
rb ð31Þ

2eDDpq
rt ¼ 2Dpa;qa

ra;ta þ 2D
pa;qb
ra;tb þ 2D

pb;qa
rb;ta þ 2D

pb;qb
rb;tb ð32Þ

or in the coordinate-space representation

1eDDðr01jr1Þ ¼ Z ds1
1Dðr01s1jr1s1Þ ¼

X
s

1Ds
sðr01jr1Þ ð33Þ

2eDDðr01r02jr1r2Þ ¼ Z ds1ds2
2Dðr01s1; r02s2jr1s1; r2s2Þ

¼
X
ss0

2Dss0
ss0 ðr01r02jr1r2Þ ð34Þ

The diagonal elements 1eDDðr1jr1Þ and 2eDDðr1r2jr1r2Þ are the electron density

and pair density, respectively. Then Eq. (30) can be rewritten

E ¼
X
pr

1eDDp
rh

r
p þ

X
pqrt

2eDDpq
rt hrtjpqi ð35Þ

IV. NATURAL ORBITAL FUNCTIONAL (NOF)

Let us replace the last term in Eq. (1), which is an explicit functional of the

2-RDM, by an unknown functional of the 1-RDM:

E½N;1 D� ¼ h½N;1 D� þ Vee½N;1 D� ð36Þ

h½N;1 D� is the contribution from the kinetic energy and the external potential,

h½N;1 D� ¼
X
ik

1Di
kh

k
i ð37Þ
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while the electron–electron repulsion energy Vee½N;1 D� constitutes a universal

functional in the sense that it is invariant from one molecule to another for a

given N, and hence it is independent of the external field. The constrained-search

formalism [43] provides a proof by construction of the existence of this func-

tional; in other words, it is given by the expression

Vee½N;1D� ¼ min
2D 22 Dð1DÞU½N;

2D� ð38Þ

where

U½N;2 D� ¼
Z

dx1 dx2
2Dðx1; x2jx1; x2Þr�112 ¼

X
ijkl

2D
ij
klhkljiji ð39Þ

The notation 2Dð1DÞ indicates the family of 2-RDMs that contract to the

1-RDM in agreement with Eq. (14). Restricting the 2-RDM in Eq. (38) to be

pure or ensemble N-representable yields the universal functionals of Levy [10]

and Valone [19], respectively.

The properties of the universal functional Vee are well known [11–13]. More-

over, the exact 1-RDM functional for the two-electron closed-shell systems like

H2 or He is known too [76, 77]. However, Vee is highly difficult to approximate

because what we have done is just to change the variational unknown from the

2-RDM to the 1-RDM, but the 2-RDM N-representability problems remain as

revealed explicitly in Eq. (38).

The 1-RDM can be diagonalized by a unitary transformation of the spin orbi-

tals ffiðxÞg with the eigenvectors being the natural spin orbitals (NSOs) and the

eigenvalues fnig representing the ONs of the latter,

1Di
k ¼ nid

i
k;

1Dðx01jx1Þ ¼
X
i

nif
�
i ðx01Þfiðx1Þ ð40Þ

Restriction of the ONs fnig to the range 0 � ni � 1 represents a necessary

and sufficient condition for N-representability of the 1-RDM [1]. In the follow-

ing, all representations used are assumed to refer to the basis of NSOs. The NO

energy functional (36) reads

E½N; fnig; ffiðxÞg� ¼
X
i

nih
i
i þ Vee½N; fnig; ffiðxÞg� ð41Þ

We may conclude that the 1-RDM and the functional N-representability

problems are entirely different. The former is trivially solved since ONs sum

up to the number of electrons N and lie between 0 and 1, assuring an N-

representable 1-RDM. The latter refers to the conditions that guarantee the
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one-to-one correspondence between E½N;2D� and E½N;1D�, which is a related

problem to the N-representability of the 2-RDM. Consequently, any approxima-

tion for Vee½N; fnig; ffiðxÞg� must comply at least with the known necessary

conditions for the N-representability of the 2-RDM.

V. EULER EQUATIONS

Minimization of the functional (41) has to be performed under the orthonorm-

ality requirement in Eq. (4) for the NSOs, whereas the ONs conform to the N-

representability conditions for 1D. Bounds on the ONs are enforced by setting

ni ¼ cos2 gi and varying gi without constraints. The other two conditions may

easily be taken into account by the method of Lagrange multipliers.

Associate the Lagrange multiplier m (chemical potential) with the normaliza-

tion condition in Eq. (6), the set of Hermitian–Lagrange multipliers flikg with
orthonormality constraints in Eq. (4), and define the auxiliary functional 
 by

the formula


½N; fgig; ffiðxÞg� ¼ E � m
�X

i

cos2 gi � N

�
�
X
ik

likðhfkjfii � dki Þ ð42Þ

The functional (42) has to be stationary with respect to variations in ffiðxÞg,
ff�i ðxÞg, and fgig:

d
 ¼
X
i

sinð2giÞ m� qE
qni

� �
dgi þ

X
i

Z
d x df�i ðxÞ

dE
df�i ðxÞ

�
X
k

lkifkðxÞ
" #

þ
X
i

Z
dx

dE
dfiðxÞ

�
X
k

likf
�
kðxÞ

" #
dfiðxÞ ¼ 0

ð43Þ
The partial derivative

	
qE=qni



is taken holding the orbitals fixed. It satisfies

the relation

qE
qni
¼ hii þ

qVee

qni
¼ m ð44Þ

For a fixed set of occupations, the orbital Euler equations are

nibVVðxÞfiðxÞ ¼
X
k

lkifkðxÞ ð45Þ

where

bVVðxÞ ¼ bhhðxÞ þ 1

nifiðxÞ
dVee

df�i ðxÞ
ð46Þ
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Considering the orthonormality conditions in Eq. (4), the elements of the

Langrangian l read

lki ¼ Vk
i ni ¼ hki ni þ ðgikÞ� ðl ¼ h 1Dþ gyÞ ð47Þ

where the matrix g possesses the elements

gki ¼
Z

dx
dVee

dfkðxÞ
fiðxÞ ð48Þ

A complex conjugated set of equations to Eq. (45) results for ff�i ðxÞg. Simul-

taneous solution of Eqs. (44)–(46) yields the optimum bound on the ground-state

energy.

A. Gilbert Nonlocal Potential

By making use of the Gilbert formal identity [15],

dVee

df�i ðxÞ
¼ nifiðxÞb��eeðxÞ ð49Þ

we may write the orbital Euler equations (45) in a convenient form:

ni½bhhðxÞ þ b��eeðxÞ�fiðxÞ ¼ nibFFðxÞfiðxÞ ¼
X
k

lkifkðxÞ ð50Þ

or in matrix representation

Fk
i ni ¼ lki ; Fk

i ¼ lki n
�1
i ðF 1D ¼ l; F ¼ lð1DÞ�1Þ ð51Þ

in which all matrices are Hermitian for a stationary state. Since the product of

two Hermitian matrices is itself Hermitian if and only if they commute, it fol-

lows that the Hermiticity of l and Eq. (51) are together equivalent to the com-

mutation relations

½F; 1D� ¼ 0; ½l; 1D� ¼ 0 ð52Þ

This implies that the 1-RDM and the Langrangian, l, may be simultaneously

brought to diagonal form by the same unitary transformation U, from which it

follows that

½bhhðxÞ þ b��eeðxÞ�fiðxÞ ¼ lin�1i fiðxÞ ¼ EifiðxÞ ð53Þ

402 mario piris



The canonical orbitals thus satisfy concomitantly Eqs. (44) and (53), so we

then have

ð�eeÞii ¼
qVee

qni
; Ei ¼ li

ni
¼ m ð54Þ

Assuming Eq. (49), this result shows that for canonical NSOs the operator bFF
has an essentially degenerate eigenvalue spectrum; that is, all the NO eigenva-

lues are the same (m) and are equal to minus the vertical IP [84]. Unfortunately,

apart from the special case of the HF energy that may be viewed as the simplest

1-RDM functional, none of the currently known functionals (including the exact

functional for the total energy in two-electron closed-shell systems) have

effective potentials that satisfy the formal relation (49).

B. Relation with the Extended Koopmans’ Theorem

At present, most known NOFs are defined in terms of NOs and ONs being only

implicitly dependent on the 1-RDM. In this case, the energy functional still

depends explicitly on the 2-RDM. As was pointed out by Donnelly [18], there

is a fundamental difference between energy functionals based explicitly on 1-

and on 2-RDMs. Equation (45) for the optimum orbitals is actually Löwdin’s equa-

tion [82]. This equation cannot be reduced to an eigenvalue problem diagonalizing

thematrix l, although by slight manipulation the operator bVVðxÞ can be transformed

into a Hermitian operator with a nondegenerate spectrum of eigenvalues n. Such
construction is provided by extension of Koopmans’ theorem [32, 33].

The equation for theEKT for ionization potentialsmaybederivedby expressing

the wavefunction of the (N � 1)-electron system as a simple linear combination

j�N�1i ¼
X
i

Cibaaij�Ni ð55Þ

In Eq. (55), baai is the annihilation operator for an electron in orbital i, j�Ni is the
wavefunction of theN-electron system, j�N�1i is thewavefunction of the (N � 1)-

electron system, and fCig are a set of coefficients to be determined. Optimizing the

energy of the state �N�1 with respect to the parameters fCig and subtracting the

energy of �N gives the EKT equations as a generalized eigenvalue problem,

TC ¼ n1DC ð56Þ
where n are the EKT ionization potentials. In Eq. (56), the metric matrix is 1D

with the ONs fnig along the diagonal and zeros in off-diagonal elements, and the

transition matrix elements are given by

Tk
i ¼ h�N jbaayk½bHH;baai�j�Ni ¼ �ðnihki þ 2

X
jlm

2D
kj
lmhlmjijiÞ ¼ �Vk

i ni ð57Þ

natural orbital functional theory 403



Equation (56) can be transformed by canonical orthonormalization using

ð1DÞ�1=2. With this transformation it can be written

T0C0 ¼ nC0 ð58Þ

It is now clear from Eqs. (47) and (57) that the diagonalization of the matrix n
with the elements

nki ¼ �
lkiffiffiffiffiffiffiffiffi
nkni
p ð59Þ

yields ionization potentials as eigenvalues [18, 72].

C. Pernal Nonlocal Potential

Let’s return to the problem of finding the optimal nonlocal potential b��ee where
the one-electron functions ffiðxÞg resulting from solving the eigenproblem

bFFðxÞfiðxÞ ¼ ½bhhðxÞ þ b��eeðxÞ�fiðxÞ ¼ EifiðxÞ ð60Þ

satisfy the set of Euler equations (45).

Since the energy is real, the Langrangian l is a Hermitian matrix at the

extremum,

lki � ðlikÞ� ¼ 0 ðl� ly ¼ 0Þ ð61Þ

From Eq. (61), by using Eq. (47), it follows without difficulty that

ðni � nkÞhki þ ðgikÞ� � gki ¼ 0 ð½h;1 D� þ gy � g ¼ 0Þ ð62Þ

This equation can be rewritten as a commutator between F and 1D,

½F;1 D� ¼ ½hþ �ee;
1D� ¼ 0 ð63Þ

if we define the nonlocal potential matrix �ee by the commutation relation,

ðni � nkÞð�eeÞki ¼ ðgikÞ� � gki ð½�ee;1 D� ¼ gy � gÞ ð64Þ

According to Eq. (63), the 1-RDM and the generalized Fockian F commute

at the extremum; hence the NSOs are the solutions of the eigenproblem (60)

with the nonlocal potential defined by the identity (64). One should note, how-

ever, that Eq. (64) does not completely define �ee. In fact, the diagonal elements
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ð�eeÞii and the elements ð�eeÞki corresponding to orbitals of equal ONs (ni ¼ nk)

may be arbitrary.

On the other hand, Eq. (44) must also be satisfied by the optimal set of the

NOs, suggesting that the diagonal elements of b��ee are defined by the formula

ð�eeÞii ¼
qVee

qni
ð65Þ

This selection implies that Ei ¼ m for the optimal 1-RDM (compare with the

Eq. (54)). The Fockian matrix elements are as follows:

Fk
i ¼ hki þ

qVee

qni
dki þ

1� dki
ni � nk

Z
dx f�kðxÞ

dVee

df�i ðxÞ
� dVee

dfkðxÞ
fiðxÞ

� �
ð66Þ

In this manner, we have arrived at the Pernal nonlocal potential [81]. It can be

shown, using the invariance of Vee with respect to an arbitrary unitary transfor-

mation and its extremal properties [13] or by means of the first-order perturba-

tion theory applied to the eigenequation of the 1-RDM [81], that the off-diagonal

elements of b��ee may also be derived via the functional derivative

ð�eeÞki ¼
qVee

q1Di
k

ð67Þ

proposed by Gilbert [15].

The other degree of freedom in defining b��ee related to the degeneracy of the

1-RDM can be avoided with a proper definition of the diagonal part ð�eeÞii (see
Ref. [81]). As a consequence, the NOs with the same ON are determined only up

to the unitary transformation among them.

We conclude that the problem of finding optimal NOs turns into the iterative

diagonalization of Eq. (60) with a Fockian matrix, Eq. (66). The corresponding

eigenfunctions are certainly orthonormal and optimize the total energy

functional, Eq. (41).

VI. CUMULANT OF THE 2-RDM

The 2-RDM formulation, Eq. (38), allows us to generalize the constrained search

to approximately N-representable sets of 2-RDMs. In order to approximate the

unknown functional Vee½N; 1D�, we use here a reconstructive functional 2D½1D�;
that is, we express the elements 2D

ij
kl in terms of the 1Di

k. We neglect any explicit

dependence of 2D on the NOs themselves because the energy functional already

has a strong dependence on the NOs via the one- and two-electron integrals.
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The 2-RDM can be partitioned into an antisymmetrized product of the

1-RDMs, which is simply the HF approximation, and a correction 2C to it,

2D
ij
kl ¼ 1

2
ð1Di

k
1D

j
l � 1D

j
k
1Di

lÞ þ 2�ij
kl ¼

njni

2
ðdikdjl � djkd

i
lÞ þ 2�ij

kl ð68Þ

This decomposition of the 2-RDM is well known from the cumulant theory

(see earlier chapters). 2C is the cumulant matrix of the 2-RDM. Since it arises

from interactions in the Hamiltonian, it might also be called the pair correlation

matrix. This definition of correlation differs from the traditional one since 1D is

the one-matrix of the correlated system and not that corresponding to indepen-

dent particles.

The first two terms on the right-hand side (rhs) of Eq. (68) together satisfy

properties (10)–(13) of the 2-RDM. Therefore the cumulant matrix 2C should

satisfy these relations too. We further see that matrix elements of 2C are non-

vanishing only if all its labels refer to partially occupied NSOs with ON different

from 0 or 1. For a single Slater determinant, the cumulant matrix vanishes.

It is important to note that the 2-RDM is not additively separable (extensive),

but its cumulant matrix 2C satisfies this essential property. Finally, we must note

that the trace of 2C is of OðNÞ; that is, it scales linearly with the size of the

system, while the trace of the corresponding 2-RDM is of OðN2Þ,

Trð2CÞ ¼
X
i

n2i � ni

2
¼ OðNÞ ð69Þ

It can easily be shown from Eqs. (24) and (25), taking into account the nor-

malization condition (6) for each spin type, that spin components of 2C fulfill the

following sum rules:

2
X
q

2�ps;qs
rs;qs ¼ nspðnsp � 1Þdpr ð70ÞX

q

2�pa;qb
ra;qb ¼ 0 ð71Þ

Using Eqs. (31), (32), (40), and (68), the energy, Eq. (35), reads as

E ¼
X
p

ðnap þ nbpÞhpp þ
1

2

X
pq

ðnaq þ nbqÞðnap þ nbpÞJpq

� 1

2

X
pq

ðnaqnap þ nbqn
b
pÞKpq þ

X
pqrt

2e��pq
rt hrtjpqi

ð72Þ
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where Jpq ¼ hpqjpqi and Kpq ¼ hpqjqpi (see Eq. (3) with fiðxÞ replaced by

jpðrÞ) are the usual Coulomb and exchange integrals, respectively. 2e��pq
rt denotes

the spinless cumulant matrix,

2e��pq
rt ¼ 2�pa;qa

ra;ta þ 2�pa;qb
ra;tb þ 2�qa;pb

ta;rb þ 2�pb;qb
rb;tb ð73Þ

Taking into account the sum rule, Eq. (70), the expectation value of bSS2 is like-
wise obtained from Eq. (29),

hbSS2i ¼ Na þ Nb

2
þ ðN

a � NbÞ2
4

�
X
p

napn
b
p �

X
pq

22Cpa;qb
qa;pb ð74Þ

A. Approximate Cumulant

A large number of choices for the cumulant 2C are possible. It has a dependence

of four indices and direct computation with such magnitudes is too expensive to

be applied to large systems. We want to maximize the physical content of 2C to a

few terms. We express 2C by means of two-index matrices D and P,

2�ps1;qs2
rs0

1
;ts0

2
¼ ��ps1

qs2

2
ðdprds1s0

1
dqt d

s2
s0
2
� dqrd

s2
s0
1
dpt d

s1
s0
2
Þ

þ msð1Þmsð10Þ
2

	ps1
ts0

2

dtrd
s0
1

�s0
2

dqpd
s1
�s2

ð75Þ

Herems denotes the sign of the spin projection (it takes two values,þ1 and�1).
By taking into account the cumulant properties, Eqs. (10)–(13) with 2D replaced

by 2C, it can be shown that Dmust be a real symmetric matrix (�ps1
qs2 ¼ �qs2

ps1) with

no unique diagonal elements, whereas P is a spin-independent (	pa
ra ¼ 	pa

rb ¼
	pb

ra ¼ 	pb
rb ¼ 	p

r ) Hermitian matrix (	p
r ¼ ð	r

pÞ�). We have the following spin

structure for the cumulant matrix:

2�ps;qs
rs;ts ¼ �

�ps
qs

2
ðdprdqt � dqrd

p
t Þ ð76Þ

2�pa;qb
ra;tb ¼ �

�pa
qb

2
dprd

q
t þ

	p
r

2
dtrd

q
p ð77Þ

The sum rule, Eq. (70), and the approximate ansatz, Eq. (76), imply the

constraint X
q

0�ps
qs ¼ nspð1� nspÞ ð78Þ
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where the prime indicates that the q ¼ p term is omitted. Analogously, one

obtains, using Eqs. (71) and (77), the following sum rule:X
q

�pa
qb ¼ 	p

p ð79Þ

By combining Eq. (72) with Eqs. (76) and (77), one arrives at the energy

expression

E ¼
X
p

ðnap þ nbpÞhpp þ
1

2

X
pq

½ðnaq þ nbqÞðnap þ nbpÞ � e��p
q�Jpq

� 1

2

X
pq

½ðnaqnap þ nbqn
b
pÞ � ð�pa

qa þ�pb
qbÞ�Kpq þ

X
pr

	p
rL

r
p

ð80Þ

where e��p
q denotes the spinless D matrix,

e��p
q ¼ �pa

qa þ�pa
qb þ�pb

qa þ�pb
qb ð81Þ

The new integral Lrp ¼ hrrjppi arises from the correlation between particles

with opposite spins and may be called the exchange and time-inversion integral

[53]. In fact, one may obtain it as follows:

Lrp ¼
Z

dx1 dx2

r12
½ja

r ðr1Þaðs1Þ��½jb
r ðr2Þbðs2Þ��ja

pðr1Þaðs1Þjb
pðr2Þbðs2Þ

¼
Z

dx1 dx2

r12
½ja

r ðr1Þaðs1Þ��½bIIja
pðr2Þaðs2Þ��bIIð2ÞbPP12ja

r ðr1Þaðs1Þja
pðr2Þaðs2Þ

or, equivalently,

Lrp ¼ hrrjppi ¼ hra; rbjr�112 jpa; pbi ¼ hra; pajbIIyð2Þr�112
bIIð2ÞbPP12jra; pai ð82Þ

where the bPP12 operator permutes electrons 1 and 2, and the time-inversion anti-

unitary operator bII changes a ket vector into a bra vector and aðbÞ into bðaÞ; that
is,

bIIjpai ¼ hpbj; bIIjpbi ¼ �hpaj ð83Þ

Note that if �ps
qs0 ¼ 0 and 	p

r ¼ 0, then the reconstruction proposed here

yields the HF case as expected.
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Similarly, combining Eq. (74) with Eqs. (76), (77), and (78), one arrives at the

average total spin

hbSS2i ¼ Na þ Nb

2
þ ðN

a � NbÞ2
4

þ
X
p

ð�pa
pb � napn

b
pÞ �

X
p

	pa
pb ð84Þ

In Eq. (84), the a- and b-dependences of 	pa
pb have been retained only to

emphasize that it is related to these SOs. We recall that P is a spin-independent

matrix as a consequence of the antisymmetric properties of cumulant 2C.

VII. RESTRICTED CLOSED-SHELL NOF

So far in this chapter we have discussed the NOF theory in terms of general set

of SOs ffiðxÞg or in terms of restricted SOs, which are constrained to have the

same spatial function fjpðrÞg for a and b spin functions. In this section we are

concerned only with closed-shell systems. Our molecules are thus allowed to

have only an even number of electrons, with all electrons paired such that

the spatial orbitals are doubly occupied. In this case of spin-compensated

systems, the two nonzero blocks of the 1-RDM are the same (1Da
a ¼ 1D

b
b);

that is,

nap ¼ nbp ¼ np ð85Þ

The trace of the one-matrix, Eq. (6), becomesX
p

np ¼ Na ¼ Nb ¼ N

2
ð86Þ

and from Eq. (20) it follows that

hbSSzi ¼ Na � Nb

2
¼ 0 ð87Þ

For singlet states, the first and the last blocks of the 2-RDM are also equal

(2Daa
aa ¼ 2D

bb
bb), so hereafter we deal only with

2Daa
aa and

2D
ab
ab. We assume further

that �pa
qa ¼ �pa

qb ¼ �pb
qa ¼ �pb

qb ¼ �p
q. For convenient purposes as we see

below, we define the matrix P in terms of a new spin-independent Hermitian

matrix K:

	p
r ¼ nrnp ��p

r � �p
r ð88Þ
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Combining both sum rules (78) and (79) with Eq. (88) results inX
q

0�p
q ¼ npð1� npÞ ð89Þ

2�p
p þ �p

p ¼ 2n2p � np ð90Þ

Taking into account Eq. (80), the closed-shell energy can be expressed as

E ¼ 2
X
p

nph
p
p þ

X
pq

ðnqnp ��p
qÞð2Jpq � Kpq þ LqpÞ �

X
pr

�p
rL

r
p ð91Þ

A. Two-Electron Systems

NOF theory provides an exact energy functional for two-electron systems

[76, 77]. In the weak correlation limit, the total energy is given by

E ¼ 2
X1
p¼1

nph
p
p þ n1L

1
1 � 2

X1
p¼2

ffiffiffiffiffiffiffiffiffi
n1np
p

L1p þ
X1
p;r¼2

ffiffiffiffiffiffiffiffiffi
nrnp
p

Lrp ð92Þ

As can be seen from Eq. (92), the dependence of the 2-RDM on the ONs

requires a distinction between spatial orbitals.

Since 2Daa
aa ¼ 0 for N ¼ 2, one easily deduces from Eqs. (68) and (76) that

�p
q ¼ nqnp. Consequently, it is not difficult to see from Eqs. (68), (77), and

(88) that 2D
ab
ab nonzero elements have the form 2D

pa;pb
ra;rb ¼ ��p

r=2. Thus the total
energy in Eq. (91) turns into

E ¼ 2
X
p

nph
p
p �

X
pr

�p
r L

r
p ð93Þ

From the requirement that for any two-electron system the expression (93)

should yield Eq. (92), one has to set

�p
r ¼ �npdpr þ ð1� dpr Þ½1� 2yð0:5� nrÞyð0:5� npÞ� ffiffiffiffiffiffiffiffiffinrnp

p ð94Þ

where yðxÞ is the unit step function also known as the Heaviside function.

It is worth noting that the chosen D and K satisfy the constraints in Eqs. (78)

and (90). Moreover, the expression (94) also holds true for systems where the

largest occupation deviates significantly from one, indicating that it may possi-

bly be valid for arbitrary correlation strengths [76].
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B. N-Electron Systems

Let us assume the functional form in Eq. (94) for the matrix K in the general

case of N-electron systems. This assumption and the equality in Eq. (90), affords

�p
p ¼ �np; �p

p ¼ n2p ð95Þ

or, equivalently,

�ps
ps0 ¼ �

ffiffiffiffiffiffiffiffiffiffi
nspn

s0
p

q
¼ �np; �ps

ps0 ¼ nspn
s0
p ¼ n2p ð96Þ

By taking into account Eq. (96), last two terms in Eq. (84) are found:X
p

ð�pa
pb � napn

b
pÞ ¼ 0;

X
p

	pa
pb ¼

N

2
ð97Þ

which leads to the exact result hbSS2i ¼ 0 for singlet states (2Sþ 1 ¼ 1).

A very different functional form is expected for D in molecules with more

than two electrons. Without any calculations it is clear that H2 is atypical, since
2Daa

aa vanishes for this system. �p
q ¼ nqnp (q 6¼ p), taken from the N ¼ 2 case,

violates the sum rule, Eq. (89), in the general case of N > 2. This means that

the functional form of nondiagonal elements is unknown for N-electron systems,

as yet. Nevertheless, some constraints can be achieved for these quantities using

known necessary conditions of 2-RDM N-representability.

The above mentioned positivity conditions state that the 2-RDM 2D, the

electron–hole density matrix G, and the two-hole density matrix Q must be posi-

tive semidefinite. A matrix is positive semidefinite if and only if all of its eigen-

values are nonnegative. The solution of the corresponding eigenproblems is

readily carried out [73]. For 2D, it yields the following set of eigenvalues:

d ¼ 0; nqnp ��p
q;

1

2
ðnqnp ��p

qÞ
 �

; q 6¼ p ð98Þ

There is also a single R� R block of the spin component 2D
ab
ab, which has

elements equal to 	p
r=2. Accordingly, we have analytic expressions for all eigen-

values of 2D, except those arising from the single R� R block. Consequently,

our reconstructive functional satisfies the D-condition (d � 0) if �p
q � nqnp

and the R� R block is positive.

Considering that Q has the same block structure as 2D, one obtains analo-

gously that if one takes �p
q � ð1� nqÞð1� npÞ, and the R� R block of Q

ab
ab

is positive, the Q-condition is fulfilled. Consequently, the D-condition is more

restrictive than the Q-condition between orbitals with ONs close to zero,

whereas for D elements between orbitals with ONs close to one, the Q-condition

is predominant.
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The spin component Gaa
aa contains a single block R� R, for which the eigen-

values have no analytic expression, and 1� 1 blocks. The latter blocks have

nonnegative eigenvalues if �p
q � npðnq � 1Þ. This inequality is easy to satisfy

on the domain of allowed ONs (nq � 1) if we consider nonnegative �p
q.

The opposite spin component consists entirely of 1� 1 blocks G
pa;pb
pa;pb ¼ 0,

and 2� 2 blocks that afford the eigenvalues

gpq ¼
nq þ np

4
þ�p

q � nqnp

2
	 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnq � npÞ2 þ 4ðnqnp ��p

q � �p
qÞ2

q
ð99Þ

In order to ensure that gpq � 0, expression (99) gives rise to the inequality

�p
q � nqnp þ

nqnp � ð�p
qÞ2

2�p
q � nq � np

¼ nqnp ð100Þ

To satisfy the known necessary N-representability conditions for the 2-RDM,

the matrix elements of D have to conform to the following analytic constraints:

�p
q � nqnp; �p

q � ð1� nqÞð1� npÞ; �p
q � npðnq � 1Þ; q 6¼ p ð101Þ

C. Effective One-Electron Operator

The best NSOs are those that minimize the electronic energy subject to ortho-

normality constraints (4), and hence satisfy Löwdin’s Eqs. (45) and (46). For the

energy functional, Eq. (91), these equations become the spatial orbital Euler

equations,

npbVVpðr1Þjpðr1Þ ¼
X
r

lrpjrðr1Þ ð102Þ

where

bVVpðr1Þ ¼ bhhðr1Þ þ bvvpðr1Þ ð103Þ
bvvpðr1Þ ¼X

q

0 nq �
�p

q

np

� �
½2bJJqðr1Þ � bKKqðr1Þ þ bLLqðr1Þ�

�
X
q

�p
q

np
bLLqðr1Þ ð104Þ

bJJqðr1Þ ¼ Z dr2 j�qðr2Þr�112 jqðr2Þ ð105Þ

bKKqðr1Þ ¼
Z

dr2 j�qðr2Þr�112
bPP12jqðr2Þ ð106Þ

bLLqðr1Þ ¼ Z dr2 jqðr2Þr�112
bIIð2ÞbPP12jqðr2Þ ð107Þ
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where bJJqðr1Þ and bKKqðr1Þ are the usual Coulomb and exchange operators, respec-

tively, whereas bLLqðr1Þ is the exchange and time-inversion operator [53]. Here,bIIð2Þ becomes the complex conjugate operator. It is important to note that the

operator bVVpðr1Þ does not fulfill the Gilbert relation, Eq. (49). Consequently,

Eq. (102) cannot be reduced to an eigenvalue problem diagonalizing the matrix l.
On the other hand, the one-electron functions fjpðrÞg that satisfy the set of

equations (102) may be obtained from solving the eigenproblem, Eq. (60), with

the Fockian matrix (see Eq. (66)),

Fr
p ¼ hrp þ ð�eeÞrp ð108Þ

where the nonlocal potential matrix elements are

ð�eeÞrp ¼
qVee

qnp
drp þ

1� drp
np � nr

Z
drj�r ðrÞ½npbvvpðrÞ � nrbvvrðrÞ�jpðrÞ ð109Þ

qVee

qnp
¼ Lpp þ

X
q

0 nq �
q�p

q

qnp

� �
ð2Jpq � KpqÞ ð110Þ

þ
X
q

0 nq �
q�p

q

qnp
� q�p

q

qnp

� �
Lqp þ Lpq

2

� �
ð111Þ

Let us assume that the set of spatial orbitals fjpðrÞg is real; then Lqp ¼
Lpq ¼ Kpq, which allows Eqs. (104) and (110) to be further simplified, yielding

bvvpðrÞ ¼ bJJpðrÞ þ 2
X
q

0 nq �
�p

q

np

� �bJJqðrÞ �X
q

0�p
q
bKKqðrÞ ð112Þ

qVee

qnp
¼ Jpp þ 2

X
q

0 nq �
q�p

q

qnp

� �
Jpq �

X
q

0 q�
p
q

qnp
Kpq ð113Þ

The closed-shell energy in Eq. (91) for real orbitals can be rewritten

E ¼
X
p

ð2hpp þ JppÞnp þ 2
X
pq

0ðnqnp ��p
qÞJpq �

X
pq

0�p
qKpq ð114Þ

VIII. RESTRICTED OPEN-SHELL NOF

We consider now situations in which a molecule has one or more unpaired elec-

trons; hence we may have spin-polarized systems. The spatial orbitals are thus

divided into two categories. Namely, those that are double occupied with two

electrons of opposite spin (nap and nbp), called closed shells (cl), and singly

occupied (nai or n
b
i ), called open shells (op). We assume further spin-independent
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ONs. All electron spins corresponding to the closed-shell part are then paired

(nap ¼ nbp ¼ np) and thus they are coupled as a pure singlet. By the help of the

following result (last term in Eq. (84)),

X
p

	pa
pb ¼

X
p

ffiffiffiffiffiffiffiffiffi
napn

b
p

q
¼
Xcl
p

np ¼ Ncl

2
ð115Þ

it is easy to calculate (see Eqs. (20) and (84)) the expectation values for spin

operators bSSz and bSS2; in particular,

hbSSzi ¼Xop
p

nap � nbp

2
¼ Na

op � Nb
op

2
ð116Þ

hbSS2i ¼ Na
op

2

Na
op

2
þ 1

� �
þ Nb

op

2

Nb
op

2
þ 1

 !
� 1

2
Na
opN

b
op ð117Þ

The situation here is completely analogous to that obtained in the restricted open

HF theory (ROHF). The states are not eigenfunctions of bSS2, except when all the

open-shell electrons have parallel spins (Na
op ¼ 0 or Nb

op ¼ 0). This result is a

consequence of the expansion (22) used to obtain Eq. (27). Actually, the spin

decomposition, Eq. (22), for 2D does not conserve in general the total spin S.

However, we can form appropriate linear combinations of two-electron spin

functions fsð2Þn ðs01; s02js1; s2Þg that are simultaneously eigenfunctions of bSSz andbSS2, and achieve a correct spin decomposition of the 2-RDM [85]:

2Dðx01; x02jx1; x2Þ ¼
X6
n¼1

2Dnðr01; r02jr1; r2Þsð2Þn ðs01; s02js1; s2Þ ð118Þ

where, for example,

sð2Þ1 ðs01; s02js1; s2Þ ¼ 1
2
½a�a�aaþ b�b�bbþ a�b�abþ b�a�ba� ð119Þ

Afterward, we have to find approximations for 2-RDM spin components f2Dng.
Let us now focus on high-spin cases only, such as doublet, triplet, quartet. . .

spins for one, two, three . . . unpaired electrons outside the closed shells. Accord-
ingly, singly occupied orbitals will always have the same spin (Na

op ¼ 0 or

Nb
op ¼ 0) so the trace of the one-matrix, Eq. (6), becomes

2
Xcl
p

np þ
Xop
p

np ¼ Ncl þ Nop ¼ N ð120Þ
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In fact, the value of Nop is determined by the conservation of the spin, so we

have two constraints,

1

2

Xop
p

np ¼ 1

2
Nop ¼ S ð121Þ

2
Xcl
p

np ¼ Ncl ¼ N � 2S ð122Þ

where S is the quantum number describing the total spin of the N-electron high-

spin coupled multiplet state.

We assume further that the ON of the open shell p is always one (np ¼ 1).

This assumption is trivial for a doublet, but it is more restrictive for higher multi-

plet with a corresponding underestimation of the energy. Remember that matrix

elements of 2C are nonvanishing only if all its labels refer to partially occupied

NOs; therefore D ¼ 0 and P ¼ 0 if we consider a cumulant made up of at least

one open-shell level. Since D andP refer only to closed shells, we consider them

spin-independent. The sum rule, Eq. (89), becomes

Xcl
q

0�p
q ¼ npð1� npÞ ð123Þ

and the energy expression, Eq. (80), for such a system is

E ¼
Xcl
p

ð2hpp þ JppÞnp þ 2
Xcl
pq

0ðnqnp ��p
qÞJpq �

Xcl
pq

0�p
qKpq

þ
Xcl
p

Xop
q

npð2Jpq � KpqÞ þ
Xop
p

hpp þ 1

2

Xop
pq

ðJpq � KpqÞ
ð124Þ

where we have considered real orbitals (Lpq ¼ Kpq).

IX. PRACTICAL NOF

Electronic structure computations would be greatly simplified by the finding of

practical NOFs. One may attempt to approximate the unknown off-diagonal ele-

ments of D considering the sum rule (89) and analytic constraints (101) imposed

by the D-, G-, and Q-conditions. However, it is not evident how to approach �p
q,

for p 6¼ q, in terms of the ONs. Due to this fact, let’s rewrite the energy term,

which involves D, as X
pq

0�p
qJpq ¼

X
p

J�p
X
q

0�p
q ð125Þ
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where J�p denotes the mean value of the Coulomb interactions Jpq for a given

orbital p taking over all orbitals q 6¼ p. From the property shown in Eq. (89),

it follows immediately thatX
pq

0�p
qJpq ¼

X
p

npð1� npÞJ�p ð126Þ

Inserting this expression into Eq. (114), one obtains

Ecl ¼
X
p

ð2nphpp þ n2pJppÞ þ
X
pq

0ð2nqnpJpq � �p
qKpqÞ

þ
X
p

npð1� npÞðJpp � 2J�pÞ
ð127Þ

A further simplification is accomplished by setting J�p � Jpp=2, which pro-

duces

Ecl ¼
X
p

ð2nphpp þ n2pJppÞ þ
X
pq

0ð2nqnpJpq � �p
qKpqÞ ð128Þ

The high-spin open-shell energy expression can be obtained in completely

similar manner from Eq. (124),

Eop ¼
Xcl
p

ð2nphpp þ n2pJppÞ þ
Xcl
pq

0ð2nqnpJpq � �p
qKpqÞ

þ
Xcl
p

Xop
q

npð2Jpq � KpqÞ þ
Xop
p

hpp þ 1

2

Xop
pq

ðJpq � KpqÞ
ð129Þ

We have thus arrived at an approximate NOF that coincides with the self-

interaction-corrected Hartree functional proposed by Goedecker and Umrigar

except for the choice of phases given by the sign of ð�p
qÞ. Unfortunately, this

NOF gives a wrong description of the ONs for the lowest occupied orbitals.

In order to ensure that these ONs only are close to unity, we propose to add a

new term to the functional form (94) of matrix K, namely,

�p
r ¼ �npdpr þ ð1� dpr Þ½1� 2yð0:5� nrÞyð0:5� npÞ� ffiffiffiffiffiffiffiffiffinrnp

p

þ ð1� dpr Þyðnr � 0:5Þyðnp � 0:5Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� nrÞð1� npÞ

q ð130Þ

X. NUMERICAL IMPLEMENTATION

In Section IV, we obtained the Euler equations (44)–(46), which yield the opti-

mum bound on the ground-state energy. Usually, the simultaneous solution of
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these equations is established with an embedded loop algorithm. In the inner

loop we look for the optimal ONs for a given set of orbitals fulfilling Eq. (44),

whereas in the outer loop we optimize the NOs under the orthonormality condi-

tion for fixed ONs. We recall that bounds on the ONs are enforced by setting

ni ¼ cos2 gi.
An important task in NOF theory is to find an efficient procedure for carrying

out the orbital optimization. Direct minimization has proved [44, 47, 76] to be a

costly method. First, there are directions at the energy minima with very low

curvature associated with the high-energy NOs. The latter have very small

ONs and hence give very small contribution to the energy. There is also a

need for other starting orbitals that are closer to the optimized ones than are

the HF orbitals, which are poor initial guesses in this iterative procedure and

lead to lengthy orbital optimizations. Finally, and most critically, is that the

NO coefficient matrix must be reorthogonalized during the course of the optimi-

zation, which is the rate-limiting step.

The one-electron equations (60) offer a new possibility for finding the optimal

NSOs by iterative diagonalization of the Fockian, Eq. (66). The main advantage

of this method is that the resulting orbitals are automatically orthogonal. The

first calculations based on this diagonalization technique has confirmed its

practical value [81].

XI. RESULTS

The study of different properties provides a measure of accuracy that can be

employed in testing approximate functionals. In this section, we just quote

some relevant results for selected molecules. Both the inner- and outer-loop opti-

mizations were implemented using a sequential quadratic programming (SQP)

method [86], which, computationally speaking, is a very demanding algorithm.

Accordingly, we have chosen Pople medium-size basis sets [87] for the calcula-

tions and we have compared our results with the results using other methods at

the same level. Among the approaches compared are the coupled-cluster techni-

que including all single and double excitations and a perturbational estimate of

the connected triple excitations [CCSD(T)], as well as the Becke-3–Lee–Yang–

Parr (B3LYP) density functional [88]. The CC and B3LYP values were

calculated with the GAUSSIAN system of programs [89], using the basis set

keyword 5D.

A. Energetics

In Tables I and II we report the values obtained for the total energies employing

the experimental geometry [90].

A survey of these tables reveals that NOF values are more like CCSD(T) cal-

culations, which are very accurate results for the basis-set correlation energies on
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these small molecules. The B3LYP values, as is well known, tend to be too low.

We note that the percentage of the correlation energy obtained by CCSD(T)

decreases as the number of electrons increases, whereas our functional keeps

giving a slightly larger portion of the correlation energy (e.g., P2, SO2, Cl2).

The EKT provides an alternative assessment for approximate NOFs, which is

not directly related to total energy values. Table III lists the obtained vertical IPs

TABLE I

Closed-Shell Total Energies in Hartrees (6-31G**)

Molecule HFa CCSD(T)b NOFc B3LYPd

FH �100.009834 �100.198698 �100.178202 �100.425817
H2O �76.022615 �76.228954 �76.207940 �76.417892
NH3 �56.194962 �56.399981 �56.378970 �56.556343
CO �112.736756 �113.032821 �113.020010 �113.306694
HNO �129.783338 �130.149630 �130.185528 �130.467334
H2CO �113.867947 �114.202886 �114.208902 �114.500848
HCl �460.066040 �460.224196 �460.262033 �460.800097
PH3 �342.452229 �342.605974 �342.635555 �343.142663
BeS �412.103398 �412.284575 �412.310091 �412.894462
N2O �183.675227 �184.203202 �184.233374 �184.656028
O3 �224.242821 �224.867269 �224.992524 �225.400708
NaCl �621.397562 �621.546221 �621.586299 �622.556987
P2 �681.421021 �681.667624 �681.742405 �682.683866
SO2 �547.165010 �547.686081 �547.805959 �548.579504
Cl2 �918.908639 �919.198123 �919.345443 �920.341830
aHartree–Fock total energies.
bCCSD(T) total energies.
cNatural orbital functional total energies.
dB3LYP total energies.

TABLE II

Open-Shell Total Energies in Hartrees (6-31þþG**)

Molecule HFa CCSD(T)b NOFc B3LYPd

CH2 �38.919309 �39.037939 �38.981051 �39.158525
NH �54.957745 �55.091649 �55.017865 �55.227209
OH �75.388827 �75.555805 �75.501346 �75.739015
MgH �200.135519 �200.169572 �200.163233 �200.632922
SH �398.064176 �398.195038 �398.192977 �398.745129
aHartree–Fock total energies.
bCCSD(T) total energies.
cNatural orbital functional total energies.
dB3LYP total energies.
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with our practical NOF using EKT together with Koopmans’ theorem (KT) IPs

and experimental values. All values were calculated at experimental geometries

of neutral molecules given in Ref. [90].

KT states that the IP is given by the HF orbital energy with opposite sign

(�Ei), calculated in the neutral system. It has long been recognized that in gen-

eral there is an excellent agreement between the KT values and the experimental

ones because of the fortuitous cancellation of the correlation and orbital relaxa-

tion effects. A survey of Table III reveals that KT consistently overestimates the

first IPs except for P2.

The prevailing trend is that the values decrease in moving from KT to NOF-

EKT, and then from NOF-EKT to experimental data. Conversely, in the case of

P2, the first IP increases in moving from KT to NOF-EKT, and then from NOF-

EKT to experimental values. For the HCl molecule, the NOF-EKT first IP is

TABLE III

Vertical Ionization Potentials in eV (6-31G**)

Molecule MO KTa NOF-EKTb Experimentalc

FH p 17.06 16.82 16.19

s 20.23 19.99 19.90

H2O b1 13.53 13.08 12.78

a1 15.56 15.54 14.83

b2 19.10 18.93 18.72

NH3 a1 11.44 11.05 10.80

e 16.87 16.93 16.80

CO s 14.90 14.59 14.01

p 17.22 17.28 16.85

s 21.67 21.58 19.78

N2 sg 17.13 16.74 15.60

pu 16.63 17.14 16.68

su 21.11 20.96 18.78

H2CO b2 11.87 11.54 10.90

b1 14.46 14.63 14.50

a1 17.58 17.44 16.10

b2 18.72 18.40 17.00

HCl p 12.93 12.51 12:77d

s 17.00 16.73 16:60d

s 30.42 26.57 25:80d

P2 pu 10.14 10.39 10:65e

sg 11.14 10.63 10:84e

a�eHFi .
bNatural orbital functional vertical ionization potentials obtained from the

extended Koopmans’ theorem.
cExperimental vertical ionization potentials from Ref. [91].
dExperimental vertical ionization potential for HCl from Ref. [92].
eExperimental vertical ionization potential for P2 from Ref. [93].
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smaller than KT and experimental values. Generally, the NOF-EKT first IPs

move closer to experimental data.

Table III also lists higher IPs calculated via KT and NOF-EKT methods. In

general, the NOF-EKT and KT results are systematically larger than the experi-

mental values. The behavior of higher IPs is quite similar to that for the first IP

results, discussed previously. For most molecular orbitals, NOF-EKT values are

smaller than KT and greater than the experimental data. There are molecular

orbitals—for example, orbital p for CO and orbital b1 for H2CO—with

NOF-EKT values greater than KT and the experimental data. The exception is

P2, for which the NOF-EKT sg IP is decreased. The agreement of NOF-EKT and

KT IPs with the experimental values is less precise for inner valence molecular

orbitals, but again the NOF-EKT IPs move closer to experimental data.

An important case is the N2 molecule. It is well known that the KT sg and pu
IPs are in the wrong order for this molecule. NOF-EKT calculations on N2 give

valence shell IPs that are in correct order, and in general a numerical improve-

ment is obtained over KT IPs. In the case of the orbital pu for N2, the KT IPs are

closer to experimental data but due to the mentioned wrong ordering. The results

are in good agreement with the corresponding experimental vertical IPs consid-

ering the small basis sets used for these calculations.

Electron affinities (EAs) are considerably more difficult to calculate than IPs.

For example, EAs are much more sensitive to the basis set than the correspond-

ing IPs. The EKT provides also the means for calculation of these magnitudes,

but unfortunately the EKT-EA description is often very poor. On the other hand,

vertical EAs can be calculated by the energy difference for neutral molecules

(M0) and negative ions (M�): EðM0Þ � EðM�Þ at near-experimental geometries

of M0. Table IV lists the obtained vertical EAs for selected open-shell molecules.

TABLE IV

Vertical Electron Affinities in eV (6-31++G**)

Molecule SN
a SA

b �SCFc �CCSDðTÞd �NOFe Experimentalf

CH2 1 1
2

�3.577 �2.028 �0.091 0.652 (0.006)

NH 1 1
2

�1.439 �0.219 0.113 0.370 (0.004)

OH 1
2

0 �0.147 1.360 1.830 1.828 (0.001)

MgH 1
2

0 �0.057 0.612 0.976 1.05 (0.06)

SH 1
2

0 1.246 1.774 2.761 2.314 (0.003)

aSN: total spin of the neutral molecule.
bSA: total spin of the anion.
c�SCF ¼ EHFðM0Þ � EHFðM�Þ:
d�CCSDðTÞ ¼ ECCSDðTÞðM0Þ � ECCSDðTÞðM�Þ:
e�NOF ¼ ENOFðM0Þ � ENOFðM�Þ:
fExperimental adiabatic electron affinities from Ref. [90]. The uncertainty is shown in parentheses.
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As can be seen, generally all electron affinities predicted by �SCF are negative,

indicating a more stable neutral system with respect to the anion. The inclusion

of correlation via CCSD(T) and NOF approximates them to the available adia-

batic experimental EAs, accordingly with the expected trend. The EAs tend to

increase in moving from �CCSD(T) to �NOF and then from �NOF to the

experiment. It should be noted that the NH anion is predicted to be unbound

by CCSD(T), whereas the positive vertical EA value via NOF corresponds to

the bound anionic state.

For OH and SH, the NOF EAs are larger than the experimental values. This

trend is due to the expected underestimation of the correlation energy for open-

shell states with our approach. In fact, we fix the unpaired electron in the corre-

sponding HF higher-occupied molecular orbital (HOMO) of the neutral mole-

cule, and then this level does not participate in the correlation. Note that for

these molecules the total spin of the neutral molecule is greater than the total

spin of the anion (SN > SA). The underestimation of the total energy is for neu-

tral molecules larger than for anions and therefore the NOF vertical EAs are

overestimated.

Comparisons with experimental results show that vertical NOF-EAs are

better than those predicted by the CCSD(T) method within the 6-31þþG**
basis set.

B. Dipole Moment

The dipole moments (DMs), different from zero, obtained using HF, CCSD(T),

and NOF methods are presented in Table V. For comparison, we have also

included in this table the available experimental data [90].

The correlated dipole moments tend to be lower compared to HF DMs. An

exception to this trend is noticed in the case of CH2, where the CCSD(T) DM is

predicted to be higher than the HF value. Important cases are the CO and N2O

molecules for which the HF approximation gives a DM in the wrong direction,

whereas correlation methods approach the experimental value. The quality of the

NOs is critical for the accuracy of NOF theory. For example, in the case of the

CO molecule, we achieved the sign inversion of the DM after further improving

the basis sets. The DMs obtained with the NOF method are in good agreement

with the available experimental data considering the basis sets (6-31G**) used

for these calculations.

C. Equilibrium Geometries and Vibrational Frequencies

We have employed the nongradient geometry optimization to determine the

equilibrium bond distances (re). For each molecule, we have calculated the total

energy UðrÞ at a dense grid of bond distances r, separated from each other by

10�3 Å. The harmonic vibrational frequencies (oe) were determined from the

second derivatives of the energy with respect to the nuclear positions. The
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equilibrium force constants ke ¼ U00ðreÞ were obtained from least squares fits of

the energy to a second-order polynomial in the distances,

UðrÞ ¼ UðreÞ þ 1
2
keðr � reÞ2 ð131Þ

Table VI lists the equilibrium geometries for the selected closed-shell diatomic

molecules. It has long been recognized that the HF method gives reduced bond

lengths. From Table VI we see that the correlated bond lengths are mostly longer

than the experimental values. Exceptions are the bond distances predicted by

CCD and NOF methods for the HCl molecule.

The values of the harmonic vibrational frequencies for the selected set of

molecules are presented in Table VII. The expected trends of this property

with respect to experiment are well reproduced. The HF results are syste-

matically larger and the correlated vibrational frequencies move closer to

TABLE V

Dipole Moments in Debyes (6-31G**)

Molecule HFa CCSD(T)b NOFc Expd

CH2 0.54 0.57 0.51 —

NH 1.73 1.61 1.62 1.39 f

OH 1.88 1.77 1.77 1.66

FH 1.98 1.87 1.84 1.82

H2O 2.20 2.09 2.08 1.85

NH3 1.89 1.81 1.76 1.47

CO 0.33 f 0.07 0.03g 0.11

MgH 1.41 1.10 1.22 —

SH 1.07 0.97 0.91 0.76

HCl 1.48 1.37 1.30 1.08

HNO 2.02 1.63 1.61 1.67

H2CO 2.75 2.18 2.36 2.33

PH3 0.80 0.80 0.60 0.58

BeS 6.42 4.59 5.38 —

N2O 0.60 f 0.07 f 0.03 0.17

O3 0.78 0.49 0.50 0.53

NaCl 9.39 8.97 9.03 9.0

SO2 2.21 1.78 1.56 1.63

aHartree–Fock dipole moments.
bCCSD(T) dipole moments.
cNatural orbital functional dipole moments.
dExperimental dipole moments from Ref. [90].
eExperimental dipole moment for NH from Ref. [94].
fThis value has an opposite sign relative to the experimental value.
gThis value was obtained with 6-31G**.
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experimental data. By both correlated methods, the experimental frequencies are

still overestimated, except for the HCl molecule, for which the NOF frequency is

lower than the experimental value.

The performance of our practical NOF to predict equilibrium bond distances

and vibrational frequencies is similar to CCD.

XII. CONCLUDING REMARKS

1D-functional theory, explicitly given in terms of natural orbitals and their oc-

cupation numbers, has emerged as an alternative method to conventional

approaches for considering the electronic correlation. This chapter has intro-

duced important basic concepts for understanding the NOF formalism. We

have also offered a brief characterization of almost all references concerning

this theory published hitherto.

TABLE VI

Equilibrium Bond Lengths in Angstroms (6-31G**)

Molecule HFa CCDb NOFc Expd

FH 0.900 0.920 0.917 0.917

CO 1.114 1.139 1.132 1.128

HCl 1.265 1.271 1.273 1.275

BeS 1.733 1.744 1.746 1.742

N2 1.078 1.112 1.099 1.098

P2 1.859 1.905 1.893 1.893

aHartree–Fock equilibrium bond lengths.
bCCD equilibrium bond lengths.
cNatural orbital functional equilibrium bond lengths.
dExperimental equilibrium bond lengths from Ref. [90].

TABLE VII

Vibrational Frequencies in cm�1 (6-31G**)

Molecule HFa CCDb NOFc Expd

FH 4500 4213 4216 4138

CO 2442 2251 2284 2170

HCl 3182 3089 2927 2991

BeS 1069 1045 1047 998

N2 2761 2433 2544 2359

P2 909 804 814 781

aHartree–Fock vibrational frequencies.
bCCD vibrational frequencies.
cNatural orbital functional vibrational frequencies.
dExperimental vibrational frequencies from Ref. [90].
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A free-parameter functional based on a new approach for the two-electron

cumulant has been reviewed. This functional reduces to the exact expression

for the total energy in two-electron systems and to the HF energy for idempotent

1-RDMs. Moreover, it is derived from a rigorous N-representable ansatz for the

2-RDM.

The mean value theorem provides a prescription for deriving a practical NOF

that yields reasonable correlation energies for molecules. Accurate results for

closed- and open-shell systems are obtained with energy expressions that only

include two-index two-electron integrals. We shall improve this functional by

providing a better approximation for the mean value J�i of the Coulomb interac-

tions. It is highly desirable to develop our restricted open-shell formulation by

appropriately expressing the 2-RDM in two-electron spin functions that are

simultaneously eigenfunctions of bSSz and bSS2.
The explicit form derived by Pernal for the effective nonlocal potential allows

one to establish one-electron equations that may be of great value for the devel-

opment of efficient computational methods in NOF theory. Although recent pro-

gress has been made, NOF theory needs to continue its assessment. Some other

essential conditions such as the reproduction of the homogeneous electron gas

should be utilized in the evaluation of approximate implementations.
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I. INTRODUCTION

Similar to density functional theory, geminal functional theory (GFT) endeavors

to compute molecular properties from geminals, supplanting the electron density

as primary variable. A geminal is a function of just two electrons. We will under-

stand GFT for now in a general way as some form of computing the energy of a

system from a geminal. The idea of using geminals is very appealing because the

Hamiltonian consists of at most two-particle interactions.

II. STRONGLY ORTHOGONAL ANTISYMMETRIZED

GEMINAL PRODUCTS

The earliest such attempts go back to 1953, when strongly orthogonal anti-

symmetrized geminal products (SOAGP) were employed [1, 2]. A strongly

orthogonal geminal is such that
R
g1ð1; 2Þg2ð2; 3Þd2 ¼ 0, while the weaker
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condition of orthogonality requires
R
g1ð1; 2Þg2ð1; 2Þd1d2 ¼ 0. Using such gem-

inals to construct a wavefunction leads to a simple 2-RDM (see Eq. (2) and

previous chapters on reduced density matrices).

�SOAGP ¼
n̂=2

i¼1
gi; where ði 6¼ j)

Z
gið1; 2Þgjð2; 3Þd2 ¼ 0Þ ð1Þ

2Dð�SOAGP; 12; 1
020Þ ¼

X
bðijklÞ � jfið1Þfjð2Þj � jfkð10Þflð20Þj� ð2Þ

where fi are the natural spin orbitals of the geminals gk and

� 9n : fi; jg ¼ fk; lg ¼ f2n� 1; 2ng ¼: s) bðssÞ ¼ cils.
� s 6¼ t9i : ðŝs; giÞ 6¼ 0 6¼ ðt̂t; giÞ ) bðstÞ ¼ cixsx

�
t .

� s 6¼ t; i 2 s; j 2 t; ðt̂t; gmÞ 6¼ 0; ðŝs; gnÞ 6¼ 0; n 6¼ m) bðijijÞ ¼ cijlslt.
� ci ¼

Q
j 6¼i

P
ðŝs;gjÞ6¼0

ls=c; cij ¼
Q

k 6¼i;k 6¼j

P
ðŝs;gkÞ6¼0

ls=c; c ¼ 5
Q
j

P
ðŝs;gjÞ6¼0

ls and in all

other cases b ¼ 0.
� s ¼ f2i� 1; 2ig ) ŝs :¼ jf2i�1f2ij.
� ðg; g0Þ ¼ R gð1; 20Þg0ð20; 2Þd20; ðgi; ŝsÞ 6¼ 0) 8j 6¼ iðgj; ŝsÞ ¼ 0.

This second-order reduced density matrix for SOAGP has a block diagonal

form—one dense block for each geminal and one diagonal block for the mixing

between geminals.

2DSOAGP ¼

bðs1t1Þ
����

. .
.

bðsltlÞ

bð11121112Þ
. .
.

0BBBBBBBBBBB@

1CCCCCCCCCCCA
ð3Þ

where ij 2 s : ŝsg�j 6¼ 0 and ŝsig�i 6¼ 0. The natural orbitals of this density matrix

are the natural orbitals of the generating geminals. Also, the generating geminals

are natural geminals of the wavefunction. Optimizing the energy for SOAGP

poses the interesting problem of partitioning of the geminal spaces. There are

three variables for optimization:

1. Basis functions fi.

2. Geminal coefficients xi of the basis function fi.

3. Partitioning of f among the N=2 geminals comprising the SOAGP wave-

function.
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The simultaneous optimization of the latter two points can be done by solving

coupled eigenvalue equations. These equations can be derived from imposing

variational conditions on the energy [2]:

Emcmj ¼
X
i

cmiHijðmÞ ð4Þ

Hij ¼
�
f2i�1 ^ f2ij2K̂Kjf2j�1 ^ f2j

�þ dij
X
n6¼m

�
fm2i�1 ^ fm2ij2K̂Kjgn

� ð5Þ

Similarly, equations can be derived for the optimization of the basis functions.

SOAGP has been applied to systems like LiH, BH [3], or NH [4]. In these

calculations, it was found that the majority of the energy lowering was due to

explicit correlation found in the individual geminals, while the intergeminal

interactions displayed positive as well as negative character. Due to the strong

orthogonality condition, the intergeminal correlation is insufficiently described.

For n electrons, there are nðn� 2Þ=8 intergeminal correlations, while there are

only n=2 intrageminal interactions. As may be expected, the percentage of cor-

relation energy retrieved decreases with the number of electrons.

A. Singlet-Type Strongly Orthogonal Geminals

Recently, an alternative scheme based on singlet-type strongly orthogonal gem-

inals (SSG) was proposed [5]. In this scheme, the wavefunction is split into gem-

inal subspaces depending on the number of spin-up or spin-down electrons, na
and nb, respectively, while the wavefunction is ‘‘filled up’’ with one Slater deter-

minant.

�SSG ¼ An

Yna
i¼1

gið2i� 1; 2iÞ
" #

� jfkð2na þ 1Þ � � �fkþnb�naðna þ nbÞj ð6Þ

ND
ð2Þ
SSG ¼ s

Xna
i¼1

cigið1; 2Þgið1020Þ þ g
X
k;l

skljfkð1Þflð2Þj � jfkð10Þflð20Þj

þ
X
k; i

j 2 s : ðŝs; giÞ 6¼ 0

ciskjgisj2jfkð1Þgijð2Þj � jfkð10Þgijð20Þj ð7Þ

where �n ¼ nb � na, skl ¼
Q

i 6¼k;i 6¼l kfi k2, sk ¼
Q

j 6¼k kfj k2, s ¼ Qj kfj k2,
ci ¼

Q
j6¼i kgj k2, g ¼Q kgi k2, and N ¼ ðna þ�nð�n� 1Þ=2þ 2na�nÞsg.

Hence the SSG wavefunction is the antisymmetrized product of a Slater deter-

minant with an SOAGP wavefunction. Here the geminal subspaces are opti-

mized by comparing the energies of a given geminal primitive jgi;2j�1gi;2jj in
geminal i and the same primitive in geminal j.
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The SSG approximation has been used to study a group of diatomics from the

G2/97 test set [6, 7] as well as the potential energy surface (PES) of carbon mon-

oxide. Except for noncovalently bonded (e.g., highly polarized) molecules, SSG

is superior to Hartree–Fock theory (HF) [8, 9] in describing geometry and often

comparable to coupled cluster in the singles and doubles approximation

(CCSD). When comparing harmonic frequencies, SSG performs even better,

generally being comparable to CCSD.

The PES of CO for SSG is only slightly better than HF but qualitatively cor-

rect in that it is smooth and describes dissociation toward infinity. Although

unrestricted MP2 [10–12] and CCSD(T) recover much more of the correlation

energy than SSG, the associated curves are not as smooth as for SSG. The equi-

librium distance found with SSG is extremely close to experiment (rSSGe ¼ 1:126
Å, rexpt:e ¼ 1:1283 Å) [5].

B. Perturbation Theory on SOAGP

Encouraged by the previous results, more recently, SOAGP has been used as the

reference state in PT [13, 14]. The full Hamiltonian is split into two parts, of

which one, H0, can be solved for a state (Eqs. (8) and (9)). The resulting condi-

tions for first order (Eqs. (9)–(12)) describe an easily solved linear system of

equations:

ĤH ¼ ĤH0 þ ŴW ð8Þ
ðĤH0 � E0Þ�ð0Þ ¼ 0 ð9Þ
�ðiÞ ¼

X
i

di�i; h�0j�ii ¼ 0 ð10Þ

h�jjŴW j�ð0Þi þ
X
i

dih�jjðĤH0 � E0Þj�ii ¼ 08j ð11Þ

Eð2Þ ¼ h�0jŴW j�ð1Þi; Eð1Þ ¼ h�0jŴW j�0i ð12Þ

In order to define ĤH0 such that �SOAGP is an eigenfunction, ĤH0 was split into a

sum of operators ĤHK . These operators ĤHK are defined so that ĤHKgK ¼ E0
KgK

(Eq. (14)). Then the zeroth-order energy is merely
P

E0
K and ŴW ¼ ĤH � ĤH0.

heffmv ¼ hmv þ
X
ls

1DSOAGPhv ^ sĵrr�112 jm ^ li ð13Þ

ĤHK ¼
X

m;v of gk

heffmv âa
þ
m âa
�
v þ

1

2

X
mvls of gK

hmvĵrr�112 jlsiâaþl âaþm âa�s âa�v ð14Þ

where, given g, g is of gK , if g is a natural orbital of gK , and âaþg ; âa
�
g represent

creation and annihilation operators of g, respectively, in the second quantization

formalism.
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PESs for fluorine, hydrogen fluoride, and water using this ansatz showed pro-

mise [14]. In all cases the perturbative approach improved the accuracy consid-

erably at a small increase of computational cost. Especially interesting is the

possibility of linear scaling.

III. ANTISYMMETRIZED GEMINAL PRODUCTS

While SOAGP utilizes n=2 geminals, the possibility has also been explored

using a single geminal. Given only one geminal g, a simple function for a

geminal functional theory can be derived for even numbers of electrons. This

ansatz may be generalized to systems of odd numbers of electrons by multiply-

ing a single strongly orthogonal function to an AGP function (see Eqs. (15)

and (16)):

�AGP ¼ gn=2 ¼ An

Yn=2
i¼1

gð2i� 1; 2iÞ ð15Þ

�GAGP ¼ gðn�1Þ=2 ^ f ¼ Ang
ðn�1Þ=2fðnÞ ð16Þ

Since the generating geminals of an SOAGP wavefunction can be described

in the same basis, it is tempting to assume that summing the geminals leads

to an AGP generating geminal for the SOAGP wavefunction; such is not the

case.

�SOAGP / �AGPðgÞ=( g ¼
X
i

gi ð17Þ

The AGP function for the summation includes contributions from gNi and

other mixed higher-order products, which are not present in the SOAGP

function.

The second-order density matrix of an AGP function has the following form

[15], which is reminiscent of the SOAGP 2-RDM:

r2ð�AGP; 12; 1
020Þ ¼

X
bðijklÞ � jfið1Þfjð2Þj � jfkð10Þflð20Þj� ð18Þ

where fi are the natural spin orbitals of g and

� 9n : fi; jg ¼ fk; lg ¼ f2n� 1; 2ng ¼: s) bðssÞ ¼ 2clsam�1ðŝsÞ.
� s 6¼ t) bðstÞ ¼ 2cxsx

�
tam�1ðŝst̂tÞ.

� s 6¼ t; i 2 s; j 2 t) bðijijÞ ¼ 2clsltam�2ðŝst̂tÞ.
� 	ð1þ lstÞ ¼

P
amt

m; am�1ðŝsÞ ¼ qam=qls; am�2ðŝst̂tÞ ¼ q2am=qlsqlt;
c ¼ 1=am
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Again, the 2-RDM has a very simple block-diagonal structure of only two

blocks, of which one is diagonal:

r̂r2ð�AGPÞ ¼
bðstÞ

����
bð1313Þ

. .
.

0BBB@
1CCCA ð19Þ

As is easily verified, the natural orbitals of the geminal and the AGP wave-

function coincide. Equation (21) implies that the first-order reduced density

matrix is degenerate for every eigenvalue. The final trace normalizes to

nðn� 1Þ as expected. The degeneracy of r1 is intricately linked to AGP func-

tions as, for every evenly degenerate 1-RDM, there exists an AGP function

that reproduces that 1-RDM [15–17]. Any Slater determinant jf1 � � �fnj, for
example, the HF solution, can be described by a very simple geminal, for

instance, g ¼Pn=2
i¼1 jf2i�1f2ij. Since all natural orbitals are degenerate, there

is no unique geminal that represents the Slater determinant.1

ðn� 1Þr̂rð1Þ ¼
X
s
jiihijclsam�1ðŝsÞ

þ
X
s>t

X
i2s
j2t

ðjiihij þ jjihjjÞclsltam�2ðŝst̂tÞ ð20Þ

¼
X

s
i2s

jiihijclsam�1ðŝsÞ þ
X
s 6¼t

X
i2s
j2t

jiihijclsltam�2ðŝst̂tÞ

¼
X

s
i2s

jiihijclsð2m� 1Þam�1ðŝsÞ ð21Þ

As Eqs. (18) and (2) demonstrate, the exact wavefunction is no longer expli-

citly needed nor is an approximate wavefunction used. Instead, the generating

geminals determine the wavefunction as well as the reduced density matrices

and thereby the energy of an AGP wavefunction.

IV. FORMAL GFT

So far the term GFT has been used in a suggestive way of mapping a geminal to

an energy that approximates the ground-state energy of some system. Not until

1Any collection of pairs of spin orbitals will produce a geminal that gives rise to the Slater deter-

minant.
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recently was a formal description of geminal functional theory proposed [18].

The parameterization of 1-RDMs by AGP functions allows the derivation of a

functional based on geminals (R : g! �AGP½g� ! 1D½�AGP½g��) similar to den-

sity functional theory [19, 20]. In order to devise a functional, the general (quad-

ratic) energy functional Eð�Þ ¼ h�jĤHj�i is split into three contributions:

E½�� ¼ Tð1D½��Þ þ Vð1D½��Þ þWð2D½��Þ ð22Þ
Tð1DÞ ¼ n

2
� trð1D̂Dp̂p2Þ ð23Þ

Vð1DÞ ¼ n � trð1V̂V1D̂DÞ ð24Þ

Wð2DÞ ¼ nðn� 1Þ
2

� trð2D̂Dr̂r�112 Þ ð25Þ

Due to the bijective correspondence R of geminals to evenly degenerate 1-RDMs

[17, 18], the kinetic and nuclear potential terms (T and V) can be expressed as

functionals of a geminal through ~TT :¼ T � R and ~VV :¼ V � R, respectively.
The interelectronic interactions W are defined using constrained search

[21, 22] over all N-representable 2-RDMs that reduce to RðgÞ. Since the set

of 2-RDMs in the definition of ~WW contains the AGP 2-RDM of g, that set is

not empty and ~WW is well defined. Through this construction, ~EE still follows

the variational principle and coincides with the energy of a wavefunction �0,
which reproduces RðgÞ ¼ 1D½�0� and Wð2D½�0�Þ ¼ ~WW ½g�. The latter is due to

the completeness of f2D : C1ð2DÞ ¼ RðgÞg and the boundedness of W , where

C1 is the contraction operator of one variable. ~WW depends solely on the geminal

and the number of electrons and thus is universal for any physical system of

equal number of electrons. In other words, ~WW ½g� for an atom or molecule of n

electrons is the same for any of those atoms or molecules. This should not be

confused with the geminal g corresponding to the ground state being the same

for those systems.

	
C1ðDðQ; xn;Q0; x0nÞÞ ¼

Z
DðQ; xn;Q0; xnÞdxn


 ð26Þ

~WW ½g� ¼ min
2D:C1ð2DÞ¼RðgÞ

W ½2D� ð27Þ

~EE½g� ¼ ~TT ½g� þ ~VV ½g� þ ~WW ½g� ð28Þ

As in density functional theory, the functional ~WW is unknown but can be

approximated by restricting or expanding the set of positive semidefinite

matrices 2D. The SOAGP, SSG, and AGP methods represent true geminal

functional theories in this sense as they restrict the set of N-representable
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1- and 2-RDMs to those derivable by the respective wavefunctions. If the set is a

subset of N-representable 2-RDMs, as for SOAGP, SSG, or AGP, the variational

principle remains true (~EE � Eg:s:). Perturbation theory on SSG is a nonvaria-

tional geminal functional.

A. An Application of GFT

Revisiting the AGP method from this approach, higher-quality calculations for

the AGP approximation of the ground state have recently been achieved [23].

The electron–electron correlation is approximated by Eq. (29):

�WWRDM=GFT½1D� :¼ min
g:C1ð2D½g�Þ¼1D

Wð2D½g�Þ ð29Þ

Based on the 1,3-contracted Schrödinger equation (CSE), the AGP energies for

various systems have been recalculated with considerable success [23]. Starting

from a geminal g, the 2- and 3-RDMs of the respective AGP wavefunction were

used in the evaluation of the 1,3-CSE for the determination of a 1-RDM. From

this 1-RDM the natural orbitals fi and occupation numbers jxij2 of the next gem-

inal g0 ¼P xijf2i�1f2ij were derived. Then Wð2D½�AGP½g��Þ was optimized

with respect to the phase factors of xi to obtain the next geminal iterative.2

Table I shows exemplary calculations. For four-electron systems, the electron

correlation is quantitatively recovered.

Since ~WW is universal, the discrepancy between the exact solution and the GFT

may be corrected via a factor based on a trial computation.

EGFT ¼ EHF þ ðEHF � ERDM=GFTÞ � mðnÞ ð30Þ
mðnÞ ¼ EHF;trial � Eexact;trial

EHF;trial � ERDM=GFT;trial
ð31Þ

2The sequence of steps has been rotated from the original to emphasize the geminal as primary

variable.

TABLE I

Energies and Electron Correlation Using the RDM/GFT Algorithma

Molecule n EHF ERDM=GFT Full CI Electron Correlation (%)

Be 4 �14:57091 �14:61530 �14:61557 99.3

BH 6 �25:11340 �25:15148 �25:17402 62.8

CH4 10 �39:89506 �39:92536 �40:01405 25.4

HCN 14 �92:83712 �92:88268 �93:04386 22.0

aData by D. A. Mazziotti originally appeared in Ref. [23].
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With this correction all but one computed electron correlation energy fell within

10% of the exact solution. As Table II shows, the very simple scaling correction

yields huge improvements on modest initial electron correlations. The use of the

correction factor implies the loss of the variational principle and does not

account for the use of different basis sets; for example, the Dunning double-

zeta basis set for Be is different for LiH [24, 25].

V. UNRESTRICTED ANTISYMMETRIZED

GEMINAL PRODUCTS

The success of AGP has retained its allure over more than five decades. Just

recently, the AGP wavefunction of a set of geminals has been investigated.

Applying the aufbau principle of Hartree–Fock theory generalizes the AGP

ansatz. In this case, a set of geminals instead of a single geminal is used to

generate the 2-RDM. In terms of GFT, ~WW is approximated as in Eq. (33):

�UAGP ¼ An

Yn=2
i¼1

gið2i� 1; 2iÞ ð32Þ

~WW ½g� � min
C1ð2DUAGPÞ¼RðgÞ

Wð2DUAGPÞ ð33Þ

where gi are geminals. The term ‘‘aufbau’’ is used in the sense that the wave-

function is built successively from nonidentical geminals. While Hartree–Fock

functions are AGP functions as well as antisymmetrized products of strongly

orthogonal geminals (SOAGP), this is generally not the case for SOAGP func-

tions and therefore unrestricted AGP (UAGP) functions, as they represent a

superset of SOAGP as well as AGP functions.

TABLE II

Energies Using �WW and the Scaled Extension

Electron RDMGFT

Molecule n EHF ERDM=GFT EGFT Full CI Correlation versus GFT

LiH 4 �7:98074 �7:99913 �7:99924 �7:99929 99.8 99.1

BeH2 6 �15:76024 �15:77818 �15:78879 �15:80076 70.5 44.2

HF 10 �100:02189 �100:05103 �100:13630 �100:14446 93.3 23.7

NH3 10 �55:96479 �55:99806 �56:09543 �56:09474 100.5 25.6

H2O 10 �76:00915 �76:03931 �76:12760 �76:13894 91.3 23.2

N2 14 �108:87814 �108:93163 �109:12085 �109:09747 110.7 24.3

CO 14 �112:68484 �112:72695 �112:87590 �112:88839 93.9 20.6

C2H2 14 �76:79917 �76:83612 �76:96682 �76:98616 89.7 19.7

aData by D. A. Mazziotti originally appeared in Ref. [23].
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An interpretation of the meaning of the geminals may be derived from order-

ing them with respect to hgij2K2Daufbaujgii. In keeping with Hartree–Fock theory,
the lowest energy geminals can be determined to describe the core electrons,

while increasing energy terms describe increased mixing with the valence elec-

trons and therefore explain, for instance, bonding.

Due to higher-order contributions, the most general case does not allow for a

direct description of the 2-RDM, but it is possible to build the 2-RDM iteratively

[26]. Of the six contributions (Eqs. (34)–(40)), F1 and F6 are of immediate inter-

est. Equation (35) contains the geminal’s direct contribution to the 2-RDM. The

cofactor is large for a single geminal on the diagonal. 2Dp is retained and

weighed accordingly in Eq. (40). This guarantees that large contributions of pre-

vious iterations will remain large in the next iteration.

2Dpþ2 ¼ F1 þ ðF2 þ F�2Þ þ ðF3 þ F�3Þ þ F4 þ ðF5 þ F�5Þ þ F6 ð34Þ
F1 ¼ gð12Þgð1020Þ k Wp k2 ð35Þ
F2 ¼ �p

Z
½gð12Þg�ð103Þ1Dpð3; 20Þ � gð12Þg�ð203Þ1Dpð3; 10Þ�d3 ð36Þ

F3 ¼
p

2

� �Z
gð12Þg�ð34Þ2Dpð34; 1020Þd3 d4 ð37Þ

F4 ¼ 2
p

2

� �Z
½gð13Þg�ð204Þ2Dpð24; 103Þ � gð23Þg�ð204Þ2Dpð14; 103Þ�d3 d4

þ 2
p

2

� �Z
½gð13Þg�ð104Þ2Dpð24; 203Þ� gð23Þg�ð104Þ2Dpð14; 203Þ�d3 d4

þ pð1Dgð1; 10Þ1Dpð2; 20Þ þ 1Dgð2; 20Þ1Dpð1; 10ÞÞ
� pð1Dgð2; 10Þ1Dpð1; 20Þ þ 1Dgð1; 20Þ1Dpð2; 10ÞÞ ð38Þ

F5 ¼ 2
p

2

� �Z
½1Dgð1; 4ÞDð2Þp ð24; 1020Þ � 1Dgð2; 4Þ2Dpð14; 1020Þ�d4

� 6
p

3

� �Z
gð13Þg�ð45ÞDð3Þð245; 10203Þd3 d4 d5

þ 6
p

3

� �Z
gð23Þg�ð45ÞDð3Þð145; 10203Þd3 d4 d5 ð39Þ

F6 ¼
p

2

� �
2Dpð12; 1020Þ k g k2

þ 2ðp� 2Þ p

2

� �Z
1Dgð4; 5ÞDð3Þp ð125; 10204Þd3 d4 d5

þ p� 2

2

� �
p

2

� �Z
gð34Þg�ð56ÞDð4Þp ð1256; 102034Þd3 d4 d5 d6 ð40Þ
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Equations (39) and (40) introduce problematic higher-order contributions.

Since gð34Þ ¼Pi xiaið3Þbið4Þ,Z
gð34Þgð35Þd3 ¼

X
i

jxij2bið4Þbið5Þ

Also,

2Dð12; 34Þ ¼
X
i

Z
Dð3Þð125; 346Þbið5Þbið6Þd5 d6

Due to
P

i jxij2 ¼ 1, jxij2 � 1=2, and

2Dpð12; 1020Þ ¼
X
i

Z
aið3ÞDð3Þp ð123; 102030Þaið30Þd3 d30

we can conclude

1

2
2Dpð12; 1020Þ �

Z
gð340Þ�gð3040ÞDð3Þp ð123; 102030Þd3 d30 d40 ð41Þ

By a similar argument,

1

p
2Dpð12; 1020Þ �

Z
gð34Þ�gð3040ÞDð4Þp ð1234; 10203040Þd3 d4 d30 d40 ð42Þ

The UAGPansatz has been applied to a variety of four-electron systems, which

do not suffer from approximations to the higher-order contributions [26]. Since

hg1g2jÂA4K̂KÂA4jg01g2i ¼ hg1jĤH
0½g2�jg01i and hg1g2jÂA4jg01g2i ¼ hg1jÔO½g2�jg01i are bili-

near functionals of g1 and g01, it is possible to solve the generalized eigenvalue

problem for the energy for each generating geminal while keeping the remaining

geminal constant. For the majority, UAGP functions recovered in excess of 99%

of the electron correlation. The overlap of the two generating geminals showed

that the UAGP functions did not collapse to the already good AGP functions.

VI. CONCLUSIONS

Geminal functional theory is a very promising research area. The different

varieties of antisymmetrized products are very flexible and inherently handle

difficult problems, like multideterminantal molecules. The computational effort

is low compared to the quality of the solutions. The perturbation theoretical

approach to SSG should essentially be possible for AGP and UAGP as well.

The formal definition of GFT is a flexible framework that opens up many new

opportunities for exploring the nature of solutions to the Schrödinger equation.
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I. INTRODUCTION

In 1994, Ziesche [1] proposed using the diagonal elements of the two-electron

reduced density matrix, or electron-pair density, as the fundamental descriptor of

electronic structure. The resulting pair-density functional theory is a logical

refinement of density functional theory (which is based on the diagonal elements

of the one-electron reduced density matrix). Extending Ziesche’s idea to the

diagonal elements of the Q-electron reduced density matrix, or Q-density, yields

a hierarchy of Q-density functional theories that converges to the exact answer

as Q approaches the total number of electrons in the system [2,3]. In this way,

Q-density functional theory is a solution to the longstanding problem of how to

construct a ‘‘systematically improvable’’ density functional theory analogous to

the hierarchies of methods (CISDTQ, CCSDTQ, etc.) commonly employed in

wavefunction-based ab initio quantum chemistry.

Most of the formal mathematical structure of conventional density functional

theory transfers to Q-density functional theories without change [1–5]. As in

density functional theory, the key for practical implementations is the variational

principle,

Eg:s:½v;N� ¼

min|{z}
N�representable
rQðx1 ;...;xQÞ

T ½rQ� þ
Z
� � �
Z

rQðx1; . . . xQÞ

ðN�kÞ!ðQ�1Þ!
ðN�1Þ!

PQ
j¼1

vðxiÞ
 !

þðN�QÞ!ðQ�2Þ!ðN�2Þ!
PQ
j1¼1

PQ
j2 6¼j1

1
2jxi1�xi2 j

 !
0BBBBB@

1CCCCCAdx1 � � � dxQ

0BBBBB@

1CCCCCA
ð1Þ

Here vðxÞ denotes the external potential of the molecule; for an isolated mole-

cule in the absence of external electric fields, this is simply the potential due to

nuclear–electron attraction.

Note that for Q � 2, only the kinetic energy functional needs to be approxi-

mated. Equation (1) is equally valid whether rQ corresponds to a pure state or to

an ensemble with a fixed number of electrons, N. In the rest of this chapter we

will assume an ensemble average.

In writing Eq. (1), we have chosen to define the Q-density so that it is normal-

ized to N!=ðN � QÞ!Q!. That is,

rQðy1; . . . ; yQÞ ¼
1

Q!

X
i

pi �i

�����XN
j1¼1

XN
j2¼1
j2 6¼j1

� � �
XN

jQ¼1
jQ 6¼jQ�1 ;jQ�2 ;...; j1

dðxj1 � y1Þ � � � dðxjQ � yQÞ
������i

* +

ð2Þ
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Implicit in this notation, the wavefunction is written as a function of the electro-

nic coordinates, x1; x2; . . . ; xN , and the bracket indicates integration over these

coordinates. In this equation, the weighting coefficients, pi, represent the prob-

ability of observing the system in the state associated with �i, and thus must

satisfy the constraints

0 � pi � 1

1 ¼
X1
i¼1

pi
ð3Þ

When determining the ground-state energy by optimizing the wavefunction,

one restricts the search to wavefunctions that represent possible states of N-elec-

tron systems. In practical terms, this means that when minimizing the electronic

energy with respect to the wavefunction, one considers only wavefunctions that

are antisymmetric. Similarly, when one determines the ground-state energy by

optimizing the Q-density, one restricts the search to Q-densities that represent

N-electron systems. In practical terms, this means that when minimizing the

energy with respect to the Q-density, one considers only the Q-densities

that can be written in the form of Eq. (2). Such Q-densities are said to be

N-representable.

� A Q-density, rQ, is N-representable if and only if there exists some set of

antisymmetric wavefunctions, f�ig, and weighting coefficients, fpig, for
which Eq. (2) holds.

� A Q-density, rQ, is pure-state N-representable if and only if it can be asso-

ciated with a specific antisymmetric wavefunction. (In this case, one of the

weights in Eq. (2) is one and all the other pi are zero.)

� A Q-density, rQ, is non-N-representable if and only if there is no way to

satisfy Eq. (2) without violating either the requirement that pi � 0 or the

requirement that �i is antisymmetric. A non-N-representable Q-density

does not represent an N-fermion system.

� A necessary condition for rQ to be N-representable is an equation or

inequality that holds for every N-representable Q-density. Although some

non-N-representable Q-densities might also satisfy a necessary condition,

every N-representable Q-density always satisfies a necessary condition.

� A sufficient condition for rQ to be N-representable is an equation or

inequality that guarantees any Q-density is N-representable. Although

some N-representable Q-densities might violate a sufficient condition, every

non-N-representable Q-density will violate a sufficient condition.

If one minimizes the energy subject to the satisfaction of some necessary,

but not sufficient, conditions for N-representability, then one will include

linear inequalities for diagonal elements 445



some non-N-representable Q-densities in the variational principle. Since the

domain of Q-densities considered is too large, the energy obtained will be a

lower bound to the full-CI energy in the basis set; the full-CI energy is an

upper bound to the true energy. If one minimizes the energy subject to the satis-

faction of a sufficient, but not necessary, condition for N-representability,

then one will exclude some N-representable Q-densities from the search for

a minimum and so the energy obtained will be an upper bound to the true

energy. If one constrains the variational optimization of the exact energy

functional with a necessary and sufficient condition for the N-representability

of the Q-density, the exact ground-state energy will be obtained. Because all

the necessary and sufficient conditions that we know are very complicated,

developing approximate methods based on necessary or sufficient conditions

is critically important. This chapter presents a family of necessary conditions

for N-representability.

There are only a few studies of Q-density functional theory for Q > 2 [2, 3, 6].

Most studies have concentrated on the pair density, or 2-density functional the-

ory. Excepting the fundamental work of Ziesche, early work in 2-density func-

tional theory focused on a differential equation for the pseudo-two-electron

wavefunction [7–11] defined by

wðx1; x2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

NðN � 1Þr2ðx1; x2Þ
s

This is the natural extension of density functional methods based on

wðxÞ ¼ ð1= ffiffiffiffi
N
p Þ ffiffiffiffiffiffiffiffiffi

rðxÞp
and it is an attractive approach to this problem partly

because of how much is known about the analogous density functional

method [12–16]. However, it seems difficult to deal with the restrictions

N-representability imposes on wðr1; r2Þ and none of these studies explicitly

addresses the N-representability issue. Until recently, this seemed sensible

because most researchers believed that the N-representability constraints were

not very restrictive, so that the hard part of the problem was approximating

the kinetic energy functional. Now, however, approximating the kinetic energy

functional seems to be tractable and the most difficult aspect of pair-density

theory seems to be the imposition of appropriate N-representability constraints

on the variational procedure [2, 10, 17]. This is in marked contrast to density

functional theory, where the N-representability conditions—the electron density

must be nonnegative and normalized to the number of electrons [18, 19]—are

trivial but formulating accurate kinetic energy functionals is very difficult

[20, 21].

In retrospect, the importance of N-representability constraints on the pair

density should have been clear from the very beginning. An N-representability
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condition for the diagonal elements of the Q-electron reduced density

matrices

�Qðx1; . . . ; xQ; x01; . . . ; x0QÞ ¼ N!

ðN � QÞ!Q!
X
i

pi

Z
� � �Z

��i ðx01; . . . ; x0Q; xQþ1;. . . ; xNÞ�iðx1; . . . ; xNÞdxQþ1 � � � dxN ð4Þ

even appears in the early work of Garrod and Percus [22] on the N-representabil-

ity problem. Weinhold and Wilson [23] derived a longer list of necessary con-

ditions for N-representability, which were subsequently rederived, generalized,

and extended [24–26]. Shortly after, Ziesche published his first work on pair-

density functional theory, Davidson showed that in addition to the ‘‘obvious’’

requirements that r2ðx1; x2Þ ¼ �2ðx1; x2; x1; x2Þ be nonnegative, normalized,

and symmetric with respect to exchange of coordinates, there are additional

N-representability conditions associated with the eigenvalues of r2ðx1; x2Þ,
where r2ðx1; x2Þ is viewed as an integral kernel [27]. Nonetheless, until recently

the N-representability problem was largely neglected in pair-density functional

theory. It now seems clear, however, that if one fails to constrain the variational

principle to N-representable pair densities, the energy obtained from the varia-

tional procedure could be catastrophically low [17, 28].

The importance of N-representability for pair-density functional theory was

not fully appreciated probably because most research on pair-density theories

has been performed by people from the density functional theory community,

and there is no ‘‘N-representability problem’’ in conventional density functional

theory. Perhaps this also explains why most work on the pair density has

been performed in the ‘‘first-quantized’’ spatial representation (r2ðx1; x2Þ ¼
�2ðx1; x2; x1; x2Þ) instead of the ‘‘second-quantized’’ orbital representation

rij ¼ �ij;ij ð5Þ
�ij;kl ¼

ZZ ZZ
ðf�i ðx1Þf�j ðx2Þ�2ðx1; x2; x01; x02Þfkðx01Þflðx02ÞÞdx1 dx01 dx2 dx02

ð6Þ
favored by the density-matrix theory community. Most of the known N-

representability constraints on the pair density are formulated in the orbital

representation and were originally conceived as constraints on the diagonal ele-

ments of the two-electron reduced density matrix, �ij;ij. These constraints can be

very powerful because they must hold in any orbital basis; the invariance of the

density matrix to unitary transformations between orbital basis sets means that

constraints on the diagonal elements of the density matrix in one orbital repre-

sentation imply nontrivial constraints on the off-diagonal elements of the density

matrix in all other choices of the orbital basis [23–25, 29]. Indeed, all of the
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N-representability conditions on the Q-density were originally intended for use

in variational optimization with respect to the Q-electron reduced density matrix.

Compared to computational approaches based on the Q-electron density,

approaches based on the Q-electron reduced density matrix have the advantage

that the kinetic energy functional can be written in an explicit form:

T ½�Q�¼ ðN�QÞ!ðQ�1Þ!
ðN�1Þ!

Z
� � �Z YQ

j¼1
dðxj�x0jÞ

XQ
k¼1
�r

2
xk

2
�Qðx1; . . . ;xQ;x01; . . . ;x0QÞ

�
dx1dx

0
1 � � �dxQdx0Q

 
ð7Þ

Partly for this reason, there has been a persistent interest in direct optimization of

the electronic energy with respect to a reduced density matrix [30–39].

Eg:s:½v;N� ¼ min|{z}
N-rep:�Q

Tr½ĤHQ;N�Q� ð8Þ

Here, the trace notation means ‘‘operate with ĤHQ;N on �Q; remove the primes

from the primed variables; then integrate with respect to the remaining unprimed

variables.’’ Because �Q only depends on Q-electronic coordinates, evaluating the

energy using Eq. (8) requires rewriting the energy operator so that it depends

only on the coordinates of Q electrons. The resulting Hamiltonian, ĤHQ;N , is

called the Q-electron reduced Hamiltonian for the N-electron system. For exam-

ple, for an observable that can be expressed as a sum of zero-, one-, and two-

body linear Hermitian operators,

L̂LN ¼ l̂l0 þ
XN
j1¼1

l̂l1ðxj1Þ þ
XN�1
j1¼1

XN
j2¼1
j2 6¼j1

l̂l2ðxj1 ; xj2Þ ð9Þ

the Q-body reduced operator is defined as

L̂LQ;N ¼ ðN � QÞ!Q!
N!

l̂l0 þ ðN � QÞ!ðQ� 1Þ!
ðN � 1Þ!

XQ
j¼1

l̂l1ðxjÞ

þ ðN � kÞ!ðQ� 2Þ!
ðN � 2Þ!

XQ
j1¼1

XQ
j2¼1
j2 6¼j1

l̂l2ðxj1 ; xj2Þ
ð10Þ
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The Hamiltonians of interest in molecular electronic structure theory correspond

to the choices

l̂l1ðxÞ ¼ �r
2
x

2
þ vðxÞ ð11Þ

l̂l2ðx1; x2Þ ¼ 1

2jx1 � x2j ð12Þ

The zero-body operator, l̂l0, merely shifts the zero of energy. To reduce notational

complexity, we will occasionally omit the second subscript on L̂LQ;N .

Constraints on the diagonal element of the density matrix can be useful in the

context of the density matrix optimization problem, Eq. (8). As Weinhold

and Wilson [23] stressed, the N-representability constraints on the diagonal

elements of the density matrix have conceptually appealing probabilistic inter-

pretations; this is not true for most of the other known N-representability

constraints.

The similarities and differences between methods based on the electron den-

sity, electron-pair density, and reduced density matrices have recently been

reviewed [5]. This chapter is not intended as a comprehensive review, but as a

focused consideration of N-representability constraints that are applicable to

diagonal elements of reduced density matrices. Such constraints are useful

both to researchers working with the Q-density and to researchers working

with Q-electron reduced density matrices, and so we shall attempt to review

these constraints in a way that is accessible to both audiences. Our focus is on

inequalities that arise from the Slater hull because the Slater hull provides an

exhaustive list of N-representability conditions for the diagonal elements of

the density matrix, ri1i2...iQ ¼ �i1...iQ;i1...iQ . Although the Slater hull constraints

are merely necessary, and not sufficient, for the N-representability of the Q-

electron reduced density matrix, it is still an important class of constraints for

density-matrix approaches.

The Slater hull constraints are not directly applicable to existing approaches

to pair-density functional theory because they are formulated in the orbital re-

presentation. Toward the conclusion of this chapter, we will also address

N-representability constraints that are applicable when the spatial representation

of the pair density is used.

For simplicity, we shall commonly refer to the Q-electron distribution func-

tion as the Q-density and the Q-electron reduced density matrix as the Q-matrix.

In position-space discussions, the diagonal elements of the Q-matrix are

commonly referred to as the Q-density. In this chapter, we will also refer to

the diagonal element of orbital-space representation of the Q-matrix as the

Q-density.

linear inequalities for diagonal elements 449



II. NECESSARY AND SUFFICIENT CONDITIONS

FOR N-REPRESENTABILITY

When implementing the variational procedure, the energy expectation value of a

candidate density matrix can be written as the trace of the Q-electron reduced

Hamiltonian and the Q-electron reduced density matrix, E½�Q� ¼ Tr½ĤHQ;N�Q�.
In order to ensure that the variational principle does not give too low an energy,

we remove from the variational procedure any density matrix for which

Tr½ĤHQ;N�Q� is below the true ground-state energy. If Tr½ĤHQ;N�Q� is greater

than or equal to the ground-state energy, Eg:s:ðĤHNÞ, for every possible Q-body

Hamiltonian, then �Q will not cause any problems in the variational procedure

and so �Q is not a problematic choice as a trial density matrix. That is, the var-

iational principle ‘‘works’’ if the domain of the minimization is restricted to den-

sity matrices that satisfy Tr½ĤHQ;N�Q� � Eg:s:ðĤHNÞ for every possible reduced

Hamiltonian. In this context the ‘‘Hamiltonian’’ is an arbitrary Q-body

Hermitian operator; it need not have any physical significance.

Though ‘‘having a variational principle that works’’ is all that is technically

required in a useful theory, this condition is actually necessary and sufficient for

the N-representability of the Q-matrix. That is,

� �Q is N-representable if and only if, for every Q-body Hamiltonian, ĤHN ,

Tr½ĤHQ;N�Q� � Eg:s:ðĤHNÞ. Here, ĤHQ;N is the Q-body reduced Hamiltonian

as written, for example, in Eq. (10) [22].

It is clear from the variational principle for the wavefunction that if �Q is

N-representable, then Tr½ĤHQ;N�Q� � Eg:s:ðĤHNÞ for every reduced Hamiltonian.

To show that the converse is true, we need three key facts:

� The set of N-representable �Q is a convex set. This follows directly from the

definition, Eq. (4) [22, 40].

� The space of linear operators on �Q is equal to the space of possible Q-body

reduced Hamiltonians, ĤHQ;N .

� Given a convex set, C, and an element, x, that is not in the set, there exists a

linear operator, l, such that lðyÞ > lðxÞ for every y 2 C [41].
Suppose that �notN- rep

Q is not N-representable. Since �notN-rep
Q is not in the

convex set of N-representable density matrices, there exists a linear operator,

ĤHQ;N , such that

Tr½ĤHQ;N�
N-rep
Q � > Tr½ĤHQ;N�

notN-rep
Q � ð13Þ

for all N-representable Q-matrices. Thus

min|{z}
N�representable�Q

Tr½ĤHQ;N�Q� ¼ Eg:s:ðĤHNÞ > Tr½ĤHQ;N�
notN-rep
Q � ð14Þ
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This indicates that if a Q-matrix is not N-representable, then there exists at least

one Hamiltonian capable of diagnosing this malady. We conclude that if

Tr½ĤHQ;N�Q� � Eg:s:ðĤHNÞ for all Hamiltonians, then �Q is N-representable. In

practice, it is useful to shift Hamiltonians so that the ground-state energy is

zero. That is, we define Hamiltonians by

P̂PN ¼ ĤHN � Eg:sðĤHNÞÎIN ð15Þ

where ÎIN is the identity operator. This leads to a simpler statement of the

N-representability conditions, namely,

� �Q is N-representable if and only if, for every Q-body Hamiltonian with

zero ground-state energy, Tr½P̂PQ;N�Q� � 0. Here P̂PQ;N is the reduced Hamil-

tonian corresponding to P̂PN , as defined through Eq. (10).

The necessary and sufficient condition for N-representability we have pre-

sented is not practicable because it requires determining the ground-state energy

of every possible Hamiltonian, including the Hamiltonian of interest. Suppose,

however, that one can find the ground-state energy for a few select Hamiltonians

analytically. It is necessary (but not sufficient!) that Tr½P̂PQ;N�Q� � 0 for all the

P̂PQ in this set. Thinking geometrically, Tr½P̂PQ;N�Q� ¼ 0 is a hyperplane tangent

to the set of N-representable Q-matrices, and so a collection of constraints with

the form of Tr½P̂PQ;N�Q� ¼ 0 constructs a convex polyhedral ‘‘hull’’ whose faces

are tangent to the set of N-representable densities (see Fig. 1). As the number of

faces in the convex polyhedron increases—that is, as the number of Hamilto-

nians for which the ground-state energy is known increases—the gap between

the set of N-representable reduced density matrices and the polyhedral hull

containing the set decreases to zero.

III. LINEAR INEQUALITIES FROM

THE ORBITAL REPRESENTATION

A. The Slater Hull

As laid out in the previous section, the quest for necessary conditions for

N-representability reduces to a quest for Hamiltonians whose ground-state

energy is known. As shown in Eq. (15), the Hamiltonian can then be shifted

so that its ground-state energy is zero, so that a necessary condition for

the N-representability of the Q-matrix can be written in terms of the reduced

Hamiltonian

Tr½P̂PQ;N�Q� � 0 ð16Þ

By imposing enough linear inequalities of this type, one constructs a polyhedral

hull that bounds the set of N-representable Q-matrices.
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It is easier to construct Hamiltonians whose exact solutions are known when

one uses the orbital representation. Within the orbital representation, the most

fundamental operator is the number operator for a spin orbital, n̂nj ¼ aþj aj. (a
þ
j

and aj are the operators for creating and annihilating the spin orbital

fjðxÞ ¼ fjðr; sÞ.) When n̂nj operates on a Slater determinant of orbitals,

� ¼ jfi1
fi2
� � �fiN

i, the eigenvalue is one if fj is included in the Slater determi-

nant, and zero otherwise. That is,

n̂njjfi1
fi2
� � �fiN

i ¼
XN
n¼1

dj;in

 !
jfi1

fi2
� � �fiN

i ð17Þ

The number operator is clearly a projector: n̂n2j ¼ n̂nj. The Q-matrix can be con-

verted to and from the orbital representation using

�i1...iQ;j1...jQ
¼
ZZ
� � �
ZZ

f�i1ðx1Þ � � �f�iQðxQÞ�Qðx1; . . . xQ; x01; . . . ; x0QÞfj1
ðx01Þ

�
� � �fjQ

ðx0QÞ
�
dx1 dx

0
1 . . . dxQ dx0Q ð18Þ

constraints

result from
exact system

Figure 1. Pictorial representation of how constraints based on known Hamiltonians provide

necessary conditions for the N-representability of density matrices. Here, the shaded region repre-

sents the convex set of N-representable density matrices.
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�Qðx1; . . . ; xQ; x01; . . . ; x0QÞ ¼
XK

i1...iQ¼1

XK
j1...jQ¼1

� fi1
ðx1Þ � � �fiQ

ðxQÞ�i1...iQ;j1...jQ
f�j1ðx01Þ� � �f�jQðx0QÞ

� �
ð19Þ

Recall that the Q-density is just the diagonal elements of the Q-matrix,

ri1...iQ ¼ �i1...iQ;i1...iQ ð20Þ
rQðx1; . . . ; xQÞ ¼ �Qðx1; . . . ; xQ; x1; . . . ; xQÞ ð21Þ

Note that there is no simple method for converting the Q-density from the

spatial representation to the orbital representation and back. The Q-density in

the spatial representation depends on off-diagonal elements of the Q-matrix in

the orbital representation and the Q-density in the orbital representation depends

on off-diagonal elements of the Q-matrix in the spatial representation.

Because the eigenfunctions of the number operators are the Slater determinants,

any polynomial of number operators will also have Slater determinant eigenfunc-

tions. Starting with a basis set of K spin orbitals, f1ðxÞ;f2ðxÞ; . . . ;fKðxÞ, let us
select a subset of R orbitals for additional scrutiny. Store the indices of this orbital

subset in IR ¼ fj1; j2; . . . ; jRg.
� Any Qth-degree polynomial of the number operators for these R orbitals

can be written in the form

L̂L
ðQ;IRÞ
N ¼

X
i12IR

X
i22IR
� � �
X
iQ2IR

ci1i2...iQ n̂ni1 n̂ni2 � � � n̂niQ ð22Þ

To demonstrate the truth of this statement, note if any one orbital occurs more

than once in Eq. (22) (i.e., if iq ¼ ir), then using the relationship n̂n2iq ¼ n̂niq will

reduce the degree of this term in the polynomial. Because of this, the summation

in Eq. (22) includes monomials of every degree between one (when

i1 ¼ i2 ¼ � � � ¼ iQ) and Q (when i1 6¼ i2 6¼ � � � 6¼ iQ). Because the eigenvalues of

L̂L
ðQ;IRÞ
N should be real, we force the coefficients to be real numbers. Because each

polynomial L̂L
ðQ;IRÞ
N has at most degree Q, the ‘‘energy’’ of this ‘‘Hamiltonian’’ can

be evaluated using the Q-matrix. Specifically, one has

E½�Q� ¼ Tr L̂L
ðQ;IRÞ
Q;N �Q

h i
ð23Þ

To obtain an expression for the Q-electron reduced form of L̂L
ðQ;IRÞ
N that

appears in this equation, we first group the monomials in L̂L
ðQ;IRÞ
N according
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to their degree,

L̂L
ðQ;IRÞ
N ¼ d0 þ

X
i12IR

di1 n̂ni1 þ
X
i12IR

X
i22IR
i2 6¼i1

di1i2 n̂ni1 n̂ni2 þ � � �

þ
X
i12IR

X
i22IR
i2 6¼i1

� � �
X

iQ2IR
iQ 6¼iQ�1 6¼���i1

di1i2...iQ n̂ni1 n̂ni2 � � � n̂niQ ð24Þ

The Q-electron reduced form of L̂L
ðQ;IRÞ
N is then

L̂L
ðQ;IRÞ
Q;N ¼ ðN � QÞ!Q!

N!
d0 þ ðN � QÞ!ðQ� 1Þ!

ðN � 1Þ!
X
i12IR

di1 n̂ni1

þ ðN � QÞ!ðQ� 2Þ!
ðN � 2Þ!

X
i12IR

X
i22IR
i2 6¼i1

di1i2 n̂ni1 n̂ni2

þ � � � þ
X
i12IR

X
i22IR
i2 6¼i1

� � �
X

iQ2IR
iQ 6¼iQ�1 6¼���i1

di1i2...iQ n̂ni1 n̂ni2 � � � n̂niQ

ð25Þ

The resulting expression is directly analogous to the expression for the reduced

Hamiltonian in Eq. (10).

The eigenfunctions of L̂L
ðQ;IRÞ
N are Slater determinants and because of this it is

relatively easy to determine the lowest eigenvalue of L̂L
ðQ;IRÞ
N . Requiring

Tr
�
L̂L
ðQ;IRÞ
Q;N �Q� � Eg:s:

	
L̂L
ðQ;IRÞ
N



is a necessary condition for the N-representability

of the Q-matrix. The (Q, R) necessary conditions for N-representability are

obtained by requiring that this inequality hold for every polynomial of degree

less than or equal to Q and for every possible subset of R orbitals.

� A Q-matrix, �Q, is said to satisfy the (Q,R) family of necessary conditions

for N-representability if

Tr L̂L
ðQ;IRÞ
Q;N �Q

h i
� Eg:s: L̂L

ðQ;IRÞ
N

� �
ð26Þ

for all choices of coefficients, ci1i2...iQ , and all possible subsets of R orbitals, IR, in

Eq. (22) [25, 26].

The (Q,R) conditions formapolyhedral hull containing the set ofN-representable

�Q. The (Q,R) conditions either contain, or imply, every necessary condition that can

be stated for the diagonal elements of the Q-matrix without using more than R dis-

tinct orbital indices. In this sense, the (Q, R) conditions are the complete set of R-

orbital necessary conditions for the Q-density.

Clearly, the (Q, Rþ 1) conditions contain the (Q, R) conditions as a special

case. (Just choose ci1...iQ ¼ 0 any time the orbital that is in IRþ1, but not IR,
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occurs.) The most stringent necessary conditions, then, are obtained when all the

orbitals in the orbital basis set are included (R ¼ K). The (Q, K) family of con-

straints defines the Slater hull [29].

� A Q-matrix is in the Slater hull if it satisfies the (Q, K) constraints, where K

is the number of spin orbitals in the basis set. If �Q is in the Slater hull, it

satisfies

Tr L̂L
ðQ;IK Þ
Q;N �Q

h i
� Eg:s: L̂L

ðQ;IK Þ
N

� �
ð27Þ

where L̂L
ðQ;IK Þ
N is any Qth degree polynomial of the number operators in this

orbital basis, Eg:s:

	
L̂L
ðQ;IK Þ
N



is the smallest eigenvalue of this ‘‘Hamiltonian,’’

and L̂L
ðQ;IK Þ
Q;N is the reduced Hamiltonian defined in Eq. (25).

Henceforth, we will use the statements ‘‘�Q is in the Slater hull; ’’ ‘‘�Q satisfies

the Slater hull conditions,’’ and ‘‘�Q satisfies the (Q, K) conditions’’ interchangeably.

Necessary conditions based on the Slater hull have been pursued by Kummer,

McRae and Davidson, Yoseloff and Kuhn, and Deza and Laurent, among others

[24–26, 29, 42–44].

Even for a relatively small system, obtaining the (Q, R) conditions is compu-

tationally challenging [25]. For example, using the 2-matrix to describe the

beryllium atom in a minimal basis would require the (2,10) conditions for a

four-electron system. In this case, the Slater hull is a polyhedron with on the

order of ten billion facets. Only small R is interesting for computational applica-

tions.

In the next section, we will show that the (R, R) necessary conditions take an

especially simple form. If �R satisfies the (R, R) conditions, then the Q-matrix

obtained from the partial trace of �R,

�Q ¼ �i1...iQ;j1...jQ ¼
ðN � RÞ!R!
ðN � QÞ!Q!

XK
iQþ1¼1

XK
iQþ2¼1

� � �
XK
iR¼1

�i1...iR;j1...jQ;iQþ1;...iR ð28Þ

satisfies the (Q, R) conditions. This is a consequence of the fact that, in Eq. (22),

polynomials of degree less than or equal to Q arise if the coefficients, ci1i2...iR , are

zero whenever the R indices have more than Q distinct values. In this way, the

(Q, R) conditions arise as ‘‘special cases’’ implied by the (R, R) conditions.

Because of the simple form of the (R, R) conditions, however, it is easier to

derive the (Q, R) conditions from the (R, R) conditions than it is to derive

them directly. We shall do this later, after deriving the form of the (R, R)

conditions and presenting results for some special cases of interest.

The fact that every R-matrix that satisfies the (R, R) inequalities reduces

to a Q-matrix that satisfies the (Q, R) conditions has clear implications for
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hierarchies of equations based on density matrices [45–50] and many-electron

densities [2, 51]. Forcing the highest-order density matrices (or densities) that

appear in these equations to satisfy the (R, R) N-representability conditions is

sufficient to ensure that all of the lower-order density matrices in these equations

will satisfy the (Q, R) conditions. When solving hierarchies of equations it may

be better to impose N-representability conditions at the top of the hierarchy,

rather than at the bottom.

B. Derivation of the (R, R) Conditions

As previously discussed, when developing necessary conditions for N-

representability, it is useful to consider the subset of Hamiltonians whose

ground-state energy is zero. Applying this idea to the Slater hull, the following

Hamiltonians arise as important constraints:

P̂P
ðR;IRÞ
N ðwi1 ; . . . ;wiRÞ ¼

YR
r¼1
½wir n̂nir þ ð1� wir Þð1� n̂nirÞ�; wir ¼ f0; 1g ð29Þ

where the weighting coefficients, wir , are either zero or one [24–26]. For R � N

and a set of spin orbitals that contains at least K ¼ N þ R functions, the ground-

state energy of Eq. (29) is always zero. (Matters are complicated when R > N, or

when the number of basis functions is less than N þ R; in those cases there are

additional constraints because it is possible that some of the Slater polynomials,

L̂L
ðR;IRÞ
N , that would ordinarily be negative for some choices of occupation num-

bers are actually positive for all subsets of N orbitals. The impossible complexity

of the Slater hull conditions for large R ensures that these complications have no

practical importance; hence they will be neglected.) Note that the ground state of

P̂P
ðR;IRÞ
N ðwi1 ; . . . ;wir Þ is highly degenerate: every Slater determinant that includes

any orbital with wir ¼ 0 or omits any orbital with wir ¼ 1 is a ground-state

eigenfunction of P̂P
ðR;IRÞ
N .

If the expectation value of the reduced Hamiltonian, Tr P̂P
ðR;IRÞ
R;N �R

h i
, is greater

than or equal to zero for every Hamiltonian formed from Eq. (29), then

Tr L̂L
ðR;IRÞ
R;N �R

h i
� Eg:s: L̂L

ðR;IRÞ
N

� �
for any polynomial of number operators depend-

ing only on the R orbitals under scrutiny, L̂L
ðR;IRÞ
N . To understand why this is true,

consider the set of N-electron Slater determinants that can be constructed using

the subset of R orbitals contained in IR,

�ðR;IRÞðwi1 ; . . . ;wiRÞ ¼ ðwiRa
þ
R ÞðwiR�1a

þ
R�1Þ � � � ðwi1a

þ
1 Þj�=2IRðwi1 ; . . . ;wiRÞi; wir ¼ f0; 1g

ð30Þ

�=2IRðwi1 ; . . . ;wiRÞ represents any Slater determinant that comprises

ðN � wi1 � wi2 � � � � � wiRÞ orbitals that are not included in the R orbitals under
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scrutiny. (Because R is usually chosen to be a small number and the number of

one-electron basis functions is usually significantly larger than the number of

electrons, there are usually many different choices for �=2IRðwi1 ; . . . ;wiRÞ.)
Consider the ensemble of states that can be constructed from these Slater

determinants,

�
ðR;IRÞ
N ¼ �

ðR;IRÞ
j1...jN ;k1...kN

¼
X

wi1
;wi2

...;wiR
choices for �=2firg

p�=2IR ;wi1
;...;wiR

���ðR;IRÞðwi1 ; . . . ;wiRÞi

�h�ðR;IRÞðwi1 ; . . . ;wiRÞ
�� ð31Þ

(Note that this ensemble includes contributions from different choices of

�=2IRðwi1 ; . . . ;wiRÞ. Note also that the N-electron density matrix has been defined

so that it is normalized to one.) This convex set of N-electron density matrices

can be reduced to a convex set of R-electron reduced density matrices using the

definition

�
ðR;IRÞ
R � �

ðR;IRÞ
j1...jR;k1...kR

� N!

ðN � RÞ!R!
XK
jRþ1¼1

XK
jRþ2¼1

� � �
XK
jN¼1

�
ðR;IRÞ
j1...jN ;k1...kR;jRþ1...jN ð32Þ

Geometrically, this set of density matrices can be pictured as an (Rþ 1Þ-dimen-

sional 2R-hedron, where the vertices are defined by the pure-state Slater determi-

nant R-matrices, where one of the p�=2IR ;wi1
;...;wiR

¼ 1. (The R ¼ 2 case is depicted

in Fig. 2.) Each face of the 2R-hedron lies in one of the 2R hyperplanes defined

by

Tr P̂P
ðR;IRÞ
R;N ðwi1 ; . . . ;wiRÞ�R

h i
¼ 0; wir ¼ f0; 1g ð33Þ

For example, if one considers the ‘‘base’’ of the 2R-hedron to include every ver-

tex except the one in which all R of orbitals under scrutiny are occupied

(wi1 ¼ wi2 ¼ � � � ¼ wiR ¼ 1), then the base of the 2R-hedron is contained in the

hyperplane

Tr P̂P
ðR;IRÞ
R;N ð1; 1; . . . ; 1Þ�R

h i
¼ Tr n̂ni1 n̂ni2 � � � n̂niR�R½ � ¼ 0 ð34Þ

and the vertex that does not lie in the hyperplane satisfies

Tr P̂P
ðR;IRÞ
N ð1; 1; . . . ; 1Þj�ðR;IRÞð1; 1 . . . ; 1Þih�ðR;IRÞð1; 1 . . . ; 1Þj

h i
¼ 1 ð35Þ
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Clearly, the set of �
ðR;IRÞ
R defined in Eq. (32) lies on the ‘‘positive’’ side of all of

the hyperplanes, so that

Tr P̂P
ðR;IRÞ
R;N ðwi1 ; . . . ;wiRÞ�ðR;IRÞR

h i
� 0 ð36Þ

is satisfied for all 2R possible choices of wi1 ; . . . ;wiR ¼ f0; 1g. If one or more of

the wir is chosen to be between zero and one, one obtains a hyperplane that is

tangent to an ‘‘edge’’ (if at least one of the wir is still zero or one) or a vertex (if

none of the wir are zero or one) of the polyhedron. (Cases where any of the wir

are less than zero or greater than one correspond to Hamiltonians with negative

ground-state energies unless the one-electron basis has fewer than N þ R

orbitals.)

We are now prepared to explain why Tr L̂L
ðR;IRÞ
R;N �R

h i
� Eg:s: L̂L

ðR;IRÞ
N

� �
whenever

Tr P̂P
ðR;IRÞ
R;N �R

h i
� 0 for all of the P̂P

ðR;IRÞ
N that one can construct based on the form

in Eq. (29). Recall that the ground-state wavefunction of L̂L
ðR;IRÞ
N is a Slater deter-

minant. This means that

Eg:s: L̂L
ðR;IRÞ
N

� �
¼ min|{z}

Slater
det:

� L̂L
ðR;IRÞ
N

��� ����D E
ð37Þ

Figure 2. Pictorial representation of how one defines the Slater hull using hyperplanes. The

vertices of the tetrahedron correspond to Slater determinants. The ‘‘base’’ of the Slater hull, which

is shaded in this figure, lies in the hyperplane defined by Tr n̂ni1 n̂ni2�N½ � ¼ 0. Moving clockwise, starting

at the front of the tetrahedron, the ‘‘sides’’ of the Slater hull are contained in the hyperplanes

Tr½n̂ni1 ð1� n̂ni2 Þ�N � ¼ 0, Tr½ð1� n̂ni1 Þn̂ni2�N � ¼ 0, and Tr½ð1� n̂ni1 Þð1� n̂ni2 Þ�N � ¼ 0.
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or—since every R-matrix from a Slater determinant satisfies

Tr P̂P
ðR;IRÞ
R;N ðwi1 ; . . . ;wiRÞ�ðR;IRÞR

h i
� 0 (cf. Eq. (36))—one can minimize the energy

with respect to the R-matrices that satisfy this constraint:

Eg:s: ĤH
ðR;IRÞ
N

� �
¼ min|{z}

�
R

Tr P̂P
ðR;IRÞ
R;N �R

� �
�0

��� � Tr L̂L
ðR;IRÞ
R;N �R

h i
ð38Þ

This establishes what we wished to show:

� As long as �R satisfies the constraints Tr P̂P
ðR;IRÞ
R;N ðwi1 ; . . . ;wiRÞ�R

h i
� 0,

Tr L̂L
ðR;IRÞ
R;N �R

h i
is greater than or equal to the ground-state energy for any

reduced Hamiltonian, L̂L
ðR;IRÞ
R;N , built from a polynomial of Rth degree or

less from the R orbitals in IR, L̂L
ðR;IRÞ
N .

An immediate corollary of this result is

� The (R, R) conditions for the N-representability of �R are that

Tr P̂P
ðR;IRÞ
R;N ðwi1 ; . . . ;wiRÞ�R

h i
� 0; 8IR;wir 2 f0; 1g ð39Þ

for every possible subset of R orbitals, IR, and all possible choices of

wir ¼ f0; 1g. The positive semidefinite Hamiltonian, P̂P
ðR;IRÞ
N ðwi1 ; . . . ;wiRÞ,

is defined in Eq. (29) and the method for constructing the reduced

Hamiltonian, P̂P
ðR;IRÞ
R;N ðwi1 ; . . . ;wiRÞ, is based on Eq. (25).

Tr P̂P
ðR;IRÞ
R;N �R

h i
� 0 represents the complete set of constraints on the diagonal

elements of the R-matrix that can be expressed using no more than R distinct

orbital indices. The (R, R) conditions are necessary, but not sufficient, for the

N-representability of the R-matrix.

In fact, even the full set of (R, K) conditions is insufficient. Since the full set

of Slater hull constraints is not sufficient to ensure the N-representability of the

R-matrix, there exist some �R that satisfy the Slater hull constraints,

Tr L̂L
ðR;IK Þ
R;N �R

h i
� 0, but give a ground-state energy below the correct energy for

some Hamiltonian. We are assured, however, that (i) this problematic

Hamiltonian is not an Rth-degree polynomial of number operators and (ii) the

ground-state wavefunction of this Hamiltonian is not a Slater determinant.

C. Necessary Conditions from the Slater Hull; (R, R) Conditions

For each choice of wir in Eq. (29), one obtains necessary conditions on the

diagonal elements of the R-matrix (cf. Eq. (39)). We now discuss a few of the

simpler (R, R) conditions. We refer the reader to the references for further details

[25, 26].
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1. (1, 1) Conditions

The (1,1) conditions, Tr P̂P
ð1;I1Þ
1;N �1

h i
� 0, can be stated in terms the reduced one-

electron Hamiltonian (cf. Eq. (25)),

Tr½n̂ni�1� ¼ �i;i � 0

Tr
1

N
� n̂ni

� �
�1

� �
¼ 1� �i;i � 0

ð40Þ

The above inequalities immediately yield the constraint on the possible diagonal

elements of the 1-matrix, namely,

0 � �i;i � 1 ð41Þ
The 1-matrix can be diagonalized and its eigenfunctions are the natural orbitals.

Equation (41) then implies that the natural orbital occupation numbers lie

between zero and one, inclusive. Except for the normalization condition,

N ¼
XK
i¼1

�i;i ð42Þ

this is the only N-representability constraint on the 1-matrix [22, 40].

2. (2, 2) Conditions

We could obtain the (2, 2) conditions by performing the same sequence of steps

we used to derive the (1, 1) conditions: construct all the N-electron P̂P
ð2;I2Þ
N

Hamiltonians using Eq. (29); reduce these to the 2-electron form, P̂P
ð2;I2Þ
2;N , using

Eq. (25); then simplify inequalities of the form Tr
�
P̂P
ð2;I2Þ
2;N �2

� � 0. Using the

N-electron Hamiltonian directly, though, is less tedious and error prone, since

it doesn’t require multiplying out the factors in Eq. (29). That is, it is more

convenient to compute the (2, 2) conditions as
�
� P̂P

2;I2
N

�� ���� (for a pure state)

or Tr
�
P̂P
ð2;I2Þ
N �N

� � 0 (for a N-electron ensemble), namely,

Tr½n̂nin̂nj�N � � 0

Tr ð1� n̂niÞn̂nj�N

� � � 0

Tr n̂nið1� n̂njÞ�N

� � � 0

Tr ð1� n̂niÞð1� n̂njÞ�N

� � � 0

ð43Þ

Recall that Tr½�N � ¼ 1.

The (2, 2) constraints are associated with the first three Weinhold–Wilson

constraints [23]. This is clear when we rewrite the inequalities in terms of the
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diagonal elements of the 2-matrix

�ij;ij ¼ rij � 0

�i;i � �ij;ij ¼ ri � rij � 0

1� �i;i � �j;j þ �ij;ij ¼ 1� ri � rj þ rij � 0

ð44Þ

(The second and third inequalities in Eq. (43) are the same, except for a permu-

tation of the indices.) Weinhold and Wilson use the fact that ri represents the

probability of observing an electron in orbital ‘‘i’’ and rij represents the prob-

ability that orbitals ‘‘i’’ and ‘‘j’’ are both occupied to show that each of these

constraints has a straightforward probabilistic interpretation.

� rij � 0. The probability that orbitals ‘‘i’’ and ‘‘j’’ are both occupied is

greater than or equal to zero.

� ri � rij. The probability that orbital ‘‘i’’ is occupied is greater than or equal
to the probability that orbital ‘‘i’’ and orbital ‘‘j’’ are both occupied. An

alternative interpretation, based on the number operators representation in

Eq. (43), is that the probability that orbital ‘‘i’’ is occupied and orbital ‘‘j’’

is empty is greater than or equal to zero.

� 1 � ri þ rj � rij. Based on Eq. (43), we infer that this inequality states that

the probability that both orbital ‘‘i’’ and orbital ‘‘j’’ are empty is greater

than or equal to zero. An alternative interpretation, due to Weinhold and

Wilson, is that the probability that orbital ‘‘i’’ or orbital ‘‘j’’ is occupied

is less than or equal to one.

Two other constraints are

� rij ¼ rji (symmetry).

� rii ¼ 0 (Pauli exclusion relation).

These conditions follow directly from the orbital resolution of the reduced den-

sity matrix.

3. (3, 3) Conditions

The (3, 3) conditions are, in the orbital representation,

Tr½n̂nin̂njn̂nk�N � � 0! rijk � 0

Tr n̂nin̂njð1� n̂nkÞ�N

� � � 0! rij � rijk � 0

Tr n̂nið1� n̂njÞð1� n̂nkÞ�N

� � � 0! ri � rij � rik þ rijk � 0

Tr ð1� n̂niÞð1� n̂njÞð1� n̂nkÞ�N

� � � 0! 1� ri � rj � rk
þrij þ rik þ rjk � rijk

 !
� 0

ð45Þ
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The probabilistic interpretation of these conditions is very similar to the inter-

pretation of the (2, 2) conditions. The analysis is readily extended to higher-

order densities, where one obtains Rþ 1 unique constraints on the R-matrix.

D. Necessary Conditions from the Slater Hull; (Q, R) Conditions

As discussed in Section III. A, because the set of R-orbital Rth-degree polyno-

mials contains the set of Q-orbital Rth-degree polynomials (Q < R), the (R, R)

conditions contain the (Q, R) conditions. That is, if an R-matrix satisfies the

(R, R) conditions, then the associated Q-matrix (obtained by partial tracing of

�R) satisfies the (Q, R) conditions. It should be possible, then, to use the

(R, R) conditions in the previous section to derive the (Q, R) conditions [26].

To this end, note that adding the first two (2, 2) inequalities (cf. Eq. (44))

recovers the first (1, 1) inequality:

rij þ ðri � rijÞ ¼ ri � 0 ð46Þ

Similarly, adding the second two (2, 2) inequalities gives the second (1, 1)

inequality:

ðrj � rijÞ þ ð1� ri � rj þ rijÞ ¼ 1� ri � 0 ð47Þ

Since the (1, 1) conditions were sufficient to ensure the N-representability of the

1-matrix, it is reassuring that no new constraints were obtained.

It is not difficult to see that the (2, 2) inequalities can be derived from appro-

priate combinations of the (3, 3) inequalities in Eq. (45). However, there are

(2, 3) inequalities that are not contained in the (2, 2) inequalities. For example,

adding the first and fourth inequalities in Eq. (45) provides the new constraint

rijkþð1�ri�rj�rkþrijþrikþrjk�rijkÞ¼1� ri�rj�rkþrijþrikþrjk � 0

ð48Þ
Similarly, adding the second and third (3, 3) inequalities gives

ðrjk � rijkÞ þ ðri � rij � rik þ rijkÞ ¼ ri � rij � rik þ rjk � 0 ð49Þ

These inequalities are the fourth and fifth Weinhold–Wilson constraints. These

(2, 3) inequalities have a probabilistic interpretation very similar to the (2, 2)

inequalities. Returning to the fundamental number operators form of the (3, 3)

inequalities (cf. Eq. (45)), we see that Eq. (48) was generated from

Tr n̂nin̂njn̂nk þ ð1� n̂niÞð1� n̂njÞð1� n̂nkÞ
	 


�N

� � � 0 ð50Þ
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so it is the probability that all three orbitals are filled or all three orbitals are

empty. Similarly, Eq. (49) comes from

Tr ð1� n̂niÞn̂njn̂nk þ n̂nið1� n̂njÞð1� n̂nkÞ
	 


�N

� � � 0 ð51Þ

So it is the probability that orbital ‘‘i’’ is empty and orbitals ‘‘j’’ and ‘‘k’’ are

filled or that orbital ‘‘i’’ is filled and orbitals ‘‘j’’ and ‘‘k’’ are empty. It is inter-

esting that these particular three-electron correlations can be evaluated using the

two-electron reduced density matrix.

Inequalities (49) and (48), along with the (2, 2) inequalities in Eq. (44), con-

stitute the (2, 3) conditions. This is the entire family of restrictions on the diag-

onal elements of the 2-matrix that can be derived from polynomials containing

no more than three distinct orbital indices.

To derive the (2, 4) conditions from the (4, 4) conditions, one first derives the

(3, 4) conditions by adding pairs of (4, 4) inequalities. The (2, 4) conditions are

then derived by taking appropriate linear combinations of the (3, 4) inequalities

[26]. The (2, 5) conditions can be derived in a similar way [26]. Compared to the

mathematically unwieldy and computationally costly alternative methods for

obtaining (Q, R) conditions [24, 25, 43], deriving (Q, R) conditions directly

from the (R, R) conditions seems much simpler. The (2, 5) conditions are quite

complicated, however, and as R increases further the number of distinct (Q, R)

conditions burgeons toward impracticality [25].

E. Sufficiency of the Slater Hull Constraints

for Diagonal Elements of Density Matrices

The Slater hull constraints represent the entire family of N-representability con-

straints that can be expressed using only the diagonal elements of the reduced

density matrix [25, 43]. That is, the complete set of (Q, K) conditions is neces-

sary and sufficient to ensure the N-representability of the Q-density.

� ri1...iQ is an N-representable Q-density if and only if it satisfies all of the

Slater hull constraints. That is, ri1...iQ is N-representable if and only if it

satisfies the (Q, K) conditions, where K is the number of spin orbitals in

the basis set.

People rarely discuss the N-representability of the diagonal of a density

matrix. The diagonal elements of a density matrix are N-representable if and

only if there exists some N-electron ensemble that reproduces those elements.

The preceding statement asserts that if the diagonal elements of the Q-matrix,

�i1...iQ;i1...iQ , satisfy the (Q, K) conditions, then there always exists an N-electron

ensemble with these diagonal elements. Thus, if ri1...iQ satisfies the (Q, K) con-

ditions, then there must be an ensemble-N-representable Q-matrix with those
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diagonal elements [25, 43]:

ri1...iQ ¼
Z Z Z Z

f�i1ðr1Þ � � �f�iQðrQÞ�Qðr1; . . . ; rQ; r01; . . . ; r0QÞfi1
ðr01Þ

�
� � �fiQ

ðr0QÞ
�
dr1 dr

0
1 � � � drQ dr0Q ð52Þ

In fact, we have a stronger result: if ri1...iQ satisfies the (Q, K) conditions, then the

Q-matrix constructed from ri1...iQ by setting all the off-diagonal matrix elements

equal to zero,

�i1...iQ;j1...jQ ¼ ri1...iQ ; i1 ¼ j1; . . . ; iQ ¼ jQ
0; otherwise


ð53Þ

is N-representable. This is true because any ri1...iQ that satisfies the (Q, K) con-

ditions can always be derived from an ensemble of Slater determinants,

ri1...iQ ¼
1

Q!

X
i

pi �i a
þ
i1
aþi2 � � � aþiQaiQaiQ�1 � � � ai1

��� ����i

D E
ð54Þ

and the Q-matrix from an ensemble of Slater determinants has no off-diagonal

elements. Because the wavefunction j�i ¼Pi

ffiffiffiffi
pi
p

eifi j�ii (fi is an arbitrary

phase factor) also gives ri1...iQ , every Q-density that satisfies the (Q, K) condi-

tions is actually pure-state N-representable. (Note that the pure-state and ensem-

ble precursors of the Q-density give different off-diagonal elements for the

Q-matrix.)

To derive this key result, we construct the set of Q-matrices associated with

the Slater determinants in this orbital basis, SðQ;IK Þ. Every element in SðQ;IK Þ has
the form of Eq. (52), where the reduced density matrix is written in terms of

Slater determinants (cf. Eq. (32)). SðQ;IK Þ is convex because weighted averages

of elements in SðQ;IK Þ are also in SðQ;IKÞ: this follows directly from the fact that

Eq. (31) is a convex linear combination of Q-densities from Slater determinants.

Geometrically, SðQ;IK Þ is a polyhedron and its vertices correspond to pure states.

The Qth-degree, K-orbital Hamiltonians (cf. Eq. (22)) generate hyperplanes,

Tr L̂L
ðQ;IK Þ
Q;N �Q

h i
� Eg:s: L̂L

ðQ;IK Þ
N

� �
ð55Þ

that are tangent to the surface of SðQ;IK Þ. Any Q-density that is not in SðQ;IK Þ must

lie on the ‘‘wrong side’’ of at least one of these hyperplanes. If it does so, then

one of the (Q, K) conditions will not be met. Thus, if a Q-density meets all the

(Q, K) conditions, it must be expressible in the form of Eq. (54). This establishes
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that the (Q, K) conditions are necessary and sufficient for the N-representability

of the Q-electron distribution function. Although the implementation of the

(Q, R) conditions with large R is intractable, a sequence of calculations based

on the (Q, Q), (Q, Qþ 1), (Q, Qþ 2), . . .conditions will converge to the correct

result from below (if the kinetic energy functional is exact). The convergence

is monotonic because, as shown in Section III.A, the (Q, R) conditions are con-

tained in the (Q, S) conditions whenever S > R. This sequence of calculations

converges from below because the imposed N-representability conditions are

necessary, but not sufficient. One would hope that rapid convergence to the

correct result might be achieved.

This result suggests that building Q-densities from Slater determinants may

be a useful computational technique.

Although every Q-density in the Slater hull is N-representable, not every

Q-matrix that satisfies the Slater hull constraints is N-representable. That is, if

ri1...iQ ¼ �i1...iQ;i1...iQ satisfies the (Q, K) conditions, some choices for the off-

diagonal elements of the density matrix �i1...iQ;j1...jQ are N-representable, but

most are not. (As shown in Eq. (53), one of the N-representable choices is to

choose all the off-diagonal elements to be zero.) Simply stated, when only the

diagonal elements of the reduced density matrix are considered, the Slater hull is

equal to the set of N-representable Q-densities, which is equal to the set of

Q-densities from ensembles of Slater determinants. However, when off-diagonal

elements of the reduced density matrix are considered, one finds that the Slater

hull contains the set of N-representable Q-matrices, which contains the set of

Q-matrices from ensembles of Slater determinants. These results expose the

need for constraints on the off-diagonal elements of reduced density matrices.

F. Constraints on Off-Diagonal Elements from Unitary Transformation

of the Slater Hull Constraints

Note that the (Q, R) conditions apply for any choice of the spin-orbital basis.

Because the diagonal elements of the Q-matrix in one orbital basis depend on

the off-diagonal elements of the Q-matrix in another orbital basis,

ra1;...aQ ¼
X
i1 ...iQ
j1 ...jQ

Ua1i1
Ua2i2

� � �UaQiQ

� �
�i1...iQj1...jQ

Uj1a1
Uj2a2

� � �UjQaQ

� �
ð56Þ

the (Q, R) conditions actually imply constraints on the off-diagonal elements of

the reduced density matrix. In Eq. (56), Uai denotes the unitary transformation of

spin orbitals from one basis to another,

caðr; sÞ ¼
XK
i¼1

Uaifiðr; sÞ ð57Þ
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Equation reveals that it is impossible to determine the Q-density in one

orbital basis directly from the Q-density in a different orbital basis. Given one

N-representable Q-density, ri1...iQ , it is reasonable to choose the off-diagonal ele-

ments of the Q-matrix, �i1...iQj1...jQ
, so that the Q-densities in other orbital basis

sets are also N-representable. That is, it is reasonable to require that �i1...iQj1...jQ
satisfy the (Q, K) conditions in every orbital basis set. This is clearly a necessary

condition for the N-representability of �i1...iQj1...jQ
. Unfortunately, even the

complete set of (Q, K) conditions in every orbital basis is still insufficient to

ensure the N-representability of the Q-matrix. This contrasts with the pleasing

result from the last section, where imposing the (Q, K) conditions in any orbital

basis sufficed to ensure the N-representability of the Q-density.

G. Constraints on Off-Diagonal Elements

from Other Positive-Definite Hamiltonians

Because the Slater hull constraints are insufficient to ensure N-representability, it

is important to find additional methods for constraining the off-diagonal ele-

ments of the density matrix. Obtaining constraints that supersede the Slater

hull requires considering Hamiltonians with a more general form than polyno-

mials of number operators. As discussed in Section III.A, matters are especially

simple if the Hamiltonian has nonnegative eigenvalues, because then the neces-

sary conditions for N-representability take the form

Tr P̂PN�N

� � � 0 ð58Þ

If the Hamiltonian P̂PN contains at most Q-body terms, then Eq. (58) will produce

a necessary condition on the Q-matrix.

Positive semidefinite Hamiltonians can be constructed by taking an operator

that depends on Q creation/annihilation operators and multiplying the operator

by its Hermitian transpose, P̂PQ ¼ ÂA
y
QÂAQ. Q-body Hamiltonains can be con-

structed, for example, by choosing

ÂA2;p ¼
XK
i¼1

XK
j¼1

pijajai ð59Þ

ÂA2;q ¼
XK
i¼1

XK
j¼1

qija
þ
j a
þ
i ð60Þ

ÂA2;g ¼
XK
i¼1

XK
j¼1

gija
þ
j ai ð61Þ
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hence XK
i; j¼1

XK
i0; j0¼1

p�i0j0Tr aþj0 a
þ
i0 aiaj�N

h i
pij

� �
� 0 ð62Þ

XK
i; j¼1

XK
i0; j0¼1

q�i0j0Tr aj0ai0a
þ
i a
þ
j �N

h i
qij

� �
� 0 ð63Þ

XK
i; j¼1

XK
i0; j0¼1

g�i0j0Tr aþj0 ai0a
þ
i aj�N

h i
gij

� �
� 0 ð64Þ

These constraints are the P condition, Q condition, and G condition, respectively

[22, 40]. Because Tr aþj0 a
þ
i0 aiaj�N

h i
is just the 2-matrix, the P condition reduces

to the requirement that py�2p � 0 for all choices of the vector p. Thus the P

condition reduces to the requirement that the 2-matrix is positive semidefinite.

Similarly, the Q condition states that the ‘‘hole’’ 2-matrix (i.e., the 2-matrix for

the unfilled orbitals) is positive semidefinite. The G condition can be interpreted

if one recognizes thatXK
i¼1

XK
j¼1

aþj gijai ¼
XK
i¼1

XK
j¼1

aþj hfjjĝgjfiiai ð65Þ

is the operator associated with a one-electron Hamiltonian, ĝgðxÞ. The G condi-

tion then states that the square of a one-electron Hamiltonian is positive semi-

definite,

ĤH �
XN
i¼1

ĝgðxiÞ
�����

�����
2

� 0 ð66Þ

Recall that the (2, 2) conditions contain all the N-representability constraints on

the diagonal element of the 2-matrix that can be stated without reference to more

than two orbitals.

Accordingly, the diagonal elements of the P, Q, and G Hamiltonians should

give results consistent with the (2, 2) conditions. This occurs. For example, using

the commutation rules for creation and annihilation operators, the diagonal

elements of the P Hamiltonian become

aþj a
þ
i aiaj ¼ �aþj aþi ajai ¼ �aþj dij � aja

þ
i

	 

ai ¼ n̂njn̂ni � dijn̂ni ¼ n̂njn̂ni ð67Þ

Because the diagonal elements of a positive semidefinite matrix are never

negative, this implies the first (2, 2) condition, Tr n̂njn̂ni�N

� � � 0.
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The other (2, 2) conditions are similarly obtained. In particular, the Q condi-

tion implies that Tr ð1� n̂njÞð1� n̂niÞ�N

� � � 0; the G condition implies that

Tr n̂njð1� n̂niÞ�N

� � � 0.

While the P, Q, and G conditions give no new constraints on the diagonal

elements of the 2-matrix, they provide important constraints for the off-diagonal

elements.

Based on the preceding analysis, one can develop an algorithm for general-

izing any of the (Q, R) conditions to constrain off-diagonal elements of the

Q-matrix. In general, an operator with the form of Eq. (29) becomes

YQ
i¼1

�
win̂ni þ ð1� wiÞð1� n̂niÞ

�! a
sgnðwiÞ
Q0 � � � asgnðwiÞ

20 a
sgnðwiÞ
10 a

sgnð1�wiÞ
1 a

sgnð1�wiÞ
2 � � � asgnð1�wiÞ

Q

ð68Þ

where the choice between creation and annihilation operators is made according

to the rule

a
sgnðxÞ
i ! ai; x ¼ 0

aþi ; x ¼ 1


ð69Þ

Recall that in Eq. (68), the wi are all either zero or one.

Using this method, the first (2, 3) condition (cf. Eq. (50)) implies that

XK
i; j;k¼1

XK
i0; j0;k0¼1

t
ð1Þ
i0j0k0

� ��
Tr aþi0 a

þ
j0 a
þ
k0akajai þ ai0aj0ak0a

þ
k a
þ
j a
þ
i

� �
�2

h i
t
ð1Þ
ijk

� �
� 0 ð70Þ

and the second (2, 3) condition (cf. Eq. (51)) implies that

XK
i; j; k¼1

XK
i0; j0; k0¼1

t
ð2Þ
i0j0k0

� ��
Tr aþi0 a

þ
j0 ak0a

þ
k ajai þ aþi0 aj0ak0a

þ
k a
þ
j ai

� �
�2

h i
t
ð2Þ
ijk

� �
� 0 ð71Þ

These N-representability constraints are called the T1 (Eq. (70)) and T2

(Eq. (71)) conditions [52]. Calculations with these constraints give dramatically

better results than calculations using only the P, Q, and G conditions [35, 53].

From the standpoint of conventional quantum chemistry, this is not that surpris-

ing: one would expect good results from constraints that include three-electron

operators, since these constraints help ensure that the form of the 2-matrix is

consistent with a proper representation of three-electron correlations.

Although the same algorithm suffices to derive off-diagonal analogues for

any of the (2, R) conditions, the complexity of the resulting expressions

increases as R becomes larger. For example, one of the generalized (2, 4)
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constraints is

XK
i;j;k¼1

XK
i0 ;j0;k0¼1

q
ð1Þ
i0j0k0

� ��
Tr

3aþl0 a
þ
k0a
þ
j0 a
þ
i0 aiajakal þ al0ak0aj0ai0a

þ
i a
þ
j a
þ
k a
þ
l

þal0aþk0aþj0 aþi0 aiajakalþ þ aþl0 ak0a
þ
j0 a
þ
i0 aiaja

þ
k al

þaþl0 aþk0aj0aþi0 aiaþj akal þ aþl0 a
þ
k0a
þ
j0 ai0a

þ
i ajakal

0B@
1CA�2

264
375qð1Þijk

0B@
1CA � 0

ð72Þ

The other four generalized (2, 4) constraints have similarly daunting complexity.

IV. LINEAR INEQUALITIES FROM

THE SPATIAL REPRESENTATION

The orbital representation is not used in most of the recent work on computa-

tional methods based on diagonal elements of density matrices. This is partly

for historical reasons—most of the work has been done by people trained in den-

sity functional theory—and partly this is because most of the available kinetic

energy functionals are known only in first-quantized form. For example, the pop-

ular generalized Weisacker functional [2, 7–11],

T ðQÞw ¼ ðN � QÞ!Q!
2ðN � 1Þ!

ZZ
� � �
Z
r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rQðr1; r2; . . . ; rQÞ

q��� ���2dr1 dr2 � � � drQ ð73Þ

is not readily expressible in second-quantized form.

Unfortunately, the N-representability constraints from the orbital representa-

tion are not readily generalized to the spatial representation. A first clue that the

N-representability problem is more complicated for the spatial basis is that while

every N-representable Q-density can be written as a weighted average of Slater

determinantal Q-densities in the orbital resolution (cf. Eq. (54)), this is clearly

not true in the spatially resolved formulation. For example, the pair density

(Q ¼ 2) of any real electronic system will have a cusp where electrons of oppo-

site spin coincide; but a weighted average of Slater determinantal pair densities,

rQ ðy1; y2Þ ¼
X
i

pi
1

2
�i

XN
j1¼1

XN
j2¼1
j2 6¼j1

dðxj1 � y1Þdðxj2 � y2Þ

��������
���������i

* +0BB@
1CCA ð74Þ

cannot reproduce this behavior.

A second clue arises when one realizes that among the entire set of (Q, Q)

conditions, only the simplest condition,

Tr n̂ni1 n̂ni2 � � � n̂niQ�Q

h i
� 0 ð75Þ
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works for spatial basis functions. (Replacing 1� aþi ai with its analogue using

the field operators, 1� cþðyiÞcðyiÞ, yields no new insight because the probabil-

ity of observing an electron at any one point, xi, is always infinitesimal.) If one

simply replaces the number operator for orbitals with the number operator for

points in space, Eq. (75) produces the trivial nonnegativity constraint

rQðx1; x2; . . . ; xQÞ � 0 ð76Þ

Recall that the spatial representation of the Q-density actually depends on the

off-diagonal elements of the density matrix in the orbital representation. (See

Eqs. (18)–(21) and the surrounding discussion.) This suggests that some progress

can be made by using the N-representability constraints for off-diagonal

elements in the density matrix. If one chooses the one-electron Hamiltonian

associated with the G condition to be a simple function, then one finds that

[22, 28, 54]

X
i

pi �i

XN
j¼1

gðxjÞ
�����

�����
2

������
�������i

* +
� 0

ZZ
g�ðx2Þr2ðx1; x2Þ g ðx1Þdx1 dx2 �

Z
gðx1Þj j2rðx1Þdx1 � 0ZZ

g�ðx2Þ r2ðx1; x2Þ 1� dðx2 � x1Þð Þ½ � g ðx1Þdx1 dx2 � 0

ð77Þ

The argument in Eq. (77) can be generalized to higher-order electron distribution

functions [28]. Unfortunately, the other N-representability conditions in Section

III.G do not seem amenable to this approach.

V. LINKING THEORBITAL AND SPATIAL REPRESENTATIONS

A. Review of Orbital-Based Density Functional Theory

It is clear from the preceding sections that the powerful N-representable con-

straints from the orbital representation do not extend to the spatial representa-

tion. This suggests reformulating the variational principle in Q-density

functional theory in the orbital representation.

To motivate the form of orbital-based Q-density functional theory, it is useful

to start with the familiar case of 1-density functional theory, where the orbital

representation is well established [55].

One of the simplest variational methods in density functional theory

was already mentioned in Section I: define the pseudo-wavefunction
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wðxÞ ¼ 1=
ffiffiffiffi
N
p Þ ffiffiffiffiffiffiffiffiffi

rðxÞp	
and then minimize the energy expression [12–16]

Eg:s:½v;N�¼ min|{z}
hwjwi¼1

N w �r
2

2

���� ����w� �
þ
Z

r
�
w; x
�
vðxÞdxþ J

�
r
�
w
��þ Exc

�
r
�
w
��þ TPauli

�
r
�
w
��� �

r½w; x�¼ N wðxÞj j2
ð78Þ

The kinetic energy functional in this case is the Weisacker kinetic energy

[56],

Tð1Þw ½r� ¼ N

Z
1

2
r

ffiffiffiffiffiffiffiffiffi
rðxÞ

p��� ���2dx ð79Þ

which is inconsistent with the Pauli principle because it assumes all the electrons

occupy the same orbital. The so-called Pauli kinetic energy term, TPauli½r�,
corrects the Weisacker kinetic energy for the effects of the Pauli exclusion

principle. Unfortunately, it is hard to find good approximations for TPauli½r�
and neglecting this term altogether gives terrible results.

The method based on the Weisacker functional can be improved if one

chooses a computational ansatz that imposes the Pauli principle. For every

N-representable electron density, rðxÞ, there exists some Slater determinant

with that density. More generally, there exists an ensemble of N-electron Slater

determinants,

�Sl
N ¼

X
i

pij�iih�ij ð80Þ

with that density,

r �Sl
N ; x

� � ¼X
i

pi �i

XN
j¼1

dðxj � xÞ
�����

������i

* +
ð81Þ

This suggests replacing Eq. (78) with

Eg:s:½v;N� ¼ min|{z}
�Sl
N

Tr T̂T�Sl
N

� �þ Z r �Sl
N ; x

� �
vðxÞdxþ J r �Sl

N

� �� �þ Ex r �Sl
N

� �� �þ Ec r �Sl
N

� �� �� �
ð82Þ

The ensemble search in Eq. (82) is the Kohn–Sham procedure, generalized to

allow fractional orbital occupation numbers [55, 57–59]. Equation (82) can
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thus be rewritten in the form

Eg:s:½v;N� ¼ min|{z}
0�ri�1
hfi jfji¼dij

X1
i¼1

ri fi �
r2

2

���� ����fi

� �
þ
Z

r½ri;fi; x�vðxÞdxþ J½ri;fi�
 

þEx½ri;fi� þ Ec½ri;fi� Þ ð83Þ

where

r½ni;fi; x� ¼
X1
i¼1

rijfiðxÞj2 ð84Þ

Note that the energy is minimized with respect to all choices of the orbital basis

and subject to the (1, K) conditions on ri ¼ �i;i; this ensures that there exists an

ensemble of Slater determinants with the desired electron density. Because an

ensemble average of Slater determinants does not describe electron correlation,

these variational energy expressions include a correlation functional, Ec½r�,
which corrects the energy for the effects of electron correlation. Reasonable

approximations for Ec½r� exist, though they tend to work only in conjunction

with approximate exchange-energy functionals, Ex½r�.
The computational procedure in Eq. (82) can also be written from a dual per-

spective, in which the Kohn–Sham potential is the fundamental descriptor [60].

In this perspective, one solves the Kohn–Sham equations,

�r
2

2
þ wðxÞ

� �
fiðxÞ ¼ eifiðxÞ ð85Þ

and writes the electron density in terms of the Kohn–Sham orbitals and orbital

occupation numbers as

r½w; x� ¼
X1
i¼1

nijfiðxÞj2 ð86Þ

The variational principle is then restated as

Eg:s:½v;N� ¼ min|{z}
wðxÞ
0�ni�1

X1
i¼1

ni fi �
r2

2

���� ����fi

� �
þ
Z

r½w; x�vðxÞdxþ J½r½w��
 

þEx½r½w�� þ Ec½r½w��
�

ð87Þ
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In conventional 1-density functional theory, the approaches based on Eqs. (82),

(83), and (87) all give identical results [61, 62].

Before generalizing these results to the k-density, the interpretation of Ec½r�
should be scrutinized carefully. Every N-representable electron density corre-

sponds to many possible N-electron ensembles. One of these N-electron ensem-

bles, �g:s:
N , corresponds to the ground state of the system of interest. However, for

computational expediency, we do not use the (unknown) ground-state ensemble

to compute the kinetic energy but, instead, we select a Slater determinantal den-

sity matrix, �Sl
N , with the same electron density, which corresponds to the ground

state of a system of noninteracting electrons in some different potential, wðrÞ (cf.
Eq. (85)). The energy of �Sl

N is greater than the true ground-state energy, so

obtaining the correct energy requires adding a correction,

Ec½r� ¼ E �g:s:
N½ � � E �Sl

N

� � ð88Þ

The Kohn–Sham scheme then provides a mapping from the true interacting sys-

tem to a Slater determinantal approximation,

�g:s:
N ! rðrÞ ! �Sl

N ð89Þ

Obtaining a useful functional for Ec½r� requires (approximately) inverting this

mapping using, for example, the adiabatic connection [63–65].

B. Orbital-Based Q-Density Functional Theory

Each of these approaches to the density functional theory can be generalized to

Q-density functional theory. In Section I, we mentioned the commonly consid-

ered generalization of the Weisacker ansatz, namely,

Eg:s:½v;N� ¼ min|{z}
hwjwi¼1

N w �r
2
1

2

���� ����w� �
þ T

ðQÞ
Pauli½rQ½w�� þ

ðN � QÞ!Q!
2ðN � 1Þ!

�
Z
� � �
Z

rQ½w; x1 . . . ; xQ� vðx1Þ þ vðx2Þ þ N � 1

jx1 � x2j
� �

dx1� � � dxQ
�

rQ½w; x1; . . . ; xQ� ¼
N!

ðN � QÞ!Q!
����wðx1; . . . ; xQÞ����2 ð90Þ

This formula for the kinetic energy corresponds to assuming that the Q-matrix

has the form

�Qðx1; . . . ; xQ; x01; . . . ; x0QÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rQðx1; . . . ; xkÞrQðx01; . . . ; x0kÞ

q
ð91Þ
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Even if the Q-density is N-representable, this Q-matrix is not N-representable

because its largest eigenvalue exceeds the upper bound N!=Q!ðN � Qþ 1Þ!.
(That is, this Q-matrix violates the Pauli exclusion principle for Q-tuples of elec-

trons.) Approximating the correction term, T
ðQÞ
Pauli½rQ½w��, seems difficult, and

neglecting this term would give poor results, although the results improve

with increasing Q [2, 10].

One can refine the approximation in Eq. (91) by writing the Q-density in

terms of the eigenfunctions of the Q-matrix.

rQðx1; . . . ; xQÞ ¼
X1
i¼1

n
ðQÞ
i

��fiðx1; . . . ; xQÞ
��2 ð92Þ

0 � n
ðQÞ
i � N!

Q!ðN � Qþ 1Þ! ð93Þ

If one obtains the eigenfunctions by solving a Q-electron Schrödinger equation,

XQ
i¼1
�r

2
i

2
þ wQðx1; . . . ; xQÞ

 !
fiðx1; . . . ; xQÞ ¼ eifiðx1; . . . ; xQÞ ð94Þ

then the potential functional method from Section V.A (cf. Eq. (87)) can be

generalized to

Eg:s½v;N� ¼ min|{z}
wQðx1 ;...;xQÞ
0�nðQÞ

i
� N!
Q!ðN�Qþ1Þ!

ðN � QÞ!Q!
2ðN � 1Þ!

X1
i¼1

n
ðQÞ
i fi �

r2
1

2
�r

2
2

2

���� ����fi

� �
þ 2ðN � 1Þ!
ðN � QÞ!Q!

 

T
ðQÞ
N ½rQ½wQ�� þ

Z
� � �
Z

rQ½wQ; x1; . . . ; xQ� vðx1Þ þ vðx2Þ þ N � 1

jx1 � x2j
� �

dx1 � � � dxk
!
ð95Þ

While Eq. (95) is indubitably more accurate than the generalized Weisacker

approach, merely imposing the bounds, Eq. (93), on the eigenvalues of the Q-

matrix is insufficient to ensure the N-representability of the Q-matrix or the cor-

responding Q-density. The correction functional, T
ðQÞ
N ½rQ�, corrects for the

approximations inherent in the model. Specifically, T
ðQÞ
N ½rQ� corrects for (i)

the constraint 0 � n
ðQÞ
i � N!=Q!ðN � Qþ 1Þ! which is insufficient to ensure

the N-representability of the Q-matrix and (ii) the restriction to fiðx1; . . . ; xkÞ
that are eigenfunctions of the same Q-electron Hamiltonians (Eq. (94)). Neither

approximation (i) (which gives too much flexibility in the variational procedure)

nor approximation (ii) (which gives too little flexibility) are expected to be
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useful by themselves. (The results of Bopp and Bender, Davidson, and Peat are

germane to the question of how well the 2-matrix can be approximated using the

eigenfunctions of the two-electron reduced Hamiltonian [66, 67].) Taken

together, though, approximations (i) and (ii) might be useful. Unfortunately,

the correction functional T
ðQÞ
N ½rQ� seems difficult to approximate [3].

Nonetheless, Eq. (95) is perhaps the most natural generalization of the

Kohn–Sham formulation to Q-density functional theory. Indeed, Ziesche’s first

papers on 2-density functional theory feature an algorithm based on Eq. (95),

although he did not write his equations in the potential functional formulation

[1, 4]. The early work of Gonis and co-workers [68, 69] is also of this form.

Equation (95) reveals an interesting link between Q-density functional theory

and Q-matrix functional theory. Consider rewriting Eq. (95) in a form analogous

to Eq. (83),

Eg:s:½v;N� ¼ min|{z}
0�nðQÞ

i
� N!
Q!ðN�Qþ1Þ!

hfi jfji¼dij

ðN � QÞ!Q!
2ðN � 1Þ!

X1
i¼1

n
ðQÞ
i fi �

r2
1

2
�r

2
2

2

���� ����fi

� �
þ 2ðN � 1Þ!
ðN � QÞ!Q!

 

� T
ðQÞ
N rQ n

ðQÞ
i ;fi

h ih i
þ
Z
� � �
Z

rQ n
ðQÞ
i ;fi; x1 . . . ; xQ

h i
� vðx1Þ þ vðx2Þ þ N � 1

jx1 � x2j
� �

dx1 � � � dxQ
!

ð96Þ

This algorithm is essentially a variational optimization of the Q-matrix,

�Qðx1; . . . ; xQ; x01; . . . ; x0QÞ ¼
X1
i¼1

n
ðQÞ
i fiðx1; . . . ; xQÞf�i ðx01; . . . ; x0QÞ ð97Þ

subject to the eigenvalue constraint, Eq. (93). The eigenvalue constraint is,

unfortunately, rather weak. (For the 2-matrix, the lower bound is equivalent to

the P condition and the upper bound is implied by the G condition [22, 40].) This

raises questions about the utility of Eq. (96) as a computational approach.

The computational procedure could be improved by imposing addition

N-representability constraints. For example, the minimization in Eq. (96) could

be performed subject to the (Q, Qþ 1) conditions or their off-diagonal general-

izations from Eq. (68). What results is a (rather complicated) restatement of

the direct optimization procedure for the Q-matrix, except that in this formu-

lation one can attempt to correct for the non-N-representability error with the

functional T
ðQÞ
N ½rQ�. Enormous difficulties seem to be associated with approxi-

mating T
ðQÞ
N ½rQ�, however. Specifically, T ðQÞN ½rQ� is discontinuous and should

be infinite for non-N-representable Q-densities and zero for N-representable

rQ [3].
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A different—and arguably better—approach is based on the realization that

every N-representable Q-density can be associated with an ensemble average of

Slater determinants. (Recall Section III.E, and especially the discussion sur-

rounding Eq. (54). For a Q-density built from Slater determinants, it follows

from the Slater–Condon rules that the one-electron contributions to the energy

can be written

F
ðQÞ
1 ½ri1...iQ � ¼

ðN � QÞ!Q!
ðN � 1Þ!

XK
i1;...;iQ¼1

ri1...iQ fi1
�r

2

2
þ vðxÞ

���� ����fi1

� �
ð98Þ

and the electron–electron repulsion contribution can be written

F
ðQÞ
2 ½ri1...iQ � ¼

ðN � QÞ!Q!
ðN � 2Þ!

XK
i1;...;iQ¼1

ri1...iQ fi1
fi2

1

2jx1 � x2j
���� ����fi1

fi2

� ��

� fi1
fi2

1

2jx1 � x2j
���� ����fi2

fi1

� ��
ð99Þ

The variational procedure becomes

Eg:s:½v;N� ¼ min|{z}
ðk;KÞ conditions
hfj jfii¼dij

F
ðQÞ
1 ri1...iQ

h i
þ F

ðQÞ
2 ri1...iQ

h i
þ EðQÞc ri1...iQ

h i� �
ð100Þ

Here, the minimization is over all sets of orthonormal orbitals, subject to the

requirement that ri1...iQ satisfies the (Q, K) conditions. Because an ensemble of

Slater determinants is incapable of describing electron correlation, one must

include the additional correlation energy functional, E
ðQÞ
c ½ri1...iQ �. No form for

E
ðQÞ
c ½ri1...iQ � has ever been derived, and omitting this term is undesirable,

since this procedure reduces to a (very complicated!) formulation of the

Hartree–Fock method when E
ðQÞ
c ½ri1...iQ � ¼ 0. Computational methods based

on Eq. (100) are members of the ‘‘Hartree–Fock plus corrections’’ family of

methods. It should be noted that, in practical calculations, it will be impossible

to use the (Q, K) conditions in Eq. (100). However, the ground-state energies

from a sequence of calculations using the (Q, Q), (Q, Qþ 1), . . . conditions
will converge monotonically to the (Q, K)-based result.

The variational procedure in Eq. (100) is in the spirit of the Kohn–Sham

ansatz. Since ri1...iQ satisfies the (Q, K) conditions, it is N-representable. In gen-

eral, ri1...iQ corresponds to many different N-electron ensembles and one of them,

�g:s:
N , corresponds to the ground state of interest. However, for computational

expediency in computing the energy, a Slater determinantal density matrix,
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�Sl
N , is selected instead. The energy of �Sl

N is greater than the true ground-state

energy, and so obtaining the correct energy requires adding a correction,

EðQÞc ri1...iQ
h i

¼ E �g:s:
N½ � � E �Sl

N

� � ð101Þ

Approximating E
ðQÞ
c ri1...iQ
h i

requires (approximately) inverting the mapping

�g:s:
N ! ri1...iQ ! �Sl

N ð102Þ

The preceding approach can be viewed as an orbital representation analogue for

a recently proposed Kohn–Sham-based pair-density functional theory [17].

VI. CONCLUSION

The preceding is a rather comprehensive—but not exhaustive—review of N-

representability constraints for diagonal elements of reduced density matrices.

The most general and most powerful N-representability conditions seem to

take the form of linear inequalities, wherein one states that the expectation value

of some positive semidefinite linear Hermitian operator is greater than or equal

to zero, Tr P̂PN�N

� � � 0. If P̂PN depends only on Q-body operators, then it can be

reduced into a Q-electron reduced operator, P̂PQ;N , and Tr P̂PQ;N�Q

� � � 0 provides

a constraint for the N-representability of the Q-electron reduced density matrix,

or Q-matrix. Requiring that Tr P̂PQ;N�Q

� � � 0 for every Q-body positive semide-

finite linear operator is necessary and sufficient for the N-representability of the

Q-matrix [22].

Since it is obviously impossible to require that Tr P̂PQ;N�Q

� � � 0 for every

choice of P̂PQ;N , one imposes this constraint only for a few operators. Moreover,

because one needs to be able to prove that the operators are positive semidefinite,

the operators that are selected for use as constraints are typically much

simpler than a molecular Hamiltonian. This is unfortunate, because if one could

ensure that Tr ĤHQ;N�Q

� � � Eg:s:ðĤHNÞ for the Hamiltonian of interest, then the

computational procedure would be exact. Future research in N-representability

might focus on developing constraints based on ‘‘molecular’’ considerations.

Among the simple linear operators that are commonly used to construct con-

straints, polynomials of the number operators (cf. Eq. (22)) are particularly use-

ful. Polynomials of number operators are convenient because (i) the ground-state

wavefunction of number-operator polynomials is a Slater determinant and

(ii) the number-operator constraints depend only on the diagonal elements of

the Q-matrix, ri1...iQ ¼ �i1...iQ;i1...iQ . The (Q, R) conditions for N-representability

are based on the requirement that Tr L̂L
ðQ;IRÞ
N �N

h i
� Eg:s: L̂L

ðQ;IRÞ
N

� �
for every possible

Qth-degree polynomial of number operators for R orbitals, L̂L
ðk;IRÞ
N [24–26].
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In general, it is difficult to derive the (Q, R) conditions directly. An exception

occurs for the (R, R) constraints, which have an especially simple form based on

the positive semidefinite Hamiltonian in Eq. (29). Fortunately, the (Q, R) condi-

tions (Q < R) are easily derived from the (R, R) conditions [26]. In Section III.D

we used this result to derive the Weinhold–Wilson constraints on the diagonal

elements of the 2-matrix [23]. (The Weinhold–Wilson constraints are identical

to the (2, 3) conditions.)

In a basis set that contains K spin orbitals, the (Q, K) conditions are necessary

and sufficient for the N-representability of the diagonal elements of the

Q-matrix, but only necessary for the off-diagonal elements, �i1...iQ;j1...jQ . This is

of academic interest, but for reasonable basis sets, implementing the (Q, K) con-

ditions is intractable. The (Q, K) constraints define the Slater hull [29].

Because polynomials of orbital occupation number operators do not depend

on the off-diagonal elements of the reduced density matrix, it is important to

generalize the (Q, R) constraints to off-diagonal elements. This can be done in

two ways. First, because the (Q, R) conditions must hold in any orbital basis,

unitary transformations of the orbital basis set can be used to constrain the

off-diagonal elements of the density matrix. (See Eq. (56) and the surrounding

discussion.) Second, one can replace the number operators by creation and anni-

hilation operators on different orbitals according to the rule

n̂ni ! aþi0 ai
1� n̂ni ! aj0a

þ
j

ð103Þ

(cf. Eqs. (68) and (69)). If one applies this procedure to the (2, 2) conditions, one

derives the P (Eq. (62)), Q (Eq. (63)), and G (Eq. (64)) conditions for the N-

representability of the 2-matrix. The P, Q, and G conditions were originally for-

mulated in their off-diagonal form [22, 40]. Applying this procedure to the (2, 3)

conditions produces the T1 and T2 conditions (in addition to the P, Q, and G

conditions). The diagonal elements of the T1 and T2 conditions were derived

in ‘‘diagonal form’’ by Weinhold and Wilson [23] before Erdahl [52] derived

the off-diagonal form. This general procedure—use the (R, R) conditions to

derive the (Q, R) conditions for the diagonal elements of the Q-matrix; then

use Eq. (68) to generalize those constraints to include off-diagonal elements

of the Q-matrix—seems to be an especially easy method for deriving N-repre-

sentability constraints on the Q-matrix and/or its diagonal elements.

Almost all of the available N-representability constraints are based on the

orbital representation of the reduced density matrix, �i1...iQ;j1...jQ , instead of the

spatial representation, �Qðx1; . . . ; xQ; x01; . . . ; x0QÞ. This is not problematic

when the reduced density matrix is available, because it is easy to convert

Q-matrices to and from the spatial representation (cf. Eqs. (18) and (19)). There

has been a lot of recent interest in developing computational algorithms based on
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the Q-electron distribution function, which comprises the diagonal elements of

the Q-matrix. Unfortunately, there is no analogous method for converting the Q-

electron distribution function, or Q-density, from the orbital to the spatial repre-

sentation. (The orbital representation of the Q-density, ri1...iQ , depends on off-

diagonal elements of the spatially resolved Q-matrix. Conversely, the spatial

representation of the Q-density, rQðx1; . . . ; xQÞ, depends on the off-diagonal ele-

ments of the orbital-resolved Q-matrix.) This is problematic because computa-

tional approaches based on the Q-density are usually based on the spatial

representation, rQðx1; . . . ; xQÞ, while the (Q, R) N-representability conditions

are based on the orbital representation, ri1...iQ .
There are two ways to ‘‘fix’’ this problem. First, one can attempt to derive N-

representability conditions for the Q-density in the spatial representation. This

seems hard to do, although one constraint (basically a special case of the G con-

dition for the density matrix) of this type is known, see Eq. (77). Deriving addi-

tional constraints is a priority for future work.

The second approach to this problem is to derive orbital-based reformulations

of existing algorithms based on the spatial representation of the Q-density. The

resulting formulations are in the spirit of the ‘‘orbital-resolved’’ Kohn–Sham

approach to density functional theory.

It is fair to say that neither of these two approaches works especially well: N-

representability conditions in the spatial representation are virtually unknown

and the orbital-resolved computational methods are promising, but untested. It

is interesting to note that one of the most common computational algorithms

(cf. Eq. (96)) can be viewed as a density-matrix optimization, although most

authors consider only a weak N-representability constraint on the occupation

numbers of the Q-matrix [1, 4, 69]. Additional N-representability constraints

could, of course, be added, but it seems unlikely that the resulting Q-density

functional theory approach would be more efficient than direct methods based

on semidefinite programming [33, 35–37].

The N-representability constraints presented in this chapter can also be

applied to computational methods based on the variational optimization of the

reduced density matrix subject to necessary conditions for N-representability.

Because of their hierarchical structure, the (Q, R) conditions are also directly

applicable to computational approaches based on the contracted Schrödinger

equation. For example, consider the (2, 4) contracted Schrödinger equation.

Requiring that the reconstructed 4-matrix in the (2, 4) contracted Schrödinger

equation satisfies the (4, 4) conditions is sufficient to ensure that the 2-matrix

satisfies the rather stringent (2, 4) conditions. Conversely, if the 2-matrix does

not satisfy the (2, 4) conditions, then it is impossible to construct a 4-matrix

that is consistent with this 2-matrix and also satisfies the (4, 4) conditions. It

seems that the (Q, R) conditions provide important constraints for maintaining

consistency at different levels of the contracted Schrödinger equation hierarchy.
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Compared to Q-density functional theory, Q-matrix theory is a relatively

mature field. The biggest impediment to widespread adoption of reduced-

density-matrix optimization for quantum chemical calculations seems to be

the uncompetitive computational cost of these methods compared to existing

ab initio techniques. Recent algorithmic advances are closing the gap, and devel-

oping even better algorithms is an active area of research in the density-matrix

research community. In addition to the development of improved constrained

optimization algorithms, research into new N-representability conditions con-

tinues unabated. Because it is easy to derive N-representability constraints using

the Slater hull, we believe that the material reviewed here may be helpful.
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47. C. Valdemoro, L. M. Tel, and E. Pérez-Romero, The contracted Schrödinger equation: some

results. Adv. Quantum Chem. 28, 33–46 (1997).

48. D. A.Mazziotti, Contracted Schrödinger equation: determining quantum energies and two-particle

density matrices without wave functions. Phys. Rev. A 57, 4219–4234 (1998).

49. C. Valdemoro, Electron correlation and reduced density matrices. Correlation Localization 203,

187–200 (1999).

50. D. A. Mazziotti, Variational minimization of atomic and molecular ground-state energies via the

two-particle reduced density matrix. Phys. Rev. A 65, 062511 (2002).

51. D. K. Lee, H. W. Jackson, and E. Feenberg, Ann. Phy. 44, 84–104 (1967).

52. R. M. Erdahl, Representability. Int. J. Quantum Chem. 13, 697–718 (1978).

53. J. R. Hammond and D. A. Mazziotti, Variational two-electron reduced-density-matrix theory:

partial 3-positivity conditions for N-representability. Phys. Rev. A 71, x (2005).

54. J. K. Percus, At the boundary between reduced density-matrix and density-functional theories.

J. Chem. Phys. 122, 234103 (2005).

55. W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects.

Phys. Rev. 140, A1133–A1138 (1965).

56. C. F. Weizsacker, Zur theorie dier kernmassen. Z. Phys. 96, 431–458 (1935).

57. S. M. Valone, A one-to-one mapping between one-particle densities and some normal-particle

ensembles. J. Chem. Phys. 73, 4653–4655 (1980).

58. H. Englisch and R. Englisch, Exact density functionals for ground-state energies. 2. Details and

remarks. Phys. Status Solidi B 124, 373–379 (1984).

59. H. Englisch and R. Englisch, Exact density functionals for ground-state energies. I. General

results. Phys. Status Solidi B 123, 711–721 (1984).

60. W. T. Yang, P. W. Ayers, and Q. Wu, Potential functionals: dual to density functionals and solution

to the upsilon-representability problem. Phys. Rev. Lett. 92, 146404 (2004).

61. E. H. Lieb, Density functionals for Coulomb systems. Int. J. Quantum Chem. 24, 243–277 (1983).

62. P. W. Ayers, Axiomatic formulations of the Hohenberg–Kohn functional. Phys. Rev. A 73, 012513

(2006).

63. J. Harris and R. O. Jones, The surface energy of a bounded electron gas. J. Phys. F 4, 1170–1186

(1974).

482 paul w. ayers and ernest r. davidson



64. O. Gunnarsson and B. I. Lundqvist, Exchange and correlation in atoms, molecules and solids by

the spin-density-functional formalism. Phys. Rev. B 13, 4274–4298 (1976).

65. D. C. Langreth and J. P. Perdew, Exchange-correlation energy of a metallic surface: wave-vector

analysis. Phys. Rev. B 15, 2884–2901 (1977).

66. F. Bopp, Z. Phys. 156, 348 (1959).

67. C. F. Bender, E. R. Davidson, and F. D. Peat, Application of geminal methods to molecular

calculations. Phys. Rev. 174, 75–80 (1968).

68. A. Gonis, T. C. Schulthess, P. E. A. Turchi, and J. Vanek, Treatment of electron–electron correla-

tions in electronic structure calculations. Phys. Rev. B 56, 9335–9351 (1997).

69. A. Gonis, T. C. Schulthess, J. Vanek, and P. E. A. Turchi, A general minimum principle for

correlated densities in quantum many-particle systems. Phys. Rev. Lett. 77, 2981–2984 (1996).

linear inequalities for diagonal elements 483





PART V





CHAPTER 17

PARAMETERIZATION OF THE 2-RDM

A. JOHN COLEMAN

Department of Mathematics and Statistics, Queen’s University,

Kingston, Ontario K7L 3N6, Canada

CONTENTS

I. Calculating Energy Levels and 2-Matrices

A. Notation

B. Algorithm

C. Proof of Algorithm

II. Concluing Remarks

References

I. CALCULATING ENERGY LEVELS AND 2-MATRICES

A new algorithm is presented for the calculation of energy levels and their asso-

ciated second-order density matrices, which aims to produce the exact energy as

in full configuration interaction but without the N-particle wavefunction.

The efforts by several very able quantum scientists in four countries in the

period preceding 1972 had failed to obtain a complete solution of the N-

representability problem. It was assumed that we would never find one. My

announcement of the solution in June of that year at a Conference in Boulder

was therefore greeted with incredulity except by Ernie Davidson who under-

stood my argument immediately.

The proof, as I understood it in 1972, can be found in Sections 2.3–2.6 of my

book with V. I. Yukalov [1], which contains a misleading although minor error in

Eq. (2.47). This mistake was corrected in 2002 in the paper [2], which also

throws exciting light on the application of the RDM approach to the theory of

condensed matter and to the complex geometry of the graph of the equation
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jBN j ¼ 0. Essential for understanding the present approach is the basic paper [3]

of Hans Kummer.

When I recently reread these papers, I myself found them difficult to under-

stand! I believe this is partly because for these early attempts to write the proof I

had not fully digested the argument nor recognized the generality of the result.

My attempt to cover both fermions and bosons, not merely D2 but also the gen-

eral case of Dp, did not help.

So, here, I shall outline an algorithm and then comment. I claim proprietary

rights to this algorithm in the sense that it may be used freely but never

for financial gain. I believe that recent increases in computing power and

improvements in programming make the use of my algorithm feasible, as it

was not in 1972. Of course, the best test of my conviction will be for it to

be used.

I suggest that the reader begin by getting clearly in mind the definitions in

Section 2 of Ref. [2], making a rough sketch depicting the mutual relation of

the key cones involved and proceed.

A. Notation

I have in mind a system of N electrons in a molecule or solid in Born–

Oppenheimer approximation governed by a Hamiltonian H such that

H ¼
XN
i¼1

HðiÞ þ
X

1�i<j�N
HðijÞ

Recall that in his Theorems 3 and 4 Hans Kummer [3] defined a contraction

operator, L
p
N , which maps a linear operator on N-space onto an operator on

p-space and an expansion operator, �N
p , which maps an operator on p-space

onto an operator on N-space. Note that the contraction and expansion operators

are ‘‘super operators’’ in the sense that they act not on spaces of wavefunctions

but on linear spaces consisting of linear operators on wavefunction spaces. If the

two-particle reduced Hamiltonian is defined as

K2 ¼ Hð1Þ þ Hð2Þ þ ðN � 1ÞHð12Þ ð1Þ

then the N-particle Hamiltonian is

H ¼ N

2
�N
2 ðK2Þ ð2Þ
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As is common in papers on quantum mechanics, we assume that a choice has

been made of a fixed set of one-particle functions, fji;g, 0 � i � r, in terms

of which all functions occurring in our argument are expanded.

If B2 is a Hermitian operator acting on the space of antisymmetric two-

particle functions, then we define

BN ¼ �N
2 ðB2Þ ¼ B2 ^ IN�2 ð3Þ

Thus the sN � sN matrix BN is a function of B2 and therefore of r4 real numbers,

which in our approach play the role of the parameters for N-representable

2-matrices within the limitations of the given one-particle basis set. Compare

this with the sN ¼ ( r
N
) parameters of the FCI approach. Recall Kummer’s

basic theorem [1, Theorem 2.8, p. 56] that B2 could be a second-order RDM

if and only if �N
2 ðB2Þ is a positive operator on N-space. For l; m real and

l > 0, we set

B2 ¼ lI2 þ m
N

2
K2 ð4Þ

Therefore

BN ¼ �N
2 lI2 þ m

N

2
K2

� �
ð5Þ

¼ lsN ðIN þ sHÞ ð6Þ

The smallest value of s for which the determinant jBN j vanishes is such that

there exists an N-particle wavefunction, c, for which BNc ¼ BNPc ¼ 0 and

therefore ðIN þ sHÞc ¼ 0. It follows from this that

Hc ¼ � 1

s
c ð7Þ

So the smallest positive value of s corresponds to the ground state. The second

smallest similarly provides the energy of the first excited state and so on. The pos-

sible occurrence and significance of multiple roots are discussed in Refs. [1, 2].

To discuss the 2-matrix it is convenient to use pairs of natural numbers as

indices. We shall assume that lowercases Greek letters denote such pairs. For

example, we define the standard index set: 
 ¼ fðijÞj i < j; 1 � i; j � rg.
Then a, in 
, could take any of rðr � 1Þ=2 values. We shall define

½a� ¼ 1=
ffiffiffi
2
p ½ji;jj�, when a ¼ ðijÞ. Thus the set f½a�j; a 2 
g is a complete

orthonormal basis for 2-space.
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B. Algorithm

1. Suppose that B2 is a two-particle Hermitian operator.

2. Define

BN ¼ �N
2 ðB2Þ ¼ B2 ^ IN�2 ð8Þ

3. Let

�ðB2Þ ¼ jBN j ð9Þ

4. Set

B2 ¼ lI2 þ m
N

2
K2 ð10Þ

¼ l I2 þ s
N

2
K2

� �
ð11Þ

then a positive value, g, of s for which �ðB2Þ ¼ 0 implies the existence of

an N-particle wavefunction c such that

Hc ¼ � 1

g
c ð12Þ

Since this eigenvalue is negative it corresponds to a bound state and, if g is
the smallest positive zero of the determinant, to the ground state. The next

smallest zero of the determinant will correspond to the first excited state

and so on.

5. For any such c and g, the corresponding 2-matrix is

D2 ¼ @�

@B2
ð13Þ

¼ L2NðPcÞ ð14Þ

Here, Pc denotes the projector onto the state c.

C. Proof of Algorithm

I am tempted to say ‘‘the proof is obvious’’ if it were not that the average

chemist or physicist would then have all the evidence needed to consign me

to his/her category of typical mathematicians who make lots of abstract asser-

tions but seldom say anything of real use! Once, I did receive a letter addressed

‘‘Dear fellow quantum chemist.’’ That gave me a really warm feeling—that I had

finally arrived and may be of some slight use in the world!
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In fact, the algorithm will be clear to anyone who understands Chapter 2

Ref. [1] and the pages following p. 26 about Grassmann algebra. In the follow-

ing, numbers refer to steps in the algorithm.

1. We assume the familiar summation convention often ascribed to Einstein,

so the repeated b is understood as running through the standard index set

for pairs.

2. The condition that BN is a positive semidefinite operator ensures that B2

belongs to the Kummer cone. Unfortunately, the Grassmann wedge pro-

duct of two operators is not explained explicitly in Ref. [1] but the section,

p.79 may be sufficient. Here are two other references [4, 5] that may be

helpful. Be sure that you understand Exercise 4 on p.73 of Ref. [1].

3. The determinant is of the same order as those occurring in an FCI calcula-

tion, but there is only one in contrast to billions which arise in contempor-

ary FCI and it is of rather different structure. Although calculated on

N-particle space, its components are functions of a two-particle operator.

4. Step 4 was suggested to me independently by Davidson and Erdahl. It is

this step that simplifies the procedure and avoids a difficult variational

approach.

5. The complete proof of these claims is on p. 65 of Ref. [1].

II. CONCLUDING REMARKS

1. Since this book is aimed at chemists, I think of electrons but, with only minor

changes of language, most of it is immediately applicable to any type of fermion

or boson. This is evident from ref. [1] and many of my other recent papers.

2. In contrast to methods based on variation accessible only to the ground state,

my approach deals with excited states with exactly the same ease or difficulty as

with the ground state.

3. The parameters for any calculation are the components of a Hermitian 2-

matrix which will establish a basic pattern that will appear ad nauseum in BN

as N increases. I hesitate to be dogmatic since I have had so little hands-on

experience in programming, but it would seem to me that one could use an

off-the-shelf program for any particular configuration of nuclei, which could

automatically be adjusted for different r and N. If so, numerical experiment

might provide us with a clue as to what happens to the solution for a Hamilto-

nian such as that in ref. [1], Eq. (7.8), p. 256 when the number of electrons tends

to infinity. This could be of great importance for condensed matter physics and/

or BEC.
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4. I draw the reader’s attention to the summary of Yukalov’s criteria for an ade-

quate algorithm on p.7 and to my evaluation of present methods in the notes on

p. 8 of Ref. [2].

5. With m ¼ 0, the probe B2 would be at the identity operator in the ‘‘center’’ of

the Kummer cone and with increasing m would be associated with increasing

negative real eigenvalues, that is, smaller absolute value.
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I. INTRODUCTION

In quantum chemistry calculations, the correlation energy is defined as the

energy error of the Hartree–Fock wavefunction, that is, the difference between

the Hartree–Fock limit energy and the exact solution of the nonrelativistic

Schrödinger equation [1]. Different types of electron correlation are often distin-

guished in quantum chemistry such as dynamical and nondynamical [2], radial

versus angular correlation for atoms, left–right, in–out and, radial correlation for

diatomic molecules, and weak and strong correlation for solids. There also exists

other measures of electron correlation in the literature such as the statistical

correlation coefficients [3] and more recently the Shannon entropy as a measure

of the correlation strength [4–8]. Correlation of a quantum many-body state

makes the one-particle density matrix nonidempotent. Therefore the Shannon

entropy of the natural occupation numbers measures the correlation strength

on the one-particle level [7]. Electron correlations have a strong influence on

many atomic, molecular [9], and solid properties [10]. The concept of electron

correlation as defined in quantum chemistry calculations is useful but not

directly observable; that is, there is no operator in quantum mechanics that its

measurement gives the correlation energy. Moreover, there are cases where

the kinetic energy dominates the Coulomb repulsion between electrons, so the

electron correlation alone fails as a correlation measure [6].

Entanglement is a quantum mechanical property that describes a correlation

between quantum mechanical systems and has no classical analogue [11–15].

Schrödinger was the first to introduce these states and gave them the name

‘‘Verschränkung’’ to a correlation of quantum nature [16]: ‘‘For an entangled

state the best possible knowledge of the whole does not include the best possible

knowledge of its parts.’’ Latter, Bell [17] defined entanglement as ‘‘a correlation

that is stronger than any classical correlation.’’ Thus it might be useful as

an alternative measure of electron–electron correlation in quantum chemistry

calculations.

Ever since the appearance of the famous EPR Gadanken experiment [18], the

phenomenon of entanglement [19], which features the essential difference

between classical and quantum physics, has received wide theoretical and

experimental attention [17, 20–25]. Generally, if two particles are in an

entangled state then, even if the particles are physically separated by a great dis-

tance, they behave in some respects as a single entity rather than as two separate

entities. There is no doubt that the entanglement has been lying in the heart of

the foundation of quantum mechanics.

A desire to understand quantum entanglement is fueled by the development

of quantum computation, which started in the 1980s with the pioneering work of

Benioff [26], Bennett [27], Deutsch [28], Feynman [29] and Landauer [30] but

gathered momentum and research interest only after Peter Shor’s revolutionary
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discovery [31] of a quantum computer algorithm in 1994 that would efficiently

find the prime factors of composite integers. Since integer factorization is the

basis for cryptosystems used for security nowadays, Shor’s finding will have a

profound effect on cryptography. The astronomical power of quantum computa-

tions has researchers all over the world racing to be the first to create a practical

quantum computer.

Besides quantum computations, entanglement has also been at the core of

other active research such as quantum teleportation [32, 33], dense coding

[34, 35], quantum communication [36], and quantum cryptography [37]. It is

believed that the conceptual puzzles posed by entanglement have now become

a physical source of novel ideas that might result in applications.

A big challenge faced by all of the above-mentioned applications is to pre-

pare the entangled states, which is much more subtle than classically corre-

lated states. To prepare an entangled state of good quality is a preliminary

condition for any successful experiment. In fact, this is not only an experimen-

tal problem but also poses an obstacle to theories, since how to quantify entan-

glement is still unsettled; this is now becoming one of the central topics in

quantum information theory. Any function that quantifies entanglement is

called an entanglement measure. It should tell us how much entanglement

there is in a given mutipartite state. Unfortunately, there is currently no con-

sensus as to the best method to define an entanglement for all possible multi-

partite states. And the theory of entanglement is only partially developed [13,

38–40] and for the moment can only be applied in a limited number of scenar-

ios, where there is an unambiguous way to construct suitable measures. Two

important scenarios are (i) the case of a pure state of a bipartite system, that is,

a system consisting of only two components and (ii) a mixed state of two spin-
1
2
particles.

When a bipartite quantum system AB describe by HA 
 HB is in a pure state,

there is an essentially well-motivated and unique measure of the entanglement

between the subsystems A and B given by the von Neumann entropy S. If we

denote with rA the partial trace of r 2 HA 
 HB with respect to subsystem B,

rA ¼ TrBðrÞ, the entropy of entanglement of the state r is defined as the von

Neumann entropy of the reduced density operator rA, SðrÞ � �Tr½rA
log2 rA�. It is possible to prove that, for the pure state, the quantity S does

not change if we exchange A and B. So we have SðrÞ � �
Tr½rA log2 rA� � �Tr½rB log2 rB�: For any bipartite pure state, if an entang-

lement EðrÞ is said to be a good one, it is often required to have the following

properties [14]:

� Separability: If r is separable, then EðrÞ ¼ 0.

� Normalization: The entanglement of a maximally entangled state of two

d-dimensional systems is given by E ¼ logðdÞ.
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� No Increase Under Local Operations: Applying local operations and clas-

sically communicating cannot increase the entanglement of r.
� Continuity: In the limit of vanishing distance between two density matrices,

the difference between their entanglement should tend to zero.

� Additivity: A certain number N of identical copies of the state r should con-

tain N times the entanglement of one copy.

� Subadditivity: The entanglement of the tensor product of two states should

not be larger that the sum of the entanglement of each of the states.

� Convexity: The entanglement measure should be a convex function, that is,

Eðlrþ ð1� lÞsÞ � lEðrÞ þ ð1� lÞEðsÞ for 0 <l <1:

For a pure bipartite state, it is possible to show that the von Neumann entropy

of its reduced density matrix, SðrredÞ ¼ �Trðrred log2 rredÞ, has all the above

properties. Clearly, S is not the only mathematical object that meets the require-

ment, but in fact, it is now basically accepted as the correct and unique measure

of entanglement.

The strict definitions of the four most prominent entanglement measures can

be summarized as follows [14]:

� Entanglement of distillation ED.

� Entanglement of cost EC.

� Entanglement of formation EF .

� Relative entropy of entanglement ER.

The first two measures are also called operational measures, while the second

two don’t admit a direct operational interpretation in terms of entanglement

manipulations. Suppose E is a measure defined on mixed states that satisfy

the conditions for a good measure mentioned above. Then we can prove that

for all states r 2 ðHA 
 HBÞ, EDðrÞ � EðrÞ � ECðrÞ, and both EDðrÞ and

ECðrÞ coincide on pure states with the von Neumann reduced entropy as demon-

strated earlier.

A. Entanglement of Formation and Concurrence

At the current time, there is no simple way to carry out the calculations with all

these entanglement measures. Their properties, such as additivity, convexity, and

continuity, and relationships are still under active investigation. Even for the

best-understood entanglement of formation of the mixed states in bipartite

systems AB, once the dimension or A or B is three or above, we don’t know

how to express it simply, although we have the general definitions given pre-

viously. However, for the case where both subsystems A and B are spin-1
2
parti-

cles, there exists a simple formula from which the entanglement of formation

can be calculated [42].
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Given a density matrix r of a pair of quantum systems A and B and all

possible pure-state decompositions of r

r ¼
X
i

pijciihcij ð1Þ

where pi are the probabilities for ensembles of states jcii, the entanglement E is

defined as the entropy of either of the subsystems A or B:

EðcÞ ¼ �TrðrA log2 rAÞ ¼ �TrðrB log2 rBÞ ð2Þ

The entanglement of formation of the mixed r is then defined as the average

entanglement of the pure states of the decomposition [42], minimized over all

decompositions of r:

EðrÞ ¼ min
X
i

pi EðciÞ ð3Þ

For a pair of qubits this equation can be written [42–44]

EðrÞ ¼ eðCðrÞÞ ð4Þ

where e is a function of the ‘‘concurrence’’ C:

eðCÞ ¼ h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2
p

2

 !
ð5Þ

where h in the binary entropy function [20]

hðxÞ ¼ �x log2 x� ð1� xÞ log2ð1� xÞ ð5Þ

In this case the entanglement of formation is given in terms of another entangle-

ment measure, the concurrence C [42–44]. The entanglement of formation varies

monotonically with the concurrence. From the density matrix of the two-spin

mixed states, the concurrence can be calculated as follows:

CðrÞ ¼ max½0; l1 � l2 � l3 � l4� ð6Þ

where li are the eigenvalues in decreasing order of the Hermitian matrix

R �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
p

r
� ffiffiffi

r
pq

with r
� ¼ ðsy 
 syÞr�ðsy 
 syÞ. Here sy is the Pauli matrix of
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the spin in the y direction. The concurrence varies from C ¼ 0 for a separable

state to C ¼ 1 for a maximally entangled state. The concurrence as a measure of

entanglement will be used in Section II to discuss tuning and manipulating the

entanglement for spin systems.

B. Entanglement Measure for Fermions

As we discussed in the previous section, for distinguishable particles, the most

suitable and famous measure of entanglement is Wootters’ measure [42], the

entanglement of formation or concurrence. Recently, Schlieman and co-workers

[45, 46] examined the influence of quantum statistics on the definition of entan-

glement. They discussed a two-fermion system with the Slater decomposition

instead of Schmidt decomposition for the entanglement measure. If we take

each of the indistinguishable fermions to be in the single-particle Hilbert space

CN , with fm; f
þ
m ðm ¼ 1; . . . ;NÞ denoting the fermionic annihilation and creation

operators of single-particle states and j
i representing the vacuum state, then a

pure two-electron state can be writtenX
m;n

omnf
þ
m fþn j
i;

where omn ¼ �onm.

Analogous to the Schmidt decomposition, it can be proved that every j�i can
be represented in an appropriately chosen basis in CN in a form of Slater decom-

position [45],

j�i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
i¼1 jzij2

q XK
i¼1

zif
þ
a1ðiÞf

þ
a2ðiÞj
i ð7Þ

where fþ
a1ðiÞj
i; fþa2ðiÞj
i, i ¼ 1; :::;K; form an orthonormal basis in CN . The num-

ber of nonvanishing coefficients zi is called the Slater rank, which is then used

for the entanglement measure. With similar technique, the case of a two-boson

system is studied by Li et al. [47] and Paškauskas and you [48].

Gittings and Fisher [49] put forward three desirable properties of any

entanglement measure: (i) invariance under local unitary transformations;

(ii) noninvariance undernonlocal unitary transformations; and (iii) correct

behavior as distinguishability of the subsystems is lost. These requirements

make the relevant distinction between one-particle unitary transformation

and one-site unitary transformations. A natural way to achieve this distinction

[49] is to use a basis based on sites rather than on particles. Through the

Gittings–Fisher investigation, it is shown that all of the above-discussed

entanglement measures fail the tests of the three criteria. Only Zanardi’s
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measure [50] survives, which is given in Fock space as the von Neumann

entropy, namely,

Ej ¼ �Trrj log2 rj; rj ¼ Trjjcihcj ð8Þ

where Trj denotes the trace over all but the jth site and c is the antisymmetric

wavefunction of the studied system. Hence Ej actually describes the entangle-

ment of the jth site with the remaining sites. A generalization of this one-site

entanglement is to define an entanglement between one L-site block with the

rest of the system [51],

EL ¼ �TrðrL log2 rLÞ ð9Þ

C. Entanglement and Ranks of Density Matrices

In this section we review the known theorems that relate entanglement to the

ranks of density matrices [52]. The rank of a matrix r, denoted as rankðrÞ, is
the maximal number of linearly independent row vectors (also column vectors)

in the matrix r. Based on the ranks of reduced density matrices, one can derive

necessary conditions for the separability of multiparticle arbitrary-dimensional

mixed states, which are equivalent to sufficient conditions for entanglement

[53]. For convenience, let us introduce the following definitions [54–56]. A

pure state r of N particles A1;A2; . . . ;AN is called entangled when it cannot

be written

r ¼ rA1

 rA2


 � � � 
 rAN
¼
ON
i¼1

rAi
ð10Þ

where rAi
is the single-particle reduced density matrix given by rAi

� TrfAjgðrÞ
for fAjjall Aj 6¼ Aig. A mixed state r of N particles A1;A2; :::;AN , described by

M probabilities pj and M pure states rj as r ¼PM
j¼1 pj

rj, is called entangled

when it cannot be written

r ¼
XM
j¼1

pj
ON
i¼1

rjAi
ð11Þ

where pj > 0 for j ¼ 1; 2; :::;M with
PM

j¼1 pj ¼ 1.

Now we are in a position to list the separability conditions without proof.

(The reader who is interested in the formal proofs can consult the paper by

Chong, Keiter, and Stolze [53].
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Lemma 1 A state is pure if and only if the rank of its density matrix r is equal

to 1, that is, rankðrÞ ¼ 1.

Lemma 2 A pure state is entangled if and only if the rank of at least one of its

reduced density matrices is greater than 1.

Lemma 3 Given a pure state r, if its particles are separated into two parts U

and V, then rankðrUÞ ¼ 1 holds if and only if these two parts are separable, that

is, r ¼ rU 
 rV .

Now we can discuss the necessary conditions for separable states. For conve-

nience, we will use the following notation. For a state r of N particles

A1;A2; . . . ;AN , the reduced density matrix obtained by tracing r over particle

Ai is written rRðiÞ ¼ TrAi
ðrÞ, where RðiÞ denotes the set of the remaining

ðN � 1Þ particles other than particle Ai. In the same way, rRði;jÞ ¼
TrAj
ðrRðiÞÞ ¼ TrAj

ðTrAi
ðrÞÞ ¼ TrAi

ðTrAj
ðrÞÞ denotes the reduced density matrix

obtained by tracing r over particles Ai and Aj, rRði;j;kÞ ¼ TrAi
ðTrAj

ðTrAk
ðrÞÞÞ,

and so on. In view of these relations, r can be called the 1-level-higher density

matrix of rRðiÞ and 2-level-higher density matrix of rRði;jÞ; rRðiÞ can be called the

1-level-higher density matrix of rRði;jÞ and 2-level-higher density matrix of

rRði;j;kÞ; and so on.

Now let us define the separability condition theorem [53]. If a state r of N

particles A1;A2; :::;AN is separable, then the rank of any reduced density matrix

of r must be less than or equal to the ranks of all of its 1-level-higher density

matrices; that is,

rankðrRðiÞÞ � rankðrÞ ð12Þ
holds for any Ai 2 fA1;A2; . . . ;ANg; and

rankðrRði;jÞÞ � rankðrRðiÞÞ; rankðrRði;jÞÞ � rankðrRðjÞÞ ð13Þ
holds for any pair of all particles.

This will lead to the conditions for a mixed state to be entangled. Given a

mixed state r, if the rank of at least one of the reduced density matrices of r
is greater than the rank of one of its 1-level-higher density matrices, then the

state r is entangled.

II. ENTANGLEMENT FOR SPIN SYSTEMS

A. Entanglement for Two-Spin Systems

We consider a set of N localized spin-1
2
particles coupled through exchange inter-

action J and subject to an external magnetic field of strength B. In this section we
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will demonstrate that (i) entanglement can be controlled and tuned by varying

the anisotropy parameter in the Hamiltonian and by introducing impurities

into the systems; (ii) for certain parameters, the entanglement is zero up to a cri-

tical point lc, where a quantum phase transition occurs, and is different from

zero above lc; and (iii) entanglement shows scaling behavior in the vicinity of

the transition point.

For simplicity, let us illustrate the calculations of entanglement for two spin-1
2

particles. The general Hamiltonian, in atomic units, for such a system is given

by [57]

H ¼ � J

2
ð1þ gÞsx1 
 sx2 �

J

2
ð1� gÞsy1 
 sy2 � Bsz1 
 I2 � BI1 
 sz2 ð14Þ

where sa are the Pauli matrices (a ¼ x; y; z) and g is the degree of anisotropy.

For g ¼ 1 Eq. (14) reduces to the Ising model, whereas for g ¼ 0 it is the XY

model.

This model admits an exact solution; it is simply a ð4� 4Þ matrix of the form

H ¼
�2B 0 0 �Jg
0 0 �J 0

0 �J 0 0

�Jg 0 0 2B

0BB@
1CCA ð15Þ

with the following four eigenvalues,

l1 ¼ �J; l2 ¼ J; l3 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B2 þ J2g2

p
; l4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B2 þ J2g2

p
ð16Þ

and the corresponding eigenvectors,

jf1i ¼

0

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

0

0BBB@
1CCCA; jf2i ¼

0

�1= ffiffiffi
2
p

1=
ffiffiffi
2
p

0

0BBB@
1CCCA ð17Þ

jf3i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 2B

2a

r
0

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� 2B

2a

r

0BBBBBBB@

1CCCCCCCA; jf4i ¼

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� 2B

2a

r
0

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 2B

2a

r

0BBBBBBB@

1CCCCCCCA ð18Þ
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where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B2 þ J2g2

p
. In the basis set fj ""i; j "#i; j #"i; j ##ig, the eigen-

vectors can be written

jf1i ¼
1ffiffiffi
2
p ðj #"i þ j "#iÞ ð19Þ

jf2i ¼
1ffiffiffi
2
p ðj #"i � j "#iÞ ð20Þ

jf3i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� 2B

2a

r
j ##i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 2B

2a

r
j ""i ð21Þ

jf4i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 2B

2a

r
j ##i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� 2B

2a

r
j ""i ð22Þ

Now we confine our interest to the calculation of entanglement between the two

spins. For simplicity, we take g ¼ 1; Eq. (14) reduces to the Ising model with the

ground-state energy l3 and the corresponding eigenvector jf3i. All the informa-

tion needed for quantifying the entanglement in this case is contained in the

reduced density matrix rði; jÞ [42–44].
For our model system in the ground state jf3i, the density matrix in the basis

set ð""; "#; #"; ##) is given by

r ¼

aþ 2B

2a
0 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4B2

4a2

r
0 0 0 0

0 0 0 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4B2

4a2

r
0 0

aþ 2B

2a

0BBBBBB@

1CCCCCCA ð23Þ

The eigenvalues of the Hermitian matrix R needed to calculate the concurrence

[42], C, Eq. (6), can be calculated analytically. We obtained l2 ¼ l3 ¼ l4 ¼ 0

and therefore

CðrÞ ¼ l1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

4þ l2

s
ð24Þ

where l ¼ J=B. Entanglement is a monotonically increasing function of the con-

currence and is given by

EðCÞ ¼ hðyÞ ¼ �y log2 y � ð1� yÞ log2ð1� yÞ; y ¼ 1
2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2
p

ð25Þ

Substituting the value of the concurrence C, Eq. (24) gives

E ¼ � 1

2
log2

1

4
� 1

4þ l2

� �
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ l2
p log2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ l2

p
� 2ffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ l2
p

þ 2
ð26Þ
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This result for entanglement is equivalent to the von Neumann entropy of the

reduced density matrix rA. For our model system of the form AB in the ground

state jf3i, the reduced density matrix rA ¼ TrBðrABÞ in the basis set ð"; #Þ is
given by

rA ¼
aþ 2B

2a
0

0
a� 2B

2a

0B@
1CA ð27Þ

As we mentioned before, when a biparticle quantum system AB is in a pure

state, there is essentially a unique measure of the entanglement between the sub-

systems A and B given by the von Neumann entropy S � �Tr½rA log2 rA�. This
approach gives exactly the same formula as the one given in Eq. (26). This is not

surprising since all entanglement measures should coincide on pure bipartite

states and be equal to the von Neumann entropy of the reduced density matrix

(uniqueness theorem).

This simple model can be used to examine the entanglement for two-electron

diatomic molecules. The value of J, the exchange coupling constant between the

spins of the two electrons, can be calculated as half the energy difference

between the lowest singlet and triplet states of the hydrogen molecule. Herring

and Flicker [58] have shown that J for the H2 molecule can be approximated as a

function of the interatomic distance R. In atomic units, the expression for large R

is given by

JðRÞ ¼ �0:821 R5=2e�2R þ OðR2e�2RÞ ð28Þ
Figure 1 shows the calculated concurrence CðrÞ as a function of the distance

between the two electronic spins R, using JðRÞ of Eq. (28), for different values
of the magnetic field strength B. At the limit R!1 the exchange interaction J

vanishes as a result of the two electronic spins being up and the wavefunction

being factorizable; that is, the concurrence is zero. At the other limit, when

R ¼ 0 the concurrence or the entanglement is zero for this model because

J ¼ 0. As R increases, the exchange interaction increases, leading to increasing

concurrence between the two electronic spins. However, this increase in the con-

currence reaches a maximum limit as shown in the figure. For large distance, the

exchange interaction decreases exponentially with R and thus the decrease of the

concurrence. Figure 1 also shows that the concurrence increases with decreasing

magnetic field strength. This can be attributed to effectively increasing the

exchange interaction. This behavior of the concurrence as a function of the inter-

nuclear distance R is typical for two-electron diatomic molecules. We will show

later in Section IV that by using accurate ab initio calculations we essentially

obtain qualitatively the same curve for entanglement for the H2 molecule as a

function of the internuclear distance R.
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B. Entanglement for One-Dimensional N-Spin Systems

Now let us generalize it to a one-dimensional lattice with N sites in a transverse

magnetic field and with impurities. The Hamiltonian for such a system is given

by [59]

H ¼ � 1þ g
2

XN
i¼1

Ji;iþ1sxi s
x
iþ1 �

1� g
2

XN
i¼1

Ji;iþ1s
y
i s

y
iþ1 �

XN
i¼1

Biszi ð29Þ

where Ji;iþ1 is the exchange interaction between sites i and iþ 1, Bi is the

strength of the external magnetic field at site i, sa are the Pauli matrices

(a ¼ x; y; z), g is the degree of anisotropy, and N is the number of sites. We

assume cyclic boundary conditions, so that

sxNþ1 ¼ sx1; syNþ1 ¼ sy1; szNþ1 ¼ sz1 ð30Þ

For g ¼ 1 the Hamiltonian reduces to the Ising model and for g ¼ 0 to the XY

model. For the pure homogeneous case, Ji;iþ1 ¼ J and Bi ¼ B, the system exhi-

bits a quantum phase transition at a dimensionless coupling constant
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Figure 1. The concurrence (C) as a function of the distance R between the two spins for

different values of the magnetic field strength B.
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l ¼ J=2B ¼ 1. The magnetization hsxi is different from zero for l > 1 and it

vanishes at the transition point. The magnetization along the z direction hszi
is different from zero for any value of l. At the phase transition point, the

correlation length x diverges as x � jl� lcj�n with n ¼ 1 [60].

C. Numerical Solution of the One-Dimensional Spin-1
2
Systems

The standard procedure used to solve Eq. (29) is to transform the spin operators

into fermionic operators [61]. Let us define the raising and lowering operators

aþi , a
�
i ,:

aþi ¼ 1
2
ðsxi þ isyi Þ; a�i ¼ 1

2
ðsxi � isyi Þ

Then we introduce the Fermi operators ci,c
þ
i defined by

a�i ¼ exp �pi
Xi�1
j¼1

cþj cj

 !
ci; aþi ¼ cþi exp pi

Xi�1
j¼1

cþj cj

 !
.

So the Hamiltonian assumes the following quadratic form:

H ¼ �
XN
i¼1

Ji;iþ1½ðcþi ciþ1 þ gcþi c
þ
iþ1Þ þ h:c:� � 2

XN
i¼1

Biðcþi ci �
1

2
Þ

l ¼ J=2B

ð31Þ

We can write the parameters Ji;iþ1 ¼ Jð1þ ai;iþ1Þ, where a introduces the

impurity in the exchange interactions, and the external magnetic field takes

the form Bi ¼ Bð1þ biÞ, where b measures the impurity in the magnetic field.

When a ¼ b ¼ 0 we recover the pure XY case.

Introducing the matrices A, B, where A is symmetrical and B is antisymme-

trical, we can rewrite the Hamiltonian:

H0 ¼
XN
i; j¼1

cþi Ai;jcj þ 1

2
ðcþi Bi; jc

þ
j þ h:cÞ

� �

Introducing linear transformation, we have

Zk ¼
XN
i¼1

gkici þ hkic
þ
i ; Zþk ¼

XN
i¼1

gkic
þ
i þ hkici
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with the gki and hki real and which will give the Hamiltonian form

H ¼
XN
k

�kZþk Zk þ constant

From these conditions, we can get a set of equations for the gki and hki:

�kgki ¼
XN
j¼1
ðgkjAji � hkjBjiÞ ð32Þ

�khki ¼
XN
j¼1
ðgkjBji � hkjAjiÞ ð33Þ

By introducing the linear combinations

fki ¼ gki þ hki; cki ¼ gki � hki

we can get the coupled equation

fkðA� BÞ ¼ Kkck and ckðAþ BÞ ¼ Kkfk

Then we can get both fk and ck vectors from these two equations by the numer-

ical method [62]. The ground state of the system corresponds to the state of ‘‘no-

particles’’ and is denoted as j�0i, and

Zkj�0i ¼ 0; for all k

D. Entanglement and Spin Reduced Density Matrices

The matrix elements of the reduced density matrix needed to calculate the entan-

glement can be written in terms of the spin–spin correlation functions and the

average magnetization per spin. The spin–spin correlation functions for the

ground state are defined as [62]

Sxlm ¼ 1
4
h�0jsxl sxmj�0i

S
y
lm ¼ 1

4
h�0jsyl symj�0i

Szlm ¼ 1
4
h�0jszlszmj�0i

and the average magnetization per spin is

Mz
i ¼ 1

2
h�0jszi j�0i ð34Þ
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These correlation functions can be obtained using the set ck and fk from the

previous section.

The structure of the reduced density matrix follows from the symmetry

properties of the Hamiltonian. However, for this case the concurrence Cði; jÞ
depends on i; j and the location of the impurity and not only on the difference

ji� jj as for the pure case. Using the operator expansion for the density matrix

and the symmetries of the Hamiltonian leads to the general form

r ¼
r1;1 0 0 r1;4
0 r2;2 r2;3 0

0 r2;3 r3;3 0

r1;4 0 0 r4;4

0BB@
1CCA ð35Þ

with

la ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1;1r4;4

p þ jr1;4j; lb ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2;2r3;3

p þ jr2;3j ð36Þ
lc ¼ j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1;1r4;4
p � jr1;4jj; ld ¼ j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2;2r3;3
p � jr2;3jj ð37Þ

Using the definition < A >¼ TrðrAÞ, we can express all the matrix elements in

the density matrix in terms of different spin–spin correlation functions [62]:

r1;1 ¼ 1
2
Mz

l þ 1
2
Mz

m þ Szlm þ 1
2

ð38Þ
r2;2 ¼ 1

2
Mz

l � 1
2
Mz

m � Szlm þ 1
4

ð39Þ
r3;3 ¼ 1

2
Mz

m � 1
2
Mz

l � Szlm þ 1
4

ð40Þ
r4;4 ¼ � 1

2
Mz

l � 1
2
Mz

m þ Szlm þ 1
4

ð41Þ
r2;3 ¼ Sxlm þ S

y
lm ð42Þ

r1;4 ¼ Sxlm � S
y
lm ð43Þ

E. Some Numerical Results

Let us show how the entanglement can be tuned by changing the anisotropy

parameter g by going from the Ising model (g ¼ 1) to the XY model (g ¼ 0).

For the XY model the entanglement is zero up to the critical point lc and is

different from zero above lc. Moreover, by introducing impurities, the

entanglement can be tuned down as the strength of the impurity a increases

[59]. First, we examine the change of the entanglement for the Ising model

ðg ¼ 1Þ for different values of the impurity strength a as the parameter l, which
induces the quantum phase transitions, varies. Figure 2 shows the change of the

nearest-neighbor concurrence Cð1; 2Þ with the impurity located at im ¼ 3 as a
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function of l for different values of a. One can see clearly in Figure 2 that the

entanglement can be tuned down by increasing the value of the parameter a. For
a ¼ 1:5, the concurrence approaches zero above the critical lc ¼ 1. The system

size was taken as N ¼ 201 based on finite size scaling analysis. Analysis of all

the results for the pure case (a ¼ 0) for different system sizes ranging from

N ¼ 41 up to N ¼ 401 collapse into a single curve. Thus all key ingredients

of the finite size scaling are present in the concurrence. This holds true for the

impurity problem as long as we consider the behavior of the value of l for which
the derivative of the concurrence attains its minimum value versus the system

size. As expected, there is no divergence of the derivative dCð1; 2Þ=dl for finite

N, but there are clear anomalies. By examining lnðlc � lmÞ versus lnN for

a ¼ 0:1, one obtains that the minimum lm scales as lm � lc þ N�0:93 and

dCð1; 2Þ=dl diverges logarithmically with increasing system size. For a system

with the impurity located at larger distance im ¼ 10 and the same a ¼ 0:1,
lm � lc þ N�0:85, showing that the scaling behavior depends on the distance

between the impurity and the pair of sites under consideration.

Figure 2 also shows the variation of nearest-neighbor concurrence as the

anisotropy parameter g decreases. For the XY model ðg ¼ 0Þ, the concurrence

for a ¼ 0 is zero up to the critical point lc ¼ 1 and different from zero

above lc ¼ 1. However, as a increases the concurrence develops steps and the
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Figure 2. The nearest-neighbor concurrence C(1,2) for different values of the anisotropy para-

meter g ¼ 1, 0.7, 0.3, 0 with an impurity located at im ¼ 3 as a function of the reduced coupling

constant l ¼ J=2h, where J is the exchange interaction constant and h is the strength of the external

magnetic field. The curves correspond to different values of the impurity strength a ¼ 0,0.5,1,1.5

with system size N ¼ 201.
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results strongly depend on the system size. For small system size, such as

N ¼ 101, the steps and oscillations are large but become smaller as the system

size increases as shown in Fig. 2 for N ¼ 201. But they disappear in the limit

N !1. To examine the different behavior of the concurrence for the Ising

model and the XY model, we took the system size to be infinite, N !1, where

the two models have exact solutions. However, the behavior is the same for a

finite system with N ¼ 201. For larger values of im the concurrence gets larger

and approaches its maximum value, the pure case with a ¼ 0, at large values

im >> 1. It is worth mentioning that, for the Ising model, the range of entangle-

ment [63], which is the maximum distance between spins at which the concur-

rence is different from zero, vanishes unless the two sites are at most next-

nearest neighbors. For g 6¼ 1, the range of entanglement is not universal and

tends to infinity as g tends to zero.

So far we have examined the change of entanglement as the degree of the

anisotropy g varies between zero and one and by introducing impurities at fixed

sites. Rather than locating the impurity at one site in the chain, we can also intro-

duce a Gaussian distribution of the disorder near a particular location [62]. This

can be done by modifying a, the exchange interaction, where a introduces the

impurity in a Gaussian form centered at ðN þ 1Þ=2 with strength or height �:

ai;iþ1 ¼ �e�Eði�ðNþ1Þ=2Þ
2 ð44Þ

The external magnetic field can also be modified to take the form hi ¼ hð1þ biÞ,
where b has the following Gaussian distribution [62]:

bi ¼ xe�Eði�ðNþ1Þ=2Þ
2 ð45Þ

where E is a parameter to be fixed. Numerical calculations show that the entan-

glement can be tuned in this case by varying the strengths of the magnetic field

and the impurity distribution in the system. The concurrence is maximum close

to lc and can be tuned to zero above the critical point.

F. Thermal Entanglement and the Effect of Temperature

Recently, the concept of thermal entanglement was introduced and studied

within one-dimensional spin systems [64–66]. The state of the system described

by the Hamiltonian H at thermal equilibrium is rðTÞ ¼ expð�H=kTÞ=Z; where
Z ¼ Tr½expð�H=kTÞ� is the partition function and k is Boltzmann’s constant. As

rðTÞ represents a thermal state, the entanglement in the state is called the

thermal entanglement [64].

For a two-qubit isotropic Heisenberg model, there exists thermal entangle-

ment for the antiferromagnetic case and no thermal entanglement for the
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ferromagnetic case [64]; while for the XY model the thermal entanglement

appears for both the antiferromagnetic and ferromagnetic cases [67, 68]. It is

known that the isotropic Heisenberg model and the XY model are special cases

of the anisotropic Heisenberg model.

Now that the entanglement of the XY Hamiltonian with impurities has been

calculated at T ¼ 0, we can consider the case where the system is at thermal

equilibrium at temperature T . The density matrix for the XY model at thermal

equilibrium is given by the canonical ensemble r ¼ e�bH=Z, where b ¼ 1=kBT ,
and Z ¼ Tr ðe�bHÞ is the partition function. The thermal density matrix is diag-

onal when expressed in terms of the Jordan–Wigner fermionic operators. Our

interest lies in calculating the quantum correlations present in the system as a

function of the parameters b, g, l, and a.
For the pure Ising model with a ¼ 0, the constructed two-site density

matrices [66] are valid for all temperatures. By using these matrices, it is possi-

ble to study the purely two-party entanglement present at thermal equilibrium

because the concurrence measure of entanglement can be applied to arbitrary

mixed states. For this model the influence that the critical point has on the entan-

glement structure at nonzero temperatures is particularly clear. The entangle-

ment between nearest-neighbor in the Ising model at nonzero temperature is

shown in Fig. 3. The entanglement is nonzero only in a certain region in the

kBT–l plane. It is in this region that quantum effects are likely to dominate

the behavior of the system. The entanglement is largest in the vicinity of the cri-

tical point l ¼ 1, kBT ¼ 0.

0
0.5

1
1.5

2
2.5

0

0.5

1
0

0.2

0.4

λ

kBT

C

Figure 3. Nearest-neighbor concurrence C at nonzero temperature for the transverse Ising

model.
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Figure 3 shows that, for certain values of l, the two-site entanglement can

increase as the temperature is increased. Moreover, it shows the existence of

appreciable entanglement in the system for temperatures kBT above the

ground-state energy gap �. It has been argued that quantum systems behave

classically when the temperature exceeds all relevant frequencies. For the trans-

verse Ising model, the only relevant frequency is given by the ground-state

energy gap � � �ho. The presence of entanglement in the system for tempera-

tures above the energy gap indicates that quantum effects may persist past the

point where they are usually expected to disappear.

The zero-temperature calculations of the previous section Section, the XY

model with impurities, represent a highly idealized situation; however, it is

unclear whether they have any relevance to the system at nonzero temperature.

Since the properties of a quantum system for low temperatures are strongly

influenced by nearby quantum critical points, it is tempting to attribute the

effect of nearby critical points to persistent mixed-state entanglement in the

thermal state.

G. Entanglement for Two-Dimensional Spin Systems

Quantum spin systems in two-dimensional lattices have been the subject of

intense research, mainly motivated by their possible relevance in the study of

high-temperature superconductors [69]. On the other hand, high magnetic field

experiments on materials with a two-dimensional structure, which can be

described by the Heisenberg antiferromagnetic model in frustrated lattices,

have revealed novel phases as plateaus and jumps in the magnetization curves

[70] and might be useful for quantum computations. Among the many different

techniques that have been used to study such systems, the generalization of the

celebrated Jordan–Wigner transformation [71] to two spatial dimensions [72]

has some appealing features. It allows one to write the spin Hamiltonian com-

pletely in terms of spinless fermions in such a way that the S ¼ 1
2
single-particle

constraint is automatically satisfied due to the Pauli principle, while the mag-

netic field enters as the chemical potential for the Jordan–Wigner fermions.

This method has been applied to study the XXZ Heisenberg antiferromagnet

[73–75].

For this case one can use the Jordan–Wigner transformation since it is a gen-

eralization of the well-known transformation in one dimension that we have used

in previous sections. The Jordan–Wigner transformation is exact but the result-

ing Hamiltonian is highly nonlocal and some kind of approximation is necessary

to proceed. One can use numerical methods such as Monte Carlo and variational

approach to deal with the transformed Hamiltonian. This will allow us to explore

the ground state of two-dimensional lattice spin 1
2
systems, in a way that could be

applied to arbitrary lattice topologies. The method can also be used in the pre-

sence of an external magnetic field, at finite temperature, and can even be
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applied to disordered systems. Once this is solved and we have the density

matrix, we can follow the previous procedure to examine the entanglement as

the parameters of external magnetic field, temperature, lattice topologies, and

impurities vary.

III. ENTANGLEMENT FOR QUANTUM DOT SYSTEMS

A. Two-Electron Two-Site Hubbard Model

Many electron systems such as molecules and quantum dots show the complex

phenomena of electron correlation caused by Coulomb interactions. These phe-

nomena can be described to some extent by the Hubbard model [76]. This is a

simple model that captures the main physics of the problem and admits an exact

solution in some special cases [77]. To calculate the entanglement for electrons

described by this model, we will use Zanardi’s measure, which is given in Fock

space as the von Neumann entropy [78].

1. Exact Solution

The Hamiltonian of the two-electron two-site Hubbard model can be written [77]

H ¼ � t

2

X
i;s

c
y
isc�iis þ 2U

X
i

n̂ni"n̂ni# ð46Þ

where c
y
is and cis are the Fermi creation and annihilation operators at site i and

with spin s ¼"; # and n̂n
is¼cy

iscis
is the spin-dependent occupancy operator at site

i. For a two-site system i ¼ 1 and 2, �ii ¼ 3� i, t=2 is the hopping term of dif-

ferent sites, and 2U is the on-site interaction (U > 0 for repulsion in our case).

The factors t=2 and 2U are chosen to make the following expressions for eigen-

values and eigenvectors as simple as possible. This Hamiltonian can be solved

exactly in the basis set j1 "; 1 #; 2 "; 2 #i; it is simply a ð4� 4Þ matrix of the

form

H ¼
2U �t=2 �t=2 0

�t=2 0 0 �t=2
�t=2 0 0 �t=2
0 �t=2 �t=2 2U

0BB@
1CCA ð47Þ

with the following four eigenvalues and eigenvectors,

l1 ¼ U �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ U2

p
; l2 ¼ 0; l3 ¼ 2U; l4 ¼ U þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ U2

p
ð48Þ
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and the corresponding eigenvectors,

jf1i ¼

1

xþ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2
p

xþ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2
p

1

0BBB@
1CCCA; jf2i ¼

0

�1
1

0

0BBB@
1CCCA; ð49Þ

jf3i ¼

�1
0

0

1

0BBB@
1CCCA; jf4i ¼

1

x� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2
p

x� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2
p

1

0BBB@
1CCCA ð50Þ

with x ¼ U=t. The eigenvalue and eigenvector for the ground state are

E ¼ U �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ U2

p
ð51Þ

and

jGSi ¼ j1; xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
; xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
; 1i ð52Þ

2. Hartree–Fock Approximation

In quantum chemistry, the correlation energy Ecorr is defined as

Ecorr ¼ Eexact � EHF. In order to calculate the correlation energy of our system,

we show how to calculate the ground state using the Hartree–Fock approxima-

tion. The main idea is to expand the exact wavefunction in the form of a config-

uration interaction picture. The first term of this expansion corresponds to the

Hartree–Fock wavefunction. As a first step we calculate the spin-traced one-

particle density matrix [5] (1PDM) g:

gij ¼ hGSj
X
s

c
y
iscjsjGSi ð53Þ

We obtain

g ¼ 1 2ab
2a 1

� �
ð54Þ

where

a ¼ 1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

1þ x2

r
and b ¼ 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x

1þ x2

r
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Diagonalizing this 1PDM, we can get the binding (þ) and unbinding (�) mole-

cular natural orbitals (NOs),

j	i ¼ 1ffiffiffi
2
p ðj1i 	 j2iÞ ð55Þ

and the corresponding eigenvalues

n	 ¼ 1	 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2
p ð56Þ

where j1i and j2i are the spatial orbitals of sites 1 and 2, respectively. The NOs

for different spins are defined as

j 	 si ¼ 1ffiffiffi
2
p ðcy1s 	 c

y
2sÞj0i � c

y
	sj0i ð57Þ

where j0i is the vacuum state. After we define the geminals j 	 	i ¼ c
y
	"c
y
	#j0i,

we can express jGSi in terms of NOs as

jGSi ¼
ffiffiffiffiffiffi
nþ
2

r
j þ þi � sgnU

ffiffiffiffiffiffi
n�
2

r
j � �i ð58Þ

In the Hartree–Fock approximation, the GS is given by jHFi ¼ j þ þi and

EHF ¼ �t þ U. Let us examine the Hartree–Fock results by defining the ionic

and nonionic geminals, respectively:

jAi ¼ 1ffiffiffi
2
p ðcy1"cy1# þ c

y
2"c
y
2#Þj0i

jBi ¼ 1ffiffiffi
2
p ðcy1"cy2# þ c

y
2"c
y
1#Þj0i

ð59Þ

If x! 0, the system is equally mixed between ionic and nonionic germinal,

jHFi ¼ jAi þ jBi. When x! þ1, jGSi ! jBi, which indicates that as x

becomes large, our system goes to the nonionic state. Similarly, jGSi ! jCi,
as x! �1, where

jCi ¼ 1ffiffiffi
2
p ðcy1"cy1# � c

y
2"c
y
2#Þj0i

Thus the HF results are a good approximation only when x! 0. The unreason-

able diverging behavior results from not suppressing the ionic state jAi in jHFi
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when jxj ! 1. In order to correct this shortcoming of the Hartree–Fock method,

we can combine different wavefunctions in different ranges to obtain a better

wavefunction for our system. This can be done as follows:

Range GS Energy Correlation Energy Wavefunction nþ n�

U > t 0 U � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ t2
p jBi 1 1

�t � U � t �t þ U t � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ t2
p 1ffiffiffi

2
p ðjAi þ jBiÞ 2 0

U < �t 2U �U � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ t2
p jCi 1 1

3. Correlation Entropy

The correlation entropy is a good measure of electron correlation in molecular

systems [5, 7]. It is defined using the eigenvalues nk of the one-particle density

matrix 1PDM,

S ¼
X
k

nkð� ln nkÞ;
X
k

nk ¼ N ð60Þ

This correlation entropy is based on the nonidempotency of the NONs nk and

proves to be an appropriate measure of the correlation strength if the reference

state defining correlation is a single Slater determinant. In addition to the eigen-

values nk of the ‘‘full’’ (spin-dependent) 1PDM, it seems reasonable to consider

also the eigenvalues nk of the spin-traced 1PDM. Among all the nk there are a

certain number N0 of NONs nk0 with values between 1 and 2 and all the other N1

NONs nk1 also have values between 0 and 1. So one possible measure of the

correlation strength of spin-traced 1PDM is

S1 ¼ �
X
k0

ðnk0 � 1Þ lnðnk0 � 1Þ �
X
k1

nk1 ln nk1 ð61Þ

Since all the nk=2 have values between 0 and 1, there is another possible mea-

surement of the correlation strength:

S2 ¼ �
X
k

nk

2
ln
nk

2
ð62Þ

4. Entanglement

The entanglement measure is given by the von Neumann entropy [78]

Ej ¼ �Trðrj log2 rjÞ; rj ¼ Trjðj�ih�jÞ ð63Þ
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where Trj denotes the trace over all but the jth site, j�i is the antisymmetric

wavefunction of the fermions system, and rj is the reduced density matrix.

Hence Ej actually describes the entanglement of the jth site with the remaining

sites [79].

In the Hubbard model, the electron occupation of each site has four possibi-

lities; there are four possible local states at each site, jnij ¼ j0ij, j "ij, j #ij, j "#ij.
The reduced density matrix of the jth site with the other sites is given by

[80, 81]

rj ¼ zj0ih0j þ uþj "ih" j þ u�j #ih# j þ wj "#ih"# j ð64Þ

with

w ¼ hnj"nj#i ¼ Trðnj"nj#rjÞ ð65Þ
uþ ¼ hnj"i � w; u� ¼ hnj#i � w ð66Þ
z ¼ 1� uþ � u� � w ¼ 1� hnj"i � hnj#i þ w ð67Þ

And the entanglement between the jth site and other sites is given by

Ej ¼ �zLog2z� uþ Log2u
þ � u� Log2u

� � w Log2w ð68Þ

For the one-dimensional Hubbard model with half-filling electrons, we have

hn"i ¼ hn#i ¼ 1
2
, uþ ¼ u� ¼ 1

2
� w, and the entanglement is given by

Ej ¼ �2w log2w� 2 1
2
� wÞlog2 1

2
� wÞ		 ð54Þ

For our case of a two-site two-electron system

w ¼ 1

2þ 2½xþ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2
p �2

Thus the entanglement is readily calculated from Eq. (69). In Fig. 4, we show the

entanglement between the two sites (top curve) and the correlation entropy S1 and

S2 as a function of x ¼ U=t. The entanglement measure is given by the von Neu-

mann entropy in which the density matrix of the system is traced over the other

site to get the reduced density matrix. The reduced density matrix describes

the four possible occupations on the site: j0i, j "i, j #i, j "#i. The minimum of

the entanglement is 1 as x! 	1. It can be understood that when U ! þ1, all

the sites are singly occupied; the only difference is the spin of the electrons at

each site, which can be referred to as spin entanglement. As U ! �1, all

the sites are either doubly occupied or empty, which is referred to as

space entanglement. The maximum of the entanglement is 2 at U ¼ 0; all four
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occupations are evenly weighted, which is the sum of the spin and space entan-

glements of the system. The correlation entropy S1 vanishes for x! 0 and

x! 	1 and has a maximum near jxj ¼ 1; the correlation entropy S2 vanishes

for x! 0 and increases monotonically and approaches ln 2 for x! 	1. For

x! þ1 it can be viewed as t! 0 for fixed U > 0 or as U ! þ1 for fixed t.

B. One-Dimensional Quantum Dots System

We consider an array of quantum dots modeled by the one-dimensional Hubbard

Hamiltonian of the form [82]

H ¼ �
X
hiji;s

tij c
þ
is cjs þ U

X
i

ni" ni# ð70Þ

where tij stands for the hopping between the nearest-neighbor sites for the

electrons with the same spin, i and j are the neighboring site numbers, s is

the electron spin, cþis and cjs are the creation and annihilation operators, and

U is the Coulomb repulsion for the electrons on the same site. The periodic

boundary condition is applied. The entanglement measure is given by the von

Neumann entropy [78].
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1.6
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x = U/t

S1 S2

S2 Combined Wavefunction

Figure 4. Two-site Hubbard model. Upper curve is the entanglement calculated by the von

Newmann entropy. The curves S1 and S2 are the correlation entropies of the exact wavefunction

as defined in the text. The dashed line is the S2 for the combined wavefunction based on the range

of x values. S1 for the combined wavefunction is zero.
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In the Hubbard model, the electron occupation of each site has four possibilities;

there are four possible local states at each site, jnij ¼ j0ij; j "ij; j #ij; j "#ij. The
dimensions of the Hilbert space of an L-site system is 4L and

jn1n2 � � � nLi ¼
QL

j¼1 jnjij can be used as basis vectors for the system. The entangle-

ment of the jth site with the other sites is given in the previous section by Eq. (65).

In the ideal case, we can expect an array of the quantum dots to have the same

size and to be distributed evenly, so that the parameters t and U are the same

everywhere. We call this the pure case. In fact, the size of the dots may not

be the same and they may not be evenly distributed, which we call the impurity

case. Here, we consider two types of impurities. The first one is to introduce a

symmetric hopping impurity t0 between two neighboring dots; the second one is

to introduce an asymmetric electron hopping t0 between two neighboring dots,

the right hopping is different from the left hopping, while the rest of the sites

have hopping parameter t.

Consider the particle–hole symmetry of the one-dimensional Hubbard model.

One can obtain wð�UÞ ¼ 1
2
� wðUÞ, so the entanglement is an even function of

U, Ejð�UÞ ¼ EjðUÞ. The minimum of the entanglement is 1 as U ! 	1. As

U ! þ1, all the sites are singly occupied; the only difference is the spin of the

electrons on each site, which can be referred to as spin entanglement. As

U ! �1, all the sites are either doubly occupied or empty, which is referred

to as space entanglement. The maximum of the entanglement is 2 at U ¼ 0,

which is the sum of the spin and space entanglements of the system. The ground

state of the one-dimensional Hubbard model at half-filling is metallic for U < 0,

and insulating for U > 0; U ¼ 0 is the critical point for the metal–insulator tran-

sition, where the local entanglement reaches its maximum. In Fig. 5 we show the

–40 –20 0 20 40
1

1.2

1.4

1.6

1.8

2

U/t

Ev

Figure 5. Local entanglement given by the von Neumann entropy, Ev, versus U=t in the pure case.
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entanglement as a function U=t for six sites and six electrons. Our results are in

complete agreement with the exact one obtained by Bethe ansatz [80].

C. Two-Dimensional Array of Quantum Dots

Using the Hubbard model, we can study the entanglement scaling behavior in a

two-dimensional itinerant system. Our results indicate that, on the two sides of

the critical point denoting an inherent quantum phase transition (QPT), the

entanglement follows different scalings with the size just as an order parameter

does. This fact reveals the subtle role played by the entanglement in QPT and

points to its potential application in quantum information processing as a fungi-

ble physical resource.

Recently, it has been speculated that the most entangled systems could be

found at the critical point [83] when the system undergoes a quantum phase tran-

sition; that is, a qualitative change of some physical properties takes place as an

order parameter in the Hamiltonian is tuned [84]. QPT results from quantum

fluctuations at the absolute zero of temperature and is a pure quantum effect fea-

tured by long-range correlations. So far, there have already been some efforts in

exploring the above speculations, such as the analysis of the XY model about the

single-spin entropies and two-spin quantum correlations [59, 85], the entangle-

ment between a block of L contiguous sites and the rest of the chain [51], and

also the scaling of entanglement near QPT [60]. But because there is still no ana-

lytical proof, the role played by the entanglement in quantum critical phenomena

remains elusive. Generally, at least two difficulties exist in resolving this issue.

First, until now, only two-particle entanglement is well explored. How to quan-

tify the multiparticle entanglement is not clear. Second, QPT closely relates to

the notorious many-body problems, which is almost intractable analytically.

Until now, the only effective and accurate way to deal with QPT in critical region

is the density-matrix renormalization group method [86]. Unfortunately, it is

only efficient for one-dimensional cases because of the much more complicated

boundary conditions for the two-dimensional situation [87].

In this chapter, we will focus on the entanglement behavior in QPT for the

two-dimensional array of quantum dots, which provide a suitable arena for

implementation of quantum computation [88, 89, 103]. For this purpose, the

real-space renormalization group technique [91] will be utilized and developed

for the finite-size analysis of entanglement. The model that we will be using is

the Hubbard model [83],

H ¼ �t
X
hi; ji;s
½cþiscjs þ h:c:� þ U

X
i

1
2
� ni"

	 

1
2
� ni#

	 
 ð71Þ

where t is the nearest-neighbor hopping term and U is the local repulsive inter-

action. cþisðcisÞ creates(annihilates) an electron with spin s in a Wannier orbital
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located at site i; the corresponding number operator is nis ¼ cþiscis and h i
denotes the nearest-neighbor pairs; h.c. denotes the Hermitian conjugate.

For a half-filled triangular quantum lattice, there exists a metal–insulator

phase transition with the tuning parameter U=t at the critical point 12.5

[92–94]. The corresponding order parameter for metal–insulator transition is

the charge gap defined by 4g ¼ EðNe � 1Þ þ EðNe þ 1Þ � 2EðNeÞ, where

EðNeÞ denotes the lowest energy for an Ne-electron system. In our case, Ne is

equal to the site number Ns of the lattice. Unlike the charge gap calculated

from the energy levels, the Zanardi measure of the entanglement is defined based

on the wavefunction corresponding to EðNeÞ instead. Using the conventional

renormalization group method for the finite-size scaling analysis [92–94], we

can discuss three schemes of entanglement scaling: single-site entanglement

scaling with the total system size, Esingle; single-block entanglement scaling

with the block size, Eblock; and block–block entanglement scaling with the block

size, Eblock�block. Our initial results of the single-site entanglement scaling indi-

cate that Esingle is not a universal quantity. This conclusion is consistent with the

argument given by Osborne and Nielsen [85], who claim that the single-site

entanglement is not scalable because it does not have the proper extensivity

and does not distinguish between the local and the distributed entanglement.

This implies that only a limited region of sites around the central site contributed

significantly to the single-site entanglement. Using the one-parameter scaling

theory, near the phase transition point, we can assume the existence of scaling

function f for Eblock�block such that Eblock�block ¼ qyE f ðL=xÞ, where q ¼
ðU=tÞ � ðU=tÞc measures the deviation distance of the system away from the

critical state with ðU=tÞc ¼ 12:5, which is exactly equal to the critical value

for metal–insulator transition when the same order parameter U=t is used

[92–94]. x ¼ q�n is the correlation length of the system with the critical expo-

nent n and N ¼ L2 for the two-dimensional systems.

In Fig. 6, we show the results of Eblock�block as a function of ðU=tÞ for differ-
ent system sizes. With proper scaling, all the curves collapse into one curve,

which can be expressed as Eblock--block ¼ f ðqN1=2Þ. Thus the critical exponents

are yE ¼ 0; n ¼ 1. It is interesting to note that we obtained the same n as in

the study of the metal–insulator transition. This shows the consistency of the

initial results since the critical exponent n is only dependent on the inherent sym-

metry and dimension of the investigated system. Another significant result lies in

the finding that the metal state is highly entangled while the insulating state is

only partly entangled.

It should be mentioned that the calculated entanglement here has a corre-

sponding critical exponent yE ¼ 0. This means that the entanglement is constant

at the critical point over all sizes of the system. But it is not a constant over all

values of U=t. There is an abrupt jump across the critical point as L!1. If we

divide the regime of the order parameter into noncritical regime and critical
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Figure 6. (a) Schematic diagram displays the lattice configuration with central block and the

surrounding ones. (b) Scaling of block–block for various system size and (c) scaling of block entan-

glements with the block size.

entanglement, electron correlation, and density matrices 521



regime, the results can be summarized as follows. In the noncritical regime, that

is, U=t is away from ðU=tÞc, as L increases, the entanglement will saturate onto

two different values depending on the sign of U=t � ðU=tÞc; at the critical point,
the entanglement is actually a constant independent of the size L. These proper-

ties are qualitatively different from the single-site entanglement discussed by

Osborne and Nielsen [85], where the entanglement with Zanardi’s measure

increases from zero to the maximum at the critical point and then decreases

again to zero as the order parameter g for the XY mode is tuned. These peculiar

properties of the entanglement found here can be of potential interest to make an

effective ideal ‘‘entanglement switch.’’ For example, with seven blocks of quan-

tum dots on a triangular lattice, the entanglement among the blocks can be regu-

lated as ‘‘0’’ or ‘‘1’’ almost immediately once the tuning parameter U=t crosses
the critical point. The switch errors will depend on the size of the blocks. Since it

is already a well-developed technique to change U=t for the quantum dot lattice

[95, 103], the above scheme should be workable. To remove the special confine-

ment we have made upon the calculated entanglement, namely, only the entan-

glement of blocks 1 and 7 with the rest ones are considered, in the following, we

will prove that the average pairwise entanglement also has the properties shown

in Fig. 6. As we change the size of the central block, its entanglement with all

the rest of the sites follows the same scaling properties as Eblock�block. It is under-
standable if we consider the fact that only a limited region round the block con-

tributes mostly to Eblock. This result greatly facilitates the fabrication of realistic

entanglement control devices, such as quantum gates for a quantum computer,

since we don’t need to consider the number of component blocks in fear that the

next neighboring or the next-next neighboring quantum dots will influence the

switching effect.

IV. AB INITIO CALCULATIONS AND ENTANGLEMENT

For a two-electron system in 2m-dimensional spin-space orbital, with ca and cya
denoting the fermionic annihilation and creation operators of single-particle

states and j0i representing the vacuum state, a pure two-electron state j�i can
be written [57]

j�i ¼
X

a;b2f1;2;3;4;...;2mg
oa;bc

y
ac
y
bj0i ð72Þ

where a; b run over the orthonormal single-particle states, and Pauli exclusion

requires that the 2m� 2m expansion coefficient matrix o is antisymmetric:

oa;b ¼ �ob;a, and oi;i ¼ 0.

In the occupation number representation ðn1 "; n1 #; n2 "; n2 #; . . . ;
nm "; nm #Þ, where " and # mean a and b electrons, respectively, the subscripts
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denote the spatial orbital index and m is the total spatial orbital number. By tra-

cing out all other spatial orbitals except n1, we can obtain a ð4� 4Þ reduced den-

sity matrix for the spatial orbital n1

rn1 ¼ Trn1 j�ih�j

¼
4
Pm�1

i;j¼1 jo2iþ1;2jþ2j2 0 0 0

0 4
Pm�1

i¼1 jo2;2iþ1j2 0 0

0 0 4
Pm

i¼2 jo1;2ij2 0

0 0 0 4jo1;2j2

0BBB@
1CCCA
ð73Þ

The matrix elements of o can be calculated from the expansion coefficient of

the ab initio configuration interaction method. The CI wavefunction with single

and double excitations can be written

j�i ¼ c0j�0i þ
X
ar

craj�r
ai þ

X
a<b;r<s

c
r;s
a;bj�r;s

a;bi ð74Þ

where j�0i is the ground-state Hartree–Fock wavefunction, cra is the coefficient

for single excitation from orbital a to r, and c
r;s
a;b is the double excitation from

orbital a and b to r and s. Now the matrix elements of o can be written in terms

of the CI expansion coefficients. In this general approach, the ground-state

entanglement is given by tbe von Neumann entropy of the reduced density

matrix rn1 [57]:

Sðrn1Þ ¼ �Trðrn1 log2 rn1Þ ð75Þ

We are now ready to evaluate the entanglement for the H2 molecule [57] as a

function of R using a two-electron density matrix calculated from the configura-

tion interaction wavefunction with single and double electronic excitations [96].

Figure 7 shows the calculated entanglement S for the H2 molecule, as a function

of the internuclear distance R using a minimal Gaussian basis set STO-3G (each

Slater-type orbital fitted by 3 Gaussian functions) and a split valence Gaussian

basis set 3-21G [96]. For comparison we included the usual electron correlation

ðEc ¼ jEexact � EUHFjÞ and spin-unrestricted Hartree–Fock (UHF) calculations

[96] using the same basis set in the figure. At the limit R ¼ 0, the electron cor-

relation for the He atom, Ec ¼ 0:0149 (au) using the 3-21G basis set compared

with the entanglement for the He atom S ¼ 0:0313. With a larger basis set,

cc� pV5Z [97], we obtain numerically Ec ¼ 0:0415 (au) and S ¼ 0:0675.
Thus qualitatively entanglement and absolute correlation have similar behavior.
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At the united atom limit, R! 0, both have small values, then rise to a maximum

value, and finally vanish at the separated atom limit, R!1. However, note that

for R > 3 Å the correlation between the two electrons is almost zero but the

entanglement is maximal until around R � 4 Å; the entanglement vanishes for

R > 4 Å.

V. DYNAMICS OF ENTANGLEMENT AND DECOHERENCE

In this section, we investigate the dynamics of entanglement in one-dimensional

spin systems with a time-dependent magnetic field. The Hamiltonian for such a

system is given by [98]

H ¼ � J

2
ð1þ gÞ

XN
i¼1

sxi s
x
iþ1 �

J

2
ð1� gÞ

XN
i¼1

syi s
y
iþ1 �

XN
i¼1

hðtÞszi ð76Þ

where J is the coupling constant, hðtÞ is the time-dependent external magnetic

field, sa are the Pauli matrices (a ¼ x; y; z), g is the degree of anisotropy, and N is

the number of sites. We can set J ¼ 1 for convenience and use periodic boundary

conditions. Next, we transform the spin operators into fermionic operators. So

the Hamiltonian assumes the following form:

H ¼
XN=2
p¼1

apðtÞ½cþp cp þ cþ�pc�p� þ idp½cþp cþ�p þ cpc�p� þ 2hðtÞ ¼
XN=2
p¼1

~HHp ð77Þ
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Figure 7. Comparison between the absolute value of the electron correlation Ec ¼ jEExact �
EUHFj and the von Neumann entropy (S) as a function of the internuclear distance R for the H2 mole-

cule using two Gaussian basis sets STO-3G and 3-21G.
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where apðtÞ ¼ �2 cos fp � 2hðtÞ, dp ¼ 2g sin fp, and fp ¼ 2pp=N . It is easy to

show ½~HHp; ~HHq� ¼ 0, which means the space of ~HH decomposes into noninteracting

subspace, each of four dimensions. No matter what hðtÞ is, there will be no

transitions among those subspaces. Using the following basis for the pth

subspace, ðj0i; cþp cþ�pj0i; cþp j0i; cþ�pj0iÞ, we can explicitly get

~HHpðtÞ ¼
2hðtÞ �idp 0 0

idp �4 cosfp � 2hðtÞ 0 0

0 0 �2 cosfp 0

0 0 0 �2 cosfp

0BB@
1CCA ð78Þ

We only consider the systems that, at time t ¼ 0, are in thermal equilibrium at

temperature T . Let rpðtÞ be the density matrix of the pth subspace; we have

rpð0Þ ¼ e�b~HHpð0Þ, where b ¼ 1=kT and k is Boltzmann’s constant. Therefore,

using Eq. (78), we have rpð0Þ. Let UpðtÞ be the time-evolution matrix in the

pth subspace, namely, (�h ¼ 1): idUpðtÞ=dt ¼ UpðtÞ~HHpðtÞ, with the boundary

condition Upð0Þ ¼ I. Now the Liouville equation of this system is

i
drðtÞ
dt
¼ ½HðtÞ; rðtÞ� ð79Þ

which can be decomposed into uncorrelated subspaces and solved exactly. Thus,

in the pth subspace, the solution of the Liouville equation is

rpðtÞ ¼ UpðtÞrpð0ÞUpðtÞy.
As a first step to investigate the dynamics of the entanglement, we can take

the magnetic field to be a step function then generalize it to other relevant func-

tional forms such as an oscillating one [98]. Figure 8 shows the results for

nearest-neighbor concurrence Cði; iþ 1Þ at temperature T ¼ 0 and g ¼ 1 as a

function of the initial magnetic field a for the step function case with final field

b. For the a < 1 region, the concurrence increases very fast near b ¼ 1 and

reaches a limit Cði; iþ 1Þ � 0:125 when b!1. It is surprising that the concur-

rence will not disappear when b increases with a < 1. This indicates that the

concurrence will not disappear as the final external magnetic field increases at

infinite time. It shows that this model is not in agreement with obvious physical

intuition, since we expect that increasing the external magnetic field will destroy

the spin–spin correlation functions and make the concurrence vanish. The con-

currence approaches a maximum Cði; iþ 1Þ � 0:258 at ða ¼ 1:37; b ¼ 1:37Þ
and decreases rapidly as a 6¼ b. This indicates that the fluctuation of the external

magnetic field near the equilibrium state will rapidly destroy the entanglement.

However, in the region where a > 2:0, the concurrence is close to zero when

b < 1:0 and maximum close to 1. Moreover, it disappear in the limit of b!1.

entanglement, electron correlation, and density matrices 525



Now let us examine the system size effect on the entanglement with three

different external magnetic fields changing with time t [99]:

hIðtÞ ¼
a; t � 0

bþ ða� bÞe�Kt; t > 0

 �
ð80Þ

hIIðtÞ ¼
a; t � 0

a� a sinðKtÞ; t > 0

 �
ð81Þ

hIIIðtÞ ¼
0; t � 0

a� a cosðKtÞ; t > 0

 �
ð82Þ

where a, b, and K are varying parameters.

We have found that the entanglement fluctuates shortly after a disturbance

by an external magnetic field when the system size is small. For larger system

size, the entanglement reaches a stable state for a long time before it fluctuates.

However, this fluctuation of entanglement disappears when the system size

goes to infinity. We also show that in a periodic external magnetic field, the

nearest-neighbor entanglement displays a periodic structure with a period

related to that of the magnetic field. For the exponential external magnetic

field, by varying the constant K, we have found that as time evolves,

Cði; iþ 1Þ oscillates but it does not reach its equilibrium value at t!1.

Figure 8. Nearest-neighbor concurrence C at zero temperature as a function of the initial

magnetic field a for the step function case with final field b.
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This confirms the fact that the nonergodic behavior of the concurrence is a gen-

eral behavior for slowly changing magnetic field. For the periodic magnetic

field hII ¼ að1� sin ð�KtÞÞ, the nearest-neighbor concurrence is a maximum

at t ¼ 0 for values of a close to one, since the system exhibits a quantum phase

transition at lc ¼ J=h ¼ 1, where in our calculations we fixed J ¼ 1. Moreover,

for the two periodic sin ð�KtÞ and cos ð�KtÞ fields the nearest-neighbor

concurrence displays a periodic structure according to the periods of their

respective magnetic fields [99].

For the periodic external magnetic field hIIIðtÞ, we show in Fig. 9 that the

nearest-neighbor concurrence Cði; iþ 1Þ is zero at t ¼ 0 since the external

magnetic field hIIIðt ¼ 0Þ ¼ 0 and the spins align along the x-direction: the total

wavefunction is factorizable. By increasing the external magnetic field, we see

the appearance of nearest-neighbor concurrence but very small. This indicates

that the concurrence cannot be produced without a background external

magnetic field in the Ising system. However, as time evolves one can see the

periodic structure of the nearest-neighbor concurrence according to the periodic

structure of the external magnetic field hIIIðtÞ [99].

a = 1.1 a = 1.5
a = 2.0 a = 5.0

a = 5.0
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a = 1.5
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C
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t

0.0

2.0

4.0

6.0

8.0
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Figure 9. The nearest-neighbor concurrence Cði; iþ 1Þ (upper panel) and the periodic external

magnetic field hIIIðtÞ ¼ að1� cos½Kt�Þ; see Eq. (14) in the text (lower panel) for K ¼ 0:05 with

different values of a as a function of time t.
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Recently, interest in solid state systems has increased because they facilitate

the fabrication of large integrated networks that would be able to implement rea-

listic quantum computing algorithms on a large scale. On the other hand, the

strong coupling between a solid state system and its complex environment

makes it a significantly challenging mission to achieve the high coherence

control required to manipulate the system. Decoherence is considered as one

of the main obstacles toward realizing an effective quantum computing system

[100–103]. The main effect of decoherence is to randomize the relative phases of

the possible states of the isolated system as a result of coupling to the environ-

ment. By randomizing the relative phases, the system loses all quantum interfer-

ence effects and may end up behaving classically.

In order to study the decoherence effect, we examined the time evolution of a

single spin coupled by exchange interaction to an environment of interacting

spin bath modeled by the XY-Hamiltonian. The Hamiltonian for such a system

is given by [104]

H ¼ � 1þ g
2

XN
i¼1

Ji;iþ1sxi s
x
iþ1 �

1� g
2

XN
i¼1

Ji;iþ1s
y
i s

y
iþ1 �

XN
i¼1

hiszi ð83Þ

where Ji;iþ1 is the exchange interaction between sites i and iþ 1, hi is the

strength of the external magnetic field at site i, sa are the Pauli matrices

(a ¼ x; y; z), g is the degree of anisotropy, and N is the number of sites. We

consider the centered spin on the lth site as the single-spin quantum system

and the rest of the chain as its environment, where in this case l ¼ ðN þ 1Þ=2.
The single spin directly interacts with its nearest-neighbor spins through

exchange interaction Jl�1;l ¼ Jl;lþ1 ¼ J0. We assume exchange interactions

between spins in the environment are uniform and simply set it as J ¼ 1. The

centered spin is considered as inhomogeneously coupled to all the spins in the

environment by being directly coupled to its nearest neighbors and indirectly to

all other spins in the chain through its nearest neighbors.

By evaluating the spin correlator CðtÞ of the single spin at the jth site [104],

CjðtÞ ¼ rzj ðt; bÞ � rzj ð0; bÞ ð84Þ

we observed that the decay rate of the spin oscillations strongly depends on the

relative magnitude of the exchange coupling between the single spin and its

nearest neighbor J0 and coupling among the spins in the environment J. The

decoherence time varies significantly based on the relative coupling magnitudes

of J and J0. The decay rate law has a Gaussian profile when the two exchange

couplings are of the same order, J0 � J, but converts to exponential and then a

528 sabre kais



power law as we move to the regimes of J0 > J and J0 < J. We also show that

the spin oscillations propagate from the single spin to the environment spins with

a certain speed.

Moreover, the amount of saturated decoherence induced into the spin state

depends on this relative magnitude and approaches a maximum value for a rela-

tive magnitude of unity. Our results suggest that setting the interaction within the

environment in such a way that its magnitude is much higher or lower than the

interaction with the single spin may reduce the decay rate of the spin state. The

reason behind this phenomenon could be that the variation in the coupling

strength along the chain at one point (where the single spin exits) blocks the pro-

pagation of decoherence along the chain by reducing the entanglement among

the spins within the environment, which reduces its decoherence effect on the

single spin in return [104]. This result might be applicable in general to similar

cases of a centered quantum system coupled inhomogeneously to an interacting

environment with large degrees of freedom.

VI. ENTANGLEMENT AND DENSITY FUNCTIONAL THEORY

Density functional theory is originally based on the Hohenberg–Kohn theorem

[105, 106]. In the case of a many-electron system, the Hohenberg–Kohn theorem

establishes that the ground-state electronic density rðrÞ, instead of the potential

vðrÞ, can be used as the fundamental variable to describe the physical properties

of the system. In the case of a Hamiltonian given by

H ¼ H0 þ Hext ¼ H0 þ
X
l

llbAAl ð85Þ

where ll is the control parameter associated with a set of mutually commuting

Hermitian operators fbAAlg, the expectation values of bAAl for the ground state jci
are denoted by the set falg � fhcjbAAljcig. For such a Hamiltonian Wu et al.

[107] linked entanglement in interacting many-body quantum systems to density

functional theory. They used the Hohenberg–Kohn theorem on the ground state

to show that the ground-state expectation value of any observable can be inter-

changeably viewed as a unique function of either the control parameter fllg or
the associated operator representing the observable falg.

The Hohenberg–Kohn theorem can be used to redefine entanglement mea-

sures in terms of new physical quantities: expectation values of observables,

falg, instead of external control parameters, fllg. Consider an arbitrary entan-

glement measure M for the ground state of Hamiltonian (85). For a bipartite

entanglement, one can prove a central lemma, which very generally connects

M and energy derivatives.
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Lemma Any entanglement measure M can be expressed as a unique functional

of the set of first derivatives of the ground-state energy [107] :

M ¼ MðfalgÞ ¼ M
qE
qll

 �� �
ð86Þ

The proof follows from the fact that, according to the generalized Hohenberg–

Kohn theorem, the ground-state wavefunction j�i is a unique functional of falg,
and since j�i provides a complete description of the state of the system, every-

thing else is a unique functional of falg as well, includingM. Wu et al. [107] use

density functional theory concepts to express entanglement measures in terms of

the first or second derivative of the ground-state energy. As a further application

they discuss entanglement and quantum phase transitions in the case of mean

field approximations for realistic models of many-body systems [107].

This interesting connection between density functional theory and entangle-

ment was further generalized for arbitrary mixed states by Rajagopal and Ren-

dell [108] using the maximum entropy principle. In this way they established the

duality in the sense of Legendre transform between the set of mean values of the

observables based on the density matrix and the corresponding set of conjugate

control parameters associated with the observables.

VII. FUTURE DIRECTIONS

We have examined and reviewed the relation between electron–electron correla-

tion, the correlation entropy, and the entanglement for two exactly solvable mod-

els: the Ising model and the Hubbard model for two sites. The ab initio

calculation of the entanglement for the H2 system is also discussed. Our results

show that there is a qualitatively similar behavior between the entanglement and

absolute standard correlation of electrons for the Ising model. Thus entangle-

ment might be used as an alternative measure of electron correlation in quantum

chemistry calculations. Entanglement is directly observable and it is one of the

most striking properties of quantum mechanics.

Dimensional scaling theory [109] provides a natural means to examine

electron–electron correlation, quantum phase transitions [110], and entangle-

ment. The primary effect of electron correlation in the D!1 limit is to

open up the dihedral angles from their Hartree–Fock values [109] of exactly

90�. Angles in the correlated solution are determined by the balance between

centrifugal effects, which always favor 90�, and interelectron repulsions, which

always favor 180�. Since the electrons are localized at the D!1 limit, one

might need to add the first harmonic correction in the 1=D expansion to obtain
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a useful density matrix for the whole system, thus the von Neumann entropy. The

relation between entanglement and electron–electron correlation at the large-

dimensional limit for the dimensional scaling model of the H2 molecule [111]

will be examined in future studies.

A new promising approach is emerging for the realization of quantum

chemistry calculations without wavefunctions through first-order semidefinite

programming [112]. Mazziotti has developed a first-order, nonlinear algo-

rithm for the semidefinite programing of the two-electron reduced density

matrix method that reduces memory and floating-point requirements by

orders of magnitude [113, 114]. The electronic energies and properties of

atoms and molecules are computable simply from an effective two-electron

reduced density matrix rðABÞ [115, 116]. Thus the electron–electron correla-

tion can be calculated directly as effectively the entanglement between the

two electrons, which is readily calculated as the von Neumann entropy

S ¼ �TrrA log2 rA, where rA ¼ TrBrðABÞ. With this combined approach,

one calculates the electronic energies and properties of atoms and molecules

including correlation without wavefunctions or Hartree–Fock reference sys-

tems. This approach provides a natural way to extend the calculations of

entanglement to larger molecules.

Quantum phase transitions are a qualitative change in the ground state of a

quantum many-body system as some parameter is varied [84, 117]. Unlike clas-

sical phase transitions, which occur at a nonzero temperature, the fluctuations in

quantum phase transitions are fully quantum and driven by the Heisenberg

uncertainty relation. Both classical and quantum critical points are governed

by a diverging correlation length, although quantum systems possess additional

correlations that do not have a classical counterpart: this is the entanglement

phenomenon. Recently, a new line of exciting research points to the connection

between the entanglement of a many-particle system and the appearance of

quantum phase transitions [60, 66, 118, 119]. For a class of one-dimensional

magnetic systems, the entanglement shows scaling behavior in the vicinity of

the transition point [60]. Deeper understanding of quantum phase transitions

and entanglement might be of great relevance to quantum information and

computation.
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López-Sandoval, R., 391(27), 425

Loss, D., 498(45), 519(88–89), 533–534
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Tütüncii, R. H., 115(31), 118

Uffink, J., 499(54), 533

Umrigar, C. J., 391(35), 394(76), 400(76),

410(76), 417(76), 425–426

Valdemoro, C., 23(8–9, 12), 29(57), 41(57),

42(57), 44(57, 62), 56, 58, 122(17, 19–21),

123(25), 124(26), 125(26), 126(34–36, 38),

127(17, 24, 26, 42–43), 128(46), 131(46),

132(46), 133(19, 38, 50, 53), 135(19),

136(19–20, 46), 137(20, 46, 54), 138(54),

139(54), 140(26, 54), 141(71, 73–74),

143(19, 73), 146(26, 54), 147(26, 73),

151(38, 51), 153(79, 81), 160(81), 162-164,

166(14–17, 34–35, 38), 167(16–17, 34,

42–44), 169(16, 42–44), 170(14, 17), 174(14),

184(17, 34–35, 75), 200-201, 203, 206(14–15,

18, 38–41, 43–48, 50, 60, 62, 71–72), 207(18,

45, 47–48, 50, 60, 71–72, 78–85, 88), 208(37),

209(15), 210(14, 71–72, 79, 83), 211(72),

214(78–83), 217(71), 219(14), 226(37–39,

40–41, 43–45), 227(71), 229(71–72), 230(18,

60, 71–72, 78–85), 233(15, 71, 78–83),

234(71), 235(72), 239(72), 244(45, 108),

245(15, 18, 45–48, 50, 60, 62, 71, 79–85,

88, 108), 246(18, 46–48, 50, 60, 81, 108),

247(18, 88), 249(50, 88), 253(18, 62),

254–258, 262(1–6, 25–26), 265(3),

author index 547



288(1–2, 6, 25–26), 290, 317(4), 318(4), 330,

331(1–4, 24–25), 333(1), 336(24), 340–341,

352(43–44), 383, 391(28), 425, 456(47, 49),

482

Valone, S. M., 390(19), 400, 435(22), 425, 440,

471(57), 482

Vandenberghe, L., 45(63), 46(63), 58, 81(19),

91, 104(3–4), 111(4), 113(4), 115(3–4), 117

Vanderbilt, D., 183(59), 202

Vanek, J., 479(69), 483

Van Leuven, P., 15(26–27, 31), 17-18

Van Voorhis, Troy, 344(11), 381

Vedral, V., 509(64–65), 510(64), 533

Vidal, G., 499(51), 519(51, 87), 533–534

von Neumann, J., 21(2), 56

von Niessen, W., 419(92), 427

Voorhis, T. V., 352(42), 383

Wang, J., 516(79, 81), 517(82), 519(83),

520(92–94), 534

Wang, X., 510(67–68), 533

Wang, Y. A., 446(20), 481

Wang, Y. R., 511(74), 534

Warman, L. K., 511(74), 534

Watts, J., 352(33), 356(33), 357(33), 382

Watts, J. D., 346(33), 356(50), 357(50), 377(3),

382–383

Wegner, F., 345(23), 382

Weinberg, S., 271(60–61), 292

Weinfurter, H., 494(23), 495(32), 495(35),

532–533

Weinhold, F., 94(9), 95(9), 101, 109(18), 118,

146(75), 164, 447(23), 449(23), 460(23),

478(23), 481

Weizsacer, C. F., 471(56), 482

Werner, H.-J., 365(53), 383

Werner, R. F., 499(56), 533

Whaley, K. B., 528(101–102), 534

White, C. A., 268(54), 271(54), 291

White, S. K., 338(29), 341

White, S. R., 332(29), 339(29), 341, 344(4),

345(22), 349(22), 352(22), 356(22), 357(22),

381–382, 519(86), 534

Wick, W. C., 296(1), 329

Wiesner, S. J., 495(34), 533

Wigner, E. P., 511(71), 533

Wilson, E. B., 146(75), 164, 447(23), 449(23),

460(23), 478(23), 481

Wilson, E. B., Jr., 94(9), 95(9), 101, 109(18),

118

Wilson, K. G., 345(24), 382

Wilson, S., 143(72), 164, 494(9), 532

Windus, T. L., 367(56), 384

Wineland, D. J., 494(22, 24, 25), 532

Wladyslawski, M., 139(70), 164, 206(68),

244(68), 245(68), 256, 263(44), 284(44), 291

Woch, M., 345(19), 356(19), 382

Wolinski, K., 345(18), 382

Wolkowicz, H., 81(19), 91, 103(4), 111(4),

113(4), 115(4), 117

Wong, M. W., 99(19), 101, 417(89), 427

Wood, C. S., 494(22), 532

Woon, D., 437(25), 441

Wootters, W. K., 494(20), 495(37, 40), 496(42),

497(42–44), 498(42), 502(42), 532–533

Wright, S., 45(64), 59

Wright, S. J., 115(25), 118

Wu, L. A., 529(107), 530(107), 531(119),

534–535

Wu, Q., 472(60), 482

Wunderlich, C., 494(21), 532

Yamashita, M., 66(14), 90(14), 91, 99(8), 101,

104(2), 106(15–16), 108(15), 109(15–16),

110(15), 114(15–16, 22), 115(2, 22 34),

116(15), 117–118

Yanai, T., 332(30), 338(30), 339(30), 341,

344(1), 345(1), 367(58), 381, 384

Yang, C. N., 38(52), 58

Yang, K., 511(74), 534

Yang, W., 122(9), 161, 388(3), 424, 472(60), 482

Yasuda, K., 23(10–11), 56, 133(52), 138(56–57),

139(68–69), 141(56–57), 142(56–57),

163–164, 166(18–19, 23), 169(19), 170(18),

181(19) 183(23), 200, 206(49, 51, 55–56, 63),

207(49, 51), 244(49, 51, 55–56, 63, 109),

245(49, 51, 55–56, 63 109), 246(49, 51),

249(49, 51, 56, 109), 256, 258, 262(7–11),

265(11, 49), 271(49), 277(7–8, 11), 282(11),

283(11), 287(7, 9), 288(7–9, 11), 290–291,

318(37), 330, 331(5–6, 10), 333(5), 339(5–6),

340, 352(45–46), 383, 392(55), 426

Yoseloff, M. L., 455(43), 463(43),

464(43), 482

You, L., 498(48), 533

Young, J., 114(23), 115(23), 118

Yukalov, V. I., 22(7), 32(7), 33(7), 54(7), 56,

90(23), 91, 122(12), 127(12), 161, 166(4),

185(4), 200, 206(1), 207(1), 208(1), 253,

262(24), 273(24), 287(24), 290, 304(22),

548 author index



306(22), 318(22), 330, 331(16), 340, 434(17),

435(17), 440, 448(32), 481, 487(1), 489(1),

491(1), 492

Zakrzewski, V. G., 99(19), 101, 417(89), 427

Zanardi, P., 499(50), 512(78), 515(78), 517(78),

533–534

Zeilinger, A., 494(12, 23), 495(32, 35), 532

Zeng, B., 48(47), 533

Zhao, Z., 23(27), 27(27), 29(27), 38(27), 44(27),

47(27–28), 55(27), 57, 63(6), 66(6, 14),

90(6, 14), 91, 94(5), 96(5), 97(5) 98(5),

99(5, 8), 100(5), 100–101, 106(14–16),

108(14–15), 109(14–16), 110(15),

114(14–16), 116(15), 117–118, 184(70),

198(70), 202, 206(33), 255, 448(34–35),

468(35), 479(35), 481

Zhu, L., 115(33), 118, 139(65), 164,

262(35–36), 266(35–36), 269(35, 55),

271(55), 291

Ziesche, P., 389(12), 392(56–57), 393(67),

400(12), 424, 426, 44(1, 4), 475(1, 4), 480,

494(5–7), 513(5), 515(5, 7), 532

Zukowski, M., 495(32), 532

Zumbach, G., 390(24), 425

Zurek, W. H., 528(100), 534

author index 549





SUBJECT INDEX

Ab initio methods, 344, 390

Absolute correlation, 523–524

Absolute error, 338, 367, 375

Absolute value, 309

Accuracy, significance of, 84, 100

Active-active space correlations, 348–349,

367

Active-external space correlations,

348–351

Active NSOs, 302

Active orbitals, 347, 364

Active-space

calculations, 364

reference, 381

Adaptation

spatial symmetry, 40–42

spin-adapted operators, 38–42

Additivity

characterized, 496

additively separable RDMs, 266–269

dditively separate cumulants, 302

Adjoint equations, 283

Alcoba-Valdemoro purification procedures,

237–239

Algebraic formulation, 284

Alkanes, 268

a/a blocks, 190–191, 195, 222, 225

a/b block

characterized, 190–192, 222, 225

CSE, 132–133, 195

purification procedures, 217, 219–220,

224, 226–227

Amplitude

equations, 363–365, 367, 370

transition, 14–15

Angular correlation, 494

Anions, 421

Anisotropic Heisenberg model, 510

Anisotropy, 501, 504, 508, 524

Annihilation operators, 7, 23, 25, 28, 68, 85, 94,

97, 125, 137, 155, 169, 172–173, 176, 232,

269–270, 294, 332, 350, 432, 452, 466–

467, 498, 512, 522

Ansatz

Bethe, 519

unrestricted antisymmetrized geminal

products (UAGP), 437, 439

Weisacker, 573

Antibonding orbitals, 372

Anticommutation

relations, 37, 175, 184, 269

rules, 125

Anti-Hermitian contracted Schrödinger

equation (ACSE)

applications, 335–338

characterized, 198, 331–333, 338–339

defined, 331

future directions for, 339

optimization of 2-RDM, 334–335, 339

reconstruction of 3-RDM, 333–334,

336, 338–339

Antisymmetric/antisymmetries,

see Antisymmetrization

conditions, semidefinite programming

problem, 109

construction algorithms, 136–137

functions, 8–9, 39

matrices, 141, 157, 191

nondegenerate ground state, 171

operators, 266–267

permutations, 177, 180, 199, 333–334

second-order matrices, 215–216

Reduced-Density-Matrix Mechanics: With Application to Many-Electron Atoms and Molecules,
A Special Volume of Advances in Chemical Physics, Volume 134, edited by David A. Mazziotti.
Series editor Stuart A. Rice. Copyright # 2007 John Wiley & Sons, Inc.

551



Antisymmetric/antisymmetries, (Continued)

spin-free two-electron functions, 290

two-particle matrix, 186

wavefunction, 516

Antisymmetrical geminal power of

extreme type, 306

Antisymmetrization

canonical transformation theory, 353

implications of, 179

operator, 198

T1/T2 conditions, 96

Antisymmetrized geminal products (AGP)

characterized, 37–38, 303, 306, 433–434

strongly orthogonal (SOAGP), 429–433,

437

unrestricted (UAGP), 437–439

Antisymmetrized logarithms, 300

Antisymmetrized product of strongly

orthogonal geminals (APSG), 303, 393

Antisymmetrizer, 302, 306

Antisymmetry

conditions, 28, 302

functionals and, 396, 398

Applied mathematics, 63

Approximation, see specific types

of approximations

canonical transformation theory, 354

cumulant 4-RDM, 179–182

cumulant 3-RDMs, 179–182

finite-order ladder-type, 288

first-order, 331

k-particle hierarchy, 294

ladder-type, 288–289

mean field, 177

one-particle, 322–323

two-particle, 323–324

Arbitrary reference function,

311–314

Arbitrary symmetry, 220–221

Asymmetric

stretch, 337

two-particle functions, 489

Asymmetry, dynamic vs. nondynamic

correlations, 347–348

Augmented Hessian techniques, 365

B, 68

Bþ, 226, 229–232, 241–243
Backer-Campbell-Hausdorff (BCH)

expansion, 349, 351–352, 354, 363

Basis sets, 23–24, 43, 46–47, 49, 52, 55,

180–181, 194, 263, 283, 334, 337,

366–377, 417, 421, 455, 466, 523–524

Becke-3-Lee-Yang-Parr (B3LYP) density

functional, 417

BeH2, 143, 145, 147, 149, 194–197, 226,

229–232, 241–244, 249–251, 337,

376–377, 437

Beryllium (Be), 64, 66, 156–160, 228–229,

231–232, 241–243, 332, 336, 375, 436

BeS, 418, 422–423

Beta (b), 491
b/b blocks, 132–133, 190

Bethe ansatz, 519

BH, 197, 332, 336, 375–378, 431, 436

Binary entropy function, 497

Binomial normalization, 273–274

Bipartite entanglement, 529

Bipartite quantum system, 495–496

Block-diagonal(s)

antisymmetrized geminal products

(AGP), 434

matrices, semidefinite programming

formulations, 104–105, 107,

109–110, 114

Block entanglements, 520–521

Block equations, CSE, 131–133

Boltzmann’s constant, 509, 525

Bond-breaking, simultaneous, of water

molecule with 6–31G and cc-pVDZ

basis sets,

Bonding, UAGP, 438

Boolean quadric polytope (BQP), 96

Bopp, Fritz, 12, 15

Born-Oppenheimer approximation, 488

Bose condensation, 37, 55

Boson(s)

characterized, 36, 267, 329, 488

creation operators for, 28

distinguished from fermions, 3–4

two-boson system, 498

Boundary conditions, N-representability, 262

Boundary methods, semidefinite

programming, 82

Bounds

correction, 146–147

cumulants and, 303–305

p-particle density matrix, 303–306

Brillouin conditions, 315–316, 320–321, 331

Brillouin theorem, 358

552 subject index



Brueckner doubles(with triples) (BD(T)), 66

Buijse and Baerends (BB)

functional (BBC), 393

reconstruction 391

Canadian Mathematical Society, 7

CaNEOS Server for Optimization, 115

Canonical diagonalization (CD), 338–339,

355–356

Canonical transformation (CT)

defined, 348

multireference state, 356

physical equivalence in, 349–350

theory, see Canonical transformation

(CT) theory

Canonical transformation (CT) theory,

for dynamic correlations

bond breaking of nitrogen molecules

with 6–31G basis sets, 372–375

coupled-cluster theory and, 345,

356–361

defined, 345

dynamic correlations, characterized,

343–351, 378–381

linearized model, see Linearized

canonical transformation theory,

for dynamic correlations

MR-CISD and MR-LCCM compared on

two-configuration reference insertion

of Be in H2 molecule, 375

perturbative analysis, 356–361, 377, 380

reference function, 357, 361–363

simultaneous bond breaking of water

molecule with 6–31G and cc-pVDZ

basis sets, 366–372

single-function, 357

theory overview, 351–355, 378–381

Carbon (C2þ), 226, 229–232, 241–243, 268
Carbon monoxide (CO)

characterized, 194–197, 437

closed-shell total energy, 418

dipole moment, 421–422

equilibrium geometries, 423

SOAGP, 432

variational 2-RDM method, 48, 50–52

vertical ionization potential, 419

Cauchy-Schwartz inequalities, 305–306

cc-p-VDZ, 366–368

CCSD(T)

characterized, 49–50, 52

natural orbital functionals, 417

T1/T2 conditions, 99

CF, 99–100

CH2, 418, 420–422

C2H2, 437

CH4, 194–197, 337, 436

Ciampi, Antonio, 13

CI calculation, 139

Cl2, 418

Classical RDM approach, 98

Closed-shell

state, 294, 306, 309, 323–324, 327

systems, 98, 400

Coefficients, geminal, 430

Coleman, A. J., 11, 13, 15, 26

Combinatorial optimization, 23, 47, 55

Commutation relations, 69–70, 172, 175,

199, 348, 402, 404

Complete-active-space (CAS)

characterized, 372–373

self-consistent field,

see Complete-active-space self-consistent

field (CASCF) theory

Complete-active-space self-consistent field

(CASSCF) theory

characterized, 344–345, 347, 356

CTSD/L-CTSD applications, 367,

371–374, 376–380

L-CTSD applications, 370

wavefunction, 363

Complex numbers, interpretation of, 8

Composite system, RDM cumulants, 266–267

Computer software programs, 388

Concurrence, entanglement and, 497–498,

502–504, 507–510, 525–527

Condensed matter physics, 491

Condon and Shortley notation, 123, 208

Conferences, international, 12–15

Configuration interaction (CI)

calculations, 15

energy values, 247, 249

full, see Full configuration interaction (FCI)

functionals and, 393

method, 388

Conjugation, p-particle density matrix, 306

Connected diagrams, 294

Connected equations, see Connectivity

cancellation of unconnected terms, 282–286

characterized, 262–263, 269, 286–288

CSE, 182–183

subject index 553



Connected equations, seeConnectivity (Continued)

p-RDMs, 177–179

2-RDM, 187

Connected-moments expansion, 37

Connectivity, extensivity and, 275

Construction algorithms

comparative results, 147–150

error matrix, 141–146

higher-order RDMs, 136–140

N-representability problem, 146–147

overview of, 138–140

2-RDM, 135–136

spin-orbital basis, 136

unifying, 140–141

Continuity, 496

Contracted power method, 193

Contracted Schrödinger equation (CSE)

algorithm for solving, 193–194

anti-Hermitian formulation,

see Anti-Hermitian contracted

Schrödinger equation (ACSE)

applications, 194–197

characterized, 89, 128–129, 165–166,

181, 262–263

connected equations, 262–263, 282–290

convergence, see CSE convergence

with iterative solution, influential factors

cumulants, 182–183, 266–277

defined, 122

density equation compared with, 127–128

density functional theory, 479

derivatization in second quantization,

167–169

development of, 127–128

eigenvalue equations, reduced, 263–266

4-RDM reconstruction, 166, 170–183

future directions for, 197–198

Grassmann products, 198–199

indeterminacy, exact formal solution to,

153–159

irreducible, see Irreducible contracted

Schrödinger equation (ICSE)

iterative solution, 133–134, 157

matrix representation, 128–130

Nakatsuji’s theorem, 167, 169–170

N-representability conditions, 166–167

p-order, 122

purification of 2-RDM, 166–167, 183–192

reduced density matrices construction

algorithms, 134–150

as reduced eigenvalue equations, 263–266

second-order, purification within, 244–252

second quantization, 167

self-consistent iteration, 192–193

spin, role of, 130–133

stationarity conditions, 317–318

3-RDM reconstruction, 170–183

2-RDM, 166, 183–192

2-CSE convergence, influential factors

on iterative solution

algorithms, 150–151

N-representability, 151–152, 248

S-representability, 151–152, 248

Contraction

contracted spin equation, 131–132

contracting operations, 233–234

defined, 314

mappings, see Contract mapping (CM)

operator, 184, 435, 488

rules, 314

Contract mapping (CM), 28, 153

Control theory, 23, 55

Convergence

canonical transformation theory, 346,

354, 380

connected formulations with CSE, 141, 287

dynamic correlations, 364–365

implications of, 46, 48, 55, 63, 192–193

iteration schemes, 321

L-CTSD, 363, 365

linear inequalities for diagonal elements, 465

lower bound method, 89–90

N-representability of 2-RDM, 190

with order k, 86–88

primal-dual interior-point method, 113

purification procedures, 227, 239–240,

243, 253

semidefinite programming, 83–84, 86–88

second-order Schrödinger equation

(2-CSE), 248

Convex analysis, lower bound method, 76

Convexity theory, 77, 496

Convex optimization, 104

Convex set

characterized, 30–31

k-matrices, 70

lower bound method, 75

Coordinate-space representation, 399

Core Hamiltonian operator, 394

Core orbitals, 347–348, 364

554 subject index



Corrected Hartree (CH) functionals, 392

Corrected Hartree-Fock (CHF) functionals, 392

Correlation(s)

coefficients, 494

Coulomb, 301

energy, 65, 268–269, 280, 308–309, 476, 494

entropy, 515–517

functionals, 388–389, 472

increment, 301

intergeminal, 431

matrix (CM), 125–126. See also Correlation

matrices decomposition

strength, 515

Correlation matrix decomposition,

purification procedures

Alcoba-Valdemoro purification, 237–239

characterized, 229–231

pure two-body correlation matrix, 231–237

test calculation and results, 239–244

Coulomb

correlation, 301

energy, 280

interactions, 394, 407, 416, 424, 512

repulsion, 494

Coulson, Charles, 11

Coupled cluster

method, 54, 324, 388

theory (CCSD/CCSDT), 55, 268, 287, 344,

351–352, 367, 372–373, 380

unitary, 338

Coupled cluster singles and doubles (CCSD)

ACSE, 336

approximation, 432

CTSD/L-CTSD applications, 377–379

functionals and, 421

implications of, 89, 332, 337–338

with perturbational treatment of triples

(CCSD(T)), 66

Creation operators, 7, 23, 28, 39, 68, 85, 94, 97,

125, 137, 155, 169, 172–173, 176, 232,

269–270, 294, 332, 350, 432, 452,

466–467, 498, 512, 522

Cryptosystems, 495

Crystals, 54

Csanyi and Arias (CA) functional, 392

CSE-NS iterative process, 249–250

Cumulant(s)

bounds, 306

canonical transformation theory,

359–363, 381

correlation energy, 280, 308–309

decomposition, 185–188, 352–355

for degenerate states, 307–308

density, properties of, 302–303

diagrammatic representations, 277–281

expansions, 139, 277–278, 333, 339, 353

extensivity, 268, 272–275

formalism, 262–263, 269–272

4-RDM reconstruction, 176–183

functionals and, 176, 407–408

inequalities, 303–306

independence of, 275–277

of k-particle density matrices, 299–302

reconstruction functionals, 288–290

separability, additive vs. multiplicative,

266–269

structure, 182–183

3-RDMs, 176–183, 288

2-RDMs, 405–409

theory, 139, 166, 176–183, 193

Cut polytope, 96

Cutting plane method, 15

D2, 4, 8, 488

Damping, 248, 253

Davidson, Ernest, 13

D-condition, 167, 188, 196–197, 209, 218,

237–238, 242, 304

Decay rate law, 528–529

Decoherence, 524, 528–529

Decomposition

canonical transformation theory, 352–354

characterized, 154–155, 185–188

convergence of 2-CSE, 151

cumulant, 271–273, 275, 279–280, 309,

359–363, 381

dynamic correlations and, 349, 351

entanglement and, 525

linearized canonical transformation theory,

355–356

pure states of, 497

two-body correlation matrix, 232, 234

2-RDM, 126, 214–229

Deexcitations, 233

Degeneration

antisymmetrized geminal products

(AGP), 434

density cumulants, 307–308

geminal functional theory (GFT), 435

L-CTSD, 364

subject index 555



Degrees of freedom, 334, 344

Delta (�), 141–146, 175, 275–277, 490, 511.

See also Dirac delta; Kronecker delta

Density cumulants, 294, 302–303

Density functional theory (DFT)

characterized, 55, 183, 309, 388–389,

447, 469

Kohn-Sham approach, 475, 479

orbital-based, 470–473

Q-, orbital-based, 473–477

perturbation theory and, 391

refinement of, 444

Density matrix, see specific density matrices

four requirements for, 22

historical perspectives, 21–22

renormalization group, 344

renormalization group (DMRG),

344–345, 347, 355
1D-functional theory, 389–394, 423–424

Diagonal block(s)

antisymmetrized geminal products, 430

T1/T2 condition, 94–95, 97

Diagonal elements

linear inequalities, see Linear inequalities

for diagonal elements

Q-matrix, 477

Diagonal representability problem, 96

Diagrammatic representation, 314–316,

277–281, 359

Diatomic molecules, 65, 83, 494, 503

Differential equations, 335

Differential geometry, 4

Dimensional scaling theory, 530

Dimensionless coupling, 504

Dipole moment, 98, 421

Dipole resonance, 14

Dirac, Paul, 5–6

Dirac delta function, 95

Dirac notation, 5, 266

Disjoint sets, 266

Dispersion condition, 169

Dissociation, 268–269, 344, 372, 391
2D matrix

ACSE, 337

characterized, 388–389, 400

contracted Schrödinger equation, 171–172, 248

nonnegativity, 15

positive semidefinite, 45–46

purification procedures, 219–220,

222–224, 227, 242, 248

Doubled-value functions, 276

Double excitation, 365–366

Double-zeta basis set, 49–50, 52, 156, 194

Dp, 265, 267

Dp, 3

D-positivity, 190

DQGT2 conditions, 53–54

D-reduced Hamiltonians, 34–36

D-representability conditions, 146

Dual configuration interaction, 66

Dual SDP formulation, 45–46, 104–107,

109–110, 114, 116

Dual simplex, 15

Dual spectral optimization problem, 63–64, 74

Duality gap m, 46
Dummy variables, 267, 269–270

Dunning DZP basis sets, 376–377

Dynamic correlation mechanism, 233

Dyson equation, 141

Eddington, 6

Effective Hamiltonian

canonical transformation theory, 362

theories, 344

Effective valence Hamiltonian method, 338–339

Effective valence-shell Hamiltonian (EVH), 356

Eigenenergy, 349

Eigenequation, 405

Eigenfunctions

canonical transformation theory, 362

characterized, 42, 305

dynamic correlations, 348

functionals and, 424

one-particle approximations, 322

Q-density, 453

(R, R) conditions, 456

SOAGP, 432

Eigenstates, 156, 171, 193, 264

Eigenvalue(s)

ACSE, 337

antisymmetrized geminal products

(AGP), 434

characterized, 33, 44, 72–74, 79–81, 96,

98, 104, 106, 108, 227–228, 237, 241

dynamic correlations, 349

entanglement measure, 501–502, 512–514

equations, reduced, 263–266

functionals and, 403

generalized normal ordering, 299

independent cumulants and, 276–277

556 subject index



natural orbital functionals, 411–412

off-diagonal matrix elements, 466

orbital-based density functional theory, 475

p-particle density matrix, 305

Q-density, 454

reduced Hamiltonians, 31

2-positivity conditions, 12, 25–26

Eigenvectors, 33, 185, 189, 237, 276, 501,

512–513

Einstein’s theories, 4

Electron(s)

affinities, 420–421

correlations, 54–55, 67, 436–437, 472,

494, 530–531

excitation, construction algorithms, 142,

145, 150

integrals, 44

interaction energy, 308

interactions, multiple, 4

repulsion, 171, 400, 476, 494

self-repulsion, 233

Electron-electron

correlations, 494, 531

repulsion, 400, 476

Electron-hole density matrix, 411

Electronic Hamiltonian, 166, 287, 348

Electronic structure, 266

Electronic structure

problems, 79, 83, 90, 170

significance of, 266

structure theory, 72, 392, 449

Electrostatic operator, 85

Energy, see specific types of energies

gap, 73–75, 511

levels, calculation of, 487–490

lower bounds, 71–72

minimization problem, 64, 77–78, 81, 90

Entanglement

ab initio calculations, 503, 522–524

density functional theory, 529–530

dynamics of, 524–529

fermion measurement, 498–499

finite size, 519

of formation and concurrence, 496–498,

502–504, 507–510

future directions for, 530–531

implications of, 494–496

nearest-neighbor, 526

for quantum dot systems, 512–522

ranks of density matrices, 499–500

for spin systems, 500–512

switch, 522

Epsilon (E), 334
Equilibrium

bond lengths, 423

geometries, 54, 67, 344, 365, 392, 421–423

significance of, 344

thermal, 525

Erdahl, Bob, 13, 16

Error matrices

characterized, 141–146

construction algorithms, 147–149

Euclidean scalar product, 76

Euler equations

characterized, 64, 76, 79, 401–402

derivation of, 390

functionals and, 416

Gilbert nonlocal potential, 402–403

natural orbital functionals and, 412

Pernal nonlocal potential, 404–405

relation with extended Koopmans’

theorem, 403–404

Euler’s method, 335

Exchange and time-inversion integral, 408, 413

Exchange-energy functionals, 280, 472

Exchange interaction, 503–504

Excitation, 14–15, 89, 139, 142, 145, 150,

168–169, 233, 295–298, 313, 339,

364–366, 370–371

Exclusion-principle violating (EPV)

cumulants, 321

Existence theorems, 77–79

Expansion

ICSE, 289

ladder-type perturbation, 288

operators, 488

Expectation value(s), significance of, 69, 85,

168, 172, 182, 184, 229, 264, 266, 270,

299, 301, 311–312, 314, 353, 398

Extended Koopman’s theorem (EKT), 391,

403–404, 419–420

External, generally

excitation, 371

external-external space correlations,

348, 350–351, 367

orbitals, 347, 364

potential, 399

Extreme B matrix, 32–33

Extreme conditions, 97

Extreme reduced Hamiltonians, 31, 35, 37–38

subject index 557



Factorization, 284

Fermi, generally

correlation, 301

operators, 505, 512

vacuum, 348, 351, 357

Fermion(s)/fermionic

anticommutation relation, 172–173

anticommutation rules, 125

bosons distinguished from, 3–4

characterized, 36, 176, 184, 329, 488

commutation relations, 69

contracted Schrödinger equation, 167

creation operators for, 28

first-order relation, 20

lower bound method, 88

N identical, 8

hoperators, 125, 154, 505, 524

representability problem, 96

system, 109, 516

Ferromagnetics, 510

Feynman, Richard, 5

Feynman perturbation theory, 181.

See also Perturbation theory

Field operators, 269

Financial applications, variational

2-RDM, 55

Finite dimensional Fock space (=), 67–68
Finite Gaussian-orbital basis set, 43

First-order

approximations, primal-dual interior-point

method, 111–112

corrections, 48, 325–326

RDM method, see 1-RDM

nonlinear algorithms, 48, 50

reconstruction, 338

First-quantized formalism, 263

Fixed particle number, T1/T2 conditions, 97

5-CSE, 155

5-RDM functionals, 175

Floating-point operations, 46–48, 113,

116–117, 339

Flow-renormalization group, 345

Fluorine, 433

Fock-space, see Hartree-Fock

Hamiltonian, 298

many-body theory, see Fock-space

formulation, many body theory

operators, 97, 294, 314, 362

positivity condition, 94

unitary transformation, 329

Fock-space formulation, many-body theory

excitation operators, 295–296

k-particle density matrices, 296–298

spin-free excitation operators, 297–298

Fock theory,437

Formation, entanglement of, 496–498

Four-body problems, 12

4-CSE, 155

Four-electron

CM, 154

systems, geminal product theory (GPT), 436

4-positivity, 67, 88–89

4-RDM

characterized, 129, 131, 133–135, 137–139

construction algorithms, 144, 146–148, 150

CSE, 160–161

functionals, 175

ICSE and, 288

parameter value selection criterion,

140–141, 149

purification strategies, 157, 245–247, 253

reconstruction methods, see 4-RDM

reconstruction methods

reduced eigenvalue equations, 266

2-CSE, 151, 248

4-RDM reconstruction methods

approximation of cumulant 3-RDM,

179–182

CSE, 193–194, 197

cumulants, 176–179

cumulant structure of CSE, 182–183

particle-hole duality, 172–175

Rosina’s theorem, 170–171

Fourth-order, generally

approximations, 88

estimates, 88

many-body perturbation methods (MP4),

89, 337–338

modified contracted Schrödinger

equation, 253

perturbation theory, 65

reduced-density matrices, see 4-RDM

4� 4 matrix, 501, 523

Free-electron gas, 392

Free labels, in diagrammatic representations,

315

Full configuration interaction (FCI)

ACSE, 335–336, 338

construction algorithms, 141, 143,

147–148, 150

558 subject index



contracted Schrödinger equation,

156–157, 160, 194

geminal functional theory, 436–437

L-CTSD, 367, 376

lower bound method, 88

N-representabilities, 446, 489

parameterization of 2-RDM, 491

purification procedures, 229

T1/T2 conditions, 96, 99

wavefunction, 49–51, 53–54, 65

Full contractions, generalized normal

ordering, 311, 314

Full-rank factorization, 115

Functionals, see specific types of functionals

GAMESS, 194, 335

Gamma (g), 107–109, 324–325, 329, 490,
509, 513

Gap formula, 73–75

Garrod, Claude, 12–13, 15

Gaussian basis set, 375, 523–524

Gaussian distribution, 509

Gaussian functional, 194, 523

G conditions

characterized, 27, 97, 99, 126, 196–197,

211, 287

cumulants and, 304

diagonal elements, 479

off-diagonal matrix elements, 467–468

purification procedures, 240, 242, 244

semidefinite programming problem,

109–110, 116

Geminal functional theory (GFT)

antisymmetrized geminal products (AGP),

433–436

application of, 436–437

characterized, 392, 439

formal, 434–436

strongly orthogonal antisymmetrized

geminal products (SOAGP), 429–433

unrestricted antisymmetrized geminal

products (UAGP), 437–439

General Hermitian, 97

Generalized Brillouin conditions, 351

Generalized Fock operator, 301–302, 316

Generalized gradient-approximation

(GGA), 391

Generalized Hellmann-Feynman

theory, 355

Generalized matrix contraction mapping, 169

Generalized minimal residual (GM-RES)

method, 364

Generalized normal ordering

arbitrary reference function, 311–314

diagrammatic representation, 314–316

Hamiltonian in, 316

particle-hole formalism, 309–312, 329

Wick theorem, 311, 314

Generalized particles-holes (GP-H) separating

approach, 138–147

General relativity theory (GRT), 4

Generalized Weisacker functional, 469

Generating functionals, 176

Gilbert nonlocal potential, 402–403

Global operators, 124

G matrix

ACSE, 337

characterized, 14, 126, 193, 196

lower bound method, 66

nonnegativity condition, 15

positive semidefinite, 45–46, 64–65

purification, 209–214

radical calculation, 44

spin-adapted, 40–41

spin properties of, 211–212

spin structure of, 211

GN-representability conditions, 146

Goedecker and Umrigar (UM) functional,

391–392

Goldstone-type diagrams, 315–316

Golli, Bojan, 16

Grassmann

algebra, 173, 179, 183, 491

field, 269

product, 30, 43, 139, 198–199, 271–273, 279,

301. See also Wedge products

Gravitational theory, 5–6

G-reduced Hamiltonians, 34–38

Greeks, implications of, see specific Greek

symbols

Green’s function methods, 166, 176–177, 263,

271, 290

Ground-state, generally

correlations, 14

energies, see Ground-state energy

entanglement, 523

purification procedures, 240–242

semidefinite programming, 83

von Neumann density, 62

wavefunction, 169, 192, 339

subject index 559



Ground-state energy, impact of

ACSE, 336, 339

construction algorithms and, 139

CSE, 160

density functional theory, 445

entanglement and, 530

functionals and, 416–417

geminal functional theory (GFT),

434–435

linear inequalities, 451, 458–459

lower bound, 71–72

orbital-based density functional theory,

476–477

purification process, 250

Q-densities, 446

RDM method, 98

reduced Hamiltonians, 32–33, 36–37

semidefinite programming, 46–47, 109

significance of, 4, 7–8, 14–15, 22–24,

39–40, 170

variational 2-RDM method, 50, 52, 55

Group theory, 5

GU functional, 393

H2CO, 418–419, 422

Hadamard, 7

Hall, Richard, 12–13

Hamiltonian (H), see specific types

of Hamiltonians

characterized, 4, 7–8, 15, 70, 84, 97, 316, 488

eigenstate, 153

entanglement measure and, 505–507, 529

equation, 130

Hermitian effective, 349–350

many-body, 122–123

many-electron, 23–24

matrices, 23–24, 30–38, 80, 139, 172, 266

methodology, spin-adapted reduced, 252

operators, 23, 71–72, 122, 167–168, 170,

183, 332, 450, 501

positive semidefinite, 459, 466–469

Q-electron, 466, 474

reduced, 454

reduced, 456

thermal entanglement, 510

wavefunctions, 192

Harmonic(s)

corrections, 530–531

interactions, 36–37

Hartree functional, 416

Hartree-Fock (HF)

approximations, 177–178, 406, 513–515

basis, 156

calculation, 251, 287, 335, 366, 372

determinant, 49

energy, 309

equation, 160

functions, 327, 418–419, 422–423, 437

limit energy, 494

method, 476

operators, 362

orbitals, 140, 239, 277

purification process, 251

reference, 50

solution, 130

state, 142

theory, 301, 346, 352, 354, 438

wavefunctions, 180–181, 193–197, 324, 332,

336, 339, 357, 375–378, 523, 531

Hartree-Fock-Bogoliubov (HFB) energy, 392

HCN, 436

Heisenberg, Werner, 7

Heisenberg

antiferromagnetic model, 511

representation, 339

Helium (He), 8, 65, 66

Hermitian-Lagrange multipliers, 401

Hermitian matrix

characterized, 104, 126, 141, 157, 186,

215–216, 404, 502

purification procedures, 209, 220–221

reduced-density (HRDMs), 125–127, 175,

218–219, 228

2-matrix, 491

Hermitian operators, 3–4, 67–68, 71, 85,

450, 489–490, 529

Hermiticity, 28, 302

Higher-occupied molecular orbital

(HOMO), 421

Higher-order CSEs, 129–130

Higher-order equations, 134

Higher-order RDMs

decomposition and cancellation relation,

153–154

fourth-order MCSE, derivation of, 154–160

indeterminancy of CSE solution, 153

Hilbert space

characterized, 26, 264, 340, 518

eigenvalue equation, 265, 283, 287

operators, 263

560 subject index



Historical perspectives, 389–394

HNO, 418, 422

Hohenberg-Kohn (HK) theorem, 170–171,

389–390, 529

Hole

annihilation operators, 294

creation operators, 294

p-order, 124

reduced density matrices (HRDMs),

purification process, 207, 226, 230–231

reduced Hamiltonians, 32–33

Homo orbitals, 143–144

Homogeneous electron gas (HEG),

391–392, 424

Hopf algebras, 329

Hopping, quantum dot systems, 517–519

HRVW/KSH/M direction, 112

Hubbard model, 55, 516–519, 530

Hugenholtz-type diagrams, 315

Husimi, 11

Hydrogen (H/H2),

atoms, 42–44, 503

chain, variational 2-RDM method,

48, 53–54

characterized, 375, 390, 523–524,

530–531

Dirac’s formula, 5

Hydrogen chloride (HCl), 418–419, 422–423

Hydrogen fluoride, 433

Hydroxide radical, variational 2-RDM

method, 48, 53–54

Hyperplanes, Slater hulls, 457–458, 464

Idempotency, 273–274, 306, 309, 393

Identity

matrix, 111, 173, 182, 184

operator, 451

representation, 3

I-MZ purification procedure, 230–231, 244

Independent-electron wavefunction, 273

Independent pair model, 226

Inequality, cumulants and, 303–305.

See also Linear inequalities

Infeasible primal-dual path-following Mehrotra-

type predictor-corrector interior-point

method, 111

Infeld, Leopold, 5–6

Initial-value differential equations, 338

Inorganic molecules, variational 2-RDM

method, 48, 52–53

Integrals, 44

Interelectronic interactions, 435

Interior points method, 80–81, 115

Internal, generally

excitation, 365–366, 370–371

operator, 278

Ionic geminals, 514

Ionization

characterized, 43, 392, 403

potentials, 419–420

Irreducible/irreducibility, generally

Brilliouin conditions, see Irreducible

Brillouin conditions (IBC)

contracted Schrödinger equation (ICSE),

See Irreducible Schrödinger equation

(ICSE)

cumulants, 303

representation (irrep), 307

tensor components, 307

Irreducible Brillouin conditions (IBC)

characterized, 294, 315–316, 320–321, 329

solution strategies, 321–328

Irreducible contracted Schrödinger equation

(ICSE)

characterized, 263, 283–284, 286–287,

294, 319–320

solution strategies, 321–328

Ising model, 507, 509–511, 527, 530

Isobaric spin, 16

Isotropic Heisenberg model, 509

Iteration/iterative

algorithms, 167, 192–193

diagonalization, natural orbital funtionals, 417

geminal, 436

ICSE, 288

purification procedures, 239–242, 246–249

self-consistent, 192–193, 246–249

solutions, see Iterative solutions, 2-CSE

purification

2-CSE, 246–253, 288–289

two-particle approximations, 323–324

UAGP, 438–439

Iterative solutions, 2-CSE purification

characterized, 157, 288–289

N purification and S purification, 249–253

regulated self-consistent solutions, 246–249

Jeffery, R. L., 7

JK-only functional, 393

Jordan-Wigner transformation, 511

subject index 561



Karush-Kuhn-Tucker condition, 111

k-body operators, 85

k-densities, 71

‘‘Killers,’’ semidefinite programming, 83

Kinetic energy

characterized, 171, 388, 399, 444, 494

Q-densities, 446

Weisacker, 471

Kinetic potential, geminal functional theory, 435

k-matrices

lower bound method, 62–63, 68–74

semidefinite programming, 83

Kohn-Sham (KS)

determinant, 309

equations, 472

functionals, 388–389, 475, 479

procedure, 471

Kollmar and Hess functional, 393

Koopman’s theorem (KT), 419–420

k-particle density matrices

cumulants, 299–302

generalized normal ordering, 314

k-particle hierarchy, 321

Kronecker delta, 107, 135–137, 248

Kth-order approximations

approximating states, 68

characterized, 67–68

energy lower bounds, 71–72

expectation values, 69

matrix representations, 68–71

Pauli subspace, 69–70

Kubo cumulant expansion, 138

Kummer, Hans, 12–13, 488–489

Lagrange duality, lower bound method, 72–73

Lagrangian

augmented function, 115

multipliers, 47–48, 55, 319, 401–402

Lambda (l) matrix, 314, 316, 324–326,

328–329, 334–335, 401–402, 404,

489–490, 497

Lamb shift, 5

Lattice(s)

implications of, 391, 504, 521–522

model, 68

points/sites, 84–86

topologies, 511–512

Least-squares norm, 195

Legendre transform, 530

Lemma 9, 76, 79, 306

Levy’s functional, 390–391

Lie groups and algebras, 7

Li-Li bond, 250–251

Li2, 226, 229–232, 241–244, 249–251

Lifted/lifting

conditions, 27–28

operator, 30

Light nuclei, giant dipole resonance, 14

LiH, 431, 437

Lindenberg, J., 13

Linear, generally

algebra, 113

conditions, lower bound method, 70

contraction mapping, 180

coupled cluster theory (L-CCSD), 377–378

equation, primal-dual interior-point

method, 112

functionals, applications of, 22–23

Hermitian operators, 448

independence, 320

inequalities, see Linear inequalites

for diagonal elements

mappings, 15, 25–26, 28, 172

operators, 450, 488

programming, 63–64, 80, 104

relations, lower bound method, 74

scale/scaling, 180–183, 333

transformation, 505

Linear inequalities for diagonal elements

characterized, 444–449, 477–480

linking representations, orbital and spatial,

470–477

n-representability, necessary and sufficient

conditions for, 445–451

from orbital representation, 451–469

from spatial representation, 469–470

Linearization, primal-dual interior-point

method, 112

Linearized canonical transformation theory

(L-CTD/L-CTSD), for dynamic

correlations

characterized, 346, 355–356, 361, 373

computational algorithm, 363–364

computational scaling, 364

excitation classes for exponential operator,

364–366

single- and multireference for HF and BH

molecules, 375–378

Linked-cluster theorem, 275

Liouville equation, 525

562 subject index



Lipkin model, 88–89

Lithium, 8

Local Hamiltonian, 84

Local operations, 496

Logarithm functions, antisymmetrized, 270–271

Logic, 4

Lorentz transformation, 5

Lower bound method

algorithms, 79–83

characterized, 23, 46, 62–64, 89–90

energy, 71–72

fundamental theorem, 75–79

historical perspectives, 64–66

Lipkin model, 88–89

one-dimensional superconductor modeling,

83–890

kth-order approximations, 67–72, 90

semidefinite programming, 62–64, 72–75

strong two-body forces, 66–67, 90

variational 2-RDM methods and, 55

Lower-order RDMs, 156

Low-rank factorization method, 115

Lumo orbitals, 143–144

McWeeny, R., 13

McWeeny normalization, 353

Magnetic field

entanglement and, 526–528

strength, 500, 503, 508–509

time-dependent, 524

Magnetic systems, one-dimensional, 531

Magnetization, 505–506

Many-body, generally electron dynamics, 381

Hamiltonian matrices, 123, 208

methods, 37

perturbation methods, see Many-body

perturbation theory (MBPT)

problems, 11, 15, 519

quantum system, 531

theory, 263, 321

Many-body perturbation theory (MBPT),

53, 88–89, 178, 194–195, 197, 277,

288, 311, 315

Many-electron(s)

atoms, 22–23

densities, 456

energy, 24

quantum mechanics, 339

wavefunctions, 55, 166

Mathematica, 137

Mathematical

logic, 4

programming, 104

Matrices, characterized, see specific types of

matrices

Matrix contracting mapping (MCM), 127–128

Matrix theory, 77

Maximum absolute error, 47–48

Maximum entropy principle, 530

Mazziotti (M)

formula, 194–197

purification procedure, see Mazziotti

(MZ) purification procedure

reconstruction, 333–334, 336–338

Mazziotti (MZ) purification procedure

characterized, 214–215

improvement strategies, 222–226

test calculations and results, 226–229

unitary decomposition of arbitrary

second-order matrices, 220–222

unitary decomposition of antisymmetric

second-order matrices, 215–220

Mazziotti, David, 9, 14, 16

MC-SCF theory, 320

Mean-field

approximations, 177

calculation, 335

Mehrotra-type predictor-corrector interior-point

method, 111–113

Metal-insulator phase transition, 520

Metallic hydrogen, 54

M functional, 335

MgH, 418, 420, 422

Middle Ages, international conference agendas

Density Matrices and Density Functionals,

the A. John Coleman Symposium, 14

Density Matrix Conference, 12–13

Density Matrix Seminar, 13

Density Matrix Seminar II, 13

Reduced Density Matrices Conference, 13–15

Reduced Density Matrix Workshop, 14

Reduced Density Operators Conference, 13
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