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A New Foundation

In The Topology of the 2 x 2 Games we jack up the entire edifice of
2 x 2 game theory and put a foundation under it. Our target audience
is the next generation of teachers and researchers, and our goal is to
provide a systematic approach to the 2 x 2 games that is both easy to
learn and powerful.

The core of the book is the Periodic Table of the 2 x 2 Games in
Chapter 9. It lays out relationships among all 144 2 x 2 strict ordinal
games in a format that is very like the Periodic Table of Elements. If
we have been successful, the table will be an indispensable tool for
researchers and teachers in any field that uses game theory.

The structure of the table is a direct result of the structure of the
players’ preferences. Preferences induce a topology on the 2 x 2
games, hence the name of the book. The topology yields new infor-
mation about the 2 x 2 games. Chapter 5, for example, investigates
the Prisoner’s Dilemma(PD). The Prisoner’s Dilemma occupies a
unusual, even central position among the 2 x 2 games. It lies at a
kind of crossroads in the topological space. Exploring the neigh-
bourhood of the Prisoner’s Dilemma allows us to identify asymmet-
ric versions of the PD we call Alibi Games. With the PD they make
up the Prisoner’s Dilemma Family (PDF). The Prisoner’s Dilemma
Family in turn forms the boundary of the class of games we identify
with the social dilemmas.

Symmetries in the topological space of the 2 x 2 games also
yield new results. In Chapter 8 we present a new approach to what
Schelling [33] called the “mixed motive” games. We introduce what
might be called a topography of the games based the degree of con-
flict implicit in the payoff structure.

Mathematically inclined readers should be warned. The book is

XV



Xvi A NEW FOUNDATION

really about 2 x 2 games, not topology. Topology is essential to the
analysis, but only those elements that make the 2 x 2 games under-
standable are introduced. Concepts from graph theory and the the-
ory of groups are also introduced where they provide useful insights
about the structure of the 2 x 2 games. Readers new to topology and
group theory will find that, almost in passing, they have established a
beachhead for further study in these topics, as well as practical tools
that make game theory more accessible.

And they do make the 2 x 2 games more accessible. We have
been pleasantly surprised to find that second-year economics stu-
dents can quickly learn to apply the model to construct and to de-
scribe all the most famous games using the expositional devices we
introduce.

The fact that the topology of the 2 x 2 games is so simple and
elegant raises a question. Why was it not discovered much earlier?
The reason, we suspect, is simply that pioneers in the new field of
game theory built very quickly. Von Neumann and Morgenstern [39]
laid down a very solid foundation, but the floor space set aside for the
2 x 2 games turned out to be inadequate. New rooms were attached
to the main structure in an altogether haphazard manner.

In an attempt to provide some order, Rapoport and Guyer [23],
Rapoport, Guyer and Gordon [24] and Brams [5] produced typolo-
gies of the 2 x 2 games. Typologies, however, belong to an early
stage of science, to be replaced as soon as the deeper relationships
are understood. Members of the plant kingdom, for example, might
be seen as falling into one of two types — big and small. Under this
typology, bamboo is of the same type as the alder tree. In evolution-
ary terms, bamboo is actually closer to wheat than to alder. Botany
long ago abandoned typologies in favour of the “phyletic” approach
based on a strict concept of what it means to be related.

To get beyond the typological approach requires a notion of what
it means for games to be related. It turns out that preferences pro-
vide the appropriate notion of closeness. The topology induced by
preferences is beautiful and it makes the systematic treatment of the
2 x 2 games possible.
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The organization of the book

Chapter 1 begins with a brief introduction to game theory. The main
innovation in Chapter 2 is to shift the analysis from the space of
strategies to the space of payoffs. This dual to the familiar matrix
representation provides an intuitive introduction to the 2 x 2 games,
but it also provides a convenient foundation for the topological anal-
ysis of Chapter 3. The order graph introduced here allows us to
present and compare games in payoff space.

Order graphs rely on the inducement correspondence for the Nash
situation, a powerful concept developed by Greenberg [10]. The in-
ducement correspondence is particularly suited to the payoff-space
representation.

We also present a simple indexing system based on the topolog-
ical relationships between games. Chapter 3 introduces one of the
basic reference tools, a set of four figures show order graphs for all
144 games arrayed according to our indexing system. The figures
are the basis of the Periodic Table of the 2 x 2 Games developed in
Chapter 9.

In Chapter 3 we show how preferences induce the topology on
the set of games and generate a graph with 144 nodes and 432 edges.
In the graph, games that are related economically are near each each
other topologically. Investigating the remarkable regularities and
symmetries of this structure is the main enterprise of this book. Be-
cause the simplest language for describing the subspaces and the
subgraphs comes from group theory, we introduce several useful
terms and concepts from graph theory.

Chapters 4 to 8 explore specific topological subspaces. Proper
subspaces typically contain games that are related in an economi-
cally interesting way. For example, seven of the best known games
are in a group of 12 symmetric games picked out by applying the
“symmetric operators”. Chapter 4 examines this 12-game subspace
and goes on to identify symmetries, rotations and reflections, includ-
ing the special sense of reflection used by previous authors. Chap-
ter 5 examines the Prisoner’s Dilemma and identifies a class of re-
lated games we call the Alibi games.

Chapters 6 and 7 examine pipes and hotspots, the most peculiar
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topological features of the space of the 2 x 2 games. These chapters
reveal that the map of the 2 x 2 games cannot be embedded in a
surface with fewer than 37 holes. This may be the most peculiar and
useless fact in the entire book. It is closely related to the fact that
the Periodic Table of the 2 x 2 games is considerably more complex
than the Periodic Table of the Chemical Elements. The hotspots
and pipes are like wormbholes that link regions of the periodic table
through other dimensions.

There are no zero-sum games among the strict ordinal games,
but there are constant rank-sum games, both with and without Nash
equilibria. There are also games of pure conflict that are not constant
rank-sum and games that have been called “no-conflict” games [23]
[24][5]. Chapter 8 treats the games of pure conflict, pure common-
interest and mixed motives systematically and proposes a new cate-
gory, the Type games.

Chapter 10 shows how the topological approach can be applied
in a continuous space. Results from evolutionary experiments in the
continuous subspace of the symmetric games show that, while the
topological relationships continue to hold for real-valued games, the
boundaries of the ordinal games are not always the relevant behav-
ioral boundaries.

Topology lends itself to a diagrammatic exposition. The 94 fig-
ures provide a flexible system for analysing the 2 x 2 games.



Chapter 1

2x2 games and the strategic
form

The 2 x 2 games are usually the first that students meet and proba-
bly the last they forget. Special cases, like the Prisoner’s Dilemma,
Chicken, Coordination game and the Battle of the Sexes, are the
most familiar formal descriptions of social situations in all of the
social sciences. Specific examples are routinely discussed in philos-
ophy, biology, law, sociology, politics and every other field in which
strategic situations arise.

Simplicity gives the 2 x 2 games their power: they provide re-
markable diversity with the absolute minimum of machinery. The
strategic situation involves only two players, each with only two al-
ternatives. There are only four possible outcomes and each outcome
is described by a single payoff for each player. A game is therefore
fully described by just 8 numbers.

The apparent simplicity of the 2 x 2 games is deceptive. The
eight numbers yield a class of 144 problems of remarkable richness
and complexity. And while individual games have been discussed in
detail, the relationships among the games have never been mapped.
Instead, the 2 x 2 games are almost always dealt with anecdotally.

The goal of this book is to present a systematic framework for the
2 x 2 games. In this chapter we present the standard representation
and discuss some of the core concepts in game theory. Nothing in
this chapter should be new for readers familiar with game theory. For
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common mapping to
Form representation from payoffs for
Strategic matrix combinations persons
of plans
Extensive tree contingency  persons
plans
Characteristic  list possible coalitions
Function coalitions Or persons

Table 1.1: Standard forms

others the chapter will provide a useful overview and an introduction
to the conventions for describing games.

1.1 Form and solution

Abstracting vital information and suppressing the irrelevant is at the
heart of any formal approach. Game theory is a formal approach to
analysing social situations employing highly stylized and parsimo-
nious descriptions.

Form

One important and standardized block of information in the formal
descriptions used by game theorists is called a game form. A form
specifies the payoffs associated with every possible combination of
decisions. There are several widely used forms, including the strate-
gic form, typically presented in a matrix, the extensive form, which
is usually represented as a tree, and the characteristic function form,
expressed as a function on subsets of players.

The form is a minimal representation of a social situation. It
is almost always supplemented with variable elements that fill out
the description. These elements include specific rules of play and
the timing of moves, descriptions of the information players have
about the situation, and even of the opinions and thought processes
of players. Figure 1.1 illustrates the way elements are introduced on
top of the basic form.
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solution concept

linformation| [rules| |players’ thoughts

strategic

payoffs  choices, strategies  players form

Figure 1.1: Elements of a game model

Solution

The analysis of a game is usually directed toward determining what
might happen when players interact given the rules and available
information. “What might happen” is the solution. A solution de-
scribes both the actions of the players and the payoffs that result!.

The solution for a particular situation is “picked out” by a so-
lution concept, which is ultimately a statement about what matters
for the players. An example may help. Imagine that players only
care about avoiding low payoffs. Players like this would identify the
worst payoff associated with each alternative and then choose the
alternative with the best worst outcome. Attempting to maximize
the minimum is a feature of the players’ behaviour and ultimately
of their thinking. To say that the outcome is determined by such
thinking is to impose a solution concept.

A solution concept allows us to read from the payoffs that are
possible in a given situation fo the actions that would be chosen by
players of a certain type. It generally yields a subset of the possible
payoffs as a solution. Occasionally a sensible solution concept will
select an outcome that seems altogether unacceptable, or even fail to
select an outcome. Payoff patterns that produce problems for sensi-
ble solution concepts are especially interesting. Multiple solutions,

IFor Von Neumann and Morgenstern “The immediate concept of a solution is
plausibly a set of rules for each participant which tell him how to behave in every
situation which may conceivably arise.” They go on to call the pattern of payoffs
resulting from the play of a game an “imputation” and identify the imputation, if
it exists with the solution. Since a unique imputation does not always exist, they
note that the “notion of a solution will have to be broadened considerably” ([39]
p-34).
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non-existent solutions and unacceptable solutions all occur among
the 2 x 2 games. Furthermore, these problematic payoff patterns ap-
pear to describe real situations.

Our analysis focuses on the payoff structure rather than the be-
haviours or solution concepts. We stop where most analysis begins.
This restriction is less limiting than it might seem because players
are motivated by payoffs, and their thoughts about how to play must
be related in some systematic way to the structure of payoffs. Any
solution concept, similarly, has to relate behaviour to the pattern of
payoffs. Nothing can be extracted that is not already implicit in the
form. The form of a game fills a role rather like the set of axioms and
rules for reasoning in Euclidean geometry. What is extracted from
the form, however, may depend on features of the situation that are
not part of the form itself.

1.2 2x2 games in strategic form

A game in strategic form is just a function with one input for each
player (a strategy) and one output for each player (a payoff). More
formally, a game in strategic form is a vector function and its do-
main, the strategy space. The strategy space is just the set of all
possible combinations of strategies, and therefore incorporates both
the player and strategy sets.

The ordinal 2 x 2 games are the simplest of all games in strategic
form, with only two players, both of whom choose once between
the two actions available to them. A player without at least two
alternatives has no choice and his or her decisions cannot matter.
A situation with less than two players that matter has no strategic
interactions and is not a game.

The two players constitute the player set. The actions available
to the players, called strategies, make up the strategy sets for the
players. Individual strategies may be as simple as the selection of a
destination from a signpost or as complex as Napoleon’s battle plan
for the conquest of Russia. Because we are interested in the payoff
function, we can suppress detailed information about the chain of
actions that make up a particular strategy.



1.2 2 x2 GAMES IN STRATEGIC FORM 5

The expression “2x2 game” is simply a description of the strat-
egy space. It says that the strategy space is the cross-product of two
strategy sets, each with exactly two alternatives. There are therefore
four strategy combinations. Similarly, a 3 X 4 game is a two-player
game in which one player has three alternatives and the other has
four. In the 3 x 4 game there are 12 possible outcomes. A 2 X2 x 2
game has three players, each with two alternatives.

Equivalent games

With four outcomes and two players, a 2 x 2 game is completely
described by eight numbers. An array with eight numbers is just
an address in an 8-dimensional Cartesian payoff space, and there
are uncountably many 2 x 2 games, each fully described by an 8-
number address. One goal of this book is to present a useful way to
divide this infinite 8-space into a manageable number of meaningful
regions.

The regions are defined using two simplifications: (i) we treat
sets of games that are equivalent under strictly monotonic transfor-
mations as equivalence classes, and (ii) we rule out indifference.

Any game in one of the classes can be converted into any other
in the same region by some strictly monotonic transformation. Since
a monotonic transform conserves order, all the games in an equiva-
lence class are ordinally equivalent. These equivalence classes par-
tition the 8-dimensional payoff space for the 2 x 2 games into 144
regions. An ordinal 2x2 game is a 2 X 2 game with a payoff function
that maps from the strategy space to these equivalence classes.

Ruling out indifference eliminates ties in the payoffs for either
player, restricting us to the strict ordinal games. It also creates a

discontinuity between the equivalence classes?.

2Each region is an open set, since games with outcomes that are not strictly
ranked — games with ties — can occur only as the limit of a monotonic transform of
a game with strictly ranked outcomes. They appear in the space of measure zero
between regions.
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Column Player’s
Strategies

| L R

Row Player’s U|l14 3,3
Strategies D |22 41

Table 1.2: Payoff matrix: standard notation for the strategic form

Representative games

Any four ordered elements will serve to represent the ordinal equiv-
alence classes. In keeping with common practice we use payoffs
constructed using 1, 2, 3 and 4 for each player. The resulting set of
representative games is discrete subspace of the continuous payoff
space. The Topology of the 2 x 2 Games is about the relationships
among these representative games.

1.3 Conventions for payoff matrices

There is a remarkably economical notation for keeping track of which
of the eight numbers is assigned to which player in which situation.
A matrix like the one in Table 1.2 is often called the payoff matrix>.
If we have the payoff matrix we have all the information for a game
in strategic form 4.

The game illustrated in Table 1.2 is the Prisoner’s Dilemma, the
most famous game of all. Notice that the two players are named and
that for each player two possible actions are identified. The names
of the players and the strategies can be changed to suit the situation
without affecting the nature of the game. The payoffs are those of
the representative game. Any ordinally equivalent game is also a
Prisoner’s Dilemma.

It is convenient to name the row player “Row” and the column

3The matrix of vectors describing a 2-person game is often called a bi-matrix
because it can be written as two separate payoff matrices, one for each player.

“Von Neumann and Morgenstern called this the normal form but strategic form
is more descriptive and is now preferred by most writers.



1.3 CONVENTIONS FOR PAYOFF MATRICES 7

player “Column”. In the game described in Table 1.2, Row can
choose either U or D. Column can choose L or R. If Row were to
make a commitment to choosing U, then Column would only need
to consider the payoffs in the row labelled U. Having made such
a commitment, Row would still not know the outcome of the game
unless she could predict Column’s decision.

A strategy combination (often called a “strategy profile”) identi-
fies a possible outcome. For example, if Row chooses U and Column
chooses L, the payoffs for the two players are given in the row la-
belled U and the column labelled L. For a game in matrix form, a
strategy combination is a kind of “matrix address”. It is conventional
to write strategy combinations in parentheses, with the row player’s
strategy first: (U,L). The same convention is used for writing pay-
offs, so the payoff pair (1,4) tells us that Row gets 1 if the strategy
combination (U, L) is selected and Column gets 4.

We usually think of the 1 and 4 as representing utility or some
generalized measure of joy, but the numbers could represent pesos,
dollars or quantities of rice. What matters is that the players pre-
fer outcomes with larger numbers attached. We generally refer to a
combination of strategy pair and payoff pair in a given game as a po-
tential outcome. If the outcome is picked out by a solution concept
it is “in the solution set”. If the solution concept picks no outcome
the solution set is empty.

Four matrices per game

Games presented this way are often called matrix games. The term is
imprecise in the sense that a single 2 x 2 game may be represented by
any of four matrices with the same payoff pairs arranged diagonally
opposite. The four matrices can be produced by interchanging rows
or columns. The payoff matrices are “identical under an appropriate
re-labelling” of the strategies. If players “see through” labels, the
games will be behaviourally equivalent. The equivalence may be
irrelevant in the real world. If, for example, one strategy is labelled
“good” and the other “bad”, reversing the labels might well affect
behaviour.

The matrix representation illustrates how a formal deep structure
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can be captured in an apparently simple surface structure. The fact
that the rows and columns are at right angles to each other, for exam-
ple, reflects the idea that the strategies available to the two players
are independent. Independence means that it is possible to speak of
changing Row’s strategy without changing Column’s strategy. An
assumption about the nature of the world is displayed spatially in
the matrix.

Other theoretical constructs appear as surface features in the ma-
trix. The strategy sets for the two players are shown as the labels
for the rows and the columns. The strategy space, S, is the set of
cells in the body of the matrix. Each cell is labelled with its strategy
coordinates; S = {U,D} x {L,R} = {(U,L),(U,R),(D,L),(D,R)}.
The number of outcomes in the strategy space is simply the prod-
uct of the numbers of strategies in the strategy sets of the individual
players which is the number of cells in the matrix.

The strategy space is the domain of the payoff function. Since
the matrix attaches a pair of payoffs to every cell in the strategy
space, the bi-matrix is precisely the payoff function, mapping from
the strategy space to payoff space. The usual payoff space is the real
number plane, R, but for the representative ordinal games it is the
discrete space {1,2,3,4} x {1,2,3,4}.

1.4 Summary

The 2 x 2 games integrate a remarkable amount of theoretical ma-
chinery in a deceptively simple package. This chapter has introduced
basic concepts in game theory and key features of the 2 X 2 games in
strategic form. It has also described a partition of the space of 2 x 2
games into a relatively small number of regions, each represented by
an ordinal game. The set of ordinal games is the subject of this book,
and the task of describing and counting the ordinal games begins in
the next chapter.



Chapter 2

144 games

2.1 Introduction

In this chapter we introduce a simple way to represent the 2 x 2
games. The main innovation is shifting analysis from the space of
strategies to the space of payoffs. This dual to the familiar matrix
representation provides an alternative introduction to game theory,
but it also provides a convenient foundation for the topological anal-
ysis of Chapter 3.

We use a device we call the order graph and the graphical version
of the inducement correspondence for the Nash situation. The order
graph is an expositional tool that allows us to present and compare
games visually. The inducement correspondence is a concept devel-
oped by Greenberg [10] that is particularly suited to the payoff-space
representation. We combine the two constructs to provide a simple
way to count the strictly ordinal 2 x 2 games, then go on to explain
the way we label individual games.

Numbering systems in the literature are essentially arbitrary, so
we introduce a simple indexing system based on the topological re-
lationships between games. A set of four reference figures shows
the order graphs for all 144 games arrayed according to our index-
ing system. We also discuss the patterns that appear at the level of
the order graph.

Our main objective in this chapter is to establish terminology
and graphical conventions for later chapters. Readers familiar with
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game theory will find order graphs, the inducement correspondence
and our indexing system to be useful tools, and the rest mildly un-
conventional but elementary. Readers who are less familiar with the
2 x 2 games will find the approach provides the framework they need
to deal with a huge and constantly expanding literature.

2.2 The strategic form in payoff space

The dual of the payoff function defined over the strategy space is a
representation defined in payoff space. The payoffs to the players are
the domain and the inverse function' maps payoffs to the strategies
that produce them. This dual is particularly useful for our analysis.

Column’s 4 @ (U, L)

payoffs
Column's 3+ e (U.R)
Strategies
| L R 2+ o@D
Row's U|1,4 33 (D, R)
Strategies D |22 41 1 i i ®

1 2 3 4
Row’s payoffs

Figure 2.1: Payoff combinations for the Prisoner’s Dilemma

A two-person game has a two-dimensional payoff space. In the
following development, Row’s payoffs are plotted on the horizontal
axis and Column’s on the vertical axis. Each cell in the payoff ma-
trix represents one possible outcome that appears as a point in the
payoff space of the game. Figure 2.1 shows the Prisoner’s Dilemma
in strategy space and in payoff space.

ISince two strategy combinations could yield the same payoffs, we should
refer to the inverse correspondence, but for the strict ordinal 2 x 2 games the
problem cannot arise.
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Figure 2.2: Inducement correspondences for the Prisoner’s Dilemma

2.2.1 The inducement correspondence

Without the labelling the disconnected points in Figure 2.1 do not
completely capture the strategic form. The points UL and DL, for
example, are linked in the sense that, by choosing L, the column
player limits the outcomes available for the row player to UL or DL.

We call the set of payoff vectors when one player’s choices are
fixed the inducement correspondence, short for what Greenberg calls
the inducement correspondence for the Nash situation. An induce-
ment correspondence is a general term for a set of positions that one
player can bring about, or “induce”. When we refer to “Row’s in-
ducement correspondence” we mean the set of outcomes induced by
the column player for the row player to choose from. Row’s induce-
ment correspondences for the Nash situation are always columns of
the payoff matrix, and Column’s are always rows.

The inducement correspondences for a Prisoner’s Dilemma are
shown in Figure 2.2 by linking the outcomes in each inducement
correspondence with a line. Solid lines identify Row’s two induce-
ment correspondences (linking alternatives available to Row once
Column has chosen) and dotted lines identify the inducement corre-
spondences for the column player?.

Identifying the inducement correspondences graphically removes

2When hand-sketching these graphs, a dotted line is harder to draw than a solid
line, so we use a double line for Row’s inducement correspondences and a single
line for Column’s.
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the need to label the points. We now have a complete graphical rep-
resentation of the the strategic form in payoff space?. All outcomes
for a 2 x 2 game in payoff space are at the intersection of two in-
ducement correspondences, one for each player?.

Each of the four sides of the quadrilateral in Figure 2.2 corre-
sponds to a row or a column of the payoff matrix. Strategy names
can therefore be used to label the inducement correspondences in
2 x 2 games, as we have done in Figure 2.2.

Even without the labels, Figure 2.2 is a complete representation
of a 2 x 2 game in strategic form. Any 2 x 2 payoff matrix can
be represented as a graph of this sort, and any graph of this sort
can be translated into a well-formed payoff matrix. Payoff-space
representations for all the ordinal games are presented at the end of
the chapter.

2.2.2 Using payoff-space representations to analyse
games

The inducement correspondence provides a natural unit for analysis
and exposition and it yields several of the most fundamental solution
concepts in game theory”.

A solution set is simply a subset of the possible outcomes that
either predicts how a particular game will turn out or prescribes how
it should turn out. A solution concept is a rationale for picking a
solution based on the information specified in the form. No other
information can be used.

3Figures that plot the payoff vectors are common in the literature, as are fig-
ures that show the convex hull of the payoffs. The latter are used for discussing
mixed strategies and bargaining games, and require real values. A complete rep-
resentation of the strategic form requires that the strategic choices represented in
the matrix be recoverable, and that is the reason for using different line styles to
represent each player’s inducement correspondences.

4With more than two players, the choices of all but one are fixed. If there are
three players, then three inducement correspondences intersect at every outcome
in the (three-dimensional) payoff space.

3 Although we will use the concept of an inducement correspondence through-
out the book, we use it in a very limited way. To get a sense of the power of the
concept, see Greenberg [10].
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Column’s 4
Payoff

1 2 3 4 Row’s Payoff

Figure 2.3: Best responses and Nash equilibrium for PD

A solution concept is attractive if

1. it makes sense in its own terms,
2. it seems to provide good advice to players,
3. it yields sensible predictions, or

4. it actually predicts what people will do in situations that cor-
respond to the formal game.

Nash equilibrium

The most familiar and most widely accepted solution concept leads
to solutions called Nash equilibria. From this point on we identify a
Nash equilibrium with an open circle as in Figure 2.3.

The Nash equilibrium is often rationalized using a story about
how people think and how their behaviour is related to their thoughts.
Economists generally assume that, from a set of alternatives, a player
will actively choose the one he likes best. This is the assumption
of economic rationality, one of the core assumptions of standard
game theory. Rationality alone will not predict behaviour in a game,
but it leads us to single out the member of any inducement corre-
spondence that yields the greatest payoff for the player that is mak-
ing the choice. The resulting behaviour is sometimes described as
“myopic”[5] because it fails to take into account how other players
might respond to a given choice.
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Best response analysis

In the payoff-space representation, this very local version of ratio-
nality appears as Row’s tendency to select the point in any given
inducement correspondence that is farthest to the right. Column se-
lects the highest point in an inducement correspondence. We show
this in Figure 2.3 by making the lines representing inducement cor-
respondences into arrows pointing toward the preferred points. The
arrows indicate the best response for the player choosing in the given
inducement correspondence. Solid arrows always point right and
dotted arrows point upward. Normally we do not use arrows to iden-
tify best responses; the tendency of the players to select the best
element in an inducement correspondence is easily read into the di-
agram.

Inducement correspondences provide a particularly easy way to
explore the Nash equilibrium. Because payoffs are strictly ordered
there will always be a single best response in a given inducement
correspondence. The inducement correspondence can also be used
to describe a number of other solution concepts, including maxi-min
and solutions based on dominance®.

Focusing on choice within inducement correspondences is some-
times called best response analysis. A player’s best response is al-
ways her most preferred element in the set made accessible by the
actions of other players (ie the set induced by them). A Nash equilib-
rium is defined as a best response for all players. A Nash equilibrium
is easy to recognize in the payoff space: any payoff pair that is the
terminus of two arrows is a Nash equilibrium. In Figure 2.3, the pay-
off combination for the Nash equilibrium is identified with an open
circle.

The maxi-min solution is easy to find. Row will not choose the row with the
lowest payoff, so the dotted line that touches the left margin cannot be connected
to the maxi-min solution. Column rules out the inducement correspondence that
touches the lower boundary of the graph. The maxi-min solution must be therefore
at the intersection of the remaining two inducement correspondences. The Peri-
odic Table in Chapter 9 identifies the maxi-min solution for every ordinal 2 x 2
game.
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Figure 2.4: Order graph for the Prisoner’s Dilemma

2.3 Order graphs

We make extensive use of a payoff-space representation designed
specifically for ordinal games. The order graph for a 2 x 2 game is
illustrated in Figure 2.4. It is based on the payoff-space representa-
tion introduced in Section 2.2. In the payoff-space representation in
Figure 2.3, however, whole numbers were used simply because they
were convenient. Any point in 2 would have been acceptable. In
the order graph in Figure 2.4, only the sixteen points on a grid of
four vertical and four horizontal lines are acceptable’. For any strict
ordinal game there can be only one point on each vertical and each
horizontal line.

Order graphs and matrices

Every 2 x 2 game is represented by an order graph, but each order
graph represents an entire equivalence class of games. Furthermore,
each order graph can be represented by any one of four matrices.
See Figure 2.5. It is convenient to select one of the four as the stan-
dard matrix representation of the order graph and the ordinal class
of games.

Placing any one payoff pair in a matrix completely determines
the positions of the others: selecting the standard matrix involves a
single choice. For the graphically inclined, having the matrix ori-

7 For an m x n game the grid is (m x n) x (m x n).
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Figure 2.5: Ordinal and real-valued representations of the strategic
form in payoff space and strategy space

ented in a manner that is consistent with the graph is desirable, so
larger payoffs should be in the upper right cell. There is some am-
biguity about what larger means with ordinal pairs, however. The
algorithm in Figure 2.6 produces the desired orientation.

2.4 Counting the 2 x 2 games

Rapoport and Guyer [23] established a commonly accepted count
for the 2 x 2 games. They began with the observation that there are
576 ways to arrange two sequences of four numbers in a bi-matrix.
They then decided (in effect) that if matrices produce the same order
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Convention for constructing standard payoff matri-
ces: Apply the first rule that the payoff matrix allows.

If the game has a symmetric pair,

1. (4,4) — upper right cell
2. (1,1) — lower left cell
3. (3,3) — upper right cell
4. (2,2) — lower left cell

If the game has no symmetric payoff pairs, put Row’s
4 in the right column AND Column’s 4 in the upper
row.

Figure 2.6: Orienting the payoff matrix

graph they are equivalent, reducing the number of games by a factor
of four to 144.

They also defined another equivalence they called a “reflection”,
which amounts to reflecting the order graph around the positive diag-
onal and reassigning the inducement correspondences. Because their
notion of a reflection involves reassigning roles, it is not a conven-
tional geometric or group-theoretic reflection. “Rapoport and Guyer
reflections” (R&G reflections) are behaviourally equivalent if play-
ers facing the same payoff structure always behave the same way.
In other words, reflections are indistinguishable if players are in-
distinguishable. Imposing these two equivalencies, they counted 78
distinct games.

2.4.1 Using order graphs to count the 2 x 2 games

The inducement correspondence in payoff space provides an alter-
native and possibly more intuitive approach to counting the 2 x 2
games.

We can begin with any payoff pair. It shares an inducement cor-
respondence with another payoff pair. That payoff can be at any
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Figure 2.7: An approach to counting the 2 x 2 games

distance in any direction from the first. With strict orderings, the
second payoff pair must be in the interior of one of the four quad-
rants formed in Figure 2.7(a) by drawing vertical and horizontal
lines through the original point. In Figure 2.7(a) we have arbitrarily
selected a point in the upper right quadrant.

We have now chosen two of the four payoff vectors required to
define a 2 x 2 game. Without loss of generality we can arbitrarily
assign the two points to Row’s inducement correspondence (one of
the columns of a payoff matrix).

Figure 2.7(b) shows that there are 9 alternatives for the location
of the third point, since it can be below the lowest, between the two
previous points, or above both of them, and it can also be either left
of, right of, or between them. The second and third point form an
inducement correspondence for the column player. They represent
one of the rows of a payoff matrix. We can imagine that the first
point represented the lower left cell of the the payoff matrix. The
second point would then represent the upper left cell, and the third
would be in the upper right.

By the same reasoning, there are 16 ways to choose the fourth
point (c), which represents the lower right cell in the payoff matrix.
The number of games is therefore 4 x 9 x 16 = 576. A simple rela-
tionship has emerged — the number of games that we have to consider
is ((2 x 2)!)2. This approach can be applied to games of any size®.

Some of these games are duplicates. It is possible to produce

81n the 2 x 3 game we choose six points, and there are ((2 x 3)!)? such games.
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exactly the same figure with the same player owning the first in-
ducement correspondence by starting from any of the four points.
There are, therefore, only 576 <-4 = 144 distinct games.

The 144 games might be reduced further, following Rapoport
and Guyer[23], by eliminating R&G reflections. There are strong
arguments against eliminating reflections that we will take up in
Chapters 3 and 9, but the convention has been that there are only
78 distinct 2 x 2 games®.

2.4.2 Numbering the 2x2 games

Numbering systems in the literature are completely arbitrary so we
have developed an indexing system that reflects the topological struc-
ture of the 2 x 2 games. Each game’s number provides information
about the game and can be used to find related games quickly. The
indexing system serves as a first, rough map of the topological space
introduced in the next chapter.

Each game has a three-digit index. The Prisoner’s Dilemma, for
example, is g777. Each digit in the subscript corresponds to one of
three features of the payoff matrix:

INDEX FEATURE NUMBER
c the column player’s payoff pattern 6
r the row player’s payoff pattern 6
L the relative orientation of the two payoff patterns 4

We call ¢ € {1,2,3,4,5,6} and r € {1,2,3,4,5,6} the column and
row indices. For reasons that will become clear, we call £ € {1,2,3,4}
the layer index. Symmetry between rows and columns leads us to
begin indexing with a symmetric game. We have chosen to count

To reproduce Rapoport and Guyer’s count we need to eliminate “reflections”.
Notice first that any game with an order graph that is symmetric about the positive
diagonal is its own reflection, and second, that there can be only 12 such games.
A symmetric game must have two payoffs on the positive diagonal {(1, 1), (2,
2), (3, 3), (4, 4)}. There are 4C> = 6 ways to achieve this. Having chosen two
symmetric points there are only two symmetric ways to join them to the remaining
two points. 2 x4 C, = 12. Therefore there are 144 — 12 = 132 asymmetric games.
Every asymmetric game has a reflection. There are therefore (132 +2+12) =78
distinct games if reflections are equivalent.
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Figure 2.8: Arrangement of the 2 x 2 games by indices, g/

rows, columns and layers beginning with the (symmetric) Prisoner’s
Dilemma because it is the best known game of all.

With six column patterns, six row patterns, and four layers, we
have room for exactly 144 2 x 2 games. The entire collection of
games can be visualized, as in Figure 2.8, as an array that is six
games wide, six games high and four layers deep. The three-digit
index locates each game in the array.

2.5 All 144 games

Figures 2.13 to 2.16 show the order graphs for all 144 games. Fig-
ure 2.14 contains the 36 games in layer 1. Figures 2.13, 2.15 and
2.16 show layers 2, 3 and 4. Even without the topological relation-
ships that we introduce in the next chapter, these figures provide a
convenient presentation of the 2 x 2 games.

The appendix to this chapter describes the six patterns and the
differences between layers more fully. Table 2.2 in the appendix
will be a useful reference for the following chapter, but it provides
more detail than we need to proceed.



2.5ALL 144 GAMES 21

PATTERN WIRINGS

0 DY S A S R

Figure 2.9: Elementary payoff patterns, wirings, and numbers of
isometries

2.5.1 Types of order graphs

Order graphs are patterns drawn on a four-by-four grid. They consist
of four nodes connected by two pairs of lines to form a quadrilateral.
Each of the nodes represents a payoff pair; each line represents a
row or a column of a payoff matrix. Strict ordinality implies that no
vertical or horizontal line in the grid can contain more than one dot.

Figure 2.9 shows the seven basic payoff patterns from which all
144 games can be constructed. To construct a particular order graph
we select the appropriate elementary patterns, connect the dots, as-
sign the inducement correspondences, and then rotate or reflect the
resulting quadrilateral to get the right orientation. Rotations and re-
flections preserve the shape of the figure but change its orientation.
Any point-to-point transformation that preserves distances and rela-
tions between points in this way is called an isometry.
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Symbol | Description of transformation
I | orientation unchanged
R™ | rotation 90° counterclockwise
R? | rotation 180°
RV | rotation 90° clockwise
R™ | reflection across positive diagonal
R< | reflection across negative diagonal
R~ | reflection across vertical centreline
R! | reflection across horizontal centreline

Table 2.1: Transformations that map the order graph grid onto itself

To understand the patterns in the set of 144 order graphs, we need
to understand how the dots can be wired, how they can be assigned,
and the various ways that the figures can be rotated or reflected.

Wirings

For some patterns, there are three distinct “wirings”; for others, only
two. Figure 2.9 shows the seventeen distinct quadrilaterals and the
number of times each appears among the 144 games.

For example, the first row shows the two quadrilaterals con-
structed with the points (1,2), (2,4), (3,1), (4,3). The first looks
like a square tilted right, the second like an hourglass.

The number 4 beside the square indicates that four games can be
made from it by reflection, rotation or reassignment. Eight games
can be made from the hourglass figure.

Assignment

If the dotted lines in the square in the first row of Figure 2.9 are
changed to solid lines, and the solid lines to dotted lines, the result
is a new game. In the new game Row faces the alternatives that
Column faced in the original game. We call the new game the anti-
game of the original, and we get to the new game by the operation
A, which reAssigns the inducement correspondences.
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Figure 2.10: Transformations of g315

Unlike the geometric transformations, A is not isometric because
distances between points are not preserved. In the hourglass figure
in the first row of Figure 2.9, transformation A maps one side of
the square to the diagonal, which is longer. In the payoff bi-matrix,
exchange of inducement correspondences is achieved by exchanging
payoff vectors between a pair of diagonally opposite cells.

Rotations and reflections

Rotations and reflections are not inherently interesting for game the-
orists, but they are associated with regularities in the space of the
2 x 2 games. They are in fact the key to understanding the symme-
tries exhibited by the 2 x 2 games.

Imagine first the four-by-four grid without a game drawn on it.
If it is rotated 90° clockwise the resulting figure is indistinguishable
from the original. The grid is also mapped onto itself by reflections
around vertical, horizontal, or diagonal lines through its centre. In
all, three rotations and four reflections leave the grid looking the
same. When a figure is unchanged by an isometry we say it exhibits
a symmetry. The transformations are listed in Table 2.1 along with
the identity operation. There are no other orientations that look the
same as the original grid.
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8416 8425 8434 8443

Figure 2.11: Some quasi-symmetric games

Now consider reflections and rotations of the square in the first
row of Figure 2.9. Rotating the figure by 90° produces the same
effect as reassignment. Rotation by 180° returns us to the original
figure. Rotation by 270° adds no new possibilities.

Reflection in the vertical line, R™, produces a distinct quadrilat-
eral, a square tilted slightly left. A diagonal reflection produces a
reassignment of the same shape. From all the transformations there
are only four distinct variants based on the square wiring.

The second quadrilateral in the first row can be oriented four
ways (I, R", R—, R™) so eight games are represented. No third
quadrilateral is possible.

The completely asymmetric quadrilaterals in the bottom row of
Figure 2.9 are distinguishable under all transformations and there-
fore appear in 8 x 2 = 16 games!?. Figure 2.10 shows a set of order
graphs based on a strictly asymmetric game. Eight more are gener-
ated by exchanging inducement correspondences.

2.5.2 Quasi-symmetric games

The only transformation that has any obvious economic interpreta-
tion is R, reflection in the positive diagonal. This transformation
exchanges payoffs between players in each outcome. In strategy
space, R is manifested as a reordering of payoffs in each cell of
the bi-matrix. Row comes to care only for Column’s payoffs. Per-
haps it’s love.

101n fact, the pattern on the bottom row accounts for one third of all games with
three asymmetric quadrilaterals.
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To see how this reflection relates to the overall organization of
the space of the 2 x 2 games, notice that every order graph in the
upper right of each layer in Figures 2.13 to 2.16 has an R reflec-
tion in the lower left of the same layer. Each 36-game layer can be
folded along its negative diagonal so that the game in the upper right
coincides with its R™ reflection in the lower left.

The 24 games on the negative diagonals of the layers are invari-
ant under R\. Some examples are shown in Figure 2.11. Although
R™ does not change the order graph, and the graphs are obviously
symmetric, these games are not symmetric in the game-theoretic
sense. (See page 58.) We therefore call them quasi-symmetric.

2.5.3 Assignment and reflection

Figure 2.12 shows the effect on game g315 of A, of R™, and of ap-
plying both transformations in sequence. The result does not depend
on order of application:

R™N(A(g315)) = AR (g315)) = g351

The combined transformation maps gzis into its R&G reflection.
Earlier authors have defined games related by this compound trans-
formation as identical.

The 12 symmetric games are the only games that are invariant
under the compound transformation. For these games, the two trans-
formations are equivalent so one “undoes” the other. For example
(Prisoner’s Dilemma)

RNA(gi11)) = 8111

2.6 Summing up

In this chapter we have introduced an approach based on represent-
ing the games in payoff space. Order graphs allow us to describe
games easily, and our indexing system lets us lay out the games in a
systematic and revealing way. Symmetries in the order graph repre-
sentation shed some light on the nature of symmetric and reflected
games, and on the structure of the space of the 2 x 2 games. They
are not directly useful for analysing behaviour.
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8326
R™: reflected game

8362 8351
A: anti-game R&G reflection

Figure 2.12: Reflections (R) and reassignments (A)

We are now ready to begin the real work of the book, which is to
explore our alternative approach to the relationships among the 144
representative games.
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2.7 Appendix: Relating payoff patterns to
the indexing system

Row, column and stack

If we arbitrarily select the location of one player’s most preferred
outcome in the payoff matrix, we can produce six distinct payoff
patterns for that player by permuting the positions of the three less
desirable payoffs. The bottom row of payoff matrices in Table 2.2
illustrates the six basic patterns for the column player, keeping the 4
payoff in the upper left cell. Asterisks indicate that the row player’s
payoffs are the same as in the first game in the row (are invariant in
the row). The first game in this example is the Prisoner’s Dilemma.

A column A stack
(=2 (=3
8161 8211 8311
Tk 2% 1,2 3,1 1,1 3,2
3 4 column 24 43 ‘ 23 4.4 both
8151 8111 8411

2.6 1% 1,4 33 1,3 3,4
36 4 22 4,1 2,1 4,2

8141

3% 1% _ o

o =1 (=4
8131

3% 2%

1, 4%

8121
2, % 3,
1, 4%
g1 8112 8113 8114 8115 8116

| L R | | | | |
‘174 3,3

row

22 41

A row

Table 2.2: Payoff patterns in the 2 x 2 games
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The second matrix in the row was produced by swapping the
positions of the 1 and the 2 in matrix 1. The third is produced by
swapping the 2 and the 3 in matrix 2. The fourth is produced by
swapping the 1 and the 2 in matrix 3. For the fifth, swap 2 and
the 3 in matrix 4, and for the sixth swap 1 and the 2 in matrix 5.
We explain the reason for the particular order of permutations in the
next chapter.

The same procedure can be applied to the row player’s payoffs.
The results are shown in the matrices in the left-hand column of
Table 2.2.

Thirty-six combinations can be constructed with the six row and
six column patterns. Each of these 36 games has the most preferred
element for each player in exactly the same position in the payoff
matrix. For the example in Table 2.2 the most preferred elements
are all diagonally opposite.

Now consider alternative ways of locating the column player’s
highest payoffs. Table 2.3 shows the effect of column or row oper-
ations on the payoff matrix for the column player. These exchanges
maintain the sequence of payoffs around the payoff matrix, changing
only the starting point and/or the direction. The 4 and the 1 remain
diagonally opposite.

The changes shown in Table 2.3 can be described in an interest-
ing way as the result of two reflections. A reflection is an isomor-
phism that conserves relative positions of elements but reverses their
positions relative to a line. Pattern 2 is the result of reflecting the col-

L R L R
1) x4 %3 4) 2 %1
%2 k1 x4 *,3
Pattern 1 Rows exchanged
L R L R
2) %3 x4 3) x,1 %2
w1 %2 *x,3 x4
Columns exchanged Rows, columns exchanged

Table 2.3: Patterns equivalent to column payoff pattern 1
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umn player’s payoff matrix around a line running between the rows.
Pattern 4 is a reflection around a line running between the columns.
Pattern three is a combination of both reflections, which results in a
180° rotation.

Combining any row pattern with the four variations on column
pattern produces four different games. The payoff matrices for the
four games based on the Prisoner’s Dilemma are shown in the upper
right of Table 2.2.

What if the pattern of the row player’s payoffs were manipu-
lated instead of the column payoffs? Any games produced would
be equivalent to one of the four already produced. Row pattern one
and column pattern one can be combined to create only four distinct
games. We call the set of games generated from one pair of payoff
patterns a stack. Games in a stack share row and column indices, but
each has a distinct layer index.

Table 2.2 is a useful reference for Figures 2.13 to 2.16 and Fig-
ures 3.4 in the following chapter because it provides a view in terms
of payoff matrices. In the following chapters arguments will gener-
ally be presented in terms of operations on order graphs.
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Chapter 3

Elementary topology of 2 x 2
games

In every subject one looks for the topological and al-
gebraic structures involved, since these structures form
a unifying core for the most varied branches of mathe-
matics.

Weise and Noack, “Aspects of topology” ([41] p. 593)

In Chapter 2 we described the 2 x 2 games in terms of the payoff
function. Payoff functions provide a complete description of a game
in strategic form. We now introduce enough additional structure to
induce a topology on the set of games as a whole. The topology
allows us to relate the 144 2 x 2 games in a new and systematic way.

Every game is related to every other in the sense that there is
a transformation that converts the payoff structure for one into the
payoff structure for the other. A complete graph, showing all trans-
formations among the 144 ordinal games as 10,296 edges would be
easy to create but essentially useless. What we want is a graph that
shows similar games near each other and different ones widely sep-
arated. We begin by restricting the set of transformations to six; that
is, there are six transformations whose rules can be applied to any
game to produce six adjacent games.

The resulting graph has only 432 edges. It is still possible to start
with any game and reach any other via some sequence of transfor-

33
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mations, but some games, called nearest neighbours, can be reached
via a single transformation while others require several steps. Be-
cause the graph is connected, the six transformations constitute a set
of generators'.

When the graph is embedded within a surface it is called a map.
The nature of the surface needed to embed the graph without cross-
ing edges is a topological feature, and the topological structure of
this payoff space is not only useful, but also beautiful.

Our goal in this chapter is to develop and explain the graph,
which serves as a blueprint for the space of ordinal 2 x 2 games.
In section 3.2 we develop the appropriate concept of a neighbour-
hood for the 2 x 2 games and examine the neighbourhood of a spe-
cific game. In section 3.4 we build up a picture of the graph of the
2 x 2 games beginning with the simplest subspaces and gradually
combining all six transformations. At several points we describe the
topology of special subspaces and their associated subgraphs.

In many cases the simplest language for describing the subspaces
and the subgraphs comes from group theory, so we introduce ele-
mentary terms and concepts where they are useful. The terms are
explained as they occur and brief definitions are provided in the
Glossary. No advanced mathematics is required.

Two features of the topology deserve special attention. First,
the definition of the six transformations is rooted in the structure
of preferences. Second, economically related games are near each
other in the graph. In fact, they often occupy well defined subspaces.
These subspaces are generated by subsets of the six transformation.

Chapters 4 to 8 will examine the games in specific subspaces in
detail and Chapter 9 will deal with the most general features of the
topological space of the 2 x 2 games.

1Tt is not, however, a minimal set of generators. Subsets of the transformations
can be used and the graph will still be connected, but economically significant
links will be lost.
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3.1 About topologies

Topology is the mathematical study of properties of objects which
are preserved through deformations, twistings, and stretchings but
not through breaks or cuts. Most introductions to topology begin by
considering deformations of Euclidian surfaces like the torus or the
Mobius strip. This approach treats topology in terms of “one-to-one
bi-continuous mappings of sets of points in Euclidian space” [41].
It is an unnecessarily special approach. One can instead generate a
topological space from an arbitrary set of abstract elements, called
points, by imposing a topology on the set [18]. In our case the set of
points is the set of 2 X 2 games.

Any set for which a topology has been specified is called a topo-
logical space ([18], p. 76). Modern topology in fact takes no account
of the individual nature of the elements, but merely of their mu-
tual relationships. In an approach based on points, however, what
is meant by the expression neighbourhood of a point must be de-
fined axiomatically. In his Grundziige der Mengenlehre, Hausdorff
[12] defined his concept of a topological space. The four Hausdorff
axioms are:

1. To each point x there corresponds at least one neigh-
bourhood U (x), and U (x) contains x.

2. If U(x) and V(x) are neighbourhoods of the same
point x, then there exists a neighbourhood W (x) of
x such that W(x) is a subset of the union of U (x)
and V (x).

3. If y is a point in U (x), then there exists a neigh-
bourhood V (y) of y such that V(y) is a subset of
U(x).

4. For distinct points x and y, there exist two disjoint
neighbourhoods U (x) and V (y) [42].

Developing a satisfactory notion of neighbour is the key to de-
veloping a topological treatment of the 2 x 2 games. Preferences as
we think of them in economics provide enough structure to induce a
topology on the ordinal 2 x 2 games.
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8111 8121
L R
1,4 3,3
2,2 4,1

Y
L R
2.4 33 1 , )
1,2 4,1 1 2 3 4

Figure 3.1: Changing the ordinal values for the two lowest-ranked
outcomes for the row player

3.2 What is a neighbour?

Since games are characterized by the payoff function, similar games
must have similar payoff functions. To define meaningful neigh-
bourhoods, we need to characterize the smallest significant change
in the payoff function. Obviously a change affecting the payoffs of
one player is smaller than a change affecting two players. The clos-
est neighbouring games are therefore those games that differ only by
a small change in the ordering of the outcomes for one player.

At this point the structure of preferences becomes relevant. The
outcome liked least by a player has a rank 1. If that outcome be-
comes more and more attractive it will eventually be preferred to the
outcome with rank 2. When this switch occurs, the effect on the
payoff matrix is to exchange the positions of the 1 and 2. This is
an example of a minimal transformation yielding a different, neigh-
bouring game.

The set, S, of minimal exchanges has six members:

S — {Xlie{l.3}j=i+1,Xe{RC}}
= {R12,R23,R34,C12,C23,C34}

where X;; changes the rank of the outcome originally ranked i by
the player X to rank j and the rank of the outcome originally ranked
j to rank i. When X = R, we call it a row swap indicating Row’s
preferences have changed and if X = C it is a column swap.

Figure 3.1 illustrates Rj7, a ‘1 for 2’ swap for the row player in
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the Prisoner’s Dilemma. Ranks that change are shown in boldface?.
Notice that swaps are applied to the ordinal payoffs wherever they
appear in the payoff matrix. The effect of the change in the payoffs
is illustrated in the order graphs on the right.

Changes like this in the payoffs might result from small changes
in information, preferences, or technology, or from small errors in
identifying games. A player might, for example, receive a very small
amount of new information. She might then reconsider the outcome
she had originally ranked 1, and decide that it is slightly better than
she first thought, and that it is superior to the outcome she had pre-
viously ranked 2. She would naturally relabel the two outcomes, re-
sulting in a different payoff matrix, and hence a different game. The
new game is close to the old game in that it is reached as a result of a
small perturbation in one player’s information set. The game is also
close in the sense that it might be mistaken for the original game or
it might evolve into the other as a result of a small exogenous change
in the underlying technical conditions.

Examining the neighbours of a game can also provide evidence
on the robustness of solutions in the face of perturbations in the pay-
off structure. In Figure 3.1 the smallest possible change in Row’s
perception of the least-liked outcomes leads to a change in his be-
haviour, transforming the PD, with its inefficient equilibrium, into a
game with a Pareto-efficient equilibrium.

Since any of the three swaps can be applied to payoffs for either
player, it follows that every game has exactly six nearest neighbours.
Preferences imply a structure of overlapping neighbourhoods and
induce a topology on the set of games. Games can be characterized
as close or distant neighbours depending on how many swaps are
necessary to transform one into the other.

3.2.1 Talking about the neighbours

A swap is a mapping from the space of 2 x 2 games to itself: X;;(g)
= h , where g and /h € G144, the set of games. The primary neigh-

>The new game has been described and named several times. (See Table 9.1).
Brams [5] uses it to describe the Polish Crisis, 1980-1, and the Union — Confeder-
acy crisis.
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8422 8322

Figure 3.2: The neighbourhood of g4;>

bourhood of a game is the set of games that can be reached by a
single swap:

Ni(g)={Xij(g)| Xij € S},g € G144

Neighbourhoods are thus defined strictly in terms of the preferences
of the players.

Figure 3.2 shows the immediate neighbourhood of g4;», a game
of interest in its own right. Like the Prisoner’s Dilemma, it has a
single Pareto-dominated Nash equilibrium but unlike the Prisoner’s
Dilemma, only one player has a dominant strategy. The game is
clearly closely related to the Prisoner’s Dilemma in important ways.
It will generate social dilemmas as interesting as those generated by
the Prisoner’s Dilemma.
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A bad neigbourhood?

The neighbourhood N1 (g412) contains the Prisoner’s Dilemma (g;;;)
and g4;3. All three games have Pareto-dominated unique Nash equi-
libria. We can conclude that

There is a connected region containing games like the
Prisoner’s Dilemma with nasty outcomes.

This can be seen as the first result derived by construction using the
topological approach. We will show in Chapter 5 that the region
contains seven games, only one of which, the Prisoner’s Dilemma,
is symmetric.

Strange neighbours

Row swaps from gy;> yield additional insights. One neighbour,
R12(8412) = 8422 has no Nash equilibrium in pure strategies3. An-
other neighbour, R34(g472) = g322, has two Nash equilibria. It be-
longs to another group, as we show below, yielding a surprising fact:

A game with no pure strategy equilibrium can be two
minimal steps from a game with two equilibria.

The significant observation is that for some games the equilibrium
can be quite fragile. The topological approach provides a way to
examine the robustness of payoffs and strategies by seeing how they
vary for neighbouring games. Of the six perturbations of g41» that
form Nj(g412), four leave the equilibrium strategy combination un-
changed and two leave the Nash equilibrium payoffs unchanged. In
one of new games, however, a new and Pareto-superior Nash equi-
librium emerges, so payoffs are likely to change even though the
original payoffs are still a Nash equilibrium. In g42, the Nash equi-
librium disappears. Only one of the six swaps leaves the payoffs un-
changed, so equilibrium payoffs are not a robust feature of Ni(ga412).
Equilibrium strategies are reasonably robust in the neigbourhood.

3Chapter 9 will show that the games with no Nash equilibria also form a con-
nected set. Furthermore, the Prisoner’s Dilemma family of games with inferior
equilibria lies on the boundary of this important set of games.
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Symmetric neighbours

Another fact emerging from an examination of this small neighbour-
hood is that g4;> has two symmetric games as neighbours (g322 and
8111, the Prisoner’s Dilemma). It is possible to make one symmetric
game, the Prisoner’s Dilemma, into another symmetric game by the
sequence of operations R34, C34. We call a combined swap operation
in which the same swap is made for the row and the column players,
a symmetric operation, S;;j. In the example here,

S34(g111) = C34(R34(ggy1)) = R34(C3a(g111)) = &322

Note that a symmetric operation preserves symmetry if symmetry is
present initially.

Under symmetric operations, the symmetric games form a sub-
space which we explore in Chapter 4. In addition, symmetric opera-
tions beginning with non-symmetric games generate other subspaces
of interest.

3.3 Groups

It is sometimes revealing to describe certain sets of games and the
corresponding subgraphs in terms of mathematical groups. We there-
fore introduce some basic terminology from group theory before
proceeding to develop the graph of the 2 x 2 games. A group, G,
is a set of elements and a binary operation which together satisfy
the four fundamental properties of closure, associativity, the identity
property, and the inverse property. Any single swap operator, X;j,
plus an identity operation, say /, can be the elements of a simple
group.

Discrete clock arithmetic is a convenient example of a group.
There are 12 hours on the face of a clock. The positions on the
clock are not the elements of the group, however. The elements of
the group are better understood as rotary advances of one hour, two
hours and so on. The element 3, for example, represents moving
a quarter turn in the clockwise direction from any position on the
clock. Any element can be combined with any other element:
44+1=5,or5+1=6.
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1. Closure: VA, B G:AB < G.

2. Associativity: VA,B,C € G : A(BC) = (AB)C.
3. Identity: 1/ € G,VA € G : IA = Al = A.

4. Inverse: VA € G,dB€ G:AB =1.

Table 3.1: Properties of a group

Closure requires that combining any two elements, such as 7 and
8 yield another member of the group, which is 3 in this case. We can
easily write down a table of addition showing, for example, that 6 4
11 =5, which ensures that the group is closed under the operation.
Associativity requires that (14+2)+3 =14 (2+3).

A group must have an identity element that satisfies I +x = x for
any member x of the group. An obvious identity element for clock
arithmetic is 0 hours*. The inverse of an element x is an element y
that, when added after x, returns us to our original position. For the
12-hour clock the inverse of x is 12 — x. The inverse of 1is 11, since
1+ 11 =0, and the inverse of 6 is 6.

The group can be written G1,= {0,1,2,3,4,5,6,7,8,9,10,11}
under the operation +. The subscript 12 is called the order of the
group and is simply the number of elements in the group. The iden-
tity element is 0.

The concept of a set of generators for a group is especially use-
ful. A set of generators is a subset of the group that can be used,
by repeated application, to generate all the members. A group may
have more than one set of generators.

One set of generators for G5 is the set {0,1}. The set {0,7} is
another. In fact, any advance that is relatively prime to the order of
the group will do. Here 1,5,7,11 are relatively prime to 12. Some
restriction on the generators is needed to get the 12 elements of the
clock group using addition. Without a restriction we would generate
all the natural numbers by repeatedly adding 1. The restriction

12 =0,

4An equally valid group can be defined with identity 12.



42 ELEMENTARY TOPOLOGY OF THE 2 x 2 GAMES

will do the trick. It simply says that adding 1 twelve times returns
us to the original member of the group. Notice that we have used
notation that suggests multiplication to represent relations between
the members of the group even though the relation in the example
resembles addition. An element that produces the identity when re-
peated n times is said to have a period of n. For the generator set
{0,7}, the equivalent restriction is 7' = 0. A set of generators and
an appropriate set of restrictions is called a presentation or an ab-
stract definition of a group. The elements {0,1} and the relation
112 = 0 are an abstract definition of G5.

A subgroup is simply a subset of the elements of a group that
satisfies the group definition. In clock arithmetic the even elements
including the identity form a subgroup. The elements {0,2} and
the relation 2° = 0 are an abstract definition of subgroup Gg. It can
be seen as a one-sixth rotation and no rotation. The group captures
the structure of a transit schedule in which buses arrive at one stop
exactly on every even hour and arrive at the next stop exactly five
minutes past every even hour. Sets of related games can often be de-
scribed by subgroups, and the same subgroup can describe relations
among several different sets of games.

The concept of the direct product of two groups is also helpful
in describing the 2 x 2 games. The direct product of two groups,
H, and Fy, which have no common members except the identity is
written Gy, = Hy X F\. Hy and F), are subgroups of Gy,.

If we define

={0,3[3*=0} ={0,3,6,9}
_{0,4|43 0} ={0,4,8}

then
Hy x F3=1{0,1,2,3,4,5,6,7,9,10,11} = Gy,

In other words, the direct product of these subgroups of G1; is the
entire group. The element 2, which appears in neither F3 nor Hy, is
part of H4 x F3 because 8 € F3,6 € Hy and 6+ 8 = 2.

For the 2 x 2 games, the elements of the groups are transforma-
tions and the binary operation is the concatenation of two transfor-
mations. This means applying one transformation to a game and
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then applying the second transformation to the game resulting from
the first. The basic swap operations are the generators of the groups
we examine.

3.4 Constructing the graph of 2 x 2 games

Three hierarchical concepts are useful: groups with their subgroups,
graphs with their subgraphs, and topological spaces with their sub-
spaces.

e The set of six swaps is associated with a mathematical group
that can be identified with the 2 x 2 games>.

e Games can be treated as the vertices of a graph. The six swaps
are then identified with the six edges that meet at each vertex.

e The entire graph consisiting of the 144 games and the links be-
tween nearest neighbours is a representatation of a topological
space.

Removing elements from a set of generators (i.e. removing a swap)
removes edges from the graph®. With one important and recurring
exception, restricting the set of operators partitions the 2 x 2 games
into a set of identical subspaces with identical graphs’. Among the
games in each of these subspaces, payoffs vary in a simple and re-
stricted way.

Topological features can be deduced from either the group struc-
ture or from the graph structure. We generally work from the graph
or subgraph, but at each stage we describe the associated groups. We
also present some topological features, but save most of the details
for later chapters.

3If we use all six swaps the group is actually the 576 element bipermutation
group S4 X S4. This is precisely the set of ordinal bi-matrices in Figure 2.5 on
page 16. The 144 game graph represents a complex of the group, but is not a
subgroup.

6Removing any one of R12,C2,R34,C34, does not partition the graph of games.
This implies that these four swap operators are not independent.

"The subspaces have identical structures, but they contain different sets of
games.
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3.4.1 Subgraph/subspace/subgroup generated by a
single swap: Z,

We begin with the simplest case — a single swap operator. Applying
the operator to any game generates a cycle of two games. We then
add an operator to include more games and generate a more complex
graph. We continue adding until we have a graph that includes all the
ordinal 2 x 2 games. This stepwise procedure systematically unfolds
the structure of the graph.

The operation R,(g111) exchanges the values in bold type in the
matrix in Figure 3.1.

R12(8g111) = 8121

Applying R1> to g72; does not produce a third game: instead it re-
turns us to the original game.

R12(R12(8g11,)) =R12(8g15,)=8111

Each of the six swap operators completely partitions the set of 144
games into 72 non-overlapping 2-game subsets that are closed un-
der the single operation. These sets are topological spaces under
the Hausdorff axioms, and are subspaces of the larger topological
space of 2 x 2 games. The pairs of games may be represented by
two points, or vertices, joined by two directed edges. When an oper-
ation is its own inverse it is conventional to replace the two directed
edges with a single undirected edge. Each of the six swap operators
combines with the identity operator to produce a specific 2-element
group. Each of these 2-element cyclic groups is an instance of the
general group Z5.

Table 3.2 summarizes what we know about the two-game sub-
spaces produced using single swaps.

number number  number  number

of swap of of of sub-

swaps | type versions games  spaces  description  group
1 | any 6 2 72 edge V4)

Table 3.2: Two-game cycles
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3.4.2 Two non-overlapping operations: Z, x Z;

We call swap operations that do not affect the same rank payoff for
a given player non-overlapping operations. The operations C12 and
(>3 overlap since both affect the second-ranked outcome for the col-
umn player. C12 and C34 do not overlap. C1; and R, cannot overlap
because they operate on the payoffs for different players. We call
operations on the payoffs of different players orthogonal. Concate-
nating equivalent orthogonal swaps yields a new game:

R12(C12(g111)) = Ri2(g112) =8122

The new game, two swaps from the Prisoner’s Dilemma, is Chicken.
Repeating the combination returns the Prisoner’s Dilemma:

R12(C12(R12(C12(g111)))) = R12(C12(g122))
= Ri2(g121)
= 8111

Concatenating any pair of orthogonal swaps connects the games
into sets of four. These 4-game sets are also subspaces of the entire
space of the 2 x 2 games.

There are nine orthogonal pairs of swaps. Two additional non-
orthogonal but non-overlapping pairs result from combining C;, and
C34 or R and R34. There are therefore 11 distinct ways to partition
the 2 x 2 games into four-game cycles. These cycles are the main
building blocks of the larger structure of the 2 x 2 games. They form
faces of the polytope that appears when the full topology is laid out.

Face: The intersection of an n-dimensional polytope
with a tangent hyperplane. Zero-dimensional faces are
known as polyhedron vertices (nodes), one-dimensional
faces as polyhedron edges.

Each non-overlapping pair of swaps combined with the iden-
tity element, for example {C12,R12,1}, generates a 4-element group.
The group is the direct product of two 2-element groups. The re-
strictions are expressed in these relations.

Ch =Rh =[CuRp =1
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One set of orthogonal swaps is of particular interest. We call the
subspaces produced by combining C1; and Ry tiles. The 36 tiles
consist of groups of games that are closely related in an economic
sense. C1p and Ry; permute the lowest- and second-lowest ranked
outcomes, which are the swaps least likely to change the decisions of
players concerned to maximize their payoffs. Nash equilibria require
that players choose the highest payoff within their inducement cor-
respondences. In 21 of 36 tiles the equilibrium payoffs are the same
for every game. In 12 tiles the payoff for one player changes and
in only three are payoffs changed for both players. Of these three,
there is only one maximally diverse tile, containing four games with
different equilibria. That unusual tile is the one containing the Pris-
oner’s Dilemma.

number number  number  number
of swap of of of sub-
swaps type versions — games  spaces  description  group
2 non-over- 11 4 36 face VAR YA
lapping (tile)

Table 3.3: Four-game cycles

3.4.3 Overlapping operations: Py

There are four groups generated by overlapping pairs of swaps:
{Clz,C23,I}, {C23, C34,]}, {Rlz, R23,]}, and {R23, R34,I}. Like non-
overlapping pairs, the overlapping pairs produce closed subsets of
games, but they produce a different pattern from the non-overlapping
pairs. To see why, look at the effect of alternately swapping first the
1 and the 2, then the 2 and the 3 beginning with the sequence 1234:

1234 < 2134 «— 3124 «— 3214 — 2314 < 1324 — 1234

The effect is to run through the permutations of the numbers 1,2,3
without changing the position of 4.
Overlapping operations are not commutative. For example,

C23(C12(8111))= C23(8112)=8113
but

C12(C23(g111))= C12(g116)=8115-
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8112 T

8111 8115

8116

Figure 3.3: Games generated by Cp» and C»3 from g1

Starting with g111, repeated application of Cq, followed by C»3 gen-

erates the 6-game cycle g111, g112, €113, 114, &115, g116- See Fig-
ure 3.3.

To simplify notation, let

C23(C12(g)) =C23C12(g)

and let

C23(C12(C23(C12(8)))) = [C23C12)*(g)-

It is easily verified that

[C23C12]7(8) = Ca3(Cra(Cas(C12(C3(C12(8)))))) = 8

which is to say, repeating the swaps Cj, and Cp3 three times results
in a closed loop of six games. The group generated by Cy> and Cy3
(or analogous overlapping pairs) has six elements and the combined
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operation C12C»3 is of period three. The abstract definition using the
generators {C12,Co3,1} is

Ch =Ch = [CiaCs]* =1 (3.1)

which is the symmetric permutation group of six elements, Ps. This
group divides the 2 x 2 games into 24 cycles of six games. The
games in this cycle share two properties. First, the payoffs for the
row player are unchanged since only column swaps have been used.
Second, the location of the highest payoff for the column player is
fixed.

We can construct similar cycles using C>3 and C34 where the 3
payoff is manipulated by both swaps. The X34 swaps differ from X,
swaps in that they permute the preference ordering over the three
most preferred outcomes. The resulting cycles consist of games in
which the location of the lowest payoff for the column player is in-
variant. The {C1,,C23,I} cycles contain games more closely related
than games in {C23,C34,/ } cycles: the payoffs most likely to form
a Nash equilibrium are least likely to be affected in the former and
most likely to be affected in the latter. We have used this observa-
tion in deciding the indexing system for the 2 x 2 games. Column
indices enumerate the elements of subsets based on Ci2 and Cp3. In
figure 2.8 on page 20, these are the 24 rows. Row indices enumerate
the {R12, R23, I} subsets and identify columns in the figure.

number number  number  number
of swap of of of sub-
swaps type versions  games  spaces description  group
2 over- 4 6 24 loop Ps
lapping (column
or row)

Table 3.4: Six-game cycles

3.4.4 Slices: Py

If we now add C34 to the generators {Ci2,C23,1} that produce the
loop row, we create a symmetric permutation group, S4 0of 4 X3 x 2 =
24 elements. There is an equivalent group using row operations.
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Figure 3.4: Slice

Each permutation group distinguishes six subspaces which we call
slices. A slice contains the games with a fixed payoff pattern for one
player paired with all possible payoff patterns for the opponent.

In Figure 3.4(a), the graph for a {C12,C>3,C34,1} slice appears
as four interlocked loops. Each loop represents a separate row of
games. The pattern is the same for all slices produced using the set
of column swaps or the corresponding row swaps.

In Figure 2.8, this slice consists of the first rows of the four lay-
ers. Figure 3.4(b) shows the connections between the rows by cut-
ting the loops of 3.4(a) through four radially aligned C»3 links. We
move from layer to layer with C34 swaps, for example from gq1; in
the top layer to the second game in the bottom layer, g412. Notice
that if two layers are linked by the X34 swap, then the other two
layers are also linked to each other.

Slices have a useful interpretation in terms of restrictions on in-
formation. If the row player knows her own payoff structure, but
nothing about the payoff pattern for the column player, there are ex-
actly 24 strict ordinal combinations that she might be facing. Com-
bined with her own known payoff, each represents a possible game.
The games in a slice are the games that she might be in, given only
information about her own payoffs.
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number number  number  number
of swap of of of sub-

swaps type  versions games  spaces description  group
3 | CorR 2 24 6 slice Py

Table 3.5: Twenty-four game slices

3.4.5 Structure of a stack

The C34 swap always leads to a game on another layer. Cz4 com-
bined with Cj; (or R34 with Ry3), leads to a game directly “over’ or
“under” the initial game. The new game shares the same row and
column indices. In the representation we propose, the game reached
by this combined operation is said to be in the same stack.

The payoff matrices in a stack are all constructed from the same
payoff pattern for each player. On each layer, the relative orienta-
tion of the payoffs is different. The g/1; stack containing Prisoner’s
Dilemma is shown in Figure 3.5 in the next section.

3.4.6 Layers: P; X P

In Chapter 2 we introduced the layer as a convenient organizing
structure for the 2 x 2 games. A layer is the direct product of the
row group and the column group. These orthogonal loops are cyclic
groups of order 6 which have only the identity element in common.
The direct product therefore exists and is of order 36. The group
corresponds to a class of subspaces of 36 games.

The graphs of layers are regular 4-connected point lattices, since
every game has four neighbours in the subspace. To establish that
the lattice is a simple surface, notice that every game is one of six
forming a closed loop with {Cy3,C>3,1}. The same argument us-
ing row swaps shows every game will also be a member of another
closed loop of six games. Any loop produced by column swaps
therefore intersects six transverse loops generated by row swaps. To
see that the transverse loops are joined into a surface, recall that non-
overlapping pairs commute: C;;jRy; yields the same game as Ry, C;;.
This says that, for any two nearest neighbours in a row, the nearest
neighbours under Ry; are themselves nearest neighbours in a row. It
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follows immediately that the transverse loops form a grid consisting
of 36 games.

A layer of 36 games is most conveniently represented as a 6 X 6
grid as in Figures 2.13 to 2.16 on pages 30 and 31. For each game in
these subspaces, four of six possible neighbours are in the subspace®.
Moving from left to right across each layer, the operators C, and C3
alternate, beginning in our preferred arrangement with C12. R12 and
Ry3 alternate from bottom to top.

number number  number number
of swap of of of sub-
swaps type versions  games  spaces  description  group
over-
4 lapping 4 36 4 layer Pg x Py

pairs

Table 3.6: Thirty-six game layers

The “no-conflict” layer

The games in a layer have a common feature: the operations that
generate a layer, {C12,C23,R12,R23,1}, leave the position of the pay-
off 4 unchanged for both players. Figure 3.5 shows the four patterns
that are possible. The payoff matrix may have the two 4s in the same
cell (Layer 3), in cells that are diagonally opposite (Layer 1), in two
cells in the same row (Layer 2), or in two cells in the same column
(Layer 4).

The location of the highest payoffs gives each layer a special
character. Layer 1 is confrontational while games on Layer 3 tend to
consensus. On Layer 2 the best outcomes for both players are at the
two ends on an inducement correspondence for the column player.
Since Column gets to choose, Column tends to do well on Layer 2.
On Layer 4 Row has the advantage.

One of these patterns has been recognized by previous writers.
Rapoport and Guyer [23], Rapoport, Guyer and Gordon [24], and
Brams [5] describe the 36 games with the payoff combination (4,4)

8The other two neighbours for each game result from swap operations X34 that
do not appear on these surfaces.
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. .
.....
. . .
. . .
‘‘‘‘‘
. 0 0

Layer 1: g111 Layer 2: g211 Layer 3: g311 Layer 4: g411

Figure 3.5: The stack and the position of highest payoffs

on layer 3 as “no-conflict games”. In the Rapoport, Guyer and Gor-
don typology these games constitute a “phylum”, which is the high-
est level in their classification. The phylum clearly has some topo-
logical basis.

3.4.7 Topology of a layer

The cyclic property of the row and column groups produces the
topology of the layers. Games at the left edge of each layer in Fig-
ures 2.13 to 2.16 are neighbours of the games in the same row on
the right edge. Games at the top edge of each layer are neighbours
of the games in the same column on the bottom edge. To show this,
in Figure 3.6 we roll one of the layers to form a cylinder. Since the
games at the top and bottom are also neighbours, the cylinder must
then be stretched and bent so that its ends meet. This procedure for
mapping the games onto a torus has rows passing through the hole
and columns encircling it”. Each layer forms a torus.

3.4.8 The Euler — Poincaré characteristic

One of the earliest results in mathematical topology, the Euler —
Poincaré characteristic, or Euler number, is a computation that de-
termines whether a particular graph can be drawn on a plane surface
or sphere without crossing lines. If a graph has an Euler number of
two, it can be drawn without crossing edges on a sphere. If the Euler
number is zero, it can be drawn without crossing edges on a torus but

?Orthogonal cyclic operations of order three or more always generate a torus.
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Figure 3.6: Torus

not on a sphere. A doughnut with two holes has an Euler number of
negative two. Each additional hole adds —2 to the Euler number.

For a given graph, the Euler number is computed by adding the
number of vertices to the number of faces and subtracting the num-
ber of edges.

Euler number =V +F — E

For the 36-game surface of one layer, each game is a vertex and the
transformations are edges. Faces have four edges. Vertices, edges
and faces can be counted in Figure 3.6. The surface contains 36
vertices. It has 4 x 36 -2 = 72 edges, since every edge is shared with
one other game. Every game is adjacent to 4 faces and every face
has four vertices, so the number of faces is 36. The Euler number
isthen V+F —FE =36+36—72 =0, confirming that the 36-game
subspaces are toruses.

3.4.9 The four-layered torus

The four layers of 36 games can be seen as four nested toruses. The
four layers are linked by the C34 and R34 swaps into a more complex
surface. The pattern of links was introduced in Section 3.4.4 where
we defined the slice. The complete topology is explored later but in
the next sections we briefly describe the “tiling” of the layers and the
kind of structures that join the layers together.
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Figure 3.7: Tiles on and links from Layer 1

3.4.10 Tiling the layers

The 36-game layers generated by {C12, C23, R12, R23,I } partition into
nine tiles of four games each based on {C12,R12,/}. The X»3 swaps
are removed from the set of generators so the surface breaks up into
the nine pieces shown in Figure 3.7. Gaps between tiles stand for
X23 swaps.

If we define a new set of generators that includes combined “12”
and “23” swaps,

{R12R23,C12C23,1},

with the restrictions (Ri2R23)? = (C12C23)° = I, we can generate 9-
game subspaces consisting of, for example, the upper left game on
each tile. The dark squares in Figure 3.7 show the location of this
subspace. The direct product of this subgroup of order 9 and the tile
group of order 4 generated by {I,C12,R12} is once again the layer of
order 36.

3.4.11 Pipes and hotspots

The four-layered torus provides a model for visualizing how the
games are related. Swaps C34 and R34 “stitch” the layers together.



3.4 CONSTRUCTING THE GRAPH OF 2 x 2 GAMES 55

For each X7, swap that joins a game to a neigbour on the same layer,
there is a corresponding X34 swap that connects it to a neighbour on
another layer.

The numbers 2, 3, 4 in Figure 3.7 are the key to locating the
links between layers. Each number shows which layer is connected
to Layer 1 along a row and a column of tiles.

For example, say we want to find the neighbours of g111 on other
layers. We need to know which layer is linked to Layer 1 between
Rows 1 and 2. The “2” in on the lower right tile tells us that games
in Row 1 on Layer 1 are row-connected to games on Layer 2. (It
follows that games on Layer 2 are row-connected to games on Layer
1 and that games on Layer 3 are connected to Layer 4.) The row
neighbour of g11; is therefore g27;.

The “4” on the upper left tile tells us that between Columns 1
and 2, games on Layer 1 are connected to games on Layer 4. The
column neighbour on another layer is therefore g41210.

If R34 and C34 swaps are added to the set of tile generators,
{R12,C12,1}, the resulting set {R12,C12,R34,C34,1} generates two
distinct groups with different restricting relations. These swaps do
not partition the 2 x 2 games into equivalent subspaces. Instead, we
get new important classes of objects called pipes and hotspots which
are piles of tiles linked by X34 swaps. We will discuss pipes and
hotspots in detail in Chapters 6 and 7.

Hotspots are composed of two tiles and occur when R34 and C34
link to the same layer. Pipes which are composed of four tiles occur
when R34 and C34 link to different layers. In Figure 3.7 the hotspots
occupy the negative diagonal of the layers (the large digits). The
four-tile, 16-game pipes are located at the other six tiles.

Each hotspot and pipe forms a subspace and is associated with
a group. The fact that there are groups of different orders generated
by the same set of swap operators is the most distinctive feature of
the topology of the 2 x 2 games. This distinction remains in all sub-
sets of the swaps that generate pipes and hotspots. It prevents the
complete set of six swap operators from forming a group.

10The reader may want to return to Figure 3.2 and locate g41> and its six neigh-
bours using the information in Figure 3.7.
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number number  number number
of swap of of of sub-
swaps type versions — games  spaces  description  group
4 non- 1 8 12 Hotspot Z3
overlapping OR 16 OR Pipe ORZ,

Table 3.7: Pipes and hotspots

3.5 Structure and content

To this point we have concentrated on developing a description of
the topological space of the 2 x 2 games induced by the structure
of preferences. The space can be partitioned into subspaces, and
the subspaces can be represented as surfaces. We have shown for
example that the layers are toroidal.

We have also shown that related games may be associated with
distinct subspaces. An example is the class of “no conflict” games
which occupies layer three of the topological structure. The next five
chapters explore the topological relationships within the important
subspaces of games. In each case, we show how the structure of
subspaces is related to fundamental concepts of game theory such as
Nash equilibria, dominance solvability and conflict.



Chapter 4

Symmetric games

4.1 The seven most studied 2 x 2 games

The 12 symmetric games provide models for social situations rang-
ing from resource wars and marriage through hunting parties and
office games. It is possible to discuss an astonishing range of issues
in philosophy, biology and economics using only symmetric games.

A symmetric game is often the convenient representative of a
collection of related games, most of which are asymmetric. For ex-
ample, there is a nine-game region on Layer 1 consisting of games
that resemble the Battle of the Sexes. Six are asymmetric. All nine
have two efficient equilibria that favour different players, raising the
possibility of distributional conflict. One of the the symmetric games
in this region is Chicken, the game made famous by Bertrand Rus-
sell as a model for the nuclear arms race. Chicken is perhaps the
second most familiar 2 x 2 game.

The Prisoner’s Dilemma, which is adjacent under a symmetric
transformation to Chicken on Layer 1, is certainly the most famous
of all 144 2 x 2 games. It is one of only seven with a unique and
inferior Nash equilibrium and the only symmetric member of the
family. We devote all of Chapter 5 to the Prisoner’s Dilemma and its
relatives.

There is also a nine-game region on Layer 3 that includes two
symmetric versions of the Coordination game. Each game in the
region has two equilibria, one of which is Pareto inefficient. The

57
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symmetric game Stag and Hare, also known as Stag Hunt, and “the
meeting game”, lies in this region.

In total, seven of the most studied 2 x 2 games are symmetric: the
Prisoner’s Dilemma, Chicken, Stag and Hare, the two Coordination
games, and the two versions of the Battle of the Sexes (BoS).

This chapter explores relationships among the symmetric games,
partly because they are an important topic in their own right, and
partly because they put the topological approach to work on a rela-
tively simple subspace of the 2 x 2 games. The exercise yields sev-
eral basic results about the topology of the 2 x 2 games.

4.2 The nature of a symmetric game

The symmetric games are used so often, especially in introductions
to game theory, that it is easy to forget they represent a very special
case. For each strategy of the row player in a symmetric game, there
must be an equivalent strategy for the column player. The strategies’
names may not make the equivalence obvious. We use U and D for
Row’s strategies and L and R for Column’s to take advantage of the
familiar directions in the bi-matrix structure. Many discussions of
symmetric games name the alternatives “Defect” and “Cooperate”
for both players, to emphasize that they are in a symmetric situation.
If both players have strategic choices x and y, payoffs for the
symmetric games are restricted in a simple but very strong way:

1(x, y) = (Y, X) (4.1)
In this equation, r(x,y) is the payoff to Row if she chooses strategy x
when Column chooses y, and c(y,x) is the payoff to Column if Row
chooses strategy y when Column chooses x.

Condition 4.1 restricts the payoff matrix to the form shown in
the upper left in Figure 4.1. Figure 4.1 also shows the matrix order
graph for game gi44, one of the symmetric Battles of the Sexes!.
Notice that the highest symmetric outcome is in the upper right of
the payoff matrix, following the convention introduced on page 17.

ILike every symmetric game, the index for g144 begins with a 1 or a 3, followed
by a pair with the same value. The last two numbers in the index are the same
because the symmetric games lie on the positive diagonals of layers one and three.
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D.C B,B
AA C,D
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43 22
1,1 3,4

Battle of the Sexes, g144

Figure 4.1: Symmetric games

4.3 Counting the symmetric games

Counting the symmetric games is our first task. This section presents
a method that leads directly to the topological relationships among
the games. We then use the topological relationships to describe fea-
tures of specific symmetric games. The approach combines aspects
implied by the definition with the method presented in Section 2.4.1
to count the 144 2 x 2 games.

Condition 4.1 allows for two cases, y = x and y # x . The first
describes the two ways the players can choose the same strategy.
In those cases they get the same payoff, so there are two payoff
pairs with the same rank for both players. Since we are dealing
with strict ordinal games, we can arbitrarily pick ranks A and B sat-
isfying A < B. The second case describes two ways the players can
choose different strategies. There is really only one combination left
to choose since, if the third point is (C, D), the fourth must be (D,C).

Counting the ways that (C,D) can be chosen is equivalent to
counting the symmetric games. Since C # D, and C,D € {1,2,3,4},
the number is simply 4P> = 4 x 3 = 12. The other two values are
then A and B.

A geometric approach is more revealing. The value of C must
fall below B, between B and A, or above A. Since a point can fall in
any of three horizontal intervals and any of three vertical intervals,
it appears there are nine regions to consider with two dimensions, as
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A W
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A B

Figure 4.2: Counting the symmetric games geometrically: steps 1
and 2

illustrated on the left of Figure 4.2. There is a small complication,
however. Even if we know, for example, that both the row and col-
umn values are less than A, we still don’t know if the row value is
greater or less than the column value. Fortunately we know that the
row value is higher than the column value everywhere to the right of
a positive diagonal through the origin. To make this distinction we
add a diagonal line to the figure on the right.

In the right panel of Figure 4.2, “10”, “11” and “12” mark points
where the row value is higher than the column value. The “3”, “5”
and “7” illustrate the opposite case. Introducing a diagonal separates
these cases, yielding twelve regions. Each corresponds to a game.

4.3.1 Identifying the symmetric games

Every ray originating from the upper symmetric payoff and ending in
one of the 12 regions identifies a symmetric game. Each region rep-
resents one way of choosing two numbers from four. The two num-
bers are the ranks for the two players for one of the non-symmetric
outcomes. Adding the rank information to Figure 4.2 produces Fig-
ure 4.3. These ordered pairs can serve as identifiers for the symmet-
ric games. A symmetric game is completely determined by either

1. connecting the upper symmetric point to a point in any one of
the 12 regions with a solid line, or

2. placing the corresponding pair of rankings from Figure 4.3 in
the lower right cell of a payoff matrix.
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Figure 4.3: Identifiers for the symmetric games

Positioning a solid line in the order graph and specifying the lower
right cell of the payoff matrix are ways of saying that we are fixing
the inducement correspondence for the row player.

Example

The payoff pair (4,1) is the identifier for the Prisoner’s Dilemma. To
construct the order graph, remember that (4,1) is in Row’s right in-
ducement correspondence, i.e. the one that includes the upper sym-
metric point. Since 4 and 1 are used in the identifier, the two sym-
metric pairs must be (2,2) and (3,3). The solid line is drawn for
(3,3) to (4,1). The remaining point must be (1,4). Constructing the
Prisoner’s Dilemma is illustrated as Figure 4.4. The right panel is a
complete strategic form representation.

The payoff matrix for the Prisoner’s Dilemma can be constructed
by placing (4, 1) in the lower right of a 2 x 2 matrix with (3,3) above,
(2,2) to the left and (1,4) diagonally opposite.

Any symmetric game can be transformed into one of its neigh-
bours in another ordinal class by dragging the identifier point across
a boundary. The identifier is the tip of one “wing” of the quadrilat-
eral in the order graph. Treating the wingtips symmetrically pro-
duces a symmetric neighbour. For example, dragging the lower
wingtip of the Prisoner’s Dilemma up into the right-centre cell, and
the upper one into the top-centre cell produces Chicken, gi2,2. The
combination of swaps required to turn the Prisoner’s Dilemma into

2When the Prisoner’s Dilemma flaps its wings up farther we get the Battle of
the Sexes and when it flaps its wings down, we get Stag Hunt and the Coordination
games.
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® (41)
2 3 2 3 2 3

Figure 4.4: Constructing the PD from two numbers

Chicken is Ci2 and Rip, which we write S12. The identifier for
Chicken is (4, 2). See Figure 4.5.

4.4 The space of symmetric games

The symmetric games form a proper subspace under the three sym-
metric operations S12, S23, and S34. The links created by these op-
erations are shown in Figure 4.6. The figure presents a great deal
of information about the symmetric games and illustrates structural
features of the entire collection of games.

The 12 symmetric games consist of four isometries of just three
basic payoff configurations. There are only three because symmetric
games must have exactly two payoff points on the positive diagonal,
eliminating four of seven possible elementary payoff patterns. The
four points must also be connected symmetrically, further eliminat-

>

e
/) ..... .\ /(4,1)

Figure 4.5: Turning the PD into Chicken
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PD Chicken BoS Anti-BoS Anti-Chicken Anti-PD
8111 8122 8133 8144 8155 8166

)
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Conflict and Coordination and No

Hare Hare Conflict

Figure 4.6: The linked-loop model of the symmetric games

ing half of the games built on each of the three patterns remaining.
There are only four symmetric isometries of each pattern because the
presence of an axis of symmetry makes some reflections equivalent.

Two pairs of games are doubly linked in Figure 4.6. The sym-
metric swap S34 usually results in a move between layers 1 and 3.
Between g133 and g144, and between g333 and g344, something differ-
ent happens. S34 transforms these four games to the same neighbour
as S12 does. This is a pattern that will be repeated with other subsets
of games.

The doubly linked games in the top layer are the two symmetric
versions of the BoS. The doubly linked games in layer three are sym-
metric versions of the Coordination game>. These games have only

3The doubly linked games are clearly distinct, but we know of no one who
has drawn attention to the differences between the two symmetric BoS games or
between the two versions of the Coordination game. Without strict ordinality, the
BoS may appear with the two symmetric points in the same place, possibly (0,0),
and the Coordination games may have their two asymmetric points in the same
place.
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Figure 4.7: Symmetric games as vertices of a polyhedron

two distinct neighbours. In an interesting sense, the doubly linked
games are closer to each other than most adjacent games. Each fills
two thirds of the other’s symmetric neigbourhood.

The doubly linked pairs, on the other hand, are farther from each
other than any other symmetric games — it takes four or five sym-
metric operations to get from a Coordination game to a Battle of
the Sexes. All other pairs of symmetric games are no more than
three symmetric swaps apart. The double linked pairs can be seen as
“poles” of the subspace of symmetric games.

The linked-loop model in Figure 4.6 contains all the information
we need about the topology of the symmetric subspace, but there are
other revealing representations. In Figure 4.7 we continue to treat
the games as the nodes of the graph, as in Figure 4.6, but we close
the loops and untwist the crossed lines. The graph is like a cube with
circles inserted into a pair of opposite edges. In this form it is clear
that the graph of the symmetric games can be mapped onto a sphere.
The circles can be seen as the Arctic and Antarctic circles, at once
polar opposites and reflections of each other.

The double linkage results from the one non-uniformity in the
topology of the 2 x 2 games. It occurs whenever R34 and Cz4 lead
to the same layer. When there are two orthogonal operations that
must each link to one of the three other layers there are nine possible
combinations. Inevitably, three pairings must reach the same layer.

In our standard configuration, double links occur only on the
main negative diagonal of the four layers. We examine the feature
that causes double links in Chapter 6. Here we are only interested in
the effect it has in the subspaces generated by symmetric operations.
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4.5 A map of the symmetric games

In Figures 4.6 and 4.7, the symmetric games are nodes of a graph.
Treating games as nodes fits our approach which uses ordinal games
as representatives of regions in the space of real-valued 2 x 2 games.
An alternate representation, the dual in which game vertices appear
as faces of a polyhedron, is particularly useful for exploring real-
valued variants of a given game, as we do in Chapter 10. Each
face represents an equivalence class in the continuous space of 2 x 2
games associated with one ordinal game.

To produce the polyhedral version in Figure 4.8 the appropriate
order graphs are