Gareth Guest WWILEY-VCH

Electron Cyclotron
Heating of Plasmas

e e e T i i fin i i

ey Ty Ny g e e e e R AR

A

/__.._.._-..-..-..“.,_

/',__-.-.'-h







Gareth Guest
Electron Cyclotron Heating of
Plasmas



Related Titles

d’Agostino, R., Favia, P, Kawai, Y., lkegami, H., Sato, N.,
Arefi-Khonsari, F. (eds.)

Advanced Plasma Technology

479 pages with 256 figures and 13 tables
2008

Hardcover

ISBN: 978-3-527-40591-6

Smirnov, B. M.

Plasma Processes and Plasma Kinetics
580 Worked-Out Problems for Science and Technology

582 pages with 91 figures and 31 tables

2007
Softcover
ISBN: 978-3-527-40681-4

Stacey, W. M.

Fusion Plasma Physics

571 pages with 158 figures and 28 tables

2005
Softcover
ISBN: 978-3-527-40586-2

Lieberman, M. A,, Lichtenberg, A. J.

Principles of Plasma Discharges and
Materials Processing

approx. 800 pages

2005

Hardcover

ISBN: 978-0-471-72001-0

Woods, L. C.

Physics of Plasmas

226 pages with 69 figures
2004

Softcover

ISBN: 978-3-527-40461-2



Gareth Guest

Electron Cyclotron Heating of Plasmas

WILEY-
VCH

WILEY-VCH Verlag GmbH & Co. KGaA



The Author

Dr. Gareth Guest

5433 Caminito Rosa

La Jolla, CA 92037-7234
USA

All books published by Wiley-VCH are carefully
produced. Nevertheless, authors, editors, and
publisher do not warrant the information contained
in these books, including this book, to be free of
errors. Readers are advised to keep in mind that
statements, data, illustrations, procedural details or
other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the
British Library.

Bibliographic information published by

the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this
publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the
Internet at http://dnb.d-nb.de.

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim

All rights reserved (including those of translation into
other languages). No part of this book may be
reproduced in any form — by photoprinting,
microfilm, or any other means — nor transmitted or
translated into a machine language without written
permission from the publishers. Registered names,
trademarks, etc. used in this book, even when not
specifically marked as such, are not to be considered
unprotected by law.

Typesetting Thomson Digital, Noida, India
Printing  betz-druck GmbH, Darmstadt
Binding Litges & Dopf GmbH, Heppenheim
Cover Design

Printed in the Federal Republic of Germany
Printed on acid-free paper

ISBN: 978-3-527-40916-7



This book is dedicated with deep gratitude to
Raphael A. Dandl, mentor, colleague and friend.






Vil

Contents

1 Introduction 1
References 5

2 Magpnetic Fields 7

2.1 Magnetic Mirrors: Field Calculations Using the Vector Potential 8
2.2 Orthogonal Curvilinear Coordinates and Clebsch Representations 11
2.3 Magnetic Mirrors: Field Calculations Using the Scalar Potential 12
2.4 The Dipole Limit: Planetary Magnetic Fields 15

2.5 Tokamaks: Rotational Transform and the “Safety Factor” 15

References 17

3 Electron Orbits 19

3.1 Electron Gyromotion 19

3.2 Electron Bounce Motion 22

3.3 Electron Drift Motions 23

34 Relativistic Electron Kinematics for ECH 28

3.5 The Hamiltonian Approach 29

3.6 Drift Orbits in Toroidal Magnetic Configurations 32

References 34

4 Wave Propagation and Cyclotron Damping in Magnetized Plasmas 37
4.1 The Cold-Plasma Dispersion Relation 38

4.2 Critical Conditions for Parallel Propagation 41

4.3 Critical Conditions for Perpendicular Propagation 42

4.4 Clemmow-Mullaly—Allis Diagrams 42

4.5 The High-Field Regime 43

4.6 The Low-Field Regime 44

4.7 A Few Preliminary Implications for ECH Experiments 48
4.8 Wave Damping 50

4.8.1 A Collisional Model of Damping 50

4.8.2 An Introduction to Collisionless Cyclotron Damping 51

483 Cyclotron Damping of Whistler Waves 53



Vil | Contents

48.4 Cyclotron Damping of Waves Propagating as O-Modes 59

49 Electrostatic Plasma Waves 61
4.10 Estimates of the Electric Field Amplitude 62
4.11 Ray Tracing in Inhomogeneous Plasmas 63

References 65

5 Interaction of Electrons with Electromagnetic Fields at Resonance 69
5.1 A Rudimentary Stochastic Model of ECH 70
5.2 Dynamics of the Fundamental Resonance Interaction 76
5.2.1 Dynamics of the Electron Interaction With X-Mode Waves 77
5.2.2 Dynamics of the Electron Interaction With Parallel RF
Electric Fields 81
5.2.3 Dynamics of the Electron Interaction with O-Mode Waves 82
5.3 Heating of Relativistic Electrons 86
5.4 Limit Cycles 87
5.5 Nonlinear Effects: Mapping Approaches 89

References 95

6 Equilibrium 97

6.1 Charge Balance 97

6.2 Particle and Power Balance 99

6.2.1 Particle and Energy Balance for Group 1 100

6.3 Breakdown and Start-up 103

6.3.1 Breakdown by Heating on the Midplane of a Magnetic Mirror 104
6.3.2 Breakdown with Heating Well Off the Midplane 106

6.33 Breakdown with Heating near the Midplane 106

6.4 ECH Runaway: Groups 2 and 3 108

6.4.1 Particle Balance for Electrons in Group 2 108

6.4.2 Particle and Power Balance for Electrons in Group 3 111
6.5 Fokker—Planck Models of Hot-Electron Equilibria 112

6.6 Ad Hoc Velocity—Space Models of Anisotropic Hot-Electron

Equilibria 115
References 119

7 Stability 121

7.1 Interchange Instabilities 121

7.2 Electrostatic Velocity—Space Instabilities Driven by Wave-Particle
Interactions 126

7.3 Electromagnetic Velocity Space Instabilities 133

References 138

8 Experimental Results in Magnetic Mirrors 141
8.1 Hot-Electron Experiments in “Physics Test Facility” and EPA 141
8.2 High-Beta Experiments in ELMO 148

83 Unstable Electromagnetic Waves in the TPM 153



8.4

9.1
9.2
9.3
9.4

10
10.1
10.2

n

11.1
11.2
11.3

12

12.1
12.2
12.3
12.4
12.5
12.6

13

13.1
13.2
13.3

Contents

Heating Experiments in AMPHED 161
References 165

Electron Cyclotron Heating in Tokamaks 169
Ordinary-Mode Fundamental ECH Absorption in PIT 169
ECH-Assisted Start-up in Tokamaks 172

ECH Suppression of Tearing Modes in Tokamaks 177
Electron Cyclotron Current Drive 182

References 187

The ELMO Bumpy Torus 189

The Canted Mirror Experiments 191
Experiments in EBT-I 196
References 204

ECH Applications to Space Plasmas 207

Active Experiments in Space 207

Laboratory Experiments of Astrophysical Significance 212
Nonlinear Dynamical Ambipolar Equilibria 216
References 221

Some Aspects of Microwave Technology 223
Low-Frequency Technology: Sources 223
Low-Frequency Transmission Systems 224
Low-Frequency Coupling Techniques 224
High-Frequency Power Sources 225
High-Frequency Transmission Systems 226
High-Frequency Couplers 228

References 228

Frequency Modulated Electron Cyclotron Heating (FMECH) 229
Achievable Values of Toroidal Asymmetry 230

An Estimate of /P 234

Generation of the Energetic “Source” Electrons 237
References 239

Appendix A: Some Useful Physical Constants 241
Appendix B: Formulas from Vector Calculus 243

Appendix C: Properties of Some Mathematical Functions 245

Index 247

IX






1
Introduction

In the late 1950s as part of the International Controlled Thermonuclear Fusion
Research Program, several small independent groups started investigating the
possibility of using microwave power to create magnetically confined, hot-electron
plasmas. This process became know variously as electron cyclotron heating (ECH) or
electron cyclotron resonance heating (ECRH) in recognition of the key role played
by resonant absorption of the microwave power at the electron gyrofrequency
(often called the “cyclotron frequency”). Of these, the group under R.A. Dandl at
the Oak Ridge National Laboratory was unique in using continuous wave (cw)
microwave power and large DC magnets to produce steady-state plasmas. Unlike
pulsed discharges, this steady-state operation permitted ongoing adjustments of the
gas pressure, microwave power, and magnetic field strength as well as extensive
diagnostic measurements of the plasma properties. By the early 1960s, it was clear
that these plasmas could be operated in regimes that exhibited some remarkable
properties. Although the plasmas were confined in simple magnetic mirrors and
theoretically predicted to be susceptible to large-scale plasma instabilities, it was
found that if the ambient gas pressure was suitably adjusted they could be operated in
completely stable, steady-state regimes. Moreover, they contained two or more
distinct populations of electrons: a low-temperature group with temperatures
of some 10s of electron volts together with high-temperature populations with
temperatures in excess of 100 keV and kinetic pressures of at least 5% of the
magnetostatic pressure of the confining magnetic field. Dandl’s group devoted the
next two decades to an intense study of a sequence of increasingly powerful and
sophisticated embodiments of these remarkable ECH plasmas.

In the ELMO magnetic mirror device, they achieved stable, steady-state, relativ-
istic-electron plasmas with average hot-electron temperatures in excess of 3 MeV
and kinetic pressures comparable to the confining magnetostatic pressure. Thirty
years after they were created, these plasmas remain unique in many respects,
particularly as regards their copious emission of neutrons apparently resulting
from the electron dissociation of deuterium nuclei, as well as the plasma diamagnetic
modification of the confining magnetic field to yield substantial localized depressions
in the magnetic intensity. The relativistic-electron shells produced in ELMO were
subsequently used successfully by Dandl to stabilize toroidal plasmas confined
in the ELMO Bumpy Torus.
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At roughly the same time, a group under T. Consoli in Saclay, France, was
investigating, among other things, the possible use of ECH plasmas to achieve the
collective acceleration of plasma ions through space-charge electric fields. This group
later moved to Grenoble and continued an active research program lasting over
two decades. The goal of collective acceleration remained elusive, but the ECH
techniques developed within this effort were to be influential in the design of
sources of multiply charged ions and ultimately in sources of high-density plasma
of interest for commercial applications in plasma processing. In particular, Consoli’s
group pioneered the use of whistler-wave heating to produce high-density albeit
low-temperature plasmas. This technique, which later came to be known as high-field
launch, coupled microwave power into the plasma electrons via whistler waves
launched in the high-field region of the magnetic-mirror fields to propagate along
the magnetic lines of force into the resonance region.

A vigorous ECH research program under H. Ikegami began in Nagoya, Japan,
in the late 1960s, starting with magnetic-mirror experiments and subsequently
progressing to experiments in the bumpy torus magnetic configuration. In the
Soviet Union, ECH was investigated first in magnetic mirror devices and then in
tokamaks, following the advent of gyrotrons, remarkable sources of high-frequency
microwave power first developed in the former Soviet Union.

More recently ECH has found widespread use as a means of providing auxiliary
heating in tokamaks and stellarators, as well as a means of stabilizing particular
modes of instabilities and driving noninductive currents in tokamaks. In particular,
early predictions that ECH could be used to stabilize neoclassical tearing modes
of plasma instability in tokamaks were subsequently confirmed experimentally,
and further applications became possible with the continuing development of
high-power, long-pulse, and cw sources of microwave power at frequencies well
above 100GHz and, therefore, in the electron gyrofrequency range for major
tokamak installations. Contemporary tokamaks routinely use several megawatts of
140 GHz microwave power to break down the gas and initiate the plasma discharge,
to ameliorate the deleterious effects of plasma instabilities, and to carry out research
on plasma and energy confinement. Large stellarators now use ECH to achieve
current-free operation and exploit their unique advantage as a steady-state toroidal
approach to fusion.

In several large tokamak installations, most notably the Joint European Tokamak
(JET), deuterium-tritium plasmas have been heated to ignition temperatures and
net fusion energy has been released. Encouraged by such achievements, the major
fusion research programs have undertaken a broad collaboration including the
United States, Japan, Russia, and the European Community to design, construct,
and operate the International Thermonuclear Experimental Reactor (ITER). It
appears likely that ECH will perform several important functions in ITER, including
startup, auxiliary heating, and suppression of tearing modes. It is also possible that
ECH could be used to drive the noninductive plasma currents required for steady-
state operation, if that type of tokamak is deemed to be advantageous. Sources of
microwave power and low-loss distribution systems have been under intensive
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development in recent years and gyrotrons in the required frequency and power
range are now in operation at several tokamak and stellarator facilities.

These government-funded ECH research programs stimulated advances in var-
ious aspects of microwave technology that were essential to fusion applications,
particularly the high-power cw millimeter microwave sources mentioned earlier;
but the recognition of potential commercial applications of ECH plasmas led to
entirely different directions for development. Rather than seeking to create plasmas
with extremely high energy density, the developers of commercial ECH technologies
typically sought to create large volumes of quiescent plasma with highly uniform
densities and temperatures that were typically no greater than 10eV. Increasingly,
arrays of permanent magnets were employed in ECH plasma sources to replace the
water-cooled or super conducting DC magnets typical of fusion experiments.
Innovative coupler designs were eventually developed to facilitate the use of the
ubiquitous and inexpensive 2.45 GHz microwave power sources in commercial
ECH plasma devices.

In addition to these terrestrial laboratory investigations of ECH plasmas, there
have been several efforts to explore possible applications of ECH to magnetospheric
plasmas using ground-based antenna arrays to launch electromagnetic waves along
various trajectories into the earth’s magnetosphere. One goal of these active ECH
experiments in space is a means of precipitating energetic electrons out of the
magnetosphere to prevent damage to satellites, astronauts, and ground-based
communications networks. There have also been suggestions that ECH could be
used to model phenomena of astrophysical interest by employing laboratory experi-
ments whose results can be scaled in size to provide useful insights into the behavior
of the larger cosmic systems that seem to exhibit effects of nonthermal plasmas.

Thus, over the past five decades ECH has been employed in a wide range of
circumstances encompassing microwave frequencies from 2 to 200GHz and
power levels ranging from less than 1kW to 1 MW per microwave source. Magnetic
configurations utilized in these applications have included simple magnetic mirrors,
various types of open-ended magnetic wells, many toroidal devices, as well as
magnetic geometries intended to produce unconfined plasmas for industrial pro-
cesses. Much has been learned about the fundamental aspects of ECH although,
regrettably, the pressure to apply ECH in large experiments has meant that some
underlying phenomena still need more detailed theoretical and experimental
research to resolve outstanding issues that remain. Nonetheless, much ECH physics
is relatively mature — a claim that hopefully will be supported by the present work.
In the future, the body of ECH science seems likely to find an increasingly wide range
of goal-oriented applications. Furthermore, the remarkable achievements of ECH,
particularly in regard to the generation of steady-state high energy density plasmas,
are so strikingly novel and so rich in potential for further discovery that future basic
research efforts are likely to be undertaken to examine phenomena that cannot
readily be produced by other means and in other media.

The goal of the present work is to collect in one place most of the basic components
of the science of ECH as a resource for present and future students and researchers

3
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in the physics of high energy density, relativistic-electron plasmas, as well as for
scientists and engineers who are seeking to develop more utilitarian applications of
ECH. In the early chapters of the book, emphasis is given to the underlying
fundamental physics that governs the outcome of any particular ECH experiment.
Later chapters use the published results from various experiments to examine the
ways in which these underlying phenomena work in collaboration to determine the
properties of ECH plasmas.

ECH of plasmas involves a number of fundamental plasma physics phenomena
whose basic properties are relatively well established. These include the motions
of individual electrons in various types of static magnetic fields as well as the
propagation of electromagnetic waves in low-temperature magnetized plasmas.
Chapter 2 deals with the analysis of illustrative types of magnetostatic fields with
special emphasis on those properties that are critical to ECH. The motions of
individual electrons in these magnetostatic fields are then discussed in Chapter 3.
Chapter 4 addresses the coupling of microwave power into plasmas by employing
highly simplified models of the plasmas and magnetic fields. Although simplified,
these models are particularly applicable to the “quasioptical” plasmas in large
contemporary tokamaks and stellarators as well as the ionosphere. The dynamical
response of electrons to spatially localized resonant microwave electric fields, while
less thoroughly documented, has been investigated by many workers with results that
are presented in Chapter 5.

ECH also involves a number of plasma physics phenomena that are not as well
established but are especially important, for example, in the generation of relativistic-
electron plasmas with very high energy densities. Chapter 6 deals with applicable
theories of plasma equilibria based, in the first instance, on simple transport models
of plasma particles and heat and, in the second instance, on somewhat ad hoc
microscopic models of the anisotropic equilibria confined in magnetic mirror
configurations. Chapter 7 summarizes several theories of the stability of ECH
plasmas in order to provide a basis for the interpretation of experiments which
illustrate the dominant observable properties of specific archetypal ECH plasmas.
Several such experiments in magnetic mirror devices are summarized in Chapter 8
and interpreted as fully as possible in the context of the basic ECH physics presented
in the earlier chapters.

As was mentioned earlier, many of the present generation of tokamaks and
stellarators use multimegawatt ECH power levels at frequencies as high as 157 GHz
for several essential aspects of their functioning. Results from several of these as well
as earlier tokamak experiments are interpreted in Chapter 9 using the basic physics
developed in the earlier chapters.

The ELMO Bumpy Torus employed ECH in several unique roles and the key
features of these are discussed in Chapter 10. Chapter 11 discusses some of the
ongoing and potential future applications of ECH to space plasma phenomena, again
emphasizing aspects of ECH physics that are of unique importance to these
applications. Chapter 12 presents a brief overview of some of the technological
aspects of the microwave sources and distribution systems that have permitted the
dramatic increase in the applications of ECH to the large fusion installations.
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Finally, Chapter 13 discusses the more speculative use of frequency-modulated
microwave power with steady-state current drive in tokamaks as the main illustration.

As expected in a field that has been developing over five or more decades, much of
the basic material in the early chapters of this book is available in many older
works. Here this type of archival material is presented in as concise a form as possible
and in a uniform notation and system of units (rationalized MKS) with references
to much of the earlier work, particularly works that include copious references.
The choice of topics covered was largely determined by the interpretative needs of the
experiments to be discussed in the later chapters and readers may notice regrettable
gaps. The experiments were chosen with the aim of permitting the reader to verify
for himself the applicability of the basic ECH phenomenology and obviously many
important experiments could not be included. In this regard, the present work differs
fundamentally from a review of ECH. Fortunately, there are several excellent such
reviews available to the interested reader [1, 2]. Exercises are included at the end of
each chapter to encourage students to internalize and make concrete what otherwise
might remain vague and intangible.

References

1 R. Prater, Physics of Plasmas 11, 2349 (2004) 2 V. Erckmann and U. Gasparino, Plasma
and works cited therein. Phys. and Control. Fusion 36,1869 (1994) and
works cited therein.
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Magnetic Fields

Electron cyclotron heating (ECH) depends essentially on properties of the magnetic
field configuration in ways that we will consider in subsequent chapters. Presently
itis perhaps self-evident that if low-energy plasma electrons are to be heated rapidly,
they must be able to pass freely through a resonant interaction region where the
magnetic intensity, B, is approaching the resonant value, i.e., the value at which
the local cold-electron fundamental gyrofrequency, Q., equals the frequency of the
applied microwave power, w, =2nf,. Since Q.=eB/m, the resonant magnetic
intensity is given by

Bres = 2n(m/e)f,, (= 1T at 28 GHz),

where —e and m are the charge and mass of the electron, respectively. We will have
a detailed discussion on Doppler-shifted resonance for relativistic electrons later.
The location in space where B = B, will generally be referred to here and in what
follows as the “resonance surface”.

In addition to unrestricted access to the resonance surfaces, itis also important that
heated electrons be prevented from striking any nearby material surfaces or escaping
rapidly from the enclosing chamber. This is especially true if ECH is used to create
high energy density, hot-electron plasmas; however, good confinement of heated
electrons is also essential if ECH is to be used for efficient production of dense, low-
temperature plasmas. Simple magnetic-mirror configurations [1] have often been
employed for a wide range of ECH applications since they provide good confinement
of low-energy electrons as well as energetic electrons. The low-energy electrons are
electrostatically confined by the equilibrium ambipolar electric field (see Chapter 6),
while the more energetic electrons are magnetically confined by the magnetic mirror
effect (see Chapter 3). We will, therefore, frequently employ the simple magnetic
mirror configuration as a useful paradigm for discussing the aspects of the static
magnetic field that are critical to the ECH process. We will also briefly describe other
magnetic field configurations in which ECH is being used, particularly the tokamak
toroidal magnetic confinement configuration as well as planetary magnetospheres.
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2.1
Magnetic Mirrors: Field Calculations Using the Vector Potential

An accurate mathematical description of the magnetic field of a simple magnetic
mirror is given, for example, by Morozov and Solov’ev [2]. The field is generated by
two or more collinear coils made up of a suitable number of circular current loops
connected in series. As derived by Smythe [3], for example, the vector potential of each
coil is given in cylindrical coordinates (p, ¢, z) by the single component

Ao(p,2) = (ol/m)k " (xe/p) *[(1-1E /2)K(IP) ~E ()], (2.1)

where

K = 4rep(rc +p)” +22 " (2.2)

In these expressions, K(k”) and E(k?) are the complete elliptic integrals [4], T is the
current in the coil, o is the permeability of free space, and r. is the radius of
the circular current loop. Note that z is the axial field position relative to the plane
of the coil. The components of the magnetic field are then obtained from B=V x A.
For completeness, we include here a brief recapitulation of Smythe’s derivation.
Our starting point is the set of three time-independent equations:

VxH=j
V-B=0
B = H.

Since V-B=0, we can set B=V x A and choose V - A = 0. The vector potential is
then given by a solution of Poisson’s equation, since
V x (VxA)=V(V-A)-V*A = -V’A =
so that
A= (uy/4m) [0 e,

The current density in a circular current-carrying loop consists solely of the
azimuthal component j,, which can be represented by a product of delta-functions:

jo = (1/2m)3(t' —1)8(2 ) /xc.

Here the radius of the coil is r. and its center is at X' =y =0 and 7' = z. Clearly,
only the azimuthal component of the vector potential is nonvanishing. The geometry
of the situation is illustrated in Figure 2.1.

The volume integral, [j(r')[(r —)*] "/°d’¢’ reduces to a line integral around the
loop, since

jo cos ¢ pd dp dz = I cos ¢ pdo
so that

Ay = 2(o1/4m) J cos ¢ do [(r—r) 2,
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by |

y

Figure 2.1 The geometry for deriving the equation for the vector
potential of a single circular current loop, following Smythe [3].

where the integral runs from 0 to m. In view of the axisymmetry of the field,
we may choose the point of observation, r, to lie in the x — z plane. Then

(r—1)" = (x=x)* + (y—y)* + (z-2)°
= (1—1c 08 0)% + (0—r sin 0)* + (z—z.)*
=1 4 1r2-2rr. cos 0 + (z—2)".

If we now let g =7 + 20, we have d¢ = 2d6 and cosd = 2sin*® — 1 and we then
obtain the following result for A,:

Ay = (polrc/n)JdG(Z sin® 0—1)[r* + 12 —2rr (2 sin® 0—1) + (z—z)"]V/*
where the integral now runs from 0 to m/2. One can readily express this integral

in terms of the two complete elliptic integrals [4]:

K(&) = J(1—k2 sin? 0) 1 do

E(C) = J(1—1<2 sin? 6)"/2 do,

where both integrals run from 0 to ©t/2. In this way, we obtain Eq. (2.1) as given by

Smythe [3]. One can show by tedious but straightforward differentiation that the
components of the magnetic intensity are given by [3]

By = (Hol/2m) (2/p)[(rc+p)* +2°] 2 {—Ko+ (2 +p” +27)[(xe—p)* +2°] 'E},

(2.3)
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~Y

\/

Figure 2.2 The major spatial properties of a simple magnetic
mirror field with a 2 : 1 mirror ratio showing three flux surfaces and
five mod-B surfaces.

and
B, = (1ol /2m)[(xc +p)* +2°] /(K + (12—p”~2")[(re—p) +27] 'E}.  (24)

We now consider a simple two-coil magnetic-mirror configuration indicated
schematically in Figure 2.2.

In this rudimentary array, the distance between the coils, L, relative to the effective
radius of the current-carrying coils, r., determines the magnetic mirror ratio on axis,
M, defined as M = B .5/ Bmin. In the example of Figure 2.2, we have chosen L, = 2.4r,
to yield a mirror ratio on axis approximately equal to 2: 1.

The formulas for Ay, B,, and B, can be evaluated numerically using the polynomial
approximations given, for example, by Abramowitz and Stegun [4]. For the axisym-
metric simple magnetic mirror, the vector potential, Ay, can be used to determine the
locations of the surfaces on which the magnetic flux, ¥ = [B-dS is constant
everywhere. From Stokes theorem we have

Y(p,z) = IB~dS = J(V x A)-dS = IA-dl = 21pA,(p, z). (2.5)

The direction of the magnetic field at any point in the ¢ = constant plane is then
given by the tangent to the corresponding flux surface through that point. We can use
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rudimentary numerical techniques to evaluate the flux \P(p, z) and thereby map out
the intersections of the (iso)flux surfaces with the (p, z) plane. Three such flux
surfaces are shown in Figure 2.2.

With the same numerical techniques used earlier, we can evaluate the two
components of the magnetic-mirror field at any point in the field and map out the
surfaces on which the magnitude of the magnetic intensity is constant. These
surfaces, or rather their intersections with the (p, z) plane, are usually referred to
as “Mod-B” surfaces. The resonance surface is a particularly significant Mod-B
surface for ECH, as we shall see. In Figure 2.2, we have displayed the contours on
which the magnetic intensity takes on the values 0f 0.75, 1, 1.25, 1.5, and 2, relative to
the value at the origin, p=2z=0.

2.2
Orthogonal Curvilinear Coordinates and Clebsch Representations

It will sometimes be helpful to use an orthogonal curvilinear coordinate system [5],
one of whose basis vectors is parallel to the magnetic field [6]. Such a coordinate
system can be constructed for our axisymmetric magnetic field by exploiting
the fact that in this case the gradient of the magnetic flux, V¥(p, z), the ¢-direction,
V6 and the magnetic field, B, are all mutually orthogonal; since

B=V x A= —0Ay/0zu,+p 0(pAy)/Opu, and
Vo x B =p~'[0(pAs)/0p up +3(pAs) /0z u,] = V¥(p,z)/(2mp).
In the notation of Ref. [5], we designate the three curvilinear coordinates as
Gi=Y §=0 &=s, (2.6)

where s is the distance measured along the magnetic line of force. The three
mutually orthogonal unit vectors are

u = VY¥Y/|V¥|u; =Vé u; =B/B=b, (2.7)
and the corresponding scale factors are
h; = (pB)"' hy=p h;=HB, (2.8)

where the Jacobian, H, is related to the curvature of the magnetic lines of force, x, by
HB = exp {—Jd‘PK/(pB)], (2.9)
with the curvature given by

K = (b- V)b = xu (2.10)

This coordinate system is one example of a Clebsch representation [7] of the
magnetic field:

B = Vo x VB (2.11)

1
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where o and P are constant on a field line. For the present case
o=%¥/2randp = ¢. (2.12)

The curvature of the magnetic lines of force, k= (b- V)b, has particular signif-
icance for the electron drift motions as well as for plasma stability. A useful alternative
expression for this property of the magnetic lines of force can be obtained from the
standard vector identity:

V(A-B)=Ax (VxB)+Bx (VxA)+(B-V)A+(A-V)B
We apply this identity to
V(B-B) =2B x (V xB)+2(B-V)B
=2B x (V x B) +2(Bb-V)Bb
=2B x (V x B)+2B(b-V)B +2B%(b- V)b

so that

B2(b- V)b = B[VB—b(b- V)B]-B x (V x B) = BV, B—B x (V x B)
(2.13)

23
Magnetic Mirrors: Field Calculations Using the Scalar Potential

An alternative approach to describe the magnetic fields of magnetic-mirror config-
urations using the magnetic scalar potential, y, has been discussed by Post [1].
This description provides a very useful approximate expression for some key
properties of the magnetic field. In this approach, the magnetic intensity in
current-free regions is given by B= —Vy, where y(p, z) is a solution of Laplace’s
equation, V*x = 0. If we require ¥ to be periodic in z, then the general solution is

x(p,z) = Z C, sin(nkoz)Io (nkop) (2.14)

where Io(nkop) is the modified Bessel function, ko=2n/L, L is the periodicity
length in z, and the summation runs from zero to infinity. The two components
of B are then given by

B, = Z Cpcos(nkoz) Iy (nkep),

and
By = ) _ Casin(nkoz) I (nkop) (2.15)
The lowest order terms in these infinite series can be written in the following form:
B, = Bo{[(M +1)/2]—[(M—1)/2] cos(koz) Iy (kop)}, (2.16)

and

B, = —Bo[(M—1)/2] sin(koz) I1 (kop). (2.17)
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Figure 2.3 The variation of the magnetic intensity along the axis of
the simple magnetic mirror field shown in Figure 2.2.

We will frequently use the approximate model for the axial variation of the
magnetic intensity on the axis, p =0, given by either of the following two equivalent
versions of Eq. (2.16):

B(z) = Bo[1+ (M—1) sin?(kez/2)] = Bo{[(M +1)/2]—[(M—1)/2]cos koz},
(2.18)

where M is the mirror ratio and ko =2mn/L.. For the case of the 2:1 mirror ratio,
the simple model varies by less than 6% from the accurate mathematical model for
all positions along the axis and between the coils. Figure 2.3 displays a plot of relative
magnetic intensity on the axis of the simple magnetic mirror shown in Figure 2.2
as a function of the distance along the axis of the pair of coils.

The radial component of the magnetic intensity vanishes on the axis as well as on
the symmetry plane midway between the coils, the so-called midplane of the
configuration. In the midplane, the magnetic intensity falls with radial distance
from the axis as shown in Figure 2.4. Here the accurate numerical results are
shown as a solid line, while the approximate results from Eq. (2.16) are shown as a
dashed line.
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Figure 2.4 The radial dependence of the magnetic intensity
on the midplane of the simple magnetic mirror field

shown in Figure 2.2. The solid line is the result of numerical
calculation, while the dashed line is from the approximate
expression (2.17).

According to Eq. (2.16), the radial gradient of the magnetic intensity in the
midplane is given to the lowest order by

0B, /0p = —koBo[(M—1)/2]I; (kop). (2.19)

A convenient measure of this gradient is the characteristic length defined by
R, = |(0In B,/dp) | Using Eq. (2.17) we find

Ry/L={[(M+1)/(M=1)]=Io(kop) }/[2n11 (kop)], (2.20)

where Ry,/Lis infinite on the axis but falls off rapidly with increasing radius. For small
values of the argument kop, Io(kop) ~ 1, and I (kop) ~ kop/2. Thus,

PRy ~ L2 m?(M—1)] ", (2.21)
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and is roughly constant for a given simple magnetic mirror configuration. In Chapter 3,
we will see that this feature of simple magnetic mirror configurations plays a major
role in limiting the maximum energy of the confined electrons.

24
The Dipole Limit: Planetary Magnetic Fields

Planetary magnetospheres are similar in some respects to simple magnetic mirror
configurations. In discussing the earth’s magnetic field, for example, it is conven-
tional to employ the dipole approximaton of Eq. (2.1) to describe the vector potential
and magnetic field at distances larger than the dimensions of the currents [8]. In
spherical polar coordinates, p=r sin 6 and z=r cos 8, the argument of the elliptic
integrals is given by

K* = 4(r. /1) sin O [1 + 2(x /1) sin O+ (r./1)*] . (2.22)

Clearly, if 1> > r? then k* < 1 and K(k?) and E(k?) can be approximated by the
following power series [9]:

2/m) K(K*) = 1+2(k*/8) +9(k*/8)* + - -

(2/m)E(K?) = 1-2(k*/8)—3(k*/8)*— - - (2.23)
Thus, to lowest order in (k?/8)
(1-K*/2)K(K*)—E(K*) = (2m)(K*/8)°
and
Ay(r, 8) = (UM /4m) r 2 sin 6, (2.24)

where M is the dipole moment of the current loop, M = mr?I. The corresponding
components of the magnetic intensity are given by

B, = (uoM/2m)r >cos 6,

and

By = (LoM/4m) r >sin O (2.25)

25
Tokamaks: Rotational Transform and the “Safety Factor”

As a final example of relatively simple magnetic field configurations for which
there are important applications of ECH, we consider the magnetic field in the
tokamak [10]. It consists of a superposition of two separate fields, a toroidal field
generated by currents carried in external windings distributed uniformly around the

15
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torus, and a poloidal magnetic field generated by toroidal currents induced in the
confined plasma itself. The toroidal field can be conveniently evaluated using
Ampere’s law in its integral form:

Here I, is the total current carried by the external windings and threading the torus.
Since the toroidal magnetic field is independent of the azimuthal angle,

JB( -dl = 2TCth = “’OIU (227)

where p lies inside the toroidal vacuum chamber: Ri—a<p <R, + a.
Here R, and a are the major and minor radii, respectively, of the toroidal chamber.
Clearly, the magnitude of the toroidal field varies as 1/p:

B: = Yoli/2mp (2.28)

so that its maximum and minimum values inside the chamber are given,
respectively, by

Bt,max = LLOIt/Zn(Rt—a) and Bt,min = IJ.OIt/ZTC(Rt + a). (229)

The poloidal magnetic field strength, B, can also be obtained using Ampere’s Law,
provided the radial dependence of the plasma current density, j,, is known:

JBP dl =y, ij(r’)Zn Y dr.
In the limit of large aspect ratios, R;/a>> 1, this reduces approximately to
B, = |, J]’P(r/)r’ dr’
so that

aBy(a) = polp/(21), (2.30)

where I, is the total plasma current in the discharge. Since the radial dependence
of the plasma current was formerly not generally known, it became customary to
describe the poloidal magnetic intensity in terms of the so-called safety factor q,
where

q(r) = rB¢/(R:By). (2.31)
For stable tokamak operation, it is usually necessary that q(a) > 1 so that
B,/B, <1/Ry < 1.

The surfaces of constant B are thus approximately cylinders on which p = constant.
Magnetic lines of force spiral around the magnetic axis and close on themselves
after q transits around the major axis of the torus if it is an integer. If q is not an
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integer, the spiraling lines of force trace out a magnetic flux surface. Electrons
moving along the magnetic lines of force can be trapped, under suitable circum-
stances, between two magnetic mirrors for which the mirror ratio along a line of force
with a distance r from the magnetic axis is

M = Bunax/Bunin = (Re +1)/(Re—1). (2.32)

In many conventional tokamaks, the radial profile of the electron temperature,
Te(r), is observed to be approximately Gaussian with T.(r)=T.(0)exp(—our?/a?).
The constant o> 1 is a “peaking factor”. If the plasma parallel conductivity is
proportional to T/2, the current density will also have a Gaussian profile: j(r) =j(0)
exp(—3ar®/2a). The total plasma current is then

I, = j(0)(2ma” /3a)[1—exp(—30/2)],
and the radial profile of the safety factor is then given by

q(r)/a(a) = (r*/a*){[1—exp(~30/2)]/[1—exp(—30u’ /22%)]}

so that q(a) = 1.50,q(0).
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B Exercises

2.1

2.2

2.3

24

2.5

The following exercises require numerical evaluation of the
formulas for the vector potential and the two components of the
magnetic intensity in a simple, two-coil magnetic mirror
configuration. A satisfactory program for carrying out the required
numerical computations can readily be devised using common
spreadsheet applications by employing the polynomial
approximations for the elliptic integrals as cited, for example, in
Abramowitz and Stegun [4].

For the simple magnetic mirror configuration shown in
Figure 2.2, determine the dependence of mirror ratio on the
coil separation relative to the coil radius, L /r. for 1 < L./
r.<3.

For the same simple magnetic mirror configuration,
determine the radial location of the separatrix in the
magnetic flux surfaces as a function of the separation of the
two coils, L /r..

For the same simple magnetic mirror configuration shown in
Figure 2.2, determine the magnetic intensity at the origin,
p =z =0 versus the ratio of the current in each coil to the
effective radius of each coil, 1/r..

Derive a formula for the curvature of the field lines near the
axis of a simple magnetic mirror (a) at the midplane, and (b)
in the mirror throat.

Verify the expression for the Jacobian for the (¥, &, s)
coordinate system, HB = exp[— [d'¥Yk/(B)], by evaluating
both sides of the following vector identity:

(V x B) x B= (B-/)B— \VB?/2. Use formulas from
Ref. [5] or the following:

Vf = oB(0f /OW)W + o' (of /8C)% + (HB) ' (of /0s)b

(V x A) = W(eBH) ' [(d(BHA,)/d¢] -0 (A:) /00]

+&(e/H)[0(Aw/0B)/0s—0(BHA; ) /oW
+bB[0(eA;)/0W—0(Aw/0B)/0T]



3
Electron Orbits

We now consider the unperturbed motions of individual electrons in magnetic fields
such as the simple magnetic-mirror configuration discussed in Chapter 2. In most
situations where electrons are confined for long times by a static magnetic field
there are three well-separated time scales that can provide a convenient albeit
approximate description of these motions; namely, gyration about magnetic lines
of force, bounce along field lines and between magnetic mirrors, and drift across
lines of force. We begin with a nonrelativistic description which will be generalized
later to include relativistic effects.

3.1
Electron Gyromotion

The most rapid of the three motions is the (right-handed) electron gyration about
magnetic lines of force. This gyration is caused by the Lorentz force

F =mdv/dt = —e(E+v x B). (3.1)

In general, since the magnetic intensity varies along the trajectory of the electron,
this equation of motion, Eq. (3.1), is intrinsically nonlinear. Rigorous treatments of
this problem using expansions in the small parameter (m/e) have been published
by several authors [1]. To obtain a useful approximate integration of this equation
of motion we simply assume that within a region large enough to contain the electron
for many periods of its gyromotion we may treat the local magnetic intensity, B,
as spatially uniform and in the z-direction to write this equation as

dv/dt+ Qv x u, = —eE/m. (3.2)

Here u, is a unit vector in the z-direction. This approach relies for its validity on the
typical magnetic confinement situation in which the magnetic intensity varies
negligibly over the extent of an electron’s orbit, as discussed, for example, by Alfvén
and Filthammar as well as many others [1]. The two components of the equation of
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motion perpendicular to the magnetic field are decoupled in the so-called rotating
coordinates [2]:

ve= (£ ivy)/\/i7 (3.3)
giving separate equations of motion for each component of the velocity:

dvy /dt—iQev,; = —eE, /m

dv_/dt+iQ.v_ = —eE_/m (3.4)

dv,/dt = —eE|/m.

In the absence of electric fields, the time-varying perpendicular components of the
unperturbed velocity are

va(t) = Vi(O)exp(iiJQedt). (3.5)

The velocity parallel to the (uniform) magnetic field is constant in time. Here we write
the phase integral as [Q.dt to emphasize the point that until the electron trajectory is
known it is not possible to give precise values to v. (t) except in the local region where
B is approximately constant. If we introduce a gyrophase angle, ¢, such that at some
(arbitrary) initial time

vx(0) = v (0)cos 0,

%(0) = v. (0)sin dy,
then in the rotating coordinates the initial constants, v..(0), are given by

v2(0) = v. (0)exp(Eify)/ V2,
and the time-dependent circular components of the velocity are simply

va(t) = Vi (0)exp[Ho(0]/ V2, (3:6)

where the time-dependent gyrophase angle is ¢(t)=¢o + [Q.dt. In Cartesian
coordinates the time-dependent perpendicular components of velocity are simply

ve(t) = (v +v_)/V2 = v, (0)cos ((])0 + JQedt>,
and
vy(t) = (V4 —v_)/ivV2 = v, (0)sin (% + JQedt>. (3.7)

The perpendicular speed is constant in time and the electron gyration in the plane
perpendicular to the magnetic field is a uniform circular motion. Since the Lorentz
force provides the centripetal force that maintains the electron in uniform circular
motion with gyroradius p, the radius of curvature of the orbit must satisfy

mQZp =ev x B, (3.8)
ormv2 /p = ev, B, from which it follows that p = v, /Q.. The geometry of the orbit is
schematically shown in Figure 3.1.

Provided the magnetic field is essentially constant over the orbit of the electron for
times long compared to Q_ ', Egs. (3.7) can be integrated once more in time to obtain



3.1 Electron Gyromotion

OL

Figure 3.1 Projection of the electron gyro orbit onto the plane
perpendicular to the magnetic intensity, B.

the following description of the time-dependent position (i.e., the “unperturbed
orbit”) of an electron:

x(t) = xo + [v.1(0)/Qe]sin (% + J Qedt> —[v1(0)/Q¢]sing,
¥(8) = yo[v.(0)/Qe]cos (% n jszedt) T [v.(0)/costy (3.9)
z(t) = zo+ Jvzdt,

where Q. is a suitable average value of the local gyrofrequency. If we consider the
particular case in which xy=0, yo = —[v, (0)/€2], and ¢, =0, then we have

%(t) = [v. (0)/QJsin (J Qedt>
y(t) = —[v.1(0)/Qc]cos <J Qedt) ,
and clearly the projection of the electron orbit onto the plane perpendicular to the

magnetic field is a circle of radius p=v,(0)/Q. as sketched in Figure 3.1. Thus,
the unperturbed orbit of the electron is given under these assumptions by

X = Xg + psin (q;o + JQedt> —psin g,
y = y,—pcos <¢0 + JQedt> + pcos B (3.10)
Z=179+ Jvzdt.

The gyrating electron constitutes a current loop with a magnetic moment whose
magnitude is given by

u = Inp? = (eQ./2m)n[v, (0)/Q)* = mv, (0)*/2B = W, (0)/B, (3.11)
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and whose direction is opposite to that of the magnetic field. Here W, = mv?2 /2 will
frequently be referred to as the perpendicular kinetic energy, i.e., the kinetic
energy in motion perpendicular to the magnetic field. Note that the magnetic flux
through the gyrating electron’s orbit is W.=mnp?B=2mn(m/e*)u. Small gradual
variations in the magnetic intensity along the electron trajectory lead to additional
motions of the instantaneous center of gyration, the so-called guiding center of the
electron orbit. We return to this issue in subsequent sections, where we will take
advantage of the adiabatic invariance of pu and ¥, to obtain useful descriptions of
these slower motions of the electron guiding center. Since the gyrating electron can
be considered as a quasisuperconducting current loop it is not surprising that the flux
linking its gyro orbit should be invariant (provided that the changes in the magnetic
intensity are sufficiently gradual).

3.2
Electron Bounce Motion

If the static magnetic field varies sufficiently slowly in space the magnetic moment,
w=W,/B, of the gyrating electron is an adiabatic invariant, an approximate constant
of the motion. An empirical criterion that must be satisfied for this invariance to
obtain in magnetic mirrors is [3]

pdInB/dr < 0.05. (3.12)

Here again W, = mv2 /2 is the kinetic energy in motion perpendicular to the
magnetic field; i.e., the “perpendicular kinetic energy.” Along the electron trajectory
pand ¥, are constant. Note that as an electron moves from regions of weaker magnetic
intensity into regions of stronger magnetic intensity W, must increase proportion-
ately to maintain p constant. The Lorentz force cannot change the electron’s total
energy,e =W, + W), since the force is perpendicular to the velocity, and therefore the
kinetic energy in motion parallel to the magnetic field must decrease proportionately:

W) =e-W, =e—uB. (3.13)

Clearly W), and thus vj; will vanish if B reaches the value e/p and at that point the
electron’s motion along the magnetic line of force will reverse; i.e., the electron will be
reflected by the increasing magnetic field. In the absence of other influences electrons
will bounce back and forth between the turning points where B = B, =€/, provided
only that B, =g/ < By, the maximum value of magnetic intensity in the confined
region. It is customary to express this condition for magnetic-mirror confinement in
terms of the electron orientation in velocity space, often called the “pitch angle,” at the
midplane of the magnetic mirror, z=0:

[e/W,—0 = [(1+V{/v1)B],_ < Bmax,
or

[(v/¥2)] .= < Bunax/Bo—1=M~1. (3.14)



3.3 Electron Drift Motions

Mirror-confined electrons will bounce back and forth between the magnetic
mirrors until they are scattered into the “loss cone” where [(v)/V )],—o > (M—1)"/?
and they can promptly escape from the confined region. We can use the approximate
simple magnetic mirror field from Chapter 2, Eq. (2.18), to obtain a useful expression
for the period, 1y, of the bounce motion of adiabatic electrons:

T = sz vl = sz[Z(a—uB)/mrl/Z, (3.15)

where the integral is over a complete bounce cycle. If we define M, the mirror ratio
at the electron turning point, M, =¢&/uB,, and let B(z) = B,[ 1 + (M—1)sin*(k,z/2)],
as in Eq. (2.18), we find for the bounce period,

T = (8/ko){2(e/m)[(M—1)/M]}*K(K?)
= [8/kov. (0)](M—1)"/?K(K),

where K (k%) is the complete elliptic integral whose argument is k* = (M, — 1)/(M — 1).
A less accurate but more intuitive approach utilizes the fact that an object with
magnetic moment I, when placed in an inhomogeneous magnetic field is acted on by
aforce F = 1o VB. Applied to an electron moving along the axis of a simple magnetic
mirror this gives

(3.16)

F, = md’z/dt* = —udB/dz = —uBk:[(M—1)/2]z,

where we have again used Eq. (2.18) to model the simple magnetic mirror field and
retained only the lowest order term in the Taylor series expansion of sin(k,z). The
electron will oscillate about z = 0 with a frequency given by @y, =kov_ (0)(M — 1)*/%/2.

To compare with the more accurate result, Eq. (3.16), we rewrite Eq. (3.16) in
the form

oy = 21/7, = [kev, (0)(M—1)"2/2] x [(m/2)/K(K?)). (3.17)

For typical conditions the bounce frequency, w, = 21/1;,, may be several orders of
magnitude smaller than the gyrofrequency; supporting our use of the local approx-
imation for B to describe the gyromotion.

3.3
Electron Drift Motions

In addition to the rapid gyration about the magnetic line of force and the much
slower bounce along the line of force, there is a still slower motion of the electron
across the lines of force arising from static electric fields perpendicular to B as well as
any spatial gradients in the magnetic intensity. These slow drift motions are
conveniently described in terms of the position of the “guiding center,” 1o, indicated
schematically in Figure 3.2.
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=

gC

Figure 3.2 The guiding center geometry.

Here the position of the electron is given by r and the (vector) gyroradius by p.
The location of the guiding center is then given by

r="re+p (3.18)
withp = (m/e)v x B/B% Inauniform magnetic field the velocity of the guiding center is
Vg = drgc/dt = dr/dt—dp/dt = v—(m/e)dv/dt x B/B”. (3.19)
But the Lorentz force requires that —(m/e)dv/dt = E + v x B so that
Ve =V+ (E+v x B) x B/B> = E x B/B” +vb. (3.20)
Thus, in the presence of a transverse electrostatic field, E, the guiding center will
drift perpendicular to both E and B with a velocity given by E x B/B? while moving
along the magnetic line of force with the parallel speed of the electron. Note that the
E x B drift is independent of the sign of the charge on the particle.
In order to describe the drift motion arising from the inhomogeneities in the
magnetostatic field we approximate the magnetic intensity at the position of the electron

by the first two terms of a Taylor’s series expansion about the position of the guiding
center and, eventually, average the equations over the rapid gyromotion. We write

B(rg 4+ p) = B(rgc) + (p*V)B(r) = B(ry) + AB(r). (3.21)

We can obtain an equation of motion for the guiding center by differentiating ry.
twice with respect to time and substituting from the Lorentz force law:
age = dzrgc/d’[2 —a—d’p/dt’. (3.22)
In the absence of the electrostatic fields that were treated earlier,

a=—(e/m)(vx B) = —(e/m)(vg +dp/dt) x B. (3.23)



3.3 Electron Drift Motions

Using the results of Section 3.1 we can express the time-dependent vector gyroradius
in terms of Cartesian components as

p/p = uicos o +upsin g,

where
o=0,+ Jth. (3.24)

The unit vectors u; and u,, together with the unit vector b= B/B, comprise a local
right-hand orthogonal coordinate system whose origin is at the position of the
guiding center. We may choose u; to be normal to the flux surface containing the
magnetic line of force under examination and set u; =b x u;. Then

dp/dt = Qp(—uysin ¢ +uycos 0) = —Qp x b,

and
d*p/dt* = —Q?p(uycos ¢ + uysin ¢) = —Q%p. (3.25)
With these substitutions and some modest amount of vector manipulation the
guiding center equation of motion can be expressed as follows:
mag. = mdzrgc /dt* = ma—md?p/dt*
= —e(vg +dp/dt) x [B(rg) + AB(r)]-md’p/dt*
= —e(Vge—Qp x b) x [B(rg) + AB(r)] + mQ?p
= —evge X B(rg)—evg X AB(r)—eQB(rg) x (p X b)
+eQ(p x b) x AB(r) + mQ?p
= —eVge X B(rgc)—evge X AB(r)—eQ{B(rg)p—[B(rs) e p]b}
+eQ(p x b) x AB(r) + mQ?p
= —evge X B(rg)—evge x AB(1) +eQ(p x b)AB(1),

giving
mage = —evge x Blrge) —evge x AB(r) —e{[be(p+V)B(r)]p— [pe(peV)B(r)]b}
(3.26)

In “local” coordinates the operator pe V is given by p(cos $0/0&; + sin ¢9/0E,) and
pe B(r) =p(cos 0B; + sin ¢B,). Thus, the two entities in the braces in Eq. (3.26) are

[be(peV)B(r)]p = p?[u1 (cos?§OB3 /0E; + cos ¢ sin ¢3B3 /3E,)
+u,(sin ¢ cos ¢0B; /O&, + sin’¢0B; /3E,)] and
[p*(p*V)B(r)]b = p*b[(cos?¢0B1 /3E; + cos ¢ sin $p3B, /0L, )
+ (sin ¢ cos 0OB; /OE, + sin*¢0B, /3L, )].

(3.27)

We can now average the guiding-center equation of motion over one gyroperiod by
integrating over ¢ and dividing by 2n. The average values of the terms in Eq. (3.26) are
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(AB(r)) =0 and
({be(pV)B(r)]p—[pe(p+V)B(r)]b})
= (p?/2)[(u10B3/0&; +u,0Bs3 /0E,)—b(0B1 /&, + 0B, /0L, )]
( ?/2)(u10B3 /0, +u,0B3 /0&, + bOB; /0E;)
p*/2)VBs(r) = (p*/2)VB(x).

We have made use of the fact that Ve B=0. Also, at the position of the electron the
perpendicular components of B are small and we can approximate B; by B

(3.28)

B} = B>—B}—Bj = B?[1—(B{ + B})/B*| ~ B
Our gyro-averaged guiding-center equation of motion for the electron is therefore

mag. = —evg X B(rg)—eQ(p?/2)VB(r)

(3.29)
— —evge x B(rg)—LVB(r).

The parallel component, be mag. = pe VB(r), as discussed previously. The transverse
component of the guiding-center velocity is obtained from the guiding-center
equation of motion as follows. Since from Eq. (3.29) vy X B(ry) = —(m/e)ag. —
(1/e)VB(r) we have

B X (Vg X B) = B?vy—(Bevy)B = —B x [(m/e)ag + (1/e) VB(r)].
(3.30)
Note that we have dropped the explicit guiding center argument of B, which is

understood in what follows. We require the lowest order terms in the acceleration
of the guiding center:

dvge/dt = dvge) /dt+d(bvy)/dt = dvger /dt -+ bd(vge)/dt + vg db/dt.
The final term above is the dominant contribution and is given by
Vge|db/dt = (v ) (beV)b = (vge)*V 1 B(r)/B. (3.31)
using the results from Chapter 2 for the curvature. With this replacement we have
B?Vge—(Bevge)B = —B x [(m/e)(vge|)*V 1 B(r)/B+ (1/e) VB(r)],
so that
Veel = (2W| + W )VB(r) x B/(eB?). (3.32)

We have written this in the conventional form (see, for example, Krall and
Trivelpiece [4]), but it must be kept in mind that Eq. (3.32) is a local value of the drift
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velocity. Generally speaking itis necessary to average the expression in Eq. (3.32) along
the magnetic line of force followed by the guiding center. For electrons trapped in a
magnetic mirror, this average is conveniently carried out using the action invariant [5],
] = | pyids, where the integral is taken around a complete bounce cycle. Under typical
conditions, the time required for an electron to drift once around the circumference of
the plasma will be several orders of magnitude longer than the bounce time and the
action invariant provides a more general and comprehensive mathematical descrip-
tion of this drift motion that properly averages the curvature and gradients along the
magnetic line of force. We will not derive the relevant formulas here, since Lehnert[1]
and Northrop [5] both provide detailed derivations and copious references to earlier
work. The results are usually expressed in terms of a Clebsch representation of the
magnetic field as described in Chapter 2, B= Vo x V. Note that in this represen-
tation the magnetic gradient factor from Eq. (3.32) is

VB(r) x B=VB x (Va x VB) = (VBeVB)Vo—(VBeVa) V. (3.33)

Thus, the guiding-center drift velocity in the V. -direction is due to the component of
VB in the V[ -direction, whereas the guiding-center drift in the — V3 -direction is due
to the component of VB in the Vo - direction. The main results of the analyses are [1]

(do/dt) = (ety) 0] /2B
(dB/dt) = —(et) 0] /00t (3.34)
T, = 0J/Ce.

Here 1}, is the bounce time for which suitable expressions were derived earlier without
explicit recourse to the action invariant. If we apply these results to the simple
magnetic mirror field, we find (see Exercise 3.3)

1Qq = [W(0)/(eBReo)|{ 2E(K*) —K(K*)] /K(K*)}, (3.35)

where k* is once again (M, —1)/(M — 1) and Ry, is the radius of curvature at the
midplane of the mirror. We can use the results presented earlier in this chapter to
express the azimuthal drift speed in the following form:

1Qp = [2(e~q0)—MB]/qB(Rc) +E x B/B”. (3.36)

Here ¢ (and E= —V¢) is any ambipolar potential that may be present to provide for
equal loss rates of ions and electrons and (R, ) is the average radius of curvature of the
magnetic lines of force experienced by the charged particles as they bounce back and
forth along lines of force. A convenient expression for this average radius of curvature
can be derived for the simple magnetic mirror by using Eq. (3.35), which was obtained
using a paraxial approximation to the magnetic fields; i.e., one that is valid near the
magnetic axis. One finds

(Rc) = Reo(1){[2(e—q0) —MB] /MB}K(K") / [2E(K”) —K(K*)]. (3.37)

27



28

3 Electron Orbits

Again, K and E are the complete elliptic integrals whose argument k* is given by

I = (M—1)""[(e~q—HB)/uB] = (M~1)/(M~1),
and we have used the model magnetic field given in Chapter 2, Eq. (2.16):

B,(r,z) = Bo{[(M+1)/2]—[(M—1)/2]cos(koz)Io(kor)}
B.(r,z) = —Bo[(M—1)/2]sin(koz)I; (kor)}

where R(r) is the radius of curvature of the line of force at its intersection with the
midplane a distance r from the magnetic axis. For k* = 0.826, 2E(k) = K(k*) and
the average radius of curvature becomes infinite. For particles with this value of k* the
negative radius of curvature near the midplane and the positive radius of curvature in
the mirror throat average to zero and the azimuthal speed due to the inhomogeneity in
the magnetic intensity vanishes.

34
Relativistic Electron Kinematics for ECH

In the absence of external electric fields so that the electron is acted on solely by a
magnetostatic field, the total energy, €, the speed, v, and the relativistic factor,
¥ =(1—v%/c*) * are all constants of the motion. Under these conditions the only
difference between the relativistic and nonrelativistic equations of motion is that the
electron rest mass, m, is replaced by the relativistic mass, ym. When this replacement
is made all results derived earlier regarding motion in a magnetostatic field are
equally valid in the relativistic case. In particular, for relativistic electrons the
gyrofrequency is given by Q.=eB/(ym) and the gyroradius by p =ymv, /(eB) =
pL/(cB).

It will often be convenient to express the velocity in terms of the Lorentz factor
using v*/c* = (y> — 1)/y*. The momentum per unit rest mass, u=1yv, thus satisfies
u®/c® = (y* — 1). Moreover, since the total energy, including the rest energy is ymc?,
the kinetic energy is just e=(y — 1)mc® The relativistic magnetic moment is
given by [5]

w=pl/(2mB) = (ymv.)’/(2mB) = mu? /(2B), (3.38)
whence

u? = 2uB/m. (3.39)
Since

uf/c* +uf /¢ = uf /¢ +2uB/mc® = (y*-1), (3.40)

the magnetic intensity at the electron turning point is given in the relativistic case by

B = (e/m)(vy+1)/2. (3.41)
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3.5
The Hamiltonian Approach

In later chapters we will find it advantageous to use Hamilton’s equations [6] to
describe the electron dynamics. Here we simply illustrate the Hamiltonian approach
by applying it to the unperturbed motion of nonrelativistic electrons in axisymmetric
magnetic-mirror fields. The Hamiltonian, H(q;,p;), a function of the generalized
coordinates, q;, and their conjugate momenta, p;, is obtained from the Lagrangian,
£L(q;,dq;/dt), which for electrons in magnetic and electric fields is given by [6]

L£(q;,dq;/dt) = mv?/2—eAev + ed. (3.42)

Here A is the vector potential discussed at length in Chapter 2 and @ is any
electrostatic potential that may be present. For the moment we will neglect all
electrostatic potentials. The generalized momenta are defined by

p; = 0L(q;, dq;/dt)/0(dg;/dv), (3.43)
and the Hamiltonian is then given by
9(q,p;) = Z pidq;/dt—L(q;, dg;/dt). (3.44)

As we have seen in Chapter 2, the vector potential of an axisymmetric magnetic-
mirror field has only the single component A, and for this magnetic field the
Lagrangian is given in cylindrical coordinates by

£ = m](dp/dt)> + (pdo/dt)? + (dz/dt)?] /2—eAypdo/dt + ed. (3.45)

From this Lagrangian, assuming ® =0, we obtain the following three generalized
momenta:

p, = m(dp/dt)
P, = mp*(do/dt)—epA, . (3.46)
p, — m(dz/dt)

To express the Hamiltonian as a function of the generalized coordinates and their
conjugate momenta we make use of the following replacements:

dp/dt = p,/m
do/dt = (p, +epAy)/(mp?) - (3.47)
dz/dt =p,/m

The resulting Hamiltonian is
9 = (p2+p2)/2m+ (p, +epAy)*/(2mp?). (3.48)
The Hamiltonian (“canonical”) equations of motion are

dq;/dt = 0% /0p;
dp;/dt = —09/dq; (3.49)
0% /ot = —dL /ot
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For electrons moving in an axisymmetric magnetostatic field,
09/00 = 09H/0t =0,
and consequently there are two constants of the motion:

Py = P, = constant

. 3.50
$H = W, = constant ( )

By employing these two constants of the motion we can rewrite the Hamiltonian as

$ = (p2+p2)/2m+ (p, +epAy)’/(2mp?) = W, (3.51)

Recall from Chapter 2 that the magnetic flux, '¥(p,z) = 2npA, and we can therefore
express the Hamiltonian as

$ = (pp+p;)/2m+ [p, +e¥(p,z)/2n]* / 2mp*) = W, (3.52)
If we define U(p,z) = [p, + e'¥(p,z)/2n]*/(2mp?), then we obtain
(p; +p2)/2m = W,—U(p, 2). (3.53)

Thus, the electrons move as though they were confined in a two-dimensional
potential well, U(p,z). Note that if we choose the constant p, = —e'¥'(p,z) /2w at some
reference point (p,,z,), U will vanish at every point on the flux surface that passes
through the chosen point (pe,z,)-

We illustrate some of the features of this Hamiltonian description of the unper-
turbed electron motion using a typical magnetic mirror with a mirror ratio of 2:1.
We have arbitrarily chosen p,=5 cm on the midplane, where z,=0. For our
illustrative magnetic field, the flux surface passing through this point (and thus the
magnetic line of force) then passes through the mirror throat at a radius of 3.49 cm.
The magnetic intensity at the position of the flux surface in the midplane is 0.2900 T,
while at the mirror throat the intensity on this field line is 0.6074 T. The two figures,
Figures 3.3(a) and (b), display U (in keV) versus the radial coordinate, p (in cm) in the
midplane and in the mirror throat, respectively.

The equations of motion have real solutions only if |p — p,| is less than or equal
to the value for which W, — U > 0. One can easily verify that at the radial positions
for which Q, = U, namely, ppyi, and pmay, the motion is exactly perpendicular to the
magnetic field and

VZL = ZWO/m ~ (pmax_po)zgz ~ (po_pmin)zgz

Since do/dt = (p, + epAy)/(mp?), dd/dt changes sign as p passes through the value
po and the electrons gyrate about the field line selected by our choice of p,.
One can demonstrate analytically (see Exercise 3.4) that U is approximately equal
to the perpendicular kinetic energy of electrons whose gyro orbits are centered on the
chosen flux surface. The plots shown in Figures 3.3(a) and (b) provide a convenient
summary in that W, vanishes at (p,z) = (po,2,), where W); = W,, while W), vanishes
at the radii, ppax and Pmin, Where U=W,. At intermediate values of p we have
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Figure 3.3 (a) The function U(p,z,), in keV, on the midplane,
2, =0, for the magnetic line of force that intersects the
midplane at p=>5 cm. The magnetic intensity at this point is
0.29T. (b) The function U(p,z,), in keV, at the mirror throat where
the reference field line is at a radius of p=3.49 cm and the
magnetic intensity is 0.6074 T.

a simple result for the electron turning point:

Bt = 8/]»1 - Wo/(WL/B) ~ WOB(p7 ZO)/U(p7 ZO)
~ WoB(po,20) /U (P, 2o) .

(3.54)

The fact that U is not exactly symmetrical about p, indicates that the electron gyro
orbits are cycloidal, a feature which gives rise to the azimuthal drift discussed earlier.
In fact, since the motion in the p-direction is periodic, the average over one
gyroperiod of the force in this direction, F,, must vanish. We can exploit this
observation to exhibit a limiting case of the formula for the azimuthal drift speed

cited earlier in Eq. (3.32):

Jdet = —er(dq)/dt)BZdt - —erBqu) =0,

(3.55)
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where the time integral is over one gyroperiod and the ¢ integral is over
the corresponding nearly closed path in ¢. Expanding B, about the point p=p,
we have

[p[B Do) + (OB, /0p)(p—po) + h0.t]do

(po)AS‘D + Tc(aBZ/ap)(pmaX po)

Here Asy=po(0r— ¢;) and m(Pmax— Po)” is the area of the (nearly) circular gyro
orbit swept out as ¢ goes from ¢; to ¢r and back almost but not quite to ¢;. Since
vi = (Prax—Po) Q% and since the time interval is At=2m/Q we recover the V=0

limit of our earlier result; namely,

Aso/At = ~[1/B,(p, )] (0B,/0p)V2 /20 (3.56)

3.6
Drift Orbits in Toroidal Magnetic Configurations

In a simple toroidal magnetic field, formed by a toroidal array of closely spaced
magnetic coils, the magnetic intensity decreases with distance from the axis as
described in Chapter 2: B=B(R)b=B,(R,/R)b. The gradient of this field is
therefore VB = —ug(B,R,)/R? and electron guiding centers will have a velocity given
by Eq. (3.32):

Vior = (2W) + W )VB x B/(eB?) = (2W| + W_)(—ug x b)/(eB,R,).

Tons will drift in the opposite direction. This drift velocity will carry the electrons
and ions toward the opposite walls of the vacuum chamber. In the early phases of
the controlled fusion research program it was realized that this toroidal drift could
be effectively cancelled if the magnetic field lines could be made to spiral around a
magnetic axis in the center of the confinement region. In the stellarator concept
this is accomplished by adding helical magnetic windings onto the exterior of the
torus. In tokamaks the spiraling magnetic lines of force are produced by the
plasma current flowing along the toroidal magnetic field. The velocity of charged
particles flowing along the spiraling lines of force will then have a poloidal
component:

Vpol = erol = rv”depol/ds = VH (I’depol/Rd(])tor) = VH (I’/Rq)7 or

Qp1 = v)/(Rq),

where q is the usual safety factor. To describe the resulting drift orbits we locate a
Cartesian reference frame in a cross section of the torus with its origin at the
magnetic axis: x = R — R, = 0and y = 0 (the equatorial plane of the torus). We follow
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a test electron as it travels around the torus and note the point (%, y) where it passes
through the reference plane after each successive transit of the torus. It is
customary to visualize the electron as “puncturing” the reference plane, and after
many transits of the torus these “puncture points” will trace out the drift surface we
wish to describe. Note thatif q is aratio of integers the points where our test electron
intersects the reference plane will not trace out a surface but will repeatedly
intersect at points reflecting the fact that the field line is closing on itself after q
transits of the torus. For other values of  we can describe the resulting drift surface
by superposing two separate motions; namely, the poloidal motion characterized by
x=a cos O(t) and y = a sin 6(t) with d8/dt = Q,;; and secondly, dy/dt=Q, a cos 6(t)
Vior = QpolX + Vior. Since dx/dt = —Q,jy we can readily combine the two equations
to obtain (X + Vior/Qpor)dx/dt = —ydy/dt, whence

(X+ Vior/Qpo1)> +y* = constant.

The drift surfaces are thus circles centered at X = —V,o,/Qpo1and y = 0. For Q51 > 0
the center is shifted inward whereas for €, < 0 the center is shifted outward from
the magnetic axis. We have assumed to this point that the electrons are circulating
freely around the torus with approximately constant v, but if they are trapped in the
mirror-like regions of the torus their orbits will form two arcs with centers atx=+
Vior/Qpol and with the tips of the arcs at the poloidal angle corresponding to the mirror
turning point. These orbits are traditionally referred to as “banana orbits” in the
tokamak literature.

It was also recognized early in the controlled fusion program that charged particles
could be confined in a simple toroidal magnetic trap if the individual coils used to
generate the toroidal field were spaced sufficiently far apart, relative to the minor
radius of the torus, to make the magnetic field vary significantly along each magnetic
line of force. In such a “bumpy” toroidal magnetic field, local gradients in magnetic
field strength give energetic charged particles a poloidal drift motion which can
balance the drift inherent in an ideal toroidal magnetic field. Kadomtsev [7] analyzed
the single particle orbits in such a bumpy torus, and subsequently Gibson et al. [8],
Morozov and Solov’ev [9], and others developed a rigorous picture of single-particle
confinement using adiabatic constants of the motion as well as numerical studies
of particle orbits.

For a particle of charge q, the drift due to the R™' dependence of the magnetic
intensity associated with the toroidal effect is given by

Vior = 2(£_q¢_”’B)/qBRtor7

where Ry, is the major radius of the torus. The poloidal drift speed is given by
Eq. (3.35). Recall that the average radius of curvature and thus the poloidal speed
vanishes for pitch angles such that k* = 0.826. Thus, except for those particles with
pitch angles lying in narrow range around the value given by k* = 0.826, charged
particles will drift on nearly circular orbits whose centers are shifted off the ring
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axis by
8% = Vior /Qpol = [2(e—q0—HB) /qBR,, | /Qpo1
= 1[2(e~q0—1B)/qBRy,][2(e~q0)—1B]/qB(Rc) + E x B/B?] ™’
= (r(Re) /Rior) {1+ qE (Rc)/[2(e—q0)—uB]} .

From Chapter 2 the midplane curvature of the magnetic lines of force in the simple
magnetic mirror is approximately given by

Re =2 —4(M—1) " (Leoi /2m)%,

where L is the separation of the coils. In a bumpy torus the separation of the coils
and the radius of the torus are related to the number of sectors, Ngeciors making up the
complete torus: 2R, = NecrorsLeoit Thus, in the absence of radial electrostatic fields,
the centers of the drift orbits are shifted off the ring axis by an amount given in order
of magnitude by 8x ~ [—4/(M—1)](Lcon/2nN)g(e, 1, 0), where the pitch-angle de-
pendence, here designated by g(&,1t,0), is of order unity. Since, as we saw in Chapter 2,
the coil separation Loy & 2.41.,; for a mirror ratio M = 2, we find that the shift of
the drift surfaces is 8%/t ~ O(1/N) and the orbits are well confined for N >> 1.
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Verify Eq. (3.16) for the period of the bounce motion on the
axis of a simple magnetic mirror.

Solution: t,=4[dz/v(z) where the integral ranges from
z=0to z=z, and mvj(z)*/2 = — B(z). Use the
approximate expression for the field near the axis, B

(2) = Bo[1 + (M — 1)lg(kor)sin’k,z/2]. Note that at the
turning point sin’k,z,/2= (M; — 1)/(M — 1) and therefore
mv”(z)z/Z =& — B(z) can be written as mv,,(z)2/2 =(e—B,)
[1 — (sin*k,2/2) /(sin? koz:/2)]. Let sin & = (sin k,z/2)/

(sin k,z:/2). Then dz = (2/k,)(sin k,z:/2)cos ¢pdip

{1 —[(M;— 1)/(M — 1)]sin® ¢} /? where the integral over ¢
ranges from ¢ =0 to ¢ = /2. The result follows.

Derive a formula for the action integral for electrons moving
near the axis of a simple magnetic mirror, where the action is
defined as | = [pds and the integral is over one complete
bounce period. Show that the expression for the bounce time
obtained by evaluating 0J /O agrees with Eq. (3.16).

Use the formula for | obtained in Exercise 3.2 to obtain an
expression for the poloidal speed of an electron moving along
field lines near the axis of a simple magnetic mirror.

Demonstrate analytically that the potential function, U, is
approximately equal to the perpendicular kinetic energy of
electrons whose gyro orbits are centered on a given flux
surface.

In deriving the formula for the bounce frequency we found
that, for electrons turning near the midplane, it was
reasonably accurate to represent the electron bounce as
simple harmonic motion. For simple harmonic motion the
maximum (parallel) kinetic energy is given by m(wgz,)*/2.
Assume W, = 2 keV and evaluate this estimate of W);(0) for
the case shown in Figure 3.2(a) at the point p=4.95 cm,
where U =1.87 keV, and again for p=4.96 cm, where

U =1.19 keV. Compare these two estimates with the
corresponding values obtained from W(0) =W, — U.
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4
Wave Propagation and Cyclotron Damping
in Magnetized Plasmas

In order for microwave power to provide direct illumination of the resonance
surfaces, itis necessary to couple power from an external source into electromagnetic
waves that can propagate through the intervening plasma to the resonance surfaces.
The effectiveness of this coupling between the external source and the RF electric
fields at the resonance surfaces depends sensitively on a number of factors, including
the type of coupler, its orientation relative to the magnetic field, the shape and location
of the conducting walls of the vacuum chamber, and the density and temperature of
the plasma. To date it has been a common practice to employ conventional or
dielectrically loaded waveguides to launch microwave power into plasma chambers,
but other coupling approaches have also been used. These have ranged in complexity
from simple bare conductors fed by coaxial cables to phased arrays of antennas
radiating specific polarizations within particular directional patterns. Open resona-
tors have also been employed to build up the amplitude of the RF fields in specific
locations [1].

It has been clearly established [2] that highly overdense, low-temperature plasmas
could be created in magnetic mirrors by launching whistler waves that propagate
parallel to the magnetic field from regions where B exceeded B, into the resonance
surface. This approach is aptly named “high-field launch.” By contrast, the produc-
tion of relativistic-electron plasmas apparently requires a very different approach in
which weakly damped microwave power is introduced in such a way that the resulting
electromagnetic waves would seemingly have to propagate through the plasma and
undergo multiple polarization-changing reflections from the chamber walls to reach
resonance surfaces with a suitable polarization [3] to be absorbed. The success of
various ECH applications in tokamaks depends sensitively on the propagation and
absorption properties of the waves in ways that we will explore in Chapter 9. In this
chapter, we summarize the basic optical properties of magnetized plasmas for waves
with frequencies around the electron gyrofrequency and the ways in which these
optical properties affect the illumination of resonance surfaces by microwave power.
In tokamak experiments where plasma dimensions are much greater than the ECH
wavelengths, the predicted optical properties have generally been well confirmed.
However, in the smaller magnetic-mirror experiments, the situation is often less
clear. The general subject of plasma waves has been treated extensively in the
literature [4] and the present summary will, therefore, be as concise as possible.
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4.1
The Cold-Plasma Dispersion Relation

In order to identify the features of plasma wave propagation that are particularly
relevant to ECH, we adopt a highly idealized model of the plasma in which a spatially
homogeneous plasma is immersed in a static, uniform magnetic field. The prop-
agation of electromagnetic waves in this model plasma can be examined by employ-
ing Maxwell’s equations and assuming that the electric charge and current densities
entering them are solely those that arise in response to the electromagnetic fields
of the wave [4]. The ion response to these fields is usually negligible at frequencies
in the electron gyrofrequency range and will generally not be included here except
in unusual circumstances that will be clearly identified. The electron response to the
fields of the wave may be obtained from a suitable dynamical equation, such as the
following Langevin equation:

dv/dt = —(e/m)[E+v x (By + B)]—vv. (4.1)

Here v is the frequency with which electrons undergo momentum changing colli-
sions, E is the electric field of the wave, By is the uniform static magnetic field, and B is
the fluctuating magnetic field due to the wave itself. We consider the propagation of
waves whose frequency and propagation vector are ® and k, respectively, so that all
wave properties vary in space and time as exp(iker — imt). In reality, we are using
Fourier transforms in space and Laplace transforms in time. The full power of these
transform techniques will become important later in discussions of unstable waves.

Without loss of generality, we can choose coordinates so that the static magnetic
field is in the z-direction and the propagation vector lies in the x-z plane and makes an
angle 6 with the z-axis: k=Xksinbu, + kcosbu,. Convenient forms of Maxwell’s
equations are

V x E = —0B/0ot (Faraday’s Law)

V x H=j+¢&)0E/0t (Maxwell-Ampere Equation)
&V -E=p (Poisson’s Equation)
V-B=0

We set B = LoH and assume that the current density is a linear function of the wave
electric field through a suitable conductivity tensor, G, so that j = ce E. We eliminate B
from Faraday’s Law by taking the curl of both sides and then use the Maxwell-Ampere
Equation to replace V x B: V x (V x E) =—U00(j + €,0E/0t)/0t. Since the fields
of the wave are assumed to vary in space and time as exp(iker —imt), our partial
differential wave equation becomes the algebraic vector equation

—k x (k x E) = —1y(—i)[j + €0 (—i0)E]
so that K’E— (k- E)k = w?l,g0(ic - E/gom + E) = o? /K - E, (4.2)
and finally (n?1-nn—-K)-E=0
Here Kis the dielectric tensor whose elements will be calculated further for the model

plasma using the Langevin equation, Eq. (4.1), to describe the dynamical response
of electrons to the electromagnetic fields of the wave, and n® = k*c?/w? is the square of
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the (vector) index of refraction, n =kc/w. We note in passing that if ionization and
recombination are negligible on the time scales associated with wave propagation,
the charge and current densities must satisfy a continuity condition:

Op/ot+V - j=—iwp+ik-j=0

sothatp = ke oe E/m. Because of the form of the Langevin equation we are using here to
describe electron dynamics, it is convenient to employ the rotating coordinates that
were used earlier in describing electron gyration in the static magnetic field. These may
be obtained from a Cartesian representation through the unitary transformation, U:
1 i 0
V2u=[1 =i o]. (4.3)
0 0 V2

Recall that the inverse of U is its Hermitian adjoint, i.e., the complex conjugate of the
transposed matrix. If v < vy, the Langevin equation, Eq. (4.1) can be simplified for
“temperate” electrons with temperatures T. = mv3, /2 by neglecting the second-order
term, ve Vvin mdv/dt = m(0v/0t + ve Vv). And if the electron velocities are much less
than the phase velocities of the waves of interest, we may neglectv x B. We will address
this term later. Setting eB,/m =€,, we then obtain for our dynamical equation
—iwv = —eE/m — Qv x u, — vv. This vector equation yields the following three scalar
equations in Cartesian components:

—iovy + Qovy + Vv, = —(e/m)Ey
—iovy—Qovx + vvy = —(e/m)E,
—iwv, +vv, = —(e/m)Ez.

We write this in matrix form as Me v= —(e/m)E where the matrix M is given by

—iw+ Vv Q, 0
M= -Q, —io+v 0 . (4.4)
0 0 —i®w+ vV

Transforming M into circular coordinates, we diagonalize M and obtain

—10 + v—iQ, 0 0
UMU! = 0 —i®+v+iQ, 0 : (4.5)
0 0 —io+v

resulting in the following three decoupled scalar dynamical equations:
(—io+v—iQ,)v, = —(e/m)E
(—io+v+iQ,)v_ = —(e/m)E_ (4.6)
(—iow+Vv)v, = —(e/m)E,.
For the present cold-plasma model, the perturbed current density, j = — en,v, and we
obtain for the circular components of the current density
i, = igowpe(@+ Qo +iv) 'E; =opE
i = igoWpeX(@—Qy +iv) 'E_ = 6pE-_ (4.7)

i, = ieo0pe? (@ +iv) 'E, = 033E,.
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Since from Eq. (4.2), K=1 + ic/gow, the dielectric tensor for a cold plasma is
diagonalized in the circular coordinates with diagonal elements given by [4]

Ky = 1—(0pe? /0?) /(Q/0+ 1 +iv/o)
Ky = 14 (0pe?/0?)/(Q/0—1+iv/o) (4.8)
Ki;3 = 1—((Dpez/0)2)/(1 —|—1V/(D)

In these expressions, @, is the electron plasma frequency, ®pe = (€”n./me,)'/* where

n. is the electron density and €, is the permittivity of free space. As mentioned earlier,
at the frequencies of interest to ECH the ions can usually be treated as an immobile
neutralizing background, although an important exception will arise later.

We next transform the remainder of our wave equation into circular coordinates
(the dielectric tenor, K, is already expressed in circular coordinates). The quantity
to be transformed is E — (ke E)k/k’. Since we have chosen k to lie in the x—z plane,
we have for the Cartesian components

E— (k- E)k/k* = uy[E,—sin 6(sin O E, + cos O E,)]
+ uyE; 4 u,[E;—cos 0(sin 8 Ex + cos O E, )],

or, in matrix form,

cos?0 0 —sinBcosb Ey
E—(k-E)k/K* = 0 1 0 E,
—sinBcos® 0 sin’0 E,

We again employ the unitary transformation matrix U and find the complete wave
equation transformed into circular components to be

cos?0 + (sin6)/2 —(sin0)/2 —sinBcosB//2 E,
K-E/n’ = —(sin’0)/2  cos?0+ (sin?0)/2 —sinBcosO/ /2 E_
—sinBcosB/v/2  —sinBcosO/+/2 sin’@ E,

(4.9)

Combining the two matrices gives the following wave equation:

n?Ky; —cos?0—(sin%0) /2 (sin%@)/2 sinBcos®/v/2 E,
D-E= (sin’@)/2 n 2Ky —cos’0—(sin?0) /2 sinBcosB/v/2 E_
sin@cos®/v/2 sin@cos®/v/2 n~%K3;—sin’0 E.o
(4.10)

The condition for the existence of nontrivial solutions to this Fourier-Laplace
transformed wave equation is that the determinant of the matrix of the coefficients
of the electric field, |D|, should vanish. This condition reduces to a special case of the
Booker quartic equation for the square of the index of refraction [5], n” = (kc/w)*:

n*[Ks3cos? 0+ (K11 +Kp, ) (sin”6) /2]
—1n?{Ks3(Ky; +Kpz)[1—(sin? 0) /2] + K11 Kppsin? 0} (4.11)
+K11K, K33 =0.
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This dispersion relation describes the properties of waves propagating through an
infinite, homogeneous cold plasma immersed in a uniform magnetic field with the
three elements of the dielectric tensor given by Eq. (4.8). In general, it will have two
solutions for n?, giving the indices of refraction of the two waves as functions of the
angle of propagation, 6, and the three frequencies, 0, ., and Q. The polarization of
waves corresponding to a given solution of Eq. (4.11) is obtained directly from
Eq. (4.10) in terms of the relative amplitudes of the electric field components. One of
the roots of the dispersion relation will vanish if the coefficient of n* vanishes. This
occurs when the angle of propagation equals 0, given by

Ocrit = arctan[—2K33/(K11 _|_K22)}1/2A

We can identify other major critical conditions for these solutions by considering the
limiting cases of propagation exactly parallel and exactly perpendicular to the
magnetic field.

4.2
Critical Conditions for Parallel Propagation

For waves propagating parallel to the magnetic field, 6 =0, Eq. (4.11) becomes
1’141(33 71’12K33(K11 -+ Kzz) -+ K11K22K33 =0. (412)

Provided K33 # 0, this equation describes two waves with indices of refraction given by
n? =Ky, and n? = Ky,. The first of these two solutions, the left-hand circularly polarized
“fast” wave corresponding to n* = Ky, satisfies the following dispersion relation:

(ke/®)? = 17(0)1236/0)2) /(Q/o+1). (4.13)

The phase velocity of this wave exceeds the speed of light in vacuum, (kc/w)* < 1; and
the propagation of this wave is cut off (k=0) if mge /0? =1+ Q/w. A conventional
linear turning point analysis [4] shows that this left-hand circularly polarized wave
is completely reflected at cutoff with no change of polarization. The left-hand
polarization of this wave can be verified by substituting n* = Ky into Eq. (4.10). The
second of these solutions, corresponding to n* = K,,, satisfies the dispersion relation
for right-hand circularly polarized waves:

(ke/w)? =1+ (mf,e /u)z) /(Q/0-1). (4.14)

Evidently these waves have phase velocities that are less than the speed of light in
vacuum, since (kc/®)> > 1, and hence are sometimes called the “slow waves” or, more
frequently, “whistlers.” They propagate in plasmas of arbitrarily high density provided
the wave frequency remains below the electron gyrofrequency, ® < Q. As the wave
frequency approaches the gyrofrequency from below, the phase velocity approaches
zero and, in the presence of a dissipative mechanism, the waves are strongly damped at
resonance, as we will see later in this chapter. These waves have a cutoff when
op = 0*(1-Q/w) and Q < o.
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4.3
Critical Conditions for Perpendicular Propagation

For waves propagating perpendicular to the magnetic field, 6 =n/2, Eq. (4.11)
becomes n*(Ky; + Ky2)/2 — n? [Ks3(Ky; + Ku)/2 + Ky1Ky] 4 Kp1Ky,Ks3 = 0. Pro-
vided (K;; + Kj,) # 0, the two solutions are

n? =Kj;, and n?=2K;;Kyp/(Ki1 +Ky). (4.15)

Waves corresponding to the first solution, n® = Kjs, are usually called “ordinary”
modes or O-modes; their dispersion relation is independent of the magnetic
intensity. They have a cutoff when wp. = 0. Waves corresponding to the second
solution are called “extra-ordinary” modes, or X-modes. The X-modes have two
cutoffs given by 0012je = ®? + Q, and the wave has a resonance, (n — oo), the “upper
hybrid resonance,” at 0)12)e = @*—Q?. The upper hybrid resonance can play an
important role in ECH and we will consider it in greater detail later.

4.4
Clemmow-Mullaly-Allis Diagrams

Organizing the implications of Eq. (4.11) is a daunting task, undertaken with
considerable success by P.C. Clemmow and R.F. Mullaly in 1955 with later refine-
ments added by Allis [6]. Their graphical display of the wave properties in particular
regions of parameter space, the Clemmow-Mullaly—Allis or CMA diagram, is in
widespread use and provides an economical way of describing the wave propagation
issues affecting the coupling of microwave power from external sources to the
resonance surfaces. A variant of the CMA diagram that meets our needs has (1)12,e J?,
proportional to electron density, as its x-axis; and Q/®, proportional to the magnetic
intensity, as its y-axis. In this two-dimensional space, we plot the zeros of the three
diagonal elements of the dielectric tensor, K;;, Kj,, and Kj3, corresponding, respec-
tively, to the cutoff conditions for the left-hand and right-hand circularly polarized
modes (0 =0 and ©t/2) and the O-mode (0 =m/2):

Ky =0 if 0);6/(1)2 =1+Q/w
Ky =0 if wﬁe/wz =1-Q/o
K;3 =0 if (Df)e/m2 =1.
In addition to these three cutoff conditions, we plot the two resonances:
Q/w=1, the gyroresonance, and
o}, /0 =1-(Q/ ®)?, the upper hybrid resonance.

The resulting modified CMA diagram is shown in Figure 4.1.

Using this diagram we can distinguish between the two plasma density regimes,
“underdense” and “overdense,” depending on whether wp. < ® or W, > ®, respec-
tively, and the two magnetic field regimes, “low field” and “high field,” depending on



4.5 The High-Field Regime | 43

N Y
Qlo
2 ——
K3:=0 K,=0
1
KitKg=0
K“=0
K33=0
0 } t =
0 0.5 | 2

3
w %,L\ o] 2

Figure 4.1 A “reduced” CMA diagram suitable for ECH; all ion dynamics have been neglected.

whether Q < ® or Q > , respectively. In the underdense regime, Kj; is positive and
vanishes at a critical density given by the O-mode cutoff condition, w,.=w,
corresponding to a critical density, n.. = w”mey/e’. This critical density increases
with the square of the frequency from 1.24 x 10’ cm > at a frequency of 1 GHz to
1.24 x 10" cm ™ at 100 GHz.

4.5
The High-Field Regime

We first consider the “high-field” regime, which has two cutoffs and one resonance:

Wpe = ® the O-mode cutoff

0 =Q electron gryoresonance
®pe = (1 +Q/®)"/? the left-hand cutoff.

If the plasma is underdense (i.e., for densities below the O-mode cutoff), the waves
represented by the two solutions of Eq. (4.11) propagate at all angles with respect to
the magnetic field, as indicated in Figure 4.2.

Here we display schematically the indices of refraction of both waves as functions
of the angle of propagation for a case in which the wave frequency is less than the
electron gyrofrequency (“high field”) but greater than the plasma frequency
(“underdense”). As the density approaches the critical value for O-mode cutoff
Ks; approaches zero and 2K;;K,/(Ki; + Kjy) approaches unity. The indices
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Figure 4.2 The angle-dependent indices of refraction for
propagation in the high-field regime with density below the
O-mode cutoff: ®=1, Q= 1.5, and w,. = v/0.95.

of refraction of the two waves in this transitional case are indicated schematically
in Figure 4.3.

If the plasma is overdense, the slow wave propagates only within a cone
centered on the direction of the magnetic field with its half angle given by 0., the
angle for which the coefficient of n* in Eq. (4.11) vanishes: 0 = arctan[—2Ks;/
(Ki1 + Ky)]'%

The index of refraction of the fast wave varies continuously with angle in this
overdense high-field case, as indicated in Figure 4.4.

Finally, in Figure 4.5 the indices are shown when the density is just below the
value for the left-hand cutoff. For densities above this value, the left-hand circularly
polarized wave is evanescent while the right-hand circularly polarized whistler
continues to propagate until the wave reaches gyroresonance.

4.6
The Low-Field Regime

We next consider the low-field regime (€ < ) in which the plasma dispersion
exhibits one additional cutoff:

®pe = ©(1-Q/®)"/*  the right-hand cutoff,
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Figure 4.5 The angle-dependent indices of refraction for
propagation in the high-field regime with density approaching the
LH cutoff: ®=1, Q=1.5, and 0y = V2.4.

as well as the previous two cutoffs:

Wpe = ® the O-mode cutoff
®pe = ©(1+Q/w)"/?  the left-hand cutoff.

In addition to these cutoffs, there is the upper hybrid resonance, given by
Wpe = [(0+Q)(0-Q)"".

The angle-dependent indices of refraction for plasma densities just below the right-
hand cut-off are shown in Figure 4.6.

Both waves have phase velocities greater than the speed of light, and the
propagation of the right-hand circularly polarized wave is clearly nearing cutoff.
For densities above the right-hand cutoff but below the upper hybrid resonance only
the left-hand circularly polarized wave propagates, but above the density for upper
hybrid resonance the right-hand circularly polarized wave propagates perpendicular
to the magnetic field and for all angles greater than the critical value 6, = arc tan
[—2K33/(Ky1 + Ky,)]"/% This situation is illustrated in Figure 4.7.

As the density approaches the O-mode cutoff, the index of refraction of the right-
hand circularly polarized wave gradually changes shape somewhat, as shown in
Figure 4.8, so that just below the O-mode cutoff it propagates at almost all angles
with respect to the magnetic field. Then for densities above the O-mode cutoff, the
right-hand wave ceases to propagate, and for still higher densities above the left-hand
cutoff all propagation ceases in this low-field regime and both waves are evanescent.
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Figure 4.6 The angle-dependent indices of refraction for
propagation in the low-field regime with density slightly below the
RH cutoff: ®=1, Q=0.5, and wp. = v/0.45.
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propagation in the low-field regime with density just below the
O-mode cutoff: =1, 2=0.5, and wpe = v/0.99.

4.7
A Few Preliminary Implications for ECH Experiments

Some practical consequences for ECH of these optical properties of magnetized
cold plasmas are immediately apparent; others will be discussed at length in later
chapters. Note especially that the optical properties of high-field launch and low-field
launch are fundamentally different. First consider the high-field regime.

Right-hand circularly polarized whistler waves launched in the high-field region
of a magnetic mirror field, for example, can propagate along magnetic lines of force
to the resonance surface in plasmas of arbitrarily high density. Since the propagation
is within a cone whose half-angle diminishes as the wave approaches resonance,
the microwave power is concentrated along the magnetic field lines. Any left-hand
circularly polarized component of the microwave power coupled via high-field launch
will be internally reflected at the left-hand cutoff. If this wave is subsequently reflected
from metallic surfaces (for example, the coupler itself or the vacuum chamber
walls or suitable mirrors), it can change polarization and subsequently be absorbed
at resonance.

With regard to the low-field regime, O-mode waves launched in the midplane of
a magnetic mirror field, “low-field launch,” can propagate directly to the resonance
surfaces only in underdense plasmas. X-mode waves will encounter the right-hand
cutoff followed by the upper hybrid resonance before being able to reach the
resonance surface. Even so, as has been discussed by Weitzner and Batchelor [7],
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Figure 4.9 The modified CMA diagram of Figure 4.1 with typical
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(0}, /®*, Q/w), assuming fundamental (solid line) and second-
harmonic (dotted line) resonance at the magnetic axis where the
peak density is at the O-mode cutoff.

the microwave power may reach the resonance surfaces by indirect routes that
involve Budden tunneling and mode conversion and depend sensitively on the
detailed shape of the magnetic field, the plasma density profile and the metallic walls
of the plasma chamber. We will return to this issue later in discussing the production
of relativistic-electron plasmas which has employed “O-mode heating” or “low-field
launch” with striking success.

Concerning ECH in tokamaks, it is clear from a suitably modified CMA diagram,
such as the one shown in Figure 4.9 that illumination of the fundamental resonance
surface in the high-field regime is limited solely by the O-mode cutoff.

Ray paths in the space spanned by our CMA diagram have been sketched for a
typical tokamak with R/a=4 assuming that the resonance surfaces are on the
magnetic axis and the density profile is parabolic with a peak value equal to the
critical density. In the low-field regime, the right-hand cutoff and the upper hybrid
resonance prevent direct X-mode illumination of the fundamental resonance but do
not affect the propagation of O-modes as long as the plasma is underdense. For
heating at the second harmonic of the gyrofrequency, Q/w = 0.5, the accessibility for
O-modes is again limited only by the density constraint, (1)12)e < @?. Direct accessibility
to the resonance surface for X-modes at the second harmonic is possible in the low-
field regime if the electron density is below the RH cutoff, 0}, /®* < 0.5in Figure 4.9,
but in tokamaks as in magnetic mirrors, it is possible for X-modes to tunnel through
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the evanescent region between the RH cutoff and the upper hybrid resonance.
Here the microwave power can be converted into electrostatic plasma waves that can
then propagate to the resonance surface. We shall return to this topic in considerable
detail later.

4.3
Wave Damping

We next consider ways in which microwave power at the electron gyrofequency,
launched into a chamber partially filled with plasma, is absorbed by the collective
response of the plasma electrons. Two very different regimes are of experimental
interest. The first regime applies to ECH configurations in which the plasma chamber
is small enough relative to the wavelength of the incident power to function as a
multimode cavity. Some have called this the “microwave oven regime.” The second
regime applies to plasma configurations that are sufficiently large relative to the
wavelength of the incident microwave power for the propagating microwave fields to
behave quasioptically and thus be described in terms of the plasma waves discussed
earlier in this chapter. The small configurations are exemplified by many older
magnetic-mirror devices and some ECH plasma sources, while the larger configura-
tions are exemplified by many present-day and especially the next-generation large
tokamaks and stellarators. In all cases, we will see that damping results from kinetic,
microscopic properties of the plasma that are absent from the collisionless cold-fluid
model of the plasma that we have considered to this point.

4.8.1
A Collisional Model of Damping

In the first regime, it is not generally possible to trace the rays corresponding to
individual plasma waves excited by the incident microwave power. Instead, it may be
more realistic to assume that the plasma chamber, viewed as a microwave cavity
of irregular shape but high microwave integrity, is filled with electric fields having
all three spatial components [8]. For low-temperature plasmas, the currents that
flow in response to these fields are given as before by Egs. (4.7), where collisions
of frequency, v, provide a formal basis for evaluating the damping. In the circular
coordinates, we have used earlier the three components of the currents driven by the
microwave power given by the following three equations:

i, =igwl (0+Q+iv) "B, =onE,
j_ = igowl (0—Q+1iv) 'E_ = opF_ (4.7)
i, = ieowf,e(o)—i-iv)*lEZ = 033E,.

The average rate at which the microwave electric fields do work on the electrons in a
unit volume of plasma is P,p,s/V = Re(Ecc*j)/2 [9], where E is the complex conjugate
of E. If the resonant ECH mechanism dominates this energy transfer, the absorbed
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power density is mainly given by the right-hand circularly polarized component:
Pabs /V = (80[E-[*/2) 0} v[(@—Q)* + V]!
= (ol E-[*/2) (0} /0) { (v/®)[(1-Q/w)* +v* /0’| '}

Asv/® — 0, the quantity in braces approaches nd(1 — Q/®), where (1 — Q/w) is the
Dirac delta function [10] so that in the limit of weak collisions,

Pabs/V = (&0|E_[*/2) (0}, /0)18(1-Q/w). (4.16)

To determine the total power absorbed by the plasma, this expression must be
integrated over the volume occupied by the plasma. As a concrete example, we will
evaluate the power absorbed by the plasma confined in a simple magnetic mirror:

Py = 27 J pdpdz(eo|E_[2/2) (02, /0)m3(1-Q/0)
_ dep(dz/dg)souz, P0?.8(1-Q/0)d0/o

e dePiEO\E— 02, (d2/d0) g,

We can use the model magnetic-mirror field, Eq. (2.18), to evaluate dQ/dz at the
resonance surfaces and assume that the plasma density has a parabolic radial profile,
n(p) =n(0)(1 — p*/a’). Then (dz/dQ)a-w = 27(Qo/L[(M — Mrec)(Mres — 1)]'/%, and
taking into account both resonance surfaces we estimate the absorbed power to be

P.ps = (ma®/4)Len(0)(e|E_|*/Bo) [(M—Myes) (Mres—1)] /2. (4.17)

4.8.2
An Introduction to Collisionless Cyclotron Damping

In the second, “quasioptical” regime, it is possible to follow the path of an individual
wave by solving the dispersion relation locally, as we will discuss later in this
chapter. We can then evaluate the (spatial) damping rate at every point along
that path by evaluating the imaginary component of the wave propagation vector,
Im k =k;. The frequency, o, is assumed to be real, i.e., we seek a steady-state solution
to the dispersion relation. The dominant collisionless damping mechanism for ECH,
often called cyclotron damping, is associated with kinetic effects arising from the
thermal distribution of electron velocities and can be analyzed by solving the
collisionless Boltzmann equation for the perturbed distribution function resulting
from the presence of the wave. This analysis, first carried out by Vlasov [11], is quite
general, but will be applied here to the specific cases of whistler waves propagating
parallel to a uniform static magnetic field and O-modes propagating perpendicular to
the magnetic field. We will return to more general applications of the Vlasov equation
later. But first we consider a rudimentary analysis that will display the properties of
the collisionless cyclotron damping mechanism in a relatively transparent form.
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To do this, we examine a group of electrons flowing along a uniform, static magnetic
field, B, = B,u,, with velocity v, = v,u, and calculate their time-dependent perturbed
velocity in the presence of a right-hand circularly polarized whistler wave with electric
and magnetic fields given, respectively, by E; =E_(z,t) = E_exp[i(kz — wt)] and B; =
(k/o)u, x E;. We determine the perturbed electron velocity by solving the linearized
collisionless Langevin equation:

m[ovy /0t + (Vo - V)vi] = —e{E; +v; x [B, + (k/®)u, x E;]},
which in the present case becomes
6V1/8t + ikVOVI + QVl Xu, = f(e/m)[lf(kvo/w)]El.

Just as in the case of the unperturbed orbit equations of Chapter 3, the perpendi-
cular components of the perturbed velocity are decoupled in rotating coordinates and
we obtain the following equation for the time dependence of the right-hand compo-
nent, v_:

ov_ /ot +i(kvo + Q)v_ = —(e/m)[1—(kv,/w)]E_exp[i(kz—wt)].
The appropriate integrating factor is exp[i(kv, + )t] and with it we obtain
o{v_expli(kv, + Q)t]} /ot = —(e/m)[1—(kv, /®)]exp[i(kv, + Q)t|E_exp[i(kz—ot)].

Integrating from t =0 to t =t and choosing v_(0) = 0 we find v_{(t) to be given by
]

v_(t) = i(e/m)[1—(kv,/®)]E_exp[i(kz—omt)] x
{1—exp[—i(kv, + Q—o)t]}/(kv, + Q—0),
so that
v_(t) = (e/m)[1—(kv,/®)]E_expli(kz—ot)
x{—sin(kv, + Q—m)t/(kv, + Q—) (4.18)

+i[1—cos (kv + Q—)]/ (kvo + Q—)} .

This result neatly displays the essence of the cyclotron damping mechanism;
namely, that if the Doppler-shifted resonance condition, kv, + Q — ® =0, is satisfied,
v_ increases linearly with time, according to the first term in braces, and the phase of
v_ relative to that of the wave remains stationary according to the second term. If
ot>> 1, the first term in the braces has the properties of a delta function, since in the
limit as N — oo, (sinxN)/x=nd(x)."* Thus,

sin(kv, + Q—)t/(kv, + Q—®) — 1d(kv, /0 + Q/w—1)/®.

As we saw earlier, it is this kind of term that describes the damping process in which
energy is transferred from the wave to the electrons. The average rate at which that
transfer takes place can be obtained as before by evaluating Re(E.#j)/2, where the
current density is given by j_ = —e [dvf,(vo)v_ which in the present case is

i = (e2/m)E_expli(kz—ot)] J AVof o (Vo) [1— (kvo /@) |8 (ke /o + Q/0—1) /@

= (e?/m)(n/k)E_expli(kz—wt)] Jd(kvo/(n)fo(vo)[1—(kvo/u))]5(kvo/m—|— Q/o-1)
= (e2/m)(n/K)E_expli(kz—t)]f, (Vo = Vres)Q2/®,
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where V5= (0 — Q)/k. If, for example, the electrons have a (one-dimensional)
Gaussian distribution in the speed v,, f, = ne/(0t/Tt)exp(—v2/0?), then

i_ = va(e’ne./m)(1/ko)(Q/®)E_expli(kz—ot)exp[—(0—Q)* /k*o?].

Note that in the limit in which the thermal speed is much less than the phase velocity
of the wave, ko/w < 1, the damping is negligible except very near the resonance
surface. In fact, since exp(—x*/€)/+/€ = \/Td(x) in the limit as € — 0 [10], we recover
exactly the earlier result, Eq. (4.16); namely, that the average power transferred
from the wave to the electrons per unit volume is given by

Pas /V = (€0|E-|/2) (0} /) (Q/0)18(1-Q/w).

483
Cyclotron Damping of Whistler Waves

We next use the Vlasov equation to determine the perturbed electron distribution
function resulting when a right-hand circularly polarized whistler wave with electric
field E=E_exp[i(kz — ot)] propagates parallel to the static magnetic field through
a more realistic model of the plasma equilibrium. The theoretical basis of the
Vlasov equation is discussed at length by many authors [12] and we will proceed
directly to its implementation for the present purpose by integrating in time along
the unperturbed orbits of the electrons. For an infinite homogeneous plasma, the
linearized Vlasov equation can be written compactly as

Df; /Dt = —a;e df,, /0v,

where Df;/Dt is the convective derivative of the perturbed electron distribution
and is to be integrated along the unperturbed electron orbits, and a; is the electron
acceleration due to the fields of the wave:

a; = —(e/m)(E4+v x B) = —(e/m)[(1-k-v/®)E+ (v- E)k/0].

We will choose an unperturbed electron distribution function, f,, that describes an
infinite, homogeneous plasma immersed in a uniform magnetic field, B, = B,u,.
Since the electrons generally thermalize rapidly along the magnetic field but can have
various thermal as well as nonthermal distributions across the magnetic field, it is
reasonable to assume a product form for f,(v,,v). Moreover, since we will usually
deal with adiabatic electrons, for which the magnetic moment is a constant of the
motion, we will assume that the equilibrium distribution function will have the
following general form:

fo(vovy) = [ne/ (Tcyzociocuﬂgo (Vi/&i)exp(—vﬁ/aﬁ). (4.19)

Here n. is the electron density and thus we require that g  is normalized so that
Jvi/ou)(dvi /o )g, (V2 /a? ) = 1 where the integral is from zero to infinity.
For these equilibrium distribution functions,

of /ov = 2[ne/ (/202 ) }exp( vl /ocH) x [(ve/o2)g, (V2 /e2)—(v)/od)g, (V2 /o],
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whereg/ (y) = dg,/dy. The linearized Vlasov equation now takes the following form:
Df;/Dt = 2(e/m) [ne/(n3/2aiau)}exp(—vﬁ/(xﬁ) [(1-k-v/®)E+ (v-E)k/w]

o[(vi/od g (v /o) = (vy/of)g, (V2 /ot )].
(4.20)

Since for this first example we are considering the effect of (transverse) whistler
waves propagating parallel to the magnetic field, we set kev, = 0 and Eev) = 0 giving

DF1 /Dt = 2(e/m) [ne/ (13202 o) Jexp(~v2 /02)
x E-v,[(1=kv|/w)g,/a? — (kv /m)go/(xm .

Note that Eev, =Ev, + Eyvy,=E v_ + E_v, =E_v_ forour present case; namely,
a right-hand circularly polarized wave. Also, recall that for the unperturbed orbits,
vy =v,(0)explio(t)] where o(t) =0,+Qt, and z=z,+vt

Without loss of generality we can choose z,=0 so that
E-v, = |E_|v.(0)expl[id, +i(kvj—w +Q)t].
This must be integrated in time from t=—o0 to t=0; and assuming that the

perturbation vanishes at remote past times the result is the following expression for
the perturbed distribution function at the time of observation:

£1(0) = 2(e/m) [ne/ (n*?0} o) Jexp(—vi /o) [(1—kv) /@), /o] —(kv) /)g, /oif]
x |E_|v. (exp i6),/fi(kv) —+ Q)].
For an isotropic Maxwell-Boltzmann equilibrium distribution function of = aff =

o?, g, = —g,, and thus [(1-kv /o)g /0 (kv /0)g,/0f] = —g,/0’. In this case
our expression for the perturbed distribution function becomes

£1(0) = —2(e/m) [ne/(n3/2(x5)]exp [— (V2l +Vﬁ)/0€2] ‘E,‘VL(GXP i) /[i(kvj—o 4 Q)].

The dispersion relation for the right-hand circularly polarized whistler wave results
from using this perturbed distribution function to determine the current appearing in
Maxwell’s equations for the wave: we combine V x E=—0B/0t and V x H=j +
€,0E/Otto obtain the wave equation V x (V x E) = —0(V x B)/0t = —0(oj + Uo€,0E/
0t)/0t which leads directly to (n* — 1)E = (i/e,)j. The right-hand circular component
of the perturbed current resulting from the whistler wave under consideration here is
given by

i =—e|dw_f;

=—e J.VLdVL Jd¢JdV|\VL€XP(—i¢)

x2(e/m) [n/(n*20°) ] exp[— (v} +vi)/o?] |E_ |v. (expi0) /[i(kvj—0 + Q)]
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= —2i(e’ne/m)|E_| Jvi/&dvl/oc[exp(fvi/az)]
%(1/\/7) Jde Joufexp(—v2/02)]/[(kv)—0 + )]

= —i(e’ne/m)|E_|Z(§)/(kav).

Here Z(§) = (1/v/T) [dx exp(—x’) /(x — {), where the integral is from —oo to 00, is the
plasma dispersion function [13] whose argument is { = (0 — Q) /ko.. Our dispersion
relation for the right-hand circularly polarized whistler wave propagating parallel to the
static magnetic field is thus given by the following equation for n, the (complex) index
of refraction:

(n*-1) = (wp./0?)(0/ko)Z[(0-Q) /ka]

= (wpe/®)(c/n0)Z[(1-Q/w)(c/nau)].

(4.21)

Although this dispersion relation was derived for an infinite homogeneous plasmaina
uniform magnetic field, it can be solved at closely spaced intervals along the magnetic
field line to construct what amounts to a WKB solution for a weakly inhomogeneous
equilibrium. The cumulative damping of an incident wave at any point z, along the
path of the wave, is given by exp[— [ki(z)dz], where the integration ranges from the
point at which the wave is first launched to the point of observation. The integral
2[ki(z)dz =1, sometimes called the “optical depth” [14], characterizes the absorption
of microwave power: P,,s = P;,[1 — exp(—1)]. To evaluate 7, it is necessary to find the
complex-n roots of the dispersion relation, a process which, in practice, employs
computerized numerical root-finding techniques. We will use a more rudimentary
and transparent albeit approximate approach here to illustrate the main features of
propagation and absorption of whistler waves launched, for example, in the high-field
region of a magnetic mirror. To this end, we write the dispersion relation Eq. (4.21) in
the following form:

DIS = n(n’—1)— (0}, /0’) (c/a) Z[(1-Q/w)(c/net)] = 0.
The real and imaginary parts are, respectively,
ReDIS = n,(n?-31n/—1) (@7, /0*)(c/a) Z:(¢) = 0,
and
ImDIS = n; (3n?—n?—1)— (0, /0?) (c/0) Z;({) = 0.
Note that at the resonance surface where Q/® =1, Z,(0) = 0, and Z;(0) = /. The real

partofthe dispersion relation then reduces ton? = 3n? + 1 sothatattheresonance the
imaginary part is given simply by 2n;(4nf +1) = (0}./®”)(c/0)y/T.
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We let 2n; =& and (0}, /®”)(c/a)y/T = p. Since for most cases of interest p > 1,
we can obtain an approximate solution for n; by setting £ =&, + AE with &z =p.
Then

B+ 3E2AE + 3E ALY + ALY +E +AE = p,

and if we retain only the lowest order terms we find for the value of n; at the resonance
surface

ni(0) = £/2 = 1.5p/(1 +p*?). (4.22)
Very close to resonance where |{| < 1, Z({) can be approximated by a power series [13]:
Z(6) = iv/mexp(—(*)—2¢[1-20% /3 + 4Lt /15-8(° /105 + - --].

Far from resonance where |{| > 1 and damping is negligible, Z({) can be approx-
imated by an asymptotic expansion [13]:

Z(6) = ivmexp(—C*)—¢ 1+ (1/28%) + (3/48) + (15/88°) + -]

Note that in this limit we recover the cold-plasma dispersion relation for these
whistler waves: (n*~1) = 0}, /0”/[0(Q-w)].

For values of |{] = 1 in lieu of sophisticated numerical techniques, we can
interpolate among the tabulated values of Z(C) [13]. We can use these three approx-
imations for Z to map the zeros of Re DIS and Im DIS in the complex {-plane and
search for points (x,,y,) where the two contours cross and yield simultaneous solutions
ReDIS =ImDIS = 0. Here we have set { = (1 — Q/w)(c/no) =x + iy so that n, the
complex index of refraction, is given by

n, +in; = [(1-Q/w)(c/0)](x—iy)/ (x* +y?).

In this way we can obtain illustrative results such as those shown in Figure 4.10, where
T.=10eV, and Figure 4.11 for which T.=100eV.

When the wave is far from the resonance surface (€2/® > 1), the real part of the
index of refraction, n,, is approximately equal to the value given by the cold-fluid
model and damping of the wave is negligible. But when the wave reaches a point
where the Doppler-shifted resonance condition can be satisfied by electrons in the tail
of the thermal distribution, damping becomes nonvanishing and the imaginary part
of the index of refraction, n;, begins to increase and n, begins to deviate significantly
from the cold-fluid value. The Doppler-shifted resonance condition, ® —kv —Q =0,
can be rewritten as

_(V/a)res = (Q/(‘)_l)(c/anl)7

and the relative density of electrons with speeds greater than this resonant value can
be obtained from the error function: 8n,es = 1 — erf(v/o) es. For example, the relative
density of resonant electrons is less than 0.001 if (v/ot),es exceeds 2.325. We use this
criterion to estimate the magnetic field strength at the onset of significant damping,
(/® — 1)onset = Aonset, and thereby determine the thickness of the “resonance layer.”
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Real and Imaginary nforT=10eV
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Figure 4.10 The complex index of refraction versus Q/ for
whistler waves propagating parallel to a uniform magnetic field in
a plasma whose electron temperature is 10 eV.

The cold-fluid model furnishes a reasonable estimate of n, near the onset of damping,
and combining this estimate with the Doppler-shifted resonance condition we obtain

Aonset = [—(V/01) s (01/ ) (e /)] 2 [2.325(0t/) (e /00)]*. (4.23)

Inside the resonance layer our numerical results show that the imaginary part of the
index of refraction varies approximately as

n; = ni(o)(l_A/Aonset)7
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Real and Imaginary n for T = 100 eV
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Figure 4.11 The complex index of refraction versus Q/m for

whistler waves propagating parallel to a uniform magnetic field in
a plasma whose electron temperature is 100 eV.

where an expression for n;(0) was given earlier in Eq. (4.22). The optical depth can
now be evaluated for these whistler waves propagating toward the resonance surface
from the point of high-field launch:

=2 Jki(z)dz — [4ns(0) /0] J(l—A/Amset)(dz/dQ)dQ
S — J(pA/Aonset)LdA ~ 27014 (0) Agpset L/

Here Lis the magnetic scale length (assumed to be roughly constant in the resonance
layer) and A is the free-space wavelength 2mc/®. For T, = 10 eV we have found that the
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product n;(0)Agpset = 0.17, and it increases with electron temperature as T;/ ®. Since
the scale length is much greater than the wavelength, L/A>>1 for quasioptical
conditions, the optical thickness is very large for these whistler waves and the
absorption of the wave is essentially complete within the resonance layer.

4.8.4
Cyclotron Damping of Waves Propagating as O-Modes

As a final example of wave absorption in the quasioptical regime we consider the
damping of waves propagating in the O-mode perpendicular to a static and weakly
inhomogeneous magnetic field. The damping of these waves has been evaluated
by several different workers by incorporating several distinctly different kinetic
effects, such as finite electron gyroradius [15] and weak relativistic effects [16],
as well as mode conversion to cyclotron harmonic waves that only appear in the
hot-plasma dispersion relation [17]. The results of the different approaches agree,
and here we will adopt the finite electron gyroradius WKB approach taken by
Antonsen and Manheimer [15]. From Eq. (4.20), the linearized Vlasov equation for
waves with E=FEu, and k=Xku, propagating in an anisotropic bi-Maxwellian
plasma is

Df; /Dt = 2(e/m) [ne/(ns/zoczlaﬂ)]exp(—vﬁ/ocﬁ)[(1—1<VX/0))EuZ + (v E)kuy /o]
o[(vi/od) +v/of] [—g, (vi/e)].

For the iostropic Maxwell-Boltzmann distribution, this reduces to
Df;/Dt = —2(e/m) [ne/(n3/2a3)]exp(—vﬁ/ocz)exp(—vi/ocz) (v)/o*)E.

This is to be integrated in time using E = |E|exp[i(kx — wt)] with x given by the
unperturbed orbit: x=x, + (v /Q)sin(0, + Qt) — (v, /Q)sin ¢,. We can set x,=0
and use the Bessel function relation [18] exp(tia sinb) = XJ,,(a)exp(£inb), where the
index n ranges from —oo to oo, to express E as the sum over m and n:

E = [E[S],,(v. /Q)explim(, + Q0)]JZ], (v, /Q)exp(~ind, Jexp(—iot)
= B[S, (v1./Q)], (v /Qexpli(m—n)p, + (mQ-0))]

The linearized Vlasov equation for this case is then given by

Df1/Dt = —2(e/m)[ne/ (m*/ o) exp(—vi /o Jexp(—v? /o) (v, /o)
X [E[Z] 5 (v /Q)]5 (v /Q)expli(m—n)o, + (mQ-w)t],

and the perturbed distribution function at t=0 is

f1 = —2(e/m)[ne/(m*a?)exp(—vi /o Jexp(—v2 /o) (v} /o)
X[E|Z] 1 (v / Q)] (vi/Q)expli(m—n)¢]/[i(mQ—w)].

Note that this assumes that ® contains an infinitesimal positive imaginary part to
ensure that the wave amplitude vanishes for remote (negative) times. The parallel



60| 4 Wave Propagation and Cyclotron Damping in Magnetized Plasmas

current described by this perturbed distribution function is
i) = feJd3vaf1 = *6Jd¢jVLdVL Jdvmﬁl
— 2e[E| qu) JwivL Jdv”vH (e/m)[ne/ (1/20%)Jexp (2 /a2)
xexp(—vi /o) (v /o) 2 (v2 /)], (vi /Q)expli(m—n)] /[{(mQ—w)].
Since the integral over ¢ vanishes unless m =n when it is equal to 2w, we have
iy = #melE] v, [ dvpe/m)lne/ (%20 exp( v /02)
x exp(—vi /o) (v /o) ZJ3 (v./Q)/[i(nQ-0)]

= 4(e2ne/m)(1/0c2)|E| JVLdeexp(—Vzl/ocz)Z]i(VL/Q)

x 1/(v/mo) JdVHexp(—Vﬁ/ocz) (vi/o?)/[i(nQ—w)]
= (e’ne/m)[E[Zexp(~1)1n (1) /[i(nQ-w)],
where the integration over perpendicular velocities is given by [19]

(Z/az)Jvldvlexp(fvi/ocz)]ﬁ(vl/ﬁ) —exp(- ML) and %= P02 /202,

This current perturbation is to be used in the O-mode wave equation
(n*~1)[E| = (i/g,0)j; = (e’ne/me, ) [E[Z exp(—A)In(1)/ [0(nQ-w)],
so that the O-mode dispersion relation becomes
(ke/®)* = 1-2 Zexp(—A)In (1) /[0(0-nQ)]. (4.24)

For values of A < 1, and if we retain only the lowest order terms,
exp(—M)Lo () ~ (1-W)[1+ (h/2)"] ~ (1-1)
exp(—M)L (M) = (4/2)(1-M)[1+(1/2)(A/2)"] = (A/2),

and the O-mode dispersion relation, Eq. (4.24), is given approximately by
(ke/0)? = 1-w2, /0~ (2, /o) (a2 /40%) [0/ (0-Q)].

This is to be solved for k =k, + ik; in a slowly varying magnetic field that, in the case
of resonance at the fundamental gyrofrequency, we will model as Q = o(1 — x/L). The
first two terms on the right-hand side are the usual O-mode dispersion relation in the
cold-plasma limit, from which we can estimate the real part of k:

(kec/0)* ~ 1-0F, /0*
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The imaginary part of k is then given by the remaining singular term
2kik,c?/o? &~ —Im{ (0Z,/0?) (o2 /40?) [0/ (0—Q)]},

2 ~ —Im{ (0}, /®*)(w/c) (1—(»12,6/0)2)1/2 (0?/4c?) /(x/L+ig)}.

Here € is a positive infinitesimal resulting from the causality condition, Im(w) > 0.

The optical depth for these O-modes resonating at the fundamental of the electron
gyrofrequency can then be obtained by using the Plemelj prescription to evaluate the
singular integral over x and obtain,

Jzkidx = —(1/2) (0% /0?) (1-0k /o) "* (o /2c%) (@/c)L. (4.25)

Although the factor 0?/2c> = T,/mc” < 1, the scale length, L>> c/w, the free-space
wavelength, and complete absorption is possible in large tokamaks, for example.

4.9
Electrostatic Plasma Waves

In addition to the electromagnetic waves described earlier in this chapter, plasmas
also support electrostatic waves characterized by E=—V® = —ik®. That is, the
electric field of the wave is aligned parallel to the propagation vector and the waves
are thus longitudinal rather than transverse. Since V x E= -V x V® =0, the wave
has no fluctuating magnetic field and the linearized Vlasov equation reduces to

Df;/Dt = —a; - 0f,,/ov = —i(e/me )k - 0f , /Ov ©.

The wave equation is Poisson’s equation in which the charge density, p, is obtained
from f:

V. g(=VO) =glg@ =p = Jd3v(—ef1).
We firstintegrate the linearized Vlasov equation in time along the unperturbed orbits
as before, assuming k=k,u, + kju, with the unperturbed orbits given by

X =X, + (v /Q)sin(¢, + Qt)— (v, /Q)sin ¢,

Z=2Z,+V|t.

We choose x, =z, =0 so that the phase of the wave along the unperturbed orbit is
given by

exp{i[(k_ v, /Q)sin(d, + Qt)—(k v, /Q)sin ¢, + kyvjt—wt]},

and using the now familiar Bessel expansion we have for the time-dependent wave
amplitude

(t) = [PZ] (kv /Q)] (kve /Q)exp{i[(m—n)d, + (mQ + kv —w)t]},

61
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where the sum is over all values of m and n from —oo to co. The linearlized Vlasov
equation can now be integrated in time from t= — oo to t=0 giving

£1(0) = —(ene/me )k - of o /OV| D[], (k1ve /Q)], (kivy /Q)expli(m—n)d,]
X (mQ —+ kHV” —(1))71

or,

1(0) = —(en./mc)(k, cos $pof, /Ov, +kjof,, /0v))| D]
X Z (k1 V1 / Q)] (kv /Q)expli(m—n))(mQ + kv —w)

Note that we have normalized the equilibrium distribution function so that its integral
over velocity space is unity. The term containing cos ¢ can be manipulated using
one of the Bessel function recursion relations [20], J,—1(2) + Jn+ 1(2) = 21Jn(2)/2,
and re-labeling the index n. The result is

£1(0) = —(ene/m.)[(n€2/v)of,/dv, +kof ,/v))]| D]
X (171 /Q)], (17 1 /Q)expli(m—n)0] (m + yv) ) !

The dispersion relation then follows from Poisson’s equation is

1= (u)lzje/kz)Zn ‘[VLdVL [dV”]i(kLVL/Q)(nQ + kv —o0)!

. (4.26)
X [(HQ/VL)afO/aVJ_ + kuafo/évu )]

This dispersion relation was first derived by Harris [21] and provides a more
comprehensive description of electrostatic plasma waves than the earlier Bernstein
analysis [22], which only considered waves that propagate perpendicular to the
static magnetic field and thus are not damped. The Harris dispersion relation has
been applied to broad classes of distribution functions that can be used to analyze the
stability of anisotropic, mirror-confined plasmas [23]. The low-temperature limit
can readily be obtained using the power series representation of the Bessel function
and regarding as small parameters the quantities kjv;/®, kv /(0 —Q), and kv /
(0 + Q). The result is

1= (pe/0) (ki /K?) + [0 / (@ Q%)) (i /K*).

We will return to more extended discussions of electrostatic waves later, particularly
regarding their stability and role in absorbing incident microwave power through the
conversion of electromagnetic waves into electrostatic waves at the upper hybrid
resonance layer.

4.10
Estimates of the Electric Field Amplitude

Under some circumstances, the amplitude of the right-hand circularly polarized
electric field near the resonance surface may be estimated from the level
of microwave power coupled into the plasma. In the case of high-field launch
whistler-wave heating, for example, the resonance layer absorbs virtually all the
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right-hand circularly polarized radiation incident on it, whereas the left-hand
circularly polarized component passes through the resonance surface and is inter-
nally reflected at the LH cutoff. It can then propagate back into the high-field region
where the microwave coupling structure is located. If this wave is subsequently
reflected with a polarization reversal, it will ultimately be absorbed when it reaches
the resonance surface. The situation is similar for X-modes launched in the high-field
region of a tokamak and propagating at an oblique angle to the magnetic field. Under
these circumstances, the microwave electric field strength can be estimated from the
Poynting flux, S =E x H. From Maxwell’s equations, one can easily show that

V- (E x H) = —g,E-0E/0t—(1/u)B - 0B/0t—E -j.

Thus, in steady state and regions where there is no net transfer of energy between
the wave and the plasma

P,=S-A=(ExH)-A

Here Py, is the incident microwave power and A is the cross-sectional area of the
microwave radiation pattern. Since for transverse waves E x H = ce,E’kc/, and
assuming that k is perpendicular to the surface, A, P, /A= nce E2, whence

E? = P, /(Ancg,).

This result can be used to estimate the electric-field strength along the trajectory
of the microwave beam injected into the plasma, but clearly fails at cutoffs or
resonances, where full-wave treatments are required.

The situation is very different in the case of weakly absorbed O-mode heating
in plasmas confined in magnetic mirrors as well as low-temperature plasmas
confined in smaller tokamaks. As demonstrated by Quon and Dandl [2], microwave
power launched from the low-field region near the side wall of a cylindrical vacuum
vessel with polarization chosen to couple to O-modes propagating in the plasma can
Dbe selectively absorbed by energetic electrons. These electrons can then be heated to
relativistic energies ranging from hundreds of keV at lower microwave frequencies to
multiple MeV at higher frequencies. The microwave electric-field strength can be
significantly enhanced in this situation as the result of open-resonator effects
produced by the vacuum vessel and the plasma wave optics. The degree of enhance-
ment is determined by the effective Q of the plasma-loaded resonator and depends
sensitively on the details of the particular experimental configuration. As mentioned
earlier, in view of the complexity of the wave propagation in the low-field launch
situation, it may be more realistic to regard the microwave electric fields as high-order
cavity modes. We will discuss this topic later with particular experiments.

4.11
Ray Tracing in Inhomogeneous Plasmas

To this point, we have considered the damping only of waves propagating exactly
parallel or perpendicular to the magnetic field. In general, the path taken by
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microwave power launched into an inhomogeneous plasma equilibrium at an
arbitrary angle to the magnetic field is governed by refraction, reflection at cutoffs,
and absorption at resonances. Determining the path taken by the power is often a
complicated process, but it is greatly facilitated in situations where the variation
in the plasma properties is negligible over distances comparable to the wavelength of
the power. For many decades, it has been realized that this situation obtains in
ionospheric plasmas, and it is becoming increasingly true in large plasma confine-
ment experiments, where the plasma dimensions can be three orders of magnitude
greater than the free-space wavelength of the microwave power used for ECH.
Under these circumstances, one can apply the methodology of geometrical optics,
implemented in suitable computer codes, to trace the path followed by microwave
power launched at some initial point with a given initial trajectory. Codes developed
for this purpose [24] have evolved over time and are now in widespread use in
analyzing ECH applications to large plasmas. Here we will focus our attention on the
theoretical basis [25] for the codes and interested readers can refer the sources
cited in Refs. [24] for detailed descriptions of the codes.

We start with the scalar wave equation of optics: V% — (n®/c?)d%/ot* =0.
If the medium through which the wave propagates is uniform so that n, the
index of refraction, is constant, the wave equation has plane-wave solutions:
X = Xoexp[i(ker — wt)] where k and o must satisfy an appropriate dispersion relation,
n =kc/o. For the moment we will choose k =k,u,, where k, = o/c is the value of the
wave number in vacuum. Then x = yexp|ik,(nx — ct)]. We now consider a situation
where n depends only on x and is a slowly varying function of x. We then
look for solutions of the wave equation that are similar to plane waves; namely,
X =XoeXp{A(x) + ik,[L(x) — ct]}. A(x) and L(x) will be assumed to be real. Differen-
tiating 7 twice in x and t and substituting the results into the wave equation yields

{[d*A/dx® + (dA/dx)? 12 (dL/dx)® + n?k2] + ik, [dL/dx’
+2(dA/dx)(dL/dx)] }x = 0.

Since A and L are real, both expressions in brackets must vanish. Under the
geometrical optics assumption that A, = 2mn/k, is much smaller than the lengths
characterizing the gradients of A and L, the dominant terms are

[—1k2(dL/dx)* +n?k2]y = 0,

giving a one-dimensional version of the eikonal equation of geometrical optics,
(dL/dx)* x =n x. The WKB solution for  results from setting L(x) = + [n(x')dx":

X = Zoexp{A(X) + iko[(£) Jn(x’)dx’fct}

The eikonal equation is identical to the Hamilton—Jacobi equation; and indeed,
Jacobi’s form of the least action principle could be written as A [nds=A [ds/u=0,
which are variations of Fermat’s principle for the trajectories of light rays. We can,
therefore, describe the trajectories of light rays in inhomogeneous plasmas by a
Hamiltonian system in which the dispersion relation, D(rk,®,t) =0 plays the role
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of the Hamiltonian. The canonical equations for the ray trajectory are usually given in
terms of a time-like parameter, T:

drj/dt =0D/dk;, j=1,2,3
dk;/dt = —-0D/0r;, j=1,2,3
do/dt =0D/0t, and

dt/dt = —0D/0w.

The path of the ray is advanced in time, t, according to the local value of the group
velocity:

vg = dr/dt = (dr/dt)/(dt/dt) = (0D/0k)/(—0D/0w).
The wave vector is advanced in time along the ray trajectory using
dk/dt = (dk/dt)/(dt/dt) = (—0D/0r)/(—0D/0w).

Since we are usually concerned with time-independent equilibria, 0D/0t =0 and wis
constant. Also, if the equilibrium does not depend on one or more of the spatial
coordinates, the corresponding components of k are constant. It is sometimes
advantageous to introduce the distance along the ray trajectory, ds = |v,|dt so that
the ray trajectory and the wave vector are then advanced by the following equations:

dr/ds = (1/|vg|)dr/dt = —sgn(0D/0w)(0D/dk)/|0D/dk| and
dk/ds = (1/|vg|)dk/dt = sgn(dD/0w)(dD/dr)/|0D /K.

Most of the ray-tracing codes now in use evaluate the real part of the index of
refraction at each point along the path of the ray using the cold-plasma dispersion
relation. The damping or absorption of the wave energy can be calculated in different
ways. From the wave point-of-view, the warm-plasma dispersion relation can be
solved for the imaginary part of the index of refraction at each point along the pay.
From the electron’s point-of-view, the damping can be calculated using a suitable
heating model, such as the Fokker—Planck model to be discussed in Chapter 6.
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Determine the index of refraction and the polarization of the

(a) anX-mode propagating perpendicular to the magnetic
fieldin a cold plasma where o),/ = 0.8 and @ /o =

(b) anX-mode propagating perpendicular to the magnetic
field in a cold plasma where
o}, /®* =0.4and Q/o = 0.52



4.2.

4.3.

4.4.

4.5.

4.6.

(¢) an X-mode propagating at an angle of 60° to the
magnetic field in a cold plasma where
o}, /0* = 0.8and Q /o =1.05

(d) an X-mode propagating at an angle of 80° to the
magnetic field in a cold plasma where
o}, /0? =0.4and /o = 0.52.

Determine the direction of the wave electric field at the
upper hybrid resonance when an incident X-mode is
propagating exactly perpendicular to the magnetic field.

Derive an expression for the polarization of X-modes
propagating at an angle of 60° with respect to the magnetic
field. Assume o = 1, Q = 1.5, and evaluate this polarization
as a function of density for 0 < m,. < 1.

The Q (“Quality Factor”) of a plasma-loaded microwave
cavity is given by (see, for example, J. D. Jackson, Classical
Electrodynamics, Wiley, New York (1962) p. 256)

Q=o(s Ez/z)vcavity/PabS

(a) Using Eq. (4.17) for a simple magnetic mirror
determine the value of Q for the following parameters:
Veavity =30 |, M =3.333, M, — 1.905, L,.— 50cm,
a=>5cm, and (0%, /®?),,, = 0.1.

(b) If5 kW of 6.4 GHz microwave power is coupled into this
cavity, what is the average value of the resulting
microwave electric field strength?

(a) Evaluate the real and imaginary parts of the index of
refraction for whistler waves propagating parallel to a
uniform static magnetic field for the following
parameters: T, = 20eV (o},/0?) =2, and
Q/m=1.02.

(b) For the same plasma parameters, evaluate the
imaginary part of the index of refraction at the
resonance surface, the magnetic field at the onset of
damping, and the optical thickness of this plasma for
these whistler waves.

Derive a formula for the optical depth of O-modes
propagating perpendicular to the magnetic field and
resonant at the second harmonic of the electron
gyrofrequency in a Maxwellian plasma.
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5
Interaction of Electrons with Electromagnetic Fields
at Resonance

In Chapter 4, we considered the wave processes that play major roles in ECH,
whereas in this chapter we will consider the more microscopic processes by which
electrons gain energy from the fields of those waves. Here the emphasis is on the
interaction of individual electrons with the electric field at the resonance surface
without particular regard for the waves that may be responsible for those fields. An
essential element of cyclotron resonance heating is the occurrence of a temporal
interval during which the phase of the electron gyration is nearly stationary relative to
the phase of the RF wave. Several distinct mechanisms by which the electron and the
wave can exchange energy will be discussed in this chapter, but none of them will
have a significant effect except during this interval when the relative phase is
stationary. Outside of this resonance interval, the relative phase changes rapidly in
time, since the resonance results from the brief cancellation of two high-frequency
oscillations; viz, the electron gyration and the fields of the electromagnetic wave. As a
consequence of the high frequencies involved here, even relatively weak processes
affecting the electron gyrophase can lead to randomization of the phases between
resonances. Next we will first examine the kinematic processes that determine the
duration of the resonance without considering the longer time behavior of the phase.
Then in Section 5.2, we consider a more comprehensive dynamical description that
can also account for the value of the phase at successive resonances. Some relativistic
effects are discussed briefly in Section 5.3.

One possible model of the ECH process, the so-called stochastic model, treats the
heating as a diffusion in velocity space brought about by many uncorrelated events;
namely, successive transits of an electron through the resonance surfaces, where the
electron’s perpendicular energy and orientation in velocity space undergo abrupt
changes. The implementation of such a model requires that we determine the
properties of these resonant changes and the frequency with which they occur.
A somewhat simplistic but hopefully transparent determination of these changes
will be undertaken in Section 5.1. A more rigorous treatment of the heating process
will be given in Section 5.2. There are, however, significant questions regarding
the conditions under which the assumption of stochastic behavior is valid. These
questions have been addressed by many researchers [1], and several circumstances
involving correlations between successive transits through resonance have been
identified. In Section 5.4, we describe two examples of such nonstochastic behavior
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and the limit cycles to which they can give rise. Finally, in Section 5.5 we explore some
nonlinear aspects of these limit cycles by employing a highly simplified mapping
technique.

5.1
A Rudimentary Stochastic Model of ECH

As we have seen in Chapter 3, electrons confined in a magnetic mirror will bounce
back and forth along magnetic lines of force. If the amplitude of this bounce motion is
large enough or if the resonance surface is on the midplane, an electron can pass
through the resonance surface where the (Doppler-shifted) wave frequency equals
the local gyrofrequency. At resonance, the phase difference, ¢, between the electron
gyration and, for example, the right-hand circularly polarized component of the
electricfield, E_, is stationary with some value, §,s; but as the electron’s motion along
the magnetic field takes it beyond the resonance surface, ¢ will change. As we will see,
relativistic increases in the electron mass can also cause the phase to change even in
a uniform magnetic field. For this first heuristic picture of the stochastic model of
ECH, we will concentrate on evaluating the effective duration of resonance, teg, and
its dependence on the system parameters and the orientation of the electrons in
velocity space.

Although t.g has been defined in slightly different ways by different workers [2],
in general the duration of resonance is a measure of the time interval throughout
which ¢ stays within some maximum value relative to its value at the instant of exact
resonance. During this time interval, the electron’s (perpendicular) energy will
change by an amount 8W ,, which is given schematically by an expression of the form

oW, = —e J E v cos¢dt = —e|E | [V]res COS §peq tefr- (5.1)

The rate at which the phase changes in time due to the electron’s parallel motion
or to the relativistic mass change is given by v = d¢/dt = Q + kv — o, wherev =0at
resonance. For reasons that will become clear later, we can expand v in a rapidly
converging Taylor series about the instant of resonance, t,s. Recall the general form
of the Taylor series given by

f(x) = f(a) + (x—a)f'(a) + (x—a)*f"(a) /2! + (x—a)*f"(a) /3! + - - -

Applying this to v = d¢/dt and keeping in mind that v vanishes at resonance, we
have for times near the instant of resonance, t,.

V(t) = (t—tres)V/ (tres) + (t—tres) V" (tres) /2! + (t—tres) V" (tres) /3! + - - -
Thus, the phase shift 8¢ after some time interval dt.. is given by
I Jd(t*treS)[(t*treS)V/(treS) + (t*trES)ZVN(treS)/Z!

+ (t_tres)3vw(tres)/3! + - ]
= B2V (tres) /2 £ SV (tres) /3! + SEEV" (tres) /4! + - - -
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Here 8t = (t—tres) >0 and O8t_ = (t — ts) <O are the limiting time intervals
corresponding to the periods after the electron passes through resonance and prior to
resonance, respectively. If for the moment we arbitrarily set the maximum phase
difference as 80, = £7/4 and retain only the first two terms in the expansion, we
can use simple numerical techniques to estimate an effective duration of resonance,
ter, given by 8t + &t_, from the lowest order terms of Eq. (5.2):

AV (tres) /2 £ SV (tres) /3! = £1/4. (5.3)

Allowing for the relativistic change in electron mass as well as the electron’s
parallel motion, we can express the rate of change of v at resonance as

V(tres) = {Q[vydInB/dz—dW /dt/(ymc?) +k; (dv, /dt) /Q]}... (5.4)

The first term, v dInB/dz, is usually the determining factor in limiting the duration
of resonance unless the magnetic field is locally spatially uniform or the electron
turns at or just beyond resonance. In the former case, the relativistic increase in
electron mass may limit the duration of resonance. In the latter case, the next order
term in the Taylor series will determine the duration of resonance. The magnitude
of the second nonrelativistic contribution, k(dv;/dt)/Q, can be estimated from
Newton’s second law using the p - VB force: mdv,/dt= —udB/dz so that

L (dv),/dt) /Q = — (K /k) (ke /@) (@/Q) (v, /c)(v, /2)dInB/dz.

Unless the resonance occurs very near the electron turning point (where v = 0),
this term will be smaller by roughly v /c than the v;dInB/dz term. If the electron
turns well beyond the resonance, the duration of resonance is given approximately by
the quadratic term of the Taylor series:

ter = Ot +Ot_ = 2[1r/|2v’(tres)ﬂl/2 if V/(tres) # O. (5.5)
If V/(tres) =0, we can use the next order term in the series to obtain
toir = 8ty + 8t ~ 2[31/[2" (tes)||* 1F V' (thes) = 0. (5.6)

In either case, under the assumption that the successive resonance encounters
are uncorrelated we can estimate the resulting energy diffusion coefficient, Dy to be
given by

Dy = (8W2 )Virs = (1/2) (€[E [V terr) *Virs (5.7)

The frequency with which an electron trapped in a magnetic mirror passes through
aresonance surface, vy, is four times the bounce frequency if the electron turns well
beyond the resonance and twice the bounce frequency if the electron turns at or just
beyond the resonance or if the resonance surface is at the midplane. We estimate the
heating rate in this stochastic model as

AW /dt = Dy /2W, = (1/2)(e®/m)|E . |* 2 Virs. (5.8a)
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We now illustrate some of the properties of this stochastic heating model by
applying it to the simple magnetic mirror configuration described in Chapter 2. For
more clarity, we will neglect the Doppler shift and the relativistic effects and
approximate the rate of phase change simply by v =Q(z) — ® so that.

V,(tl’es) = (dv/dt)res = [VHdQ/dZ] res

and

V' (tes) = [V d°Q/dz* + (dv; /dt)dQ/dz],

es’

For this illustrative case, we approximate the variation of magnetic intensity
along the magnetic lines of force by our earlier expression for the simple magnetic
mirror,

Q(z) = (Q/2)[(M+1)—(M-1) cos koz],
so that dQ/dz = (ko€,/2)(M—1)sink,z
and  d*Q/dz" = (KXQ,/2)(M—1) cos koz.
At the resonance surface,

2Bres/Bo = 2Myes = (M +1)—(M—1) c0s ko Zyes
whence €08 KoZres = (M 4+ 1—2M,es) /(M —1) (5.9)
and $in KoZres = £[2/(M—1)][(M—Myes ) (Myes—1)] /2.

If the electron motion between successive transits of the resonance surfaces is
adiabatic, the parallel velocity at resonance will be given by

Vi es = (2/m) (E~MBres) = (21Bo/m)(e/UBo—Bres/Bo),
where € is the electron’s total kinetic energy so that
V|| res = Vlo(Mt—Mres)l/z.
We can evaluate dv)/dt at resonance as before using Newton’s second law:
mdv/dt = —udB/dz,
giving  (dv)/dt),.q = —(1/4)kev% (M —1) sin KoZres.

When applied to this model of the simple magnetic mirror configuration, the
parameters entering our stochastic heating model thus become

V/(tres) = kOVJ_OQo [(Mt_Mres)(M_Mres) (Mres_l)]l/z (510)
and

V”(tres) = (1/2)(k0VL0)ZQo X [(Mt_Mres)(M+ 1_2Mres)_(M_Mres)(Mres_l)]
(5.11)

These expressions can then be used in our equation for the time-dependent phase
difference to follow the electron’s phase in time as it passes through resonance:

O— 0y = (t*treS)ZV,(treS)/z + (t*tresyv/l(tm)/y + (t*tresyvm(treS)/“! + o
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It is convenient to use the bounce frequency, @y, to define a dimensionless time
variable, T= w,t where the bounce frequency in the simple magnetic mirror was
given by Eq. (3.11):

2004 = kovio(M—1)2{(1/2)K ' [(M—1)/(M=1)]} ~ kov.o(M—1)"2.

Retaining only the first two orders in the Taylor series, our equation for the time-
dependent phase difference becomes,

0—0res = (T=Tres)" V' (tres)/ (200) + (1—Tres) V" (tres)/ (6033
From Egs. (5.10) and (5.11),
V/(tes)/ (207) = (1/2) (0¥ 10/05)* (€ KoV o)
X [(My=Mucs) (M~ M) (Myes 1))/
and

V' (tres) / (600%) = (1/12) (Ko¥ 10/ 00) (Qo/koV 1)
X [(Mt_Mres)(M + 1_2Mres)_(M_Mres)(Mres_l)]a

where

KoV 1o/@b = (4/T)(M—1)"Y2K[(M;~1)/(M-1)] and
Qo/koVLo = LC/(ZTEPO).

Recall that L.=2mn/k, is the separation of the two coils forming the simple
magnetic mirror configuration and p, is the electron gyroradius at the midplane.
We choose typical values for the mirror ratio, M =2, the mirror ratio at resonance,
M,es = 1.4, and the size parameter, L./(2np,) =150 and numerically evaluate the
phase difference, ¢ — ¢,es, as a function of the dimensionless time, (T — T,s), for
values of the mirror ratio at the electron turning point, M;, ranging from M, to M.
The first of these illustrative results for M; = M, is shown in Figure 5.1.

Since V/(tes) = 0 for My =M, the phase difference is determined solely by the
cubic term; and since V" (t.s) <0 the phase difference is positive as the electron
approaches the resonance, (T — Tres) < 0, and negative after the electron has turned
at resonance and is moving back toward the midplane, (T — T,s) > 0. The effective
duration of resonance, T, is indicated on the figure.

For values of M, slightly greater than M,;, the quadratic term is nonzero and
with increasing values of M, it soon becomes dominant, leading to a positive
extremum in the phase difference for positive times as shown in Figure 5.2, where
M;=1.41.

With further increases in M,, this is followed by an abrupt decrease in 8t , the
time after resonance when the phase shift reaches nt/4, since the limiting value is
now + 7/4 rather than —m/4, as was the case in Figure 5.1. The effective duration of
resonance decreases further as the cubic term becomes increasingly weaker relative
to the quadratic term, as suggested by Figure 5.3, for which M, = 1.45, where the
parabolic form of the phase shift associated with the quadratic term is almost
symmetrical about the point of resonance.
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Figure 5.1 The phase difference, 8¢ = — @yes, versus T=mpt

for electrons turning at the resonance surface, My = M5 = 1.40.

Note that Tef is the interval between the times when
8¢ = £m/4 =10.7854.

The effective duration of resonance for these illustrative cases is summarized in
Figure 5.4 for 1.40 < M, < 1.41 (“electrons turning at or just beyond resonance”) and
in Figure 5.5 for 1.41 < M, < 2 (“electrons turning well beyond resonance”).

The stochastic heating rate in this heuristic model is given by Eq. (5.8a), which we
rewrite as follows:

dW /dt = (e|EL[*/Bo) ® (M, Myes, My). (5.8b)

For the simple magnetic mirror model considered here, and for electrons turning
well beyond resonance, the electron pitch-angle dependence is contained in the
function

G(M, Mies, Mi) = {(M=1) /[(M—Mues ) (M—Myes) (Mres—1)]} /2
<{(m/2)K7M[(M—1)/(M=1)]}.

With the same values of M, M, ., and M; used eatlier to illustrate the pitch-angle
dependence of the duration of resonance, T.s, we can use this expression for
(M, M5, M) to estimate heating rates for electrons turning far enough beyond
resonance that the quadratic behavior dominates. In this way, we find that the heating
rate for electrons with M, =1.43, for example, is five times greater than the heating
rate of electrons with M;=1.9.
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Figure 5.2 The phase difference,  — 0yes, versus T= wpt for
electrons turning just beyond the resonance surface where
M, = 1.41.

The point to be emphasized here is that electrons that turn just beyond resonance
experience an effective duration of resonance that is four to five times longer than
electrons that turn well beyond resonance and a heating rate that can be an order of
magnitude larger. Furthermore, as we shall see, the turning points of heated
electrons are being moved toward the resonance surface by the heating process
itself. We, therefore, anticipate a significant dependence of the heating rate on the
equilibrium distribution of electrons in turning points, with higher rates for
electrons turning near resonance. Indeed, in magnetic mirror experiments where
the equilibrium is strongly affected by the heating, we can reasonably expect the
equilibrium distribution function of heated electrons to be peaked for electrons
turning near resonance, an expectation supported by experimental data.

The locations of the electron turning points, as specified by the magnetic intensity
at the turning point, B,, are changed by the heating in such a way that the turning
points of nonrelativistic electrons tend to accumulate near the resonance surface.
Since B;=¢/|, the change in the turning point due to the heating at the resonance
surface is given by

= [(0g/oW L) /u—(g/n?)0u/OW_ ] dW,
= (1_Bt/Bres)8WL/M.

OB

-

(5.12)
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Figure 5.3 The phase difference, ¢ — 0y, versus T=wpt for
electrons turning beyond the resonance surface where M, = 1.45.

Since the electrons must turn at or beyond the resonance surface if they are to pass
through resonance, B;/B,. > 1. The magnetic intensity at the turning point thus
decreases with heating until electrons turn near resonance, the bracket vanishes, and
OB, itself vanishes.

5.2
Dynamics of the Fundamental Resonance Interaction

We now consider in a more rigorous way the changes in the energy and velocity-space
orientation of an individual electron resulting from a single transit through a
resonance surface that is illuminated by microwave power. The formalism used here
will also lead to the identification of limit cycles that can affect the long-term behavior
of heated electrons. We start with the nonrelativistic equation of motion of electrons
in our model simple magnetic mirror field. To include relativistic effects, we will find
later that it is only necessary to replace the rest mass, m, by the relativistic mass, ym.

The equation of motion for an electron moving in a magnetostatic field, B, and the
fields of an electromagnetic wave, E; and By, follows directly from Eq. (3.1):

F =mdv/dt = —e(E+v x B) = —eE;—ev x (B, + By).

If B, the magnetic field of the wave, is mainly parallel to B,, the static magnetic
field, its contribution to the total Lorentz force on the electron will usually be
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negligible. This is the case, for instance, if the wave is an X-mode propagating nearly
perpendicular to the magnetostatic field. If, however, the magnetic field of the wave
is largely perpendicular to the static magnetic field, it can play an essential role in the
exchange of energy between the wave and the plasma electrons. This is the case for an
O-mode propagating perpendicular to the magnetostatic field with the electric field of
the wave aligned parallel to the magnetostatic field. We consider each of these
circumstances separately, starting with the case exemplified by X-mode heating.

5.2.1
Dynamics of the Electron Interaction With X-Mode Waves

Assuming that the wave varies in space and time as exp[i(k - r — ©t)], we have from
Maxwell’s equations k- E; = ®By; and if we set eB,/m=Q,u,, we can write the
equation of motion as

dv/dt—Qou, - v = —(e/m)[E;(1-k-v/m) + (v- E; )k/w].

For the fields of X-modes, we can neglect the terms proportional to kv/ that arise
from the contribution of the wave magnetic field to the Lorentz force. Then in circular
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coordinates, the perpendicular components of the resulting equation of motion were
given by Eq. (3.3):

dv; /dt—iQv, = —eE,/m
dv_/dt+iQv_ = —eE_/m.

We focus our attention on the right-hand circularly polarized component that
can resonate with electron gyration. Note that we omit the subscripts “o0”, “e”, and “1”
in these dynamical equations for the electron motion. lon dynamics are generally
negligible at electron gyrofrequencies and will not be included in the following
discussion. An integrating factor for the right-hand circularly polarized component is
exp(i [Qdt) so that

v_(t)exp (iJth) — v (0)—(e/m) Jdt E_(r, tlexp (i Jgdt) .

We linearize this equation by evaluating the field along the unperturbed orbit of the
electron, assuming the field to be a superposition of plane waves propagating at an
arbitrary angle with respect to the static magnetic field, E_(r,t) = |E_| exp[i(k - r — wt)]
where 1(t) is the unperturbed electron orbit. Without loss of generality, we can once
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again choose the propagation vector to lie in the x — z plane and arbitrarily choose the
initial position of the electron at the origin. Then from Eq. (3.5)

k-r=k, psin (q)o + Jth) —ky psin ¢y + Xk JVHdt.

In order to separate [Qdt from the argument of sin(dy + [€dt), we use the Bessel
function identity [3], exp(£ib sin8) =ZJ,(b)exp(£in 6) and obtain the following
expression for the right-hand circularly polarized component of the electron velocity
for times t> 0:

v (gesp(i [ 2 ) =v-(0)(e/m) B exp(—ikpsin )2, . p)exp o)

X Jdtexp{int[(nJrl)QnLkHvHfu)}}.

The summation is over all (integer) values of the index n from —oo to occ.
The condition for resonance at the fundamental electron gyrofrequency,
v=Q + K||v|| - =0, is given by the n=0 term; and the corresponding change
in electron velocity due to the resonance will then be described for times greater than
that at which the electron passes through fundamental resonance by

v_(t) =exp (—i J th)
v (0)(e/m) e exp(-ik.psinog J(kp) [aresp( [ v} |.

Note that the condition for X-mode resonance at the nth harmonic of the electron
gyrofrequency,v =n€Q + kv, — o = 0,isgiven by then —1 term; and the corresponding
change in electron velocity due to the nth harmonic resonance will then be described by

v_(t) = exp (—i J th)
v O (e/m)lE-lesp(-ikpsinay), - (kup) [ atesp (i | ) |
We now introduce the time-history integral, H(t), defined by
) = [arep(i o) = [arepiat-o,)),

where, as before, ¢(t) — ¢, = [dt v= [dt(Q + kv — ) so that the fundamental
X-mode resonance leads to the following change in v_:

() = exp( i [ 2dt) v O)=(e/m)[E-fexp (ks s ) o (k. pIFH(0)

The method of stationary phase [4] provides an asymptotic estimate of the time-
history integral in the limit Q,/®, > 1. We write

H=H() = Jdtexp <intv) - .[dteXP (ix),
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where x=Q/oy, and y = [(v/Q)w,dt. At resonance y' = 0; and if y” # 0 the method
of stationary phase gives for the asymptotic value of H

H = 8ty exp[ix Y(tres) £ im/4],
where the + sign applies if y” (t..s) > 0 and the — sign applies if Y” (t,es) < 0 so that
St corresponds to the same quantities introduced in Section 5.1. In the limit in

which the two time intervals are approximately equal, we have for electrons turning
well beyond the resonance surface

1/2

H = tegr expli(Qres—0o)]  With terr = {2!/ [xIy" (tes)[]} " T(1/2).

Since T'(1/2) = /T, this result is identical to Eq. (5.5). If the electron turns at
resonance, the stationary phase technique yields

ter = 2{3!/ X[y (tes) [} /> T(1/3) /3,

which agrees closely with Eq. (5.6). Note that ¢yes — ®o = X Y(tres) £ 7/4. In the limit of
x>> 1, the change in the right-hand circular component of the electron velocity
resulting from a single transit of the fundamental resonance surface is

v_(t) = exp (—i J Q dt)

X {V* (0)7(8/D’1)|E, Uo(kip) tefr eXp[i(q)res*q)o)]eXp(*ikip sin ¢o)}'

Recall thatthe electron’s perpendicular kinetic energyis given by W, =mv>* (t)v_(t)
and v—(0) =v_ (0)exp(—ido)/v/2. Thus we obtain for the electron’s energy after a
single transit through the fundamental resonance surface with X-mode illumination

Wi =W (0)—e[vi(0)/v2]|E-[Jo(kip)tesr {explikp sin ¢, —0ye;)]
+expl—i(k.p sin 0g—0.es)]} + (€ /m) |E- [*Jg (k. p)tr-
Note that {expli(k. p sin 0,—0r;)] + exp[—i(k. p sin 0, —0re;)]}/ V2
= V2 cos (ki p sin 0,—0,.)
= V/2[cos (k. p sin ¢,) cos ¢, + sin (ky p sin @,) sin ¢, ]
= V2{c08 9,c5[Jo (k1 p) + 22, (k. p)cos 2n ¢,
+ SIN 0y5 [22] 51 1 (K1 p) sIN (20 + 1), ]},
where we have made use of the two Bessel function relations [5]

cos(asinb) = J,(a) + 2ZJ,, (a) cos 2nb
sin(asinb) = 2ZJ,, , ;(a) sin (2n+ 1)b.
Both of the summations are from n=1 to n=oc. To lowest order in k, p, the

change in W after a single transit of the fundamental X-mode resonance surface is,
therefore, given by

AW, = —eV2[E_ |V, (0)J§ (k. p)tefr COS Ores + (€7 /m) |E-[*]5 (k1 p)tgr-
(5.13)
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Since v2|E_| = |E, |, apart from the factor J2(k, p), the first term on the right-hand
side is similar to Eq. (5.1). As we noted earlier, this term depends on ¢,, the phase
of the microwave electric field relative to the electron gyration at resonance. The
resulting change in energy can be positive or negative and will vanish when averaged
over a population of electrons with random gyrophases. By contrast, the final term is
positive definite and describes a phase-independent increase in W ,. This increase is
proportional to t%; and closely resembles the result of the stochastic heating model
of Section 5.1. Note that if we average Eq. (5.13) over the gyrophase angle and
multiply the result by vy, We recover our expression for the heating rate derived
from the stochastic model. The positive definite term arises because electrons that
are accelerating when they cross the resonance surface have greater average velocities
during the resonance interval than those that are decelerating when they cross the
resonance surface.

522
Dynamics of the Electron Interaction With Parallel RF Electric Fields

First consider the direct transfer of wave energy into electron motion along the
magnetostatic field as described by the parallel component of the equation of motion:
mde/dt = —eEH = —e|EH|exp[i(k~ r—(nt)].

In the absence of finite gyroradius phenomena, the average of vj over a wave period
would be constant, but finite gyroradius effects introduce the possibility of cyclotron
resonance effects. Just as was done earlier, we linearize this equation by evaluating
the electron position at any time using the unperturbed orbits with the same
assumptions as before and obtain the following expression for the electron’s parallel
velocity after passing through resonance:

)(6) = ) (0)— (e/m) [Ey |exp(—ik.p sin 6,)5],, (k. p)exp(in o,)
X Jdt exp “ dt(nQ + kv —w) |.

For fundamental resonance, n=1 and we have
v)j(t) = v);(0)—(e/m) |Ey ] (kop)exp(—ik_p sin o, )exp(id,)H1(t)
v)/(0)—(e/m) [y [J; (k1 p)terexp (0, —ik  p sin ¢,)
¥}/ (0)—(e/m)[Ey[J (k1p)Jo (k1 p)tesr cOS Ores-
The corresponding change in the “parallel” kinetic energy is then
AW)|(t) = —v) (0)e[Eyj[J; (kLp)Jo (kLp)terr €OS e
+ (m/2) [(e/m)[Ey |7, (k1p)Jo (k.p)ter cos Oycs)

Averaging over random gyrophases (at resonance) yields

(AW} = (e/4m) [|Ey|], (k1p)Jo(k1p)terr]

Q
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It is instructive to compare this with our earlier result for the phase-independent
change in the “perpendicular” kinetic energy: AW, = (e?/2m)|E, [*J3(k, p)tX;-
Evidentially the direct transfer of wave energy into “parallel” kinetic energy is smaller
by a factor of [J;(k . p)|Ey|/|EL|]>, which is of the order of magnitude of (v, /c)* and
thus considered negligible except for relativistic-electron plasmas.

523
Dynamics of the Electron Interaction with O-Mode Waves

To this point, we have considered the work done on gyrating electrons by RF electric
fields, including (1) the perpendicular electric field of a right-hand circularly
polarized electromagnetic wave, and (2) the parallel electric field of the RF wave.
Next we will describe a different mechanism by which waves can exchange energy
with electrons through the combined actions of the electric and magnetic fields of
the waves. An important practical example of this mechanism occurs for O-modes
propagating perpendicular to the magnetostatic field. Hamiltonian mechanics
provide a convenient description of the electron dynamics [6]. We model the
magnetostatic and wave fields in the resonance zone using the following vector
potential:

A = uyB,x+u,A; expli(kx—ot)].
The magnetic and electric fields for this vector potential are given by the real
parts of
B =V x A = u,B,—uyikA; exp[i(kx—ot)]
E = —0A/0t = u,imA; exp[i(kx—ot)].
The Lagrangian,
L =mv?/2—ev-A
= m(v} +v; +v2)/2—e{v,Box+ v, A; expli(kx—ot)]}
and the generalized momenta, p, = 0L /0v; are therefore

p, = mvy
py = mvy—eBox
p, = mv,—eA; expli(kx—ot)].

If these expressions are solved for the components of the velocity and used to

express the Lagrangian in terms of the generalized momenta and coordinates, we
obtain

L= (pl+ P§ + pﬁ)/Zm—inxz/Z— (e*A?/2m)exp[2i(kx—ot)].
The Hamiltonian is then given by $ = p-v—L and we have

$ = (p2 +p> +p3) /2m +p,Qox+ mQlx* /2 + p, (eA; /m)expli(kx—ot)]
+ (e’A}/2m)exp[2i(kx—ot)].
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Since the Hamiltonian is independent of y and z, their respective conjugate
momenta are constants of the motion:
py = mvy —eBox = p, = constant
p, = mv, — eA;expli(kx—mt)] = p,, = constant.

The rate of change of p, (which equals F,, the x-component of the force on the
electron) is given by the canonical equation of motion:

dp,/dt = mdvy/dt = F, = —09/0x
= —prO—mgﬁx—ikpZ(eAl/m)exp[i(kx—(ot)} —ik(e?A? /m)exp[2i(kx—wt)].
Substituting from our expressions for p, and p, we obtain for the force in the
x-direction
Fy = —mQ,vy—ikv, (eA)exp[i(kx—ot)].
The instantaneous rate at which this force changes the (perpendicular) kinetic
energy is then given by
dW /dt = mvydvy/dt + mv,dv,/dt
= vyd(pyo/m + mCQox) /dt—vx{mQovy + ikv, (eAs Jexp[i(kx—wt)]}
= —ikvyv,(eA;)expli(kx—ot)].
Taking the real part then gives the instantaneous heating rate as
dW /dt = kvyv,(eA;)sin(kx—mt).
The results obtained in this Hamiltonian formulation can also be obtained directly
from Newton’s second law including the Lorentz force due to B, in a transparent

way that facilitates interpretation. Again ignoring the weak spatial gradients in the
magnetic field within the resonance zone we have

mdv/dt = —e(E+v x B) = —e[Eju, +v x (Bou, + Biuy)]
giving three equations for the components of mdv/dt:
mdv,/dt = —ev,B, +ev,B;

mdvy /dt = ev,B,
mdv,/dt = —eE;—ev¢B;

so that the rate of change of the perpendicular energy is
dW  /dt = m(vydvy/dt +vydvy /dt) = evyv,B1 = ev,v,(kA;)sin(kx—ot).
The rate of change of parallel momentum is given by

mdv,/dt = —eE;—ev,B; = e®A;sin(kx—ot) —evy,kA;sin(kx—ot)
= eA;d cos(kx—ot)/dt

whence
mv, = eA;cos(kx—wt) +p,,.

We can use this last expression to distinguish between two classes of electrons
depending on their value of p,,. The first class is comprised of electrons that have
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nonvanishing values of parallel momentum at the resonance surface, p,, # 0. If the
expression for mv, is averaged over a wave period (which equals a gyroperiod at
resonance) we have (mv,) =p,, and for these electrons the instantaneous rate of
change of the perpendicular energy is given by dW  /dt = ev,v,(kA;) sin(kx — ot).
A case of particular interest is the heating of mirror-trapped electrons where the
unperturbed orbits are described by adiabatic kinematics so that

vy = v, cos(0, +Qt) = (2W, /m)""2cos(¢, + Qt) = (2uB/m)"cos (o, + Qt)
and
v, = 6[2W/m]"/* = 6[2(e—uB)/m]"/?, where 6 = £1.

With these substitutions, we can easily show that the instantaneous rate at which
electrons exchange energy with the O-mode wave at resonance is

dWL/dt = G(ekAl /m) (WLresWHres)l/z{Sin((bo +kx)—sin[(Q+ m)tJr(bo_kX]}'

In the limit kp < 1, the change in energy at the fundamental resonance is given
approximately by

SWJ_ = 0sin (])0 (EkAl /m) (WiresWHres)l/zteff-

Electrons for which o sin ¢, > 0 at the resonance surface will gain energy, while
electrons with ¢ sind, < 0 at the resonance surface will loose energy. If the phase of
gyration relative to the wave varies randomly from one resonance to the next
stochastic, heating will result, as described earlier in this chapter. The resulting
heating rate is then

dW /dt = Dw/2W, = (1/2)(e?/m)E} L Virs(n/2)* W jres /mC? (5.14)
where we have set
DW = <8Wi>vtr5 = (1/2)[(ekA1/m) (\X/Lres\X/Hres)l/2 teff]zvtrs~

As in the earlier discussion of stochastic heating, v, is the frequency with which
the electrons pass through resonance surfaces and n = kc/w s the index of refraction.

The second class of electrons is characterized by p,, =0 and is comprised of
electrons that are trapped in the resonance zone by the electric field of the O-mode
wave. In practice, this may occur if the resonance is at a local minimum in the
magnetostatic field or if the electron is turning at the resonance surface. The resulting
nonlinear orbits are more complex and additional resonances are possible. This
situation has been discussed at length by Carter et al. [7] and will be dealt with only
briefly and qualitatively here to suggest how the additional resonances may come
about. Although not justified clearly, the expression for the instantaneous rate of
exchange of energy between the electron and the wave will be linearized for the
present heuristic purposes by integrating along the unperturbed orbits using

Vy = V| COS (q)o + Jth) and v, = (eA;/m)cos(kx—mt),
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where the expression for v, is given by the conserved momentum. Then,

W, (t)—W,(0) = —ikv, (e?A}/m) Jdt cos (q)o + Jth) exp[2i(kx—ot))]

—ikv, (e?A7/m) Jdt cos (q)o + JQ dt> exp(—2ikp sin¢,)

x 2], (2kp)exp(ing,) x J dtexp {i J dt (vQ + kv —20))}
= —ikv, (e*A?/2m)exp(—_2ikp sin ¢,)

« {Z]n(zkp)exp[i(nJr 1)¢0]Jdt expi[dt[(nJr 1)+ kv —20]

+ Z]n(ka)exp[i(n—l)q)o]Jdt exp int[(n—l)Q + kHVH—Zu)]}.
This nonlinear mechanism exhibits resonances at 20 = (n £ 1)Q. For the lowest-
order resonance, ® = /2, we have for the change in perpendicular energy
W () =W, (0) = kv (e?A7/2m)J5(2kp)tefr Sin Oy
= (ke/®)(v./c)(/20) (€E7/Bo) 3 (2Kkp ) tefr SIn -

The distinctive €/2 resonance can readily be understood from the expression for
the rate of change of the electron’s perpendicular kinetic energy:

dW /dt = kvyv,(eA;)sin(kx—mt)
with
mv, = eA; cos(kx—mt) and vy = v, cos(0, + Qt)

Note the 2cosxsinx = sin2x and 2cosxsiny = sin(x + y)—sin(x—y) so thatdW, /dt =
(kv /m)(eA; /2)*[sin(o, + Qt + 2kx—20t)—sin(¢, + Qt—2kx + 20t)]. We canmake
use of sin(x 4 y) = sinxcosy + cosxsiny and the Bessel function relations®

cos(asinb) = J,(a) + 2XJ,, (a)cos2nb
and
sin(asinb) = 23], ,(a)sin(2n + 1)b,

where both summations are from n = 1 to n = co. With these substitutions we
obtain
dW_ /dt = (kv, /m)(eA;/2)*{[sin(0, + Qt—20mt)cos2kx
+ cos(0, + Qt—2mt)sin2kx]—[sin(¢, + Qt + 2wt)cos2kx

—cos(0, + Qt + 20t)sin2kx]}
= (kv /m)(eAr/2)* {sin(9, + Qt—201)[], (kp)
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+23],, (kp)cos2n (o, + Qt)] + cos(d, + Qt—2wt)
[22] 5,41 (kp)sin(2n + 1) (¢, + Qt)]—sin(¢, + Qt + 2wt)
Jo(kp) + 25, (kp)cos2n(g, + 1)
—cos(¢, + Qt + 2wt)[22],, ., (kp)sin(2n + 1)(0, + Qt)]}.

When this expression is integrated in time the rapidly oscillating terms vanish, and
for @ = Q/2 the change in W, during the electron’s transit of the resonance zone is
given by

W, = (kv, /m)(eA;/2)” sind, ], (kp)tes.

53
Heating of Relativistic Electrons

Several relativistic effects were noted in Chapter 3, including most notably the
energy-dependent electron gyrofrequency, Q=eB/(ym). If for the moment we
neglect the Doppler effect, which is of considerable importance in tokamak
applications, the condition for resonance at the nth harmonic of the gyrofrequency
becomes

v =nQ+kv—o ~ neB/(ym)—w = 0.

We see that the fundamental resonance surface, for example, will move toward
higher magnetic fields as the electron energy increases and will ultimately disappear
when B,s(n = 1) exceeds B,y,.x. However, if the mirror ratio is greater than or roughly
equal to 2, a second-harmonic resonance surface will appear near the midplane and
resonant heating can continue for these relativistic electrons. The change in W, for
these electrons after each transit of the (second harmonic) resonance surface with
X-mode illumination is

AW, = (e /m)[E-*T}(k.p)te,

where we have once again omitted the phase-dependent term. The argument of the
Bessel function is given in order of magnitude by

kip = (ki /k)(ke/0)(0/Ques) (V1 /V)(v/C)
0(1)0(1)0(n)O(1)[(y2~1) /2.

The energy-dependent factor, [(y*> —1)/y%]"/?, increases from roughly 0.2 at an
energy of 10 keV to almost 0.9 for energies above 500 keV. Since, for comparable
values of t.s the ratio of the heating rate for second-harmonic resonance relative to
that for fundamental resonance is [J1(k.p)/Jo(k.p)]’, the relative heating rate for
second-harmonic resonance will increase from roughly 1% to 25% over this same
energy range. As we shall see in later chapters, the electron confinement time
increases with energy, and relativistic electrons can continue to gain energy provided
their heating rate exceeds the rate at which they loose energy, for example, by
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synchrotron radiation, until they reach the maximum energy for adiabatic invariance
of the magnetic moment. If the mirror ratio of the region illuminated by microwave
power is less than 2, as is frequently the case in tokamak applications of ECH, the
heating will be limited by the maximum energy for which the resonance condition
can be satisfied, a situation sometimes referred to as “relativistic heating gaps.” We
will see later how such gaps can be bridged by employing multiple-frequency ECH.

5.4
Limit Cycles

For electrons that have gained a substantial amount of energy from their first few
transits through resonance (or from other forms of heating), the energy increment
in the next succeeding transit through resonance may be much less than the initial
energy just prior to resonance. In this case, the dynamics of the resonant interaction
can be analyzed using the unperturbed bounce orbit, z(t) = z, sin wyt, where z is the
axial location of the turning point and y, is the bounce frequency. The time-
dependent phase factor, ¢ = [dtv = [dt(Q + kv — ©), which varies rapidly except
in the neighborhood of resonance, can be expressed conveniently for the model
magnetic-mirror field in such a circumstance. If we neglect the Doppler shift, the rate
of change of the difference in phase between the electron gyration and the phase of
the wave is given for the simple magnetic mirror field by the following expression:

v =Q[z(1)]—0 = (Q/2){[(M + 1)—(M—T1)cos (koz sin wpt)
—[(M+1)—(M—1)cos(koZres)] }
= (Q5/2)(M—1) [cos(KoZres) —c0s (koz sin mypt) ],
where 7, is the axial location of the resonance. We can again make use of the Bessel

function generating function the [5] cos(bsin®) = Jo(b) + 2XJ,,(b)cos(2n6), where the
sumover nruns fromn = 1to co. With this substitution, we obtain for the phase factor,

o) = [dt(@-0)= [dr{(@/2)(M-1)

% [c0s(KoZres) —Jo (Kozt) —2Z] 5, (Kozt)cos (2napt) | }
= 0(0)+(Q0o/@p)[(M—1)/2]{[c08 (kozZres ) —Jo (kozt ) opt
=20, (koze)sin(2nopt) }. (5.15)

Since (Q,/wp)(M — 1)/2>> 1, small changes in the bracketed function in Eq. (5.15)
resultin very large changes in ¢(t). It is, therefore, reasonable to expand this function
to evaluate small changes in the phase near the instant of resonance, just as was done
in Section 5.1. We define dimensionless variables {;es = KoZres, { =koz; and 1= mt.
Then the function in braces in Eq. (5.15) is

F(Cresv Ct? T) = [COS Cres_]()(c.:t)]’c - En71]2n(§t)5in(2nr)'
To evaluate the duration of resonance, 31, we expand F({ies, £, T) to form

OF = F(Tres + 8T) —F(Tyes) = (OF /1), .87 + (0°F/01?) o (37)*/2+ ---

res
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The indicated derivatives are

(aF/aT)res = COSCIES_UO(Ct) + ZZIZH(Ct)COS(ZnTIES)} = 07

(azF/aTZ)res = 4En]2n(€t)5in(2ntres)7
(aSF/aT?’)res = 82n2]2n(ct)COS(2n’Cres),
etc.

If the electron turns at resonance, §;= {5, then sin Tyes =1, Tres = /2, and thus
SIN(2NT,eq) = 0 and cos(2nTyes) = (—1)™. For this case, (02F/0T%)es = 0 and (O°F/0T%)yes
=8 X(—1)"nJn(Ly). The duration of resonance corresponding to the expression from
Section 5.1 is then given by

81 = {680(05/)[(M~1)/2]/ 80’ (¢ )cos (20t} .
with 8¢ = £m/4. More generally, the duration of resonance can be found by solving the
cubic equation,

(005/Q0)[(M—1)/2]80 = 23n],, (§,)sin(2nTees) (87)°
+ (4/3)Zn2IZn(Ct)COS(ZnTreS)(ST)S~

In this way, we can recover results very similar to those displayed in Section 5.1.
The closed form for the phase factor derived in this section, however, indicates
the possibility that for certain classes of electrons coherent limit cycles can exist in
which the electron energy oscillates around a fixed value. If, for example, an electron
turning at the resonance surface experiences a phase change of £(2N + 1)r between
successive resonances, the energy increment at the first resonance will be exactly
cancelled at the second resonance. This situation has been termed
“superadiabaticity” [8]. Similarly, if an electron turns just beyond the resonance
surface, it will experience two closely spaced transits through resonance. If the
heating fields are coherent over the spatial extent that includes this portion of the
electron’s orbit, heating at the two successive resonances can add or cancel depend-
ing on the phase change. Cancellation of the two successive resonant interactions
leads to a null in the heating, and hence the designation of these conditions as “null-
heating surfaces”.

In the case of superadiabaticity, the electrons turn at the resonance surface so
that ;= {res. If the first resonance occurs at T,5; =7/2, the second will occur at
Tres2 = 37/2, and the phase change between the two successive resonances is

O(Tres2) —0(Tres1) = (€20/2p) (M—1)[cos(KoZres )~ (KoZzes ) |- (5.16)

Recall that the bounce frequency for this model magnetic-mirror field depends on
energy and the location of the turning points as given by Eq. (3.11):

20, = kovio(M—1)Y2{(n/2)K 1 [(M;—1)/(M=1)]} ~ kev1o(M—1)"2,

where K is the elliptic integral. Fixed points require 0(Tyes2) — 0(Tres1) = (2N + 1),
which then determines critical values of energy, ey, for given values of the turning
points which, in the case of superadiabaticity, coincide with the resonance surfaces.
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Our expression for the phase change does not include the effect of heating at the
firstresonance, and if this heating results in a large change in the phase at the second
resonance, the fixed points will be unstable. In this way, the limit cycle can be broken
by strong enough heating. To estimate this effect, we note that heating changes only
the bounce frequency so that for the fixed points to be stable we require

A(50) = (950/0W )AW | = —(30/26)AW, < +m/2.

We therefore anticipate the possibility of superadiabatic behavior mainly at higher
energies and with small energy increments per transit of resonance.

In the case of null-heating surfaces, the criterion for cancellation between two
successive transits through resonance is again 0(Tyes2) — 0(Tres1) = £(2N + 1), but
in this case the two resonance times are related by T,esp = T — Tyes1 and we now find
for the phase difference between the two closely spaced resonances

O(Tres2) —0(Tres1) = (Qo/0,) (M—=1){[c0s es—J ()] (/2 —Tres1)

. ) (5.17)

+Zn" ], (8)sin(2nTres ) }-

For a given resonance, position the null-heating conditions determine critical

values of the turning point as functions of energy. The stability of these fixed points

is determined as in the case of superadiabaticity by the conditions under which

O(Tres2) is changed by £m/2 as a result of the heating that occurs at the first
resonance.

5.5
Nonlinear Effects: Mapping Approaches

The use of mapping techniques to study chaotic systems has been described
extensively by Lichtenberg and Liebermann [9], and their work is an invaluable
resource. In this section, we construct a rudimentary two-step mapping to explore in
an approximate way the properties of the superadiabatic limit cycles in simple
magnetic-mirror configurations. In this approach, the electron gyrophase relative to
the electric field is advanced from one resonance to the next using Eq. (5.16), while
the electron energy is similarly advanced using Eq. (5.1). From the mth resonance to
the m + 1th resonance, the mapping takes the following form:

Oms1 = O + 80,
and

Wime1 =Wim +0Wimi1
where

80, = (Qo/20pm ) (M—1)[c08(KoZres) —J o (KoZres )|
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and
OWimi1 = *GJEfVLCOS ¢dt ~ —e|E_|[Vim 108 Oy 1 teff m1-

Since superadiabatic electrons turn at the resonance surfaces, the effective
duration of resonance in the simple magnetic-mirror configuration is given by
Eq. (5.6) by setting M; = M,s:

3
ter 2 2[37/](2V" (tes) ]

and, from Eq. (5.11),
V/(tres) = —(1/2)(KoV 16)* Qo (M—Mres) (Mres—1).

Between the resonance surfaces, the electron’s magnetic moment is invariant
and vio = Vires /Mes. Recall that the bounce period for the model magnetic-mirror
field depends on energy and the location of the turning points as given by Eq. (3.11);
we therefore substitute the following expression into the equation for the phase
step:

1/ 200 = (2/KoV 1) [Mres/ (M—1)] 2K (Myes—1)/ (M—1)]
so that our mapping equations become
Oy 1= O + (290 /KoV 1m) [Mres(M—1)]" K[ (Myes—1) /(M—1)]
X [c08 (kozZres)—Jo (KoZres)]
and W1 =Wim—2(e|E_|/Ko)(KoVim1/Q0)"’
X {3TMies/[(M—~Mzes) / (Mres—1)]}*cos 6, .-

If we define Uy, =k,v,,/Q, and substitute for W, = (1rr1/2)(QoU/ko)2 to rewrite
the mapping equations, we obtain the following somewhat more compact
expressions:

¢m+1 = ¢m+c1/Um

and

2 172 1/3
Um+1 - Um_CZUm+1COS ¢m+1

where

C = 2[Mres(M_l)]l/zK[(Mres_1)/(M_1)][Cos(kozreS)_Io(kozreS)]
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and

C; = 4(e/m) (k0|E—|/Q§) {3nMrES/[(M*MIES)/(Mres*1)}}1/3~

We can iterate the equation that advances U starting with U:r{ i 1(0) = U3 on the
right-hand side and using the resulting values of Uy, , ; for the subsequent iterations.

The condition for superadiabatic response at the resonance is

|C;|/UN) = 2N+ 1)n

res

and the corresponding resonant energies are
WY = (m/2)(Q,UN) /k,)” = (m/2)[(Q0/ko)|C1] /(2N + 1),

Some of the features of this mapping can be illustrated using experimental
parameters from studies reported recently [10] which we will discuss in a later
chapter. The simple magnetic-mirror configuration in these experiments had
an overall mirror ratio of M =1.43, the effective separation of the mirrors was
L.=21cm, and the frequency of the microwave power was f, =2.45GHz. To
illustrate the mapping approach, we apply it to the experimental case in which the
magnetic intensity on the midplane was set at the value B, = 820 G so that the mirror
ratio at resonance was M., =875/820=1.067. In this case, the superadiabatic
resonances are at (perpendicular) energies given by

W i res = 7800 €V/(2N +1)* = 7800 eV, 867 eV, 312V, 159V, ...

We select for our illustrative mapping the N = 2 resonance and arbitrarily set the
initial gyrophase at ¢o=m/4 and the initial energy at its resonant value. The
resulting energies at the subsequent resonances are then evaluated for values of
the right-hand circularly polarized electric field strength, |E_| increasing from 0.5
to 6 Vem ™. The results are displayed in the series of plots shown in Figures 5.6
(a)(e)-

In the first plot, the energy remains near the resonant value but varies slowly as the
shift in gyrophase between resonances slips away from —5n. This slow variation in
W | 1 is more pronounced when |E_| is doubled, as is seen in the second plot, where
nulls in the energy increment, corresponding to values of the gyrophase that are odd
integral multiples of /2, occur atm = 5 and m = 35. The next doubling of |E_| results
in a higher frequency quasiperiodic pattern, but the pattern remains visible. The next
doubling to a value of |E_|=4Vcm ! leads to the breakup of the quasiperiodic
pattern, but the energy excursions remain bounded. If |E_| is increased to 6 Vem ™,
the magnitude of the energy excursions away from the resonant value increases
sharply, indicating that the step-to-step phase increment has changed enough to
destroy the limit cycle. We can estimate the critical conditions for this breakup to
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occur from the first of the mapping relations:

¢m+1 = ¢m+c1/Um'

The shift in the step-to-step change in the gyrophase, A(8¢,,), brought about by the

change in the perpendicular energy, AW ,, is given by

A(8¢m) = *(Cl/Um)(AUm/Um) = *(Cl/Um)(AWL/WL)/Z

As was indicated earlier, we anticipate that the limit cycles will be broken up if
A(8dyy,) exceeds 1/2. Since 80, = —(C1/Up) = (2N + 1), our condition for disrupt-

ing the Nth limit cycle is AW /W, >1/(2N + 1).

For our illustrative case with N =2, we anticipate the breakup of the associated
limit cycle for AW | > 62 V. The rms step size in W, for |[E_| =6 Vcem ™!, the value at
which the limit cycle is disrupted in the case shown earlier, is around 59 eV. We will
discuss this issue of limit cycles later in connection with control of the temperature
anisotropy and the generation of high-energy density plasmas.
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5.1 Verify that Eq. (5.8b) follows from Eq. (5.8a).

5.2 Asimple magnetic mirror with a mirror ratio on axis M = 2.2
consists of two coils separated by 71 cm. Microwave power at
a frequency of 9.5 GHz is coupled into a plasma confined in
this configuration and the magnetic intensity is adjusted
so that fundamental resonance occurs for M,.s = B,/
B, =1.6. Estimate the following quantities for a group of
100 eV electrons turning at a location where
M;=B,/B,=1.7: (a) (Vlldg/ dz),e5, (b) (k”dV”/ dt) s, (c) tes
(d) @y, (e) AW |_in each transit through the resonance (f) d/
W dt if [E_|]=10Vcm™, and (g) (dQ/dvy)(dv/dt).
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6
Equilibrium

This chapter and Chapter 7 address some of the fundamental collective plasma
phenomena that affect the outcome of electron cyclotron heating (ECH) experiments,
particularly the issues of equilibrium and stability. A full theoretical treatment of
plasma equilibrium would necessitate rather elaborate transport models of plasmas
specific to each particular magnetic field and heating configuration under discussion.
Instead of such an ambitious program, we shall limit ourselves here to an analysis of
the spatially averaged properties of somewhat generic plasmas and return later to
more detailed discussions of the equilibria of some specific configurations. In this
chapter, we emphasize plasmas in which the equilibrium is effectively determined by
the processes associated with ECH, as contrasted with those cases, such as tokamak
applications of ECH, where the basic equilibrium is determined by other processes
and is only modified by ECH.

The transport processes governing the steady-state equilibria of electron cyclotron
heated plasmas naturally separate into two distinct groups differentiated by charac-
teristic equilibration times. The more rapid of these, quasineutrality, or the condition
for charge balance, is established in the time required for electrons to traverse the
plasma region. In contrast, the conditions under which the charged particle density
and temperature become stationary are achieved only after the much longer times
that characterize the ionization and heating processes responsible for creating new
ion—electron pairs and heating them to the equilibrium temperature. Together with
the particle and energy loss rates, they determine the final equilibrium. We now
address these detailed balance issues as they apply to the spatially averaged properties
of radially bounded but open-ended plasmas exemplified by magnetic-mirror con-
figurations. In tokamaks, stellarators and high-energy density mirror-confined
plasmas, the equilibria must also satisfy pressure balance conditions. We will
consider some of these issues later as they affect particular experiments.

6.1
Charge Balance

A defining characteristic of the plasma medium is that electrical neutrality is
maintained to a high degree throughout the body of the plasma, a characteristic
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usually referred to as quasineutrality [1]. This electrical neutrality is maintained
despite the great disparity in mass between the plasma electrons and ions. The far
more mobile electrons must be prevented from escaping from the plasma more
rapidly than the massive ions. This is usually accomplished by electrostatic fields
which arise spontaneously to reduce the loss rate of electrons (and simultaneously
increase the loss rate of ions). This electrostatic field, the so-called ambipolar field,
maintains quasineutrality by ensuring equal loss rates of ions and electrons from the
body of the plasma. As is customary, we will describe this ambipolar electric field
through the associated electrostatic potential, ®(x,y,z).

In open-ended magnetized plasmas, particularly plasmas confined in the simple
magnetic-mirror configuration discussed in Chapter 2, the rate of transport of plasma
across the magnetic field is generally much slower than the rate of transport along the
static magnetic field [2]. The conditions for charge balance must therefore be satisfied
along each magneticline of force, and we shallneglect, for the time being, the transverse
directions and examine only the variation of the ambipolar potential along the magnetic
field direction, ®(z). This potential takes the form of a “positive well” which traps
electrons and thereby retards their escape from the plasma. Electrons trapped in this
ambipolar potential well rapidly thermalize into a Maxwell-Boltzmann distribution
for which the density, n(z), varies along the magnetic line of force according to

n(z) = n(z,)exp{e[®(z)—P(z,)]/Te}

In what follows, we choose z, to be the position at which the potential is maximum and
set D(z,) = D, and Dgyipace =0. Here T, is the electron temperature in eV. Since
electrons will escape from the plasma if they are heated to an energy that is greater than
the depth of the ambipolar potential well, their loss rate is determined by their heating
rate, dW,/dt. The ion loss rate is determined by the rate at which they flow along the
magnetic field and the resulting flux of ions through the plasma surface.
For quasineutrality, the two loss rates must be equal. Consider first the electrons,
whose loss rates are governed by their heating rate but whose lifetimes must in any
event equal the common “ambipolar” lifetime, T,y

|dinne /dt]joe, = (dWe/dt) /e®o = T,

Since (dW,/dt)T.mp~ T, We require an ambipolar potential well whose depth is
roughly equal to the electron temperature: e®, ~ T..

The rate at which ions flow along the magnetic field to the surface of the plasma will
be increased as a result of the acceleration by the ambipolar electric fields. Conser-
vation of energy dictates that in the absence of collisions

N[ivizo/2 + qi(DO = Mivisurface/z + qiq)surface
and since Dgypace =0 and e®, ~ T, the ion speed at the surface is given by

Visurface = {ZTio/Mi + Zqi(DO/Mi}l/z ~ [(Z/Mi)(Tio +qiTe/e]1/2 (61)
= G4

where c; is the ion sound speed (for a more rigorous and comprehensive derivation
of the ion sound speed, see Ref. [3]). Thus, we anticipate thations will escape at the ion
sound speed and accordingly set T, = Lesc/Cs. The “escape” distance, Les., depends
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on the particular configuration being modeled. For the simple magnetic-mirror
configuration, we have seen that the heated electrons tend to accumulate around
the resonance surfaces. It is therefore reasonable in this case to approximate Leg. by
half of the axial separation of the resonance surfaces. In some toroidal plasmas, one
can also define an escape distance that is determined by the geometry of the
outermost “scrape-off layer” and the limiters. We will return to this issue in
discussing particular applications.

6.2
Particle and Power Balance

In the interior of the magnetic-mirror-confined plasma, the conditions governing
the self-consistent values of the plasma density and temperature are particle balance
(i-e., the balance between the rates of creation of ion—electron pairs and their loss) and
power balance (i.e., the balance between the rates of heating and energy loss) for each
species. We begin our discussion of these conditions by separating the plasma
electrons somewhat arbitrarily into three possible groups, not all of which will be
populated in any given situation. The groups are separated according to their energy
and the dominant particle- and power-balance mechanisms operative in each group.
We will take steps to refine this arbitrary separation later by employing kinetic models
that vary continuously in energy.

1. The electrons with the lowest average energies form the first of the three groups;
their density will be denoted by n.;. They are created by ionization of the
background gas and are electrostatically confined by the ambipolar potential
discussed earlier. Typically, their average energies will be in the 10-100 eV range.
Group 1 electrons loose energy mainly through inelastic collisions with neutral
atoms of the background gas.

2. Electrons in the second group, with density n,, have energies between 100 eVand
10 keV and are sufficiently energetic to be magnetically confined by the magnetic-
mirror effect. They result if some of the colder, Group 1 electrons are heated
rapidly enough to become mirror trapped before they can escape at the ambipolar
loss rate. Group 2 electrons loose energy mainly by slowing down on the Group 1
electrons as well as through inelastic collisions with gas atoms. Their confinement
time in Group 2 is determined by scattering into the loss cone and the time
required to heat them into Group 3.

3. Electronsin the third group, with density n.;, typically have average energies in the
100-1000 keV range and therefore have low rates of Coulomb scattering and
correspondingly long mirror confinement times. They result if some of the
electrons in the second group are heated more rapidly than they are lost by
scattering into the mirror loss cone. They loose energy mainly by synchrotron
radiation as well as by cooling on lower energy electrons through Coulomb
collisions. If their energies reach the limit beyond which adiabatic invariance
breaks down, they can escape and take their full energy with them.
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We can express the conditions for steady-state particle balance for electrons in each
of these three groups in the following three very schematic equations:

dne; /dt = nein, <Gionve>1 + ne2n0<0ionve>2 +1e3n, <GionVe>3

—Ne1 /T] —ep (dW/d‘t)l /AWZJ =0
dney /dt = 1y (AW/dt), /AW, 1 —1ier /T —1iep (AW /dt), /AW 5 = O
dl’le3/dt = N¢e) (dW/dt)z/AW372—l’le3/T3 —ne3(dW/dt)3/AWescape =0

(6.2)

The ionization rates averaged over the electron energy distributions for electrons in
each of the three groups are (GionVe) 1, {CionVe) 2, and (GionVe) 3. In what follows we shall
usually adopt the formulas for these ionization rates summarized by Barnett [4] or
their empirical values as given by Freeman and Jones [4]. The average electron
confinement times for each of the three groups are 14, 1,, and 13; and the average
heating rates for each group are (dW/dt);, (dW/dt),, and (dW/dt)s. The energy at the
boundary separating the cold- and warm-electron groups is denoted by AW, ; and is
typically of the order of 100 eV. The energy at the boundary separating the warm- and
hot-electron groups, AWj3 ,, is typically of several orders of magnitude larger, on the
order of 100 keV. AWgc,pe is the energy increase required for a hot electron to become
nonadiabatic and can be several mega electron volts in relatively large, high-field
experiments.

The conditions under which the rates of heating and energy loss balance for each
group of electrons depend on the heating and cooling mechanisms dominantin each
group, here indicated by the subscripts = 1, 2, 3 and will generally have the following,
again, schematic form:

d(l.SneTe)s/dt = Tin457fpout,sf(l-sneTe)s/TEs =0. (63)

Here Pins and P,y are the power (per unit volume) flowing into and out of the
electrons in group s, respectively, and T, is the overall energy confinement time for
the group. In what follows we explore the consequences of these schematic
equations.

6.2.1
Particle and Energy Balance for Group 1

We start with the simplest case of interest, namely, a plasma in which there are no hot
electrons. Mirror-confined plasmas heated using high-field launch are good exam-
ples of this case. Since in this case, all plasma electrons are in Group 1, we can drop
the subscript and write for Egs. (6.2) and (6.3):

dne/dt = neny (Ove); i, —Ne/Te = 0,

foniz
and

d(1.5n.T.)/dt = Py—Pyx—Pi—Pei—(1.50Te) /6 = 0, (6.4)
where n, and n, are the local values of the electron and neutral gas densities,

respectively, (OVe)ioni, is the ionization rate coefficient averaged over the electron
distribution, 1. and 15 are the electron (particle) and energy confinement times,
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respectively, and P, P, and P; are the power densities associated with the absorp-
tion of microwave power and excitation and ionization of gas atoms, respectively:

:px = NeNy <GVE>XEX7
and
f--pi = Nely <GVe>ioniz Eioniz )

where P, is the power density transferred to plasma ions by plasma electrons
through Coulomb collisions; it will usually be negligible. In keeping with our earlier
discussion, we shall assume that the average lifetime of plasma electrons is given by
the ambipolar confinement time: T, = Leg./cs. Later, we will return to a discussion of
the effect on the equilibrium of populations of energetic mirror-confined electrons in
Groups 2 and 3. For the moment, we restrict our consideration to a plasma containing
only low temperature, Group 1 electrons.

The energy confinement time is generally less than the particle confinement time by
virtue of the additional processes such as thermal conduction and radiation, by which
energy can be lost from the interior of the plasma. We shall somewhat arbitrarily set
Tg = To/2. In steady state, our particle and power balance conditions then become

N (OVe)iopi,Te = 1 (6.5a)

ioniz
and
Pu/ne = 1.5Te/Tg + 106({0Ve) Ex + (OVe) ioniz Eioniz) - (6.5b)

If the particle lifetime is governed by ambipolar flow out of the plasma, the balance of
particle creation and loss rates, Eq. (6.5a), will be satisfied in a plasma containing only
singly charged ions if

NoLese = Py Lesc(3.537 x 10'® cm™> Torr™ 1) = (2Te/M;) "2 /(0Ve)ioniy-
The right-hand side of this equation depends only on the electron temperature and the
type of gas; the left-hand side depends only on the local gas density (pressure) and the
effective dimensions of the plasma. Evidently, the steady-state electron temperature is
governed primarily by the local gas density or gas pressure, p,, through the temper-
ature-dependent ionization rate constants and more specifically, the temperature- and
gas species-dependent function (2T./M;)"/%/(6Ve)ioniz-

We can illustrate some of the properties of this Group 1 particle balance condition
by employing the Thompson formula to provide a closed-form estimate of the
electron impact ionization cross section [4]. From Barnett’s equation (31) of Ref. [4],
it is given by

Gioniz = 4'1’1(EH/Ei)2(Ei/E)[1_(]5:i/]5:)}7ta§7

where nis the number of electrons in the outer shell of the target atom, Ej; = 13.60 eV
is the ionization potential of the hydrogen atom, E; is the ionization potential of
the target atom, and E is the energy of the incident electron. ma2 = 8.797 x 10~ "7 cm”.
If argon is used for our illustrative case, n =6 and E; = 15.76 eV. The resulting cross
section is then multiplied by the electron speed and their product is averaged over a
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Maxwell-Boltzmann electron energy distribution function:
f(E)dE = 2n.(E/n)"/*(KT.) */*exp(—E/KT.)dE,

where n. is the electron density, k is Boltzmann’s constant, and T, is the electron
temperature. For convenience, let x = E/E; and y = E;/kT, so that

GionizV = 4n(Ep/E;) a2 (2B /m) *x 121 (1/x)], ifx>1
=0, ifx<1
and the Maxwell-Boltzmann distribution function is
f(x)dx = 2n.(1/m)"2y*/>x2exp(—xy)dx.
Integrating over the energy parameter x, we obtain
(Gioniz¥) = 8n(En /i) ma) (2E; /mm) 2y [exp(—y) —¥E, ()], (6.6)

where E;(y) is the exponential integral [5]. The Group 1 particle balance condition for
argon gas can then be displayed as shown in Figure 6.1.

Here poLesc (in mTorr cm) is plotted on the horizontal axis, and the associated values
of KT, (in eV) for steady-state particle balance on the vertical axis. At the highest gas
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Figure 6.1 The electron temperature in eV versus the product of
the neutral gas pressure, p,, in mTorr, and the characteristic
length Lesc in cm.
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pressures shown in this plot, the electron temperature is well below the ionization
potential, and ionization depends on electrons in the tail of the distribution function.
Itis clear from Figure 6.1 that for gas pressures less than a critical value, there are no
steady-state equilibria [6]. This critical value is determined solely by the characteristic
length, Leg, and the particular type of gas used. In the case of argon, this critical value
is estimated to be approximately 0.35 mTorr cm. If, for example, Lesc = 10 cm, then
the critical pressure is 3.5 x 10~ Torr.

For values of n, and T, that satisfy the steady-state particle balance condition,
the particle and power balance conditions, Egs. (6.5a) and (6.5b), can be combined to
give

7)u/ne = 1'5TC/TE + [EX <Gve>x/<cve>ioniz + Eioniz]/re~ (67)

The power-balance condition then determines the ratio of microwave power density
to the plasma electron density, P, /n.. Note that, just as the electron temperature is
determined entirely by the gas density, the plasma electron density will be deter-
mined, for this temperature, by the absorbed microwave power density. Thus, the
plasma density is predicted to be proportional to microwave power if the neutral gas
pressure is fixed. The inelastic rate constants for argon, for example, can again be
estimated from the Thompson formula; but more accurate values of the total energy
expended per ionization event are available [7] and we use them to display ne /(%P Lesc)
in Figure 6.2.

As the gas pressure approaches the critical value the electron density abruptly
decreases, whereas the electron temperature abruptly rises. Our model suggests that
the ambipolar potential will also increase rapidly with further reductions in the gas
pressure, and for pressures below a critical value, steady-state equilibria will not exist.
The nature of this critical pressure is discussed at length in Ref. [6]. The present
model suggests that the plasma parameters will exhibit relaxation oscillations as the
increasing electron temperature leads to loss rates that exceed the rate at which
ionization can maintain the plasma density.

6.3
Breakdown and Start-up

In considering the conditions for particle and power balance for electrons in
Group 1, we assumed that the electrons were in local thermodynamic equilibrium,
i.e., distributed in energy with a Maxwell-Boltzmann distribution function. This is
not necessarily correct at breakdown, when ionization may be produced in large part
by electrons that have acquired energies greater than E; but are not yet thermalized.
For breakdown to occur in magnetic-mirror traps, these electrons must reach
energies greater than or comparable to E; and remain in the mirror longer than
an ionization time, Tigpni, = (nOGionizve)fl. We can anticipate that under the optimal
conditions of pressure and power for breakdown to occur, the time to reach the
energy at which Gjop;, approaches its maximum, typically 60-100eV, is roughly
equal to the ionization time. In what follows we consider three ECH breakdown
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Figure 6.2 The ratio of the electron density, in electrons per cm?,

to the product of the absorbed microwave power density, in Watts
per cm®, and the characteristic “escape” length in cm.

situations that differ only in the location of the resonance surface and consequently,
the heating dynamics as discussed earlier in Chapter 5.

6.3.1
Breakdown by Heating on the Midplane of a Magnetic Mirror

In the first case to be considered, the resonance surface is on the midplane of a
magnetic mirror, equivalent in some respects to heating in a uniform magnetic field.
Unlike that case, however, the heated electrons will remain in the trap until they are
scattered into the loss cone through collisions with the gas atoms, whereas in the
uniform magnetic field case, they will escape if scattered through even a very small
angle. In both cases, the duration of resonance is governed by the relativistic mass
increase. As in earlier discussions of the duration of resonance, we set the maximum
phase shift from the value at resonance at +n/4, although this is clearly somewhat
arbitrary in this case. Thus,

B0 = /4 = | de{feB /(010 (68)
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where the integral is from 0 to ty,.x and m is the electron rest mass. The Lorentz
factor, y(t), is given by y(t) =1 + W(t)/mc* and since W < mc” for breakdown, we
have 1/y(t) ~ 1 — W(t)/mc’. Atresonance, eB/m = @, and thus Eq. (6.8) requires that
SOmax = £1/4 = —0y [ dtW(t)/mc?, or, taking the lower sign,

1/8 =1, JdtW(t) /mc,
where f,, is the microwave frequency, f, = w,/2n. The heating is coherent rather than
stochastic in this situation, so we set
dW, /dt = mv,dv, /dt = —eE v, oS §,.,
and obtain
vy (t) = v, (0)—(eELcos d,../m)t,
and thus
v2 (1) = v2 (0)—2v, (0)(eE . oS 0,0, /m)t + (eE cOS o /m)*t.

If we assume a random distribution of gyrophase angles and average this expression
over Gy, the value at the instant of resonance, we have for the energy at time t

W (t)/mc” = W (0)/mc? + (eE, Ay /2mc?)*f) 2,

where A, = ¢/f,, is the (vacuum) wavelength of the microwave power. Our estimate of
the maximum duration of resonance is given by the cubic equation,

1/8 = [W 1 (0)/mc?]f ytmax + (1/3)(eE1 Ay /2mc?)* (£ utmax) -
If we neglect [W | (0)/mc’]ftmax, We estimate the duration of resonance to be
futmax = (3/2)"3(eE A, /mc?) 2>, (6.9)
The corresponding value of the energy at this time is
W (tmax) /mc? = (1/4)[(3/2)(eE. Ay /mc*)]*>. (6.10)

For optimum breakdown conditions, W | (ty.x) should be near the energy at which the
ionization cross section reaches its maximum value, roughly 100 eV for most gases,
and the time to reach this energy, ty.,, should be near the ionization time. The first
condition and Eq. (6.10) determine the microwave power under optimum breakdown
conditions through the value of E, . Using this value of E | together with the second
condition and Eq. (6.9), we can determine the optimum gas pressure. For example,
for a microwave frequency of f,, = 2.45 GHz, and with W | (t,,.x) = 76 eV, we estimate
E, =0.4Vcem ™' and the duration of resonance ty,,, = 1 us. The resulting estimate of
the optimal gas pressure is then about 1.5 x 10~* Torr.

105



106

6 Equilibrium

6.3.2
Breakdown with Heating Well Off the Midplane

We next consider the situation when the resonance surfaces are far enough off
the midplane so that we can assume the heating to be stochastic. From Chapter 5,
Eq. (5.8), the stochastic heating rate is approximately given by

AW, /dt = (e2/m)|E_ " Vies & Emax/Ti, (6.11)

where for the optimum breakdown conditions, we again require W (T;) = Epay, the
energy at which the ionization rate constant is maximum. 1; is the same (neutral gas
pressure dependent) ionization time as before. Since we are dealing with the
initiation of breakdown, we can reasonably assume that the heated electrons are
turning at the resonance surface, so that from Eqs. (5.6) and (5.11), the duration of
resonance is given by teg= 2[(37)/|2V" (tres)|]'/. For the simple magnetic mirror,
V (tres) = — (kov Lo)z QoM — Myes)(Mpes —  1)/2 and the frequency with which elec-
trons encounter the resonance surfaces is vy, = 2/1;,. Here, as in earlier discussions,
k,=2mn/L., where L. is the distance between the magnetic mirrors. Using our
approximate expression for the bounce time, we have

1/7 ~ kv, o (M—1)"?/m.

With these substitutions, we obtain the following expression for the microwave
electric field strength under optimum breakdown conditions in the simple magnetic
mirror:

IE_ | ~ 0.088[Eumax/(eT:)]Bo (kov10/Q0) " [(M—Muyes ) (Mres — 1) /(M—1)"/2.
(6.12)

Clearly, this approaches a minimum as M,.; approaches M.

6.3.3
Breakdown with Heating near the Midplane

If the resonance surfaces are near but not on the midplane, it is likely that limit cycles
will play a major role is determining the minimum microwave electric field strength
for breakdown, since the field strength will have to be large enough to destabilize any
limit cycles whose characteristic energies are below E,,,, in order for the electrons to
reach Ep,.. We first evaluate the Nth-order limit cycle energy, ey, for a given
magnetic-mirror configuration and then calculate the corresponding values of the
microwave electric field, |E_|, for which the limit cycle will be unstable and allow the
electrons to be heated to the optimum energy for ionization. If, as we assumed earlier,
the heated electrons are turning at the resonance surfaces, the applicable limit cycles
are due to “superadiabaticity.” That s, the gyrophase relative to the microwave electric
field changes between two successive resonances by an amount given by £(2N + 1)x,
where N=0, 1, 2, 3, .... From Eq. (5.14), the circumstances under which this can
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occur are obtained from the condition that

30 = O(Tres2) =0 (Tres1) = (Qo/200,)(M—1)[cos(KoZres) —Jo (KoZres )T
= +(2N+ 1)1
Recall that the bounce frequency for this model magnetic-mirror field depends on
energy and the location of the turning points as given by Eq. (3.11). If the resonance

surfaces are very near the midplane, the bounce frequency is closely approximated by
the right-hand version of that expression:

20y = kov1o(M—1)"*{(1/2)K [(M=1)/(M=1)]} = v 16 (M=1) 2,

The condition for superadiabaticity then becomes
KoV10/Qo = £(M—1)"2[c08(KoZres)—Jo (KoZres)]/ (2N + 1).

From this equation, we can readily obtain a corresponding condition for the energy:
en = (€2/2m)Myes(M—1){BoLe[c0s(KoZres )~ (KoZres)] /(2N + 1)21} 2.

The Nth-order limit cycle will be destabilized if during the initial transit of resonance,
the perpendicular energy changes by an amount given by

A(89) = (080/0W L )AW | = —(3¢/28)AW | > =T,
which, since 8¢ = £(2N + 1)&, becomes
AW | > ZSN/(2N+ 1).

Substituting from AW | = —eE | V | 1¢5C0SOyesterr, We obtain the following expression
for the minimum electric field strength needed to destabilize the Nth-order limit
cycle,

e|E_|(koV1o/Q0)"*MY2c08 ¢, [31/ (M—Myes) (Myes—1)] % > £xko /(2N 4 1)
(6.13)

The minimum electric field strength to destabilize the limit cycle corresponds to
cosh,es = £1. On average, this value will be increased by V2.

These results reproduce at least qualitatively some of the features of the exper-
imental results reported by Gulyaev et al. [8] for breakdown in a simple magnetic-
mirror configuration. For this configuration, the magnetic field was reduced in small
increments and the minimum microwave power for breakdown was recorded
for several fixed pressures. Two minima in the power for breakdown were observed:
one when the resonance surface is just inside the magnetic mirror and another when
the resonance is on the midplane. Although the relation between ECH power and the
electric field strength at the resonance is not given in their paper, we can estimate the
values of the following parameters for their experimental apparatus:

M = 1.43,k, = 2n/21 cm, and B,.s = 875 GHz.

Using results from Section 6.3.1, for heating at the midplane, B,=875G, we
estimated the optimum electric field strength to be 0.4 Vcm ™! for an argon pressure
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of 1.5 x 10~ *Torr. From Section 6.3.2, for heating far enough off the midplane to give
stochastic heating, we find that the optimum electric field strength is around
1Vem™! for heating just inside the peak magnetic field (B, ~ 700 Gauss) rising to
values around 1.5Vem ™! for B,~ 725 Gauss. In Section 6.3.3, we find that the
electric field strength required to destabilize the first five limit cycles peaks near
3Vem ! for N=0 at B,~870G, decreasing to roughly 1Vem ' for N=4 at
B,~830G. If the electric field strength varies as P'/?, we can expect the breakdown
power to increase by almost two orders of magnitude as the magnetic field at
the center is lowered from 875 G to somewhat less than 870 G. For lower values of B,
the breakdown power will be comparable to the values estimated for stochastic
heating.

6.4
ECH Runaway: Groups 2 and 3

If the ambient gas pressure is reduced so as to approach the critical lower limit
discussed earlier, the plasma electron temperature increases from values of a few
electron volts to values of several tens of electron volts. A thermal distribution of
electrons whose temperature is in this range may contain a significant number of
electrons with energies greater than that for which the inelastic collision rate is
maximum. These electrons may run away to high energies if they are adequately
confined and subjected to further heating. The relative density and average energy of
such ECH runaway electrons depend on the details of the heating and confinement
processes. By employing magnetic-mirror fields for confinement and novel ECH
techniques for preferentially heating the more energetic electrons, Dandl et al. [9]
achieved stable, steady-state, relativistic-electron plasmas with plasma kinetic pres-
sures nearly equal to the magnetostatic pressure and with average energies of several
million electron volts. In this section, we consider the processes that affect the
creation of relativistic-electron plasmas such as these and the corresponding re-
quirements on the heating parameters.

6.4.1
Particle Balance for Electrons in Group 2

In the energy range we have labeled Group 2, 100 < W, < 10keV, the dominant
dynamical processes entering the condition for power balance are RF heating and
pitch-angle diffusion, cooling of the heated electrons by Coulomb collisions with the
cooler electrons, and inelastic collisions with neutral atoms. In highly ionized
plasmas, inelastic collisions with neutral atoms will usually be negligible; but in
plasmas having substantial densities of neutral atoms, Group 2 electrons will loose
energy at a significant rate through inelastic collisions. The total cooling rate is given
approximately by Book [10].

—dWe /dt = n,CinelasticVe AWy + 7 X 10 %n. lnAWe’l/2 cm’ eV 2sec!, (6.14)
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where n, is the neutral density, AW, is the characteristic energy transfer per collision,
and Gjpelastic 1S the cross section for inelastic collisions at the speed v.. The Coulomb
cooling rate, the second term on the right, decreases monotonically with electron
energy, whereas the rate for inelastic impact with neutral atoms has a maximum
value for electron energies around 100-200 eV, depending on the particular type of
gas. In atomic hydrogen, for example, the product GipelasiicVe for electron impact
ionization reaches a maximum value of 4 x 10~ ®cm’/s at energy of 100eV. If
AW, = 50€V for this particular inelastic process, we can estimate the peak cooling
rate due to this process as a function of gas pressure. For example, at a gas pressure of
3 x 107> Torr, corresponding to a neutral atomic density of 10'*cm 3, the peak
cooling rate due to inelastic collisions will be around 2 x 10°eV/s. At an energy of
100 eV, the rate at which the Group 2 electrons transfer energy to the cooler Group 1
electrons through dynamical friction, the second term above, is usually somewhat
larger. For example, in a plasma where the Group 1 electrons have a density of
5x 10" cm ™, this cooling rate may exceed 7 x 10°eV/s. If the RF heating rate
exceeds the cooling rate in this energy range, the net heating rate will remain positive
and will in fact increase with increasing fast-electron energy until additional cooling
or loss mechanisms become important.

By way of illustration, we consider a simple magnetic-mirror configuration for
which the fundamental heating rate of electrons turning well beyond the resonance
surface is given by an expression of the form

AW, /dt = (e[EL|*/Bo) G(M, Myes, My), (6.15)

with (M, My, My) = {(M — 1) /[(My — Myeg)(M — Mieg)(Mies — DI} /*{(m/2)K "
[(M;—1)/(M — 1)]}. This function, specific to the simple magnetic mirror, describes
the dependence of the heating rate on the electron turning point. As we saw in
Chapter 5, (M, M,cs, M,) decreases by roughly a factor of 5 as M, increases from
values just greater than M, to values just less than M. This pitch-angle dependence
of the heating rate quantifies the degree to which electrons turning just beyond the
resonance surface are heated more rapidly than electrons turning nearer the mirror
throat. The microwave electric field strength required to heat electrons from Group 1
into Group 2 can be estimated for a given situation by evaluating the terms in the
heating and cooling rates. The condition for the type of runaway envisioned here is
the following:

(e|EL|2/B0)(5(M7 Mres‘Mt) > NoOinelastic Ve AWy (6 16)
+7 x 1071, In AW, /2 cm? eV?/2 sec .

For a conservative estimate, we take the maximum value of the first term on the right-
hand side and intermediate values of M, for ®(M,M,s,M,). As a typical magnetic-
mirror example, we choose B,=3kG, M =2, M, =14, M;=1.7, n,= 102 em 3,
W.=100€V, GinelasticVe =4 X 10 8cm’s™!, AW, =50eV, and n.; =5 x 10t ecm .
We then find that if the RF electric field strength, |E |, is between 10 and 20 Vem ™,
the net heating rate will be positive and a significant fraction of the electrons will be
heated from Group 1 into Group 2.
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In addition to the drag on heated electrons from dynamical friction, Coulomb
scattering also leads to pitch-angle diffusion. In a magnetic mirror, this diffusion will
cause some of the heated electrons to reach the loss cone and escape from the mirror
trap. This diffusion process has been described by Rose and Clark [11] in terms of the
mean-square pitch-angle displacement after an elapsed time, t:

(A®?) = (1/79)t, (6.17)
where for an electron of energy W., we have
(1/76) = 3 x 10° n, InAW_>/2 eV3/2 cm? sec™ . (6.18)

In an infinitesimal time interval, At, the pitch angle and the electron energy change by
an amount given by

20,00 = (1/76)At = (1/76)AW,/(dWe/dt),

so that the fractional change in the electron pitch angle is related to the change in
energy due to RF heating by

d6/6;=[3 x 10 °n In AW, *?cm®eV>/2 s 7] [dW. /(dW,/dt)] /26?.  (6.19)

Since the heating rate, dW,/dt, is approximately independent of energy, we can
integrate the expression in Eq. (6.19) over the energy range spanned by Group 2 to
obtain

(6r—6;)/6; = (3 x 10 °n In AW, >2cmPeV?/2 s71) /[0 (AW, /dt)]

(W 2=w /). (6.20)

ei

For heating rates large enough to offset the cooling mechanisms described above,
this increase in the electron’s pitch angle will be very small. Only those electrons with
pitch angles very near the loss cone will be lost as the electrons are heated to the upper
boundary of Group 2.

More generally, if the electron heating is regarded as a diffusion in energy, then
there is an associated diffusion in the electron pitch angle, as measured, for
example, by the mirror ratio at the electron turning point, M, = €/uB,,. As discussed
in Chapter 5, M;undergoes a change, AM,, when the electron crosses the resonance
surface:

AM; = (1-M;/ M5 ) (AW L /W 1),

where W is the perpendicular energy evaluated at the midplane. Assuming that
the electron gyrophase is randomized between successive transits of the resonance
surfaces, we can derive a diffusion coefficient for M; and show thatitis proportional
to the energy diffusion coefficient:

MdM,/dt = (1—M;/Mes) "W 1dW, /dt,
so that

MdM/(1—M;/Mes)* = AW, /W .
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For notational convenience, we set 1 = M;/M,; and integrate to find the relation
between the change in the turning point and the increase in electron energy:

In[(Me=1)/(M=1)]+ M =1) " =(Me=1) 7" = (1/M)In(W ¢/ W 15). (6.21)

If we take the “final” value of M, to be the mirror ratio, M, Ng=M/M,;, We can
evaluate n; as a function of the increase in electron energy, W, f W | ;. In this way, we
can determine the width of a depletion zone that widens as the electron energy
increases. Heated electrons within this depletion zone will diffuse into the loss
cone and escape. As an illustrative example, we choose M =2 and M, =1.5 and
solve for W, ¢/W | ; as a function of 1;. At the upper limit of the electron energy that
we have labeled Group 2, the depletion zone in this illustrative case extends from
the loss cone, €/uB, =M, to an effective mirror ratio, Meffective = MyesNi = 1.825.
Effectively, the loss cone is gradually widened as the electrons gain energy.

6.4.2
Particle and Power Balance for Electrons in Group 3

In the energy range we have labeled Group 3, the dominant dynamical processes are
RF heating at overtones of the relativistic electron gyrofrequency and energy loss by
synchrotron radiation and Coulomb scattering. In addition, magnetic-mirror trapped
electrons can be lost as a result of the breakdown of the invariance of the electron
magnetic moment. The rate at which individual electrons loose energy by synchro-
tron radiation is [12]:

—dW/dt = [e*/(6me,c)](eBo/m) (Y —1). (6.22)

where m is the electron rest mass and y is the relativistic factor, y=1 4+ W/mc% In
typical cases, this radiative energy loss rate for individual electrons in Group 3 can
increase from 10*eVs ™' at the lower energies to more than 10° eVs ™" at the higher
energies.

We have made extensive use of the adiabatic motion of electrons and indicated that
this invariance will fail if the magnetic intensity varies significantly over the electron
gyration path. In fact, the magnetic moment of an energetic mirror-confined electron
can undergo a substantial change when the electron passes through the local
minimum in the magnetic intensity as it moves along the magnetic line of force.
The resulting change in the electron pitch angle can lead to loss of the electron in a
single time of flight through the system. The rate at which these changes in the
magnetic moment occur has been analyzed by Cohen et al. [13]. According to their
analysis, the fractional change in the magnetic moment each time an electron passes
the magnetic minimum is given by the following expression

Ap/u = Aexp(—KL /p). (6.23)

In this expression, A is a constant 3 <A <5, | is obtained from a quadratic fit to
the variation of the magnetic intensity in the neighborhood of the local minimum,
and p is the electron gyroradius. The function K depends on the electron pitch angle
and can be conveniently written in terms of the mirror ratio at the electron turning
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point, My =¢/uB,:

K= (Mi/2){[(M=1)/(2vMy)In[(vVM;+1)/ (VM =1)] -1} (6.24)

The fractional change in the mirror ratio at the turning point, My, is proportional to
the fractional change in the magnetic moment: AM,;/M,= —Au/l. A succession of
random changes in the magnetic moment will therefore lead to diffusion of the
turning points and we can roughly estimate the time, t,,,, required for an electron’s
turning point to reach the loss cone after starting from the midplane:

tha ~ (M—1)*/Dyy.
The diffusion coefficient is given by

Dpn 2 ((AM,)*)v}, = <M§(AH/H)Z>Vb,
and if we let v, = 1/t,,, we have

Vo = [1/ (M= 12 (ME (/)2 v

The average value of M? during the diffusion into the loss cone is (M* —1)/2 and
we obtain

Via = (1/2)[(M+1)/(M=1)}{(A/p)*)vp.- (6.25)

For the field of a simple magnetic mirror, Ly =k,(M — 1)"/%/2, where k, = 2n/L, and
the relativistic electron gyroradius is given approximately by p = (mc/eB)(y* — 1)*/%
We can substitute these simple magnetic-mirror results into the expression for v,, to
find an approximate value for the nonadiabatic scattering rate relative to the bounce
frequency:

Via/Vo = (1/2)[(M+ 1)/ (M—1)|A? exp(~2KLy /p). (6.26)

6.5
Fokker—Planck Models of Hot-Electron Equilibria

In the earlier chapters, we have used two different kinetic equations to describe the
electron dynamics that play a role in electron cyclotron heating. The first was a simple
Langevin equation that described the response of individual “cold” electrons to RF
electric and magnetic fields. This equation included electron collisions in a rudi-
mentary way and provided a useful description of the propagation of electromagnetic
waves in cold plasmas. We then used the (collisionless) linearized Vlasov equation to
describe the response of a specified equilibrium electron distribution function to the
electromagnetic fields of waves propagating in the plasma in order to calculate the
damping of these waves. In view of the dynamical processes described in the earlier
sections of this chapter, it is clear that we need a more comprehensive kinetic
equation that can describe the equilibrium form of the electron distribution function
resulting from the interplay of all of the competing dynamical processes: RF heating,
Coulomb collisions, synchrotron radiation, and nonadiabatic changes in the magnetic
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moment of the electrons that result in scattering high-energy electrons into the
loss cone of magnetic mirrors. Considerable progress has been made in developing
a suitable kinetic equation based on the Fokker-Planck equation, in which a Fokker—
Planck collision operator is added to the Boltzmann equation that formed the basis of
the Vlasov model. This collision operator, originally developed for binary interactions
obeying an inverse-square force law [14], describes the results of a large number of
collisions, each of which produces only a very small change in the velocity of the
particles. The results of these collisions can be described by a probability distribution
function, P(v,Av), such that the particle distribution function, f (r, v, t), evolves from
preceding distribution functions according to

f(rv,t) = Jf(r, V—AV, t—At)P(v—Av, Av)d*Av, (6.27)
where the probability distribution function is normalized to unity:
1= JP(V, Av)d’Av.

Since we have assumed that the changes Av are very small, we can expand the
integrand in Eq. (6.27); and if only the lowest order terms are retained and the limit of
At — 0 is taken, we obtain the following formal expression for the Fokker—Planck
collision operator:

of /ot=—V,-[(Av/At)f (r,v,t)]+(1/2)V, Vy: [(AVAV/AD f (r,v,t)].  (6.28)

The quantity in brackets in the first term on the right-hand side of this expression is
called the dynamical friction:

(Av/At) = J(Av/At)P(v, Av)d*Av. (6.29)

The quantity in brackets in the second term on the right-hand side of this expression is
called the diffusion tensor:

(AVAV/At) = J(AvAv/At)P(v,Av)d3Av. (6.30)

Explicit formulas for the dynamical friction and the diffusion tensor have been derived
for plasmas that include the case of Coulomb scattering of fast electrons by a
Maxwell-Boltzmann distribution of lower temperature electrons [15]. The dynamical
friction force exerted on energetic electrons by a population of lower temperature
electrons is given by

Fre = —(1/4m)(€?/&,)* (2/m)nc InAv/v? [0(y) —yd' (v)]
= _(1/2)VC0ulmv[¢(y) _yq)/(Y)L

where we have defined a Coulomb scattering rate, Vo, using the Rutherford cross
section, Gcgy:

(6.31)

Vcoul =NOCoulV = 1’1[(1/41'5) (ez/eo)zlnA/(mfv4)}V, (632)
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where m, is the reduced mass and ¢(y) is the error function of the argumenty =v/v,,
where v, is the average speed of the lower-temperature electrons. The rate at which the
dynamical friction force transfers energy from the energetic electrons to the lower
temperature electrons is then given by

dW/dt=—F-v=—(1/2)mv’ncou[0(y) —yo'(y)]- (6.33)

If this cooling rate is expressed in terms of a collision frequency, provided that the
energetic electrons are much faster than the lower temperature electrons, we would
have as an estimate for the rate at which energetic electrons loose energy to the cold
electrons,

dW/dt=—veouW. (6.34)

The general problem addressed by the Fokker—Planck equation is to determine the
distribution functions, f(r,v,t), for each species, s, resulting from the operative
dynamical processes and all sources and sinks of charged particles and energy.
In seeking to apply this approach to plasmas heated by electron cyclotron power
and confined in various magnetic configurations, many workers have simplified
the complete description of the plasma by employing a succession of reductions.
In almost all instances, the plasma ions have been treated as an immobile charge-
neutralizing background, leaving only the electron dynamics to be considered.
Then either steady-state or quasi steady-state solutions have been sought:
fo(r,v,t)=>f,(r,v) + {1 where f; describes, for example, the high-frequency currents
resulting from ECH. Since the unperturbed electron motions are generally assumed
to be adiabatic, it is possible to reduce the six-dimensional representation in r and v to
bounce-averaged dynamics of the electron guiding center on specified magnetic lines
of force labeled by their Clebsch representation, (o). Then f,(r,v)=f, (o, B, €, 1).
Bernstein and Baxter [16] have formulated a relativistic treatment of such a reduced
Fokker—Planck equation that has been incorporated into sophisticated and powerful
geometrical optics computer codes that are currently in widespread use in conjunc-
tion with large magnetic confinement facilities. For our present pedagogical pur-
poses, we shall consider one further reduction of the theory using models that mimic
in one dimension the important features of electron dynamics in the two-dimen-
sional (g,u) space [17].

We use a one-dimensional, steady-state Fokker—Planck equation to represent in an
approximate way the equilibrium resulting from the competing dynamical processes
that govern the formation of relatively low-density, hot-electron plasma components
(Groups 2 and 3) that can result when plasmas are suitably illuminated by ECH
power:

Of (u, 1) /0t = —d[(Au/Abf (u, t)] /du + (1/2)d% [(AuAu/AtF (u, )] /ou® = 0.
(6.35)

Because most of the laboratory experience with the hot-electron plasmas we seek to
understand has been in magnetic-mirror configurations, we include a scattering
process that mimics nonadiabatic changes in the electron pitch angle leading to loss
of the high-energy electrons by scattering into the loss cone. This process is generally
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negligible in large toroidal magnetic configurations. The resulting Fokker—Planck
equation can be solved by quadrature and the solution and its moments can be
numerically evaluated to exhibit the outcomes of the competition between the four
dynamical processes acting on the higher-energy electrons that we have labeled
Groups 2 and 3. These consist of the following four processes:

The Coulomb scattering of relativistic electrons is represented by an effective
scattering rate, v, given by

Vee = 4[(1/4m) (€% /£0) 1 In A/ (m?u*) Y’ [0(s)—s0'(s)], (6.36)

where n. and T, are the density and temperature of the lower-temperature electrons,
respectively, the parameter s = u/u,, and u. = (2T./m)"/?, where u is the magnitude of
the momentum per unit rest mass, and ¢(s) is the error function.

Following Bernstein and Baxter [16], the synchrotron radiation is represented in
the one-dimensional model by a dynamical friction term with an effective collision
rate, Vg, given by

Ve = (7/6m)(e? /e,)Q2 /mc. (6.37)

The nonadiabatic scattering is also treated as a dynamical friction and its rate is given
as before by

Vaa = v (1/2)[(M+1)/(M—1)]A%exp(—2 KL /p). (6.38)

The RF heating rate will depend on the amplitude and polarization of the electro-
magnetic fields in ways that we will consider later in connection with particular
experiments. For the present discussion, we simply represent it as a diffusion term
with an effective rate, v,r. The one-dimensional steady-state Fokker—Planck equation
then takes the form

(Vee + Vna + Ve )uf 42 (YVee /2 + Vi )Of /ou = 0, (6.39)

and the solution is given by integrating from zero to s to obtain

f(s)=C eXp{ - J 25'ds/[(Vee + Via + Vse) / (YWee + 2Vie )] } . (6.40)

The normalization constant, C, is evaluated in terms of the specified background
electron density, n.:

n. = 4nCuz Jszf(s)ds.

The integral is taken from zero to an upper limit that is large enough to ensure that C
is approximately independent of this limit. We shall return to this model in later
chapters when it will be applied to interpret several different experiments.

6.6
Ad Hoc Velocity-Space Models of Anisotropic Hot-Electron Equilibria

An important aspect of the hot-electron population that is expected to hold quite
generally in ECH experiments has to do with anisotropy in the distribution of
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hot-electron velocities perpendicular and parallel to the static magnetic field. As we
discussed earlier, because the resonant ECH interaction changes primarily the
perpendicular velocity of the heated electron, the magnetic intensity at the electron
turning point, B,, changes at resonance according to

AB; = (1—By/Bres) AW | /1.

The turning point of an electron that gained energy as it passed through resonance
therefore moves closer to the resonance surface on its next encounter with the
resonance surface. As we have seen earlier, the electron turning points will undergo a
diffusive process except at the resonance surface where AB;= 0. For a population of
electrons that have undergone many such encounters with the resonance surfaces,
we expect the average parallel kinetic energy to be less than the average perpendicular
kinetic energy by an amount that can be estimated as follows:

(W) /(W) g <éf;7BBo°l/f.lB°> < (Bi/Bo=1) (6.41)

In simple magnetic-mirror configurations like those discussed earlier, the resonance
surfaces can be chosen to be open hyperboloids for which the ratio B,.s/B, increases
with radial distance from the axis of symmetry. Temperature anisotropy can generally
be controlled in these configurations by choosing the location of the resonance
surfaces so that on the axis of symmetry B,.s/B, exceeds any recognized critical
values. Critical values of anisotropy for equilibrium, for example, have been derived
under very general assumptions using guiding-center fluid models of the plasma [17].
In addition, the microscopic character of the hot-electron equilibrium, specifically the
anisotropy in velocity space, is critical for determining the stability with respect to
high-frequency modes to be discussed in Chapter 7.

A useful class of distribution functions frequently employed to describe energetic
plasmas with local properties similar to those of plasmas confined in magnetic
mirrors has the following form [19]:

S Cun (v} /02) ™ exp[—(vy /o1 )*—(v) /oy)?], outside theloss cone
0,inside the loss cone. (6.42)

f() (VLVH)

Recall that the location of the loss cone in velocity space was given earlier in terms
of the mirror ratio, M: Vﬁ/Vi]ZZO:M —1 on the loss cone. The m=0 term of
Eq. (6.42) describes a bi-Gaussian distribution with an anisotropic temperature
specified by the parameter n = (ot / oc”)z. The m = 1 term mimics atleast qualitatively
the effects of the loss cone in velocity space inherent in magnetic-mirror confine-
ment. In Chapter 7, we will use these distribution functions to investigate instabilities
associated with temperature anisotropies and the loss-cone nature of plasma
confinement in magnetic mirrors. At this point, we examine some of the equilibrium
plasma properties that are described by these distribution functions. We start by
showing how these local distribution functions can be generalized to describe the
variation of plasma properties along a magnetic line of force by expressing the
distribution function in terms of constants of the motion, namely, the particle energy
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and magnetic moment, € and

b= mv’ (0)/2B(0) = mv? (2)/2B(2),
so that

vi(0) = v (2)B(0)/B(z) = Vi (2)/b(2), (6.43)
where b(z) = B(z)/B(0). Similarly, in the absence of any electrostatic potentials,

e = mv2 (0)/2 +mvﬁ(0)/2 =mv’ (z)/2 +mvﬁ(z)/27
whence

vi(0) = Vi (2) +v(2) V1 (0) = V! (2) + v} (2) Vi (2)/b,

vi(0) = vi(z) + V2 (2)(1-1/b). (6.44)

In this way, we can relate the velocity-space variables on the midplane, z=0, to the
corresponding values at arbitrary points along the same magnetic line of force. Our
distribution function becomes

fo(vi,vj,z) =3 Cm(vi/bai)m
x exp| —(v),/oy)*=(b=1)(v3 /bort) 2 /boz | (6.45)

outside the loss cone

= 0, inside the loss cone.

Note that the loss cone itself is dependent on the position along the magnetic line of
force. Since the loss cone was defined by the condition that the parallel velocity vanish
at the mirror throat, z=L, we have

Vi(L) = 0 = v’ 2B sy /[mB(2)]
= Vi (z) + V3 (2) =V} (2)Bmax/B(2)
so that on the loss cone,
vi(2) /v (2) = Bmax/B(2)—1 = M/b—1. (6.46)

To obtain a more compact form for the z-dependent distribution function, we define a
z-dependent parameter 02 (z) as follows:

If we let 1/02 (z) = 1/bo + (b—1)/bo, then

£o(ve, vy, 2) = 3 Cm (v /Do ) "exp{—[v. /o, (z)]* (v /oy)*},
vi > vi/(M/b-1)

=0, for vi<vi/(M/b-1). (6.47)
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Figure 6.3 An example of the axial dependence of electron density

calculated using the bi-Maxwellian ad hoc equilibrium distribution
function with anisotropy parameter n=5.

As an example, we calculate the density as a function of distance along the
magnetic line of force for a simple bi-Gaussian distribution function, m =0:

n(z) = G, JdVHeXP[—(Vu/Oﬂu)Z] jdviexp{—m/ouz)r},

where the integral over v is from —oco to + oo, while the integral over v} is from
vi/(M/b=1) to + co. The result is

n(z) = m/2Coa0t (2)* {1 + [0 /0t (2)2]b(z) /M-b(2)}}
= m/2Co03[(M=1+1/n)/(M=b)] > nb/[1+n(b-1)]

Relative to the density on the midplane, the z-dependent density is given by
n(z)/n(0) = {b/[1+n(b-1)]}[(M-b)/(M-1)]""%. (6.48)

Figure 6.3 displays an example in which n =S5, showing the concentration of the
plasma near the midplane.
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B Exercises
6.1 Calculate the ionization rate constant, (G;s,i,V.), for atomic
hydrogen using the formulas summarized by Barnett [4].
6.2 Using the result from Exercise 1, calculate the electron
temperature as a function of the product p,L.. in a hydrogen
plasma.
6.3 Show that if the particle balance condition is satisfied, the

6.4

6.5

electron density is related to the microwave power density by

Ne/ Pulesc = (Mi/2Te)"? (Eion + 3TeTe/2te) .

If the ionization energy E;,,~ 40eV for T,= 10eV, estimate the
electron density sustained by P, = 1W/cm’ in a plasma whose
characteristic length is 10 cm.

For the parameters listed following Eq. (6.16), determine the
maximum cooling rate experienced by Group 1 electrons.
Let the heating rate exceed this by 20% and starting from
0; = n/2, determine O4E) — O, for this heating rate for Group
2 electrons.

Consider a 100 keV electron whose initial pitch angle is
around 90°. If this electron is confined in a magnetic mirror
with a mirror ratio of M = 2, calculate the product nt, where
T is the time required for the electron to be scattered into the
mirror loss cone.



7
Stability

Electron cyclotron heated plasmas have been observed to support various types of
plasma instabilities (as will be described in Chapter 8), which can adversely affect
the properties of the plasma. Deleterious instabilities occur not only in hot-electron
plasmas confined in simple magnetic-mirror configurations but also in overdense
plasmas where the bulk electron temperature is only a few electron volts. Nonetheless
it is possible to stabilize virtually all modes of instability in many electron cyclotron
heated (ECH) plasmas, including, most notably, relativistic-electron plasmas with
very high energy densities. In what follows, we discuss the dominant stability
properties of ECH plasmas by examining several particularly relevant modes of
instability and attempting to identify potentially operative stabilizing mechanism for
each of these.

7.1
Interchange Instabilities

ECH plasmas confined in simple magnetic-mirror configurations are generally
predicted to be susceptible to a class of macroscopic plasma instabilities linked to
the radial gradient in the magnetic intensity. Specifically, instability is expected to
result if the radial gradient of plasma pressure is parallel to the radial gradient
of magnetic intensity — which is typically the case. The unstable perturbations in the
plasma density extend along the magnetic field like flutes on a column (thus the name
“flute-like”) and cause rapid radial transport of plasma. They are often called
interchange instabilities because they effectively interchange regions of higher
plasma density with adjacent regions of lower density. Their existence is predicted
by a wide range of plasma models and confirmed in numerous experiments [1].
Kadomtsev [2] gave a general stability criterion for interchange modes in an ideal,
scalar-pressure plasma confined in a toroidal magnetic trap in which the magnetic
lines of force close upon themselves. Although this is not the situation that char-
acterizes open-ended magnetic mirrors, it is exactly the case for plasmas confined
in a bumpy torus, which we will discuss in Chapter 10. Underlying Kadomtsev’s
stability criterion is an energy principle; namely, if there are physically permissible
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perturbations that can lower the plasma’s energy, these perturbations can grow in
time without limit. To assess the energetics of interchange perturbations, we imagine
a virtual interchange of plasma and the associated magnetic flux between two
neighboring infinitesimal flux tubes. If the total energy of the system is decreased
Dby this interchange, the plasma can be unstable to such perturbations. The change in
the energy resulting from the interchange can be evaluated as follows.

We label the two neighboring flux tubes as 1 and 2 and stipulate that no heat enters
or leaves the flux tubes during the interchange. The plasma then follows a simple
equation of state: pV¥ =constant, where V is the volume of the flux tube and v is
the usual ratio of specific heats. The change in energy resulting from interchanging
the two flux tubes is given by

W = 8\)Vp + 8\)Vmag = JSSr[(Plf_Pli)/(Y_l) + (B%f_B%i)/(zuo)]
(7.1)

+ [rlpar—pa) (-1 + (B-B3) /(20

The interchange of the two flux tubes means that p,V} = p;;Vl and p,; V! = p,,V}
We setp = py;and V =V, and since the flux tubes are neighboring we can express the
parameters in the neighboring flux tubes as py=p + 8p and V,=V + V. The
change in energy associated with the plasma itself is then given approximately for this
interchange by

(Y=1)8Wp = p1eV1 + Pyr V2 =Py Vi—Pai Va2,
which becomes, after a modest bit of algebra,
W, = 8pdV + (yp/V)(8V)*.

The volume of a flux tube is given in terms of the enclosed magnetic flux, y, by
V= szrds = [der ds/B = \des/B =yU.

The quantity U= V/y is often called the specific volume of the flux tube. In a
bumpy torus, just as in a simple magnetic mirror, U increases monotonically with
distance from the axis: 0U/Or > 0. Near the surface of any magnetically confined
plasma where the plasma pressure is small, it is evidently necessary for the pressure
to decrease with increasing radius: Op/0r <0. Then

W, = [(8p/0r)(dU/ar) + (vp/U) (8U/ar)’] (8r)*y (7.2)

becomes negative, indicating that the plasma can spontaneously decrease its energy
by interchanging the plasma in the two neighboring flux tubes near the surface where
the second term in brackets is less than the magnitude of the (negative) first term in
the brackets. The magnetic energy density will already be at the lowest possible value
unless the kinetic pressure in the plasma is a significant fraction of the energy density
in the magnetostatic field. Even when the finite plasma pressure is taken into account,
the qualitative conclusion is not changed.
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Figure 7.1 An artist’s conception of the cross section of a plasma
column whose surface is distorted by an ¢ = 12 flute mode. The
magnetic field is directed out of the page and electrons drift in the
counterclockwise direction while ions drift in the clockwise
direction.

The basic destabilizing mechanism can readily be visualized in terms of drift
motions of plasma ions and electrons, as illustrated very schematically in
Figure 7.1.

Here the magnetic field is directed out of the plane of the drawing and the plasma
initially had a sharp surface boundary at r = r,. The plasma density and the magnetic
intensity are both higher for r < r; and lower for r > r;. Because of the gradient in the
magnetic intensity, electrons will drift in the counterclockwise direction while ions
will drift in the clockwise direction. If there is an initial localized perturbation in the
plasma density, it will spread along the magnetic lines of force on the bounce time
scale. On the slower drift time scale, the perturbation will become electrically
polarized in the azimuthal direction because of the oppositely directed electron and
ion drifts. The resulting azimuthal electric field will induce a radially outward E x B
plasma flow that increases the density of the perturbation, as indicated in Figure 7.1.
The perturbation will grow exponentially, since the instantaneous rate of growth is
proportional to the perturbed density. This growth will continue until the radial
gradient in the density vanishes.
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For a more quantitative microscopic view of this picture, we recall from Chapter 3
that the bounce-averaged drift velocities of the ions and electrons were given by

1Q, = [2(e—q$)—uB]/(qB(Rc)),

where the bounce-averaged radius of curvature in the simple magnetic mirror is

(Re) = Reo(1)[1 +2(e—~q0—HB)/MBIK(C*)/[2E(C*) —K (L)),

and {* =[2(e — qd — UB)/uB]/(M — 1). For the moment, we will neglect the depen-
dence of Q;, on the energy and pitch angle of the particles and focus on the response
of the plasma to electrostatic waves propagating in the azimuthal direction and
localized in radius at the surface of the plasma but extending indefinitely along the
magnetic lines of force. We can evaluate the perturbed velocity of each species using
the Lorentz force, Mdv/dt = q(E + v x B). All wave properties will be assumed to vary
in azimuth and time as exp(i/6—imt) so that the dynamical equation for each species
becomes

—iw'v = (q,/Ms)E+ Qg x b,

where 0 = 0—/€, is the Doppler-shifted frequency and Q; is the gyrofrequency of
species s. The components of v perpendicular to the magnetic field are then given by

—(i0 /Qs)b x v = b x E/B +v—(b-v)b.

But since the dynamical equation requires that —(i®w'/Qg)v=E/B + v x b, we
obtain for the perturbed velocity

[1- (0 /Qs)*]v—(b-v)b = E x b/B—(ie/Qx)E/B.

Because the drift frequencies are several orders of magnitude smaller than the
gyrofrequencies, we can neglect (@'/Q,)* < 1 and the perpendicular components of
the perturbed velocity are then given approximately by

v, = E x b/B— (i /Q%)E/B. (7.3)

The electric fields of these electrostatic waves are given in terms of their
potential by

E=—-Vo6 = —i(¢/1)dus.

We now use the first-order continuity equation to determine the perturbed density
of each species associated with this wave:

On/0t+ V- (Nv+nv,) =0,
where N(r) is the equilibrium plasma density and v, =rQ,ue. Thus,

—ion+VN-v+NV-.-v+Vn-v, =0, or
—iwn + (dN/dr)vy + N(ilve /1) +1¢Q,n = 0.

Substituting for the components of the perturbed velocity from Eq. (7.3) we obtain

n = —[(1/0)(dN/dr)(¢/r) + (¢/1)* (N/Q))(0/B). (7.4)
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The potential, ¢, is the solution to Poisson’s equation with the charge densities
given by the sum over both species of the perturbed density:

g V-E=2,V-(=V0) = &({/1)’0 = p = e(n;—n.)
&(1/1)%0 = e(ni—ne) = e{—[(1/w';)(dN/dr)(¢/r) + (£/1)*(N/Q)]
+[(1/0e) (dN/dr)(¢/1) + (¢/1)* (N/Qe)] }(0/B).

The resulting dispersion relation is

—Qi(r/0) (N1 AN/dr)[(1/0';)—(1/@e)] = 1 +€oB?/(MiN) = 1+ (ca/c)?,
(7.5)

where c, is the Alfven speed and (ca/c)? < 1 for reasonably dense plasmas.

We can illustrate the implications of this dispersion relation conveniently in an
isothermal plasma, T; =T, so that —Q,; = Q,,. and the dispersion relation becomes
(1)) — (1)@ )] = —2Qpe/(0” — Qpe”). If we define a scale length characterizing the
density gradient, Ly ' = —(N"'dN/dr) > 0, then

o = —2QiQper/(fly) + Q& —2QQper/ ({Ly)
and for this isothermal plasma the flute instability will have a growth rate given by
Y = 2QiQper/ (4Ly)]"7. (7.6)

The tendency of the perturbed electric charge to disperse by flowing along the
magnetic field to conducting metallic endplates provides an important stabilizing
mechanism. This mechanism is particularly effective if the plasma contains a
significant population of cold electrons confined in an electrostatic ambipolar
potential. Since hot-electron ECH plasmas confined in simple magnetic-mirror
configurations generally contain a substantial cold-electron component, flute-like
interchange modes usually occur in these plasmas only when the ambient gas
pressure is very near the critical value discussed in Chapter 6. A convenient stability
criterion incorporating the plasma connection with conducting end plates is [3]

B S (4RPRC/LhLC) [O‘)Izne, cold/(kic2 + 0‘)12)6, cold)] . (77)

Here B is the ratio of the plasma kinetic pressure, nkT, to the magnetostatic
pressure of the static magnetic field:

B = nkT/(B*/2u,),

where k is the Boltzmann constant. R, and R, are lengths that characterize the radial
gradients of plasma pressure and the static magnetic field, respectively:

R;l = —dIn(nkT)/dr and R;'= —dInB/dr.

Ly, is the axial length of the magnetic-mirror confined hot plasma; and L. is the
length of the cold-plasma region separating the hot plasma from the conducting
end walls of the vacuum chamber. W, co1q is the cold-electron plasma frequency
and measures the cold-plasma density. As we have seen, the perpendicular
propagation vector for the interchange mode is given by k, = ¢/r;, where
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£=2,3,4,..., and 1 is the radius of the plasma surface. c is the speed of light in
vacuum. At the boundary separating stable from unstable conditions, the cold-
electron density is given by

Neold = (me/uoez)(é/rs)z[(4RpRc/BLth)_1rl

(7.8)
= 2.8 x 10" cm™1 (¢/1)*[(4RpRe/BLnLe) —1] "

As B approaches 4R,R./Ly,L. the critical cold-plasma density becomes infinite;
i.e., no amount of cold plasma can stabilize the interchange modes above this
limiting value of beta. But for lower values of beta interchange modes are predicted
to be stabilized by comparatively low densities of cold plasma. For example, if
B=2R,R./LyL, in a plasma that is 10cm in radius, all modes up to £ = 6 are
stabilized by a cold plasma whose densityis 10'* cm™>, and all modes up to £ = 20 are
stabilized if the cold-plasma density is 10'*cm . We shall examine more of the
implications of cold-plasma stabilization of interchange modes in connection with
particular experiments.

7.2
Electrostatic Velocity—Space Instabilities Driven by Wave-Particle Interactions

Hot-electron plasmas generated by electron cyclotron heating can support unstable
plasma waves at frequencies around the electron gyrofrequency if energy stored
in the hot-electron population can be transferred to the waves; i.e., the reverse of the
heating process. In addition to the electromagnetic waves discussed in Chapter 4,
ECH plasmas also exhibit two distinct longitudinal electrostatic waves that can grow
by exchanging energy with the hot electrons. The energy available to drive such
unstable growth is the free energy associated with the non-Maxwellian nature of the
anisotropic hot-electron equilibria confined in magnetic mirror configurations.

As an introduction to the discussion of electrostatic instabilities, we first consider
an idealized one-dimensional example. The unperturbed particle orbits are then
simply z(t) = z(0) + vt, and in what follows we choose z(0) = 0. The force exerted on
the particles by the electric field of the electrostatic wave under consideration is

F = qE exp[i(kz—ot)] = qE exp[i(kv—m)t].

The perturbed distribution function describing these particles at the time t = 0 can
be obtained from the Vlasov equation by integrating along the unperturbed orbit
from remote earlier times to the time of observation:

F1(0) = ~(a/m)Eef, fov [deexplitkv-w)
=1i(q/m)E 6f0/8V(1/k) (v—w/k)fl.

The current associated with this perturbation is given by

i(0) = quVVfl(O) = i(¢?/m)E(w/K?) Jdvafo/av(v—m/k)*l,
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where the integral is from —oco to + 00 and f  vanishes at both limits. Upon
integrating once by parts, we obtain

j =1(q?/m)E(w/k*) Jdvf (v—w/k) > = oE
so that the dielectric constant, Kk =1+ ic/we, is given by
K = 1—(q*/mg, ) (1/k%) Jdvf (v—a/k) 2

If we now specialize to a mono-energetic stream distribution function,
f,(v) = N8(v—u,), the dielectric constant takes the form

K =1—(0}) /(0—ku,)?,
and the dispersion relation, k =0, has two solutions:
o/k =u, + 0, /k. (7.9)

The fluctuating densities and velocities associated with these two waves must
satisfy the continuity condition, ON/ot + V-(Nv) =0. For the present case this
becomes

(o—ku,)n; = kNyvy  or
nl/No = :l:le/(Op

For the fast wave (with phase velocity greater than u,), corresponding to the upper
sign in Eq. (7.9), the density and velocity fluctuations are in phase. Thus, where the
density is greatest the velocity is also at its maximum. The wave has, therefore,
increased the energy density of the plasma; it could only be excited if positive work
were done on the plasma, and it is, therefore, denoted a “positive-energy wave.” For
the slow wave (lower sign), the velocity and density fluctuations are 180° out of phase.
Thus, where the density is greatest the velocity is at its minimum. The wave has,
therefore, decreased the energy density of the plasma; it could only be excited if
negative work were done on the plasma; i.e., work were done on the wave by the
plasma. For this reason, waves of this type, “negative-energy waves,” are only found in
plasmas with excess free energy. Note that if a plasma can support negative energy
waves, any positive dissipation can permit them to grow in amplitude. Alternatively,
if a negative-energy wave can couple to a positive-energy wave the resulting coupled
wave can grow. The general expression for the fluctuating energy density associated
with an electrostatic wave is Uy = (g,/4)|E|*0(dk;/®), which must be evaluated at
the zeros of the longitudinal dielectric constant, «;. In the case of the flute modes
described earlier, the instability resulted from the coupling of a negative-energy wave
and a positive-energy wave. In what follows we will deal mostly with wave particle
interactions that transfer energy from non-Maxwellian plasmas to positive-energy
waves to cause them to grow.

The general dispersion relation describing the propagation of electrostatic waves
through a collisionless homogeneous Maxwellian plasma in a uniform magnetic field
was first derived by Bernstein [4]. Harris [5] gave a parallel derivation in which the
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equilibrium distribution functions were allowed to have arbitrary, non-Maxwellian
forms. For most circumstances relating to hot-electron ECH plasmas, the propaga-
tion of the electrostatic waves is governed by the cold-electron population. We,
therefore, start our discussion of unstable electrostatic waves with a recapitulation of
the cold-electron dispersion relation given by zeros of the longitudinal dielectric
constant, K, [0]

Ky = 1= (02, 0/ 0) (K /K2) = [02, g/ (0°—Q)] (K2 /K?) = 0. (7.10)

The condition that the longitudinal dielectric constant must vanish results from
the requirement that electrostatic waves satisfy V-D = —V-g,kV¢ = 0, where ¢ is the
electrostatic potential of the wave. If we once again employ the collisionless Langevin
equation to describe the cold-electron dynamical response to the electric field of the
waves represented by E exp(ik-r — imt), we have mdv/dt= —iomv= —e(E + v x B).
With B in the z-direction and Q = eB/m this becomes

—io(veuy + vyuy + vou,) = —(e/m)E—Q(vyuy—vyuy).

The solutions can be written in the matrix form as follows:

Vi in/(0*—Q%) Q/(?*-Q% 0 Ex
vy | = —=(e/m)| —Q/(0?*—Q?) io/(0’-Q%) 0 E,
Vz 0 0 i/® E,

and setting j= —env=o- E gives

ix in/(0*—Q?) Q/(0?—-Q*) 0 Ey
iy | =g | —Q/(0*-Q%) io(@-Q%) 0 E,
J. 0 0 i/o) \E,

Since k=1 + i0/eqw, we have for the dielectric tensor (in this Cartesian repre-
sentation)

1-02 /(0?—Q7%) (iQ/w)ol, /(0*-Q%) 0
K= | (-iQ/®)l /(0*-Q%)  1-0/(0’-Q%) 0
0 0 1o, /0

As mentioned earlier, the dispersion relation for electrostatic waves results from
the condition that —V-e,kV¢ = gok-k-k¢ = 0 has nontrivial solutions if and only if

ko =k-x-k/kK* =0.

With our usual choice for k=k u, + kju, we obtain the cold-plasma electrostatic
dispersion relation cited above in Eq. (7.10):

1=(kf /Kl o’ — (K /K [07, / (0> —Q%)] = 0.

For perpendicular propagation, the two roots are ®* =0 and ®* = (1)12,e +Q7, the
upper hybrid frequency, while for parallel propagation the roots are ®* = ?,
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Figure 7.2 Cold-electron electrostatic plasma waves (solid lines)
for three densities: (pe/Q)>=0.1,0.5, and 1.0. The dashed lines
show the conditions for Doppler-shifted resonance with
Ar = kiaﬁ/ZQz as a parameter.

and @’ = Q?. For oblique propagation, the two solutions of this bi-quadratic
dispersion relation join these limiting cases continuously as illustrated in Figure 7.2.

Both of the waves are positive-energy waves, as one would expect for a cold-electron
plasma. If these positive-energy waves propagate in a dissipative medium, the wave
amplitude will decrease in time as the electric field of the wave does (positive) work
on the medium at a rate given by (j-E), where (j-E) = (c,EZ). Here j is the current
density that flows in response to the electrostatic (“longitudinal”) field of the wave, E,,
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and o, is the longitudinal conductivity, k-6-k/k>. Because of the non-Maxwellian
character of the hot-electron population, the longitudinal conductivity can be negative,
and the hot-electron plasma component can do net work on the wave, in which case the
(positive-energy) wave will grow in amplitude. The real part of the longitudinal
conductivity associated with the hot-electron component can be determined using
the Vlasov equation and the ad hoc equilibrium distribution functions that describe at
least qualitatively the anisotropic, mirror-confined electrons. For the class of ad hoc
equilibrium distribution functions discussed in Chapter 6, Re o, is given by

Reo, = 2\/&0)80 (812)e, hot/kzocﬁ) (Q/kHO(,H)
x Yexp{—[(0—nQ) /kjoy |’} [(@—nQ)Cy(X) + 0Dy (1) (f /0 ).
(7.11)

Here oy and o, are the average speeds of hot electrons parallel and perpendicular,
respectively, to the magnetic field; the sum is over all values of the index n ranging
from —oo to 4 0. The functions C,,(A) and D, (A) are the following moments of the
hot-electron distribution function, f (v., V) = g,(v1)exp(—v}/af) /oy v/:

Calh) = znjndmi(km/ﬂ)go(n)
(7.12)

Da(h) = — (02 /2)2n Jvidvijf’(klvl Qv g, (v.)/dv.

The parameter A = k> o /2Q? and J,, is the Bessel function. The properties of these
moments of the distribution function have been discussed at length by Guest and
Dory [7]. The functions C,, (L) are manifestly positive, but the functions Dy, (A) can be
negative if the distribution function describes a hot-electron population confined in a
magnetic mirror. Such a population may contain more electrons with high perpen-
dicular speeds than with lower perpendicular speeds so that dg,(v,)/dv, >0 over
much of the hot-electron population. A model commonly used to simulate this aspect
of magnetic-mirror confinement is the m=1 term from Eq. (6.42):

g, (Vi) = (m0) (v /ou )2 exp(—v2 Jol). (7.13)

The functions C,(A) and Dy(A) for this distribution function are displayed in
Figure 7.3(a) and (b) for n=0-3.

We consider each of the two electrostaticwaves in turn, starting with the forward wave.
Although the frequency of the forward wave (dw/dk; > 0) is less than the hot-electron
gyrofrequency, the wave frequency can be up-shifted to resonate with the electron
gyration by virtue of the (average electron) Doppler shift if m + ko ~ Q. Energy can
then be transferred from the hot-electron population to the wave if the real part of the
longitudinal conductivityis negative. We are thusled to search for negative extremain Re
o, for frequencies below the electron gyrofrequency. The dominant contributions to Re
oy then arise from the terms withn = 0 and 1; and provided orf /o} < 1 these negative
extrema can be located approximately by first evaluating the following quantity:

Q = exp[—(0/k0y))*JoCo (L) + exp{—[(0—Q) /kyoy [} [(@—Q)Cy (V)].
(7.14)
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Figure 7.3 (a) The functions C,(A) with n=0-3 for the
distribution function given by Eq. (7.13). (b) The functions D, (A)
with n=0-3 for the distribution function given by Eq. (7.13).

The first term is always positive or stabilizing, whereas the second term is negative
for all frequencies below the gyrofrequency. For our model distribution function,
the function C;(A) has its maximum value at A =0.79; and Cy(A) = C;(A) for that
value of lambda. We can readily locate the zeros of Q with the results shown in
Figure 7.4.

Here we have defined n=w/Q —1/2 and H=kjoy/Q. Then provided we can
neglect the contribution from D, the zeros of Re 6, are given by

H? = 2n{In[(2n +1)Co/(1-2n)Ca]} .

For the model hot-electron distribution function used here, the real part of the
longitudinal conductivity takes on its most negative value for waves with frequencies
® =0.755Q and parallel propagation vector ky = 0.4Q/ay,. Nonetheless, the real part
of the conductivity remains negative, corresponding to the possibility of growing
electrostatic waves, over a substantial range of values of the wave parameters:

Q/2 << Qand 0 <k <0.7Q/0y. (7.15)

Potentially unstable waves in this frequency-wave number range will propagate
only in plasmas whose properties, such as density and temperature anisotropy,
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Figure 7.4 Locus of zeros of the real part of the longitudinal
conductivity, where 1= ®/Q —1/2 and H = ko /2.

satisfy the cold-plasma dispersion relation. These plasma properties can be
conveniently displayed by plotting ©, /@’ versus &} /a3, as in the upper curve
of Figure 7.5.

This curve is generated for a specific pair of wave parameters, o and k. Note that
instability is only possible for these waves if the temperature anisotropy is high and
provided the cold-electron density exceeds a threshold value given approximately
by 0)12381 wold/®* > 1/2; for more moderate values of anisotropy, the threshold density
exceeds the cutoff value.

The frequency of the backward electrostatic wave (dw/dk; < 0) exceeds the electron
gyrofrequency but can resonate with electron gyration if  — kjjoy = Q.

The real part of the longitudinal conductivity can be negative in this frequency
range if D1(A) <0. In fact, for unstable growth the condition is (0—Q)Cy(A) <
—Di(Mof /o

If we choose A = 4.6 to minimize D;(A), then for our model distribution function
we have D;(A) = —0.07 and C;(A) = 0.1. Under these conditions, growth is possible
onlyif ©/Q -1 < 0.70(ﬁ /0. As in the case of the forward wave, these waves must
satisfy the cold-plasma dispersion relation. The predicted maximum density for
growth of the backward electrostatic wave is proportional to Ocﬁ /o, as illustrated by
the lower curve in Figure 7.5. Note that there is an intermediate range of stable
densities separating the two electrostatic modes where neither mode is expected to be
unstable.
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7.3
Electromagnetic Velocity Space Instabilities

Of the two cold-fluid electromagnetic waves propagating parallel to the magnetic
field discussed in Chapter 4, only the right-hand circularly polarized component can
resonate with the electron gyration. This wave, the now familiar whistler wave [8],
is a positive-energy wave. In Chapter 4, we examined the damping of this wave in a
Maxwellian plasma. Here we shall examine its growth in non-Maxwellian plasmas,
and we can, therefore, restrict our stability analysis to situations in which the plasma
electrons can do net work on the wave in order to amplify it.

The time-averaged work done on the plasma electrons by the RF electric field of
the wave is 1/2Re(E*-j). Here the RF current is given by j = —edeVVf1 and the
perturbed distribution of electrons, f, can be obtained by integrating the
linearized Vlasov equation in time along the unperturbed electron orbits from
t=—o00 to t=0:

fi= (e/m)Jdt(E+v < B)-0f /v,

For the case of parallel propagation, the electric and magnetic fields of the wave are
assumed to depend on space and time through transverse eigenmode expressions
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of the form E(x,y)exp[i(kz — ot)]. From Faraday’s law, the wave electric and magnetic
fields are related by V x E = —0B/0t=i®B whence
ioB = iku, x E+ [u,0E,/0y—u,0E,/0x + u,(OE, /0x—0E,/0y)]
~ iku, x E.
With this approximation for B, we have E + v x B= (1 — kv,/0)E + (k/o)v-Eu,.

Since the equilibrium distribution function can depend on any constants of the
motion, we choose the electron energy, €, and magneticmoment, 1, justas before so that

of ,/0v = ml[(of ,/de)v+B " (of ,/ou)v.].

With these substitutions, our expression for the perturbed distribution function
becomes

fi= eJdt (3 ,/0€)E-v+ B (3f , /ow) (1—kv, /@)E -v,].

The integration in time is over the unperturbed orbits of the electrons, given in
a uniform magnetic field by v =v [u, cos ¢(t) + u, sin¢(t)] + v,u,. In the uniform
magnetic field approximation the gyrophase, ¢(t), increases linearly with time:
O(t) =9(0) + Qt so that

E-v = E,v, cos ¢(t) + Eyv, sin ¢(t) + E,v,
(v /2) (Ex—iE, Jexpli6(0) + i(kv, — -+ Q)
+ (v1/2)(Ex +1iEy)exp[—i0(0) + i(kv,—0—)t] + E,v exp[i(kv,—w)t].

After integrating over time, we obtain for the perturbed distribution function
S1=¢l(@f o/0e) + B (3f ,/0n) (1-kv. /)]
X (v /2)[(Ex—iEy)exp i¢(0)/i(kv,—o+ Q)
+ (v1/2)(Ex + iEy)exp i0(0) /i(kv,—0—Q)] + e(df ,/0€)E,v, /i(kv,—w),
(7.16)

and the RF current is
j = —e Jd?’v {v. [uy cos 0(0) +uy sin ¢(0)] +vzu, }f |
= —ne?/2 JdevL JdvZ {el(of ,/0e) + B’l(afo/au)(l—kvz/m)}
x [(Ex—iEy )V} (ux + iuy) /i(kv,—o + Q)
+ (Ex +iEy)VA (ug—iuy) /i(kv,—0—Q)] + 2(3f ,/0€)E,v,u, /i(kv,—w)}.
(7.17)
We can now form
Ej = (Buw+Eu+Fu)-j
= ine? JVLdVL JdvZ {[(f ,/0e) + B’l(afo/au)(1—1<Vz/oo)}v2l
*[|E-|*/ (v~ + Q) + [E !/ (kv ~0-Q)]
+2(3f ,/0e) |E,| V2 / (kv,—)}. (7.18)
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Here as before E, = (E, £ 1iE,)/v/2, and the time-averaged rate at which the wave
does work on the plasma is given by

1/2ReE - j = —me?/2 Im[vi dVLJdVZ
< {1(0f /) + B~ (9f o/0m) (1—kv, /0)]v]
< [IE P/ (kvp—0+ Q) + [E, [/ (kv,—0-Q)]
+2(3f /%) [Ef|"v; / (kv,~w)}
so that

1/2ReE -j= —nez/ZkaLde

x {VZJE— *[(@f 4/0€) + B (3f o /OW)Q/ 0, —(0r-)
+V2L|E+ |2[(af0/68) af‘o/al‘L Q/(D“ =(0+Q)/k
+2(3f o/08) [Eo*V2l,, —opc s (7.19)

where we have employed the familiar Plemelj formula in evaluating the imaginary
part of the integral over v,. The electron gyroresonance term is

1/2ReE" j= —ne? /szvidn x [E_ P[(Of /08) + B~ (@f 4 /W) Q/ 0]l _(-ay i

Ifof , /e and of | /11 were both negative for resonant electrons with v, = (0—Q)/k,
the time-averaged work done on the plasma electrons by the wave would be positive
and the wave would be damped in time. But if the quantity in brackets can change
sign and become positive, then the plasma electrons can do net work on the wave
and amplify it in time. We can illustrate the conditions for such amplification by
assuming the hot-electron distribution to be an aniostropic bi-Maxwellian, the m =0
term of Eq. (6.42):

fo=nn(m 2l oy) " exp(—vi/oci—vﬁ/ocﬁ).

The average rate of energy transfer from the wave to the plasma electrons is then
given by

1/2ReE"j = — V(0 nor/kety) (0l E-|/2) (Ax—1)exp(—x"), (7.20)
where

A= (T, /T)—1)koy /o, (7.21)
and

x = (Q-0)/koy. (7.22)

We choose this sign for x so that x is positive for wave frequencies less than the local
gyrofrequency. The function (Ax — 1)exp(—x’) has a zero at x, = 1/A, and extrema at

= [1+ (142422 )2A. (7.23)
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The upper sign corresponds to the conditions for maximum growth rate; i.e., the
maximum rate at which electrons can transfer energy to the wave. The lower sign
gives the conditions for maximum damping of the wave; i.e., the maximum rate at
which the wave can transfer energy to the electrons. The zero, x,=1/A, gives the
conditions for marginal stability; i.e., the conditions for which no net work is done
on the wave or the plasma. The marginally stable frequency, ,, is given by the
condition that

Xo = (Q—) /koy = 1/A = 1/[(T1 /T)|—1)koy; /] (7.24)
whence,

(OO/Q = 1_T|\/TL-

Note that Q =Q,/y is the appropriate relativistic gyrofrequency of the resonant
energetic electrons, so the frequency of the marginally stable wave is @, =Q,(1 —
T)/TL)/y. Waves with frequencies less than , will grow, while those with frequencies
greater than o, will be damped.

The situation for the extrema is more complicated. For example, if the plasma
parameters are such that A = 2, the maximum growth rate occurs for X, = 1 and the
maximum damping rate for X, = —1/2. This is the case shown in Figure 7.6.

The corresponding frequencies are then, for growth, ®ma.,=Q —koy and for
damping Wmin = Q + koyj/2. But note that A and x depend on the wave frequency ®
and wavenumber k, and these must satisfy an appropriate dispersion relation, in this
instance, the whistler dispersion relation

n’ =1+l /[0(Q-0)).
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Figure 7.6 The function (Ax— 1)exp(—x’) for A=2.
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Neglecting for the moment the relativistic increase in mass, we can replace (Q — )
by xkoy; so that the whistler dispersion relation becomes

=1 +wf)e/(w>d< o) =1+ (mge/mz)/(nxocu/c),
giving the following cubic equation for the index of refraction:
n®—n— (mge/wz)/(x(xu/c) =0.

By way of illustration, to find the physical conditions for maximum growth rate,
we set

X = Xmax = [1 + (1+2A2)"%] /24,
with
A= (TL/TH—l)n(OLH/C).

This set of three coupled equations for n, X;,y, and A can be solved by employing
a simple iterative scheme if wpe/®, oy/c, and T /T are specified. Then with an
arbitrary initial guess for n, which we designate as n,, we can evaluate A; and X,y 1
and solve the cubic dispersion relation for n = n,. We repeat this cycle until n; , ; —
n; =0, which then gives the solution to the set of three equations. This procedure
yields self-consistent values for the index of refraction, n, the anisotropy parameter,
A, and the value of x for maximum growth rate, X5y, and the various related functions
of interest, such as the extremal value of (Ax — 1)exp(—x°). In Figure 7.7, we display
curves of Mpax/Qo versus wp/, for fixed values of Tjjand T /T

0.8
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Figure 7.7 The frequency for maximum growth rate, ®may/Qo,
versus Mpe/€2, for T, /T =15 and T;=5 keV (upper curve) and
10 keV (lower curve).
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In anticipation of some of the experimental results to be discussed in Chapter 8, we
observe an interesting possibility that arises in ECH plasmas with separate warm-
and hot-electron groups. The frequency for maximum growth of whistlers for the
warme-electron population may coincide with a frequency for damping by the more
relativistic hot-electron population. For example, in the extreme case of maximum
damping by the relativistic electrons,

Omax2 = Qo/Yz_k(x\|2 = Omin3 = QO/Y3 +kOLH3/2~

Here Q, is the nonrelativistic gyrofrequency and v is the usual relativistic factor.
The necessary value of v; for maximum damping is then given by

T3 = Y5 [1-(7,K/Qo) (o +0y3/2)]

In this case, the relativistic-electron population might act to stabilize the warm-
electron group against these electromagnetic instabilities. Several authors [9] have
discussed the possibility of stabilizing tendencies due to relativistic hot-electron

populations.
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B Exercises

7.1

and

7.2

7.3

7.4

In relating the flute instabilities to idealized two-stream
electrostatic instabilites, we ignored the energy and pitch-
angle dependence of the poloidal drift speed. With this in
mind, consider the following equilibrium distribution
function:

S o) = (uo/20){[(v—v)* +ul] "+ [(v+vo)* +ul] '}

(a) Showthat f (v) hastwo distinct peaks only ifv2 > u2/3.

(b) Since f (v) is symmetric about v = 0, it is reasonable to
assume that when instability occurs Re ®» = 0, as was the
case with the flute modes described eatlier. Show that the
conditions for the onset of instability are then given by

K/t = (vo—u3)/ (v +uj)

2.2 2
Vo > ul > ul/3.

Verify Eq. (7.11) and find the values of  and H for which the
real part of the longitudinal conductivity takes on its most
negative value when b= 0.79 and (oy/0.,)? < 1.

For the ad hoc equilibrium distribution function of Eq. (7.13),
derive an expression for D;(A) and evaluate it for A = 4.6.

Estimate the frequency for maximum growth rate, ©,,,,/Q2,
of whistler modes in a plasma whose hot-electron component
has a density o} /0’ = 0.2, a parallel temperature T =25
keV and temperature anisotropy T, /T;=6.
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8
Experimental Results in Magnetic Mirrors

In this chapter we summarize the results of a number of experiments on electron
cyclotron heating (ECH) of plasmas confined in magnetic mirror configurations.
These specific experiments have permitted interpretations that either validated
important theoretical models or helped guide the further development of more
comprehensive analytical models and through this, they have made significant
contributions to the development of the science of ECH.

8.1
Hot-Electron Experiments in “Physics Test Facility” and EPA [1-3]

The magnetic field in Physics Test Facility (PTF) was a simple magnetic mirror
configuration with a 2:1 mirror ratio. The field was generated by two DC coils whose
centers were separated axially by 55 cm. Up to 5kW (cw) of microwave power at
10.6 GHz was launched into the plasma chamber by one or sometimes two wave-
guide inputs at the midplane. The waveguides were typically, but not necessarily,
oriented so that the microwave electric field was perpendicular to the static magnetic
field. The basic features of PTF are indicated schematically in Figure 8.1.

Not shown in the figure are additional diagnostic devices including a diamagnetic
loop in the form of a coil 12cm in radius encircling the microwave cavity and
displaced axially 12cm off the midplane. The diamagnetic loop was used to
determine the total plasma kinetic energy in motion perpendicular to the magnetic
field by measuring the change in the magnetic flux through the loop after turning off
the microwave power. Also not shown in the figure is the bremsstrahlung diagnostic
apparatus used to determine the spectrum of x-rays in the MeV energy range arising
from free—free bremsstrahlung. Details of these and other diagnostic devices are
given in the references. Of special interest is the detailed analysis of neutron
production in the PTF plasmas, assumed to result from the electron-dissociation
of deuterium nuclei. This diagnostic provided useful information on the highest
energy electrons present in the plasma; namely, those with energies above the
2.2 MeV binding energy of the deuterium nucleus.
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Figure 8.1 Schematic representation of the Physics Test Facility (PTF).

EPA was a larger, 3: 1 magnetic mirror (although other magnetic configurations
were also explored in EPA) in which the DC magnetic coils were separated by 36 in.
(91 cm). Up to 50 kW (cw) of 10.6 GHz power was fed into the EPA cavity through a
somewhat more elaborate array of waveguide couplers. Typical experimental plasma
parameters obtained in PTF were as follows:

(1) A hot-electron component with temperatures of 50-100keV and densities
around 1.5-3 x 10" cm>; and a group of relativistic electrons with energies
above 2 MeV and densities of roughly 10°cm .

(2) Diamagnetic stored energies ranging from 1.2 ] at 1 kW microwave power to 9]
at 3kW.

(3) Axial current densities due to a cold-electron component of 15 mA cm ™2 with the
microwave power on and 5 mA cm ™2 after turning off the microwave power.

(4) An initial rapid decay of the plasma density with a characteristic time of
100-200 ps following the turnoff of microwave power, leading a much longer
decay time of some tenths of seconds.

(5) An effective plasma radius around 10 cm.

(6) A plasma build-up time of 100 ms.

In these experiments, the pressure of the deuterium fill gas was around 2-5 x 10>

Torr, corresponding to molecular concentrations around 0.7-1.8 x 10"*cm >

Note that the experiments in PTF and EPA were steady-state rather than pulsed,
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and the final plasma state was achieved by careful adjustment of magnetic field
strength, gas feed rate, and microwave power during operation. In addition to
establishing these plasma parameters, Dandl and his co-workers [2] investigated
two distinct types of plasma instabilities that could be excited in these plasmas.

We now consider the theoretical interpretation of the experimental observations in
the context of the basic theoretical topics discussed in the earlier chapters, starting
with the equilibrium. As described in Chapter 6, we separate the full distribution of
electrons in energy into distinct groups that reflect in an approximate way the
different production and loss processes that characterize each group:

(1) acold-electron population with energies of 10s of eV confined by the electrostatic
ambipolar potential;

(2) a warm-electron population with energies greater than a few keV;

(3) a hot-electron population with average energies of 100s of keV; and

(4) highly relativistic electrons with energies in the MeV range.

The spatially averaged conditions for steady-state particle balance for the first three
of these groups were given in Chapter 6:

dner /dt = Ne116(GionVe) 1 + Ne2No(CionVe )y + Ne3No (CionVe)3—1e1/T1
—1ner (dW/dt), /AW, =0

dney/dt = ney (dW/dt); /AW 1 —nep /Ta—nep (AW /dt), /AW3 , = 0

dnes/dt = ne (dW/dt), /AW; 3 —1e3 /T3 —Ne3 (AW /dt) 5 /AW escape = 0

Recall that 1y, ney, ne3, and n, are, respectively, the densities of the cold-electron
group, the warm-electron group, the hot-electron group, and the (neutral) deuterium
molecules. The ionization rates for electrons in the three groups are (GionVe)1,
(GionVe)2, and (GionVe) 3. In what follows we shall adopt the values for these ionization
rates given by Freeman and Jones [4], as discussed in Chapter 6. The average electron
confinement times for each of the three groups are 1y, T,, and 1;; and the average
heating rates for each group are (dW/dt);, (dW/dt),, and (dW/dt);. The energy
separating groups 1 and 2, denoted by AW, 4, is typically of the order of 1-10keV.
The energy gap separating the warm- and hot-electron groups, AW; ,, is typically
several orders of magnitude larger, 100-200 keV. AW, is the energy increase
required for a hot electron to become nonadiabatic and is several MeV in these
experiments.

The bremsstrahlung spectra in the hard x-ray energy range were the primary
diagnostic for determination of the density and temperature of the hot-electron
group, and these are the values cited earlier. The density of the hot-electron group was
also deduced from the density of the current flowing along the axis of the chamber
after turning off the microwave power and the subsequent rapid decay of the warm-
electron population within 0.1-0.2 ms. Since the measured current density, j, at this
time is maintained solely by ionization due to the long-lived hot-electron group,
we have

Jj dA=¢e J dVne3n, (GionVe);-
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Assuming the measured current density to be representative of the entire cross
section of the plasma column intercepted by the current-collecting probe, the
spatially averaged values of the hot-electron density are given by

Ne3 = ZjH (eLn, <Gi0nVe>3)71

with j;=5mA cm 2, n,=102cm 3, (GionVe)3 = 108cm3s™! and L=20cm, we

obtain ne; = 3 x 10" cm 3, in reasonable agreement with results from the free—free
bremsstrahlung measurements. Here L, the effective length of the hot-electron
plasma column in PTF, is assumed to be approximately equal to the distance between
the fundamental resonance surfaces.

The radial distribution of plasma kinetic energy in motion perpendicular to the
magnetic field, W, stored in the hot-electron plasma, was deduced by dropping a
small stainless steel ball, 1/8 in. in diameter, through the plasma and measuring the
emfinduced in the diamagnetic loop as the falling ball collected energetic electrons.
The ball fell about 0.3 cm ms ™', slowly enough to ensure that all energetic electrons in
a radial layer roughly equal to the ball’s diameter would be collected by the ball. The
resulting time-dependent emf showed a single extremum when the radial position of
the ball was 6 cm above the axis; otherwise the emf signal was devoid of significant
structures. These features can be reproduced if the transverse stored energy is
modeled as a parabolic function of radius with an effective radius, a=10.5 cm:

Wi (1) = W (0)[1-(r/a)’].

Using this radial profile, we can relate the central values of the hot-electron density
and (perpendicular) temperature to the total diamagnetic stored energy:

W (total) = 1/2 ma® Lne3(0)T 1e3(0).

For example, if the hot-electron density on axis is ne3(0) =2 x 10" cm ™ and the
diamagnetic stored energy is 6 ], the present model would lead to an estimate for the
(perpendicular) temperature of the hot-electrons of 54 keV.

After the microwave power is switched off, the lifetimes of the warm and hot
electrons, T, and T3, are governed by scattering into the mirror loss cone, but at rates
that are significantly affected by slowing down through inelastic collisions with
deuterium molecules. This process was simulated numerically by Ard et al. [5] for the
hot electrons in PTF. They noted that the specific inelastic collision rate constant
decreases with electron energy approximately as E~'/; and since this is the dominant
process by which energetic electrons slow down in the PTF plasma, the time
dependence of the electron energy is given by

dE/dt = —AEn,Gienve = —CE1/3

where AE is the energy lost per collision. Thus, the energetic electron energy will vary
in time after turnoff of the microwave power as

E(t) = [E(0)**—4/3 Ct]*/*.

In Ref. [5] Ard et al. demonstrate a reasonable agreement between experimen-
tally measured time-dependent hot-electron distributions in energy and results
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from their simulation model provided C =4keV*? and InA =10. Here A is the
ratio of the maximum and minimum impact parameters in the Rutherford
scattering formula. In a fully ionized plasma, the maximum impact parameter
is set by the Debye length, and one would expect to have InA =17 for plasma
parameters similar to those in PTF. However, in the PTF plasmas, the density of
gas molecules is approximately equal to the charged-particle density and the
maximum impact parameter is the much smaller atomic radius. These considera-
tions are essential to reconcile the experimentally observed confinement times with
the observed electron energies.

One of the most striking observations reported by Dandl’s group in Ref. [3] was
the emission of a substantial flux of neutrons with the application of 2kW of
10.6 GHz power and suitable adjustment of the DC magnetic field strength for
quiescent steady-state operation. Four different diagnostic methods were employed
to determine the energy spectrum of the neutrons, most of which were found to have
energies in the keV range. The most plausible explanation for the production of these
neutrons appeared to be electron-dissociation of deuterium by electrons with
energies greater than 2.2 MeV, the binding energy of the deuterium nucleus. Indeed,
x-ray spectra indicated the presence of roughly 10° electrons per cm? with energies
above 2.2 MeV. We note in passing that if the lifetime of these hot electrons is some
tenths of seconds, the implied heating rate would be around 10 MeVs ™', a typical
theoretical estimate for the conditions in PTF.

These observations raise the issue of the maximum energy for which electrons
can be adiabatically confined in PTF. From the work of Cohen et al. [6], we estimate
the limiting electron energies for radii up to 10 cm and with two different values of
the DC magnetic field strength, as displayed in Figure 8.2.

Inside a radius of 3—4cm, electrons with energies greater than 2.2 MeV are
expected to exhibit adiabatic confinement for DC magnetic field strengths on the
midplane at the axis, B(0,0) > 0.2 T. This may indicate that the volume within which
neutrons are produced is substantially less than the 61 as assumed in Ref. [3]. The rate
of the electron-dissociation process in the hot-electron plasma may therefore be
greater than that predicted by binary-collision theories, which do not take into
account the possibility that collective, many-body effects may occur in the plasma
medium.

Two distinct modes of instability were studied in PTF and reported in Ref. [2]. The
lower frequency mode was identified as a flute-like instability associated with the
unfavorable guiding-center drift of energetic electrons in the magnetic-mirror field.
This mode was effectively stabilized by increasing the gas pressure and thereby
increasing the density of the cold-electron group, given by our condition for steady-
state particle balance as

Ne1 = Ny (neZ <6i0nve>2 + Ne3 <GionVe>3)Tl [1 +T (dw/dt)l/AWZ‘l} - .

When this type of instability occurred, plasma was rapidly transported across the
confining magnetic field and detected by observing x-rays produced when electrons
with energies around 100 keV impacted a radial limiter. The instabilities were
accompanied by oscillations in the 3-30 MHz frequency range. We first note that
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Figure 8.2 Maximum energy for adiabatic confinement in PTF
versus the midplane radius for B(0,0) = 0.2 T (lower curve) and 0.3
T (upper curve).

the predicted frequencies for this mode of instability are given approximately by
f,=(¢/2m)Te3/(eBrR.),

where £ = 2, 3,4, .. .is the azimuthal mode number, T; is the average energy of the
hot-electron group, B is the magnetic intensity at radius r, the plasma surface, and R,
is the radius of curvature of the magnetic field lines. As we saw earlier, on the
midplane the product rR. is roughly constant in simple magnetic mirror fields.
For the fields in PTF we estimate rR.=0.03m?” If the average energy of the
hot-electron group is around 100keV and the magnetic intensity at the plasma
surface is 0.15 T, we would anticipate the frequencies to be roughly f, = 3.5¢ MHz,
about as good an agreement as can be expected without properly averaging the
magnetic field parameters along the lines of force.

As discussed in Chapter 7, the density of cold plasma required to stabilize this
flute-like mode is predicted to be [7]

Ner = 2.8 x 10" ecm1(¢/1)?[(41R/BLL)—1] !
~ 2.8 x 10" em ™! (¢/rs)*B(a)LyLe /4R
In Ref. [2], the average value of beta was estimated to be 5-6%, assuming a

plasma volume of 51, but the local value of beta near the plasma surface may be
significantly higher. For example, if the local density is around 10'' cm™> with a
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temperature of 10° eV, in a region where the local magnetic intensity is around 0.15 T,
thelocal value of beta, 3(a), can approach 20%. Although it was not measured directly,
we can estimate the cold-electron density crudely from our equilibrium model to be
around 5 x 10" cm ™, which is predicted to be adequate to stabilize low-order modes
with ¢ < 6-9 for beta values less than 20%. Observation of rapidly growing modes in
this frequency range that are stabilized by small increases in gas pressure (and hence
cold-electron densities) is generally consistent with theoretical expectations; but the
nonlinear development of the instability is not understood. Indeed, it may be likely
that the onset of a high-order mode could lead to a reduction in the density of cold
plasma and permit an avalanche of lower order modes to be destabilized. This
remains largely speculative, since the actual experimental evolution of unstable
modes was too rapid to follow in this level of detail.

The second mode of instability observed in PTF occurred if the magnetic intensity
on axis at the midplane exceeded a threshold value given by B(0,0) = 2985 G. Since the
resonant magnetic intensity for the 10.6 GHz power is 3786 G, this threshold
corresponds to a mirror ratio on axis at resonance, M,es=1.27. The threshold
magnetic field was observed to depend only weakly on input power and gas pressure.
In keeping with the discussion of Chapter 5 [8], we assume that the group of
moderately energetic electrons with density ne, are turning inside the resonance
surfaces and will, therefore, have a temperature anisotropy at the midplane such that
T)/T . <0.27. If our estimate of the cold-electron density of roughly 5 x 10"%cm s
correct, then 00}2, ccold/©% A 0.1 and we can anticipate that modes at the upper hybrid
frequency can be driven unstable by the loss-cone character of the warm-electron
distribution. It may also be possible that whistler waves could be weakly unstable,
depending on the actual value of beta, although the presence of the substantial
number of relativistic electrons could damp whistler modes. Higher cold-electron
densities are predicted to stabilize the electrostatic loss-cone modes but not the
electromagnetic whistlers. For either the electrostatic or electromagnetic mode,
growth of the instability would extract perpendicular kinetic energy from the
anisotropic electrons and permit them to escape through the loss cone, as observed.
Neither mode, however, would be expected to have a frequency of 5.3 GHz, that
is, exactly half of the frequency of the 10.6 GHz microwave power, which was
observed at all values of the magnetic intensity above the threshold value. We note
in passing that the cavity eigenmodes in PTF had frequencies of some hundreds of
MHz. Only the repetition rate of the bursts of this instability increased as the
resonance surfaces were moved closer to the midplane and/or the heating power was
increased. The authors of Ref. [2] did not preclude the possibility that the observed
5.3 GHz signal may have been triggered by the input microwave power. The actual
instability mechanism corresponding to this frequency remains to be identified.

In summary, the experiments in PTF and EPA established the existence of stable,
steady-state, high energy density, hot-electron plasmas in simple magnetic mirrors
provided the gas pressure was high enough to stabilize flute-like instabilities and the
mirror ratio at resonance was high enough to keep the hot-electron temperature
anisotropy below the threshold for velocity—space microinstabilities. The fact that
PTF contained a substantial population of electrons with energies greater than
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2.2 MeV demonstrated that highly relativistic electrons could be heated even if there
were no fundamental resonance surfaces inside the cavity. Diamagnetic stored
energies approached 10] in these PTF experiments.

8.2
High-Beta Experiments in ELMO [9]

Heating at frequencies well above the fundamental electron gyrofrequency was
demonstrated experimentally in PTF by the presence in the plasma of a substantial
group of highly relativistic multi-MeV electrons. A theoretical analysis by Grawe [10]
also lent support to the potential importance of nonresonant heating of energetic
electrons. In April of 1965, Dandl and his co-workers began experiments in the
ELMO device employing independent sources of resonant and nonresonant micro-
wave power to clarify these different modes of ECH. The results obtained with less
than 1kW (cw) of resonant power at 35.7 GHz (8.4 mm wavelength) together with
1kW of nonresonant power at 55GHz (5.5 mm) were remarkable: hot-electron
temperatures exceeded 1 MeV and stored energies as high as 400 ] were observed.
Most significantly, the nonresonant heating, referred to as “upper off resonant
heating” (UORH), apparently eliminated the velocity—space instabilities thought to
be driven by temperature anisotropy even at relatively moderate levels of the UORH
power. The hot-electron component of the plasma was subsequently shown to be
contained in a short, cylindrical shell in which the plasma pressure was comparable to
the magnetostatic pressure of the magnetic field. The estimated value of beta — the
ratio of the diamagnetic pressure to the magnetostatic pressure — was § ~ 0.75. The
diamagnetic currents associated with this high-beta plasma profoundly modified the
magnetostatic field to create a local, axisymmetric magnetic well in the interior of the
hot-electron shell. The main features of the ELMO device are indicated schematically
in Figure 8.3.

Three independent sources of microwave power were available in ELMO: up to
3kW (cw) at 10.6 GHz, 1.8 kW (cw) at 35.7 GHz, and roughly 5kW (cw) at 55 GHz.
The magnetic configuration, generated by two pairs of coaxial DC magnetic coils,
could be varied continuously from a magnetic-mirror shape with a range of possible
mirror ratios to a folded cusp configuration. The outer pair of coils (the “flat-field
coils”) were in the Helmholtz geometry, whereas the inner pair of coils operated alone
would produce a magnetic mirror field with a mirror ratio of 3.3:1. The axial
separation of both pairs of coils was 16 in. or 40.64 cm. The high energy density
plasmas were obtained in a magnetic mirror configuration with mirror ratios around
2.1-2.2. Great care was taken to ensure that the plasma chamber had the maximum
possible microwave integrity. Typical results of two-frequency heating are shown in
Figure 8.4.

In these experiments, 880 W of 8 mm power provided the resonant heating and up
to 1kW of 5.5 mm power provided the UORH. Note that the hot-electron temperature
changes only slowly with increasing UORH power, whereas the hot-electron density,
the stored energy, and the neutron flux increase rapidly. In this particular case, the
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Figure 8.3 Schematic representation of the ELMO Facility.

diamagnetic stored energy reached 150 ] and the rate of neutron production was as
highas 5 x 10°s™'. As in the earlier PTF experiments, the neutron flux was attributed
to Coulomb dissociation of deuterons by relativistic electrons.

Dand!’s explanation for the increase in hot-electron density with the UORH was
based on the assumption that velocity—space microinstabilities were limiting the
confinement time of the warm-electron population and the experimental observation
that these instabilities were suppressed by the UORH. From the conditions for
steady-state particle balance in the three groups of electrons we obtain, approximately:

Ne1 = No[Nea (GionVe)y + Ne3 (GionVe )3 )T [1 4 T1 (AW /dt), /AW, 4] !
Nep) = Ne1 Ty [(dW/dt)l/AWZJ] [1 —+ 1T (dW/dt)Z/AW312]71
Ne3 = NeyT3[(AW/dt), /AW 5][1 + T3(dW /dt) y /AW eescape] "

If the warm-electron loss rate, 1/1,, is reduced when the instabilities are sup-
pressed, both n, and n.; will increase, as will the density of the cold-electron group,
Ne;, assuming that their (resonant) heating rate, (dW/dt),, is not significantly
increased by the UORH. Dandl carried out experiments to quantify the conditions
for suppression of these instabilities with the results shown in Figures 8.5 and 8.6.

Just as in the PTF instability observations, the appearance of bursts of radiation at
half the resonant-heating frequency was taken as one signature of the instability; and
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Figure 8.4 Response of the plasma parameters to two-frequency heating in ELMO.

the UORH power needed to suppress this mode was determined as a function of
resonant heating power for two different gas pressures, as displayed in Figure 8.5.
The resulting changes in stored energy are then shown in Figure 8.6.

In order to determine the radial distribution of the hot-electron density, a water-
cooled skimmer probe was inserted radially from outside the plasma. As it was moved
progressively deeper into the plasma, the experimental indicators of hot-electron
density such as the magnetic flux change, the x-ray intensity, the microwave noise,
and the neutron flux were monitored. In this way, it was found that the hot-electron
plasma was localized largely within a hollow annulus and had the shape of a short
cylindrical shell. More refined measurements of the magnetic flux change were then
undertaken using the original skimmer probe plus a second, L-shaped skimmer
probe mounted eccentric to the axis of the chamber. The tip of this second “dog-leg”
probe could be moved outward in radius from 6.3 cm to the cavity wall at a radius of
15.2cm. Results of measurements with both skimmer probes are shown in
Figure 8.7.

Here the stored energy obtained from diamagnetic measurements is displayed as
(1) the outer probe is moved inward with the inner probe removed; (2) the inner probe
is moved outward with the outer probe removed; and (3) the outer probe is moved
inward with the inner probe tip at a radius of 7cm. The difference in the radial
boundaries of the annulus as deduced from the first two scans — roughly 2 cm — was
attributed to the gyrodiameter of the energetic electrons making up the shell. Thus, if



8.2 High-Beta Experiments in ELMO

180
B(0,0) = 3230 G
160 | MR = 2.07 p
v
/
140 /
—_ /
£ /
o
= !
= 120
T y
(vl
o
o ’f
= 100
< I
8 ]
= /
= o =]
§ 80 f——18x 10" Torr .l I
o o ’
a "'
5 60 J 2.0 x 107 Torr —
. 4 7
=% ® A 4/
= O b ta==""
40
vy

20 7
o
oL
400

800 1200 1600 2000 2400 2800
Resonant power, Pgrgg, (watts)
Figure 8.5 UORH power required to suppress instabilities in ELMO.

the average gyrodiameter of the energetic electrons were 2 cm, both probes would
indicate the annulus to extend radially from an inner surface at a radius of 6 cm to an
outer surface ata radius of 12 cm. Since the strength of the vacuum magnetic field in
the region occupied by this annulus is roughly 0.7 T in the case shown here, electrons
with 1 cm gyroradius would have energies around 1.7 MeV.

Because the skimmer probes caused major perturbations to the hot-electron
plasma, these inferred values of the mean radius and thickness of the hot-electron
annulus were only regarded as semiquantitative. Subsequently, the diamagnetic
field produced by the plasma was measured at many closely spaced points along the
axis as well as outside the cavity using Hall probes. Although there is in principle no
unique set of currents corresponding to the measured magnetic fields, it was
possible to construct plausible spatial distributions of circular current elements that
were consistent with all of the diamagnetic measurements. This approach to
determining the spatial distribution of the hot-electron pressure was refined in
later investigations using guiding-center fluid models of the plasma equilibrium
rather than discrete current loops as the basis for computing the magnetic fields.
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In all cases, the annular structure of the hot-electron plasma was unambiguously
confirmed.

The reason for the annular hot-electron plasma in ELMO was not entirely clear. In
later experiments, notably Test Plasma by Microwaves (TPM) and SM-1, where
similar annular hot-electron plasmas were produced, it appeared that the annulus
formed at radii associated with second-harmonic heating. However, in ELMO the
radial profile of magnetic intensity was much flatter than that in the simple magnetic-
mirror fields, and the nonrelativistic second-harmonic resonance surface was just
barely inside the cavity and, therefore, at a significantly larger radius than the
annulus. Dandl speculated that the radial position of the annulus was probably due
to the conditions for cold-plasma stabilization of the flute-like modes of instability,
together with the local diamagnetic reduction of the magnetic intensity that would
permit second-harmonic heating of the relativistic electrons. The plasma current
distribution consistent with all magnetic measurements in ELMO yielded the
striking self-consistent magnetic field displayed in the upper half of the drawing
in Figure 8.8.

The contours of constant magnetic intensity form nested closed surfaces charac-
teristic of a magnetic well. In a sense, the annular hot-electron plasmas, often called
“ELMO rings,” acted as transparent magnetic coils. The possibility of using the
diamagnetic properties of these ELMO rings to stabilize a bumpy torus plasma
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Figure 8.7 Skimmer probe measurements of the radial thickness
of the hot-electron annulus in ELMO.

confinement device gave rise to the ELMO Bumpy Torus concept to be discussed
later [11].

83
Unstable Electromagnetic Waves in the TPM [12]

In the preceding sections, we have seen how experiments in PTF exhibited a type of
high-frequency microinstability when a threshold was exceeded that was plausibly
related to the temperature anisotropy of the warm-electron group. Later experiments
in ELMO showed that virtually all high-frequency instabilities could be suppressed by
UORH, resulting in large increases in the hot-electron density and the diamagnetic
stored energy. Experiments conducted in the TPM facility at the Institute of Plasma
Physics in Nagoya, Japan, under the direction of H. Ikegami, provided a relatively
detailed description of one type of high-frequency instability that could be triggered
in the afterglow of a pulsed ECH discharge, heated at 6.4 GHz, under circumstances
that were once again related to temperature anisotropy of the hot-electron component
of the plasma. This instability is of particular interest in that it led to large amplitude

153



154 | 8 Experimental Results in Magnetic Mirrors

MIRROR COILS
/MICROWAVE CAVITY

WITH
PLASMA

MOD-B CONTOURS l l
(KG) 12 12 WITHOUT
PLASMA

o 1 2 3 4 5 6
| S TR 15 Vi G [ O Y i o |

INCHES

Mod-B Contours for ELMO System with Plasma Profile
Derived from Diamagnetic Data.

Figure 8.8 Diamagnetic changes in the ELMO magnetic fields.

standing electromagnetic waves whose axial wavelength and frequency were mea-
sured directly in a series of experiments. The results have proven to be of interest not
only for their implications with regard to laboratory hot-electron ECH plasmas but
also for space plasmas.

We begin with some considerations that follow directly from the magnetic
configuration in TPM, a simple magnetic mirror with a mirror ratio of 3.4:1. The
plasma was contained in a cylindrical vacuum vessel whose center section was 40 cm
long and 30cm in inside diameter. A schematic diagram of TPM is shown in
Figure 8.9 and details of the magnetic field are shown in Figure 8.10.

The fundamental resonance surface, where B=2280G, lies just inside the end
wall of the cavity; and a second-harmonic resonance surface, where B=1140G,
extends inward to within 5-6cm of the axis on the midplane. Of particular
significance is the flux surface shown in Figure 8.10 that extends from the
second-harmonic resonance zone at the midplane to the “corner” of the vacuum
chamber, where the 30-cm ID section ends and the 10-cm ID sections begin.
Plasma formed outside this flux surface can escape much more rapidly than the
plasma inside it, and in this way the corner, together with the fundamental
resonance surface, acts much as a radial limiter. It also provides an effective
means for stabilizing flute-like instabilities by ensuring a low-impedance path for



8.3 Unstable Electromagnetic Waves in the TPM

MIRROCR COIL
MICROWAVE
INPUTS
l He GAS
SLIT FEED;
\ ’

\
a) - - s s

\ > =
e s P B R e S T

TO PUMP =— : H T HE 1 | P ” —=TO PUMP

VACUUM
TANK

f
MICROWAVE
INPUTS

MAGNETIC FLUX LINE
""" CONSTANT B CONTOUR

Figure 8.9 Schematic representation of the Test Plasma by Microwaves (TPM) Facility.

cold-plasma currents flowing along magnetic lines of force into the conducting end
walls just at the radial position where the plasma pressure gradient is at its most
negative value.

The magnetic lines of force are tangential to the second-harmonic resonance
surface at a radius on the midplane of approximately 6 cm. Consequently, second-
harmonic heating of warm electrons can be very rapid in this region where 0B/0s = 0.
This rapid heating will yield a high-temperature anisotropy, since the second-
harmonic resonance surface is at or near the midplane throughout the volume
inside the limiting flux surface. In effect, the second-harmonic heating in TPM
increases only the perpendicular kinetic energy of the warm electrons with negligible
change in their parallel kinetic energy. The axial extent of the second-harmonic
heating zone is only 5 cm at the limiting flux surface; the experimentally observed
length of the hot-electron annulus, 10cm, is about twice the separation of the
resonance zones. Under typical heating conditions, the hot-electron component
occupied an annular shell with an inner diameter of roughly 10 cm. The location of
this annulus was found to correspond with the innermost position of the second-
harmonic resonance surface; namely, the surface on which the magnetic intensity
was 1140 G. The ratio of the field at the second-harmonic resonance surface to
the field at the midplane in this heating zone does not exceed 1.06 so that
T,/T> (M —1)"" could exceed 15. The z-dependent hot-electron density described
in Chapter 6 is plotted in Figure 8.11 for T /T, =15 and with the mirror ratio set at
3.634, the value on the limiting flux surface of the second harmonic resonance zone.
The strong localization of the hot-electron population for z < 10 cm is evident.
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Figure 8.10 Detail of the TPM magnetic field showing the limiting
flux surface and the second-harmonic heating zone relative to the
vacuum chamber walls.

The characteristic gradient scale length of the magnetic intensity in the second-
harmonic resonance zone is

L=[0ln B/or| ' = 68 cm.

If the limit for adiabatic confinementis p,ax = (0.05-0.06)L = 3.4—4.1 cm, then the
maximum electron energy for adiabatic confinement is E, ., = 0.767-0.985 MeV, in
keeping with the experimental fact that no electrons with energies above 1 MeV were
observed. Note also that since the average hot-electron gyrodiameter was 2-3 cm, the
radial positions of the electrons cannot be localized more precisely than this. The hot-
electron annulus is, therefore, only a few gyrodiameters thick in the radial direction.

The composition of the afterglow plasma differs significantly from that of the
initial TPM plasma, which was generated by launching a 20-ms pulse of 6.4 GHz
microwave power at levels up to 5 kW from two waveguide ports, spaced 180° apartin
the radial wall of the stainless steel vacuum chamber, as indicated in Figure 8.9. This
initial plasma consists of the three groups of electrons discussed earlier: a cold-
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Figure 8.11 Axial distribution of hot-electron density in TPM.

electron component with a temperature of 20 eV and a hot-electron population with a
temperature of 100-150keV and a density around 10'°cm >. We can infer the
existence of a warm-electron component with a temperature around 10 keV from the
5 ms decay time observed following the end of the heating pulse, when roughly 80%
of the initial plasma was lost. Since the experiments were typically conducted at a
helium pressure of 2.5-3 x 10~ *Torr, corresponding to a neutral density of roughly
9x 10 cm >, 5ms would be the Coulomb scattering time for 12keV electrons,
keeping in mind that InA ~ 10 for these neutral dominated plasmas. The corre-
sponding decay time for the 100 keV hot electrons is in excess of 100 ms. Recall that it
is the population of warm electrons, sometimes called “feed electrons,” that supplies
the hot-electron group.

After the decay of the warm-electron component, the afterglow plasma contains
only two groups of electrons: the 100-150keV hot electrons with a density around
Nes3 ~ 10" cm™3, and the cold electrons with density n,, resulting from the ionizing
collisions of hot electrons with helium atoms. Since there is no microwave heating of
the afterglow plasma, the cold electrons remain at their initial temperature and exert
negligible pressure on the cold ions. We can extrapolate data from McDaniels
et al. [13] on scattering of He ions in helium gas to lower energies and estimate
the corresponding cross section to be less than 10~ '* cm?; this will result in the mean
free path for scattering of the He ions to be roughly 10 cm. We, therefore, discount
the possibility of diffusion and assume that cold ions drift out of the vacuum
chamber with their thermal speed, 1.1x10°cms ', corresponding to their
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temperature, 1/40eV. The loss time is thus given by
T~ 20cm/(1.1 x 10° cm/s™ 1) ~ 200 us.

Following the rapid loss of hot electrons resulting from a burst of instability, the
cold plasma was indeed observed to decay in roughly 200us, supporting our
assumptions regarding cold-plasma transport in the afterglow. With this model, we
can readily estimate the relative cold-plasma density as

Ne1 /ne3 =1, <Gi0nVe>3T1

We display a plot of n.;/n.; versus the helium pressure, po, in Figure 8.12.

Note that for py around 2.5-3 x 10~ *Torr (0.25-0.3 um), the typical operating
range, the relative cold-plasma density is predicted to be ne;/n.; ~ 10, as observed
experimentally.

The high-frequency instability studied in TPM occurred spontaneously under
some conditions at pressures below 10 *Torr, and could be triggered artificially for
pressures ranging from (1-8) x 10~ * Torr by injecting a short pulse of 6.4 GHz power
from 1—50 ms after the end of the main heating pulse. At pressures above 8 x 10™*
Torr, it was not possible to trigger the instability. Typically the triggering pulse would
have a duration of a few tens of microseconds with a power level less than 100 W. The
microwave radiation associated with the occurrence of the instability took the form of
standing electromagnetic waves with an axial wavelength, A =19 cm and a funda-
mental frequency f = 2.1 GHz, corresponding to an index of refraction n = 0.75.

—r
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v
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helium pressure in microns
Figure 8.12 Relative cold-electron density in the afterglow plasma in TPM.
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To interpret this instability theoretically, the TPM scientists identified the growing
wave as a whistler while recognizing the apparent discrepancy between the observed
wavelength and that predicted by the customary whistler dispersion relation. At one
point, they suggested that because of the presence of nearby conducting vacuum
chamber walls, the observed standing wave was possibly a cylindrical waveguide
eigenmode. The following alternative explanation may be more plausible.

If the waves are constrained by the conducting boundaries to propagate along the
axis of the chamber, their propagation cannot be exactly parallel to the magnetic lines
of force — this is because the field lines passing through the hot-electron annulus
region are inclined at an average angle of 10° to the axis. Waves propagating at even so
small an angle from parallel are no longer purely left- or right-circularly polarized, but
instead contain a mixture of all three components. Indeed, if the plasma density
varies along the magnetic lines of force, the polarization can change substantially and
even reverse at the O-mode cutoff. We illustrate this “cross-over” phenomenon [14] by
plotting the fast- and slow-wave indices of refraction against the density-related
parameter, 0,/ over the experimental range of interest in TPM for 6 =10°.

Everywhere except in the neighborhood of the O-mode cut off, w,./® = 1, the two
waves have indices of refraction that are close to the corresponding values for parallel
propagation. Butat @,./® = 1, the fast wave is cut off while the slow-wave index drops
to unity, the free space value, and then merges with the 6 =0 fast-wave index of
refraction. Just above a narrow interval of evanescence, the former fast wave resumes
propagation with approximately the 6 =0 whistler index of refraction.

The polarizations of the two waves undergo a related change near cutoff: if
®pe/® <1 or >1, the slow wave is predominantly right-hand and the fast wave is
predominantly left-hand circularly polarized; but in the neighborhood of wpc/w =1,
the relative amplitudes of the right- and left-hand components change to match
the reconnection of the slow wave to the fast wave. The slow wave emerges from the
crossover as a mainly left-hand fast wave and the fast wave reappears after the
evanescent interval as a mainly right-hand slow wave. We conclude that in a plasma
where the density varies along the magnetic field, the two waves are likely to be
coupled unless they can propagate exactly parallel to the magnetic field.

As mentioned earlier, the frequency and wavelength of the electromagnetic
standing wave observed in the TPM afterglow experiments were 2.1 GHz and 19 cm,
corresponding to an index of refraction of 0.75. From Figure 8.13, we see that this is
the index of refraction for a fast wave propagating at an angle of 10° in a plasma whose
density is such that ®p/® = 1.1, which in this case is a density of 6.5 x 10'° electrons
cm . Under the same conditions, the slow-wave index of refraction is 2.25. From the
discussion in Chapter 7, we can evaluate the anisotropy parameter, A, and the
frequency for maximum growth rate, X,

A= (T./T—-1)n(oy /c) = 4.725

Xmax = [1+ (1+2A%)"%]/(2A) = 0.82
leading to

Opax/Q = 0.78;
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Figure 8.13 Indices of refraction for the cold-plasma
electromagnetic waves in TPM versus the ratio of plasma
frequency to wave frequency for ®/Q=2/3.

and since Mpa/Qo = (1/7)Omay/2, the observed and predicted frequencies are equal
fory=1.17, or electron energies of 90 keV, in reasonable agreement with the 100 keV
observed in the experiments.

These experiments illustrate an important point regarding the assumption that the
waves of interest propagate in finite-size systems as though they were propagating in
an infinite homogeneous plasma immersed in a uniform magnetic field, sometimes
referred to as the quasioptical assumption. For the waves in TPM, as in many small,
low magnetic-field experiments, wavelengths are comparable to the dimensions of
the system and cavity eigenmodes are a more realistic model than plane waves.
Nonetheless, the conditions for optimum energy transfer between the wave and the
plasma remain valid.
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8.4
Heating Experiments in AMPHED [15]

In 1988-1989, Quon and Dandl [16] carried out a series of experiments designed to
elucidate different heating dynamics underlying three distinct ECH methodologies,
namely, high-field launch whistler-wave heating, low-field launch O-mode heating,
and UORH. These experiments demonstrated how ECH could be used for prefer-
ential heating of particular classes of electrons in plasmas containing two or more
groups of electrons with different average energies.

The experiments were performed in the AMPHED facility using a 2 : 1 magnetic-
mirror configuration with a 60-cm long center section in which the magnetic field
was essentially uniform. The DC current energizing the magnetic coils could be
adjusted precisely to place the resonance surface at selected positions in this
magnetic field. The ratio of the magnetic intensity on axis, B(z), to the current in
the coils, I, is displayed in Figure 8.14.

Whistler waves were launched by a 800 W, 2.45 GHz commercial microwave
oven coupled into the high-field region at the mirror throat using a dielectric-loaded
C-band waveguide terminated in a tapered Teflon slab. The local wavelengths of the
resulting waves were evaluated by measuring the spatial correlation function E(z)cos
[k(z)z] at closely spaced points along the axis of the magnetic field. In the presence of

e i e S o S S 4+

B(0,2)/1 (Gauss/Amp)

0 10 20 30 40 50 60 70

z(cm)
Figure 8.14 The ratio of the magnetic field on axis to the coil
current in the “flat-field” configuration of AMPHED.
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over-dense plasmas with n.~ 1.5 x 10" cm > the index of refraction inferred from
the measured wavelengths ranged from 3.7 ata point where Q/® = 1.6 to 10.2 where
Q/w=1.275. These values are consistent with those predicted by the cold-fluid limit
of the whistler-wave dispersion relation for o)f,e /®? 22 10—20. The wave amplitude
was observed to decrease as the wave approached the resonance surface and was
unobservably small beyond resonance.

We can account reasonably well for the experimentally observed values of electron
density and temperature using the particle and power balance model described
earlier in Chapter 6. For argon gas, the model predicts a minimum pressure above
which equilibria can exist given by the condition p,L > 3.3 x 10~* Torr cm, where L,
the half length of the plasma column, is approximately 41 cm in the AMPHED
experiments cited here. Thus, for pressures greater than 8 x 10~ °Torr the electron
temperature is predicted to decrease from roughly 25 eVat 0.01 mTorr to roughly 4 eV
at 0.1 mTorr. The predicted electron temperatures agree with the experimental results
obtained by Quon and Dandl [16] in the pressure range between 0.01 and 0.1 mTorr.
However, the theoretical model predicts values of the electron density that are
somewhat higher than the experimental values if it is assumed that all of the incident
800 W of microwave power is absorbed by the electrons we have labeled as “Group 1.”
The discrepancy suggests that some fraction of the incident power, perhaps as much
as 20%, is lost through processes not included in the Group 1 particle and power
balance model.

Quon and Dandl [16] used a multigrid energy analyzer to measure the distribution
of electrons in parallel energy at a point where the magnetic intensity was reduced
locally to 600 G. If the magnetic moment and total energy are constants of the electron
motion, the distribution in parallel energy can be related to a distribution in
perpendicular energy. The experiments revealed two distinct groups of electrons:
a low-energy group with pressure-dependent temperatures similar to the tempera-
tures determined by the Langmuir probe measurements; and a higher temperature
group whose average parallel energy was between 50 and 70 eV and independent of
pressure. At the resonance surface, the perpendicular energy of these electrons was
estimated from the adiabatic invariance argument to be between 160 and 220 eV.
Since none of these electrons would have been reflected from the grounded energy
analyzer structure, Quon and Dandl [16] concluded that these electrons had gained
roughly 200 eV of perpendicular energy in a single pass through the resonance layer.
Moreover, these energetic electrons were shown to play a critical role in producing the
over-dense plasma observed when the ambient gas pressure exceeded a value
somewhere between 0.2 and 0.3 mTorr.

The condition under which the energetic electrons have an ionizing collision with
an argon atom before they return to the resonance surface that is illuminated by
microwave power is n,o;vt > 1. Here n, is the density of argon atoms, o; is the cross
section for electron impact ionization of argon, v is the speed of the energetic
electron, and 7 is the time for the electron to make one complete bounce through the
magnetic mirror. For these experiments, the magnetic intensity in the 60-cm long flat
field region was 732 G and the (parallel) velocity in this region is given by

V)| = [(2e/m)(1-732/875)]"/* = v(1-732/875)"/".
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We approximate the average parallel velocity in the 11 cm long regions between
the resonance surfaces and the flat-field region as half of the value in the flat field
region. In this way, we estimate 7= 208 cm/v); and vt = 208 cm v/v|;. The ionization
cross section in this energy range is approximately 3 x 10~ '®cm?” giving for our
critical condition

n, > 6.5 x 102 em™? or P, = 0.2mTorr,

in good agreement with the experiment.

We can estimate the fractional density of the fast-electron group if we assume that
they provide most of the ionization to sustain the high-density (thermal) plasma in
steady state:

Ne fa5tNoOiVfast ~ Ne thermal / Tthermal

As before, we assume that the thermal electron lifetime is given by the half length
of the plasma column and the ion acoustic speed:

Tthermal = L/ Cg

With these assumptions, we find that the required density of fast electrons is about
1% of the total density:

Ne fast ~ 1.6 X 10" cm 3

Our earlier discussion in Chapters 4 and 5 regarding the absorption of whistler
waves and the heating of individual electrons suggests a plausible explanation for the
source of the fast electrons. Recall that the onset of damping of the whistler wave
propagating along the magnetic field toward the resonance surface was determined
by electrons in the tail of the energy distribution of the thermal electrons with
velocities antiparallel to the wave vector: ® — kv = Q. These electrons resonate with
the wave before it has been heavily damped by the bulk of the thermal electron
population and consequently may be given disproportionately larger energy incre-
ments. We can estimate the maximum energy these electrons can gain in a single
transit through the resonance layer using results from the analysis presented in
Chapter 5.

Since k; =0 for the whistler waves, the time-averaged change in the electron’s
perpendicular energy after a single transit of the resonance layer is predicted to be
given by [17]

AW, = G?/mc*~G cos 0,1 (0)/c,
where
G = eE  tegc/2.

We can estimate E; from the Poynting vector as in Chapter 4, using the
experimental value of the index of refraction, n:

El = (P/A)/(gocn),
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where P =800 W is the incident microwave power and A is the area of the resonance
surface. In the flat-field region, B=732G and r=15cm in these experiments.
Therefore at the resonance surface where B=2875G, we estimate that the area
of the resonance surface is approximately A =m(15cm)?*(732/875) =591 cm? If
n=3.8 we find E, =11.6 Vem .

To estimate the duration of resonance, t., we assume that the electrons gaining
the greatest energy are turning just beyond the resonance surface so that

teir = 2[(37/2)/ V" (tes) |

where

V' (tes) & [(dvy /dt) (dQ/dz)]

res”®

Assuming m(dv)/dt)es = 1W(0B/0Z)res = €(0INB/0z) es With Qs = 2ntf, we find
V' (tes) ~ 21f (8/m) /L3.

We estimate that the magnetic scale length at the resonance surface is Ly = 34 cm
in these experiments and the microwave frequency is 2.45 GHz. The thermal
electron temperature at the higher pressures where over-dense plasmas are formed
is around 4 eV, but we are concerned here with electrons in the tail of the thermal
energy distribution. In fact, if the relative density of fast electrons is about 1% of the
thermal population, we are lead to estimate that € = (1.82)* x 4eV ~ 13 eV giving an
estimated value for the duration of resonance t.g~5 x 10~ %s. Finally we obtain
G~ 8700€eV so that AW | =148 eV — 62 eV cosd,es OF

86eV < AW, < 210eV

in reasonable agreement with the experimental result that the maximum value of
AW | was between 100 and 200¢€V.

Although coherent bursts of energetic electrons resulted from whistler-wave
heating when the resonance zone was in the uniform magnetic field region, no
relativistic electron plasmas could be formed with high-field launch, whistler-wave
heating. On the other hand, launching microwave power with the O-mode polari-
zation in the low-field region at the midplane of the magnetic mirror produced
plasmas with substantial populations of electrons having energies in the range of
30-150keV. The generation of these relativistic-electron plasmas was found to be
optimal under two different conditions of magnetic field strength; namely, with DC
currents in the field coils between 110 and 130 A and also between 180 and 200 A. For
coil currents of 120 A, the fundamental resonance surface is roughly 52 cm from the
midplane and near the position of the mirror throat at 59 cm. Relativistic electrons
with Y =1.12456, corresponding to a kinetic energy of 64 keV, would then experience
second harmonic resonance in the uniform field region. For coil currents of 190 A,
the (nonrelativistic) fundamental resonance is around 39 cm from the midplane and
less than 10 cm from the uniform field region.
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In the course of these experiments, the heating rate of electrons with energies below
1.56 keV was measured by exploiting the large difference between the electron bounce
frequency and the much slower azimuthal drift, as discussed in Chapter 3. A probe
inserted radially inward from the surface of the plasma will “skim” off the outer layer of
plasma, since the rapid bounce motion ensures that all electrons will be intercepted by
this “skimmer probe” before their precession carries them azimuthally past the probe.
Quon and Dandl used a fixed skimmer probe to collect all electrons with radial
positions greater than 12cm and then used an azimuthally movable ionization
chamber probe, whose sensitive element was in the radial interval intercepted by
the skimmer probe, to record the azimuthal flux of electrons with energies greater than
1.56 keV-the threshold energy of the detector. The signal from the detector showed an
onset at an angle of 230° with respect to the skimmer probe, permitting the following
plausible albeit approximate unfolding of the average electron heating rate (dW/dt).

The azimuthal guiding center drift speed was given in Chapter 3 by Eq. (3.32):

Vige = (W) + W.)VB x B/(eB?),
which we approximate as
rde/dt ~ W/(eBR.) ~ [W, + (dW/dt)t]/(eBR,).

Thus, the time-dependent azimuthal displacement will have the form
Ab = 0(t)—0, = [Wot+ (dW/dt)t*/2]/(eBrRy).

The electron energy at the conclusion of this azimuthal displacement is
W =W, + (dW/dt)t.

In this way, Quon and Dandl estimate the heating rate in the low-field launch
experiments in AMPHED to be 60 MeVs™'. Since the density of the relativistic
electrons in these experiments is around 10'® cm ™, one can estimate that the power
(density) absorbed by these electrons is roughly 0.1 W cm . The incident 2.45 GHz
power is only 800 W and the total volume of the AMPHED cavity is 571, suggesting
that the power is not distributed uniformly throughout the cavity, but rather is
concentrated in the local region where the experimental measurements were made.
Accordingly, Quon and Dandl hypothesized that the plasma filled cavity acts as an
open resonator in a whispering gallery mode, an effect that they then demonstrated in
an atmospheric pressure mock up. The observed heating rate is consistent with an RF

electric field strength E, ~35Vcem ™.
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B Exercises

8.1.

8.2.

8.3.

Consider the instability observed to occur in PTF with a
frequency of 5.3 GHz when the mirror ratio to the resonance
surface was less than 1.27. Assume that the hot-electron
temperature anisotropy satisfies our estimate that

T /Ty> (Mes— 1) "~ 4.

(a) If the free energy of the anisotropic hot electrons is
transferred to electromagnetic waves propagating in the
whistler mode, what is the marginally stable frequency
relative to the electron gyrofrequency on the midplane
and to the heating frequency?

(b) If Ty=20keV, T, = 80keV, and w,./o = 0.9, what is the
frequency for which energy transferred to the waves is at
its maximum rate?

(c) Is it possible for energy to be transferred to
electromagnetic waves propagating in the O-mode?

Calculate the polarizations of the two waves whose indices of
refraction are shown in Figure 8.13 for w,./w = 0.6, 0.8, 0.9,
1.1, and 1.2.

Consider the two-frequency heating experiments in ELMO
using 35.7 GHz and 55 GHz power with B(0,0) = 8300 G
and the mirror ratio equal to 2. The minimum and
maximum magnetic intensities for good confinement are
then given by B, ~ 0.664 T and B,,,,= 1.66 T. Calculate
the range of relativistic-electron energies (in terms of y) for
which the 55 GHz power can resonate at then =2, 3, 4, 5, 6,
7, ... harmonics of the electron gyrofrequency. Show that
for y > 1.4, there are three or more pairs of resonance
surfaces for this UORH power present simultaneously in the
confined region.
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9
Electron Cyclotron Heating in Tokamaks

In this chapter, much as was discussed in Chapter 8 for magnetic-mirror confined
plasmas, we summarize a number of electron cyclotron heating (ECH) experiments
in tokamaks that can be interpreted using theories that were presented in earlier
chapters or that suggest directions for further development of the theory. As was
discussed in Chapter 4, the condition under which microwave power coupled into
O-modes propagating perpendicular to the static magnetic field can illuminate the
resonance surface in tokamaks is simply that the electron density should be less than
the O-mode cutoff value as specified by the condition (11)127e < @?. If this condition is
satisfied, O-modes can reach the fundamental resonance surface if launched from
either the low-field or the high-field side. Since low-field launched O-modes entail
fewer technological difficulties, it has generally been considered the preferred
approach for many applications of ECH, especially in large tokamaks. Accordingly,
we begin this chapter with an experimental study of O-mode absorption in the
Princeton Large Torus (PLT).

9.1
Ordinary-Mode Fundamental ECH Absorption in PLT

The PLT [1] was a conventional circular cross-sectional tokamak with major and
minor radii of 132 and 40 cm, respectively. The experiments described in Ref. [1]
utilized a low-power 71 GHz klystron microwave transmitter and heterodyne
receiver. The corresponding critical electron density for O-mode cutoff is n. = 6.25
x 10" cm™ and the magnetic intensity for fundamental resonance is 25.36 kG.
The low-power microwave beam was launched from the high-field side on the
equatorial plane of the torus and the transmitted power was received at the opposite
point on the low-field side. The location of the resonance surface, .., was varied
from shot to shot by varying the magnetic intensity, B,, on the axis of the torus,
where R=R,: I1es = Ro[(Bo/Bres) — 1]-

The fraction of the incident microwave power transmitted through the plasma
is expressed in terms of the optical depth, 1, defined in Chapter 4: P,/P; = exp(—1).
In the PLT experiments, much of the incident power is refracted away from the
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receiving microwave horn by the plasma rather than being absorbed at the resonance
surface. The magnitude of these refraction losses was determined experimentally by
lowering the central magnetic intensity to 16.8 kG, thereby moving the resonance
surface outside the plasma column. Typically, at least half of the transmission losses
were found to be due to refraction with higher refractive losses at the lower central
magnetic intensities.

To interpret the experimental results in terms of the theory of O-mode absorption,
such as that derived in Chapter 4, it is necessary to know the electron density and
temperature at the resonance surface. In the PLT experiments, these were obtained
from laser Thomson scattering measurements of the radial profiles of density and
temperature. Following the authors of Ref. [1], we compare the measured values of
the optical depth with the values obtained from Eq. (4.25):

T= Jzkidx = (1/2) (0%, /0?) (1-0% /0?) "} (0? /2¢%) (/)L

For an isotropic Maxwell-Boltzmann electron distribution, the average kinetic
energy of the electrons is (3/2)mo®/2 = 3/2KT. so that o*/2c” = KT./mc?, where k is
Boltzmann’s constant. We will generally express T, in energy units and omit the
factor k. For tokamaks, the scale length, L, characterizing the rate of spatial variation
of the magnetic field is the major radius, R,,. We display the experimental results and
the corresponding calculated values of the optical depth in Table 9.1.

The data were collected during two separate experimental runs and are presented
separately in the table. It is clear that the experimental and calculated values of the
optical depth are in reasonable agreement. Although the two different experimental
runs give slightly different radial profiles for the optical depth, both runs indicate that
1>1 only in the core of the plasma column; i.e., for 1, <10cm. One might
anticipate that because only the core of the plasma is optically thick, it would be
only the core of the plasma that would radiate as an ideal black body. In fact, the

Table 9.1 Experimental and Calculated Values of the Optical Depth.

B, (kG) Fres (€M) Teres (€V) Nees (X102 cm™ Texp Ton

Experimental results Calculated values
19.1 —2.58 160 0.384 0 0.057

20.2 —26.86 293 0.716 0.09 0.191

21.5 —20.09 240 0.7 0.11 0.153

23.8 -8.12 647 1.09 0.38 0.619

24.9 -2.39 900 1.32 0.876 1.019

21.5 —20.09 270 1.30 0.3 0.302

22,6 —14.37 416 0.96 0.33 0.3547

24.2 —6.04 760 2.59 1.49 1.454

25.0 —1.87 850 2.7 1.89 1.67
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experiments in PLT demonstrated that when the microwave power was switched off,
the entire plasma column radiated as a black body at the fundamental electron
gyrofrequency. Consequently, by sweeping the receiver frequency repeatedly in time,
the electron cyclotron emission could be used to measure the radial profile of the
electron temperature as it evolves in time during a discharge. The rationale for this
conclusion, which is supported by independent measurements of the electron
temperature profile, is as follows.

The variation in the intensity of radiation, S, along a ray passing through a slab of
plasma and entering the detector is given by

dS/ds = —aS +&,

where the emissivity, &, and the absorptivity, o, are related by Kirchoff’s law to the
black body intensity, Spy:

& = oSy,

Using Kirchoft’s law, we then have
dS/ds = —a(S—Spp), or dln(S—Sy,) = —oads.

Integrating from an initial position x; to a final position x; gives
S(x¢)—Spb = [S(xi) —Spp]exp(—1).

In the absence of reflected radiation, we would set S(x;) =0 to obtain
S(x¢) = Spp[1—exp(—1)].

Clearly, if ©>> 1, the radiation intensity at the final position will be given by the
black body value; but if T < 1, as is the case in PLT except in the core of the plasma,
the radiation intensity will be much less than the black body value. If, however, some
fraction, b, of the radiation is reflected from the stainless steel vacuum vessel, then
the intensity at the initial position will be S(x;) =bS(x¢) and the intensity at the
detector will be S(x¢) = Sy [1 — exp(—T)]/[1 — b exp(—1)], and if b ~ 1, the intensity of
radiation reaching the detector can closely approximate the black body value. In the
frequency range around the fundamental electron gyrofrequency, Sy, follows the
Rayleigh—Jeans law to a good approximation:

Sbb = co21<Te/(81t3c2).

Efthimion et al. [1] concluded that b=0.95 in PLT and thus the power reaching
their detector is proportional to T.Af, where Af is the bandwidth of the receiver. By
suitably calibrating the receiver and sweeping the receiver frequency in time, they
were able to obtain useful space- and time-resolved measurements of the electron
temperature. This diagnostic use of electron cyclotron emission is now widely
employed in tokamak experiments, together with other corroborating measurements
of the electron temperature profile.
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9.2
ECH-Assisted Start-up in Tokamaks

In conventional tokamaks, each discharge is initiated by inducing an electric field in
the toroidal direction that first ionizes the gas in the vacuum chamber and then drives
the (toroidal) current that generates and sustains the poloidal magnetic field.
The electric field strength required to break down the gas is typically around
0.5 V/m for initial gas pressures around 3 x 10> Torr. In JFT-2 [2], for example, the
loop voltage required for reliable breakdown is 20 V. The major radius of JFT-2 is
90 cm, and if the loop voltage for breakdown is proportional to the major radius as
expected, then it could approach or exceed 150V in future large tokamaks such
as International Thermonuclear Experimental Reactor (ITER) [3], whose major
radius has a design value of 6.2m. The requirement of a large voltage spike to
initiate the plasma in such large tokamaks leads to problematic design constraints.
The walls of the vacuum vessel must be made strong enough to withstand the forces
caused by disruptions of the plasma current with the resultant collapse of the poloidal
magnetic field. Additionally, if there are no insulating gaps in the vacuum vessel, as is
the case for ITER, the electrical conductivity of the wall is high enough to slow the rate
at which the voltage diffuses through the walls, limiting the induced electric fields to
values aslowas 0.3 Vm . The resulting start-up may be less reliable than is required.

It has been widely recognized that ECH could provide an effective means for
significantly improving tokamak start-up, and as suitable microwave sources became
available, experiments were undertaken to explore the possible advantages of
ECH-assisted start-up. In DIII-D [4], for example, the standard start-up (without
ECH) required a loop voltage around 10 V; the corresponding toroidal electric field in
the center of the plasma is nearly 1 Vm ™. With 650-850 kW of ECH power injected
into the chamber, reliable breakdown could be achieved with induced electric fields as
low as 0.15 Vm ™ L. Moreover, reliable breakdown was achieved over a wider range of
initial gas pressures and with less sensitivity to magnetic error fields. The DIII-D
experiments employed X-modes launched from the high-field side and propagating
at oblique angles with respect to the static magnetic field. Other experiments using
various polarizations and launch geometries achieved similar results, namely,
significant reductions in the loop voltage for breakdown and an increased range of
initial gas pressures over which reliable breakdown resulted. Experiments were
undertaken in the TCA tokamak [5] to determine the differences between X- and
O-mode breakdowns in tokamak plasmas and how any such differences might affect
the subsequent start-up. These TCA experiments provided several useful insights
into the phenomenology of ECH-assisted breakdown and start-up, particularly as
regards the role of the upper hybrid resonance.

The salient features of the TCA tokamak are major and minor radii, R, =61.5 cm
and a=18cm with a maximum toroidal magnetic field B, =16 kG. The induced
toroidal electric field is driven by an air-core transformer and the vacuum vessel has
two insulating gaps. Typically, up to 125 kW of 39 GHz power could be delivered to the
vacuum chamber by a beam with less than 1.5% cross-polarization and reflected into
the plasma region by means of an ellipsoidal stainless steel mirror. The resulting
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microwave beam had a diameter of 7 cm on the axis of the tokamak. Although the
mirror could be tilted to launch the microwave beam at oblique angles with respect to
the toroidal magnetic field, no significant effects on breakdown were observed, and
consequently, the published results utilized injection perpendicular to the magnetic
field. The diagnostics for determining the spatial and temporal properties of
the breakdown consisted of a 100-channel H,, camera, an optical spectrometer, and
a five-channel microwave interferometer. The data acquisition rate for the three
systems ranged from 1.5 to 10kHz, providing better than millisecond temporal
resolution. In fact, the H,, camera measured the horizontal H, emission profile every
650 us with a spatial resolution of 4 mm in the equatorial plane of the tokamak. In
order to make the external conditions similar for both launch modes, the polarization
was alternated from X- to O-mode between successive shots.

A comparison of breakdown initiated by X- and O-mode polarizations shows
striking differences in the first-pass absorption and the breakdown location. After
roughly 800 us, the X-mode polarization yields localized visible emission profiles
indicating a relatively high first-pass absorption before the microwave beam is
scattered by the vacuum chamber walls. This localized absorption appears to take
place at the upper hybrid resonance, not at the cyclotron resonance surface. In
contrast, the O-mode polarization yields much broader visible emission profiles
indicating very weak first-pass absorption and multiple, polarization-changing
reflections from the vacuum chamber walls. Absorption does occur at the cyclotron
resonance surface, but to a much lesser extent than at the upper hybrid resonance.
The electron density produced by the O-mode polarization is roughly 60-80% of
that produced by an equal amount of microwave power in the X-mode polarization.
There is also evidence from impurity radiation that the O-mode polarization
produces a higher influx of impurities, assumed to be due to the greater microwave
power dissipated in the vacuum chamber walls compared with the X-mode polar-
ization, for which the plasma itself absorbs most if not all of the incident microwave
power. Apart from these differences, both launch polarizations show that a dominant
role is played by the upper hybrid resonance in transforming the incident microwave
power into energy density in the plasma. We shall consider this process in greater
detail shortly, but first we examine the equilibrium properties of the breakdown
plasma in light of the fundamental processes discussed in earlier chapters.

It has long been recognized that the VB x B drift of electrons and ions in the
inhomogeneous magnetic field of the torus would polarize the breakdown plasma
and produce an electrostatic field which would, in turn, give rise to an E x B flow of
plasma ions and electrons along the equipotentials of the polarization field into the
low-field side of the torus. In TCA, the polarization of the breakdown plasma, initially
formed at the cyclotron resonance surface, and the resulting flow of the plasma into
the low-field side of the vacuum chamber appear to take place in less than 1 ms. After
this initial expansion of the breakdown plasma, the H,, emission contours remain
relatively constant throughout the remainder of the microwave pulse with no
evidence of macroscopic instability.

The average electron temperature and density during the microwave pulse can be
deduced from the ambient gas pressure and the microwave power using the Point
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Model from Chapter 6. In steady state, the balance between the ionization rate and
the loss rate of charged particles requires that n,(GionVve) = T, 1. Here, n, is the
density of hydrogen molecules, (GjonVe) is the ionization rate constant, and 1! is the
(ambipolar) rate at which ions and electrons are lost from the plasma region. The
ionization rate constant can be evaluated using the following expression [6]:

(GionVe) = 371 x 10~ cm® s lexp(—15.6/Te)T/2(15.6 + Te)

x{Te/(15.6 +20T,) +1n[(19.5 + 1.25T.)/15.6]}, (9.1)

where T, is in eV. We shall assume that the dominant loss process is ambipolar flow
at the ion sound speed along magnetic lines of force that intersect the limiter
because of magnetic error fields. These stray magnetic fields are especially likely in
tokamaks like TCA that employ air-core ohmic heating transformers. The loss rate
will thus have the form 1, ! = ¢y/L, where ¢, = (2T./M)"/%. The distance along the
perturbed magnetic field line to the limiter is not given in Ref. [5] and so we
assume that L is equal to the outer circumference of the torus on its equatorial
plane: L=2m(61.5 + 18) cm =500cm. As shown in Chapter 6, the electron tem-
perature is determined by the ambient neutral gas pressure through the condition
that n,L = (2Te/M)"?/(GienVe). With L=>500 cm and n,=1.06 x 10"*cm * corre-
sponding to the initial fill pressure 3 x 10> Torr of hydrogen gas, we employ
Eq. (9.1) and find the predicted electron temperature to be T, = 10.7 eV, the ionization
rate constant to be 8.538 x 10 °cm’s ™", and the ambipolar lifetime to be 1,=
1.1 x 10~ *s, dependent only on the initial fill pressure.

In the point model, the electron density is determined by the power balance
condition which we can express as (P,) =n.Wion/Tp, where (P,) is the average
microwave power per cubic centimeter deposited in the plasma and Wi, is the
energy required to form an ion—electron pair. Following the discussion of Chapter 6,
we estimate that W;=30eV for electrons with T.=10.7eV in hydrogen gas.
Whaley et al. [5] give (P,) =0.32 W cm 2 for an injected microwave power of 125 kW.
For the striking experimental results shown in Figure 9 of Ref. [5], the total microwave
power was 80 kW, so that to interpret those results, we set (P,) = (80/125) x 0.32
Wem 2 =0.2Wem ? for the X-mode polarization. The resulting density predicted
for this case is

ne=02Wem> x 1.1 x 107*5/30eV = 4.6 x 10" cm>.

The square of the electron plasma frequency for this density is 0)1%,e =
1.464 x 10*2 572, The frequency of the microwave power is 39 GHz, so that ®? =
6.005 x 10%* s~2. At the upper hybrid resonance, ®] = @2, + Q7 therefore, the
electron gyrofrequency at the upper hybrid resonance must be Q=
(u)f)fwf,e)l/ 2 =2.13 x 10" 57! corresponding to a magnetic intensity at the upper
hybrid resonance of 1.212 T. Since B,=1.38 T in these experiments, the radial
position of the upper hybrid resonance is predicted to be at x=r/a = 0.475, in good
agreement with the experimental value shown in Figure 9 of Ref. [5].

O-modes do not experience upper hybrid resonance, and power launched in the
O-mode polarization must undergo repeated polarization-changing reflections from
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the vacuum chamber walls if it is to be absorbed at the upper hybrid resonance. The
apparent location of this resonance for power injected with the O-mode polarization
is at x=r/a=0.3, where the magnetic intensity is 1.269 T, giving a local electron
gyrofrequency of Q=2.23 x 10" s~ '. The corresponding density for upper hybrid
resonance is n.=3.23 x 10">cm >, and based on the point model, the average
microwave power density absorbed in this case is 0.14 W cm > or roughly 70% of the
power density absorbed in the X-mode polarization. The remaining power is
assumed to be dissipated in the walls of the vacuum chamber. This estimate of the
power absorbed when the power is launched with O-mode polarization agrees well
with the statement from Ref. [5] that “X-mode launch is seen to produce 20-40%
higher average densities than O-mode launch.”

We next consider possible mechanisms by which the incident microwave power is
absorbed by the plasma. In the experiments reported in Ref. [5], this absorption
appears to take place very close to the upper hybrid resonance surface. Recall that in
Chapter 4, it was shown that the polarization of X-modes propagating toward the
upper hybrid resonance becomes longitudinal at the resonance. That is, the electric
field of the wave is parallel to the direction of propagation, k, and is thus given by
E=—V®=—ik® and governed by Poisson’s equation: V-E=ik-E=k*®=p/e,.
At the upper hybrid resonance surface, the electrons oscillate along k at the wave
frequency. This oscillating layer of electrical charge can excite any electrostatic
waves that can propagate at the driving frequency. If the amplitude of oscillation
is great enough, it can excite pairs of electrostatic waves through nonlinear paramet-
ric decay processes. In this case, the sum of the frequencies of the driven waves
must equal the driving frequency. We first consider the linear regime.

Any electrostatic waves excited by the oscillating charge layer at the upper hybrid
resonance surface can be described by the Harris dispersion relation discussed
earlier. The general form of the Harris dispersion relation is [7]

1= mﬁ/kzz Jd3v]fl (leL/Q)(kHafo/aVH + nQVIlafo/avl)/[kHvH—(a)—nQ)].
(9.2)

The sum over n is from n = —o0 to co. In general, the right-hand side would be
summed over all species of charged particles comprising the plasma; but for
frequencies around the electron gyrofrequency, we can consider the ions to be
infinitely massive and their contribution then vanishes. If k = 0 and the equilibrium
has an isotropic Maxwell-Boltzmann distribution function, then Eq. (9.2) reduces to
the Bernstein dispersion relation [8]

Dp = 1-2[02/ (K0?)] Y 2e " L(M)[(0/nQ)*~1] ! = 0. (9.3)

Here the sum over nis fromn = 1 to co. For the same isotropic Maxwell-Boltzmann
distribution, f , and again omitting the sum over all plasma species, the Harris
dispersion relation, which is valid for k;; # 0, becomes

DIS = 1+2(w /K o) {1+ (0/kj0)Ze M, (M) Z[(0-nQ) /kjo]} =0, (9.4)
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where A = k? o? /2Q?, 1,()) is the modified Bessel function, o is the electron thermal
speed, and Z is the plasma dispersion function. As we saw earlier, in the cold-fluid
limit, the real part of Eq. (9.4) reduces to

Re DIS = 1— (0} /@) (kj /k*) — [0}/ (0*—Q%)] (k% /K*) = 0. (9.5)

The imaginary part of the dispersion relation is entirely due to the finite electron
temperature and for frequencies near the electron gyrofrequency is given by

ImDIS =2(w2 /k*0)e 1y () (0/k o) v/Texp { —[(0—Q) /kja]*}. (9.6)

We assume that any electrostatic waves excited at the upper hybrid resonance
surface initially propagate perpendicular to the magnetic field. These are the
Bernstein waves. They have vanishingly small group velocities and, since k=0,
they are not damped. As the waves propagate into the region of increasing magnetic
intensity, ky/k increases as dictated by the real part of the dispersion relation,
Eq. (9.5). Their angle of propagation rotates away from perpendicular and as the
waves approach the cyclotron resonance surface, their propagation becomes entirely
parallel to the magnetic field. In the region between the two resonance surfaces, the
propagation is oblique so that neither k nor k, vanishes. Here the waves are damped
at a rate, vy, that can be estimated by expanding the complete dispersion relation
around its real solutions [9]. We write DIS =1 + F(w + iy, k), k) =0 and expand F
about solutions to the real part of the dispersion relation:

F =~ F(co,k”,lq)+iy©F(m,kH,kL)/am: —1. (97)

Taking the imaginary part of Eq. (9.7) yields the desired estimate of the damping
rate:

Y= _Fi/(aFr/aw)v (98)

where F; and OF, /0w are to be evaluated for values of w, k;, and k thatsatisfy Eq. (9.5).
Since k| vanishes at the upper hybrid resonance surface, F; and thus y vanish there.
And since k, vanishes at the cyclotron resonance surface, the factor e *1;(A) and thus
vy vanish there. The damping therefore is confined to the region between the two
resonance surfaces. The detailed variation of y over this region can be determined
using Eq. (9.8). Even without carrying out this calculation, we can conclude that the
predicted deposition of the power in the region between the upper hybrid and
cyclotron resonance surfaces differs from the experiments which clearly show
that most of the incident power is absorbed at the upper hybrid resonance surface.
This suggests that a stronger absorption mechanism may be acting through colli-
sions between the more energetic electrons oscillating at the upper hybrid resonance
and the background electrons whose temperature we have estimated to be around
10eV. At these low temperatures, Coulomb scattering [10] can be very rapid.
Electrons with energy Wy, will loose energy to the background electrons, whose
temperature is T, at a rate given by

dWh/dt = —v: Wy,
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where ve=7.7 x 10°%(1 — 0.5T./Wy)nn A/W;> and In A=23 —Inny/’T*/?).
Using the experimental values of n. and T. and considering energetic electrons
with W, =25eV, we find that dW},/dt=—-2 x 107 eVs™L. We choose 25eV since
electrons of energy higher than 30 eV would have been detected by the Thompson
scattering diagnostic, and no electrons of this energy were seen. If all of the electrons
in the upper hybrid resonance layer were given 25 eV of energy by the electric field
of the wave, the power density absorbed there could be as high as 16 Wcem ™.
This power deposition would need to be very localized if the average power absorbed
by the entire plasma is to be 0.2 W cm ™, suggesting that the upper hybrid resonance
layer is less than 1 cm in thickness.

When the injected microwave power was increased to 120kW, launched in the
X-mode polarization, there was experimental evidence that some of the plasma ions
were heated to energies in excess of 1 keV. These energetic ions were detected as fast
neutral atoms produced by charge transfer between the energetic ions and the
background hydrogen atoms. This ion heating was assumed by Whaley et al. [5] to
result from the nonlinear excitation of lower hybrid waves which were subsequently
damped by ions in the tail of the distribution. The lower hybrid resonance is
described by the Harris dispersion relation when the ion contribution is included.
For perpendicular propagation, the cold-plasma limit of the Harris dispersion
relation, now including finite-mass ions, is

1=0)/(0’-Qf) + o}/ (0 —Q7). (9.9)

The two solutions to Eq. (9.9), @2, are given to a very good approximation by the
upper (+) and lower (=) hybrid frequencies, respectively:

— _ -1 —
L =0l =0, +Q and 0’ =0y’ = (0 +Q) " +(QiQ) . (9.10)

o)
As we mentioned earlier, the ions do not participate in the upper hybrid resonance
since the frequency exceeds the electron gyrofrequency. The lower hybrid frequency
is much greater than the ion gyrofrequency and much smaller than the electron
gyrofrequency. The electrons will execute an E x B drift in the oscillating electric field
at the lower hybrid resonance, whereas the ion orbits will deviate only slightly from
straight lines during a period of the oscillation. This nonlinear coupling to the lower
hybrid waves can be an additional mechanism for transforming wave energy into
kinetic energy of the plasma if the incident microwave power is large enough.

9.3
ECH Suppression of Tearing Modes in Tokamaks

A comprehensive discussion of the stability of tokamak plasmas is entirely outside
the scope of this chapter, and the interested reader is urged to consult Wesson [10] and
the excellent bibliography included in Chapters 6 and 7 of his compendium. In this
section, we will address just one aspect of the macroscopic stability phenomena in
tokamak plasmas, namely, the tearing modes that are manifested through the growth
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of magnetic islands on flux surfaces where the safety factor, q, is given by the ratio of
low-order integers, particularly q =2/1 and 3/2. If the growth of these islands is not
suppressed, they can lead to the abrupt disruption of the discharge with potentially
damaging effects on the experimental apparatus.

Early theoretical studies [11] using ad hoc radial profiles of the plasma current
density showed that local modifications of the radial gradient of the plasma current
density could stabilize the low-order tearing modes on the flux surfaces where q =2
and 3/2. Since electron cyclotron heating could plausibly deposit power in the plasma
electrons confined in narrow radial intervals, thereby increasing the conductivity,
it seemed possible that the kind of local modification of the current profiles required
to suppress the growth of tearing modes could be achieved by ECH. Accordingly,
this possibility was investigated theoretically [12] and experimentally [13]. These
investigations are ongoing with the aim of developing efficient and effective
suppression techniques for the ITER [14].

The first experimental results, reported by Hoshima et al. [13], were obtained on
the JFT-2M tokamak, whose major radius R, =131 cm and whose minor radii are
a=35cm and b=>53 cm. Although JFT-2M is designed to produce discharges with
noncircular cross sections, the experimental results reported in Ref. [13] utilized
a conventional circular cross-sectional discharge with a limiter radius of 34 cm. The
toroidal magnetic field on axis was limited to B, < 1.4 T. Microwave power was
supplied by two gyrotrons, one operating at 59.75 GHz (cw) and the other at
59.90 GHz (cw). The maximum microwave power that could be coupled into the
plasma was 250 kW. This power in the linearly polarized TE;; mode was launched
atan angle of 82° with respect to the major radius from two horn antennas located on
the equatorial plane of the torus. The electric field of the input power was oriented
perpendicular to the static magnetic field, B, so as to excite X-modes propagating
from the low-field side to the second-harmonic resonance surface. The radial location
of the resonance surface was varied in small increments by changing the toroidal
magnetic intensity, B,. The plasma density was maintained below a maximum value
of 2.2 x 10" cm ™ to prevent the right-hand cutoff from blocking the access to the
resonance surface. The electron temperature ranged from 100 to 300eV in these
experiments, for which the plasma current was typically around 210kA, giving a
limiter safety factor, q, ~ 3. For line-averaged densities around 1 x 10" cm > and
with 2.8 < g, < 3.3, the plasma exhibited a robust level of MHD activity but did not
disrupt. The poloidal and toroidal mode numbers of the MHD activity (“Mirnov
oscillations”) were determined by an array of magnetic probes tobem =2 andn=1.
These probes measured the perturbed magnetic fields associated with the magnetic
islands resulting from the unstable tearing mode. The modes oscillated at frequen-
cies around 2.5kHz under the usual experimental conditions. When 120 kW
of microwave power was injected into the plasma with the second-harmonic
resonance surface placed precisely at the optimal location, the amplitude of the
MHD oscillations was greatly reduced within a time of 50 ms. The frequency of the
remaining low-level oscillations was observed to increase slightly. Associated
changes in the internal inductance of the plasma column occurred over a longer
time, indicating that the suppression of the MHD activity resulted from local changes
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in the radial plasma current profile. Suppression of the MHD activity resulted only if
the position of the resonance surface was at r/a=0.70 £ 0.03, corresponding to a
radial interval of 2 cm. The MHD activity was found to be enhanced if the resonance
surface were placed at r/a < 0.6.

The width of the radial interval within which the microwave power is deposited is
governed by the relativistic, Doppler-shifted resonance condition: ® — kv — 2 =0.
Although the electrons in the JFT-2M plasma were only weakly relativistic, it is useful
to use the relativistic form of the electron gyrofrequency: Q(r) = eB(r)/ym. We can
then express the second-harmonic resonance condition at the radial position r in the
following form, 2eB(r)/m =y(w — k;v|); and setting x=v/c and y=v, /c, we have

v2/2 = [2Q(r)/o—(1 +x*/2)(1—nx cos )] /(1—nx cos 8), (9.11)

where n = kc/w and cos 8 = k;/k and thus the product n cos 8 =ny;. For the JFT-2M
experimental conditions that yielded the optimum suppression of the MHD activity,
we conclude that the cold-electron second-harmonic resonance is at r/a =0.70, and
therefore 2Q(r =23.8 cm)/®w = 1. At any other radial position, 1,

2Q(r)/o = (R, +23.8cm)/(R, +1). (9.12)

Forn cos 6 > 0, the Doppler shiftlowers the frequency of the RF electric field in the
rest frame of the electron, that is, the frequency is “downshifted.” Conversely, for n
cos 0 <0, the frequency is “upshifted.” For r/a>0.70, the resonance condition
requires a progressively greater degree of downshifting as r increases which, in
turn, requires increasing values of v|. At some radius, there will not be a significant
number of electrons with the required parallel velocity and no resonant transfer of
energy will take place. This situation is illustrated in Figure 9.1.

Solid lines in the figure represent the loci in velocity space where the second-
harmonic resonance condition is satisfied for radii of (reading left to right) 22.8, 23.0,
23.2,23.4, and 23.6, for which the frequency is upshifted; and 24.0, 24.2, 24.4, and
24.6, for which the frequency is downshifted. The surfaces of constant v/c corre-
sponding to energies of 100 and 300 eV are shown as dotted lines and dashed lines,
respectively. In this figure, the value of n cos 0 has been set at n;; = 0.16. Since the
value of the index of refraction for these waves under these experimental conditions is
estimated atn = 0.866, this value of n cos 6 corresponds to an angle of 79°, or roughly
3—4° away from the central ray. The beam divergence was given as 9°, so this ray is in
the outer part of the microwave beam where k;/k and thus the Doppler shift is
stronger than for the central ray. Clearly, since the electron temperature in JET-2M
was less than 300eV in these experiments, there are few plasma electrons able to
experience second-harmonic resonance at a radius greater than r =24.6 cm. Note
that although the Doppler shift is symmetrical in v, the relativistic effect is not;
the relativistic increase in the electron mass always reduces the local electron
gyrofrequency, increasing the frequency mismatch on the low-field side and de-
creasing it on the high-field side. Indeed, for the radius at 23.6 cm, Figure 9.1 shows
that the relativistic effect alone could permit resonance for sufficiently energetic
electrons. We therefore anticipate a wider radial interval for resonance on the high-
field side as compared to the low-field side.
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Figure 9.1 Resonance conditions in the JFT-2M disruption
avoidance experiments: Solid vertical lines (reading left to right)
are for minor radii of: r=22.8, 23.0, 23.2, 23.4, 23.6, 24.0, 24.2,
24.4, and 24.6 cm. The dashed line is the locus where the electron
energy is 300 eV and the dotted line is the locus where the electron
energy is 100 eV. The horizontal axis is v)/c, the vertical axis is
v_/c, and the parallel index of refraction is nj = 0.16.

This plot demonstrates that as the microwaves approach the (cold-electron)
resonance surface from the low-field side, electrons with v;;>>v, will be heated
first while electrons with v~ v, will only experience resonance nearer the cold-
electron resonance surface. For example, 300 eV electrons with V|| >V canresonate
with the RF electric fields at r ~ 24.5 cm, whereas 300 eV electrons with v~ v, will
experience resonance at r=24.3cm. On the high-field side of the cold-electron
resonance surface, 300 eV electrons can be resonant at r ~22.9 cm if v > v, but at
r~23.2cm if v~ v,. For an isotropic distribution of 300 eV electrons in velocity
space, the effective thickness of the resonance zone for n cos®=0.16 would be
around 12 mm. For 100 eV electrons, the thickness of the resonance zone would be
only 7mm. Hoshino et al. [13] estimate the experimental thickness of the resonance
zone to be between 6 and 12 mm. The volume of the resonance zone would then
range from 7.5 x 10* to 1.5 x 10°> cm?. The dependence of the thickness on the value
of n cos® is displayed in Figure 9.2; the Doppler shift becomes negligible for n
cos@ <K v/c.
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Figure 9.2 Radial thickness of the resonance zone in the JFT-2M
experiments versus the parallel index of refraction, nj.

The earliest theoretical studies [12] of ECH stabilization of MHD tearing
modes predicted that RF power densities of 1 W cm ™ would be adequate to stabilize
low-order tearing modes through local flattening of the plasma current profile.
We can use the experimental data from Hoshino et al. [13] to estimate the power
density deposited in the resonance zones for electron temperatures of 100-300eV.
The optical depth for second-harmonic X-modes propagating perpendicular to the
magnetic field was given by Antonsen and Manheimer [15]:

1= (2n/3)(Lw/c) [(3—2m§e/m2)/(1—2m§e/m2)]
{410 /)2 ~1]/(3—4a? /0?)} T /mc.

Hoshino et al. [13] report only the line-averaged electron density; but if we assume a
parabolic radial dependence, we can infer that the density at the cold-electron
resonance surface is around 8.3 x 10"*cm * giving op./0* = 0.2. If T.~100eV,
the optical depth is then t~2.49 and roughly 92% of the incident right-hand
circularly polarized power is absorbed in the resonance layer. If T.a 300¢€V, the
optical depth is 7.49 and virtually all of the incident right-hand power is absorbed.
Recall that the polarization of the X-mode at the cold-electron resonance surface is
given by

E_/E, = —[Ky1/n’—cos” 6—(sin? §)/2]/[(sin? 8) /2] ~ —1.414.

The right-hand circularly polarized component is then about two-third of the
incident microwave power. For the low-temperature cases, we can thus estimate the
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absorbed resonant power (per unitvolume) tobearound 1 W cm >, while for the higher
temperature cases, the corresponding value would be around 0.6 Wcm >, Thus, the
inferred experimental values are in good agreement with theoretical expectations.

9.4
Electron Cyclotron Current Drive

The specific mechanism by which localized heating suppresses the tearing mode in
the JFT-2M experiments was not determined. Raising the electron temperature in
the resonance zone is expected to increase the current density there, since the
electrical conductivity varies as Tz/ 2, This seems the most likely stabilizing
mechanism in these JFT-2M studies. Subsequent experimental investigations have
attempted to explore the effect on tearing modes of currents driven directly by
electron cyclotron heating, now generally referred to as Electron Cyclotron Current
Drive (ECCD). It has been suggested [16] that this could be a much more efficient
way of avoiding tearing modes by maintaining the current profile in a stable regime.

From Figure 9.1, it is clear that microwave power launched from the low-field side
with n;=0.16 first encounters resonant 300eV electrons at a radius of 24.6cm,
where the electrons with v);>> v experience the strongest RF electric fields. If the
optical depth is large enough, 300 eV electrons with negative values of v and thus
with resonance surfaces only for r < 23.8 cm will encounter much weaker RF electric
fields. This asymmetry in v can drive net current through a mechanism first
described theoretically by Fisch and Boozer [17]. In this low-field launch scenario,
resonant electrons with v;; > 0 will gain greater perpendicular energy than those with
v) <0, since the heating rate varies as |E_|* which, in turn, varies as exp(—1). These
more energetic electrons will require longer period to thermalize and isotropize
through Coulomb collisions since the Coulomb scattering rate varies asv_>, and a net
current can result.

For a somewhat more quantitative conceptual description of this mechanism, we
consider a small volume in velocity space, Region 1, at a point r within a particular
narrow resonance zone. The steady-state electron density (in velocity space) is
determined by the balance between resonant heating and velocity—space relaxation
due to Coulomb scattering and can be described at least conceptually through an
equation of the following form:

of /ot = —P(r,v) /AW L +Vaa (f | o —f 1) =0 (9.13)

where P(r,v) is the RF power (per unit volume) absorbed in Region 1 at the point r in
the specified resonance zone by electrons of velocity v, AW is the average energy
increment due to ECH, v, is the Coulomb relaxation rate in Region 1, andf1 amb 18
the velocity—space density in the neighborhood surrounding Region 1. Electrons
from Region 1 enter Region 2, where v 2v,; and v, , =V, ; + 2AW /m)"/% In
Region 2, the condition for steady-state balance takes the form

of ,/0t = P(r,v) /AW L —Va o (f ,—f 5 o) = O (9.14)
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The resulting contribution to the steady-state current density is

Sil\ = _eVH(fz_fz amb +f1_f1 amb) = eVH[P(r>V)/AWL](l/Vrlxl_l/VrIXZ)
= (ev)|/Vaa ) [P(r, v)/AW L ][1—(Ey/E1)*/?]
= (ev))/Vata ) [P(r,v) /AW {1~ [(Ey + AW ) /E]*/*}
~ —(3/2)(ev)/vax)[P(r,v)/E],
(9.15)

where we have dropped the subscripts in the final equation. The heated electrons
relax in energy and pitch angle at a rate which is the sum of the electron—electron and
electron—ion scattering rates. From the discussion of Coulomb scattering in Chapter
6 and keeping in mind that charge neutrality requires Z;n; = n, one finds that [17]:

8j /P(r,v) = —(3/2)evyv/{[(1/4m)(¢’ /eo) ne In A/m|(5 + Z3)/2},  (9.16)

where we set VuE=(5 4+ Zi)Veou(mv?®/2) = (1/4m)(e%/e,)"ne In A/mv(5 + Z3)/2.
These contributions to the parallel current can be evaluated at each point in the
resonance zone thatis illuminated by microwave power using Fokker—Planck models
of the electron dynamics implemented in geometrical optics codes. The individual
contributions are then integrated to obtain the total driven current, I. The efficiency of
this current drive mechanism is proportional to the electron temperature and can be
increased if the microwave power is absorbed mainly by energetic electrons so as to
minimize the rate of Coulomb relaxation. In addition, the optical depth must be large
enough to ensure that the power is absorbed primarily by electrons with the desired
sign of v);. Note that if the heated electrons enter a part of velocity space where they are
trapped in the mirror-like region of the toroidal magnetic field, the resulting rapid
bounce motion will prevent them from carrying unidirectional current. However,
their absence from the passing-particle regions of velocity space will actually
constitute a net current in the opposite direction [18]. The trapped-passing boundary
in the JFT-2M experiments (the “loss cone”) is a cone whose half angle is 57°, from
which itis clear that 300 eV electrons resonating at r = 24.2 cm could become trapped
with relatively small increments in their perpendicular energy. If the resonance zone
were moved to smaller minor radii, where the mirror ratio is smaller and the loss-
cone angle is larger, the retrograde current associated with trapping of heated
electrons could be reduced. Sophisticated computer codes are now in routine use
atall of the installations where ECCD is being investigated experimentally to aid both
in optimizing the current drive and in interpreting the results of the experiments.

The experimental support for this theory of ECCD is now quite extensive. For
example, in the JT-60U tokamak [19], noninductive currents as large as 185 kA were
driven by 1.3MW of 110 GHz microwave power. The salient features of these
experiments are given below.

The major radius of JT-60U is around 3.3 m, but in the present experiments, the
magnetic axis was at R = 340 cm. The nominal minor radius is around 1 m, but the
plasma cross section is noncircular, as indicated in Figure 9.3, taken from Ref. [18].

The 110 GHz power was coupled into O-modes propagating at an angle of 20° with
respect to a major radius, so that k;;/k = cos 70° = 0.342, and at an angle of roughly

183



184

9 Electron Cyclotron Heating in Tokamaks

EC resonance

antenna
mirror

im

Z (m)

R (m)
Figure 9.3 Geometry of the microwave launch in the JT-60U ECCD experiments.

35° relative to the equatorial plane of the discharge. This poloidal angle could be
varied to have the point of intersection of the microwave beam with the (cold-electron)
resonance surface take on specified values, namely, p=r/a=0.1, 0.25, and 0.4.
The toroidal magnetic field at the magnetic axis of the discharge was set at the cold-
electron resonance value. The line-averaged electron density was maintained at the
relatively low value of 8 x 10" cm ™ to minimize the so-called bootstrap current in
order to facilitate evaluation of the ECCD current. Central electron temperatures
ranged from 5 to 10keV. Isolation of the ECCD current is made difficult in practice
by several unavoidable inductive and noninductive phenomena and is made possible
in these experiments by an array of sophisticated diagnostic and analytical techni-
ques. Magnetic measurements including motional Stark effect polarimetry were
used to construct a temporal sequence of computed MHD equilibria, joined in time
by a spline fit.

For the case in which p =0.25, the authors report both the total deduced ECCD
current, 185 + 111 kA, as well as the radial profile of the current. These experimental
results are then compared with theoretical predictions made with a geometrical
optics code that utilizes a Fokker—Planck model of the electron dynamics. The results
of the computations agree well with the experimental results and, in particular,
predict total ECCD currents of 157 kA. Most of this, 136 kA, is localized in a radial
interval that is 14 cm wide.
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We can understand these results in an approximate way and see how they relate to
the theoretical model of EECD by first examining the loci in velocity space of resonance
surfaces in the radial interval beginning with the magnetic axis, R, =340cm, and
extending outward to a place where there are negligible numbers of resonant
electrons. As in our discussions of the JFT-2M experiments, the mildly relativistic,
Doppler-shifted resonance condition is eB(R) /ym = o — kv, which we again write as

Q(R)/® = 340 cm/R = (1+0.5uf +0.5u? ) (1—nyuy),

where uj = v /c and u, =v, /c. The authors cite a value of nj ~ 0.5, but because the
densityislow ((1)12Je J@? ~ 0.05), the O-mode index of refraction is close to unity and we
therefore have set n;=0.33 in constructing Figure 9.4.

04
0.35
0.3

0.25

0.057

0 0.05 0.1 0.15 0.2
v/c

Figure 9.4 Resonance conditions for the ECCD
experiments in JT-60U: solid curved lines are for
radii of (reading from left to right) R =342, 348,
and 354 cm. The magnetic axis is at R, =340 cm
and the parallel index of refraction is nj;=0.33.
The long dash line is the locus where the electron

1 |
——

0.25 0.3 0.35 0.4

energy is 10keV and the short dash line is

the locus where the electron energy is 5 keV.
The boundary between trapped and passing
electrons is shown as the dash-dot line. The
elliptical area enclosed by dots is the assumed
region of optimum conditions for current drive.
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Note that the loss cone for p = 0.25 is also shown in Figure 9.4, and we see that any
power absorbed by electrons near the resonance surface at R =342 cm is likely to
contribute mainly to the retrograde current as discussed earlier. The optical depth in
these experiments is large enough that most of the incident microwave power will be
absorbed before the beam reaches this resonance surface. We therefore expect
most of the current to be driven by absorption of microwave power that takes place
in the radial interval for which 344 cm < R < 354 cm. If we approximate the poloidal
flux surfaces by circles centered on the magnetic axis, the resulting power deposition
is inside the surface on which p =0.38. Since the width of the microwave beam is
not reported, it is not possible to determine a more detailed deposition profile.
Nonetheless, we can make a rough estimate of the total ECCD current driven by the
1.3 MW incident O-mode power using the earlier theoretical result:

i = (P/V)(3eujumc?)/[(1/4m) (€’ /&,)*neln A(5 + Z;)]. (9.17)

We approximate the current density by the ratio of the total current to the cross-
sectional area of the flux tube within which the power is absorbed to write

[/A=j, = (P/2mRA)(3eujumc?) /[(1/4m)(e? /€) ne In A(5 + Z;)], or

I = (P/2nR)(3ewjumec?)/[(1/4m)(e? /o) ne In A(5 + Z;)).
(9.18)

At this point, we must resort to some hopefully plausible speculation to decide on
appropriate values of uj and u. We assume that the diffusion coefficient describing
the velocity-space flux resulting from the fundamental O-mode resonance is pro-
portional to v*. The gradient in velocity space is proportional to v exp(—v?/0%), where
o.is the thermal speed. The maximum flux in velocity space would then be expected to
occur for speeds that are larger than the thermal speed by (3/2)'/?, and plausibly in the
neighborhood of equal parallel and perpendicular velocities. The indicated region in
velocity space is shown dotted in Figure 9.4, assuming the electron temperature is
10keV. Using the published value of Z;=3, we would then estimate the ECCD
current to be around 129 kA, somewhat smaller but similar to the value obtained by
the Fokker-Planck code. The maximum absorption would appear to be at the
resonance surface near R=350cm, or near the poloidal flux surface at p=0.33.
This, too, is in reasonable agreement with the experiment.

As we have seen earlier, the efficiency of ECCD, as measured by the ratio I/P, is
predicted to be proportional to the energy of the electrons participating in the process.
The question then naturally arises as to whether ECH could also be used in
conjunction with ECCD to create a minority population of relativistic electrons in
specified regions of tokamaks similar to the relativistic-electron plasmas created
in many magnetic-mirror experiments. These more energetic electrons would then
be expected to increase the ECCD efficiency in proportion to their energy relative to
the bulk population. It appears that it should indeed be possible to form such a
minority population of relativistic electrons in tokamaks, provided appropriate
heating strategies were adopted [20]. As was discussed in Chapter 8, it is necessary
that resonance surfaces for the relativistic electrons exist in the desired confinement
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volume and that this volume be illuminated with microwave power that is prefer-
entially absorbed by the relativistic electrons. To illustrate a conceptual approach to
satisfying these two requirements, we consider again the 110 GHz ECCD experi-
ments in JT-60U, where the cold-electron resonance surface was at R = 340 cm, and
stipulate that the relativistic electrons should occupy the flux tube with minor radii
between 25 and 35 cm. To achieve preferential absorption of microwave power by the
energetic electrons, one could illuminate the specified flux tube with O-modes
propagating perpendicular to the magnetic field at a frequency near the second
harmonic of the cold-electron gyrofrequency at a major radius of roughly 365 cm. In
the JT-60U experiments, this would require power at close to 200 GHz. To heat
electrons in the specified flux tube, the power would need to be confined within a
horizontal beam some 10 cm high by quasioptical confocal mirrors, where it could

heat electrons up to energies around 100 keV.

References

1 P.C. Efthimion, V. Arunasalam, and J.C.
Hosea, Phys. Rev. Lett. 44, 396 (1980).

2 K. Hoshino et al., J. Phys. Soc. Jpn. 54,
2503 (1985).

3 J. Wesson, ed., Tokamaks, third edition,
p. 711 ff, Clarendon Press, Oxford (2004).

4 B.Lloyd et al., Nucl. Fusion 31,2031 (1991).

5 D.R. Whaley et al., Nucl. Fusion 32, 757
(1992).

6 H.W. Drawin, Euratom Report EUR-
CEA-383, Fontenay-aux-Roses (1967).

7 E.G. Harris, J. Nucl. Energy C2, 138 (1961).

8 1.B. Bernstein, Phys. Rev. 109, 10 (1958).

9 See, for example, G.E. Guest and R.A.
Dory, Phys. Fluids 8, 1853 (1965), as well as
Donald A. Gurnett and Amativa
Bhattacharjee, Introduction to Plasma
Physics, Cambridge University Press,
New York (2005), Section 8.2.4.

10 For a convenient summary of the
Coulomb collision rates, see David L.
Book Revised and Enlarged Collection of
Plasma Physics Formulas and Data, Naval
Research Laboratory, Washington, D.C.
(1977) p. 53.

11 A.H. Glsser, H.P. Furth, and P.H.
Rutherford, Phys. Rev. Lett. 38, 234 (1977).

12 V. Chan and G. Guest, Nucl. Fusion 22, 272
(1982); Y. Yoshioka, S. Kinoshita, and T.
Kobayashi, Nucl. Fusion 24, 565 (1984);
E. Westerhof and W.]. Goedheer, Plasma
Phys. Control Fusion 30, 1691 (1988).

13 K. Hoshino et al., Phys. Rev. Lett. 69,
2208 (1992); D.A. Kislov et al., Nucl.
Fusion 37, 339 (1997).

14 F. Leuterer et al., Nucl. Fusion 43, 1329
(2003) and references cited therein.

15 T.M. Antonsen, Jr., and W.M. Manheimer,
Phys. Fluids 21, 2295 (1975).

16 E. Westerhof, Requirements on heating
or current drive for tearing mode
stabilization by current profile tailoring,
Nucl. Fusion 30, 1143 (1990).

17 N.J. Fisch and A.H. Boozer, Phys. Rev. Lett.
45, 720 (1980), see also, N.J. Fisch, Rev.
Mod. Phys. 59, 175 (1987).

18 T. Ohkawa, “Steady state operation of
tokamaks by rf heating,” General Atomics
Report GA-A13847 (1976).

19 T. Suzuki et al., Plasma Phys. Control Fusion
44,1 (2002).

20 G.E. Guest, R.L. Miller, and C.S. Chang,
Nucl. Fusion 27, 1245 (1987).

21 C.C.Pettyetal., Nucl. Fusion41,551 (2001).

187



188

9 Electron Cyclotron Heating in Tokamaks

B Exercises

9.1.

9.2.

9.3.

A comprehensive study of ECH-assisted start-up in large
tokamaks was carried out in DIII-D [4]. The basic parameters
were R,=1.67m, a=0.67m, B,<2 T, and 1.1 MW RF
power at 60 GHz.

(a) Assuming the working gas to be hydrogen, use the point
model to estimate the electron temperature if the gas
pressure is p, =4 x 10~ Torr and the connection
length, L, is 1000 m.

(b) Underthese conditions, what RF power density would be
required to sustain an average density of
n.~2x10%ecm3?

(c) Where would be upper hybrid resonance be for this
density if B,=2 T?

ECCD experiments in DIII-D [21] employed 110 GHz power
launched at an angle of 26° from radial with the polarization
chosen to couple to X-modes. On the magnetic axis, the field
strength was 2 T, the density was 2 x 10" cm™>, and the
electron temperature was 3 keV.

(a) Determine the radial interval in which the RF power is
deposited.

(b) Estimate the noninductive current that could be driven
by 1 MW of ECCD power.

(c) If the RF power were launched at 13°, where would be
power be deposited?

In order to heat energetic electrons preferentially in DIII-D,
RF power at 110 GHz is launched perpendicular to the
magnetic field in the equatorial plane with polarization
chosen to couple to O-modes. On the magnetic axis, the field
strength was 2 T.

(a) Where will this power be absorbed by 5 keV electrons?

(b) What is the maximum energy for which electrons can
resonate with this power at the second harmonic of their
gyrofrequency?

(c) What is the minimum energy for which electrons can
resonate with this power at the third harmonic of their

gyrofrequency?



10
The ELMO Bumpy Torus

It was recognized early in the controlled fusion program that charged particles could
be confined in a simple toroidal magnetic trap if the individual coils used to generate
the toroidal field were spaced sufficiently far apart, relative to the minor radius of the
torus, to make the magnetic field vary significantly along each magnetic line of force.
In such a “bumpy” toroidal magnetic field, local gradients in magnetic intensity give
energetic charged particles a poloidal drift motion which balances the VB x B drift
inherent in ideal toroidal magnetic fields. Kadomtsev [1] analyzed the single particle
orbits in such a bumpy torus, and subsequently Gibson et al. [2], Morozov and
Solov’ev[3], and others developed a rigorous picture of single-particle confinement in
bumpy torii using adiabatic constants of the motion as well as numerical studies of
particle orbits. Although these studies showed good confinement properties for the
bumpy torus, it was also clear almost from the outset that plasmas confined in a
simple bumpy torus were likely to be unstable to large-scale interchange instabilities.
Kadomtsev [4] gave a general stability criterion for these modes in an ideal scalar-
pressure plasma confined in a magnetic trap in which all of the magnetic lines of
force close on themselves, as is the case for the bumpy torus. Kadomtsev’s criterion
predicted that any negative pressure gradients at the outer edge of the plasma, which
are unavoidable in a confined plasma, would lead to the unstable growth of
interchange perturbations. As a result of these dire predictions, there was only
limited interest in experimental tests of the bumpy torus concept.

Then, almost a decade after that first interest in the bumpy torus, the experiments
with ECH in simple magnetic mirrors discussed in Chapter 8 demonstrated that
high-beta, hot-electron plasmas could be created and maintained in stable steady state
in these configurations, which were also predicted to be unstable to interchange
instabilities. As we have seen earlier, the relativistic electrons formed an annulus
centered on the midplane of the magnetic mirror and in some instances, most
notably in the ELMO device, their diamagnetic currents were strong enough to create
a significant depression or “magnetic well” in the center of the annulus. These hot-
electron rings appeared to offer the possibility of modifying the magnetic field at the
outer edge of a bumpy torus sufficiently to stabilize the plasma in the interior with
respect to interchange modes. If that proved to be the case, plasmas confined in such
stabilized bumpy torus traps would offer an attractive prospect for steady-state

189



190

10 The ELMO Bumpy Torus

operation of a device with a conveniently large aspect ratio, well suited for auxiliary
heating by energetic neutral or molecular-ion beams, for example. A relatively small
experimental device, the ELMO Bumpy Torus (EBT-I) [5], was constructed to test this
concept. In 1973, this initial EBT device successfully demonstrated the stable, steady-
state confinement of a toroidally circulating plasma, provided that the hot-electron
rings had high enough energy densities. The EBT employed electron cyclotron
heating for altogether novel purposes and its inclusion here provides a different
perspective on the physics underlying ECH as well as an opportunity to discuss a
number of aspects of classical plasma confinement in toroidal traps which were
germane to the EBT by the virtue of the observed quiescent stability of its plasma.

As was described earlier, a simple bumpy torus is predicted to be unstable to
interchange instabilities. The fundamental supposition underlying the EBT concept
is that the high-beta relativistic-electron annuli similar to those observed in the ELMO
experiments can reverse the radial gradient of the specific magnetic volume,
U = [ d¢/B, and provide stable confinement. The basis for this supposition is shown
schematically in Figure 10.1.

Figure 10.1(a) shows an artist’s conception of how U varies with the radius, r,
for the vacuum magnetic fields (dashed) and with the ELMO rings present. In
Figure 10.1(b), the corresponding radial profiles of magnetic intensity are sketched
together with a plasma pressure profile that satisfies Kadomtsev’s interchange
stability criterion. It should be stressed that the conditions under which the ELMO
rings themselves are stable are not fully understood, but most theoretical and
experimental evidence to date indicate that some form of “line-tying” is responsible
for the observed stability. The empirical facts are that the rings are completely stable if
the ambient gas pressure is high enough and that the stable rings form in radial
regions where there is good electrical contact along magnetic lines of force with
conducting walls of the vacuum chamber.

w(VuY (Vu)?
—4—3_(7 ] <-VpVu< ypT

uzjgé WEJBdE

r —
Figure 10.1 A highly schematic representation of the conceptual
basis for interchange stabilization in an ELMO Bumpy Torus.
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10.1
The Canted Mirror Experiments

Prior to construction of the first EBT device experiments were carried out in the
Canted Mirror facility [6] to determine whether the ELMO rings of adequate beta
could be formed in the nonaxisymmetric bumpy torus configuration. These experi-
ments provided a clear affirmative answer to that question and, in addition, permitted
an experimental study of the pitch-angle distribution of some of the relativistic
electrons, resulting from ECH and forming the high-beta annulus. It is that aspect
of these experiments that will be described in this section.

The Canted Mirror, shown schematically in Figure 10.2, was a simple magnetic-
mirror configuration with a mirror ratio on axis of 2 : 1, but with the unique capability
that the magnetic field coils could be pivoted (“canted”) about parallel axes to
resemble one sector of a bumpy torus.

Plasma confined in this magnetic mirror was heated with up to 3kW (cw)
of fundamental resonance 10.6 GHz power and up to 800 W (cw) of 35.7 GHz upper
off-resonant heating power. In the axisymmetric “uncanted” configuration, the
resulting plasma contained stored energies up to around 16] with hot-electron
temperatures between 700 and 800 keV and with maximum electron energies around
4 MeV. The main features of the heating geometry in the uncanted configuration can
be seen in the magnetic field plots displayed in Figures 10.3(a) and ().
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Figure 10.2 Schematic representation of the Canted Mirror Facility.
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Figure 10.3 (a) Flux plot of the magnetic fields in the (uncanted)
Canted Mirror Facility. (b) Mod-B contours in the (uncanted)
Canted Mirror Facility.
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10.1 The Canted Mirror Experiments

The flux plot in Figure 10.3(a) shows that the outermost magnetic line of force
that just passes the corner of the vacuum chamber intercepts the midplane at a radius
of 17 cm. The mod-B contours shown in Figure 10.3(b) show that the mirror ratio
along this field line is approximately 3: 1. As was the case in the TPM experiments
discussed in Chapter 8, the corner of the vacuum chamber functions as a limiter and
effectively fixes this flux surface as the position of the outer surface of the plasma.

When the magnetic field coils are canted, a toroidal curvature is introduced
into the magnetic lines of force and the electron guiding centers will drift in
azimuth on circular paths whose centers are shifted off the magnetic axis by an
amount, A, that depends on the electron’s pitch angle, & = (v /v, )*. Experiments were
carried out using two probes, separated in azimuth by 180°, as indicated in
Figure 10.4.

The inner probe was fixed at a radial position just inside the surface of the plasma,
and the flux of energetic electrons striking the tip of the inner probe was measured as
the outer probe was inserted progressively deeper into the plasma. Typical experi-
mental results are shown by the solid curve in Figure 10.5(a).

Electrons whose guiding centers are on a drift surface that intersects both probes
satisfy N = Touter/Tinner = 1 — 2A(E) /Tinner Where & = (v /v L)z is to be evaluated at the
position of the inner probe. We assume that the probe signal is a measure of the flux,
F, of energetic electrons striking its tip:

F(n) = Jd&jde](e, E)F (e E)vo(e.E), (10.1)

where J(€,€) is a suitable Jacobian. The change in the flux, F, as the outer probe is
inserted further into the plasma is then related to the distribution function through

dF /dn = —d&/dn jde](s, E)F (e, E)vo(e, &), (102)

MAJOR AXIS

G MR T T A ST LTI SIS TS ET TS
A AT E S EE T EEE I

INNER PROBE OUTER PROBE

Figure 10.4 The probe geometry used to measure the pitch-angle
distribution of electrons at the edge of the hot-electron plasma
in the Canted Mirror Facility.
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Figure 10.5 (a) Experimental values of the flux to the inner
probe as the outer probe is inserted progressively deeper into
the hot-electron plasma. (b) The corresponding values of flux
to the inner probe versus the hot-electron pitch angle.

which we write as
N(§) = —(dF/dn)(dn/dg)/(ve(§)) = —(dF/dE)/(ve(E))- (10.3)
From the guiding-center drift analysis of Chapter 3, we have
A(&)/rinner = (z/l(oRt)(Mfl)_l [Io(korinner)/ll(korinner)]
(1+28){K(K*) /[2E(K*) —K(K*)]},
where k* =£/(M — 1). Note that for E=0
A/]~'inr1e1' = (z/koRt)(M_1)71 [Io (korinner)/ll (korinner)] = (A/rinner)oa

and A(E)/tinner increases monotonically with & up to the value where 2E — K=0.
The first electrons to be intercepted as the outer probe is inserted are those with & =0,
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and thus the value of (A/finner)o can be determined experimentally. We can therefore
use the following two convenient forms for unfolding the experimental data:

A(E) /Tinmer = (A/Tinner)o (1 + 26){K(K*) /2B (k*) K (K*)]}
= (A/Tinner)of2(&, M) (10.4)

and

(va(E)) " = (ve(0)) T (1+E){K(K*)/[2E(K")—K(K*)]}
= (ve(0)) 1 (E,M). (10.5)

The experiments cited in Ref. [6] were carried out with a cant angle of 15°. The
resonance frequency is at a mirror ratio of 1.06 relative to the magnetic intensity on
the midplane and at the axis, B(0,0). The tip of the inner probe was 16.8 cm from
the machine axis. Using the experimental results shown by the solid curve in
Figure 10.5(a), we obtain (A/Tinner)o from the end point, 1 = 0.88, and then by using
£5(€,M) with M = 3, we construct the dashed curve showing & versus 1. The flux can
then be plotted versus & to obtain the curve shown in Figure 10.5(b). The derivative
of this curve together with the function f;(§,M) then yields N(&) shown in
Figure 10.6.
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Figure 10.6 The distribution of hot electrons in pitch angle deduced from these measurements.
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The strong single peak in the pitch-angle distribution indicates that most of the
energetic electrons are turning at a point where the magnetic intensity is 1.6 times
the value at the inner probe. Since for the present experiments, the magnetic
intensity at the inner probe is roughly 0.74 B(0,0), we conclude that the hot
electrons at the outer edge of the annulus are turning inside the modulus-B
surface where B, ~ 1.18B(0,0). If we assume an approximate correction for the
finite beta modification to the magnetic intensity, with § =~ 20%, we would conclude
that the electrons in this outer edge of the annulus were turning inside the
fundamental resonance surface, B,.s = 1.06B(0,0), as anticipated.

10.2
Experiments in EBT-I

The EBT-I device, shown in Figure 10.7, was designed to permit plasma to be
generated, heated, and stabilized by ECH using microwave power at frequencies
of 10.6 GHz and 18 GHz.

The basic structure consisted of 24 identical canted mirrors with 2 : 1 mirror ratios
connected to form a complete bumpy torus. The major radius was 150 cm and the
minor radius at the midplane of each sector was 25cm. The maximum steady-
state magnetic field strength on the midplane of each sector was 5kG requiring
6 MW of DC magnetic field power. The total plasma volume was roughly 0.5m”.
The microwave power available for experiments initially consisted of 30 kW (cw)

Figure 10.7 The EBT-I Facility.
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Profile Resonant Heating (10.6 GHz)

Primary Resonant Heating (18 GHz)

EBT Mod-B Contours (-), Flux Lines (---), and Heating Geometry (//7::)
Figure 10.8 The ECH heating geometry in EBT-I.

of 10.6 GHz and 60kW (cw) of 18 GHz. The heating geometry is shown in
Figure 10.8.

The 18 GHz power was provided for heating at the fundamental resonance surface
as well as at the second-harmonic resonance where it also heated the high-beta
annuli. The 10.6 GHz power was absorbed at fundamental resonance in a region
adjacent to the inner surface of the second-harmonic 18 GHz resonance surface,
thereby augmenting the heating of the annuli. The microwave power was launched
into the plasma at the midplane of the inside wall of the vacuum chamber in each
sector using hybrid couplers oriented to couple to O-modes in the plasma. The
microwave power was observed to be absorbed with an efficiency that approached
100%. It was experimentally verified that the high-beta annuli were formed at the
18 GHz second-harmonic resonance surfaces.

Three distinct and highly reproducible modes of operation were found,
depending on the applied microwave power level and the ambient neutral gas
pressure. The different modes were clearly distinguished by fluctuation levels in
the line-integrated electron density, 3( [ n.d¢) as measured with a 75 GHz microwave
interferometer, by the stored energy in the high-beta annuli, W, and by the ambipolar
potential, ¢. At the highest gas pressures, the plasma temperature and stored energy
are both low; ¢ is small and generally positive relative to the cavity wall. Although no
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gross instabilities are seen, large amplitude density fluctuations are observed in the
frequency range suggestive of drift wave phenomena. These fluctuations observed on
the microwave interferometer provide a convenient way of identifying this mode of
operation, designated the C-mode. In this high-pressure C-mode of operation, most
of the microwave power is dissipated in the generation of cold plasma and very few
energetic electrons are produced.

As the pressure is reduced, the diamagnetic stored energy, W, increases signif-
icantly, and when W exceeds a critical value, the electron density fluctuation level
drops abruptly to very low values, as shown in Figure 10.9.

In this regime of operation, designated the T-mode, both the toroidally confined
plasma and the high-beta annuli are free of gross instabilities and the electron and ion
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Figure 10.9 Experimental results showing the transition from the C-mode to the T-mode in EBT-I.
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temperatures of the toroidal plasma increase by more than an order of magnitude.
A positive space potential ¢ ~ 100V is measured at the position of the annuli, whereas
anegative potential is observed in the interior of the plasma. Typically, the annuli have
beta values around 15% at the transition from the C-mode to the T-mode, in
reasonable agreement with the estimated value needed to reverse the radial gradient
in the specific flux volume, U = [ d¢/B.

If the pressure is lowered further, a second abrupt transition is encountered in
which the stored energy increases to values corresponding to > 50%, while the
potential at the surface of the plasma becomes large and negative and may exceed
10*V. Although the annuli appear to remain stable, the toroidal plasma supports
large amplitude density fluctuations. This regime of operation, designated the
M-mode, is chiefly of interest because of the high-energy density and large electric
fields that it exhibits. In what follows, we summarize observations made in the
quiescent T-mode of operation.

The line-averaged electron density measured by the 75 GHz microwave interfer-
ometer ranges from 2-5 x 10"* cm™?; and since the plasma diameter is around 18 cm
in the midplane of each sector, the average electron density is estimated to be between
1 x 10" and 2 x 10" cm >, The local electron temperature, T.(r), has been measured
directly using Thompson scattered laser light; but at these low densities, the intensity
of the scattered light is only marginally detectable. Steady-state operation of the
plasma allows data from multiple laser pulses to be accumulated, and in this way,
electron temperatures between 130 and 200eV were measured during relatively
low-power heating with roughly 20 kW of microwave power. The variation of electron
temperature with ambient hydrogen gas pressure was measured using soft x-ray
spectroscopy, and typical results are shown in Figure 10.10. The corresponding ion
temperatures were measured by charge-exchange analysis with results as shown in
Figure 10.11.

The ambipolar potential was measured using a rubidium beam probe developed
in collaboration with Colestock [7]. In this technique, singly charged rubidium ions
are injected into the plasma where they become doubly ionized. Analysis of their
orbits then permits a direct spatially resolved measurement of the ambipolar
potential, 0(x,y). An example is shown in Figure 10.12.

The potential is typically around + 100V positive near the surface of the plasma
and —100V near the center line of the torus. The resulting inward-directed radial
electric field enhances electron confinement and provides electrostatic confinement
of most of the plasma ions. A spline fit to a large number of potential measurements
reveals the closed, bowl-shaped nature of the potential surfaces in the T-mode of
operation, when magnetic field errors have been properly compensated. The annuli
typically have densities in the 1-4 x 10" cm ™ with temperatures around 250 keV.
The corresponding values of beta are in the range of 10-40%.

The parameters of the plasma in the quiescent T-mode of operation can be
interpreted at least qualitatively in terms of neoclassical transport theory; initially
formulated for stellarators and bumpy torii by Kovrizhnikh [8] and subsequently
developed extensively by many others. The detailed effect on ion confinement of
the ambipolar potential observed in EBT has not yet been fully investigated, but the
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Figure 10.10 T, versus pressure in the T-mode.

EBT experiments provide some useful phenomenological insights into the electron
transport processes. In its most basic form, neoclassical transport theory predicts
that the flux of particles and heat in quiescent plasma will be governed by the pitch-
angle dependence of the spatial properties of the drift orbits of the guiding centers.
The resulting transport will have a diffusive character with a diffusion coefficient
of the following form:

D ~ [((8%)*)vol{1/[1 + (vo/2)"]},

where once again dx is the shift of the guiding-center drift orbit relative to the ring axis
of the torus, rQ, is the poloidal drift speed, and vg = 14! is the rate at which the
particle velocity is scattered in angle by Coulomb collisions. Generally speaking,

((8%)%) ~ (rReo/R)* (1 + qER,/T) ~*
and
QP ~ (T/qBcho)(l + qERco/T)

The Coulomb scattering rate is the inverse of the Spitzer value cited earlier:

To = 25.8v/7(8,/q*)*(nInA) ' v/m T2,
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Figure 10.11 T; versus pressure in the T-mode.

For 400 eV electrons with a density of 2 x 10'*cm ™ near the plasma surface in
EBT-I, we estimate that ((8x)*) ~0.3cm?, To=10""s, and Q,~10°s™". The corre-
sponding diffusion coefficient is D~ 3 x 10> cm?s™'; and the electrons are in the
collisionless regime since (ve/Qp)2 < 1. The transport times estimated from this
crude picture of neoclassical transport are then in rough agreement with the
experimental values and given by

T~ a2/2D =~ 19/2{[Ri/Reo(a)] (1 + qER,, /T)}* ~ 10 ms.

Perhaps of greater significance is the empirical observation that the confinement
time increases with electron temperature roughly as T2/?, in agreement with
the temperature dependence of neoclassical transport in the “collisionless” regime.
The data indicating this temperature dependence are shown in Figure 10.13,
where the product of electron temperature and energy confinement time is plotted
against the ratio of the Coulomb collision frequency to the poloidal precession
frequency, (ve/Qp), proportional to T, 52,

In order to explore the transport implications of these experimental results
from EBT-I, we express x, the shift in the guiding-center drift surfaces, in the
following symbolic form:

x(r, 8y, W) = (r/R)W/[W(VB/B) +q(V)],
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Figure 10.12 The ambipolar potential in the T-mode.

where 6, = sin” (v, /v) is a measure of the velocity-space pitch angle, W is the particle
energy, and () indicates the average over a bounce or transit period. As a notational

convenience, we denote the average r
(Vo). Similarly, the average radius of

adial (ambipolar) electric field as E(1,0,) =
curvature of the magnetic lines of force is
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Figure 10.13 T.t versus v/Q, in the T-mode.
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denoted by R.(r,0,) = —(VB/B) . Since the net poloidal drift is the vector sum of the
VB x Band E x Bdrifts, and since the radial electric field in the EBT-I experiments is
directed inward toward the toroidal ring axis, there is an ion energy at which the
two drifts will cancel and the net poloidal drift will vanish. This energy, W, marks the
transition from electrostatic confinement to magnetic confinement and provides
a loss mechanism for ions that can ensure quasineutrality. Symbolically, this
transition energy is given by W;= —qE,R.. Our expression for the shift in the center
of the guiding-center drift surfaces now takes the form

x(r, 0y, W) = —(rR./R)W/(W—W,).

Clearly, the transition energy depends on the position, 1, and the pitch angle, 8,,
but these dependences are relatively weak for well-trapped particles and we will
ignore them for the present qualitative discussion.

We now imagine that the ions and electrons experience a large number of small,
random changes in energy and pitch angle, resulting from Coulomb collisions
and any operative heating processes. The corresponding changes in the centers
of the guiding-center drift surfaces will be given by

&x = (0x/00,)06, + (0x/OW)SW,
which can readily be written in the following form:

8x = (rR¢/Ry) (1= W/W,) 2{[(W/W,)?(dlnR. /d6,)
+ (W/W,)(3ln E/08,)]80,—8W /W, }.

If the ambipolar potential is constant along the magnetic lines of force and the
mirror ratio is not too large, 0lnE/06, is small and will be neglected for the present
qualitative discussion. Moreover, since the electric field in EBT-I is directed radially
inward so that the transition energy for electrons is negative, we may assume that the
electrons will diffuse mainly as a result of pitch-angle scattering:

3% ~ (rR./R;)(1—eER./T.) *(3lnR./08,)38,.

For the plasma ions whose energies are less than the transitional energy, the
dominant contribution to transport may come from the heating term:

8% ~ —(rR/Ry)(1-W/W,) 8W /W, ~ —(r/R)(1-W/W,) *8W /eE.

Evidentially, as the ions are heated and W approaches W,, 3x; will become large
and radial transport will become increasingly rapid. Note that for these low-energy-
electrostatically confined ions, the radial diffusion associated with heating will
transport ions in proportion to the energy gained:

AX(W) = —(rR/Ry)(1-W /W) AW /W

Since the ions are lost if Ax(W) exceeds the plasma radius, we can obtain a rough
estimate of the maximum energy which these electrostatically confined ions can
achieve; namely, Wy, = W(Ry/R)(1 — WmaX/Wt)Z. For typical operating conditions
in EBT-], this gives Wy, ~ 0.7 W,.
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One will immediately recognize the parallels between this mechanism and the
ambipolar transport mechanism discussed in Chapter 6. In EBT-], the electrons are
magnetically confined with an apparently neoclassical lifetime ., and the ion lifetime
must equal that of the electrons to maintain electrical neutrality. The ambipolar
(radial) electric field takes on the value required for the two lifetimes to be equal.
A theoretical formula for the neoclassical diffusion coefficient has been derived by

Kovriznykh [8] and is given by:

Dy = (1/6)(Vth/9p01)2\/9/[1 + (Ve/Qp)z}~

The scaling of electron lifetime with the parameters of the EBT is then given by

Te ~ 32/(2Dne) ~ (R¢/R¢)Tge,

and it appears that the electron lifetime in EBT is enhanced over the Coulomb

scattering time by a (large) factor, (Ri/R.)
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B Exercises

10.1.

10.2.

10.3.

It has been suggested that the observed stability of the hot-
electron annulus in ELMO and similar hot-electron
plasmas may be due to the rapid poloidal drift speed of the
relativistic electrons, provided it is much faster than the
growth rate of potentially unstable fluctuations.

(a) Derive an approximate expression for the growth rate of
curvature-driven flute modes in a plasma consisting of
low-temperature ions and high-temperature electrons.

(b) Estimate the hot-electron temperature, for which this
growth rate is much less than the hot-electron poloidal
frequency.

As a crude model of the diamagnetic modifications of the

vacuum magnetic field brought about by a high-beta

relativistic-electron annulus, we adopt the following ad hoc
model of the kinetic pressure, p = (3/2)nkT, in the annulus:

p = p.exp{—[(r—ra)/Ar]"}, for|z| < L,
=0, for |z| > L,.
In the MHD picture, the radial pressure gradients in the

annulus are balanced by diamagnetic currents whose
densities are given by j x B= Ap.

(a) Derive expressions for the azimuthal diamagnetic
current densities in the inner and outer surfaces of the
annulus.

(b) What are the maximum values of these currents and
where do they occur?

(c) Derive an approximate expression for the total diama-
gnetic field at the center of the annulus, r = r, and z= 0.

(d) Estimate the resulting diamagnetic fields as a function of
beta, § = 2 n.p/B? and the dimensions of the annulus.

In the “collisional” regime of plasma confinement in a
simple bumpy torus, the poloidal drift frequency and the
(pitch-angle) scattering time satisfy the condition that Q,
To < 1. Thus, the poloidal drift is too slow to compensate for
the toroidal drift, v,u,, where the major axis of the torus is in
the y-direction. The random walk step size is then given by
Oy = v;Tg, where v, is the guiding-center drift speed due to
the toroidal curvature. Show that the resulting diffusion
coefficient varies as B2, i.e., the same B dependence as
classical diffusion across a uniform magnetic field.
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11
ECH Applications to Space Plasmas

In this chapter, we consider the possible use of electron cyclotron heating (ECH) for
active experiments in space as well as for basic terrestrial studies of plasmas that may
be helpful in understanding some astrophysical phenomena. The illustrative active
experiments to be considered here are aimed at achieving control of energetic particle
fluxes from the Earth’s radiation belts, an undertaking sometimes referred to as
“Radiation Belt Remediation.” The basic terrestrial plasma studies envisioned in this
chapter emphasize plasma processes of interest in astrophysics that can be expected
to take place in the high-energy-density plasma media that can be produced and
sustained in stable steady state using ECH. Plasmas such as those produced in ELMO
have substantial populations of relativistic electrons with energies in excess of the
thresholds for electron—positron pair production as well as the electrodissociation of
deuterons discussed earlier in this volume. The content of this chapter is necessarily
more speculative, as compared with the previous three chapters in which well-
diagnosed experiments provided the basis for theoretical interpretations. Nonethe-
less, it will be possible to introduce several unique aspects of ECH that should prove
to be important in future ECH applications in these two areas.

1.1
Active Experiments in Space

Achieving active control of the flux of energetic particles from the Earth’s radiation
belts has been of considerable interest for many years, particularly in the United
States and in the former Soviet Union. There are natural sources such as strong solar
storms that create a population of energetic charged particles in the magnetosphere,
which have sometimes caused damage to satellites and electrical power networks. An
even greater concern has been the possible creation of dense populations of
damaging energetic electrons and ions by the intentional detonation of nuclear
weapons in the radiation belts as a way of neutralizing satellites intended for defense
purposes.

One conceptual approach to pumping energetic charged particles out of the Earth’s
radiation belts was made almost 25 years ago by Trakhtengerts [1]. In this approach,
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which he called the “Alfvén Maser,” collective oscillations in the magnetospheric
plasma are driven to large amplitudes through the injection of suitable populations of
hot electrons together with synchronous modulation of the ionospheric plasma
density at the foot of the chosen magnetic flux tube. In some respects, this process
resembles the triggering of whistler instabilities, described in Section 8.3. The Alfvén
Maser concept raises several issues that can be addressed in terms of basic ECH
theory; it also suggests some experimental strategies that have not been fully
investigated, as well as some unresolved theoretical issues, and therefore, the present
discussion must be regarded as somewhat speculative.

The main technical difficulty that must be overcome if adequate densities of
ionospheric electrons are to be heated to even moderately relativistic energies
arises from the nearly uniform magnetic field in the resonant interaction region
where the RF fields resonate with the electron gyrofrequency and its harmonics. As
discussed earlier, the relativistic increase in the mass of the heated electrons limits
the increase in electron energy to values that may be inadequate to pump the
Alfvén Maser. This heating limit is usually referred to as a relativistic limit cycle or,
more recently, a relativistic heating gap [2]. The term “gap” refers to the difference
between the maximum energy that permits resonance at a particular gyroharmonic
and the minimum energy that permits resonance at the next higher harmonic. There
have been studies of the use of multiple heating frequencies to bridge the relativistic
heating gaps and achieve stochastic heating over a wide energy range. A more
speculative approach that has yet to receive similar attention is the possible use of
frequency-modulated ECH power (FMECH) to extend the duration of a single-pass
resonance and thereby achieving the desired final energy in a single-electron transit of
the resonance zone. FMECH also offers the possibility of bunching the electrons in
gyrophase as well as in energy, although this has not been demonstrated for the
oblique illumination that would characterize ionospheric heating. If phase bunching
could be achieved, the resulting energetic electrons may be especially efficient in
triggering the desired collective response in the radiation belts. Note that the
precipitation of electrons into the ionosphere will increase the conductivity at the
foot of the flux tube and provide positive feedback, which could conceivably yield large
amplitude bursts of wave energy and ejected particles.

To establish the basic heating geometry we recall the geomagnetic field model
described briefly in Chapter 2, following Alfvén and Filthammar [3]. In terms of a
magnetic scalar potential, x, the magnetic field is given in spherical polar coordinates
by B= —Vy with x =a-r/r’ =a sinA/r’. The strength of the dipole is a=8.1 x 10"°
Tm?® and the longitudinal angle A is measured from the equatorial plane, A=
7t/2 — 6. The resulting components of the geomagnetic field are then: B, =0, B, =B,
sinA, and By = —(Bp/2) cos, where Bp:2al/1'3 . The magnetic lines of force are
specified by ¢ = constantand r = ., cos’A. Here, 1., is the distance from the origin to
the point of intersection of the magnetic field line with the equatorial plane. Along a
line of force, the magnetic intensity varies as

B = (a/rl,)[(1+ 3sin? 1)"/? /cos® A]. (11.1)
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If s measures the distance along a magnetic line of force, we have

(1/B)(dB/ds) = (3 tan A/1)[(8—5 cos® ) /(4—3 cos® A)](1 + 4 tan? A)V/2.
(11.2)

As a specific illustrative example, we will utilize the HIPAS facility in Alaska [4],
where A =64.87° and (1/B)(dB/ds) ~ 3/r. For a resonant interaction region 100 km
above the Earth’s surface at the location of HIPAS, r = 6,478 km and thus, (1/B)(dB/
ds)~ 4.6 x 10 *km . If the total length of the interaction region illuminated by a
given antenna array is 10km, for example, then over this region, the magnetic
intensity varies by AB/B~0.0046 and the magnetic field can be considered as
essentially uniform over the interaction region. Note that the distance along a
magnetic line of force from a resonant interaction region at longitude A and its
conjugate point is given in the present dipole model by

L=2 J(ds/dx)dx — V3req{sinA(1/3 + sin® 1)V

+ (1/3)In[sin A+ (1/3 4 sin® 1)/*]—(1/6)In(1/3)}, (11.3)

where the limits of integral are from 0 to A. In our HIPAS example, with the resonant
interaction region at an altitude of 100 km, req~ 3.6 x 10*km and L~ 9.8 x 10*km.
The remaining basic parameters characterizing the resonant interaction region
100 km above HIPAS are: B=5.54x 107> T, f..=1.55 MHz, and c/fee=193m.
The cutoff densities for fundamental and second-harmonic resonance are 3 x 10*
and 12 x 10* electrons/cm’, respectively. For comparison, the maximum day-time
electron density in the E-layer (100-120 km) is around 12 x 10* electrons/cm® and
the night-time density is around 1.8 x 10 electrons cm > [5].

In Eq. (5.4), a term was included for the rate of change of the phase factor, V/(t,),
arising from the relativistic change in the mass of the heated electrons: V/(t,es) =
Q(dW/dt)/ymc?. This effect will limit the duration of resonance if the magnetic field
is essentially uniform, as is the case under consideration here. If V/(t.s) is not
compensated by a corresponding change in the wave frequency, o, electrons will
initially gain energy until their gyrophase has slipped by a large enough value to cause
the sign of dW/dt to reverse. The electrons will then loose energy until the gyrophase
reaches a value for which dW/dt is once again positive. This relativistic limit cycle will
repeat until some external condition is altered. We can gain some semiquantitative
insights into the implications of this relativistic effect using results from Chapter 5.

Equation (5.5) gave the following expression for the effective duration of
resonance, tef, defined as the time interval within which the gyrophase would
change by +£7/4: tegr> 2[/|2V (tres)|]'/2. If we now substitute the rate of change due
to relativistic detuning: V/(t,es) = —Q(dW/dt)/ymc?, approximate the heating rate in
the heating phase of the relativistic limit cycle by dW/dt ~ AW | /t.¢r and replace Q by
2nf, we have

f ter ~ Y mc? /AW, (11.4)
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Thus, the duration of resonance is inversely proportional to the energy increment
as one might have expected. The energy increment in one transit of the resonance
zone was given by Eq. (5.13):

AW = —eV2[E_ V1 (0)J3 (k1 p)terr €08 Oy + (€7 /ym) [E-[*T3 (k. p) -

Defining K = e|E_|AJo(k, p)ftes/ymc®, where A = c/f is the free-space wavelength,
and substituting from Eq. (11.4), we can rewrite Eq. (5.13) in the following compact
form:

K2 —2[v, (0)/cl], (k. p)cos by K = AW /ymc = 1/(f te). (115)

The particular choice of cos ¢,s = 0 displays the basic scaling with RF electric field
strength: K> = 1/ft.g becomes 1/ftegr= [e|E_|AJo(k p)/ymc?]*/?, so that

2/3

AW = ymc? [e[E_|A], (k. p)/ymc?] (11.6)

The variation of AW, with the two-third power of the effective RF electric field
strength has been demonstrated in numerical studies by Ginet and Heinemann [6].
To realize this energy increment in practice would require that the length of the
resonance zone illuminated by RF power be matched to the distance traveled by a
heated electron in the time for a single transit of resonance, teg.

In principle, it is possible to compensate for the relativistic detuning by employing
frequency modulation of the RF power (FMECH) [7]. For fundamental resonance ina
uniform magnetic field, the necessary rate of change of the RF frequency is given by
dw/dt = —Q(dW/dt)ymc®. For realizable power sources, the maximum frequency
deviation rate is limited by the effective bandwidth of the RF system, Af:

df /dt < (3/2)(Af)*. (11.7)

The maximum heating rate for which the resonance condition, v=0, can be
maintained is therefore limited by the available bandwidth:

(dW/dt) .~ (3/2)ymcf(Af /)2 (11.8)

max

The maximum change in the electron energy for which resonance can be
maintained is similarly limited by the bandwidth of the RF system:

(AW, ~ ymc?|Af /f]. (11.9)

These limitations determine the maximum energy increment, the optimum RF
electric field strength, and the duration of resonance for a given bandwidth. For
ideal resonance, v_(t), and thus the heating rate, dW/dt, increases linearly with
time whereas the electron energy increases quadratically with time. Atatime t =t,,5y,
the heating rate will reach the limit set by Eq. (11.8), and the condition for ideal
resonance can no longer be satisfied. For optimum choice of the RF electric field
strength, we require the energy at this time to satisfy Eq. (11.9). We employ the
linearized description of the heating from Chapter 5 to make this picture more
quantitative. The right-hand circularly polarized component of the velocity of an
electron acted on by a right-hand circularly polarized RF electric field was obtained in
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Chapter 5 by integrating the equation of motion. The resulting expression was
v_(t)=v_(0)exp (—iJth) +A_exp (—iJth) Z]n(kLp)exp[i(n¢O—p sing,)]
X Jdtexp{int[k“v‘|—m+ (n+1)QJ},

where A_ = —(e/ym)|E_|. For fundamental resonance, n =0 and kv — o + Q =0,
so that the linear time dependence of v_(t) is clearly evident:

v_(t)

[v_(0)+A_J, (k. p)exp(—ik, psino,)tlexp (—iJth)
(11.10)

[v_(0)+ Airtlexp <7i .[th> .

The heating rate averaged over a wave period is given by (1/2)Re(—eE*-v) = (1/2)Re
(—eE_*v_), resulting in the following expression for the time-dependent fundamen-
tal-resonance heating rate:

(AW /dt) = —e[E_[J, (k. p)cos(9, k. p sin ¢,)v. (0)/2v2
+ (€ /ym) [[E- [, (kop))t/2.
The electron energy at time t is thus given by
W(t) = W(0)—eE- [, (k.p)cos(d,—k.p sin ¢, )v. (0)t/2v2
+ (€ ) [[E-[Jo (ko p))"t /4.

In order to display the implications of the heating limitations based on the RF
bandwidth, we reconsider only the deterministic, gyrophase-independent term and
write for the maximum heating rate and energy increment as

(AW/dt) g = (3/2)¥mF(AF/F)* & (€ /ym)[[E-[Jo (k. p)]* trmax /2
(11.11)

and
AWiax = ymc?|Af /f| & (€7 /ym)[|E_[], (k1 p)]* (tmax/2)°. (11.12)

The optimum values of the duration of resonance and the RF electric field strength
are thus given by

f tay = 3(A£/£)2[e]E_[A], (k. p)/ymc?] (11.13)
and
e[E_ [N, (kup)/yme? ~ (3/2)(|Af /£])*2. (11.14)

Since (AW)umax = ymc’|Af/f], Eq. (11.14) indicates once again that the maximum
energy increment is proportional to the two-third power of the RF electric field:

(AW),../ymc = [(2/3)e[E_ [\, (k. p)/ymc?]*.
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Apart from the factor of (2/3)*/*, this is the same result as the more approximate
value from Eq. (11.6).

11.2
Laboratory Experiments of Astrophysical Significance

The understanding of astrophysical phenomena is likely to depend to a significant
degree on the understanding of basic processes taking place in plasmas. This
understanding, in turn, must ultimately be derived from closely linked theoretical
and experimental studies of a wide range of plasma media. ECH has proven to be an
effective means for creating many different plasma media, but especially the steady-
state relativistic-electron plasmas that can provide experimental and theoretical
access to plasmas capable of exhibiting a unique regime of plasma phenomena.
Among these are the steady-state creation and confinement of populations of
electron—positron pairs and the electron dissociation of deuterium nuclei, as well
as the generation of various types of double layers. With the potential use of ECH in
mind, we include here an overview of the production of relativistic-electron plasmas
by ECH with an emphasis of the fundamental processes that could be manipulated
for optimizing this production. Many of the technical details of this overview have
been discussed in earlier chapters, but they will be placed in a broader context here to
provide something of a prescription for efficient ECH generation of relativistic-
electron plasmas.

The conceptual approach to be discussed here is based in part on the anticipation
that under typical circumstances, a significant number of collisionless electrons
can accumulate in the superadiabatic or null-heating limit cycles, as discussed in
Chapter 5. By suitable restoration of the stochastic heating of these electrons before
they can generate turbulence, many more of them can be heated to relativistic
energies. The use of multiple-frequency ECH (MFECH), which has shown great
promise in increasing the efficiency of relativistic-electron generation, has been
interpreted in just this way; but other approaches might also be effective.

Broadly speaking, the fundamental processes governing the generation of rela-
tivistic-electron plasmas are those that are involved in providing a steady source of
ion—electron pairs, confining the resulting plasma without excessive turbulence and
heating the electrons into the MeV energy range. For definiteness, we will use
magnetic-mirror confinement in discussing these processes, but much of the
discussion will be applicable to other configurations as well. To that end, we consider
a mirror-confined electron cyclotron heated plasma created by ionization of ambient
gas and identify fundamental aspects of the heating and confinement in the
schematic representation shown in Figure 11.1.

The arrows in the figure represent fluxes of electrons in energy and in space. The
energy fluxes indicate the effect of competition between heating and cooling, whereas
the spatial fluxes indicate the loss of confinement. The equilibrium distribution of
electrons in energy is governed by the net result of these competing processes. Note
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Figure 11.1 A schematic model of the fundamental ECH processes in a magnetic mirror.

that the energy dimension increases upward in the figure, starting at 10V for the
newly created ion—electron pairs and ending somewhere above 10°eV where
nonadiabatic losses may become dominant in magnetic mirrors of modest size and
magnetic field strength. The scale is somewhat arbitrary, but is based on our earlier
classification of groups of electrons according to the energy dependence of their
fundamental kinetic and dynamical processes. Despite its arbitrariness, this scheme
provides a useful framework for identifying the elements of heating and confinement
that can be manipulated to optimize the steady-state ECH production of relativistic-
electron plasmas.

In the first energy decade shown in the figure, between 10 and 100 eV, electrons are
confined by an ambipolar electrostatic field whose magnitude is governed by the
conditions for quasineutrality, discussed in detail in Chapter 6. These electrons make
anumber of bounce orbits before escaping and therefore encounter ECH resonance a
number of times in this energy interval. Under typical ECH conditions, only a few
transits of the resonance surfaces are required to heat electrons to energies above the
ambipolar potential (see “One-or two-step ECH” in Figure 11.1). Electrons heated
above the ambipolar potential barrier can escape promptly if they are in the loss cone
or by scattering into the loss cone if they are initially outside of it. Since the rate of
collisional scattering decreases with the cube of the electron speed, the loss of
electrons at this phase of the process will be reduced if the ambipolar potential is
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increased, for example, by inhibiting the outward flux of ions through anisotropic ion
heating or by replacing some of the cold ions by well-confined hot ions. Note that any
change that reduces the ambipolar potential or, more particularly, causes it to reverse
sign is likely to cause a reduction in efficiency or a loss of the hot-electron population
altogether unless additional steps are taken to prevent rapid loss of low-energy
electrons in this first energy interval.

The second energy decade identified in Figure 11.1 is typically characterized by a
Coulomb collision rate that is high enough to randomize the electron gyrophase
between successive transits of the resonance surfaces. These electrons will therefore
be heated stochastically and diffuse in energy and pitch angle. The mirror reflection
points of those diffusing upward in energy will accumulate around the resonance
surfaces, whereas those diffusing downward in energy may reach the loss cone and
escape. The accumulation at the resonance surfaces can elevate the temperature
anisotropy to levels at which instabilities can occur if the resonance surfaces are too
near the mirror midplane, although measures for mitigating this effect such as
UORH have been well established. Choosing resonance surfaces too near the loss
cone will inevitably cause higher levels of RF driven losses.

In the third energy interval identified in Figure 11.1, from 10° to 10*eV, the
Coulomb scattering rate of electrons is so slow under typical conditions that
gyrophase randomization between successive transits of the resonance surfaces
may no longer obtain. Stochastic heating may then cease and the electrons may
accumulate in the superadiabatic or null-heating limit cycles, as discussed in
Chapter 5. From the point of view of preserving the source of electrons that are
to be heated to relativistic energies, it appears that the elimination of these limit cycles
can provide the basis for a useful optimization mechanism. These electrons are
nearly collisionless and are therefore well confined by magnetic mirrors. Moreover,
the pitch angles of these electrons are restricted to relatively narrow ranges by the
combined action of the ECH power and the static magnetic field of the mirror. These
electrons can be released from the limit cycles and stochastically heated with high
efficiency if suitable perturbing forces are applied. One such perturbing force that
can be especially efficient is multiple-frequency ECH (MFECH), to be elaborated
upon shortly. Other interactions may also be used to destroy the coherence underlying
these limit cycles, such as the automatic second-harmonic heating that occurs if the
second-harmonic resonance surfaces interact the magnetic flux surfaces on which
the limit cycles obtain. This mechanism was active in TPM, the Canted Mirror, and
EBT, but its efficacy could not be isolated as clearly as that of MFECH, as demon-
strated, for example, in experiments carried outin the SM-1 facility [8]. In these experi-
ments, the energy stored in relativistic electrons was increased by a factor of 5x
when the same amount of RF power was supplied at four different frequencies relative
to that which resulted when the same power was coupled at a single frequency.

SM-1 was a simple magnetic mirror with a 2.2 : 1 mirror ratio on axis. The distance
between the mirror “throats” was 71 cm. RF power was supplied by four klystron
amplifiers at frequencies 8.3, 9.2, 9.4, and 10.1 GHz, respectively, and launched
through hybrid junctions oriented to couple to O-modes. The klystron amplifiers
could be driven at several frequencies within a bandwidth of 50 MHz. Very extensive
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diamagnetic measurements were made and matched to computed equilibriums to
establish the equilibrium properties of the high-beta annuli generated in SM-1;
but the main focus here is on the remarkable results achieved by MFECH that are

summarized in Figure 11.2.
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Figure 11.2 Dependence of total stored energy on total heating
power for four different compositions of the heating power
spectrum. The total power is always distributed equally among all
of the active heating frequencies.
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In Figure 11.2, the measured values of the perpendicular energy, W , stored in the
hot-electron population are plotted as functions of the total heating power. In all the
four cases shown here, the total power is divided equally among the frequencies listed
for each case. When the power was supplied at a single frequency (9.4 GHz), the
stored energy increased quadratically with power up to a limit around 5 ] at 800 W/, at
which point the equilibrium was lost. When the power was divided equally between
two frequencies (9.4 and 9.2 GHz), W increased by a factor of three to four times
higher than that was achieved with an equal power at a single frequency. With three or
four frequencies, the stored energy could reach 257, and total powers as high as
1200 W could be used, compared with a maximum of 800 W for the single-frequency
case. Experiments with two-frequency heating in which the frequency difference
between the two sources was varied continuously revealed a clear optimum frequency
separation of 40 MHz, which is approximately equal to the bounce frequency of
10keV electrons in SM-1. With single-frequency heating, the escaping current
carried by the electrons in this energy interval exhibited low-frequency (~30kHz)
fluctuations. These fluctuations were strongly suppressed with three- or four-
frequency heating. It was not possible to identify the stabilization mechanism
responsible for the suppression of these fluctuations, but the increased density of
hot electrons resulting from MFECH is a likely candidate.

The fourth energy decade, 10°~10°eV, in Figure 11.1 has been identified with
renewed stochastic heating, since the gyroradius of electrons in this decade is large
enough to yield significant heating rates at the second and higher harmonics of the
electron gyrofrequency. It is in this energy interval that upper off resonant heating or
other forms of preferential heating can be employed with excellent effect to heat the
more energetic electrons. Fokker—Planck models of the resulting equilibrium
distribution function have been quite successful in describing the kinetic processes
in this interval [9]. These same studies have also modeled the losses caused by of the
breakdown of adiabatic invariance, in good agreement with experiments.

A useful prescription for the efficient ECH generation of relativistic-electron
plasmas is thus available for application to the study of basic plasma processes in
these unusual plasma media.

11.3
Nonlinear Dynamical Ambipolar Equilibria

As we have seen earlier, the absorption of whistler waves launched in the high-field
region can be localized in a narrow zone near the resonance surface, especially in over
dense plasmas. Such strong local heating can generate a substantial electron-
pressure gradient that must be balanced by an electrostatic field. The resulting
structure can take the form of a phase-space vortex or a compound charge layer
anchored to the resonance surface [10]. Such structures may exhibit a threshold for
instability if the electron distribution contains two distinct populations of electrons:
those that are trapped in the electrostatic ambipolar potential and those that are
streaming through this potential.
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In the course of experimental studies of plasmas created and sustained by whistler
wave heating, several observations have been noted that raise questions regarding the
basic properties of the plasma equilibria. For example, significant differences have
been observed in the electron energy distribution when cw heating was replaced by
trains of pulses with duty cycles around 25%. The electron temperature achieved with
this form of pulsed heating was substantially higher than with cw heating at the same
value of peak power. Since it was demonstrated that the cw heated plasma was subject
to repetitive bursts of instabilities at frequencies near the heating frequency it is
plausible that the use of pulse trains of heating power permits classical mechanisms
to allow ordered groups of electrons to relax before the threshold for instability is
reached. In this section we wish to consider the dynamical properties of the
ambipolar potential that must arise if the plasma is to achieve the necessary
quasineutrality that was discussed earlier. There we typically considered cases where
two symmetrically located resonance surfaces were illuminated by microwave power.
The ambipolar potential could reasonably be assumed to extend more or less
uniformly along the magnetic lines of force between the resonance surfaces and
decrease beyond these surfaces where the field lines intercepted metallic walls. If the
mean-free-paths for atomic processes such as charge exchange and recombination
are greater than the distance to the nearest material wall, the potential drop will be
largely confined to the conventional sheath separating the plasma from the wall. In
contrast, if a single resonance surface is illuminated, as would be the case in the kinds
of active experiments in space discussed earlier in this chapter, the ambipolar
potential is expected to reach a maximum positive value where the microwave power
is absorbed and decrease along the magnetic lines of force at a rate that depends on
the rate at which ions and electrons are lost by transport as well as atomic processes.

In this section we will consider a dynamical model of such an ambipolar potential
containing a mixture of trapped and untrapped electrons and explore the conditions
under which it might be possible to employ strong local absorption of whistler-wave
power to generate a stable electrostatic trap for electrons. Such a trap could permit
trapped electrons to experience multiple transits through the resonance surface and
thereby be heated more efficiently at low power than would be possible if the electrons
made only a single transit of the resonance surface. We assume that the dominant
phenomena affecting the collective dynamics of the equilibria are electrostatic and
therefore governed by Poisson’s equation: V-g,E = —V &,V = —£,V20 = p.
Here p is the electric charge density and ¢ is the electrostatic potential. In a strongly
magnetized plasma with cylindrical symmetry, the equilibrium conditions along
the magnetic lines of force can be described approximately by the one-dimensional
limit of Poisson’s equation:

Po/ax = —p/eo = — 3 (q./e0) Jdv Fos(¥).

The summation is over all species of charged particles. Since € =mv?/2 + q¢ is a
constant of the motion, the equilibrium distribution functions can be taken to be
functions of £. Note that the speed is given by v=[2(e — qd)/m]'/* so that the
derivative de/dv =[2m(e — q0)]'/%. If we now consider the function V(¢) defined as
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the following integral from € =q¢ to € = o0:
V() = - [ defo(e) 2(e-g9) /)"
Clearly,
£odV /do — qjds £, (e)2m(e—q0)] 2 = qus £y (e)dv/de = p,

so that p/e, =dV/d¢. Poisson’s equation can therefore be written as
d*¢/dx* +dV/do = 0.
If we now multiply this equation by (d¢/dx) we have
(do/dx)d*/dx’ + (do/dx)dV/d¢ = 0
(d/dx)[(d¢/dx)*/2] +dV/dx = 0, or
(d9/dx)*/2 + V = constant.

Note that Poisson’s equation can now be written as

d[(do/dx)*/2]/d¢ = d(E?/2)/d9 = —dV/do = —p/e, = 2(e/e,) (ne—mi),
(11.15)

which is the form we will employ in the following. The function, V(9), is generally
designated as the “pseudo potential.”

One of the simplest techniques for obtaining self-consistent, nonlinear dynamical
descriptions of equilibria of the sort under consideration here employs the so-called
water-bag model [11] to obtain explicit forms for n(¢) that can be integrated to obtain
(do/dx)* and ¢(x). The water-bag model represents the equilibria as a number of
sharply bounded regions in phase space within which the distribution function has a
constant value and Liouville’s theorem is explicitly satisfied. For two groups of
electrons, the phase-space orbits may have the form shown in Figure 11.3. The
distribution of electrons in speed is assumed to be constant within boundaries

4

—f//ﬁ'—\\‘

Figure 11.3 Phase-space boundaries for a rudimentary water-bag
model of the dynamic, self-consistent equilibrium containing
trapped and untrapped electrons.
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determined by the constants of the motion. In the present illustrative case two such
regions are identified, corresponding to electrons that are trapped in the self-
consistent electrostatic potential and those that are untrapped and stream through
the potential. The associated distribution functions have values f; and f,,, respectively.
The four boundaries shown in the figure are described by energy conservation:

mv /2—e¢ = g = constant = +mu’/2, (11.16)

where the index j takes on the values 1, 2, 3, and 4. Since v, vanishes at the turning
points, €,(0 if ¢)0, asis the case here. Additionally, since v, and v; vanish at the same
position, we have €, =g3. For the present case we will adopt the simplifying
assumption that the equilibrium is symmetric so that €, =¢4, and the electron
density is then given by

ne = 2f,vy, for edp+¢; <0, and
ne = 2f,vy + 2(fi—fy)va, for ep+e, > 0.

If we introduce the Heaviside unit step function, U(ed + €,), we can write this
more compactly as

ne = 2f,v1 + 2(f—f,)v, U(ed +&5). (11.17)

As a notational convenience we use the maximum value of the electrostatic
potential, ¢,, to define the following three dimensionless variables:

=9/9,
G = mu?/2e, = &1/ed, (11.18)
§ = mud/2ed, = —&,/e0,.
In term of these variables, the speeds on the boundaries are given by
Vi = (Zeq)o/m)l/2 (C% +§)1/2 and
v2 = (200,/m)"? (&)

Our expression for the electron density now becomes

ne = 2(2eq,/m) A£G +8) " + () (-0)PUE-3)].  (11.20)

If the plasma ions are regarded as a spatially uniform distribution of infinitely
massive positive charges, we can set n; = constant. In the center of the plasma, where
E=0/d, =1, we require charge neutrality, n;=n.(§ = 1), and thus

n; = 2(2e0,/m)2[f (C +1)"* + (F—F,) (1-C1) 7). (11.21)

(11.19)

The square of the electric field, E*(¢), can now be determined by integrating
Poisson’s equation, Eq. (11.15), using the above expressions for the electron and ion
densities. In terms of the dimensionless variables, Poisson’s equation then becomes
the following:

dE2(E) = (2e0,/2,){2(2e0,/m) "/ [fu (¢} +8) "
+(F—f) (E-0)’U(6-) ] —ni}de. (11.22)

219



220

11 ECH Applications to Space Plasmas

At the surface of the plasma, where & =0, we impose the additional boundary
condition that E(§ = 0) = 0. Under these conditions, E*(§) is given by

E2(E) = (20,/0){(4/3)(2e0, /m)"2[£. (L2 +&)*2
—£.8 + (F—£0) (5-8) U (E-82)] —niE). (11.23)

We also require the electric field to vanish at the center of the plasma, so that
E(§=1) =0, which fixes the value of the ion density:

n; = (4/3)(2e0,/m) 2 [£,(C +1)* £, + (Fi—f) (1-82) ]

Since this ion density must also satisfy the electrical neutrality condition,
we have

A= (F—f)/fu = [(G+ 1)@ +1/2) -8/ [(1-8) 2 (E-1/2)).
(11.24)

Our expression for E*(€) can now be rewritten in the following form:

E2(8) = (2med, /e0) x { [(C+8)* -0 +A(E-) " ue-0)]/[(C+1)*?
~C+A(1-0)*) -} =E2F(E). (11.25)

In order to ensure that E*(£) >0 for 0 <& <1, it is necessary to require that
dE?/d& > 0 for & — 0. This condition is satisfied if {; > ({2 + 1)+ A(1-C2)"/%.

Since we have required E*(€) to vanish at§ = 0 and £ = 1, we can expand E*(€) in the
neighborhood of both of these points:

E*(§) ~ EjF(0)8, as&—0, and
B} (§) = EJF'(1)(1-§)", as&—1.

Note also that E(€) = —d¢/dx = —,d&/dx = +E,V/F(E), so that
dx = +x,d&/VF(E),

where X, = —0,/E,. If we letx = 0 be the point at which & = 0, we can obtain the spatial
profile of the potential by integrating this last expression using the local approxi-
mation, valid as & — 0:

x = 2%,E2 /VF(0),
or
0 = 0,F'(0)(x/2x,)°.
Similarly, near £=1,

dx = —x,dIn(1-&)/VF"(1)/2, sothat if &, < &, =1,
%1 = %V2/F'()n[(1-§;)/(1-8,)].
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Figure11.4 Profiles of the self-consistent ambipolar potentials for
the two cases described in the text.

This model has been used to construct the equilibrium potential profiles shown in
Figure 11.4. The parameters defining the two cases are as follows:

Case & & ny/ny, A F'(0) F'(1)
1 1 0.2 0.92 —0.4678 0.0042 0.0924
2 0.2 0.1 1.72 —0.7345 0.1218 0.1739

Note that E(Z) = 2n;ed, /€, and thus the scale length, x, = ¢,/E, = (eoq)o/Zeni)l/ 2,

The sheath-like structure of the plasma surface is evident from Figure 11.4: the
potential rises within a distance of O(10x,) to values approaching its maximum value,
0. The details of the sheath-like edge profile depend on the relative density of trapped
and untrapped electrons; but in any event, the model leads to equilibria whose
lengths are infinite. That is, the length is not determined by charge balance but rather
by particle and heat balance. It appears that the conditions for charge balance in this
dynamical model of the equilibrium determine whether or not equilibria exist at all.
This rudimentary three-component model containing trapped and untrapped elec-
trons and fixed ions indicates that the untrapped electrons must have energies greater
than a critical minimum value that depends on the relative density of trapped and
untrapped components. Otherwise the local density of electrons near the surface will
be too small to satisfy Poisson’s equation near the plasma surface while simulta-
neously satisfying charge neutrality in the interior of the plasma. The condition for
the existence of equilibria corresponds to the physical requirement that there be no
net positive space charge at the plasma surface.

References

1 V. Yu. Trakhtengerts, Active Experiments May, 1983, ESA SP-195, July 1983,
in Space, Symposium at Alpbach, 24-28 pp. 67-74.

221



222

11 ECH Applications to Space Plasmas

2 G.E. Guest, R.L. Miller, and C.S. Chang,
Nucl. Fusion 27, 1245 (1987).

3 H. Alfvén and C.-G. Falthammar, Cosmical
Electrodynamics, Clarendon Press, Oxford,
Pp. 3-6 (1963).

4 AY. Wong,“HIPAS Status Report — March
1-May 15, 1986,” June 1986, Center for
Plasma Physics and Fusion Engineering,
University of California, Los Angeles.

5 Y.L. Alpert and D.S. Fligel, Propagation of
ELF and VLF Waves Near the Earth,
Consultants Bureau, New York (1970).

6 G.P. Ginet and M.A. Heinemann, Phys.

Fluids B2, 700 (1990).

R.A. Dandl and G.E. Guest, Phys. Rev. Lett.

50, 970 (1983).

8 B.H. Quon, R.A. Dandl, W. DiVergilio,
G.E. Guest, L.L. Lao, N.H. Lazar, T.K.
Samec, and R.F. Wuerker, Phys. Fluids
28, 1503 (1985).

~N

B Exercises

HIPAS.

equatorial plane.

to 5keV:

bandwidth.

9 G.E. Guest and R.L. Miller, Nucl. Fusion
28, 419 (1988).

10 see, for example, R.H. Berman, D.].

Tetreault, TH. Dupree, and T. Boutros-
Ghali, Phys. Rev. Lett. 48, 1249 (1982);
Thomas H. Dupree, Phys. Fluids 25, 277
(1982); Thomas H. Dupree, Phys. Fluids
26, 2460 (1983); Robert H. Berman, David
J. Tetrault and Thomas H. Dupree, Phys.
Fluids 26,2437 (1983); and references cited
in these works.

11 see, for example, H.L. Berk, C.E. Nielsen,

and K.V. Roberts, Phys. Fluids 13, 980
(1970);Hans L. Pécseli, in Proceedings of the
Second Symposium on Plasma Double Layers
and Related Topics, R. Schrittwieser and G.
Eder, editors, July 5/6, 1984, Innsbruck,
Austria, (University of Innsbruck,
Innsbruck, Austria, a984), pp. 81-117
and references cited therein.

11.1.  For the simple dipole model of the geomagnetic field,
estimate the following properties of single electrons:

(a) The bounce time of electrons heated to (perpendicular)
energies of 5keV in a resonance zone 100 km above

(b) The \/ B x B drift speed of these same electrons at the

(c) The maximum electron energy for adiabatic invariance
on the geomagnetic field line through HIPAS.

11.2. Estimate the RF power flux required to heat these electrons

(a) with fixed frequency power and
(b) with frequency-modulated power with a 2%

11.3. The radius of curvature of field lines in SM-1 is given by
rR. = 600 cm?, If the magnetic field at a radius of 10 cm on
the midplane is about 0.2 T, estimate the poloidal drift
frequency and the frequencies of curvature-driven flute
modes for electrons of 10-keV energy. Assume that the
ions have a negligible temperature.




12
Some Aspects of Microwave Technology

It is not appropriate to close the treatise without adding some brief remarks
regarding the aspects of microwave technology that are important in electron
cyclotron heating (ECH). These remarks, however, are in no way intended to
substitute for an in-depth review of microwave technology that would be far beyond
the scope of the present work. Instead, the aim is to highlight some issues that may
prompt the interested reader to delve more deeply into the vast literature on this
subject. We rather arbitrarily separate the field into frequencies less than 35 GHz,
where the technology is well established for the most part, and frequencies in the
100-170 GHz range, where the development of high-power continuous wave (cw)
sources is ongoing and the technology is advancing rapidly as the power becomes
available at multimegawatt levels.

121
Low-Frequency Technology: Sources

At frequencies below 35 GHz, there is a wide range of cw microwave power sources.
For instance, klystron amplifiers, such as those employed in the SM-1 experiments,
have been widely used at frequencies up to 18 GHz and cw magnetrons have been
used at frequencies up to 9 GHz. TWT amplifiers employing coupled cavity, slow-
wave structures have been used for ECH at multikilowatt cw power output levels at
frequencies up to 55 GHz. Amplifier power output devices are emphasized in the text
since they offer some advantages over oscillators by virtue of the inherent simplicity
and flexibility of power output control and the possibility of a wide range of time-
dependent waveforms that they afford. Although few systematic studies of heating
with different waveforms have been reported, these have demonstrated beneficial
effects on some aspects of the heating process. Additionally, the power output of a
system containing multiple amplifiers can readily be controlled by simultaneous
adjustment of a common low-level drive power source.
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12.2
Low-Frequency Transmission Systems

In the frequency range below 35 GHz transmission systems for mostlaboratory plasma
facilities have generally employed dominant mode waveguide. Bends may be incor-
porated in these waveguide transmission systems to permit considerable flexibility
in the location of the RF sources relative to the plasma device. Waveguide vacuum
window availability in this frequency range has presented few problems, since the
window designs used on the microwave output tubes are generally applicable for use
at equivalent power levels on the fusion device itself. Window location is flexible since
it may be located at an arbitrary distance from the plasma device and can be shielded
from plasma bombardment by interposing waveguide bends. A complication arises
when the waveguide passes through a magnetic field where the microwave frequency
matches the local electron gyrofrequency. In order to prevent breakdown and arcing
in such regions, it has been common practice to locate the waveguide vacuum window
in a region where the magnetic field exceeds the resonant electron gyrofrequency
while maintaining pressurized waveguide operation through the resonance region.

12.3
Low-Frequency Coupling Techniques

Impedance matching is an especially important consideration at the power levels of
interest to most ECH experiments, but because the plasma parameters can vary
significantly in time, it is difficult to apply traditional methods of impedance
matching using networks of passive elements. It is helpful to minimize local plasma
coupling in the near field of the waveguide coupling aperture and exploit the
polarization-changing reflections at the walls of the vacuum chamber to convert
power initially coupled to weakly absorbed O-modes into X-modes that are then
rapidly damped. Since O-modes propagate readily through the underdense plasma,
near-field interaction is minimized and significant plasma coupling occurs only after
subsequent reflections from the chamber walls. Under these circumstances, the
impedance presented to the incident wave is nearly equal to the impedance of free
space. Impedance matching considerations entering into the design of the coupling
aperture are therefore similar to those for a radiating antenna. The simplest aperture
suitable for high-power use is an open-ended waveguide terminating flush with the
interior wall of the vacuum chamber. A widely used and very effective method of
coupling from dominant mode waveguide employs quadrature-type waveguide
hybrid junctions (four-port hybrid couplers) terminating in two identical radiating
apertures at the cavity wall. In this approach, the combination of the network
properties of the hybrid junction and physically symmetrical connection of the
output ports produces high-order cancellation of mismatch effects caused by dis-
continuities as well as by near-field interaction with the plasma. If the feed is oriented
with the RF electric field parallel to the magnetic field so as to couple to O-modes, the
near-field effects are further minimized.
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12.4
High-Frequency Power Sources

The development of the gyrotron oscillator has made possible the implementation of
ECH on large tokamaks and stellarators by providing megawatt power levels at
millimeter wavelengths for pulse lengths that are approaching and in some instances
achieving what is, in effect, continuous operation. Because of the importance of
the gyrotron to contemporary fusion research, we present here a brief introduction
to the theory of its operation and suggest the interested reader to take advantage of
detailed reports [1] that are issued regularly to update the technical community on the
rapid progress in this area.

A highly schematic representation of a gyrotron is shown in Figure 12.1.

A thin annular beam of electrons is generated at the cathode of a magnetron-type
electron gun and is accelerated by the potential difference applied to the anode, which
is typically around 80kV. The electrons flow along a static magnetic field whose
intensity increases gradually, adiabatically converting parallel kinetic energy into
perpendicular kinetic energy. The electrons then pass into an interaction region
where a fraction of their perpendicular kinetic energy is transformed into the energy
of electromagnetic radiation. This transformation comes about because of relativistic
changes in the electron gyrofrequency, Q =eB/ym.

As discussed in a uniform magnetic field in Chapter 11, the rate of change of
the phase of an electron relative to the phase of an imposed electromagnetic field is
governed by the relativistic change in the gyrofrequency:

do/dt = v = Q+kvj—® = V(tres) + V'(tres) (t—tres) + higher order terms,

where V' (tres) = —[Q(dW/dt) /ymc?,es is the dominant term in the case of a uniform
magnetic field and dW/dt~ —eE, v, cos ¢. If the initial phase of an electron is in the
range for deceleration, /2 > ¢ > —mn/2 and the heating rate, dW/dt < 0, the electron

Cathode Cavity

Collector

Figure 12.1 A highly schematic representation of a generic gyrotron.
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looses energy, the gyrofrequency increases, and d¢/dt > 0. The initial phase thus
increases with time until it reaches ©t/2, after which the heating ceases. Conversely,
if m/2 < ¢ < 3m/2, the heating rate is positive and d¢/dt < 0. The initial phase will
therefore decrease in time until it, too, reaches /2. When the resulting gyrophase
bunch is formed in the decelerating phase of the wave, electrons do net work on the
wave and amplify it. In practice, ® — Q is small but positive to keep electron bunches
in the retarding phase.

To produce coherent radiation, the contribution from the electrons must reinforce
the original emitted radiation in the oscillator, and the bunching mechanism must
create electron density variations comparable in size to the wavelength of the im-
posed radiation. The number of electron gyro orbits required for efficient bunching
and deceleration of electrons can be large. Since the annular electron beam is quite
thin in the radial dimension, and since the beam excites azimuthally rotating
electromagnetic waves in an axially symmetric cavity, all of the beamlets comprising
the beam interact identically with the wave.

The interaction region can be considered as an open resonator formed by an axially
symmetric open waveguide with smoothly varying wall radius. In the central, con-
stant radius section, a mode is excited at a frequency close to the cutoff value, so that
kj ~ 1/Lis very small. The radius is tapered downward toward the cathode to create a
space in which the waves are evanescent. The radius is tapered upward toward the
collector to permit the amplified wave to propagate into an internal mode converter
thatyields a Gaussian beam of microwave radiation in a mode that can be transported
efficiently to the plasma device.

The remaining megawatts of electron beam power must be absorbed without
damaging components, and this is accomplished in different ways. In some
gyrotrons, the beam is deposited over a large surface area by magnetically sweeping
the beam across the collecting surface. Other gyrotrons employ depressed collectors
to recover the beam energy.

One of the more recent developments that have made continuous operation
possible is the use of synthetic diamond discs for output windows on the gyrotron.
These discs are made by chemical vapor deposition and have outstanding properties
for this application: high thermal conductivity (roughly four times that of copper) and
low absorptivity of microwave power (~0.2%). Edge cooling is adequate to extract
the energy absorbed by the diamond from the transmitted microwave beam. The
photograph in Figure 12.2 shows a 110-GHz 1-MW gyrotron manufactured by the
Communications and Power Industries.

12.5
High-Frequency Transmission Systems

Power from the gyrotrons is generally transmitted to the plasma device using
low-loss, windowless, evacuated transmission lines that are formed from circular
corrugated waveguide for propagation in the HE;; mode. This mode, existing
only in corrugated waveguides, has exact linear polarization that can be selected
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Figure 12.2 Photograph of a 110-GHz, 1-MW, 10-s Pulse
Gyrotron, Type VGT-8110 manufactured by the Communications
and Power Industries.

for coupling to O-modes or X-modes in the plasma. The lines will typically
have a number of mitre bends, each of which may result in the loss of around
1% of the power. The overall efficiency of a 100-m-long transmission line can
exceed 80%.
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12.6
High-Frequency Couplers

It is now a common practice to launch the high-frequency power-using mirrors that
can steer the beam in both the poloidal and toroidal directions. Polarization-changing
mirrors, mounted on the inside wall of a torus, can also be used to convert O-modes
launched from the low-field side of a torus into X-modes for injection from the high-
field side.
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Frequency Modulated Electron Cyclotron Heating (FMECH)

For most of the situations considered in previous chapters the duration of resonance,
ter, was determined either by the spatial gradients of the magnetostatic field or, in the
case of heating in a locally uniform magnetic field, by the relativistic change in the
electron mass and gyrofrequency. The frequency of the microwave power was usually
assumed to be constant, although in Chapter 11 we employed frequency modu-
lation to extend the duration of resonance by compensating for the relativistic change
in the electron gyrofrequency. The maximum extent of this compensation was
limited in a very straightforward way by the bandwidth of the microwave power
source. In the present chapter we will explore further some of the potential uses of
microwave power with time-varying frequency and, in particular, the possible use of
FMECH to achieve preferential interactions with electrons having selected parallel
velocities.

As we have seen, in general, the duration of resonance is determined by the time-
history integral of v=Q + kv, —, the rate at which the electron gyrophase
changes relative to the (Doppler shifted) wave frequency: tog= Re[dt exp(i[dt v).
At a resonance V=0, t.r=t, and the duration of resonance increases with time as
long as the resonance condition is satisfied. In Chapter 5 we proposed an ad hoc
definition of t.s as the interval in time throughout which the phase difference
remained within +m/4 relative to its value at resonance: |9(tefr) — Ores| < /4. We used
this rather arbitrary definition to illustrate for mirror-confined electrons the depen-
dence of t.gon the electron pitch angle in velocity space. To do this we expanded v (t)
in a Taylor series about the instant of resonance:

V(t) = Vres +V/res(t_ tres) +V//res(t - tres)Z/Z! + - (13‘1)

Here the primes indicate derivatives with respect to time. Since v,.s =0, the phase
evolves in time according to

¢(t) = ¢res +V/r65(t* treS)z/z +V;/es(t - tr65)3/3! + o (13-2)

If the intervals prior to resonance and after resonance are designated, respectively,
by dt_ and &t and, for Vs #0, given by ‘v’ res|0t2 /2 = 1/4, then the duration of
resonance in our ad hoc modelis tegr = 8t_ + 8t =2 21/ |V o) "/2. If we now include the
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possibility that the microwave frequency can vary in time, then

Vies = [QvdInB/dz—Q(dW/dt) /ymc? + k(v /dt)—daw/dt] (13.3)

res’

For the moment we will neglect the relativistic and Doppler terms and approximate
the duration of resonance as

toir = (21/ Vies|) 'V 2 {21/ |[ Qv dInB/dz—dw/dt] | }"/2
= (ZTE/’ [th’lB/theS)l/z (|VH —Vres |)71/27 (134)

where Vi = (dw/dt)/QdInB/dz. If the frequency deviation rate is such that vj; = Vres,
the duration of resonance is given as before by tegr = tiax, Where ty,, is the maximum
time for which the resonance condition can be satisfied. As we shall see in the
following section the duration of resonance for electrons with v = v,s can be more
than 5 times greater than the duration for electrons having the same speed but
moving in the opposite direction, as suggested by Eq. (13.4).

The possibility of interacting preferentially with electrons having a particular
velocity was utilized in an approach to ECH current drive in tokamaks that
exploits this potential [1]. In this approach, pulsed, fixed-frequency ECH, resonant
near the maximum magnetic field, is used to create a collisionless group of barely
trapped electrons. FMECH resonant near the minimum magnetic field is then
used to displace some of these collisionless electrons into regions of velocity space
where they can pass freely around the torus and thereby contribute to the toroidal
current. In order to achieve a net current the FMECH must interact preferentially
with the electrons moving in the same direction as the bulk electrons that carry
the main toroidal current (“co-streaming” electrons) to yield a significant toroidal
asymmetry. In the next section we consider in a more rigorous way the degree to
which the interaction with co-streaming electrons can be enhanced relative to the
interaction with the counter-streaming electrons (those moving in the opposite
direction).

13.1
Achievable Values of Toroidal Asymmetry

Before undertaking a detailed analysis of the toroidal asymmetry that can be achieved
with FMECH, we first sketch a heuristic picture that gives a rough estimate of the
achievable toroidal asymmetry and displays the elements of the optimization process
that will then be examined with fewer arbitrary assumptions in what follows. If we
choose the frequency deviation rate to match the parallel velocity of the co-streaming
electrons the maximum time for which resonance can be maintained will be
estimated by assuming that the bandwidth Af = Aw/2n is swept by the FMECH at
the maximum frequency deviation rate:

tmax & 21Af /(df /dt) > 2mAf /[(3/2)(AF)* = 4m/(3Af). (13.5)
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Our ad hoc model for the duration of resonance for the counter-streaming electrons
gives

tefr, counter = (2/[Vies|)"* = [21/|-2dw/dt| )" = 1/(V3AF).  (13.6)

The ratio of the FMECH interaction with co-streaming electrons to that with
counter-streaming electrons is then given under these assumptions by

tmax/teff, counter ~ 475/\/§ =7.3,

as was suggested by the simple (|v — Vyes) /> dependence of teg cited earlier.

We now consider a more detailed and rigorous analysis that seeks to optimize
the toroidal asymmetry without making such arbitrary assumptions as those
made above. To achieve the maximum possible toroidal asymmetry it is necessary
to maximize the rate of change of the phase of the counter-streaming electrons while
prolonging the resonance of co-streaming electrons to the fullest extent permitted by
the bandwidth of the FMECH power source. We first consider the maximum
duration of resonance that can be maintained for the co-streaming electrons by
employing FMECH. In the rest frame of a trapped electron the gyrofrequency varies
in time according to

Q/Q, = [(M;+1)/2]-[(M—1)/2]cos 2 pt. (13.7)

Here o, is the bounce frequency and we have taken t = 0 to be the time at which the
electron is at z=0. In order for the resonance condition to be satisfied we require

do/dt = (Mi—1)wpQ,sin 2 mpt. (13.8)

But since dw/dt = 2rdf/dt < 3m(Af)?, it is not possible to provide the frequency
deviation rate required for resonance for times greater than a maximum time, ta,
given by

$in 2 Optmay = 3T(AF)?/[(Mi—1)0p Q). (13.9)

At time t=ty,,x we shall require that the FMECH frequency is as high as the
bandwidth permits:

f(tmax) = fc + (Af/2), (13.10)
where f_ is the center frequency of the FMECH power source. If the instantaneous
frequency deviation rate is matched to the electron gyrofrequency for the duration of
the resonance, At, we have

f(tmax) = £ (tmax—At) + Af (Qo/27){[(M; + 1) /2]—[(M;—1) /2] }cOS 2®ptimax

= (Qo/2m){[(M; +1)/2]—[(M—1) /2] }cos 200, (tmax—At) + Af,
or €08 20 (tmax—At) = €08 20ptmax + (A /£)[2Myes/ (Mi—1)].
(13.11)
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Note that we have set f=M,(Q,/27) as a notational convenience. Clearly the
optimum situation is obtained if At = ty,,, in which case

€08 20 tmax = 1—(AL/£)[2Myes/ (M —1)], (13.12)
provided that the necessary frequency deviation rate is maintained:

$iN 20ptmay = 3T(AF)? /[(Mi—1)@pQ0] = (3/2)(f /@) (A /£)*[Myes/ (Mi—1)].
(13.13)

For relatively narrow bandwidths, Af/f ~ O(10~?), the optimum conditions will be
characterized by small values of Wpty,.x and we can approximate the trigonometric
functions with the lowest order terms in their Taylor series and obtain two convenient
optimizing conditions:

Whtmax = {(Af/f) [Mres/(Mt_l)]}l/z (1314)
and

Obtmax = (3/4)(F /@) (Af /£)* [Myes /(M—1)]. (13.15)

If the bounce frequency is eliminated between these two conditions we find for the
maximum duration of resonance, ty,, = 4/(3Af).

In order to estimate the corresponding duration of resonance for counter-stream-
ing electrons we model the variation of magnetic intensity along a magnetic line of
force in a tokamak by our earlier expression for mirror-like fields:

B(z)/B, = [(M+1)/2]—[(M—1)/2]cos koz, (13.16)

Where k,=1/Rq. Here B, is the minimum magnetic intensity at z=0, and MB, is
the maximum magnetic intensity at z=nRq. R=R, + r is the major radius of the
field line at z = 0 in the equatorial plane of the tokamak and q is the safety factor on
this flux surface. The mirror ratio is M = (R, + 1)/(R, — ). In this model of the
tokamak magnetic field the parallel gradient in B and thus in Q is given by

dQ/dz = Q.k,[(M—1)/2]sin k,z. (13.17)
The parallel velocity at any point along the field line is related to the (conserved)
speed by adiabatic invariance:

v = +v(1-B/By)"?, (13.18)

where B,=¢/|L=M,B, is the magnetic intensity at which the trapped electron is
reflected by the increasing magnetic field. If we denote the initial point along the
field line at which resonance occurs as z = z,., where B = B, = M,B,, the counter-
streaming electrons will undergo a rate of change of phase given by

|V/res counter| = Zd(l)/dt

= 27(1—Myes /M) 20k [(M—1) /Myes)sin Ky zpes < 3m(AF).
(13.19)
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We can now compare the FMECH interaction with co-streaming and counter-
streaming electrons under these optimum conditions by evaluating the change in
perpendicular energy they experience in a single transit of the resonance:

OW =2 —eE_v sRe {exp (iq)res) [dt exp (i J dtv)] /2
>~ _eE_v,,Re {exp(iq)res) Jdt exp(iv'restz/Z)} /2

>~ —eE_ Ve Re{exp(i(bres) U dt cos V/est? /2 +1i J dtsin V’restz/Z} }/2
(13.20)

The two integrals in brackets, whose limits are t = 0 and t = t, are readily expressed
in terms of the Fresnel integrals [2], C(y) and S(y). Here, for clarity, we shall consider
the case 0res = 0 and thus isolate the first term in Eq. (13.20). Then let y* = |[V',s|t*/7
so that

Jdt €08 Viest/2 = (/|V'ses]) 2 de cosmy? /2 = (1) [Ves) V2C(y).
(13.21)

For the co-streaming electrons v/ s = 0 for t < t,,, and the small argument limit of
the Fresnel integral applies:

(TC/|V/res|)1/2C(Y) = (rc/!v’resl)l/2 (n/!v’res|)’1/2tmax = tomax. (13.22)

For the counter-streaming electrons |V'yes| = [2d®/dt|,es and y = (|V'yes|/m)t > 1.
Thus, for the counter-streaming electrons we can take the asymptotic limit of the
Fresnel integral:

(1) [V'res]) *C(y) 22 (1) Vres]) V2 (1/2) = (1) [2d00/dtres]) 2 (1/2).
(13.23)

Finally, we arrive at the following estimate for the toroidal asymmetry that can be
achieved with FMECH:

W Leo/SW L counter 22 tmax/ (11/[2d0/dtres|) *(1/2) = 2tmax [2(|d00/dtres|) /7] 7.
(13.24)

With ta = 4/(3Af) and dw/dt,es < 3m(Af)* we have
W Lo /OW L counter == (8/3)V/6 = 6.5. (13.25)

The more detailed optimization thus yields a slightly smaller toroidal asymmetry
than our initial crude estimate and provides additional constraints that reflect specific
tokamak parameters.
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13.2
An Estimate of I/P

The conventional figure-of-merit for noninductively driven current is I/P, where P is
the power required to sustain the current I. For the FMECH approach to current drive
there are two separate steps to consider: In STEP ONE fixed-frequency ECH is used to
generate a small fractional concentration of barely trapped energetic electrons by
preferentially heating electrons in the tail of the bulk distribution. The resonance
surface for STEP ONE is near the region of maximum magnetic intensity; that is, on
the high-field side of the tokamak. We designate the density of these electrons as
n4(g, 8., 1), where € is the energy, 8, = sin'(v, /v) is the pitch angle in velocity space,
and r is the minor radius of the flux surface. STEP TWO is the FMECH process
described in the preceding section. In STEP TWO, FMECH resonant near the
minimum magnetic intensity is used to de-trap some of the co-streaming electrons
from the collisionless group, n; (€,8,,r) and so create a source, S =dn, /dt, of current
carriers. These will remain in the passing-particle region of velocity space for a time,
(€, 0y, Zn), where Zn is the bulk charge density responsible for (Coulomb) scattering
the current-carrying electrons in pitch angle. The resulting current density, j(r), is
then given by the following integral over all energies and over the passing-particle
pitch angles:

ir) = —eJdeJdev S(e, By, 1)1(e, Oy, Zn)v,. (13.26)

The source function, S(g, 6, 1), is itself given by the following integral over all pitch
angles comprising the population of magnetically trapped electrons:

S(g, 0y,1) = Jdevi n1 (g, 0y, T)Vp1 (€, 041, 1) F(g, By, 04:). (13.27)

Here vy (€, 8y, 1) is the bounce frequency of the trapped electrons, and the function
E(e, 0,, 6,;) gives the probability that an initially trapped electron will be displaced by
the STEP TWO FMECH from its initial pitch angle, ,;, to a new value, 8,. We shall
somewhat arbitrarily employ a Gaussian form to model this transition probability:

F(e, 6y, 0,) = 1/(A0v/T)exp{—[(8y—64)/A0]}. (13.28)

The parameter A is thus a measure of the average pitch-angle displacement
produced in STEP TWO by the FMECH interaction:

((8,—04)%) = (AB)?/2. (13.29)

The displacement in pitch angle after a single transit of resonance is related to the

change in perpendicular energy as follows: Since v2 = v? sin’8,, we have

W, = (W, JrWH)sin2 0, which we differentiate as follows,
SW, = 8w sin® 0, + 2(W + W) )sin 6, cos 6, 68y, giving (13.30)
80, = (M;—1)"/28W_ /2¢.



13.2 An Estimate of |/P

In Section 13.1, we found that for co-streaming electrons the maximum duration
of resonance that could be achieved with FMECH was given by Eq. (13.15):

timax = (3/4)(E/00) (AF/£)? [Mies/ (Mi—1)].
The corresponding change in the perpendicular energy is then given by
W Lmax = —€E_V11esC0S 0,0 (3/4) (F/@} ) (Af /£)* [Myes/ (M —1)]. (13.31)

The FMECH power must be sufficient to displace a significant number of the
source electrons into the passing-particle region of velocity space, and the bandwidth
of the power source must be adequate to achieve a significant toroidal asymmetry.
These requirements can be made somewhat more quantitative if we consider an
idealized population of barely trapped (“source”) electrons in the form of delta
functions:

1’11(8, Gvi,r) = 1’11(1”)8(8*81)8(9\,1*91). (13.32)

The co-streaming source electrons that pass through the de-trapping FMECH
interaction with the sign of parallel velocity that sustains the steady-state current will
have a transition probability that we denote by F :

F (g1,0,,0:) = 1/(A0, v/T)exp{—[(6,—01)/A0 ]*}. (13.33)

The source electrons that move in the opposite direction will undergo smaller
changes in perpendicular energy and pitch angle:

F_(g1,0,,0;) = 1/(A0_v/T)exp{—[(6,—0;)/A0_]"}. (13.34)

The net transition amplitude for sustaining the steady-state current is the differ-
ence of these: F;=F , — F_; the total transition amplitude resulting in power drain
from the microwave power source is the sum of these: F,=F_, + F_. Indeed, the
power drain (per unit of volume) can be estimated by the following integral over the
energy and the (passing-particle) pitch angles:

P stJdev S(e, 0, 1)e :Jdejdev Jd9V1n1 (&, 801, )Von (€, By, 1) Fy (€, By, Oy ).
(13.35)

Here the integral over 6, is taken over the passing-particle region of velocity space
while the integral over 6, is taken over the trapped-particle region of velocity space.
For the idealized delta-function sources introduced earlier this reduces to the
following integral over all passing-particle pitch angles:

P = ernyvy Jdev{[l J(AD . V/)]exp{—[(6y—01)/A6 , )
+[1/(26-y/m)]exp{—[(6,—61)/A8_]*}},

from which we obtain

P = £1nyvi {2—erf[(8,~01)/A0, |—erf[(6,—6;)/A0_]} /2, (13.36)
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where erf(x) is the error function [3]. As indicated eatlier, the current density that
is sustained by this power density depends on the lifetime of the current carriers,
T(€,6,,Zn). We shall assume that the dominant loss mechanism is Coulomb
scattering of electrons from the passing-particle region to the trapped-particle
region of velocity space. Note that STEP TWO displaces some of the source electrons
into regions of velocity space that are near the boundary between trapped and
passing:
0, 20, —A0 =05+ (6;—0,—A0_) < By, (13.37)
If the source electrons are barely trapped, as assumed here, 8; > 6y, the de-trapped
electrons are separated from the trapped-passing boundary by an angle less than
A0, . Thus, Coulomb scattering can lead to the prompt diffusion of half of the de-

trapped electrons back into the trapped-particle region of velocity space in a time
given by

T prompt 2 To0(248 4 /T)” < oo, (13.38)

where Ty is the 90° deflection time. The remaining half of the de-trapped electrons
must diffuse in pitch angle across the entire passing-particle region before becoming
trapped once again. Their lifetime as current carriers is therefore roughly given by

T delayed A Too (401 /T0)". (13.39)

The net effective lifetime of the current-carrying electrons is therefore roughly
given by

T & (Too/2) (48 /m)°. (13.40)
Our expression for the current density then takes the form

](1’) = —e [dﬁ J dGV TjVH ]devlnl (8, le, I’)Vbl (8, le, I’)Fi (87 ev, Gvi). (13.41)

The integral over 8, is from 6, =0 to 6, = 8y, while the integral over 6, is from
0,1 =0y, to 8,1 =m/2. For the idealized delta-function distributions of source elec-
trons we have

()= (e/2)m1vi1v)To0 (1) (4, /) {exf (6 —61y) /A0_|—exf[(6,01,) /A0..]}.

(13.42)
With sufficient FM bandwidth we can satisfy the following condition:
[(81—61)/A0 ] < 1 < [(61—86y,)/AB_], (13.43)
so that
(1) = enyvigv too(e1) (400 /m) {1—erf[(81—61,) /40, 1}/2, (13.44)

while the associated power drain is

P = ey {1—erf[(0,—01)/A0.. ]} /2. (13.45)



13.3 Generation of the Energetic “Source” Electrons
The figure-of-merit follows directly from these two expressions:
I/P = (j/2nRoP) = [ev)Too(€1)(40p/m)*]/ (2nRoE1 ). (13.46)

Note that I/P is proportional to &, /n, so operation with energetic source electrons
is favorable from the standpoint of power requirements. For example, if we consider
a case in which R,=150cm, Zn=5 x 10 cm 3, and 0, =T/4, and assume that
satisfactory de-trapping can be achieved for €; = 30 keV, we find that our estimate of
the figure-of-merit is roughly I/P =0.4 A/W. To estimate the power required we
recall that the condition for effective de-trapping can be expressed in the following
form:

AB_ < (0;—0y) < AB .,
where
A8, = [2((8y—0,)*)"? 2 [(M—1)/2]"/28W L max/ (26). (13.47)

Since the maximum change in the perpendicular energy for co-streaming elec-
trons was given in Eq. (13.31) as

W Lmax = —€E_V 11esc08 ¢, (3/4) (f/0}) (Af/f)z[Mres /(M—1)],

we have
A8 2 (3/8V2)eE_(V.res/e) (f/®2) (Af /) [Myes/ (M —1)"/?]. (13.48)

By way of illustration, if we set M = 1.5 with M, = 1.45, corresponding respectively
to pitch angles in velocity space of 8, =0.96 and 6, = 0.98, and require somewhat
arbitrarily that A® , =10(6; — 8p), we estimate that the necessary FMECH field
strength is around 20 V/cm corresponding to a power flux around 100 W/cm?.

13.3
Generation of the Energetic “Source” Electrons

In this section we recapitulate the main dynamical processes that govern the creation
of the super-thermal group of barely trapped electrons in STEP ONE. These electrons
comprise the source of current-carrying electrons for STEP TWO, in which some are
de-trapped by the FMECH interaction. The creation of a population of energetic
source electrons depends on the difference of the velocity dependences of the ECH
heating rate (~v~'/*) and the rate at which the heated electrons are cooled as a result
of dynamical friction with the electrons of the bulk plasma (~v ). This competition
could be effectively treated with a Fokker-Planck analysis of the type discussed
earlier; but for now we will find it useful to adopt a more rudimentary approach that
makes clear the key physics issues that determine the outcome of this competition.
Since the heating rate depends more weakly on the electron speed than the cooling
rate, electrons will “runaway” if their speed exceeds the value at which the two rates
are equal, v=v;. The density of electrons with speeds greater than v, can be
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estimated in terms of error functions if the bulk electrons are described reasonably
well by an isotropic Maxwell-Boltzmann distribution.

We first recall our expression from Chapter 5 for the heating rate at the funda-
mental gyroresonance:

AW /dt = (e?/m)|E_|*J2(k . p) 2 Veoll- (13.49)
For electrons that turn at the resonance surface the duration of resonance was
given by
1/3
tr = { [Br(M=-1)/ (40300) /[ |3 (=102 ko2l |} (13.50)

where the summation is from n=1 to n=o00 and the frequency at which the
electrons encounter the resonance surface is

Veoll = 2Vp = Wy /T. (13.51)

The bounce frequency of electrons trapped in a magnetic-mirror field is given by
our earlier formula:

o = (kov/2)[(M—1)/M]"*{n/2K[(M:~1)/(M—1)]}. (13.52)
It will sometimes prove convenient to define the expression in braces as (M, M,):
O(M, My) = {n/2K[(M~1)/(M-1)]}, (13.53)
where ©(M, M,) — 1 and the electrons turn near the minimum magnetic field, and
OM, M) — 0as M; — M and the electrons turn at the maximum magnetic field.
Our estimate for the heating rate for electrons turning at the resonance surface is
then given by
aW /dt = (& /m) |E- P12 (kup) [(3/4v/) (M1 (e 22) "
~2/3
<13 (102 (02| (13.54)
The rate at which the heated electrons with speed vy, are cooled by dynamical
friction on the bulk electrons is given by [4]
dW/dt = F-v = —mI',n.[erf (y)—yd erf (y) /dy]v - v/v°. (13.55)
Here y =vy,/0, 0. =4/ (2T/m) is the thermal speed of the bulk electrons, and
e = e*In A/ (2nelm?). (13.56)
The dynamical friction cooling rate is thus given by

dW/dt = —[e*ncIn A/ (2nelmo ) [{erf (y) /y—d erf (y) /dy}. (13.57)

The function in braces has a single maximum at y 22 1.51, where its value is 0.525.
For values of y > 2 the function in braces is given approximately by 1/y. Since our
intention is to heat electrons in the tail of the bulk distribution we can restrict our



References
attention to values of y > 2 and take as the cooling rate of the heated electrons
dW/dt = —e*nIn A/ (2meimvy,). (13.58)

If the heating rate exceeds this cooling rate at some speed v, electrons with
speeds greater than this value will “runaway” and form the source group. The relative
density of these runaway electrons is given by the integral from v, to oo of the bulk
electron distribution function:

ny /0 = Jd3 Vo ().

If the distribution function of the thermal bulk electrons is given by the isotropic
Maxwell-Boltzmann distribution:

£o(v) = (0*m%) lexp(—v2/a),
the relative density is given by
1 /e = (2/V)YernexP (— Vo) +erfe(Ye), (13.59)

where erfc(y.) is the complementary error function [3]. As we noted in an earlier
chapter, the relative density n;/n.=0.01 for y;;=2.38. Since the heating rate is
proportional to the microwave power we can estimate the ECH power needed to
create a given population of source electrons in a specified bulk plasma.
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B Exercises

13.1

13.2

13.2

We wish to create a barely trapped group of 30 keV electrons
in a plasma, whose density is 5 x 10> cm™> and whose
electron temperature is 5 keV. At what rate are the 30 keV
electrons cooled by dynamical friction from the 5 keV bulk
electrons?

The plasma in Exercise 13.1 is confined in a tokamak whose
major radius is 150 cm. The barely trapped 30 keV electrons
are initially formed near a flux surface whose minor radius is
30 cm. The safety factor on this flux surface is q = 2, and the
mirror ratio is M= 1.5.

(a) If we choose the resonance surface so that M, = 1.45,
what is the value of k,z, for electrons turning at
resonance?

(b) What is the bounce frequency of the 30 keV electrons?

(c) Ifthe ECH power is at a frequency of 140 GHz, what RF
field strength, |[E_|, will ensure that the heating rate
equals the (dynamical friction) cooling rate?

(d) Estimate the relative density of the 30 keV group of
electrons.

At the start of each sweep in frequency, the FMECH
resonance is at the minimum magnetic field on the flux tube
of Exercise 2.

(a) What is the gyrofrequency at this field?

(b) If the bandwidth, Af/f=0.01, estimate the maximum
duration of resonance for co-streaming electrons.

(c) During the resonance, 0 <t < t,,,, how far does the 30
keV electron travel in z, 8,010idar aNd b1oroidar?

What is the maximum displacement in pitch angle for a
co-streaming electron if the FMECH RF electric field strength is
20V/em?



Appendix A:
Some Useful Physical Constants

Speed of light in vacuum, ¢ = 2.997 925 x 10*m/s
Charge on the electron, e =1.602 192 x 10~ '°C

Rest mass of the electron, m =9.109 558 x 10> kg
Rest mass of the proton, M =1.672 614 X 107% kg
Permittivity of free space, €, =8.854 188 x 10 2 F/m

1F/m=1C/(Vm)
Permeability of free space, U, =4n x 10~/ H/m
1H/m = 1N/A?

Avogadro’s number, N =6.022 141 99 x 1023/m01
Boltzmann’s constant, k =1.380 650 303 x 10~ **J/K
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Appendix B:
Formulas from Vector Calculus

The differential operators in orthogonal, curvilinear coordinates, (,,&,,&;):
The differntial arc length is ds* = (hyd&,)” + (h,d€,)* + (hsd&,)*.
The vector V is given by V = u;V; + w,V, + u3Vs.

The gradient of the scalar f'is
grad f = Vf = (u; /hy)0f /&, + (uy/hy)0f /0E, + (u3/h3)0f /0E;.
The divergence of the vector V is
divV = V-V = P~ 1[3(PV;/hy) /&, + d(PV,/hy)/
0&, + 0(PV3/h3)/0E;], P =h;hyhs.
The curl of V is
curl V. = V XV = (u;/hyh;)[0(h;V3)/08,—0(h, V) /0&;]+
+(uz/hshy)[0(h1 V1) /08;—0(hsV3) /0E,]
+ (us/hihy)[0(h;V2) /08, —0(h1 V1) /3G,
The differential operators in cylindrical coordinates, (p, 9, z):
grad f = Vf = u,0f /Op + uyp10f /0 + u,0f /0z
divV =V -V =p10(pV,)/0p + p~1dVs /0 +dV,/0z
curl V.=V x V = u,(p~ 10V, /00—0V,/0z) + u,(dV, /0z—dV, /dp)

+u,p ' [0(pVy) /0p—0V, /30]
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V- Vf = V2f = p~19(pdf /Op) /0p + p~20°f /09?4 0*f /02
V-VxV=0
VxVf=0
V x (VxV)=V(V-V)-V?V
V(fg) = gVf +fVg
V(U-V)=(U-V)V4Ux (VxV)+(V-V)U+V x (V x U)
V-(fV)=Vf-V+fV.V
Vx({V)=VExV4+fV xV
V- (UxV)=(VxU)-V=-(VxV)-U

V x (Ux V) = (V-V)U=(V-U)V+ (V-V)U=(U- V)V
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Appendix C:
Properties of Some Mathematical Functions

Complete Elliptic Integrals:

K(m) = [(17m sin® 0) /2 do

E(m) = J(lfm sin® 8)'/2 de,
where 6=0 and m/2 are the limits for both integrals. For 0<m <1 and with
m; =1-m, K, and E are approximately given by the following power series:

K(m) = [ao+aimy +a;m}| + [bo + bym; + bym? |In(1/m;) +¢&(m)

a, = 1.3862944, b, =0.5

a; = 0.1119723, b; =0.1213478
a, = 0.0725296, b, =0.0288729 |e(m)| <3 x 107°.

E(m) = [1 +ajm, +a2mﬂ + [blml +b2mﬂln(1/m1) +¢&(m)

a; = 0.4630151, by = 0.2452727

a; = 0.1077812, b, = 0.0412496 |e(m)| < 4 x 107>,
Bessel Function Relations:

exp(ib sin ) = XJ,,(b) exp(ind), where the index “n” takes on all integral values
from n=—o0 to n= + occ.

cos(bsin®) =J,(b) + XJn(b) cos(2nB), where the summation index “n” takes
on all integral values from n=1 to n= + oo.

sin(b sin ) =2 XJ,, ; 1(b) sin[(2n + 1)6], where the index “n” takes on all integral
values from n=0 to n= + occ.

1 =J2(z) + 22J%(z), where the index “n” takes on all integral values fromn = 1to
n= -+ oo.

1=70o(2) + 2]5(2) +2J4(2) + 2]6(2) + -
Ja-1(2) +Tn11(2) = (20/2)],,(2)
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]n—l(z)_]n+l( ) = 2.], (Z)
J'a(2) =TJo1(2)—(0/2)]4(2)
J'a(z) = =Ja11(2) + (0/2)],(2)
The “Gaussian Integral”: 2 [dx exp(—x’) = /T,
and the following integral:

2 [ xdx J2 (ax)exp(—x*) = exp(—a’/2)I,(a’/2), where the limits on both integrals are
x=0and x=o0.

The Plemelj relation: The limit as € — 0 of the integral from x= —o0 to x= + o0,
[ [x—(xo + i€)]'f(x)dx, is given by P [ (x—x,) 'f(x)dx + inf(x,). Here £ >0 and P
indicates the principal value integral.

The Plasma Dispersion Function:
2(0) = (1/y7) J (2-0) exp(~2*)dz
— (1/ym)P [ (2—0) exp(—22)dz + iv/Texp(~C2).

where the integrals are from —ocotoocoandIm{ > 0
Asymptotic Expansion:
Z(8) = ~[1/0 +1/28) +3/(4C) + -]+ ivmexp(=L7).

Small Argument Expansion:

Z(8) = —20+ (4/3)0°~(8/15)C° + - +ivmexp(~L?).
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