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PREFACE

In the 1950s several scientists including Joseph Mayer, John Coleman, Per-Olov
Lowdin, and Charles Coulson expounded on the possibilities for using the two-
electron reduced density matrix to compute the energies and properties of atomic
and molecular systems without the many-electron wavefunction. An N-electron
density matrix may be assembled from an N-electron wavefunction by multiply-
ing the wavefunction ¥ by its adjoint i to obtain /", Integrating the N-electron
density matrix over all save two electrons yields the two-electron reduced den-
sity matrix (2-RDM). Because electrons interact with each other in pairs by
Coulomb repulsion, the energies and other electronic properties of atoms and
molecules can be computed directly from a knowledge of the 2-RDM. The
fact that the 2-RDM is the repository of all the physically and chemically impor-
tant information in the many-particle wavefunction suggests the tantalizing pos-
sibility that for a given molecular system the 2-RDM can be computed directly
without constructing the many-electron wavefunction. For fifty years both scien-
tists and mathematicians have pursued the goal of a 2-RDM approach to mole-
cular electronic structure. Efforts, however, were stymied because the 2-RDM
must be constrained by nontrivial conditions to ensure that the 2-RDM derives
from an N-electron wavefunction. These restrictions on RDMs were given the
appellation N-representability conditions by John Coleman. Ten years ago the
calculation of the 2-RDM without the wavefunction seemed an impossibility.
Dramatic progress, however, has been made since then, and today two comple-
mentary approaches to the direct calculation of the 2-RDM have emerged. The
present book, with chapters from many of the scientists who contributed to these
advances, provides a detailed yet pedagogical tour of modern 2-RDM theory and
its present and potential applications to many-electron atoms and molecules.

I first became interested in 2-RDM theory when reading articles by Coleman
and ter Haar in the chemistry library at Princeton University in the summer of
1995. For someone who had just graduated college, reading Coleman and ter
Haar was rather ‘“heady” material. However, despite some of the difficulties
from N-representability it seemed apparent that a 2-RDM theory would offer
a powerful bridge between the density functional methods, which were rapidly
gaining popularity after many years of development, and the ab initio wavefunc-
tion methods. At Harvard under the splendid guidance of Dudley Herschbach I
began to think about computing the 2-RDM without the wavefunction. In the

vii



viii PREFACE

summer of 1996 I began a long friendship with John Coleman through an innoc-
uous e-mail about a reference in one of his articles. A few months later I found a
typographical mistake in one of John’s papers. With his typical humor John pro-
claimed this mistake to be the ‘“Mazziotti typo” since I had brought it to his
attention. (I suppose that I can accept greater responsibility for any typos in
the present volume!) Recently, John admitted that he began to take my interest
in the 2-RDM seriously after I had found a mistake in one of his papers. Because
of the difficulties with minimizing the energy with respect to the 2-RDM, I
began to think about what it would mean to contract the Schrédinger equation
onto the space of two particles, and I found articles related to this idea by Hir-
oshi Nakatsuji and Carmela Valdemoro. Meanwhile, Valdemoro and Nakatsuji
were making progress in solving the contracted Schrodinger equation (also
known as the density equation).

The present book is divided into five related parts. Part I contains historical
introductions by John Coleman and Mitja Rosina. Part II discusses the varia-
tional calculation of the 2-RDM including the development of a systematic hier-
archy of N-representability conditions known as the positivity conditions and the
design of effective semidefinite-programming algorithms for solving the 2-RDM
optimization problem. In Part III the nonvariational calculation of the 2-RDM by
the contracted Schrodinger equation (CSE) is presented including the recon-
struction of the 3- and 4-RDMs from the 2-RDM by cumulant theory and the
addition of N-representability conditions on the 2-RDM. Very recently devel-
oped methods that dramatically improve the accuracy from the CSE are pre-
sented in the last two chapters (12 and 13) of this part. Chapter 12, written by
me, presents the anti-Hermitian CSE method in which the anti-Hermitian part of
the CSE with cumulant reconstruction of the 3-RDM is solved for the ground-
state energy and its 2-RDM. Chapter 13 by Garnet Chan and Takeshi Yanai
incorporates RDM cumulant expansions into canonical diagonalization of the
Hamiltonian. Chan’s method, although it does not generate a 2-RDM, is
included in the book because it can be interpreted as a solution of the anti-Her-
mitian CSE in the Heisenberg representation. The electronic energies from the
anti-Hermitian CSE are competitive with the best wavefunction methods of simi-
lar computational expense. Both the second and third parts contain illustrative
applications of the 2-RDM methods to a variety of atoms and molecules. Part
IV of the book examines work on geminal, 1-RDM, and pair-density functional
theories that explore the possibilities between using the 1-density as in density
functional theory and using the 2-RDM. Each of these theories requires the
development of a subset of the customary density functional. Finally, in Part V a
parameterization of the 2-RDM with connections to quantum phase transitions
is presented and the role of the 2-RDM in studying entanglement is examined.

I wish to extend my gratitude to each of the authors for contributing their
ideas and enthusiasm to the present book. It was a great pleasure for me to
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work with everyone. I must also thank both Prof. Dudley R. Herschbach of
Harvard University and Prof. Herschel A. Rabitz of Princeton University, whose
support, encouragement, and example have been invaluable to me. I thank my
father, Dr. Alexander R. Mazziotti, for encouraging and supporting me and shar-
ing with me his love for science, especially chemistry. Finally, I would like to
thank my colleagues and students at The University of Chicago. During the past
four years I have had the pleasure of sharing my adventures in research with the
following students: John Farnum, Daniel Jordan, Gergely Gidofalvi, Tamas
Juhasz, Jeff Hammond, Eugene Kamarchik, Adam Rothman, Eugene De Prince,
Marc Benayoun, Aiyan Lu, and Brittany Rohrman. The present volume in
Advances in Chemical Physics surveys the recent advances in 2-RDM theory.
The authors and I hope that the reader will view this book as a helpful guide
in both understanding and exploring 2-RDM methods as the 2-RDM becomes
increasingly important as a fundamental variable in the quantum computation
of many-electron atoms and molecules.

Davib A. MAZzIOTTI

Chicago, Illinois
October 2006






INTRODUCTION

DAVID A. MAZZIOTTI

Department of Chemistry and The James Franck Institute,
The University of Chicago, Chicago, IL 60637 USA

In a famous after-dinner address at a 1959 conference in Boulder, Colorado,
Charles Coulson [1] discussed both the promises and the challenges of using
the two-electron reduced density matrix (2-RDM) rather than the many-electron
wavefunction as the primary variable in quantum computations of atomic and
molecular systems. Integrating the N-electron density matrix,

Np(1,2,...,N;1',2',...,N) = ¥(1,2,... ,N)T*(1',2',...,N)
over coordinates 3 to N defines the 2-RDM:
’D(1,2; 1’,2’):/‘11(1,27...,N)\IJ*(l’,Z’,...7N)d3-~-dN

Because electrons are indistinguishable with only pairwise interactions, the
energy of any atom or molecule may be expressed as a linear function of the
2-RDM rather than the many-electron wavefunction, that is,

E = Tr(’K D)

where 2K is the two-electron reduced Hamiltonian matrix, which is the matrix
representation of the operator

. 1 1 Z; 11
2 2 § J

K=—-|—=-V:— — | 4+ =-—

N—l( 2 ! ; rl_,) 21‘12

The expression of the energy for any N-electron system by a 2-RDM suggests
the tantalizing possibility that the ground-state energy for any many-electron
system can be computed through a fwo-electron calculation.

X1



xii INTRODUCTION

As Coleman describes eloquently in his introductory chapter, in the summer
of 1951, as a young mathematician, with a derivation like the one above, he
announced somewhat prematurely to a gathering of physicists at Chalk River
that he had reduced the many-electron problem in quantum mechanics to a
two-electron calculation. A simple variational calculation on lithium with the
2-RDM rather than the wavefunction produced a ground-state energy that was
clearly too low. Coleman soon recognized that additional constraints must be
added to the 2-RDM to guarantee that it derives from an N-electron density
matrix (or wavefunction). Coleman called these constraints N-representability
conditions—a term that became standard after Coleman’s 1963 Review of Mod-
ern Physics article [2]. In 1955 both Joseph Mayer [3] and Per-Olov Lowdin [4]
wrote papers for Physical Review that examined the expression of the energy as
a function of the 2-RDM, and soon afterwards, several papers appeared that
examined the need for additional conditions on the 2-RDM—a challenge that
would become known as the N-representability problem. Coulson, Coleman,
and others inspired several generations of chemists, physicists, and mathemati-
cians to explore the 2-RDM conditions necessary for exploring many-particle
quantum mechanics on the space of two particles, and Rosina, a nuclear physi-
cist, describes in his chapter the unique interdisciplinary nature of the 2-RDM
conferences at Queens University in the late 1960s and early 1970s. Despite sig-
nificant efforts, however, the goal of computing the 2-RDM without the wave-
function remained elusive. Like John Coleman, Richard Feynman had been a
first-year graduate student at Princeton in 1939 (in fact, a picture taken later
by John of Feynman talking with Dirac is kindly reproduced with the permission
of Physics Today, which published it on the cover of their August 1963 issue). In
the late 1980s John wrote a letter to Feynman proposing that Feynman and he
collaborate on the N-representability problem. The letter returned unopened, for
Feynman had recently died. (At least, because the letter was unopened, we can
surmise that Feynman was not troubled by the N-representability problem in the
last days of his life!)

The present volume describes significant advances in 2-RDM mechanics (as
distinct from conventional wave mechanics where the wavefunction is the pri-
mary variable of the calculation) that are realizing the direct calculation of the
2-RDM without the wavefunction. Two related and yet distinct approaches for
computing the 2-RDM directly have emerged: (i) the variational calculation of
the ground-state energy with the 2-RDM constrained by N-representability con-
ditions, and (ii) the iterative solution of the contracted Schrodinger equation
(CSE) for a nonvariational ground-state 2-RDM. The second part of this
book explores the variational 2-RDM method while the third part of this book
develops the nonvariational solution of the CSE including new research on sol-
ving only the anti-Hermitian part of the CSE. Historically, the present wave of
advances in 2-RDM mechanics began with work by Carmela Valdemoro and her
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collaborators in the early 1990s on the solution of the CSE [5]. The CSE is a
projection of the N-electron Schrodinger equation onto the space of two elec-
trons. The CSE (also known as the density equation) was first formulated in
separate papers by Cohen and Frishberg [6] and Nakatsuji [7]. However, because
the CSE depends on not only the 2-RDM but also the 3- and 4-RDMs, the CSE
cannot be solved for the 2-RDM without additional information. Valdemoro
employed particle-hole duality to develop formulas for building the 3- and
the 4-RDMs from a knowledge of the 2-RDM. Nakatsuji and Yasuda improved
the formulas from their connection to Greens’ functions [8], and I showed that
the reconstruction of the 3- and 4-RDMs could be systematized through a cumu-
lant theory for RDMs and improved by contraction relations for the cumulants
[9-12]. Important techniques, known as correlated purification, have been devel-
oped for correcting the N-representability of the 2-RDM between iterations of
the CSE [13, 14]. Very recently, a significant advance has been made in CSE
theory with dramatic improvement in the accuracy of the energies and 2-RDMs.
In Chapter 12, I develop a system of initial-value differential equations for
solving the anti-Hermitian part of the CSE for the ground-state energy and its
2-RDM. The 3-RDM is reconstructed by its cumulant expansion including the
second-order corrections by Yasuda and Nakatsuji [8] and Mazziotti [11, 12].
Molecular energies with the second-order corrections to the 3-RDM are as accu-
rate as those from coupled cluster with single and double excitations. The anti-
Hermitian CSE method also directly generates accurate 1- and 2-RDMs where
the 2-RDMs very nearly satisfy known N-representability conditions. In Chapter 13,
Chan and Yanai implement RDM cumulant expansions in the context of cano-
nical diagonalization. Although the method does not produce a 2-RDM, it can be
interpreted as a solution of the anti-Hermitian CSE in the Heisenberg represen-
tation. Because the method does not include second-order corrections to the
3-RDM, the energies computed from Hartree—Fock reference wavefunctions
are not as accurate as those from coupled cluster singles—doubles. If multi—refer-
ence self-consistent-field wavefunctions are employed as references, however,
the method generates very accurate energies at both equilibrium and nonequili-
brium molecular geometries. An important advantage of the anti-Hermitian CSE
methods is that their reference wavefunctions can readily be changed from
Hartree—Fock to include multireference correlation effects. The concepts behind
the CSE, the present-day CSE algorithms, the recently developed anti-Hermitian
CSE algorithms, and future research directions are carefully developed in a ser-
ies of chapters in Part III of this book by Valdemoro, Mazziotti, Alcoba, Herbert
and Harriman, Kutzelnigg and Mukherjee, and Chan and Yanai.

The original goal of Coleman, Coulson, Mayer, and others was to develop a
variational calculation of the ground-state energy as a functional of the 2-RDM.
The difficult problem of identifying sufficiently stringent N-representability con-
ditions on the 2-RDM had prevented this goal from being realized for fifty years.
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With advances in theory and optimization in the late 1990s, however, the situa-
tion was prepared to change. First, with research on the CSE providing new
insight into the structure of the necessary conditions, Erdahl and I developed a
systematic hierarchy of the N-representability constraints known as p-positivity
conditions [15]. The generalized uncertainty relations for all pairs of p-particle
operators were shown to be enforced by the 2p-positivity conditions. Second,
in the 1990s, significant advances were made in a special form of optimization
known as semidefinite programming for a variety of important problems in con-
trol theory, combinatorial optimization, and finance [16]. The minimization of
the ground-state energy with respect to a 2-RDM constrained by p-positivity
conditions constitutes a semidefinite program, where the process of solving a
semidefinite program is known as semidefinite programming. In 2001 and
2002, the algorithms from control theory and combinatorial optimization were
applied in separate works by Nakata et al. [17] and the author [18] to calcula-
tions of many-electron atoms and molecules (in minimal basis sets) with the
2-RDM constrained by 2-positivity conditions. The 2-RDM method with 2-positivity
conditions yielded accurate shapes for potential energy surfaces without the mul-
tireference difficulties exhibited by many approximate wavefunction methods.
(It should be mentioned that variational 2-RDM calculations with 2-positivity
conditions had been performed in the 1970s with an early form of semidefinite
programming by Rosina, Erdahl, Garrod, and their collaborators [19, 20],
although these calculations were limited to four-electron atoms and molecules.)
In 2004, Zhao et al. [21] applied a subset of the 3-positivity conditions, the T}
and T, constraints, which had been proposed by Erdahl in 1978 [22], to closed-
and open-shell molecules in minimal basis sets with coupled-cluster accuracy at
equilibrium geometries. Later that year, I introduced a new, first-order algorithm
for solving the 2-RDM semidefinite program [23, 24], which, by using a matrix
factorization to enforce the positivity conditions, reduces the scaling for 2-posi-
tivity to 7° in floating-point operations and r* in memory requirements (where r
is the rank of the one-particle basis set). This first-order method enables the
treatment of larger molecules and basis sets as well as the implementation of
complete 3-positivity conditions [25-28]. These advances as well as other
advances and applications are discussed in a series of chapters in Part II of
this book by Mazziotti, Erdahl, Braams, Percus, and Zhao, and Fukuda, Nakata,
and Yamashita.

In college I had a wonderful class in abstract algebra where the professor
began each lecture with the last ten minutes of the previous lecture—a definite
example of very useful deja vu. This book is organized around a similar
principle. No effort has been made to keep each chapter strictly orthogonal to
the preceding and proceeding chapters in the spirit that a certain degree of over-
lap is useful for the book to serve as both an instructional and a reference guide.
Representing the frontiers of the 2-RDM mechanics, the book covers a great deal
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of new and exciting material, which, it is believed, will spur many future endea-
vors and explorations in 2-RDM theory. The book is organized into five parts
with the second and third parts described above. The first part contains two his-
torical perspectives, one by John Coleman and one by Mitja Rosina. The fourth
part explores the connection between 2-RDM methods and one-particle and pair-
density functional theories that aim to extend the well-known density functional
theory. In Chapter 14, Piris describes the efforts since 1998 to develop a func-
tional theory based on the one-particle RDM, and he shows how he has recently
made progress by incorporating ideas from 2-RDM mechanics into the function.
Rinderspacher reviews recent work on geminal functional theory, proposed by
me in 2000 [29, 30], where the correlation energy is expressed as a function
of a geminal. (A geminal denotes a two-electron function.) Rinderspacher
extends geminal functional theory to consider the use of multiple geminal func-
tions. In Chapter 16, Ayers and Davidson review the diagonal N-representability
problem and its application to pair-density functional theory. The final, fifth part
of the book, focusing on applications of 2-RDMs to entanglement and quantum
phase transitions, contains two chapters: a chapter by Coleman on an exact para-
meterization of the 2-RDM, which was used by Coleman to discuss quantum
phase transitions in a recent article [31], and a chapter by Kais that surveys
the many applications of RDM theory to quantum entanglement, including a
discussion of entanglement as a measure for correlation in electronic structure
theory.

This volume in Advances in Chemical Physics provides a broad yet detailed
survey of the recent advances and applications of reduced-density-matrix
mechanics in chemistry and physics. With advances in theory and optimization,
Coulson’s challenge for the direct calculation of the 2-RDM has been answered.
While significant progress has been made, as evident from the many contribu-
tions to this book, there remain many open questions and exciting opportunities
for further development of 2-RDM methods and applications. It is the hope of
the editor and the contributors that this book will serve as a guide for many
further adventures and advancements in RDM mechanics.
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CHAPTER 1

N-REPRESENTABILITY

A. JOHN COLEMAN

Department of Mathematics and Statistics, Queen’s University, Kingston,
Ontario K7L 3N6 Canada

CONTENTS

1. Introduction
II. Academic History
III. Summer 1951

I. INTRODUCTION

Few distinctions in quantum mechanics are as important as that between fer-
mions and bosons. This distinction results from the fact that there are only
two one-dimensional linear representations, on the space of wavefunctions, of
the group, Sy, of permutations of N > 2 objects. For all groups there is the iden-
tity representation, which leaves the wavefunction fixed, and for indistinguish-
able particles there is one other that leaves the function fixed or changes its
sign according to whether the permutation is even or odd. I do not have the
authority to assert that God agrees with me as to the importance of this distinc-
tion, but I am sure that most happy humans will since, as noted by Eddington, if
there were no fermions there would be no electrons, so no molecules, so no
DNA, no humans!

What has this to do with reduced density matrices?

For a system of N identical fermions in a state ¥ there is associated a reduced
density matrix (RDM) of order p for each integer p, 1 < p < N, which deter-
mines a Hermitian operator D?, which we call a reduced density operator
(RDO) acting on a space of antisymmetric functions of p particles. The case
p = 2 is of particular interest for chemists and physicists who seldom consider

Reduced-Density-Matrix Mechanics: With Application to Many-Electron Atoms and Molecules,
A Special Volume of Advances in Chemical Physics, Volume 134, edited by David A. Mazziotti.
Series editor Stuart A. Rice. Copyright © 2007 John Wiley & Sons, Inc.
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Hamiltonians involving more than two electron interactions. I shall use this to
illustrate the general case of arbitrary p. The second-order reduced density
matrix (2-RDM) of a pure state y, a function of four particles, is defined as fol-
lows:

D?*(12,12) :/¢(123...N)lp*(l’2’3...N)d(3...N)

This we interpret as the kernel of an integral operator, D?, which transforms an
arbitrary function f on 2-space into a function D*f on 2-space defined by

D’f(12) = /DZ(IZ, 12")f(1'2")d(12")

As we show later, the energy of the state of any system of N indistinguishable
fermions or bosons can be expressed in terms of the Hamiltonian and
D*(12,1'2') if its Hamiltonian involves at most two-particle interactions. Thus
it should be possible to find the ground-state energy by variation of the 2-matrix,
which depends on four particles. Contrast this with current methods involving
direct use of the wavefunction that involves N particles. A principal obstruction
for this procedure is the “N-representability” conditions, which ensure that the
proposed RDM could be obtained from a system of N identical fermions or
bosons.

II. ACADEMIC HISTORY

I will sketch briefly my personal academic history that prepared me to discuss
these matters and then tell the story of how in the the summer of 1951 I hit upon
and named ‘‘N-representability.”

During my undergraduate years, 1935-1939, in Honors Mathematics and
Physics at the University of Toronto, increasingly, I became interested in math-
ematical physics, picking up some elementary quantum mechanics and relativity.
My first encounter with Einstein’s general relativity theory (GRT) was in the
substantial treatise of Levi-Civita on differential geometry, which ends with a
150-page introduction to GRT. This is a beautiful theory, which I presented in
lectures from 1950 in Toronto because it had become the dominant orthodoxy
everyone should know!

However, I never became a ‘“True Believer” since by chance (but fortunately)
I also read the principle of relativity (PR) by Whitehead, who pointed to a logical
problem for Einstein, which, as far as I am aware, has never been dealt with ade-
quately. Alfred North Whitehead (1860-1947) was a master of mathematical
logic, which he showed as senior author of the famous three-volume work on
the foundations of mathematics. As a mathematical Fellow and Tutor at Trinity
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College, Cambridge, it was also his duty to keep abreast of developments in
mathematical physics in the period 1885-1923. It was reported that when Ber-
trand Russell was asked “When did Whitehead become a Relativist?’’ he replied
“At birth!”

In 1939, the first year of the Second World War, I had the delicious, difficult
choice of graduate study at Harvard, Princeton, or St. John’s College with Dirac!
Because crossing the Atlantic was dangerous, and on the advice of the College
Registrar, I regretfully turned down Harvard, chose Princeton and found myself
sharing a first course in quantum mechanics with a student, nine days older than
myself, from MIT of whom I and the rest of the world had never heard, named
Richard Feynman!

The instructor in the first term was John A. Wheeler, who had begun his Prin-
ceton career the previous year; and in the second term, the famous authority on
group theory, Eugene Wigner. All that I recall of this course was that one day in
early January, Wigner arrived very excitedly saying that over the weekend he
had learned from Lamb that there is a minute error in Dirac’s formula for the
spectrum of hydrogen. This was the ‘“Lamb shift”” and the harbinger of quantum
field theory. At the time I had no idea why, but Wigner’s excitement left no doubt
for me, it was very important!

I assiduously attended all the lectures like a serious Torontonian even though
there was little in the first term that I had not learned from Leopold Infeld at
Toronto. I cannot remember seeing Feynman in class. He certainly knew more
QM than I did. However, we did enjoy arguing vigorously on several occasions
in the Discussion Rooms of Fine Hall Library. So much so that at least
twice Miss Shields, who ruled the Library with an iron hand, ordered us to mod-
erate our voices, which through the thick closed door were disturbing everyone
in the Library! He told me about his engagement to a girl in New York City
whose death from tuberculosis had been predicted and the opposition of his rela-
tives and friends to his determination to keep his word to her. I sympathized but
did not presume to advise. I became quite fond of him, admiring Feynman for
simplicity and integrity of spirit. After I left Princeton we met only once, in July
1962 in Poland at a Conference about gravitation. It was there that I took the
accompanying photo of him and Dirac, which was published on the cover of
Physics Today in August 1963 (see Fig. 1).

I returned to the University of Toronto in the summer of 1940, having com-
pleted a Master’s degree at Princeton, to enroll in a Ph.D. program under Leo-
pold Infeld for which I wrote a thesis entitled: A Study in Relativistic Quantum
Mechanics Based on Sir A.S. Eddington’s “Relativity Theory of Protons and
Electrons.” This book summarized his thought about the constants of Nature
to which he had been led by his shock that Dirac’s equation demonstrated that
a theory which was invariant under Lorentz transformation need not be
expressed in terms of tensors.
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Figure 1 Paul Dirac and Richard Feynman at the International Conference on Relativistic The-
ories of Gravitation, Warsaw, Poland, July 25-31, 1962. Photograph by A. John Coleman, courtesy
AIP Emilio Segre Visual Archives, Physics Today Collection.

Eddington’s final theory was dismissed by the physics establishment as philoso-
phical and speculative nonsense. Though I found a serious error in Eddington’s argu-
ment, the more errors I discovered the greater respect I developed for his physical
insight. My admiration for Whitehead’s gravitational theory and for Eddington’s
final work must cause orthodox physicists to dismiss me as espousing lost causes.
However, as evidenced by this book, my pursuit of the second-order reduced density
matrix appears in recent years to have gained some attention among chemists.

After obtaining a Ph.D. under Infeld at Toronto, I taught calculus and algebra
at Queen’s University for two years until the end of the War. Between 1945 and
1949, based in Geneva, I served as the University Secretary of the World’s Stu-
dent Christian Federation before joining the Mathematics Department of the
University of Toronto until 1960, when I became Head of Mathematics and Sta-
tistics at Queen’s University in Kingston, Ontario.

My years with the Federation provided a remarkable opportunity to
broaden my understanding of international relations and to begin to understand
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sympathetically the diversity of religious and political experiences in Europe,
Asia, Africa, and North America. But, what I had not expected, it also gave
me a chance to meet distinguished scientists such as Hadamard, the French
mathematician made famous for his discussion of the prime number theorem;
Werner Heisenberg, with whom I enjoyed two evenings in Goettingen during
the week in which I attended the funeral of Planck; W. Threlfall, the English
topologist, who, protected by his Nazi student, Seifert, lived safely in Germany
throughout the War during part of which he was housed inside a huge airplane
factory in a splended cottage provided in case the Minister of the Luftwaffe
came to inspect the factory, which he never did. He proudly told me that he
was probably unique in Germany, lecturing on the ““Jewish” relativity theories
of Einstein during the courses he offered to engineers inside the factory!

III. SUMMER 1951

In the summer of 1951 it was my privilege to belong to the Research Institute of
the Canadian Mathematical Congress, which later became the Canadian Math-
ematical Society. The Institute had been created by R. L. Jeffery to encourage
young mathematicians to take time for research. I was working on Lie groups
and algebras. But as a diversion I started to read about second quantization in
Frenkel’s advanced treatise on quantum mechanics. This was the only decent
treatment of the topic in English available in 1951. I soon noticed that if the
Hamiltonian, H, of a system of N electrons involves the electrons in at most
two-particle interactions, the total energy of the ground state (GS) of the system
can be expressed in terms of the second-order reduced density matrix. This
mathematical object proved so important that it is also called the second-order
RDM, or for the sake of brevity, simply the 2-matrix. Unsaid but assumed is the
caveat “‘of the system.”

We can justify the above conclusion as follows. If H involves at most two-
particle interactions, it is expressible as

+ .+
H= E Hyja; a) aja;
kiij

where a; and a; denote annihilators, whereas ak+ and af are creators. Therefore
the energy of the state, 1, is

E = (y|H| )
= Huy(Yla} o) ajail)
Thus the energy of the state is expressed in terms of coefficients of the Hamil-

tonian and the quantities (\}|a; a; aja;|\y), which are coefficients of the 2-matrix
which Dirac denoted by p,.



8 A. JOHN COLEMAN

I assume that the reader interprets the complex numbers (|a; a; aja;|}) as
elements of a matrix representing a reduced density operator on two-particle
space spanned by products of a fixed chosen complete set of orthonormal one-
particle functions, ¢;, in terms of which i can also be expanded. Then a; reduces
the occupancy of ¢; to zero, while a;" sets the occupancy at 1. For this reason
some physicists consider a name such as ‘“‘occupation number notation,” used by
many Russians, as preferable to “second quantization notation,” which has an
almost mystical connotation to my mind.

The RDO, p,, is defined by

Py = — 1)132(12 1'2))

/lp (123...NW*(1'23...N)d(3...N)

Since I have assumed that y is normalized to 1, the trace of D? is also 1 and the
trace of p, is N(N — 1). We now define the reduced Hamiltonian operator

K=H(1)+H2)+ (N—-1)H(12)

where H (i) denotes the interaction between particle i and the fixed environment,
while H(ij) denotes the interaction between the ith and jth particles. Note that
(W|H(ij)|y) is independent of which pair of distinct integers (ij) denotes. Simi-
larly, (¥|H(i)|y) is independent of i. It is then merely a question of counting to
show that the energy, E, of the system is given by

E=(y[H|})
=1N(KD?)

Taking a hint from the treatment of helium by Hylleraas, I realized that one
merely had to choose D*(12,1'2') to minimize the above expression for fixed
N and with K appropriate for any quantum system of N identical fermions to
obtain the ground-state energy level.

To impress physicists one needed to do this for a system more complicated
than helium. So I tried to find the ground state of lithium assuming that my guess
for D?(12, 1'2') was restricted only by the conditions that it be antisymmetric in
12 and 1’2 and change these pairs under complex conjugation. I did too well,
obtaining a level about 10% BELOW the observed ground-state energy!

Impossible!

It did not take long, perhaps a day, to realize that I had not imposed some
limitation on the allowed 2-RDM additional to those mentioned above.
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I have no record of how long it took for me to realize that the needed condi-
tions were that the 2-matrix be derived from a function that is antisymmetric in
N particles. This led me to invent the term ““N-representable” to point to a key
obstruction to solving N-electron problems by variation if N is larger than 2. I
believed that I had made a huge step forward and later in that summer brashly
claimed to a group of physicists at Chalk River that I had reduced the problem
for arbitrary N to a 2.5 particle problem. This claim is so intriguing that it
attracted several scientists, especially chemists, to attempt to use my approach.
I assured my audience at Chalk River that the obstacle of N-representability
would quickly be overcome by an able mathematician—presumably, like
myself! This proved the arrogant idea of a brash young scientist since the search
for a neat easy solution has not ended after 55 years.

The search was first pursued in a series of conferences organized by Bob
Erdahl, Hans Kummer, the late Vedene Smith, Jr., and myself. However, many
others have been involved, notably Prof. Valdemoro and her colleagues in Spain,
Prof. Nakatsuji and his associates in Japan, and since completing his Ph.D. at
Harvard, Prof. Mazziotti in Chicago.

This book shows that great progress has been made in using the 2-matrix
effectively, especially in chemistry. I believe that the role of RDM for condensed
matter physics is just as important as in chemistry. Some of these connections
will be explored in later chapters.






CHAPTER 2

HISTORICAL INTRODUCTION

MITJA ROSINA

Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, P.O.
Box 2964, 1001 Ljubljana, Slovenia and JoZef Stefan Institute, Ljubljana,
Slovenia

CONTENTS

I. A Short Chronicle

II. The Seven International Conferences/Workshops on Reduced Density Matrices
III. Recollections of a Nuclear Physicist
References

I. A SHORT CHRONICLE

In the Pre-RDM Era, hominids made impressive progress in understanding the
principles of quantum mechanics and they were solving a limited set of relevant
physical problems at an unprecedented rate. The main tool became the wave-
function. However, the problems were more or less of a single-particle type
(independent particles in a potential, possibly a mean potential approximating
the influence of other particles). When many-body problems appeared, the
single-particle picture was no longer accurate enough and the calculation of a
many-body wavefunction was difficult, indeed.

Then, in the Old Ages (1940 or 1951-1967) some ingenious people became
aware that, in the case of two-body interactions, it is the two-particle reduced
density matrix (2-RDM) that carries in a compact way all the relevant informa-
tion about the system (energy, correlations, etc.). Early insight by Husimi (1940)
and challenges by Charles Coulson were completed by a clear realization and
formulation of the N-representability problem by John Coleman in 1951 (for
the history, see his book [1] and Chapters 1 and 17 of the present book). Then
a series of theorems on N-representability followed, by John Coleman and many

Reduced-Density-Matrix Mechanics: With Application to Many-Electron Atoms and Molecules,
A Special Volume of Advances in Chemical Physics, Volume 134, edited by David A. Mazziotti.
Series editor Stuart A. Rice. Copyright © 2007 John Wiley & Sons, Inc.
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others (e.g., Fukashi Sasaki’s upper bound on eigenvalues of 2-RDM [2]).
Claude Garrod and Jerome Percus [3] formally wrote the necessary and suffi-
cient N-representability conditions. Hans Kummer [4] provided a generalization
to infinite spaces and a nice review. Independently, there were some clever prac-
tical attempts to reduce the three-body and four-body problems to a reduced
two-body problem without realizing that they were actually touching the varia-
tional 2-RDM method: Fritz Bopp [5] was very successful for three-electron
atoms and Richard Hall and H. Post [6] for three-nucleon nuclei (if assuming
a fully attractive nucleon—nucleon potential).

The Middle Ages (1967—1985) can be characterized by the six RDM confer-
ences and workshops, which are listed and discussed in the next section. These
meetings turned out to be a great catalyst among participants from different
branches of science: mathematicians, physicists, and chemists (at that time, com-
puter scientists were still missing!). They became aware that they were not alone
in RDM research and many collaborations started. In the Middle Ages, the list of
useful N-representability conditions was still insufficient and computer power
too weak. Regarding numerical results, RDMs could hardly compete with wave-
functions. There were, however, many new conceptual insights in atomic and
nuclear many-body systems, such as natural orbitals and geminals, the role of
symmetries, characterization of correlations, and pairing. In parallel, the highly
successful density functional method was evolving.

In the 1990s, the New Ages started, with the breakthrough of Hiroshi Nakatsuji,
Carmela Valdemoro, and David Mazziotti. They introduced improved N-
representability by means of a hierarchy of equations connecting p-RDMs with
(» + 2)-RDMs (e.g., the contracted Schrodinger equation). Also, increased com-
puter power and improved algorithms in semidefinite programming allowed very
promising practical atomic and molecular calculations. References are given in
later chapters.

II. THE SEVEN INTERNATIONAL CONFERENCES/
WORKSHOPS ON REDUCED DENSITY MATRICES

1. Density Matrix Conference, Kingston, August 28—September 1, 1967.
Sponsored by: U.S. Air Force, Office of Scientific Research; U.S. Office
of Naval Research; National Research Council of Canada; Queen’s Uni-
versity. Co-organizers: A. J. Coleman and R. M. Erdahl. Proceedings: A. J.
Coleman and R. M. Erdahl, editors, Reduced Density Matrices with Appli-
cations to Physical and Chemical Systems, Queen’s Papers in Pure and
Applied Mathematics No. 11 (1967), 434 pp.

This was a great “‘coming together”” of mathematicians, physicists, and quan-
tum chemists, and an exciting review of the progress already achieved with the
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RDM method. The participants learned about other researchers, the inter-
disciplinary nature of the problem, the existence of N-representability theo-
rems, and the availability of computational methods. Many collaborations
started.

2. Density Matrix Seminar, Kingston, June 17-July 12, 1968. Sponsored
by: U.S. Air Force, Office of Scientific Research; U.S. Office of Naval
Research; Queen’s University. Co-organizers: A. J. Coleman and R. M.
Erdahl. Proceedings: A. J. Coleman and R. M. Erdahl, editors, Report
of the Density Matrix Seminar, Queen’s Press (1968), 78 pp.

A beautiful month on Lake Ontario in a very friendly atmosphere. John
Coleman, Bob Erdahl, Claude Garrod, Richard Hall, Hans Kummer, J. Lindenberg,
R. McWeeny, Yngve Ohrn, David Peat, Mitja Rosina, Mary-Beth Ruskai, Darwin
Smith, George Warsket, Antonio Ciampi, Ernest Davidson, and others discussed
N-representability, the interpretation of RDMs, and other unsolved problems.

3. Density Matrix Seminar II, Kingston, August 4-29, 1969. Sponsored by:
U.S. Air Force, Office of Scientific Research; Queen’s University. Co-
organizers: A. J. Coleman and R. M. Erdahl. Proceedings: A. J. Coleman
and R. M. Erdahl, editors, Report of the Density Matrix Seminar, Queen’s
Press (1969), 151 pp.

Some previous and some new participants continued to explore the character-
ization of RDMs, related conceptual problems, as well as practical problems to
incorporate correlations.

4. Reduced Density Operators Conference, Kingston, June 20-22, 1974.
Sponsored by: National Research Council of Canada; Queen’s University.
Organizer: R. M. Erdahl. Proceedings: R. M. Erdahl, editor, Reduced Den-
sity Operators with Applications to Physical and Chemical Systems—II,
Queen’s Papers in Pure and Applied Mathematics No. 40 (1974), 234 pp.

The Conference was followed by an extended workshop. The Density Matrix
Club had increased. The structure and symmetries of RDM were further studied,
and direct variational calculations were encouraged. Some new names were
Hubert Grudzinski, Everett Larson, and Vedene Smith. The lively workshop
encouraged the initiation of an informal newsletter to be distributed to old and
new participants. Three Editions of RDO News followed, edited by Bob Erdahl
(1975, 1976, 1977).

5. Reduced Density Matrices Conference, Universit¢é de Moncton, New
Brunswick, June 1977. Sponsored by: National Research Council of
Canada; Queen’s University. Co-organizers: A. J. Coleman, R. M. Erdahl,
and V. H. Smith, Jr. Proceedings: A. J. Coleman, R. M. Erdahl, and V. H.
Smith, Jr., editors, Proceedings of the Reduced Density Matrix Conference
at Moncton, New Brunswick, International Journal of Quantum Chemistry
13 (1978), 204 pp.
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Again a rich harvest of new ideas.

6. Density Matrices and Density Functionals, the A. John Coleman Sym-
posium, Kingston, August 25-29, 1985. Sponsored by: National Sciences
and Engineering Research Council of Canada; Queen’s University. Co-
organizers: R. M. Erdahl and V. H. Smith, Jr. Proceedings: R. M. Erdahl
and V. H. Smith, Jr., editors, Density Matrices and Density Functionals,
Reidel (1987), 600 pp.

During the lively symposium the history and concepts of RDM were
reviewed. Even small steps toward N-representability were welcomed. Many
details in calculated densities and correlations emerged. The comparison (or
competition) between RDM and density functionals was interesting. The sympo-
sium was followed by a seminar including a few enthusiasts.

7. Reduced Density Matrix Workshop, Kingston, August 29-31, 1999.
Sponsored by: Queen’s University. Organizer: A. J. Coleman. Monograph
(Instead of Proceedings): Jerzy Cioslowski, editor, Many-Electron Densities
and Reduced Density Matrices, Kluwer Academic/Plenum (2000), 301 pp.

New optimism was brought into the field of RDMs by Hiroshi Nakatsuji,
Carmela Valdemoro, and David Mazziotti with their cumulant expansion, the hier-
archy of equations connecting the 2-RDM with 4-RDMs, and the contracted Schro-
dinger equation. John Coleman continues to be the ‘“motor” for further progress.

III. RECOLLECTIONS OF A NUCLEAR PHYSICIST

In the 1950s, many basic nuclear properties and phenomena were qualitatively
understood in terms of single-particle and/or collective degrees of freedom. A
hot topic was the study of collective excitations of nuclei such as giant dipole
resonance or shape vibrations, and the state-of-the-art method was the nuclear
shell model plus random phase approximation (RPA). With improved experi-
mental precision and theoretical ambitions in the 1960s, the nuclear many-
body problem was born. The importance of the ground-state correlations for
the transition amplitudes to excited states was recognized.

In Ljubljana, we participated in the measurements of the giant dipole reso-
nance in light nuclei (1958-1960) and we discovered its rich structure. To go
beyond RPA, we introduced a configuration interaction of the two-particle-two
hole type, which indeed split the resonance in rough agreement with experiment
(1962). However, for improvement, we needed some ground-state correlations
and we expressed [7] the ground-state energy (actually the G-matrix) in terms
of bilinear products of transition amplitudes to chosen excited states n:

a.b n)x 4 (n At A At A
G =AU AN = (sl(alay) ) (n]afaale)

n
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When applying the variational principle to the ground-state energy, we realized
that we have to satisfy some subsidiary relations for our variational parameters
A. And there we were, involved in the N-representability problem! We were very
excited, hoping to find an alternative to wavefunction calculations. Soon we
became aware that some other people such as Fritz Bopp, Fukashi Sasaki,
and, above all, John Coleman were already ahead of us, attacking this fortress.
My optimism suggested: let the mathematicians rigorously solve the mathema-
tical problem, and we physicists (and quantum chemists) will fruitfully apply it.
Fortunately, I was impatient to wait and I soon realized that we have to collabo-
rate. I was extremely lucky that John Coleman invited me to the very first RDM
Conference (1967), where I presented our variational calculation with transition
amplitudes (precursor of the RDM approach) and the one-to-one mapping from
the 2-RDM to the N-particle wavefunction in the case of the ground state of a
Hamiltonian with at most two-body interactions [8]. I participated in six of the
seven RDM conferences or seminars [9-10]. The search for N-representability
conditions on the 2-RDM and viable algorithms to implement the conditions
became team work (which I enjoyed very much). The progress was exciting
but slow, with its ups and downs. It was the infectious optimism of John
Coleman (and of my senior collaborator in Ljubljana, Miodrag Mihailovic)
that kept me up [17, 18].

It was a fruitful period when I collaborated with Claude Garrod [19, 20].
He had also been excited by RDMs, and he had discovered (with Jerome Percus)
the importance of the G-matrix nonnegativity condition [3]; whichever simple
many-body problem they tried, they obtained exact results—they had thought
they had resolved the N-representability. However, with more complicated inter-
actions, the results were poorer, and Claude Garrod started the search for new
conditions. He realized, however, that the method should be computationally
viable and suggested a type of variational calculation in which D- and G-matrix
nonnegativity would be imposed iteratively by a converging infinite series of lin-
ear inequalities. This algorithm later became known as the cutting plane method,
an extension of dual simplex. It is amusing that the method has been rediscov-
ered recently under the name of semidefinite programming. Together, we devel-
oped the code and implemented the method to some atoms (Be) and light nuclei
(1316170, 20Ne, 248, 28Si). While it was excellent for the atom, it gave only 10%
precision for nuclei (compared to configuraton interaction calculations) [17, 21—
24]. Also, the imprecision and convergence time increased with the number of
particles. This means that the method is clever, and it is aware of the type of
interaction (Coulombic versus nuclear) as well as the number of particles
(even if it enters only as a parameter—the trace of the D-matrix).

An interesting application of the 2-RDM was the calculation of excited states
in the space of one-particle one-hole excitations [18, 25-30] with reasonably
good results, as well as the study of wavepacket dynamics [31].
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The partial sucess/failure slowed down the applications, especially as the
computers at that time were too slow to manage larger model spaces and addi-
tional, more complicated, N-representability conditions. Some hope was offered
by applying symmetries—orbital rotation, spin, isobaric spin—and it was stimu-
lating to explore them with Bob Erdahl and my younger collaborator Bojan Golli
[32]. However, new ideas were needed.

The final breakthrough came with the advent of powerful computers, which
enabled the algorithms of Hiroshi Nakatsuji, Carmela Valdemoro, and David
Mazziotti to come to life. I feel very happy about the revival of the RDM
approach to many-body problems.

T apologize to all those RDM contributors whose worthy works I did not men-
tion due to the limited space.
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I. INTRODUCTION

In 1927 Landau [1] and von Neumann [2] introduced the density matrix
into quantum mechanics. The density matrix for the N-electron ground-state
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wavefunction ¥(1,2,...,N), where the numbers represent the spatial and spin
coordinates for each electron, is given by

Np(1,2,...,N;1',2',...,N) =¥(1,2,...,N)T*(1",2',... . N) (1)

Integrating the N-electron density matrix over coordinates 3 to N generates the
two-electron density matrix (2-RDM):

2p(1,2; 1’,2’):/\11(1,2,...,N)\IJ*(I’,z’,...,N)d3--~dN (2)

Because electrons are indistinguishable with only pairwise interactions, the
energy of any atom or molecule may be expressed as a linear functional of the
2-RDM [3, 4]. Formulating the energy as a linear functional of the 2-RDM, how-
ever, suggests the tantalizing possibility of employing the 2-RDM rather than the
many-electron wavefunction to compute the ground-state energy of atoms and
molecules. In 1955 Mayer [4] performed an encouraging pencil-and-paper calcu-
lation, but Tredgold [5] soon discovered that the energy for a simple system from a
trial 2-RDM could be optimized substantially below the exact ground-state
energy. Why did the Rayleigh—Ritz variational principle not hold for the 2-
RDM expression of the energy? Tredgold [5], Coleman [6], Coulson [7], and
others realized that for an N-electron problem the trial 2-RDM was assuming a
form that did not correspond to an N-electron wavefunction: that is, the trial 2-
RDM at the minimum energy could not be obtained from the integration of an
N-electron density matrix. The 2-RDM must be constrained by additional rules
(or conditions) to derive from an N-electron wavefunction. Coleman described
these necessary and sufficient rules as N-representability conditions [6].

The unsuccessful back-of-the-envelope 2-RDM calculations of Mayer and
Tredgold already employed four basic requirements for a density matrix of indis-
tinguishable fermions [6]: the matrix should be (i) normalized to conserve par-
ticle number, (ii) Hermitian, (iii) antisymmetric under particle exchange, and
(iv) positive semidefinite to keep probabilities nonnegative. A matrix is positive
semidefinite if and only if all of its eigenvalues are nonnegative. These condi-
tions are sufficient to guarantee that 2-RDM is a density matrix but not sufficient
for the matrix to be representable by an N-electron density matrix, or N-repre-
sentable. What additional conditions must be imposed on a 2-RDM to restrict it
to be N-representable? While a considerable research effort was initially made to
understand these conditions, interest in the 2-RDM approach to many-electron
atoms and molecules began to wane as the N-representability problem appeared
intractable.

Interest in the 2-RDM and its N-representability returned in the 1990s with
the direct calculation of the ground-state 2-RDM without the many-electron
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wavefunction from a self-consistent solution of the contracted Schrodinger
equation [8—15]. Recent progress has revealed the importance of a class of
N-representability constraints, called positivity conditions [16, 17]. Erdahl
and Jin [16] and Mazziotti and Erdahl [17] generalized these conditions, ori-
ginally discussed by Coleman [6] and Garrod and Percus [18], to a hierarchy
of N-representability conditions, and Mazziotti and Erdahl [17] showed that
each level of the hierarchy corresponds to enforcing the generalized uncer-
tainty relations for a class of operators. With the positivity conditions, an
accurate lower bound on the ground-state energy of many-electron atoms
and molecules can be computed through a variational calculation in which
the energy is directly parameterized as a linear functional of the 2-RDM
[16, 17, 19-37]. The method produces realistic energies and RDMs even
when the wavefunction becomes difficult to parameterize, as in transition-state
structures or other stretched geometries of a potential energy surface [21, 22,
28, 29, 31, 35, 37]. Variational solution of the 2-RDM with positivity con-
straints requires a special constrained optimization known as semidefinite pro-
gramming, which also has applications in control theory, combinatorial
optimization, and even finance.

II. THEORY

After the energy is expressed as a functional of the 2-RDM, a systematic hier-
archy of N-representability constraints, known as p-positivity conditions, is
derived [17]. We develop the details of the 2-positivity, 3-positivity, and partial
3-positivity conditions [21, 27, 34, 33]. In Section IL.E the formal solution of N-
representability for the 2-RDM is presented through a convex set of two-particle
reduced Hamiltonian matrices [7, 21]. It is shown that the positivity conditions
correspond to certain classes of reduced Hamiltonian matrices, and conse-
quently, they are exact for certain classes of Hamiltonian operators at any inter-
action strength. In Section ILF the size of the 2-RDM is reduced through the use
of spin and spatial symmetries [32, 34], and in Section II.G the variational
2-RDM method is extended to open-shell molecules [35].

A. Energy as a 2-RDM Functional

Because electrons interact pairwise, the many-electron Hamiltonian for any
atom or molecule can be written

H= Z zKéﬂaja;alak (3)
il

where the a' and the a are the second-quantized creation and annihilation
operators, the indices refer to members of a spin-orbital basis set, and the
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two-electron reduced Hamiltonian matrix 2K is the matrix representation of
the operator

. 1 1 Z; 11
ZK VZ 2 7 4
N —1 ( 2 : 7 ) 21‘12 ( )

”1]

The expectation value of the Hamiltonian operator yields the many-electron
energy

E=) Ki’Dp) (5)
E = Tr(*K*D) (6)

as a functional of the reduced Hamiltonian matrix and the two-electron reduced
density matrix (2-RDM), where

*Dif} = (V|aja)ajay| V) (7)

Both the energy as well as the one- and two-electron properties of an atom or
molecule can be computed from a knowledge of the 2-RDM. To perform a var-
iational optimization of the ground-state energy, we must constrain the 2-RDM
to derive from integrating an N-electron density matrix. These necessary yet suf-
ficient constraints are known as N-representability conditions.

B. 2-Positivity Conditions

General p-particle N-representability conditions on the 2-RDM are derivable from
metric (or overlap) matrices. From the ground-state wavefunction |¥) and a set of
p-particle operators {C,-,T,vz,“_#p}, a set of basis functions can be defined,

<©i|\i2~,<--\ip| = <\I/|Ci1‘i2,“.,ip (8)

for which the metric (or overlap) matrix M with elements

M = Py | Py ) 9)
. o
= <\Ij|Cil,l'z-,--»,l'pCjIAjz‘,““j,, o) (10)

must be positive semidefinite. We indicate that a matrix has this property by the
notation M > 0. For a p-RDM that is parameterized by a wavefunction, these vec-
tor-space restrictions are always satisfied. More generally, however, these condi-
tions, known as p-positivity conditions, offer a systematic approach for imposing
N-representability conditions on an RDM without using the wavefunction.
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When p = 2, we may choose the C; j in three distinct ways: (i) to create one
particle in the jth orbital and one particle in the ith orbital, that is, C‘,- = alTa]T;
(i1) to annihilate one particle in the jth orbital and one particle in the ith orbital
(or create holes in each of these orbitals), (:’, j = a;a;; and (iii) to annihilate one
partlcle in the jth orbital and create one particle in the ith orbital, that is,
G ji= =a ;a;. These three choices for the G ;j produce the following three different
metric matrices for the 2-RDM:

*D) = (Vlalalaa| W) "
le = <‘I’\aiaja}a11|‘1/> "
2GY) = (V]alajafa,| @) "

which must be positive semidefinite if the 2-RDM is N-representable [6, 17, 18].
All three matrices contain equivalent information in the sense that rearranging
the creation and annihilation operators produces linear mappings between the
elements of the three matrices; particularly, the two-hole RDM 20 and the
particle-hole RDM 2G may be written in terms of the two-particle RDM 2D
as follows

20 =220 — 4 DA+ D) (14)
and
. y
2le = llf IDZ - ZDZ.J' (15)

While all three matrices are interconvertible, the nonnegativity of the eigenva-
lues of one matrix does not imply the nonnegativity of the eigenvalues of the
other matrices, and hence the restrictions 2Q > 0 and G > 0 provide two impor-
tant N-representability conditions in addition to 2D > 0. These conditions phy-
sically restrict the probability distributions for two particles, two holes, and one
particle and one hole to be nonnegative with respect to all unitary transforma-
tions of the two-particle basis set. Collectively, the three restrictions are known
as the 2-positivity conditions [17].
Because ZD > 0 and 2Q > 0 imply 'D > 0 and 'Q > 0 by contraction

1ni 2 i
D 7ﬁ Ej Dk,j (16)

. 1 ..
1 2 AiJ
% =N 1Z,. 4 (17)
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the 2-positivity conditions imply the 1-positivity conditions. The r in the con-
traction of the two-hole RDM denotes the rank of the one-particle basis set.
In general, the p-positivity conditions imply the g-positivity conditions for
q < p. The 1-positivity conditions from the metric matrices for the one-particle
and one-hole RDMs, !D and !Q, restrict the occupation numbers 7; (or eigenva-
lues) of the 1-RDM to lie in the interval n; € [0, 1]. Coleman showed this condition
on the eigenvalues to be both necessary and sufficient for the N-representability
of the 1-RDM [6].

C. 3-Positivity Conditions

The conditions that a 3-RDM be 3-positive follow from writing the operators in
Eq. (8) as products of three second-quantized operators [16, 17]. The resulting
basis functions lie in four vector spaces according to the number of creation
operators in the product; the four sets of operators defining the basis functions
in Eq. (8) are

~D At ata
Ci,j,k = a;[ /Talt (18)
Cpe = alaa (19)
AF A "T
Cijx = ity (20)
CiQ,j,k = &,-&jak (21)

Basis functions between these vector spaces are orthogonal because they are
contained in Hilbert spaces with different numbers of particles. Hence the
four metric matrices that must be constrained to be positive semidefinite for
3-positivity [17] are given by

Dk = (lalalaja,a,a, V) (22)
SELE = (af alaala,a,|0) (23)
SFEE = (Wlaaaa,alal| o) (24)
SOk = (Waaaalalal|v) (25)

As in Egs.(14) and (15) for the 2-positive metric matrices, the 3-positive metric
matrices are connected by linear mappings, which can be derived by rearranging
the second-quantized operators. A 2-RDM is defined to be 3-positive if it arises
from the contraction of a 3-positive 3-RDM:

1

2nij 3 ik
Dp{q T N=2 - Dp,q,k (26)
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Physically, the 3-positivity conditions restrict the probability distributions for
“three particles,” “two particles and one hole,” “one particle and two holes,”
and ‘“‘three holes” to be nonnegative with respect to all unitary transformations
of the one-particle basis set. These conditions have been examined in variational
2-RDM calculations on spin systems in the work of Erdahl and Jin [16],
Mazziotti and Erdahl [17], and Hammond and Mazziotti [33], where they give
highly accurate energies and 2-RDMs.

EEINT3

D. Partial 3-Positivity Conditions

Two different partial 3-positivity conditions have been proposed: (i) the lifting
conditions of Mazziotti [21, 33], and (ii) the T|/T> conditions of Erdahl [27,
34, 38]. The T, /T, conditions have been implemented for molecules by Zhao
et al. [27] and Mazziotti [34].

1. Lifting Conditions

The lifted 3-RDMs [21] are defined by taking the expectation values of particle
(or hole) projection operators iy = a;a; (or 1 —iy = &k&,T() over the space
spanned by the basis functions in the three metric matrices for 2-positivity:

2Dy = (@P|0D) = (V|alaja,a,| W) (27)
200 = (d|08) = (V|aa,alal|v) (28)
2GI = (05]0F) = (V|ala,ala,| W) (29)

where |®D), |®2), and |®F), are (N — 2)-, (N + 2)-, and N-particle basis func-
tions, respectively. An example of this type of expectation value is

(@FI(1 — )| @) = (V]aja]aaja,a V) (30)
which is the 3E matrix in Eq. (22) with an upper index set equal to a lower set.
Summing over the particle projection operators for all orbital basis functions
gives the number operator Ny = > i Hence, because Eq. (30) contracts to
the G-condition, it includes the N-representability restrictions from the G-
condition as well as additional constraints [21]. The lifted conditions are part
of the four 3-positivity conditions since every principal submatrix of a positive
semidefinite matrix must also be positive semidefinite. By inserting either the
particle or hole projection (or lifting) operator between the basis functions
|®P), we generate two lifted metric matrices *D and *E. Similarly, from the basis
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functions for 2Q and 2G, we generate four more conditions for a total of six
partial 3-positive conditions:

(D)atay|@p) = (Wlalalalaana| V) = 3D;’;,’ik (31)
(@D |acal|®p,) = (Vlalalaralana| V) = E], (32)
(®F|atar| ®F,) = (V|alaaladl,a| ) = 3E;f,,’;k (33)
(@F|acal|®f,) = (V|alaanalalalv) = F, (34)
(®%|ala,|®f,) = @\aa]akaka aj|w) = 3F;f,’:k (35)
(D%|acal|®L) = (V|awaalal,al|v) = 0O, (36)

Three distinct sets of linear mappings for the partial 3-positivity matrices in Egs.
(31)—(36) are important: (i) the contraction mappings, which relate the lifted metric
matrices to the 2-positive matrices in Egs. (27)—(29); (ii) the linear interconversion
mappings from rearranging creation and annihilation operators to interrelate the lifted
metric matrices; and (iii) antisymmetry (or symmetry) conditions, which enforce the
permutation of the creation operators for fermions (or bosons). Note that the correct
permutation of the annihilation operators is automatically enforced from the permu-
tation of the creation operators in (iii) by the Hermiticity of the matrices.

2. Ty/T, Conditions

Because the addition of any two positive semidefinite matrices produces a posi-
tive semidefinite matrix, the four 3-positivity conditions [17] imply the follow-
ing two less stringent constraints:

T,=°D+30>0 (37)
T, =3E4+3F >0 (38)

known as the 7| and T, conditions [27, 34, 38]. These conditions can be written
as explicit linear functionals of the 2-RDM because the terms with six creation
and/or annihilation operators in 3D and 30 (as well as 3E and 3F) cancel
upon addition due to opposite signs. If the metric matrices are expressed as
cumulant expansions [14, 15, 39, 40], it can be shown that it is precisely the con-
nected (or cumulant) parts of the metric matrices that cancel upon addition [33].
Hence the T and 7, matrices are unconnected. The 77 and 7, matrices corre-
spond to metric matrices, where the operators Ci j« in Bq. (9) are defined as

C‘l k= aTaTak + a;aja (39)
C'lTj = aJraTak +a; a,a,t (40)

respectively.



VARIATIONAL TWO-ELECTRON REDUCED-DENSITY-MATRIX THEORY 29

In contrast to the 3E and 3F metric matrices in 3-positivity, the strength of the

T, matrix as a 2-RDM N-representability condition is not conpletely invariant
upon altering the order of the second-quantized operators in C, ; ;. For example, a
sl1ght1y different metric matrix 7> can be defined by exchanging the operators g,
and ak in Eq. (40) to obtain

AT

Cijx= ara ax + a}{a]a, (41)
This dependence on ordering occurs because, unlike the set of operators Cl «

T s

and C 4 1n the 3-positivity conditions, the operators C  do not include the
set of smgle particle excitation and deexcitation operators that is,

{af.ai}/c {€} (42)

To demonstrate the reason for this difference between 3E and T, we note that
Z lJl = (43)
where N is the number operator, while
AT, T ~
Z Cii=— (aj + a_,-)N (44)

Rearranging the operators C 17:]21 to C ITle produces a term with a single annihilation
oEeTEator. Because this term cannot be expressed in terms of the set of operators
{C; 4} the space spanned by the basis functions in the metric matrix T differs
slightly from the space spanned by the basis functions in the metric matrix 7.

A generallzed metric matrix T,, however, can be obtained by supplement-
ing the Cl .« operators from Eq. (40) with the set of single-particle excitation
and deex01tat10n operators:

C‘T { ,ai,ala jak—|—aa]a}:} (45)

The generalized T, matrix is contained in Erdahl’s original theoretical treatment
of these conditions [38], although the recent applications to atoms and molecules
[27, 34] employ either T, or T,. The condition 7> > 0 implies both 7, > 0 and
T, > 0 as well as any other conditions from different orderings of the second-
quantized operators.
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E. Convex Set of Two-Particle Reduced Hamiltonian Matrices

The formal solution of N-representability for the 2-RDM is developed in terms
of a convex set of two-particle reduced Hamiltonian matrices. To complement
the derivation of the positivity conditions from the metric matrices, we derive
them from classes of these two-particle reduced Hamiltonian matrices. This
interpretation allows us to demonstrate that the 2-positivity conditions are exact
for certain classes of Hamiltonian operators for any interaction strength. In this
section all of the RDMs are normalized to unity. Much of this discussion
appeared originally in Refs. [21, 29].

1. Convex Set of N-Representable 2-RDMs

The energy for a system of N fermions with p-particle interactions may be writ-
ten as a linear functional of the p-RDM:

E =Tr[H"D] = Tt K" D] (46)

where 7K is the p-particle reduced Hamiltonian matrix. A contraction operator
LY, may be defined to integrate (or sum) the N-particle density matrix to the
p-RDM, where in this section we assume that all density matrices are normal-
ized to unity. Employing the contraction operator in Eq. (46) and taking its
adjoint

E = TrPK I4,(YD)] = Tr[T) ("K) ¥ D] (47)

defines a lifting operator I‘;}' , which by comparison with Eq. (46) maps the
p-particle reduced Hamiltonian matrix to the N-particle Hamiltonian H [41, 42].
The lifting operator may be evaluated with a Grassmann wedge product of the
p-particle reduced Hamiltonian matrix with the (N — p)-particle identity matrix

_ 17N _ N—,
H=TY(K) ="K NN (48)

where the Grassmann wedge A denotes the antisymmetric tensor product
[13, 43]. The wedge product is computed by summing all distinct antisymmetric
permutations of the upper and lower indices and dividing by the total number of
permutations.

Direct minimization of the energy as a functional of the p-RDM may be
achieved if the p-particle density matrix is restricted to the set of N-represen-
table p-matrices, that is, p-matrices that derive from the contraction of at least
one N-particle density matrix. The collection of ensemble N-representable
p-RDMs forms a convex set, which we denote as PI’;’ . To define Pg’ , we first
consider the convex set Bg of p-particle reduced Hamiltonians, which are
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positive semidefinite (nonnegative eigenvalues) after being lifting to the N-
particle space:

BY = {”B|”B A NP > 0} (49)

When N = p, the set Bl simply contains the p-particle reduced Hamiltonians,
which are positive semidefinite, but when N = p + 1, because the lifting process
raises the lowest eigenvalue of the reduced Hamiltonian, the set B+ also con-
tains p-particle reduced Hamiltonians that are liffed to positive semidefinite
matrices. Consequently, the number of N-representability constraints must
increase with N, that is, B’pV C B;,V +1. To constrain the p-RDMs, we do not actu-
ally need to consider all ”B in Bg , but only the members of the convex set Bfuv ,
which are extreme A member of a convex set is extreme if and only if it cannot
be expressed as a positively weighted ensemble of other members of the set (i.e.,
the extreme points of a square are the four corners while every point on the
boundary of a circle is extreme). These extreme constraints form a necessary
and sufficient set of N-representability conditions for the p-RDM [18, 41, 42],
which we can formally express as

Py = {rDITefBD] > 0,75 € B} } (50)

The set of N-representable p-RDMs becomes smaller as N increases, that is,
PN+l pN
J2 I
A significant class of p-particle reduced Hamiltonians in the set Bg’ includes
those that are positive semidefinite B > 0, and the extreme Hamiltonian matrices
that satisfy this positivity constraint may be parameterized as follows:

”B; = cic} (51)

Substitution of this class of reduced Hamiltonians into Eq. (50) gives
Z cic}‘ "D; >0 (52)
ij

which is one definition for restricting the p-RDM to be positive semidefinite
?D > 0. However, for p < N this does not exhaust the extreme elements of
the set B,I:’ . The task of determining the complete set of ”B without checking
the conditions in Eq. (49) may appear daunting or even impossible. However,
in the next sections this set is described exactly for the 1-RDM at the one-par-
ticle level and approximately for the 2-RDM at the two-particle level. Special
emphasis is placed on the interpretation of positivity conditions as testing signif-
icant classes of extreme reduced Hamiltonians.
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2. Positivity and the 1-RDM

A quantum system of N particles may also be interpreted as a system of (r — N)
holes, where r is the rank of the one-particle basis set. The complementary nat-
ure of these two perspectives is known as the particle-hole duality [13, 44, 45].
Even though we treated only the N-representability for the particles in the formal
solution, any p-hole RDM must also be derivable from an (r — N)-hole density
matrix. While the development of the formal solution in the literature only con-
siders the particle reduced Hamiltonian, both the particle and the hole represen-
tations for the reduced Hamiltonian are critical in the practical solution of N-
representability problem for the 1-RDM [6, 7]. The hole definitions for the
sets B~V and P’V are analogous to the definitions for particles except that
the number (r — N) of holes is substituted for the number of particles. In defin-
ing the hole RDMs, we assume that the rank r of the one-particle basis set is
finite, which is reasonable for practical calculations, but the case of infinite
may be considered through the limiting process as r — oo.

The ground-state energy for the N-particle Hamiltonian defined with 'K in
Eq. (48) may be expressed from either the particle or the hole perspective:

E =Ti['K'D] (53)
=Tr['K 'D]

where the 1-hole RDM and reduced Hamiltonian may be written in terms of the
1-RDM and the 1-particle reduced Hamiltonian through the rearrangement of
the creation and the annihilation operators:

(r—=N)'D+N'D="1 (54)
and

1 . .
'K; :N(Tr[ll{]llj? —(r—=N)'K)) (55)
Any arbitrary one-particle reduced Hamiltonian shifted by its N-particle ground-
state energy must be expressible by the extreme Hamiltonian elements in the
convex set BY. As we showed in Eq. (52), keeping the 1-RDM positive semide-
finite is equivalent to applying the N-representability constraints in Eq. (50) for
the class of extreme positive semidefinite !B, which may be parameterized by

1pi | %
B, = cic; (56)

Each extreme ' B matrix is a projector onto an orbital defined by the set of expan-
sion coefficients {c;}. This class of Hamiltonians, however, is not complete,
as may be seen by shifting an arbitrary Hamiltonian 'K by its N-particle



VARIATIONAL TWO-ELECTRON REDUCED-DENSITY-MATRIX THEORY 33

ground-state energy Ey and then expanding the resulting matrix 'C in terms of
its eigenvalues {¢;} and eigenvectors {c;}:

'C="K-Ey'1=) o} (57)

Because Ey is the N-particle energy and not the lowest eigenvalue of 'K, some of
the eigenvalues of ' C will be negative, and this portion of the reduced Hamiltonian
cannot be represented by the positive semidefinite Hamiltonians in Eq. (56).

A similar argument, however, may also be made from the perspective of the
holes. Restricting the one-hole RDM to be positive semidefinite corresponds to
applying the N-representability constraints in Eq. (50) to the class of extreme
positive semidefinite 'B,

1 pi _ *
B; = cic; (58)
or, after being mapped to the particle reduced Hamiltonian,

i 1 i *
lBj:r_N(IIj—N]C,'Cj) (59)

While the extreme Hamiltonians in either Eq. (56) or Eq. (59) alone are not suf-
ficient, together they provide all of the extreme Hamiltonians in the set B . Inde-
pendent of the correlation present in the 1-RDM, an ensemble of the extreme
elements in Egs. (56) and (59) may generate any energy-shifted Hamiltonian
'C—both the positive and the negative parts of its spectrum. Proof of this impor-
tant idea was first given by Coleman [6, 7]. From the formal definition of the
N-representability constraints in Eq. (50), therefore, the positivity of the one-
particle and the one-hole RDMs is necessary and sufficient for the ensemble
N-representability of the 1-RDM [6]. This result highlights the importance of
examining different representations of the reduced Hamiltonian. Without wed-
ging to the N-particle space the particle- and the hole-reduced Hamiltonians pro-
vide a complete solution of ensemble representability for the 1-RDM on the one-
particle space.

3. Positivity and the 2-RDM

The ground-state energies of atoms and molecules where the N-particle Hamil-
tonian is defined by Eq. (48) may be expressed through three different represen-
tations of the 2-RDM and the two-particle reduced Hamiltonian:

E = Tr[’K *D] (60)



34 DAVID A. MAZZIOTTI

where the elements of the two-hole RDM are given by
i 1 n
20, = — (V|awalal| V) > 0 (61)
q

or in terms of the 1- and the 2-RDMs

R o

B2Ql =1 - N DA+

Dy, (62)
and the elements of the two-particle G-matrix are given by
; 1
ik
Gk = . (U|alarala)| W) > 0 (63)

or in terms of the 1- and the 2-RDMs
ng Gy = N, ' D+ na*Dy) (64)

The factors ny, ng, and n,, which normalize the D-, the Q- and the G-matrices to
unity, are given by N(N — 1), (r = N)(r — N — 1), and N(r — N + 1), respec-
tively. Because the D-, the Q-, and the G-matrices are expressible as metric
(or overlap) matrices M,

M} = (®i]2) = (¥|C:C'|w) > 0 (65)

each of them must be positive semidefinite for the 2-RDM to be N-representable.
These positivity conditions were originally proposed by Garrod and Percus [18].

Using the second-quantized definitions of the D-, the O-, and the G- matrices,
the Q- and the G-reduced Hamiltonians 2K and 2K in Eq. (60) may be expressed
in terms of the usual D-representation of the reduced Hamiltonian:

2 Iy ; 4 .
Ky = (WPKP = (=N LPKE A 50K (66)
and
~ i, n . i.m
k) = }Ti <2K,§{, +O/r=N+1)> ZK,"m> (67)

To the Q- and the G-reduced Hamiltonians, we may wish to affix the name gen-
eralized reduced Hamiltonians. Just as the D-form of the reduced Hamiltonian
may be lifted to an N-particle Hamiltonian, the Q-form of the reduced



VARIATIONAL TWO-ELECTRON REDUCED-DENSITY-MATRIX THEORY 35

Hamiltonian may be lifted by Eq. (48) to an (r — N)-hole Hamiltonian, which
shares the same ground-state as the N-particle Hamiltonian. A similar lifting
may be extended to the G-form of the reduced Hamiltonian, but the procedure
is slightly more subtle since the G-matrix combines the particle and the hole
perspectives.

The three complementary representations of the reduced Hamiltonian offer a
framework for understanding the D-, the O-, and the G-positivity conditions for
the 2-RDM. Each positivity condition, like the conditions in the one-particle
case, correspond to including a different class of two-particle reduced Hamilto-
nians in the N-representability constraints of Eq. (50). The positivity of 2D arises
from employing all positive semidefinite 2B in Eq. (50) while the Q- and the G-
conditions arise from positive semidefinite 2B and 2B, respectively. To under-
stand these positivity conditions in the particle (or D-matrix) representation,
we define the D-form of the reduced Hamiltonian in terms of the Q- and the
G-representations:

ij _ 2 =124 =i i Nd o
2B, = — (TePB) 1, — NLIPBY, A 'E + 5L 2B (68)
q

and

= (8] oo SR ®
The Q- and the G-conditions are thus equivalent to the constraints in Eq. (50)
with the two-particle reduced Hamiltonians in Eqs. (68) and (69), where
2B > 0 and 2B > 0. Unlike the one-particle case, these reduced Hamiltonians
do not exhaust all of the extreme constraints in Eq. (50), and yet the explicit
forms of the Hamiltonians give us insight into the variety of correlated
Hamiltonians that can be treated accurately.

4. Strength of Positivity Conditions

Many methods in chemistry for the correlation energy are based on a form of
perturbation theory, but the positivity conditions are quite different. Traditional
perturbation theory performs accurately for all kinds of two-particle reduced
Hamiltonians, which are close enough to a mean-field (Hartree—Fock) reference.
There are a myriad of chemical systems, however, where the correlated wave-
function (or 2-RDM) is not sufficiently close to a statistical mean field. Different
from perturbation theory, the positivity conditions function by increasing the
number of extreme two-particle Hamiltonians in BY, which are employed as
constraints upon the 2-RDM in Eq. (50) and, hence, they exactly treat a certain
convex set of reduced Hamiltonians to all orders of perturbation theory. For the
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D-, the O-, and the G-conditions we have: If the two-particle reduced Hamiltonian
shifted by its N-particle ground-state energy can be written as an ensemble of
the reduced Hamiltonians in the set {*B > 0} as well as the Q- and the G-reduced
Hamiltonians parameterized in Egs. (68) and (69), then the energy for an
N-particle system may be computed exactly.

To gain an understanding of this mechanism, consider the Hamiltonian opera-
tor (I:I — Egi ) with only two-body interactions, where E, is the lowest energy for
an N-particle system with Hamiltonian H and the identity operator I. Because E,
is the lowest (or ground-state) energy, the Hamiltonian operator is positive semi-
definite on the N-electron space; that is, the expectation values of H with respect
to all N-particle functions are nonnegative. Assume that the Hamiltonian may be
expanded as a sum of operators 0;0;

H—EJ =Y w0,0] (70)

where each O; operator is a sum of products of two creation and/or annihilation
operators and the weights w; are defined to be nonnegative. If the 2-RDM is con-
strained to be 2-positive, then upon evaluation with the 2-RDM every term in the
sum in Eq. (70) is nonnegative. For example, if the O; operator is assembled from
products like a'a, then the ith term may be written in terms of the G-matrix:

(W]0,0]|w) = <W| Zoi.J-a?ajZoz,,aJ'ak|@> (71)
ij k,l

=" 0ij0; (V|a|qjala,|¥) (72)
ik

= Z Oi,iO;IZGZ{z (73)
il

If the G-matrix is positive semidefinite, then the above expectation value of the
G-matrix with respect to the vector of expansion coefficients 0;; must be nonne-
gative. Similar analysis applies to O; operators expressible with the D- or Q-
matrix or any combination of D, Q, and G. Therefore variationally minimizing
the ground-state energy of a (I:I — Eg?) operator, consistent with Eq. (70), as a
function of the 2-positive 2-RDM cannot produce an energy less than zero. For
this class of Hamiltonians, we conclude, the 2-positivity conditions on the 2-
RDM are sufficient to compute the exact ground-state N-particle energy on
the two-particle space.

The G-reduced Hamiltonians are necessary and sufficient for at least three
important classes of Hamiltonians: (i) all one-particle Hamiltonians, (ii) bosons
or fermions with harmonic interactions [24], and (iii) all Hamiltonians with
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antisymmetrized geminal power (AGP) ground states. For 2G the operators
C in Eq. (65) are chosen to be aTaj Selecting the operators C to be aczjT
produces

~ 1
G = — (V|aa! alak\\m 0 (74)
ng

where 7, = (N + 1)(r — N). Because these two sets of basis functions may be
interconverted by the anticommutation relation, however, they merely represent
a different organization of the same functions. Hence positivity of one metric
matrix implies positivity of the other. Contraction of these two G-matrices
(3G and 2G) yields the positivity of the one-particle and the one-hole RDMs,
respectively, which proves that the G-condition alone forces the 1-RDM to be
N-representable. This proof is stronger than Rosina’s proof that the generalized
G-condition produces an N-representable 1-RDM [46]. While neither the D- nor
the Q-condition alone restricts the 1-RDM to be N-representable, it is well-
known that the combination of these conditions enforces N-representability of
the 1-RDM [6].

Gidofalvi and Mazziotti [24] have examined a harmonically interacting sys-
tem of bosons with application to Bose condensation. At any interaction strength
it was shown numerically that energy minimization with respect to a 2-RDM
constrained by 2-positivity conditions yielded the exact ground-state energy,
and theoretically, the Hamiltonian was proved to belong to the family character-
ized by Eq. (70). In contrast, other many-body methods including perturbation
theory and the connected-moments expansion [47] failed to give more than half
of the correlation energy at large interactions.

An AGP wavefunction [48, 49] is generated from wedge products involving a
single geminal g(1,2):

\IJAGP:g(l,Z)/\g(3,4)/\'~~/\g(N71,N) (75)

Coleman [50] has shown that the Hamiltonians b(g) € BY, which have an AGP
ground-state wavefunction, are given by

b(g) =1 — (N —-2)'D(g) NI — (N — 1)gg’ (76)
where

'D(g) = Ly[gg"] (77)

Erdahl and Rosina [51] have demonstrated that the set of b(g) Hamiltonians is
contained in the convex set defined by the extreme reduced Hamiltonians from
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the G-condition, and hence we conclude that the G-condition is sufficient to
obtain the correct ground-state energy for any system with an AGP ground-state
wavefunction.

Because an AGP wavefunction may be highly correlated, the G-condition’s
treatment of AGP Hamiltonians illustrates how the positivity conditions have
the ability to transcend the limitations of perturbation theory. For a mean-field
state the occupation numbers of the 2-RDM are equal to 1/[N(N — 1)] or 0. In
early work on N-representability, Bopp assumed that the occupation numbers
of the 2-RDM were bounded from above by 1/[N(N — 1)]. Yang, Sasaki, and
Coleman, however, showed that the maximum occupation number is actually
1/(N — 1), which is achieved by a certain class of AGP wavefunctions [6, 52,
53]. The appearance of a large occupation number in the 2-RDM may be asso-
ciated with long-range order and pair formation in superconductivity.
Although these highly correlated phenomena easily cause single-reference
perturbation theory to fail, they may be treated exactly within the framework
of G-positivity.

Our discussion may readily be extended from 2-positivity to p-positivity. The
class of Hamiltonians in Eq. (70) may be expanded by permitting the 0; opera-
tors to be sums of products of p creation and/or annihilation operators for p > 2.
If the p-RDM satisfies the p-positivity conditions, then expectation values of this
expanded class of Hamiltonians with respect to the p-RDM will be nonnegative,
and a variational RDM method for this class will yield exact energies. Geome-
trically, the convex set of 2-RDMs from p-positivity conditions for p > 2 is
contained within the convex set of 2-RDMs from 2-positivity conditions. In gen-
eral, the p-positivity conditions imply the g-positivity conditions, where g < p.
As a function of p, experience implies that, for Hamiltonians with two-body
interactions, the positivity conditions converge rapidly to a computationally suf-
ficient set of representability conditions [17].

F. Spin and Spatial Symmetry Adaptation

While previous variational 2-RDM calculations for electronic systems have
employed the above formulation [20-31], the size of the largest block diagonal
matrices in the 2-RDMs may be further reduced by using spin-adapted operators
C; in Eq. (9). Spin-adapted operators are defined to satisfy the following math-
ematical relations [54, 55]:

8., C" = mC™ (78)

and

~ s, mE1

8., C" = V/s(s+ 1) —m(m = 1)C (79)
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where
S+ = Z&;a&p,/ﬁ (80)
- Z*ﬁ (81)
fz a; iy — ﬁa, 5) (82)
ol ;H = 0and C = 0, and the upper right superscripts s and m in C denote

the square of the total spin and the z-component of the total spin for the operators.
The operators C; employed in the previous section as well as earlier work satisfy only
Eq. (78). The spin-adapted products of two creation operators are:

. 0,0 | B At A
ij - 72 (aj.ota;,[} + a},aaiﬁ) (83)
- 1,0 | B, At
N ("h“},ﬁ - a},aam (84)
11
Ci.j - atch },a (85)
P N
Ci; =aa, (86)

Inserting these four operators into Eq. (8), we can generate four sets of (N +2)-
electron basis functlons for the two-hole RDM (*Q matrix), |Q<I> 9, |Q<I>1 0)
|Q<I> ", and |Q<I> !, respectively. For a ground-state wavefunction Wlth a deﬁ-
nite total S and z-component M spin quantum numbers, the (N + 2)-electron
basis functions with different m are orthogonal. Furthermore, whenever the
ground-state wavefunction has M = 0 for any definite S, it is readily shown
that the basis functions generated from operators with different s but the same
m are also orthogonal. Therefore, when M = 0 in the ground-state wavefunction,
the spin-adapted two-hole RDM has four blocks, with the singlet and triplet
blocks scaling as ry(r; + 1)/2 and ry(ry — 1) /2, respectively [56, 57]. The singlet
block is symmetric in its spatial indices while each triplet block is antisymmetric
in its indices. If the ground-state wavefunction is also a singlet (S = 0), the three
triplet blocks are equivalent, and hence only two distinct blocks must be con-
strained to be positive semidefinite.

By particle-hole duality, the same block structure appears in the spin-adapted
two-electron RDM. The four blocks of the 2-RDM have the following traces [57]:

Tr(2D%) = M _S(S+1) (87)
Tr(?D'0) = NN=2) _yp +S(S+1) (88)

4
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N
Tr(*D"') = (2+M) (];JFM— 1) (89)

Tr(>D" 1) = (ZM) (ZM 1) (90)

When the ground-state wavefunction is a singlet, the three triplet blocks have the
same traces. In the variational 2-RDM calculations, these trace restrictions are
enforced as constraints. Because the 2Q and >G matrices are related to 2D by
linear mappings, these trace conditions also produce the correct traces of the
spin-adapted 2Q and %G matrices. As will be showg later, these trace conditions
also enforce the correct expectation value of the S operator.

To generate the spin-adapted G matrix, we spin-adapt the products of one
creation operator and one annihilation operator:

C ?JO = % (Aj,y,aj.oc + fliﬁflj,ﬁ) (91)
Ciy ' = al s (92)
CIIJO = % (@} 1 — &} yi1; ) (93)
Cij =l (94)

These operators satisfy the formal definition for spin-adapted operators in Eqs.
(79) and (78). Inserting these four operators into Eq. (8), we can generate four
sets of N-electron basis functions for the 2G matrix, |G<I>?;.O>, |G¢>l!;0), |G<I>ilj].1 ), and
|G<I>;J‘a_]>, respectively. As in the case of the >Q matrix, when M = 0 in the
ground-state wavefunction, the spin-adapted two-electron RDM has four diago-
nal blocks, scaling as r2. The blocks of the ?G matrix are neither symmetric nor
antisymmetric in the permutation of the spatial indices. If the ground-state wave-
function is also a singlet (S = 0), the three triplet blocks are equivalent, and
hence only two distinct blocks must be constrained to be positive semidefinite.

Similar to spin adaptation each 2-RDM spin block may further be divided
upon considering the spatial symmetry of the basis functions. Here we assume
that the 2-RDM has already been spin-adapted and consider only the spatial
symmetry of the basis function for the 2-RDM. Denoting the irreducible repre-
sentation of orbital i as I';, the 2-RDM matrix elements are given by

2 i1y
krk.lrl

= (W]a],al - awr i, | V) (95)

These matrix elements are nonzero by spatial symmetry only if the direct pro-
ducts I @ I'; and T'y ® I'; share a common irreducible representation [58].



VARIATIONAL TWO-ELECTRON REDUCED-DENSITY-MATRIX THEORY 41

Hence the 2-RDM is further divided into blocks according to the spatial symme-
try of the orbitals.

To illustrate the advantage of spin- and spatial-symmetry adaptation, consider
the BH molecule in a minimal basis set. If only S’ is considered, the largest
block of the two-electron RDM (i.e., ZD“ " ) is of dimension 36. Spin adaptation
divides 2D into two blocks, zDag (2D1 04+ 2p%0) with sizes 15 and 21,
respectively. Furthermore, because there are three molecular orbitals (MOs)
with Aj, one MO with B,, and one MO with B; spatial symmetry, each spin
block is divided into four spatial blocks. In particular, the singlet spin block
has the structure

A A A
R BRI
Dgf;gf Dgiﬁgi Dg?igf 0 0 0
2pio _ | Paiay Do, Dgls 0 0 0
B 0 0 o DpDYB 9 0
A1,B>
B
0 0 0 0 DYy 0
0 0 0 0 0 Dy

where the blocks have dimensions 12, 4, 4, and 1, respectively. The triplet block
has a similar structure, except that the largest block is of a smaller dimension
(i.e., dimension 6) because of the restriction (i < j) on the upper (and lower)
indices. By particle-hole duality, the two-hole or 2Q matrix has precisely the
same block structure. Similar arguments may be employed to show that the elec-
tron—hole or 2G matrix is partitioned into four blocks with sizes 18, 8, 8, and 2.

1. Spin Adaptation and S-Representability

An N-representable RDM is also defined to be S-representable if it derives from
an N-particle wavefunction or an ensemble of N-particle wavefunctions with a
definite spin quantum number S [57]. By definition, an S-representable two-
electron RDM yields the correct expectation value

(TSM| 87| TSMY = §(S + 1) (96)

of the total spin angular momentum operator
§=85+8+538, (97)
For an N-electron wavefunction with quantum numbers S and M, Eq. (96) reduces to

Z 2D =N/2+ M — S(S+1) (98)
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where the off block of the unadapted 2-RDM block is normalized according to
its definition in second quantization. Because the summation in Eq. (98) is not a
simple trace, if the basis functions for the 2-RDM are only eigenfunctions of S’Z,
the S-representability condition in Eq. (98) must be enforced in addition to the 2-
positivity conditions of Eq. (11) as in previous 2-RDM calculations.

Using the definition of the spin-adapted 2-RDMs, however, we have the fol-
lowing relation between the af block of the 2-RDM and the spin-adapted
2-RDMs:

2 yioip 2 yoif _ 2190,0 21,0
D;:;]Z/ﬁ + D;Z,;c[;i - Di,j;k“,l + Dilj;k“,l (99)

Dividing this equation by 2, setting kK = j and / = i, and then summing over i and
Jj yields

2B _ 1 2140,0 21,0
> D= EZ( Dijji+ Di-j;/'-,i) (100)
ij ij

Because the singlet and triplet blocks are symmetric and antisymmetric in their
indices, respectively, we have

o 0,0 10
>0 =4 (°0k, i) (101)
i i

=3[Tr(*D°) — Tr(*D"?)] (102)
=N/2+M*—S(S+1) (103)

where the traces for the singlet and triplet blocks are evaluated from Egs. (87)
and (88). Hence, as also discussed in reference [57], spin adaptation of the 2-
RDM automatically enforces the S-representability condition in Eq. (96) for a
general wavefunction with definite quantum numbers S and M. This result is
especially important for the variational 2-13%)M method because it proves that
the constraint on the expectation value of S may be eliminated from the opti-
mization if the 2-RDM is spin-adapted.

G. Open-Shell Molecules

Open-shell molecules, or radicals, may readily be treated within the variational
2-RDM theory. Here we compute the radical’s energy and 2-RDM as the limit of
dissociating one or more hydrogen atoms from a molecule in a singlet state.
Calculation of the dissociated molecule’s energy yields the energy of the radical
plus the energy of one or more hydrogen atoms. The energy of the radical is then
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readily determined by subtracting the energy of the one-or-more hydrogen atoms
from the energy of the total dissociated system. In a complete basis set the
energy of each hydrogen atom would be —0.5 au, but in a finite Gaussian-orbital
basis set the energy is slightly higher. With this approach the energy and proper-
ties of a radical may be computed through a singlet calculation.

The spin of the radical is characterized by two spin quantum numbers, the
total spin S and the component of the total spin along the z-axis M. The simplest
type of radical has one unpaired electron, and hence S = % and M = +1 where
the sign of M indicates the orientation of the electron spin in the z-direction. The
dissociated singlet molecule, described by the (N + 1)-electron wavefunction,
consists of the radical and a hydrogen atom in orbital ¢ at “infinity,”

2,-1/2 1/2
U, = cutpy AN gy AP (104)

where ¢, and ¢y are expansion coefficients such as that ¢2 + c/% =1, the right
superscripts on ¥y, and Uy denote S and M, and the symbol A denotes the
antisymmetric tensor product known as the Grassmann (or wedge) product
[13]. How are the spin quantum numbers S and M of the radical determined
in the variational 2-RDM calculation of the singlet dissociated molecule?

The total spin of the radical is constrained implicitly by the search for the
minimum energy. As long as the hydrogen atom has one electron, the radical
will be in a doublet state S = % The doublet state of the radical will not be vio-
lated as long as neither of the following two events occurs: (i) the hydrogen atom
donates its electron to the radical, or (ii) the hydrogen atom takes the unpaired
electron of the radical. These two events, however, are energetically unfavorable
because the ionization energy of the hydrogen atom is much higher than the
electron affinities of radicals and the electron affinity of the hydrogen atom is
lower than the ionization energies of radicals. Hence, by the variational princi-
ple, minimizing the energy of the dissociated singlet molecule yields the radical
in its doublet state S = %

The 2-RDM for the radical may be computed from the (N + 1)-electron den-
sity matrix for the dissociated molecule by integrating over the spatial orbital
and spin associated with the hydrogen atom and then integrating over N — 2
electrons. Because the radical in the dissociated molecule can exist in a doublet
state with its unpaired electron either up or down, that is, M = :i:%, the 2-RDM
for the radical is an arbitrary convex combination

S=1/2
radical —

1/2,-1/2
radical

+wy 2D (105)

2 2
D We, D radical

where the right superscripts on the 2D denote S and M, respectively, w, = c2,
wpg = c%;, and w, +wg = 1. While we have examined the doublet case, a similar
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analysis is valid for radicals with higher spin states. If the total spin S of the radi-
cal is greater than %, the singlet calculation with more-than-one dissociated

hydrogen atom yields a 2-RDM for the radical that is a convex combination

S
2 21S.M
DrSadical = Z Wi “Dijgica (106)
M=—§
of the allowed S, eigenvalues M = —S...S, where wy, > 0. For example, if

the ground-state of the radical is a triplet state, the variational principle will
produce a triplet radical with the pair of “removed” hydrogen atoms also in a
triplet state to preserve the overall singlet symmetry of the dissociated molecule.

Treating a doublet radical by a singlet calculation requires the placement of a
hydrogen atom at ‘““infinity.”” Two approaches are: (i) computing the electron
integrals of the parent molecule with its hydrogen atom stretched to a large
distance (10° A), and (ii) computing the electron integrals of the radical first
and then adding integrals for the hydrogen atom that, due to the “infinite”
separation, do not couple with the radical. The second approach has several
advantages: (i) full spatial symmetry of the radical may be exploited in the inte-
grals, (ii) any roundoff coupling in the integrals between the hydrogen atom and
the radical is eliminated, and (iii) comparison with wavefunction methods is
facilitated. Because the radical and the hydrogen atom do not couple in the elec-
tron integrals, each 2-RDM spin block subdivides into a block for the radical and
an extremely small block for the spin entanglement of the hydrogen atom and
the radical. Consequently, the calculation of the radical by a singlet calculation,
dominated by the size of the largest block, is computationally less expensive
than the calculation of the parent molecule.

Although the 2-RDM of an open-shell molecule (radical) may be determined
variationally without considering a singlet parent molecule [20, 27], the present
approach has several advantages: (i) greater computational efficiency, (ii) more
consistent accuracy for the radical and its molecule, and (iii) easy implementa-
tion within 2-RDM code for singlet molecules. The 2-RDM for M # 0 has three
blocks [21] with the largest scaling as 72, but the 2-RDM for a singlet state has
only two distinct spin-adapted blocks [32, 56, 57, 59-62] scaling as ry(ry — 1)/2
and r,(ry + 1)/2. Similar savings exist for the other metric matrices >Q and G
as well as the 7, matrix [32, 34]. The singlet calculation of a radical by disso-
ciation, therefore, uses one-quarter the memory and one-eighth the number of
floating-point operations as a direct calculation of the radical with M = S. In
addition, because the radical 2-RDM from the dissociation limit in Eq. (106)
is more consistent with the spin of the radical moiety of the parent molecule
than the 2-RDM with a fixed M = S, calculation of the radical by hydrogen dis-
sociation may improve the relative accuracy of the molecule/radical energies.
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Also the variational 2-RDM method for computing the 2-RDM of a singlet state
may be applied directly to open-shell molecules without significant modification.

III. SEMIDEFINITE PROGRAMMING

Variational calculation of the energy with respect to the 2-RDM constrained by
2-positivity conditions requires minimizing the energy in Eq. (46) while restrict-
ing the 2D, 2Q, and 2G to be not only positive semidefinite but also interrelated
by the linear mappings in Eqgs. (14)—(16). This is a special optimization problem
known as a semidefinite program. The solution of a semidefinite program is
known as semidefinite programming [63—65].

A semidefinite program may be written in two complementary formulations,
which are known as the primal and dual programs. For convenience we define
the map M that transforms any vector |x) of length n? into an n x n matrix M (x)
by creating each column of the matrix sequentially with the elements of the vec-
tor. The primal formulation of the semidefinite program may be expressed in
general notation as

minimize (c|x)
suchthat Alx) = |b)
M(x) >0 (107)

where the vector |c¢) defines the system, the vector |x) denotes the primal solu-
tion, the m X n matrix A and the m-dimensional vector |b) enforce m linear con-
straints upon the solution |x), and the matrix M(x) is restricted to be positive
semidefinite. Similarly, the dual formulation of the semidefinite program may
be expressed generally as

maximize (b|y) (108)
suchthat |z) = |c) — AT|y)
M(z) >0

where the vector |y) of length m is the dual solution, AT is the n x m transpose of the
matrix A, and the n X n matrix M(z) is constrained to be positive semidefinite.

In the variational 2-RDM method with 2-positivity the solution |x) of the pri-
mal program is a vector of the three metric matrices from the 2-RDM, the 2D,
the 2Q, and the >G matrices

p 0 0
Mx)=| 0 20 0 (109)
0 0 2G
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the vector |c) holds specific information about the quantum system in the form of
the two-particle reduced Hamiltonian

2k 0 0
Mic)={ 0 0 0 (110)
0 0 0

and the matrix A and the vector |b) contain the linear mappings among the 2D,
20, and 2G matrices in Egs. (14) and (15), the contraction (Eq. (16)), and trace
conditions (Tr('D) = N), as well as any spin constraints. The constraint
M(x) >0 in Eq. (107) restricts the 2D, 2Q, and G matrices to be positive
semidefinite.

Feasible |x) and |y) give upper and lower bounds on the optimal value of the
objective function, which in the 2-RDM problem is the ground-state energy in a
finite basis set. The primal and dual solutions, |x) and |y), are feasible if they
satisfy the primal and dual constraints in Eqs. (107) and (108), respectively.
The difference between the feasible primal and the dual objective values, called
the duality gap u, which equals the inner product of the vectors |x) and |z),

=) >0 (111)

vanishes if and only if the solution is a global extremum. This important result
was first proved by Erdahl in 1979 in the context of 2-RDM theory. For the var-
iational 2-RDM method the duality gap furnishes us with a mathematical guar-
antee that we have determined the optimal energy within the convex set defined
by the positivity conditions. With necessary N-representability conditions the
optimal energy is a lower bound to the energy from full configuration interaction
in the selected basis set.

In the mid-1990s a powerful family of algorithms, known as primal-dual
interior-point algorithms, was developed for solving semidefinite programs
[63]. The phrase interior point means that the method keeps the trial primal
and dual solutions on the interior of the feasible set throughout the solution
process. In these algorithms a good initial guess for the 2-RDM is a scalar
multiple of the two-particle identity matrix. Advantages of the interior-point
methods are: (i) rapid quadratic convergence from the identity matrix to the
optimal 2-RDM for a set of positivity conditions, and (ii) a rigorous criterion
in the duality gap for convergence to the global minimum. These benefits,
however, are accompanied by large memory requirements and a significant
number of floating-point operations per iteration, specifically O(nm*+n*m?),
where n is the number of variables and m is the number of constraints.
With m and n proportional to the number of elements in the 2-RDM (= r4),
the method scales approximately as 7!, where r is the rank of the one-particle



VARIATIONAL TWO-ELECTRON REDUCED-DENSITY-MATRIX THEORY 47

basis set [21, 23]. The variational 2-RDM method has been explored for mini-
mal basis sets with the primal-dual interior-point algorithm, but the computa-
tional scaling significantly limits both the number of active electrons and the
size of the basis set [20-23, 26, 27].

The author has recently developed a large-scale semidefinite programming
algorithm for solving the semidefinite program in the variational 2-RDM method
[28, 29]. The optimization challenge in the 2-RDM method is to constrain the
metric matrices to be positive semidefinite while the ground-state energy is
minimized. The algorithm constrains the solution matrix M to be positive semi-
definite by a matrix factorization

M =RR* (112)

where for the 2-positivity conditions M is given in Eq. (109). Such a matrix fac-
torization was previously considered in the context of 2-RDM theory by
Mihailovi¢ and Rosina [66] Harriman [67], and the author [13], and it was
recently employed for solving large-scale semidefinite programs in combinato-
rial optimization [68]. The linear constraints, including the trace, the contraction,
and the interrelations between the metric matrices, become quadratic in the new
independent variables R. Therefore the factorization in Eq. (112) converts the
semidefinite program into a nonlinear program, where the energy must be mini-
mized with respect to R while nonlinear constraint equalities are enforced.

We solve the nonlinear formulation of the semidefinite program by the
augmented Lagrange multiplier method for constrained nonlinear optimization
[28, 29]. Consider the augmented Lagrangian function

L(R) = BR) = 3 dse(R) + Y ) (113)

i

where R is the matrix factor for the solution matrix M, E(R) is the ground-state
energy as a function of R, {c;(R)} is the set of equality constraints, {/;} is the set
of Lagrange multipliers, and u is the penalty parameter. For an appropriate set of
multipliers {4;} the minimum of the Lagrangian function with respect to R cor-
responds to the minimum of the energy E(R) subject to the nonlinear constraints
c¢i(R). The positive third term in the augmented Lagrangian function, known as
the quadratic penalty function, tends to zero as the constraints are satisfied.

The augmented Lagrange multiplier algorithm finds the energy minimum of
the constrained problem with an iterative, three-step procedure:

Step 1. For a given set of Lagrange multipliers {)Lgn) } and penalty parameter
u™, minimize the Lagrangian function L(R) to obtain an improved
estimate R,y of the factorized 2-RDM at the energy minimum.
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Step 2. If the maximum absolute error in the constraints max{c;(Ru41)} is
below a chosen threshhold (i.e., 0.25max{c;(R,)}), then the
Lagrange multipliers are updated by a first-order correction

A =0 = iRy /™

1 1

while the penalty parameter remains the same

(n+1) (n)

M =H
Step 3. If Step 2 is not executed, then the penalty parameter is decreased to
better enforce the constraints

M(Hl) - 0.1,u<")
while the Lagrange multipliers remain the same
Altl) — ()

Steps 1-3 are repeated until the maximum absolute error in the constraints falls
below a target threshhold. Before the first iteration the Lagrange multipliers may
be initialized to zero and the penalty parameter set to 0.1. The constraints are not
fully enforced until convergence, and the energy in the primal program
approaches the optimal value from below.

The cost of the algorithm is dominated by r° floating-point operations [28],
mainly from the matrix multiplication of the block-diagonal R matrix with itself,
where r is the rank of the one-particle basis set. Storage of the factorized 2-
RDM, several copies of its gradient, and the Lagrange multipliers scales as r*.
In comparison with the primal—dual interior-point approach, which scales as !¢
and r® in floating-point operations and memory storage, the first-order nonlinear
algorithm for the variational 2-RDM method [28, 29] provides a significant
improvement in computational efficiency.

IV. APPLICATIONS

The variational 2-RDM method has been applied to a variety of atoms and mole-
cules at both equilibrium and stretched geometries. We will summarize calcula-
tions on a variety of molecules: (i) the nitrogen molecule [31], (ii) carbon
monoxide with and without an electric field [37], (iii) a set of inorganic mole-
cules [34], (iv) the hydroxide radical [35], and (v) a hydrogen chain [28].
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A challenging correlation problem is the accurate description of the stretching
and dissociation of the triple bond in nitrogen. Six-to-eight-particle excitations
from the Hartree—Fock determinant are required to treat the nitrogen dissociation
correctly. Using a correlation-consistent polarized double-zeta basis set, we
compare in Fig. 1la and 1b the shape of the potential curve for nitrogen from
the variational 2-RDM method with the curves from several wavefunction meth-
ods including full configuration interaction (FCI) [31]. The 2-RDM energies are
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Figure 1. The shape of the potential curve for nitrogen in a correlation-consistent polarized
double-zeta basis set is presented for the variational 2-RDM method as well as (a) single-reference
coupled cluster, (b) multireference second-order perturbation theory (MRPT) and single—double con-
figuration interaction (MRCI), and full configuration interaction (FCI) wavefunction methods. The
symbol 2-RDM* indicates that the potential curve was shifted by the difference between the 2-
RDM and CCSD(T) energies at equilibrium.
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TABLE I
Equilibrium Bond Distance and the Harmonic Frequency for N,
from the 2-RDM Method with 2-Positivity (DQG) Conditions
Compared with Their Values from Coupled-Cluster Singles—
Doubles with Perturbative Triples (CCD(T)), Multireference
Second-Order Perturbation Theory (MRPT), Multireference
Configuration Interaction with Single—Double Excitations (MRCI),
and Full Configuration Interaction (FCI)“.

Method Req(A) w(cm™)
CCSD(T) 1.1185 2344
MRPT 1.1176 2309
MRCI 1.1184 2311
2-RDM 1.1167 2311
FCI 1.1172 2321

“All methods employ a correlation-consistent polarized double-zeta
basis set.

consistent lower bounds to the FCI energies throughout the stretch. In the figures
we present the 2-RDM curve shifted by the difference between the 2-RDM and
CCSD(T) energies at equilibrium. (The symbol 2-RDM* indicates that the
potential curve was shifted by the difference between the 2-RDM and CCSD(T)
energies at equilibrium.) The 2-RDM* method yields a potential energy curve
that is more accurate than the single-reference methods in Fig. 1a and equally
accurate as the multireference methods in Fig. 1b. The equilibrium bond distance
and the harmonic frequency from the 2-RDM method are 1.1167 A and
2311 cm™ !, which is in good agreement with the FCI numbers, 1.1172 A and
2321cm™~'. Multireference configuration interaction with single-double excita-
tions yields 1.1184 A and 2311 cm™! (see Table I).

The variational 2-RDM method with 2-positivity conditions, implemented by
a first-order nonlinear algorithm for semidefinite programming [28, 29], is
applied to compute the ground-state potential energy surface of the carbon mon-
oxide molecule in the absence and in the presence of electric fields. Even with-
out an electric field, the calculation of the potential energy surface of the carbon
monoxide molecule is a challenging task because proper treatment of the triple
bond requires six-to-eight-particle excitations from a single Slater determinant
or Hartree—Fock reference. We find that solving for the electronic structure of
carbon monoxide in the presence of an electric field can either diminish or
enhance the effects of the correlation along the bond dissociation curve. Model-
ing molecules within electric fields, therefore, provides a stringent test for elec-
tronic structure methods since we can increase the effects of correlation beyond
their role in the absence of the field. In the absence of an electric field, Fig. 2a
compares the 2-RDM*, coupled-cluster, MRPT2, and FCI potential energy
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surfaces of CO, where all valence electrons are correlated. 2-RDM* and MRPT?2
accurately describe the features of the FCI potential energy surface. Figure 2b
shows the potential energy curve for carbon monoxide in an electric field of
strength 0.10 a.u. applied in the direction of the permanent dipole moment.
The direction of the electric field affects the accuracy of the 2-RDM* energies
much less than it affects the accuracy of the coupled-cluster methods.

The N-representability conditions on the 2-RDM can be systematically
strengthened by adding some of the 3-positivity constraints to the 2-positivity
conditions. For three molecules in valence double-zeta basis sets Table II shows
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Figure 2. Comparison of the 2-RDM*, coupled-cluster, MRPT2, and FCI potential energy sur-
faces of CO in a valence double-zeta basis set, where all valence electrons are correlated (a) without
an electric field and (b) with an electric field of strength 0.10 au applied in the direction of the per-
manent dipole moment. The 2-RDM* and MRPT2 methods accurately describe the features of the
FCI potential energy surface.
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TABLE II
For Three Molecules in Valence Double-Zeta Basis Sets, a Comparison of Energies in Hartrees (H)
from the 2-RDM Method with the 7, Condition (DQGT2) with the Energies from Second-Order
Many-Body Perturbation Theory (MP2), Coupled-Cluster Method with Single-Double Excitations
and a Perturbative Triples Correction (CCSD(T)), and Full Configuration Interaction (FCI)

Total Error in (mH)
Molecule FCI Energy (H) MP2 CCSD(T) 2POS+T;
CH, —38.9465 +23.3 +0.6 —0.1
BeH, —15.8002 +11.8 +0.2 -0.2
H,O —76.1411 +8.0 +0.5 —1.8

that the 2-RDM method with the 7, condition (DQGT?2) yields energies at
equilibrium geometries that are similar in accuracy as the coupled-cluster
method with single-double excitations and a perturbative triples correction.
The error is reported in millihartrees (mH). Table III displays the ground-state
energy of the nitrogen molecule as a function of bond length for the 2-RDM
method with 2-positivity (2POS), 2-positivity plus 77 and the generalized T,
(denoted T>), and 3-positivity (3POS) as well as both configuration interaction
and coupled-cluster wavefunction methods. The 2-RDM method with 3-positiv-
ity (3POS) has a maximum error of —1.4mH at R = 1.7 A. Around equilibrium
the 3-positivity (3POS) improves the energies from 2-positivity plus 777, and
2-positivity (2POS) by one and two orders of magnitude, respectively; it is
an order of magnitude more accurate than CCSDT near equilibrium. Both

TABLE III
Ground-State Energy of the Nitrogen Molecule as a Function of Bond Length Examined with 2-RDM
and Wavefunction Methods”

Error in the Ground-State Energy (mH)

‘Wavefunction Methods 2-RDM Methods
Total FCI
R Energy (H) HF CISD CISDT CCSD CCSDT 2POS 2POS+T,T, 3POS
1.0 —108.59599 131.0 8.2 6.6 2.7 1.1 -94 —-1.2 -0.0
1.2 —108.72686 191.2 19.5 17.3 6.0 38 —149 —-1.8 —0.1
1.5 —108.63545 311.3 55.6 53.2 13.8 11.7 =226 —4.4 —-0.4
2.0 -—108.81776 5856 1704 1694 —103.5 —1045 -—15.9 —-1.3 -0.5

“The 2-RDM method with 3-positivity (3POS) has a maximum error of —1.4 mHat R = 1.7A. Around
equilibrium the 3-positivity (3POS) improves the energies from 2-positivity plus T; T> and 2-positivity
(2POS) by one and two orders of magnitude, respectively; it is an order of magnitude more accurate
than CCSDT near equilibrium. Both configuration interaction and coupled-cluster methods have dif-
ficulty at stretched geometries, where multiple Slater determinants contribute to the wavefunction.
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configuration interaction and coupled-cluster methods have difficulty at
stretched geometries, where multiple Slater determinants contribute to the wave-
function.

Computation of open-shell energies and properties is important in many areas
of chemistry from combustion and atmospheric chemistry to medicine, and yet
such molecules are often challenging due to the appearance of multireference
spin effects. We have recently extended the variational 2-RDM method from
closed-shell to open-shell molecules [33]. The shape of the potential energy
curve of the OH radical is shown in Fig. 3 from the 2-RDM methods with 2-posi-
tivity (DQG) and 2-positivity plus 7, (DQGT2) conditions as well as the wave-
function methods unrestricted second-order many-body perturbation theory
(MBPT?2), unrestricted coupled-cluster singles—doubles (UCCSD), and full con-
figuration interaction (FCI). The potential energy curves of the approximate
methods have been shifted by a constant to make them agree with the FCI curve
at equilibrium. In the bonding region, the 2-RDM/DQG, UCCSD, and FCI
curves are nearly indistinguishable, whereas in the stretched-bond region the
2-RDM/DQG and UCCSD curves move away slightly from the FCI solution
in opposite directions. Recently, we have implemented a spin- and symmetry-

Energy (au)

1 1.5 2 2.5

O-H Distance (angstroms)

Figure 3. The shapes of the potential energy curves of the OH radical from the 2-RDM meth-
ods with DQG and DQGT?2 conditions as well as the approximate wavefunction methods UMP2 and
UCCSD are compared with the shape of the FCI curve. The potential energy curves of the approx-
imate methods are shifted by a constant to make them agree with the FCI curve at equilibrium or
1.00 A. The 2-RDM method with the DQGT?2 conditions yields a potential curve that within the
graph is indistinguishable in its contour from the FCI curve.
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Figure 4. Ground-state potential energy curves of Hg from 2-RDM and wavefunction methods
are shown. MP2 and MP4 denote second- and fourth-order perturbation theories, while CCSD and
CCSD(T) represent coupled cluster methods.

adapted form of the T, constraint within the large-scale semidefinite-program-
ming algorithm for the 2-RDM method [34]. For OH the 2-RDM method with
the DQGT?2 conditions yields potential curves whose shapes in the figures are
indistinguishable from the shapes of the FCI curves. Metallic hydrogen is an infi-
nite chain of equally spaced hydrogen atoms. It can serve as a simple model for
polymers and crystals. We consider the equally spaced, finite chain Hg, where
the hydrogen atoms are described by the valence triple-zeta basis set. A potential
energy curve may be formed by equally stretching the five bonds in He. Ground-
state energies from the variational 2-RDM method and a variety of wavefunction
techniques are shown in Fig. 4 as functions of the distance R between adjacent
hydrogen atoms [28]. The 2-RDM method yields consistent energies with a
maximum error of —10.8 mH at 1.5 A. While the coupled-cluster methods are -
accurate near the equilibrium geometry with errors at 1 A of 1.3 mH (CCSD)
and 0.2mH (CCSD(T)), their performance rapidly degrades as the bonds
are stretched. At 3.5 A each of the coupled-cluster methods has an energy
error of at least —160 mH while the 2-RDM method has an error of only
—0.4 mH.

V. A LOOK AHEAD

Since the time that Coulson [7] discussed the promise and challenges of
computing the energies and properties of atoms and molecules without the
many-electron wavefunction, quantum chemistry has experienced many impor-
tant advances toward the accurate treatment of electron correlation including the
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development of density functional theory, coupled-cluster theory, Monte Carlo
methods, and multireference perturbation theory. The recent progress in the
2-RDM methods contributes both a new perspective and tool for describing
energies and properties of atoms and molecules in which correlation effects
are important. In this chapter we have developed the variational calculation
of the ground-state energy as a function of the 2-RDM constrained by
N-representability conditions [16, 17, 19-37].

A critical part of realizing a ‘“‘quantum chemistry without wavefunctions”
through the variational 2-RDM method is the development of robust algo-
rithms for large-scale semidefinite programming. As discussed in the chapter
a large-scale algorithm, developed by the author, reduces the computational
scaling of the 2-RDM method by orders of magnitude in both floating-point
operations and memory. A key feature of the algorithm is the expression of
the semidefinite program as nonlinear constrained optimization, which is then
solved by the method of augmented Lagrange multipliers. Zhao et al. [27]
have examined improving the performance of the primal—dual interior-point
methods by redefining the statement of the semidefinite program. Further
advances in large-scale semidefinite programming will have an important
impact on the variational 2-RDM method, and similarly, the problems in elec-
tronic structure offer fertile ground for testing and benchmarking new large-
scale algorithms. Advances will also have a broad impact on many other
scientific problems in areas like control theory, combinatorial optimization,
quantum information, and finance.

The variational calculation of the 2-RDM with necessary N-representability
conditions yields a lower bound on the ground-state energy in a given finite basis
set. The strict lower bound occurs because the 2-RDM is optimized over a set
that contains all correlated N-electron wavefunctions. Within wave mechanics
the challenge is to introduce sufficient variational flexibility into the wavefunc-
tion, but in reduced-density-matrix mechanics the challenge is to limit the 2-
RDM, which has the flexibility to model all correlated wavefunctions, to repre-
sent only realistic N-electron wavefunctions. A practical consequence is that the
2-RDM method has the potential to produce ground-state energies with useful
accuracy even if the wavefunction is challenging to parameterize as in transi-
tion-state structures or other stretched geometries of a potential energy surface
[21, 22, 28, 29, 31]. The calculation of the 2-RDM has important applications in
chemistry to studying reactivity [30, 31] as well as in other areas of correlation
such as spin systems like the Hubbard model, Bose condensation [24], and mole-
cular conductivity. The 2-RDM methods may be especially well suited for the
use of explicitly correlated basis sets for enhancing basis set convergence. While
still in its early stages, the 2-RDM method for computing energies and properties
without the many-electron wavefunction represents a new approach to investi-
gating the electronic structure of atomic and molecular systems.
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There are two recent developments that have turned the lower bound method of
density matrix theory into a powerful computational tool for electronic structure
theory, and thereby solved John Coleman’s N-representability problem [1].
These two developments are discussed here. First, it is now understood how
to achieve accurate results, even when two-body forces dominate; the picture
that has emerged through computational experiments by several authors is
described. Second, the central energy minimization problem of the lower bound
method belongs to a class called semidefinite programs, and effective algorithms
are now available to solve such problems. How the lower bound method and
semidefinite programming have come together is described, and at the same
time a self-contained treatment of the mathematical results at the core of semi-
definite programming is given. The treatment includes a new proof of the funda-
mental theorem of semidefinite programming.

I. INTRODUCTION

By replacing the wavefunction with a density matrix, the electronic structure pro-
blem is reduced in size to that for a two- or three-electron system. Rather than
solve the Schrodinger equation to determine the wavefunction, the lower bound
method is invoked to determine the density matrix; this requires adjusting para-
meters so that the energy content of the density matrix is minimized. More
precisely, the lower bound method requires finding a solution to the energy
problem,

min (P, H),
PeST NPy

where P is a matrix representation of the quantum state called a k-matrix, H is a
matrix representation of the Hamiltonian, and (P, H), is the energy—the trace
scalar product of P with H. The k-matrix that minimizes the energy is an estimate
of the von Neumann density for the ground state, and the energy content of this k-
matrix is a lower bound to the ground-state energy. The variation is over the set of
k-matrices, StNPX, which is a section of the cone of positive semidefinite
matrices; [P’S is the convex set of positive semidefinite matrices with unit trace,
and S is the Pauli subspace—a subspace of symmetric matrices that encodes the
conditions imposed by the Pauli Principle. The compact convex set SLHP’(‘) isa
kth-order approximation of the set of von Neumann density matrices, and a var-
iant of the set of kth-order reduced density matrices. Included in the definition of
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k-matrix is the condition that P be k-positive, a condition that rapidly becomes
stringent as k increases. Details on how the sets SlﬂPf‘,, k=2,3,4,..., are con-
structed and the definition of k-positive are given in Section II.

One purpose here is to report on some recent computational experiments that
show that the rate of convergence to exact solutions with the order parameter k is
extraordinarily rapid—much faster than anticipated. This was first uncovered in
the doctoral dissertation of B. Jin, who studied a solid model where the Hamilto-
nian included two-body interactions alone. In his thesis, Jin [2] reported a striking
improvement in accuracy in going from second- to third-order estimates: second-
order estimates contained no useful information, even predicting wrong trends in
certain instances, but with third-order estimates four-figure accuracy was
achieved. It came as a surprise that second-order approximations were so poor,
and it was equally surprising that third-order approximations were so good. The
significance was immediately obvious, that convergence with k was extremely
rapid, and accurate solutions could be achieved while complexity was kept within
bounds. It is the condition that P be k-positive that accounts for this rapid conver-
gence and makes possible the characterization of increasingly complex correla-
tions. Several papers followed that filled out the picture on how accurate
solutions could be achieved [3-6]. These computational experiments showed
that when two-body interactions play a relatively minor role, as they do in atoms
and molecules, approximations to second order and 2-positivity do an adequate job
for most purposes. It was also discovered that the accuracy of third-order estimates
in these cases exceeds that for all other approximate methods currently used. How-
ever, when two-body forces become more important, as they do in nuclear and
solid state problems, third-order approximations and 3-positivity are required.

The minimum energy problem is a semidefinite program, a new class of opti-
mization problems that emerged in the late 1980s and has been intensively stu-
died ever since. Semidefinite programming has applications that extend far
beyond the electronic structure problem we are considering, covering vast new
areas in applied mathematics; linear programming is a special case. That the var-
iation for the energy problem is over a section of the cone of positive semidefi-
nite matrices is the characteristic that identifies this problem as a semidefinite
program—and is the origin of the name. The recent development of effective
algorithms to solve semidefinite programming problems gives a second reason
why the lower bound method is emerging as an important computational tool.
For strongly interacting systems of electrons, approximations must be carried
through to at least third order, and these are typically large problems. It is the
recent and ongoing development of algorithms for semidefinite programming
that has made large-scale electronic structure problems feasible.

The energy problem is accompanied by the dual spectral optimization
problem,

H
max Zo(H+8)
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where Ao(H + S) is the bottom eigenvalue of the matrix H 4 S; the variation is
over the Pauli subspace S, which is defined in Section II. Solutions of the energy
and spectral optimization problem occur simultaneously, which proves to be an
enormous asset when interpreting solutions. We will see that the dual spectral
optimization problem serves as a sharp tool in analyzing the correlations in
the ground state as it responds to the interactive forces experienced by the elec-
trons. The energy and spectral optimization problems are tied together by the
fundamental Euler equation for these problems,

PQ =0

where Q = H+ S — Ao(H + S)I; the Euler equation is a stability equation that
the optimal matrices P, S must satisfy. Any two matrices P, Q that satisfy this
equation provide optimal solutions to the energy and spectral optimization pro-
blems, as long as they have the correct form: P must be contained in the convex
set SLI’WIPS, and Q must have the form Q=H+S — 4 ,(H+S)I. A self-
contained treatment is given of the theoretical results at the core of semidefinite
programming, which includes a new proof of the result that solution of the spec-
tral optimization problem is equivalent to solution of the Euler equation PQ = 0.
The treatment uses only elementary matrix theory and convexity theory and has
the virtue of being brief. Moreover, the results are formulated in terms of the
energy problem for density matrices.

A. Brief History of the Lower Bound Method

The first accurate estimate of a 2-matrix using the lower bound method was
made by M. A. Fusco in his doctoral dissertation, directed by Claude Garrod
at the University of California, Davis; in his 1974 thesis [7], Fusco reported
on his work on the beryllium atom. There were two papers that quickly fol-
lowed, both reporting accurate lower bound calculations on the beryllium
atom. In their 1975 paper, Garrod, Mihailovic, and Rosina [8] reported a lower
bound to the energy that was only slightly below the exact ground-state energy
calculated using a complete configuration interaction treatment; the lower
bound they calculated was —14.60999 atomic units, and the configuration inter-
action energy was —14.609987; which represented seven-figure accuracy. In
this calculation the convex set of density matrices was approximated by a super-
scribing polytope, which was updated at each step. The energy minimization
problem was converted to a linear programming problem, and successively tigh-
ter lower bounds were computed as the polytope was adjusted to match the data
near the optimal solution. The thesis work of Fusco was reported in the 1976
paper of Garrod and Fusco [9]; in this work a penalty function method was
applied to minimize the energy. The conditions imposed by these authors
were that the associated P-, Q-, and G-matrices be positive semidefinite; these
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conditions did not ensure that the 2-matrix was N-representable, but were suffi-
ciently effective that seven-figure accuracy was achieved.

The second test of the lower bound method, and the first test for a molecule,
appeared in 1979 when Erdahl calculated a lower bound to the energy for a pair
of weakly bound helium atoms [10]. By requiring that the density matrix be 2-
positive, a lower bound was calculated that was accurate to five figures when
compared to a complete configuration interaction treatment (from now on we
refer to the condition that the P-, O-, and G-matrices be positive semidefinite
as the condition that P be 2-positive; the notion of 2-positive, and more generally
k-positive, is defined in Section II). The Be and He? calculations showed that
accurate lower bounds could be achieved for atoms and molecules and, in parti-
cular, showed the importance of the condition that P be 2-positive. The calcula-
tion on the weakly bound helium molecule was a side issue in Ref. [10], only
introduced to test a new method for solving the energy problem. The main result
was the derivation of the Euler equation PQ = 0, which was then solved to
obtain the optimal solution of the energy problem. Thus this second test of
the lower bound method anticipated the development of semidefinite program-
ming by over ten years. The equation PQ = 0 and its relation to the spectral
optimization problem are rediscovered by M. L. Overton and reported in his
1988 paper [11]. It is this paper that served as a precursor for the rapid devel-
opment of semidefinite programming that started in the early 1990s.

The promise of the early work on Be and He? has recently been confirmed in
the work of Nakatsuji and Mazziotti, which started to appear in 2001. This work
showed that the lower bound method combined with second-order approxima-
tions yields accurate information for atoms and molecules. Nakatsuji and his
co-workers [12] did a series of computational experiments where accuracies
of between four and five figures were typically achieved. More precisely, they
reported the correlation energy as a percentage of the exact correlation energy
for a variety of atoms and molecules. They found these percentages ranged
between 100% and 110% for atoms and diatomic molecules, and between
110% and 120% for triatomic molecules; since these percentages are for lower
bounds they never go below 100%.

An even more exacting test of 2-positivity appeared in the work of Mazziotti
[13], who computed binding energy curves for LiH and H,O. These computa-
tional experiments showed that accurate binding energy curves could be calcu-
lated when second-order approximations are invoked; the curves he calculated
compared favorably with curves generated by a full configuration interaction
treatment. These results were compared with curves generated using second-
and fourth-order perturbation theory, and these deteriorated rapidly with increas-
ing bond length. These experiments showed that lower bounds can successfully
track energy shifts over a range of molecular geometries, subtle shifts that can-
not be tracked by perturbation theory.
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Another significant theme was reported on in the Mazziotti paper. Experi-
ments were made by selectively adding higher-order conditions to tighten the
lower bounds computed using 2-positivity. These were a portion of the
3- positivity conditions selected on the basis of physical intuition about correla-
tions and experience gained with second-order conditions. This strategy adds
flexibility and strength to the lower bound method in much the way the selection
of configurations adds to the configuration interaction method. These computa-
tional experiments were first steps in developing a systematic approach to hand-
ling the overwhelming array of higher-order conditions, the strategies used being
those proposed by Erdahl and Jin [3, 4] under the heading dual configuration
interaction.

The inclusion of some 3-positivity conditions along with the 2-positivity
was also used by Zhao and co-workers in their recent computational experiments
with the lower bound method [6, 14]; in addition to the P-, Q-, and G-conditions
they added the third-order conditions formulated in Section 8 of Ref. [15], which
they referred to as the 7’1 and 72 conditions. They compared the strength of the
various conditions they imposed by estimating the ground-state density matrix
for 38 small molecules. They noticed a ‘‘spectacular increase in accuracy”
when these third-order conditions were imposed in their calculations: “We
find that including the 7'1 and T2 conditions results in a spectacular increase
in the accuracy of the results, and gives in the cases studied an accuracy better
than that of other more familiar approximate methods: singly and doubly substi-
tuted configuration interaction (SDCI), Brueckner doubles (with triples) (BD(T))
and coupled cluster singles and doubles with perturbational treatment of triples
(CCSD(T)).”

B. Strong Two-Body Forces

The optimism generated by the Be and He? calculations was tempered by
another line of investigation in the 1970s. Mihailovic and Rosina applied the
methods they developed for the beryllium atom to light nuclei [16] and found
lower bounds falling below exact values by as much as 15%. For example,
the series of nuclei 170, 90, 170, and '80 have 3,4, 5, and 6 valence nucleons
above a '?C core. The greatest errors they observed were for the last in this ser-
ies, where they computed a lower bound of —60.06 MeV, which was 8.55 MeV
below the configuration interaction energy of —53.91 MeV, representing an error
of 15.86%. For this series the percentage errors are given, respectively, by
5.82%, 3.76%, 14.93% and 15.86%, showing that errors increase as half-filled
structures are approached. The results for YO and 'O were reasonable, but
for 70 and 80 they commented that ““new relevant conditions” should be found
to supplement 2-positivity. In response to the dominating two-body terms,
the nucleons in a shell form highly correlated arrangements that are inade-
quately characterized by second-order approximations. That second-order
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approximations can effectively characterize electron correlations but not nucleon
correlations can be explained as follows. The electrons in atoms and molecules
configure themselves largely in response to the nuclear attraction terms in the
Hamiltonian, but protons and neutrons in the nucleus configure themselves in
response to the nucleon—nucleon attraction terms. That is, for atoms and mole-
cules correlations are largely driven by one-body operators, whereas for nuclei
correlations are driven by two-body operators. The simpler correlations in atoms
and molecules are effectively characterized by second-order approximations, but
the more complex nuclear correlations are not. In Section VI a review is given of
recent work on strongly interacting fermion systems that resolve the difficulties
that Mihailovic and Rosina faced. Jin and Erdahl [2—4] studied a lattice model,
where electrons interact through two-body forces alone, and Mazziotti and
Erdahl [5] studied the Lipkin model for electrons, where the strength of the
two-body forces can be turned on by adjusting a parameter V. There is convin-
cing evidence [2—4] supporting the comment of Mihailovic and Rosina that
“new relevant conditions” are required beyond 2-positivity. The articles make
it abundantly clear that 2-positivity cannot effectively characterize the correla-
tions induced by strong two-body forces. These three papers systematically
explore higher-order conditions and show that by requiring the reduced density
matrix to be 3-positive the problems faced by Mihailovic and Rosina are com-
pletely resolved. Both 3-positivity and 4-positivity were explored, and when the
reduced density matrix is required to be 4-positive the lower bound estimates are
accurate to ten figures. Very recently, Mazziotti [17] has applied the complete
3-positivity conditions to atoms and molecules with spectacular accuracy in
energy and properties that substantially improves upon even the highly accurate
T1 and T2 conditions. At the equilibrium geometry of N, the lower bound
method with 2-positivity, 2-positivity plus 71 and 72, and 3-positivity deviates
from full configuration interaction by 0.0149, 0.0018, and 0.0001 atomic units,
respectively. The 3-positivity conditions, therefore, improve upon the accuracy
of 2-positivity plus 71 and T2 by an order of magnitude. As a side issue, the
work of Jin and Erdahl involved developing methods for solving the Euler equa-
tion PQ = 0 of semidefinite programming.

II. Kth-ORDER APPROXIMATIONS FOR STATES

A Hermitian operator p is a von Neumann density if it is nonnegative and has unit
trace. In more concrete terms, if ¥ is the finite-dimensional Fock space for a quan-
tum model where electrons are distributed over a finite number of states, then p is
a von Neumann density if (i) (v, pv)R > 0 for all operators v on §; and (ii)
(p, 1)5 = 1. By the formula (v,pv); we mean the trace scalar product of the
operators v and pv, that is, (v, pv)s = trace 3 (v'pv); since (p, 1); = tracezp =
1 we have used this scalar product to express the trace condition. More generally,
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if x,y are operators on ¥, then (x, y)» = trace(x"y). We denote by *§ the cone of
nonnegative operators on 3%, and by %3, the convex set of all von Neumann den-
sities. The elements of 3, are the quantum states for the model.

We discuss a lattice model where spin-up, spin-down electrons move on a
one-dimensional lattice A of size |A| = r, so that dim § = 22". An annihilator
for a spin-up electron on lattice site u € A is denoted by a,, and that for a
spin-down electron by b,. An arbitrary operator on ¥ can be written as a poly-
nomial in the 2r annihilation and 2r creation operators.

A. Approximating States by k-Densities

By relaxing the condition that a von Neumann density be positive semidefinite, a
graded family of approximations can be constructed. Since an operator can be
represented as a polynomial in the annihilation and creation operators, it can be
assigned a degree; for example, if v =13, val + 3, vupalblb,, then
deg(v) = 3. We say that a Hermitian operator p is k-positive if it satisfies the

condition that (v, pv)x > 0 for all operators v where deg(v) < k.

Definition 1 A Hermitian operator p is a k-density if (i) (v,pv)z > 0 for all
operators v, where deg v < k; and (ii) (p, 1>Ts~ =1.

The k-densities approximate von Neumann densities to kth order; they are k-

positive with unit trace. We denote the cone of all k-positive operators by Bk,

and the convex set of all k-densities by 2]3]6. The k-densities satisfy the relations
% 13 2 Al 1k

By C -+ CHy € B € By and (1, 5=,

B. Matrix Representations

Let V¥ be the linear space of operators v satisfying the condition deg(v) < k. We
take the monomial basis M = {my,my,ms,...} for V¥, namely, all possible
monomials in the factors a, + ay,a, —ay, by + by, b;, — by, € A, so that
deg(m;) < k; we append the scale factor 1/v/dimV* to each of the monomials.
Since (aj, + a,)"(a; +a,) = 1, and similarly for the other factors, we choose
monomials with no repeated factors. It is easy to deduce that this monomial basis
has the following properties: (1) Zf‘f,’v m; m; = 1, which follows from the

equality m; m* = 1/(dim V¥); (2) (mi, mj)x = (dim ¢/dim V955

Definition 2 Suppose that p is a k-density. Then the k-matrix for p, relative to
the monomial basis M = {m;,my,ms,...}, is the matrix P with entries
Py = <mi,ij>g~

The k-matrix is a dim V* x dim V¥ matrix representation for p and is a variant of
the kth-order reduced density matrix.
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Proposition 3 Let P be the k-matrix for the k-density p. Then P is Hermitian,
positive semidefinite, and has unit trace .

Proof.  Pj; = (m; pm;)5 = trace(m;pm;) = (trace(m;Pm;))" = (m; pm;)5 = é’
Therefore P is Hermitian. Let v = Z,dmfv i be an arbitrary element of V".

Then the inequality 0 < (v, pv)x = Zi}mf vj (mi, pm;)xv; = v*Pv shows that
P is positive semidefinite; v is the column vector of coefﬁments in the expa-

nmg)nVThe equalities 1 = (p, 1)5 = (p, Zdlmv mimy ) = Zf'ml”} (mi, pmi)s =
> '"11 P;; establish that P has unit trace; we have used the identity
S mim}‘ = 1, which was established above. &

C. Expectation Values

. ) . . d
If x is an operator on ¥, and if x can be written as x = Zl;mlv X,jmimi*, then we

take the matrix X, with entries Xj;, to be the matrix representation of x. With this
definition, expectation values can be written

<pax>?g = <P7 X>k

where (P,X), = trace P*X is the trace scalar product of the two matrices P, X;

the subscript k is added to indicate that the trace is over the linear space of coef-

ficients of the elements of V*. This equality is achieved by the following
dim V¥ dimV

sequence of step%.im ) = (P, 2oy Xymim? ) = 00 (my, pmy) X =

Dijmr Pk =221m PiXy = (P, X),.

ij=1 ij=1

D. The Pauli Subspace

It follows from the fermion commutation relations that the entries of a k-matrix
are related by a system of linear equalities. For example, consider the pair trans-
port operator T’ uv = 2(b,aaby + byayaub,), which moves a spin-up, spin-down
pair of electrons between sites p, v of A. If we define vig = a,b, * a,b,,
Uy = ava T buayr, vy = a,b; £ b;a‘,, Vg3 = a;av F byby, and vy =aua;F
bev,then, by the commutation relations, it follows that

TZV = vVl — v vty i=0,1,2

= v vt — vy, i=3,4

This system of equalities is equivalent to the following linear conditions on the
k-matrix:

* * * * .
VioPvio — v Py o=V Pv,;—v Pv,; i=12
=V ,Pv_i—vVv Pv, i=34
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The column vector v4; is the coordinate vector for v,; referred to the fixed basis
for V¥, and the equivalence is established using the identities (v, P'Uii>,“5‘ =
v’ ;Pvy;. The coordinate vectors vy; are linearly independent by the indepen-
dence of the operators v;. It follows that these equalities represent four indepen-
dent conditions on the k-matrix P.

The linear conditions on P can be rewritten

P Lvioviyg—vooviy—vyv,+vv,, i=1.2

* * * * .
Lviovig—voviy—v v, +vyvi,, i=34

so that P is orthogonal to a four-dimensional subspace of Hermitian matrices
with respect to the trace scalar product. There are many other such linear con-
ditions on P, and taken together they are equivalent to requiring that P lie in the
orthogonal complement of a real linear space of Hermitian matrices, which we
denote by S. We call S the Pauli subspace since it encodes the content of the
Pauli principle.

Since an arbitrary k-matrix is orthogonal to S, the matrix representation for
a Hermitian operator is far from unique. Suppose that H is the matrix repre-
sentation of some Hamiltonian, and that S is an arbitrary matrix in S. Then
H+S is an equally valid representation since the identity (p,h)s =
(P,H), = (P,H+S) clearly holds for all k-matrices P. The explanation for
such a large number of representations is straightforward: the operator s cor-
responding to a matrix S € S is equal to the zero operator. The operator s
is constructed by taking the matrix elements to be coefficients in an expan-
sion but can then be reduced to the zero operator using the commutation
relations.

We summarize this discussion with the following theorem characterizing the
convex set of k-matrices. In the statement of this theorem we introduce [P’](‘), the
symbol we use to denote the convex set of positive semidefinite matrices with
unit trace on the linear space of coefficients of the elements of VK. similarly, we
use PX to denote the cone of positive semidefinite matrices.

Lo k~ ol
Theorem 4 The set of k-matrices is given by Py N S—.

The convex set of k-matrices Pﬁ N S* is compact, but the corresponding convex
set of k-densities ’Bg is not; each k-matrix corresponds to an affine space of
k-densities.

E. Additional Properties of Matrix Representations

At this point we list several useful properties of the matrix representation we
have just constructed; these properties will be used in subsequent sections.
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R1. The k-matrix for the von Neumann density (1/dim¥)1 is (1/dim V)
Using the properties of the monomial basis for VX the entries for the
matrix representation are given by

1 | < > 1 dim% 1 s
mi, ——=1m; ) = —=Mij,Mj)x = T3 ij = ij
dimg /5 dim Y dim Fdim VY dim VE Y

R2. The operator 1 is represented by I: This follows from the formula
1= Z?"TV m; m;
R3. Each Hermitian operator x admitting an expansion of the form

dim V¥

X = E X,-jm,-mj
ij=1

has a unique representation that is orthogonal to S: If X is an arbitrary
representation, and 7s is an orthogonal projection onto the Pauli space,
then X — n5(X) = nsL(X) is an equally valid representation that is
orthogonal to & and uniquely determined by x.

R4. Assume that X is an arbitrary representation of the traceless oper-
ator x; then trace (X) =0: This follows from the equalities 0=
trace (x) = (1, X>~—dlm18’<(1/dlm($’)1 x>~7d1ml§<(l/d1mvk)l X), =
(dim /Fdim V¥ )(I X), = (dim /Fdim Vk) trace (X).

R5. If S € S, then trace (S) = 0: This follows directly from R4 since S is a
matrix representation of the zero operator, which is traceless.

F. Energy Lower Bounds
Since the convex set of k-densities contains the convex set of von Neumann den-

sities, the following inequality holds:

min(p, 1) <m1n(p, h)x
Py P€¥o

where 4 is the Hamiltonian. An energy lower bound and a kth order appro-
ximation for the state are found by varying over the set of k-densities.

Since the k-densities satisfy the relations %, C ’I%O C 5]30 *BO and
M Bo= By, these lower bounds converge to the exact ground-state energy
from below.
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If P is a k-matrix and H is a matrix representation of the Hamiltonian, as
described above, then the equality

<P7 H>k = <P7 h>§

holds. It follows that the lower bounds can be computed using k-matrices, and
the sequence of lower bounds can be written

min (P,H)x < min (P,H)5 < min (P,H); <---

PePinS* PePiNS*

and the corresponding sequence of k-matrices converge to k-matrices for the von
Neumann density for the ground-state. A question of great practical importance
is the speed of convergence of these lower bounds to the ground-state energy,
and this will be thoroughly discussed later.

III. SEMIDEFINITE PROGRAMMING

The central problem in electronic structure theory is to determine the ground
state of a system of electrons, which is typically done variationally by minimiz-
ing the energy. The lower bound method can be invoked to achieve a kth-order
approximation by replacing the variation minpe%(p,h)% by the semidefinite
program

min (P, H),
PePiNS*

where the minimum is taken over the the set of k-matrices that represent quan-
tum states; H is a matrix representation of the Hamiltonian 4. This is called a
semidefinite program because the variation is over a section of the cone of posi-
tive semidefinite matrices, namely, [P’Ié NSt

A. Lagrange Duality

Rather than minimize the energy function Ey(P) = (P, H), by varying over the
set of k-matrices, there is a dual formulation where the bottom eigenvalue
o(H+S) of the matrix H+ S is maximized over the set of Pauli matrices
S € S. The dual formulation can be derived using Lagrange’s method, which
requires converting the constrained energy problem to an unconstrained one. If
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{S1,S,,S3, ...} is a basis for the Pauli space S, then

min Eop(P)= min (P .H
PePinst o(P) Pepgnsl< )

> max min {(P,H) + Bo((P,I), +Zﬁz }

B Pept

- o+ min { PH+BI+S BS:
m/?x{ Bo 1%3< Bo Zﬁ >k}
m/?x{)uo+mm <P H+ZﬂS )Lol>k}

Pept

=supAy(H+S)
Ses

where Ao(H + S) is the bottom eigenvalue of the matrix H + S. The last two
steps require first noting that the value of

mm<P H+/301+Zﬁ, >
k

PcpPt

is negative infinity unless H+ I+ 3", §;S; is positive semidefinite, and then
observing that the maximum over the vector of parameters f is achieved
when —f is the bottom eigenvalue 7y of the matrix H+ Y, §;S;. By passing
to the dual the energy minimization problem is converted to the problem of opti-
mizing the spectrum, namely, the problem of maximizing the bottom eigenvalue.
IfPe IPS NS is an arbitrary k-matrix, and S € S an arbitrary element of the
Pauli space, Lagrange’s argument shows that

A=Ey(P)—H+8)>0

The gap between the energy and bottom eigenvalue is nonnegative. If the
k-matrix P moves to further decrease the energy, and if the Pauli matrix S moves
to further increase the bottom eigenvalue, the gap narrows and possibly shrinks
to zero. It is important to note that there are semidefinite programs where this
gap cannot shrink to zero; we discuss such an example later. However, In our
special case where we vary k-matrices and Pauli matrices, as we have defined
them, the gap shrinks to zero. This is an important result for both theoretical
and practical reasons; a proof is supplied below.

B. The Gap Formula

The semidefinite program we are considering is formulated in terms of the sym-
metric matrix H and the linear subspace of symmetric matrices S. For the
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moment we consider a general situation where the matrix H and the subspace S
are specified, but not as defined in Section II where kth-order approximations to
the von Neumann density were considered. We only impose the condition that
I, H, S be linearly independent, so that there are no nontrivial linear relations of
the form ol + fH + S = 0, where S € S. In such a general setting, it is possible
that the energy problem does not have an optimal solution, or that the spectral
optimization problem does not have an optimal solution.

Theorem 5 1If P ¢ P’g NS, and S € S are chosen arbitrarily, then
A=EyP)—H+S)>0

This gap inequality follows from Lagrange’s derivation of the dual spectral opti-
mization problem, but there is a more direct proof that we now present.

Proof. Define
Q=H+S - H+S)I

where Ao(H + S) is the bottom eigenvalue of the matrix H + S. Then the equal-
ity (P,Q), = (P,H), — Ao(H+S) = A follows from the conditions (P,S), =
0, (P,I), = 1, which are assumed to hold. Since both P and Q are positive semi-
definite, this scalar product (P, Q), is nonnegative. W

The search for optimal solutions to both the energy problem and the spectral
optimization problem typically starts with matrices P and S that have a positive
gap. Iterations are designed to move P so that the energy is decreased, and to
move S so that the bottom eigenvalue is increased, and such motions cause
the gap to narrow. It is important that there are semidefinite programs where
this gap cannot shrink to zero, and we discuss such an example later. However,
in our special case where we vary k-matrices and Pauli matrices, as we have
defined them, the gap shrinks to zero. This is an important result for both theo-
retical and practical reasons; a proof is supplied below.

Corollary 6 Assume that for P € PENS, and S € S, the gap A = Eo(P)—
Jo(H+S) = 0. Then P solves the energy problem, and S solves the spectral
optimization problem.

Proof. This follows immediately from the gap inequality A = Eo(P) — Zo(H+
S$)>0.m

Corollary 7 LetP € PSN S, andletS € S. Then A = Ey(P) — Jo(H+S) =0
if and only if PQ = 0, where Q =H + S — Jo(H+ S)L.
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Proof. For this result we use the identity A = (P, Q),. Since P and Q are posi-
tive semidefinite, (P, Q), = 0 if and only if PQ = 0. m

The equation PQ = 0 requires that the range spaces for P and Q lie in comple-
mentary orthogonal subspaces.

The energy and spectral optimization problems are convex programs so when
there are multiple solutions the solution sets form a convex set. The following
corollary characterizes how these convex sets of solutions relate to solutions of
the Euler equation. In the formulation of this corollary we use the notion of opti-
mal gap A¢—the gap achieved by optimal P and S. The optimal gap is a char-
acteristic of the energy problem, depending only on H and S.

Corollary 8 Let Py be the convex set of solutions of the energy problem, and let
So be the convex set of solutions of the spectral optimization problem. If the opti-
mal gap Aog=0, then Pec Py, Se€Sy if and only if PQ =0, where
Q=H+S-1(H+S)L

Proof. This follows from Corollary 7. ®

IV. THE FUNDAMENTAL THEOREM

In this section we continue the discussion of the energy and spectral optimiza-
tion problems,

min Ey(P), max Ao(H + S)
PeP{nS* Ses

giving conditions that characterize the class of problems where optimal solutions
can be found by solving the Euler equation

PQ=0 where Q=H+S - 2 (H+S)I

This class is important since the most effective algorithms for solving semide-
finite programs take as their starting point the Euler equation. As in the previous
section the setting is general, the only condition initially imposed being that
I, H, S are linearly independent. Throughout our discussion the positive semide-
finite matrix P is required to satisfy the conditions (P,S), =0, (P,I), = 1, and
the positive semidefinite matrix Q is required to have the form H+S —
Jo(H+ S)I, where S € S and Ao(H + S) is the bottom eigenvalue of H + S.

A. Fundamental Theorem

To prove our main theorem, establishing that the existence of a solution of the
spectral optimization problem is equivalent to the existence of a solution of the
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Euler equation, we need the following lemma. In the statement of the lemma K*
denotes the polar cone of the cone K C R?, which is given by

K ={veRk'v>0,Vk € K}
k”v is the Euclidean scalar product of k with v.

Lemma 9 Let L C R" be a subspace and let K C R" be a closed pointed cone
with nonempty interior and vertex at the origin. Assume that b € OK. Then
exactly one of two alternatives must hold: (Al) there is a nonzero element
u e (b+ L) Nint K; (A2) there is a nonzero element v € {b,L}" N K*.

Proof. We prove this result by showing that alternative A2 is equivalent to the
statement (b 4+ L) Nint K is empty. Suppose that (b + L) Nint K is empty. By
the celebrated separation theorem of convex analysis there is a hyperplane H
separating b + L and int K. Since b € 0K, b € H. It follows that H is a support-
ing hyperplane of K and that b+ L C H. Since K is a cone, more is true: H
passes through the vertex of K, the origin, and is a subspace. For this reason
b, L C H. Let v be nonzero, normal to H, and pointing into the closed half-space
containing K. Since v’k >0 for all k € K, it follows that v € K*; since
v L {b,L} alternative A2 holds.

Now assume that statement A2 holds. Since v L b, L, and since v’k > 0 for
all k € intK, it follows that (b + L) NintK is empty. W

The preceeding lemma does most of the work in establishing the following
fundamental theorem of semidefinite programming.

Theorem 10 LetS € S, and let Q =H + S — Jo(H + S)I, where Jo(H+S) is
the bottom eigenvalue of H+ S. Then S maximizes Ay if and only if there is a
positive semidefinite matrix P satisfying the following conditions: (E1) PQ =
0; (E2) (P, S), =0; (E3) (P,I), = 1.

Proof. 1t is clear that S € S maximizes /o if and only if (Q + S) Nint P is
empty, where Q=H+S — 2(H+S)I. By making the identifications
b=Q,L=3S,K =K"= P! (since P* is self-polar), and applying the above
lemma a more useful characterization is achieved: S € S maximizes /o if
and only if there is a nonzero element P € {Q,S} NP = (Q* NP"N
(S N P*). Since Q € P* the condition P € Q- N P* is equivalent to the condi-
tion PQ = 0, which is condition E1. The condition P € S N P* is equivalent to
condition E2. Since P is nonzero it can be scaled so that condition E3 is satisfied. B

The virtue of this theorem is that it reduces the dual problem to the question
of solving the Euler equation PQ = 0, a second-order algebraic equation for the
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entries of P and Q. Earlier proofs [10, 11] of this result made use of elements of
nonsmooth analysis, but the proof given here draws only on standard ideas from
matrix theory and convexity theory.

Corollary 11 If the spectral optimization problem has an optimal solution S,
then there is an optimal solution P of the energy problem, and PQ = 0, where
Q=H+S - J(H+S)L

Proof. This result follows directly from Theorem 10 and Corollaries 6 and 7. &

B. Existence Theorems

If the subspace S contains a positive definite element S*, neither the energy pro-
blem nor the spectral optimization problem has an optimal solution: since there
is no positive semidefinite matrix P satisfying both the conditions
(P,ST), =0, (P,I), = 1, the convex set P5 NS is empty, and the energy pro-
blem has no solution. Since the values of Ao(H + 2S™) increase indefinitely as
o € R goes to positive infinity, the spectral optimization problem has no solu-
tion. When S contains positive semidefinite elements, but no positive definite
elements, the spectral optimization problem can have a solution, but need not,
as is illustrated by the following example. Consider the data

n=[} 4] s=wf[s 1]}

and the associated energy problem. The conditions (P,S), =0,(P,I), =1
uniquely determine P to be
1 0
*=o o

The minimum energy is then given by Eo(P) = (P,H), = 1.
For the spectral optimization problem we must calculate the bottom eigenva-
lue of

H+aS = {1 1]
1 «

It is easy to see that inequality Ao(H 4 oS) < 1 holds for all o € R. For o > 1

1 2\ | «a 2\’
AO(HJrocS):5 1+ 1+<u_1> +5 1 - 1+(a_1>

1
o—1

~ —
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and Jo(H + «S) approaches 1 asymtotically with increasing o. Therefore the
spectral optimization problem has no solution. The gap is given by

A = Ey(P) — Zo(H + oS)

1
~l—(1—a_1)
1
a—1

~

which is always positive, but decreases asymtotically to zero as « increases.

Theorem 12 The energy minimization problem has an optimal solution if and

only if S NintP* = Q.

Proof. 1In our introductory comments to this subsection we have argued that the
energy problem has no solution when S Nint P* # (. It remains to argue that
the energy problem has a solution when S Nint P* = (. After making the iden-
tifications b = 0,L = S,K = K* = P*, we apply Lemma 9 to show that there is
a nonzero element P in S N PX. We can then scale P so that it has unit trace and
conclude that the convex set determined by the two conditions (P,S), =0,
(P,I), =1 is not empty. Since this set is also compact, the energy problem
necessarily has a solution. W

Theorem 13 The spectral optimization problem has an optimal solution if
SNPF=0.

Proof. We first consider the condition S N P* = 0. After making the identifi-
cations b =0,L = S, K = K* = P*, we apply Lemma 9 to show that this con-
dition is equivalent to the existence of a nonzero element in S N int P*, which we
scale to yield the matrix I" satisfying the condition (I*,I), = 1. We then replace
H by a translate Hy = H — I so that the condition (I*,Hy), = 0 is satisfied.
Since we have assumed that I, H, S are linearly independent, the projection of
H) onto the orthogonal complement of {I, S} is nonzero, so it can then be scaled
to give the matrix Hj satisfying the conditions (Hj,I), = 0, (Hj, Hop), = 1. We
next introduce the subspace K = {I, H,, S}L to achieve the following symme-
trical situation: just as the matrices I, Hy, S span K, the matrices I*, H;, K span
S. Moreover, I',I are positive definite and the conditions (I*,I), =1, (I",
Hy), =0, (H;,I), = 0, (H;,Hy), = 1 hold.

By Theorem 12 the condition S N P* = 0 ensures that the energy problem has
an optimal solution P, which we write as P =1I" — oHj + K, where K € K.
Since P minimizes the energy it follows that o > 0 in this expansion. Since P
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is optimal we also conclude that the condition (P + &) N int P* = () must hold.
Otherwise, there would be an element AK € /C, and a positive real number &, so
that P’ = P — ¢H}, + AK € SN P§. 1t would then follow that (P’ — P, Hy), =
(—eHj + AK, Hy), = —¢(H{j,Hy), = —& < 0, which cannot hold since P is
optimal.

After making the identifications b =P L =K,K = K* = P, we apply
Lemma 9 to convert the condition (P4 K)NintP* =@ to a more useful
form: there is a nonzero element Q in {P,K}" N P* = P- N {I,H,S} N P*.
Since (Ij,Q), >0, we initially scale Q so that it can be written Q =
I+yH, + S', where S'€S. The condition (P,Q), = (I'—oH}, + K, I+ yHy+
S"), =1 —oy =0 requires that y = 1/o > 0. Rescaling by « converts Q to
the form Hy + oS+ ol = H + oS’ + (¢ — x)L. The final form is Q =H + S —
Jo(H+S)I, where S=0aS" €S, and A(H+S) = —(x— k) is the bottom
eigenvalue of H + S; this is the form required by the spectral optimization
problem.

Since A = (P,Q), = Eo(P) — Ao(H+S) = 0, an application of Corollary 6
shows that Q is a solution of the spectral optimization problem. m

Corollary 14 Assume that S is the Pauli subspace as defined in Section II. Then
the energy minimization and spectral optimization problems have optimal solu-
tions P,S, and PQ = O, where Q =H+S — Jo(H+ S)L

Proof. By property RS listed at the end of Section II, the elements of the Pauli
subspace S are traceless, from which we infer by Theorems 12 and 13 that the
energy problem and the spectral optimization problem have optimal solutions.
By Theorem 10 these solutions are characterized by the Euler equation PQ = 0. |

V. ALGORITHMS

In order to further develop the lower bound method, more effective algorithms
need to be devised to solve the Euler equation PQ = 0, and attention is now
focused in this direction. For electronic structure calculations the matrices P, Q
are large, and in many cases out of range for the current generation of
algorithms—the next generation will make use of particular features inherent
in electronic structure theory so that larger problems can be accommodated. In
this section we give a brief treatment of algorithms for semidefinite programming.

A. Standard Formulation

We now return to the original formulation of the energy problem,

min Ey(P)
PeS NP
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where Ey(P) = (P,H),, and the k-matrix P and Hamiltonian matrix H are
referred to the original monomial basis M. This representation has many nice
properties, including the five properties listed toward the end of Section II. We
first note that by property RS the elements S of the Pauli space S are traceless. It
is convenient to assume that the original Hamiltonian 4 on Fock space is trace-
less, in which case the matrix representation H is traceless by property R4. It is
also convenient to choose a representation H that is orthogonal to the Pauli
space, which is possible by property R3. By introducing the subspace K =
{LLH, S}L, we have the following orthogonal decomposition of the set of sym-
metric matrices:

ILHLSL1K

The matrices P and Q then belong to the following subspaces of symmetric
matrices:

PcS* = span{I, H, K}
QcK* = span{I,H,S}

By introducing bases {S;,S,,Ss, ...}, {K;,K;,Kj, ...} for S, K the matrices P
and Q can be written

1 Ey
P=—I1+ " H+ K, and Q=H+ :Si — 2ol
TS 218 o

The coefficients of I and H are treated separately in P so that the trace condition,
(P,I), = 1, holds and so that the energy is given by (P, H), = Ey; the coefficient
of Iin Q becomes the bottom eigenvalue 1y when parameters are adjusted so that
Q is optimal. The optimal values for Ey and A are equal.

Finding a solution for the energy problem and spectral optimization problem
is reduced to solving a system of quadratic equations obtained by substituting P
and Q into the Euler equation PQ = 0. It is easy to devise algorithms to deter-
mine the parameters Eo, o 0,..., 40, f; f,,..., but there is an important
caveat—the only meaningful solutions are ones where the parameters deter-
mine positive semidefinite P and Q. The goal of current research is to develop
algorithms that both converge superlinearly and converge to positive semidefi-
nite solutions P and Q; an enormous effort has been expended in this direction.
Moreover, since the applications of semidefinite programming are wide ran-
ging, the efforts expended in algorithm development are broad based. The
observation that linear programming is a special case of semidefinite program-
ming, and that the difficulties faced in developing interior point methods
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are common to both theories, has served to intensify efforts in algorithm
development.

B. Alternate Formulations

With the basic problem in standard form it is easy to switch to an alternate for-
mulation by scaling the matrices P and Q. By scaling P by [H|*/E, and scaling
Q by 1//0|1?, we obtain

H H|? 1
H—&—uz K—| |21, Q=1+ H+ ) BS;
; EolI| I iIII

i

so that P’ has the required form for a spectral optimization problem, and Q' the
form for an energy minimization problem. If P',Q’ are optimal, so that
P'Q’ = 0, the corresponding optimal values of the bottom eigenvalue and energy
are given by |H|*/Eo[I|* and [H|*/A0|I*.

That we can so easily pass between the two forms of optimization problem
without worrying about the existence of optimal solutions follows from the fact
that the matrices in the two subspaces S and K are traceless: Theorems 12 and
13 can then be applied to ensure existence of solutions. This can also be seen
directly by noting that the optimal values for Ey and 4 are negative, and there-
fore nonzero, so that the scale factors [H|*/Eq, 2, used in passing to the
primed matrices P’, Q', are well defined.

C. Algorithms

Here we briefly sketch two directions in research on algorithms for semidefinite
programming. A more complete discussion can be found in M. Todd’s Semide-
finite Optimization [18], or in the Handbook of Semidefinite Programming edited
by Wolkowicz et al. [19].

The bottom eigenvalues for optimal P and Q are typically multiple, with
many additional eigenvalues concentrated in a narrow band at the bottom end
of the spectrum, and this structure is particularly difficult for algorithms to
resolve. Although solutions of the equation PQ = 0 are sought where all eigen-
values are nonnegative, there are many nearby solutions with small negative
eigenvalues. As semidefinite programming emerged in the early 1990s increased
efforts were made, that are ongoing, to devise algorithms that avoid these spur-
ious solutions. That the bottom end of the spectrum for P and Q is compressed is
easily understood by considering the spectral optimization problem. If S =
BiS1+ Py Sa+ -+ B,S;, then the function Ao(H+ S) can be considered a
function 4¢(p) of vector variable f§ = [, f,, ..., B,] € R’. As f moves toward
the position of the maximum, the bottom eigenvalue is pushed up, compressing
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the bottom part of the spectrum. Thus at the maximum there are typically multi-
ple eigenvalues with the same maximal value, and many additional eigenvalues
nearby.

1.  Primal-Dual Interior Point Methods

Starting with Karmarker’s 1984 paper where he proposed an interior point
method for linear programming, a new line of research on algorithms was
started. Rather than deal with the detailed structure of the boundary of a poly-
tope, Karmarker devised a search method that proceeds through the interior,
making contact with the boundary at only the last moment, when the optimal
solution is reached. Search directions need not be informed of details of the
boundary structure, but must be devised so that the boundary is avoided. The
ideas of Karmarker were steadily improved upon until the primal-dual path-
following methods emerged as the dominant class of algorithms. These algo-
rithms can be applied equally to semidefinite programming problems and linear
programming problems. For semidefinite programming the primal-dual algo-
rithms replace the equation PQ = 0 by the equation PQ = 7I, where 1 is a posi-
tive number. When the right-hand side is 0 the equation determines P, Q on the
boundary of the cone of positive semidefinite matrices, but when the right-hand
side is set equal to I the equation determines positive definite P, Q. As 7
approaches zero the solutions P;, Q. track along the interior of the cone of posi-
tive semidefinite matrices, arriving at the boundary at the last moment, when t©
converges to zero. When this happens we arrive at a solution of the Euler equa-
tion PQ = 0.

2. Boundary Methods

The recent papers of Mazziotti show that boundary methods can be effective in
solving the semidefinite program that accompanies electronic structure theory.
His algorithm seems to outperform standard primal-dual path-following algo-
rithms in terms of both the complexity of the basic step and number of steps
to convergence [20-22]. Central to boundary methods, and to Mazziotti’s algo-
rithm, is a parameterization of P, or Q, or possibly both, that ensures the positive
semidefinite property. For example, to ensure that P remains positive semidefi-
nite, it is simply written P = RR”*, and the entries of R become the variational
parameters. By imposing the positive semidefinite condition in this way, the
algorithm can track along the boundary by directly invoking the equation
PQ =0.

Information on the ranks of the optimal matrices P and Q can be used to gain
efficiency since then the factor R need not have full rank, and the number of
parameters is reduced accordingly. In the problem of quantum phases discussed
in the following sections, the ranks of both P and Q can be predicted, which
allows such efficiencies to be deployed in the solution process.
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D. Interpreting the Solution

By the spectral theorem the optimal matrix Q can be written
Q=H+S—/jy(H+SI=> gg

which by passing to the operator representation becomes

h— ol = Zgig?

g; is the coordinate vector for the operator g; referred to the fixed basis for Q. The
vectors g; belong to the kernel of the k-matrix P, and the operators g; are annihi-
lators for the corresponding approximate von Neumann density: g;p = 0. Both g;
and g; give a dual description of a type of correlation present in the ground state;
these are the “killers” of the ground state. The P and Q matrices are typically
block diagonal, with the blocks varying in size and type—the blocks are labeled
by quantum numbers, which serve to classify the blocks. For symmetrical pro-
blems the number of labels increases, and the blocks become smaller and more
numerous. The coordinate vectors g; are associated with a particular block and
therefore can be labeled by such quantum numbers. These serve to classify the
possible types of correlations present in the ground state. It is important that
the number of types of blocks that appear when k-matrices are used to represent
the ground state is far greater than when a wavefunction is used, so k-matrices add
precision to the discussion of correlations. The example we conclude with is the
calculation of the ground-state k-matrix for the superconducting phase. This is a
very symmetrical problem, so the number of types of correlations is large. As
model parameters are varied, and the superconducting phase is traversed, the
number and types of “killers” g; remain constant, so the types of correlation
that characterize the ground state remain constant. The coordinate vectors them-
selves vary smoothly, but the ranks of the various blocks remain constant. This
property, that the ranks remain constant, vividly illustrates the stability that
accompanies quantum phases and even serves to characterize quantum phases.

The electronic structure of atoms shows a similar stability since the shell
structure remains constant over a wide range of experimental environments.
However, with molecules this picture must be modified. The electronic structure
of a diatomic molecule varies with bond length, the limit being that of a pair of
separated atoms. Accordingly, the ranks of the blocks in the k-matrix description
vary with bond length.

VI. MODELING A ONE-DIMENSIONAL SUPERCONDUCTOR

We first review the two papers [3, 4] where, using semidefinite programm-
ing, the 3-matrix of a one-dimensional superconductor was calculated for a
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two-parameter family of Hamiltonians. This work was the first to reveal the
importance of the order of accuracy k, and to give a clear picture of how
order of accuracy relates to the balance between one- and two-body forces
in the Hamiltonian. It was established that convergence to exact values is
extremely rapid with k, with third-order estimates being sufficiently accurate
for most purposes. More specifically, these papers showed poor results when
calculations are carried through to second order but showed three-figure accu-
racy when calculations are carried through to third order. The improvement
with order of accuracy k was dramatic, suggesting that the accuracy of
fourth-order estimates would be in the range of ten figures; this was later
confirmed [5]. It is this characteristic, rapid convergence with k that converts
the lower bound method into an effective computational tool, even when the
correlations are induced by strong two-body forces. These papers also showed
how order of accuracy k relates to the balance between one- and two-body
forces in the Hamiltonian. The Hamiltonian for the superconducting model
contains two-body forces alone—the opposite extreme from atoms and mole-
cules where one-body forces dominate. Two-body forces alone provided a
severe test—the second-order estimates contained no useful information. It
came as somewhat of a surprise that the second-order estimates were so
poor, and it was equally surprising that the third-order estimates were so
good.

A. Details of the Model

In the superconducting model studied by Erdahl and Jin [2-4] spin-up, spin-
down pairs of electrons wander on a one-dimensional periodic lattice A. The
local Hamiltonian,

2 2
hy = ogE,y + oz,

where p,v € A are nearest neighbors, determines how the pairs interact along a
nearest neighbor bond and the Hamiltonian is formed by summing these bond
contributions:

There are an even number of lattice points equispaced on a ring, which are
represented by the integers {1,2,...,|A|}. The restriction | — v| =1 limits
the summation to nearest neighbor contributions, and since A is periodic the
identity |[A| + 1 =1 holds. Along a bond the pairs interact through an electro-
static force 02E - the magnitude and sign determined by the coefficient ag. The
pairs also respond to a transport term ot%Tm,, which moves pairs between
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adjacent lattice sites. The details of these interactions are given by the
expressions

2E,w = i(eaﬂ eq, + ep,ep, + eqep, +epeq,)
2Tuv = 2(bLaLavbv + biata#b#)

The operator a,, annihilates a spin-up electron at u € A, and the operator b, anni-
hilates a spin-down electron; e,, = alaﬂ - aﬂaz. The electrostatic operator
has expected value +1 for states when sites y, v are either both occupied or unoc-
cupied, and expected value —1 in the other case where one site is occupied, the
other not.

The superscript 2 is added to emphasize that these interactions are fwo-body.
That is, these operators are orthogonal to all scalar and one-body operators

with respect to the trace scalar product.

Definition 15 A k-body operator is a Hermitian operator that can be repre-
sented as a polynomial of degree 2 k in the annihilation and creation operators,
and is of even degree in these operators. In addition, a k-body operator must be
orthogonal to all (k — 1)-body operators, all (k — 2)-body operators, ..., and all
scalar operators, with respect to the trace scalar product.

B. Results

As p varies over the set of von Neumann densities %3, the vector of matrix
elements = [, Bz = [(P?, Tw), (p*, Ew)] fills in the representable region
‘R pictured in Fig. 1. Each von Neumann density p € 3, is represented by

B

0.8

0.4

04 038 12
Br

Figure 1. The representable region R.
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a point in R, and each point in R represents at least one von Neumann
density.

Each point f§ € R corresponds to a quantum state with total energy given by
€= (p,h) = [A(p ) = [Al(ar(p?, Ton) + 26 (p%, En)) = [A]c- B, where o =
[o£, o7]; the number of lattice sites |A| is equal to the number of bonds in the
ring, and therefore equal to the number of like contributions of bond energy.
The minimum energy state for a Hamiltonian with coefficients o = [0, a7],
or < 0, is represented by the point 5, € R that is pictured. This follows since
f. is a point of tangency for a line that is tangent to R, and perpendicular to «;
the energy is constant along the tangent line, and the vector o points in the direc-
tion of increasing energy.

The open circles slightly outside R in Fig. 2 are third-order estimates of
boundary points obtained by the lower bound method and are accurate to three
figures. These results are for three spin-up, spin-down pairs of electrons wander-
ing on a ring with six lattice sites.

As the number of lattice sites increases, the electrons experience additional
correlations, so the representable region shrinks. That is, if R; is the representa-
ble region for a lattice with i = |A| sites, then R4y D Rg D Rg D Ry D - -. This
phenomenon is accurately tracked by the third-order estimates, and Fig. 3 shows
that convergence to the limiting case where |A| — oo is rapid.

C. Convergence with Order k

Second-order estimates of the representable region R were also made for the
cases |A| = 4,6. These are the pentagonal regions R C R? that appear in
Fig. 4. Not only do the pentagonal regions poorly represent the corresponding
representable regions, they increase in size in going from four to six lattice sites

0.5}

-0.5

0 05 1 15 2 05 06 07 08 09 1 11 12
Br Br

Figure 2. Accuracy of the lower bound method.
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Figure 3. The representable regions R4D Re¢D RsD Rio-

rather than shrink! The limiting case, when |A| — oo, is the triangle with ver-
tices at [0, 1], [2, —1], [-2, —1]. Thus the second-order estimates completely mis-
represent the physical situation and are of little value. The two representable
regions R4 O R have been added for comparison.

These results confirm the observation of Mihailovic and Rosina that second-
order methods cannot characterize the correlations induced by two-body forces,

Be

0.8

0.4

Figure 4. The estimates R3C RZ.
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and show that third order can. The vast difference between the second- and third-
order estimates shows that convergence to the exact representable region is rapid
in k—it is clear that fourth-order estimates would give a very precise description
of these correlations.

D. The Lipkin Model

The extraordinary speed of convergence with k was confirmed in the recent work
of Mazziotti and Erdahl [5], where the Lipkin model was studied using the lower
bound method. Second-, third-, and fourth-order approximations were studied
for a range of strengths of the two-body forces. The jump in accuracy in going
from second- to third-order approximations was again impressive, and the
fourth-order estimates effectively removed all remaining errors. The accuracy
goes from about four to ten figures when third-order estimates are replaced by
fourth. A significant observation was that fourth-order estimates were an order of
magnitude more accurate than estimates calculated using other many-body
methods, showing that convergence in k is rapid enough to be of enormous prac-
tical significance. These results show that 4-positivity gives a solution to the cor-
relation problem for strong two-body forces. The Lipkin model was introduced
to study the strong two-body forces that dominate the dynamics of protons and
neutrons in the nucleus. This is a two-level system where the energy levels —1
and +1 are each N-fold degenerate, and the strength of a two-body term can
be adjusted by varying the parameter V. When V is zero all N fermions occupy
the ground state, but when V is turned on pairs are promoted to the excited state;
the action of the two-body term is to move pairs of fermions between the ground
and excited states. For large interaction strengths both levels are nearly equally
occupied; there are two half-filled shells, which is the configuration Mihailovic
and Rosina found most difficult. In modeling nuclear systems V is chosen to be
negative so the two-body forces are attractive, but in the work of Mazziotti and
Erdahl V was positive, the two-body forces were repulsive, and an electronic
system was modeled.

Convergence in order k was tracked for three different particle numbers, N =
10, 30,75, and for two values of the interaction strength, V = 0.8, 1.6. Compar-
isons were made by recording the percentage of the correlation accounted for
using second-, third-, and fourth-order approximations, with the results recorded
in Table 1.

The third column contains the exact correlation energy computed using a full
configuration interaction treatment. As anticipated, convergence in k is very fast:
the accuracy of the fourth-order approximations of the energy exceeded ten fig-
ures in some instances. A significant comparison is with other wavefunction and
many-body perturbation methods currently employed in quantum theory. These
comparisons are made in Table II, where correlation energies are tabulated for a
variety of methods.
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TABLE I
Convergence of Correlation Energy with k

N v Ecor 8 ¥o o

10 0.8 —0.0384 104.6640 100.0376 100.000103
30 0.8 —0.0130 102.4673 100.0103 100.0000670
75 0.8 —0.00526 101.1621 100.00167 100.0000113
10 1.6 —0.186 122.3515 101.85 100.0958

30 1.6 —0.128 119.6154 102.86 101.90

75 1.6 =0.117 108.9054 100.644 100.428

Source: Mazziotti and Erdahl [5].

Comparisons are made with: (i) a configuration interaction wavefunction cal-
culation with single, double, triple, and quadruple excitations (SDTQCI);
(i) fourth-order many-body perturbation theory (MP4); (iii) solution of
the single—double coupled-cluster equations (CCSD); and (iv) the contracted
Schrodinger equation (CSE). Of the comparison methods the single—double
coupled-cluster treatment gives the best results, but failed to converge in the
strong interaction case where V = 1.6. The energies computed using the lower
bound method are four orders of magnitude more accurate than those computed
using single—double coupled clusters. These comparisons show that the rate of
convergence of the lower bound method in k is fast enough that when k = 4
accuracies are achieved they are superior to other many-body techniques by sev-
eral orders of magnitude. The correlations induced by two-body interactions are
given a precise characterization by 4-positivity.

VII. CONCLUDING REMARKS

It is now firmly established that the lower bound method can be relied on for
accurate electronic structure calculations for atoms and molecules. The recent

TABLE II
Comparison with Other Many-Body Methods

N 1% Ecorr SDTQCI MP4 CCSD CSE S ‘é

10 0.8 —0.0384 98.85 99.703 101.07 99.9856  100.000103
30 0.8 —0.0130 95.94 96.43 101.08 99.9860  100.0000670
75 0.8 —0.00526 94.25 94.5 100.642 99.9092  100.0000113
10 1.6 —0.186 88.9 100.224 * 100.0336  100.0958

30 1.6 —0.128 47.5 539 * 100.486 101.90

75 1.6 —0.117 20.9 23.6 * 99.9657  100.428

Source: Mazziotti and Erdahl [5].
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computational experiments [5, 6, 12, 14] have shown that second-order approx-
imations are adequate for most purposes, even giving accurate binding energy
curves in many instances. This last observation indicates that the correlations
are treated uniformly over a range of molecular geometries, a characteristic
that is particularly valuable and not shared by other approximation methods.
Moreover, these experiments establish that if approximations are carried through
to third order, the lower bound method is more accurate than other approximation
methods currently used. This picture was filled out by studies of model systems
where two-body forces dominate [2—-5], providing a more severe test for the lower
bound method. This second group of experiments show that with strong two-body
forces second-order approximations fall far short of acceptable accuracies, but
that with third-order approximations four-figure accuracy can be achieved.
That is, these experiments show that convergence in the order k is so rapid that
target accuracies can be achieved in all cases while complexity is kept within
bounds. It is this rapid convergence, requiring that for kth-order approximations
be k-positive, that stands behind the claim that the N-representability problem
now has a satisfactory solution. The second theme we pursued is how semidefi-
nite programming and the lower bound method have come together so that the
calculations required for the energy minimum problem are ‘“within grasp.”
Within grasp means that calculations carried to third order are now possible
for small molecules. Attention is now moving toward semidefinite algorithms
that exploit special features of the electronic structure problem so that larger sys-
tems can be studied [20-22], and this is where a rapid advance is possible.

We have focused on the lower bound method, but density matrix research has
moved forward on a much broader front than that. In particular, work on the con-
tracted Schrodinger equation played an important role in developments. A more
complete picture can be found in Coleman and Yukalov’s book [23]. It has taken
55 years and work by many scientists to fulfill Coleman’s 1951 claim at Chalk
River that “‘except for a few details which would be easily overcome in a couple
of weeks—the N-body problem has been reduced to a 2.5-body problem!”
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I. INTRODUCTION AND BACKGROUND

The starting point for all investigations of the classical RDM method (determi-
nation of the 1-RDM and 2-RDM by constrained optimization of the energy as a
linear functional of these RDMs) are the representability conditions obtained
from positivity of ATA, where A is any one-body or two-body operator [1, 2].
Positivity of ATA when A is a p-body operator likewise provides constraints
on the p-RDM, and they have been called p-positivity conditions [3]. The T'1
and 72 conditions that are the subject of this chapter are obtained as special
positive linear combinations of 3-positivity conditions in which terms involving
the 3-RDM cancel out. These conditions were introduced by Erdahl in the con-
cluding section of his 1978 survey paper [4]. He presents them in a general Fock-
space setting in the concise form 0 < y*y, where the operator y is a polynomial
containing terms of degrees 1 and 3 in the annihilation and creation operators
and having the property that y*y involves terms only up to degree 4. Erdahl’s
presentation is clear, but no further reference to these conditions is found in
the 25 years following Ref. [4]. Part of the reason may be that a computationally
efficient implementation of the classical 2-positivity conditions presented
enough of a challenge already, and another part of the reason may be that Erdahl
did not spell out the precise semidefinite conditions obtained after specialization
to fixed particle number.

The conditions were rederived and explored by us in a 2004 paper [5] and
they have been further investigated in Refs. [6-8]. In the present chapter we pre-
sent these conditions, including a slight modification and strengthening of the
T2 condition as compared to Ref. [5]. We also make precise the relation between
the present 7’1 and T2 conditions and the Fock-space positivity condition given
by Erdahl, and we show the effect of the strengthening of the 72 condition rela-
tive to our earlier paper [5] by recalculating the most difficult cases of that work.
A brief review of the derivation of the classical positivity conditions of Refs.
[1, 2] and an overview of the well-known diagonal conditions [9, 10] will set
the stage.

In analytical investigations it is often desirable to leave the particle number
free and consider operators that fix only the parity, but in applications to elec-
tronic structure theory one deals with fixed particle number and one may
restrict A to have a definite action on the particle number N, so that ATA is par-
ticle conserving. There are then two cases for the one-body operator A: consid-
eration of A =) fia; with undetermined coefficients f; gives rise to the
condition 0 < p, while consideration of A = )", fia;" gives rise to the condition
0 < I —y; here the a; form a (finite-dimensional) basis of annihilation opera-
tors, 7 is the 1-RDM, and [ is the identity matrix of the appropriate size. If the
density matrices are known to be real symmetric then the f; may be assumed
real, otherwise they should be assumed complex. For fixed particle number
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there are three kinds of two-body operators to consider: lettlng A=), jfijaia;
one obtains the condition 0 < T, consideration of A = >~ . fia;"a;" leads to the
condition 0 < Q, and consideration of A = )", i f,Ja a; leads to the condition
0 =X G. Here, T is the 2-RDM, and matrices Q and G are expressed in terms
of y and I' by

V=T, — 0y} — Oyt + Oy + Ol + 8,0] — 810, (1)
Gy =TI + 6] (2)

(where 0 denotes the Dirac delta function). The Q matrix is antisymmetric in
each pair of indices and is understood as a matrix of size (}) x (}), where r
is the dimension of the one-particle basis. The G matrix is of dimension 72 x r2.

Conditions 0 Xy, 0 XTI —7y,0<XT, and 0 < Q are found in Ref. [1] and the
condition 0 < G is from Ref. [2], where the unity of this family of conditions is
emphasized. (For the history of the subject the less well-known paper by Mayer
[11] deserves notice, and for reviews we mention Refs. [4, 12].) Garrod and
Percus [2] developed condition 0 < G in a more general form by considering
the positivity of A*A, where A = ¢ + 3, fi ja;"a;; however, for the case of fixed
particle number N the free constant ¢ can be absorbed into the sum using the
operator identity ), j 5J’a,+ = N, and this has always been done in computa-
tional work. The implementatlon of the RDM method subject to these positivity
conditions belongs to semidefinite programming and this is shown in a beautiful
way by Rosina and Garrod [13], which presents—even before the name semide-
finite programming was in use—a cutting-plane method applied to a linear pro-
gramming relaxation and also a barrier function approach that looks ahead to
present-day interior-point methods.

Beyond the semidefinite conditions on y, I — y, I', Q, and G, one other class
of representability conditions for the 2-RDM has long been studied: these are the
“diagonal” conditions, which include the three-index conditions due to
Weinhold and Wilson [9] and which were systematically investigated by McRae
and Davidson [10]. The simplest, one-index, diagonal conditions are 0 < 7t and
0 <1 —y; (for all i), and these obviously specialize the conditions 0 <y and
0=<1—1. The two index diagonal conditions are 0 < FU, 0<1—9yi— y’ + Fl,/’
and 0 <yl — (for all i, j; i #J), and these specialize 0 <X T, 0 < Q and
0 < G.Nextin the hierarchy are the three- 1ndex (We1nh01d—Wllson) diagonal con-
ditions: 0 < 1 =i — 9] —yk+ TP+ T+ T and 0 <)+ Ty — I} — Ty
(with 4, j, k all d1st1nct) The hlerarchy continues, but as observed by McRae
and Davidson the conditions become progressively more unwieldy. The
3-index and higher diagonal conditions have not played much of a role in
RDM computations, although it would not be hard to incorporate any number
of them into an SDP formulation via a cutting-plane approach. They depend
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on the choice of basis, and an invariant choice would be the basis that makes
the 1-RDM diagonal. (It is a bit more challenging if one insists that the con-
ditions must hold after any transformation of the one-electron basis.) In Ref.
[14] violation of the 3-index conditions was tested, but the conditions were not
then used to improve the solution, and in Ref. [15] the same authors incorpo-
rated the diagonal conditions but found only a weak improvement for the sys-
tems studied.

The complexity of the diagonal representability problem is now understood in
a manner that was not available to McRae and Davidson: the diagonal conditions
of RDM theory are recognized in combinatorial optimization as conditions char-
acterizing the Boolean quadric polytope (BQP) and, after a simple transforma-
tion, the cut polytope [16]. Optimization over BQP is NP-hard and a concise
characterization of the polytope is not available unless P = NP [16, p. 397; 17].
These fundamental complexity results tell us that we should not look for a con-
cise complete solution to the fermion representability problem. On the other
hand, the original full configuration interaction eigenvalue problem looks expo-
nentially hard in any case, and therefore the analytical challenge for the RDM
method is to develop representability conditions that provide high accuracy even
if they will not form a complete family.

II. ERDAHL’S 71 AND 72 CONDITIONS

Following Ref. [5] the T'1 condition is obtained by considering an operator
A= Zz};}k gijxaiajax, where the g;;x are arbitrary real or complex coefficients
totally antisymmetric in the three indices. (We view g as a vector of dimension
(5), where  is the size of the one-electron basis.) The contractions (U|ATA|)
and (U|AA™|¥) both involve the 3-RDM, but with opposite sign, and so the non-
negativity of (¥|ATA + AAT|¥) for all three-index functions g provides a repre-
sentability condition involving only the 1-RDM and 2-RDM. In explicit form the
condition is of semidefinite form, 0 < T'1, where the Hermitian matrix 7'1 is

defined in terms of y and I' by

T1P e = Alij AL K (19,010 — W0k + 100 )  (3)
We are using A[i, j, k|fij« to denote anti symmetrization with respect to (i, ], k):
fijx summed over all permutations of the indices with each term multiplied by
the sign of the permutation. The dimension of the 71 matrix is (}) x (3).

The T2 condition, slightly strengthened from Ref. [5], but in the real
case already contained in Ref. [4], is obtained by considering operators
A=), ki J7kai+ajak and B = )", g, for arbitrary real or complex coefficients
gijx and hy, with g;;, antisymmetric in (j, k). (So this g may be compressed to
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a vector of dimension r(g).) Operators A and B both lower the particle number
by 1. Similar to the case above, the contractions (V|ATA|T) and (P|AAT|T)
involve the 3-RDM with opposite sign, and so the combination
(U|(A+ B)" (A + B) + AA*|T) involves again only the 1-RDM and 2-RDM
and is, of course, nonnegative and also particle conserving. This provides a semi-
definite representability condition 0 < 72, where the matrix 72’ has the block

form
T2 X
T2 = 4
(X+ v) @)

The T2 diagonal subblock has dimension r(}) x r(}) and acts on the coefficients

8ijk> the 1-RDM is the other diagonal subblock, of dimension r x r, and acts on
the coefficients /;, and the off-diagonal blocks X and X+ mix the two sets of
coefficients; X* is, of course, the Hermitian adjoint of X. Specifically,

T2 = AU KA K (30,060 + 30 — ohTi) (5)

vy

i\l
Xl{r‘]-r"kr = Fjl-/;k/ (6)

In our earlier work [5] we did not include the contribution from the one-body
operator B, and so we obtained only the main 72 subblock. It might be thought,
briefly, that the condition could be further strengthened by considering an inde-
pendent pair of one-body annihilator operators B and C and then developing the
positivity of (A + B)" (A + B) + (A + C)(A + C)". However, this yields noth-
ing stronger in the case of fixed particle number, because if N > 2 then the
operator C can be absorbed into A, much like the constant term ¢ could be
absorbed into the two-body operator used in defining the G condition, while if
N =1 then effectively A = 0 and again the extreme conditions require only the
operator B.

Let us make clear now the correspondence between our treatment here and
Erdahl’s 1978 treatment [4, Sec. 8]. Erdahl works in general Fock space and
his operators conserve only the parity of the number of nuclei. He exhibits
two families of operators that are polynomials in the annihilation and creation
operators containing a three-body and a one-body term. Generic instances of
these operators are denoted y and w. The coefficients are real, and Erdahl stresses
that this is essential for his treatment. The one-body term is otherwise unrest-
ricted, but the three-body term must satisfy conditions to guarantee that y*y
or whw does not contain a six-body term. For the first family the conditions
amount to the three-body term being even under taking the adjoint, and for
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the second family the three-body term must be odd under taking the adjoint.
Writing out the polynomials one obtains the general form

+
y= E fLijraiajar + E (i) caiajay)
ijk ik
n + +
) f2jual g+ > (Figai ajar)
ij,k i,k

+Y gty hal (7)
w= Zfli,i,kaiajak - z:(fl,'J,ka,-ajak)+

ij.k ijk
+ + +
+ Y f2juaf aia = (Fug0ai ajar)

ijk ij.k

+ Z gia;i + Z hia; (8)

One may now proceed to write out y*y and wtw and, to make the connection to
the present work, retain only the terms that are particle conserving. The result
are representability conditions, and they include terms quadratic in f1 and terms
quadratic in f2, but no mixed terms. It will be clear then that the extreme con-
ditions—and they are all that matter—involve either f1 or f2, but not both;
moreover, one will observe that 0 < y*y and 0 < wtw lead to the same condi-
tions, which are the real cases of the 7'l and the strengthened 72 conditions.

In summary, Erdahl’s treatment is more general and allows a more concise
formulation because he works in Fock space, conserving only the parity of the
number of particles; however, he finds it necessary to restrict the coefficients to
be real. We work at fixed particle number and have no reason for the restriction
to real coefficients. If the Hamiltonian should be general Hermitian, in which
case the RDM must likewise be assumed to be general Hermitian, then our
approach leads to Hermitian semidefinite conditions.

III. NUMERICAL RESULTS

In our first exploration of the T'1 and T2 conditions [S] we obtained results of the
RDM method for the ground-state energy and dipole moment for a collection of
small molecules and molecular ions, both closed-shell and open-shell systems.
(We don’t mean ‘“‘closed shell” in a strict sense, and we only constrained the
spin and spin multiplicity eigenvalues, not the elements of the RDM.) The
choice of molecules and configurations largely followed Ref. [18]—a paper
that, we think, reinvigorated the classical RDM approach. We showed that the
addition of the 71 and 72 conditions (72 without the off-diagonal block X)
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provided a significant improvement in accuracy over that obtained using only the
classical 2-positivity conditions denoted P, Q, and G. The worst cases for the
energy in our sample were the O molecule, for which the RDM method subject
to the P, Q, G, T1, and T2 conditions gave an error of 2.8 mH relative to the full
configuration interaction (FCI) benchmark, and the CF molecule, giving an error
of 0.9 mH relative to FCI. For the dipole moment the worst case was the CF
molecule, for which the error was 0.0045 a.u. relative to FCI. All our results,
including these worst cases, were competitive in accuracy with those obtained
from the best standard methods: coupled-cluster singles and doubles with pertur-
bative correction of triples [CCSD(T)] for the energy and singly and doubly sub-
stituted configuration interaction (SDCI) for the dipole. Further demonstrations
of the strength of these conditions are provided in Refs. [6, 7]. Reference [8]
provides a detailed description of our present implementation of the SDP
approach.

The strengthened 72 condition presented here involves only a very slightly
larger matrix: matrix 72’ of Eq. (4) is of size (r(}) +r) x (r(}) + r), whereas
the 72 subblock is of size r(g) X r(g), and so really this 72’ matrix should
replace 72 in any use of these conditions. (We thought of changing the name
and calling the strengthened conditions the 72’ conditions, but for the long
haul that seems a poor choice.) We recalculated five cases from Ref. [5] for which
the worst accuracy was obtained and found that the strengthening of 72 to the 72’
matrix improved the accuracy further, as displayed in Tables I and II; in particu-
lar, the O energy error decreased from 2.8 mH to 2.1 mH, the CF energy error
went down from 0.9 mH to 0.5 mH, and the CF dipole error decreased from
0.0045 au to 0.0037 a.u. In the table, subscript PQG refers to the three classical
2-positivity conditions, POGT refers to those conditions and also the 71 and 72
conditions as used in Ref. [5], and PQGT’ refers to the classical 2-positivity con-
ditions and the T'1 and strengthened 72 condition as presented here.

TABLE I
Ground-State Energies (in Hartree Units) Relative to the Full CI Result, Calculated by the RDM
Method Subject to Three Sets of Representability Conditions (Column 6: P, Q, G; Column 7: PQG
and 71, T2 as in Ref. [5]; Column 7: PQG and T1, T2 as in Eq. (4) and Calculated by CCSD(T)
Using Gaussian 98 [19] (Column 9), and the Full CI Reference Value (Last Column)”

System State N(Nm) ro 25+1 AEPQG AEPQGT AEPQGTr AECCSD(T) Exct

NH; A 10(5) 16 1 —0.0109  —0.0003 —0.0002 +0.0018 —56.0142
H;0™" 14, 105) 16 1 —0.0073  —0.0002 —0.0002  +0.0002 —76.1046
CF Qi 15(8) 20 2 —0.0076  —0.0009 —0.0005 +0.0010 —136.6775
o5 g 15(8) 20 2 —0.0167 —0.0028 —0.0021  +0.0033 —148.7933

“Here r is the basis size, N is the electron number, N, the number of spin-up electrons, and 25 + 1 is
the multiplicity. The geometries used are the experimental ones from Ref. [20]. The basis set is STO-
6G for all systems.
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TABLE II
Dipole Moments (in a.u.) Calculated by the RDM Method Subject to Three Sets of Representability
Conditions (Columns 6-8) and Calculated by SDCI Using Gaussian 98 and Full CI (Last Two

Columns)“
System State  N(N,) ro 2541 Dpoc Dposr Drgcr Dspai Drct
NH; 1A, 10(5) 16 1 0.0748 0.0799 0.0799 0.0803  0.0800
H;0" 4, 10(5) 16 1 0.7106 0.7201 0.7202 0.7216  0.7203
CF Q| 15(8) 20 2 0.4505 0.4255 0.4247 0.3929 0.4210

“Other conventions as in Table I.

IV. CONCLUSION

In this chapter we reviewed the semidefinite extension of the three-index diag-
onal conditions which is due originally to Erdahl [4], but was long ignored. The
RDM method subject to these conditions appears to provide an accuracy very
much better than that obtained using only the traditional 2-positivity conditions
and competitive with that of the best standard methods of ab initio theory. A
strengthening of the 72 condition was described here relative to our earlier deri-
vation [5], and the T'1 and T2’ pair is, in the real and particle conserving case,
equivalent to Erdahl’s condition. The semidefinite matrix associated with the
revised 72 condition is only very slightly larger than the original 72, and the
revised condition provides a further noticeable improvement in accuracy.
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I. INTRODUCTION

In 2001, Nakata and co-workers presented the results of realistic fermionic sys-
tems, like atoms and molecules, larger than previously reported for the varia-
tional calculation of the second-order reduced density matrix (2-RDM) [1].
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They employed a general-purpose semidefinite programming (SDP) software [2]
for these calculations.

Considering such recent relevance of SDP in quantum chemistry, this chapter
discusses some practical aspects of this variational calculation of the 2-RDM
formulated as an SDP problem. We first present the definition of an SDP
problem, and then the primal and dual SDP formulations of the variational cal-
culation of the 2-RDM as SDP problems (Section II), an efficient algorithm to
solve the SDP problems: the primal-dual interior-point method (Section III), a
brief section about alternative and also efficient augmented Lagrangian methods
(Section IV), and some computational aspects when solving the SDP problems
(Section V).

The SDP problem is a convex optimization problem that stimulated intensive
research since the 1990s for two main reasons: generalization of the exciting
new method called the interior-point method for linear programming, and its
wide-range applications in many diverse areas [3—7]. The SDP problem consists
in computing a maximization or a minimization solution of a real-valued linear
function defined on the space of positive semidefinite Hermitian matrices (i.e., Her-
mitian matrices with nonnegative eigenvalues) restricted by linear equality and/or
inequality constraints on the same space. This mathematical description of an SDP
problem is quite general. However, due to historical reasons, there is a preferred
formulation in which it has been ‘““popularized’” in mathematical programming.

Let us denote by S the space of block-diagonal real symmetric matrices (i.e.,
multiple symmetric matrices arranged diagonally in a unique large matrix) with
prescribed dimensions, and by R™ the m-dimensional real space. Given the con-
stants C,A1,A;,...,A, €S, and b € R™, an SDP problem is usually defined
either as the primal SDP problem,

max (C,X)
subject to  (A,,X) =1[b],, p=1,2,....m (1)
X=0

or equivalently (under mild conditions, e.g., the Slater condition) as the dual
SDP problem,

min b'y

subject to > Ay, —C =0 (2)
p=1
yeR"

Here (C,X) denotes the inner product Zij C;iXij, b the transpose of the vector
b, [y] , the pth coordinate of the vector y, and X = O means that the matrix X is
a positive semidefinite symmetric matrix. The variables for the primal SDP pro-
blem in Eq. (1) and the dual SDP problem in Eq. (2) are X € S and y € R",
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respectively. Therefore the size of an SDP problem depends on the size of each
block-diagonal matrix of X and m. We should also mention that the problem as
represented by Eq. (1) is the preferred “format’ for the primal SDP formulation
of the variational calculation, which we present in the next section.

We can also define a more general SDP problem as follows. Let us consider
now the constants (C,c), (A1,a1), (A2,a2), ..., (Am,am) €S x R’, and b € R™.
Then we can define the primal SDP problem with free variables,

max (C,X) +c'x
subject to (A, X) + ax = [b]p, p=12....m (3)
X>0,xeR’

and equivalently (under mild conditions, e.g., the Slater condition), the dual SDP
problem with equality constraints,

min b'y

subject to > A,[y], - C>= O
p=1 (4)
> @], =c, yeR”
p=1

In this case, the variables for the primal SDP problem with free variables
(Eq- (3)) and the dual SDP problem with equality constraints (Eq. (4)) are
(X,x) € S x R"and y € R™, respectively. Therefore the size of an SDP problem
depends now on the size of each block-diagonal matrix of X, m, and s. We should
also mention that the problem as represented by Eq. (4) is the preferred ‘“for-
mat” for the dual SDP formulation of the variational calculation, which we pre-
sent in the next section, too.

The primal-dual pair of SDP problems Egs. (1)—(2) or Egs. (3)—(4) is a nat-
ural extension of linear programming problems [3—6]. Therefore, owing to the
primal-dual “nature,” if (X, x) satisfies the constraints in Eq. (3) and y satisfies
the constraints in Eq. (4), we can simply verify that b'y — ((C,X) + ¢'x) =
(X,8) >0, where §=37"A,[y], — C. Furthermore, (X,S) =0 (or equiva-
lently XS = O) holds if and only if the maximum and minimum values of the
respective problems, Eqs. (3) and (4), are attained (and they are the same).
The same results are valid for the particular case of Egs. (1)—(2).

II. FORMULATION AS AN SDP PROBLEM

In this section, we focus on how to formulate the variational calculation of the
2-RDM as an SDP problem. In fact, it can always be formulated as a primal SDP
problem (Eq. (1)) [1, 8-13] or as a dual SDP problem with equality constraints
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(Eq. (4)) [14-16]. A key point here to understand the difference between these
two formulations is that the dual SDP formulation (Eq. (4)) is not the dual of the
primal SDP formulation (Eq. (1)). Both formulations produce two distinct pairs
of primal and dual SDP problems, which mathematically describe the same fer-
mionic system. Since their mathematical formulations differ, this implies differ-
ences in the computational effort to solve them.

As an instructive example, we consider the primal SDP formulation in detail.
First, we show that the variational minimization of a two-particle system can be
trivially formulated as a primal SDP problem. Next, we show how we constrain
the eigenvalues of the 1-RDM between zero and one, and finally, how we set the
SDP constraints to satisfy P and Q conditions simultaneously.

First consider a two-particle system. In this simplest case, the 2-RDM T" is N-
representable if it is positive semidefinite and the number of particles is fixed to
two. It can easily be cast as the following SDP problem:

min (H,T)
subject to  (N,I") =2
r-o

where H is the Hamiltonian of the system, and N is the number operator.

For the next step, we show how we consider the N-representability conditions
for the 1-RDM 1y for a system with N particles; that is all of its eigenvalues
should be between zero and one [17]. In other words, this condition is equivalent
to saying that y and / — y are positive semidefinite, where / is the identity matrix.
Assuming that H; is the one-body Hamiltonian, we have

min <I:Il7‘V>
subject to  (N,y) =N (5)
y>=0Oand I —7y > O

The difficulty here is how to simultaneously constrain y and I — y to be positive
semidefinite. To formulate it as a primal SDP problem (Eq. (1)), we should
express these two conditions as a positive semidefinite constraint over a single
matrix: let y be a block-diagonal matrix in which two symmetric matrices y; and
7, are arranged diagonally, and let us express the interrelation between these two
matrices via linear constraints defined by the matrices A, and the constants [b]p

as in Eq. (1). That is,
~_(h O )
7 (0 P2

where y; and 9, should satisfy y; =y and y, = I — 7. These conditions can be
equivalently rewritten as [y, ]; + [y,]; = 0} fori,j = 1,2,...,r, where §; denotes
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the Kronecker delta and r is the dimension of y. Now for i,j = 1,2,...,r and
i <J, let us define the r X r symmetric matrix E; whose (i,i) element is one,
(i,j) and (j,i) elements are § for i < j, and zero otherwise. By taking the inner
product of Ej; and an arbitrary symmetric matrix X, we can pull out the (i,/)
element (or the (j,7) element) of X, that is, (Ej,X) = [X];. Additionally, we
define the matrices

~ (Hi O ~ (N o _(E; O
H1_<0 0), N—(O 0), aIld AU_<0 Elj>

Notice that by taking the trace of 7 with Aj; it becomes (A;,7) = (Ey, 1)+

(Ej,72) = [771]1]/2 + [ﬂ]ji/z + [772]@,'/2 + [772}]‘,‘/2 = Wl]u + ['}TZLJ = 5} Finally,
Eq. (5) can be rewritten as the following primal SDP problem (Eq. (1)):

max (
subject to  (N,7y) =N
{

U
)
=

where N ,Aj and N, 5} take the role for the A, and [b]p in Eq. (1), respectively.
Summing up, the main points when formulating this variational calculation as
a primal SDP problem are:
* Prepare a block-diagonal matrix in which y and I — y are placed diagonally.

» Define the constraint matrices A, and the constants [b] , for each element of
y and I — y to satisfy the linear relations between these two matrices.

Finally, we show how to consider the Q condition [17]:
min (H,T)
subject to (N, T) =N (6)

I'-0Oand Q > O

and convert it into the primal SDP problem (Eq. (1)). The relation between 7y, T,
and Q is as follows:
Q)1 + (97 + 027)) — Oy + o) Tk = (9,0 = 007),
il7i27jl7j2:1525"'7r (7)

Let I be a block-diagonal matrix where I' and Q are diagonally arranged:

(o 5)
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I" and Q have four indices and they should be mapped to matrices with two
indices, respectively. This mapping is clear from the context. For i, i,j;,jo =
1,2,...,r,i; <ji and i < jy, let us define the r* x r* symmetric matrix E;,, j,j,
Whose (11 + (i = D)ryiy + (i — 1)r) element is one, (1] + (i — rji+
(2 —1)r) and (jy + (o — 1)r,i; + (ia — 1)r) elements are 5 for i; <j; or
ip < ja, and zero otherwise. Add1t10nally, deﬁne the matrlces with the same
dimension Elzlz«,jljz Zk—l ( lzk-Jzk + 5 Ellk jik 5 Elzk Jik 5 Ellk Jzk)

/(N —1). Letting
v (5 9) 55 9)

A o= Eilinljz - Ei1i2~jlj2 o
0z, jijz2 = O E
iz, jij2

and b; ;, ;= 0162 — 5152, we obtain the linear constraints
12, ]1)2 J17 )2 J27J1°

(Aisi jiins L) = bisin jujn>  I1sisjinja=1,2,..0,r, i1 < ji, b <o

which express the Q condition (Eq. (7)) since yJ’: = FJ",E /(N —=1).
Finally, the problem represented by Eq. (6) can be reduced into the primal
SDP problem (Eq. (1)):

max ( )
subject to (N, > =
< i1i2,j1j29 > - biliz,jljza i17i2aj17j2 - 1727 Y 8
- i <Jiyia <o
r-o
Furthermore, we can make use of the antisymmetric properties and generic spin
symmetries to reduce the sizes of above problems [1, 9, 14].

The inclusion of other known N-representability conditions like G, T'1, and
T2 [14] in the variational calculation can be embedded into the primal SDP pro-
blem in a similar way.

Table I (which can be deduced from Ref. [15]) shows the dimensions of the
block-diagonal matrices of X and the number of linear equalities m in Eq. (1)
relative to the number r of spin orbitals of a generic reference basis when
employing the primal SDP formulation. It also considers conditions on o electron
number, total spin, and spin symmetries of the N-representability. In the table

!
(Z) = m for integers a > b > 0

For example, the eigenvalue restrictions on the 1-RDM, y = O and I —y = O,
correspond to four block-diagonal matrices of dimensions r/2 X r/2 in X (see
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TABLE I

Dimensions of the Primal SDP Formulation for the Variational Calculation of the 2-RDM

N-Representability Conditions

Dimensions of Each Block-Diagonal Matrix of X

Restrictions on 1-RDM
P condition

Q condition

G condition

T1 condition

T2 condition

r/2 x r/2 (4 blocks)

(r/2)* x (r/2)* (1 block), ( ) ré 2) (2 blocks)
r/2 ]

» > (2 blocks)

2(r/2)* x 2(r/2)* (1 block), (r/2)* x (r/2)* (2 blocks)

%(’é 2) x ; (r/ 2) (2 blocks), < "2\ (7] 2) (2 blocks)

<
(r/2)* x (r/2)* (1 block), ( ) <
7)) w5 57 e

Conditions Considered
in the Formulation

Size m in Eq. (1)

P, Q, G conditions

P, Q, G, T1 conditions

P, 0O, G TI1, T2
conditions

5+ 6<r/22+ 1> +3 <r2/42+ 1) ¥ 2(’“/2 721)/4 + 1) N <r2/22+ 1)
Above line +2 <’2(’/2 _21)/8 + 1) N 2<r(r/2 - 1)(r/22 ~2)/12+ 1)

(r2(3r/2 ’ 1)/8+ 1) N 2(,2(,/2 721)/8 + 1)

Above line +2

first line in Table I). The largest block-diagonal matrices in X correspond to the
T2 condition and its number of rows/columns scales as 3r*/16. The number of
equality constraints m in Eq. (1) depends on the N-representability conditions
considered in the variational formulation. For instance, if we employ the P, Q,
and G conditions, m scales as 15+ /64, while if we further add the 71 and T2
conditions, it will scale as 25r° /576. Furthermore, these sizes can be reduced if
spatial and spin symmetries peculiar to each atom or molecule are incorporated
[12, 13, 18], but even these symmetries will not change the order of magnitude
of the SDP problems.

The dual SDP formulation [14-16] follows a similar spirit but seems less
obvious at a first sight. In general lines, it can be briefly described as follows.
Let us represent all nonrepeating elements of the 2-RDM I' (after considering
the antisymmetric condition on it) by a vector y € R™. Then, defining an appro-
priate vector b € R™ from the Hamiltonian for the corresponding system, the
ground-state energy of the fermionic system can be computed by minb’y
restricted to Eq. (4). In this case, the P, O, G, T1, and T2 conditions will
correspond to the block-diagonal matrices of Z;”:l Ap [y}p — C when C,A,A,,

., A, are appropriately defined [14—16]. The other equalities as the restriction
on the o electron number, total spin, and so on will be defined by
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TABLE 11
Dimensions of the Dual SDP Formulation for the Variational Calculation of the 2-RDM

Dimensions of Each Block-Diagonal Matrix of
N-Representability Conditions S Apbl, - C

Restrictions on 1-RDM and Same as Table |
P, O, G, T1, T2 conditions

Conditions Considered
in the Formulation Size m in Eq. (4) Size s in Eq. (4)

2[4+ 1 2-1)/4+1 2+1
m and s do not depend on the <r /2+ ) + 2<r(r/ 2)/ + ) 5+ 2<r/ 2+ )
N-representability conditions

considered in the formulation

c,ay,dy, ... ay € R in Eq. (4) [15, 16]. We omit its details here. More details
of the formulation can be found in Refs. [14-16].

Table II shows the dimensions of the block-diagonal matrices of

Z’Zl A, Ly]p — C, the dimension m of the variable vector y, and the number of
equality constraints s in Eq. (4) relative to the number r of spin orbitals of a gen-
eric reference basis [15].

If we employ the dual SDP formulation and include the P, Q, G, T'1, and T2
conditions, the number of rows/columns of the largest block-diagonal matrices
scale as 3r°/16 again, while m scales as 3r*/64 and s as r*/4.

The advantages of the dual SDP formulation are clear when comparing
Tables I and II. First, notice that the sizes of the block-diagonal matrices are
unchanged in both formulations. There is also an additional constraint
> pe1aply], = c in the dual SDP formulation, which is absent in the primal
SDP formulation. Then, while the size m of equality constraint in the primal
SDP formulation (see Eq. (1)) corresponds to the dimensions of the Q, G, T1,
and T2 matrices included in the formulation and scales as 257° /576, the dimen-
sion m of the variable vector y € R™ in the dual SDP formulation (see Eq. (4))
corresponds to the dimension of the 2-RDM and scales merely as 3r*/64. The
difference becomes more remarkable when more N-representability conditions
are considered in these primal or dual SDP formulations. Computational impli-
cations when solving the SDP problems employing the primal and dual SDP for-
mulations are discussed in Section V.

III. THE PRIMAL-DUAL INTERIOR-POINT METHOD

Interior-point methods for SDPs were independently proposed by Nesterov and
Nemirovskii [19] and Alizadeh [20] in the early 1990s. These methods were pri-
mal or dual only interior-point methods. Several variants of interior-point meth-
ods have been proposed so far, but after a decade of theoretical maturation
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followed by successful implementations, the widely accepted and most
efficient variant is the infeasible primal-dual path-following Mehrotra-type
predictor—corrector interior-point method. Henceforth, we restrict ourselves to
present its basic idea. See Refs. [4—7] and references therein for more details
and a partial list of other variants.

In order to simplify the discussion, we consider, for a while, the primal-dual
pair of SDPs Eqs. (1)—(2) instead of Egs. (3)—(4). We also assume that the space
S is formed by single block-diagonal symmetric matrices with size n X n.

Let us assume henceforth that the Slater condition is valid for Egs. (1)—(2); that
is there exist X €S and § € R™ such that (4,,X) = ], (p=1,2,...,m),
X =0, and 377 A,[5], — C = O (ie., all of their eigenvalues are positive).
Under this assumption, (X,y) € S x R™ must be an optimal solution; that is,
the solution that maximizes and minimizes the functions, respectively, for
Egs. (1)-(2) if and only if it satisfies the Karush—Kuhn—Tucker condition:

<Ap,X>:[b]p, p=12....m
S = A - C
p;] P[y]p (8)
XS=0
X>0, S>0

Note that only the third equation is nonlinear. Let us now perturb this nonlinear
equation by introducing a positive parameter u € R:

(A X) = (b, p=1,2..,m
S=> A -C

pZ::l P[y]p (9)
XS =ul
X>=0, S>0

where I € S is the identity matrix. The basic idea of primal—dual interior-point
methods is to apply the damped (or modified) Newton’s method to the perturbed
system in Eq. (9) with a fixed u from an initial guess (X, ¥, S) such that X > 0 and
S = 0 (which does not necessary satisfy the two linear equations in Eq. (9)).
Along the major iterations, the parameter p is decreased until zero in order to
obtain Eq. (8), and the variables X and S are maintained positive definite to
have the Newton’s system solvable (that is why it is called interior-point method).

The first-order approximations for the first two equations of Eq. (9) for a fixed
X, y, S) are

<AP7AX>:[r]pz[b]p_<AP7X>v p21727"'7m

fjA,,[Ay]p—Asszc— f;A,,[y]p+5 (10)
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where (AX, Ay, AS), is the first-order contribution for the linearization, called
search direction. Furthermore, a naive linearization of the third equation in
Eq. (9) gives

XAS + AXS = ul — XS (11)

and together with Eq. (10) are clearly an undefined system since there are more
equations than variables (notice that AX must be a symmetric matrix belonging
to S and not to R™"). This arbitrariness to choose a specific solution for the
search direction gives rise to the existence of different search directions in
SDP theory. One of the several alternatives to remedy it is to introduce a scaling
nonsingular matrix E € R™" and replace Eq. (11) by

(EXASE™' + EAXSE™" + E"'ASXE' + E'SAXE")

N —

1
=l =5 (EXSE™' + E7'SXE") (12)

Different choices for E result in different search directions. However, the most
successful implementations are the NT (search) direction with E = w12,
where W = X/2(x1/28x1/2)71/2X1/2_ and the HRVW/KSH/M (search) direction
with E = §'/2. Here §'/? is the unique positive definite decomposition of the
positive definite matrix S such that S = §'/2§1/2,
Once again, we restrict ourselves to the HRVW/KSH/M direction for simpli-
city, and then Eq. (12) can be rewritten
{AAXS+XA53 K = ul — XS (13)
AX = (AX + AX")/2

where AX € R™ is an auxiliary matrix not necessarily symmetric. Under the
linear independence assumption of the data matrices {A4,A,,...,A,}, and for
arbitrary X > O, § > O, and K, the system of linear equations (10) and (13) has a
unique solution (AX, Ay, AS). This system can be further reduced to the recur-
sive system of linear equations

BAy=g
AS = ZlApAy—R (14)
s

AX = (K — XAS)S™!, AX = (AX + AX")/2

where
By, = (XA, A), pq=1,2,....m

[¢], = (K+XR)S™, A)) —[r],, p=12,...,m

[]7
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Finally, the general algorithm framework of the infeasible primal-dual
path-following Mehrotra-type predictor—corrector interior-point method is the
following.

Primal-Dual Interior-Point Method

Input: (X,y,S) with X = O and S = O.

Set & > 0, k =0, and (X*,y*, %) = (X,y,5).

Convergence Test. We iterate the following sequential computations until
(X*,y%,8%) satisfies the constraints in Egs. (1)-(2) with §*=3"
A, — C, and b'y* — (C,X*) <.

Predictor Step. Set 0 < f§, <1, and solve Egs. (14) and (15) for K = §,
((X*,S*)/n)I — XS and obtain (AX, Ay, AS).

Corrector Step. Set 0 < . <1 such that . > f8,, and solve Egs. (14) and
(15) for K = B.({(X*,S*)/n)I — X*S* — AXAS to obtain (AX, Ay, AS).

Step Length. Take o, € {0 € [0,1] : X* + «AX = O}, o, € {x € [0,1] : S+
aAS = O} and set X*! = Xk + o, AX, Y1 = o, Ay, S = §% + o AS,
and k =k + 1.

Note that the parameter u has been replaced by (X*, %) /n above because u is
equal to (X* S¥)/n whenever (X*,yk, S¥) satisfies the constraints in Egs. (1)-
(2) with ¢ = S Ap "], — C, and X*§* = ul is valid.

We can prove that the above algorithm converges in polynomial time (i.e., the
number of floating-point operations is proportional to a polynomial in the pro-
blem sizes m and n) by choosing appropriately f8,, ., o, and o;. 'See Refs.
[4-7]. The computational cost of each major iteration is at most proportional
to mn® + m*n* + m*> + n? floating-point operations, and the maximum number
of iterations is proportional to y/nlng™".

The above analysis is just of theoretical interest and real implementation
codes including the ones listed in Section V perform much faster in practice.
These codes frequently ignore conservative choices for the above parameters,
taking ambitious values, and compute the solution in a much shorter time.
Also, the use of efficient numerical linear algebra libraries and the exploration
of several sparsity properties of C,A{,As,...,A,, [21] have tremendously
reduced the computational time of these codes every few months.

Primal-Dual interior-point methods always compute the desired solution
within a guaranteed time complexity framework. Moreover, we can always

'Strictly speaking, we additionally need to ““control” the distance between the initial guess (X, ¥, S)
and the region formed by the variables (X, y,S), which satisfies the constraints in egs. (1)~(2) along
the major iterations.
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check the reliability of the computed solution (X, y, S) by substituting in Eq. (8).
Another great advantage of these methods is the possibility to parallelize their
computation. It is known that two major routines are the most time consuming
ones in these algorithms: forming the matrix B in Eq. (15) and solving the sys-
tem of linear equations BAy = g in Eq. (14). The parallel versions of the
Primal-Dual interior-point methods explore the parallelization of these two
major routines and have given notable results [14, 15, 22, 23].

Finally, all of the above algorithm can be extended trivially to matrices with
several diagonal blocks (matrices) without the restriction to a single diagonal
block (matrix) as we did at the beginning of this section. Problems with extra
data c,ay,a,...,a, € R’, and the variable x € R’ as in Egs. (3)-(4) can be
reduced to the form of Egs. (1)—(2) in the following way. The variable x € R’
in Eq. (3) can be replaced by a difference of two nonnegative variables
xT,x~ € R®, with x =x* — x~ and x* x‘ > 0. This is also equivalent to repla-

cing the equality >, @[y, ~c=0 in Eq. (4) by two inequalities
> i aply], —¢ >0 and Zp . a,,[ ], — ¢ S 0. Then Egs. (3)-(4) can be reduced
to Egs. (1) (2) as
Cc 0 X 0 0
max 0 ¢ 0 xt 0 >
0 0 0 0 x
A, % X 0
subject to ( 0 ap 0 ],{0 x* 0 > = [b],.
0 0 0 x
p=12,....m
X 0 O
0 xt 0] >0
0 0 x
and
min b'y

/A, 00 c 0

subjectto > | 0 a O |p,—{0 ¢ O |=O (16)
'\No0 0 —q 0 0
yeR"

A careful reader will observe that this algebraic transformation will produce a
dual SDP problem that does not have y € R™ such that the matrix in Eq. (16) has
all of its eigenvalues positive and, therefore, will not satisfy the Slater condi-
tions. However, numerical experiments have shown that practical algorithms still
can solve these problems efficiently [16].
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IV. OTHER METHODS FOR SDP PROBLEMS

The success of Primal-Dual interior-point methods is due to its feature of com-
puting reliable and highly precise solutions in a guaranteed time framework,
although its computational cost can become prohibitively expensive for large-
scale SDP problems.

Another recent approach that has demonstrated effectiveness is based on the
augmented Lagrangian method for SDPs and was successfully implemented by
Kocvara and Stingl [24]. The basic difference from the standard augmented
Lagrangian methods [25] is in the definition of the augmented Lagrangian func-
tion, which is defined employing a penalty/barrier function with special proper-
ties. We omit its details here.

A more recent approach was described by Mazziotti [10, 11], which reformu-
lates the SDP problem (Eq. (1)) as a nonlinear and nonconvex optimization pro-
blem and applies a combination of the augmented Lagrangian method with the
quasi-Newton method [25]. He calls this method the first-order method and it is
implemented in RRSDP. In this reformulation, the variable X € S in Eq. (1) is
replaced by a full-rank factorization RR’, where R is a nonsymmetric matrix and
has the same number of rows/columns as X. In this sense, it can be viewed as a
special case of the Burer—Monteiro low-rank factorization method [26-28] since
this latter employs a low-rank factorization VV' =X € S, where V can have
fewer columns than R. Since both reformulations produce nonconvex optimiza-
tion problems, there was no guarantee that these algorithms could find an opti-
mal solution of an SDP problem. However, Burer and Monteiro further showed
that these algorithms indeed converge and find the exact solution certifying the
validity of these methods [27]; although it is not proved so far that these algo-
rithms have theoretical bounds on the number of iterations required to converge
as interior-point methods do.

V. SOLVING SDP PROBLEMS IN PRACTICE

Currently, there are several open source free software packages that can solve
SDP problems in the form of Egs. (1)—(2) and/or Egs. (3)-(4) by Primal-Dual
interior-point methods [3—7]: SDPA [2] is written in C++, CSDP [29] is written
in C, and SeDuMi [30] and SDPT3 [31] have interfaces in MATLAB. Further-
more, SDPA and CSDP have their respective parallel versions: SDPARA [22, 23]
which can solve larger problems in a more reasonable time. It is also possible to
solve SDP problems without installing these software packages in your own
computer. NEOS Server [32] and CaNEOS Server for Optimization [33] provide
free services in solving these SDP problems submitted through a web browser,
and SDPA Online for Your Future [34] allows one even to solve larger problems
by the parallel SDP solver SDPARA [22] on a PC cluster.
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Software based on the augmented Lagrangian method (Section IV) is also
available: PENSDP by Kocévara and Stingl [24] (unique commercial code) and
SDPLR by Burer, Monteiro, and Choi [26-28].

For the SDP problems arising from the variational calculation, in which we
are interested, the theoretical number of floating-point operations required by
parallel Primal-Dual interior-point method-based software scales as m*u®/d+
m?/d + n* + mn?* per iteration [15], while the number of major iterations is at
most proportional to y/zlng~! (but requires many fewer iterations in practice).
Here u denotes the maximum number of nonzero elements of each A, (p =
1,2,...,m), n the number of rows/columns of the largest block-diagonal matrix
of the above matrices, d the number of processors used by the parallel code, and
¢ the difference between the approximate value of the primal and dual functions
in Egs. (1) and (2) (or Egs. (3) and (4)). Notice that this number of floating-point
operations per iteration is less than mn® 4+ m?n* +m® + n® (see Section III)
because we can explore the sparsity of the data [21]. Let r be the number of
spin orbitals of a generic reference basis. Since u is constant and it scales as
r? for the primal and dual SDP formulations, respectively [15], we obtain
Table III based on the information in Tables I and II. Table III also shows the
memory usage of parallel Primal-Dual interior-point methods.

Let us analyze now the first-order method: RRSDP [10, 11]. This method
usually requires a number of floating-point operations that scale as n® + mu
per iteration. However, as we mentioned before, there is no theoretical bound
on the number of major iterations required for its convergence. Once again,
let r be the number of spin orbitals. Considering the information from Tables I
and II, and remembering that u is constant and scales as r* for the primal and
dual SDP formulations, respectively, we can obtain the following number of
floating-point operations and the memory usage for the first-order method and
presented in Table III.

TABLE III
Theoretical Number of Floating-Point Operations per Iteration (FLOPI), Maximum Number of Major
Iterations, and Memory Usage for the Parallel Primal-Dual Interior-Point Method (pPDIPM) and for
the First-Order Method (RRSDP) Applied to Primal and Dual SDP Formulations”.

N-Representability P,0,G, Tl or
Conditions P,0, G P,0,G T1, T2
Formulation algorithm FLOPI  # Iterations Memory FLOPI # Iterations ~Memory
Primal SDP  pPDIPM  r'2/d ring™! A r8/d P2 et ri2
formulation ~ RRSDP o — rt r — o
Dual SDP pPDIPM  r'%2/d ring™! A r'?/d P2 ng! A
formulation ~ RRSDP o — " r — 7o

“r denotes the number of spin orbitals, and d the number of processors used for the parallel
computation.
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From the table, we can see that the first-order method usually requires fewer
floating-point operations and memory storage if compared with the Primal-
Dual interior-point method. The unique drawback of the former method is that
we cannot guarantee a convergence of the method in a certain time frame.

We can also conclude that if we employ the Primal-Dual interior-point
method, the dual SDP formulation provides a more “reduced” mathematical
description of the variational calculation of the 2-RDM than employing the pri-
mal SDP formulation. The former formulation also allows us to reach a faster
computational solution. On the other hand, the number of floating-point opera-
tions and the memory storage of RRSDP do not depend on the primal or dual
SDP formulations.

Even with the existence of these efficient methods to solve SDP problems, we
recognize that we still need to pursue the development of new methods to solve
these problems and provide low-cost computations for variational calculations
involving RDMs.
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I. INTRODUCTION

The many-body Hamiltonian operator is the sum of one- and two-electron opera-
tors, which is the reason why the energy of an N-electron system can be
expressed as a functional of a mathematical object which only depends on the
variables of two electrons, the second-order reduced density matrix (2-RDM).
The quest for a method of studying the structure of electronic systems by deter-
mining the 2-RDM instead of using the N-electron wavefunction dates from the
1950s [1-5]. Since then, a rich bibliography on the 2-RDM theory has been
developed, in particular, several books and proceedings [6—12] describe the pro-
gress achieved. The incomplete knowledge of the 2-RDM mathematical proper-
ties has greatly hindered this progress but, in spite of it, recent new developments
have reawakened this line of research.

One question that several people, independently and at different times, have
asked themselves may probably be stated as: Can the Schrodinger equation be
mapped into the two-electron space? And what would be the properties of
the resulting equation? The answer to this double question was obtained by
following two essentially different approaches. Thus Cho [13], Cohen and
Frishberg [14,15], and Nakatsuji [16], by integrating the Schrodinger equation,
obtained in first quantization the density equation; and Valdemoro [17], by
applying a contracting mapping to the matrix representation of the Schrodinger
equation, obtained the contracted Schrodinger equation (CSE). Although
these two equations are apparently very different, they are in fact equivalent.
An important feature of these equations is that they constitute a hierarchy of
equations. Thus the contraction of the Schrodinger equation to the p-electron
space generates a p-order CSE that depends on the (p 4+ 1)-CSE and on the
(p+2)-CSE. This hierarchy dependence causes the p-CSE to depend not
only on the p-RDM but also on higher-order RDMs, which renders the equa-
tion indeterminate [18]. In 1992 Valdemoro [19] showed that a reasonable
approximation of the 2-RDM could be obtained in terms of the 1-RDM by
a method that could be extended to higher-order RDMs [20, 21]. In this
way, Colmenero and Valdemoro solved approximatly the CSE [21]. The aim
of this chapter is to give an overview of the CSE theory and of the construction
algorithms for the high-order RDMs, which are the basic part of the methodology
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that has been developed, in order to obtain a good approximate solution of the
2-CSE.

II. THEORETICAL BACKGROUND

In order to have a self-contained chapter, the well-known definitions and con-
cepts that are used in the rest of the chapter are recalled in this section. Other
matters, not so widely known but also basic for later developments, are also
described here.

A. Notation and Definitions

In what follows, the number N of particles is assumed to be a constant. The one-
electron basis is assumed to be finite and formed by 2/XC orthonormal spin orbi-
tals denoted by the italic letters i,j, k, ... or, when the spin is considered expli-
citly by iz or iy ...

1. The Hamiltonian

The electronic many-body Hamiltonian is

. N 1
H= Z hijala; + 3 Z (ij| kD) aja}alak (1)
i ikl

where £ is a matrix formed by the one-electron integrals and (ij|kl) is the two-
electron integral matrix in the Condon and Shortley notation. It is useful to trans-
form the form of the Hamiltonian to

N 1
H = E Z K,'J;k‘[ a?a}alak (2)
ijik,l
where
Kijrs = L\/—l (hixdj + hjdix) + (ij|kl) (3)

The matrix K is the reduced Hamiltonian [22, 25] and has the same symmetry
properties as the two-electron matrix; that is,

_ . _ * _ *
Kili;kl - K./,Z;l,k - Kk,l;i,j = Kl,k;j,i (4)
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2. The Reduced Density Matrices
The p-order reduced density matrix (p-RDM) is defined as

11,02, I,,..j[.,jQ,u..J 1 12 st alT,,ajp st a/2all |\I//> (5)

Y = (Wl d]
p:
When W £ W, this expression defines an element of the p-order transition den-
sity matrix (p-TRDM) [2]. In what follows when ¥ = W', one instead of two
upper indices denoting ¥ will be used.
The complementary matrix to the p-RDM is the p-order holes reduced density
matrix

PR

_ - . . 7T i
2 eenip i d2dp !<‘I’|“Jp 4,4, a;, a; q;

i1%i ip

v) (6)

The concept of hole here implies that WU itself is the state of reference, not the
Fermi sea or other state models.
For some purposes it is convenient to use the following global operators [26]:

pB}L\ = a;\]asz e ajp (7)
and
"Bo = aj, - aj, 4 (8)
where the indices must have a unique ordering: that is, ij < i < --- < i, and
jl <j2 < .- <j[9’ Thatis,
"B} |0) = [A) = [iriz - +dp) 9)

and the p-RDM can be written
"Dy = (9B} Bo| V) (10)

B. Properties of the 2-RDM and the N-Representability Problem

The N-representability problem was defined in a remarkable paper by Coleman
in 1963 [27]. This problem asks about the necessary and sufficient conditions
that a matrix represented in a p-electron space must satisfy in order to be N-
representable; that is, the conditions that must be imposed to ensure that there
exists an N-electron wavefunction from which this matrix may be obtained by
integration over N-p electron variables. All the relations and properties
that will now be described are the basis of a set of important necessary
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N-representability conditions [28]. Let us start this description by focusing on
the RDM’s properties, which may be deduced from their definition as expecta-
tion values of density fermion operators. Thus the RDMs are Hermitian, are
positive semidefinite, and contract to finite values that depend on the number
of electrons, N, and in the case of the HRDMs on the size of the one-electron
basis of representation, 2/C. Thus

e ep) - () (1)

Tr(’D") = (ZKP_ N) (12)

Also, the fermion anticommutation rules interrelate the RDMs with the HRDMs;
they render these matrices antisymmetric with respect to odd permutations of the
row or column indices; and, finally, they interrelate them with two other families
of matrices: the G-matrices and the correlation matrices.

Let us recall here the less obvious of these properties

» The anticommutator of a creator with an annihilator is

laj,al], = 3 (13)

and its expectation value gives
=
'Dyy + DY = dix (14)

which relates the value of an element of the 1-RDM to the same element of
the 1-HRDM. Since both the 1-RDM and the 1-HRDM are positive semi-
definite, relation (14) imposes that the eigenvalues of these matrices are
bounded by the numbers 0 and 1. To be positive semidefinite, together
with these bounds, constitutes a necessary and sufficient condition for the
1-RDM to be ensemble N-representable [27].

e The second-order commutator is

[a, ay, aj aj]7 = 51‘]‘5]@,‘ — 5171‘5](2]‘ — 5ld~ajak

- 5k,ia;al + 5k,jajal + 51,1‘0;(11( (15)
and its expectation value gives the second-order fermion relation [26]

2R/Y 2R 1 AU
Dij;k! - Dij;kl = 51,1'51«,1'_7 5l,i5k,j - 51,] Di:k

(16)
— O le\I;l + (3](,]‘ lD:IIl + 51,,‘ lDﬁk
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which interrelates the 2-HRDM with the 2-RDM. The condition that the
2-HRDM, as defined by this relation in terms of the 1- and 2-RDMs, be
positive semidefinite constitutes what is called the necessary N-
representability Q-condition [28-33].

Let us reorder the fermion operators of a 2-RDM element

2! ZD%M = (U|a] a} ap ag| )

| o 1
= —0; (P)a; a/|V) + (V|a; ax a; a|0)

and let us now insert the unit operator in the middle of the second term

202DY, =~k (Wlal a/| W)

+ (Wla] W) (Va] @) (18)
+ > (Wla] V)V |afs @] W)
A
This may be rewritten as
202D}, =" D} ' DYy — 8 ' DYy +7 Cy (19)

where C was defined by Valdemoro et al. [34, 35] as correlation matrix
(CM) because it cannot be factorized in terms of the 1-RDM. It can be inter-
preted as describing the virtual excitations undergone by the electrons in
order to avoid each other. Note that the row and column labels of the
CM coincide with those of the 2-RDM from which it is derived. The proper-
ties of this matrix have recently been studied in detail [36-38].

The same elements appearing in the CM, but in a different ordering, form
the G-matrix; thus

2Ciins = "Gt (20)

An equivalent equation to Eq. (19) in terms of the G-matrix was first
published in 1969 by Garrod and Rosina [39] and also later reported by
Valdemoro et al. [35].

The G-matrix that has been obtained here by decomposing the 2-RDM
was defined by Garrod and Percus [29] as

*Girs = (Vla] aj a} ai|¥) — (Vla} V) (V]a] a|¥) (21)
The G-matrix is also Hermitian and positive semidefinite. The condition
6" >0 (22)

is called the G-condition.
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The 2-RDM, the 2-HRDM, and the G-matrix are the only three second-order
matrices which (by themselves) are Hermitian and positive semidefinite; thus
they are at the center of the research in this field. Recently, a formally exact solu-
tion of the N-representability problem was published [12] but this solution is
unfeasable in practice [40].

C. The Matrix Contracting Mapping

The contraction of a g-RDM to get a p-RDM with p < g was formally defined by
Kummer [41] as

’DY =1} ‘D" (23)

where L represents the contraction operation and N > g > p.
It is s1mple to contract an RDM by applying the expression of the N operator.
Thus

aTa
(Plala)|¥) = (V]a] (ZN> a)|¥) (24)
l

but when the matrix that must be contracted represents an operator that, while
being related to the density operator, is a different one ( i.e., the Hamiltonian),
the question is more complicated. This general case was solved in 1983 by
Valdemoro [17, 24, 26, 42, 43], who obtained the general matrix contracting
mapping (MCM)

N
PMjw = () Z”DE(E‘]MH;F (25)

()

where 9 M is the g-order matrix that must be contracted into the p-electron space
and where the IT and T letters represent g-electron configurations.

III. THE CONTRACTED SCHRODINGER EQUATION

As mentioned in Section I, Cho [13], Cohen and Frishberg [14, 15], and Nakatsuji
[16] integrated the Schrodinger equation and obtained an equation that they
called the density equation. This equation was at the time also studied by
Schlosser [44] for the 1-TRDM. In 1986 Valdemoro [17] applied a contracting
mapping to the matrix representation of the Schrodinger equation and obtained
the contracted Schrodinger equation (CSE). In 1986, at the Coleman Symposium
where the CSE was first reported, Lowdin asked whether there was a connection
between the CSE and the Nakatsuji’s density equation. It came out that both
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equations, although different, are completely equivalent. In 1998, Mazziotti [45]
showed that one could obtain the same equation directly by considering the den-
sity operator as a probe. The direct connection of the CSE with the Schrodinger
equation is, however, best understood by contracting the matrix representation of
this fundamental equation and this is the derivation that will now be given [46].

A. Matrix Representation of the Schrodinger Equation and Its
Contraction

Let us consider the Schrodinger equation
H|T) = Ey|7) (26)
or equivalently
H|V)(¥| = Ey|¥) (V] (27)

and let us represent this operatorial equation in a basis of N-electron functions,
that is, Slater determinants

(A[H|D) (¥|Q) = Eg(A|T) (¥]Q) (28)
That is,
(A|H|Y) (¥|Q) = Ey DY, (29)

This equation is the matrix representation of the Schrodinger equation in the N-
electron space. In order to contract it into the two-electron space, we will apply
the MCM to both sides of the equation and get

2 AQ N RV 2 Vv
Diiirjy H D) g = Ew "Di ;i i, (30)
AQ

When this equation is developed, one obtains
<‘I’|I:I a;[l (l}; aj, a;, |¥) = Ey 2D;I]l,izjljz (31)

This equation is the CSE in compact form, which was the starting point of
Mazziotti’s derivation [45]. By replacing H by relation (2), and transforming
the string of operators into its normal form, one obtains one of the usual forms
of the CSE:

2 v 3 3
(K Q )r,s;t,u +3 Z(Ki~51k«,/ Dt.u,i;r,l,k + Ki,r;k,l Dt,u,i;l,s,k)
ikl
+6 Z Kijai* D}y ons = Ew *D})

rs$;t,u
ij,k,l

(32)
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A simple inspection of this equation shows that it not only depends on the
2-RDM but also on the 3- and 4-RDMs, which causes it to be indeterminate.
Besides this difficulty, which will be discussed at length later on, one may ask
whether the solutions of this equation coincide with those of the Schrodinger
equation. Indeed, the derivation given above for the 2-CSE shows that the
Schrodinger equation implies the 2-CSE. But does the inverse relation hold?
The answer to this question was given by Nakatsuji, who showed that the
p-CSE for p > 2 is equivalent to the Schrédinger equation [16] by stating and
proving the following theorem.

Theorem[Nakatsuji] If the RDMs are N-representable, then the p-CSE is sati-
sfied by the p-, (p + 1)-, and (p + 2)-RDM if and only if the N-electron density
matrix (N-DM), preimage of these matrices, satisfies the Schrodinger equation.

An elegant proof, in second quantization, that the 2-CSE implies the
Schrodinger equation, was given by Mazziotti and is as follows.

Proof. The Schrodinger equation is satisfied if and only if the well-known
dispersion relation [47]

(WIH| ) — (W|H|)* = 0 (33)

is satisfied
Let us now consider the 2-CSE as given by Eq. (31). It can be written

1 )
) Kijwa(¥a] af @) ai af af a, a|V) = Ey *D},,, (34)
ikl

and multiplying both sides of this equation by the element K, ,, and adding
over repeated indices, one has

1 oy 1
<\I/| (2 Z I(,'\,';/Q[CllT a} aj ak) (2 Z Kr,s;t,uaj al ay Ay > |\I]>

ijk,l 8 tu

2 v
- E\Ij <Z Khé‘?lsu DrA,s;r,u)

r.s,tiu

(35)

which is the dispersion relation and what had to be proved. Since for p > 2 the
p-CSE implies the 2-CSE, the demonstration is also valid for these higher-order
equations. W

It should be noted that what has been demonstrated for the p-CSE does not
hold for the 1-CSE because the Hamiltonian includes two-electron terms. In fact,
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it is easy to see that the 1-CSE is satisfied not only by the RDMs corresponding
to the FCI solution but also by the 1-, 2-, and 3-RDMs corresponding to a
Hartree—Fock solution.

An important consequence of the equivalence of the 2-CSE and higher-order
CSEs with the Schrodinger equation is that the CSEs may be applied to the study
not only of the ground-state but also of excited states.

B. The Role of the Spin

Until now the electron spin has not been explicitly taken into account. In this
section we analyze the differences introduced in the 2-CSE when the spin prop-
erties are considered.

In the absence of spin interactions, the Hamiltonian may be written

3 § : oo, } E ofs t
H= K skla a al A, + Kuvmn Uy, Vﬁanﬁamx

r<s,k<l u,y,mn

36)
BB (
+ Z Krskl a:[/; I,;alﬁak/x
r<s,k<l
where
K = Krsied — Krsiik (37)
KZE sm,n = Ku,v:m‘n (38)
Kff;k,l = Ky sii — Krsik (39)

In this representation the 2-CSE is formed by the following three equations:

Dl K
E 2D\I/OCO’ 3D§z%rsl(g§pm +3D§Or§£§ﬁrSKg§qm
) WP = + 3Dij, nm;p.u,v KZ/\;) aqm 3Dz,]7 miq,u,v KZ,[\{;PM (40)
(r< SR D G IRy DR L
D e i K
D K,
=D g Ky T Diip s Kl
sz];ﬁq 3D'\Iri Zl,guvK;lfmq 3D:I:/ZlﬁquKZ€,p,n (41)
D e KSR

44 DY oo KB

i,m.j,npu,q,y “u,vmn
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D Kl
T M AN
(i<j,P<q; R Dm‘i;j;u,v,p K:j.[i;m,q + Dm,tﬁj;uavv‘l sz[i?m’p (42)
D K0, Dl
LADYIEE  eap

m,nLjuv.p,q “ruvimn

with the restriction r < s and k < /. An implicit sum over repeated indices has
been assumed.
In these equations, the different 2-RDM blocks are defined [46]:

21V od 210
Di,j;k,] = Diu.ju/;kg‘l(,r

= <\I/|aJ-f a ap,a, |V) (43)

o " Jg!

These three block equations are only partially independent. Thus one cannot
solve them separately because there are 3- and 4-RDM spin blocks appearing
in more than one of the partial equations. Although an exact solution of these
block equations would give the same energy when solving each of them, in prac-
tice this is not so. In consequence, one obtains different values of the energy for
each of the block equations during the iterative process. Obviously, these differ-
ences should disappear or at least be negligible at convergence.

1. The Spin Contracted Equation

It is evident that a 2-RDM that corresponds to a Hamiltonian eigenstate also cor-
responds to a pure-spin state. However, when one is working with an approxi-
mated RDM, it is important that this RDM should correspond to a spin
eigenstate.

Let us therefore consider, by analogy with the Hamiltonian (Eq. (31)) the
compact form of the contracted spin equation (CSpE) [46]:

2

(8" af alaa W) = S(S+ 1) (V]a) alaa] D) (44)

J
. . . . o2 . Lo .
Replacing into this equation the S* by its second quantization expression

§=5-8+5.8 == d d aaq
ij

Z

2
1
+ (2 Z(al ai, — aj/f ai/x)) (45)

i
1
+ 5 Z(al aj, — a:'r/; af/f)
i
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and transforming the string of one-electron operators into its normal form, one
obtains

2D;P,qa;?-r =C (Z(_3Di=quf§,hi + 3Di7p?;f«,r«,i) o Z 4Dﬁ,qa:?;£m‘-,i> (46)
iy

i

_2p¥Yap +Z(_3D‘I’Wﬁ _|_3D§Pocﬁﬁ )

q.piS,r P,q,138,0,1 1L,D,q;8,11
2V af i
D) "riC U aafif (47)
iy
2 37 37 4 U
B Dy A RIS W ) I
i ij
where
1
(49)

C =
NJ/2+ (N, — Np)? /4 —S(S+1)
By analogy with Nakatsuji, Alcoba [48] demonstrated the following theorem.

Theorem [Alcoba] Assuming that the RDMs are N-representable, then the 2-
CSpE is satisfied by the 2-, 3-, 4-RDMs if and only if the N-DM, preimage of
these matrices, satisfies the spin equation

(A8 W) (W]0) = S(5 + 1) VDY, (50)

The demonstration of this theorem follows in a parallel form that of the CSE.
In order to satisfy both the CSpE and the CSE, Valdemoro et al. [46] replace

the 2-RDM spin blocks appearing on the right-hand side (rhs) of Egs. (40), (41),

and (42) by the corresponding expression in Egs. (46), (47), and (48).

The oo spin block of the resulting equations has the following form:

_Kz-,o;:p,m SDEIJJ%Z-V-,S + Kfi:q,m 3D?J‘ﬁ;r-s
K am Dispar = Kipm Dl
By 2Dl _ | K P K Dlillpars ()
(i<jip<q) +Ki/imn 4D?J,C:2f?1§7,q,u,v
+C KLy, {="DLl 2 DL,
_4th;z,atyrﬁsr,v}

The other spin blocks, off and ff , have a similar structure.
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The main difference between the spin-adapted 2-CSE and the nonadapted one
is that in the rhs of the spin-adapted 2-CSE, the 2-RDM only appears in the of}
block.

2. The Singlet Case

The studies on the spin properties of the 2-RDM and of the second-order corre-
lation matrix [38, 49, 50] have shown that for singlet states the o8 block of the 2-
RDM completely determines the other two spin blocks of the 2-RDM. In con-
sequence, in these cases, the iterative solution of the 2-CSE may be carried out
by working only with the o/ block of the 2-CSE, and the ao and the 85 blocks of
the 2-RDM are determined in terms of the of one.

This simplification can reduce significantly the computational effort but it has
its drawbacks. Thus, in our experience, the oo blocks of the 2-CSE converge
better than the off block. This is probably due to a lower efficiency of the con-
struction algorithms for the higher matrices involved in the «ff block. The reason
for the better performance of the algorithms involved in the oo blocks is that, as
will be seen later on, the electron exchange plays a large role in them, and the
correlation effects are relatively less dominant. No calculations have as yet been
carried out on singlet states by using just the off block of the 2-CSE but it is
possible that for large systems the computational reduction may be advanta-
geous, even at the cost of losing some accuracy.

C. Iterative Solution of the Contracted Schrodinger Equation

The dependence of the 2-CSE on the 3- and 4-RDMs renders indeterminate this
equation [18, 52]. This is the reason why the interest in this equation was initi-
ally lost. However, after the encouraging results obtained in the construction of
the 2-RDM in terms of the 1-RDM [19], the possibility arose of constructing
good approximations of the high-order RDMs in terms of the lower-order
ones. This permitted one to remove the indeterminacy and opened the way to
build an iterative method for solving the 2-CSE.
Let us represent the 2-CSE in a symbolic form.

MY = function (K ,2D" ,3DY ,*D") = Ey *D" (52)

In a schematic way the different steps of the basic procedure proposed by
Colmenero and Valdemoro in 1994 [53] are as follows:

e Let us choose a reasonable and N-representable 2-RDM and 1-RDM as
initial probes, and let us use them to approximate first the 3-RDM and
then the 4-RDM.

o Let us correct as finely as possible the N-representability defects of the
4-RDM and then contract it in order to obtain a new set of 1-, 2-, and 3-RDMs.
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 Let us replace all these matrices into the expression of M.
e Let us take the trace of both sides of the CSE equation, and one has

Tr(2
N
()
» Using this energy value, one can obtain a new 2-RDM,
M
D = o (54)

This process is repeated until convergence. Although the above steps describe
in a schematic way a process that will be later analyzed in more detail, it is con-
venient at this stage to comment on the second of these steps. As we saw, the
equivalence between the Schrodinger equation and the 2-CSE exists only when
the RDMs appearing in the equation are N-representable. Although the initial 2-
RDM is chosen to be N-representable, or closely so, the approximation algorithms
for the higher-order matrices only preserve some of the necessary conditions. Thus
the 4-RDM must be purified as much as possible. Also, there must be consistency
among the 4-, 3- and 2-RDMs; which is why the 4-RDM must be contracted
in order to obtain a new set of the lower-order matrices. In this way, the
N-representability corrections carried out on the 4-RDM are transmitted not
only to the lower-order matrices but also to the partial traces. Thus, denoting as
2 M the part of 2M depending on the i-RDM, one has

Tr*MP) = Ey (55)
TrPMB)) = 2(N —2) Ey (56)

and these traces continue to hold for the approximated equation.

In order to avoid keeping in computer memory all the 4-RDM elements, the
contraction of the 4-RDM in order to get a consistent 3-RDM is simulated by
another algorithm. Thus the only 4-RDM elements to be stored are the diagonal
elements. All the elements are only calculated once and entered in all the places
where they appear.

IV. THE REDUCED DENSITY MATRICES CONSTRUCTION
ALGORITHMS

As has been mentioned earlier, the indeterminacy of the 2-CSE may be removed
by approximating the 3- and 4-RDMs in terms of the 1- and 2-RDMs. These
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approximation algorithms and the higher-order corrections proposed by several
authors are described in this section. Comparative results obtained with the dif-
ferent methods and concerning the 3-RDM and the 4-RDM are discussed at the
end of the section.

In order to better analyze the interplay of the different terms appearing in the
algorithms, we start by considering the construction of the 2-RDM, which was at
the origin of the development [19].

A. The 2-RDM Construction Algorithm

In Section II we saw that, according to the second-order fermion relation,
Eq. (16), the difference between the 2-HRDM and the 2-RDM, was a functional
of the 1-RDM, which involved also Kronecker deltas. When replacing in that
equation the Kronecker deltas in terms of the 1-RDM and the 1-HRDM,
Eq. (14), one obtains

— U /Y U /Y
2!2Di-j;p,q ]Di:,p ]Dj:q - Dy, le;p
— = — (58)
Z!ZD;I-;;p,q ID;I:,IP ID;'I;/q - D;I;lq ID;I;p
which may be written in a more compact form as
_ Ppoip¥ 1p?
2! ZD;I/J;M ; (=1)" P Dy, Dy,
2Hv _1\YPplip? 1pv
2! Di.j;p7q 273: ( 1) P Dl?[’ DJ?q

where Y, (—1)” P antisymmetrizes the column labels of the 1-RDMs and of
the 1-HRDMs.
This duality of holes and particles allows us to write

24U P 1Y 10 2AT
2! Di,/‘;p,q:;(_l) P ( Dy Djg) + 2174 (60)
and
2R/Y P 1RY 1/Y 2 A0
2! Dim"q:;(—l) P ('D,, 'D;,) +2!°A7,, (61)

where the matrix 2A is thus defined as
2AT A 2p0 P 1T 1T
2 Apg =2 Dijpg — zp: (=1)"P( Diy Dj;q)

=2%D;,, — > (-1)" P ('Dy, 'Dy,)
P

ijipg [ ]
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This error was originally approximated by an iterative purification renormalizing
procedure, focusing on rendering the 2-RDM and the 2-HRDM positive-semide-
finite and correctly normalized [19].

In order to identify the structure of 2AY, let us recall the relation linking the
2-RDM (Eq. (19)),

20 1IN0 10 5. 1p¥ 200
2! Dl,lpq Di;ﬂ Dj;q_bfvl’ Di Cl]ﬂq (63)

and replace the Kronecker delta as before:

2 1\1/1\1/1\111\1/1—\111\11 2\1/
2! DIJM Di:p Dj Djp D - Dj;ﬁ Di Ct,/,pq (64)

When comparing this equation with Eq. (60) one finds

~ U 7
2! ZAEJ/M - le:p 1D;Il zct\lqu (65)
which is formed by two terms describing correlation effects. The 'D” DY term
may be interpreted as part of a self-repulsion term and is easily evaluated; while
the CM term, which was discussed in Section II, is an unknown that can only be
approximated. These two kinds of correlation terms balance each other and it is
the CM term that causes the difficulties. It is interesting that the 2AY is common
to both the 2-RDM and the 2-HRDM, which is why it is cancelled out when one
takes the difference of these two matrices.

B. Higher-Order RDMs Construction Algorithms

The arguments just described for the construction of the 2-RDM were extended
without difficulty to the higher-order RDMs. The algorithms for these high-order
RDMs were originally reported by Colmenero et al. [20] in a spin-free basis; and
Valdemoro et al. [46] obtained later on the algorithms in a spin-orbital basis. For
the 3-RDM, the algorithm in a spin-orbital basis is

3! SD:I,I/kpqr =-2 Z (_I)PP (ID;I;,p 1D}I;,q IDI?:V)

/ 1Y 2V
+Z (-1)7 P21 ('DE, 2DV, )

+' Dy, *D} )

v o2
+ D Dzkpr i.j:p,q

3
+3' Atjkpqr

where Y, (— H"p antlsymmetrlzes the column indices of the three 1-RDM
involved and ) 5 (—1 )7 P’ antisymmetrizes the column index of the 1-RDM
with the column indices of the 2-RDM.
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In a similar way one obtains the 4-RDM construction algorithm [20, 46]:

4T _ 2: P 1T 30 1 ¥ 30
4! Di,i,k,l: pgsrs (71) P 3 ( Di:p Djﬁk,l;q:r?s + Dj;q Di,k,l;pf,s
P

3 U I 3 0 1 /U
+ Di«jyl:ﬁ‘q«,s Dk:r+ Di.j.,k;p.,qm Dl;‘v)

+3 Y (-1 P (‘D% 'DY 'DY, DY)
tP/

- Z (_1)73 P2l (IDEJ/) 1DJ\'1:,/q le\cllyl:r,s (67)
o
+1 D;I;}p szqfl;qﬁs lDi?;r +1 Dg,/p ZD./\'I,}k:q,r IDI?A‘
+2 Dt\'IIJ;p,x 1D;I:Iq lD/\gr +2 D;I-,]k:p-,r IDJ\'I;’q lD;I;]x
+* Dijpg Dicr ' Diy)
+ 4! 4Atl'll,j,k,l;p,q,r.s

In what follows this set of algorithms, based on the separation of particles and
holes, will be referred to as VCP.

In 2001 Valdemoro et al. [54] proposed a generalization of the VCP basic
approach. It exploits the fact that the 2-RDM has more information than the
1-RDM; and instead of replacing one Kronecker delta in terms of 1-RDM and
1-HRDM, one can replace functions of Kronecker deltas in terms of higher-order
RDMs and HRDMs. In this way, one partly avoids the cancelation of the correc-
tion terms pointed out by Mazziotti [45].

Let us therefore rewrite Eq. (16):

27¥ 210
2! Dzﬁ,j:k,l —2! Di,j;k‘l

+8ix "D}y + 6;, ' DYy — 014 ' DY — 84 ' DY

} = 0 0j; — 01 Ojk (68)

This equation expresses an antisymmetrized product of two Kronecker deltas in
terms of RDMS and HRDMs. By combining it with the expression of the simple
Kronecker delta previously used (Eq. (14)), one can replace the antisymmetrized
products of three/four Kronecker deltas, which appear when taking the expecta-
tion values of the anticommutator/commutator of three/four annihilators with
three/four creator operators. With the help of the symbolic system Mathematica
[55], and by separating as in the VCP approach the particles from the holes part,
one obtains

414pY

1 n¥ 30
ijkl; pg.r.s J,kJ:,q,r,S"_ Dj:q Diﬁk,l;p,m

=> (-n"P3 (D} D}
P

1 /U 30 3 U 10
+ Dk;r Di,/,l;p,q,s + Dijk:p,q-r Dl;‘v)
Py 210 20
=2 (=07 P22 DY, 2D,
P
210 20 2 U 20 4AT
+ Di‘l;p,s Dj,k;q,r—i' Di-,k;p-,r Dj,l:,q‘s) +4! Ai,i‘k.,l;p‘q,r-,s
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This generalized particles—holes separating approach generates an algorithm
(GP-H) that emphasizes the role of the 2-RDM—the variable of the 2-CSE—
and it is computationally more economical [54].

C. Other Approaches

Nakatsuji and Yasuda [56, 57] derived the 3- and 4-RDM expansions, in analogy
with the Green function perturbation expansion. In their treatment the 2A error
played the role of the perturbation term. The algorithm that they obtained for the
3-RDM was analogous to the VCP one, but the *A matrix was decomposed into
two terms: one where two A elements are coupled and a higher-order one.
Neither of these two terms can be evaluated exactly; thus, in a sense, the differ-
ence with the VCP is just formal. However, the structure of the linked term sug-
gested a procedure to approximate the >A error, as will be seen later on.

In the 4-RDM case the Nakatsuji—Yasuda algorithm adds a new term to the
VCP one (Eq. (67)). This new term is formed by an antisymmetrized product of
two 2A elements. These authors’ algorithm may thus be expressed as

4 _ P 1Y 370 1 v 30
4 Di.j,k,l;p,q.r,s - E : (_1) P 3! ( Di:P Djﬁk«,l%qwi’qs + Djéq Di.k,l;p‘r.s
P
3 0o 1 v 3 v 1 ¥
+ Di.j,l;p.q‘x Dk;r + Di.j,k:p,q,r Dl;x)

+3 > (-7 P (D}, 'D}, 'D}, 'DL)
rPI

2 : P’ 1 VU U 20
- (_ 1) 7)// 2! ( Di:p 1Dj;q Dk.l;r,s
7)//

+! D;I;Jp ZD.;PJ:,q,S ID/:II;V +! D;I;Ip ZD;I,,k;qJ ID;I;IS
+ D;DJ;M 1ng ID/;I};V +2 D;I,}k;p,r ID.;I;It/ ID;I;JS
+2 D?J;ﬂﬁq ngr ID;I:Js)
+3 (=) P22 CAY, AL,
=
+2 A?J;p,s ZA}I‘lk;q‘r +2 Aglk:p," 2AJ'\I-,Il;q,s)
AT s (70)

Following Martin and Schwinger [58], Mazziotti [59] derived in 1998 a gener-
ating function for constructing a p-RDM. By differentiating this functional with
respect to the p Schwinger variables, and taking the limit, he obtained a Taylor
series whose coefficients were the different RDMs. By analogy with Kubo
cumulant expansion [60], Mazziotti identified the p-RDM with the p-order
moment of this expansion; and he identified the connected part of his RDM
expansion (what is called here the 7 A) with the corresponding cumulant. The



THEORY AND METHODOLOGY 139

algorithm thus obtained [45, 59, 61-63], which Mazziotti expressed using the
Grassmann products notation [23], is the same as that of Nakatsuji and Yasuda.
His developments therefore confirm the form of the previous algorithms. More-
over, Mazziotti’s approach permits one to carry out the error analysis within the
framework of the cumulant theory. Since all the terms of the Nakatsuji—Yasuda
expansion for the 4-RDM also appear in Mazziotti’s, this algorithm is denoted
NYM in what follows.

It is interesting to note that GP-H (derived by Valdemoro et al. [54]) contains
in an implicit form the correction terms proposed by Nakatsuji and Yasuda and
by Mazziotti (except for a sign).

There are several other studies of cumulant expansions of the RDMs. Thus
Kutzelnigg and Mukherjee also published in 1999 [64] an RDM expansion
that is similar to Mazziotti’s. An extended study of this cumulant approach
was given by Ziesche [65]. Also, a particularly interesting analysis of the cumu-
lant expansions was given by Harris [66], who proposed a systematic way for
obtaining the different terms of the expansion.

An interesting generalization of the construction algorithms was proposed by
Herbert and Harriman [67]. In this algorithm, each of the Grassmann products
appearing were multiplied by a parameter. The set of these unknown parameters
was evaluated by fitting the results of the algorithm with those of a CI calculation.

From the beginning it was clear that the different RDMs involved in the
2-CSE had to be consistent with each other. These matrices had also to be as
closely positive semi-definite as possible and had to have a correct trace. The
renormalization procedure used by Valdemoro et al. [54] renders the diagonal
elements of the 4-RDM positive and makes sure that the trace is the adequate
one. Then it contracts this diagonal to obtain the diagonals of the lower-order
RDMs. When contracting the 4-RDM algorithm (Eq. (67)), one obtains the algo-
rithm with which the off-diagonal elements of the 3-RDM are directly calcu-
lated, by entering as data the 1-, 2- and 3-RDMs previously obtained. In this
way one can avoid keeping the 4-RDM in computer memory. Although this pro-
cedure has been subsequently refined, the basic idea has remained invariant and
in what follows will be refered to as normalization procedure. Mazziotti’s
approach is conceptually similar, the main difference being that he seeks the
consistency among the 3- and 4-RDMs in a different manner. He realized that
by using a basis set of natural orbitals the expression obtained for the 3-RDM
by contracting the 4-RDM no longer depends on more 3-RDM elements than the
one being evaluated. In this way he gets an uncoupled system of equations that
may be solved directly. Mazziotti’s approach is laborious because a basis trans-
formation of the reduced Hamiltonian matrix must be carried out at each
iteration; but it gave excellent results [45, 62, 63]. In fact, the calculations car-
ried out with the various approaches just seen, both for the ground and excited
states of a series of atoms and molecules, have generally yielded good results
[45, 68-70].
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D. A Unifying Algorithm

The approach that will now be described expresses in a single algorithm the
VCP, the GP-H, and the NYM expansions for the 4-RDM.

Alcoba had the idea to combine the two algorithms obtained by separating the
particles and holes expressions—the GP-H algorithm (Eq. (69)) and the VCP one
(Eq. (67))—and he obtained [48]

4 T P 10 30 1 /¥ 30
4 Di-j-,k,l;p-,q,r,S :Z(_l) P 3! ( Di;p Dj«,k,l;q,r,x+ Dj:q Di,k‘l;p,r,s
P
1 ¥ 370 3 1 /U
+ Dk:r Diij,l;p‘q,x—i_ Di,/\k;p,q,r Dl;s)
I 20 2
- Z (_1> Pl 212! ( Di,j:p,q Dk,l;r,s
rPI
2 2/ 210 20 71
+ Di:l;p,s DJ‘~,1<:,WJr Diﬁk;pﬁr D./’J:(f,s) ( )
P’ 2 A0 \\J
+§ Z (_l) P// 212! ( Ai,j;p,q zAk,l;r‘x
P//
2 AT 2,0 2AT 2AT
+ Ail;ps Aj,k;q-,r'i_ Ai,kzp,r Aj.,l;q-,s)
4 AT
TN g

where ¢ is an arbitrary parameter that reproduces the VCP algorithm for £ = 1
and the NYM for £ = 2. Also, for ¢ = 0 it reproduces the GP-H [48, 54].

In general, this approach generates a parametric algorithm for a p-RDM with
p — 3 associated arbitrary parameters leading to a whole family of approxima-
tions. In what follows this unifying algorithm is denoted by UA.

1. A Criterion for Selecting the Parameter Value for the 4-RDM

The structure of the parametric UA for the 4-RDM satisfies the fourth-order fer-
mion relation (the expectation value of the commutator of four annihilator and
four creator operators [26]) for any value of the parameter £, which is a basic and
necessary N-representability condition. Also, the 4-RDM constructed in this way
is symmetric for any value of £. On the other hand, the other N-representability
conditions will be affected by this value. Hence it seems reasonable to optimize
this parameter in such a way that at least one of these conditions is satisfied.
Alcoba’s working hypothesis [48] was the determination of the parameter value
by imposing the trace condition to the 4-RDM. In order to test this working
hypothesis, he constructed the 4-RDM for two states of the BeH, molecule in
its linear form D,.,. The calculations were carried out with a minimal basis
set formed by 14 Hartree—Fock spin orbitals belonging to three different symme-
tries. Thus orbitals 1, 2, and 3 are o,; orbitals 4 and 5 are ¢,,; and orbitals 6 and 7
are degenerate 7 orbitals. The two states considered are the ground state, where
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Figure 1. RMS deviation of the RDMs corresponding to the ground state of BeH, for different
values of the UA parameter.

|112244) is the dominant Slater determinant, and the singlet excited state, |¥;y),
which has a shared dominancy of the two Slater determinants |112246) and
|112264). The 4-RDM was calculated for these states for different values of
the parameter ¢; and then, by contraction of this matrix, the corresponding 3-,
2-, 1-RDMs were obtained. In Figs. 1 and 2 is represented the RMS deviation of
these matrices with respect to the values obtained with the FCI method for each
of these two states.

When calculating the trace error for different & values, one finds that this error
vanishes for ¢ = 1.957 in the ground state and for £ = 1.215 in the excited state.
These ¢ values coincide with those corresponding to the minimal RMS deviations
of the matrices. Therefore the selection criterion for £ seems to be adequate.

E. Estimating the Error Matrix A

A great deal of work has been dedicated by different authors [45, 56, 57, 62, 71—
74] to estimate the error matrix >/, which was the unknown term in the con-
struction algorithm for the 3-RDM. In fact, the experience of the different
authors showed that it was crucial to have a good approximation of this matrix
since the error matrix A is less determinative in order to achieve convergence in
the iterative solution of the CSE.

The A matrix is Hermitian and antisymmetric with respect to the permuta-
tion of its indices. These properties significantly reduce the number of elements
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Figure 2. RMS deviation of the RDMs corresponding to the excited state of BeH, for different
values of the UA parameter.

that must be calculated. This number is still further reduced in states with a sing-
let spin symmetry, since it has been found that in this case the blocks >A*** and
3APPE have negligible values. Moreover, for states with spin quantum number
M, = 0, the 3A™# block and the 3A*F are equal. In consequence, the research
was centered on obtaining the >A**# block.

Nakatsuji and Yasuda [56, 57] focused on the term appearing in *A, which
according to the perturbative expansion could be interpreted as a linked diagram
of two 2A elements. In analogy to the Dyson equation, they proposed to estimate
the 3A with a procedure whose main step, expressed in a spin-orbital basis, may
be written

3UAY oy &Y (=DFP Y 22AN ("D —'Dyy) 212A) (72)
P

It

where the 1-RDM and 1-HRDM appearing in this formula correspond to a
Hartree—Fock calculation. In what follows this algorithm is denoted NY.

The results obtained with this algorithm were very good except when the
indices {ijr} corresponded to occupied orbitals in a Hartree—Fock state and
{ksp} to unoccupied ones (and vice versa); that is, when the 3-RDM element
corresponded to the expectation value of a three-body elemental excitation.
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In 1999 Valdemoro, Tel, and Pérez-Romero proposed a modification of the
NY approximation, which gives slightly more accurate values for the 3A and
which is computationally more economical [72, 73]. Moreover, the analysis of
this new algorithm, which in what follows is denoted VTP, clarified the factors
determining the 3A value.

Let us now see which were the observations leading to this VTP algorithm.
When analyzing the values of the 3A elements obtained by decomposing the 3-
RDM corresponding to a FCI calculation of the ground state of the molecule
BeH,, several significant features came out. Thus it was found that the error
is not of the same order for all the matrix elements; and that, in fact, only
some few elements of the 3A had nonnegligible values. Moreover, the elements
having relevant values were those involving occupied and unoccupied frontier
orbitals. This same observation was reported when approximating the 2-RDM
[19] for the ground state of the beryllium atom. In the BeH, molecule the ele-
ments involving the highest occupied molecular orbital, homo (h), for each orbi-
tal symmetry, and the lowest unoccupied one, lumo (1), were those that showed
significant 3A errors. Thus it was found that only the three following types
of elements needed to be considered: *AY SAY and

3AT D1 hoshs b by A117h1,72;137h2j4’ .
I The state of reference used to define the homo and lumo orbitals

o sl b s
is the Slater determinant, which dominates in W.

The next step in this analysis was to find out whether the values obtained for
these elements with the NY algorithm came out as the result of a sum of several
factors or whether only a few terms of the sum appearing in Eq. (72) were con-
tributing to each of the >A elements value. It came out that only one of the sum
terms contributed significantly; and, consequently, a new and simpler algorithm
than the NY one could be devised. This new approximating procedure can be
described as follows:

o Elements with two homo and one [umo orbitals in the column and row
labels

3AT _ 2T 2T

3! Ahl Akl s —2! Al’hjlz;lz,f( 2! Al],)’c;h_;fm (73)

where x is the lumo. When, due to symmetry reasons, the product is null the

index x that should be selected should be the next unoccupied frontier orbital.

o The 3A elements whose row and column labels have indices corresponding
to two lumo and one homo

313AY =212AY-

_ _ 12AY
[WOWHONENA I1,bhoy 21°A (74)

h1 l3,1s

where y denotes the homo. Again, when the product, due to symmetry rea-
sons, is null, y should be the closest occupied orbital to the homo.
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Due to the antisymmtry property of the 3A matrix,

3A/\f’1 Ay hoshs by T _3Ag1 J1shail kg (75)
thus the other elements are obtained from those considered above.

As can be seen, the essence of these rules is to replace the nonnegligible 3A
elements by a product of two 2A elements corresponding to a double excitation
and to a double deexcitation, respectively. In the case examined, the other pro-
ducts considered by Nakatsuji and Yasuda do not contribute. However, a sum
over x/y should be employed when the basis set is large and several orbitals
have very close energy values to the homo and lumo of each orbital symmetry.
In these cases the previous formulas are replaced by

13AY o Z 12AY _ 12A¥ B
3! Ahl,ll«,hz;lz,hs,hzt_ 2! Ahl,hzélz,if 2! All,)?lh37h4 (76)
x
and
13AY B 72 1 2A0 91 2AY
3! All,hlqlz;hz-b,h - 2! Ahl-f’ﬂsﬁt 2! All,lzihz-,)?’ (77)
Y

respectively, where x/y is the set of frontier spin orbitals and their neighbors’
un-occupied/occupied ones.

1. Analytical Contraction of the Unifying Algorithm

As mentioned previously, the off-diagonal elements of the 3-RDM are deter-
mined by an algorithm obtained by contracting the 4-RDM. For simplicity
sake, the expression given here for the contraction of the 4-RDM (Eq. (71)) cor-

responds to the spin block *DY 777,
31°D} 50 = (A1 + Ay + A3 + Ay + As + Aq) /(N; — 3) (78)
where
Ar=-33 (-1 P 2Dl 2Dk,
>
DDl Dl Dl )

Ay =833 (=1)7 P 2a{(('DY ), - DE7) AT

Jkiq,r
P/
1 o\2 T oo
+(( D" )j;q - Dj?q ) ZA;I,Jk;pJ (80)

+ (DY), —' D7) A
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and N, is the number of electrons with spin ¢. An implicit sum over repeated
indices is assumed.

Following Mazziotti’s reasonings [45,62,63], Alcoba has considered Eq. (78)
as a system of equations where the variables are the 3-RDM elements, which can
be decoupled when the off-diagonal 1-RDM elements are null, that is, when the
matrices are represented in a natural basis of orbitals.

The NYM algorithm is therefore a particular case for £ = 2 of Alcoba’s para-
metric expression. It must be noted, that as happens with the NY and the VTP,
the UA does not correct the error in the elements whose indices correspond to a
three-body elemental excitation.

The values, obtained with the different methods just decribed, of the more
significant elements of A are given in Table I. The test system has been the
BeH, molecule in its linear form D.y,. The state ¥ considered is the ground
state, and the basis set used is the same as previously. As can be seen, the results
have been very satisfactory in all the approaches. However, a detailed analysis of
these values indicates that the algorithm giving the best approximation for 3A is
the VTP followed by Alcoba’s UA for the value ¢ = 1.957. Hence the 3-RDM
obtained with Eq. (66) together with the VTP estimations for A yield very
good results for those states whose orbitals have occupations close to 0 or
1, except for those few elements involving three-body frontier excitations.
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TABLE I
Most Significant Elements of the Matrix 3 A

Algorithm

Matrix VTP UA
Element 3A NY Value xory Mazziotti (¢ =1.957)
233; 233 —0.00300 —0.00284 —0.00309 2 —0.00333 —0.00316
253; 343 0.00255 0.00242 0.00258 2 0.00269 0.00255
266; 266 —0.00317 —0.00304 —0.00310 2 —0.00308 —0.00293
266; 277 —0.00320 —0.00306 —0.00310 2 —0.00310 —0.00295
233; 453 —0.00340 —0.00327 —0.00344 4 —0.00349 —0.00332
232; 232 0.00300 0.00283 0.00309 3 0.00334 0.00318
344; 344 0.00670 0.00630 0.00675 3 0.00700 0.00665
234; 454 0.00341 0.00328 0.00344 3 0.00359 0.00341
232; 344 —0.00455 —0.00437 —0.00457 3 —0.00486 —0.00462
342; 454 —0.00384 —0.00364 —0.00382 3 —0.00392 —0.00373
254; 452 0.00194 0.00185 0.00194 3 0.00199 0.00190
234; 234 0.00217 0.00194 0.00216 5 0.00223 0.00211
262; 262 0.00306 0.00295 0.00310 6 0.00348 0.00330

F. The N-Representability Problem: Introducing Bounds Correction

Until now the focus has been on the construction algorithms for the 3- and 4-RDMs
and the estimation of the A errors. However, the question of how to impose that the
RDMs involved as well as the high-order G-matrices be positive must not be over-
looked. This condition is not easy to impose in a rigorous way for such large
matrices. The renormalization procedure of Valdemoro et al. [54], which was com-
putationally economical but only approximate, acted only on the diagonal elements.

For the 3- and 4-G matrices, the approach can be to apply adequate bounds to
these matrices’ diagonal elements. This question was studied thoroughly by sev-
eral authors [26, 29, 54, 75-77] and there are a large number of inequalities
derived from the D, Q, and GN-representability conditions. In practice, one
must select a small number of these inequalities with the criterion that they should
be as restrictive as possible. In the calculations of Valdemoro et al. [54] the selected
conditions for the fourth-order G-matrix lead to the three following inequalities:

1. A bound for the 4-RDM diagonal elements involving off-diagonal 3-RDM
elements which presents nonlinear terms:

4! 4D1\€I]~,l,iJ;k.,l.,i.j > — (]ij)z lD/?;k -2 ZD’\“P*’?"J
+ 202Dy ('D)* 430D i
+ 303Dy sy 4y + 221 2Dy ' D (85)
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2. A condition for the 4-RDM diagonal elements involving the square of an
off-diagonal element of the 2-RDM:

| 4n¥ _ 91 2p¥ 13n¥
A Dy ijaiij = = 2V Digg + 3V Dyja

(86)

+ 3! SDgl,i;k,l,i + (2! 2D1\<I’,1;i.j)2

3. An upper bound for the 4-RDM diagonal elements involving a 3-RDM
off-diagonal element:

4 U 21T 1~ Ty\2 31T
4 Dyyijinij <2 Dy i ( Di;/') + 31Dy

sbybylyly 87
—23! 3D;I‘Ik,l:j,k.,l ]D;I;} o

Other families of inequalities were looked into [26, 73] but they were not
used in the calculations reported here.

G. Some Comparative Results

The results obtained with the different approaches described in this section are
shown in Tables II-V. As before, the test probe is the linear BeH, molecule.
The 4-RDMs for the ground state and first excited singlet state were calcu-
lated with the UA (Eq. (71)) for different values of the ¢ parameter. The first
three columns correspond, respectively, to the GP-H, the VCP, and to the
NYM algorithms. The different RDM elements were analyzed in order to find
out if they satisfied the bounds inequalities. If this were not the case, these ele-
ments’ values would be given the values corresponding to the upper or lower
bound which had been unsatisfied. In order to examine the performance of the
different algorithms and of the bounds without the influence of the quality of the
data used, the 1-, 2- and 3-RDMs employed to calculate the 4-RDM were obta-
ined in an FCI treatment. The different results were then compared with the FCI

TABLE II
Ground-State: Error of the 4D:I;(f‘,‘fjk, Elements with the UA and Imposing N-Representability
Bounds
Indices Algorithm Error Algorithm Error 4+ Bounds (B)
i j ok 1 (=0 i=1 =2 E=0+B ¢=1+B ¢E=2+B

—0.0001847 —0.0000743  0.0000012 —0.0000001 —0.0000001 0.0000012
—0.0001985 —0.0001171 —0.0000357  0.0000000  0.0000000 0.0000000
—0.0001153 —0.0000675 —0.0000198 —0.0000006 —0.0000006 —0.0000006
—0.0001123 —0.0000851 —0.0000579  0.0000000  0.0000000 0.0000000
—0.0001114 —0.0000829 —0.0000543  0.0000000  0.0000000 0.0000000

[SSIN NSRS T SR )
BN N NS BN
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TABLE III
Ground State: Error of the “D:I'/i“fzkl Elements with the UA and Imposing N-Representability
o Bounds
Indices Algorithm Error Algorithm Error 4+ Bounds (B)
i j ok 1 =0 E=1 E=2 (E=0+B ¢=1+B ¢=2+B
2 3 2 4 -0.0001827 —0.0000707  0.0000015 —0.0000222 —0.0000222 0.0000001
2 3 3 4 0.0000012 —0.0000495 —0.0001801  0.0000001 —0.0000495 —0.0001801
2 3 4 5 0.0017676  0.0017676 —0.0000661  0.0000991  0.0000991  0.0000000
2 4 2 4 0.0002840 0.0001361 —0.0000117  0.0000219  0.0000219 —0.0000117
2 4 4 6 -0.0001123 —0.0000851 —0.0000579  0.0000000  0.0000000 0.0000000
2 5 2 5 0.0013544 0.0007780 —0.0000123  0.0000571  0.0000571 —0.0000032
2 5 3 4 0.0021823 0.0017539 —0.0000488  0.0000897  0.0000897 —0.0000029
3 4 3 4 0.0031281 0.0031281 —0.0004268  0.0001789  0.0001789 —0.0000063
3 6 4 6 —-0.0001127 —0.0000829 —0.0000530  0.0000000  0.0000000 0.0000000
4 5 4 5 0.0007380 0.0007380 —0.0000207  0.0000733  0.0000733  0.0000000
4 6 4 6 0.0001660 0.0001381 0.0001102  0.0000000  0.0000000 0.0000000

4-RDM. The results for each spin block of the 4-RDM are presented in
Tables II-V. It should be mentioned that, before carrying the comparison with
the FCI 4-RDM, the renormalization procedure previously mentioned was
applied.

The results of the three last columns correspond to calculations with the same
algorithm after application of the bound conditions given by the inequalities
(85), (87), and (86), denoted as B in the Tables II-V.

As can be seen, while for the ground state the NYM algorithm corresponding
to the parameter value £ = 2 gives the most satisfactory results, this is not the
case for the first singlet excited state, where the errors in some of the 4-RDM
elements are nonnegligible. This applies also to the algorithm given by
Eq. (69), which is obtained with the parameter value £ = 0. However, it should

TABLE IV
Excited State: Some Significant Errors of the 4D;I;fl“fjk, Elements with the UA and Imposing
N-Representability Bounds

Indices Algorithm Error Algorithm Error + Bounds (B)
i j k1 &E=0 &=1 &E=2 E=04+B ¢=14B ¢=2+B
2 3 4 6 -0.0151279 —0.0052737 0.0000007  0.0000000  0.0000000  0.0000002
2 3 6 4 -0.0145106 —0.0048784 0.0000030  0.0000000  0.0000000  0.0000005
2 3 6 6 0.0000000 0.0000000 —0.0053446  0.0000000  0.0000000 0.0000000
2 4 6 2 —0.0063085 —0.0033265 —0.0003444 —0.0000002 —0.0000002 —0.0000002
2 4 6 3 0.0000015 —0.0019269 —0.0080394  0.0000015 —0.0000005 —0.0000005
2 4 6 4 —-0.0011146  0.0000005  0.0000005 —0.0000015  0.0000005 0.0000005
3 4 6 2 0.0000001 —0.0021817 —0.0082845  0.0000001  0.0000000 0.0000000
3 4 6 3 —-0.0047042 —0.0026740 —0.0006437  0.0000000  0.0000000  0.0000000
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TABLE V
Excited State: Some Significant Errors of the 4D:I'I‘k“ff/“ Elements with the UA and Imposing

N-Representability Bounds

Indices Algorithm Error Algorithm Error 4+ Bounds (B)
i j ok 1 (=0 i=1 E=2 E=0+B ¢=1+B ¢=2+B
23 2 3 0.0000012  0.0000012 —0.0018960  0.0000012  0.0000012 —0.0000002
2 3 4 6 0.0145106  0.0048784 —0.0047539  0.0000000  0.0000000 —0.0000005
2 4 2 4 -0.0041440 —0.0019392  0.0000007 —0.0000060 —0.0000060  0.0000007
2 4 2 6 0.0063085  0.0033265  0.0003444  0.0000002  0.0000002  0.0000002
2 4 3 6 —0.0041857 0.0019269  0.0033128 —0.0000015  0.0000005  0.0000005
2 4 4 6 0.0000061 —0.0017806 —0.0046758  0.0000000 —0.0000005 —0.0000005
2 6 2 4 0.0063085  0.0033265  0.0003444  0.0000002  0.0000002  0.0000002
2 6 2 6 -—0.0057041 —0.0030819 —0.0004596  0.0000000  0.0000000 0.0000000
2 6 3 4 -00039210 0.0021817  0.0064365 —0.0000001  0.0000000  0.0000000
2 6 4 6 -—00014689 —0.0027143 —0.0039598  0.0000000  0.0000000  0.0000000

be noted that although the original VCP algorithm obtained with the parameter
value £ = 1 is not good either, its errors for the excited state are lower than those
obtained with the other algorithms.

When considering the effect due to imposing bounds, the results for the 4-
RDM become excellent independently of the parameter value selected. More-
over, these good results occur both in the ground and in the excited state.

Let us now see what the situation is for the 3-RDM. As has been described,
the 3-RDM is obtained by contraction from the 4-RDM. On the other hand, in
order to construct the 4-RDM one needs the 3-RDM. According to the results
reported in Table I, the estimation of the 3A for the ground state is satisfactory.
Also, the UA for ¢ = 0 together with the bounds inequalities

3! SD;I-,IPJ;LP-J‘ <2 2Dt\'?p:i-p —212! 2D;I,qu',p 1D;I;‘ + (ll);I:/J')2 1DI\£17 (88)
and

2
3! 3D;I,Ik,l;i,k,l (2 ID;I;:' -1)> (ID,\PI) (2! 2D1\<I,,l;k,l = Dg;k)
+21°D} 21Dy — 1) (89)
P \2
+(2! zD;p‘l;i‘k ~'Dy; ID;I;k)

give very good results for the ground state [48]. However, the results obtained for
the first singlet excited state of the BeH, molecule were not good [48] since
imposing bounds did not sufficiently improve the situation. From the study car-
ried out by Alcoba, the situation with respect to the 3-RDM may be summarized
as follows:

1. For those states having orbital occupations close to 0 or 1, the UA with
¢ =0 together with the bounds constitutes an efficient method for
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constructing the 3-RDM. Alternatively, the UA with ¢ = 1 together with
the 3A corrections also produces good results, except for the off-diagonal
elements describing three-frontier electron excitations.

2. For those states having orbital occupations clearly different from 0 or 1—
that is, when the orbital occupations play simultaneously the role of par-
ticles and holes—the problem of obtaining a good 3-RDM still remains
open. Consequently, the 4-RDM is also affected, notwithstanding the
fact that its algorithm is efficient. However, in this case the bounds correct
very well the errors in the diagonal elements.

In spite of these satisfactory results, it should be noted that being able to obtain
very good results for the most significant elements when using FCI input data
does not guarantee obtaining good results throughout the iterative process.
Thus, in practice, when the input data for obtaining the bounds were not the
FCI ones the results of the iterative process were not as good as when the bounds
were not imposed. Another reason for these disapointing applicative results may
be the appearance of inconsistencies among the different spin blocks of the
RDMs. At present, when rather satisfying purification procedures have been
devised for the 2-RDM, this analysis should be repeated, since the input data
have been improved. In this way, one may either confirm or discard one of
the hypothetical reasons for the bad performance in the practice of the applica-
tion of bounds.

V. FACTORS AFFECTING THE CONVERGENCE OF THE
ITERATIVE SOLUTION OF THE CSE

A. Influence of the Algorithms on the 2-CSE Convergence

As has been shown, the UA with ¢ = 2 for the 4-RDM—which corresponds to
the inclusion of the correction term introduced by Nakatsuji and Yasuda and by
Mazziotti—gives rather accurate results. The importance that the value of this
parameter has on the convergence of the iterative process is now examined.

As mentioned, the optimal value of the parameter is ¢ = 1.957, but for sim-
plicity’s sake, the curves shown in Fig. 3 correspond to the integer values & = 0,
E=1,and & =2.

As may be observed, the curve corresponding to the value & = 2, which is
very close to the optimized parameter value, reaches a minimal value of the
energy very close to the FCI one.

Besides the influence of the parameter ¢ on the energy, it is important to ana-
lyze how the different values of the parameter ¢ affect the 1-RDM, since this
matrix is directly connected with the electronic density. Thus the elements of
the 1-RDM for each value of & obtained at the minimum of each curve are shown
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Figure 3. Values of the energy obtained for each iteration in the self-consistent solution of the
2-CSE for different values of ¢ in the ground state of the BeH, molecule.

in Table VI. Since the matrix is symmetric, only the superior half of the matrix is
given. Also, since the ground state is a singlet, only the a spin block is reported.

These results show that all three values of ¢ give good results but it is the
value ¢ = 2 that performs best.

B. Influence of the N- and S-Representability of the 2-RDM on the
Convergence of the 2-CSE Iterative Process

Initially, in order to partially correct the N-representability defects of the 2-RDM
obtained at each iteration, this matrix was diagonalized and rendered positive by
applying to the eigenvalues the same operations described previously, when cor-
recting the 4-RDM diagonal elements. When carrying out these operations, it
was observed that the appearance of the divergence was retarded but in many
cases it was not prevented. Mazziotti [78] realized that further purifying the
2-RDM substantially improved the convergence of the 2-CSE iterative process.
He applied a 2-RDM purification procedure based on Coleman’s unitarily invar-
iant decomposition of a second-order matrix. He then imposed the D and Q
N-representability conditions and obtained very satisfactory results. By focusing
not only on imposing the D- and Q-conditions but also the G-condition as well as
the S-representability conditions, Alcoba et al. [38, 51] proposed two very com-
plete procedures that permitted one to obtain smoothly convergent processes,
leading to highly accurate solutions. The theoretical developments leading to
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Ground-state 1-RDM Elements
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the purification procedures are not trivial and constitute in themselves a line of
study. This is the reason why a whole chapter of this book is dedicated to this
very important area, which is not further considered here. Another factor that
strongly enhances the convergence of the iterative process is the shifting of
the origin of energy. This matter will also be examined in the same chapter as
the 2-RDM purification procedures.
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VL. AN EXACT FORMAL SOLUTION TO THE CONTRACTED
SCHRODINGER EQUATION’S INDETERMINACY

In previous sections the construction algorithms aimed to obtain good approxi-
mations of the high-order RDMs appearing in the 2-CSE in terms of the lower-
order ones. Here, the approach is to obtain a set of equations, equivalent to the
CSEs, which are not formally indeterminate. The most important equation of
this family is a self-contained equation represented in the four-electron space.
The cost of removing the indeterminacy of the CSEs is an increase in the size
of the problem. The formal aspects of this treatment are very enlightening and,
although at present the operativity of this approach is limited, the results
obtained for a family of four electron compounds are excellent. These new equa-
tions, which are called modified contracted Schrodinger equations (MCSEs) are
combinations of lower-order CSEs [79, 80]. They involve explicitly high-order
correlation matrices (CMs), which, as will be seen, play an important theoretical
role.

A. Decomposition of High-Order RDMs and a Basic Cancellation Relation

We have seen that the second-order CM is one of the terms resulting from the
decomposition of the 2-RDM. Similarly, when decomposing the 3- and 4-RDMs
the third- and fourth-order CMs are obtained. Thus, for instance, one of the pos-
sible decompositions of the 3-RDM is

=—2! ZD;I_Ik:j’n 5m,l + 2! 2Dg/k;l,n 5j,m

+21°D},., ‘D), + B2V ¢,

m;n i,k,mij,ln

13n¥
3! Di,k,m:j,l,n

(90)
where the elements of the third-order CM, (32)C, have the following structure:

3;2,1) p¥ _ 2 nUY 1 [V
( >Ci,k,m;j,l,n =2l Z Di,k;j,l Dm;n (91)
W'Y

In order to refer to the p-order correlation matrices with p > 2, the notation
needs to become more precise. Thus a left superscript has to be introduced.
As can be seen from the definition, Eq. (91), the first index of this left superscript
denotes the global order of the matrix, and the following indices denote the order
of the different TRDMs involved. The right subscripts, denoting the element
labels, coincide with those of the 2-RDM from which they derive.

At the basis of the theoretical developments leading to the MCSEs lie a set of
relations reported by Tel et al. [81], which link CMs of different orders among
themselves. These C-relations establish a set of necessary conditions that the
CMs must satisfy when they correspond to a Hamiltonian eigenstate. The
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most important of these relations, which is essential in the derivation of the
MCSE:s, can be expressed as

(p:2,x,y,.. W
i O\q ..... U S T Bysee W yeeny Wy 3Z1 505 Zyseee
= K: (sz;) C =0 (92)
- 2 E : ijik,l L V1o Vst sty e sk LW ey Wi T2y
ik,

where p = 2 4+ x +y + - - -. Note that the labeling of the symbol #2*¥)O coin-
cides with that of the CMs involved in the sum.

Alcoba [80] reported four theorems showing that the cancellation of these
types of terms is a sufficient condition to guarantee that these matrices correspond
to eigenstates of the system. In particular, his first theorem states the following.

Theorem[Alcoba] Assuming that the four-electron CM, “*22)C¥  can be
derived by decomposition of an N-representable 4-RDM, then
220" =0 (93)

will be satisfied by this 4-CM if and only if the N-DM, preimage of the 4-RDM,
satisfies the Schrédinger equation.

The first part of the demonstration of this theorem is contained in Eq. (92).
The second part of the demonstration is as follows. Using the unit operator it is
easy to see that

0 =422 0¥ = E, 21 2D* — 21 > M" (94)

This equation is equivalent to the 2-CSE, which by Nakatsuji’s theorem
implies that the Schrodinger equation is satisfied.
B. Derivation of the Fourth-Order MCSE

As will now be shown, the 4-CSE can be transformed into a self-contained equation,
the 4-MCSE. Let us therefore consider the 4-CSE in the following compact form:

E\Il 4' l,}kpors_ <\Ij|f{aJr a]T a}: a} @s @r 44 ap|\Ij> (95)
_ g4
=4 Mz]klpqr\'
Remembering that
M= <\Il|Ha a as a,|v) (96)

one proceeds to change the order of the fermion operators in expression (95)
having in mind that one wishes to have a term with the ordering ga; a;a,a),
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a,tajasa,. Then, inserting the unit operator at the convenient places, as in the
RDMs’ decompositions ( after the H and between an annihilator and a creator
operator), one obtains

Eg 414DY.

ij.k,Lp,g,rs (5‘I-l 5k-,P - 51’71 51{71]) ZM\I}

iirs
+ (0qs O — Org 'Dlfy) 202 M
+ (1 Og — 0qu 'DI,) 212 M
— (31 05 — Oip ‘DY) 2

= (0kp 01, = 0y 'Dgr

+202MY 202D

o ~—

\_/\_/

ZM\II
LJipsq

iJjiq,r
202 MY
(3;2,1) p¥
_5 ( Cl,/kpsr

iJiq,s
34

_51”1 (E‘I’ 321Cz11pr5

+51 (E‘I’ (321>Cl,1kq\'r

+ 0, (Eg BT

1]qus
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The important feature of this hierarchy equation is that the dependence of the
4-CSE upon the 5-CSE and 6-CSE has been replaced by the fifth- and sixth-
order O cancellation terms, Eq. (92). These high-order terms can therefore be
omitted and it follows that

Ey 4 Duklpqrs—(%Jék,y—éplékq) le\I;”
+ (9g,1 Ors — 5kqlD\I]) 'ZMZ\I;pr
+ (81 Okg — 8 "D 202 MY,
— (31 e — 5kp 'Dy}) 212 M,
_(5kp51r 5117le) ZM:I;M
+202MY L 20°DY, (98)
— 041 Ey HIC,\Ijkpw
— Orq Ev BZIC:I,’]IprS
+51,pExp 3216:1’,1(,(1”

+ Ok p 32161114”;
+Ey 4220};1{1174”

which is the 4-MCSE.
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The iterative procedure for solving the 4-MCSE follows a very similar gen-
eral scheme to that of the 2-CSE. Thus one starts with an intial set of 3-, 2-, 1-
RDMs , a *C matrix, and the energy E that corresponds to this set of matrices.
These initial data must correspond to a reasonable approximation of the eigen-
state under study. This set of matrices is replaced in the 4-MCSE and, after sym-
metrizing the resulting matrix, 4M~, its trace is divided by that of the 4-RDM,
(IX) , which gives a new energy E'. Then a new *D is obtained by dividing ‘M by
E'. All the lower-order RDMs are obtained by contraction of this 4-RDM and
then, by decomposing this same 4-RDM, the *C is evaluated. All these opera-
tions are straightforward and no approximated algorithm is needed. With this
new set of data, a new iteration is started.

Alcoba demonstrated an important theorem concerning this equation.

Theorem[Alcoba]  Assuming that the matrices G21CY and “4211)¢Y can be
obtained, respectively, by decomposing the set of the N-representable 3- and 4-
RDMs, then the MCSE Eq. (98) will be satisfied by this set of RDMs if and only
if the density matrix ¥DY, preimage of the 3- and 4-RDMs, satisfies the Schro-
dinger equation.

When the initial 4-RDM has been obtained from an FCI treatment, then the
iterative procedure described above can proceed indefinitely without variation.
That is, the solution is a fixed point, as is to be expected in view of Alcoba’s
theorem.

Therefore the 4-MCSE is not only determinate but, when solved, its solution
is exact. As already mentioned, the price one has to pay is the fact of working in
a four-electron space; and the difficulty, as in the 2-CSE case, is that the matrices
involved must be N-representable. Indeed, in order to ensure the convergence of
the iterative process, the 4-RDM should be purified at each iteration, since the
need for its N-representability is crucial. In practice, the optimizing procedure
used is to antisymmetrize the M at each iteration. This operation would not
be needed if all the matrices were N-representable; but, if they are not, this con-
dition is not satisfied. In order to impose that the 4-RDM, from which all the
lower-order matrices are obtained, be positive semidefinite, the procedure fol-
lowed by Alcoba has been to diagonalize this matrix and to apply to the eigen-
values the same purification as that applied to the diagonal elements in the
2-CSE case, by forcing the trace to also have a correct value.

C. Some Significant Results

A set of calculations on the beryllium atom and its isoelectronic series have been
carried out [48]. The starting basis set used was Clementi’s double-zeta [82].
This basis was then transformed into the Hartree—Fock one, and the initial
RDMs corresponded to Slater determinants built with this basis. Note that in
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these four-electron sytems the 4-RDM coincides with the N-electron N-DM,
which simplifies the calculation of the FCI 4-RDM with which the MCSE cal-
culations are compared. Moreover, in the N-DM case, the only and sufficient
conditions that must be satisfied by this matrix are to be Hermitian, positive
semidefinite, antisymmetric, and having a correct trace. These were the condi-
tions imposed in the calculations reported here. The positive semidefiniteness of
the 4-RDM together with the trace were imposed after each iteration by acting
on the eigenvalues of the 4-RDM by applying a similar procedure to the one
used for the 4-RDM diagonal in the 2-CSE iterative solution.

In Fig. 4 the values of the energy at each iteration are shown for the beryllium
atom; and the root mean square deviations of the 2-RDM and the 4-RDM with
respect to the FCI values are shown in Fig. 5.

As can be observed there is a smooth and complete convergence toward both
the exact energy (FCI) and the exact RDMs.

The general performance of the method for the ions of the beryllium isoelec-
tronic series is very similar to that for the beryllium atom; therefore only the
most significant values for the series are reported in Table VII. The results
obtained for the singlet excited state corresponding to the dominance of the
|1123) and |1132) Slater determinants are given in Fig. 6. As can be observed,
the convergence value is close to the FCI value, although the accuracy is not as
good as in the ground state. Also, when continuing with the iterations, the
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Figure 4. Energy values for the ground state of the Be atom with the MCSE.
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Figure 5. Root mean square deviations of the 2-RDM and the 4-RDM obtained for the ground
state of the Be atom with the MCSE.

process falls into the ground state. It should be noted that when the regulating
device previously mentioned was applied, the number of iterations needed to
attain convergence was reduced to 10% of the number needed without this reg-
ulating device. When performing similar calculations for the BeH,; molecule,

TABLE VII
Results Obtained with the Iterative 4-MCSE Method for the Ground State of Some Ions of the
Beryllium Isoelectronic Series

Deviation of

System Method Energy (a.u.) ’D “D Iteration
BF Hartree—Fock —24.23383 3.815x 1073 1.691 x 1073

full CI —24.24840 0.0 0.0

4-MCSE —24.24811 8.217 x 107 1.370 x 10~ 6000
c Hartree—Fock —36.40072 2.804 x 1073 1.245 x 1073

full CI —36.41489 0.0 0.0

4-MCSE —36.41466 3.409 x 107 8.670 x 107 6000
N3+ Hartree—Fock —51.06981 2222 x 1073 9.869 x 10~*

full CI —51.08378 0.0 0.0

4-MCSE —51.08359 1.698 x 107° 5.872 x 107° 6000
o Hartree—Fock —68.23818 1.849 x 1073 8.213 x 107

full CI —68.25196 0.0 0.0

4-MCSE —68.25179 9.634 x 1077 4.195 x 107¢ 6000
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Figure 6. Energy values for the excited state of the Be atom with the MCSE.

where the positive semidefiniteness is no longer a sufficient N-representability
condition, the process was not smooth. Thus, after two initial oscillations, the
curve converged toward a minimum and then rapidly diverged. It must be noted
that, when examining the 1-RDM at the minimum of the curve, the matrix was
found to be extremely close to the FCI one. This imperfect performance must be
due to the fact that in this case the N-representability conditions imposed on the
4-RDM were no longer sufficient. Therefore, for systems with more than four
electrons, a strict purification procedure for the 4-RDM at each iteration must
be applied. This renders the method rather expensive, which reduces its useful-
ness, particularly when the size of the system imposes the use of a large
basis set.

VII. SOME FINAL REMARKS

The outlook given in this chapter on the theory of the second-order contracted
Schrodinger equation and on its methodology has been aimed mostly at convin-
cing the reader that this theory is not difficult to understand and that its metho-
dology is now ready to be applied. That is, in the author’s opinion, this
methodology can be considered as accurate and probably more economical
than the best standard quantum chemical computational methods for the study
of states where the occupation number of spin orbitals is close to one or zero,
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in particular, when the refinements involving the 2-RDM purification and
the device for accelerating convergence described by Alcoba in this book are
used.

The most important question that remains open concerns the search for an
appropriate approach to the study of states having some spin orbitals with occu-
pation numbers close to 0.5. The structure of the algorithms is what causes the
difficulty, since the leading terms of the 2-RDM involve products of the type
0.5 x 0.5 = 0.25, which is much too small. In consequence, the value of the
unknown 2A elements is of the same order and can no longer be considered a
small error. This is the case of many excited states for which the results have not
been satisfactory up to now.

Since this chapter was centered on the CSE, only the most relevant aspects
of the MCSE theory and practice have been treated here. It is nevertheless to
be hoped that the brevity of this exposition has been sufficient to show the
importance of this theory. Indeed, by considering the properties of the cancel-
lation terms [81] jointly with Alcoba’s theorems and the structure of the
4-MCSE, it can be concluded that an N-body eigenproblem is just a four-
electron one. Moreover, the basic variable of this equation is the 2-CSE and
through it the 2-RDM. Because the FCI 4-RDM determines a fixed point in
the iterative process, the results obtained in the calculations reported here
and in some other unpublished ones confirm the exactness of the 4-MCSE
solution.

It is true that one must work in a four- or in a three-electron space; however,
the reward is tantalizing: to get an exact, not approximate solution. The difficulty
is of course the high computational cost of introducing all the known N-
representability conditions. The question whether one could relax the N-
representability conditions to be imposed while keeping the procedure conver-
gent is still open.

Although the excited states can also be studied with the MCSE method, the
results are not as clear as those for the ground state. The difficulty in this case is
that while the iterative process seems to stabilize itself close to the value of the
excited state energy, this value finally falls toward the ground-state energy.

Although for brevity’s sake the 3-MCSE has not been considered here, it may
be convenient to mention it in these final comments. This equation, which
depends on the 1-CSE, does not have a unique solution. Indeed, this equation
is satisfied not only by the FCI 3-RDM but also by the Hartree—Fock one. Alcoba
[48] performed a series of calculations with the 3-MCSE for the beryllium iso-
electronic series. Alcoba took as initial data a set of RDMs that corresponded to
a state that had already some correlation and whose energy was below the
Hartree—Fock’s one. The results of these calculations showed that there was a
smooth although very slow convergence toward the exact solution. For larger
systems the situation will probably be similar to the 4-MCSE one and a strict
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purification should be applied to the 3-RDM. Also, in this case, enhancement of
the convergence rate is necessary. Since the purification of the 3-RDM should be
more economical than that of the 4-RDM, this approach seems to be more attrac-
tive. However, one must have as initial data a correlated and closely N-represen-
table 3-RDM. Moreover, the question whether the iterative process of the 3-
MCSE would be sufficiently accelerated when applying the regulating device
is still an open question.
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I. INTRODUCTION

Knowledge of the 2-particle reduced density matrix (2-RDM) allows one to cal-
culate the energy and other observables for atomic and molecular systems with

Reduced-Density-Matrix Mechanics: With Application to Many-Electron Atoms and Molecules,
A Special Volume of Advances in Chemical Physics, Volume 134, edited by David A. Mazziotti.
Series editor Stuart A. Rice. Copyright © 2007 John Wiley & Sons, Inc.

165



166 DAVID A. MAZZIOTTI

an arbitrary number N of electrons. For a quantum system, fully characterized by
a single N-particle wavefunction, the N-particle density matrix ¥ D is the kernel
of the wavefunction’s projection operator. By integrating the density matrix ¥ D
over N — 2 particles, we obtain the 2-RDM, which contains enough information
to calculate the expectation values for any operator with only two particle inter-
actions like the electronic Hamiltonian [1-4]. Calculation of the 2-RDM without
the many-electron wavefunction is challenging because not every two-particle
density matrix derives from an N-particle density matrix. Restricting the 2-
RDM to represent an N-particle density matrix requires nontrivial constraints
known as N-representability conditions [3, 5-13]. A new approach to the direct
calculation of the 2-RDM was developed in the 1990s through a projection of the
Schrodinger equation onto the space of two particles known as the contracted
Schrodinger equation (CSE) (or density equation) [14-20, 22-37].

Nakatsuji [37] in 1976 first proved that with the assumption of N-
representability [3] a 2-RDM and a 4-RDM will satisfy the CSE if and only if
they correspond to an N-particle wavefunction that satisfies the corresponding
Schrodinger equation. Just as the Schrodinger equation describes the relation-
ship between the N-particle Hamiltonian and its wavefunction (or density
matrix ¥ D), the CSE connects the two-particle reduced Hamiltonian and the
2-RDM. However, because the CSE depends on not only the 2-RDM but also
the 3- and 4-RDM:s, it cannot be solved for the 2-RDM without additional con-
straints. Two additional types of constraints are required: (i) formulas for build-
ing the 3- and 4-RDMs from the 2-RDM by a process known as reconstruction,
and (ii) constraints on the N-representability of the 2-RDM, which are applied in
a process known as purification.

Employing the particle-hole duality, Valdemoro derived formulas for recon-
structing the 3- and the 4-RDMs from the 2-RDM to remove the indeterminacy
of the CSE [14, 15, 20, 38]. Yasuda and Nakatsuji [19] added an additional term
to each of these formulas by considering the decoupling diagrams for Green’s
functions. The author systematized these reconstruction functions in the CSE
by applying the theory of cumulants to the RDMs [21, 22, 24-26, 39, 40]. After
presenting Rosina’s theorem, which justifies the reconstruction of the higher
RDMs from the 2-RDM, we derive in Sections III.B and III.C the reconstruction
formulas for the 3- and 4-RDMs from the perspectives of the particle-hole dua-
lity [14, 15, 20, 38] and cumulant theory [21, 22, 24-26, 39, 40], respectively. In
Section III.D the cumulant expansion for the 3-RDM is improved by two differ-
ent corrections.

In addition to reconstruction within the CSE, it is important to constrain the
2-RDM to remain approximately N-representable. The process of correcting a
2-RDM to satisfy N-representability constraints is known as purification. In
the context of an iterative solution of the CSE, early algorithms by Valdemoro
checked that the 2-RDM satisfies a number of fundamental inequalities such as
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the nonnegativity of the diagonal elements [17]. The author developed a more
general purification algorithm that corrects the 2-RDM so that two
N-representability constraints known as the D- and Q-conditions are satisfied
[28]. Alcoba and Valdemoro [34] recently extended the author’s algorithm to
include explicitly another N-representability constraint known as the G-
condition. Purification of the 2-RDM is described in detail in Section I'V.

The ingredients of (i) CSE, (ii) reconstruction of the 3- and the 4-RDMs, and
(iii) purification of the 2-RDM are combined in an iterative algorithm for solving
the CSE in Section VI. Applications of the CSE algorithm to a variety of atoms
and molecules from Refs. [28, 29] are presented. Purification of the 2-RDM is
seen to be critical for an accurate solution of the CSE [28, 29].

II. CONTRACTED SCHRODINGER EQUATION

A quantum system of N fermions may be characterized by the Schrodinger equa-
tion (SE)

H|Y,) = Eulib,) ()

in which the wavefunction ¥/, depends on the coordinates for the N particles.
Beginning with the SE, we will obtain Valdemoro’s form of the contracted
Schrodinger equation (CSE) in second quantization [16, 42—44]. The derivation
emphasizes the use of test functions for performing the projection (or contrac-
tion) of the SE onto the lower particle space [20]. By Nakatsuji’s theorem [37]
there is a one-to-one mapping between N-representable RDM solutions of the
CSE and wavefunction solutions of the SE. In 1998 the author proved Nakatsuji’s
theorem [37] for the second-quantized CSE [20].

A. Derivation in Second Quantization

Within second quantization [41] the Hamiltonian operator may be expressed as

1
H= 3 Z 2kP441 at a,a (2)

st “ptq
Pt
where the elements of the two-particle reduced Hamiltonian % K are given by

1
2[(5[‘1 — 2‘/5[‘1 + m (5q,t€p.s + (5p~5€q,;) (3)

The repulsion between electrons 1 and 2 is represented by

V= <¢p(1)¢q(2)|r%2|¢s(1)¢f(2)> 4)
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while one-electron portions of the Hamiltonian are included in the matrix e:

2
s =~ (8,1 S+ Y 2, (1) )
L

Because the N-particle Hamiltonian (H) contains only two-electron excitations,
the expectation value of H yields a formula for the energy involving just the
2-RDM,

E= Z 2KP42DPa = Tr(*K D) (6)
p,qlSJ
where
2Dpd = 1 (ylalalaa,ly) (7)
st ) PrqTTs

In general, the p-RDM in second quantization is defined as

pD]l: 1122 AAAAAA 1 ,lp,, = < | 11 12 al],a]pa]p : 'aj1|‘//> (8)

and the normalization is N!/(p!(N — p)!). Variation of 2D to produce the lowest
energy will generate the ground-state energy of the reduced Hamiltonian 2K,
which will usually be much lower than the energy of the many-particle Hamil-
tonian H. To obtain the correct energy E of the N-electron Hamiltonian H, we
must impose additional N-representability constraints on the 2-RDM to ensure
that it is derivable from an antisymmetric N-particle wavefunction iy through the
integration of its associated density matrix. 3
To derive the CSE rather than the expectation value, we define functions (@},
to test the two-electron space '

<q’”| = (Yla 11 aa )

Taking the inner product of the test functions with the SE produces
(WlalalaaHy) = E(Ylalalaaily) = 2E DY (10)
If we substitute for the Hamiltonian operator in Eq. (2), we obtain the relation

Z ZKM (W|a! a; alaka a a,a5|(//) =4E ZD;{JI (11)
Pt
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Rearranging creation and annihilation operators on the left-hand side to produce
RDMs, we generate Valdemoro’s 2,4-CSE [16]:

CKD)Y, 3% (KEDL + KDl )
p:q;t
+o Y (CKesply]) = £°pf)

PdSit

(12)

Evaluation of the first term in the above equation involves multiplying matrices
’K and ?D and then selecting the element of the resulting matrix, specified by
the indices. We have derived the 2,4-CSE through test functions rather than the
generalized matrix contraction mapping [16, 42-44]. A 1,3-CSE may also be
produced by replacing the doubly excited test functions in Eq. (9) with test func-
tions formed by single excitations of the ground-state wavefunction. Similarly, a
3,5-CSE and a 4,6-CSE may be created with test functions using triple and quad-
ruple excitations, respectively. Since the 2,4-CSE is the focus of this chapter, we
simply refer to it as the CSE.

B. Nakatsuji’s Theorem

While early work [16, 19] on the CSE assumed that Nakatsuji’s theorem [37],
proved in 1976 for the integrodifferential form of the CSE, remains valid for the
second-quantized CSE, the author presented the first formal proof in 1998 [20].
Nakatsuji’s theorem is the following: if we assume that the density matrices are
pure N-representable, then the CSE may be satisfied by 2D and *D if and only if
the preimage density matrix V D satisfies the Schrddinger equation (SE). The
above derivation clearly proves that the SE implies the CSE. We only need to
prove that the CSE implies the SE. The SE equation can be satisfied if and
only if

(WIH ) — (WHIY)* =0 (13)

known as the dispersion condition [45]. Multiplying both sides of the CSE in
Eq. (11) by the reduced Hamiltonian elements 2Kk, and summing over the
remaining indices produces

(5 ) (. st )

i,);k,l Dyq;S,t

—E(z K Dz;)

ijik,l

(14)
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By Eq. (6) the sum on the right-hand side of the above equation is equal to the
energy E, and from Eq. (2) we realize that the sums on the left-hand side are just
Hamiltonian operators in the second-quantized notation. Hence, when the
2-RDM corresponds to an N-particle wavefunction ¥, Eq. (12) implies
Eq. (13), and the proof of Nakatsuji’s theorem is accomplished. Because the
Hamiltonian is defined in second quantization, the proof of Nakatsuji’s theorem
is also valid when the one-particle basis set is incomplete. Recall that the SE
with a second-quantized Hamiltonian corresponds to a Hamiltonian eigenvalue
equation with the given one-particle basis. Unlike the SE, the CSE only requires
the 2- and 4-RDMs in the given one-particle basis rather than the full N-particle
wavefunction. While Nakatsuji’s theorem holds for the 2,4-CSE, it is not valid
for the 1,3-CSE. This foreshadows the advantage of reconstructing from the
2-RDM instead of the 1-RDM, which we will discuss in the context of Rosina’s
theorem.

III. RECONSTRUCTION OF THE 3- AND 4-RDMs

The CSE allows us to recast N-representability as a reconstruction problem. If
we knew how to build from the 2-RDM to the 4-RDM, the CSE in Eq. (12)
furnishes us with enough equations to solve iteratively for the 2-RDM. Two
approaches for reconstruction have been explored in previous work on the
CSE: (i) the explicit representation of the 3- and 4-RDMs as functionals of the
2-RDM [17, 18, 20, 21, 29], and (ii) the construction of a family of higher
4-RDMs from the 2-RDM by imposing ensemble representability conditions
[20]. After justifying reconstruction from the 2-RDM by Rosina’s theorem, we
develop in Sections III.B and III.C the functional approach to the CSE from two
different perspectives—the particle-hole duality and the theory of cumulants.

A. Rosina’s Theorem

Proving that the ground-state 2-RDM contains enough information to generate
the higher RDMs provides theoretical justification for reconstruction functionals
for the 3- and 4-RDMs in terms of the 2-RDM. Early work [14] on the CSE
appealed to the well-known theorem of Hohenberg—Kohn (HK), which demon-
strates that the 1-density and the particle number N are theoretically sufficient to
determine the ground-state energies and wavefunctions for atoms and molecules
[46, 47]. If the 1-density is enough to generate the wavefunction, it may seem
that the 1-RDM or 2-RDM must be more than sufficient to build a unique series
of higher RDMs leading to the wavefunction. However, as we will show, this
argument neglects an implicit assumption in the HK theorem. The proof that
the ground-state 1-density determines the ground and excited wavefunctions
depends on a theoretic construction of the Hamiltonian from the 1-density
[48]. For electronic structure problems the particle number N alone completely



CONTRACTED SCHRODINGER EQUATION 171

determines the form of the kinetic energy and electron repulsion terms within the
Hamiltonian while the unknown one-particle part of the potential is specified
through the given 1-density. When we construct the higher RDMs from lower
RDMs or densities, neither the Hamiltonian nor any specific information about
electronic systems appears in the reconstruction formulas. In addition to a
knowledge of the particle number N and the 1-density, however, the theorem
of Hohenberg and Kohn implicitly assumes a knowledge of the kinetic and
repulsion terms within the Hamiltonian. Without more explicit knowledge of
the Hamiltonian in a reconstruction functional, the 1-density cannot determine
the wavefunction as it is not difficult to illustrate. Consider the 1-density from a
wavefunction that is not a Slater determinant. Both Gilbert [49] and Harriman
[50], however, have shown that every 1-density may be represented by an
N-particle Slater wavefunction. Hence the 1-density clearly corresponds to at
least two N-representable wavefunctions—one Slater wavefunction and one
non-Slater wavefunction. Furthermore, convex combinations of these pure den-
sity matrices yield an infinite family of ensemble N-representable density
matrices, which contract to the correct 1-density.

Although the 1-density alone is not sufficient to determine the ground-state
wavefunction for an unknown Hamiltonian with two-particle interactions, the
2-RDM is enough to build the wavefunction, and the proof of this lies not in
the HK theorem but in an important, less famous result, originally discussed
by Rosina. Let us consider the 2-RDM 2 D(/) for the antisymmetric nonde-
generate ground state of an N-particle Hamiltonian H with two-particle inter-
actions. By D?({/) we indicate the 2-RDM from the contraction of a pure
density matrix formed with 1. The 2-RDM determines the energy of the eigen-
state Y by Eq. (6). If 2D(y) may be obtained from two antisymmetric wave-
functions , the ground state will be degenerate since by Eq. (6) they must
have the same energy. Because this contradicts the assumption that the ground
state is nondegenerate, we have that 2D(/) has only one pure N-representable
preimage, VD(y/). Furthermore, because all of the other states of the system
have higher energies, minimizing over the larger class of N-ensemble repre-
sentable matrices will always produce the pure density matrix, corresponding
to the ground state. For this reason the 2D of the ground state also has only one
preimage in the larger family of ensemble density matrices. Hence we have
the reconstruction theorem, originally proved by Rosina at the 1967 confer-
ence on reduced density matrices at Queen’s University [51] and developed
by the author in the context of the RDM reconstruction problem for the
CSE in 1998.

Theorem 1 The 2-RDM for the antisymmetric, nondegenerate ground state of
an unspecified N-particle Hamiltonian H with two-particle interactions has a
unique preimage in the set of N-ensemble representable density matrices ™ D.
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B. Particle-Hole Duality

Many-body problems in quantum mechanics are usually described by the num-
ber of particles N in the system and the probabilities of finding those particles at
different locations in space. If the rank of the one-particle basis is a finite number
r, an equally valid description of the system may be given by specifying the
number of holes r — N in the system and the probabilities of finding these holes
at different locations in space. This possibility for an equivalent representation of
the system by particles or holes is known as the particle-hole duality. By using
the fermion anticommutation relation

aja:f + ajaj = 5; (15)

to rearrange the creation and annihilation operators in the definition Eq. (2) of
the Hamiltonian such that all of the annihilators appear to the left of the creators,
we generate a hole representation of the Hamiltonian H whose expectation value
with the (r — N)-hole density matrix "~V)D produces the energy E

E = Tr(H"ND) (16)
= Tr(*’K*D) (17)

As shown in the second line, like the expression for the energy E as a function of
the 2-RDM, the energy E may also be expressed as a linear functional of the
two-hole reduced density matrix 2D (2-HRDM) and the two-hole reduced
Hamiltonian 2K. Direct minimization of the energy to determine the 2-HRDM
would require (r — N)-representability conditions. The definition for the p-hole
reduced density matrices in second quantization is given by

Sty 1 t
pD]1,/27 {1 :;!<‘ﬁ|aj1ajz ...ajpa{r aJ.r ...a' |lp> (18)

i1,00,0050p i1 %y ip

Normalization of the p-HRDM in second quantizationis (r — N)!/(p!(r — N — p)!).

Because the hole and particle perspectives offer equivalent physical descrip-
tions, the p-RDMs and p-HRDMs are related by a linear mapping [52, 53]. Thus
if one of them is known, the other one is easily determined. The same linear
mapping relates the p-particle and p-hole reduced Hamiltonian matrices (K
and 2K). An explicit form for the mapping may readily be determined by using
the fermion anticommutation relation to convert the p-HRDM in Eq. (18) to the
corresponding p-RDM. For p = 1 the result is simply

D] = 15— p) (19)
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which is equivalent to taking the expectation of the fermion anticommutation
relation. Similarly, for p = 2 we obtain the relation

"Dy = (90 = 9101)/2 = 'Dj\0f; + "D+ °Djy (20)
which contains a sum of three different kinds of terms that have (i) one 2-RDM,
(ii) one 1-RDM multiplying one J, and (iii) two &’s. This expression represents
the commutation relation for a composite particle consisting of two fermions. By
anticommuting the creation and annihilation operators, we can generate analo-
gous expressions for composite particles consisting of more than two fermions.

Before introducing the general expression, we express Eq. (20) more con-
cisely through the antisymmetric wedge product A from Grassmann algebra
[54]. The wedge product between two matrices ” D and ¢ D involving p and g
particles produces an antisymmetric matrix involving p + g particles defined by

PDAID = AN"D ® 9D Ay (21)

where the Ay is the N-particle antisymmetrization operator and ® is the tensor
product. More details about evaluating wedge products are given in the Appen-
dix. For the 2-HRDM as a functional of RDMs we obtain

2Rj1d2 _ 2qitia  Alpyin A Ly | 2yinia
Dﬂl,iz - Ilez 2 Djl A [jz + Djl-jz (22)

where ! I is the identity matrix

1y _ i
I =9 (23)
and
2yl _ g 141
Ly = Ly NI (24)

In general, the linear relation between the p-HRDM and p-RDM may be
expressed as

p—1
I’D:PHZ(_U"(Z)"DA(P*@H (—1)” ’D (25)
n=1

Indices for the RDMs are not shown for notational clarity. The p-RDM as a func-
tional of the p-HRDM may easily be obtained by switching # D and ? D in the
above equation.
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Valdemoro and co-workers [14] realized that these particle-hole relations
could be written in the following form:

"D+ (=1)" D= £(1D) + (<1 D) (26)

where f(P~!'D) is a functional of the (p — 1)-HRDM and lower HRDMs and
f(P~'D) has the same functional form as f(*~'D) with the HRDMs replaced
with the corresponding RDMs. With the appropriate f functional for each p,
the relation in Eq. (26) is exact and equivalent to Eq. (25). Valdemoro and
co-workers then obtain functionals for the p-RDM and p-HRDM by assuming
that

PD = "Dyqq = f("~'D) (27)
and
PD ~ pDVald :f(pilD) (28)

These formulas are approximate because some of the terms for the particle and
hole RDMs cancel in relation (26). Rearranging Eq. (25) for each p as originally
described by Valdemoro will produce the functionals f. We have found an easier
method [20, 22] for extracting the functionals f, which, however, does not show
the equivalence between Egs. (25) and (26). Since Valdemoro’s method appears
in the literature [14], we explain our technique, which generates f from Eq. (25)
through the following two substitutions: (i) replace 'I with ! D, which is equiva-
lent to assuming that 'D = 0 in Eq. (19), and (ii) set D = 0. The technique
works because it assumes a separation of particles and holes by setting all of
the hole matrices in the expression to zero to produce f. For p from 2 to 5 the
resulting RDM functionals are represented by the portions of the functionals in
Table I, which are not underlined [20-22]. The right superscripts p in Table I
indicate that an RDM is wedge with itself p times; for example, ' D? represents
'D A 'D. The underlined corrections will be determined below through an exten-
sion of the particle-hole arguments and later through cumulant expansions.

TABLE I
Approximate Reconstruction Functionals for the p-RDMs in Terms of Lower
RDMs Where Corrections to Valdemoro’s Functionals Are Underlined

ZDN IDZ
3D~3’DA'D-2'D?
‘D~43DA'D—-62DA'D? +3'D* +32A A2A
SD~S*DA'D—-10°DA'D*> +102DA'D? —4'D° + 1°A A2A
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Corrections for the 4-RDM and 5-RDM functionals may be obtained by
searching for some terms involving the wedge products of lower RDMs, which
cancel with the corresponding corrections for the HRDM functionals [20]. Con-
sider the matrices >A and 3 A describing the errors in Valdemoro’s reconstruction
functionals for the 2- and 3-RDMs as well as the matrices 2A and A describing
the errors in Valdemoro’s reconstruction functionals for the 2- and 3-HRDMs

A =2D — Dy (29)
=2D— 2DVald (30)
=’A (31)
and
A =3D — 3Dy (32)
= —(°D —>Dyaua) (33)
=3A (34)

An appropriate correction for the 4-RDM and 4-HRDM functionals is

“Deorw = kA A2A (35)
= kA NZA (36)
= 4Dcorr (37)

because this term has the same functional form for particles and holes and
yet, since they are equal, they cancel in the commutation relation (26). The
proportionality factor k4 is equal to the number of distinct ways of distributing
the four particles in two groups of two particles. The possibilities are
{12} {34}, {13} {24}, and {14} {23}; hence ks =3. The 5-RDM and
5-HRDM functionals have the following corrections:

*Deor = ks> A A2A (38)
= —(ksA N2A) (39)
= —Deorr (40)

Again this term has the same functional form for particles and holes. Note that
for odd p the corrections must have opposite signs to cancel in the anticommuta-
tion relation (26). As with k4, the proportionality factor ks is equal to the number
of distinct ways of distributing the five particles between a group of three par-
ticles and a group of two particles; thus ks = 10.
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C. Cumulants

The reconstruction functionals, derived in the previous section through the
particle-hole duality, may also be produced through the theory of cumulants
[21,22,24,26,39,55-57]. We begin by constructing a functional whose derivatives
with respect to probe variables generate the reduced density matrices in second
quantization. Because we require that additional derivatives increase the number
of second quantization operators, we are led to the following exponential form:

G(J) = (W|o(exp(>_ Jxa} + Jiay)) W) (41)
k

where J; and its conjugate J;| are Schwinger probe variables. For fermions these
Schwinger probes have the property that they anticommute, {J;,J;} = 0. Differ-
entiation of G(J) with respect to the probes leads to the accumulation of creation
and annihilation operators before the exponential. Because the annihilation and
creation operators do not commute, we need to impose a specific ordering for
these operators, which appear before the exponential after differentiation. Since
we wish to form functionals for RDMs, we define that the creation operators
should always appear to the left of the annihilation operators independent of
the order in which we differentiate with respect to the probes. If we wished to
produce the corresponding HRDM functionals, we would order the annihilators
to the left of the creators. We represent this ordering convention through the
ordering operator O in the definition of G(J). This ordering process is analogous
to the time ordering of the creation and annihilation operators, which appears in
the theory of Green’s functions [58].

The general relation between the differentiation of G(J) with respect to the
Schwinger probes and the RDMs may be characterized as

! o’G
lim —
—0p! aJip...aJizaJil 6]1*] ...6./1?;71 6];:

(lﬂ|a§l ajz a aja;, ,...a; ) (43)

Ip

Ppryitsizeis _
D/l-J2a~<-Jp

(42)

1
o

The coefficients of the multivariable Taylor series expansion of G(J) about the
point where the Schwinger probes vanish are elements of the RDMs. Thus G(J)
is known as the generating functional for RDMs. Mathematically, the RDMs of
the functional G(J) are known as the moments. The moment-generating func-
tional G(J) may be used to define another functional W(J), known as the
cumulant-generating functional, by the relation

G(J) = exp(W(J)) (44)
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Just as the moments are formed from G(J) as in Eq. (43), the cumulants P A are
produced from W(J) by

it gy .1 o'w
’ J—0p! 6J,~,,...6J,~26J,~16le ...anpilanp

(45)

and the cumulants are defined as the coefficients of the multivariable Taylor ser-
ies expansion of W(J) about the point where the Schwinger probes vanish. The
introduction of another generating functional W(J) in Eq. (44) may seem unne-
cessary. The set of cumulants A for p ranging from 1 to g contains the same
information as the set of moments 7D for the same range of p, but the informa-
tion is distributed differently. This different distribution of information will
allow us to determine the reconstruction functionals for building higher RDMs
from lower RDMs.

As explained by Kubo [55], cumulants have the special property that they
vanish if and only if one of their particles is statistically independent of the
rest. Thus for a mean field approximation (Hartree—Fock) where each of the N
particles is treated independently, all cumulants except ' A vanish. Another way
of interpreting this property of cumulants is to say that the p-particle cumulant
PA represents the part of the p-RDM that cannot be written as a simple wedge
product of lower RDMs. The formula for 3Dvyaiq from Table I accounts for situa-
tions where two of the particles are close enough to interact while the remaining
particle is sufficiently separated in space for us to assume that it is statistically
independent of the others. Therefore, approximating the 3-RDM as a functional
of the lower RDMs is equivalent to assuming that >A vanishes. Similarly, the
remaining functionals in Table I, which express the given p-RDM as a functional
of lower RDMs, do not accurately represent configurations in which all p parti-
cles are close enough to be simultaneously influenced by pairwise interactions.
They assume that ? A vanishes. By analogy with the convention for Green’s func-
tions in quantum field theory [58], we define the unconnected p-RDM as the part
of the p-RDM that can be written as wedge products of lower RDMs while the
connected (or camulant) p-RDM is the remaining portion of the RDM that can-
not be expressed as antisymmetrized products of lower RDMs. Hence the con-
nected RDMs are just the cumulants.

We may express the p-RDM in terms of the connected g-RDMs for g between
1 and p by differentiating Eq. (44) with respect to the Schwinger probes as in
Eq. (42) and taking the limit as the probes approach zero. The derivatives of
the generating functional G(J) produce the p-RDM while differentiation of
exp(W) on the right side produces products of elements from the connected
RDMs according to Eq. (45). Because the formula for elements of the p-RDM
must treat the permutation of the upper and lower indices antisymmetrically, the
products between elements of connected RDMs may be replaced with wedge
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TABLE II
Reconstruction Functionals for the p-RDMs in Terms of the Connected p-RDM and Lower
Connected RDMs, Where Corrections Beyond Valdemoro’s Approximation Are Underlined

ID:]A
2D="AN'A+2A
3SD="A+32AANA+3A
D="AT L CANAT L HBANTA LA +4A

products. As before, this allows us to write the formulas concisely through the
wedge products of Grassmann algebra. The results for the p-RDMs through
p = 4 are summarized in Table II. These functionals for the p-RDMs are exact,
but they include the connected p-RDM. An approximation for the p-RDM in
terms of lower RDMs may be achieved by setting the connected portion 7 A
to zero. In this way we recover the functionals for the p-RDMs in Table I
with corrections. Thus, through the particle-hole duality, we were able to gen-
erate the unconnected portion of the p-RDM exactly. Again, the terms missing in
Valdemoro’s approximation are denoted by an underline. In general, any terms
involving only A, where g > 1, will cancel with the corresponding p-HRDM
correction and not appear in Valdemoro’s approximation.

The reconstruction functionals may be understood as substantially renorma-
lized many-body perturbation expansions. When exact lower RDMs are
employed in the functionals, contributions from all orders of perturbation theory
are contained in the reconstructed RDMs. As mentioned previously, the recon-
struction exactly accounts for configurations in which at least one particle is sta-
tistically isolated from the others. Since we know the unconnected p-RDM
exactly, all of the error arises from our imprecise knowledge of the connected
p-RDM. The connected nature of the connected p-RDM will allow us to estimate
the size of its error. For a Hamiltonian with no more than two-particle interac-
tions, the connected p-RDM will have its first nonvanishing term in the (p — 1)
order of many-body perturbation theory (MBPT) with a Hartree—Fock reference.
This assertion may be understood by noticing that the minimum number of pair-
wise potentials V required to connect p particles completely is (p — 1). It follows
from this that as the number of particles p in the reconstructed RDM increases,
the accuracy of the functional approximation improves. The reconstruction for-
mula in Table I for the 2-RDM is equivalent to the Hartree—Fock approximation
since it assumes that the two particles are statistically independent. Correlation
corrections first appear in the 3-RDM functional, which with A = 0 is correct
through first order of MBPT, and the 4-RDM functional with 4A = 0 is correct
through second order of MBPT.

Because the reconstruction of the 3-RDM with *A = 0 has a second-order
error, the evaluation of the CSE with the unconnected 3- and 4-RDM cumulant
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expansions has a second-order error. To correct the CSE through second order,
we require a second-order estimate for the connected 3-RDM. In the next section
we examine two approximations for the connected 3-RDM.

D. Approximation of the Cumulant 3-RDM

Rosina’s theorem states that for an unspecified Hamiltonian with no more than
two-particle interactions the ground-state 2-RDM alone has sufficient informa-
tion to build the higher RDMs and the exact wavefunction [20, 51]. Cumulants
allow us to divide the reconstruction functional into two parts: (i) an uncon-
nected part that may be written as antisymmetrized products of the lower
RDMs, and (ii) a connected part that cannot be expressed as products of the
lower RDMs. As shown in the previous section, cumulant theory alone generates
all of the unconnected terms in RDM reconstruction, but cumulants do not
directly indicate how to compute the connected portions of the 3- and
4-RDMs from the 2-RDM. In this section we discuss a systematic approximation
of the connected (or cumulant) 3-RDM [24, 26].

The theory of cumulants allows us to partition an RDM into contributions that
scale differently with the number N of particles. Because all of the particles are
connected by interactions, the cumulant RDMs A scale linearly with the num-
ber N of particles. The unconnected terms in the p-RDM reconstruction formulas
scale between N? and N” according to the number of connected RDMs in the
wedge product. For example, the term 'A? scales as N? since all p particles
are statistically independent of each other. By examining the scaling of terms
with N in the contraction of higher reconstruction functionals, we may derive
an important set of relations for the connected RDMs.

In the contraction of any wedge product the position of the upper and lower
indices generates two types of terms in Grassmann algebra [26]: (i) pure contrac-
tion terms where the upper and lower contraction indices appear on the same
component of the wedge product, and (ii) fransvection terms, where the upper
and lower contraction indices appear on different components of the wedge pro-
duct. To illustrate, we consider the contraction of the wedge product between A
and 'A:

PCANTA) +TCAANTA) (46)

where the P and the T operators denote the pure contraction and transvection
terms, respectively. By having contraction indices on different connected
RDMs, the transvection sum joins the two terms to produce a completely con-
nected piece that scales linearly with N. In contrast, in the pure case where the
indices are on the same RDM, the resulting unconnected expression scales as N?.
Therefore the contraction of unconnected functionals may yield connected terms
through transvection.
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The 3- and 4-RDMs are related by the linear contraction mapping
N-3 -3
S D =Li¢D) (47)

Only the connected RDMs *A and *A scale linearly with N in the reconstruction
formulas for the 3- and 4-RDMs. However, the contraction of the 4-RDM recon-
struction formula in Table I generates by transvection additional terms that scale
linearly with N. Without approximation the terms that scale linearly with N on
both sides of Eq. (47) may be set equal. These terms must be equal to preserve
the validity of Eq. (47) for any integer value of N. In this manner we obtain a
relation that reveals which terms of the 4-RDM reconstruction functional are
mapped to the connected 3-RDM [26]:

—%M _4TCAN'A) +3TCANCA) + E2(4A) (48)

Equation (48) is an exact system of equations [20, 24, 26] relating the elements
of 3A to the elements of ' A, 2A, and *A. Because *A vanishes until third order,
Eq. (48) suggests that a second-order approximation of A may be obtained
from solving this system of equations with *A = 0.

Additional insight may be obtained by writing the system of equations in the
natural-orbital basis set, that is, the basis set that diagonalizes the 1-RDM. In this
basis set the two terms with the connected 3-RDM may be collected to obtain the
formula for the elements of the connected (or cumulant) 3-RDM [26],

i, i, i s T i,j.k

qjs]; 3qusl; ZA A le] + L4(4A)q]vt (49)
where

ni ='Di+'D/+'D{+'D¢+'D}+'Di -3 (50)

and the operator A performs all distinct antisymmetric permutations of the
indices excluding the summation index /. The formula in Eq. (49) is exact. By
setting *A = 0, we obtain an approximation for the matrix elements of >A which
is correct through second order of perturbation theory except when three of the
six indices are occupied in the zero-order (Hartree—Fock) wavefunction.

The two types of cumulant 3-RDM elements that cannot easily be constructed
from elements of the 2-RDM are [24, 26]

{SAxxx and {3Axxo (51)

0,0,0 X,0,0

where o and x denote occupied and virtual orbitals at zero order, respectively.
For these classes of elements the sum of the six occupation numbers minus
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the scalar three in nq/ th vanishes until first order of RDM perturbation theory, and
hence the connected 4-RDM divided by nqs, has a nonvanishing second-order
contribution. Because the errors in the cumulant reconstruction formulas, includ-
ing this correction for the connected 3-RDM, are invariant under unitary trans-
formations of the one-particle basis set, the same part of the 3-RDM (after
unitary transformation to another one-particle basis set) cannot be determined
by the system of equations in Eq. (48). For these classes of 3-RDM elements
we assume that the connected 3-RDM is zero. In the CSE these elements may
not be too important. For example, the first class of three-particle excitations do
not affect the 2-RDM from the CSE until third order while the elements of the
second class have been shown in calculations to be numerically small.

Nakatsuji and Yasuda have proposed a different second-order formula for the
connected 3-RDM, which they derived from Feynman perturbation theory
[19, 24]. Their correction may be written

1 ~ . .
A =g 2 SACALTAL) (52)
where s; equals 1 if / is occupied in the Hartree—Fock reference and —1 if [ is not
occupied. Computational experience shows that the Nakatsuji—Yasuda correction
also does not improve the classes of cumulant 3-RDM elements in Eq. (51), and
in fact, like the correction in Eq. (49), it often makes these elements worse than
assuming that they are zero. Hence in the CSE we assume that these elements are
Zero.

To complete our discussion of the formulas for the connected 3-RDM, we
mention that the system of equations in Eq. (48) and the formula in Eq. (49),
which is often called the Mazziotti correction [24, 26, 29] to distinguish it
from the Nakatsuji—Yasuda correction [19, 24] for the 3-RDM, can also be
derived from a contracted Schrodinger equation for the number operator:

(Wlalalalaasa,Nly) = N(31>Disk) (53)

q,s,t

where in second quantization the number operator is given by
N= Z a}a; (54)
]

The right-hand side of the CSE does not scale linearly with N because N times
the 3-RDM scales between N2 and N*. Taking the part of the equation that scales
linearly with N, we obtain

(VlajajaalalalNIy) e = 0 (55)
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in which the notation (). indicates the connected part of the expectation value.
Writing Eq. (55) in terms of the cumulant parts of the 1-, 2-, 3-, and 4-RDMs
yields precisely the system of equations in Eq. (48), and upon unitary transfor-
mation to a natural-orbital basis set we can obtain the formula in Eq. (49). The
only difference in the two derivations is the placement of the number operator. In
second quantization the contraction in Eq. (47) is

N= 33 i (56)

1 N
o Wala]aiNaaagly) = == Dk,

Taking the connected part of both sides yields

S WldldlalNaaa ) = - 300k (57)
Upon simplification it is not difficult to show that Eq. (57) is equivalent to Eqs.
(48) and (55). Therefore the position of the number operator does not affect the
relation that we have derived for the cumulant 3-RDM. More general relations
for the cumulant p-RDM may similarly be derived by contracting the (p + 1)-
RDM to the p-RDM.

E. Cumulant Structure of the CSE

Cumulant theory offers a systematic approach to reconstructing the 3- and
4-RDMs within the CSE from the 2-RDM, but it also provides insight into the
structure of the CSE. Let us define ! C as the connected part of the left-hand side
of the 1,3-CSE,

'C = (|alaH|Y) (58)

and 2C as the connected part of the left-hand side of the CSE,

2 = Ly lalalaaci) >

N =

As in the previous section, by connected we mean all terms that scale linearly
with N. Wedge products of cumulant RDMs can scale linearly if and only if they
are connected by the indices of a matrix that scales linearly with N (transvec-
tion). In the previous section we only considered the indices of the one-particle
identity matrix in the contraction (or number) operator. In the CSE we have the
two-particle reduced Hamiltonian matrix, which is defined in Eqgs. (2) and (3).
Even though the one-electron part of 2K scales as N2, the division by N — 1 in
Eq. (3) causes it to scale linearly with N. Hence, from our definition of
connected, which only requires the matrix to scale linearly with N, the transvection
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terms involving 2K will be connected. Alternatively, one could define the Hamil-
tonian operator as

H= Zefa; Z 2Vf’,qa; La,as (60)

DS p q;8,t

and then the transvection terms would be defined with respect to the linear-in-N-
scaling and local matrices ¢ and V.

It is not difficult to show that the CSE has the following structure in terms of
its connected parts 'C and >C and the 1- and 2-RDMs:

E’D+'DAN'C+?C=E®D (61)

For any choice for the 2-RDM the first unconnected term on the left-hand side of
the CSE precisely cancels with the right-hand side. This part of the CSE, there-
fore, does not contain any information about the 2-RDM, and the CSE is satis-
fied if and only if

'DA'C+2C=0 (62)

These two terms, 'D A 'C and 2C, however, scale as N?> and N, respectively.
Hence they cannot cancel each other, and we have the result that the CSE is
satisfied if and only if the connected 1,3-CSE and the connected CSE vanish:

'c=0 (63)
’C=0 (64)

The connected structure of the CSE has also been explored by Yasuda [23] using
Grassmann algebra, by Kutzelnigg and Mukherjee [27] using a cumulant version
of second-quantized operators, and by Herbert and Harriman [30] using a dia-
grammatic technique.

IV. PURIFICATION OF THE 2-RDM

The concept of purification is well known in the linear-scaling literature for one-
particle theories like Hartree—Fock and density functional theory, where it denotes
the iterative process by which an arbitrary one-particle density matrix is projected
onto an idempotent 1-RDM [2, 59-61]. An RDM is said to be pure N-representable
if it arises from the integration of an N-particle density matrix WU*, where U (the
preimage) is an N-particle wavefunction [3-5]. Any idempotent 1-RDM is N-
representable with a unique Slater-determinant preimage. Within the linear-scaling
literature the 1-RDM may be directly computed with unconstrained optimization,
where iterative purification imposes the N-representability conditions [59-61].
Recently, we have shown that these methods for computing the 1-RDM directly
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are related to the solution of the 1,2-CSE (1,2-CSE is the contraction of the Schro-
dinger equation onto the one-particle space) [62].

While purification for noninteracting 1-RDMs was first pioneered by
McWeeny in the late 1950s [2], the concept was not extended to correlated den-
sity matrices until 2002 [29]. We define purification of correlated RDMs as the
iterative process by which an arbitrary p-particle density matrix is projected onto
a p-RDM that obeys several necessary conditions for N-representability [28].
Note that the word necessary is used since the full set of N-representability con-
ditions for the p-RDM (p > 1) is not known. Although there is a considerable
literature on minimizing the energy with respect to a 2-RDM that is constrained
by N-representability conditions [4, 63-74], the literature on correcting a
2-RDM that is not N-representable is not large [17, 28, 29, 34, 35, 51, 53,
75]. The need for such techniques is suggested by the iterative nature of the
CSE. The extension of purification to the 2-RDM plays a role in the solution
of the 2,4-CSE, which is analogous to the role of 1-RDM purification in the solu-
tion of the 1,2-CSE [28, 29].

A. N-Representability of the 1-RDM

Some of the most important N-representability conditions on the 2-RDM arise
from its relationship with the 1-RDM. A 2-RDM must contract to a 1-RDM that
is N-representable,

D= (2 )uen) (65)

where the operator i; denotes the contraction operator that maps the 2-RDM to the
1-RDM. The factor of (N — 1)/2 arises from the normalization of the 1-RDM and
2-RDM to N and N(N — 1)/2, respectively. The N-representability conditions for
the 1-RDM arise from the particle—hole duality [7, 53, 63]. The expectation value
of the anticommutation relation for fermions in Eq. (15) yields the relation between
the elements of the 1-RDM ID; and the elements of the one-hole RDM IDJZ.,

1 i Iyi _ 1gi
Dj+'Di="1 (66)

where '] is the identity matrix. Any 1-RDM is ensemble N-representable if and
only if it is Hermitian with trace N and both the 1-RDM and its one-hole RDM
are positive semidefinite [3, 4, 7, 53, 63], which is denoted by

'D>0 (67)
and

'D>0 (68)
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A matrix is positive semidefinite if and only if all of its eigenvalues are nonne-
gative. Because the 1-RDM and the one-hole RDM share the same eigenvectors,
these two positivity restrictions are equivalent to constraining the occupation
numbers of the 1-RDM to lie between zero and one [3].

Purification of a trial 2-RDM with the 1-RDM conditions may be accom-
plished by contracting the 2-RDM as in Eq. (65) and checking that the eigenva-
lues of the 1-RDM lie between zero and one. If the eigenvalues fall outside this
interval, neither the 1-RDM nor the 2-RDM can be N-representable. Any
method for adjusting the 1-RDM occupation numbers must preserve the trace
of the 1-RDM, which is the number N of particles. We have employed the fol-
lowing algorithm to effect this purification: (i) set all of the negative 1-RDM
eigenvalues to zero; (ii) correct the trace by decreasing the occupation number
for the highest occupied orbital; (iii) set all 1-RDM eigenvalues greater than one
to one; and (iv) correct the trace by increasing the occupation number for the
lowest unoccupied orbital. We decrease the highest occupied orbital and increase
the lowest unoccupied orbital since these changes are unlikely to produce occu-
pation numbers outside the zero-to-one interval. This is only one reasonable
approach to ensuring that the occupation numbers of the 1-RDM are N-
representable; many variations on this simple strategy may also be employed.
Once the 1-RDM has been adjusted to be N-representable, we need a method
for modifying the 2-RDM so that it contracts by Eq. (65) to the updated 1-RDM.

B. N-Representability of the 2-RDM

The appropriate modification of the 2-RDM may be accomplished by combining
N-representability constraints, known as positivity conditions, with both the uni-
tary and the cumulant decompositions of the 2-RDM.

1. Unitary and Cumulant Decompositions of the 2-RDM

Any two-particle Hermitian matrix A may be decomposed into three compo-
nents that exist in different subspaces of the unitary group. These components
reveal the structure of the matrix with respect to the contraction operation
[4, 76-80],

2A =2A0 + %A + %4, (69)
where

2Tr(*A)

2 2
Ay = 70
0 r(r—1) (70)

4 4Tr(’A

A =——1An 'I—Lzl (71)

r—2 r(r—2)
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and

4 2Tr(*A
24, =24 — AN + r(°A)

2
= N (72)

The one-particle matrix 'A is the contraction of the two-particle matrix %A,
'A=1(A) (73)
the symbol r denotes the rank of the one-particle basis set, and
T="1A" (74)
The zeroth component 2A, contains the trace information for 2A,
L3(Ao) = Tr(*40) = Tr(%A) (75)

and the first component A contains the one-particle information for 2A except
for the trace:

L,(Ao+241) = 'A (76)

The two-particle component of 2A carries information that vanishes upon con-
traction,

L,(A;) =0 (77)

where O in this equation represents the zero matrix.
The unitary decomposition may be applied to any Hermitian, antisymmetric
two-particle matrix including the 2-RDM, the two-hole RDM, and the two-

particle reduced Hamiltonian. The decomposition is also readily generalized to
treat p-particle matrices [80-82]. The trial 2-RDM to be purified may be written

D =’Dy +’D; +°D, (78)

Note that if 2A = 2D in Egs. (70), (71), and (72), then from Egs. (65) and (76) we
have that

1A= (Nzl) 'D (79)
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Using Eq. (71) and the adjusted 1-RDM from the last section, we can construct a
modified one-particle portion of the 2-RDM 2D%. Then the appropriate 2-RDM
that contracts to the adjusted 1-RDM is readily expressed as

’D* =2Dy + D} +°D, (80)

Both the trace and one-particle subspaces of the 2-RDM are now N-representa-
ble. Does the 1-RDM tell us anything about the two-particle component of the
2-RDM, which vanishes when it is contracted to the one-particle space? Before
examining additional N-representability conditions, we address this question.
As discussed in Sections III. B and III. C the unitary decomposition is not the
only approach for expressing an RDM in terms of lower RDMs. The cumulant
decomposition (or expansion) of the 2-RDM [21, 22, 24, 26, 39, 40] is

D='DA'D+%A (81)

The portion of the 2-RDM that may be expressed as wedge products of lower
RDMs is said to be wunconnected. The unconnected portion of the 2-RDM
contains an important portion of the two-particle component from the unitary
decomposition 2D, and similarly, the trace and one-particle unitary components
contain an important portion of the connected 2-RDM 2A, which corrects the
contraction. Both decompositions may be synthesized by examining the unitary
decomposition of the connected 2-RDM,

A = ZAO + 2A1 + 2A2 (82)
The trace and the one-particle components of the connected 2-RDM are comple-
tely determined by the 1-RDM. Hence, it is the two-particle unitary subspace of

the connected 2-RDM that may require further purification.
Similarly, the cumulant decomposition for the two-hole RDM is

D='DA'D+%A (83)

With the anticommutation relation for fermions in Eq. (15) and the second-

quantized definitions, it has been shown that the connected portions of the
two-particle and two-hole RDMs are equal [14, 20, 38]:

A =2A (84)

It follows that

2N, =2, (85)
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Therefore we have the important fact that for a fixed 1-RDM any correction to the
2-RDM will also be a correction to the two-hole RDM. In the next section we use
this fact in purifying the 2-RDM to satisfy two N-representability restrictions.

2. Positivity Conditions on the 2-RDM

Two significant N-representability conditions on the 2-RDM are that both the
two-particle and the two-hole RDMs must be positive semidefinite:

D>0 (86)
and
D>0 (87)

In the N-representability literature these positivity conditions are known as the

D- and the Q-conditions [5, 7, 63]. The two-particle RDM and the two-hole

RDM are linearly related via the particle-hole duality,
2D=21-2'DA'T+*D (88)

If the trial 2-RDM does not obey the D-condition, then it has a set of eigenvec-
tors {v;} whose associated eigenvalues are negative. Hence we can construct a
set of two-particle matrices {20;}
20—yl
i = Viv; (89)
for which

Tr(*0;°D) < 0 (90)

Each member of the set {?0;} is said to expose the 2-RDM [4, 52]. Similarly, if
the trial 2-RDM does not obey the Q-condition, then the two-hole RDM has a set
of eigenvectors {V;} whose associated eigenvalues are negative. The bar in v;
simply distinguishes the eigenvectors of the two-hole RDM from those of the
2-RDM; it does not denote the adjoint. A set of two-hole matrices {?0;} may
be generated

20, = vl (91)
for which
Tr(*0’D) < 0 (92)

As with the D-condition, each member of the set {0;} is said to expose the two-
hole RDM.
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The 2-RDM may be made positive semidefinite if each of the negative eigen-
values is set to zero, but this alters not only the positivity but also the contraction
of the 2-RDM to the 1-RDM and even the 2-RDM trace. How can we modify the
2-RDM to prevent it from being exposed by the set {0;} and yet maintain con-
traction to the N-representable 1-RDM? Again we can employ the unitary
decomposition. For a matrix 20; the decomposition is

20; =209 + 201 +%0iy (93)

Zeroing the 2-RDM eigenvalue associated with v; is equivalent to adding an
appropriate amount of 20; to the 2-RDM. However, this also changes the trace
and the underlying 1-RDM because 20; contains the zeroth and the first compo-
nents of the unitary decomposition. We can modify the two-particle component
only by adding just O;, rather than 20;. The adjusted 2-RDM may then be
expressed as

2Da =2p + Z O(,'ZO,‘;Q (94)

where the set of coefficients is determined from the system of linear equations
Tr(*0:’D,) =0 Vi (95)

Although the adjusted 2-RDM is not exposed by any of the matrices in the set
{20;}, in general there will be new eigenvectors with negative eigenvalues.
However, these negative eigenvalues are in general smaller than those of the
unadjusted 2-RDM. Hence, by repeating this process iteratively, the 2-RDM
may be purified so that the D-condition is satisfied without modifying the
contraction.

Analogously, the two-hole matrices in the set {20;} may be decomposed:

20, = 2(_)1';0 + 201‘;1 + 261’;2 (96)
To impose only the Q-condition, we have an adjusted two-hole RDM

D,="D+» B0 (97)

whose coefficients are determined from the system of linear equations
Tr(*072D,) =0 Vi (98)

One possibility for imposing both the D- and the Q-conditions is to update the
2-RDM via Eqgs. (94) and (95), convert the 2-RDM to the two-hole RDM, update
the two-hole RDM via Egs. (97) and (98), and then to repeat this process until
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convergence. However, this alternating approach does not usually show good
convergence since the 2-RDM changes often damage Q-positivity and the
two-hole RDM changes often adversely affect D-positivity. A better approach
would be to impose both the D- and the Q-updates simultaneously.

A simultaneous purification with respect to both the D- and the Q-conditions
may be achieved by using the fact that for a fixed 1-RDM any correction to the
2-RDM will also be a correction to the two-hole RDM and vice versa. This sug-
gests that we write the adjusted 2-RDM as

2Da =D+ Z O‘izoi;Z + Z /3[201‘;2 (99)

where the expansion coefficients are determined by solving the linear equations
in both Egs. (95) and (98) simultaneously. Note that the linear mapping between
the 2-RDM and the two-hole RDM must be employed in Eq. (98). The resulting
adjusted 2-RDM will not be exposed by either the operators {20;} or, in its two-
hole form, the operators {20;}. Repeated application of this purification pro-
duces a 2-RDM that satisfies, to a specified tolerance, the D- and the Q-conditions.

3. Spin Blocks of the 2-RDM

The RDMs for atoms and molecules have a special structure from the spin of the
electrons. To each spatial orbital, we associate a spin of either o or f. Because
the two spins are orthogonal upon integration of the N-particle density matrix,
only RDM blocks where the net spin of the upper indices equals the net spin of
the lower indices do not vanish. Hence a p-RDM is block diagonal with (p + 1)
nonzero blocks. Specifically, the 1-RDM has two nonzero blocks, an a-block and
a f-block:

'DyiA0  'DRE£0 (100)

and the 2-RDM has three nonzero blocks, an o/a-block, an «/f-block, and a
f/-block:

DL A0 YT A0 2D £ 0 (101)
The spin structure enhances computational efficiency since each of the blocks
may be purified separately.

For the remainder of this section we treat closed-shell atoms and molecules,
where the o- and the f-spins are indistinguishable. Because the o- and the
f-blocks of the 1-RDM are equal, we need only purify the eigenvalues for
one of these blocks.
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As in Section IV.A. the eigenvalues of the 1-RDM must lie in the interval
[0, 1] with the trace of each block equal to N /2. Similarly, with the o /o~ and
the 8/ f-blocks of the 2-RDM being equal, only one of these blocks requires pur-
ification. The purification of either block is the same as in Section IV.B.2 with
the normalization being N(N/2 — 1)/4. The unitary decomposition ensures that
the o/a-block of the 2-RDM contracts to the a-component of the 1-RDM. The
purification of Section IV.B.2, however, cannot be directly applied to the o/f-
block of the 2-RDM since the spatial orbitals are not antisymmetric; for exam-
ple, the element with upper indices o, i; 8, i is not necessarily zero. One possibi-
lity is to apply the purification to the entire 2-RDM. While this procedure
ensures that the whole 2-RDM contracts correctly to the 1-RDM, it does not gen-
erally produce a 2-RDM whose individual spin blocks contract correctly.
Usually the overall 1-RDM is correct only because the o/a-spin block has a con-
traction error that cancels with the contraction error from the o/ -spin block.

A better strategy is to introduce a modified unitary decomposition for the
o/ -block. An appropriate decomposition is

Tr(?D*F)
21 1y 14p
D, =T b (102)
B
1 Tr('D?) 1 Tr(' D)
2B _ Ly o) Ly \ 148 Lyo [ 1B B/ 14p
D; rS(D“ - I IﬁJrr—s I Dﬁf - Iﬁ (103)
and
ZDZ’/} _2prb _ sz’ﬁ _ ZDSﬁ (104)

where r; denotes the number of spatial orbitals, which equals half the number r
of spin orbitals. Like the unitary decomposition for antisymmetric matrices in
Section IV.B.1, the zeroth component ZDg’ﬁ contains the trace information,

L,CD§?) = Te(Dj’) = Te(CD*) (105)

and the first component sz’ﬁ contains the one-particle information except for
the trace,

Ny

i;(ZDg‘ﬁ +2DT7[;) — >

D! (106)

The two-particle component of 2D*# carries information that vanishes upon con-
traction,

LDy =0 (107)
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where the O represents the zero matrix. The purification process for the 2-RDM’s
o/ f-block remains the same as described in Section IV.B.2 except that the
decomposition in Egs. (102)-(104) is employed.

V. SELF-CONSISTENT ITERATION

A fundamental approach to computing the ground-state wavefunction and its
energy for an N-electron system is the power method [20, 83]. In the power
method a series of trial wavefunctions |®,) are generated by repeated application
of the Hamiltonian

|(bn+1> :H|(I)n> (108)

The Hamiltonian gradually filters the ground-state wavefunction from the trial
wavefunction. To understand this filtering process, we expand the initial trial
wavefunction in the exact wavefunctions of the Hamiltonian | ;). With # itera-
tions of the power method, we have

| ®,11) = H"|®1) (109)
:ETcll\IJ1>+E;Cz|\112>+"'+E?C,’|\I’i> (110)

As long as the |E;| is greater than |E;| for any i # 1, the power method upon
normalization will converge to |¥). The rate of convergence depends on the
ratio of the energy with second largest magnitude to the energy with the largest
magnitude, that is, |E,|/|E\|.

The power method for the wavefunction may be adapted to a power method
for the N-particle density matrix:

NDyi1 =YH"D, +"D,H) (111)

If |A) = |®,11) — |®,), then the wavefunction update in Eq. (108) corresponds
to the following density-matrix update,

NDn+1 = ‘(I)n + A><(I)n + A' (112)
= "Dy + |A)(@n] + [@a) (A] + [A)(A] (113)

while the density-matrix update in Eq. (111) is

NDn+l = NDn + %|A><q}n| + %|(I)n><A| (114)
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The two updates differ only by a factor of one-half before the first-order change
from A and the second-order change. Unlike the wavefunction power method,
the N-particle density matrices from each iteration in Eq. (111) are not exactly
positive semidefinite until convergence.

A contracted power method for the 2-RDM may be developed by projecting
the N-particle power method onto the space of two particles

2kt _ L

il =g (<<Iin|afajazakH|<I>”> + <<I),1|Haja}alak|<1>n)) (115)

where E is the energy associated with the nth trial 2-RDM. From the CSE we can
write Eq. (115) as

n,n,p,q Psq

1 »
2 ikl 4 ~ijk,l 4 ~m,n.p,q\2 grm,n
DnJH =1 E ("G 4 Gij,k,ll)q) K (116)

mnp,q

where the generalized G-matrix %G is expressible in terms of the 3- and the
4-RDMs as follows:

4 ~ijk,l 4 yij,mn 3 ~iJ,msn 3 i sn
Grlnpg =4 Dk{lm + 3X( D,;_Iqék — Dk{p‘qél) (117)
+ 3!(302{;453" - 3D;{,;j;5;") + 220;{q((s;"5;l — 078y (118)

The 2-RDM is automatically antisymmetric, but it may require an adjustment of
the trace to correct the normalization. The functionals in Table I from cumulant
theory allow us to approximate the 3- and the 4-RDMs from the 2-RDM and,
hence, to iterate with the contracted power method. Because of the approximate
reconstruction the contracted power method does not yield energies that are
strictly above the exact energy. As in the full power method the updated
2-RDM in Eq. (116) moves toward the eigenstate whose eigenvalue has the lar-
gest magnitude.

V1. ALGORITHM FOR SOLVING THE CSE

Here we synthesize the concepts of the last four sections, (i) CSE, (ii) recon-
struction, (iii) purification, and (iv) a contracted power method, to obtain an
iterative algorithm for the direct calculation of the 2-RDM.

CSE Algorithm

1. Select an initial 2-RDM such as the Hartree—Fock 2-RDM.
2. Reconstruct the 3- and 4-RDMs from the 2-RDM.
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3. Evaluate the 2-RDM update in Eq. (116).
4. Purify the new 2-RDM.
5. Repeat steps 2, 3, and 4 until convergence.

In practice, the reconstruction of the 3- and 4-RDMs is performed while the CSE
is being evaluated in step 3. With fast summation the scaling of the CSE algo-
rithm is 7% with the connected 3-RDM set to zero and 7’ with connected 3-RDM
corrections.

VII. APPLICATIONS

With the CSE both the N-particle energy and the 2-RDM may be computed for
quantum systems of fermions. In this section we illustrate the contracted power
method for several molecular systems. Each of the molecules in Table III is trea-
ted in its equilibrium geometry [84], where the integrals are computed with PC
Gamess [85], an implementation of the quantum chemistry package GAMESS
(USA) [86]. The molecules in Tables III to V are represented with Slater-type
orbitals expanded in six Gaussian functions while the molecules in Table VI
are treated in a split-valence double-zeta basis set [87]. Spin orbitals are
employed, and none of the core orbitals is frozen. The wavefunction methods
and their abbreviations are: (i) Hartree-Fock (HF), (ii) second- and third-order
many-body perturbation theory (MP2 and MP3, respectively), and (iii) full con-
figuration interaction (FCI). The contracted power method with purification is
applied with three different choices for reconstructing the RDMs in the CSE:
(i) the first-order (or unconnected) formula (U), (ii) the second-order (Nakatsuji—
Yasuda) formula (N), and (iii) the second-order (Mazziotti) formula (M).

For all molecules in Table III the U energies are better than those obtained
from MP2. The U method yields 99.4% and 101.6% of the correlation energy

TABLE III
Molecular Energies from the CSE (STO Basis)

% of Correlation Energy

Energy Y Methods CSE Methods
Molecule HF FCI MP2 MP3 U N M
BeH, —15.7233 —15.7590 65.2 86.8 107.4 105.8 106.4
CH, —39.7144 —39.7926 74.2 91.3 118.6 105.9 103.6
CO —112.3033 —112.4430 92.1 89.1 99.4 85.1 83.8
H,0 —75.6788 —75.7289 71.4 90.9 110.9 99.7 93.3
N, —108.5418 —108.7005 97.9 94.4 101.6 87.5 86.2

NH; —55.7200 —55.7890 76.0 91.8 119.7 100.4 99.3
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Figure 1. The energy for the molecule CO is given as a function of the number of contracted power
iterations. With first-order (U) reconstruction the CSE obtains the correlation energy within 1%.

(CE) for CO and N,, while MP3 produces only 89.1% and 94.4% of the CE for
these molecules. Figure 1 presents the energy for CO as a function of the number
of contracted power iterations. All of the molecules except CO and N, have even
better energies with the second-order methods. For the molecules BeH,, CHy,
H,0, and NHj3, both the M and the N methods generate more of the CE than
either MP2 or MP3. With MP2 the percentage of CE ranges from a low of
65.2% for BeH, to a high of 76% for NHj3; in contrast, the ranges for M and
N are from 93.3% (H,0) to 99.3% (NH3) and from 94.1% (CH4) to 99.7%
(H,0). Even for CO and N, the CEs of the N method differ from those of
MP3 by only 0.006 au and 0.011 au while the absolute values of the CEs are
0.140 au and 0.159 au, respectively. The N and M methods are rather similar
in accuracy with the methods differing in the percentage of CE by as little as
0.6% (BeH;) and by a maximum of 6.4% (H,O). For the molecules in
Table III the energies from N are a little better than those from M except for
CH,4. Both the ability of the first-order U to yield better energies than MP2
and the ability of the second-order methods (M and N) to improve the energies
of MP3 reflect the perturbative renormalization within the CSE.

For each molecule the errors in the o./«- and the o/ f-blocks of the 2-RDM are
reported in Table IV. The 2-RDM errors are measured through a least-squares
norm, which is defined by

Error = (Tr[(*Dexact — *Dapprox)*])'/* (119)

where the 2-RDMs are normalized to unity. Except for CO the o/ f-block of the
Hartree—Fock 2-RDM has more error than the o/a-block. Both the N and the M
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TABLE IV
2-RDM Error from the CSE

B 3
I?DEs — 2DF |

Molecule HF U N M

BeH, 0.0151 0.00567 0.00401 0.00363
CHy 0.00655 0.00240 0.00143 0.00146
CcO 0.00520 0.00202 0.00273 0.00277
H,O 0.00519 0.00228 0.00100 0.00116
N, 0.00515 0.00182 0.00247 0.00250
NH; 0.00633 0.00211 0.00113 0.00131

methods improve the o/ f-block of the Hartree-Fock 2-RDM by half an order of
magnitude. As with the energies in Table III, both the N and the M methods yield
better 2-RDMs than U except for CO and N,. Hence other two-particle properties
may be expected to mirror the energetic accuracy for CO and N, offered by U.

In Table V we check the N-representability of the CSE 2-RDMs through three
well-known positivity conditions, the D-, the -, and the G-conditions [4, 5, 63].
The D- and the Q-conditions are given in Eqgs. (86) and (87), while the
G-condition states that the following matrix (known as the G-matrix)

2GY, = (U|alaja)a| ) (120)

must be positive semidefinite. These conditions are necessary but not sufficient
for the 2-RDM to be N-representable. In Table V the D-, the Q- and the
G-matrices are normalized to unity. Note that the energetic similarity between
the N and the M methods is further reflected in positivity errors, which are quite
close when compared with the positivity errors from the U approximation. We

TABLE V
Positivity of the CSE 2-RDMs

Positivity Error Measured by the Lowest Negative Eigenvalue

D-Matrix Q-Matrix G-Matrix
Molecule U M U M U M
BeH, —2.5¢e—5 —3.1e-5 —T7.4e—6 —9.4e—6 —12¢—4 —13e—4
CHy4 —1.9e—7 —1.3e-7 —5.7e—6 5.1e—=7 —8.0e—5 —1l.le—4
CO —6.7e—8 —7.le—14 —1.4e—5 —59e—7 —-59e—5 —1l.4e—4
H,0 —1.5¢—5 —12e—13 —6.0e—5 —1.7e—6 —22e—4 —1.3e—4
N, —3.3e—7 —43e—14 —1.0e—5 —63e—7 —6.7Te—5 —l.4de—4

NH; —8.7e—7  —3.4e-8 —2.5¢e—5 —15e¢e—6 —8.le—5 —8.9e—5
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TABLE VI
Molecular Energies from the CSE (Double-Zeta Basis)

% of Correlation Energy

Energy ¥ Methods CSE Methods
Molecule HF FCI MP2 MP3 U N M
BeH, —15.7602 —15.8008 69.5 89.0 71.9 90.5 88.8
BH —25.1134 —25.1740 59.7 81.3 513 73.5 71.1
CH,4 —39.8951 —40.0182 83.3 94.0 79.7 92.5 90.6
(¢[0) —112.6848 —112.8934 97.3 89.4 81.3 84.7 81.1
HF —100.0219 —100.1464 96.6 94.9 103.2 90.6 90.2
H,O —76.0091 —76.1419 93.5 94.4 91.8 95.5 92.8
N —108.8781 —109.1043 100.9 90.6 80.7 84.9 81.1
NH3 —55.9648 —56.0988 89.4 94.2 83.2 94.0 90.8

expect the 2-RDM to satisfy the D- and the Q-conditions since they are enforced
at each iteration of the contracted power method through purification. However,
it is quite important that within the framework of the CSE and reconstruction the
enforcement of the D- and Q-conditions also causes the G-condition to be satis-
fied within 107*. As shown in Fig. 1, without purification the CSE obtains only
half of the correlation energy before diverging.

In Table VI we apply the CSE algorithm to several molecules in a double-zeta
basis set [87]. The first-order reconstruction U within the CSE yields energies
that are similar to those from MP2 for BeH,, BH, CH,, HF, H,O, and NH3;.
Again, the first-order reconstruction captures second-order accuracy in the ener-
gies. The second-order N and M methods improve on the energies of the U
method except for HF, CO, and N,. Both N and M are significantly better
than MP2 for BeH,, BH, and CHy; for example, with BeH, MP2 yields
69.5% while N and M give 90.5% and 88.8%, respectively. For NH3; and H,O
the M and the N methods produce more than 90% of the CE, which is similar to
the accuracy of MP2 and MP3. Even for N,, CO, and HF the percentage of CE
from N trails the percentages from MP3 by only 5.7%, 4.7%, and 4.3%. The
energies from the N and the M methods are quite similar with the energies
from N being slightly more accurate for the double-zeta molecules considered;
the percentages of CE from the two methods differ by as little as 0.4% for HF
and only by as much as 3.8% for N».

VIII. A LOOK AHEAD

An algorithm for solving the CSE has been developed with emphasis on three
key features: (i) reconstruction of the 3- and 4-RDMs, (ii) purification of the
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2-RDM, and (iii) optimization by self-consistent iteration. The CSE method
allows the direct calculation of the electronic energies and 2-RDMs without cal-
culation or storage of the many-electron wavefunction. While significant pro-
gress has been made in the last decade in using the CSE to compute the 2-
RDM, there remain many open questions and directions for improving both
the efficiency and accuracy of the calculations. We believe that important pro-
gress will be made in the three key areas of reconstruction, purification, and opti-
mization, where purification will benefit from the recent advances in the
variational optimization of the 2-RDM via semidefinite programming [63, 66—
74], which is discussed in the next part of the book. A related, interesting area
for future research is the anti-Hermitian part of the CSE [27, 31, 63], which may
be written with a commutator as

(Wlla}ataa,, H]lp) = 0 (121)

Importantly, the anti-Hermitian CSE may be evaluated through second order of a
renormalized perturbation theory even when the cumulant 3-RDM is neglected
in the reconstruction. The anti-Hermitian part of the CSE [27, 31, 63] is the sta-
tionary condition for two-body unitary transformations of the N-particle wave-
function [31, 32], and hence the two-body unitary transformations may easily be
evaluated with the anti-Hermitian CSE and RDM reconstruction without the
many-electron Schrodinger equation. The contracted Schrodinger equation in
conjunction with the concepts of reconstruction and purification provides a
new, important approach to computing the 2-RDM directly without the many-
electron wavefunction.
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APPENDIX: GRASSMANN PRODUCTS

The Grassmann (or wedge) product [20, 54, 78] of a ¢-RDM with a (p — q)-
RDM may be expressed as

IDA\P=ID = ANID @ P9I DAy (A1)

where Ay is the N-particle antisymmetrization operator and & is the tensor pro-
duct. To utilize this formula in a calculation, we must understand the technique
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for evaluating wedge products of matrices. Let us first consider the wedge pro-
duct C of two one-particle matrices, 'A and 'B,

2c="AN'B (A2)

The elements cZi, of the matrix 2C may be obtained from @} and b§ by summing
the distinct products arising from all antisymmetric permutations of the upper
indices and all antisymmetric permutations of the lower indices. With the wedge
product of one-particle matrices, there are only four distinct possibilities:

ol = ai, Nb] = Yaib] — a|b} — ajb + alb}) (A3)

More generally, we can write the elements of the wedge product as

2
0150250 03ip Ip 5o 1150250eip 7 Ip1 5oV )
ajl]Z“":]p /\bjpfla"“jN <Nl z :E(Tf)é( )noajlJ°¢-~-prj,7+1¢-~--jN ( 4)

n,0

in which 7 represents all permutations of the upper indices and ¢ represents all
permutations of the lower indices, while the function ¢(7) returns +1 for an even
number of transpositions and —1 for an odd number of transpositions. Since both
the upper and the lower indices have N! permutations, there are (N !)2 terms in
the sum. Hence normalization requires division by (N ') If, however, the ele-
ments ajljli’ _l” and b"’*:’” .jx are already antisymmetric in their upper and lower
indices, only (N !/ (p' )) of the above terms will be distinct. This allows us to
decrease the number of numerical operations required for computing the wedge
product. For wedge products between matrices with the same number of upper
and lower indices, we have an important commutation relation

P A2y qpiptesin g pile lq P Ala+1snin
A/1J2 Jp A BJ1)+I N B A AJq+l--~~./N (AS)

or without the indices
PANIB =1BNPA (A6)

If the sum (p + ¢) is odd, exchanging the p upper indices with ¢ upper indices
will produce a minus sign, but this will be cancelled by another minus sign pro-
duced by exchanging the lower indices. In many cases it will be easier and
clearer to write the wedge products as in the second form, Eq. (A6), without spe-
cifying a particular element through indices.
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I. INTRODUCTION

The possibility of describing a many-body system of N electrons through the use
of the second-order reduced density matrix (2-RDM) [1-6] was proposed by
Husimi [7], Lowdin [8], Mayer [9], McWeeny [10], Ayres [11], Coulson [12],
and Coleman [13] in the 1950s. Such a description implies a simpler approach
to the many-body problem, where explicit calculation of the N-electron
wavefunction is abandoned in favor of a direct computation of the 2-RDM
[1-6]. The difficulty of this approach lies in that even after many years of
research, the set of conditions which such mathematical-physical objects must
fulfill in order to ascertain that they can be derived from a well-behaved pure
spin N-electron wavefunction, the so-called N- and S-representability conditions
[1-6, 13, 14], cannot yet be claimed to be complete. However, the search of
stringent N-and S-representability conditions has been intense and fruitful
[1-6, 15-20]. Thus, although an exact procedure for determining directly an
N- and S-representable 2-RDM has not been found, many mathematical proper-
ties of these matrices are now known and several variational [21-34] and non-
variational [15, 35-69] methods for approximating RDMs and for employing
them have been developed.

Recently, two different general strategies for correcting the representability
defects of an approximated 2-RDM have emerged [70-72]. The common idea
underlying these approaches is to try to “purify’ a trial 2-RDM while keeping
the corresponding 1-RDM fixed, which should be N- and S-representable. Since
the 1-RDM derives by contraction from the 2-RDM, the purification may be
achieved by acting on the 2-RDM pure two-body component with a vanishing
contraction into the one-body space. In other words, the aim is to render N- and
S-representable a pure two-body matrix, which is the matrix responsible for the
N- and S-representability defects. One of these purification strategies, proposed
by Mazziotti [70], uses the unitarily invariant decomposition of the 2-RDM
reported in 1974 by Coleman [73] and extended by other authors [74-77]. Apart
from other mathematically significant properties, this decomposition guarantees
that there is no contribution of the 2-RDM pure two-body term to the 2-RDM
contraction into the one-body space. The second purification strategy, initially
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developed by Valdemoro, Alcoba, and Tel [71] and subsequently extended by
Alcoba and Valdemoro [72], is based on the decomposition of the 2-RDM
into two matrices: a matrix that only depends on the 1-RDM, and a pure two-
body correlation matrix [6, 18, 60, 64, 71, 72, 78-87] whose contribution to the
2-RDM contraction vanishes.

Although these purification strategies present a broad field of application, the
original aim was to combine them with the iterative method for solving the
second-order contracted Schrodinger equation [1, 6, 45, 47-52], so that the con-
vergence and stability of its iterative solution would be both accelerated and
enhanced [87]. This question has recently been studied and the results that con-
firm this hypothesis were reported in Refs. [70, 88]. Indeed, the iterative process
is improved and its stability is achieved. This showed not only the effectiveness
of the purification strategies on several atomic and molecular systems but also
their critical role within this methodology.

The aim of this chapter is to review, both from theoretical and practical points
of view, the work done in this direction in the last years.

II. GENERAL NOTATION, BASIC DEFINITIONS,
AND THEORETICAL BACKGROUND

A. General Notation and Basic Definitions

In what follows a two-particle interacting system having a fixed and well-defined
number of particles N will be considered. It will also be considered that the one-
electron space is spanned by a finite basis set of 2K orthonormal spin orbitals.
Under these conditions the 1-RDM and 2-RDM elements are defined in second
quantization language as

"Dix, = (Vla] a,|v) (1)
and

202Dy 0, = (Pl al, 4, a,|0) (2)

respectively. In these expressions, ¥ represents the N-electron state whose obser-
vables are being investigated; the indices i, j, k, / represent orthonormal orbitals;
and o, ¢’ represent the spin functions (a or f3).

Similarly, the elements of the first- and second-order hole reduced density
matrices (HRDMs) are defined, respectively, as

'Q, 4, = (¥, 4] |0) 3)
and

202Qu kot = (i, &, &) @] ,|0) 4)

Jo!
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B. The Energy, the Reduced Density Matrices, and
the N-Representability Problem

In this formalism the spin-independent many-body Hamiltonian may be written

ZZ "Kijy kol 18], 0, (5)

a,0' ijk,l

where 2K is the reduced Hamiltonian matrix [37,89]

Kij kol = (€iyik, 0j0 + €1, 0ik) + (igor|kolor) (6)

1
N-—-1
Here the symbol ¢ represents the one-electron integral matrix and (izjy|koly) is
the usual two-electron repulsion integral in the Condon and Shortley notation.

Thus the second-quantized expression of the energy of the state ¥ in terms of
the 2-RDM is

‘1/|H|\IJ Z Z Kigjsikoly Dk,,l Vit (7)

a0 ij.k,l

This equation implies that if the 2-RDM corresponding to a given state is
known, the energy and, in fact, all its other observables can be obtained. That
is so because the Hamiltonian only has one- and two-electron operators and
therefore the many-body problem may, in principle, be considered an effective
two-body problem. This is only possible if the 2-RDM can be obtained directly,
without previous knowledge of the N-electron wavefunction, which is a difficult
mathematical-physical problem. One therefore needs to know the necessary and
sufficient conditions that a 2-RDM—and, in general, a p-RDM—must satisfy
in order to ensure that there exists an N-electron wavefunction from which it
may be derived. To determine such conditions constitutes the N-representability
problem defined by Coleman [13] in 1963, which is at the origin of a wide
literature [1-6]. This problem has been solved for the 1-RDM and 1-HRDM
by Coleman [13], who reported the set of necessary and sufficient ensemble
N-representability conditions for these matrices. Thus the 1-RDM and
1-HRDM must be Hermitian, must be positive semidefinite, and must be normal-
ized as

Z 'Dji, = No (8)
Z 'Q;y, = (K= N,) 9)
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where N, denotes the number of electrons with ¢ spin function. Also, these
matrices must be linked as follows:

"D i, +'Qiu, = Sik (10)

Although a formal solution of the N-representability problem for the 2-RDM
and 2-HRDM (and higher-order matrices) was reported [1], this solution is not
feasible, at least in a practical sense [90]. Hence, in the case of the 2-RDM and
2-HRDM, only a set of necessary N-representability conditions is known. Thus
these latter matrices must be Hermitian, Positive semidefinite (D- and Q-
conditions [16, 17, 91]), and antisymmetric under permutation of indices within
a given row/column. These second-order matrices must contract into the first-
order ones according to the following relations:

2! Z Dy ky = (Now = 96.07) 'Di, (11)

Z'Z Qijyikoiy = (K= No = Oo) ! Qiik, (12)

and must be normalized as [1, 2]
2! Z zDiajq';igjaf =N; (N — 56,6’) (13)

2! Z ngj”/ kojor = K N, ) (K — No — 50,0/) (14)

Also, these matrices must be related to each other through the second-order
fermion relation [15],

2! 2Qi(,j61;kﬁl/ 21°Dy o, + 5zk511 » lrbl,k — "Dy 4,01
— 0.0 (810jk — 'Djux, 011 — 'Diy1,014) (15)

whose semidefinite positiveness expresses the previously mentioned Q-condition
[16, 17, 91].

Equation (15) implies that the 2-RDM and 2-HRDM matrices contain the
same information. Indeed, these matrices are two of the three different matrix
representations of the 2-RDM on the two-body space, the third one being the
second-order G-matrix (2-G) [16]. This matrix, which may be written [24, 25]

2 2 1 1 1
Gigja, ;kﬂ_/rlg/// = 2' Digla/r/;j‘,/kar/ - 50‘70‘/56”0‘/" Dig;jo‘ Dk,,//:l‘,// + 50’,0'"(56/,0'/”5j,l Dig;ko‘
(16)
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or equivalently [15]

2Giﬂ-ja/;kaulaw = Z <\I]|&jg &jg/ |\III><\III|&ZTW &ka/’ |\Ij>

VA

— 1 \II\I” l 'y
Z l"f{r’ l o' k o1 (17)
A

where 'DYY is the First-order transition reduced density matrix (1-TRDM),
must be Hermitian, must be positive semidefinite (G-condition [16, 17, 24, 25,

27, 91]), and must contract into the one-body space according to [71, 79, 83]

2

Z Gtg/g/ koo = (K — No’) isks T 56,0’(11) -'D )iﬁ;kg (18)

2

Z 2Gyiiiky = Na(0ix — 'Diyu,) + 000 ('D—'D7), . (19)

where 'D? represents the square of the 1-RDM. Also, this matrix must be
normalized as

Z : Givjyiiniy = No (K =Ny + 06.0) = 06,0 Z(lDz)ia;ia (20)

i i

Thus it is essential to constrain these three different matrix representations of
the 2-RDM to accomplish all the basic properties just reported when considering
the N-representability of the 2-RDM.

C. The G-Matrices and the S-Representability Problem

As an extension of the N-representability problem, Valdemoro and co-workers
introduced the S-representability problem [14], that is, the incomplete knowl-
edge of the set of necessary and sufficient conditions that a p-RDM must fullfil
in order to ensure that it derives from an N-electron wavefunction having well-
defined spin quantum numbers:

52
S W) =S(S+1)[Wsm) (21)
S:[Tsu) = M|Tsy) (22)
These S-representability conditions, by extension of the N-representability

terminology, have recently been analyzed in depth by reconsidering the spin
structure of the 2-G matrices [72].
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1. Spin Structure of the Second-Order G-Matrices

As shown in Eq. (17), the 1-TRDMs are the basic building elements in the 2-G
matrices. Since the 1-TRDMs only connect two states whose spin numbers differ
at most in one unit, the structure of the 2-G matrices may be rewritten in terms of
separate spin components characterized by the spin quantum number §' of the
states |U’) appearing in the I-TRDMs [72]. Thus

!
G _ 1 D‘I’SM‘I’W I s s
igfot skonlom — gy Lom sk
7 Vsm
We oy Wy
2 : S+1M’ 1 S+1M’ § : 1 SM¥s 1t 1y Yso1a Vs
+ lo-j / Dl sk + Dtm/a Dl“//r;ka//
!
9+1 M \I}S—I.M/
(23)
with

M—-1 for c=0¢"=0a,6=0¢"=§
M = M for 6=0"=0¢"=0¢"orc=
M+1 for c=0¢"=p,0=0"=u

In what follows, the compact notation that will be used for each of these spin
components is

!
Tsu Ty a1~ Vo Vs

2 — § 1 §'m! O
{S,-MI} Girrj(;":ka”lrr”’ = Dl(,‘]J Dl”///;k(;// (25)
Uy o # sy
s'.m’ -

where S’ may take the values S, S+ 1, and S — 1.
2. Spin Properties of the Second-Order G-Matrices

From their definition, it follows that each of the spin components of the 2-G
matrix are positive semidefinite. The semidefinite positiveness of these matrices
constitutes a much more exacting set of conditions than the well-known single
N-representability G-condition, since the former conditions imply the latter one
but not conversely.

Furthermore, properties of the spin components of the 2-G can be obtained
by reconsidering the spin properties of the 1-TRDMs. Thus the different spin-
blocks of the 1-TRDMs can be related among themselves through the action
of the operator S” on pure spin states. One therefore has

1
U m q}sr M
lo¥o!

S(S+1)'D — (WsnlS" al @y, |V, (26)
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By moving the § operator to the right on the right-hand side (rhs) of Eq. (26), a
set of equations linking the different spin-blocks of the 1-TRDMs is obtained.
These equations lead to a set of relations linking different elements of the
spin components of the 2-G matrices. The resulting relations can be classified
as follows:

(a)Case S=5; M =0.

(5.0} Gigpiksly = (5,0} Gkl

= (50} Gigigitols = (5.0} Gigiikol, (27)
5.1y Gigiaiksls = (5,11 Gty (S #0) (28)
(b)Case S =S"; M # 0.
am? 2G.
(S — M)(S + M + 1) M1 Hals
4M?

2
(S—M+1)(S+ M) M1 Gty
= {S’M}2G"rj1§ka<lu + {S,M}zGi/;j/;;kﬁl/g
- {S’M}zGixix?kﬂlli - {S,M}zGi/g_]'lg;ki[,( (29)
(c)Case S #£ S

(S(S+1) =S (S +1) 4 2M)* °G
4(S —M)(S+ M+ 1) M Pk

(S(S+1) =S8 +1) —2M)> °G
4 —M+1)(S+M) SMED Pkl

= {sM} G’/i}/f§k/il/i = —{y.M} G:w;kﬁlﬁ

= — (s Gigpot, = (M) Gigtioly (30)

Similarly, application of the properties of the spin-shifting operators, S.,
allows one to obtain the relations connecting the 1-TRDMs corresponding to dif-
ferent multiplet states. Thus, by considering the action of the spin-shifting opera-
tor §+ on pure spin states,

’
“I’S,M\I}S/_M/

VE=M)S+M+1)'D, ;" " = (Uspia[Siaf a;, | W5 ) (31)
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and by moving the S, operator to the right on the rhs of Eq. (31), a set of recur-
rence relations among the 1-TRDMs corresponding to different multiplet states is
obtained. The resulting equations lead to setting up the interconnections among
the different spin components of the 2-G matrices corresponding to different
states of a given multiplet. These connections can be summarized as follows:

(a)Case §' = S.

U
{S,M’}zGiajar;ka/rlﬂ/// = Z 9(’))7 Vlv O-) 0/, GN’ G/,/) {SS}ZGl(,‘J,S;)’],’ (32)
7Y
where
0()}7 ,Y/, o, (717 (7”7 O_///) 250-,5/50_//70_/// (‘u+5%a —+ '[,[7(1 — 5},’0_))
X (/,l+5},/70./r —+ '[,[7(1 — 5},/10./1))
+ 5g_rg~5<,/_gw(1 — 50“’0/)(257?},, — 1)
X (Vz,éa,oc + Viéa,/}) (33)
and
1+M/S
by = % (34)
SFM)(SEM+1
1o = VEEMSEN ) 55)
(b)Case §' = S + 1.
{S+17M’}2Giaj0/;k,,ul(,m = 9,(07 a,a", UW) {S+l,S+l}2G§ﬂj:;]iila{ (36)
where
0,(0-7 0-,7 O'”, OJ”) = (50,6’56”,0’”(256,6’ - 1)62
+ (50.‘0./150/‘0.///(1 —_ 50._’0./)
and
S—M+1)(S+M+1
s [sMEnEs ML -
2S+1)(25+2)

S EM+1)(SEM+2)
tx = _\/ (25 + 1)(25 + 2) (39)
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(c)Case ' =S — 1.

{371.M'}zGiij/;kﬂ/,zw =0"(0,d',0",6") {571,571}2G§x,-,:;/111,, (40)
where
0”(0’7 ()’/7 O’”7 O’”/) = 50,{7’50”‘0”’(250,0” — 1)5’2
—|— (30.10.//50./,0.11/(1 — (30.10./)
X (5?50_“ + éﬁéﬁ,ﬁ) (41)
and
, (S—M)(S+M)
=_, /= 7/ 7 42
< 2528 — 1) (42)
, SFM-1D(SFM)
= _ 43
= \/ 25(28 — 1) (43)

The above relations, which are represented in a spin-orbital basis, are espe-
cially relevant; they are analytical results that describe all the conditions that a
2-G corresponding to any pure spin state must satisfy; hence they constitute a
complete set of S-representability conditions. Their generality implies a general
usefulness within the framework of any RDM methodology.

III. PURIFICATION PROCEDURES BASED ON
UNITARY DECOMPOSITIONS OF SECOND-ORDER
REDUCED DENSITY MATRICES

A. The Mazziotti Purification Procedure

The description of the two-electron correlation effects within the 2-RDM form-
alism is not unique. Indeed, different approaches have been reported in the
literature [53, 61, 7383, 86, 89, 92-96] and different aspects of this exciting
subject have been analyzed. At the basis of all these descriptions of the two-
body correlation effects lies a decomposition of the 2-RDM. However, as men-
tioned in Section I, any purification strategy that maintains the 1-RDM fixed
requires that the contribution of the pure two-body term arising from the consid-
ered 2-RDM decomposition should vanish upon contraction into the one-body
space. This requirement, a very strong one, significantly reduces the list of
possible descriptions of the correlation term. Thus one of the only two
approaches leading to a 2-RDM decomposition satisfying this requirement is
the unitarily invariant partition of antisymmetric second-order matrices reported
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by Coleman [73]. This partitioning, which has been applied extensively in quan-
tum chemistry in order to decompose and analyze the structure of several
second-order matrices of physical interest [70, 86, 89, 97-99], is at the basis
of an iterative purification procedure recently proposed by Mazziotti [70]. The
method that he proposed, hereafter called the MZ purification procedure, aims at
guaranteeing the positive semidefiniteness of the 2-RDM and of the 2-HRDM
(D- and Q-conditions) while retaining the original 1-RDM. Before revi-
ewing the procedure, Coleman’s decomposition and its properties will be
addressed.

1. Unitary Decomposition of Antisymmetric Second-Order Matrices

In 1974 Coleman [73] proposed to decompose any Hermitian antisymmetric
second-order matrix 2A as

*Aji = g A + 1A + 2 A (44)
where
A(0i 101 — i 10,x)
2 I, J, 1, ./‘

A = 45
0 Nijskl K(K _ 1) ( )
2, = iy 0j1 + "Piy g — 'Piy 0 — Py 0y ~ 2A(0ik 0jy — 0ig Ojk) (46)
1 K-2 K(K —2)

A = 2 A — Ak — TAg (47)
with

A= "2 Awm (48)

m,n

Py = % Aumjm (49)

If the second-order Hermitian matrix follows the transformation rule for a (2,2)
tensor, then this decomposition is the only possible manner of expressing these
matrices as a sum of simpler parts so that the decomposition remains invariant
under unitary tranformations of the basis [73].

The three parts of this decomposition reveal the structure of the matrix with
respect to the contraction operations. These parts have been called the 0-, 1- and
2-body part of the second-order matrix 2A, respectively. Following the notation
introduced in Ref. [73], each of these parts have been identified by a left-lower
index.
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While the 0-body part of this decomposition contains the 0-body information
for 2A,

Z (2) Amn;mn =A (50)
the 1-body part contains the 1-body information for 2A,
D GAimgm + FAimm) = "Piy (51)

and the 2-body part contains information that vanishes upon contraction,

Z %Aim:jm =0 (52)

2. The Purification Procedure

As has been mentioned, the MZ purification procedure is based on Coleman’s
unitary decomposition of an antisymmetric Hermitian second-order matrix
described earlier. When applied to singlet states of atoms and molecules, the
computational cost of this purification procedure is reduced, since the 2-RDM
(and thus the 1-RDM obtained by contraction) presents only two different
spin-blocks, the ao- and of-blocks (and only one spin-block for the 1-RDM).
For the remaining part of this section only this type of state will be treated.

According to this unitarily invariant decomposition, the different spin-blocks
of the trial 2-RDM, which must be corrected, are decomposed as follows:

"Dijysskoty = Disiikoty  1Disjsskoly + 3Disjikol, (53)
with
R O 3 * Dy, q,ma.) (01k9j1 = 01101x) (54)
0 injuikaly K(K — 1)
2p _ (N/2=1)("Di,x, 9j + 'Dj,u, dix)
1 Yisjusksl, —
2(K —2)
_ (N/2=1)('Diy, djx + "Dy, di)
2(K —2)
~(N/2-1) (32, ' Dp,ip,) (9ik 00 — b ) (55)
K(K —2)
Dkt = “Digkat, — 0Disjsikoty — 1Ditnls (56)

where the a-block of the 1-RDM is obtained from the contraction of the 2-RDM
into the 1-body space, Eq. (11).
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For the off-block of the 2-RDM the decomposition was generated ad hoc [70].
This is because this block is not antisymmetric under permutation of the orbital
indices within the row or column subsets of indices; and thus the unitary decom-
position reported by Coleman cannot be applied. Hence the ad hoc decomposi-
tion is given here by

(Zp.q : Dpzq/z;pxq/f) 5i,k5./}1

2 p—
ODixj/KQka(lﬁ = K2 (57)
Dy, = (N/2)("Dik, ;1 + "Dty dik)
1t piKalp K
(N/2) (Zp ("Dp,p, + 'Dpyipy)) 9isdja
B (58)
KZ

%Dix}'/ﬁkxlﬁ = zDixj/;;kmlﬁ - %Dixj/};kxl/; — %Diyj/;;k,,l/; (59)

In accordance with Coleman, the O-particle part of this decomposition,
Eqgs. (54) and (57), contains the 0-body information for the 2-RDM,

E 2 _ E 2
0 Dprrq(;/ Padq! Dpaq(f’ Padq (60)
pq P9

the 1-particle part, Eqs. (55) and (58), contains the 1-body information for the
2-RDM,

N
20 @ Dimyiomy + Digmyiiom,s) = (5 - 5«.,0’) Dy, (61)

and the 2-particle part, Egs. (56) and (59), contains information that vanishes
upon contractions into the 1-body space,

> 3 Dimsiiom, =0 (62)

By decomposing the trial 2-RDM in this way, it is possible to act upon the
N-representability defects of this matrix.

1. When the 1-RDM—obtained from the contraction of the 2-RDM into the
1-body space—is not N-representable, this matrix is corrected by employ-
ing any one of the methods described in Refs. [70, 71]. With this new 1-
RDM, 'D, the 1-particle part of the 2-RDM is recalculated. Thus

21 2 217 2
Dijisikaly = 5Disjskoly + 1Dinjosikaly + 3Disj kol (63)
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By doing so, the updated 2-RDM, 2D, presents N-representable contrac-
tions into the 1-body space

~ N ~
2' Z 2Diama’§jama’ = (2_ 5”@’) lDiUQja (64)

It also presents correct contractions into the 0-body space, since in this
purification procedure it is assumed that the trace condition Eq. (13) is ful-
filled by the initial 2-RDM.

2. In order to impose the D and Q N-representability conditions on the
2-RDM and its 2-HRDM, these two matrices are diagonalized. From
the eigenvectors {|x, s¢:00)} corresponding to the negative eigenvalues
{%p o0} of the od’-block of the 2-RDM, and the eigenvectors
{|%4 6o':007) } corresponding to the negative eigenvalues {X, 54,0} Of the
ago’-block of its 2-HRDM, a set of second-order matrices is constructed,

2Xp igjyrikely = <i<7j<7’ |xp JJ’;66’> <xp 6a’;00" |k17117’> (65)

ZXq igjorikaly - <io‘j0’ |7_Cq o’a’;rm’> <xq ao’;00’ |k(rl(r/> (66)

where |i,j,) and |k,l,) are two-electron Slater determinants.
The 2-RDM is corrected by adding a correcting-matrix >Igqr.g47,

27 2 2
D[gj(l_/:kgl(l_/ = Diﬁjul;kﬁlul + F[gja/‘,kglc/ (67)

which is given by
2 2 2~y
Fiajar;kald/ = E yp oad’;00 2Xl7 igjgtkalyr + E :C(I oa’;00’ 2Xfl igjo! ikalyl (68)
P q

where 3X), 5500 and 35X, 0700 are the two-particle and two-hole parts of

the matrices Eqgs. (65) and (66), respectively. The parameters y,, ;. and
€q oo';00" OF ZFM/;W/ are chosen to satisfy the linear system
Xp 66’00 + Z 2 Xp igjorikaly ZFkO-lU/;l‘GjUI =0 (V p) (69)
ikl
J_Cq oo’;00" + Z 2 Xq igjgtikely 2Fkgla/;igj(,/ =0 (v q) (70)
ikl

The addition of the correcting-matrix 2FU,,/;Wr does not modify the con-
tractions of the 2-RDM.
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This step is repeated until the positivity of the 2-RDM and its 2-HRDM is
satisfied up to a specified tolerance.

This procedure has been applied to several trial 2-RDMs corresponding to
different molecular systems [67], thus obtaining very accurate energies and clo-
sely N-representable 2-RDMs. Unfortunately, the S-representability of the result-
ing 2-RDMs has not been analyzed.

Thus let us consider some particular relations that must be satisfied by the 2-
RDM spin-blocks corresponding to a singlet state. It is well known that in this
case the ao- and off-blocks of the 2-RDM are related as follows [100]:

2 _ 2 2
Dijikit, = “Digjgikaty — Disjpit,ky (71)

This relation imposes severe conditions on the a3-block of the 2-RDM. Thus this
spin-block must satisfy the relations

Z ? Dixm/x;myj/; = Z<\Ij|&2, &jn/g &j/f &ﬂ1«|\11>
m m
= (Wla] a,|v) - > (va! &, af, an,|¥)

m

=D, — (V|a], &, §_|¥) = 'Dyy, (72)
and
Z szmi/fiixm/f = Di/i;f/f (73)

which follow from the fact that S, | W) = S_[¥p0) = 0. In order to keep track
of the first-order matrices, we will denote them as ngm and ngwﬁ.
Moreover, these conditions imply that

N
Z szan/f:nam/x ) (74)

myn

which is directly related to the expectation value of the Sz operator, (S‘z>; that is
[14, 101],

() =S+ 1) =6+ 5~ 3 Do, (75)

Taking into account the results just mentioned, let us now reconsider the two
steps of the procedure for the of-block of the 2-RDM, 2D,.,5. In the first step,
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the off-block of the 2-RDM is recalculated, thus yielding an updated af3-block of
the 2-RDM 2]3“5;1,;, which presents N-representable contractions given by
Eq. (11). However, this is not the case for the contractions given by Egs. (72)
and (73). For example, one of these latter contractions of the updated of-block
of the 2-RDM is given by

2 » _— 2 . . 2 » . . 2 . .
E Dizmlfi,mxi/f - E (ODlzm/f;madﬁ + lDlxm/f:,milﬂ + 2Dla<m1f;mxl1f)

m m

i 4 (N/2)('Di,j, + 'Diyjy — 'Diy, — 'Diyyiy)

o (76)

where it has been assumed that the initial zDaﬁ;“ﬁ satisfies the condition Eq. (72).
Thus it follows that the updated of-block of the 2-RDM violates the condition
Eq. (72). A similar reasoning can be followed for the second step, where the
addition of the correcting-matrix 2I',p.,5 t0 *Dyp,p also produces errors in the
contractions given by Egs. (72) and (73). Moreover, the expectation value of
the S operator will also present a deviation from its original value, since the
contraction Eq. (74) will also be affected. Consequently, both steps of the MZ
purification procedure introduce S-representability defects in the 2-RDM when
correcting the N-representability defects of this matrix. Thus this procedure
yields purified 2-RDMs that do not correspond to pure spin wavefunctions.

B. Improving the Mazziotti Purification Procedure

The S-representability defects of the MZ purification procedure can be corrected
by generalizing Coleman’s unitarily invariant decomposition. Thus a new proce-
dure—based on a different generalized unitarily invariant decomposition of the
2-RDM recently reported in Ref. [77]—will now be described here.

1. Unitary Decomposition of Arbitrary Second-Order Matrices

Recently, a unitarily invariant decomposition of Hermitian second-order matrices
of arbitrary symmetry under permutation of the indices within the row or column
subsets of indices has been reported by Alcoba [77]. This decomposition, which
generalizes that of Coleman, also presents three components that are mutually
orthogonal with respect to the trace scalar product [77]:

zAij;kl = éAg;u + %Aij;kl + %Aij;kl (77)

where

(KA — A/)éi,kéj_l + (KA/ — A)éi.léj,k
K(KZ—1)

2
oA =
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(4’Al - 21{14)5i,k5j,] + (4A - 2KA,)5i,15j,k

2
Ay =
1A K(K> —4)
2("Piaik +'Plydis +Riadis +'Rjyd74)
K(K> —4)
. (K2 = 2)("Pigedjs +'Py0ix +'Riudjse +'R0y851)
K(K> —4)
N P10k +'Pidiy +1P;;15j,k +1P],~;k5i,l
4K
N "Rixdjs +'Rjudix +'Riy 01 +'R}, i
4_K2

2 2 2 2
A = A — oAk — 1Ak

with

A= Z 2Amn;mn
A= Z 2Amn:nm

m,n

1 2
Pij= E Aim; jm

m

1p/ 2
Pij= E Amicmj
m

1 § 2
Ri:j Aim;mj
m

I/ 2 : 2
R,‘;j Ami;jm
m

221

It must be noted that, due to the arbitrary symmetry under permutation of
indices of this second-order matrix, a larger set of contractions into the 0- and

1-body space must be taken into account.

If the second-order Hermitian matrix follows the transformation rule for a
(2, 2) tensor, then this decomposition is the only possible manner of expressing
these matrices as a sum of simpler parts such that the decomposition remains

invariant under unitary tranformations of the basis [77].
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While the O-part of this decomposition contains the 0-body information for 2A,
> 5 A = A (87)
2 o Apngm = A’ (88)

m,n

the 1-part contains the 1-body information for 2A,

> G Aimim + TAimjm) = "Pij (89)
> G Amimi + 1 Ami) = "Pl; (90)
> G Aimmi + T Aima) = 'Ry (91)
> G Amigm + 1 Amijm) = 'R}, (92)

and the 2-part contains information that vanishes upon contraction,

Z %Aim:jm = Z %Ami:mj = Z %Aim;mj = Z %Ami:jm =0 (93)

m

2. Improved Version of the Mazziotti Purification Procedure

The independence with respect to the type of permutation-symmetry of the
decomposition just reported allows one to treat the different spin-blocks of the
2-RDM on an equal footing. Moreover, this decomposition leads to a partition-
ing of these blocks into three orthogonal parts, which reveal the structure of
these blocks with respect to all contraction operations.

If this decomposition is applied to the co-block of the 2-RDM, then it reduces
itself to that given by Egs. (54)—(56). However, if the «f3-block of the 2-RDM is
considered, then this decomposition becomes

2 _2 2 2
Di,j/;;k,l/; - ODixi/;qul/; + lDixi/f;ks«.l/f + 2Dixj{i§kxl/i (94)
with

- Zp,q (K szyq/::piq/: - 2Dpiq/x;q7p/;) 5i,k5jﬁl
injp.kalp = K(Kz _ 1)

I Zp,q (K szq/s;qamx - 2Dp1q/;;mq/;) 5i715j«,k
K(K2—1)

2
oD

(95)
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> 2 (‘D) +'D ) &ixdj

Pa px PpiPp
K(K?—4)

N
Ep KE (lex;Pac + IDPﬁ%P/f) 0ik0j1

2 _
lDixj/!ska(l/! -

K(K? —4)
Zp N (ley;py + leﬁ:,pﬁ) 5i715j‘k
K(K? —4)
_ ZP K (ID;% ID;’ﬁ Pﬁ) 5i7151‘k
K(K? —4)
N ('Dj,,0ix + "D, 951)
K(K? —4)
+2( D]/ & 5,1+ Dlﬁlﬁé )
K(K?> —4)
(K* —2)N
f (lDix;kiéjJ + J/f 1/;51k)
+ K(K2—4)
N (K* =2)('D; , 0jx + 'D; ik Oicd)
K(K*—4)
N
2 ('Di,i1, 0k + "Dyt 010)
+ 4 — K2
N
5 (lDi/;;l/f 5J'J< + le/;;k/féiJ)
+ 4 - K2
ID;a?Im 5i’k + ID;aka 5j’l
4 — K2
1
DJ/f 1/15’ kT Dlﬁ k/zé Wl 96
4 — K2 ( )
%Diaj/x;kxl/; = 2Diaj/$§kal/$ - 3Di3j/f§ka<l/f - %Dixi/ﬁkxl/f (97)
where the matrices 'D,,, 'Dgp, ! ;w and IDM appearing in Eq. (96) are

obtained from the different contractions of the 2-RDM into the 1-body space,
Egs. (11), (72), and (73), respectively.

The different parts of this new decomposition reveal the structure of the D, Biofp
with respect to all contracting operations into the 0- and 1-body space. Thus,
while the first part of this new decomposition, Eq. (95), contains the information
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of the two different contractions of 2D,.,4 into the 0-body space,

E 2 _ § 2
()Dm,(n/;;mxn/; - Dmxn/;;mxn/f (98)
mn

m,n

2 2
E ODmu”/ﬁnﬂ"/i = E Dmu"ﬁ;”umﬁ (99)
mn

m,n

the second one, Eq. (96), contains the information of the four possible contrac-
tions of 2Dyp,p into the 1-body space,

Z (%DiqMﬂlfamIf + %Dizmliijacmlf) - g lDianz (100)
m

Z (%Dm,(iﬁ:,ml/‘/; + %Dnlyi/f:,m?’j/{) :g 1Dili§j/1' (101)
m

Z (%Diymﬂi,mxjﬁ + %Diﬂ'l/r«,myj/f) = lD;adjac (102)
m

Z ((Z)Dmxiﬂ:qu/x + %szi,;;qu/;) = lD;/!?j/J (103)
m

and the third one, Eq. (97), contains information that vanishes upon contractions,
2 2 2 2
Z 2Dixm/f1jzm/f = Z 2Dm1i/f%mxflx' = Z 2Di1m/f?mxi/f = Z 2Dmxi/1’1jzm/5 = 0 (104)
m m m m

Moreover, each of these parts are related to those of the 2DMM, Egs. (54)-
(56), as follows:

’D

2
Dixi{i?kxl/i “p

[27Dia<jx§kacla< ~>p ixjpilakp (P =0,1, 2) (105)
which is a consequence of the condition Eq. (71).

Thus we propose to use the new decomposition given by Egs. (95)-(97)
instead of that given by Egs. (57)—(59) for correcting the of-block of an approxi-
mated 2-RDM. This leads to a new iterative procedure, hereafter called the [-MZ
purification procedure, which can be summarized as follows:

1. While the aa-block of the 2-RDM to be corrected is decomposed by
following Egs. (54)—(56), the of-block of this matrix is decomposed by
following Eqgs. (95)—(97).

2. When the contractions of the 2-RDM into the 0-body space do not satisfy
Egs. (13) and/or (74), these contractions are corrected by modifying the
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O-part of the decompositions of the different spin-blocks of this matrix.
Thus the 2-RDM is recalculated as follows:

2 21 2 2
Diyjyikoty = 0Disj kot + 1Disjikat +2Disjy kot (106)

As mentioned earlier, in the MZ purification procedure it is assumed that
the trace condition Eq. (13) is satisfied by the initial 2-RDM; but this is not
generally the case when considering approximated 2-RDMs.

3. The aa-block of the 2-RDM is further corrected by following the two steps
of the MZ purification procedure since the decomposition for this block
remains unchanged.

4. When the matrices 'D,, x Dg.g, lDl ,» and 'D/ s, ;—obtained from the dif-
ferent contractions of Dxﬁ «p—are not N- representable these matrices
undergo the corresponding correction. With these new matrices the one-
particle part of 2Dy, is recalculated, thus yielding a new 2-RDM:

2R 2 21 2
Dix//f:kyl/f = ODiyj/f;kxl/x + lDix//ri,kzm/f + 2Di7j/5;k11/5 (107)

5. The positivity of the afi-block of the resulting 2-RDM and its 2-HRDM is
imposed as in the MZ purification procedure, but the new decomposition
is used when calculating the correcting-matrix ZI‘Q,/;M.

With this procedure no S-representability defects are introduced into the trial
2-RDM. Thus, for instance, in the fourth step of this procedure the of-block of
the updated 2-RDM will present the following contractions into the 1-body
space:

21 2 275
Z Dixmjl;jx’"ﬂ = Z(()Diim/ﬁjim/; + lDiym/fijym/; + 2Dl mg; Jym/l)
m m
N | =
=> Diy, (108)
2 g ~/
Z Dium/;;mx/'/i = lDix.jl (109)
m
and similarly for the other contractions. The matrices 'Dys» 'Dpigs IDOc ,» and

IDB .5 stand for the corrected N-representable first-order matrices. Note that the
most difficult case has been assumed; that is, neither the condition Eq. (11) nor
the conditions Eqs (72) and (73) are satisfied by the trial >D,.,5, which implies
that the matrices ' Dy, 'Dp., 1DDC ,» and 1D%; 4 are not N-representable. A similar
reasoning can be followed for the last step of the new procedure, where the addi-
tion of the new correcting-matrix will not affect the different contractions of the
2-RDM into the 0- and 1-body space. Thus this new procedure permits one to
correct both the N- and S-representability defects of an approximated 2-RDM.
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It must be emphasized that the of-block of the 2-RDM may also be decom-
posed into two subblocks, the singlet and the triplet one. This clearly enhances
the computational efficiency of the purification of the 2-RDM, since these
subblocks may be corrected separately. On the other hand, since the singlet
and triplet subblocks are symmetric and antisymmetric, respectively, under per-
mutation of the orbital indices within the row or column subsets of labels, it
would be possible to use the unitarily invariant decomposition of Coleman
[73] and that of Sun et al. [102] to correct both the N- and S-representability
defects of these subblocks. However, this would be formally equivalent to use
the decomposition given by Eqs. (94)-(97), since this latter decomposition
implicitly presents the former ones as particular cases [77].

C. Test Calculations and Results

In order to analyze the performance of the I-MZ purification procedure and to
compare it with the MZ one, a set of calculations have been carried out. The
probes selected have been the beryllium atom, the isoelectronic ions BT, C2t,
N3*, and O**, and the Li, (Li—Li bond length of 2.75 au) and linear BeH,
(Be—H bond length of 2.54 au) molecules. The basis sets used were formed
by Hartree—Fock molecular orbitals built out of minimal Slater orbital basis
sets. The states studied were the ground states, which present a dominant
closed-shell Slater determinant configuration.

In order to get significant results, the initial data must be formed by a set of
clearly non-N-representable second-order matrices, which would generate upon
contraction a closely ensemble N-representable 1-RDM. It therefore seemed rea-
sonable to choose as initial data the approximate 2-RDMs built by application of
the independent pair model within the framework of the spin-adapted reduced
Hamiltonian (SRH) theory [37-45]. This choice is adequate because these
matrices, which are positive semidefinite, Hermitian, and antisymmetric with
respect to the permutation of two row/column indices, are not N-representable,
since the 2-HRDMs derived from them are not positive semidefinite. Moreover,
the 1-RDMs derived from these 2-RDMs, although positive semidefinite, are
neither ensemble N-representable nor S-representable. That is, the correction
of the N- and S-representability defects of these sets of matrices (approxi-
mated 2-RDM, 2-HRDM, and 1-RDM) is a suitable test for the two purifi-
cation procedures. Attention has been focused only on correcting the N- and
S-representability of the aff-block of these matrices, since the I-MZ purification
procedure deals with a different decomposition of this block.

Since the performance of the procedures was found to be very similar in all
the cases studied, attention here will mainly be focused on the beryllium atom.

Although the contractions of the approximated 2-RDM into the 0-body space
were those given by Eqs. (13) and (74), respectively, none of the different con-
tractions of this matrix into the 1-body space was N-representable. Thus the MZ



PURIFICATION OF CORRELATED REDUCED DENSITY MATRICES 227

-0.05

Lowest Eigenvalue

~0.15} | ]

123 456 7 8 9101112131415 16 17 18 19 20
Number of Purification Iterations

-0.25

Figure 1. Lowest eigenvalue of the 2-RDM and the 2-HRDM matrices at each iteration of the
I-MZ purification procedure for the ground state of the beryllium atom.

and the [-MZ purification procedures were applied. The correction of these
N-representability defects was carried out by using the method described in
Ref. [71]. Although the updated ofi-block of the 2-RDM obtained with the
MZ purification procedure presented N-representable contractions given by
Eq. (11), those given by Eqgs. (72) and (73) were not N-representable. In conse-
quence, the updated 2-RDM was not S-representable. Thus the updated of3-block
of the 2-RDM obtained with the I-MZ procedure has been used as data when
correcting the positivity defects of the D,4.,5 and the ZQ“,;M;.

In Figs. 1 and 2, the values of the lower eigenvalue of each of the two
matrices ZDW;W and ZQMM are plotted on the ordinate; and the iteration num-
bers appear on the abscissa. The results obtained when employing both the I-MZ
purification procedure and the MZ purification procedure are given in Figs. 1 and
2, respectively. As can be seen, the convergence toward positive matrices is
attained in both cases. Moreover, the procedures show similar convergence rates.

In order to study to what extent the contractions given by Egs. (72) and (73)
of the szg;aﬁ reproduce the initial N-representable 1-RDMs when correcting
the positivity defects of the ZDW;M; and the ZQ“,;W by using the MZ purification
procedure, its root mean square (RMS) deviation with respect to the initial
N-representable 1-RDMs has been calculated at each iteration. The results,
which are reported in Fig. 3, show that this type of contraction deviates from
the initial ones. Therefore it is clearly seen that the MZ purification procedure
also introduces S-representability defects when imposing these N-representability
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Figure 2. Lowest eigenvalue of the 2-RDM and the 2-HRDM matrices at each iteration of the
MZ purification procedure for the ground state of the beryllium atom.

conditions. Furthermore, when iterating the MZ purification procedure, the
. A2 .
expectation value of the S operator—calculated by using Eq. (75)—presented

a deviation from its initial value (S™) = 0. Thus in Fig. 4 this value is plotted at
each iteration.
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Figure 3. RMS deviation of the contractions given by Eqs. (72) and (73) from the initial ones at
each iteration of the MZ purification procedure for the ground state of the beryllium atom.
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Figure 4. Expectation value of the § operator at each iteration of the MZ purification
procedure for the ground state of the beryllium atom.

As mentioned earlier, similar behaviors to that of the berillyum atom were
found when studying the B+, C>*, N3, O*", Li,, and BeH, cases. The results
obtained in these calculations are reported in Tables I and II, where the perfor-
mances of the purification procedures are compared.

Finally, in order to illustrate the role of the I-MZ purification procedure in
improving the approximated 2-RDMs obtained by application of the indepen-
dent pair model within the framework of the SRH theory, all the different
spin-blocks of these matrices were purified. The energy of both the initial
(non-purified) and updated (purified) RDMs was calculated. These energies
and those corresponding to a full configuration interaction (full CI) calculation
are reported in Table III. As can be appreciated from this table, the nonpurified
energies of all the test systems lie below the full CI ones while the purified ones
lie above and very close to the full CI ones.

On the whole, these results show that the I-MZ purification procedure is very
suitable for acting upon both the N- and S-representability defects of an approxi-
mated 2-RDM.

IV. PURIFICATION PROCEDURES BASED
ON THE CORRELATION MATRIX DECOMPOSITION
OF SECOND-ORDER REDUCED DENSITY MATRICES

A very different purification strategy was initiated by Valdemoro et al. [71] in
2003 and extended by Alcoba and Valdemoro [72] in 2005. Thus these authors
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TABLE 1

Performances of the MZ and the I-MZ Purification Procedures When Applied to

Approximated 2-RDMs of Several Test Systems in Their Ground State

Purification Lowest Eigenvalue

System Procedure Iteration D,gap 2Qupap
Be MZ 1 —1.386 x 102 —2.216 x 107!
20 —3.366 x 1074 —6.463 x 1074
I-MZ 1 —1.386 x 102 —2.216 x 107!
20 —2.285x107* —5.778 x 104
B+ MZ 1 —7.468 x 1073 —1.534 x 107!
20 —2.187 x 107* —3.371 x 1074
I-MZ 1 —7.468 x 1073 —1.534 x 107!
20 —2.148 x 1074 —2.799 x 104
(os MZ 1 —6.083 x 1073 —1.163 x 107!
20 —1.825 x 104 —2.850 x 10*
I-MZ 1 —6.083 x 1073 —1.163 x 107!
20 —9.543 x 1073 —1.694 x 104
N3+ MZ 1 —5.252%x 1073 —9.298 x 1072
20 —1.878 x 107* —2.276 x 1074
I-MZ 1 —5.252%x 1073 —9.298 x 1072
20 —8.222 x 1073 —1.127 x 1074
o+ MZ 1 —4.679 x 1073 —7.771 x 1072
20 —4.835 x 1073 —9.018 x 103
I-MZ 1 —4.679 x 1073 —7.771 x 1072
20 —4.001 x 1073 —8.876 x 1073
Li, MZ 1 —4.533 x 1072 —4.026 x 107!
20 —1.808 x 10~* —3.717 x 1073
I-MZ 1 —4.533 x 102 —4.026 x 107!
20 —5.101 x 1077 —5.115x 104
BeH, MZ 1 —1.770 x 102 —2.080 x 107!
20 —3.489 x 1073 —7.321 x 1073
I-MZ 1 —1.770 x 1072 —2.080 x 107!
20 —2.266 x 1073 —1.683 x 1073

developed an alternative iterative purification procedure, hereafter called the AV
purification procedure, aimed at rendering positive semidefinite the three
second-order matrices 2-RDM, 2-HRDM, and 2-G while ensuring that they
reproduce by contraction the same ensemble N- and S-representable 1-RDM.
This procedure also ensures that this 2-RDM is S-representable in the singlet
case. What renders it possible is that this purification procedure is focused on
correcting the N- and S-representability defects of the pure two-body correlation
matrix [6, 18, 60, 64, 71, 72, 78-87]. As will be shown, this latter matrix
describes the pure two-body correlation effects present not only in the 2-RDM
but also in the 2-HRDM. Furthermore, this matrix is intimately related to the
2-G matrix; and the 1-RDM can be deduced from their different contractions.
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TABLE 11
Performances of the MZ and the I-MZ Purification Procedures When
Applied to Approximated 2-RDMs of Several Test Systems in Their Ground State

Purification RMS Deviation
System  Procedure Iteration ! D, ! D;}; 5 (82
Be MZ 1 3.311 x 1072 3.311 x 1072 —1.375 x 107!
20 2.876 x 1073 2.876 x 1073 1.495 x 1072
I-MZ 1 0 0 0
20 0 0 0
B* MZ 1 1.931 x 1072 1.931 x 1072 —7.277 x 1072
20 1.161 x 1073 1.161 x 1073 5.975 x 1073
I-MZ 1 0 0 0
20 0 0 0
2 MZ 1 1.407 x 1072 1.407 x 1072 —5.859 x 1072
20 7.495 x 1074 7.495 x 1074 3.759 x 1073
I-MZ 1 0 0 0
20 0 0 0
N3+ MZ 1 1.276 x 1072 1.276 x 1072 —6.606 x 1072
20 2.995 x 10~ 2.995 x 10~ 1.334 x 1073
I-MZ 1 0 0 0
20 0 0 0
o+ MZ 1 1.057 x 1072 1.057 x 1072 —5.591 x 1072
20 2.765 x 1074 2.765 x 1074 1.444 % 1073
I-MZ 1 0 0 0
20 0 0 0
Li, MZ 1 1.324 x 107! 1.324 x 107! —1.333 x 107!
20 1.250 x 1073 1.250 x 1073 —7.553 x 1073
I-MZ 1 0 0 0
20 0 0 0
BeH, MZ 1 2.120 x 1072 2.120 x 1072 —1.879 x 107!
20 4.966 x 1073 4.966 x 1073 5.646 x 1072
I-MZ 1 0 0 0
20 0 0 0

That is, all the information about the three important matrices 2-RDM, 2-
HRDM, and 2-G is contained and available in the pure two-body correlation
matrix. Moreover, the spin properties of both the pure two-body correlation
matrix and the 2-G matrices play a central role in this purification procedure.

A. The Pure Two-Body Correlation Matrix Within
the 2-RDM Formalism

Reconsider a 2-RDM element

202Dy 0, = (Pl al, &, a,|0) (110)
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TABLE III
Calculated Energies from Non purified and Purified Approximated 2-RDMs
Corresponding to Several Test Systems in their Ground State When Applying
the I-MZ Purification Procedure”

Energy (au)

System Nonpurified 2-RDM Purified 2-RDM Full CI
Be —14.669 —14.583 —14.587
B+ —24.358 —24.247 —24.248
c* —36.525 —36.413 —36.414
N3+ —51.195 —51.083 —51.085
o+ —68.364 —68.251 —68.252
Li, —14.997 —14.836 —14.847
BeH, —15.914 —15.741 —15.764

“Full CI energies are quoted as references.

and reorder the operators of the rhs term in such a way that one has a string
of alternating creator and annihilator operators. One of the possible reorderings
is

(Wla,af, ay,an,| V) = ;1 (V]aj, &, V) — (V|al &, 4] V) (111)
Inserting the unity operator
I=|U)(¥|+ Y W) (112)

UL

between the operators a;, and a a , in the last term of Eq. (111), it follows that the
2-RDM may be decomposed as

2 2 2
21Dy kot = “Aigjskot, T Cisjrkol, (113)

where the matrices 2.4 and 2C have, as in any tensor decomposition, the same
row and column indices as the 2-RDM from which they derive. The structure of
these matrices, is respectively,

2 1 1 1 1
Aiajg/;k,,la/ - Di,,;k(, Djﬂr;lnr - 50"0'/ Dj,,;ka igily + 50’ J’ tr 1, qu;kg (1 14)
and

ZCiO'jg’:,ko‘l(f’ = Z <\Il|&]a &k‘7|\1’,><\1},|&;{“/ &lo/|\1’>
VA
1 oo 5)) N\
= Z DIU, ko Ja’« o (115)
U £Y
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According to Eq. (114), the 2 A matrix depends only on the 1-RDM,; it is a
sum of three terms: while the first term describes a classical system of indepen-
dent particles, the second and third terms may be connected with the electron
self-repulsion. These self-repulsion terms, represent respectively, the exchange
and that part of the correlation effects that may be described in terms of the
1-HRDM [79]. On the other hand, the 2C matrix—first reported in 1997 [78]
and subsequently thoroughly studied [79-83, 86]—describes a dynamic correla-
tion mechanism where two electrons undergo virtual excitations and deexcita-
tions in order to avoid each other [79], causing the polarization effects of the
electron cloud. This matrix was called pure two-body correlation matrix
(2-CM) because, as shown in Eq. (115), it cannot be factorized into one-body
RDMs/HRDMs; and, as will be shown, it does not contribute to the contraction
of the 2-RDM into the one-electron space.

1. Basic Properties of the Pure Two-Body Correlation Matrices

A very important property of the 2-CM is that [15, 83] the decomposition of
the 2-HRDM yields a two-body hole correlation matrix that coincides with
the 2-CM. Thus

2 21 2
20°Qij oty = “Aigjykoty + “Cigjikal, (116)
where
21 1 1 s 1
Aijpiaty = Qik, Qi — 0.0 010 Qi (117)

Contrary to the 2-RDM and 2-HRDM, the 2-CM is neither positive semide-
finite nor antisymmetric. Indeed, the permutation of an index leads to the follow-
ing relation:

2 _ 1 1 1 1 2
Ciajgl;lgrkg = "Di,u, ng« dy T 06 Di,u, de;kg — Cia]},/;kalg/ (118)

Since the 2-CMs are not antisymmetric, four different contracting operations
canbe performed onthem [71, 79, 83]. Two of these contractions, which can be con-
sidered ‘“‘natural” because they derive from the contraction of relation Eq. (113), are

> Cijpkiy =0 (119)
J

and
Z 2 C‘(f[[[/;j(fka'/ = 0 (120)
J

It is because of these two relations that no contribution of the >C appears in the
contractions of Eq. (113).



234 D. R. ALCOBA

The other two less obvious contractions are

2

S 2Cipisk = (K = Np) 'Dyy, + 850 ((D='D%), (121)
J

2

> 2 Chivi = No 01k = 'Dijsy) + 000 (D="D7), o, (122)
j

These last two contractions (Egs. (121) and (122)) are also very important since
they lead to the 1-RDM and therefore the corresponding 2-RDM and 2-HRDM
[24, 25, 83]. Hence it follows that the 2-RDM N-representability problem may
be studied equivalently by focusing on the N-representability conditions for the
2-CM matrix [71, 83]. Thus the set of relations given above constitutes a set of
N-representability conditions—strongly exacting and necessary conditions—not
only for the 2-CM matrix but also for the 2-RDM as well as for the 2-HRDM.

Another important property of the 2-CM matrices is that they are closely
related with the positive semidefinite 2-G matrix [15, 83]. The interrelations
between these two matrices are

2 2
Cirjikoty = "Gikyi iy (123)

and,
2 _ 2
Cijyitiks = “Gislyikojy (124)

That is, both the 2-CM and the 2-G matrix have common elements, but a
given element occupies different positions in each matrix. In other words,
while the labels of the row/column of the 2-CM refer, as in the 2-RDM, to
two particles/two holes, the labels of the row/column of the 2-G matrix refer
to particle-hole/hole—particle. Thus, although both the 2-CM and the 2-G
matrices describe similar types of correlation effects, only the 2-CM describes
pure two-body correlation effects. This is because the 2-CM “‘natural” tensorial
contractions vanish, and thus there is no contribution to the natural contraction
of the 2-RDM into the one-body space; whereas the 2-G ‘“‘natural’’ tensorial con-
tractions are functionals of the 1-RDM.

2. Spin Structure and Properties of the Pure Two-Body
Correlation Matrices in the Singlet Case

Because the 2-CM and 2-G matrices are directly related through Eqgs. (123) and
(124), the 2-CM may also be decomposed into a sum of spin components. Thus
one may write

2 2 2 2
Ciaja/;kgr/la_/// = {sM'} Ciaig/?ka//lg”’ + {S+1.M"} Cigjg/:ko.//lo./// + {S—1.M"} Cio-jg/;ko-//lo-/// (125)
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where

WV L2
2 o 1 SMZF gyt 1 s ESM
{SI-M,} Cio‘ja’;ko‘”la”/ = : : Dig;kar/ Djo’:la'” (126)
Uy #Vsm
S M \

and S’ may take the values S, S + 1, and S — 1. Furthermore, each of these spin
components are interrelated with those of the 2-G matrix according to

2 2
sy Cigjyentn = (5.7} Gigkopil mj,s (127)

Hence the general relations addressed in Section II are also valid for the
2-CM. Thus the different spin components of a 2-CM are also related when this
matrix corresponds to a pure spin state with spin quantum numbers S and M; and
similarly for the 2-CMs corresponding to different states of a given multiplet.

In the particular case of singlet states, it can be shown that all the spin-blocks
of the 2-CM are proportional to *Cyp.,4. Thus only this spin block is needed to
determine the two-body correlation matrix.

According to Eq. (125), this 2-CM spin-block may be decomposed as

zcixj/;;kxl,; = {O,O}ZCi,J,,;k,/,, + {1,0}2Ciyj/,;kml,, (128)

In order to be able to correct each of these 2-CM spin components separately, it is
necessary to obtain a relation where a component is given in terms of the 2-CM
and eventually also of the 1-RDM. These relations, which have recently been
reported in Ref. [72], are

001 Cigsitty = “Cijgitaty +3 ('Dit, ' Qi — *Ciitaky) (129)
and
(1.0 Cipiaty = % CCijpitty — 'Di, IQ_,',f;k,;) (130)
Conversely, it follows that

2 2 2
Cijphaty = 3 (2 100} Cigjpitaty + (00} Cijptuks)
_% (lDiy;kx le/f:l/; +2 ]Di,;lx le,;:,k/;) (13])

and

2 1 1 1 1
Cixi/!§kocl/f = % ( Dim:,kq Qj/];]/j + Qi/jik/} D]oclq)
+ {1«,0}2Cim/./1’3[7k/i + {I,O}ZC'xi/x;kzlﬁ (132)
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These relations show that each of the spin components presents a one-to-one
correspondence with the ?C,,,4 spin-block, and therefore with the entire corre-
lation matrix. This is because the 1-RDM—and, consequently, the 1-HRDM—
appearing in Egs. (131) and (132) can be obtained from the different contrac-
tions of the spin components. Thus, while it follows from Egs. (118), (119),
(120), (129), and (130) that

Z {00} zcixiﬁikxi/f = Z {o0,0} 2C'xi/fiiuk/f =0 (133)
J J

Z {1,0} zcixi/f:kxi/r = Z {1,0} 2C'7i/fy‘ak/x =0 (134)
J J

Egs. (118), (121), (122), (129), and (130) lead to

(2K N), 2
Z {0,0} CyJ/i.hk/} - 4 Diz;ky + (ID -'D )ix:kx (135)
2 N 1 1 12
Z {00} Chaipkajy = 4 (9ik = Diggy) + (D =Dy, (136)
(2K N),
Z {1,0} Clad/{_/azklf == 4 Diu;kq (137)
N
Z {1,0} 2C-1i[3:k7j[3 = _Z (5i,k - lDiﬁ;kﬁ) (138)
J
and therefore
2 N 12
Z {0,0} Cix/’/i;jii/f = R (2K —N+4) - Z (‘D )iz;i,( (139)
ij i
5 N
> 110 *Cigyiiy = —g (2K =N) (140)
iy

Equations (135)—(138) describe a set of unusual contractions, since the sum
labels run over orbitals, which multiply different spin functions. In fact, they are
exact only in the singlet case, where S, |Wo0) = S_|¥o0) =0, 'D,,, = 'Dgyp,
and N, = Ny = N/2.

In order to solve Eqs. (135) and (136), one may follow the method reported in
Refs. [24, 25]. Thus each of these equations has two solutions but one of the solu-
tions can be ignored, since it does not correspond to an ensemble N-representable
1-RDM.
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When the 2-CM is exact, all the 1-RDMs obtained from Egs. (135)—(138)
coincide; however, in practice one can only hope that the differences among
these matrices are small. These latter properties constitute important
S-representability conditions in the singlet case and are at the center of the N-
and S-representability purification procedure, which will now be described. In
what follows we will identify Ipr D4, 1D’, and 'D* with the solutions of
Egs. (135), (136), (137), and (138), respectively while keeping the symbol 'D
for the initial 1-RDM, which remains fixed throughout the iterations of the
AV purification procedure.

B. The Alcoba-Valdemoro Purification Procedure

In order to be as precise as possible, the different steps of the AV N- and
S-representability purification procedure will be described in the same order
as they appear in the flowchart of the computer code.

1. Initial Data.

(a) The initial data are the trial 2D( ) Y- and the corresponding 1-RDM, 'D,
which has previously been rendered ensemble N-representable. This is
achieved as follows: the 1-RDM matrices are diagonalized. Then the
negative eigenvalues are made equal to zero, and the matrix is renorma-
lized iteratively while keeping all the eigenvalues equal or less than
one. The subroutine that performs this task is very efficient and obtains
an N-representable 1-RDM extremely close to the initial one.

(b) From the initial 2-RDM spin-block, the corresponding ZCSI);)M is
obtained by applying formula (113). '

2. Imposing the D/Q N-Representability Condition on the 2-RDM/2-HRDM.

(a) The ZQS;;)O([; is now formed using relation (116).

(b) The 2-RDM and the 2-HRDM are dlagonahzed Let us call {|x,)}/
{x,} the eigenvectors/eigenvalues of the ZD( ) spln -block. S1m1larly,
let us call {|x,)}/{X,} the elgenvectors/elgenvalues of the 2Qaﬁ)1ﬂ
spin-block. The new 2-RDM and 2-HRDM are then reconstructed as

1
DL = 3 X (iadglp) (5 el (141)
4
and
1 _ e — _
2QU gy = > g (iadpliig) (Folkadg) (142)

q

where |iyjg) and |k,lg) are two-electron Slater determinants. The sym-
bol ¥/ indicates that only the positive eigenvalues are considered.
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The zDa fiof and 2Q(1ﬁ> 2 Are then multiplied by a factor in order to
renormalize their trace to the value (N,Nj) and (K — N,)(K — Np),
respectively.

Implications of the D- and Q-Conditions on the 2-CM. The errors of the

2-RDM and 2-HRDM are

2 _2ny(D) 20
Fladﬁ skalp = Dl dpikadp Dixj/;;kzl/; (143)
21 1) 2(0)
Fixf/i§kacl/i = Qid‘ﬁ;kiz,; - Qizj,;;kal,; (144)

Since the 1-RDM is kept fixed, these errors should necessarily correspond
to those of the 2C ) fiof Thus the new approximation for the 2-CM is
obtained as follows

1 0 -
zchl)ﬂ;kx/,; = zchl)ﬂquzﬂ +3 Clijnty + Tigyitaty) (145)

. Imposing S-Representability Conditions on the 2-CM. In order to impose

the S-representability conditions on the 2-CM, we proceed by correcting
its spin components in a sequential manner.

(@) The (0 2C spin component.
(i) Due to Eq. (129), the 9,0y CGB ap is obtained.

2(1) _ 11 1 2(1) 42 (1)
{0,0} Cixj/i?"xl/i - % (‘D Qjpiky — Cly]ﬁ lxk/)’) C’x//f kalp (146)

(ii) The {oﬁo}zGiﬁ pp Matrix is obtained according to the relation

100} Gissitgis = (0.0} Ciigikats (147)

This matrix is rendered positive by carrying out the same opera-
tions described in step 2 for the 2-RDM. The renormalization fac-
tor in this case is chosen so as to yield the trace given in Eq. (139).
(iii) From the resulting {o,o}zGii);/;/; a new {O,O}ZC%{W is obtained.
(iv) From Egs. (135) and (136) the corresponding 'D? and 'D? are
obtained.
(v) Equation (131) leads to a new 2C)

2 _2 (2)
Cld/s kalp = 3 (2{0 0} C’x]/f kxl/i *+ {00} Cld/s ]xk/f)

1 /1 1 1
-3 ( Di;ka ]/i Is +2 Dp:ala jqﬁi,k/f) (148)
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Note that only at convergence does this relation coincide with
Eq. (131).

(b) The {]70}2C spin component. The key equations in this part of the pro-
cedure are Eqgs. (130), (137), and (138), while the underlying reason-
ing linking them is similar to that applied in steps (a) (i)—(iv). Note
that in this case the gy GW .pp» Which is obtained according to the
relation

(10 Giskitip = 11,04 Ciaiyikoly s (149)

must be rendered negative semi-definite [72] and must be renorma-
lized to present the trace given by Eq. (140). Moreover, the
1-RDMs obtained from the contractions of this 2-CM spin compo-
nent are 'D” and 'D*. Equation (132) leads to a new 2c;,
2 =1Dr, 'Q, +'Q D+ 002t el
iyjpikalp 2 iniky I/i lﬁ ip; kﬁ ]x o {10} “iyjgiliky T {1,0} xl/i kol
(150)

Note that at convergency Ipr = Ips = ID.

5. Obtaining the Final RDMs at Each Iteration. The RDMs constituting the
initial data for the next iteration are recalculated by aplying Eqs. (113) and
(116).

6. Consistency Tests. A set of consistency tests are carried out at the end of
each iteration. These tests check the extent of coincidence of the five
1-RDMs 'D, 'D?, 'DY, 'D", and 'D*, as well as the convergence toward
the value zero of the RMS deviations of the natural contractions of the
spin components of the 2-CM.

The results obtained in the calculations of the ground states of several test

molecules are reported in the next section.

C. Test Calculations and Results

In order to analyze the performance of this purification procedure and to com-
pare it with those reported in the previous section, the same atomic and mole-
cular systems in their ground state were selected as test systems. Again, the basis
sets used were formed by Hartree—Fock molecular orbitals built out of minimal
Slater orbital basis sets and the initial data were chosen to be the approximate
2-RDMs built by application of the independent pair model within the frame-
work of the SRH theory.

Since the results obtained for each of the test systems studied show a very
similar performance, only the results obtained for the beryllium atom will be
reported in detail.
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Figure 5. Lowest eigenvalue of the 2-RDM and 2-HRDM at each iteration of the AV purifica-
tion procedure for the ground state of the beryllium atom.

The rate of convergence toward positivity may easily be appreciated by plotting
the lowest eigenvalue of each of the different matrices at each iteration. Thus the
simultaneous convergence toward positivity of the 2-RDM and 2-HRDM is shown
in Fig. 5. As can be seen, convergence in both curves is smooth and rapid. After
twenty iterations the negativity of these matrices is negligible (the lowest eigen-
values of the 2-RDM and 2-HRDM are —0.00023 and —0.00044, respectively).

Figure 6 shows how the S-representability is attained. Thus it can be seen
from this figure that the {030}2GM;/;/; / { 1"0}2Gm;/;/; spin-block converges very satis-
factorily on a positive/negative semidefinite matrix. After twenty iterations the
lowest/highest eigenvalue of these two matrices is —0.00010 and 0.00022,
respectively. As was mentioned in Section II, these conditions are much more
exacting than the well-known G-condition.

A very important reliability consistency test of the procedure is shown in
Fig. 7, where it can be seen that the convergence of the four initially very dif-
ferent matrices 'D”, 'D?, 'D", 'D* toward the 'D, which is kept fixed throughout
the iterations, is clearly excellent; indeed, after twenty iterations the RMS devia-
tion of these matrices from 'D are 0.00008, 0.00008, 0.00005, and 0.00010,
respectively. Another set of tests confirming the consistency of the results is
provided by Fig. 8. In this figure the RMS deviations from zero of the natural
contractions of the spin components of the 2-CM—and hence of the 2-CM—
are shown. Clearly, these deviations converge toward zero very rapidly; at itera-
tion 20 the RMS deviations of the natural-left and natural-right contractions of
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Figure 6. Lowest eigenvalue of the {OVO}ZGW;,;,g and highest eigenvalue of the {IVO}ZGW;,;,g at
each iteration of the AV purification procedure for the ground state of the beryllium atom.

{O,O}ZCaﬂ;mﬁ are 0.00015 and 0.00015, respectively, while those of {1,0}2Caﬁ;aﬁ are
0.00013 and 0.00013, respectively.

As mentioned earlier, similar behaviors to that of the beryllium atom case
were found when applying the procedure to the approximated 2-RDMs of
the BT, C¥+, N3+, O*t, Li,, and BeH, cases. The results obtained in these
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Figure 7. RMS deviation of the Ipr 12, D7, and 'D° from the fixed 1-RDM 'D at each itera-
tion of the AV purification procedure for the ground state of the beryllium atom.
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