Rick McGeer - Mark Berman
Chip Elliott - Robert Ricci Editors

The GENI Book

@ Springer

The GENI Book

Rick McGeer * Mark Berman * Chip Elliott
Robert Ricci

Editors

The GENI Book

@ Springer

Editors

Rick McGeer

Chief Scientist, US Ignite
Washington, DC, USA

Mark Berman
GENI Project Office
Raytheon BBN Technologies

Cambridge, MA, USA

Chip Elliott

GENI Project Office Robert Ricci
Raytheon BBN Technologies School of Computing
Cambridge, MA, USA University of Utah

Salt Lake City, UT, USA

ISBN 978-3-319-33767-8
DOI 10.1007/978-3-319-33769-2

ISBN 978-3-319-33769-2 (eBook)

Library of Congress Control Number: 2016948701

© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

This book is dedicated to the families of the
coeditors: Karen and Sean, Wu and Kashi,
Emily, Samantha, and Libby, and Donielle
and Michaela, whose unflagging support,
perennial grace, and unending patience for
workaholic husbands and fathers made both
GENI and this book possible. We say thanks
often—but we can’t say it often enough. So,
from each of us to each of you: thanks again.
This book is for you.

Introduction

Background: Why GENI?

GENI represents the third wave, following the Grid and the Cloud, of the inte-
gration of the network into the computational infrastructure. The first wave, the
Grid, focused on the application of distributed computing resources, typically
supercomputer sites, towards the solution of a single problem. Essentially, it was
an extension of batch processing to multiple sites, to more efficiently use large
computing resources. It emerged in the late 1990s and was rapidly extended from
scientific to business processing. The Cloud is of course quite familiar, and it refers
to two dominant themes. The first is the per-hour rental of virtual machines or other
computing resources; the second is the transfer of traditional desktop and enterprise
applications to a server accessed over the network, with the Google office suite being
perhaps the most prominent example. Of course, new applications are enabled by
the Cloud that were unimaginable for the disconnected desktop. Media sharing is a
prominent example of this class.

GENI differs from the Cloud and the Grid in that it is a platform for distributed
applications. A distributed application differs from a Cloud application in that the
network is central to the distributed application; it literally cannot exist without
the network. While a Cloud application—such as, for example, Google Docs—
logically runs on a single computer which happens to be accessed over the
network, a GENI application or service can only run in a number of computing
environments, geographically dispersed. The most prominent simple examples of
this class of application are Content Distribution Networks, Distributed Storage
Systems, multicast overlays, and wide-area collaborative exploration and creation
systems, and collaborative gaming. The distinctive feature of these systems is that
they require geographic distribution for one or a combination of a number of
reasons. Perhaps the simplest of these reasons is resilience against local failure. In
addition, some applications are inherently distributed, often because of the realities
of geographically distant end users and data. Inherently distributed applications

vii

viii Introduction

often require geographically distributed computing infrastructure to support high
bandwidth or low latency to end users and data sources.

The central point about GENI is that the network becomes, not just a way for the
user to access an application, but the central component of the application itself. This
doesn’t require just a different sort of computational platform; to be really effective,
the application must have a different kind of network. GENI is the network that
undergirds distributed applications, and it is a characteristic of the next generation
of computational infrastructure.

Today’s network is regarded as a network of simple pipes which carry bits
between users and remote applications. The network for distributed applications is
far richer and more complex; it consists of a large network of computing elements,
and programs move seamlessly between these elements to provide service where
required.

Though this sounds exotic, in fact it is simply a different assemblage and
deployment of current Commercial-Off-The-Shelf (COTS) hardware and software.
To a first approximation, what the developer sees is nothing more exotic than a
collection of Linux VMs and containers, interconnected by a more-or-less standard
network. However, she is able to allocate VMs and containers in specific places,
not simply “somewhere in the Cloud,” and she is able to configure the topology
and priorities of the network between them. Simply put: she is able to design her
own, application-specific, continent- and eventually world-wide network, deploy her
application across it, and do so in a matter of moments.

This is an entirely new idea of computational infrastructure, though it is made
from standard components. Up until now, the network and the computational service
delivered over it were regarded as entirely separate components. The application
writer had little control over the network topology, and could only influence
packet delivery through the choice of transport protocol and some edge tweaking.
Conversely, network engineers regarded the computational devices at the edge as
foreign soil. The apotheosis of this attitude was found in the design of Content-
Centric Networking. At an application level, CCN was easily achieved as an
application-level protocol overlay on Content Distribution Networks. However, the
CCN community spent an enormous amount of effort putting content information
into the packet header, so that the network equipment could process it. It is a
reasonable question on whether the performance penalty for doing content-based
routing at the application level was sufficient to warrant the effort to do the
application at lower levels of the protocol stack. However, the answer to this
question is highly dependent on how tightly interwoven the network and application
layers could be. If an application designer can control where the application points-
of-presence are, and how application packets are routed from the user’s host to the
nearest application POP, the need to drive the application into the network stack is
lessened.

As that example illustrates, there are two brutal realities of the computational
infrastructure: network equipment can’t be programmed, and computers can’t
forward packets quickly, and attempts to do either are deeply unnatural. This
was ultimately why the ActiveNetworks program of the 1990s failed. This has

Introduction ix

led the networking community to ever-more complex control protocols to permit
intelligent packet handling. But the only reason for intelligent packet handling is
the relatively long distances packets must traverse between source and destination;
a distributed cloud radically shortens that distance, and thus the demand for network
equipment to perform functions better performed by a computer. In sum, the
GENI infrastructure with distributed applications leads not only to more effective
applications but also to a simpler network.

This overall design of a network, with ubiquitous standard computational com-
ponents, is seen in many other places. Fifth-generation wireless networks (“5G”) is
an excellent example. The goal of 5G is gigabit bandwidth and millisecond latency
to the wireless device. Of course there is no magic; the physics of wireless devices
are well known and the coding schemes are close to the information limit. The only
way to achieve the orders of magnitude in performance improvement anticipated
in 5G is to radically change the network architecture, and this is exactly what
the proposals in gestation at the various nations do. Specifically, all 5G wireless
architecture proposals combine very small cells (“picocells”) with a computational
point-of-presence at the base station. This is the GENI architecture, again; in this
case, the distributed applications are serving wireless devices.

The Network Function Virtualization movement in the telco industry is a similar
example to the deployment of the GENI architecture. NFV was inspired at least in
part by the deployment of carrier Content Distribution Networks, such as CoBlitz.
The overarching architectural idea is to replace dedicated hardware with software
running in virtual machines. This necessarily means deploying virtual machines
over a distributed network infrastructure.

All of these similar architectural initiatives drive from a secular trend; the
dramatic and continuing decline in the costs of computation against communication.
The chart in Fig. 1, taken from Chap. 20, “The Ignite Distributed Collaborative
Visualization System” shows the ratio of the price of a gigaflop of computation
vs. a megabit/second of bandwidth. As can be seen from the figure, the ratio has
declined from about 10 in 1998 to about 0.1 today, a decline of roughly two orders
of magnitude. The most direct explanation for this trend is given in Chap. 20:
point infrastructures such as computation follow a technology curve, whereas linear
infrastructures follow an adoption curve, and the latter must always trail the former.

Paradoxically, as computation becomes more prolific and widespread, commu-
nication becomes much more of a dominant consideration in system design. This
is because communication becomes the bottleneck in system performance. This is
a secular trend throughout the computing industry, from chip design through, in
our case, redesign of the Internet. In the case of chips, this has seen the rise over
the past decade of multicore architectures and GPU-based vector computation, as
increased parallelism becomes the performance driver rather than increasing clock
rates. In single-server and data center systems, it has led to the redesign of the
server around high-bandwidth memory systems and the data center around highly
parallel massive data set searches and manipulations [1, 2], with an emphasis on
Terasort rather than Linpack as a benchmark. This involved a radical change to
both the memory hierarchy architecture and the design of very high-bandwidth,

X Introduction

Ratio of Computation to Communication Cost

1° —— Ratio

Ratio (Log Scale)

2000 2003 2006 2010 2013

Year

Fig. 1 Ratio of computation to communication cost

low-latency data center networks [3]. In the case of the wide-area network, it is
the architecture described in this book: ubiquitous computational points-of-presence
with a programmable network between them.

This redesign of the Internet architecture largely leaves the data plane untouched,
and in fact radically simplifies the control plane. In fact, the obstacles to its adoption
are largely cultural, social, and political rather than technical. We need to rethink our
ideas about computation, communication, and data and information storage. Right
now, any user of the Internet can tax the communication resources of almost any
enterprise or institution; however, access to those institution’s computing resources
is tightly guarded. There are reasons other than cost, of course, but the dominant
reason for this is because our computing systems grew up in an era of time-
sharing, where computing was expensive and guarded. Access control was built
into the systems from their inception; conversely, communication was unprotected
and clumsy access controls retrofitted after the fact. From a cost perspective, this
dominant theme of protecting computation but leaving communication open is
exactly backwards.

As mentioned, there are other considerations, primarily data security, integrity of
the computing environment, and fears of malicious use. But the Cloud has largely
overcome those objections: an enormous number of enterprises entrust their data
to third-party Cloud storage and do their computing on virtual machines running
on the same hardware as an unknown and untrusted third party. A large number
of enterprises, universities, and governments outsource their basic IT functions to
third-party providers such as Google Apps for Enterprise. It would be an odd CIO

Introduction xi

indeed who worries about what a student might do with a VM, but will happily
offload ERP functions to a cloud provider.

In sum, communication costs a lot more than computing, and we know a lot more
about securing computing than we do about securing communication. It’s time for
GENT’s Distributed Cloud.

How Did GENI Come To Be?

As usual, it started with the hackers. Come, be it admitted: academic computer
scientists don’t do new apps. We do exploit the properties of new technologies
to come up with new infrastructures (see, for example, RAID [4] and NOW [5]).
But by and large, computer scientists take services and applications hacked up in a
hobbyist or commercial setting and build robust, scalable versions of the application
or service.

So in the late 1990s people started to exploit the Internet, and a new breed
of service known as “peer-to-peer” was born. It was initially popularized by the
Napster file-sharing service, but its implications as a communications medium
rapidly became apparent. Only a couple of years after Napster was founded, the
first wide-area scalable indexing and storage system was devised [6]. A host of
implementations followed, along with a large number of distributed applications and
services: wide-area robust storage systems, content distribution networks, overlay
multicast trees, etc.

This led to an immediate problem: how does one deploy such a system, at
scale? In 2001, there was no platform available to deploy these new classes of
systems. Rather, what was happening was that researchers were calling up their
friends at other institutions, getting accounts on machines at their institutions—with
heterogeneous configurations, different software installations, and so on—and then
running an experiment. A system that took a few weeks to write might take months
to deploy and test.

At an underground meeting at NSDI 2002, a group of researchers led by Larry
Peterson of Princeton and David Culler of UC Berkeley devised a new infrastructure
to serve as a community testbed. Each institution would agree to devote 2-3 x 86
servers to a community testbed, which would be centrally managed. To permit
each researcher to create his own environment, nascent virtualization technology—
Linux VServers—was employed to offer very lightweight virtual machines. David
Tennenhouse, then head of Intel research, and Patrick Scaglia, who led the Internet
and Computing Platforms division of HP Labs, agreed to form a consortium to fund
the platform and grow it to several hundred sites worldwide. And the world’s first
Distributed Cloud, PlanetLab, was born.

PlanetLab grew rapidly, eventually reaching its current size of 1350 nodes at over
700 sites worldwide. More impressive was its immediate impact on the systems
community; the vast majority of SOSP 2003 papers cited PlanetLab experiments
just a year after the testbed was first built.

xii Introduction

In early 2001, Jay Lepreau of the University of Utah and his staff and students
devoted a cluster to network experimentation. The problem the Utah group was
addressing was both similar and not to the problem addressed a year later by
PlanetLab: the need to do short-run controlled experiments on new network
protocols and services. Their Emulab platform became the world’s first Cloud.
It differed then and differs now from standard Clouds. Users are able to request
hardware as a service, not simply virtual machines, and are able to finely control
the emulated network between their nodes. As a result, it immediately became the
premier experimental platform for controlled experiments on distributed systems
and network protocols, and remains so today. It is described in detail in Chap. 2.

In September 2003, Dipankar (Ray) Raychaudhuri of Rutgers and his staff began
the ORBIT program, a large-scale open-access wireless networking testbed for
use by the research community working on next-generation protocols, middleware
and applications. The ORBIT project continues to this day and has extensions for
software-defined radio elements. Like Emulab, it is a shared testbed. Users log in to
the ORBIT portal, and then construct an experiment, typically over ORBIT’s 400-
node (20 x 20) indoor radio grid facility. The testbed also includes an outdoor “field
trial system” intended to support real-world evaluation for protocols validated on
the emulator, and for application development involving mobile end users.

In 2005, UC Berkeley and the University of Southern California Information
Sciences Institute collaborated to build a shared state-of-the-art scientific computing
facility for security experimentation, the cyber DEfense Technology Experimental
Research Laboratory (DeterLab). Based originally on the Emulab software stack,
DeterLab has introduced a number of innovations to enhance scalability, repro-
ducibility, and control of user experiments. Of course, since DeterLab is security
focussed, some of its principal innovations are to ensure protection and isolation of
experiments and protection of the world from running experiments. DeterLab offers
security researchers the ability to “observe and interact with real malicious software,
operating in realistic network environments at scales found in the real world.” In
other words, this is a facility where monsters are observed and experimented on;
and so a primary concern, executed with enormous care and great success over more
than a decade, is keeping the monsters safely penned while researchers discover how
to neutralize them.

Shared experimental facilities such as ORBIT, Emulab, and DETER start from
an economic and democratizing rationale—these facilities permit researchers from
any institution to conduct experiments on best-in-world facilities, and it is far more
efficient and effective for a funding organization to build a large shared facility
rather than many small facilities. Not only does this permit researchers to run
much larger-scale tests than would otherwise be possible, there are significant
economies of scale. There have also been two major scientific benefits. The first
is reproducibility. The availability of shared testbeds enables experimenters to
report reproducible results which encourage subsequent validation: the test and
the experimental facility are accessible by everyone. Moreover, for each of these
facilities, simply running the facility and providing new scientific capabilities has
been in and of itself a fecund source of research problems.

Introduction xiii

By 2006, the successes of these platforms were clear to the systems community
and the National Science Foundation. Virtually every major experimental and
research system built used one or more of these testbeds. In fact, use of at least two
was the common case, because the platforms had complementary strengths. Emulab
was an ideal system for short-run controlled experiments on new network systems
and protocols in a laboratory setting. DETER, though similar to Emulab, had
added crucial features to permit safe testing of security protocols, particularly under
malware attack. PlanetLab was designed for long-running services and observations
of services in the wide area.

However, Emulab, PlanetLab, and DETER had become victims of their own
successes. By 2006 all three testbeds were under significant strain due to enormous
demand. It wasn’t uncommon for researchers to wait days or weeks to get
free machines on Emulab or DETER, particularly as major conference deadlines
approached. Because PlanetLab offered lightweight virtualization technology, its
oversubscription did not appear as waiting times. But enough slices were active on
the PlanetLab testbed at any time that load averages on PlanetLab machines could
be over 20.

The systems Computer Science community then began to design a successor to
these testbeds. The new system had to meet four major goals:

* Incorporate the controllability and flexibility of Emulab and DETER for short-
run controlled experiments.

* Incorporate the geographic distribution of PlanetLab for long-running services
and applications, particularly end-user-facing applications such as CDNs and
multicast overlays.

* Incorporate the wireless aspects of ORBIT.

* Offer fine-grained control of the network and a principled and architectural
approach to software control of the L2 and L3 networks.

Over the period 20062007 a group of 50 leading academic computer scientists
in six working groups designed this system, producing a working prototype design
for the National Science Foundation. In 2008 the NSF issued a call for a GENI
Project Office (GPO) to manage the development of a prototype of the GENI system,
which was won by BBN Technologies. In 2009, BBN led a community effort to
develop this prototype, issuing contracts to universities and research organizations
in the systems community to develop GENI.

Simultaneously with this was a happy Black Swan event—a revolutionary new
technology, Software-Defined Networking. This concept, and its concrete realiza-
tion, OpenFlow, grew from the Ethane project at Stanford University. Its most basic
concept was that a software controller would load the routing tables of a network
of L2 switches, permitting fine-grained software control of packet forwarding and
QoS. This offered the key last piece that had been missing from the precursors of
GENI: integration of the network into the computational infrastructure. OpenFlow
immediately became a key component of the emerging GENI.

xiv Introduction
GENI’s Community Development Approach

The entire community recognized GENI as a high-risk endeavor from the outset.
At the time the GPO was initially stood up, it was by no means clear that GENI
was technically feasible (or even well defined). Accordingly, the GPO chose a
spiral-development approach to development, incrementally building, assessing,
and redesigning GENI on a continuing basis, with a nominal spiral duration of one
year, punctuated by three GENI Engineering Conferences (GECs) annually. Open to
the interested public, the GECs provide impetus for community debate, information
exchange, and development deadlines.

The GENI community embraced spiral development as a strategy to continuously
confront the most pressing questions—technical and programmatic risks—of the
day, with successive spirals addressing a sequence of vital questions. The inter-
actions of dozens of development teams and an ongoing design and development
effort driven by thrice-annual community meetings set the stage for rapid, if slightly
raucous, progress. This community approach also gave rise to one of GENI’s
central execution strategies: whenever possible, pursue multiple implementations
simultaneously.

Time period Burning question Key tactics

Spirals 1 and 2 (2008-2010) | “Is GENI technically Control frameworks and
feasible?” slicing

Spirals 2 and 3 (2009-2011) | “Can GENI be built at “GENI-enabling” equipment,
adequate scale with federation, and meso-scale
reasonable cost and effort?”’ prototype

Spirals 3 and 4 (2010-2012) | “Will GENI be useful for Research-driven design,
research?” community outreach, and

“GENI-enabling” tools

Spirals 5 and beyond (2012-) | “Will GENI transform the GENI racks and international

community?” federation

The very first spirals aimed to prove the technical feasibility of core GENI
concepts. One such concept was a control framework that could manage multiple,
heterogeneous suites of infrastructure. The second was an end-to-end “‘slice”
construct that spanned such heterogeneous suites, interconnecting their diverse
virtualization technologies. The GPO organized community projects into competing
“clusters” (shown in Fig. 2). Projects then integrated within clusters to achieve four
prototype GENI systems by the end of spiral 1. By the middle of Spiral 2, three
of the major GENI systems (PlanetLab, ProtoGENI/Emulab, and OpenFlow) were
capable of interoperation.

As the first technical hurdles were being overcome, the GENI community also
confronted the central programmatic puzzle in GENI—how to afford construction
and operation of a set of infrastructure that can support “at scale” research
experimentation. The GENI meso-scale prototype presented an opportunity to test

Introduction XV

®® ®® PlanetLab
gg g ProtoGENI %
@ 1 @
Bp O $@ e
ORCA @ @ @ G @ e®
@ &) OMF

Instrumentation @) Control (@ Tools &

, & Measurement Framework Services
. Experiment .S(udy . Aggregate

@
®
S
3

|

>

®

©

®
000
D00
0009

GENI-enabled GENI-enabled campuses,
equipment students as early adopters

Fig. 3 The “GENI-enabled” campus strategy

the strategy of “GENI-enabling” campuses and research networks, as a way to
overcome this challenge.

The strategy began by GENI-enabling existing testbeds, campuses, regional
and backbone networks, cloud computing services, and commercial equipment.
GENI could then incorporate these networks and services by federation, rather than
constructing and operating a separate set of infrastructure for experimental research.
Figure 3 depicts the plan: first GENI-enable commercial equipment, then use this
equipment to create “GENI-enabled” campuses and the national backbones that can
run GENI experiments on the same infrastructure as production networks. Finally,
federate GENI-enabled campuses and networks to create “at scale” GENI.

The key hardware artifact of spirals 2 and 3 was a “meso-scale” version of this
basic approach, spanning 14 campuses and 2 national backbones (Internet2 and
NLR). The meso-scale prototype integrated PlanetLab, ProtoGENI, and OpenFlow,

XVi Introduction

with GENI-enabled commercial equipment from HP, Juniper, NEC, and Quanta.
While this prototype was functional, it was also finicky, requiring the GPO to work
closely with researchers to help them conduct experiments on this early GENI
prototype and use their experiences to refine plans for continued GENI development.
Importantly, deployment of this prototype generally included involvement from
the campus CIO or CTO, establishing a precedent of involving both research
faculty and campus IT staff in GENI planning and progress. The meso-scale
GENI prototype was eventually decommissioned as the larger, “at scale” GENI
deployment subsumed its capabilities.

Experience building and using the “meso-scale” GENI provided a strong indica-
tion that an “at scale” implementation would be technically feasible, affordable, and
sustainable. The next key question for the GENI community was how to ensure that
GENI genuinely opens up major new fields of experimental research.

This question could only be addressed through a feedback cycle where GENI is
consistently employed in research experiments and the lessons learned employed
in improving future GENI implementations. Beginning with feedback from exper-
iments begun in Spiral 2, joint researcher-developer sessions became a fixture of
GECs, and research experiments began to drive GENI’s evolving design. Significant
outreach and support effort from the GPO, NSEF, and the GENI development
community encouraged GENI’s rapid adoption by researchers in spirals 3 and 4,
leading to strong growth in research use. Figure 4 shows a GEC demo night event,
where developers and experimenters show off their progress.

Fig. 4 Demo night at GEC16, Salt Lake City, 2013

Introduction XVvii

The “GENI-enabling” approach was also applied to popular research tools.
Researchers are accustomed to working with specific tools, and their introduction to
GENI was greatly eased by making GENI resources available through these familiar
pathways. This approach began with the adoption and interoperation of precursor
testbeds like PlanetLab, ProtoGENI/Emulab, and ORBIT and was extended to tools
like the OMF control infrastructure and the Open Resource Control Architecture
(ORCA) control framework.

As researchers began to experiment with the “meso-scale” GENI, they quickly
became aware of its potential, as well as its limitations. Experimenters found
great value in the key capabilities of the prototype, including slicing and deep
programmability. They wanted a larger-scale deployment, with more programmable
computation and network components throughout the GENI network. They needed
additional automation to support dramatic growth in the number of simultaneous
experiments.

The move to a larger GENI prototype began with basic GENI building blocks.
Beginning in 2012, and continuing to the current GENI, campuses are GENI-
enabled by deploying GENI racks, optional wireless base stations, and software-
defined networks on campus. These resources are connected to a research backbone
network and federated into the emerging nationwide GENI, where they are available
to the entire GENI research community. The principles involved are consistent
with the approach used in the “meso-scale” GENI, but the process is significantly
simplified at each campus by the availability of GENI racks. A GENI rack includes
computation (cluster of processors), storage, and an OpenFlow switch in a single
deployable package, along with its associated control software. The rack provides
the campus an entrée into the GENI federation. Additional campus resources, such
as a science DMZ, may be federated as well, in keeping with the unique research
needs of each campus.

As GENI grew within the USA, similar projects arose around the world. While
each of these future Internet and distributed cloud (FIDC) testbeds has unique
implementation and management aspects, there is strong motivation both to share
ideas and software and to federate infrastructure, and GENI has been a leader in
this area for several years. The globalization of FIDC concepts is an unfinished but
highly promising chapter of the GENI story.

Organization of the Book

The book takes us through the GENI Project in its lifecycle in five parts. Part
I describes the precursors of GENI that led to its development, with detailed
histories of ORBIT, DETER, Emulab, and a discussion of the GENI idea from
then NSF Assistant Director Peter Freeman. Part II describes the architecture of
GENI as a set of control frameworks that interact and present the developer with
a picture of a distributed cloud with a programmable network in between cloud
nodes and describes how the specific precursors of GENI—PlanetLab, Emulab, and

XViii Introduction

ORBIT—were adapted into new complementary control frameworks within GENI.
These chapters also discuss how new technologies, specifically emerging Cloud
technologies and the new capabilities of software-defined networking, were adopted
and integrated into the GENI framework and the specific control frameworks which
made it up. Part III discusses the deployment of GENI as a nationwide infrastructure.
Once the control frameworks were in place, GENI had to be made concrete and real.
The control frameworks were integrated and deployed at 50 sites across the United
States, in small, extensible clusters: “GENI Racks.” These were interconnected by a
programmable nationwide layer-2 network, the “Mesoscale Deployment.” Once this
was in place, GENI was ready to host applications and services. Part IV describes the
applications of GENI to our society and profession, and the tools developed to use
this infrastructure. GENI is not alone; it is one of several similar efforts worldwide.
Part V discusses parallel and complementary efforts in Canada, Europe, and Asia,
and the prospects for an international federation.

The story of GENI is far from done. We are now roughly where the NSFNet was
in the late 1980s, with a few tens of sites connected by a nationwide backbone. As
GENI transitions to the next phase of its life, which we believe will be an era of
explosive growth, we recall the words of Vint Cerf as the ARPANET transitioned to
become part of the Internet:

It was the first, and being first, was best,

but now we lay it down to ever rest.

Now pause with me a moment, shed some tears.
For auld lang syne, for love, for years and years
of faithful service, duty done, I weep.

Lay down thy packet, now, O friend, and sleep.

-Vinton Cerf
Washington, DC Rick McGeer
Cambridge, MA Mark Berman
Cambridge, MA Chip Elliott
Salt Lake City, UT Robert Ricci

References

1. Ranganathan, P.: From microprocessors to nanostores: Rethinking data-centric
systems. IEEE Comput. 44(1) (2011)

2. Ousterhout, J. et al.: The case for RAMClouds: scalable high-performance
storage entirely in DRAM. SIGOPS Operat. Syst. Rev., 43, 4, 92-105 (2009)

3. Al-Fares, M., et al.: A scalable, commodity data center network architecture.
Proc SIGCOMM. (2008)

https://en.wiktionary.org/wiki/thy

Introduction Xix

4. Patterson, D. et al.: A case for redundant arrays of inexpensive disks (RAID).
ACM Sigmod Record. (1988)

5. Anderson, T., et al.: A case for NOW (networks of workstations). IEEE Micro.
(1995)

6. Ratnasamy, S., et al.: A scalable content-addressable network. Proc. SIGCOMM.
(2001)

Acknowledgements

In his ballad “Calypso” about the research vessel of the undersea explorer Jacques
Cousteau, John Denver penned these lyrics: “Aye Calypso, I sing to your spirit/The
men who have served you so long and so well.” The spirit of GENI is our colleagues:
the hundreds of women and men who worked tirelessly over a decade to take
this from an idea to the genesis of the next Internet. Before and above all else,
we thank each and every one of them: it has been our great privilege and honor
to know and work with each of them. This book is their ballad. Our research
sponsors at the National Science Foundation have shown courage and vision and
unflagging support over the years. We thank Suzi Iacono, Farnham Jahanian, Peter
Freeman, Guru Parulkar, Gracie Narcho, Erwin Gianchandani, Bryan Lyles, Jim
Kurose, and Jack Brassil for their leadership at NSE. We have been encouraged
and supported by the White House Office of Science and Technology Policy,
and thank particularly Tom Kalil. GENI would not exist without Larry Peterson,
whose PlanetLab provided much of the technical inspiration for GENI and whose
leadership was vital in starting the GENI project at NSF. We thank Larry and his
early colleagues, particularly Tom Anderson, Scott Shenker, and Jon Turner.

We need to thank a friend no longer with us. The other large inspiration for
GENI was Emulab, and that was the brainchild and passion of our close friend, and
Rob Ricci’s mentor, Jay Lepreau. Jay, sadly, passed away before this project was
properly begun, but his spirit lives on in it, and we hope in us. Thanks, Jay, and we
all still miss you terribly.

As we write these thanks, it occurs to us that many names which should be here
are not—the list of those we should thank by name is so long that it would take
many pages to enumerate them all, and we are certain to forget some. GENI is
an enormous effort, and many people in many different roles played key parts in
making it happen, and all were cheerful, graceful, and went far beyond the call of
duty. This is inadequate, but the best we can do here: thanks. You know who you
are, and so do we, and we will be forever grateful. Drinks are on us, the next time
we meet.

XXi

xxii Acknowledgements

GENI is supported under cooperative agreements from the US National Science
Foundation. Any opinions, findings, conclusions, or recommendations expressed in
this book are the authors’ and do not necessarily reflect the views of the National
Science Foundation.

Contents

Partl Precursors

The GENI Vision: Origins, Early History, Possible Futures 3
Peter A. Freeman

Precursors: Emulab.......... ... 19
Robert Ricci and the Emulab Team

DETERLab and the DETER Project ..., 35

John Wroclawski, Terry Benzel, Jim Blythe, Ted Faber,
Alefiya Hussain, Jelena Mirkovic, and Stephen Schwab

ORBIT: Wireless Experimentationoooooii.. 63
Dipankar Raychaudhuri, Ivan Seskar, and Max Ott

PartII Architecture and Implementation

GENI Architecture Foundationooooi... 101
Marshall Brinn

The Need for Flexible Community Research Infrastructure................ 117
Robert Ricci

A Retrospective on ORCA: Open Resource Control Architecture 127
Jeff Chase and Ilya Baldin

Programmable, Controllable Networks 149
Nicholas Bastin and Rick McGeer

4G Cellular Systems in GENI..............................i. L. 179

Ivan Seskar, Dipankar Raychaudhuri, and Abhimanyu Gosain

XXiii

XX1V Contents

Authorization and Access Control: ABACcoooiiiil. 203
Ted Faber, Stephen Schwab, and John Wroclawski
The GENI Experiment Engineiiiiiiiiiiiiiiii.. 235

Andy Bavier and Rick McGeer

PartIII The GENI National Buildout

The GENI Mesoscale Network ..ot 259
Heidi Picher Dempsey
ExoGENI: A Multi-Domain Infrastructure-as-a-Service Testbed 279

Ilya Baldin, Jeff Chase, Yufeng Xin, Anirban Mandal, Paul Ruth,
Claris Castillo, Victor Orlikowski, Chris Heermann,
and Jonathan Mills

The InstaGENI Project i 317
Rick McGeer and Robert Ricci

Part IV GENI Experiments and Applications

The Experimenter’s View of GENI 349
Niky Riga, Sarah Edwards, and Vicraj Thomas
The GENI DeSKLOPuuun e 381

James Griffioen, Zongming Fei, Hussamuddin Nasir, Charles
Carpenter, Jeremy Reed, Xiongqi Wu, and Sergio Rivera P.

A Walk Through the GENI Experiment Cycle 407
Thierry Rakotoarivelo, Guillaume Jourjon, Olivier Mehani,
Max Ott, and Michael Zink

GENIin the Classroomoiiiiiiiiiii i i i 433
Vicraj Thomas, Niky Riga, Sarah Edwards, Fraida Fund,
and Thanasis Korakis

The Ignite Distributed Collaborative Scientific Visualization System...... 451
Matt Hemmings, Robert Krahn, David Lary, Rick McGeer,
Glenn Ricart, and Marko Roder

US Ignite and Smarter Communitiesoooiiiiiiii 479
Glenn Ricart and Rick McGeer
Part V. GENI and the World

Europe’s Mission in Next-Generation Networking with Special
Emphasis on the German-Lab Projectoocii 513
Paul Miieller and Stefan Fischer

SAVI Testbed for Applications on Software-Defined Infrastructure 545
Alberto Leon-Garcia and Hadi Bannazadeh

Contents XXV

Research and Development on Network Virtualization
Technologies in Japan: VNode and FLARE Projects 563
Akihiro Nakao and Kazuhisa Yamada

Creating a Worldwide Network for the Global Environment

for Network Innovations (GENI) and Related Experimental

Environments e 590
Joe Mambretti, Jim Chen, Fei Yeh, Jingguo Ge, Junling You,

Tong Li, Cees de Laat, Paola Grosso, Te-Lung Liu, Mon-Yen Luo,

Aki Nakao, Paul Miiller, Ronald van der Pol, Martin Reed,

Michael Stanton, and Chu-Sing Yang

Appendix: Additional ReadingsL 633
Afterword: A FireintheDark..L 651

Contributors

Ilya Baldin Renaissance Computing Institute (RENCI)/UNC Chapel Hill, Chapel
Hill, NC, USA

Hadi Bannazadeh Department of Electrical and Computer Engineering, Univer-
sity of Toronto, Toronto, ON, Canada

Nicholas Bastin Barnstormer Softworks Ltd. and University of Houston, Houston,
TX, USA

Andy Bavier Princeton University and PlanetWorks, LL.C, Princeton, NJ, USA
Terry Benzel USC Information Sciences Institute, Marina Del Rey, CA, USA
Jim Blythe USC Information Sciences Institute, Marina Del Rey, CA, USA

Marshall Brinn GENI Project Office, Raytheon BBN Technologies, Cambridge,
MA, USA

Charles Carpenter Laboratory for Advanced Networking, University of Ken-
tucky, Lexington, KY, USA

Claris Castillo Renaissance Computing Institute (RENCI)/UNC Chapel Hill,
Chapel Hill, NC, USA

Jeff Chase Duke University, Durham, NC, USA

Jim Chen International Center for Advanced Internet Research, Northwestern
University, Chicago, IL, USA

Heidi Picher Dempsey GENI Project Office, Raytheon BBN Technologies,
Cambridge, MA, USA

Sarah Edwards GENI Project Office, Raytheon BBN Technologies, Cambridge,
MA, USA

Ted Faber USC Information Sciences Institute, Marina Del Rey, Los Angeles, CA,
USA

XXVii

XXViii Contributors

Zongming Fei Laboratory for Advanced Networking, University of Kentucky,
Lexington, KY, USA

Stefan Fischer Institute of Telematics, University of Liibeck, Liibeck, Germany
Peter A.Freeman Georgia Institute of Technology, Atlanta, GA, USA
Fraida Fund NYU School of Engineering, New York City, NY, USA

Jingguo Ge China Science and Technology Network, Computer Network Informa-
tion Center, Chinese Academy of Sciences, Beijing, China

Abhimanyu Gosain GENI Project Office, Raytheon BBN Technologies, Cam-
bridge, MA, USA

James Griffioen Laboratory for Advanced Networking, University of Kentucky,
Lexington, KY, USA

Paola Grosso University of Amsterdam, Amsterdam, The Netherlands

Chris Heermann Renaissance Computing Institute (RENCI)/UNC Chapel Hill,
Chapel Hill, NC, USA

Matt Hemmings Computer Sciences Department, University of Victoria, Victoria,
BC, Canada

Alefiya Hussain USC Information Sciences Institute, Marina Del Rey, CA, USA

Guillaume Jourjon NICTA, Australian Technology Park, Eveleigh, NSW, Aus-
tralia

Thanasis Korakis NYU School of Engineering, New York City, NY, USA
Robert Krahn Y Combinator Research, San Francisco, CA, USA
Cees de Laat University of Amsterdam, Amsterdam, The Netherlands

David Lary Department of Physics, University of Texas at Dallas, Dallas, TX,
USA

Alberto Leon-Garcia Department of Electrical and Computer Engineering, Uni-
versity of Toronto, Toronto, ON, Canada

Tong Li China Science and Technology Network, Computer Network Information
Center, Chinese Academy of Sciences, Beijing, China

Te-Lung Liu National Center for High-Performance Computing, National Applied
Laboratories, Hsinchu City, Taiwan

Mon-Yen Luo National Kaohsiung University of Applied Sciences, Kaohsiung,
Taiwan

Joe Mambretti International Center for Advanced Internet Research, Northwest-
ern University, Chicago, IL, USA

Contributors XXIX

Anirban Mandal Renaissance Computing Institute (RENCI)/UNC Chapel Hill,
Chapel Hill, NC, USA

Rick McGeer Chief Scientist, US Ignite, Washington, DC, USA
Olivier Mehani NICTA, Australian Technology Park, Eveleigh, NSW, Australia

Jonathan Mills NASA Center for Climate Simulation, Goddard Space Flight
Center, Greenbelt, MD, USA

Jelena Mirkovic USC Information Sciences Institute, Marina Del Rey, CA, USA

Paul Miiller Integrated Communication Systems Lab., Department of Computer
Science, University of Kaiserslautern, Kaiserslautern, Germany

Akihiro Nakao The University of Tokyo, Tokyo, Japan

Hussamuddin Nasir Laboratory for Advanced Networking, University of Ken-
tucky, Lexington, KY, USA

Victor Orlikowski Duke University, Durham, NC, USA
Max Ott NICTA, Sydney, Australia

Sergio Rivera P. Laboratory for Advanced Networking, University of Kentucky,
Lexington, KY, USA

Ronald van der Pol SURFnet, Utrecht, The Netherlands

Thierry Rakotoarivelo NICTA, Australian Technology Park, Eveleigh, NSW,
Australia

Dipankar Raychaudhuri WINLAB, Department of ECE, Rutgers University, 674
Rt. 1 South, North Brunswick, NJ 08902, USA

Jeremy Reed Laboratory for Advanced Networking, University of Kentucky,
Lexington, KY, USA

Martin Reed University of Essex, Colchester, UK
Glenn Ricart US Ignite, Washington, DC, USA
Robert Ricci Flux Research Group, University of Utah, Salt Lake City, UT, USA

Niky Riga GENI Project Office, Raytheon BBN Technologies, Cambridge, MA,
USA

Marko Roder Y Combinator Research, San Francisco, CA, USA

Paul Ruth Renaissance Computing Institute (RENCI)/UNC Chapel Hill, Chapel
Hill, NC, USA

Stephen Schwab USC Information Sciences Institute, Marina Del Rey, Arlington,
VA, USA

XXX Contributors

Ivan Seskar WINLAB, Department of ECE, Rutgers University, 674 Rt. 1 South,
North Brunswick, NJ, USA

Michael Stanton Brazilian Research and Education Network—RNP, Rio de
Janeiro, RJ, Brazil

Vicraj Thomas GENI Project Office, Raytheon BBN Technologies, Cambridge,
MA, USA

John Wroclawski USC Information Sciences Institute, Marina Del Rey, CA, USA

Xiongqi Wu Laboratory for Advanced Networking, University of Kentucky, Lex-
ington, KY, USA

Yufeng Xin Renaissance Computing Institute (RENCI)/UNC Chapel Hill, Chapel
Hill, NC, USA

Kazuhisa Yamada NTT Network Innovation Lab, Musashino-shi, Japan
Chu-Sing Yang National Cheng-Kung University, Tainan City, Taiwan

Fei Yeh International Center for Advanced Internet Research, Northwestern Uni-
versity, Chicago, IL, USA

Junling You China Science and Technology Network, Computer Network Infor-
mation Center, Chinese Academy of Sciences, Beijing, China

Michael Zink Department of Electrical and Computer Engineering, University of
Massachusetts in Amherst, Amherst, MA, USA

Part 1
Precursors

GENI, unlike Athena, did not spring fully grown and armed from the mind of the
National Science Foundation. It was the fruit of a number of years of planning by the
US and international distributed systems community, in careful consultation with
the NSF. Moreover, and importantly, it was strongly influenced by a number of
precursors, notably PlanetLab, Emulab, DeterLab, and ORBIT. These were (and still
are) existing, highly successful shared distributed systems and networking testbeds,
and it was their success that inspired GENI. It is fair to say that the original concept
of GENI was “a distributed Emulab/DeterLab with: PlanetLab’s ability to host long-
running services and experiments in virtualized environments; control of the inter-
site networking; and ORBIT’s ability to incorporate wireless nodes”. In the event,
over the three years of planning and six years of construction GENI hewed to that
vision remarkably closely.

Three of the four chapters in this section explore three of GENI’s major
precursors. The fourth chapter, the first in the volume, comes from former NSF CISE
Assistant Director Peter Freeman, and explores the decision-making and planning
process for GENI within NSF and the Distributed Systems Community.

Dr. Freeman’s chapter focusses on the pre-history of GENI. By 2004, the
inability of the distributed systems and networking communities to do research
on the operational Internet was apparent, and the stunning success of PlanetLab
was clear. Two of the founders of PlanetLab—Larry Peterson, then of Princeton,
and Tom Anderson of the University of Washington—began a collaboration with
leading networking researchers Scott Shenker of UC-Berkeley and Jonathan Turner
of Washington University. This group worked with then new NSF Program Director
Guru Parulkar, now at Stanford University, forming the “Gang of Four Plus One” to
plan the continent-wide testbed of the next Internet that became GENI. Dr. Freeman
walks us through the deliberations of this group, through the NSF-sponsored
community planning group of 2007-2008, and the ultimate award of the GENI
contract.

In chapter “Precursors: Emulab”, Rob Ricci describes Emulab—in many ways,
the world’s first Cloud, and then and now the premier platform for controlled
networking and distributed systems experimentation. Begun in 2001, Emulab is a

http://dx.doi.org/10.1007/978-3-319-33769-2_2

2 I Precursors

hardware-as-a-service cluster at the University of Utah with elements devoted to
controlled networking experimentation, primarily delay and traffic-shaping appli-
ances. It eponymous software stack not only controls the Emulab cluster at Utah
but a number of daughter clusters across the United States and beyond. The Emulab
software stack forms the basis of the ProtoGENI control framework for GENI, and
for a number of followon and related projects. The first of these was DeterLab,
summarized in the next paragraph and described in chapter “DETERLab and the
DETER Project”. Others include the NSF CloudLab and Advanced Profile-Based
Test Lab, both at Utah, and the NSF PRObBE facility at Los Alamos.

A critical need for advanced cybersecurity testing was identified in the early
2000’s, and in 2003 the University of California, Berkeley and USC’s Information
Sciences Institute collaborated to build a testbed at USC devoted to cybersecurity
research, at scale and under realistic conditions. The DeterLab cluster at USC/ISI,
described in chapter “DETERLab and the DETER Project”, began with the Emulab
software stack and is superficially similar to Emulab. However, it has been enhanced
in multiple dimensions, with specific attention paid to scalability and security
features. Both are absolute requirements for security experimentation; many attacks
utilize load as a critical component, and cybersecurity testing necessarily involves
the use of malware, worms, and viruses. Much as a biohazard facility requires
special precautions, so to does a cybersecurity testing facility.

Another area problematic for experimentation is wireless testing, particularly
at scale. The need for such testing motivated Dipankar (Ray) Raychaudhuri of
Rutgers to construct ORBIT, a large-scale open-access wireless networking testbed
consisting of a “Wireless-Nodes-as-a-Service’ 400-node indoor radio grid facility, It
is described in chapter “ORBIT: Wireless Experimentation” and is the basis of the
Wireless test facility of GENI.

http://dx.doi.org/10.1007/978-3-319-33769-2_4
http://dx.doi.org/10.1007/978-3-319-33769-2_3
http://dx.doi.org/10.1007/978-3-319-33769-2_3

The GENI Vision: Origins, Early History,
Possible Futures

Peter A. Freeman

Abstract This paper presents the vision of GENI as first formulated at the National
Science Foundation (NSF) in early 2004 and expanded during 2004-2007, identifies
what forces shaped the basic idea during its formation, and comments on where it
may go in the future. The paper describes motivations, concepts, and history—not
technical details—that were in play between 2004 and 2007 as the GENI Project
was being formulated and launched, and that continue today. Understanding the
original vision and goals, basic ideas, and motivations of the GENI Project; the
context in which it emerged; and the forces that shaped the Project will enable you
to understand better the technical details and changes that occur in the future. I end
with some comments about possible futures for GENI.

1 The Original Idea of GENI

1.1 The Objective

From the start, we thought of GENI as two, complementary lines of work (and
support): Research on future architectures for the Internet and a robust infras-
tructure for experimenting with new and innovative infrastructural and application
ideas.

© Peter A. Freeman, 2015. The name ‘GENI’ wasn’t created until over a year after the effort
started at NSF—we initially called it “CIRI—Clean-slate Internet Re-Invention Initiative.” A
second version was “GEENI—Global Experimental Environment for Networking Investigations.”
The name was shortened to GENI in mid-2005 and today it is mostly an unexpanded acronym
standing for Global Environment for Networking Innovations.

P.A. Freeman (0<)
Georgia Institute of Technology, Atlanta, GA 30332, USA
e-mail: freeman@cc.gatech.edu

© Springer International Publishing Switzerland 2016 3
R. McGeer et al. (eds.), The GENI Book, DOI 10.1007/978-3-319-33769-2_1

mailto:freeman@cc.gatech.edu

4 P.A. Freeman

GENI comprises two components: the GENI Research Program' and the experimental
GENI Facility. It is intended to catalyze a broad community effort that will engage other
agencies, other countries, and corporate entities®.

For the most part, I believe these two objectives have been held to by those
in leadership positions at NSF, in the GENI Project Office (GPO), and in the
networking community. For a variety of reasons, building a continental-scale
network on which novel ideas could be implemented and experimented with has
seemed to dominate. At the same time, ideas generated in building the GENI
Facility, in the research supported by the Future Internet Architecture (FIA) program
started in 2010, and in other research programs may ultimately develop into exactly
the kind of innovative network architectures we envisioned in the first place. The
focus of the Project so far is natural because it is almost always more compelling to
build a “tangible” architecture than to experiment with abstract ideas, and because
most people working on a project must focus on one small aspect of the overall
effort.

1.2 Expansion of the Objective

A very important expansion of the original objective took place in 2005 as we
understood more fully the potential for the GENI Facility and the absence of much,
if any, of a body of scientific knowledge to support new network and applications
engineering design. Quoting from the same SIGCOMM announcement as above:

To have significant impact, innovative research and design ideas must be implemented,
deployed, and tested in realistic environments involving significant numbers of users and
hosts. The Initiative includes the deployment of a state-of-the-art, global experimental
GENI Facility that will permit exploration and evaluation under realistic conditions.

What we were calling for, in effect, was the development of a scientifically based
body of design knowledge.

We elaborated on this idea internally in the context of our application for NSF
Major Research Equipment and Facilities Construction (MREFC) funding,® but
regrettably did not make this as specific and public as we could have. Comments
in this paper may help rectify that oversight.

'The GENI Research Program was not launched until 2010, in the form of the Future Internet
Architecture (FIA) solicitation from NSFE. http://www.nets-fia.net/.

2The GENI Initiative, NSF announcement distributed at SIGCOMM 2005 on August 25, 2009.
3This is funding distinct from the research funds controlled by individual NSF directorates, and

is used for projects whose initial cost would be a substantial proportion of a directorate’s annual
budget.

http://www.nets-fia.net/

The GENI Vision: Origins, Early History, Possible Futures 5
1.3 Origins of the GENI Idea

No one person can claim credit for “inventing” GENI. Initially it was formulated
from ideas that were emerging in the networking research community (“the com-
munity”) through a long series of workshops. Those of us at NSF had the privilege
and responsibility of harvesting ideas from the entire community and turning them
into a specific project. Community involvement has continued to generate ideas as
the GENI Facility has evolved, and is one of the strengths of the Project.

GENI didn’t suddenly appear as a full-blown, well thought out project on a
specific date, but it seems appropriate to mark the start of the direct GENI effort as
being April 2004. That was when Guru Parulkar, a Program Director in CISE, made
a presentation to Deborah Crawford, Deputy AD/CISE, and me. His presentation
reviewed some of the emerging problems with the Internet (e.g. security, quality of
service, capacity, connection between digital and physical worlds) and the difficulty
or impossibility of creating the digital world so many people were, and still are,
envisioning. Parulkar then went on to review the thinking and work to date of the
community and especially the “Gang of Four* on ways to deal with what they and
others viewed as a looming “brick wall” in front of continued Internet functional
expansion. The presentation of the basic ideas for a significant experimental facility
also included significant thinking and contribution of Parulkar. He used the term
“clean-slate” in describing what needed to be done.

The vision that Parulkar presented to us incorporated three fundamental ideas:

* Slicing (having multiple networks simultaneously using the same routers, with
the ability to switch between the networks dynamically);

e Virtualization (of a network);

* Programmability (of routers).

None of these ideas were new to computer science, of course, and in some ways
were in use in networking, but the combination was new. The power of a network
based on these ideas and incorporating the latest optical and other technology led us
to envision an entirely new form of “Internet.” That caused us to sometimes reply
to those asking what our objective was that we were “Reinventing the Internet.”

While ultimately that was exactly what we were aiming at in the long run, it
led to some misperceptions that we had to correct. One misperception was that we
wanted to replace wholesale the current Internet with GENI (not true).

A second, somewhat partially accurate perception, was that we were critiquing
the current technical details of the Internet. It is true that based on what the
community was saying, we tended toward the view that current structures could

“The “Gang of Four” consisted of Tom Anderson (Univ. of Washington), Larry Peterson
(Princeton), Scott Shenker (Berkeley), and Jon Turner (Washington University). Parulkar had
been a professor at Washington University and successful entrepreneur. At the time he was a
program director at NSF and we often referred internally to the “Gang of Four Plus One” since
he contributed his own ideas as well.

6 P.A. Freeman

not be adequately modified to deal with the emerging imperatives (see Motivations
below); but never did we believe that they had not been extremely successful in
adapting to demands on the Internet (and individual networks) that were never
envisioned when those structures were created. Any disagreement was solely
over the ability of current structures to continue to evolve to meet new demands
adequately.

A third misperception was that NSF would build the new network (not true). NSF
is not an operational agency in the sense of building and maintaining infrastructure
or equipment for public use or to provide a public service. When NSF does build
something like a network, it is solely for the support of scientific research and
education (NSF’s mission)—as was the case with NSFNET. When it becomes clear
that the object has a broader, possibly commercial, public utility, it is then “spun
out” to control/ownership by others. This is exactly what happened in 1995 when
NSFNET, which had merged with ARPANET for research use, was turned over to
public control and use, becoming what today we call “the Internet.”

A second set of points arising from the community helped shape the GENI
Project including:

* The belief that continued improvements to individual components and protocols
of the Internet were not going to suffice to meet the societal demands being
placed on it’;

e The belief that the ideas brought together by Parulkar offered a path to an
important new technical basis for the Internet;

* The fact that early networks and versions of today’s Internet had been developed
in environments in which experimentation occurred almost daily on operational
networks (sometimes disastrously!), and that the ability was lost when the
Internet and operational networks in general were commercialized;

e The fact that there was little theory and few models that would permit experi-
mentation with new network architectures in silico.

A third set of points arising from my long experience as a computer scientist and
Crawford’s experience as a computer engineer and NSF official also helped shape
the Project:

* Belief in the importance of experimentation in developing complex, computer
based systems of all types;

* Broad understanding of the importance of networking to all aspects of society;

* Deep understanding of how projects and major programs are approved, funded,
and then carried out in NSF and in the U.S. Government in general;

* Knowledge of the trends and current status of funding for research in computer
science, especially the loss at that time of DARPA funding for basic CS research;

* Knowing the importance of making sure that a major project addressed both
internal NSF objectives and external societal objectives.

3 A decade later we still don’t have robust security on the Internet, for example.

The GENI Vision: Origins, Early History, Possible Futures 7

As with any technically and organizationally complex project involving many
players, there were undoubtedly other factors not listed here. These, however, are
the ones that stand out to me 10 years later.

1.4 Motivations

Major projects don’t get approved just because they may be technically or
scientifically interesting. There are always more interesting things to do than there
are available funds. So, what were some of our major motivations in driving this
project forward?

Among the driving forces in society that were becoming very pronounced
(especially to those of us in the U.S. Government who had to answer frequently
and personally to concerns from Congress) were the needs to:

* Build in security and robustness;

* Bridge the gap between the physical and virtual worlds (mobile, wireless, and
sensor networks);

* Control and manage other critical infrastructures;

* Provide ease of operation and usability;

* The need to enable new classes of societal-level services and applications.

Even without these societal driving forces, all of which involved challenging
technical problems that had been identified by the community, it was clear to all
of us in the technology R&D community that several issues needed addressing,
including:

 Inherent architectural limitations of current networking and Internet architectures
and structures to enable future development;

¢ Ossification of the current Internet architecture;

* The push of “unrelated” technology developments (e.g. optical switching, mobile
devices);

* The pull of enticing and important new applications (e.g. telemedicine).

Today, to some extent at least, all of these driving forces are known by everyone
in the community. They are also discussed elsewhere this book.

These ideas arose from societal needs that were increasing (security, more
innovations to drive economic development) due to exponentially increasing usage
of networks by non-experts and technical assessments and projections from the
networking research community. These were the people (along with others) that
were largely responsible for the development of the Internet prior to 1995 (and to
some extent since).

The ideas were brought together, expanded, and modified by people at NSF.
These individuals were all knowledgeable in one or more aspects of the networking
domain, were excited about the project and its possibilities, and devoted their full
energy over a sustained period to bring about the promise of a successful execution

8 P.A. Freeman

of the basic objectives. The leadership of CISE, and to some extent NSF, was
personally involved and leading the project for the first several years and, thus, were
able to direct substantial resources to it.

The community was also very excited about the project, although by no means
unanimously,® and a substantial number of senior researchers became engaged in the
project in various ways, often contributing substantially of their time and resources
to help push it forward.

1.5 Overview of GENI’s Early Days (Years)

A detailed recounting of the history of the intellectual origins of GENI is interesting
and important, but beyond the scope of this paper. Figure 1 provides an overview of
the history.

Beginning in 1995 when NSFNET was turned over to broad public control
and funding, there were a number of workshops and meetings, which viewed
retrospectively, constituted a review of the community’s work in creating the
Internet. Around 1999, the community’s attention started to turn toward the future
and what needed to be done to insure that their creation, although no longer under
their control, could continue to grow and meet the demands being placed on it.

Calendar Year
1954 1996 1998 2000 2002 2004 2006 2008 2010
Community Review of Past —

Community Agenda Setting

Funded Explorations | | | [e—
GENI Initiation | | —
Broader Engagement —
Outreach & detailed planning | | | ——
e

Project Awarded to BBN

Fig. 1 Approximate Stages in the Origin of GENI up to 2008

SNotably, at a meeting in mid-2005, a group of very senior networking pioneers reviewed our plans
as of that date and, while some expressed strong support (“Just do it!” said one), some expressed
deep reservations about attempting the Project at all (“The Internet has evolved well so far without
this!”).

The GENI Vision: Origins, Early History, Possible Futures 9

This agenda setting continued up to early 2004. Some new networking research
programs at NSF that were amplified around 20027 were for the first time in almost
a decade supporting some significant experimental developments—some of which
led directly to the ideas collected and shaped by Parulkar.

Community involvement in setting the research agenda has continued throughout
and was extremely helpful in formulating the GENI Project. In the early develop-
ment of the GENI ideas, inputs from the community were focused by NSF. The
initiation of GENI as described above consumed most of 2004. By 2005 a number
of efforts to engage more of the community began to pay off and by the end of
the year, a substantial number of people were actively engaged in GENI planning
and initial projects; additional people, including most of the senior people identified
with networking, had been explicitly asked to comment on the Project and to offer
their inputs.

After publicly announcing the Project at SIGCOMM-2005, we began a concerted
effort to discuss the Project with industry, broader reaches of academia, Congress,
and other parts of the U.S. Government; this continued in 2006. This was com-
plemented by additional planning focused on technical details and obtaining major
funding.

In early 2006 we issued a solicitation for proposals to fund a consortium to
engage the broad computing research community in generating ideas for major
initiatives in areas other than networking; we saw the GENI Project as the first such
initiative. The solicitation included the following:

One of the first responsibilities of the CCC will be guiding the design of the Global
Environment for Networking Innovations (GENI). ... The GENI facility is expected to
increase the quality and quantity of experimental research outcomes supported by CISE,
and to accelerate the transition of these outcomes into products and services to enhance
economic competitiveness and secure the Nation’s future.

The Computing Research Association (CRA) received the award in mid-2006
to create CCC and by the end of 2006, they had an interim leadership team of
computing community volunteers in place; early in 2007 they formed a committee
of networking community volunteers to produce a GENI Science Plan. This was
our way of explicitly turning intellectual control over to representatives of the
computing research community.

Later in 2006, we issued a solicitation to create a GENI Project Office to guide
and perform the engineering work necessary to create a GENI Facility.

As with the related CCC solicitation, the objectives were clearly stated,
including:

7Guided by Larry Landweber, Senior Advisor to the AD. Larry was also instrumental in helping
motivate and involve a broad swath of the networking community here and abroad in the GENI
Project.

8 Computing Community Consortium (CCC): Defining the Large-Scale Infrastructure Needs of the
Computing Research Community, NSF Solicitation 06-551, http://1.usa.gov/110dAQq.

http://1.usa.gov/1IOdAQq

10 P.A. Freeman

... It is anticipated that the GPO will then have full responsibility for overseeing the
construction of the facility, ensuring that GENI is delivered on time and within budget. Upon
successful GENI construction and commissioning, the GPO may subsequently operate the
facility in service to the computing research community.”

The Project Office solicitation attracted considerable interest among major
organizations and the final stage of reviews of the proposals was scheduled for early
2007. An award was made to BBN Technologies in mid-2007 and by the end of
2007 the GPO was in operation and continues to the present (late 2015).

To recap, our intent was to let the computing research community broadly, and
especially the networking community, drive the research priorities and policies for
the GENI Research Program and to have an experienced, professional organization
oversee and perform critical parts of the construction of the GENI Facility. By the
middle of 2007 both of these mechanisms were in place and beginning operation.

While the initial committee created by the CCC to guide GENI made an honest
effort to fulfill the charge from NSF, those efforts were not continued in a way that
would ultimately fulfill the vision and plans we had laid. The GPO, on the other
hand, has performed their role extremely well and by engaging a broad swath of the
community filled in the vacuum left by the CCC in this area. (The performance of
the CCC in other areas, notably robotics, has been more in tune with their original
charge.)

Other factors, both before and after 2007, have impacted the evolution of the
GENI Project as it stands today. That is the subject of the next section of this paper.

2 What Has Shaped the GENI Project?

Several forces have shaped the Project so far, and in one form or another will
continue to do so in the future:

* Engagement of the technical community;

* Leadership from the community and from funders;
* Exogenous technical developments;

* Availability of funding;

* Organizational dynamics;

* Societal and practical imperatives.

This is not a sociological paper,'® but a few comments may be helpful to you in
understanding GENI, its objectives, and some of the forces at play in its evolution.

9Global Environment for Networking Innovations (GENI): Establishing the GENI Project Office
(GPO) (GENI/GPO). NSF Solicitation 06-601, http://1.usa.gov/1TIQKdi.

10There have been studies of GENI, however, for example: Kirsch, Laurie J. and Slaughter, Sandra
A., “Managing the unmanageable: How IS research can contribute to the scholarship of cyber
projects.” Journal of the Association for Information Systems, Vol. 14 (2013), No. 4, p. 198-214.

http://1.usa.gov/1TJQKdi

The GENI Vision: Origins, Early History, Possible Futures 11

The engagement of a broad swath of the networking community, in one way
or another, is clearly the most important single factor in the origination, evolution,
and ultimate success (or failure) of GENI. Without the ideas that originated in the
work and analyses of the community, there would be no GENI. NSF has always
been a community-driven agency for its basic directions and programs, modulated
by the guidance of NSF program and management personnel almost all of whom
have expertise in one or more areas of research and education. That is what gives
NSF its long-term success in supporting fundamental scientific investigations and
development of the advanced tools and facilities to carry out those investigations.
GENI is an excellent example of this.

The lesson is to listen to the best minds in the field, while developing new and unique ideas
and approaches.

The ultimate responsibility for a line of investigation or the construction of an
advanced facility belongs to the community, not NSF, because it is NSF’s policy to
rely on a scientific community to carry out investigations and build needed facilities.
If a community does not come together and provide the leadership necessary to carry
a project forward, then the chances a project will fail increase dramatically.

If this second factor had not been present, GENI would never have happened.
The fact that a small cohort of the most respected and active networking researchers
(the “Gang of Four” referred to above) were engaged and willing to come together
to help blend their ideas with those of others was fortuitous. This has not always
been the case in other instances.

The community must make sure that informed and engaged members from the field take time
to serve the Nation and their community by serving at NSF.

Equally important was the willingness of a large number of networking
researchers (many not engaged in the Project then or now) to meet with us to
critique the Project—sometimes quite severely—and add their ideas to the mix we
were trying to harvest and shape into a coherent project. These ranged from the late
Paul Baran to some not even yet born in 1959 when he started his seminal work on
survivable communication networks!

With all due humility, the other part of the equation that was critical was
having leadership at NSF willing and able to see the importance of enabling more
networking research, to see the potential value of the technical ideas that were
emerging, to be willing to lead and take risks, to listen carefully to and use any
and all critiques, and to broaden the objectives where needed. Again, this was most
fortuitous and one doesn’t always have a good alignment of program management
and senior leadership at NSF (or any agency) as some subsequent personnel changes
have shown during the evolution of GENI.

The need for community involvement extends from the occasional reviewer or informal

consultant to the leadership of NSF overall. It is the responsibility of a community’s senior
leadership to insure that appropriate people serve at NSF.

12 P.A. Freeman

Good leadership makes a difference. If a scientific community wants its ideas
listened to then it must take the responsibility of providing appropriate leaders to
NSF and other agencies.!!

Every reader can understand the impact of rapid technological changes external
to a project on its course over time. For example, the progress of optical technology
was not necessarily foreseen by the technical projects that influenced the start of
GENI. Similarly, the exponential increase in the capabilities and usage of mobile
devices also was not immediately factored in to our plans.

The availability of funding for a project is always important, but in my opinion
not a complete “showstopper.” If the ideas had been brought together as they were,
then they likely could have eventually found funding from some source to carry
them forward. Again, though, luck played a big role in permitting us to devote
significant funds for GENI and the experimental programs that preceded it because
it came at a time that our budget was growing and we were already devoting a larger
fraction of those funds to networking and security research. While the availability of
funding has varied in the 10 years since the GENI Project started, CISE nonetheless
has spent a very large amount from its operating budget on the two components of
the Project (Research and Facility Construction).

Undertaking an “audacious” project of the scale of GENI takes a large amount of funding
and time.

A close corollary is that it is always better to have multiple sources of funding,
something the leadership has not been able to do in any significant ways until very
recently. This is changing in the form of donated resources and parallel efforts
coordinated to what is happening in GENI—specifically, the participation of many
campuses using their own funding.

Organizational dynamics is yet another important, but not critical, factor in
the origination and evolution of GENI. The primary example of this was our
decision to seek funding from the special equipment fund in the NSF Budget
(the MREFC account that pays for research ships, telescopes, and other very
expensive research instruments). Ultimately, our attempt failed, primarily due to
organizational dynamics internal to NSF. Had we not made this attempt—which
had been encouraged by top management—progress that has taken ten years might
have come more quickly.

Sometimes forces beyond the technical merit or the scope of authority of a project’s
leadership dictate its progress in ways that cannot be prevented.

We have already discussed some of the societal imperatives that influenced us
(e.g. security, the need to enhance innovation broadly). Perhaps the most pervasive,
but fortunately not a showstopper, in the past decade has been the financial crisis
starting in 2007-2008 that has slashed budgets, made industry more cautious, and
generally reduced people’s desire to take risks on the future.

'We attempted to engage DARPA, DoE Office of Science, and other agencies in a broad GENI
effort. Unfortunately, we were not successful in that effort.

The GENI Vision: Origins, Early History, Possible Futures 13

Ultimately we are all part of a larger society that in the aggregate may have more important,
immediate concerns than supporting a future oriented project.

3 What Does the Future Hold?

As Yogi Berra (or, was it Confucius?) said “Predictions are very hard—especially
about the future!”

We hope that the original vision of developing a useful “instrument” (the GENI
Facility) for experimentation will succeed and enable the development of a body
of verifiable knowledge on which future networks and applications can be built.
However, if you read the list of factors above that have shaped the GENI Project
and that will continue to do so, then you know that the future of something as large
and complex as this project is far too hard to predict with any accuracy.

We can invoke some standard platitudes about technological (and scientific)
developments, including:

* The time to achieve impact of a development is often much longer than initially
predicted, but at the same time may eventually be much greater than ever
imagined;

* The impact of a development often turns out to be nothing like what the originator
imagined;

* Size of a project # eventual impact;

» External factors often alter a project;

* Vision and leadership must be maintained for the life of a project.

The first three of these “truths” and others like them have been shown true
in development after development. They need no explanation since examples are
abundant, but they are worth keeping in mind for everything from your specific
work to an entire project. The last two points (and others) were discussed above, but
stand out to me when considering GENI and its evolution.

So, is there anything else to say about the future of the GENI Project? Yes!

I believe there are several potential pitfalls or ways in which the project could be
driven into failure by those of you in the community in whose hands its future lies.
Specifically,

* Insufficient funding;

* Lack of community engagement;

* Absence of focused and effective leadership;
» Insufficient, positive engagement by industry;
* Absence of broad and useful experimentation.

14 P.A. Freeman
3.1 Funding

Insufficient funding is, in my opinion, a short-term issue, yet potentially deadly.
The current efforts of the GPO are preparing a useful infrastructure installed in a
number of leading universities and research sites and connected by donated fiber
from Internet2. It is critical that this be completed and operation supported in the
mid-term. If the infrastructure is useful then funding mechanisms will be created
outside the framework of total government support and the critical period will have
passed.

This is exactly analogous to what happened when NSF turned over NSFNET to
public use and support in 1995. While financial support and technical viability will
be tenuous in the early years, as it was with the Internet, if GENI is useful then its
future in some form will be assured.

3.2 Community Involvement

Without the continued engagement of the networking research community, the origi-
nal vision will surely not be fulfilled. So far, the GENI Project, with the leadership of
GPO, has been very successful in engaging large swaths of the networking research
community from the most experienced and senior to just beginning graduate
students. As the GPO finishes its current job and fades from the scene, some active
mechanism outside of NSF is needed to insure community engagement.

The CCC was set up by NSF as a mechanism that would do this, initially for
GENI, for a number of research areas in computing. As noted above, this has not
happened for GENI in a sustained manner. If the CCC does not step in to provide
focused leadership in the coming months and years, the networking community will
have to do it in an ad hoc manner. This is not necessarily a bad outcome. In fact, it
is the modality used to operate other large, NSF-supported research facilities where
a whole new organization is set up to operate the facility.

There is another, more fundamental need for community involvement in the
coming years in the, as yet unfulfilled, quest to develop a scientific basis for
the design of future networks and applications. This is not a quest that everyone
in the community is interested in pursuing, nor capable of doing. Building an
immediately useful system or subsystem is a very engaging activity that can have
great impact in the short term. That activity should never be looked down upon,
but at the same time it should not be all that we as a community, most especially
those of us working in academia and industrial research labs, undertake. If we don’t
communicate in verifiable ways our theories, experimental results, and developed
wisdom to those that come after us then our students and their students and those that

The GENI Vision: Origins, Early History, Possible Futures 15

devote their efforts to building operational networks and applications are doomed
to make the same mistakes we have made. They deserve to make their own, new
mistakes, not just repeat ours!

Some in the networking community over the past 50+ years have done fun-
damental, essential, and deep thinking about the nature of networking and the
behavior of real networks and the applications that utilize them. Some of it has
been recorded in ways that are accessible to future generations of designers, but I
fear that the press of immediately applying that knowledge means that a good bit
of it is being lost. This work needs to be augmented by experiments that utilize
the GENI Facility, documented in archival form, and utilized to develop further a
scientific basis for network and application design in a virtuous cycle of theoretical
development, experimentation, and further theory refinement—the cycle that has
been so productive over the years for researchers in other scientific fields, such as
theoretical and experimental physicists.

3.3 Leadership

This is ultimately a community responsibility, not just in the performance and
focusing of technical work as discussed above, but also in encouraging and enabling
community members to serve in leadership positions in government and industry
that have the authority to support and advance network research.

It is also a responsibility of community members to help educate leaders in
many positions, not just those on the front lines of networking research. Members
of Congress, senior officials in many government agencies, CEO’s, engineering
managers, and the general public all need to understand the value of networking
research and, for the long term, the value of developing a basis of solid, scientific
knowledge upon which future networks and applications with the desired levels of
security, robustness, and so on can be built.

The parallels to other branches of technology and science are abundant. You
need only think about two that everyone in the modern world depends on—medical
care based on deep and fundamental scientific investigations and the construction of
large buildings. We all understand how scientific research has and is continuing to
revolutionize the medical care available to people, even in the most remote corners
of the world (much of it actually employing a lot of advanced engineering). If you’ve
ever thought about how skyscrapers are built and how large buildings are sometimes
situated on what otherwise appears to be less than firm ground and how in the
advanced world we rarely hear of buildings collapsing of their own accord, then
you know there must be a considerable base of scientifically developed knowledge
on which the necessary foundation engineering is built.

If the networking community does not provide the leadership to develop a
more solid scientific basis, then our “buildings” will continue to fail, just as
buildings constructed without the benefit of modern, scientifically based knowledge
sometimes do. The essential ingredient of leadership, of course, is that it be focused

16 P.A. Freeman

on important and obtainable goals that are pursued over whatever time period is
required. Part of the job of enlightened leadership is to make sure there is a balance
between the near term imperatives and the longer term, essential goals.

3.4 Industry Engagement

Industry engagement to date has been modest, at best. That’s understandable, but
moving forward it is essential that industry becomes positively engaged. Again,
the current situation is very reminiscent of the transition period between the purely
research oriented days of the ARPANET and NSFNET and the late 1990s when the
commercial value of the Internet became apparent.

Yet, the situation from here forward is different from the early days of the
Internet. While some of the developments that may come out of GENI work may
spark strong public demand and thus commercial interest, building a scientific base
of knowledge will not happen in a time span short enough to make the effort of
obvious value to short-term focused industry. I call this “death by a thousand small
successes.” How to avoid this outcome is an open question.

There is a darker side to industry involvement, of course. There are multi-billion
dollar companies built on the current networking technology. The “innovators
dilemma” comes into play here because there are very powerful forces that don’t
want change since it may threaten their current business models. I don’t need to
name names or point out examples—the news is filled every day with arguments
about net neutrality, control of telecommunications pipes, and so on.

This is another area where research community involvement and leadership will
be essential. If we don’t educate industry leaders about the value of a more rigorous
network and application engineering, and at the same time work with industry to
obtain shorter-term economic benefits from our work, then we have no one but
ourselves to blame if future generations do not have the scientific basis that we
know is essential to future success.

3.5 Useful Experimentation

The final potential failure mode should be clear to you now. The vision that sparked
GENI was not just of a continental-scale research facility that could be used to
develop some new networking technology and applications. The vision included
experimentation aimed at developing a scientific base of knowledge for future
design efforts so that our entire field will be raised to a new level of capability.

The community, leadership, funding, and commercial interests must stay aligned
and focused on the near-term and the long-term goals. It is an open question if that
will happen.

The GENI Vision: Origins, Early History, Possible Futures 17
4 Conclusion

The GENI Project came from the ideas, analyses, visions, and efforts of many. It
was shaped into what it is today and continues to evolve with the ideas and efforts of
many more. There have already been some technical successes and the beginnings of
meaningful experimentation. At the moment, the path ahead, while unclear, seems
devoid of serious roadblocks; but they could appear at any moment.

The real win and lasting contribution will be to deliver on the initial objective of
new architectures and a scientific basis of knowledge for continued and enhanced
progress in networking of value to our entire society.

It’s up to you!

Acknowledgements I have already acknowledged that without the networking community there
would be no GENI. My colleagues at NSF, principally Guru Parulkar, Deborah Crawford, and
Larry Landweber, deserve a very large amount of credit for bringing GENI into existence. In
addition, their comments on this paper and an earlier, longer version have been very helpful. The
editors of this volume have also contributed useful suggestions on the paper.

Peter A. Freeman I left NSF in early 2007 as leadership for the Project transitioned away from
direct NSF control and to the community. I am now Emeritus Dean and Professor at the Georgia
Institute of Technology.

Precursors: Emulab

Robert Ricci and the Emulab Team

Abstract One of the precursors of the GENI project is Emulab, a testbed effort that
has been ongoing at the University of Utah since 1999. Emulab is both the name
of a testbed control system, and the name of a particular facility built using that
system. The Emulab facility is housed at the University of Utah, but is available
to researchers worldwide—thousands of users have run hundreds of thousands of
experiments over the lifetime of the testbed. The Emulab software is open-source,
and has been used to bring up dozens of experimental facilities at institutions around
the world. Some of these, like the Utah facility, are open to the public for the
purposes of research and educations; others are run by individual institutions for
their own use, which may include product R&D, classified work, etc.

One of the precursors of the GENI project is Emulab, a testbed effort that has
been ongoing at the University of Utah since 1999. Emulab is both the name of
a testbed control system [29], and the name of a particular facility [10] built using
that system. The Emulab facility is housed at the University of Utah, but is available
to researchers worldwide [12]—thousands of users have run hundreds of thousands
of experiments over the lifetime of the testbed. The Emulab software is open-source,
and has been used to bring up dozens of experimental facilities at institutions around
the world [11]. Some of these, like the Utah facility, are open to the public for the

The Emulab project was founded by Jay Lepreau, who led it from 1999 until his death due to
cancer in 2008. As of 2016, the Emulab team includes: Keith Downie, Jonathon Duerig, Dmitry
Duplyakin, Eric Eide, David Johnson, Mike Hibler, Dan Reading, Leigh Stoller, Kirk Webb,
and Gary Wong. Over the last 16 years, dozens of people have worked on Emulab, including
Christopher Alfeld, David G Andersen, David Anderson, Kevin Atkinson, Grant Ayers, Chad
Barb, Srikanth Chikkulapelly, Steve Clawson, Austin Clements, Cody Cutler, Russ Fish, Daniel
Montrallo Flickinger, Daniel Gebhardt, Shashi Guruprasad, Fabien Hermenier, Ryan Jackson,
Abhijeet Joglekar, Xing Lin, Nikhil Mishrikoti, Ian Murdock, Yathindra Naik, Mac Newbold,
Tarun Prabhu, Raghuveer Pullakandam, Prashanth Radhakrishnan, Srikanth Raju, Pramod Sanaga,
Timothy Stack, Matt Strum, Weibin Sun, Kevin Tew, Brian White, and Kristin Wright.

R. Ricci (<)
Flux Research Group, School of Computing, University of Utah, Salt Lake City, UT, USA
e-mail: ricci@cs.utah.edu

© Springer International Publishing Switzerland 2016 19
R. McGeer et al. (eds.), The GENI Book, DOI 10.1007/978-3-319-33769-2_2

mailto:ricci@cs.utah.edu

20 R. Ricci and the Emulab Team

Fig. 1 Early Emulab builders. Left to right: Mac Newbold, Logan Axson, Christopher Alfeld,
Kristin Wright, Jay Lepreau, Mike Hibler

purposes of research and educations; others are run by individual institutions for
their own use, which may include product R&D, classified work, etc.

The Emulab system was originally developed as the “Utah Network Testbed”
by the Flux Research Group under the direction of Jay Lepreau. The facility’s
initial purpose was to solve a problem that the group itself had: research in the
area of computer systems (including networks) requires a great deal of hands-on
experimentation, and performing those experiments necessarily means managing
the equipment on which they will be run. It was clear, however, that the needs of
the Flux group with respect to infrastructure were by no means unique, and the
group decided to open the testbed to the wider research community in early 2000.
Similarly, after several years of operating one facility, it became clear that others
would like to run their own, similar infrastructure, and the software was generalized
to run at other sites, with the first two being at the University of Kentucky [16] and
Georgia Tech. Since then, the Emulab software has become the basis for a number of
testbeds with different focuses, including: NSF’s CloudLab [23] (cloud computing),
GENI [2, 3] (federation), PhantomNet [28] (mobile networking), PRObE [17] (large
scale systems) and Apt [24] (adaptability and repeatability); DARPA’s National
Cyber Range (security); and DHS’s DETERLAB [8] (security). The Emulab facility
and codebase are key parts of the nationwide GENI infrastructure and several
international federations in Europe, Brazil, Japan, and South Korea.

Emulab 21

]

v
ey
=

Fig. 2 Wiring in one of the Utah Emulab clusters

As its name suggests, Emulab was originally designed with emulation as its
primary purpose: by this, we mean running “real” code on real hosts, interacting
with a network that is “real” in the sense that it is constructed of real hardware
such as switches and NICs, but which may be artificially manipulated in order to
create effects such as latency, limited delay, etc. in a controllable manner. While
emulation remains one of Emulab’s key use cases, it has grown far beyond this
original focus, and supports other environments such as simulation, live wide-area
network experimentation, wireless networks, and more.

Thought its lifetime, the development of Emulab has been supported primarily by
the National Science Foundation, with additional support from DARPA. Additional
vendor contributions have come from Cisco, Intel, Compaq, Microsoft Research,
Novel, Nortel, and HP. As a result of this support, users have never paid to use
the Emulab facility at Utah or for using the source code to build other facilities.
Emulab has also benefited greatly from the support of the University of Utah, in the
form of machine room space, power, and cooling, as well as support from the IT
organization for its unusual network needs and usage patterns. Emulab has never
“stood still,” with each successive grant being used to add new, unique features such
as wireless experimentation, support for virtualization, and federation.

22 R. Ricci and the Emulab Team
1 Running Experiments on Emulab

To run an experiment on Emulab, a user describes the network he or she would like
to run an experiment on. This specification is written in a dialect of the language
that is used for the ns-2 simulator [26], and is thus typically called an “NS file.” An
example of such a file can be seen in Fig. 3. An NS file includes specifications of the
nodes, links, and events that define the experiment. The user submits this NS file to
Emulab, which attempts to find a free set of resources that match what is requested.
For the most part, users do not ask for specific physical machines, and repeated runs
of the same experiment might map onto a different set of physical hosts.

For nodes, the specifications of interest include the type of hardware to run on,
the operating system to run, and possibly additional software packages to install.
Emulab offers some flexibility in the specification of hardware: many users simply
ask for a “pc,” which gives Emulab the flexibility to assign any one of the numerous
hardware types it might control. Or, users can be more specific, referring to a specific
type, if it has features that they require, or if they are trying to run on the same type
repeatedly for consistency. Operating systems and software are often specified in
terms of disk images, which Emulab automatically loads onto the hosts using a
custom scalable multicast protocol. Emulab itself provides standard disk images for
several Linux distributions, FreeBSD, and Windows, and users may also make their
own (usually by customizing one of the facility images.)

In terms of links, the user may specify either point-to-point links or multipoint
LANS, creating a fopology. One of Emulab’s key features is that these links can

1 A Import definittions of Emuleb—spceeific commends: Fmulad elso provides o
2 # stubbed ovut version of this file for wuse insidc of the ns 2 simulator
3 source th_compat.tal

4

S | # The Semulaiov object, from mns—2, swcupsulales Lho reprosentaiiom of lhe
6 £ topology

7 set ns [new Simulator]

8

9| # Scrivis can dinciude variohles thatl can be modified Lo aiier (he lopology or
10 # behuvior of an erpevincenl

11 set nuw_pex L6

12

13 set lan.string "

14

15 # Full OFel langunege fcaturcs, such as loops and string maripulation, ore
16 | # awaileble

17 for {set i 1} {8i <= Snum_pes} {inmer i} {

18

19 # Crcate a new nodc, rcquesting a specific operating system

20 # and type of hardware

21 set node{$i) [Sns node]

22 th—scl—node—os Snode($i) FRSD—-STD

23 th—szct—hardware Snode{Si) pc3000

24 append lan_string "8pc{8{i}).»

25

26 |

27

28 # Put all nedecs wnto a IGbps LAN wilh no irvaffic shaping

29 set lan0 [%$ns make lan “Slan_string” 1000Mb Oms DropTail]

30

3L # Indicate the the topoiogn definition is complete {in ns—%, this wouwld siart
32 #othe simulolion

33 Sns run

Fig. 3 An example of an “NS file” used to describe a topology in Emulab

Emulab 23

have traffic shaping parameters attached to them: bandwidth, base latency (typically
modeling propagation delay), base packet loss (before congestive losses), and
queuing discipline. These enable a cluster that resides entirely within a single
datacenter to emulate networks that cross large distances. Typically, experimenters
set these to values that are representative of real networks, but one of the strengths of
Emulab is that they can be set to any value (within the limits of testbed hardware),
enabling sensitivity analyses, “what if”” experiments, etc. Links in the request are
implemented in Emulab using VLANS, and if any traffic shaping parameters are
specified, a node running the Dummynet [4] emulator is transparently inserted into
the middle of the link to realize them.

Most experimenters use Emulab interactively; that is once their nodes are ready,
they log in via s sh and use the command line to launch their experiments. However,
they may also specify a set of events in the NS file. These events can run at specified
to run at certain times (relative to the successful reservation of resources), or be
grouped into timelines that can be launched on-demand at any point during the
experiment. Events can run programs, modify traffic shaping parameters, take nodes
or links up or down, and more. Experiments that are specified in this way can be run
as batch experiments, in which Emulab waits for sufficient resources to become
available, instantiates the experiments, and lets the events run to completion.

Once the user has submitted an NS file, Emulab swaps in (a term borrowed from
virtual memory) that experiment on physical hardware. This process typically takes
a few minutes; time varies depending on the number of nodes in the experiment,
whether custom disk images need to be loaded, etc. Emulab maps the requested
topology onto the resources available at the time: this means finding nodes that
match the user’s specification, and finding paths across the physical network that
meet the requirements of the requested links. In general, users do not expect to
get the same nodes for different runs of the same experiment, but can request
specific types of nodes to get some assurance that successive experiments are run
on machines that are effectively identical for most purposes. Experiments typically
last hours to days; Emulab encourages users to hold resources for only as long as
they are actively using them. When a user is done with a particular allocation of
resources, he or she can either swap out the experiment or terminate it. Swapping
out preserves the experiment definition from the NS file (but not node, storage, or
network state) so that it can easily be swapped back in later.

2 The Emulab Control Infrastructure

The Emulab control infrastructure (shown in Fig. 4) consists of three kinds of hosts:
one boss node, one ops node, and zero or more sub-boss nodes. (In recent
installations, boss and ops are typically run in two VMs on one physical host.)
The collection of hardware controlled in a typical Emulab installation includes
nodes, one or more switches, and devices to provide management control over
the nodes (power controllers, serial console concentrators, etc.) Emulab controls

24 R. Ricci and the Emulab Team

Boss Ops
A
\ v
Public Internet Control Control Vlan Experiment
4. > Sw|tch

y

1=000®

Fig. 4 Emulab’s control infrastructure

nodes by controlling their boot process and through disk imaging [7, 14, 20];
it control switches by configuring them through SNMP, NETCONF, and other
network configuration protocols.

The boss node hosts most of Emulab’s critical control infrastructure: the
database, webserver, DNS server, various boot and imaging servers, etc. Many
infrastructure control interfaces, such as power controllers, switches’ SNMP inter-
faces, etc. are protected by VLANS, so that they can only be controlled from boss.
Due to its sensitive nature, users are not given shell access to boss. The primary
interactions that boss has with nodes and switches occur during experiments swap
in and swap out, as boss manages the boot and image loading processes of the
nodes, and it is during the swap process that boss configures switches. While the
resource needs for a boss server are not extreme, it can become the bottleneck
for instantiating large experiments. For large installations (more than two or three
hundred nodes), some work can be offloaded to sub-bosses, which can handle
boot and imaging services for a subset of the cluster. sub-bosses provide only
read-only services (such as answering DHCP queries and distributing disk images);
this design allows us to avoid complicated state synchronizations between the
various boss and sub-boss nodes.

The main functions of ops are to give users a place to get a shell independent of
particular experiments and to act as a central fileserver. In some Emulab installations
that do not have public IP addresses, ops acts as a sort of a bastion host, where
users must log in before they can reach the (private) control network interfaces of
the nodes in their experiments. As discussed later, we discourage users from over-
reliance of the network filesystem hosted on ops, but it does serve useful functions
with respect to user home directories, etc.

Emulab 25
3 Distinguishing Features of Emulab

Emulab is far from the only system for managing collections of servers. In recent
years, cloud management systems such as OpenStack [27] and Eucalyptus [18]
have become popular ways to manage virtualized resources. More contemporaneous
with Emulab’s initial conception, various cluster management toolkits such as
ROCKS [25], xCat [9], and Grid [13] systems have a long history as well. In
the research infrastructure space, management systems such as PlanetLab [6], the
ORBIT Management Framework [19], and ORCA [5] are also used to run testbeds.

What makes Emulab unique among these systems is the emphasis it places on
three things: scientific fidelity, bare-metal resource provisioning, and the network
as a first-class concern. This has led Emulab to make a number of different design
decisions, in terms of the makeup of its physical infrastructure, the architecture of
its control software, and the way that users interact with its resources.

3.1 Focus on Scientific Fidelity

One of Emulab’s design goals from the beginning has been a focus on scientific
fidelity. This means that, to the extent possible, experiments run on Emulab should
not contain artifacts that are the result of other concurrent use of the facility. This
is quite different from the goal of satisfying service-level agreements (SLAs), as
clouds aim to do, and leads to a number of properties that distinguish it from other
datacenter or infrastructure-as-a-service offerings.

The first consequence of this philosophy is an emphasis on allocation and
provisioning of resources at a “bare-metal” level. Most experiments are run on
nodes that are completely dedicated to a single experiment at a time. While this
is more challenging to provision that a virtualized environment or one with shared
hosts, it means that processes belonging to different users do not compete for CPU
time, memory, I/O bandwidth, etc. It also gives users direct access to hardware and
full control over the operating system, features that are critical to researchers in
operating systems and networks.

Second, all Emulab nodes are connected to two networks: one ‘“control net-
work” and one “experiment network™ [29]. The control network is shared by all
experiments at once, and it is connected to the public Internet. It is over this
network that users log into nodes, that remote filesystems are mounted, and users
are encouraged to run traffic that coordinates their experiment, collects logs, etc.
Emulab makes to attempt to provide isolated performance on the control network.
The experiment network is isolated: it is configured to match the topology requested
by the experimenter, and experiments do not see each others’ traffic on this network.
Experiments may run whatever protocols they wish, at whatever speed they would
like, on this network. While cost constraints prevent this network from having full
bisection bandwidth, one of the key features of Emulab’s resource mapper is that it

26 R. Ricci and the Emulab Team

uses information about the topology submitted by the user to find an embedding that
minimizes use of bottleneck links in the physical switching topology [21]. Thus,
experimenters can have confidence that they are competing only minimally with
other users on this network.

Third, the focus on fidelity affects Emulab’s strategy towards storage. Many
clusters make heavy use of shared, network-mounted filesystems. While this is
convenient for users, it is less desirable from a fidelity standpoint: any experiments
whose behavior is affected by the performance of filesystem I/O become vulnerable
to interference from other users. Thus, while Emulab does offer some shared
filesystems, they are relatively small and low-performance, and users are strongly
encouraged to rely on the local disk of each node for their experiments. Each
physical node has one or more local disks, and like the nodes themselves, they are
not shared with any other simultaneous experiments. This does make persisting large
datasets across experiments more difficult, but Emulab offers features for easy disk
image creation, which helps alleviate this problem for many users.

Finally, it is critically important that Emulab provide users with the resources
having the performance that the user requested: if an experiment is un-knowingly
run under the wrong network conditions, it can produce an incorrect result. These
kinds of events have occurred in Emulab in the past, due to mis-wired networks,
bugs in the provisioning software, etc. Thus, Emulab incorporates a piece of
software called “linktest” [1] which is run on new experiments. Linktest has the
job of ensuring that the topology that Emulab has instantiated is the same as
that requested by the experimenter, and that any link shaping parameters (delay,
bandwidth, etc.) are within set tolerances of what was requested. Linktest takes
a completely separate code path from the standard Emulab provisioning software
to guard against bugs in the Emulab software—it even goes so far as to use a
completely separate parser for NS files. The result is a high assurance that the user
has received the network that they requested.

3.2 Focus on Multi-Tenant, Bare-Metal Allocation

Emulab has always focused primarily on the provisioning of bare-metal, rather
than virtualized, resources. It has, over time, added the ability to provision virtual
machines and container-based operating systems [15], but its core strength continues
to lie in bare metal. This is for three reasons: first, as discussed above, this
provides an environment with higher fidelity and lower probability of artifacts
due to shared use. Second, Emulab’s original use case (and one of it major uses
still) is for development of low-level code such as operating system kernels,
hypervisors, software switches, and other code that requires direct hardware access.
Third, Emulab development began before the current generation of virtualization
technologies was mature.

This means that the provisioning systems in Emulab are focused on controlling
the booting of physical machines. Emulab retains control by booting all nodes off

Emulab 27

of the network (and not allowing users to change this setting.) A simple, small
bootloader checks to see what it should do next: this might mean continuing to
boot from the disk, loading a kernel from the network for disk imaging, etc. Emulab
“cleans” machines between users by loading a default disk image every time a node
is released from an experiment. It does not attempt a secure erase of the entire disk,
as this would be extremely time consuming and is overkill for most research use.
One interesting aspect of this process is that, for security reasons, Emulab needs to
be sure that its own disk loader program has been run and has loaded the correct
image, rather than malware impersonating the disk loader, leaving backdoors, etc.
behind. To this end, we have developed the Trusted Disk Loading System (TDLS)
that uses the Trusted Platform Module (TPM) to attest to the secure booting of the
disk loader [7].

One consequence of the focus on bare metal is on the efficiency of allocation.
Put simply, virtual allocation can be more efficient, because it shares hosts between
multiple simultaneous tenants and can over-subscribe resources to take advantage
of users who do not fully utilize their allocations. Virtual allocations can also be
finer-grained. However, these properties would violate Emulab’s need for artifact-
free experimentation. Combined with the fact that Emulab does not charge for use
(providing no incentive for users to minimize their resource consumption), this
means that Emulab must take measures to ensure that resources are used efficiently.
The major strategy that Emulab employs in this regard is idle monitoring: the
standard Emulab OS images (and thus, most user images that derive from them)
include daemons that monitor for CPU and network activity, remote logins, etc. If
an experiment goes idle, the user is notified, and has some set period (typically a few
hours) to return to using it before resources are automatically reclaimed. Of course,
it is possible for users to trick the idle detection system, for example by running
programs that consume CPU cycles but do no useful work, but we have found that
most users are good citizens and that this puts sufficient pressure on most of them
to behave responsibly.

3.3 The Network as a First-Class Entity

Because Emulab began life with an emphasis on network experimentation, it has
always viewed the network as a first-class entity; whereas many cluster management
systems attempt to abstract over the network, or view network setup as a side
effect of provisioning compute resources, Emulab gives the network topology equal
importance. One consequence of this emphasis is that hosts, storage, and networks
are specified together in Emulab NS files. This means that Emulab is less suited
to the “elastic” provisioning style of clouds, but excels at uses cases in which one
needs to capture a description of the whole environment.

Emulab’s topology specification language is designed to handle both large
broadcast domains (eg. LANs) and point-to-point links, and is thus amenable to
complex topologies. In contrast to, say, cloud providers, who have no information

28 R. Ricci and the Emulab Team

about the intended communication patterns of their tenants, Emulab knows exactly
how much bandwidth it must provision, and where. Its network mapper, called
assign [21], maps the links and LANs of the submitted topology on to available
hardware, ensuring that every link in the submitted topology is mapped to sufficient
capacity on the network.

Emulab uses simple VLANs to segregate traffic on the experiment network,
since they map directly to the abstraction provided to users and are available on
all managed Ethernet switches. VLANs ensure that traffic from one experiment is
not visible in others, enabling experimenters to use whatever addresses, protocols,
etc. they wish within their experiments. Emulab does have some capabilities for
exposing switch programming primitives, such as OpenFlow, but it views these as
features offered to users rather than as mechanisms for provisioning. The Emulab
facility at Utah also includes a set of switches that are allocatable to users in the
same way that PCs are: for the duration of the experiment, the switch is reserved for
the exclusive use of the experimenter and is under their full control. These switches
are connected to a set of layer-1 switches, which perform simple forwarding without
any Ethernet protocol processing, making them ideal for experiments that examine
or modify the Ethernet layer.

4 The Evolution of Emulab into ProtoGENI

One of the key features that was historically lacking from the Emulab codebase was
support for federation. Each of the “classic” Emulab clusters is an island unto itself;
if an experimenter wants to use more than one, he or she must apply for accounts on
each, and no support is provided for moving files, disk images, etc. between clusters.

This changed significantly with Emulab’s participation in the GENI project. For
this project, Emulab evolved to become ProtoGENI [22]. The name stems from
the fact that it was initially viewed prototype of GENI; this is now anachronistic,
as Emulab now contains one of the most complete implementations of the GENI
concepts and APIs.

The Emulab software and the ProtoGENI software are one and the same; in
essence, ProtoGENI is an alternative interface to Emulab. It is a new set of APIs,
specified by GENI, and the ecosystem of tools that exists on top of those APIs.
Underneath, when these APIs are invoked, they are mapped onto existing internal
Emulab features and concepts. For example, the GENI notion of “slices” [3] map
on to Emulab “experiments.” Emulab does have its own set of APIs that pre-date
the GENI project; however, they were never heavily used by users, and they did not
include any notion of federated access.

ProtoGENI includes both a set of “native” ProtoGENI APIs and the “official”
GENI APIs. The “native” APIs predate the standardization of the GENI APIs, and
were among the many influences on the GENI standards. Thus, the two sets of APIs
are similar, and offer similar feature sets, but are not completely identical.

Emulab 29

ProtoGENI does choose not to expose some features from Emulab that are
problematic for federation. For example, Emulab includes a shared filesystem that
is available on all nodes. This works fine in a cluster, where all nodes have relatively
fast and reliable access to the fileserver, but it becomes a major liability when it
must be exported across the wide area, so ProtoGENI does not expose this feature.
Similarly, Emulab includes a publish-subscribe event system that works smoothly
within one cluster, but is hard to federate across the wide area; this, however is a
feature we may attempt to re-introduce in the future.

The addition of the GENI/ProtoGENI features has opened a new era for Emulab;
it used to be that each Emulab installation operated completely independently, and
it is now possible to create portals that offer access to many of them at the same
time. Also, while it used to be the case that almost all features in Emulab had to be
offered by the Emulab software itself, the opening up of a richer set of APIs means
that a greater number of tools, developed for GENI, can now be used on it.

5 Lessons from Emulab

Emulab has always taken the approach of making hardware and new software
features available to users as soon as possible, even when those features are not yet
complete, and/or there are still features planned that will add more “polish” or user-
friendliness. This strategy has been highly successful; for most new features, there
exist a set of “power users” who are the early adopters, and by their use, provide
feedback on how future development should be directed. We have sometimes found
that features that we thought were incomplete, in fact, already offer users everything
they need, or have found that certain features were not as valuable as we had thought.
The GENI project has adopted a similar approach with its “spiral” development.

It has been critical to develop a community of users around Emulab. Overall,
the burden of user support for the facility is relatively light given the size of its
userbase and the complexity of the features that it makes available. We attribute
this in part to the fact that users within an institution or collaborative group tend to
talk with each other, sharing stories of what has worked, not worked, workarounds
for problems encountered, etc. The flipside of this lesson is that Emulab has put
such an emphasis on user privacy that it has perhaps erred too much on the side
of making it difficult for users to publicly share with each other. Emulab adopted a
public user mailing list fairly late in its development, and sharing artifacts such as
NS files across projects can be problematic as they often depend on private resources
such as fileserver space. This is an issue we are working to address with ongoing
development activities [24].

Emulab’s decision to use a full programming language (NS scripts, written in
OTcl) as its topology specification language has been both a major asset and limiting
factor. It is extremely useful to be able to use the constructs of a full programming
language, such as loops for building regular network topologies, and conditionals
for constructing scripts that are flexible and parameterizable. On the other hand,
it means that these descriptions are not, themselves, directly machine-manipulable;

30 R. Ricci and the Emulab Team

Emulab essentially “compiles” NS files that are submitted to it to an internal format,
which users do not have direct access to. This means that generating NS files
programmatically is possible (though awkward, as code generation often is), but
that writing tools such as GUIs to manipulate them after they have been written is
nearly impossible. Emulab does have a topology GUI, written in Java, but that GUI
is only able to understand a very small subset of the language, and cannot be used
to view or manipulate NS files that have loops, conditionals, etc.

Going forward, a way to keep the “best of both worlds” in terms of a rich, user-
friendly topology specification is to have a well-defined declarative representation
free of complex programming language constructs, but which (unlike Emulab’s
internal representation) is exposed to users. This representation can be used as a
“compiler target” for one (or more) higher-level languages that offer the flexibility
and programmer-friendliness of ns-2. This is essentially the design choice that GENI
has made: the low-level representation is the RSpec, which can be generated with
geni-1lib, which is alibrary for Python that (among other things) helps construct
RSpecs.

It was also originally hoped that by using a language that came from a network
simulator, we would make it easy for users to move back and forth between
simulation and emulation. In practice, this has not materialized. There are many
potential reasons for this: perhaps the communities that value these methodologies
are non-overlapping, perhaps the topology description itself is not enough to ease
the transition, or perhaps there is simply little call for such transitions. Regardless,
in retrospect, picking ns-2 as a base language in Emulab was not a poor choice, but
direct, native integration of emulation and simulation is not a design feature that
Emulab is likely to pursue in the future.

We believe that, in large part, Emulab’s success can be attributed to the fact that
the Flux Research Group built a facility designed around its own needs, and those
needs were reasonably representative of a larger research community.

6 The Future of Emulab

One of the main themes of Emulab’s continued development is as a platform for
the management of testbeds, clusters, clouds, and other facilities. The Emulab team
cannot possibly, by itself, develop infrastructure that provides the features needed
for the entire computer science research community; what it can do, however, is
develop a base layer of hardware and software on top of which others can build
infrastructure that meets their own communities’ needs. Because it provisions at
a bare-metal level, and because it takes a holistic view of the network, storage,
and other aspects of the facility, it is in a good position to have other types
of infrastructure deployed on top, using (in GENI terms) “slices.” Additionally,
because of the federation features it now has thanks to GENI, it is relatively easy to
deploy such infrastructure across cluster and organizational boundaries.

Emulab 31

The direction of Emulab’s development is perhaps best typified by two follow-on
testbeds built by the Flux Research Group: Apt [24] and CloudLab [23].

Apt, the Adaptable Profile-Driven Testbed, is a facility that is customizable with
“profiles.” A profile represents an encapsulation of the environment necessary to run
a particular experiment, or a class of experiments. Each of these profiles can thus
be thought of as a mini-testbed, running on top of Apt’s hardware infrastructure.
Profiles can be created by experts in particular domains, and shared with others.
For example, an expert in database systems could install a standard set of database
software, workload generators, reference datasets, etc., and share it with her or his
community; likewise, someone from the high-performance computing community
could do the same for domain science MPI-based code. Indeed, the Apt cluster is
shared between computer scientist and the University of Utah’s Center for High
Performance Computing, with nodes being moved back and forth between the
two sides on demand. Profiles can be shared either as semi-permanent facilities
that many users access simultaneously, or their definitions can be shared, via
hyperlink, such that every user gets their own instantiation, as happens with Emulab
experiments. This is a powerful way to share research code and data; for example,
the authors of a paper can create a profile that encapsulates everything needed to
repeat the experiments in their paper, and provide this link in the paper itself or on
their website.

CloudLab is a facility built for researchers who need their “own cloud” in order
to conduct their work. While public and private clouds are extremely useful for
many types of research, they have major limitations when it comes to transparency
and control of software and resources at the bottom of the stack. There are certain
elements that, by their nature, are considered part of the infrastructure, and cannot
be changed (or even, typically, observed) by users; these include the hypervisor, the
network, and the storage systems. For researchers who want to study and improve
those parts of the stack, simply using “someone else’s” cloud is not enough. Using
Emulab for provisioning and federation, CloudLab is a facility where researchers
can have exactly this sort of access. Like a real cloud, CloudLab is physically
distributed, with sites at the University of Utah, the University of Wisconsin
Madison, and Clemson University. Each of these clusters is an autonomous Emulab
instance, and they are federated with each other and with GENI. So far, the
infrastructure is a great success, with over 800 users running experiments in its first
year of operation.

References

1. Anderson, D.S., Stoller, L., Hibler, M., Stack, T., Lepreau, J.: Automatic online validation
of network configuration in the Emulab network testbed. In: Proceedings of the Third IEEE
International Conference on Autonomic Computing (ICAC 2006) (2006)

2. Bastin, N., Bavier, A., Blaine, J., Chen, J., Krishnan, N., Mambretti, J., McGeer, R., Ricci,
R., Watts, N.: The InstaGENI initiative: an architecture for distributed systems and advanced
programmable networks. Comput. Netw. 61, 24-38 (2014)

32

10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

R. Ricci and the Emulab Team

. Berman, M., Chase, J.S., Landweber, L., Nakao, A., Ott, M., Raychaudhuri, D., Ricci, R.,
Seskar, I.: GENI: a federated testbed for innovative network experiments. Comput. Netw. 61,
5-23 (2014)

. Carbone, M., Rizzo, L.: Dummynet revisited. ACM SIGCOMM Comput. Commun. Rev.
40(2), 12-20 (2010)

. Chase, J., Grit, L., Irwin, D., Marupadi, V., Shivam, P., Yumerefendi, A.: Beyond virtual data
centers: toward an open resource control architecture. In: International Conference on the
Virtual Computing Initiative (ICVCI) (2009)

. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bowman,
M.: PlanetLab: an overlay testbed for broad-coverage services. ACM SIGCOMM Comput.
Commun. Rev. 33(3), 3-12 (2003)

. Cutler, C., Hibler, M., Eide, E., Ricci, R.: Trusted disk loading in the Emulab network testbed.
In: Proceedings of the Third Workshop on Cyber Security Experimentation and Test (CSET)
(2010)

. DeterLab: Cyber-security experimentation and testing facility (web site). Information Sciences
Institute, University of Southern California. http://www.deterlab.net (2016). Accessed Jan 2016

. Extreme Cluster/Cloud Administration Toolkit. http://www.xcat.org (2016). Accessed Jan

2016

Emulab.net: Network emulation testbed web site. Flux Research Group, School of Computing,

University of Utah. http://www.emulab.net (2016). Accessed Jan 2016

. Emulab.net: Other Emulab testbeds. Flux Research Group, School of Computing, University

of Utah. https://wiki.emulab.net/Emulab/wiki/OtherEmulabs (2016). Accessed Jan 2016

Emulab.net: Projects that have actively used emulab.net. Flux Research Group, School of

Computing, University of Utah. http://www.emulab.net/projectlist.php3 (2016). Accessed Jan

2016

Foster, 1., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan

Kaufmann Publishers, San Francisco (1999)

Hibler, M., Stoller, L., Lepreau, J., Ricci, R., Barb, C.: Fast, scalable disk imaging with frisbee.

In: Proceedings of the USENIX Annual Technical Conference. USENIX (2003)

Hibler, M., Ricci, R., Stoller, L., Duerig, J., Guruprasad, S., Stack, T., Webb, K., Lepreau,

J.: Large-scale virtualization in the Emulab network testbed. In: Proceedings of the USENIX

Annual Technical Conference (2008)

Laverell, W.D., Fei, Z., Griffioen, J.N.: Isn’t it time you had an Emulab? In: Proceedings of the

39th SIGCSE Technical Symposium on Computer Science Education (2008)

NMC Probe (Web site). http://www.nmc-probe.org (2016). Accessed Jan 2016

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorodnov,

D.: The eucalyptus open-source cloud-computing system. In: IEEE/ACM International Sym-

posium on Cluster Computing at the Grid (2009)

Ott, M., Seskar, L., Siracusa, R., Singh, M.: ORBIT testbed software architecture: supporting

experiments as a service. In: Proceeding of IEEE Tridentcom (2005)

Ricci, R., Duerig, J.: Securing the Frisbee multicast disk loader. In: Proceedings of the First

Workshop on Cyber Security and Test (CSET) (2008)

Ricci, R., Alfeld, C., Lepreau, J.: A solver for the network testbed mapping problem. ACM

SIGCOMM Comput. Commun. Rev. 33(2), 65-81 (2003)

Ricci, R., Duerig, J., Stoller, L., Wong, G., Chikkulapelly, S., Seok, W.: Designing a federated

testbed as a distributed system. In: Proceedings of the 8th International ICST Conference on

Testbeds and Research Infrastructures for the Development of Networks and Communities

(Tridentcom) (2012)

Ricci, R., Eide, E., The CloudLab Team.: Introducing CloudLab: scientific infrastructure for

advancing cloud architectures and applications. USENIX ;login: 39(6), 36-38 (2014)

Ricci, R., Wong, G., Stoller, L., Webb, K., Duerig, J., Downie, K., Hibler, M.: Apt: A platform

for repeatable research in computer science. ACM SIGOPS Oper. Syst. Rev. 49(1), 62-69

(2015)

Rocks Cluster Distribution. http://www.rocksclusters.org (2016). Accessed Jan 2016

http://www.rocksclusters.org
http://www.nmc-probe.org
http://www.emulab.net/projectlist.php3
https://wiki.emulab.net/Emulab/wiki/OtherEmulabs
http://www.emulab.net
http://www.xcat.org
http://www.deterlab.net

Emulab 33

26. The NS-2 User Manual. http://www.isi.edu/nsnam/ns/ (2016). Accessed Jan 2016

27. The OpenStack Website. http://www.openstack.org (2016). Accessed Jan 2016

28. The PhantomNet Testbed. http://www.phantomnet.org (2016). Accessed Jan 2016

29. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler, M., Barb,
C., Joglekar, A.: An integrated experimental environment for distributed systems and networks.
In: Proceedings of the USENIX Symposium on Operating System Design and Implementation
(OSDI). USENIX (2002)

http://www.phantomnet.org
http://www.openstack.org
http://www.isi.edu/nsnam/ns/

DETERLab and the DETER Project

John Wroclawski, Terry Benzel, Jim Blythe, Ted Faber, Alefiya Hussain,
Jelena Mirkovic, and Stephen Schwab

1 Introduction

This chapter describes the DETER Project and its centerpiece facility DETERLab.
DETERLAab is a large-scale, shared, and open modeling, emulation, and experimen-
tation facility for networked systems, developed and operated as a national resource
for cyber-security experimentation. The Project itself has three major components:

* A research and development program focused on the creation and deployment
of advanced technologies and methodologies for experimental research in cyber-
security, with particular focus on the security of large-scale, networked, cyber
and cyber-physical systems;

* Development and operation of the DETERLab facility as a resource for cyber-
security researchers and educators, and as a technology transfer and deployment
vehicle for new experimental research technologies and methodologies as they
emerge;

* A program of community evangelization and outreach, intended to coalesce and
strengthen experimental research communities in these areas.

Hosted primarily at the University of Southern California’s Information Sciences
Institute, the core DETER Project is a collaboration of researchers at USC/ISI and
University of California at Berkeley, with participation and use since its inception
by over 8000 researchers, developers, educators, and students spanning some 275
universities and corporations across 404- countries. The Project’s primary sponsor
throughout its existence has been the US Department of Homeland Security, with

J. Wroclawski (P<)) T. Benzel ¢ J. Blythe ¢ T. Faber ¢ A. Hussain ¢ J. Mirkovic
USC Information Sciences Institute, Marina Del Rey, Los Angeles, CA 90292, USA
e-mail: jtw @isi.edu

S. Schwab
USC Information Sciences Institute, Marina Del Rey, Arlington, VA 90292, USA

© Springer International Publishing Switzerland 2016 35
R. McGeer et al. (eds.), The GENI Book, DOI 10.1007/978-3-319-33769-2_3

mailto:jtw@isi.edu

36 J. Wroclawski et al.

substantial additional support from the US National Science Foundation and the US
Defense Advanced Projects Research Agency, and further support from industrial
and international sponsors.

2 Project History

The DETER Project was conceived and initiated in reaction to the first widely
reported large-scale DDoS attack on the Internet in 2000 [1]. This event brought
a realization of the urgent need for high quality, forward-looking, experimentally
grounded cybersecurity research in the domain of interconnected and networked
systems, to counter increasingly sophisticated threats and concerns. In response, a
community-wide study [2] proposed the creation of a DDoS-focused experimental
networking testbed isolated from the Internet. This study, together with insights
drawn from the University of Utah’s pioneering Emulab testbed effort, a workshop
sponsored by the US National Science Foundation [3], and general consideration
of desirable properties for a cyber security testbed, provided the initial inputs to
the design of the DETER testbed facility. After a brief period of development,
the DETERLab testbed became operational in March 2004, and the first DETER
Community Workshop was held in November 2004. Since that date, the Project’s
program of testbed research and development, facility operation, and community
outreach engagement has continued to evolve for over 15 years, to the present
writing in late 2015.

2.1 Project Evolution

Since its inception, DETERLab’s mission has been to provide a general purpose,
capable, and usable environment in which to carry out well framed, meaningful
cybersecurity experiments, including “risky” experiments that could not be safely
conducted on the open Internet. This goal is not static. Over time, user needs
for increased functionality, scale, complexity, diversity, and repeatability within
the experimental infrastructure have driven a continuing evolution of DETER
project objectives. This evolution can be described in terms of three distinct, but
overlapping, phases.

Phase 1 focused on designing and building the DETER testbed facility to
establish an immediate operating capability. This design included definition of
the initial testbed architecture, together with corresponding hardware and software
infrastructure. Concurrently, operating procedures and processes to achieve the
required safety and level of service were created.

Phase 2 saw maturation of the testbed through use and expansion, growth of
the supported research communities, and a greatly increased breadth of activity.
DETER project researchers and community collaborators increasingly turned their

DETERLab and the DETER Project 37

focus towards the creation of new technologies and methodologies in support
of experimental cybersecurity research, focusing on such areas as experiment
automation, benchmarking, and malware containment.

As each of these technologies emerged, it was tested and deployed in the DETER
testbed facility. The result was an evolution from the DETER testbed to DETERLab,
a shared virtual lab composed of the underlying testbed resources, technology for
using and managing the resources as test fixtures, and a growing variety of tools and
services for experiment support.

Phase 3 continued work to establish DETERLab as a premier environment
for advanced cybersecurity experimentation, primarily in the context of complex
networked and cyber-physical systems. In this phase the project team has focused
on increasing the sophistication and capabilities of the DETERLab instrument,
extending DETERLab’s capabilities to support experimental research in cyber-
physical, as well as purely cyber, systems, and providing strong support to the
community through development of end-to-end usage scenarios reference materials.

In parallel with DETERLab’s advance in the research community, the project
engaged a rapidly growing community of DETER users focused on education. To
support these users the project team developed specialized DETERLab capabilities
targeting the educational environment, and initiated a community-wide project to
create DETERLab-based instructional curriculum modules for use in classroom
settings.

Even as DETERLab continues to evolve, the project team is presently engaged in
looking towards new directions for cyber experimentation. Building on the project’s
15 year history of research, development and operational experience, members of
the DETER project team have focused on a new and broader vision for Cyber
Experimentation of the Future [4]. We are working across several early stage
projects and community projects to develop a strategic plan for attaining this vision.

3 Objectives

The DETER Project’s fundamental objective is to develop and make available a
powerful, easy to use, open platform to support experimental cybersecurity research,
with particular focus on experiments that involve large, complex, networked or
distributed cyber and cyber-physical systems.

The substance of any such platform is that it allow the experimenter to create,
manipulate, and observe an experimental system they wish to study, under suffi-
ciently controlled conditions and with sufficient richness and accuracy to support the
desired experiment. In essence, the platform becomes a controllable, configurable,
approachable modeling environment for the system being studied.

In light of DETER’s intended domain of application, a number of more specific
objectives were identified as part of the initial testbed design. These included:

Fidelity: Fidelity is often viewed as identical to “realism”—that is, researchers
wishing for experimental environments that achieve fidelity to real existing networks

38 J. Wroclawski et al.

and to the Internet in particular. However, the true objective is more sophisticated,
because what is actually needed for a viable experimental platform is the ability to
achieve sufficient modeling accuracy for the specific phenomena being studied in
a particular experiment, within an environment that may or may not correspond to
any existing real network.

In particular, for researchers desiring to understand the evolution and future
potential of a technology, the most useful of experiments are often those that involve
the creation of hypothetical environments that may exist at some point, but do not, or
even can not, exist in reality at the time of the experiment. For example, DETERLab
has recently been used to study properties of the Tor [5] anonymity network across
a range of assumptions about Internet topology, number and location of Tor nodes,
and usage patterns that differ widely from what is actually observed in today’s
Internet and the existing Tor network.

Validity: An experiment is valid if it is executing as the experimenter intended
and in conformance with the experiment description.! There are many possible
causes for validity loss, e.g., infrastructure resource overload or misallocation, soft-
ware bugs, host system crashes, missing software, or configuration errors. Because
ensuring validity is a major problem when running large, complex experiments, the
DETER project identified early in its work the need for explicit validity management
mechanisms.

A particularly important class of validity management ensures that limitations
of the testbed itself do not accidentally distort an experiment. For example,
a researcher’s experiment studying distributed denial of service (DDoS) might
become highly misleading if hidden, unintentional bandwidth or computational
resource limits within the experiment were created by limitation of the testbed’s
physical resources, rather than through limits defined by the experiment description.
Validity management mechanisms can identify and call out violations of these
required experimental conditions, alerting the researcher to potential failures of
experiment validity.

Scale: The experimental facility must be able to support experiments at sufficient
scale to be representative—that is, to capture complex scale-related effects, to
demonstrate appropriate scaling properties of a growing system, and the like. Scale
may be considered as an aspect of fidelity, but was broken out in the DETER
project’s requirements analysis because of its unique and concrete effects on
testbed design and implementation. Section 4 of this chapter discusses a number
of technologies that contribute to DETERLab’s ability to create, manipulate, and
execute experiments of significant scale. Leveraging these technologies indepen-
dently and in combination, today’s DETERLab’s facility is able to support a range
of experimental scenarios with as many as 100,000+ modeled nodes overall, while
at the same time emulating key elements within a large-scale experiment at high
fidelity on physical hardware.

"Note that validity and fidelity are separate, though related, properties.

DETERLab and the DETER Project 39

Safety: The DETER project’s work explicitly targets experimentation in cyber-
security, including the study of risky malware, worst case system behaviors, and
the like. Early planning for the DETER testbed therefore centered on analysis of
the security risks and corresponding mitigations [6]. Risks considered included
intrusion into the experiments of other users or the testbed infrastructure itself,
extrusion (escape) of malware into the Internet, and accidental or deliberate DDoS
attacks on the Internet.

Repeatability: Fundamental to scientific study is the ability to reproduce and
build on the results of others. A simplistic view of this objective would lead
to a goal of deterministic execution—that is, that an experiment, once executed,
could be “freeze-dried” and then run in an identical environment at a later time,
to produce identical results. While this goal was adopted as an original objective
of the DETERLab facility, it quickly became apparent that, in the study of any
physical system of significant complexity that evolves over time, the concept of
maintaining an identical environment to obtain identical results proves insufficient.
Consequently, the DETER project has recently focused on more sophisticated
framings of the problem, which focus on the maintenance of defined repeatability
invariants through the lifetime of a series of experiments.

Flexibility: For maximum flexibility in experiment creation, researchers should
ideally be able to modify any algorithm or behavior of any modeled device.
The DETER testbed’s initial solution was to focus on complete programmability
of the facility at OSI layer 3 and up, using general-purpose computing devices
to emulate both network devices and end-systems. As technology has advanced,
DETERLab has preserved this basic principle but moved to incorporate additional
classes of programmable devices into the infrastructure, as well as broadening
the use of general-purpose computing devices. As examples, today’s DETERLab
incorporates high-performance NetFPGA devices [7] for researchers requiring
hardware-level emulation of key system elements, while also moving to integrate
a performance-optimized implementation of Open vSwitch [8] for those requiring a
flexible, software-based implementation of standard or experimental network switch
functions.

User-Centric Perspective: Finally, the DETER project has over time increas-
ingly emphasized the premise that, to meet project goals, the capabilities provided
to DETERLab users can not be limited to traditional “testbed” functions, but must
also stretch to include a new class of high-level tools that facilitate, enable, and
guide successful experimental research. A key observation is that experimental
research methodologies are themselves an area of active research and rapid advance.
As the DETERLab facility’s capabilities grow increasingly capable, and as new
research methodologies emerge, presenting these advances in an approachable
manner and guiding users towards valid, meaningful experimentation have become
central concerns of the project.

40 J. Wroclawski et al.
4 DETERLab Technologies

In support of the objectives outlined above, the DETER Project has, in developing
DETERLab, adopted or created a number of technologies that, brought together,
implement a modern, integrated experimental facility for cybersecurity research.
In this section, we review a core subset of these DETERLab technologies. More
in-depth review of DETERLab’s technical goals and constituent technologies,
including some not discussed here, may be found in [9—12]. For readers interested
in the evolution of DETER over time, Ref. 13 presents a discussion of the testbed’s
architecture, technologies, and intended uses as they were imagined in 2007.
References 14-21 each focus on a more specific technology or capability developed
within the DETER project framework.

4.1 Core Technologies

To create the initial version of the DETER testbed, analysis of the goals described in
Sect. 3 led to the choice of a cluster testbed architecture, following the example of
the Emulab cluster testbed then-recently introduced by Jay Lepreau at the University
of Utah [22].

Emulab’s design centers around a pool of experiment nodes implemented as
x86 servers, linked through multiple Ethernet interfaces via a high-performance
“backplane”, a bank of Ethernet VLAN switches. The testbed control software
loads (“‘swaps in”’) an experiment by allocating testbed resources (nodes and links),
loading the specified node software, and controlling the VLAN switch to “plumb”
the allocated nodes together into the specified network topology.

Although extensively modified, this core architecture remains at the heart of
DETERLab today. DETERLab continues to utilize a configuration of some 500+
server-class x86 machines as its core computational engine, interconnects these
nodes with high performance SDN-capable 10 Gb/port Ethernet switches, and relies
on an extended version of Emulab’s central resource allocation function “assign()”
to map the facility’s physical compute and communication resources to individual
experiments on demand.

The initial DETERLab testbed differed in one fundamental way from Emulab.
While Emulab users can directly log into each allocated node from the Internet and
Emulab experimental nodes can send arbitrary data into the Internet, DETERLab
experimental nodes are blocked from direct external IP connectivity. In keeping
with DETER’s isolation and containment requirements as a cybersecurity testbed,
DETER’s configuration required that users perform a double SSH login to reach
their experiment nodes. More recently, DETERLab has added a Controlled Internet
Access capability, which creates narrowly sculpted holes in the containment
firewall, allowing specific experimental nodes for approved users to communicate
with explicitly defined Internet hosts.

DETERLab and the DETER Project 41

Following the initial standup, DETERLab’s hardware and software base has
been significantly modified and extended. Utah and DETER have gone separate
ways with respect to major system elements, and the source code repositories have
diverged. Notwithstanding this evolution, many basic concepts remain aligned, with
DETERLab remaining clearly recognizable as an evolutionary branch of the original
Emulab concept.

4.2 Containers’ for Scale and Fidelity

In the original Emulab and early versions of DETER, a fundamental concept was
the use of an individual emulation node (i.e., an x86 server) within the testbed to
emulate or model each emulated entity (e.g. a host, router, switch, etc.) within the
researcher’s experiment. In this approach, the modeling fidelity of the emulated
entity is potentially quite high, to the point of the emulation node running the actual
code of the entity being emulated. Conversely, a limitation of the approach is that
the maximum entity count in the experimenter’s model is essentially bounded by
the number of hardware nodes in the testbed.

To meet DETER Project goals, this structural limitation is unacceptable. DETER
focuses on supporting large-scale experimentation, because experimentation at this
level is essential for exploring and understanding Internet-scale phenomena. Many
key research areas, such as botnet dynamics and evolution or user anonymity
and monitoring, can only be studied fruitfully in the very large. No approach
that depends on a one-to-one mapping between emulated entities and emulation
hardware can come close to meeting this requirement.

At the same time, however, many larger-scale experiments do not require high
fidelity in every part of the experimental apparatus. Instead, what is required is
that each of the elements included in an experiment provide an appropriate level
of modeling fidelity for that element of that experiment. Importantly, otherwise
identical experimental configurations may differ significantly in the fidelity required
of each element, depending on the purpose of the experiment.

This point is illustrated by Fig. 1. The figure shows two representations of an
identical experimental network topology, deployed for two different purposes. In the
figure, the size of each network element represents the degree of modeling fidelity
required for that element if the experiment is to be meaningful. The first experiment,
designed to study BGP security, is concerned with detailed behaviors among router
nodes in the network. The second, focused on worm propagation, shares the exact

2In retrospect, DETER’s selection of the name ‘“‘containers” was an unfortunate choice, because
of the industry’s subsequent adoption of the “container” name to describe a class of lightweight
virtualization and software packaging technologies. DETER containers and industry containers are
not the same thing and do not serve identical goals, although there is some significant overlap of
ideas between the two.

42 J. Wroclawski et al.

BGP Security Worm Propagation

atlnan]ns B ProCarve mm
cisco €isco

Fig. 1 Two perspectives on a common experiment topology

same network and end-system layout, but requires detailed modeling of edge node
behavior, but only highly abstract modeling of intermediate router behavior.

The recognition that most large-scale experiments fall into this “multi-
resolution” category is crucial to creating a laboratory facility that can support
extremely large, complex, yet accurate and meaningful experiments. In the remain-
der of this section we describe DETERLab’s approach to supporting this capability.

To begin, we adopt the metaphor that the DETERLab facility and its cluster of
computers should be seen as providing a single pool of undifferentiated computing
power, rather than as a collection of distinct and logically separate nodes, each
designated to emulate a particular element within an experiment. Our objective
then becomes one of fluidly allocating just enough “computrons” from the pool to
different elements within an experiment to implement each part of the experiment
at the needed level of fidelity. While limitations such as I/O granularity will, in
practice, always preclude treating the computing power provided by a cluster as
completely fluid, the metaphor accurately describes our idealized objective. The
technical challenge then becomes reaching as close to this objective as possible
within the limits of a practical system.

Ultimately, we would like this process to be largely automatic. That is, we would
like the experimental infrastructure to understand what level of fidelity was required
for each element of an experiment, based on extracting the researcher’s intent for
the experiment from the experiment description. Then, the facility would use this
understanding to guide its use of model selection, virtualization, resource allocation,
and other scaling techniques in realizing the experiment.

It is important to recognize that, because the researcher’s goal is often to create a
specific experiment to study an unusual phenomenon, achieving the above objective
in the general case involves detailed understanding of the researcher’s intent, as
well as potentially unconventional application of the various available techniques.
For example, a DETERLab experiment may aim to model some normally secondary
or tertiary phenomenon at high fidelity to study how that effect can lead to security

DETERLab and the DETER Project 43

or robustness failures, while a mainstream deployment of the same technologies
would assume that this secondary effect was entirely ignorable.

Supporting our top-level objective requires advance in two major areas. The first
and most challenging is extracting sufficient understanding of fidelity requirements
from experiment descriptions and other expressions of researcher intent. This
problem is compounded by the fact that the experiment designer herself may not
fully understand the required dimensions and metrics of fidelity, particularly when
the purpose of the experiment is to study unexpected phenomena. However, model
validity checking and related concepts offer some directions forward in this area,
and as of this writing are an active area of work for the DETER Project.

A second, more straightforward, area of required advance focuses on develop-
ment of the actual technologies required to create and deploy experiment elements
operating at many different points within the fidelity/computation tradeoff space,
once the fidelity goals for each element are understood. The ability to move
widely within this tradeoff space is essential to DETERLab’s support of extremely
large scale, yet still useful and valid, experiments. DETERLab’s container system
provides foundational capability in this regard.

Phase 1 of this system focuses on flexible, fine-grain allocation of computing
power to different elements within an experiment, while also providing a range
of choices for other dimensions of modeling fidelity such as isolation, memory
and I/O resource availability. The system provides control over allocation of
computational resources in two dimensions: first, in the selection of container
type used to implement each element within an experiment, and second, by
controlling the allocation and packing of containers onto physical compute nodes.
Each container type operates at a different point in the fidelity/efficiency/overhead
space. However, all types share a common instantiation, configuration, and control
interface, facilitating the construction and management of experiments that include
multiple types.

DETERLab currently offers the following container types, each with different
fidelity characteristics in multiple dimensions:

e Type 1: Dedicated physical machine. Very high fidelity model of a physical
machine.

e Type 2: QEMU [23] based virtual machine. Lower fidelity model than Type 1,
but full hardware modeling. Multiple instances per physical machine.

* Type 3: OpenVZ [24] Linux container-based virtualization. Software abstraction,
minimal hardware modeling. Shared kernel structures. Roughly an order of
magnitude more instances per machine than Type 2 QEMU-based virtualization.

* Type4: ViewOS [25] process. Lower fidelity software-level abstraction, but more
instances per machine.

* Type 5: Co-routine threads. Very low fidelity in multiple dimensions: minimal
isolation, timing control, etc. Extremely efficient, thousands of element models
per physical CPU.

In addition to specifying the container type that each element in an experiment
will use, the system allows the experiment designer to control the packing of

44 J. Wroclawski et al.

containers onto physical machines very flexibly. For example, a researcher can
specify that each experiment element representing a router in their experiment
should be implemented as an OpenVZ container and packed to a level that provides
1 “standard” CPU unit per container, while each element representing an intrusion
detection system should be implemented as QEMU virtual machine to provide
hardware-level emulation, and provided with 10 standard CPU units per VM.
Though these knobs for controlling the fidelity vs. scalability tradeoff are fairly
coarse, experience has shown them to be effective and approachable by a significant
body of DETERLab users.

Phase 2 of DETERLab’s container system development is focused on providing
the experiment designer with similar fidelity/scalability tradeoffs in the space of
networking and communication resources. Modern network interfaces provide two
key capabilities not present when DETER was first developed. These are the ability
to support very low level, fine-grained provisioning of network capacity, and support
for I/O virtualization strategies such as SR-IOV. Building on these capabilities we
are able to provide the experiment designer with access to network interface models
at several levels of fidelity, ranging from direct physical hardware to highly abstract
software interfaces, and then, as above, flexibly map the model provided to the
experimenter into a physical realization as needed.

By creating the ability to move flexibly and at fine grain in the tradeoff spaces
of computing and communications fidelity vs. scalability, DETER researchers are
provided with a mechanism to create experiments at very large scale, yet with key
elements modeled with very high fidelity. Today, DETERLab’s facility is able to
support many experimental scenarios with order 100,000+ modeled nodes overall,
at the same time modeling some nodes with perfect fidelity on physical hardware.

4.3 Federation

As early as in NSF’s foundational testbed report [3] the potential for interconnection
or federation of testbeds operated by different entities was recognized. Depending
on circumstances, there are three major benefits to a federation: (1) the ability
to provide the researcher with access to substantially more resources, or to some
remote hardware or software resource that would otherwise be unavailable; (2) the
ability to share resources among participating organizations for efficiency, and (3)
the ability to encourage collaboration and community building across researchers
and organizations.

DETERLab achieves these benefits through implementation of a powerful fed-
eration framework, the DETERLab Federation Architecture, or DFA [15, 16]. The
DFA allows researchers to create “DETER-like” experimental environments that
incorporate resources from many providers, including but not limited to DETERLab
itself. Policies for the use of each resource are set by the facility or researcher that
makes it available. This collaborative control is what distinguishes federation from
other forms of sharing, and is key to its success. Owners of federated resources do

DETERLab and the DETER Project 45

Fig. 2 The DETER Federation Architecture (DFA)

not relinquish control over their use when sharing them with the community, which
often simplifies sharing of the resources at all.

Federated experiments are “DETER-like” in that resources and facilities outside
DETERLab may impose different constraints or have different capabilities than
those of DETERLab itself. A federated experiment embodies an environment as
similar to a DETERLab experiment as the federated environment will support,
subject to the researcher’s and resource providers’ objectives and preferences.

The overall architecture of the DETER Federation Architecture is shown in
Fig. 2. Users may design experiments using a variety of low- or high-level tools,
but in each case the ultimate result is an experiment description, expressed in
a standard representation, that describes all aspects of the desired experimental
environment. At present, this standard representation is an extensively augmented
version of the NS file format originally adopted by Emulab to define its experiment
configurations.

This representation is passed to the federator, which acquires resources from
different providers to be used by an experiment and builds a cohesive experimental
environment from these resources. The federator is composed of two parts. The first
is a logically centralized experiment controller running on behalf of the user, which
is responsible for partitioning the experiment across resource providers, gathering
resources from each provider, and creating the overall configuration. The second is a
set of distributed agents called access controllers, affiliated with individual resource
providers, which are responsible for allocating local resources at each provider in
accord with local rules and configuring these resources as needed to form the shared
environment.

46 J. Wroclawski et al.

Access controllers are specialized to work with local resources in two ways:

* Use policies for each resource provider are expressed as rules within the ABAC
access control system, a flexible system for reasoning about access control policy
discussed elsewhere in this book.

» Functional control actions supported by each provider are mapped into a
common interface between the experiment controller and access controller that
guides the translation from global specification to local configuration. This is the
plug-in system mentioned in Fig. 2.

The Attribute-based Access Control (ABAC) authorization logic and some
associated DFA translation technology allow different policies to mesh. ABAC
[26] is a powerful, well-specified authentication logic that can encode a variety of
policies. Use of ABAC allows sophisticated delegations and other complex access
control rules to be expressed interoperably. In principle, resource providers may use
the full power of ABAC to describe their policies by writing custom rulesets, while
in practice DFA tools facilitate the configuration of simple access control policies
sufficient for most testbeds.

In addition to specifying a standard workflow and vocabulary for constructing
federated experiments, the plug-in interface allows access controllers to advertise
their capabilities to the experiment controller and researchers. An access controller
can describe which DETERLab-like features it supports—e.g., isolation, shared file
systems. In addition, the plug-in interface enables access controllers to advertise
and accept configuration for services unknown to DETERLab. This lets researchers
tinker with new features quickly.

The DETER Federation Architecture has proven powerful and adaptable, allow-
ing DETERLab users to construct federated experiments spanning diverse systems,
including as examples the ProtoGENI GENI control framework, the OSCARS
secure circuit configuration system developed for ESnet and now used by Internet2
and over 50 research networks globally, NICT (Japan)’s StarBed network emulation
testbed, and several cyber-physical systems laboratories. A particularly unique
and useful access controller is the desktop federation controller, which enables
an individual desktop computer to create or join a federated experiment. This
lightweight controller gives researchers full, direct access to entire large, multi-
facility federated experiments from a local desktop, using locally running software
such as experiment design and construction tools, visualization and data analysis
facilities, and presentation software for demonstrations.

4.4 Experiment Orchestration

The technologies described above relate to the initial creation of an environment in
which a DETERLab experiment is executed: basic allocation of testbed resources to
the experimenter, mechanisms that support orders-of-magnitude experiment scale-

DETERLab and the DETER Project 47

up over that obtainable with more traditional approaches, and use of federation to
support sharing and cross-coupling of testbeds.

Once these issues are addressed, attention turns to the dynamic aspects of
configuring and running the experiment. Experimenters face a variety of needs
concerning configuring the experimental apparatus, feeding the experiment input
data and events, observing and controlling the experiment’s evolution over time,
and collecting experimental data during and after experiment execution.

In early testbeds, these tasks were typically supported through ad-hoc
approaches, often relying on remote login, shell scripts, and similar tools.
Experience demonstrated, however, that as experiment scale and complexity grows,
these methods quickly become infeasible. For DETERLab, the tipping point was
reached with the development of the container subsystem, which shifted the scale
of feasible experiments by three orders of magnitude, from a few tens or hundreds
of elements to tens or hundreds of thousands. A new approach was required.

In addressing this need, the DETER Project took the view that the challenge of
managing and monitoring large-scale, complex experiments is a substantial research
problem in its own right. This is particularly true when the requirement is recognized
to develop approaches suitable for researchers of widely varying background and
creating experiments for widely different purposes. Rather than attempting to create
tools that solved the entire problem, the project adopted the architectural approach
of creating modularity. Work focused first on a common, low-level experiment
management substrate suitable for large, complex experiments, with the intent that
this substrate could then serve as an implementation vehicle for higher-level tools,
developed both by the DETER project itself and by the larger research community.

This lower-level substrate is now available in DETERLab as the MAGI Exper-
iment Orchestration System. MAGI® provides the infrastructure needed to support
workflow tools that instrument and control an experiment. In concept, MAGI plays
a role in the DETER ecosystem similar to that played by orchestrators such as
Ansible, Chef, Puppet, and Fabric [27-30] in the Cloud Computing world. MAGI
differs from these orchestrators primarily in its focus on scale and its specialization
to experiment requirements and semantics, rather than general-purpose cloud com-
puting. An example of this specialization may be found in MAGI’s design objective
of orchestrating experiments of up to hundreds of thousands of elements, through the
utilization of efficient group communication and explicit implementation of sparse
partial ordering semantics.

The MAGI framework has three main components: a messaging substrate that
provides scalable and reliable mechanisms to communicate across federated and
containerized experiment nodes; agent modules to enact different behaviors in the
experiment; and an orchestrator that executes a workflow and provides deterministic

SMAGI is an abbreviation for “Montage Agent Infrastructure.”

48 J. Wroclawski et al.

Agents*enact*behaviors Orchestrator*executes*a*workflow
Modules a

N0

"
[

Agent,
Modules

|

Fig. 3 MAGI System Architecture

MAGI*Messaging*Substrate

control for the experiment. Figure 3 shows the components of MAGI and how they
provide an execution environment for large scale experiments. We discuss each
component briefly below.

MAGTI’s messaging substrate provides an overlay control network to deploy,
monitor, and control the entities in an experiment. This network provides seamless
access to all types of nodes in a DETERLab experiment, across federated testbeds
and within containerized environments. MAGI is based on group communication
semantics. Agents can join and leave groups dynamically and any member of a
group can send messages to other members of the group. From the implementation
perspective, a MAGI daemon is located on each physical computing node to manage
the overlay transport and route messages to agents. Different implementations of the
daemon support different container and federation environments. Consequently, the
messaging substrate is logically viewed as a cloud providing a well defined, unified
group communication semantic across all experiment nodes irrespective of each
node’s implementation strategy.

Messages are sent to and received from MAGI agents. Messages sent to agents
are known as events while messages received from agents are triggers. Event
messages direct agents to change their current state. For example, a message could
request a web traffic client agent to change the distribution of the requested objects.
Trigger messages report the current state of the agent. For example, a trigger could
report the set of neighbors to an agent’s peers. This bi-directional messaging enables
incorporating feedback from the experiment for control and is used extensively for
orchestration.

A MAGI agent enacts a specific behavior in an experiment. It can be an actuator,
for example a web server agent responding to requests from client agents and
generating traffic on the experiment links. An agent can also be a sensor, e.g.,
for measuring and reporting the number of packets seen on a particular link in
an experiment. Agents interact with other agents and MAGI tools through the
messaging substrate, using event and trigger messages. Every agent in the MAGI

DETERLab and the DETER Project 49

framework support a suite of standard methods, such as configure, start, and stop. In
addition, agents may support agent-specific functions. MAGI supports loading and
unloading agents on experiment nodes dynamically.

DETERLAab provides a library of agents that implement basic functions such as
traffic generation and monitoring. The library includes agents to generate web, ftp,
ssh, VoIP, and IRC traffic and malicious DoS attack traffic.

In addition to these off-the-shelf agents, the MAGI library provides code
fragments, helper classes and other tools to support extension of standard agents and
development of experiment-specific agents. At the time of writing, MAGI supports
Python, C and Java based agents, realized as threads or processes depending on
environment and available resources. Each agent module has an interface definition
(IDL) file that describes the inputs, output, and methods supported by the agent. The
IDL can be parsed by supporting tools to ensure the agents are correctly configured
and controlled.

The MAGI orchestrator uses agents and the messaging substrate to implement
the “control flow” of an experiment, providing deterministic control over the various
experiment. The experiment procedure is expressed as a stream of events and
triggers, capturing the partial orderings required to provide correct experiment
semantics. Events activate specific behaviors in the agents, while triggers provide
event-based and time-based synchronization points for control flow. Complex
control flows may be specified by creating trigger message expressions using
boolean operators. Error recovery methods based on timeouts and recovery actions
are also provided.

An experiment’s control flow is expressed in a low-level standard format called
Agent Activation Language (AAL). AAL is a YAML-based descriptive language
with three main directives. The group directive defines the required groups on the
messaging substrate in the experiment nodes. This directive is used to map sets
of one or more experiment nodes to a group name. The agent directive defines a
required functional behavior on a set of experiment nodes. An agent definition has a
name key to identify the agent, a group key to define where it is deployed, a path key
to indicate the location of the agent implementation, and an arguments key that can
be passed to the agent during deployment. The event stream directive provides the
main body of AAL. It is a list of events and triggers that are parsed and executed by
the orchestrator tool. A procedure typically contains multiple event streams. Event
streams execute concurrently and are synchronized with each other using triggers.

In addition to the orchestrator, MAGI provides two further base-level tools that
allow deploying, configuring, and visualizing the experiment. The bootstrap tool
is used to deploy, install, and configure the software libraries and the messaging
substrate on experiment nodes. It is typically run once, when resources are first
allocated to an experiment. A graph tool is used to collect basic measurements from
the sensor agents and display the current status on the experiment for real time and
offline analysis.

50 J. Wroclawski et al.
4.5 Multi Party Experiments

In the world of security research it is fundamental that factions with different
powers, interests and knowledge compete for control of equipment or information.
Attackers try to gain access to computers, botnets try to gather machines and
organize, governments try to identify forbidden communications, and cryptanalysts
try to break codes.

Central to many meaningful experiments in such domains is that the experimental
platform supports scenarios where different parties can interact, with each limited
to only the scope of information or environment they would see in the real world.
At the same time, a benefit of the laboratory experiment environment is that a “full”
complete view can also be made available, to facilitate experiment construction,
control, and assessment by researchers. DETERLab implements this capability,
calling such an environment a multi-party experiment.

DETERLab’s multi-party experiment facility erects and enforces constraints on
what the various parties to the experiment can see and do. Each party that enters
the environment does so from a different perspective and with different constraints
on what they can see and manipulate. We call each such perspective a “view” or
“worldview”. Further, DETERLab permits these views to overlap, for example,
allowing an evaluator to view the experiment as a whole at the same time that other
groups are competing inside the experiment.

Figure 4 shows a visualization of a multi-party experiment in progress in
DETERLab. This experiment implements a multi-party security game. In this game
there are two researchers: The Attacker who designs an attack worm, launches the
worm that attacks the network, and monitors the attack progress; and the Defender,
who runs a defense service, monitors the server load, and deploys additional servers
to absorb the load. The playing field as seen by the Attacker is shown in the
lower left view, while that seen by the Defender is shown in the lower right view.
Note that these views represent the only information directly available to these two
parties—that is, network routing protocols, measurement tools, etc, operated by
either party have direct access to only a portion of the full scenario. As in real
life, any knowledge the parties desire about the rest of the world must be learned
indirectly.

The third view depicted in the figure is that of the Proving Ground, or overall
playing field for the experiment. This is the unified scenario made up of the
Attacker’s environment, the Defender’s environment, and other network structure
not directly visible to either. The topology of the full playing field is unknown
to the two researchers, and the environment managed by the Proving Ground
can change dynamically. As can be seen, DETERLab’s multi-party experiment
capability allows researchers to construct scenarios that closely model the decentral-
ized, limited-information-flow, collaborative-competitive world of actual networked
systems.

Composition of worldviews for a multi-party experiment occurs at several
levels. Parties may know different parts of an experiment layout, or see the same

DETERLab and the DETER Project 51

Fig. 4 A DETERLab Multi Party Experiment

experiment layout differently. For example, two parties may be able to access the
same nodes on a subnet, but identify them with different DNS names or IP addresses.
Different parties may have direct access to parts of the overall experiment topology,
but see other parts of the topology only through whatever measurement or analysis
tools they can deploy. Similarly, parties may share access to the same experiment
elements, but have different rights to view and manipulate them.

Providing the full richness of a multi-party experiment depends on characterizing
the different viewpoints, interpreting them as access control rules, and realizing
the experiment in accordance with these rules. It is interesting to note the parallel
between this objective and that of federation, described earlier. In each case, policies
for access to different experimental resources may be defined separately, and then
brought together in a coherent whole by the federation system.

Consequently, DETERLab implements multi-party experiments as a special form
of federation. To construct a multi-party experiment, the federation system con-
structs an experiment that uses resources allocated to each of the parties, configured
appropriately, and interconnects them. Here, the different groups federating are not
disparate facilities that contribute resources, but different groups within DETERLab
that control sub-experiments.

This layout is captured and created through the federation system’s use of ABAC
at the sub-experiment level. Each sub-experiment within the overall scenario is
itself, recursively, an experiment that has its access policy captured by ABAC. The
federation system creates the sub-experiments based on those policy specifications,

52 J. Wroclawski et al.

just as it does between facilities, and then integrates them together to form the
overall experiment. In addition, the process may be applied recursively to create
a hierarchical multi-party experiment.

DETERLab’s federation system can be applied directly, as described above,
to create experiments implementing a useful subset of all possible multi-party
experiment semantics. However, certain non-hierarchical scenarios cannot be imple-
mented directly in this fashion. If two parties see the same element differently, a
richer approach is required. At the time of writing, work continues within the project
to implement this richer multi-party semantic, while the federation-based approach
is in active use within DETERLab’s research communities.

4.6 Modeling Human Behavior

To date, cybersecurity and networking research testbeds have focused almost
entirely on supporting experiments that study hardware or software-level system
behaviors. Yet, an important aspect of system-level security is that the processes and
tools put in place to defend these systems will be used by individual humans, who
may not be well informed about security risks and vulnerabilities, who are typically
not expert in the use of the tools, and who have other jobs to perform while using
them. Consequently, many successful attacks to date have relied on some aspect
of human behavior, for example phishing attacks that trick users into installing
malware, or social engineering attacks that convince users to reveal passwords.
Human behavior can also lead to significant deviations and inaccuracies in simple,
technically focused predictions about the value of defenses and success rate of
attacks.

For these reasons we seek to provide DETERLab experimenters with the ability
to incorporate models of human behavior, as well as software and hardware
behavior, into their experiments. To do this, the DETER project has developed an
agent-based system that models many aspects of human behavior relevant to security
and networked system experiments, and incorporated this system into DETERLab.
We describe the objectives and design of this system below.

Although in many cases human behavior is hard to predict, some aspects are
driven by relatively predictable factors and may in turn form the basis of useful
predictions about behavior. These factors include limited knowledge about secu-
rity, reliance on common misconceptions and flawed analogies when considering
security questions, and human processing biases, such as the effects of limited
attention. In addition, users may have particular difficulty following some parts of a
security protocol because of an interaction with their work protocols and routines,
leading to distraction or “cognitive overload”. These interactions may be hard to
predict when thinking only about security tools but become much clearer when
additional modeling to represent the human’s more primary, non-security concerns
is incorporated.

DETERLab and the DETER Project 53

DETERLab’s agent-based human behavior modeling uses these regularities
to predict when security systems are likely to be used inappropriately, or even
deliberately disabled or avoided. Within a DETERLab experiment, this allows more
accurate prediction of the effects of a tool that relies on human use or defends against
a human-centered attack. In general, the results can also help in designing more
effective approaches given the reality of human behavior. Below, we outline our
dash agent architecture, developed to implement this capability, and briefly describe
two projects that aim to build models of human behavior from observations in a
number of real scenarios and that use dash to implement and validate these models.

4.6.1 The Dash Agent Platform

In modeling, we take the view that end users are goal-driven and, given sufficient
time, can make rational decisions about security based on their knowledge about
vulnerabilities and risks as well as their perceptions of its impact on the task at hand.
We then develop a suite of software agents that are capable of emulating relevant
human behaviors under these constraints when interacting with software, and make
these agents available to DETERLab experimenters.

The main elements of this agent system are:

» a flexible plan executor that chooses tasks to perform based on the modeled
human’s goals, as well as re-assigning tasks if goals change priority or current
plans are failing,

* a cognitively plausible representation for incorrect or incomplete views of the
world, particularly about security,

* a fall-back mechanism to choose actions quickly when the agent perceives time
pressure or other kinds of stress that prevent rational decision-making.

The dash agent platform provides tools to meet these requirements with the
following components. First, a reactive planning system [31] chooses actions
based on the agent’s goal utilities and costs and re-plans when the world changes
significantly. Second, an implementation of mental models [32] is used to capture
alternative models that agents may have for the world. This approach is well
suited to analogies like physical security or healthcare that have been shown to
be influential in studies of user models [33]. Finally, the approach uses a dual-
process architecture, in which two components compete to determine the agent’s
next action: a deliberative component that uses planning and mental models and
an instinctive component that matches actions to situation elements [34]. Dash has
been demonstrated to capture several repeatable and significant aspects of human
behavior about security in a single framework [35-37].

While dash provides a plausible model of human security behaviors as reported
by a number of researchers, the DETER project team is also working on more
detailed investigations and modeling of behaviors in a number of scenarios, with
the aim of extending and further validating the model. In one collaborative project
with researchers at Dartmouth and the University of Pennsylvania we are studying

54 J. Wroclawski et al.

end user circumvention of security, particularly in healthcare domains [38]. In these
extreme cases, users disable or avoid security measures that have been put in place,
either deliberately or unwittingly.

We have collected a large number of examples of circumvention from interviews,
observation and the literature and categorized them in terms of mismatches between
the security designer’s view of the world and that of the user. This broadly fits the
dash model in which the circumvention is a rational decision based on the user’s
view of the world. While results from an abstract study will be available in dash to
use in a number of domains, we also plan to build more realistic scenarios in which
we can gather observational data from individuals performing regular tasks that may
conflict with security goals. In this work the DETER project team is itself using
DETERLab as an environment in which to test user behavior safely in potentially
risky situations.

Summarizing, human behavior cannot be ignored when designing or testing
security systems. We have isolated a small set of repeatable behaviors and shown
that we can capture them in the dash software agent platform. We continue
experimental work with collaborators that validates the dash architecture, provides
direction for extending it and also provides real examples and behavioral data that
can be made available to other researchers wishing to include behavioral models in
their research. Dash, along with the models and behavioral data that come from our
current work, is now available within DETERLab for the larger community to use
within their experiments.

5 A DETERLab Use Case

In this section we present a recent use case for the DETERLab facility, as the
host testbed for a collaborative, multi-institution effort to prototype, evaluate, and
demonstrate the capabilities of future large-scale distributed cyber-physical (CPS)
systems. This work was carried out in the context of the SmartAmerica Challenge.
The SmartAmerica Challenge, hosted by the 2013—-2014 US Presidential Innovation
Fellows program [39] and US National Institute of Standards and Technology
(NIST), aimed to exhibit the potential benefits of these systems to society at large, in
such areas as public safety, energy delivery and sustainability, healthcare, mobility,
and overall quality of life.

A key goal of the Challenge was to catalyze advances in these domains by pro-
viding a showcase venue for researchers and innovators to demonstrate prototypes
of future large-scale cyber-physical systems with the potential to achieve these
benefits, leveraging collaborations and federations of existing CPS technologies,
research projects, and test beds. By showcasing the potential of these systems in
a highly visible, spotlight venue, the Challenge aimed to further accelerate the
already-growing interest in CPS and “smart cities” across a broad mix of policy,
standards, and business communities throughout the country.

DETERLab and the DETER Project 55

DETERLab hosted a SmartAmerica team, “SmartEnergy”, focused on electric
power distribution and the smart grid. The team included academic institutions
(USC/ISI, North Carolina State University, lowa State University, UNC), a DOE-
supported national research lab (NREL), and industry participants (Scitor Cor-
poration, NAI). The team developed and presented two demonstrations during
the Challenge. The first showed how a wide area, distributed, approach to grid
monitoring yields national-scale resilience to large scale disruptions caused by
malicious actors or unpredictable acts of nature, while the second explored the
effects of distributed denial-of-service (DDOS) attacks on a smart power grid and
some defenses against these effects. As an example use case for DETERLab, we
discuss the first of these in more detail below.

Working in collaboration with North Carolina State’s FREEDM Systems Center,
the DETER project team showed how transitioning from traditional centralized
wide-area monitoring mechanisms used in current state-of-art power systems to
a more distributed architecture creates enhanced resiliency and robustness against
cyber and physical disruptions.

We demonstrated a completely distributed communication and computational
architecture for wide-area oscillation monitoring, created through the federation
of three independent testbeds: a PMU-based* power grid simulation and modeling
testbed at North Carolina State, an ExoGENI [40] testbed at UNC Chapel Hill, and
the DETER cyber-security testbed at USC. In this architecture, estimators located
at the control centers of various utility companies, emulated in the DETER and
ExoGENI testbeds, run local optimization algorithms using local PMU data sup-
plied from NC State simulators. The estimators communicate with other estimators
across the federated testbeds to reach a global solution.

This system, once constructed, was subjected to a series of faults and attacks on
the communication links. The team developed MAGI agents for estimators and used
the DETERLab library of agents to create traffic, faults, and attacks. The MAGI
orchestration framework was used to conduct several hundred experiment runs to
demonstrate how the estimators can coordinate with each other to keep the grid
running even if several of these links go down due to the attack.

For the SmartAmerica Challenge, the team used these capabilities to carry out
and demonstrate a real-time simulation of a five-area model of the US west coast
electrical grid.

Figure 5 is a snapshot of the visualization used to present this distributed
estimator experiment. Dots on the map represent power grid substations. The
experiment conducted within the simulation focused on a fundamental concern of
wide-area power grid control, damping oscillations between groups of generators
within the grid. Left unchecked, oscillatory power swings between groups of
generation facilities can lead to catastrophic results such as blackouts. To conduct

A phasor measurement unit (PMU) is a device that measures the power at different points in an
electrical grid using a common time source for synchronization. PMUs are recognized as one of
the most important measuring devices in future power systems [41].

https://en.wikipedia.org/wiki/Grid_%28electricity%29#Grid%20(electricity)

56 J. Wroclawski et al.

Google Mip 823 0201 4 Gaoghe INEGI Terms ofUse | Report amap exor

Fig. 5 Visualization of distributed estimator experiment

this sort of control, oscillations must first be detected, then the frequency and mode
of oscillation determined and finally a control action that damps the oscillation must
be computed.

The current state of the art is a centralized process. Of concern to power
engineers, this centralization makes the process extremely vulnerable to DDoS
attacks or network partitioning events. If the servers running detection and control
algorithms are cut off from the rest of the grid, the stability of the system may be
easily compromised.

As an alternative, the system demonstrated at Smart America distributed the
detection and control logic across multiple servers that effectively partitioned
the grid into individual control areas. The physical system under simulation was
subjected to destabilizing oscillatory behavior while the cyber system supporting
the control infrastructure was subjected to attack. In Fig. 5, the red dots indicate

DETERLab and the DETER Project 57

two control areas whose monitoring and control servers have been lost. Our
demonstration showed that even in this case the other areas are able to coordinate,
and then to compute a global damping solution that prevents the destabilizing
oscillations from compromising the overall stability of the grid.

6 DETERLab in Education

Although DETERLab remains fundamentally focused as a research testbed, it has
found an increasingly visible second role as a widely available shared resource
for project-oriented, hands-on cybersecurity education. DETERLab-based exercises
allow students to explore advanced concepts related to current cybersecurity
research areas, as well as teaching practical skills such as configuring secure
systems, performing forensics after an intrusion, and configuring security devices,
all in a highly accessible and engaging environment. Experience has shown that
DETERLab offers a number of potential advantages over the use of local university
labs for such security exercises.

Among the most valuable of these are benefits related to sharing and reuse of
educational materials. DETERLab’s exercises are easily reusable across multiple
sites and institutions, since they are all developed within a common, widely
accessible environment. Because exercise configurations can be archived and reused
by others, educators find it simple to share exercises with others and use DETER-
Lab’s exercises for repeat offerings courses. DETERLab’s substantial resources
are freely available to the educational community, offering significant benefits to
community members unable to support local laboratories on their own. To realize
these advantages, DETERLab has developed and now provides educators with a
public portal to access shared exercises and to contribute new material to the larger
educational community.

DETERLab also offers powerful functional and convenience advantages to
educators. DETERLab offers substantial hardware resources and is able to support
exercises and activities of significant, realistic size and complexity. The facility was
designed explicitly to contain risk from experiments involving live malware and
other risky behaviors, allowing these topics to be included in educational material.
DETERLab’s automated support for housekeeping functions such as environment
configuration, OS load, and application installation simplifies exercise development
and allows the educator to focus on essentials. Finally, DETERLab’s remote access
capabilities allow students to carry out lab work at their own schedule, from their
dorms, labs, or homes.

To advance educational use of DETERLab, the DETER project has carried out
activities in two distinct dimensions: development of education-specific technical
capabilities and development of publicly available, shared curriculum materials.
Initially, the project focused on extending the technical capabilities of the facility
to meet unique educational needs. Mechanisms added to the testbed in this phase
included administrative permission delegation and access control models suited to

58 J. Wroclawski et al.

classroom use, the ability to batch-create and batch-delete student accounts based
on data from external sources, and new allocation and scheduling mechanisms that
manage and share resources across educational activities at different granularities
(individual student, team, or class) without compromising the facility’s research
users.

Development of public teaching materials began in 2009, funded by a grant from
the National Science Foundation. These materials include a collection of student
exercises [42] that leverage use of DETERLab, together with teacher materials
that aid adoption of these exercises in classes and enable teachers to troubleshoot
and help their students with assignments. These materials are made available to
all interested parties from DETERLab’s Education Web page [43]. More recently,
the project has initiated development of classroom and Web materials to be used
in cybersecurity lectures. Also initiated in this timeframe is the development of a
new category of lightweight class competitions—class capture-the-flag exercises
or CCTFs [44]. Supported by Intel and the National Science Foundation, these
materials are again publicly available on DETERLab’s Education Web page.

The Project’s focus on education, initiated in 2009 and continuing to the present
writing, has led to a great increase in the size and diversity of DETERLab’s
educational users. Figure 6 shows the number of active classes per semester utilizing
DETERLab since 2006. From a norm of less than five in 2009, usage has grown
to a typical number of roughly 50 classes per semester at present. Over 11 years,
DETERLab has been used by nearly 150 distinct courses (in some cases repeated
over several semesters), by nearly 100 institutions in 20 countries. Overall, more
than 4000 students have benefited from DETERLab in class settings during this
time.

7 Looking to the Future

As described above and throughout this book, the 15 years from 2000 to 2015
have been a period of tremendous development in the reach and capability of
infrastructures for experimentation in the cybersecurity, CPS, distributed systems
and networked systems realms. Significant advances, both in experimental platform
technology and in experimental platform availability, have changed the face of
experimentation as a core element of research and education in these areas.

At the same time, much of this progress has focused on expanding the capabilities
and availability of experimental infrastructures per se, with somewhat less attention
paid to the broader ecosystems in which such infrastructure lives. As these core
infrastructures reach a point of wide availability and continue to advance in
functionality, it becomes a moment to pause and reflect on future directions.

Under the auspices of a study activity funded by the US National Science Foun-
dation, a community effort facilitated by SRI International and USC/ISI engaged
in such a reflection through 2014 and early 2015, producing as its key output a
report on Cybersecurity Experimentation of the Future [4]. This report presents a

DETERLab and the DETER Project 59

60

50

40

30

20

Number of active classes

10

S'06 F'06 S'07 F'07 S'08 F'08 S'09 F'09 S'10 F'10 S'11 F'11 S'12 F'12 S'13 F'13 S'14 F'14 S'15
Semester

Fig. 6 Growth of DETERLab’s use in education over time

strategic plan intended to catalyze generational advance in the field of experimental
cybersecurity research, together with an enabling roadmap describing discrete
steps towards realizing this goal. Although the charge to the group centered on
experimentation in the cybersecurity arena, the breadth of the group’s background
and assessment, as well as the intersection of concerns across the cybersecurity,
networking, distributed systems, and cyber-physical systems communities suggests
the relevance of the group’s conclusions to experimentation across each of these
areas.

The overarching finding of this community activity is that transformational
progress in three distinct, yet synergistic, areas is required to achieve the objective
of generational advance:

1. Fundamental and broad intellectual advances in the field of experimental method-
ologies and techniques, with particular focus on methodologies targeting com-
plex systems and human-computer interactions.

2. New approaches to rapid and effective sharing of data and knowledge, and
information synthesis that accelerates multi-discipline and cross-organizational
knowledge generation and community building.

3. Continued research, development, and deployment of advanced, accessible
experimentation infrastructures and infrastructure capabilities.

Taken together, these areas, as embodied in the roadmap, paint a vision for a
new generation of experimental cybersecurity research—one that offers powerful

60 J. Wroclawski et al.

assistance towards helping researchers shift the asymmetric cyberspace context to
one of greater planning, preparedness, and higher assurance fielded solutions.

Of particular interest is the conclusion of the study community to reach beyond
the traditional focus on experimentation infrastructure as the issue of central
concern. Rather, the fundamental conclusion of this study is that an emphasis on
infrastructure alone falls far short of achieving the shift in research, community,
and experimentation required to address cybersecurity concerns in today’s rapidly
changing and increasingly complex, interconnected environment.

The study results point to a new direction for the field of experimental research
in cybersecurity and related areas. The importance of research into the science of
experimentation itself is identified as an overarching need. Stronger, more effec-
tively codified intellectual understanding of appropriate experimental processes,
together with the validity and scope of the experimental conclusions they produce,
is required, as are concrete environments and tools that capture this high-level
knowledge for the researcher. Also needed are new approaches to sharing all
aspects of experimental science, from data, to designs, to experiments, to the
research infrastructure itself, with a focus on semantically meaningful sharing of
data, knowledge, and artifacts that is both valid and usable across heterogeneous
environments.

The conclusion is that strong, coupled, and synergistic advances across each of
the areas outlined above—fundamental methodological development, fostering and
leveraging communities of researchers, and in the capabilities of the infrastructure
supporting that research—has the potential to transform experimental research in
cybersecurity and related domains, and represents a generational grand challenge
for the field in the coming years.

8 Conclusion

In this chapter we described the DETER Project, a research, development and
experimental facility operation effort spanning over 10 years at the time of this
writing. We discussed the historical progression of the project from initial facility
development to advanced scientific instrument for cyber security experimentation,
and discussed a sampling of key DETERLab technologies and their use. Finally,
we briefly discussed new directions, looking beyond today’s DETER project and
towards cyber experimentation of the future.

References

1. Kessler, G.C.: Defenses against distributed denial of service attacks. Available at http://www.
garykessler.net/library/ddos.html. Also included in Bosworth, S., Kabay, M.E., Whyne, E.
(eds.) Computer Security Handbook. John Wiley & Sons, March 2014

http://www.garykessler.net/library/ddos.html
http://www.garykessler.net/library/ddos.html

DETERLab and the DETER Project 61

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Hardaker, W., Kindred, D., Ostrenga, R., Sterne, D., Thomas, R.: Justification and requirements
for a national DDoS defense technology evaluation facility. NAL Report #02-052, Network
Associates Laboratories, Rockville, MD, July 2002

. NSF workshop on network research testbeds. Workshop Report, October 2002. http://gaia.cs.

umass.edu/testbed_workshop

. Balenson, D., Tinnel, L., Benzel, T.. Cybersecurity experimentation of the future

(CEF): catalyzing a new generation of experimental cybersecurity research. Available at
http://cyberexperimentation.org

. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion router. In:

Proceedings of the 13th USENIX Security Symposium, August 2004

. Ostrenga, R., Schwab, S., Braden, R.: A Plan For Malware Containment In The DETER

testbed. In: Proceedings of the DETER Community Workshop on Cyber Security Experimen-
tation and Test, August 2007

. Lockwood, J.W., McKeown, N., Watson, G., Gibb, G., Hartke, P., Naous, J., Raghuraman, R.,

Luo, J.: NetFPGA—an open platform for gigabit-rate network switching and routing, MSE
2007, San Diego, June 2007. Further information available at http://netfpga.org

. Pfaff, B., Pettit, J., Koponen, T., Jackson, E.J., Zhou, A., Rajahalme, J., Gross, J., Wang,

A., Stringer, J., Shelar, P., Amidon, K., Casado, M.: The design and implementation of open
vSwitch. In: Proceedings of the 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 2015), Oakland, CA, 4-6 May 2015

. Benzel, T., Braden, B., Faber, T., Mirkovic, J., Schwab, S., Sollins, K., Wroclawski, J.: Current

developments in DETER cybersecurity testbed technology. In: Proceedings of the Cyber
Security Applications & Technology Conference for Homeland Security (CATCH 2009),
March 2009

Benzel, T.: The science of cyber-security experimentation: the DETER project. In: Proceedings
of the Annual Computer Security Applications Conference (ACSAC) ‘11, Orlando, FL,
December 2011

Benzel, T., Wroclawski, J.: The DETER project: towards structural advances in experimental
cybersecurity research and evaluation. J. Inform. Process. 20(4), 824-834 (2012)

Mirkovic, J.: Benzel, T.V., Faber, T., Braden, R., Wroclawski, J.T., Schwab, S. The DETER
project: advancing the science of cyber security experimentation and test. In: Proceedings of
the IEEE HST ’10 Conference, Waltham, MA, November 2010

Benzel, T., Braden, R., Kim, D., Joseph, A., Neuman, C., Ostrenga, R., Schwab, S., Sklower,
K.: Design, deployment, and use of the DETER testbed. In: Proceedings of the DETER
Community Workshop on Cyber Security Experimentation and Test, August 2007

Faber, T., Ryan, M.: Building apparatus for multi-resolution networking experiments using
containers. ISI Technical Report ISI-TR-683 (2011)

Faber, T., Wroclawski, J., Lahey, K.: A DETER federation architecture. In: Proceedings of the
DETER Community Workshop on Cyber Security Experimentation and Test, August 2007
Faber, T., Wroclawski, J.: A federated experiment environment for Emulab-based testbeds. In:
Proceedings of Tridentcom (2009)

Mirkovic, J., Sollins, K., Wroclawski, J.: Managing the health of security experiments. In:
Proceedings of the Cyber security Experimentation and Test (CSET) Workshop, July 2008
Schwab, S., Wilson, B., Ko, C., Hussain, A.: SEER: a security experimentation environment
for DETER. In: Proceedings of the DETER Community Workshop on Cyber Security
Experimentation and Test, August 2007

Viswanathan, A., Hussein, A., Mirkovic, J., Schwab, S., Wroclawski, J.: A semantic framework
for data analysis in networked systems. In: Proceedings of the 8th USENIX Symposium on
Networked Systems Design and Implementation, NSDI, April 2011

Wroclawski, J., Mirkovic, J., Faber, T., Schwab, S.: A two-constraint approach to risky cyber
security experiment management. Invited paper at the Sarnoff Symposium, April 2008

Lahey, K., Braden, R., Sklower, K.: Experiment isolation in a secure cluster testbed. In:
Proceedings of the Cyber security Experimentation and Test (CSET) Workshop, July 2008

http://netfpga.org/
https://www.usenix.org/legacy/event/deter07/tech/full_papers/ostrenga/ostrenga.pdf
http://cyberexperimentation.org/
http://gaia.cs.umass.edu/testbed_workshop
http://gaia.cs.umass.edu/testbed_workshop

62

22.

23.

24.

25.

26.

217.

28

34.

35.

36.

37

38.

39.

40.

41.

42.

43.
44,

J. Wroclawski et al.

White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler, M., Barb, C.,
Joglekar, A.: An integrated experimental environment for distributed systems and networks. In:
Proceedings of the 5th Symposium on Operating Systems Design & Implementation, pp. 255—
270, December 2002

Bellard, F.: QEMU, a fast and portable dynamic translator. In: Proceedings of the USENIX
2005 Annual Technical Conference, April 2005, pp. 41-46

OpenVZ Containers Website, http://openvz.org

Gardenghi, L., Goldweber, M., Davoli, R.: View-OS: a new unifying approach against the
global view assumption. Lecture Notes in Computer Science, vol. 5101/2008, Computational
Science—ICCS 2008. Further information available at http://virtualsquare.org

Faber, T., Schwab, S., Wroclawski, J.: Authorization and access control: ABAC. In: The GENI
Book, Springer International Publishing Switzerland, 2016, doi:10.1007/978-3-319-33769-2_
10

Ansible Documentation. http://docs.ansible.com/, version of January 2016.

. Chef Documentation. https://learn.chef.io/, version of January 2016
29.
30.
31.
32.
33.

Fabric Documentation. http://www.fabfile.org, version of January 2016

Pupper Documentation, https://puppetlabs.com/, version of January 2016

Bratman, M.: Intention, plans, and practical reason (1987)

Johnson-Laird, P.: Mental models (1983)

Wash, R.: Folk models of home computer security. In: Proceedings of the Sixth Symposium on
Usable Privacy and Security (SOUPS) (2010)

Stanovich, K.E.: Who is Rational? Studies of Individual Differences in Reasoning. Psychology
Press, Hove (1999)

Blythe, J., Camp, J.L.: Implementing mental models. In: Proceedings of IEEE Symposium
Security and Privacy Workshops (SPW), pp. 86-90 (2012)

Blythe, J.: A dual-process cognitive model for testing resilient control systems. In: Proceedings
of Resilient Control Systems (ISRCS), 2012 5th International Symposium, 2012

. Kothari, V., Blythe, J., Smith, S., Koppel, R.: Agent-based modeling of user circumvention

of security. In: Proceedings of the Ist International Workshop on Agents and CyberSecurity
(2014)

Blythe, J., Koppel, R., Smith, S.W.: Circumvention of security: good users do bad things. IEEE
Security & Privacy 11(5), 80-83 (2013)

Presidential Innovation Fellows Program, https://www.whitehouse.gov/innovationfellows, ver-
sion of October 2015

Baldin, I., Chase, J., Xin, Y., Mandal, A., Ruth, P., Castillo, C., Orlikowski, V., Heermann, C.,
Mills, J.: ExoGENI: a multi-domain infrastructure-as-a-service testbed. In: GENI: Prototype
of the Next Internet. Springer (2016)

Nuqui, R.E: State estimation and voltage security monitoring using synchronized phasor
measurement. Ph.D. Dissertation, Virginia Polytechnic Institute, Blacksburg, VA, July 2001.
“Simulations and field experiences suggest that PMUs can revolutionize the way power
systems are monitored and controlled” (via Wikipedia)

Mirkovic, J., Benzel, T.: Teaching cybersecurity with DETERLab. IEEE Security and Privacy
Magazine, January/February 2012, vol. 10, no. 1, pp. 73-76 (invited paper)

DETERLab Education Web page, http://education.deterlab.net, version of October 2015
Mirkovic, J., Peterson, P.A.H.: Class capture-the-flag exercises. In: Proceedings of the
USENIX Summit on Gaming, Games and Gamification in Security Education (2014)

http://education.deterlab.net/
https://www.whitehouse.gov/innovationfellows
https://puppetlabs.com/
http://www.fabfile.org/
https://learn.chef.io/
http://docs.ansible.com/
10.1007/978-3-319-33769-2_10
10.1007/978-3-319-33769-2_10
http://virtualsquare.org/
http://openvz.org/

ORBIT: Wireless Experimentation

Dipankar Raychaudhuri, Ivan Seskar, and Max Ott

Abstract This chapter presents an overview of the ORBIT testbed for wireless
experimentation. ORBIT is an NSF supported community testbed for wireless
networking which provides a variety of programmable resources for at-scale
reproducible experimentation as well as real-world outdoor trials. The centerpiece
of the ORBIT testbed is the 400-node “radio grid” deployed at the Rutgers Tech
Centre facility in North Brunswick, NJ. The radio grid enables researchers to
conduct reproducible experiments with large numbers of wireless nodes over a
wide range of radio technologies, densities and network topologies. The ORBIT
system architecture is outlined and technical details are given for the radio grid’s
key hardware and software components including the radio node platforms, software
defined radios, RF measurement system, switching and computing backend and the
ORBIT management framework (OMF). Additional ORBIT resources including
special purpose sandboxes and the outdoor WiMax campus deployment are also
described. The experimental interface and scripting tools for running an experiment
on ORBIT are outlined, and examples of a few representative experiments which
have been run on the ORBIT testbed are summarized. The chapter concludes with
a view of ORBIT’s evolution and future upgrade path along with an explanation of
how it links to the overall GENI project.

1 Introduction

Experimental verification of emerging network protocols and software at scale is
a critical need for the computer science and engineering research communities.
Basic research on networking has historically relied on simulation tools (such as
ns2 [1] and Opnet [2]) but there is a growing consensus on the need to supplement
simulation results with “real-world” experiments that capture the complexities of
user traffic, router implementations and physical-layer channel properties. This is

D. Raychaudhuri (B<) « I. Seskar

WINLAB, Department of ECE, Rutgers University, 671 Rt. 1 South, North Brunswick,
NJ 08902, USA

e-mail: ray @winlab.rutgers.edu

M. Ott
NICTA, Sydney, Australia

© Springer International Publishing Switzerland 2016 63
R. McGeer et al. (eds.), The GENI Book, DOI 10.1007/978-3-319-33769-2_4

mailto:ray@winlab.rutgers.edu

64 D. Raychaudhuri et al.

_____ Feedback Loop

- - (delay~3-5yrs) - _ -
i RN . Product
Incr e_avsmg / Can this gap be closed, speeding up * SRR EE
Realism

/ the R&D cycle and improving feedback?,

System-Level
Prototype

1
' j]
Basic Research ,' Applied Research
" . (mostly at companies)
The Gap Laboratory
| | Prototypes

(mostly at universities) 1
v
Large-Scale/Accurate
Simulations

0 Time 5yrs 10 yrs

“Small”
Radio Expts

Theoretical
Models

Simulation
Models

Fig. 1 Typical wireless R&D cycle with “gap” between academic research and product trials

particularly true for wireless networks in which protocol performance depends
strongly on time-varying radio channel properties due to signal fading, interference
and mobility. While many research groups do attempt to build prototype systems for
experimental evaluation of protocols, even a small network requires considerable
effort and cost, without providing a sufficient level of scale and reproducibility
necessary to support the scientific process. Figure 1 below looks at the typical R&D
life cycle for wireless systems going from theory to small-scale experiments and
simulations to laboratory prototypes and system level prototypes for field trial. This
is the methodology that has been followed for development of previous generations
of wireless technology such as 3G cellular, but there is a significant gap [3] between
small experiments that can be carried out by academic research groups and larger
technology trials mostly limited to large companies. This gap leads to longer product
cycles, now about 7-10 years for wireless, and it would be desirable to improve
research methodologies to close the gap at least to an extent and thereby speed up
the innovation cycle.

The above considerations have motivated development of various shared network
research testbeds [4—14] as multiuser experimental facilities intended to enable
at-scale and realistic experimentation by early stage/academic researchers. These
testbeds were conceived as community infrastructure which would reduce the
barrier of entry for networking researchers and make it possible for them to carry
their results to a more comprehensive level of validation and evaluation than
currently possible. The first generation of testbeds for network architecture and
protocol evaluation include PlanetLab [12] for wired overlay networks, Emulab
[13] for wired/wireless protocol emulation, and the ORBIT testbed [13] for at-scale
wireless experimentation which is the focus of this chapter.

ORBIT: Wireless Experimentation 65

Fig. 2 The ORBIT radio grid deployed at Rutgers Tech Center Facility

The ORBIT open access testbed for next-generation wireless networking at
Rutgers University was originally developed under the National Science Founda-
tion’s NRT (Network Research Testbeds) program during the period 2003-2007 to
address the challenge of supporting realistic and reproducible wireless networking
experiments at scale [15]. A notable result of the NRT project was the successful
construction and community release of the 400-node ORBIT radio grid facility
(Fig. 2) that enables remote users to conduct reproducible experiments with large
numbers of programmable wireless nodes set up to emulate specifiable real-world
network topologies and mobility scenarios [16—18]. The ORBIT radio grid was first
made available to research users on an informal basis in October 2005, and since
then, has rapidly become an NSF sponsored community resource for evaluation
of emerging wireless network architectures and protocols. There are currently
over 1000 registered users worldwide who have conducted a cumulative total of
over 60,000 x 1-2 h experiments on the testbed to date—the user base includes
both expert users who work with network drivers, as well as researchers moving
up from ns2, ns3 or Opnet based simulation to ORBIT emulation. The ORBIT
architecture (both in terms of hardware and software aspects) has also served as a
reference model for development of wireless capabilities in the GENI national-scale
networking research infrastructure project [19].

66 D. Raychaudhuri et al.

In the sections that follow, we describe the design requirements for ORBIT, the
testbed’s overall architecture and key hardware/software components in detail. A
few examples of research experiments which have been run on the ORBIT testbed
are given to illustrate its capabilities. The chapter concludes with a perspective on
future evolution of the testbed.

2 Design Requirements

The development of a general-purpose open-access wireless multi-user experimen-
tal facility poses significant technical challenges related to recreating the wireless
networking environment in a reproducible manner. The main design problem is
that of capturing physical world characteristics such as wireless device density,
location and mobility and the associated radio frequency channel as a function of
time. In addition, wireless systems tend to exhibit complex interactions between
the physical, medium access control and network layers, so that strict layering
approaches often used to simplify wired network prototypes cannot be applied here.

Some of the basic characteristics of radio channels that need to be incorporated
into a viable wireless network testbed include:

* Physical world realism in terms of density of devices and radio propagation

» Ability to incorporate user location characteristics and mobility patterns

» Radio physical layer bit-rates and error-rates reflecting actual signal-to-noise and
interference phenomena at the receiver

* Realistic medium access control (MAC) layer reflecting interfering nodes, carrier
sensing thresholds, traffic prioritization, and so on

* Programmability of radio PHY and MAC layer to the extent feasible

A flexible wireless network testbed must be capable of realistically incorporating
the above characteristics, while permitting experimentation with a range of radio
physical and MAC layers, network topologies and protocol options. For the testbed
to be useful, it should be scalable and cover a sufficiently broad range of wireless
network research problems that might be anticipated over the next 5—10 years.

Some examples of systems or protocol designs that help to understand the overall
design space under consideration are:

* Heterogeneous wireless networks, including high-speed cellular (2.5G, 3G or
4G), wireless local-area networks (802.11a, b, g, n etc.), and wireless personal
area networks (Bluetooth, 802.15.3, etc.). The testbed should support evolution
in radio technology from 802.11n to 802.11ac or ad, and should accommodate
new technologies such as LTE and 5G as they emerge. The framework should
permit the user to set up a complete system with a mix of radio technologies
and experiment with protocols for mobility control, resource management, inter-
network handoff, quality-of-service (QoS), service security, etc.

ORBIT: Wireless Experimentation 67

Future mobile Internet service scenarios based on cellular and WiFi radio access
in conjunction with new protocols for authentication, mobility management
delay-tolerant, routing, multi-homing, content delivery, etc. The testbed should
permit the end-user to define various usage scenarios and network topologies,
and then experiment with new protocols for discovery, routing, mobility man-
agement, caching, security, etc.

Mobile ad hoc networks (MANET), typically based on 802.11 x WLAN radios,
extended to support multi-hop ad hoc routing protocols such as AODV [20]
and DSR [21]. The testbed needs to support a moderately large number of
ad hoc wireless nodes capable of running alternative MANET protocols under
consideration. Accurate modeling of node mobility is a key requirement for this
scenario.

Wireless personal area networks (WPAN) in which multiple radio technologies
such as 802.11x and 802.15.3 are used to create a high-performance network
for use in the home or office, as a body-area network or as a desktop network for
connecting multiple computing devices. The testbed should thus support multiple
radio technologies and permit the user to specify typical usage scenarios and to
experiment with protocol alternatives.

Internet-of-Things (IoT) applications in which large numbers of low-power
sensor/actuator devices are interconnected for applications such as environmental
monitoring, industrial control/logistics or security. In addition, such networks
may require evaluation of alternative networking and software models.

Dynamic spectrum access or cognitive radio networking scenarios in which
software-defined radios (SDR) are used to form adaptive systems capable of
sharing radio spectrum via sensing, interference avoidance, networked collab-
oration and other techniques. Research on this emerging class of radio systems
involves scale (in terms of number of nodes), programmable radio functionality
and accurate spectrum measurement.

In addition to the above, an open-access community testbed has several general

service and user level requirements including:

Open access over the Internet with a user portal which provides experimenter
access and tools, documentation needed to use the testbed effectively
Flexibility/programmability of experiments across a range of radio technologies,
network topologies, layer 2, 3 and 4 protocols and usage scenarios

Shared use across a large community of researchers, implying the need for
resource scheduling and/or virtualization of hardware and computing resources
High-level experiment scripting language and component libraries for ease of use
by users

Experiment execution tools for code downloading, run time controls and status
monitoring

Tools for measurement and automated collection of data from experiments

The ORBIT testbed was designed to meet or approach each of the design goals

outlined above. The testbed is centered around the concept of the “radio grid” which

68 D. Raychaudhuri et al.

Urban

Suburban

.

ORBIT Testhed

/ \ 300 meters

500 meters

30 meters 28 meters

Fig. 3 Topology mapping concept in ORBIT radio grid

enables reproducible and at-scale experimentation of with a set of wireless nodes
physically located in a two-dimensional space. The key idea of the radio grid is the
mapping of a real-world wireless network topology to a set of nodes on the grid
with noise injection used to emulate increasing distance (i.e. “stretching space”).
Once the right set of nodes and noise injection settings are selected, it is possible
to run experiments on the radio grid and obtain reproducible results across multiple
runs. As shown in Fig. 3, this allows the same 20 x 20 radio grid to be used for
emulating various topologies including indoor office, suburban and urban outdoors
via proper selection of nodes and noise parameters. Note that in contrast to outdoor
wireless experiments, the resulting emulation is reproducible in the sense that the
same parameter settings should result in similar system performance over multiple
runs.

In addition to the radio grid, the testbed has two other kinds of facilities to
support the full life cycle of an experiment. For early stage experimenters, the
testbed provides a number of “sandboxes” intended for initial development and
code debugging thus reducing the load on the main radio grid. For late stage
experimenters, the testbed includes an “outdoor ORBIT” deployment that consists
of open/programmable access points, base stations and client devices intended to
support real-world end users with mobile devices and applications. The outdoor
testbed (Fig. 4) makes it possible to smoothly migrate network code from emulation
to real-world evaluation all within the same software framework provided by
ORBIT. Further details about the testbed design and key components are given in
the sections that follow.

ORBIT: Wireless Experimentation 69

oy

& s gy i i
Busch Campus Outdoor .
] Wireless Deployment

T T =

Fig. 4 Outdoor ORBIT deployment on Rutgers Busch Campus

3 ORBIT Testbed Technical Details

3.1 ORBIT System

The ORBIT testbed consists of a set of programmable wireless networking
resources including sandboxes for small-scale experimentation and debugging, the
ORBIT radio grid emulator for large-scale reproducible experimentation, and the
ORBIT outdoor network for increased realism and real-world end-users. All testbed
resources share a common software framework in order to enable researchers to
migrate code from one resource to another as the scale or realism of the experiment
increases.

The ORBIT large-scale radio grid emulator [14—18] consists of an array of
~20 x 20 open-access programmable nodes each with multiple 802.11a,b,g or other
(Bluetooth [22], Zigbee [23], GNU [24]) radio cards. The radio nodes are connected
to an array of backend servers over a switched Ethernet network, with separate
physical interfaces for data, management and control. Interference sources and
spectrum monitoring equipment are also integrated into the radio grid as shown in
Fig. 5. Users of the grid emulator system log into an experiment management server
which executes experiments involving network topologies and protocol software
specified using an ns2 like scripting language. A radio mapping algorithm [25, 26]
which uses controllable noise sources spaced across the grid to emulate the effect of
physical distance is used to map real-world wireless network scenarios to specific
nodes in the grid.

70 D. Raychaudhuri et al.

VPN Gateway Gigabit backbone s V\
to Fixed Network
Wide-Area Testbed @ \y | Service Cluster
& v
~ s

N

n nodes

Data
plans
Ethernst

S 2

m nodes

QL

Open
Interface
\ Mobile
. 5 —
S~ —t — o Qu i
Management 4 T | ;
plane

Ethernet
4 ¢ BRI

Testbed \\-A'- “ Spectrum Interference
‘_Controller Confiauration Measurement Sources -,

ﬁlnhrnet VPN Gatewav /

Fig. 5 ORBIT radio grid architecture

The radio grid outlined above was implemented in several phases starting
in September 2003. First, a 64-node prototype grid was set up in an available
laboratory environment with the objective of validating the design and testing
its experimental capabilities with a few internal users. After validating feasibility
with the small-scale prototype, the 400-node ORBIT radio grid was installed in
a custom-built facility (shown earlier in Fig. 2) with ~5000 sq-ft of RF shielded
space and ceiling pre-wiring to support power and Ethernet connectivity to the
20 x 20 grid. The ORBIT nodes in this setup are suspended from the ceiling with
grid spacing of 1 m; each node is equipped with two 802.11a,b,g radio cards
and optionally Bluetooth, Zigbee and GNU radios. The facility also includes a
separate control room and a separate switching and server rack area for the testbed’s
backend equipment. The floor area is kept clear for use by robotic nodes or
sensor deployments needed for certain mobility and Internet of Things experiments
respectively.

The 400-node radio grid testbed was first released for experimental use in
October 2005. Since then, the ORBIT testbed has gone through two equipment
upgrade cycles in order to meet emerging experimental requirements and stay on
the “Moore’s Law” curve for computing and switching platforms. The first set
of upgrades (carried out between 2008-2010) focused on adding USRP [27] and

ORBIT: Wireless Experimentation 71

Bluetooth Atheros | | Atheros

miniPCI miniPCI
e 802.11 802.11
Lo alblg alblg
e :
512M8| [CPU Jp—m——?[m
RAM VIA Seg
. Resioia) _tcontron
20 GB J [Gigabit |
DISK | —— Ethemnet
J 22 Mnz L__(data) |
g
VAC [Power | . cPu | 10 BaseT |
| Supply patireset +—— | Rabbit Semi | Ethernet
J== votemp , LRCM3T00 | (chyy |
- 4 =) % *5 oy 4 + fUN1 NodeldBox /
(a) Top view (b) Block diagram

Fig. 6 First Gen ORBIT radio node. (a) Top view. (b) Block diagram

USRP?2 software-defined radios (SDR) to the grid, adding programmable OpenFlow
switches to the testbed backend, and introducing outdoor WiMax capability. The
second upgrade (2010-2014) was aimed at replacing the original ORBIT radio
nodes with current i7 platforms with CPU speeds sufficient for wideband SDR
support while also introducing a small number of second generation SDR units.

In the following sections, we provide an overview of the main hardware and
software components that constitute the ORBIT testbed.

3.2 ORBIT Hardware

ORBIT radio node platform: ORBIT radio nodes serve as the primary computing
platform for user experiments. The Gen 1 node (Fig. 6) was custom designed around
a 1 GHz VIA C3 processor with 512 MB of RAM and 20 GB of hard disk. Each
platform also includes two wired 1000 BaseT Ethernet interfaces for experimental
data and control. In addition, each node contains a CM (chassis manager) module
with Ethernet connectivity to be used for remote monitoring and rebooting of the
node independent of experiments running on the main processor. A batch of 500
commercial grade ORBIT nodes with this design were manufactured with the help
of an industry partner and deployed on the 400-node radio grid. These so called
“ORBIT yellow nodes” were also used as vehicular nodes and for external ORBIT
deployments in the field or at partner sites.

During 2010-2014, an infrastructure upgrade project resulted in a new second
generation node (see Fig. 7) based on off-the-shelf mini-ITX form factor moth-
erboards with a combination of interfaces (mini-PCI and mini-PCI Express and
USB 3.0) that are used to plug in standard wireless devices (Wi-Fi, WiMAX,
Bluetooth etc.). In addition, platforms are equipped with at least one full high-
speed bus interface enabling expansion with high performance radio devices. Each

72 D. Raychaudhuri et al.

Fig. 7 2™ Gen ORBIT Node

Fig. 8 Outdoor vehicular
deployments with second gen
ORBIT node. (a) New
ORBIT node in vehicle trunk.
(b) External antenna
installation

of the nodes is equipped with at least one 802.11 a/b/g/n device and one combo
802.11/802.16 device (Intel WiMAX/Wi-Fi Link 5350 device).

A vehicular use version of the second generation ORBIT radio node has also been
produced using LV-67B and F processor boards. Figure 8 shows a typical vehicular
node deployment for use with the outdoor network. This version of the radio node
includes both WiFi and WiMax interfaces as needed to support heterogeneous
wireless experiments using outdoor WiFi AP’s and the open WiMax base station.

Chassis Manager: The ORBIT Chassis Manager (CM) is a simple, reliable,
platform-independent subsystem for managing and autonomously monitoring the
status of each node in the ORBIT network testbed. As shown in Fig. 9, each ORBIT
grid node consists of one Radio Node with two radio interfaces, two Ethernet
interfaces for experiment control and data, and one Chassis Manager (CM) with
a separate Ethernet network interface. The Radio nodes are positioned about 1 m
apartin a rectangular grid. Each CM is tightly coupled with its Radio Node host. CM
subsystems are also used with non-grid support nodes. The CMC is the control and
monitoring manager for all CM elements of ORBIT. An “Experiment Controller”
(EC), also referred to as the “node handler”, is the ORBIT system component that
configures the grid of Radio Nodes (through the CMC service) for each experiment.
The non-Grid elements of the ORBIT lab are not normally in the management
domain of the EC.

ORBIT: Wireless Experimentation 73

Data Ctrl
ENET ENET

~
~

cm3 \}ﬂ

Hardware Orblt

Interface Node

—n

Mgmt Lantronix
ENET Xport AR

Radio 2

™

J

Fig. 9 ORBIT Node Chassis Manager (CM) and photo of the CM board

Each Chassis Manager is used to monitor the operating status of one node. It can
determine out-of-limit voltage and temperature alarm conditions, and can regain
control of the Radio Node when the system must return to a known state. Managing
a system in this manner reduces the human resources needed to monitor hundreds
of nodes. The CM subsystem also aids debugging by providing telnet to the system
console of the Radio Node, as well as telnet access to a CM diagnostic console.

802.11a,b,g,n Radios: ORBIT uses Atheros and Intel 802.11a,b,g wireless cards
for many short-range radio experiments. The drivers for these cards are compatible
with rest of the ORBIT software framework and are regularly upgraded with new
open source releases from the Linux community. Additionally, ORBIT facilitates
asynchronous get and set operations of PHY and MAC parameters on a per-packet
basis in order to provide experimenters with control over key parameters.

RF instrumentation: The ORBIT grid includes equipment for measurement
of radio signal levels and supports injection of various types of artificial RF
interference (white noise, colored noise, microwave oven like noise etc.) inside
the grid. The interference generator is based on the RF Vector Signal Generator
while the spectrum measurements are done using Vector Signal Analyzers. The
noise injection framework is integrated into the management framework and runs
as a service on ORBIT which has also been used as a means of topology creation
for evaluating performance of multi-hop ad hoc networks [28].

GNU USRP2 Radios: The GNU Universal Software Radio Peripheral (USR-
P/USRP2) software radio board has been interfaced with the ORBIT node via the
USB 2.0 interface (see Fig. 10). The USRP provides a set of RF daughter boards to
perform analog RF up and down conversion, 1 million gates of FPGA, typically used
to convert to and from complex baseband, 4 high speed A/Ds (64 MS/s 12-bit), 4
high speed D/As (128 MS/s 14-bit) and a USB 2.0 controller chip. This GNU/URSP
setup is available on ~50 ORBIT radio grid nodes and a sandbox, and this capability
is being used extensively by the ORBIT experimenter community.

74 D. Raychaudhuri et al.

Fig. 10 GNU/USRP board

Fig. 11 2" Generation SDR
Radio Board

Second Gen Wideband Software Radios: A number of second generation
SDR’s (see Fig. 11) have also been deployed on the grid to support wideband
experiments beyond the capability of USRP radios. The SDR hardware being used
was designed, integrated and validated at U Colorado and WINLAB with support
from the GENI program [19]. The SDR module consists of two boards—an off-the
shelf Avnet FPGA system card, and wideband SDR radio front ends custom-made
by Radio Systems Technology. The system card supports variety of Xilinx Virtex
5 components (LX50T, SX50T,SX95T, LX110T and LX155T) two programmable
LVDS clock generators, EXP expansion slot, 64 MB DDR2 SDRAM, 256 MB
DDR2 SODIMM RAM, 16 MB Flash, RS-232 serial port, Cypress USB 2.0
Controller, Two GbE PHYs and multiple GTP Interfaces.

WiMAX Radios: 4G cellular capability was added to the ORBIT testbed starting
in 2009 using WiMAX (802.16¢) base stations from NEC Corp. and mobile
WiMAX client devices. The NEC WiMAX base-station hardware (photo in Fig. 12)
is a SU rack based system which consists of multiple Channel Cards (CHC) and a
Network Interface Card. The shelf can be populated with up to three channel cards,
each supporting one sector for a maximum of three sectors. The BS operates in

ORBIT: Wireless Experimentation 75

Fig. 12 WiMAX equipment
deployed for ORBIT outdoor
testbed

the 2.5 GHz or the 3.5 GHz bands and can be tuned to use either 5, 7 or 10 MHz
channels. At the MAC frame level, 5 ms frames are supported as per the 802.16e
standard. The TDD standard for multiplexing is supported where the sub-channels
for the Downlink (DL) and Uplink (UL) can be partitioned in multiple time-
frequency configurations. The base-station supports standard adaptive modulation
schemes based on QPSK, 16QAM and 64QAM. The interface card provides one
Ethernet Interface (10/100/1000) which is used to connect to a high performance
controller PC. The base station has been tested for radio coverage and performance
in realistic urban environments—typical coverage radius is ~3-5 km, and peak
service bit-rates achievable range from 15-30 Mbps depending on operating mode
and terrain.

The 802.16e base station allocates time-frequency resources on the OFDMA
link with a number of service classes as specified in the standard—these include
unsolicited grant service (UGS), expedited real time polling service (ertPS), real-
time polling service (rtPS), non-real time polling (nrtPS) and best effort (BE).
The radio module as currently implemented includes scheduler support for the
above service classes in strict priority order, with round-robin, or weighted round-
robin being used to serve multiple queues within each service class. The GENI
slice scheduling module implemented in the external PC controller is responsible
for mapping “Rspec” requirements (such as bandwidth or delay) to the available
802.16e common packet layer services through the open API. Slices which do not
require bandwidth guarantees can be allocated to the nrtPS class, while slices with
specific bandwidth requirements can be allocated to the UGS category.

Figure 13 shows the software architecture of the WiMax base station which
has been designed to support virtualization of radio resources. The controller
provides support for multiple slices assigned to the GENI WiMAX node. Each
slice runs within its own virtual machine [29] (using software such as UML—User
Mode Linux). Each VM is capable of providing multiple virtual interfaces, so that
programs loaded on a slice that runs within a virtual machine can emulate its own

76 D. Raychaudhuri et al.

4 N\) ())
umL VM2 VM3

VM1

Fig. 13 GENI Base Station Node Controller (GBSN) architecture

router and perform IP routing. Virtual interfaces are mapped to physical interfaces
based on the next hop for a virtual interface. The controller receives IP packets from
the base station on the R6+ interface. When a packet is received, it is forwarded
to the appropriate slice for further processing. The outgoing IP packets from a slice
are placed on queues specific to a virtual interface. Outgoing packets on virtual
interfaces mapped to the layer 2 interface of the WiMAX base station are tagged so
that they can be assigned traffic class and bandwidth parameters (BE, ertPS, rtPS
etc.) [30] as determined by the flow CID (connection ID).

The L2 base station control software on the external controller provides APIs to
both control Layer 2 parameters and also to receive L2 specific information from the
base station. An experimenter’s program within a slice (obtained through the OMF
control interface) can use these APIs to modify L2 parameters as well as receive L2
specific data both at load time and also at run time.

Open LTE Base Stations: In view of the importance of LTE for cellular access,
an ongoing upgrade to ORBIT aims to migrate current WiMax equipment in ORBIT
to LTE and also provide experimenters with the capability of implementing “soft
LTE” on software defined radios in the grid. In keeping with the programmability
and virtualization requirements of ORBIT and GENI testbeds, open LTE base
stations under development are also based on the open VSwitch model used for
WiMax. The basic idea is to replace all the LTE GW, MME, Handoff and other
functionality with software modules in the Aggregate Manager with southbound
interfaces to the base station hardware and northbound interfaces to the access
network. The plan calls for software-based LTE implementations, either open
source (e.g. bellard.org [31]) or commercial (e.g. Amarisoft [32]) on either USRP2
platform or second generation SDR platforms described earlier.

Backend Servers and Network Equipment: Backend servers in ORBIT are
used for a number of important functions. They provide the web-based experimenter
interface used to access ORBIT, support multiple user accounts, serve as repositories

ORBIT: Wireless Experimentation 77

PRONTO 3200 A& 1P8800
sw-ol-cac sw-core-lop. NetFPGA
orbit-lab.org of2.orbit-lab.org
= ‘ -~ o
IPBEOO

sw-dmz-top.orbit-lab.org

LEGEND
OpenFiow
Enabled Switch

Rutgers Core

PRONTO 3290

sw-arb-core.
orbit-lab.org

OpenFlow
Enabled Router

Access Router
PRONTO 3290 (et OF)
sw-cs-lop

L2

NetFPGA
i oft orbitlab.org m
5
$ = "““ MEGPI PP
- X {Philadelphia)

- 2

s E30
0
. 30 L3
L " orbit-lab
) WY, (RU Network)

1P8a00
sw-top.

i orbit-lab.org
i PRONTO 3780

e sw-agg-top.

i

IP&800
sweoutdoor-top.orbit-lab.org

1P8800 arbit-lab.org,
sw-sb-01.orbit-lab.org \ el
- > 1P8800
1P&800 sw-outside.
sw-sb-02.orbit-lab.arg orbit-lab.org
\ waf 5
— winlab
(RU Network)
PRONTO
3290 . -+ y o o DELL 8024F
feaparimarniar =] sw-rutgers
SR Q 4 rutgers edu
sw-da-01 \
- PRONTO 3290 (DYNES)
awcdate \ -, sw-office.

sw-da-03
sw-da-04
sw-da-05
sw-da-06
sweda-07
sw-da-08
sw-da-09

winlab rutgers.edu

PRONTO 3290
sw-cubo,
winlab.rutgers.edu

1P8800
sw-lop.

winlab.rutgers.edu

Fig. 14 ORBIT switching infrastructure with OpenFlow upgrade

for code and data, and run the experiment controller software necessary for
experiment imaging, execution and measurements. Backend servers can also be
used by experimenters to accelerate protocol stack computations carried out on the
ORBIT radio node. Also, servers are used to support experiment virtualization and
federation with wired network testbeds such as GENI, Emulab, and PlanetLab as
required.

ORBIT uses an SDN switching backplane based on OpenFlow switches includ-
ing the NEC IP8800 and Pronto. The programmable OpenFlow feature helps to
improve manageability of the backend infrastructure and can be used to implement
priorities between control and data traffic switching, etc. OpenFlow is also a good
platform for adding virtualization to the radio grid testbed since each virtual network
can be dynamically configured with its own VLAN service, etc. Figure 14 shows
the overall connectivity of the ORBIT testbed to the Rutgers core network and on
to the Internet2/GENI national backbones. ORBIT currently has a 1 Gbps dedicated
connection to Internet2 via the Magpi/Internet2 PoP in Philadelphia and an increase
to 10 Gbps is planned.

ORBIT Radio Grid Resources: ORBIT testbed resources currently consist of
436 nodes, 26 Servers, and 48 OpenFlow (SDN) Ethernet switches. Nodes, servers,
and switches accessible to the experimenters are grouped into ORBIT resources
which are referred to as “grid”, “sb1” through “sb8” and “outdoor”. The main grid

78 D. Raychaudhuri et al.

consists of the 400 nodes, a server that acts as a console, and 30 switches that are
separated into control, data, and CM subnets. The nine sandboxes consist of two
nodes, a console server, and a single managed switch which aggregates all three
subnets. There are separate sandboxes for experimenters to debug and conduct
small experiments with WiMax/cellular, SDR, OpenFlow, etc. Each resource is
on a separate subnet following RFC 1981 and all are routed back to a common
firewall which controls access to servers and other infrastructure resources. Each
resource shares the same ORBIT back-end which currently consists of 17 servers
connected via gigabit Ethernet switches. The back-end servers run a variety of
services ranging from standard services, such as DNS and DHCP, to ORBIT specific
services (Fig. 15).

3.3 ORBIT Software

The ORBIT architecture incorporates key software components that facilitate
efficient operation and quick adoption by end users. The software consist of two
major components: ORBIT Management Framework (OMF) and ORBIT Measure-
ment Collection Framework. The OMF is a collection of services and software

&

7l

U}

v
74

B Deduk VLA s
[—

sl WERS 3100 10001
o WIS 2EBI60 10401

. £l

0RB]1 A wies B3BI00 w0201 3

NETWORK / SERVICE oMo ninee Ieer s
DIAGRAM Vet mmos iabres BRI B meme—teeme

Fig. 15 ORBIT resources overview

ORBIT: Wireless Experimentation 79

Testbed A
Control & Management Network

% Expariment Experimental Network 1 ||
Description

Fig. 16 ORBIT software overview

components that is used for testbed management and experiment coordination.
Major OMF components are: (1) collection of Aggregate Managers (AMs) that
are in charge of various system level components (like Chassis Manager Controller
(CMC) AM, Disk Image Manager, etc.); (2) ORBIT User portal (Control Panel) that
is facilitating user interaction with various AMs and is also displaying the state of
the testbed; (3) Experiment Controller (EC) that is in charge of orchestrating and
executing experiments; and (4) Resource Controller (RC) that is running on each
node—see Fig. 16.

The Chassis Manager Controller (CMC) controls and monitors all CMs in the
ORBIT grid and hence facilitates remote controllability of the ORBIT testbed. The
ORBIT User Interface handles secure user access and scheduling of experiments
on the 400-node main grid and the smaller sandboxes. Users schedule experiment
time on testbed resources, using a web interface access through www.orbit-lab.org.
Users have complete control over testbed resources during their assigned time slot.
This is achieved by means of firewalls and sets of security rules that govern all
traffic to and from each testbed. The Experiment Management Service software
(Fig. 17) is an optional feature provided to ease usability by certain classes of
experimenters, particularly those who are trying to larger-scale experiments or are
migrating up from ns2/ns3 simulation to more realistic emulation studies. This part
of the software was designed to provide higher level abstractions to experimenters
in order to make it easier to use the testbed. The core of this service is the
Experiment Controller (EC) which orchestrates the described experiment by issuing
appropriate commands to the specified nodes, and keeping track of their execution. It
communicates with the Resource Controller (RC) ¢ software component that resides
on each node. The experiment is specified in the form of a Ruby script with testbed
specific extensions (OEDL—ORBIT Experiment Description Language). During
the execution, EC interprets the OEDL statements in the script and disseminates
relevant execution instructions over logical transport channel (xmpp/multicast) to
the specified nodes. The EC-RC pair (a.k.a. NodeHandler-NodeAgent) thus enables

http://www.orbit-lab.org/

80 D. Raychaudhuri et al.
Experiment & ges?uTl(:e
Services Controller | QUUCLEL
|CMC t’\: 5
—
Power on/off % I f
nodes Experiment O inicufomti
= initializations
Script =] and configuration
S e.g Intel, Atheros,
Install/save < Cisco B
images 8_— r_
|3 ==
—— - L —
Initialize DB for 0 > T—
measurement Applicati‘c[ns
collection \
Repository T

Fig. 17 Experiment management service

automation of experiments, and configuration of wireless and application parame-
ters. An experiment server maintains the Ruby scripts of experiment descriptions.
ORBIT’s Frisbee server [33] loads the hard disk images onto all the specified nodes
using a scalable multicast protocol.

ORBIT’s Measurement Collection Framework (Fig. 18) is a special feature
designed to facilitate collection of experimental results. Data collection efficiency
is important for experiments involving large numbers of nodes in which traffic from
measurement traces can overload the control network and management servers.
The core of this framework is the ORBIT Measurement Library (OML). Over the
years, OML went through multiple iterations in order to better support scaling.
In the original implementation, the collection service used a 2-tier database with
a fast Berkeley DB as front-end, and standard mysql as backend. The latest
implementation supports two database backends: SQLite and PostgreSQL. The
ORBIT Measurement Library (OML) [18] provides API’s that may be incorporated
in the user’s experiment software to automate result collection. The data collection
operates in a separate wired subnet that does not interfere with the actual experi-
ment. All OML measurements are stored in a database at runtime for subsequent
post-processing by the experimenter, while freeing the testbed facility for the next
experiment. Users can also specify the granularity of measurements (sample or time
based) and some preprocessing of results (sum, max, min, averages etc). In addition
to direct database access on the repository server, experimenters can use the Result
AM and it’s REST API for remote access to experiment results.

In addition to RC, ORBIT node software consists of vendor provided device
drivers some of which are also accessible through a high-level API called Libmac
(Fig. 19) [34] which provides application-level access to PHY/MAC parameters.

ORBIT: Wireless Experimentation 81

User application

Orbit node Collection server

E OML interface to user application

OML data filter, id = xx

OML SQL module

OML data filter, id = yy

I

pluggable filters, chosen

OML XDR decoder

OML data filter, id = zz
g OML transport layer &

XDR Encoded data over multicast channel.

by the experimenter

Berkeley DB OML transport layer

Fig. 18 ORBIT measurement framework

L]
]
‘
802.11 interface :
parameters.

802.11 frames +
interface parameters. User

space
I
I
]
I
I
I
I
I
]
I
]

Control

space

Fig. 19 Node Software architecture and Libmac

Using this library, applications may inject and capture MAC layer frames, manip-
ulate wireless interface parameters at both aggregate and per-frame levels, and
communicate wireless interface parameters over the air on a per-frame basis.

In addition, the ORBIT Traffic Generator (OTG) is a tool for generating
configurable traffic used to load the network and measure performance. Its default
operation includes the OML library to collect common cross-layer parameters on a
per-packet basis during experiment run-time.

Additional experimental support services in ORBIT include a fopology configu-
ration service which sets noise injection parameters on the grid to create specified
topologies [25, 26] Another available feature is mobility emulation [35] based on a

82 D. Raychaudhuri et al.

software switching approach that moves a “virtual” radio node along a pre-specified
trajectory. The virtual radio node is implemented using the concept of a “mobility
server” in the grid’s backend cluster. Driver level packets from nodes along the
virtual path are forwarded over switched Ethernet to the mobility server which
anchors the protocol stack for that virtual node.

Over the years, both OMF and OML were used by variety of testbeds and are
now independent open-source projects [mytestbed.net reference].

3.4 ORBIT Experiment Life-Cycle

Experimenters interface: Users of the ORBIT radio grid must first schedule
their experiment using the web-based interface at the portal www.orbit-lab.org.
Experimenters are able to view available experiment slots (which can be 1-2 h in
duration) on a web page and make a reservation for their desired slot (Fig. 20). The
current allocation policy is first-come-first-served (FCFS), and during busy periods,
some users will negotiate priority requests or slot swaps on an informal basis using
the orbit-user mailing list.

Once a time slot has been obtained, an experiment consists of the following steps:

. Selection of nodes which will be a part of the experiment
. Selecting the roles played by each of these nodes in the experiment (sender,
receiver, AP, forwarder etc)
. Deploying necessary software on each node corresponding to the role they play
4. Configuration of wireless interfaces (ad-hoc or managed mode, power levels,
channel settings etc)

5. Collecting results at run-time and collating them (statistical analysis or simple
time plots)

N —

W

These steps can be broadly divided into two main categories: choreographing an
experiment and measurement collection.

Choreographing an Experiment: Experiments are choreographed using the
experiment management service (EC software) outlined earlier. The user specifies
the experiment using a Ruby script which defines nodes, their respective roles and
the specific measurements to be collected. The script also includes parameters and
traffic settings, which can be set for the whole experiment, or can be dynamically
varied during the course of an experiment. It is noted that ORBIT also allows expert
users to bypass the OMF and write their own console software for experimental
control and node setup.

A sample experimental script is shown in Fig. 21 on the left. In this experiment,
node 1-2 sends UDP datagrams of 1024 bytes at the rate of 300 Kbps to the receiver
1-4. The wireless settings use 802.11b with the receiver acting as an AP (this is done
using the “Master” mode on the card) and the sender is the client (using the setting
“Managed” on the card. Note how the actual interfaces are abstracted (w0) to hide
the hardware specific interface nomenclature (e.g. Atheros based cards show up as
athX whereas Intel and Cisco cards show up as ethX).

http://www.orbit-lab.org/

ORBIT: Wireless Experimentation 83

e
G- O D ————— —
) — L S

--\A-—--é D s s msmes O O c—

Open-Access Research Testbed for Next-Generation Wireless Networks

S - T ceeee T

Wielc ome
CRBIY = & - e L Sty SmAdtas Pk Sl rat gt Vel Gsegrad 15 rapye regridetty of
pr— . i e ST v Shestann. of frbat s Srul gl AT o ot

Tre latr atry Baled S TRl Fm et S a0 LA 8 el S{ESTS R e ire e 8 L e St grel 4 S0 0T 1L ce
B L e e ot T e sy

® T Baem pratece o mewAtetion Sorcepts heve been vebdeted on the leh emmietin plettrm. Lvers < an ey ste Shee u
B vt @ T abhe tem of bath begh- sgatd telier {30} Sred BOT L1 wrelets Stiewe T & Fea-wertl setl

2 B LA grans Brem Sha MRS der T Mateieieg Bmseact Teitheds (MET) prapran The geapect o 8
iy tow, wmarg

P s e
fewrwts of Sra eittand fefireare) Bferwed fopms of ety @ pms——t
The teuttud & oy ataihte fur reote or e ate SAETs by St rere et A eteraby ABEtr rer et b gartraey sl bed
PP T e SETRAAETS Bre STty SO S B BTy Sl o0 eSees
A raea
= et e gy (P S M) - e by e o CRTLDS §F SO AT

e s g — e Loy s e B el

o et St R o e —

= e e e e e

e-H- SO Y]

i P —
ORBIT Reservation Calendar
06/06/ 2006 - 06/08/ 2006

m, T -“ .q 3-11 -_ln _-.-‘...a-‘.,.-.‘u L.-‘. T e B Y e R g e

o O e s s e S)
| I > _EEEEE i 1 §e2] Joonifeasil
i ! 1| li 1] 1

T e BT e ey $ﬂ1 o s Gt S e o i i i e i

| e e Wl L1 [

Fig. 20 Experiment scheduling interface on ORBIT web portal

84

Fig. 21 Sample
Experimental Script

D. Raychaudhuri et al.

—

Experiment.name = "tutorial-1"

Experiment.project = "orbit:tutorial"'

Define settings used in the experiment

defProperty('rate’, 300, Kbps sent from sender”)

defProperty(‘packetSize!, 1024, "Packet size, bytes)

Define nodes used in experiment

defNodes('sender’, [1,2]) {|node

assume |I'|L' 'I'ilL[]I] i(]l:lg{' o]]L' on di?\']i
nudu,in'l;l;gu =il

tprotosender”, |

'destination] lost' '192.168.1.4,

'packetSize’ == Experiment.property

nudt‘_pi'urt oy]w[_"r

("packetSize”),

'rate’ => Experiment.property("rate”),
'protocol’ == "udp’
|\I
L
_n i
node.net.wll.mode = "managed
b
)
defNodes("receiver', [1,4]) 1 | node|
assume the right image to be on disk
node.image = nil
node.prototype(test:protorreceiver’ | |
Thostname’ "192.168.1.4',

r]“'{l[’f'l(_'[ll. == I'lldl‘l

1
)
nodenct.wl.mode = "master”

allNodes.netaw || w)|
w.type = b’
w.essid = "helloworld"
waip = "%6192.168.%0x. oy

Now, start the application

whenAlllnstalled() | [node
Fxpertment.props.packetSize = 1024
|".\pL'fiuu'nl.]\rl)p:\'.r:lrt' = 300

allNodes.start Applications
wait 60
:l"\tJth's.:~'|t:p.\|)p|it::llit:[1:~'
wait 10

| ".\]n'rinu'nl.dmu'

The EC interprets the script and communicates with the Chassis Manager
Controller to power on the specified nodes involved in the experiment. It then awaits
nodes to boot up and the RC to report back to the EC. In software terminology, this is
like a barrier implementation that waits until all nodes have reported back to the EC.

Once the RC have reported back, the EC then requests the RC to apply initial
configuration settings for the wireless interfaces. Note that the RC deduce which
wireless card is installed on the nodes, load the appropriate driver module and issue
commands to configure the same. The testbed currently supports Atheros-based

ORBIT: Wireless Experimentation 85

and Intel-based 802.11a/b/g cards. Thus, the RC provides a simple abstraction of
a wireless interface to the experimenter. After the interfaces have been configured,
the EC directs each node to launch the application based on its specified roles.

Experimental Measurements: During the reserved slot, users are allowed
access to the ORBIT console (through SSH) and can run their experiments using
scripts similar to the example outlined above from the command-line. As explained
earlier, the measurement capability is implemented via the OML software [18]. In
order to use the measurement framework, the user only needs to invoke simple
library calls.

By enabling a type-safe transport layer, OML also supports reporting of standard
data types such as int, float, double, string, etc. The measurements can be either time
based or sample based. In addition, the OML framework allows run-time filters to
be applied to either of these measurement techniques to report minimum, maximum,
average or sum of time-based or sample-based measurements. A separate run-time
and post-experiment database allows users to view results during experiment run-
time as well as to archive them for future retrievals and offline analysis as shown in
Fig. 22. The reader is referred to [36] for examples of specific ORBIT experiments
and their results.

Fe ER Won Fesim Toch ok I]

Quw-Q-NAG P s @ -5 8 BB

Bl L g ————y—— v Be
ORBIT Open Access Research Testbed for Next-Generation Wireless Networks

Orbit Experiment Results:

Please choose the resalts to be displayed

Nodel-800 Node2-8 0] Node3-8 0 Noded-B0] Neded-80] Nedob-5 0 Nede?75 0] Nee8-30
Nodel-70) Node2-7[] Nede3-7[] Nodet-7 (] Nede$-7[] Heded-7[0] Nede7-7 [Nede8-70]
Neodet-6 00 Node2-% 0] Noded3-6 [Noded-60] Nedas-6 0] Neded-6 0] Neda7-6 0 Nedas 40
Hodel-300 Node2-3 0] Node3-30) Noded-30 Neded-30] Nedeh-300 Nede7-30 Nede3-30
Hodel4 [Node24 [Node34 [Noded-4) NodeS-4 [Nodet-4 [Node7-4 0 NodeS4 0
Node1-30) Node2-3 1) Node3-3) Noded.30) Nede3-3[] Nede$-3] Nede?-30) Nodes-30
Hedel-200 Node2-2 [0 Node3-20 Noded-20] NedeS-200 Nedes-2[0 Nede7-2 [0 Nede3-200
Nodel-100 Nede2-1 0 Node3-1 0 Noded-1 O NedeS-1 O Nede$-1 0 Hode?-1 0 Nede-10

Trroughput R$SI

Wi
{ | (B

Fig. 22 Runtime measurement interface

86 D. Raychaudhuri et al.
4 Experimental Research Enabled by ORBIT

ORBIT serves as a community testbed for a broad cross-section of researchers
working on next-generation wireless networks and the future Internet. The range
of research topics currently supported by ORBIT testbed experiments include:

— Next-generation wireless networks (dynamic spectrum, cognitive radio, mesh,
cross-layer)

— Future internet architectures (hybrid networks, mobility protocols, delay-tolerant
networks, content services, transport-layer protocols)

— Security in wireless systems (secure routing, security with physical layer rein-
forcements, denial-of-service in wireless networks)

— New wireless and mobile services (peer-to-peer, content caching, automotive
safety, location-aware applications, mobile social networks)

The actual mix of experiments running on the ORBIT facility is user-driven,
and over time may be expected to reflect changing priorities due to emerging
architectural themes or technologies of interest to the research community. Figure 23
provides a summary of the experiment mix running on the testbed by category
in ~2007, 2012 and 2015 (projected). From the figure, it can be seen that the
2012 snapshot includes a growing percentage of software-defined radio (SDR)
and software-defined networking (SDN) experiments as well as cellular/WiMAX
experiments both in the sandbox and outdoor GENI campus deployment. There
has also been an increase in experiments aimed at evaluating clean-slate protocol
design components (such as name resolution or inter-domain routing) at scale

20

% Expts 15

10 m 2007
= 2012

2015

Fig. 23 Summary of Experiments Run on ORBIT

ORBIT: Wireless Experimentation 87

with ~100’s to ~1000’s of routers. Wireless network security, dynamic spectrum
access and radio resource management for dense WiFi networks also continue to
be important classes of experiments generated by the wireless research community.
Looking at the estimates for 2015, we anticipate an increase in several categories
including dynamic spectrum/SDR, cooperative PHY/network MIMO, clean-slate
Internet architecture, virtual networks and cloud mobile applications.

While it is not possible to provide an exhaustive list of experiments, a few
representative samples of experiments run on the ORBIT testbed are given in the
subsections below:

4.1 Radio Channel Signature Based Encryption

Secure communication over wireless networks is an important research area.
Because of the broadcast nature of the wireless channel, it is possible for an
adversary to hear communication between two entities. Therefore, strong encryption
is necessary to encrypt all data transmitted wirelessly. Encryption requires a secret
key exchange between the two parties interested in communicating. However, an
adversary might be able to “hear” the key exchange process. In [37], the authors
propose a novel scheme for extracting the encryption key from the time-varying,
stochastic mapping between the transmitted and received signals, without an explicit
key establishment process. This mapping is both, location-specific and reciprocal,
i.e., the mapping is the same whether Alice or Bob is the transmitter. Further, this
time-varying mapping de-correlates over distances of the order of half a wavelength
which is 6.25 cm for a 2.4 GHz transmission. Thus the reciprocity and fast de-
correlation properties of fading channels, allow us to generate a common, secret
cryptographic key at Alice and Bob such that Eve gets no information about the
key.

Extensive measurements were performed on the ORBIT testbed using available
software-defined radio (SDR) nodes located at three points on the grid (i.e.
corresponding to Alice, Bob and Eve). Nodes constantly send probe messages to
detect the time varying nature of their channels. Received signal strength indicators
(RSSI) reported by the receivers (see Fig. 24) were used to derive estimates of the
scalar channel response. The observed RSS values confirm the de-correlation and
reciprocity properties. The level crossing and excursion profiles of the RSSs are then
analyzed to extract a sequence of bits that form the encryption key. Experiments
confirmed that the level crossing technique can provide a reliable method for
extracting secret bits at about ~1 secret bit per second in an indoor environment
[37]. The ORBIT radio grid setup enables PHY-assisted security experiments of the
kind presented above.

88 D. Raychaudhuri et al.
SR | - Alieesrecd RSS!
1101001193110 101Mm1I11 1,
5 TReygenerated ittty Bobs‘recd.RSSI
. i - 11011000100000000000 —a—n]”
. 2 by Alice & Bob: Huééueo;oanunnnoaqu ,,l,,b![S
§ auoau:uanouunmlu]%t —¥—"0" bits
: 011101111010111111¢1 . -
60k BOb_’Evef 11111111100000000080 Eve's RSSI from Alice
: 000010111110010100 4 '
2 S RRRREERRERFSNRE) EVCSRSSIﬁ-omBGb
= FO11011111 LALAR ol 7
4 100000001000 w b
'S5 50 000100000004 ! W e
s 8 3. 2
g i1 4 - .-
7L
G40
A1 ol # 'REL Alice > Eve | il |
: ; 2 po- 13 don . . SR .
A b L TR I L il T
1 S £, .. e
20 Long sfrifigs of 1s & 0s PR *— Alice - Bob |
2.15 2.2 2.25 23 2.35 24
MAC layer timestamp (us) x 10°

Fig. 24 Received signal strength indicator (RSSI) traces from channel based key extraction
experiment

4.2 Dynamic Spectrum Coordination in Dense
Multi-Radio Environments

Dynamic spectrum coordination between heterogeneous wireless systems is an
important open research problem in view of recently opened “TV white space” band
[38] and other proposed shared-use unlicensed bands [39]. One approach to inter-
system coordination is the use of a common spectrum coordination channel (CSCC)
[40] which provides a control mechanism for neighboring radios to identify each
other and coordinate spectrum usage. The use of a CSCC protocol enables radios
to use a variety of spectrum coordination algorithms that are designed to control
interference and maintain system throughput.

A prototype implementation of the CSCC concept was built on ORBIT, using
multi-radio nodes with Bluetooth and Wi-Fi radios. The goal was to verify the use
of CSCC control messaging to support dynamic spectrum coordination policies, and
to estimate the overheads due to control. The experimental setup on ORBIT used
an 802.11b radio for exchange of CSCC control, and a second Wi-Fi or Bluetooth
radio for data transfer. In the first set of experiments, radio nodes in a moderately
dense environment (~10 nodes per 100 sq-m) engage in pairwise UDP streaming
sessions or TCP file transfers using either Bluetooth or Wi-Fi in the same unlicensed
2.4 GHz band. The experimental setup (i.e. ORBIT node with dual radios, and
sample topology) is shown in Fig. 25.

A number of alternative spectrum sharing policies were evaluated, showing
significant system capacity gains when some form of dynamic coordination is

ORBIT: Wireless Experimentation 89

P Bluetooth link
—p 802.11g link

DO00QO OO%&OOOOOOOn
0D00gE0000@0000000
PTO0000000000000!
0000000000000 000
Dooooooogoooooooo_
NOO000000POO00O0000
DO0000000e00000000
PO0000000000000008| | 64
Doqpooogeoooooooo
aogoooo_ 00000000
DOHOOOFOOO00000000
D #0000 €®00000000000
&OOooooooooooooooo
00000000000000000

NO0000000000000000
DO0000000000000000
DO00000000000000000
DO00000000000000000

I DO000000008TTOTOOTe

W|F| D00000000000000000]Y
51 ft

Fig. 25 Experimental Setup in ORBIT for CSCC Experiments with Bluetooth and Wi-Fi Nodes

I Mo Coordination
— I BT Rate Adapt
o -:; :::em;::l;“ sseece o Bl ET Backoff Adapt
B BT Backoff Adapt g

150000

WiFi Average Session Throughput (Mbps)

w"

s 0

. o "y
WiFi offered load (bps) W Fioffered load (bps)
BT load 1Mbps BT lbad 1Mbps

(a) Wi-Fi Throughput vs. Load (b) Bluetooth Throughput vs. Load

Fig. 26 Sample Experimental Results for CSCC Experiment

implemented. Coordination algorithms considered include “BT backoff” in which
Bluetooth defers in time whenever a Wi-Fi transmission is detected, as well as “BT
rate adapt” in which permissible Bluetooth rate is computed from neighboring Wi-Fi
node information received over the control channel. From the sample results given
in Fig. 26, it is observed that significant improvements to Wi-Fi throughput are
achieved with CSCC coordination, and the gain can be as large as ~2x over the
case with no coordination.

90 D. Raychaudhuri et al.

4.3 Global Name Resolution Service (GNRS)
Jor Future Internet

ORBIT has also been used for future Internet architecture research projects which
started around 2005 and continue to be active at the time of this writing. Specific
studies conducted on ORBIT include the evaluation of the cache-and-forward (CNF)
architecture [41], prototyping of the “GSTAR” storage-aware routing protocol [42]
used in the FIA MobilityFirst architecture [43] and validation of the Global Name
Resolution Service (GNRS) [44] also proposed for the MobilityFirst architecture.
A brief summary of an ORBIT evaluation of the MobilityFirst GNRS at scale is
given below as a representative example of this class of experiments.

The GNRS is a global service which provides the dynamic binding between a
GUID (globally unique identifier) and its current network locators. There are two
challenges in this design—the first is the large scale with billions of objects, and
the second is the low latency requirement (~100 ms or lower) that supports fine-
grain mobility without disruption to application flows. The MobilityFirst project
has investigated two alternative approaches to this design: the first is based on in-
network router distributed hash table (DMap [44]), and the second uses a distributed
overlay service with locality-aware replication for each name and partitioning across
names so as to optimize latency while respecting capacity constraints [45].

The DMap method achieves scalability by utilizing existing router resources
in the network while also taking advantage of global reachability information
available from the network’s inter-domain routing protocol. Figure 27 outlines the
concept of in-network DHT—the entry for each GUID is inserted by computing
K hash functions of the GUID and using those results to determine the network
(autonomous system) at which to store the table entry. A device wishing to look up
that GUID entry can similarly compute the same K has functions and use the results
to directly fetch the table entry from the storage locations. The evaluation of DMap
is focused on determining the latency distribution for GUID lookups for specified
network topologies. An ORBIT implementation was used to conduct a reasonably
large-scale validation with ~100’s of network nodes. This was an example in which
ORBIT nodes were used as wired network nodes rather than wireless nodes, with
the SDN interconnection fabric used to set up different topologies. The Jellyfish
[46] model was used to map realistic Internet topologies on to the ORBIT grid -
each grid node represents an AS, and the number of nodes for different layers and
links between different layers is proportional to Internet AS-level topology. Internet
datasets from DIMES [47] and CAIDA [48] were used to generate realistic network
topologies. Figure 28 shows some experimental results obtained from such ORBIT
experiments, indicating 90 % latencies in the range of 200 ms, somewhat higher than
predicted by simulation. Further experiments aimed at validating the GNRS over a
global scale network are currently being conducted using GENI.

ORBIT: Wireless Experimentation 91

Global Prefix Table
Prefix AS# ";’:;::f User A (GUID = 10)
8/8 1 8888
67.10/16 55 67.10.1.1
4a/8 101 | 443211

AS 55

Query (GUID =10)

User
Wants to contact A

Fig. 27 DMap GNRS example with K=3 DHT

5 ORBIT Evolution and Future Upgrades

The ORBIT project team has followed a phased long-term strategy for continu-
ally upgrading the testbed equipment from both Moore’s Law obsolescence and
experimental requirements perspectives. Figure 29 shows how the original circa

92 D. Raychaudhuri et al.

AT e Losngs

Soent AT 2ot et
a Ton-200 by Degreen (0K GUIDH1 Sient b Toe-280 By Degree 100K BUOs

Curiame Dewousen Fureton 0¥

. |EESEBEREE

8
B
§
"
Efhrs
B
]
B
8
B

Fig. 28 GNRS Evaluation Results from ORBIT Experiments

2005 design has now gone through two generations of upgrades in terms of the
three major aspects of the testbed—the system architecture, programmable radio
nodes, and the testbed backend. As shown in the figure, the first testbed upgrade
project carried out between ~2007-10 resulted in the addition of software-defined
GNU/USRP radios on the grid, while at the same time upgrading the backend
network connectivity with emerging software-defined networks (SDN) for improved
flexibility and performance. An outdoor WiMax/cellular capability was also added
to ORBIT through a synergistic GENI project in the same time-frame. This set
of enhancements allowed us to migrate from the initial base of WiFi MAC and
ad-hoc routing experiments to then emerging topics such as dynamic spectrum
access, cellular network virtualization and wireless security. The second testbed
upgrade cycle (2010-2014) that was recently completed involved replacement of
the original ORBIT radio node (“the yellow box”) with significantly faster dual-
core 17 machines (approximately ~10x faster than the original VIA C3 nodes) along
with USRP2 replacements for the SDR units (capable of handling LTE signals) and
faster servers in the testbed backend. This second upgrade now brings the computing
platforms used in the radio grid to current CPU speeds, enabling new classes of more
processing intensive experiments such as wideband cognitive radio/DSA or clean-
slate radio PHY/MAC.

As shown in the figure, the next phase of upgrades planned for ORBIT aims to
extend the system-level capability to so-called “cloud RAN” scenarios involving
centralized cloud processing of radio signals from “thin client” nodes on the grid.
This scenario is of particular interest for emerging cellular network architectures in
view of large potential gains obtained from multi-node cooperation at the physical
layer [49]. The planned upgrade includes the use of an array of computing blades
with FPGA acceleration as required to handle the large computational workload
associated with cloud RAN scenarios. The cloud processing upgrade planned for
the ORBIT backend is also expected to be useful for a broad class of emerging
mobile cloud experiments involving mobile devices connected to cloud processing
clusters co-located with edge networks. The next phase of ORBIT will also involve
addition of emerging radio technologies, initially LTE and subsequently others such
as 802.11ad and future 5G standards.

ORBIT: Wireless Experimentation 93

ORBIT TESTBED EVOLUTION

e L R st e el e s e P T e e e

; vy £ o F N
TESTBED 1Grid Services ! OpenFlow/SDN | Server Rack | Cloud Server
BACKEND 1(04 Servers, 1 Network Upgrade N Upgrade Rack & FPGA

C | Ethernet SW) I : A | I : Acceleration;

I]

= I | . 1 | | Full SDN

| Loy 1ot T

| L L o g: !

| ORBIT Radio I URSP2 Software | | 2™ Gen ORBIT Evolved ORBIT Node
RADIO | Node - Gen 1) # Defined Radio ” Radio Node - » With wideband SDR
NODES | VIA CPU Node Extension Intel dual-core

I
I
I I i
SYSTEM I indoor Radio Grid + Outdoor #*- Outdoor WiMax + Mobile Cloud &
: (400 Nodes) WiMax, l & SDN Campus Net .] Cloud RAN capability
[} \

1 1
b T —— s b - o - - —\ < ——————— - ’ P —— - 4
Original Project (NRT) First Upgrade CRI 2™ Upgrade CRI 3" Upgrade CRI
A A A A A A A
2005 2007 2009 2011 2013 2015 2017
Year =

Fig. 29 Phased equipment upgrade strategy for ORBIT testbed

6 Links to GENI Project

ORBIT was one of the important testbed precursors which provided guidance for the
GENI project particularly in terms of technologies and software for programmable
wireless networks. Early in the GENI planning process [50], it was widely rec-
ognized that wireless/mobile scenarios are of growing importance to the Internet
and this needs to be reflected in the experimental infrastructure to be built. In the
ten years since GENI was first being planned, wireless has grown in importance
with over 1 billion smartphones in use worldwide and mobile data traffic now
exceeding that from fixed PC’s. These trends imply the need for an experimental
GENI infrastructure with extensive wireless networking capabilities at the edge,
similar in spirit to the goals of the ORBIT testbed. ORBIT developers were active
in the early definition of the GENI system, and proposed several components such
as the open WiMAX/LTE campus network, software-defined radios for dynamic
spectrum studies, vehicular networking support and others. The ORBIT radio node,
WiMAX base station and OMF controller/software have been used quite extensively
in the GENI network and the control protocols and experimental interfaces have
been harmonized to work with the overall GENI framework. OMF continues to
be used for control and management of wireless networks in GENI, and the OML
(ORBIT measurement library) has been generalized to both wired and wireless
networks in GENI. ORBIT resources have been fully federated into GENI and the
radio grid, outdoor campus network and sandboxes are currently available to users
through the GENI portal.

94

D. Raychaudhuri et al.

References

NN AW

11
12

16.

17.

18.

19.

20.
21.
22.
23.
24.
25.

26.

217.

28.

29.

30.

31.
32.

. Network Simulator 2. http://nsnam.isi.edu/nsnam/index.php/Main_Page

. OPNET simulator. http://www.opnet.com/

. Parulkar, G.: private communication, 2005

. ABONE. http://www1.cs.columbia.edu/dcc/nestor/abone/

. Grid: http://www.globus.org

. Internet2: http://www.internet2.edu

. Ertin, E., Arora, A., Ramnath, R., Nesterenko, M., Naik, V., Bapat, S., Kulathumani, V.,

Sridharan, M., Zhang, H., Cao, H., Kansei: a testbed for sensing at scale. In: Proceedings of the
4th Symposium on Information Processing in Sensor Networks (IPSN/SPOTS track) (2006).

. XBone. http://www.isi.edu/xbone/
. DETER Testbed. http://www.isi.edu/deter
10.

Wisconsin Advanced Internet Laboratory. http://wail.cs.wisc.edu/

. MIT sensor network testbed. http://mistlab.csail.mit.edu/
. PlanetLab project. http://www.planet-lab.org/

13.
14.
15.

Emulab project. http://www.emulab.net/

ORBIT Testbed. http://www.orbit-lab.org

Raychaudhuri, D.: ORBIT: Open-Access Research Testbed for Next-Generation Wireless
Networks, proposal submitted to NSF Network Research Testbeds Program, NSF award #
ANI-0335244, 2003-07, May 2003.

Raychaudhuri, D., Seskar, I., Ott, M., Ganu, S., Ramachandran, K., Kremo, H., Siracusa,
R., Liu, H., Singh, M.: Overview of the ORBIT radio grid testbed for evaluation of next-
generation wireless network protocols. In: Proceedings of the IEEE Wireless Communications
and Networking Conference (WCNC) (2005).

Ott, M., Seskar, L., Siracusa, R., Singh, M.: ORBIT testbed software architecture: supporting
experiments as a service. In: Proceedings of IEEE Tridentcom 2005, Trento, Italy, February
2005.

Singh, M., Ott, M., Seskar, 1., Kamat, P.. ORBIT measurements framework and library (OML):
motivations, design, implementation, and features. In: Proceedings of IEEE Tridentcom 2005,
Trento, Italy, February 2005.

Peterson, L.: GENI: Global environment for network investigations. ACM SIGCOMM 05,
August 2005.

AODV—Ad hoc On-Demand Distance Vector Routing. http://moment.cs.ucsb.edu/AODV/
DSR—Dynamic Source Routing Protocol. http://www.cs.cmu.edu/~dmaltz/dsr.html
Bluetooth special interest group. https://www.bluetooth.org/

Zigbee alliance. http://www.zigbee.org/

GNU Radio Project. http://www.gnu.org/software/gnuradio

Lei, J., Yates, R., Greenstein, L., Liu, H.: Wireless link SNR mapping onto an indoor testbed.
In: Proceedings of IEEE Tridentcom 2005, Trento, Italy, February 2005.

Lei, J., Yates, R., Greenstein, L., Liu, H.: Mapping link SNRs of wireless mesh networks onto
an indoor testbed. In: Proceedings of IEEE Tridentcom 2006, Barcelona, Spain, March 1-3,
2006

Universal Software Radio Peripheral (USRP). http://www.ettus.com/downloads/usrp_1.pdf
Kaul, S., Gruteser, M., Seskar, I.: Creating wireless multi-hop topologies on space-constrained
indoor testbeds through noise injection. In: IEEE Tridentcom, March 2006.

Raychaudhuri, D.: Proof-of-concept Prototyping of Methods for Wireless Virtualization and
Wired-Wireless Testbed Integration. supplement to NSF Award ANI-0335244, June 2006.
IEEE 802.16 Working Group. IEEE Standard for Local and Metropolitan Area Networks, Part
16: Air Interface for Fixed Broadband Wireless Access Systems. IEEE Std 802 (2004).

LTE Base Station Software. http://bellard.org/l1te/

Off-The-Shelf 4G Network. http://www.amarisoft.com/

http://www.amarisoft.com/
http://bellard.org/lte/
http://www.ettus.com/downloads/usrp_1.pdf
http://www.gnu.org/software/gnuradio
http://www.zigbee.org/
https://www.bluetooth.org/
http://www.cs.cmu.edu/~dmaltz/dsr.html
http://moment.cs.ucsb.edu/AODV/
http://www.orbit-lab.org/
http://www.emulab.net/
http://www.planet-lab.org/
http://mistlab.csail.mit.edu/
http://wail.cs.wisc.edu/
http://www.isi.edu/deter
http://www.isi.edu/xbone/
http://www.internet2.edu/
http://www.globus.org/
http://www1.cs.columbia.edu/dcc/nestor/abone/
http://www.opnet.com/
http://nsnam.isi.edu/nsnam/index.php/Main_Page

ORBIT: Wireless Experimentation 95

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44,

45.
46.
47.

48.
49.

50.

Hibler, M., Stoller, L., Lepreau, J., Ricci, R., Barb, C.: Fast scalable disk imaging with Frisbee.
In: Proceedings of the 2003 USENIX Annual Technical Conference, June 2003.

LibMac—A user-level C library. https://www.orbit-1ab.org/browser/libmac/trunk
Ramachandran, K., Kaul, S., Mathur, S., Gruteser, M., Seskar, I.: Towards large-scale mobility
emulation through spatial switching on a wireless grid. In: E-WIND Workshop (held with
ACM SIGCOMM) (2005).

Ganu, S., Seskar, 1., Ott, M., Raychaudhuri, D., Paul, S.: Architecture and framework for
supporting open-access multi-user wireless experimentation. In: Proceedings of International
Conference on Communication System Software and Middleware (COMSWARE 2006), Delhi,
India, January 2006.

Li, Z., Xu, W, Miller, R., Trappe, W.: Securing wireless systems via lower layer enforcements.
In: Proceedings of the 2006 ACM Workshop on Wireless Security (WiSe) (2006).

In the Matter of Unlicensed Operation in the TV Broadcast Bands: Third Memorandum
Opinion and Order, April 2012. http://hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-08-
260A1.pdf

Extending LTE Advanced to Unlicensed Spectrum-White Paper, Qualcomm Inc.,
December 2013. https://www.qualcomm.com/media/documents/files/white-paper-extending-
Ite-advanced-to-unlicensed-spectrum.pdf

Jing, X., Raychaudhuri, D.: Spectrum Co-existence of IEEE 802.11b and 802.16a Networks
using the CSCC Etiquette Protocol. In: Proceedings of IEEE DySPAN’05, Baltimore, MD,
November 8-11, 2005.

Paul, S., Yates, R., Raychaudhuri, D., Kurose, J.: The cache-and-forward network architecture
for efficient mobile content delivery services in the future internet. In: Proceedings of IEEE
Innovations in NGN: Future Network and Services (2008).

Nelson, S., Bhanage, G., Raychaudhuri, D.: GSTAR: Generalized storage-aware routing for
mobilityfirst in the future mobile internet. In: Proceedings of ACM MobiArch 2011.
MobilityFirst Future Internet Architecture Project. http://mobilityfirst.winlab.rutgers.edu/

Vu, T., Baid, A., Zhang, Y., Nguyen, T., Fukuyama, J., Martin, R., Raychaudhuri, D.: DMap:
a shared hosting scheme for dynamic identifier to locator mappings in the global internet. In:
Proceedings of the 32nd International Conference on Distributed Computing Systems (ICDCS
2012).

Sharma, A., Tie, X., Uppal, H., Venkataramani, A., Westbrook, D., Yadav, A.: A global name
service for a highly mobile internetwork. In: Proceedings of ACM SIGCOMM (2014)
Siganos, G., Tauro, S., Faloutsos, M.: Jellyfish: a conceptual model for the AS Internet
topology. J. Netw. Commun. 8(3), 339-350 (2006)

Shavitt, Y., Shir, E.: DIMES—Letting the Internet Measure Itself. http://www.netdimes.org/
CAIDA: The Cooperative Association for Internet Data Analysis. http://www.caida.org/
Venkatesan, S., Lozano, A., Valenzuela, R.: Network MIMO: overcoming interference in
indoor wireless systems. In: Proceedings of IEEE Asilomar Conference on Signals, Systems
and Computers (2007)

Raychaudhuri D., Gerla M.: New Architectures and Disruptive Technologies for the Future
Internet: The Wireless, Mobile and Sensor Network Perspective, Report of NSF Wireless
Mobile Planning Group (WMPG) Workshop, August 2005

http://www.caida.org/
http://www.netdimes.org/
http://mobilityfirst.winlab.rutgers.edu/
https://www.qualcomm.com/media/documents/files/white-paper-extending-lte-advanced-to-unlicensed-spectrum.pdf
https://www.qualcomm.com/media/documents/files/white-paper-extending-lte-advanced-to-unlicensed-spectrum.pdf
http://hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-08-260A1.pdf
http://hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-08-260A1.pdf
https://www.orbit-lab.org/browser/libmac/trunk

Part I1
Architecture and Implementation

Once the initial planning phase had completed and the GENI Project Office had been
established by the National Science Foundation, the hard work of building GENI
began. As mentioned in the introduction, the GENI Project Office used a Spiral
strategy to build GENI—building rough prototypes of a number of ideas, learning,
discarding ideas and approaches that were not proving fruitful, and deepening the
commitments in those areas and approaches that showed promised.

By the end of Spiral Two the architecture had reached a close approximation to
its ultimate form; it was of course refined as it was deployed in Spiral Three and
beyond, but the shape was clear then. This section details this final architecture, and
its various components.

The original architectural principles of “Slices”—virtual networks of virtual
execution environments, or “Slivers’—were clear from PlanetLab, Emulab, and
DeterLab. In the latter two the terminology was slightly different, but the concepts
were the same. However, a number of issues remained to be resolved, including:

e PlanetLab, Emulab, ORBIT, and DeterLab all functioned under the aegis of
a single controlling and administrative agency. But GENI would be far more
complex: each individual component would be under the control of its hosting
campus; the control software would be provided and administered by remote
academic organizations; and a third organization would monitor and provide
day-to-day support of the deployment. How could the tasks and authority be
decentralized, but coordinated enough that users could easily form slices across
many different administrative and control domains?

* GENI experimenters would be connecting together heterogenous collections
of resources of disparate underlying types, each “slivered” with potentially
different and uncoordinated virtualization techniques (e.g., a virtual machine
is fundamentally unlike a portion of OpenFlow flowspace). How could the
slice concept be extended and implemented to maintain appropriate levels of
isolation and performance when stitching together these peculiar combinations
of resources?

98 II Architecture and Implementation

* Administratively, slices in PlanetLab and experiments in Emulab and DeterLab
all had fairly similar objectives and functioned easily under the same AUP.
However, GENI expected to encompass a much wider range of experiments and
services than any of its precursors had, and from many sites which operated in
different legal and social environments; how could an appropriate decentralized
authorization and access policy be crafted?

* GENI envisioned embedding multiple control regimes, appropriate to different
experiments and services; how could such nested control regimes be accommo-
dated?

e GENI envisioned deeply programmable networking in the wild, something
attempted by none of its precursors; this was aided by the serendipitous invention
of OpenFlow early in GENI’s life. How could programmable, controllable
networks be accommodated in GENI?

In this section, the final architecture of GENI and its details will be described.
The eventual form of the architecture consisted of a network of Aggregate Managers
(loosely, Cloud Control systems) which offered resources to Slice Managers. Here,
these concepts and their concrete realizations are described.

In chapter “GENI Architecture Foundation”, GENI Chief Architect Marshall
Brinn describes the overall architecture of GENI and the roles each of these actors
play. Of these, the workhorses are the Aggregate Managers, who roughly fill the
role of a Cloud manager such as OpenStack. The two most prominent aggregate
managers in GENI are described in chapters. “The Need for Flexible Mid-scale
Computing Infrastructure” and “A Retrospective on ORCA: Open Resource Control
Architecture”.

In chapter “The Need for Flexible Mid-scale Computing Infrastructure”, Rob
Ricci of the University of Utah makes the case for flexible management of
infrastructure. In GENI, this role is performed by ProtoGENI, the Aggregate
Manager based on Emulab which is the Aggregate Manager for the InstaGENI
racks discussed in the deployment section. Flexibility is the hallmark of ProtoGENI,
which offers hardware-as-a-service, VMs-as-a-service, and even other aggregates as
a service.

In chapter “A Retrospective on ORCA: Open Resource Control Architecture”,
Jeff Chase and Ilia Baldine describe ORCA, the aggregate manager underlying the
ExoGENI racks. In the GENI deployment, ORCA installations focus on flexible and
efficient allocation of virtual machines.

An entirely novel feature of GENI is the deployment of wide-area software-
defined networks. GENI has been a major driver of OpenFlow deployments, from
the initial campus trials to the wide-area deployments with the GENI Racks. In
chapter “Programmable, Controllable Networks”, Nick Bastin and Rick McGeer
make the case for Software-Defined networking (really, application-controlled
routing) as an essential element of the next Internet and discuss the experiences
from the GENI deployments.

A novel feature of GENI is the seamless incorporation of wired and wireless
testbeds, unifying the ORBIT testbeds with the fixed-link wired backbones. In

http://dx.doi.org/10.1007/978-3-319-33769-2_8
http://dx.doi.org/10.1007/978-3-319-33769-2_7
http://dx.doi.org/10.1007/978-3-319-33769-2_6
http://dx.doi.org/10.1007/978-3-319-33769-2_7
http://dx.doi.org/10.1007/978-3-319-33769-2_6
http://GENI Architecture Foundation

II Architecture and Implementation 99

chapter “4G Cellular Systems in GENI”, Ivan Seskar and his colleagues discuss
this integration.

GENI requires a decentralized, robust system of authorization and access control
that doesn’t rely on a single centralized authority. In chapter “Authorization and
Access Control: ABAC”, Ted Faber, Steve Schwab, and John Wroclawski of
USC/ISI describe such a system, Attribute-Based Access Control (ABAC) which
offers unforgeable decentralized authorization keys.

Embedding PlanetLab’s long-running lightweight services in ProtoGENI’s flexi-
ble infrastructure was an early GENI design decision: this fit well with ProtoGENI’s
flexibility and PlanetLab’s ability to live light on the land. In the event, it was not
until the mesoscale deployment that this could come to fruition, but it proved worth
the wait. Late adoption and implementation meant that PlanetLab-on-GENI could
take full advantage of modern Cloud technologies, and introduce something wholly
new: an embedded infrastructure that could be instantiated across infrastructures. In
chapter “The GENI Experiment Engine”, Andy Bavier and Rick McGeer introduce
the GENI Experiment Engine, a modern instantiation of the PlanetLab ideas
utilizing modern containerization, deployment, and orchestration technologies, and
one that is designed to be instantiated on one or more underlying VMaaS or HaaS
platforms.

http://dx.doi.org/10.1007/978-3-319-33769-2_11
http://dx.doi.org/10.1007/978-3-319-33769-2_10
http://dx.doi.org/10.1007/978-3-319-33769-2_9

GENI Architecture Foundation

Marshall Brinn

1 Introduction

The purpose of the GENI Architecture is to facilitate trusted exchange of
resources.

This description has the benefits of being concise and, perhaps, complete. But it
raises some questions, which this chapter hopes to address:

— What objects and principals are involved in this exchange of resources?
— What makes an exchange trusted and why is this important?
— What does it mean to facilitate exchange?

1.1 Facilitating Trusted Exchange of Resources

When we speak of resources in a GENI context, we are referring to infrastructure
or services that provide compute, storage and transport capabilities. These may be
physical devices such as a PC, a hardware network switch or a disk, or virtual such
as a VM, a software switch or a cloud-based storage service.

GENI seeks to mediate the desires of two communities with respect to such
resources:

M. Brinn (<)
GENI Project Office, Raytheon BBN Technologies, 10 Moulton St. Cambridge, MA 02138, USA
e-mail: mbrinn@bbn.com

© Springer International Publishing Switzerland 2016 101
R. McGeer et al. (eds.), The GENI Book, DOI 10.1007/978-3-319-33769-2_5

mailto:mbrinn@bbn.com

102 M. Brinn

— Resource providers: People, organizations or institutions who own or manage
available resources

— Resource consumers: Experimenters, educators, engineers who wish to use
resources to perform research, classwork or development

Both providers and consumers have motivation to exchange, that is, to enter into
agreements by which consumers may use the resources of providers. Consumers
wish to have access to resources for their own purposes, while providers may be
paid or otherwise incentivized to provide these resources [1].

Several barriers stand in the way of an efficient market for the exchange of
resources. First, providers and consumers may not know each other or know how
to find one another. Second, beyond incentives, the provider wants assurances that
the consumer will use the resources in a responsible, safe manner, i.e. not bringing
risk of damage to the underlying physical resources or the resources let to other
consumers. Finally, the consumer wants assurances that the resources are reliable,
secure and performant to advertised specifications.

Overcoming these barriers requires a trust on the part of the provider and
consumers. At small scale (a small number of providers and consumers), this
can be managed by relationships between individuals. However, as the number of
providers and consumers grows, this approach becomes unscalable: there will be
M * N relationships to be developed to support exchange between M providers and
N consumers.

A trusted third party is thus required, one who is trusted by both provider and
consumer and can vouch for the integrity of the other side. Such a third party needs
to maintain only M + N such relationships. Finally, this third party can provide
services to make the discovery, allocation, configuration, and return of resources
possible in an efficient and uniform manner. Providing these services is what we
mean by facilitating the exchange of resources (Fig. 1).

Provider Consumer Provider k Consumer

Provider Consumer Provider \ Consumer
\ Clearing

-.-(...(...(house ...(

Provider Consumer Provider Consumer

Fig. 1 A trusted third party such as a Clearinghouse manages the scalability of trust relationships
required among resource providers and consumers

GENI Precursors: The ORBIT Testbed 103

Federation: A collection of people and institutions who agree to share
resources and abide by common procedures in order to share resources
in a reliable, mutually beneficial manner.

— g e

Clearinghouse: Set of services establishing federation-level Monitoring: Processes and tools monitoring
authentication, authorization and accountability of activity on GENI resources for health,
experimenter use of federation resources. Esp. contains one performance, adherence to policies.

or more Slice Authorities and Member Authorities

Tools: Software capabilities that Aggregate 5 Managers: Software entities

interact with federation resources that represent federated resources in

on behalf of experimenters transactions with experimenter tools.
Experimenter: A researcher seeking Resources: Physical resources (compute, network,
to perform network experiments on storage) made available to the federation by means
customized data plane. of a participating aggregate.

D Real-world entities DSoﬂware entities

Fig. 2 The GENI Federation consists of people and software that represent their interests

2 GENI Federation

The GENI Federation is the trusted third party required to enable reliable resource
exchanges among large numbers of resource providers and consumers.

The exchange of resources, and the trust that enables such exchanges, are
human activities. There are negotiations and agreements of terms and conditions,
assurances, consequences and accountability. People and organizations enter into
federations in order to facilitate these exchanges according to these terms.

In GENI [2], we have three sets of human parties that make up the federation, the
resource providers, the resource users and the federation organization itself. These in
turn, are represented in the federation architecture by software entities that represent
their interests and act on their behalf to effect their desires.

A federation architecture is a set of software services that codify and enforce
these agreements. These services are the Clearinghouse, the Aggregate Manager and
Client Tools. Each of these will be described in greater detail later in the chapter but
a brief introduction of terms is appropriate here:

e The Clearinghouse (CH) is a set of services representing the federation,
establishing statements of trust, mutually recognized identity, policy-based
authorization, and accountability.

» Aggregate Managers are services that represent the interests of different resource
providers, providing access to resources to trusted requesting users.

* Client tools represent consumers who seek to access resources from federated
services (Fig. 2).

104 M. Brinn

This architecture serves not only as the foundation for GENI, but is intended
for and has been used in building other cyberinfrastructure federations. In fact,
GENI was designed with the intent of federating independently owned and operated
resources and testbeds, providing benefits to both resource providers by limiting
their scope of responsibility and consumers by providing as broad a set of resources
as possible.

3 Trust Foundation

The GENI Clearinghouse establishes a basis of mutual trust for Tools and Aggregate
Managers to interact.

The interaction between client tools and Aggregate Managers must be made on
a trusted basis. The Aggregate Manager wants a reliable sense of:

* Authentication: Who is making this request?

* Authorization: In what context should I allow access to my resources?

* Accountability: Who is responsible if something bad happens on my resources
when they are used?

There are many possible software mechanisms to establish the trust to answer
these questions and support the trust required to complete these transactions. GENI
uses public key infrastructure (PKI), and specifically X.509 certificates and keys as
the basis of authentication. Furthermore, SSL/TLS is used as the basis of trusted
service interaction [3-5].

An SSL-based interaction requires that the initiator (the client tool) encrypt its
transactions with its private key and pass its X.509 public cert (including its public
key) along with its message. The receiver (the service provider) then checks that the
certificate is in a trusted chain of certificates.

X.509 certificates and keys are provided by Clearinghouse services. The cer-
tificates are signed by the Clearinghouse authority’s private key, and assert some
identifying data (an email address, a URN, a UUID) about the bearer of the
certificate and associated private key.

The act of including the Clearinghouse authority’s root certificate in the trust
bundle of the service is, therefore, a reflection of the human act of federation.
An Aggregate Manager includes the set of Clearinghouses it trusts, and anyone
bearing a certificate/key from any such Clearinghouse may speak to that Aggregate
Manager.

GENI Precursors: The ORBIT Testbed 105

An Aggregate Manager may belong to many Clearinghouses, and thus accept
requests from users from different federations.

To be specific, while GENI is a Federation with its own Clearinghouse Authority
services, so are Emulab [6], Fed4Fire [7] and several other comparable projects.
Many Aggregates can and do chose to be members of one or many of these
Federations.

In GENI, the act of providing a certificate to a user is not an automatic process
but a human process, representing some degree of vetting and, implicitly, vouching
that the user is who the user claims to be. GENI is entrusted by the National Science
Foundation to support network and computer science research and education. To that
end, GENI accepts requests from users with accounts at an academic institution par-
ticipating in the InCommon federation. Additionally, GENI accepts requests from
users to use GENI federated resources and one job of the GENI Federation staff is
to check that the requesters are who they claim to be, that they are at a recognized
academic institution and that they are in an appropriate research program or lab.

The question of authorization has elements that are both distributed and cen-
tralized. The Clearinghouse provides signed statements called Credentials that may
be used by Aggregate Managers in their authorization decisions. These credentials
are statements from the Clearinghouse indicating a set of roles or rights the
Clearinghouse asserts the user has in a particular context. The Aggregate Manager
will typically use these credentials as part of its authorization decision. That said,
each Aggregate Manager is independent and autonomous, and can make whatever
authorization decisions it chooses.

GENI supports two particular types of credentials:

* SFA Credential: These are credentials granting privilege or roles to a given user
in a given context (typically a slice). This is an example of role-based access
control (RBAC) and conforms to the SFA format [8].

* ABAC Credential: These are credentials asserting attributes about a given user
(e.g. “X has admin privileges on slice Y” or, generally, “X is a member of the set
Z”). This supports attribute-based access control by mixing ABAC assertion and
policy statements and conforms to the standard ABAC format [9].

Accountability will be discussed below as we look at Federation Monitoring
services.

4 GENI Concepts

Before we provide more detail on GENI Services, definitions of key GENI concepts
are in order:

106 M. Brinn

An Aggregate (or Aggregate Manager or AM) is a service representing a set of
resources and the interests and policies of the provider of those resources. It provides
services for allocating, deleting, configuring, renewing, and deleting resources using
the GENI Aggregate Manager (AM) API, as will be discussed below.

An Authority is a Clearinghouse Service which generates statements (typically
signed XML documents) that are trusted by Aggregates of the federation. Example
authorities are the Slice Authority and Member Authority, as discussed below.

A Member is a registered GENI user, with an assigned certificate, UUID, URN
at a given Member Authority.

A Sliver is a resource or set of resources provided by an Aggregate to requester
through invocations of the AM API. These slivers may be a whole physical resource
(e.g. a bare metal machine), or a virtualized piece of a physical resource (e.g. a
virtual machine) or a combination of these.

A Slice is a collection of slivers in which resource requests are performed. The
Slice is both an accounting mechanism for knowing what slivers where allocated
to a given user at a given time, but also an isolation mechanism. That is, it is
assumed that resources in the same slice have visibility to one another while slivers
in different slices are logically (and, ideally, physically) isolated from one another.

A Project is a grouping of Slices for a particular purpose. A Project is managed
by a lead, typically a professor or head of a laboratory or equivalent, and all slices
in a project are associated with some common research or educational goal.

5 GENI Services

This section details the specific services and interfaces that make up the different
services provided in the context of a GENI federation.

5.1 Federation API

The Federation API [10] is an interface for defining federation services, commonly
negotiated by representatives of GENI, Emulab and Fed4Fire in 2013. This section
provides a high-level view of these services.'

All Federation API calls are XMLRPC/SSL and thus require invocation with the
invoking member’s private key and passing their certificate.

The Service Registry (SR) is a service providing a dictionary of services available
in a given Federation Clearinghouse. The SR provides the following API:

I'See http://groups.geni.net/geni/wiki/CommonFederationAPIv2 for details.

http://groups.geni.net/geni/wiki/CommonFederationAPIv2

GENI Precursors: The ORBIT Testbed 107

Method

get_version

Arguments Description

Return version of SR API
including extensions and
supported object model
Return list of MA’s with
matching and filter criteria
specified in options
Return list of SA’s with
matching and filter criteria
specified in options

None

lookup_member_authorities | Options: Query specifying

which MA’s to match

lookup_slice_authorities Options: Query specifying

which SA’s to match

lookup_aggregates Options: Query specifying

which AM’s to match

Return list of aggregates with
matching and filter criteria
specified in options

Return list of trust roots trusted
by authorities and aggregates of
the federation associated with
this Clearinghouse

get_trust_roots

The Member Authority (MA) is a service providing information for creating,
modifying and looking up information about registered users at a given Federation
CH. If not otherwise indicated, ‘member_urn’ is a unique identifier of a particular
member, as is ‘member_uid’ (a unique identifier of a different non-human-readable
form), ‘key_id’ is a unique identifier for an SSH key pair, and ‘options’ is the set of
fields describing a given member or SSH key pair. The MA provides the following
API:

Method

get_version

create_member

update_member_info

lookup_member_info

get_credentials

create_key

Arguments

None

Options: Member
details (email, name,
etc.)

Member_urn, Options:

Options:

None

Options

Description

Return version of MA API
including extensions and supported
object model

Create new Member with given
details

Update information associated with
Member

Lookup information about member.
Note: the members and specific
details about the member will tend
to be tightly controlled by
authorization policy

Get credentials representing MA’s
sense of roles and rights of
members independent of slice
context

Create or upload SSH key pair for
given member

(continued)

108

Method
delete_key

update_key
lookup_keys

create_certificate

add_member_privilege
revoke_member_privilege

add_member_attribute

remove_member_attribute

Arguments
Key_id

Key_id, Options:
Options:

Options: CSR provided
or not

Member_uid, privilege
Member_uid, privilege

Member_urn,
attribute_name,
attribute_value
Member_urn,
attribute_name

M. Brinn

Description
Delete given SSH key pair from
member

Modify given SSH key pair info for
given member

Lookup SSH key pair information
matching given query criteria
Create an X.509 cert (and
optionally private key if no CSR
provided)

Add privilege to given member (e.g.
LEAD, ADMIN)

Remove privilege from given
member

Add attribute to given user

Remove attribute from given user

The Slice Authority (SA) is a service providing information for creating,
modifying, and looking up information about slices and projects. If not otherwise
indicated, the ‘slice_urn’ argument is the unique identifier for a given slice
(likewise for ‘sliver_urn’ and ‘project_urn’), ‘credentials’ represents the credentials
provided from the MA indicating the good-standing and role of a given user, and
‘options’ provides details on the given slice, slice membership, sliver info, project,
project_membership being created or updated. The SA provides the following API:

Method

get_version

create_slice
update_slice

get_credentials

modify_slice_membership

lookup_slice_members

Arguments

None

Credentials, Options
Slice urn, credentials,

Options
Slice_urn, credentials

Slice_urn, credentials,
options

Slice_urn

Description

Return version of SA API
including extensions and
supported object model

Create a new slice in a given
project

Update a given slice with new
details specified by options

Get credentials representing
SA’s sense of roles and rights of
members in slice context
Modify (add, change, delete)
membership/role for members in
aslice

Lookup members/roles of a
given slice

(continued)

GENI Precursors: The ORBIT Testbed 109

Method Arguments Description
lookup_slices_for_member Member_urn Lookup slices to which a
given member belongs
create_sliver_info Options Create a record of sliver info
(sliver, slice, aggregate, time,
expiration)
delete_sliver_info Options Delete a record of sliver info
update_sliver_info Sliver_urn, options Update sliver info record
create_project Options, credentials Create a new project
(typically a privileged

operation for members with
“Project_Lead” privilege
reflected in their credential)

modify_project_membership | Project_urn, options Modify (add, delete, change)
membership/role for members
in an project

lookup_project_members Project_urn Lookup members/roles for a
given project
lookup_projects_for_member | Member_urn Lookup projects to which a
given member belongs
lookup_project_attributes Project_urn, options Lookup attributes associated
with given project
add_project_attribute Project_urn, options Add a given attribute to a

given project
remove_project_attribute Project_urn, options Remove an attribute from a
given project

5.2 Aggregate Manager (AM) API

The Aggregate Manager API [11] provides the interface by which client tools
(representing users) can request, configure, renew and delete resources from an
aggregate resource provider.

This section provides a high-level view of this API.> All calls take a list of
credentials as an argument. These are typically a UserCredential provided by a
previous call to the Clearinghouse Member Authority or a SliceCredential provided
by a previous call to the Clearinghouse Slice Authority. Additionally, a dictionary
of options is provided to most calls. These arguments are not included in the
‘Arguments’ table below.

AM API calls are made to a particular Aggregate Manager. They are XMLR-
PC/SSL calls and thus must be invoked by a user with a private key and a certificate
generated by a CA trusted by the given AM.

2More details on Versions 2 and 3 of the GENI AM API can be found at http://groups.geni.net/
geni/wiki/GAPI_AM_API_V2 and http://groups.geni.net/geni/wiki/GAPI_AM_API_V3.

http://groups.geni.net/geni/wiki/GAPI_AM_API_V3
http://groups.geni.net/geni/wiki/GAPI_AM_API_V2
http://groups.geni.net/geni/wiki/GAPI_AM_API_V2

110

Method (V2)
GetVersion
ListResources

CreateSliver

SliverStatus

ListResources

RenewSliver

DeleteSliver

Shutdown

Method (V3)
GetVersion
ListResources

Allocation,
Provision

Perform
Operational
Action

Status

Describe

Renew

Delete

Shutdown

Arguments

Slice_urn: The slice into
which to add sliversRSpec:
The request RSpec indicating
which resources to
allocateUsers: Information
(SSH login info, e.g.) about
users for created compute
resources

Slice_urn(v2)/urns(v3): List
of sliver URNs (or slice
URN) for which to perform
action on slivers.Action: Type
of action to perform

(e.g. reboot, create_image)

slice_urn (V2)/urns (v3)

slice_urn (V2)/urns (v3)

slice_urn (V2)/urns
(v3)expiration_time

slice_urn (V2)/urns
(v3)expiration_time

Slice_urn

M. Brinn

Description

This is the ‘no slice’
version of ListResources,
providing an
‘advertisement RSpec’
Create a given resources
specified in the request
RSpec in the context of the
given slice. Set up any
compute accounts with
specified user accounts.In
V3, we separate this into
an ‘allocate’ (prepare) and
‘provision’ (initialize and
configure) calls

Perform a sliver-specific
action on a running sliver
instance (V3 only)

Retrieve current
operational status for a
given set of slivers or all
slivers in a given slice at an
AM

The slice-specific version
of ListResources: provide
a manifest RSpec with all
resources associated with a
given slice

Renew lease on resources
to given expiration time if
possible

Delete resources associated
with given slice (or
specific sliver urn’s, in V3)
Shutdown given slice and
all associated slivers at this
AM

We should note here that many features associated with allocated GENI topolo-
gies, e.g. Deep Programmability, Sliver isolation, cross-site stitching, are features
provided by individual aggregates, or orchestrated by tools between aggregates.
They are not, per se, features of the GENI Federation architecture and are not
detailed in this chapter.

GENI Precursors: The ORBIT Testbed 111

5.2.1 GENI Resource Specifications (RSpecs)

The GENI AM API requires three particular kinds of specifications to describe
availability, requirements or descriptions of resources at an Aggregate Manager.
RSpecs are XML documents that adhere to the http://www.geni.net/resources/rspec
schema, plus recognized extensions.

These are described below.> Examples are provided without XML preface and
namespace detail for brevity and clarity.

Advertisement RSpec. A description of the available resources at an Aggregate.
These are provided by a ListResources (no-slice) call. These may include bare-
metal machines, virtual machines, IP address space, VLAN space, disk images
and other compute or network specific resource features. The following is a simple
advertisement RSpec, showing the availability of two (fake) compute nodes:

="adverti
component

component

Request RSpec. A set of requirements for resources to be created at a given
AM. These are required to the CreateSliver (or Allocate in V3) call. This may
include (compute) nodes of given types and images, links and interfaces and
other extension-specific details. The following is a simple advertisement RSpec,
requesting a single compute node:

Manifest RSpec. A description of all resources allocated at a given AM for
a given Slice. This is returned from a CreateSliver (or Provision in V3) call or
a ListResources (with slice_urn, or Describe in V3) call. This will include the
content from the Request RSpec plus provision-specific details such as IP addresses,
allocated VLANs and other extension-specific details. The following is a simple
manifest RSpec showing the allocation of a single compute node:

3More details on GENI RSpecs can be found at http://www.protogeni.net/ProtoGeni/wiki/R Spec.

http://www.protogeni.net/ProtoGeni/wiki/RSpec
http://www.geni.net/resources/rspec

112 M. Brinn

5.3 Monitoring Services

The GENI Federation seeks to provide assurances to resource providers that their
resources aren’t being ill-used, intentionally or otherwise. It also seeks to provide
assurances to resource consumers that the resources they’ve been provided by
Aggregate Managers will be reliable.

Towards these ends, GENI provides a set of services that engender trust on the
part of users towards resources provided by GENI, and accountability of users for
actions taken on these resources.

GENI requires that all Federation services, including Aggregate Managers,
provide data to a central monitoring service. These data consist of health status and
load information (on CPU, storage, network interfaces) as well as current topology
information (which slivers are connected to which across aggregates).

In this way, the monitoring service can serve as the basis of an alerting
mechanism (indicating resources that are experiencing abnormal loads or patterns).
It can further be the source of forensics support, by which the person associated
with a misbehaving sliver or slivers can be identified. It can support a slice shutdown
service by which a given resource can be shutdown, nullifying its ongoing impact
on other virtual or physical resources.

From there, Federation or Aggregate-local policy can take corrective action,
ranging from a warning, to deleting the resources to revoking the credentials of
the user or even those of the supervisor.

6 Tools

Of course, humans cannot directly invoke calls to the Federation of AM API’s: it
requires software tools to invoke these calls on their behalf. Given that these calls
use SSL as an authentication and encryption mechanism, callers must have access
to their private key.

Good ‘key hygiene’ (keeping private materials private) requires that private keys
stay on local machines and not transit the network. GENI therefore supports two
kinds of tools that manage the problem of keeping private keys private in two
different ways.

Desktop Tools. In this case, the tool is run locally on the user’s desktop. The
tool is pointed to the user’s certificate and private key which reside locally. The
cert is sent as part of the SSL handshake but the key is only used to sign/encrypt

GENI Precursors: The ORBIT Testbed 113

the message and never leaves the desktop. Examples of such tools include omni (a
python command-line tool for invoking arbitrary Federation and AM API calls) and
JjFed (aJava application run on the user’s machine that provides graphical interfaces
to create and view allocated topologies).

Hosted Tools. In this case, a tool runs remotely on web server. There are several
ways to enable such a configuration:

* Providing the private key. While not recommended, a tool can require that the
user upload (or cut-and-paste) their private key to the tool and then the tool may
‘speak as’ the user.

* Using the tool’s key. The tool may be configured with its own certificate and
private key and ‘speak as’ the tool itself. This has the advantage of not requiring
divulging the user’s private key. But it loses any sense of accountability.

» Using a speaks-for credential. GENI supports using a credential (an ABAC
statement, in fact) signed by the user that a given tool may speak for the user,
possibly limited to certain contexts. If the tool speaks with its own cert and key
and such a credential is present in the list of credentials given to the API call, the
Federation and AM services will authorize and account the call to the user, not
the tool. This approach preserves accountability and private key security and is
thus both a novel and preferred approach for supporting hosted tools (Fig. 3).

6.1 The GENI Portal

The GENI Portal is an example of a hosted tool. The Portal supports a Shibboleth
configuration that is federated with several Identity providers including those from
the InCommon Federation, CAF¢é in Brazil and an IdP provided by the GENI
Program Office. Users authenticate to the Portal through one of these Shibboleth
IdPs to establish a single-sign-on (SSO) session [12].

XMLRPC/SSL uses user’'s X509
Desktop cert and private key, ‘speaks as’ Federation Service

Tool the user. Key does not leave the (e.g. SA, MA, AM)
user’s machine

XMLRPC/SSL uses tool’s X509
cert and private key, and user’'s

Web-based speaks-for credential. ‘Speaks as’ Federation Service
(Hosted) Tool || the tool, but ‘Speaks for' the (e.g- SA, MA, AM)
user. User’s key is not involved in
SSL transaction.

Fig. 3 Two kinds of tools for invoking Federation or Aggregate Manager APIs: desktop and hosted
tools

114 M. Brinn

The Portal can then operate on behalf of the user in one of two ways:

» Users that have created a speaks-for credential (i.e. a statement that the portal can
speak for the user) store these credentials in the portal, and the portal retrieves
these credentials in the context of a Shibboleth authenticated session. It can then
use the speaks-for credential along with the Portal’s own cert and key to invoke
Federation and AM API calls on the user’s behalf based on user interface actions.

» Users that have not created a speaks-for credential may allow the Portal to create
a certificate and private key for that user which the Portal can extract from its
own private database and use to ‘speak as’ the user. This mode is popular (and
only recommended) for short-term engagements such as tutorials and users first
getting acquainted to GENI.

7 Summary

We have described the pieces required to establish trusted resource exchange in
GENIL. In this section, we will put them together into a single scenario. We will
note that some pieces are human activities required to establish trust; others are
automated processes to preserve trust. Additionally, some of these steps are one-
time “set-up” steps, and others are ongoing or repeated steps for each allocation
request.

Resource Providers. To enable resources to be exchanged in a trusted manner,
the resource provider needs to:

1. Stand up a GENI Aggregate Manager service. This is a one-time human
activity: installing and configuring the GENI AM service and registering it with
the GENI Service Registry.

2. Trust the GENI Clearinghouse. This is a one-time human activity: installing the
GENI Certificate Authority (CA) root in the AM’s trust root bundle. In indicates
that the AM will trust users invoking AM calls using a certificate issued by this
CA.

3. Let the Aggregate Manager handle the Authentication, Authorization and
Accountability of Resource consumers. The AM performs these tasks auto-
matically, authenticating using SSL and PKI certificate validation, authorizing
per AM-local policy using provided credentials, and using GENI monitoring
services to detect and respond to potential misbehavior.

Resource Consumers. To enable access resources from GENI, the resource
consumer needs to:

1. Become a member of the GENI Clearinghouse. This is a one-time human
activity: a request (by web form or email) is made to the managers of the GENI

GENI Precursors: The ORBIT Testbed 115

Clearinghouse who vet that the member satisfies the policy requirements for
GENI membership. If so, an account is created. In addition, an account at an
academic institution participating in the InCommon Federation is sufficient to be
given membership in GENI.

2. Acquire GENI-generated identity credentials. This is a one-time human
activity: receiving the X.509 certificate and private key is an out-of-band process,
often facilitated by tools such as the GENI Portal, that differs among GENI
installations.

3. Gain membership to a GENI Project. This is a human process. If a GENI
member wants to be a Project Lead (capable of creating a new project), a request
is made and vetted by the managers of the GENI Clearinghouse. Otherwise, the
member must find an existing project lead (typically a professor or lab manager)
to add this member to an existing project.

4. Gain membership to a GENI Slice. Once a GENI member is a member of a
project, that member may create a slice using GENI tools and Clearinghouse
Slice Authority operations.

5. Use a GENI Tool to get a Slice Credential from GENI Clearinghouse. The
Slice Authority service will provide a requesting authenticated tool with Slice
Credentials to slice members, which indicate membership and role in a slice.

6. Use a GENI Tool to request resources from a GENI Federated Aggregate
Manager. Using the AM API (using the private key and certificate plus Slice
and perhaps other credentials), request resources of the Aggregate Manager. The
request will succeed or fail based on the AM’s available resources and its local
policies for authorization and quotas.

7. Use the resources. This step is rests above the GENI Architecture. The resources
are the consumer’s to configure and use freely. That said, GENI is involved in at
least two ways. First, the configuration of resources places SSH public keys and
accounts on compute nodes allowing login to these resources. Second, GENI
monitoring checks the resource consumption and traffic generation patterns to
ensure against misbehaving software operating on the allocated slivers.

8. Cleanup. Use the AM API to renew slivers as needed, and then delete them at
the Aggregate when done.

The following diagram summarizes these steps and the transactions with GENI
services required to establish trusted resource exchange between resource providers
and resource consumers. The providers and consumers do not need to know or trust
one another: they merely need to mutually trust the GENI Clearinghouse (Fig. 4).

116

M. Brinn

1. Tool uses cert and private key to

request Slice Credential, a signed CEErTEheUEE
statement from SA regarding membership Sli?:e
of requestor in a given sllice. Authority
Client Tool -/
2. Tool uses cert and private and Slice Aggregate
Credential to operate on a slice at an | Manager(s)

Aggregate, who can use the slice
Credential to perform Federation-based
Authorization checks.

Fig. 4 Requesting resources from an Aggregate Manager requires passing a Slice Credential from

the

Clearinghouse Slice Authority from which the AM may make policy-based authorization

decisions

References

11.

12.

. Brinn, M., Bastin, N., Bavier, A., Berman, M., Chase, J., Ricci, R.: Trust as the foundation of

resource exchange in GENI, TRIDENTCOM (2015)

. Berman, M., Chase, J.S., Landweber, L., Nakao, A., Ott, M., Raychaudhuri, D., Ricci, R.,

Seskar, I.: GENI: a federated testbed for innovative network experiments. Comput. Netw. 61,
5-23 (2014)

. Freier, A., Karlton, P., Kocher, P.: RFC 6101: the Secure Sockets Layer (SSL) protocol, version

3.0 [Online]. http://tools.ietf.org/html/rfc6101 (2011)

. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: RFC 5280: Internet

X.509 public key infrastructure certificate and Certificate Revocation List (CRL) profile. http://
tools.ietf.org/html/rfc5280 (2008)

. International Telecommunication Union. ITU-T Recommendation X.509: Information

Technology—Open Systems Interconnection—The Directory: public-key and attribute certifi-
cate frameworks. https://www.itu.int/rec/T-REC-X.509-201210-1/en (2012)

. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler, M., Barb,

C., Joglekar, A.: An integrated experimental environment for distributed systems and networks.
SIGOPS Oper. Syst. Rev. 36(SI), 255-270 (2002)

. Tim, W., Vermeulen, B., Vandenberghe, W., Demeester, P., Taylor, S., Baron, L., Smirnov, M.,

et al.: Federation of internet experimentation facilities: architecture and implementation. In:
European Conference on Networks and Communications, Proceedings, pp. 1-5 (2014)

. Peterson, L., Sevinc, S., Lepreau, J., Ricci, R., Wroclawski, J., Faber, T., Schwab, S., Baker,

S.: Slice-based facility architecture. http://svn.planet-lab.org/attachment/wiki/WikiStart/sfa.
pdf (2009)

. ABAC Development Team. ABAC. http://abac.deterlab.net/
. Brinn, M., Duerig, J., Helsinger, A., Mitchell, T., Ricci, R., Rother, T., Stoller, L., Van de

Meerssche, W., Vermeulen, B., Wong. G.: Common Federation API, version 2. http://groups.
geni.net/geni/wiki/CommonFederationAPIv2 (2013)

GENI Aggregate Manager API, version 3 [Online]. http://groups.geni.net/geni/wiki/GAPI_
AM_API_V3 (2012)

Morgan, R.L., Cantor, S., Carmody, S., Hoehn, W., Klingenstein, K.: Federated security: the
shibboleth approach. EDUCAUSE Q. 27(4), 8-22 (2004)

http://groups.geni.net/geni/wiki/GAPI_AM_API_V3
http://groups.geni.net/geni/wiki/GAPI_AM_API_V3
http://groups.geni.net/geni/wiki/CommonFederationAPIv2
http://groups.geni.net/geni/wiki/CommonFederationAPIv2
http://abac.deterlab.net/
http://svn.planet-lab.org/attachment/wiki/WikiStart/sfa.pdf
http://svn.planet-lab.org/attachment/wiki/WikiStart/sfa.pdf
https://www.itu.int/rec/T-REC-X.509-201210-I/en
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc6101

The Need for Flexible Community Research
Infrastructure

Robert Ricci

Abstract Many areas of computing research have strong empirical components,
and thus require testbeds, test networks, compute facilities, clouds, and other
infrastructure for running experiments. The most successful facilities of these types
are those built by the communities that need them: domain experts are in the
best position to ensure that infrastructure they design meet the needs of their
communities. The observation that we make in this chapter is that the hardware, and
in many cases, software, infrastructure needs that underlie many of these facilities
are remarkably similar. This points out the opportunity to build infrastructure that
supports a wide range of computing research domains in an easy to use, cost
effective, and low-risk manner. This chapter describes our vision for the future of
computing research infrastructure.

1 Introduction

Many areas of computing research require, or can greatly benefit from, infrastructure
for running experiments. For example, empirical evaluation is required for credi-
bility in big data, networking, storage, cloud computing, operating systems, data
mining, image analysis, databases and many more areas. Infrastructure is of
course also critical to computation-heavy domain sciences. Our experience with
Emulab [20], which supports primarily networking research, is that there is never
enough hardware infrastructure to support all potential users, no matter how much is
added [10]. We therefore see a clear and pressing need for flexible infrastructure—
not only to support research communities that are the historic users of such
infrastructure, but to reach out to other research communities as well.

Computing research moves quickly. Evolving infrastructure takes more time.
It is therefore imperative to avoid making long-term commitments to particular
software platforms in the planning and construction of large-scale infrastructure. For
example, if we were to consider long-term research infrastructure in 2010, we would
have likely missed supporting big data computing; a few years before that, and we

R. Ricci (04)

The Flux Research Group, School of Computing, University of Utah,
Salt Lake City, UT, USA

e-mail: ricci @cs.utah.edu

© Springer International Publishing Switzerland 2016 117
R. McGeer et al. (eds.), The GENI Book, DOI 10.1007/978-3-319-33769-2_6

mailto:ricci@cs.utah.edu

118 R. Ricci

would have missed cloud computing; a few years earlier, virtualization. Because of
the high capital investment required for infrastructure, it should be designed to last
as long as possible. What is needed, then, is not simply facilities that target certain
domain areas: instead, what is needed is a meta-infrastructure where researchers
can go to build their own testbeds. (For the purposes of this chapter, we use the
word “infrastructure” to refer to the underlying meta-infrastructure, and “testbed”
or “facility” as shorthand for the variety of layers that can be built on top.)

Meta-infrastructure would offer researchers an environment that gives them
top-to-bottom control of the software and hardware, and just as importantly,
instrumentation at those layers. Without these properties, which are missing from
commercial clouds and “off-the-shelf” clusters and datacenters, many researchers
are limited to making incremental improvements within the bounds of existing com-
mercial technologies rather than pursuing transformative research. To truly enable
scientific advancement, researchers need facilities that offer them the possibility of
access to the base layers of compute, network, and storage resources.

There are many existence proofs that infrastructure can be shared by simul-
taneous users [4, 8, 9, 16, 20]. What is critical to understand is the level of
sharing which is acceptable, because sharing inevitably leads to artifacts caused
by other users of the infrastructure. In some research areas, it is the output of a
simulation that is of interest, not the running time of the experiment. These users can
easily tolerate resource sharing. In others, aggregate run times (e.g. total download
times, order-of-magnitude experiments in algorithms, etc.) are important, but fine-
grained details are not. These users can generally tolerate artifacts that arise from
infrastructure sharing, though they do need to be alerted if the artifacts are large
enough to potentially affect their experiments—otherwise, scientific conclusions
may be incorrect. Others depend on fine-grained measurements, where there is
virtually no tolerance of interference from other experiments, and some researchers
require the maximum computing power available, ruling out virtual machines
and other middleware for sharing that imposes performance penalties. The more
isolation an experiment requires, the further down the hardware/software stack the
isolation must be implemented. At the limit, it should be possible to provide “bare
metal” access to the resources in the infrastructure. Since the meta-infrastructure’s
goal is to provide for a diversity of testbeds on top, it follows that the meta-
infrastructure should support bare metal. It is possible to build remove less isolated
(and therefore cheaper) testbeds on top of bare metal, but it is impossible to build
a strongly isolated facility on top infrastructure with weaker isolation. Adoption of
technologies like virtual machines for the “base” layer of meta-infrastructure would
necessarily compromise scientific fidelity for many users. At the same time, because
virtualization is so prevalent and useful, meta-infrastructure should be capable of
assisting the testbeds it hosts in provisioning and managing VMs.

There are also existence proofs of using taking general-purpose infrastructure
and running testbeds and services on it that specialize it to particular uses. For
example, in the GENI world, the GENI Experiment Engine [2] offers an alternative
environment to GENI experimenters; it runs on top of InstaGENI racks without
needing physical infrastructure of its own. Several different user tools provide

Flexible Community Infrastructure 119

alternative interfaces to the GENI infrastructure, including the GENI portal [18], the
GENI Desktop [19], and LabWiki [12]. In the commercial space, there are numerous
services that rent resources from clouds and other datacenters, and re-sell them to
end users.

We have one existence proof of the potential for federation (autonomous
infrastructure cooperating to act as a cohesive whole) in the form of GENI [14, 15].
Other countries have adopted similar strategies, including the Fed4FIRE [6] project
in Europe and the FIBRE [7] project in Brazil. Two of the main motivations for
federation are that (1) it allows many parties to contribute resources, spreading
hardware costs, and (2) it is a natural model for operation of infrastructure that
is spread across the country or world.

In the remainder of this chapter, we elaborate on our positions regarding meta-
infrastructure, risk and cost reduction, and strategies for supporting a diverse user
base.

2 Meta-Infrastructure

There are two main components to building infrastructure for research in computing,
the hardware platform and the software environment that runs on the hardware.
Note that “software environment” refers not to users’ own software that they
are evaluating, but to software that is “part of the testbed.” This could include
virtualization software, user interfaces such as web interfaces or APIs, standard
or custom libraries such as MPI, or tools for orchestrating experiments such as
scientific workflow systems.
We start with three observations:

1. The hardware needed by many research communities is quite similar: some
combination of compute, networking, and storage. The hardware can generally
be purchased from a commercial vendor (with careful input by the community
as to its specification).!

2. Far more diversity is found in the software environment, and it is much harder to
build a one-size-fits-all solution. Sometimes, the software can be acquired from
a vendor, but more commonly, researchers have specialized needs that vendors
do not have incentive to meet, so that software must be custom-built or modified
from the original.

3. The most useful infrastructure projects are those whose software (and occasion-
ally hardware) environment is built by the communities that need them—domain
experts are in the best position to put together an environment that matches

I'There is still clearly a need for smaller infrastructure for research communities that do not follow
this pattern. In some cases, this need can be met by augmenting part of the infrastructure with
specialized hardware (such as GPUs or other accelerators), but in others (such as wireless and
mobile networking), building separate testbeds makes more sense.

120 R. Ricci

their own and their colleagues’ needs. In our own personal experience, we built
Emulab because it was something we needed; it has turned out that it is what
thousands of other researchers and educators need as well.

This points to a clear strategy for community infrastructure: build meta-
infrastructure that has a common hardware base, and empowers individual research
communities to build their own infrastructure on top. Meta-infrastructure would be
operated using a “base” control framework, which would take care of common
tasks such as provisioning resources, managing security, and ensuring the fidelity
of the infrastructure. We expect that only a small number of users would interact
directly with this base layer. Instead, experts in domains such as big data, HPC,
cloud computing, security, networking, operating systems, simulation, etc. would
build software environments on top which would cater to their own communities.

We are motivated to move in this direction by a simple conclusion which took
us years to reach. As Emulab became more mature, and its userbase grew beyond
network researchers, we began to notice a trend. We realized that more and more
users who needed specialized features were not asking us to build these features
into Emulab itself (or doing so themselves.) They were increasingly building these
features on top of Emulab’s existing features. Though Emulab had some virtual
machine capabilities, some users wanted something slightly different, and so would
allocate bare metal and build their own VMs. Though Emulab offered some basic
features for running security experiments, they would build their own, highly
sophisticated ones [17], on top. They would build what amounted to domain-specific
testbeds by providing libraries and syntactic sugar for the experiment specification
language. They would install cloud platforms such as Eucalyptus [13] on top
of Emulab. At first we resisted this trend, believing that we should endeavor to
support everyone directly with our platform. As this pattern became more common,
however, we realized that it was a trend to embrace: trying to satisfy everyone
would not scale in terms our effort, and would make Emulab itself too bulky. And
ultimately, we were not the right ones to build these features, as we were not experts
in those domains and would be likely to get things wrong. We have come to believe
that the best path to follow is one of empowering the experts in research domains to
easily build and share software infrastructure for their own domains.

Thus, we propose a distinct role for domain experts in community infrastructure.
Meta-infrastructure should provide a layer of software between the underlying
infrastructure and the ultimate users that enables experts to adapt the infrastructure
to support experiments in a particular scientific domain, thereby making the
infrastructure more valuable to its users. This is a significant departure from the
way that testbeds are built today—it adds a new layer between the infrastructure
and the testbed(s) that run atop it. The advantage is that it simultaneously makes
infrastructure more useful and significantly decreases the associated cost and risk,
as discussed in the next section.

Figure 1 shows a diagram of how meta-infrastructure might be designed. At the
bottom is a meta control system that controls the base layer of allocation, assigning
different quantities of resources to the testbeds shown on the right. These testbed

Flexible Community Infrastructure 121

.. - <> < >
Applied v
e : Theoretical ||| ATCS i
Stored Testbed i High Big Computer s
Testbeds Services i1 | Performance [i[Cloud Data Science :
i| Computing | (ATCS) I
|| e | | i
Testoed |:: | O CEN||ooe|:
ATCS I:I I : I
Hardware Resources i
Uom - (compute, network,storage)
Meta Control System Instantiated Testbeds: [Persistent []On-demand

Fig. 1 Architecture of meta-infrastructure

are of two types. Persistent testbeds are long-lived, multi-user facilities such as
clouds and HPC clusters. On-demand testbeds are relatively short-lived, perhaps
lasting less than a day and instantiated to run experiments by one individual or
group. Both type of testbeds use can optionally use festbed services (shown on the
left) provided on top of the control system to perform common functions such as
provisioning of physical machines, account management, and security management.
The meta control system also exposes a meta-testbed for those who wish to use the
meta-infrastructure directly, and offers a service for storing testbed descriptions and
software when not in use.

In order for this scheme to work, the base control layer must be flexible enough
to move resources between different testbeds as their needs vary. The more efficient
this re-provisioning process, the more efficient the use of resources. Re-provisioning
on the order of minutes is already possible [11, 20]. This provisioning should
be done at the lowest layer of the software/hardware stack possible, allowing for
maximum flexibility for the testbeds running on top.

It is tempting to consider off-the-shelf cloud control software in this role;
however, there are important differences in needs. First, it naturally (though not
necessarily) places users of the meta-infrastructure inside of virtual machines;
while this should certainly be one option, many research topics either cannot
be investigated at all (including research on building cloud infrastructure and
virtualization) or suffer serious performance penalties (such as many types of HPC
jobs) when run in this kind of environment. Second, it binds us up-front to particular
technology decisions (i.e. VM technology and cloud software) and will be hard to
change over time, running the risk that we make a poor choice in this fast-evolving
area, and get stuck with it. This may be acceptable for small, purpose-built testbeds,
but is not appropriate for large facilities that need the flexibility to serve a diverse
population of researchers.

Finally, and most importantly, cloud infrastructure simply does not meet the
standards of a scientific instrument because there are subtle, but critically important,
differences in the needs of typical cloud users and researchers. While cloud
providers provide service level agreements (SLAs) to their customers, research

122 R. Ricci

users require a higher standard: scientific fidelity. Researchers need to be confident
that the results they report are truly representative of the system under test, and
do not have artifacts that may have been introduced by simultaneous experiments
or by flaws in the testbed itself. SLA compliance detection is typically left to the
customer, and is dealt with reactively. Fidelity should be dealt with proactively and
transparently: scientific infrastructure should actively monitor itself, and when it
finds potential violations of fidelity, it should alert users, providing enough details
that they can decide for themselves whether results they have collected must be
re-collected. Cloud control software does not expose to its users the details of
the resources that they are allocated, as it is considered a competitive advantage
not to do so. Researchers, however, need transparency, as it is required for a deep
understanding of the performance of their systems.

3 Risk and Cost Reduction

Building infrastructure for computing research involves significant cost, and with
that cost comes risks: the infrastructure may not turn out to be what researchers truly
need, it may fail to attract users, and it may not age well as technologies improve
and research directions change.

Some kinds of research infrastructure, such as computational clusters, are well
established, and their usage models, applications, value, and risks are fairly well
understood. This is not true of infrastructure for emerging research areas, nor is it
true for research ares whose infrastructure needs to evolve rapidly. In these areas, it
can take quite some time for the value (or lack thereof) of infrastructure to become
apparent and for it to see high levels of use. Building a large userbase for novel
infrastructure is fundamentally a bottom-up process of community building: to the
majority of researchers, the most convincing argument for adopting a new facility is
seeing other researchers who are successful at using it. While it is certainly possible
to “advertise” new infrastructure, results are louder than words, and it is ultimately
initial success that breeds later success. One way for a community of users to
begin to build is highly visible publications from the infrastructure’s early users,
which can take years of planning, development, submission, rejection, revision, and
acceptance. Another is for researchers who find the facility valuable as PhD students
to graduate and move to other institutions, spreading knowledge of and expertise
with the facility in their new faculty or post-doc positions. This process has a time
horizon that can be 5 years or more.

This leaves us with a “chicken and egg” problem: we clearly cannot afford the
risk of long-term investments in infrastructure before its value is demonstrated, yet
at the same time, it can take many years for the infrastructure to prove its worth.
We believe the best way to break this deadlock is to build meta-infrastructure.
This keeps the initial investment in a new facility low: instead of investing large
amounts in capital equipment to build a brand-new facility, we can invest in
“human capital” for the development of facilities targeted at specific research

Flexible Community Infrastructure 123

areas. (Additional equipment investment will be periodically required to keep
the infrastructure current.) Facility development projects can begin with a small
allocation of resources in already-established infrastructure; those that prove to be
valuable can be given more resources. Those that fail to gain traction can eventually
have their resources re-allocated to more successful testbeds, or to other new
testbeds just starting out. We can afford to try out more novel, higher-risk facility
development projects because we need not commit to them long term, or run the
risk that we cut them off too soon, before their value is proved or disproved.

Because the meta control system need not directly support particular research
domains, it can evolve largely independent of research trends, and will rarely be on
the critical path to supporting new types of testbeds. Testbeds and other facilities
built on top of the meta-infrastructure can evolve rapidly or slowly along with their
research communities, and many strategies can be tried in parallel. For example, if
a new cloud computing framework appears, an instance of it can be brought up in
parallel to the older infrastructure, and as usage demonstrates their relative value,
one can be kept up and the other shut down, or both can continue to run to serve
different constituencies.

4 Maximizing Research

It goes without saying that the goal of a research infrastructure project is to
maximize the amount of useful research that is produced. We believe that the best
way to do this, particularly early in the lifecycle of an infrastructure project, is to
aim to maximize the diversity of research that it supports. (Later in the lifecycle
of the infrastructure, when demand from users far exceeds the available resources,
processes for determining user limits and priorities become more necessary.)
Because much valuable research comes from the “long tail,” and it can be quite
difficult to predict the success of projects and experiments, giving access to many
and diverse users is an excellent strategy for maximizing the research output of the
facility.

The first fundamental guiding principle in determining access policy should be
that the level of administrative process that a user encounters should be proportional
to the level of use. Concretely, what this means is that a user just trying out the
infrastructure for the first time, or who has very modest resource needs should
not have to go through a laborious application or lengthy approval process—our
experience is that what infrastructure operators see as lightweight processes are
viewed by those who are not yet certain of the value of the infrastructure as large
hurdles, discouraging use. As time goes on and light users of the facility see it
as a critical part of their research and become heavier users, it is appropriate to
involve them in a more heavyweight approval process. At this point, the user is
more invested in the infrastructure and unlikely to be deterred.

124 R. Ricci

A second way to maximize usage is by flexible resource usage policies in which
usage (i.e. quantity and duration of resource allocation) is dealt with reactively,
rather than proactively. It is very difficult, and potentially harmful, to set a priori
limits to resource usage. One reason for this is the wide range of users that would
be supported by meta-infrastructure; what constitutes “light use” for a programming
language researcher is quite different from light use from a big data researcher. Even
within programming languages, needs vary greatly—some language researchers
require only a single node and no network, while others work on languages for
parallel cluster resources that require large numbers of cores distributed across
many physical PCs in order to evaluate. The result is that a priori policies cannot be
anything but arbitrary, and researchers getting started on the facility may be unable
to make any progress under a regime of proactive enforcement. We believe that a
better policy is to have reactive resource use policies to deal with outliers; i.e. heavy
users may be asked to go through the heavyweight approval process to continue
their level of resource usage.

One technique we successfully use in Emulab is idle detection; we use various
metrics to detect allocated resources that are not being used. When a user is found to
be under-utilizing their allocated resources, they are automatically reclaimed (after
a warning). Users who are chronic under-users are contacted by the operations staff.
Since most experiments are conducted by students or post-doctoral researchers, we
have found that a short note to a supervisor goes a long way to curbing problems of
this sort, since faculty do not want to be seen as bad citizens. This mechanism has
been extremely effective in making sure that resources in Emulab are well-utilized.

A third way that meta-infrastructure can maximize usage is by being adaptable
to differing research domains. Researchers are more likely to adopt infrastructure
with a user interface that is appropriate to their domain. This may take the form
of interfaces for software that already exists, or it may take the form of interfaces
specially-built for experimenter facilities.

Understandably, researchers would rather concern themselves with their research
than with infrastructure for experiments, and if the latter proves to take much time
or effort, they will prefer to put their effort into the former—even if this means
making sacrifices in the scope, scale, or evaluation of their research. This is a human
“problem” with a straightforward technical solution: if we build infrastructure that
empowers users in a domain to build their own testbeds, and then share those
testbeds with others, the effort necessary to run experiments in that domain goes
down drastically. Conversely, the diversity of users, and thus the research output of
the infrastructure, will go up, and the infrastructure will support a broader range of
computing research. For example, a user with experience with HPC schedulers is
more likely to user a facility that exports that familiar interface than one that has its
own interface, and a researcher not familiar with using testbeds at all would prefer
to use an interface only exposing the details relevant to her or his own domain.

Finally, the software developed for the meta-infrastructure control system, and
as many of the higher-level facilities as possible, should be released as open source.
Our personal experience is that we built the Emulab software for use with our own
facility, but that it quickly became clear that it suited others’ needs as well. We

Flexible Community Infrastructure 125

released it as open source, and there are now approximately 50 installations of the
software worldwide [5]; some support research, some support education, and some
support internal R&D activities in industry.

5 Conclusion

In summary, we believe that there is a demonstrated need for flexible research
infrastructure, and that it can and should reach out to a very broad community of
computing researchers. Our experience suggests that it should be approached from
the perspective of meta-infrastructure. Many testbed facilities can share the same
underlying infrastructure with varying levels of resource isolation and scientific
fidelity. This also creates a role for domain experts, who are in the best position to
design testbed facilities for their own domains. Doing so amortizes cost and reduces
risk. At the same time, it will help to maximize the number and diversity of users,
maximizing research output.

In closing, it is also worth noting that research infrastructure is an interesting
object of study in its own right: studies of its use can be used to inform the design
of future infrastructure, both research and commercial. We have published a study
analyzing half a million network topologies submitted to Emulab [10] in order to
improve the physical design of infrastructure. We have also studied disk image usage
in an effort to produce improved disk imaging for cloud infrastructures [1].

Acknowledgements The ideas in this chapter are heavily informed by discussions throughout the
years with dozens of other Emulab designers and implementors, members of the GENI developer
community, and other testbed designers. They are also informed by discussions with users of those
facilities.

References

—

. Atkinson, K., Wong, G., Ricci, R.: Operational experiences with disk imaging in a multi-
tenant datacenter. In: Proceedings of the Eleventh USENIX Symposium on Networked Systems
Design and Implementation (NSDI) (2014)

2. Bavier, A., Chen, J., Mambretti, J., McGeer, R., McGeer, S., Nelson, J., O’Connell, P., Ricart,
G., Tredger, S., Coady, Y.: The GENI experiment engine. In: 26th International Teletraffic
Congress (2014)

3. Brinn, M., Bastin, N., Bavier, A., Berman, M., Chase, J., Ricci, R.: Trust as the foundation of
resource exchange in GENI. In: Proceedings of the 10th International Conference on Testbeds
and Research Infrastructures for the Development of Networks and Communities (Tridentcom)
(2015)

4. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bowman,
M.: PlanetLab: an overlay testbed for broad-coverage services. ACM SIGCOMM Comput.
Commun. Rev. 33(3), 3-12 (2003)

5. Emulab.net: Other Emulab testbeds. Flux Research Group, School of Computing, University

of Utah. https://wiki.emulab.net/Emulab/wiki/OtherEmulabs (2016). Accessed Jan 2016

https://wiki.emulab.net/Emulab/wiki/OtherEmulabs

126

10.

11.

12

14.

15.

16.

17.

18.
19.
20.

R. Ricci

. Fed4FIRE web site. http://www.fed4fire.eu (2016). Accessed Jan 2016
. FIBRE: Future Internet testbeds experimentation between Brazil and Europe. http://www.fibre-

ict.eu (2016). Accessed Jan 2016

. FutureGrid: A distributed testbed, exploring possibilities with clouds, grids, and high perfor-

mance computing (web site). http://portal.futuregrid.org (2016). Accessed Jan 2016

. GENI Project Office, BBN Technologies. GENI: Exploring networks of the future (web site).

http://www.geni.net (2016). Accessed Jan 2016

Hermenier, F., Ricci, R.: How to build a better testbed: lessons from a decade of network
experiments on emulab. In: Proceedings of the 8th International ICST Conference on Testbeds
and Research Infrastructures for the Development of Networks and Communities (Tridentcom)
(2012). Awarded Best Paper

Hibler, M., Ricci, R., Stoller, L., Duerig, J., Guruprasad, S., Stack, T., Webb, K., Lepreau,
J.: Large-scale virtualization in the Emulab network testbed. In: Proceedings of the USENIX
Annual Technical Conference (2008)

. LabWiki web page. http://labwiki.mytestbed.net/
13.

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorodnov,
D.: The eucalyptus open-source cloud-computing system. In: IEEE/ACM International Sym-
posium on Cluster Computing at the Grid (2009)

Ricci, R., Duerig, J., Stoller, L., Wong, G., Chikkulapelly, S., Seok, W.: Designing a federated
testbed as a distributed system. In: Proceedings of the 8th International ICST Conference on
Testbeds and Research Infrastructures for the Development of Networks and Communities
(Tridentcom) (2012)

Ricci, R., Wong, G., Stoller, L., Duerig, J.: An architecture for international federation of
network testbeds. IEICE Trans. E96-B(1), 2-9 (2013). Invited paper

Ricci, R., Wong, G., Stoller, L., Webb, K., Duerig, J., Downie, K., Hibler, M.: Apt: a platform
for repeatable research in computer science. ACM SIGOPS Oper. Syst. Rev. 49(1), 100-107
(2015)

Schwab, S., Wilson, B., Ko, C., Hussain, A.: SEER: a security experimentation environment for
deter. In: DETER Community Workshop on Cyber Security Experimentation and Test (2007)

The GENI Portal. http://portal.geni.net/

The GENI Desktop. https://genidesktop.netlab.uky.edu/ (2016). Accessed Jan 2016

White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler, M., Barb,
C.,Joglekar, A.: An integrated experimental environment for distributed systems and networks.
In: Proceedings of the USENIX Symposium on Operating System Design and Implementation
(OSDI). USENIX (2002)

https://genidesktop.netlab.uky.edu/
http://portal.geni.net/
http://labwiki.mytestbed.net/
http://www.geni.net
http://portal.futuregrid.org
http://www.fibre-ict.eu
http://www.fibre-ict.eu
http://www.fed4fire.eu

A Retrospective on ORCA: Open Resource
Control Architecture

Jeff Chase and Ilya Baldin

Abstract ORCA is an extensible platform for building infrastructure servers based
on a foundational leasing abstraction. These servers include Aggregate Managers for
diverse resource providers and stateful controllers for dynamic slices. ORCA also
defines a brokering architecture and control framework to link these servers together
into a federated multi-domain deployment. This chapter reviews the architectural
principles of ORCA and outlines how they enabled and influenced the design of
the ExoGENI Racks deployment, which is built on the ORCA platform. It also sets
ORCA in context with the GENI architecture as it has evolved.

1 Introduction

The Open Resource Control Architecture (ORCA) is a development platform
and control framework for federated infrastructure services. ORCA has been
used to build elements of GENI, most notably the ExoGENI deployment [4]. In
ExoGENI the ORCA software mediates between GENI user tools and the various
infrastructure services (IaaS) that run a collection of OpenFlow-enabled cloud sites
with dynamic layer-2 (L2) circuit connectivity.

ORCA is based on the SHARP resource peering architecture [12], which was
conceived in 2002 for federation in PlanetLab [11] and related virtual infrastructure
services [5, 8] as they emerged. ORCA incorporates the Shirako resource leasing
toolkit [14, 18, 20] and its plug-in extension APIs. It incorporates the research of
three Duke PhD students [13, 16, 23], which was driven by a vision similar to
GENI: a network of federated resource providers enabling users and experimenters
to build custom slices that combine diverse resources for computing, networking,
and storage.

J. Chase (I<)
Duke University, Durham, NC, USA
e-mail: chase @cs.duke.edu

1. Baldin
Renaissance Computing Institute (RENCI)/UNC Chapel Hill, Chapel Hill, NC, USA

© Springer International Publishing Switzerland 2016 127
R. McGeer et al. (eds.), The GENI Book, DOI 10.1007/978-3-319-33769-2_7

mailto:chase@cs.duke.edu

128 J. Chase and I. Baldin

When construction of GENI began in 2008, ORCA was selected as a candidate
control framework along with three established network testbeds: PlanetLab, Emu-
lab, and ORBIT. ORCA was the only candidate framework that had been conceived
and designed from the ground up as a platform for secure federation, rather than
to support a centrally operated testbed. At that time ORCA was research software
with no production deployment, and so it was more speculative than the other
control framework candidates. We had used it for early experiments with elastic
cloud computing [10, 17-20, 24], but we were just beginning to apply it to network
resources [2, 9].

The GENI project was therefore an opportunity to test whether we had gotten
ORCA’s architecture and abstractions right, by using it to build and deploy a multi-
domain networked IaaS system. The crucial test was to show that ORCA could
support advanced network services, beginning with RENCI’s multi-layer network
testbed (the Breakable Experimental Network—BEN) in the Research Triangle
region.

During the GENI development phase (2008-2012), participants in the GENI
Cluster D group, led by RENCI, built software to control various infrastructures and
link them into a federated system using ORCA. For example, the Kansei group built
KanseiGenie [21], an ORCA-enabled wireless testbed. Through this phase ORCA
served as a common framework to organize these efforts and link them together.
This was possible because ORCA was designed as an orchestration platform for
diverse resource managers at the back end and customizable access methods at the
front end, rather than as a standalone testbed itself.

ORCA was based on the premise that much of the code for controlling resources
in a system like GENI would be independent of the specific resources, control
policies, and access methods. The first step was to write the common code once
as a generic toolkit, keeping it free of assumptions about the specific resources and
policies. The second step was to plug in software adapters to connect the toolkit to
separately developed IaaS resource managers, which were advancing rapidly outside
of the GENI effort.

The RENCI-led team used ORCA’s plug-in extension APIs to implement various
software elements later used in ExoGENI. They include: a control system and
circuit API for the BEN network, modules to link ORCA with off-the-shelf cloud
managers, storage provisioning using commercial network storage appliances,
VLAN:-sliced access control for OpenFlow-enabled network dataplanes, adapters
for various third-party services, and a front-end control interface that tracked the
GENI API standards as they emerged. Section 2.5 summarizes some ORCA plugins
used in ExoGENI; the accompanying chapter on ExoGENI [1] discusses these
examples in detail.

A key outcome of the BEN experience was a methodology for describing
network resources and configurations declaratively using a powerful logic-based
semantic resource description language (NDL-OWL) [2, 3], originally for use
by the BEN plug-in modules (Sect.2.4). The language represents attributes and
relationships (e.g., attachment points, connectivity, protocol compatibility, layering)
among virtual infrastructure elements and network substrate resources. Descriptions

A Retrospective on ORCA 129

in the language (models) drive policies and algorithms to co-schedule compute
and network resources and interconnect them according to their properties and
dependencies. NDL-OWL is now used for all resources in ExoGENI. The NDL-
OWL support was a substantial effort in itself, but we were able to add logic-based
resource descriptions to ORCA and use them to build ExoGENI without modifying
the ORCA core.

This approach enabled us to demonstrate key objectives of GENI—automated
embedding and end-to-end assembly (stitching) of L2 virtual network topologies
spanning multiple providers—by early 2010 [3, 22], well before GENI had defined
protocols to enable these functions. ORCA already defined a protocol and federation
structure similar to what was ultimately adopted in GENI; we essentially used that
structure to link together third-party back-end resource managers as they appeared,
and control them through their existing APIs. This philosophy carried through to the
ExoGENI effort when it was funded in 2012: the exo prefix refers in part to the idea
of incorporating resources and software from outside of GENI and exposing their
power through GENI APIs.

The remainder of this chapter outlines the ORCA system in more detail,
illustrating with examples from ExoGENI. Section 2 gives an overview of ORCA’s
abstractions and extension mechanisms, and the role of logic-based semantic
resource descriptions. Section 3 summarizes ORCA’s architecture for federating
and orchestrating providers based on broker and controller services. Section 4 sets
ORCA in context with the GENI architecture as it has evolved.

2 Overview of the ORCA Platform

ORCA and GENI embody the key concepts of slices, slivers, and aggregates derived
from their common heritage in PlanetLab. An aggregate is a resource provider: to a
client, it appears as a hosting site or domain that can allocate and provision resources
such as machines, networks, and storage volumes. An Aggregate Manager (AM) is
a service that implements the aggregate’s resource provider APL. A sliver is any
virtual resource instance that is provisioned from a single AM and is named and
managed independently of other slivers. Slivers have a lifecycle and operational
states, which a requester may query or transition (e.g., shutdown, restart).

Client tools call the AMs to allocate and control slivers across multiple aggre-
gates, and link them to form end-to-end environments (slices) for experiments or
applications. A slice is a logical container for a set of slivers that are used for some
common purpose. Each sliver is a member of exactly one slice, which exists at the
time the sliver is created and never changes through the life of the sliver. The slice
abstraction serves as a basis for organizing user activity: loosely, a slice is a unit of
activity that can be enabled, disabled, authorized, accounted, and/or contained.

In ORCA we refer to a client of the AM interface as a Slice Manager (SM). Each
request from an SM to an AM operates on one or more slivers of exactly one slice.
The role of a slice’s SM is to plan and issue AM requests to build the slice to order

130 J. Chase and I. Baldin

with suitable end-to-end connectivity according to the needs of an experiment or
application. ORCA is a toolkit for building SMs and AMs by extending a generic
core, and linking them together in a federation using SM controller extensions and
common services for resource brokering, user identity, and authorization.

This section summarizes the ORCA abstractions and principles, focusing on how
to use ORCA to implement diverse AMs. Figure 1 illustrates an ORCA aggregate
and the elements involved in issuing a sliver lease to a client SM. ORCA bases
all resource management on the abstraction of resource leases (Sect.2.1). The core
leasing engine is generic: ORCA factors support for specific resources and policies
into replaceable extension modules (“plugins”) that plug into the core (Sect.2.2).
The extensions produce and/or consume declarative resource descriptions that
represent information needed to manage the resources (Sect.2.4). The common
leasing abstractions and plug-in APIs facilitate implementation of AMs for diverse
resources (Sect. 2.5).

2.1 Resource Leases

ORCA resource leases are explicit representations of resource commitments granted
or obtained through time. The lease abstraction is a powerful basis for negotiating
and arbitrating control over shared networked resources. GENI ultimately adopted
an equivalent leasing model in the version 3.0 API in 2012.

A lease is a promise from an aggregate to provide one or more slivers for a
slice over an interval of time (the term). Each sliver is in the scope of exactly one
lease. A‘lease is materialized as a machine-readable document specifying the slice,
sliver(s), and term. Each lease references a description (Sect. 2.4) of the slivers and

sliver Resource
requests leasing emb_ed/ Control
service assign
interface resources Resource| Back-end
Client l Control Resource
i Managers
(Slice Manager) (?)
lease Handler P e.g., clou
status setup <] middleware)
Leases with notify slivers
sliver
d ipti Handler :
escriptions Aggregate Manager

Fig. 1 Structure of an ORCA aggregate. An Aggregate Manager (AM) issues sliver leases
(Sects. 2.1 and 2.3) to clients called Slice Managers (SMs). The AMs are built from a generic
leasing server core in the ORCA platform (light shade). The core invokes plug-in extension mod-
ules (dark shade) for resource-specific functions of each aggregate (Sect.2.2). These extensions
may invoke standard APIs of off-the-shelf IaaS resource managers, e.g., OpenStack. Their resource
control functions are driven by logical descriptions of the managed resources (Sect. 2.4). ExoGENI
uses this structure for diverse aggregates, including network providers (Sect. 2.5)

A Retrospective on ORCA 131

the nature of the access that is promised. Leases are authenticated: ORCA leases are
signed by the issuing AM. Lease contracts may be renewed (extended) or vacated
prior to expiration, by mutual agreement of the SM and AM. If an SM abandons a
sliver, e.g., due to a failure, then the AM frees the resources when the lease expires.

ORCA is based on SHARP [12], which introduced a two-step leasing API in
which the client first obtains an approval to allocate the resources (a ticket), and
then redeems the ticket to claim the resources and provision (instantiate) the slivers.
A ticket is a weaker promise than a lease: it specifies the promised resources
abstractly. The AM assigns (binds) concrete resources to fill the ticket only when it
is redeemed. In ORCA (as in SHARP) the tickets may be issued by brokers outside
of the aggregates (Sect. 3.2).

By separating allocation and provisioning in this way, the leasing API enables a
client to obtain promises for resources at multiple AMs cheaply, and then move to
the redeem step only if it succeeds in collecting a resource bundle (a set of tickets)
matching its needs. The two-step API is a building block for grouped leases and
atomic co-allocation—the ability to request a set of slivers such that either the entire
request succeeds or it aborts and no sliver is provisioned. The AM may commit
resources cheaply in advance, and then consider current conditions in determining
how to provision the resources if and when they are needed.

From the perspective of the AMs, leases provide a means to control the terms
under which their resources are used. The resource promises may take a number of
forms expressible in the logic, ranging along a continuum of assurances ranging
from a hard physical (e.g., bare metal) reservation to a weak promise of best-
effort service over the term. By placing a time bound on the commitments, leases
enable AMs to make other promises for the same resources in the future (advance
reservations).

From the perspective of the SMs, leases make all resource allotments explicit
and visible, enabling them to reason about their assurances and the expected
performance of the slice. Since the SM may lease slivers independently of one
another, it can modify the slice by adding new slivers and/or releasing old slivers,
enabling elastic slices that grow and shrink according to need and/or resource
availability. Various research uses of the ORCA software experimented with
elastic slice controllers (Sect. 3.3), building on our early work in adaptive resource
management for hosting centers [7, 8]. ExoGENI supports elastic slices by using
the native ORCA APIs internally, due to limitations of the early GENI APIs, which
did not support elastic slices.

2.2 Extension Modules

ORCA is based on a generic reusable leasing engine with dependencies factored into
stackable plug-in extension modules (the “plugins”) [18]. The core engine tracks
lease objects through time in calendar structures that are accessible to the extensions.
For example, an AM combines the leasing engine with two types of extensions that
are specific to the resources in the aggregate:

132 J. Chase and I. Baldin

* ResourceControl. The AM core upcalls a ResourceControl policy
module periodically with batches of recently received sliver requests. Its purpose
is to assign the requests onto the available resources. The batching interval is
a configurable parameter. It may defer or reject each request, or approve it with
an optional binding to a resource set selected from a pool of matching resources.
The module may query the attributes of the requester, the state of the resources
and calendar, other pending requests, and the history of the request stream.

* Handler. The AM core upcalls a Handler module to setup a sliver after
approval, or teardown a sliver after a lease is closed (expired, cancelled,
or vacated). Resource handlers perform any configuration actions needed to
implement slivers on the back-end infrastructure. The handler API includes a
probe method to poll the current status of a sliver, and a modify method to
adjust its properties.

An ORCA AM may serve multiple types of slivers by combining multiple
instances of these modules, which are indexed and selectable by sliver type. Each
upcall runs on its own thread and is permitted to block, e.g., for configuration actions
in the handler, which may take seconds or minutes to complete. The extensions
post their results asynchronously through lease objects that are shared with the
leasing core.

2.3 Leasing Engine

The ORCA lease abstraction defines the behavior of a resource lease as a set
of interacting state machines on the servers that are aware of it. The lease state
machines have well-defined states and state transition rules specific to each type of
server. Figure 2 illustrates typical states, transitions, and actions.

The core engine within each server serializes state machine transitions and com-
mits them to stable storage. After a transition commits, it may trigger asynchronous
actions including notifications to other servers, upcalls to extension modules, and
various other maintenance activities.

Lease state transitions and their actions are driven by the passage of time (e.g.,
sliver setup at the start of the term and teardown at the end of the term), changes
in status of the underlying resources (e.g., failure), decisions by policy extension
modules, and various API calls.

Cross-server interactions in the leasing system are asynchronous and resilient.
After a failure or server restart, the core recovers lease objects and restarts pending
actions. The extensions may store data blobs and property lists on the lease objects.
The core upcalls each extension with the recovered lease objects before restarting
any actions. The servers and extensions are responsible for suppressing any effects
from duplicate actions that completed before a failure but were restarted or reissued
on recovery.

A Retrospective on ORCA 133

2.Authorize request, run
policy, promise

original lease term m——

Broker :
LLLL] Extending mmm I
update
request ticket ticket |7 REneW
request return extend (renew) eases as
resources ticket needed.

5. Integrate resources into
slice e.g., stitching).

Active
Ticketed

Ticketed Joining Extending
6. Application

1. Form request for uses the

resources. resources for request lease

(D duration of lease. extend

redeem lease

ticket

AM i
Priming Active annn Extending anus J—>
3. Accept ticket if valid, 4. Instantiate resources Time 8. Terminate lease and
select resources to fill (e.g., create VMs, network reclaim resources.
the promise. circuits/tunnels).

Fig. 2 Lease states and transitions. Interacting state machines representing a single ORCA lease
at three servers: the SM that requested the resource, the broker that issued the ticket, and the
provider (AM) that sets up the slivers, issues the lease, and tears down the resource when the lease
expires. Each state machine passes through various intermediate states, triggering policy actions,
local provisioning actions, and application launch. This figure is adapted from [18]

2.4 Resource Descriptions

The ORCA platform makes it possible to build new AMs quickly by implementing
the Handler and ResourceControl modules. Since the leasing core and
protocols are generic, there must be some means to represent resource-specific
information needed by these modules. This is achieved with a data-centric API in
which simple API requests and responses (ticket/redeem/renew/close)
have attached descriptions that carry this content. The descriptions contain state-
ments in a declarative language that describe the resources and their attributes and
relationships.

The description language must be sufficiently powerful to describe the resource
service that the aggregate provides: what kinds of slivers, sizes and other options,
constraints on the capacity of its resource pools, and interconnection capabilities
for slivers from those pools. It must also be able to describe resources at multiple
levels of abstraction and detail. In particular, clients describe their sliver requests
abstractly, while the aggregate’s descriptions of the provisioned slivers are more
concrete and detailed. GENI refers to these cases as advertisement, request, and
manifest respectively.

In ORCA the descriptions are processed only by the resource-specific parts of
the code, i.e., by the extension modules. The core ignores the descriptions and
is agnostic to their language. An ORCA resource description is a set of arbitrary
strings, each indexed by a key: it is a property list. ORCA defines standard
labels for distinct property lists exchanged in the protocols, corresponding to the
advertisement, request, and manifest cases.

134 J. Chase and I. Baldin

= > > EY
£=(16,16) f=(8,12) f =(4.4) f=(12,4)
o=(4.8)
> >
free A=(8,4) i\=(84)/ B 5
5=(4,8)
resource
A A B
resource pool status sliver B term
sliver A term

calendar slots

Fig. 3 A simple example of resource algebra and sliver allocation. These slivers represent a virtual
resource with two dimensions, e.g., virtual machines with specified quantities of memory and CPU
power. They are allocated and released from a pool of bounded capacity. Free capacity in the pool
is given by vector addition and subtraction as slivers are allocated and released

To support meaningful resource controls, the description language must enable
a resource algebra of operators to split and merge sliver sets and resource pools.
Given descriptions of a resource pool (an advertisement) and a set of slivers, a
resource algebra can determine if it is feasible to draw the sliver set from the pool,
and if so to generate a new description of the resources remaining in the pool.
Another operator determines the effect of releasing slivers back to a pool.

The original SHARP/Shirako lease manager [18] used in ORCA described
pools as quantities of interchangeable slivers of a given type. A later version
added resource controls using an algebra for multi-dimensional slivers expressed as
vectors [13], e.g., virtual machines with rated CPU power, memory size and storage
capacity, and IOPS. Figure 3 depicts a simple example of resource algebra with
vectors.

In the GENI project we addressed the challenge of how to represent complex
network topologies and sliver sets that form virtual networks over those topologies.
For this purpose we adopted a logic language for semantic resource descriptions.
Logical descriptions expose useful resource properties and relationships for infer-
ence using a generic reasoning engine according to declarative rules. In addition to
their expressive power, logical descriptions have the benefit that it is semantically
sound to split and combine them, because they are sets of independent statements
in which all objects have names that are globally unique and stable. For example, a
logical slice description is simply a concatenation of individual sliver descriptions,
each of which can be processed independently of the others. Statements may
reference objects outside of the description, e.g., to represent relationships among
objects, including graph topologies.

To this end, the RENCI team augmented the Network Description Language [15]
with a description logic ontology in the OWL semantic web language. We called
the resulting language NDL-OWL [3]. We used NDL-OWL to describe infras-
tructures orchestrated with ORCA: BEN and other networks and their attached

A Retrospective on ORCA 135

edge resources, including virtual machine services. For example, NDL-OWL
enables us to enforce semantic constraints on resource requests, express path
selection and topology embedding as SPARQL queries over NDL-OWL semantic
resource descriptions, manage capacity constraints across sequences of actions that
allocate and release resources (an “algebra”), check compatibility of candidate
interconnections (e.g., for end-to-end VLAN tag stitching, Sect. 3.4), and generate
sequences of handler actions to instantiate slivers automatically from the descrip-
tions. These capabilities are implemented in extension modules with no changes to
the ORCA core.

2.5 Building Aggregates with ORCA

We used ORCA and NDL-OWL to build a collection of Aggregate Managers (AMs)
for back-end resource managers from other parties. In ExoGENI, these include two
off-the-shelf cloud resource managers: OpenStack for Linux/KVM virtual machines
and xCAT for bare-metal provisioning. These systems expose local IaaS APIs to
allocate and instantiate resources. Each AM runs one or more Handler modules
that invoke these back-end control APIs. The AM structure makes their resources
available through the leasing APIs, and provides additional functions to authorize
user requests and connect a slice’s slivers on the local aggregate with other resources
in the slice.

We augmented the cloud aggregates with additional back-end software to
function as sites in a networked laaS federation under a separate NSF SDCI project
beginning in 2010. The added software includes a caching proxy for VM images
retrieved by URL, linkages to an off-the-shelf OpenFlow access control proxy
(FlowVisor) to enable slices to control their virtual networks, and custom OpenStack
extensions for dynamic attachment of VM instances to external L2 circuits. We
also added handlers to invoke storage provisioning APIs of third-party storage
appliances. These elements are independent of the cloud manager: the AM handlers
orchestrate their operation.

We also implemented AMs for network management to provide dynamic circuit
service for a network of cloud sites under ORCA control. Most notably, the control
software for BEN and its L2 circuit service were implemented natively as ORCA
extensions in 2009; the AM handlers issue direct commands to the vendor-defined
APIs on the BEN network elements. ExoGENI also includes other circuit AMs that
proxy third-party L2 circuit services from national-footprint backbone providers,
including the OSCARS services offered by ESNet and Internet2. For these systems
the AM handler calls the circuit API under its own identity; the circuit provider does
not know the identities of the GENI users on their networks. In effect, the provider
implicitly delegates to the AM the responsibility to authorize user access, maintain
user contacts and billing if applicable, and provide a kill switch. This approach was
easy to implement without changing the circuit providers: the AM interacts with the
provider using its standard client APIs.

136 J. Chase and I. Baldin

In ExoGENI, these various additions permit users to obtain resources at multiple
OpenStack sites, without the need to register identities and/or images at each site.
The network AMs and OpenStack cloud site AMs together enable ExoGENI slices
to connect their resources at multiple federated cloud sites into a slice-wide virtual
L2 network topology, use OpenFlow SDN to control the topology, and interconnect
their OpenStack VMs with other resources outside of OpenStack. The broker and
controller elements of ORCA (Sect.3) can select the sites to satisfy a request
automatically, without the user having to know the sites.

Finally, for ExoGENI we implemented an AM to control exchange points—
RENCI-owned switches installed at peering centers where multiple transit providers
come together (e.g., Starlight). These switches implement VLAN tag translation:
the exchange AM uses this capability to stitch circuits from different providers
into a logical end-to-end circuit, expanding the connectivity options for circuits
on an ExoGENI slice data plane. The handler for the exchange AM issues direct
commands to the vendor API on the switches, similarly to the BEN control software.

3 Orchestration and Cross-Aggregate Resource Control

Section 2 described how we can build diverse aggregates with ORCA by plugging
resource-specific and policy-specific extension modules into a common leasing
core, and accessing their resources via common leasing protocols. This approach
can apply to any aggregate whose resources are logically describable. It helps to
deliver on a key goal of GENI: support for diverse virtual resources from multiple
providers (aggregates).

But GENTI’s vision of a provider federation goes beyond that: it is also necessary
to coordinate functions across aggregates in the federation. ORCA defines two
kinds of coordinating servers that are not present in the GENI architecture: brokers
and controllers. The brokers (Sect. 3.2) issue tickets for slivers on aggregates: they
facilitate resource discovery and cross-aggregate resource control. The controllers
(Sect.3.3) run as extension modules within the SMs to manage slices: each slice
is bound to exactly one controller, which receives notifications for all events in the
slice and issues sliver operations on the slice. In general, ORCA controllers run on
behalf of users to manage their slices: they have no special privilege.

These servers play an important role in ExoGENI. In particular, the ExoGENI
controllers manage topology embedding and slice assembly (Sect. 3.4). They also
implement the user-facing GENI API and proxy requests from GENI users for
ExoGENI resources (Sect. 3.5). Proxying requires them to check authorization for
GENI users, so the ExoGENI AMs are configured to trust these special controllers
to perform this function.

A Retrospective on ORCA 137

Slice Manager (SM)
formulate redeem
requests '\ / tickets
// [1] 51 ™
calendar
[21 controller - [6
leasing core \
ticket ; 1‘ redeem
ex;andTicket updateTicket updateLease extendLease
leasing core 4] [8 leasing core
/ \

allocate / advertise \

ticket ig
[31 [71

redeem

extend extend

Broker Aggregate Manager (AM)

Fig. 4 Interacting servers in the ORCA resource control plane, and their policy control modules.
The AMs advertise their resource pools to one or more brokers. Brokers accept user requests and
run policy for ticket allocation. The SM controllers select and sequence resource requests for
the slice to the brokers and AMs. The AMs provision slivers according to the tickets and other
directives passed with each request

3.1 ORCA Resource Control Plane

Brokers and controllers are built using the same leasing platform as the AMs. The
ORCA toolkit design recognized that these servers have key structural elements
in common: a dataset of slices and slivers; timer-driven actions on lease objects
organized in a calendar; similar threading and communication models; and lease
state machines with a common structure for plug-in extension modules.

Figure 4 illustrates the three types of interacting servers (actors) in the ORCA
framework and their policy modules. The brokers run policy extensions—similar
to the AM ResourceControl modules—to allocate sliver requests against an
inventory of advertisements, and to issue tickets for those slivers. Controllers run as
extension modules within generic Slice Manager (SM) servers. The protocol mes-
sages carry resource descriptions produced and consumed by the policy modules.
All messages are signed to ensure a verifiable delegation path.

An ORCA deployment may combine many instances of each kind of server.
ORCA was conceived as a resource control plane in which multiple instances of
these servers interact in a deployment that evolves over time. The ORCA toolkit
combines a platform to build these servers and a control framework to link them
together. These linkages (e.g., delegations of control over advertised resources from
AMs to brokers) are driven by configuration files or administrative commands, or
programmatically from an extension module. Any delegation of resource control is
represented by a ticket or lease contract with an attached resource description.

138 J. Chase and I. Baldin

Since all agreements are explicit about their terms, this structure creates a
foundation for resource management based on peering, bartering, or economic
exchange [12, 14, 17]. An AM may advertise its resources to multiple brokers, and
a broker may issue tickets for multiple AMs. The AM ultimately chooses whether
or not to honor any ticket issued by a broker, and it may hold a broker accountable
for any oversubscription of an AM’s advertisements [12].

3.2 Brokers

Brokers address the need for cross-aggregate resource control. They can arbitrate
or schedule access to resources by multiple users across multiple aggregates, or
impose limits on user resource usage across aggregates using the same broker. The
broker policy has access to the attributes of the requester and target slice, and it may
maintain a history of requests to track resource usage by each entity through time.

Brokers also offer basic support for co-allocation across multiple aggregates,
including advance reservations. This support is a key motivation for the two-step
ticket/lease protocol in SHARP and ORCA. In particular, an ORCA broker may
receive resource delegations from multiple aggregates and issue co-allocated tickets
against them. Because all allocation state is kept local to the broker, the co-allocation
protocol commits locally at the broker in a single step.

The key elements that enable brokers are the separation of allocation and provi-
sioning (Sect.2.1) and the “resource algebra” of declarative resource descriptions
(Sect.2.4). Given the algebra, the processing for ticket allocation can migrate
outside of the AMs to generic brokers operating from the AM’s logical description.
The AM must trust the broker to perform this function on its delegated resource
pools, but it can always validate the decisions of its brokers because the tickets they
issue are redeemed back to the AM for the provisioning step [12].

The logical resource descriptions enable advertisements at multiple levels of
abstraction. In practice, most AMs advertise service descriptions rather than
their internal substrate structure. For example, ExoGENI network AMs hide their
topology details: they advertise only their edge interconnection points with other
domains and the bandwidth available at each point. Abstract advertisements offer
more flexibility and autonomy to the AMs, who may rearrange their infrastructures
or adjust sliver bindings to respond to demands and local conditions at the time of
service.

Each AM chooses how to advertise its resources in order to balance the risks of
ticket rejection or underutilization of its resources. For example, an unfortunate side
effect of abstract advertisements is that brokers may issue ticket sets that are not
feasible on the actual infrastructure, particularly during periods of high utilization.
Ticket rejection by the AM is undesirable and disruptive, but it is unavoidable in
the general case, e.g., during outages. An AM may hold unadvertised capacity in
reserve to mask problems, but this choice leaves some of its resources unused.

A Retrospective on ORCA 139

Alternatively, an AM may advertise redundantly to multiple brokers. This choice
reduces the risk of wasting resources due to broker failure at the cost of a higher
risk of overcommitment and ticket rejection.

To summarize, the flexible delegation model enables a continuum of deployment
choices that balance the local autonomy of resource providers with the need for
global coordination through the brokering system. Resource contracts and logical
descriptions enable AMs to delegate varying degrees of control over their resources
to brokers that implement policies of a community. At one end of the continuum,
each AM retains all control for itself, effectively acting as its own broker, and
consumers negotiate resource access with each provider separately. At the other end
of the continuum a set of AMs federate using common policies implemented in a
central brokering service. These are deployment choices, not architectural choices.
In ExoGENI all AMs advertise to a central broker, but each cloud site also serves
some resources locally.

3.3 Controllers

The slice controllers in ORCA match the Software-Defined Networking and
Infrastructure (SDN/SDI) paradigm that is popular today. Like SDN controllers
they control the structure of a virtual network (a slice) spanning a set of low-level
infrastructure elements. They issue commands to define and evolve the slice, and
receive and respond to asynchronous notifications of events affecting the slice. Like
other ORCA servers, the controller/SM is stateful: it maintains a database recording
the status of each slice, including active tickets and leases and any pending requests.
It is the only control element with a global view of the slice.

One simple function of the controller is to automate sliver renewal (“meter
feeding”) as leases expire, to avoid burdening a user. The controller may allow leases
to lapse or formulate and inject new lease requests according to a policy. In the early
work, the controller and SM were conceived as the locus of automated adaptation
policy for elastic slices and elastic services running within those slices [10, 17—
20, 24]. (This is why the SM was called Service Manager in the early papers.)
For example, a 2006 paper [20] describes the deployment of elastic grid instances
over a network of virtual machine providers, orchestrated by a “grid resource
oversight controller” (GROC). The grid instances grow and shrink according to their
observed load.

To assist the controller in orchestrating complex slices, the ORCA leasing engine
can enforce a specified sequencing of lease setup actions issued from the SM.
The controller registers dependencies by constructing a DAG across the lease
objects, and the core issues the lease actions in a partial order according to the
DAG. This structure was developed for controllers that orchestrate complex hosted
services [18], such as the GROC, but it has also proved useful to automate stitching
of network connectivity within slices that span aggregates linked by L2 circuit
networks [3], as described in Sect. 3.4 below.

140 J. Chase and I. Baldin

In particular, the leasing engine redeems and instantiates each lease before any
of its successors in the DAG. Suppose an object has been ticketed but no lease has
been received for a redeem predecessor: then the engine transitions the ticketed
object into a blocked state, and does not fire the redeem action until the predecessor
lease arrives, indicating that its setup is complete. The core upcalls the controller
before transitioning out of the blocked state. This upcall API allows the controller
to manipulate properties on the lease object before the action fires. For example,
the controller might propagate attributes of the predecessor (such as an IP address
or VLAN tag returned in the lease) to the successor, for use as an argument to a
configuration action.

3.4 Automated Stitching and Topology Mapping

ExoGENI illustrates how controllers and their dependency DAGs are useful to
plan and orchestrate complex slices. In particular, the controllers automate end-to-
end circuit stitching by building a dependency DAG based on semantic resource
descriptions.

The controller first obtains the description for each edge connection point
between domains traversed by links in a slice. The descriptions specify the proper-
ties of each connection point. In particular, they describe whether each domain can
produce and/or consume label values (e.g., VLAN tags) that name an attachment
of a virtual link to an interface at the connection point. A domain with translation
capability can act as either a label producer or consumer as needed.

Stitching a slice involves making decisions about which domains will produce
and which will consume labels, a process that is constrained by the topology of the
slice and the capabilities of the domains. Based on this information, the controller
generates a stitching workflow DAG that encodes the flow of labels and dependencies
among the slivers that it requests from these domains. A producer must produce
before a consumer can consume. The controller traverses the DAG, instantiating
resources and propagating labels to their successors as the labels become available.

Figure 5 illustrates with a hypothetical scenario. The NLR circuit service is a
producer: its circuits are compatible for stitching only to adjacent domains with
consumer or tag translation capability. The resulting DAG instantiates the NLR
circuit first, and obtains the produced VLAN tag from the sliver manifest returned
by the domain’s AM. Once the tag is known, the controller propagates it by firing an
action on the successor slivers at the attachment point, passing the tag as a parameter.
Each domain signs any labels that it produces, so that downstream AMs can verify
their authenticity. A common broker or other federation authority may function as
a trust anchor. In extreme cases in which VLAN tag negotiation is required, e.g.
among adjacent “producer” domains, it is possible to configure the broker policy
module to allocate a tag from a common pool of values.

The ExoGENI controllers also handle inter-domain topology mapping (embed-
ding) for complex slices [22]. A controller breaks a requested topology down into

A Retrospective on ORCA 141

— NLR : BEN VMs
Cloud#1 \k (producer) "/ \ (translation capability) Cloud#2
- i — .
\.H'_";\x._l_.—/ \\“_"\,___/_/

1. Request circuit
Obtain VLAN tag t1

2. Request VMs

Propagate tag t1 2. Request BEN circuit

NLR - & Propagate+translate tag t1
T BEN .

Obtain tag t2

. p \ . . 3. Request VMs
Stitching DAG | Cloud#1 Cloud#2 Propagate tag t2

Fig. 5 Dependency DAG and stitching workflow for an end-to-end L2 circuit scenario. NLR/Sh-
erpa chooses the VLAN tag at both ends of its circuits, BEN has tag translation capability, and the
edge cloud sites can accept tags chosen by the adjacent provider. The connection point descriptions
yield a stitching workflow DAG. The controller traverses the DAG to assemble the circuit with a
partial order of steps

a set of paths, and implements a shortest-feasible-path algorithm to plan each
path, considering compatibility of adjacent providers in the candidate paths as
described above. To plan topologies, the controller uses a query interface on the
brokers to obtain and cache the complete advertisements of the candidate network
domains. It then performs path computation against these logical models in order
to plan its sliver requests. If a path traverses multiple adjacent producer domains,
it may be necessary to bridge them by routing the path through an exchange point
that can translate the tags. After the controller determines the inter-domain path,
the network domain AMs select their own intra-domain paths internally at sliver
instantiation time.

Topology embedding is expensive, so it is convenient to perform it in the SM
controllers. The SMs and controllers are easy to scale because they act on behalf of
some set of independent slices: as the number of slices grows it is easy to add more
SMs and distribute the control responsibility for the slices across the SMs.

3.5 GENI Proxy Controller

ExoGENI SMs run special GENI controller plugins that offer standard GENI APIs
to GENI users. The GENI controllers run a converter to translate the GENI request
specification (RSpec) into NDL-OWL. The converter also checks the request for
compliance with a set of semantic constraints, which are specified declaratively in
NDL-OWL. If a request is valid, the SM and its controller module act as a proxy

142 J. Chase and I. Baldin

to orchestrate fulfillment of the request by issuing ORCA operations to ExoGENI
brokers and AMs. This approach enables suitably authorized GENI users to access
ExoGENI resources and link them into their GENI slices.

ExoGENTI’s proxy structure was designed to support GENI standards easily as
they emerged, without losing any significant capability. In particular, a global GENI
controller exposes the entire ExoGENI federation as a single GENI aggregate.
This approach enables GENI users to create complete virtual topologies spanning
multiple ExoGENI aggregates without relying on GENI stitching standards, which
began to emerge later in the project.

4 Reflections on GENI and ORCA

This section offers some thoughts and opinions on the GENI-ORCA experience. We
believe that the ORCA architecture has held up well through the GENI process. We
built and deployed ExoGENI as a set of extension modules with few changes to the
ORCA core. Although the ORCA software itself is not used outside of ExoGENI,
the GENI standards have ultimately adopted similar solutions in all areas of overlap.

In particular, the latest GENI API standard (3.0) is similar to the ORCA protocol,
with per-sliver leases, separate allocate and provision steps, dynamic stitch-
ing, abstract aggregates with no exposed components, elastic slices with adjustable
sliver sets, and a decoupled authorization system. Beyond these commonalities,
GENI omits orchestration features from ORCA that could help meet goals of GENI
that are still incomplete. It also adopts policies for user identity and authorization,
which are outside the scope of the ORCA architecture but are compatible with it.

The remaining differences lie in the data representations carried with the
protocol—the languages for resource descriptions and for the credentials that
support a request. In particular, GENI uses a resource description language (RSpec)
that is not logic-based. RSpec may prove to be more programmer-friendly than
NDL-OWL, but it is decidedly less powerful, and it rests on weaker foundations.

These differences are primarily interoperability issues rather than architectural
issues or restrictions of the protocol itself. The version 3.0 GENI API is open
to alternative credential formats including (potentially) broker-issued tickets, by
mutual agreement of the client and server. In principle the protocol is open to
alternative resource description languages as well.

4.1 Platforms vs. Products + Protocols

In retrospect, ORCA’s toolkit orientation set us apart from the GENI project’s initial
focus on standardizing protocols to enable existing network testbeds to interoperate.
Many of our colleagues in the project understood ORCA as another testbed provider,
rather than as a platform to federate and orchestrate diverse providers. They focused

A Retrospective on ORCA 143

on the infrastructure that ORCA supported, which at that time was limited to Xen
virtual machine services [18]. There was less interest in the toolkit itself, in part
because ORCA used a different language (Java) and tooling than the other GENI
clusters. Our focus on the toolkit—and the architectural factoring of GENI-relevant
functions and APIs that it embodied—clashed with the primacy of the protocol
standards, which were seen as the key to interoperability.

Even so, the ORCA toolkit allowed the GENI Cluster D team to accelerate
development by using generic ORCA servers to “wrap” existing back-end systems
and call them through their existing APIs. The result looked much like the structure
ultimately adopted in GENI (Sect.4.2), but using the ORCA protocols rather
than the GENI standards. The ORCA experience suggests that the lengthy GENI
development phase could have been shortened by focusing on wrappers and adapters
in the early spirals, rather than on the protocols.

Moreover, if the wrappers are standardized, then it is possible to change the
protocols later by upgrading the wrappers. We found that it is easier to stabilize
the plug-in APIs for the toolkit than the protocols themselves. For example, ORCA
uses an RPC system (Axis SOAP) that has never served us well and is slated for
replacement. The GENI standards use XMLRPC, which is now seen as defunct.

Although it is always difficult to standardize protocols, interoperability in a
system like ORCA or GENI is less about protocols than about data: machine-
readable descriptions of the principals and resources. In both systems the protocols
are relatively simple, but the messages carry declarative resource descriptions
and principal credentials, which may be quite complex. Our standards for these
languages will determine the power and flexibility of the systems that we build
(Sect.4.4).

4.2 Federation

The key differences in control framework architectures relate to their approaches to
federating the aggregates. In general, the aggregates themselves are IaaS or PaaS
services similar to those being pursued by the larger research community and in
industry. The problem for GENI is to connect them.

The GENI framework takes a simple approach to federation: it provides a
common hierarchical name space (URNs) and central authorities to authorize and
monitor user activity. GENI leaves orchestration to users and their tools and it
does not address cross-aggregate resource control (Sect.4.3). Even so, the GENI
community invested substantial time to understand the design alternatives for
federation, reconcile terminologies, and specify a solution. Various architectures
were proposed for GENI to factor identity management and authorization functions
out of the standalone testbeds and into federation authorities, but a workable
convergence did not emerge until 2012.

The GENI solution—so far—embodies a design principle also used in ORCA.
The AMs do not interact directly; instead, they merely delegate certain functions

144 J. Chase and I. Baldin

for identity management, authorization, and resource management to common
coordinator servers. The coordinators issue signed statements certifying that clients
and their requests comply with federation policy. The AM checks these statements
before accepting a request.

For example, the GENI Clearinghouse authorities approve users, authorize slices,
and issue credentials binding attributes to users and slices. User tools pass their
credentials to the AMs. These mechanisms provide the common means for each
AM to verify user identity and access rights for the GENI user community. The
coordinators in ORCA/ExoGENI include brokers and the GENI controllers, which
are trusted by the AMs to check the GENI credentials of requests entering the
ORCA/ExoGENI enclave.

As originally conceived, ORCA AMs delegate these user authorization functions
to the brokers: if a community broker issues a ticket for a request, the AM accepts
the user bearing the ticket. It is the responsibility of the broker to authorize each
user request in its own way before granting a ticket. More precisely, the ORCA
architecture left the model for user identity and authorization unspecified, and it is
fully compatible with GENI’s policy choices. However, these choices should remain
easily replaceable in any given deployment (Sect. 4.4).

4.3 Orchestration

GENI has not specified any coordinator functions beyond checking user credentials.
In particular, GENI has not adopted brokers or any form of third-party ticketing to
enable cross-aggregate resource management.

Although the sponsor (NSF) has voiced a desire to control user resource usage
across multiple aggregates, GENI has defined no alternative mechanism for this
purpose. Importantly, AMs and controllers are not sufficiently powerful to meet this
need without some structure equivalent to brokers. The local policy of any AM
may schedule or limit allocation of its own resources, but it has no knowledge or
control over allocations on other aggregates. Similarly, any limit that an unprivileged
controller imposes on resource usage by a slice is voluntary, because the controller
acts as an agent of the slice and its owners.

Slice controllers are also not part of the GENI architecture. GENI was conceived
as a set of protocols and service interfaces: the client software to invoke these
interfaces was viewed as out of scope. Instead, the idea was that a standard
AM API would encourage an ecosystem of user tools to grow organically from
the community. To the extent that computation is needed to orchestrate cross-
aggregate requests for a given slice—such as topology mapping—those functions
were conceived as central services provided to the tools through new service APIs.
We believe that it is more flexible and scalable to provide these functions within
the tools. ExoGENI shows that it is possible to do so given sufficiently powerful
resource descriptions and a platform for building the tools.

A Retrospective on ORCA 145

Over time it became clear that the GENI client tools must be stateful to
provide advanced slice control functions. In particular, tools must maintain state
to implement timer-driven sliver renewal, multi-step atomic co-allocation, “tree”
stitching across aggregates, and elastic slices that adapt to changing demands. Later
in the project, the GENI Project Office developed an extensible tool called omni
and a Web portal to proxy requests from stateless tools into GENI. These clients
have steadily incorporated more state and functionality. It seems likely that they
will continue to evolve in the direction of ORCA’s stateful slice controllers.

The ORCA view is that a federated infrastructure control plane is a “tripod”:
all three server types—aggregate/AM, controller/SM, and broker—are needed for
a complete system. The factoring of roles across these servers is fundamental. The
AMs represent the resource providers, and are the only servers with full visibility
and control of their infrastructures. The SMs represent the resource consumers, and
are the only servers with full visibility and control over their slices. The brokers and
other authorities (e.g., the GENI clearinghouse) mediate interactions between the
SMs and AMs: they are the only servers that can represent policy spanning multiple
aggregates.

4.4 Description Languages

Our experience with ORCA and GENI deepened our view that the key problems in
federated infrastructure—once the architecture is put right—are largely problems of
description. This understanding is a significant outcome of the GENI experience.

GENI differs from other infrastructure services primarily in its emphasis on
diverse infrastructure, rich interconnection, and deep programmability. It follows
that the central challenges for GENI are in describing “interesting” resources and in
processing those descriptions to manage them.

The early development phase of GENI was marked by an epic debate on
devegeni.net about whether a common framework for diverse resource
providers is even possible. It is perhaps still an open question, but if the answer
is yes, then the path to get there involves automated processing of rich resource
descriptions. To incorporate a new resource service into an existing system, we
must first describe the service and its resources in a way that enables generic
software to reason about the space of possible configurations and combinations.

For example, the ORCA experience shows that it is easy to incorporate current
cloud systems and third-party transit network providers as GENI aggregates through
an adaptation layer if we can describe their resources logically. Powerful logical
descriptions also enable the various coordinator functions (Sect. 4.3) in ORCA/Ex-
0oGENI. One lesson of this experience is that AM advertisements do not in general
describe the infrastructure substrate, as the GENI community has understood them,
but instead describe infrastructure services, which are even more challenging to

146 J. Chase and I. Baldin

represent and process. For example, AMs may proxy or “resell” resources from
other providers whose substrate they do not control, or they may offer various
mutually exclusive options for virtual sliver sets within the constraints of a given
substrate resource pool.

Our ongoing research focuses on declarative representations for resources and
trust, and their role in automating management of resources and trust. For example,
in recent work we have shown how to specify trust structure and policy alternatives
for a GENI deployment concisely and precisely in SAFE declarative trust logic [6].
Statements in the logic are embedded in credentials; a generic compliance checker
validates credentials according to policy rules, which are also expressed in the logic.

With this approach, the GENI architecture can be implemented as a set of
autonomous services (e.g., the AMs) linked by a declarative trust structure that
is represented in about 150 lines of scripted SAFE logic. The various coordinator
roles and trust relationships are captured in declarative policy rules rather than as
procedures or assumptions that are “baked in” to the software. We believe that
this approach balances low implementation cost with flexibility for deployments to
accommodate diverse policies of their members, evolve their structures and policies
over time, and federate with other deployments.

Acknowledgements This document is based upon work supported by the US National Science
Foundation through the GENI Initiative and under NSF grants including OCI-1032873, CNS-
0910653, and CNS-1330659, and by the State of North Carolina through RENCIL.

References

1. Baldin, 1., Castillo, C., Chase, J., Orlikowski, V., Xin, Y., Heermann, C., Mandal, A., Ruth, P.,
Mills, J.: Exogeni: a multi-domain infrastructure-as-a-service testbed. In: GENI: Prototype of
the Next Internet. Springer, New York (2016)

2. Baldine, I., Xin, Y., Evans, D., Heerman, C., Chase, J., Marupadi, V., Yumerefendi, A.:
The missing link: putting the network in networked cloud computing. In: International
Conference on the Virtual Computing Initiative (2009)

3. Baldine, I., Xin, Y., Mandal, A., Heerman, C., Chase, J., Marupadi, V., Yumerefendi, A.,
Irwin, D.: Autonomic cloud network orchestration: A GENI perspective. In: GLOBECOM
Workshops: 2nd IEEE International Workshop on Management of Emerging Networks and
Services (MENS 2010) (2010)

4. Baldine, 1., Xin, Y., Mandal, A., Ruth, P., Yumerefendi, A., Chase, J.: ExoGENI: a multi-
domain infrastructure-as-a-service testbed. In: TridentCom: International Conference on
Testbeds and Research Infrastructures for the Development of Networks and Communities
(2012)

5. Braynard, R., Kosti¢, D., Rodriguez, A., Chase, J., Vahdat, A.: Opus: an overlay peer utility
service. In: Proceedings of the 5th International Conference on Open Architectures and
Network Programming (OPENARCH) (2002)

6. Chase, J., Thummala, V.: A guided tour of SAFE GENI. Technical Report CS-2014-002,
Department of Computer Science, Duke University (2014)

7. Chase, J.S., Anderson, D.C., Thakar, PN., Vahdat, A.M., Doyle, R.P.: Managing energy and
server resources in hosting centers. In: Proceedings of the 18th ACM Symposium on Operating
System Principles (SOSP), pp. 103-116 (2001)

A Retrospective on ORCA 147

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Chase, J.S., Irwin, D.E., Grit, L.E., Moore, J.D., Sprenkle, S.E.: Dynamic virtual clusters
in a grid site manager. In: Proceedings of the Twelfth International Symposium on High
Performance Distributed Computing (HPDC) (2003)

. Chase, J., Grit, L., Irwin, D., Marupadi, V., Shivam, P., Yumerefendi, A.: Beyond virtual

data centers: toward an open resource control architecture. In: Selected Papers from the
International Conference on the Virtual Computing Initiative (ACM Digital Library) (2007)
Chase, J., Constandache, 1., Demberel, A., Grit, L., Marupadi, V., Sayler, M., Yumerefendi, A.:
Controlling dynamic guests in a virtual computing utility. In: International Conference on the
Virtual Computing Initiative (2008)

Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bowman, M.:
Planetlab: an overlay testbed for broad-coverage services. SIGCOMM Comput. Commun. Rev.
33(3), 3—-12 (2003)

Fu, Y., Chase, J., Chun, B., Schwab, S., Vahdat, A.: SHARP: an architecture for secure resource
peering. In: Proceedings of the 19th ACM Symposium on Operating System Principles (2003)
Grit, L.E.: Extensible resource management for networked virtual computing. Ph.D. thesis,
Duke University Department of Computer Science (2007)

Grit, L., Irwin, D., Yumerefendi, A., Chase, J.: Virtual machine hosting for networked
clusters: building the foundations for “Autonomic” orchestration. In: Proceedings of the
First International Workshop on Virtualization Technology in Distributed Computing (VTDC)
(2006)

Ham, J., Dijkstra, F., Grosso, P., Pol, R., Toonk, A., Laat, C.: A distributed topology
information system for optical networks based on the semantic web. J. Opt. Switch. Netw.
5(2-3), 85-93 (2008)

Irwin, D.: An operating system architecture for networked server infrastructure. Ph.D. thesis,
Duke University Department of Computer Science (2007)

Irwin, D., Chase, J., Grit, L., Yumerefendi, A.: Self-recharging virtual currency. In: Proceedings
of the Third Workshop on Economics of Peer-to-Peer Systems (P2P-ECON) (2005)

Irwin, D., Chase, J.S., Grit, L., Yumerefendi, A., Becker, D., Yocum, K.G.: Sharing networked
resources with Brokered leases. In: Proceedings of the USENIX Technical Conference (2006)
Lim, H., Babu, S., Chase, J.: Automated control for elastic storage. In: IEEE International
Conference on Autonomic Computing (ICAC) (2010)

Ramakrishnan, L., Grit, L., Iamnitchi, A., Irwin, D., Yumerefendi, A., Chase, J.: Toward a
doctrine of containment: grid hosting with adaptive resource control. In: Proceedings of the
Supercomputing (SC06) (2006)

Sridharan, M., Zeng, W., Leal, W., Ju, X., Ramanath, R., Zhang, H., Arora, A.: From Kansei to
KanseiGenie: architecture of federated, programmable wireless sensor fabrics. In: Proceedings
of the ICST Conference on Testbeds and Research Infrastructures for the Development of
Networks and Communities (TridentCom) (2010)

Xin, Y., Baldine, I., Mandal, A., Heerman, C., Chase, J., Yumerefendi, A.: Embedding
virtual topologies in networked clouds. In: 6th International Conference on Future Internet
Technologies (CFI 2011) (2011)

Yumerefendi, A.R.: System support for strong accountability. Ph.D. thesis, Duke University
Department of Computer Science (2009)

Yumerefendi, A., Shivam, P., Irwin, D., Gunda, P., Grit, L., Demberel, A., Chase, J., Babu,
S.: Toward an autonomic computing testbed. In: Workshop on Hot Topics in Autonomic
Computing (HotAC) (2007)

Programmable, Controllable Networks

Nicholas Bastin and Rick McGeer

Abstract We describe OpenFlow, a first step on the road to networks which are
fully integrated into the IT infrastructure ecosystem. We review the history of
OpenFlow, its precursors, its design and initial implementations. We discuss its
use within the GENI project and the applications and services developers have
built on the OpenFlow platform. Finally, we review the implementation issues with
OpenFlow, and consider extensions and the next generation of Software-Defined
Networking.

1 Integrating the Network into IT Infrastructure

Though the network has been a key component of computational infrastructure, it
has remained curiously isolated from the rest of information technology, residing
in both an administrative and technological silo. Network functions are performed
by a collection of specialized devices—routers, switches, firewalls, etc.—which are
configured entirely independently of the hardware and the software of the computers
connected to the network. In most organizations, the network is administered by
a separate organization from the IT staff, and the sets of skills of the people in
the two organizations are almost completely distinct. Network administrators are
not typically expert in computer hardware and software, and computer system
administrators as well as most application developers regard the network as a
black box which delivers packets with some semblance of reliability. There are few
platforms for integrated monitoring of both network and information technology,
and almost no APIs which a developer can use to influence network forwarding or
satisfaction of dynamic application requirements.

This is an artifact of decisions made in the very early days of networking, when
the only network services were bulk data transfer and low-bandwidth connectivity
to remote services (e.g., telnet). At this time, it was argued persuasively that the

N. Bastin ()
Barnstormer Softworks Ltd. and University of Houston, Houston, TX, USA
e-mail: nbastin@uh.edu

R. McGeer
Chief Scientist, US Ignite, 1150, 18th St NW, Suite 900, Washington, DC 20036, USA
e-mail: rick.mcgeer @us-ignite.org

© Springer International Publishing Switzerland 2016 149
R. McGeer et al. (eds.), The GENI Book, DOI 10.1007/978-3-319-33769-2_8

mailto:rick.mcgeer@us-ignite.org
mailto:nbastin@uh.edu

150 N. Bastin and R. McGeer

network should be an opaque, application-insensitive, featureless pipe which simply
carried bits from source to destination, and would offer no guarantees of loss,
latency, bandwidth, or indeed any properties at all. This “end-to-end argument”
[39] held that since applications were so variegated, there was no single network
policy or property that could satisfy them all, and hence these properties should be
guaranteed and enforced at the endpoints.

Even from its earliest days, this overly simplistic view of the network was
problematic. While early networks were largely devoted to file transfer of one sort or
another, there were always multiple services and protocols in the network, and these
services required differentiated handling. Even in the most nascent networks, there
were significant distinctions between monitoring and file-transfer services, and as
bandwidth expanded, more services became available. Moreover, the network has
grown increasingly discontinuous over time, giving rise to a family of proxies and
middle-boxes. Initially thought of as workarounds, these have become increasingly
viewed as central to the Internet architecture [19] as the network itself has become
more complex. What was conceived as a bulk data transfer service for a small
community of technologists has become the all-inclusive communications medium
for a civilization. Unsurprisingly, the transition was not seamless. That it happened
at all is a testament to the robust, scalable design of Cerf and Kahn and the ingenuity
of the legions of networking scientists and engineers who followed.

More problematic from an administrative perspective, the network has become
highly dynamic. When the basic elements of TCP/IP were designed, all computing
resources were fixed. Personal computing was largely confined to research laborato-
ries, portable computing was unheard of, and there were relatively few sites. Hence
the network was largely static and computers largely spent their lives on a single
local area network. Similarly, the numbers and addresses of local area networks
were largely fixed. Indeed, the network was so simple that IP addresses could be
managed single-handedly by Jon Postel [43], and to a large extent were. Today,
however, not only are there billions of devices, mobility and portability have become
the rule and not the exception, breaking the original de facto model of long-duration
addressing.

Further, it was anticipated that new applications and services would be added to
the network only rarely, and each new application would require global agreement
among all devices on the subnetwork that supported the application. Hence, the
Internet Engineering Task Force, whose job it is to collaboratively design new
network services in such a way that they can be globally implemented. We believe
that it is safe to aver that this organization is not universally regarded as the exemplar
of agility. In fact, the noted computer and network scientist Scott Shenker has
bluntly described this design process as “crazy”.! From the perspective of the
Internet’s original assumptions, it isn’t—and this loose organization has largely

ISee: https://www.youtube.com/watch?v=eXsCQdshMr4.

https://www.youtube.com/watch?v=eXsCQdshMr4

Programmable, Controllable Networks 151

served the community well for far longer than one might have imagined—but in
the ensuing generation the world has changed beyond the imagination of anyone on
the original design team.

Moreover, the new applications and services introduced in this manner could
interact in unpredictable ways, and since each new feature was enabled for all traffic
if it was enabled for any, many features were by default disabled for many sites. IP
Multicast was, for many years, a notorious example, but the technological roadside
is littered with considerable amounts of lesser-known detritus as well.

The Internet was designed with little regard for security, which, from the
perspective of 1980, was entirely reasonable. Security was the business of endpoint
systems—friendly, easy-to-deal with objects running Unix-based operating systems.
It was inconceivable in 15 short years that the Internet would be scaled in the billions
of devices, with the vast majority running operating systems that did not rival Unix
or Unix-derived operating systems in transparency and security. There were two
central issues. First, the vast majority of computers attached to the network were
not nearly as secure as the network designers imagined that they would be. Second,
network control protocols were themselves subject to attack of various forms. These
ranged from simple resource-exhaustion attacks (e.g., distributed denial-of-service)
and exploitation of explicit vulnerabilities in Internet control protocols (e.g., Border
Gateway Protocol routing attacks, or the Kaminsky Attack on the Domain Name
Service), to those that compromised otherwise secure protocols by exploiting the
increasing technical naivete of the end user.

In sum, the Internet has now drifted far from its original design assumptions,
and it has been kept going through an ongoing series of patches. The size and
complexity of this effort can be seen by counting the number of Internet standards.
There are over 7400 IETF standards (“Request for Comments”), including 33 for
the Lightweight Directory Access Protocol (LDAP) alone—of which at least 25
are still active. Moreover, administering each site became a complex undertaking,
largely because many specialized services required special-purpose subnets which
crossed broadcast-domain boundaries, or Virtual Local Access Networks (VLANS).
The cross-domain nature of VLANs added substantial complexity to administering
a site, Network configurations for a site could amount to several thousand lines
of configuration, and simply verifying the properties of a configuration became a
cottage industry. Physically moving a computer or network device could require
several hundred lines of configuration changes to a network.

There have been a variety of attempts to introduce application-specific pro-
grammability into the network, following John Ousterhout’s dictum that “wonderful
things happen when an infrastructure becomes programmable”.> A good survey
can be found in [29]. This started with DARPA Active Networks program in the
1990s, which attempted to allow individual users—or groups of users—to inject
customized programs into the nodes of the network. the goal was to enable a massive
increase in the complexity and customization of the computation that is performed

?Remark in a presentation given ca 1995, confirmed in a recent personal communication.

152 N. Bastin and R. McGeer

within the network. In effect, the idea was to turn each router or switch into a
customizable middle-box. There were a variety of concerns with this idea, notably
security [49]. The Active Networks community then turned to overlay networks,
which treated the underlying network infrastructure as a black box and built the
application-specific network entirely on computers at the endpoints. This offered the
properties desired for the application-specific network but sacrificed performance in
a number of dimensions. To a first approximation, the primary quality-of-service
properties of a network, notably latency and bandwidth, can only be controlled with
application-specific control of the routers and switches on a network. A Distributed
Hash Table such as Tapestry [51] or Chord [44] can guarantee message delivery in
a small number of overlay hops, but the latency of each hop is dependent on the
underlying network, and so too the overall performance of the application.

The need for tight application control of the network may seem revolutionary,
but it is a natural consequence of the evolution of applications and services in the
era of the network. As has been observed elsewhere in this book, applications are
increasingly becoming distributed systems where components of the application
are separated by tens to hundreds of milliseconds. For distributed systems, the
network often becomes the dominant element in system performance, and hence
the application designer must exert positive control on the network.

US Ignite Chief Technology Officer Glenn Ricart points out that packets sent
from his home in Salt Lake City to his colleagues at the University of Utah, just a
few miles away, are routed through Kansas City, a round-trip distance of over 2000
miles. A mile in fiber is 5 ms, so this adds a minimum of 10 ms in transit time. For
bulk data transfer, this is rarely a problem; for a distributed system application, it
can be deadly.

Control of paths in the network for a distributed system is similar to control of
data layout on disk for a storage-centric application such as a database. This is vital
to a storage designer, and in fact most of the effort in database schema design goes
to ensuring that the data layout is tailored to the expected activity of the application.
For example, transactions-oriented systems are optimized to rapidly write all of the
data in a transaction, so the ideal is to put all of the data in a single table, stored in
row-major order. Analytics applications seek over all the rows of the database, so
they are either written in a star topology—one column per table—or in a column-
oriented database, where the database is stored in column-major order. Systems with
many simultaneous reads and writes often use two file systems—one optimized for
write and one for read, and reformatting software which moves data from the write-
oriented system to the read-oriented system.

The level of control that a storage system designer takes for granted is perhaps
best exemplified by the story told about the great database pioneer Jim Gray. Gray
collaborated with the noted astronomer Alex Szalay on the SkyServer, an ambitious
project to make the Sloan Digital Sky Survey widely available [46]. In a tribute [45]
Szalay recounted Gray’s first visit to the SkyServer data center. “Jim then came to
Baltimore to look over our computer room and within 30 s declared, with a grin, we
had the wrong database layout. My colleagues and I were stunned. Jim explained

Programmable, Controllable Networks 153

later that he listened to the sounds the machines were making as they operated; the
disks rattled too much, telling him there was too much random disk access.”

It goes without saying that a storage system designer would find it completely
unacceptable if there were a Storage Administrator, who determined the layout
of data on disk by application-agnostic configuration. But a distributed systems
designer faces precisely that situation today, because the network is designed for
efficient network administration, operation, and policy enforcement, not application
performance. Ricart’s packets take a detour through Kansas City because of peering
agreements and the desire of each Autonomous System to have relatively few border
points.

Internet routing today is similar to Federal Express’ original method of package
delivery. FedEx originally routed all packages through Memphis, even if the source
and destination addresses were neighbors in San Francisco. Senders and receivers
never noticed the difference; the added latency in package delivery was well within
the bounds of the package-delivery application. Similarly, neighbors who are email
correspondents never notice that their packets detour across a continent merely to
cross the street. But when the application changed in the real world, so did the
tolerance for detours. Telephone users could easily tell the difference between a
satellite call and terrestrial routing—the latency of a satellite call was unacceptable
for voice communication. The Internet is similarly moving from bulk data delivery
to interactive applications—we are moving from an era of package delivery to an
era of video calls.

If the Internet were being designed today, it would be designed far differ-
ently. In the ideal case, it would be designed around the paradigm of private,
application-specific, highly-dynamic, secure networks on a common substrate.
These application-specific networks would be controlled from a “single pane of
glass”, and the networks and switches along the path would be reconfigured to
handle the traffic from this application. Designing such a network from a clean
slate is not an insuperable task. However, we don’t have a clean slate; the long
and torturous introduction of IPv6 is a cautionary tale on just how difficult it is
to introduce changes to an existing network architecture. Even when the need for
such change is clear—and with considerable consensus on the base requirements—
the opportunity presents itself so infrequently that such attempts are mired with
new features that massively expand the scope, resulting in implementations and
deployments bogged down in technical complexity and social inertia.

The key lesson of previous attempts is that ubiquity and ease of introduction
are paramount concerns. Network innovations that are likely to succeed should
require minimal changes to existing network equipment; a firmware upgrade is the
reasonable ceiling on acceptable changes. Further, the change should address an
acknowledged shortcoming of the network in meeting today’s bulk-delivery service,
not tomorrow’s distributed-systems needs. Network operators need to see a cure for
current pains.

Enter OpenFlow. The origins of what is now called OpenFlow trace their roots
back to a 2007 Sigcomm paper [4] introducing a system called Ethane, which
proposed a central controller for managing the “admittance and routing of flows”

154 N. Bastin and R. McGeer

across an enterprise network. A switch is composed of two distinct entities: the data
plane (or forwarding plane), which is a high-bandwidth backplane that forwards
packets as directed by routing tables; and the control plane, an embedded computer
which maintains and updates the routing tables through a combination of distributed
path-finding algorithms and configuration. The central insight of the Ethane paper
was that the control plane could be moved largely off-switch, updating the routing
tables directly from configuration. The central manager which implemented the
control planes for all the switches offered the operator both much greater control
of the network and a simpler programming interface.

The ideas behind Ethane were not particularly novel—even in the late 1990s
central management was available for LANS, if all of the equipment on the LAN
was purchased from a single vendor. Since such a homogeneous environment is not
common, adoption rates for this management technology were fairly low.

The novel feature in Ethane was bringing fine-grained flow management to multi-
vendor network systems, both wireless and wireline. This meant that Ethane could
potentially be used in “brownfield” deployments—that is, that existing network
equipment could support its installation. This was potentially revolutionary. At the
time of Ethane the only implementations of centralized layer 2 network control
were single vendor, and production deployments were largely restricted to wireless
networks where enterprises could enjoy the ease of “greenfield” deployment of a
completely new infrastructure. On these networks the value of centralized control
had been demonstrated. Ethane’s potential was to extend this to the mission-
critical multi-vendor wireline networks that formed the backbone of campus IT
deployments. This vision is still potent, though a number of practical realities,
detailed later in this chapter, still leave this promise largely in the future.

The heart of Ethane and its multi-vendor capabilities came from a simple switch
abstraction. The Ethane switch was a device which matched on a subset of the
header bits (including wildcard entries), and when a packet matched performed one
or more of four actions: drop, rewrite the header bits, output to a specific port, or
output to the controller. The actions were common to all switches; and by careful
choice of header matching bits a wide variety of vendor switches could be supported.

2 The OpenFlow Protocol

Ethane had three components: an implementation of the matching rules on the
switch, a network security and flow management application resident on a host,
and a middleware element, resident on the host, which functioned as the network
API for the application. In the original Ethane implementation, the switch portion
had been implemented on a NetFPGA system, and the middleware and application
components were in a single block of code.

By December 2007, HP Labs and Stanford had collaborated to implement the
switch side of Ethane on a commercial switch, the HP 5406. This was a significant
experiment, because it demonstrated that the switch side of Ethane was practical

Programmable, Controllable Networks 155

in existing networks with a firmware upgrade, and it offered a road map for other
vendors to support this protocol. For this reason, the three components of Ethane
were broken out into standalone artifacts. The switch side of Ethane became the
OpenFlow Switch Specification; the middleware component became the Network
Controller, and the first implementation was the middleware in Ethane, which was
christened NOX. Ethane itself became simply the first of many applications on the
NOX/OpenFlow stack.

The factorization and the outline of the OpenFlow protocol was described in a
seminal Computer Communications Review article in March of 2008 [26] and the
NOX controller was described in the same venue the following month [11]. The
initial target was experimentation on campus networks, an explicit attempt to define
an open, programmable switch platform with sufficient bandwidth and port density
to be used in a campus wiring closet, with isolation so that operational campus
flows could be carried on the same switch fabric with experimental flows without
interference.

This was significant development occurred in late 2008, when the OpenFlow
Switch Specification Version 0.8.9 [47] was published. Based strongly on Ethane,
OpenFlow specified a common API for programming abstract flow tables that could
be used across devices regardless of their vendor. The specification codified only
the interface between network elements (switches) and the controller—the policy
language and higher level functions present in the Ethane paper were left to those
writing controllers leveraging this new API. Critical to the continuing development
of OpenFlow was the fact that at least one vendor (HP) had devoted resources
to developing an OpenFlow agent for existing hardware, allowing for testing on
port-dense commodity network hardware and not just the specialized FPGA-based
devices that had been used for Ethane.

2.1 Brief Summary of OpenFlow and the OpenFlow Protocol

The goal of OpenFlow was to expose an abstraction of a switch’s forwarding plane
which would be valid across most commercial switches and which would permit
application control of forwarding on a per-flow basis. The abstraction identified
was a routing table, which consisted of a list of pairs (specification, action).
A specification is a ternary integer, which specifies the values of selected bits of
the header; a ‘2’ in a field indicates a wildcard. The action field specified one of:
drop the packet; output the packet on port j, for specified j; send the packet to
the controller for further processing; rewrite the header bits to value.

A comparison of an OpenFlow vs. a Classic switch can be found in Fig. 1. It
shows this is a factoring of a classic switch; the control plane is brought off-switch
to a centralized controller. The switch control plane is conceptually replaced by
a secure communication channel to an off-switch controller, though in practice a
rudimentary control plane remains in place.

156 N. Bastin and R. McGeer

Configuration
Information

Embedded Control chrtrol I Centralized off-switch controller \
Plane Mepsages

4

. Sensing Rule
Senging Rule Information Updates

Information Updates

v

Secure Channel

Table-driven

Forwarding Plane Table-driven
Forwarding Plane

Classic Switch OpenFlow Switch

Fig. 1 Classic vs. OpenFlow switch

Optionally, more than one rule could match a given packet, for (for example)
multicast, or rewrite-and-forward.

The rule tables were communicated to the switch securely via a secure,
encrypted, authenticated protocol, with packets signed by the controller.

This factoring of the control plane does far more than make the switch more
transparent; it radically simplifies and makes more controllable the network. A
conceptual picture of a classic vs OpenFlow network is shown in Fig.2. As can
be seen from the diagram, the classic network’s autonomic control and per-device
configuration is replaced by a centralized controller.

A full OpenFlow specification can be found in [47]. Its attraction to both
industrial operators and academic researchers had less to do with the specifics of
OpenFlow (aside from the obvious criteria: it could be implemented and desired
network functions easily implemented) than for the promises that seemed inherent
in it. These included the explicit exposure of the network control plane, which
previously had been partially autonomic and partially configuration; a standardized,
vendor-independent interface to the network control plane; logical centralization
of the control plane across the entire network, rather than dealing with a separate
control plane on each switch, and, perhaps most important, the potential of
virtualization of the network. This last promised is still not fully realized; the
difficulties are described later in this chapter.

Programmable, Controllable Networks 157

_ Configlration Configpration
Configuration

Controller

OpenFlow Network

Fig. 2 Classic vs. OpenFlow network

2.2 Promises of OpenFlow

The operator community, with an immediate problem of cost explosion to solve,
found vendor agnosticism and exposure of the control plane particularly attractive.
The hope was that specifying a standard interface to the data, or forwarding, plane,
would standardize and thus commoditize network equipment in the way that the
Lintel platform standardized computing servers in the 1990s and early 2000s.
Further, making the control plane explicit meant that new network features and
services could be implemented in software by the operators themselves, rather than
as a very-high-value-added feature on each piece of equipment.

The research and campus IT communities focused on the potential virtualization
of the network and the idea of a single, logically-centralized network controller.

158 N. Bastin and R. McGeer

The logically-centralized network controller was immediately re-christened the
“Network Operating System”, and a plethora of controllers/Network OS’s soon
emerged: NOX, of course, and then FloodLight, Ryu, OpenDaylight, Beacon, POX,
Jaxon, Mul, IRIS, Trema, OESS, and many others. Partly this reflected the fact that
trivial controllers were pretty easy to write: at the end of the day, all one had to
do was convert API calls into entries in routing tables, and then send those to the
appropriate devices, but it also reflected the attraction that the concept of a network
controller presented.

A Network Operating System proved to be an excellent name for the network
controller, because it evoked an accurate image. One of the principal tasks of
an operating system is to provide a unified and abstracted API for the various
logical functions of a computer (storing to disk, displaying on screen, sending
to network) and then issuing the actual commands to the appropriate devices to
accomplish the programmer’s task. In this analogy, the individual switches and
network equipment are the actuating devices, and forwarding packets through an
abstract topology according to packet header bits the abstract function. Just as
providing an abstraction over the various devices in a computing system was
necessary for the development of computing applications, so too the programming
abstraction over network devices is a precursor for a wide variety of network
applications.

To see this, consider a simple example, the Web Cache Communication Protocol,
or WCCP [27]. The essential feature of this protocol is to intercept HTTP requests
from a client and redirect them seamlessly to a local web cache. The attraction of
this protocol is that handling web request redirection at the switching layer obviates
the requirement for endpoint browser configuration. It is currently available as a
feature on Cisco switches and other equipment. But it can also be implemented as
an extremely simple program over an OpenFlow network controller [38]. Not only
does this demonstrate the efficacy of OpenFlow, it also shows that a wide variety
of new network applications can be implemented with a small amount of endpoint
support and simple network applications. For example, Content-Centric Networking
[15] can be easily implemented using a similar combination of endpoint support and
controller-based redirection at the switching layer.

This culminated in the release of the Open Network Operating System [30], a
high-availability network operating system for service providers.

Virtualization of the network is a potential consequence of the directed handling
of flows by a controller. To see this, note that each flow and many sets of flows in the
network are uniquely identified by logical expressions on header bits, precisely the
matching criteria for OpenFlow. All virtualization requires is that the rules generated
for each application refer only to the set of flows involved in the application. This
is a restriction that can be relatively easily enforced by any network controller.
The specific technical requirement is that the product of two logic functions, each
expressed in sum-of-products form, be empty; this is a test that can be performed in
time proportional to the product of the sizes of the logic functions.

Network virtualization was central to the design and motivation of OpenFlow
and, more generally, Software Defined Networking. Recall that the fundamental
motivation was to permit experimental and operational network traffic to run over

Programmable, Controllable Networks 159

the same wires and equipment, without interference. In other words, experimental
and operational traffic would run on isolated virtual networks over a common
physical network.

As has been seen in operating systems, virtualization is an exceptionally powerful
primitive, and so it has been in networks. Not only can experimental and operational
traffic be isolated, so too can flows from different applications, using the same
mechanism. This is particularly important in applications where strong guarantees
of isolation are required, such as in the Payment Card Industry Data Security
Standard (PCI DSS) [32], which requires an isolated network from point-of-sale
terminal to bank. An OpenFlow implementation of PCI DSS was demonstrated by
Stanford in 2010, and formed an important use case in campus deployments [6].

The virtual, isolated networks enabled by a Network Operating System under
SDN are referred to by the term “slices”, originally coined in the context of
PlanetLab and adopted by GENI. It was soon recognized that the ability to
manipulate slices offered tremendous possibilities in a large number of contexts
for network applications and services. For example, virtual machine migration in a
slice became straightforward; all that was required was updating a few flow table
entries in the slice’s space in the various networking tables.

An example of a slice network appears in Fig. 3. As can be seen, there are three
separate applications, or slices, in this network, and each has a different topology on
the same underlying (mesh) topology. Moreover, each slice has different admission

et
S| swichA)

Abpicesda) »| Applicaion1 |
SORSORNOn S Application 2
> Application 3 5 Application 3
—_— | —
Application 1 | Application 1
Application 2 P./A Application 2 6
Application 3 Application 3

@@

Fig. 3 A network sliced between applications

160 N. Bastin and R. McGeer

control, as shown by the connectivity of the three represented computers to Switch
A and Switch C.

It should be noted that even though OpenFlow and similar technologies enabled a
new paradigm of “Software Defined Networking”, in fact there was no more (in fact,
there was perhaps less) software in a “Software Defined Network™ than in a classic
network. However, in an SDN the software is open, and largely developer-written,
rather than closed and vendor written. In a real sense, it can perhaps be better defined
as an Application-Defined Network, not a Transport-Defined Network.

3 Initial Implementations and Campus Experiments

In the fall of 2007, the success of the Ethane program indicated that trials of
OpenFlow should begin in a production campus environment. This required support
for OpenFlow on commercial switches. In the fall of 2007, Nick McKeown of
Stanford approached one of us (McGeer, then at HP Labs) about porting OpenFlow
to an HP switch and donating a number of those switches to Stanford for a trial.
The timing was fortuitous: a team of researchers at HP Labs, including McGeer,
had just embarked on a project to build a next-generation network platform. The
team quickly made OpenFlow a focus of the project, and two HP Labs researchers,
Jean Tourrilhes and Praveen Yalagandula, implemented OpenFlow on an HP 5406
switch. Gary Campbell, Chief Technologist of HP Enterprise, Greg Astfalk, HP
Chief Scientist, and Charles Clark of HP Networking arranged for the switch
donation., and by late 2007 the first implementation of OpenFlow on a commercial
switch was completed and deployed in the Gates building on the Stanford campus.

Parallel efforts were engaged in by other firms in the same time period. NEC also
announced an OpenFlow commercial switch in 2008.

This began the first of three major experimental deployments of OpenFlow.

1. Deployment on a single campus: Stanford, beginning in early 2008. The objec-
tives of this deployment were to determine whether the use of OpenFlow was
feasible in an operational campus network, carrying both operational and exper-
imental traffic; whether experimental traffic and experimental network control
could be truly isolated from other traffic being carried by the same network
equipment and on the same wires; and to develop the tools and techniques
to operate truly isolated, independently-controlled, virtual application-specific
networks in a campus setting .

2. An eight-campus deployment, beginning in 2009. The objective of this deploy-
ment, sponsored by GENI, was lofty:

This project is motivated by the belief that if we can open up campus networks for
innovation by researchers and network administrators, we will unleash tremendous
untapped potential and will fundamentally change the field of networking. If we
can move from a culture of closed, proprietary, expensive infrastructure (with very
long innovation cycles) to an open infrastructure enabling rapid innovations by all
stakeholders, we will create a market place for ideas allowing the best ideas to win [6].

Programmable, Controllable Networks 161

In other words, the primary goal here was to determine the value of the
OpenFlow-enabled applications and services in a campus setting, and to further
expand the technological developments of the initial one-campus deployment.

3. Deployment across the wide-area backbone through the GENI Mesocale deploy-
ment [7]. The objective of this deployment was to open OpenFlow and SDN up to
experimenters across the wide area, and to determine what tools and technologies
were required to knit OpenFlow domains together. This deployment augmented
the campus deployment substantially. This deployment extended GENI’s hard-
ware OpenFlow deployments to over 50 campuses and approximately 10 regional
networks, by means of the OpenFlow switch in each GENI rack [1, 25]. This
deployment, a collaborative effort of GENI, Internet-2, and the National Lambda
Rail, formed the largest and most ambitious OpenFlow deployment undertaken
to date.

Given access to OpenFlow-capable (albeit beta quality) firmwares for readily
available hardware platforms, in 2009 the Clean Slate Program at Stanford Univer-
sity pushed to deploy OpenFlow on the GENI WAN (by placing user-programmable
OpenFlow switches at Internet2 and National Lambda Rail (NLR) POPs in the WAN
paths between campuses).

Starting with a small scale WAN deployment available to experimenters on the
GENI test bed would provide an environment for development and testing of Open-
Flow applications and provide a strong proof-of-concept. The GENI deployment
was remarkable, in that it represented a multi-site trial for a new foundation for
networking within 2 years of its invention. This created significant interest in a
number of communities—within 2 years the Open Network Foundation (ONF)
had been established with 17 charter members from industry (quickly growing to
more than double that number within months), pledging to develop and adopt SDN
technologies in their products. The deployment and user experience reality in GENI,
further, gave real world experiences that would ultimately inform both industry
actors and future test bed SDN deployment considerations.

One measure of the interest in the OpenFlow platform was the number of
research-firmware shipments from HP Labs’ Open Networking Group. Groups
wishing to run OpenFlow on HP hardware in this period used a standard HP 5406
switch, and then get the HP Labs implementation of OpenFlow for the 5406. Open
Networking Group co-lead Sujata Banerjee eventually shipped well over 50 copies
of her group’s warranty-less “as is” firmware, to both commercial and academic
users. A large number of the initial GENI campus trials used the 5406.

Among the earliest learnings from the initial Stanford deployment was that
virtualization was also required in the controller—the controller had to enforce
slicing the network between competing applications, both in the addressing and
performance dimensions. To some extent this had already been known; in fact, the
Virtual LAN, or VLAN, permitted re-use of IP addresses. However, the Stanford
deployment showed that competing applications had to be rate-limited, both in data
plane and controller traffic.

162 N. Bastin and R. McGeer

Fig. 4 A hybrid switch
Configpration
Information

Y
Embedded Control

Plane ‘ Control
Messages
_ Rdle
Senging Updhtes
Information
Table-driven

Forwarding Plane

Secure Channel !J

: ule
Sensing Updates for
Information OpénFlow
VLANSs

Centralized off-switch contoller

4 Using OpenFlow in a Multi-Tenant Network

As a multi-user test bed, any OpenFlow deployment on GENI would need to
facilitate shared usage of the devices and connectivity. Plain time-sharing would
have been a straightforward option, albeit inefficient and costly—if only a single
experimenter could use the OpenFlow resources at a time he would be consuming
nationwide transit circuits that were scarce resources. This would have the effect of
limiting OpenFlow to a small group of patient and dedicated experimenters. In order
to provide access to OpenFlow resources to a wider audience it would be necessary
to support concurrent usage of the test bed by as many users as possible.

Fortunately, this need had already been satisfied at a base level in two ways—
both out of a desire to increase possible deployment and research using existing
networks, but through measurably different approaches.

Programmable, Controllable Networks 163
4.1 Hybrid Switching

The first hardware vendor to implement the 0.8.9 specification—HP—did so in a
way that optionally allowed for only partial OpenFlow control of the switch. This
was accomplished by enabling OpenFlow on a per-VLAN basis—allowing a single
OpenFlow instance to control a non-VLAN-aware logical switch, which was itself
an abstraction of a single VLAN in the switch hardware. All ports configured for the
OpenFlow VLAN would be advertised to the controller, and any packets received on
those ports in the OpenFlow VLAN would be handled according to the OpenFlow
specification, while all other traffic on these ports would continue to be handled
with existing protocol behavior. There were some caveats to this approach—certain
protocols like the Spanning Tree Protocol (STP) and the Link Level Discovery
Protocol (LLDP)which operated outside of a single VLAN would not be handled
by the OpenFlow instance, and packets would not appear to be VLAN tagged
to the OpenFlow instance—but it was a powerful way to safely add rudimentary
OpenFlow support to an existing network on a trial basis while still maintaining all
existing forwarding logic. Further, as mentioned above, one of the major goals of
OpenFlow was to subsume in the open control plane protocols such as LLDP and
STP.

The OpenFlow specification did not initially afford this possibility, but the
compelling nature of such a simple deployment path into existing operational
networks meant that the 1.0 specification evolved to include language referring to
the possibility of vendors supporting such an abstraction. Later the community, and
the standard-setting ONF, would focus considerable effort on the best way to codify
support for and the behavior of such devices, with the 1.1 and later specifications
including increasingly more specific language for handling of “OpenFlow-Hybrid”
switches.

A conceptual diagram of a Hybrid OpenFlow switch is shown in Fig. 4. Traffic
on non-OpenFlow VLANSs is handled in a Classic Switch fashion, through a
combination of classic configuration and autonomic control. Traffic for OpenFlow
VLAN:Ss is governed by OpenFlow configuration messages.

As HP continued to support this mode of operation it was possible to create
multiple OpenFlow instances on a single device. When configured to use different
experimenter controllers this allowed multiple concurrent OpenFlow experiments
to use the same device, isolated on the data plane by VLAN tag. While there were
practical limits on the number of instances that could be handled simultaneously by
the switch CPU and forwarding tables, as well as the number of unique VLANS that
might be available across the entire GENI WAN, this was a powerful functionality
that would allow for at least a moderate level of resource sharing.

164 N. Bastin and R. McGeer

4.2 FlowVisor

Concurrent with the initial availability of OpenFlow switch firmwares was an
effort to design and implement a network virtualization layer for such devices,
called FlowVisor [40-42]. The original OpenFlow architecture envisaged a single
controller which would partition a network among various applications, each of
which had an isolated virtual network. The purpose of FlowVisor was to create
and enforce truly isolated virtual networks, and offer each of these to a separate
controller. FlowVisor replaced a single controller with a hierarchy of controllers,
where each controller presented a controller interface on its southbound, or network-
facing, side, and a network interface on its northbound, or application-facing, side.
In the words of the Flow Visor paper, Flow Visor acted as a transparent proxy sitting
between multiple controllers and the network. The heart of Flow Visor was a simple
insight: the unit of isolation in the network was the header bits allocated to the north-
bound controllers on each switch, the available bandwidth and inter-switch latency
on the links in the presented virtual network, the controller/network bandwidth for
control-path updates, on both the northbound and southbound sides, switch CPU for
slow-path traffic, and TCAM entries for fast-path traffic. FlowVisor maintains, for
each network slice, the allowable values of header bits (the “flowspace”) assigned
to the slice on each network switch, and ensures that the slice’s rule-table entries lie
within that flowspace. It also enforces static limits on flow-table entries per slice and
per switch. For bandwidth limitation it uses priority VLAN tag bits per slice. For
dynamic resources (switch CPU, controller/switch bandwidth), it does root-cause
analysis of the events which cost the dynamic resource, and monitors and controls
them.

An example of a FlowVisor deployment is shown in Fig. 5. In this figure, each
controller sees an OpenFlow network with a restricted flowspace; each switch sees
a single OpenFlow controller, FlowVisor. FlowVisor seamlessly intercepts control
traffic between the controllers and the network, ensuring mutual isolation. Each
controller sees a simplified view of the network, as shown in Fig. 6; FlowVisor is
entirely transparent.

OpenFlow and FlowVisor thus correspond to two separate layers of abstraction,
as shown in Fig.7. OpenFlow abstracts the details of the underlying switches,
presenting a uniform commodity switch with fully-controllable routing; Flow Visor
abstracts the other controllers, to present a virtual single-tenant network of Open-
Flow switches to a controller.

While FlowVisor had a rich feature set and research road map—slicing/
virtualization of every key metric in the network, such as device CPU, hardware
table space, topology, bandwidth, etc.—the most important feature for a test bed was
the singular ability for multiple upstream controllers to manage the same device.
In this way, FlowVisor functioned as a mux/demuxing proxy for OpenFlow control
connections, allowing multiple concurrent users of the same physical resource.

While hybrid firmwares could often be capable of running multiple concurrent
OpenFlow instances and thus supporting multiple controllers (provided one could

Programmable, Controllable Networks 165

Application 1 Aopicaion 1

Application 2 Rppioaion 2

Application 3 Application 3
e ——— T —

FlowVisor

e IR G
Application 1 (opiose]
Application 2 Appl 2
Application 3 Application 3

e —

—_—

Controller 1 Controlier 2 Controller 3

Fig. 5 FlowVisor in the network

operate within the limited mechanisms for defining data plane discrimination
between “slices”), FlowVisor offered this functionality to all OpenFlow devices.
FlowVisor users also benefited from the more aggressive software development
release cycle of an off-device proxy, rather than the long development and test cycle
of hardware firmwares, allowing for more rapid innovation and experimentation
with interfaces and mechanisms for crafting isolation boundaries between users.

4.3 Software Datapaths

While not seriously considered at the outset for GENI deployment, Open vSwitch
provided an OpenFlow-based control channel in 2009 and could be deployed on
commodity x86 hardware. Earlier packages had a long history of providing routing
functionality on *BSD and Linux—Zebra/Quagga, Click, etc.—and while fully
functional soft-switching was not as commonly deployed at the time, it would
obviously become critical in cloud infrastructures. As we will discuss in later
sections, software virtual switches ultimately became an important part of test bed
usage, for a wide variety of reasons.

166 N. Bastin and R. McGeer

Application 1 Application 1

— ¢

Controller 1~ gwitch C D
\-__________,_../

ey Application 1
e s ~— v

Fig. 6 Controller 1’s view of the network

Single-Tenant Network

/ of OpenFlow switches

Network of Commaodity
<+— Switches with
controllable routing

FlowVisor

OpenFlow

Physical Network

Fig. 7 Abstraction layers in a Flow Visor network

5 Integration with GENI

Through agreements with Internet2 and National Lambda Rail (NLR), the GENI
Project Office (GPO) was able to place OpenFlow switches at ten core network
locations across the continental United States—five with NLR and five with Inter-
net2, with a cross-connect between the networks at a shared facility in Atlanta—to
build out a small scale OpenFlow-enabled WAN. (As a result of the Internet2
shutdown of the ION circuit service and the earlier operational shutdown of NLR
the last remnants of this network were disabled in May of 2015, although topology
information is still available for historical purpose [10].)

This provided dedicated network hardware for the WAN test bed, although
physical connectivity was still provided via common infrastructure used by each

Programmable, Controllable Networks 167

provider for many customers. Given that reality, and the provisioning available at
the time, GENI was afforded a limited number of VLANS across the WAN test bed
topology (as VLANS at each connection point were allocated out of a pool shared by
all users of I2/NLR). Granting each GENI user even a single VLAN would severely
limit the number of concurrent experiments, so Flow Visor was used to further slice
individual VLANS into distinct L3 address space for each user. This allowed for an
essentially unlimited number of L3 allocations on the same topology (functionally
limited only by the table space in each device, and not the available address space).

At each campus edge, local resource islands (particularly GENI Racks) had far
more VLAN space available, and as such experimenters could be allocated their own
hybrid OpenFlow instance from the hardware directly (where such functionality was
available based on vendor hardware in place), instead of being proxied through
FlowVisor. This combined with users provisioning VM resources for deploying
their own software datapaths to make a complex but functional end-to-end SDN
networking environment.

6 Experimenter Experience

Ultimately the user experience for SDN experiments on GENI varied by the resource
used and the way it was virtualized/sliced, leading to a litany of support issues as
well as research constraints. These experiences should inform any SDN research
environment being created today, as well as an understanding of some of the subtler
implications of incremental brownfield deployment of SDN solutions in production
networks.

6.1 Fundamental Infrastructure Issues

A serious but initially-unforeseen problem was that the underlying WAN L2 paths
were not “clean”, even across circuit services such as those provided by 12 and
NLR, but particularly at their borders. Transit devices had underlying assumptions
about how forwarding should work (MAC Learning), and would produce legacy
control frames within user slices (LLDP, STP, etc). Some of these problems could
be cleaned up by finding device owners and changing device configurations, but this
was not always possible—particularly for MAC learning. This had the consequence
of making certain classes of novel SDN research impossible to perform on the
GENI SDN substrate, as intervening devices could be confused and drop packets
or broadcast them to undesirable destinations.

Virtualized compute resources at the topological edge also typically involved
paths that didn’t look like what the experimenter imagined. Even in cases where
the experimenter was not using FlowVisor or WAN circuits—they were using a
local private OpenFlow instance in a VLAN or set of VLANs—the virtualization

168 N. Bastin and R. McGeer

stacks in use would insert a logical L2 switch between the experimenter’s VM and
the physical NIC, which would mean that while experimenters believed they had
a logical topology of a number of VMs connected to a single OpenFlow device,
in reality they had a single OpenFlow device connected to a set of non-OpenFlow
devices, and needed to engineer their traffic patterns accordingly. Technologies such
as SR-IOV could be used to mitigate these problems, but were (and are still today)
available on only a limited number of test bed virtualization hosts.

On top of legacy protocol issues in experiment paths, network devices are not
substantially more powerful than their intended workload. Unlike today’s larger
and larger compute servers which are at this point designed to be sharded and split
between many shifting workloads (having generally more memory, CPU, disk, etc.
than are necessary for any one application), this is not true of network hardware,
and trying to share these resources makes this problem readily apparent.

For hybrid switch implementations at the edge this could manifest in overloaded
management CPUs. OpenFlow requires a constant always-on control connection
(preferably using TLS) for each instance, which is outside the original design
requirements of existing hardware, where the management endpoint was used to
serve configuration and monitoring needs (SNMP, NetFlow, telnet, etc.). Each
OpenFlow instance running on the device not only required separate storage and
maintenance of table state, but also a response time and reliability beyond that
of legacy management tasks (which were often also still being used to monitor
and provision the underlying infrastructure). This could result in dropped control
connections and flow table thrash/flapping as controllers reconnected and tried to
re-synchronize their state.

Similarly, switch table size was often designed by the vendor to fit the original
market for the device, and certainly not intended to be split between experiments
which were designed around the notion that each logical device in a topology
was a blank slate with an isolated set of resources. This was compounded by
the fact that early OpenFlow implementations tended to leverage only the Access
Control List (ACL) table of a switch for inserting rules—OpenFlow before the
1.1 specification could not expose multiple tables to the controller, so the path of
least resistance for firmware developers was to expose the single most functional
table, which was also typically the smallest. Even in multi-table implementations
certain devices were not intended to be used with the tens of thousands of MAC
addresses created by synthetic experiment workloads. This meant that at relatively
low throughput (hundreds of megabits or less), two or three concurrent experiments
could overwhelm at least one resource vector on a hardware device, leading to
undefined behavior.

6.2 Virtualization/Slicing Issues

On top of infrastructure issues that are somewhat unavoidable and can only be
remedied over the long time frames of firmware deployment and hardware refresh,
the virtualization and slicing software adversely impacted end-user experience

Programmable, Controllable Networks 169

as well. While FlowVisor was well-maintained during the first few years of
deployment, certain original design decisions were in retrospect problematic, and
other solutions clashed with security and isolation concerns.

As it was a proxy for OpenFlow only, FlowVisor did not allow the end-user direct
access to the hardware device, which led to a litany of issues. As OpenFlow was
the only channel FlowVisor had to the upstream controller, any proxy errors were
communicated using OpenFlow error messages, making it difficult to determine
whether an error message came from the hardware device or from the proxy.
Ultimately this often meant that an experimenter would be required to contact
an administrator to look through both FlowVisor and device logs in order to
isolate any problems, placing both substantial burden on the experimenter and the
local administrators. Similarly, as FlowVisor did not proxy other management or
monitoring mechanisms, experimenters could not augment their controller with data
from SNMP, NetFlow, etc., meaning that measurement-driven research was difficult
or impossible to accomplish on the test bed in some cases.

6.3 Lessons for the Future

The history of SDN infrastructure on GENI is a path populated with obstacles, but
this history provides many valuable lessons about crafting a quality environment for
SDN research.

Despite demands from experimenters, it is hard to imagine a useful shared test
bed being constructed from commodity hardware platforms. Devices are being
produced today with more powerful CPUs, solving some problems with the high
demands OpenFlow can place on a switch, but table size will continue to be an
extremely limiting factor for sharing resources across multiple projects. Researchers
requiring direct hardware access will need to use environments that allow exclusive
hardware usage, rather than a larger shared test bed. Even in that case, using
commodity hardware will limit the forward-looking function of research, and
keeping abreast of just the commodity state-of-the-art would require a large amount
of funding to continue to refresh hardware.

Leveraging FPGA and NPU hardware is one powerful way to allow a research
platform to move beyond any current commodity deployment, and is certainly
worth exploring based on the needs and goals of a future test bed. There are
limitations—both FPGA and NPU platforms have a high barrier to entry on both
cost and difficulty to work with, from difficult programming models to practical
legal non-disclosure issues—but flexible hardware opens up research avenues for
experiments with significant performance requirements. Limited deployments of
both technologies on GENI (NetFPGA [5, 21, 28], Dell-SDP [13]) have received
only small amounts of use, given the development and topology constraints and
inability to foster community support due to NDA requirements, but persistent
experimenters have produced some quality results.

170 N. Bastin and R. McGeer

Ultimately the most widely used resource in GENI for SDN has been software
switches—no Flow Visor-sliced resources have been used by experimenters since
mid-2013, and while local hybrid instances get some use they are of limited value
as they still only provide OpenFlow 1.0 capability and limited table sizes. Current
virtual switch deployments by experimenters on compute resources still suffer from
many of the same underlying infrastructure issues—MAC learning bridges in paths,
LLDP/STP packet production—but judicious use of tunnels or label shims can
mitigate this problem for experiments that require it. A relatively new service on
GENI—VTS—facilitates the orchestration of clean label-isolated Software-Defined
Infrastructures (SDI) on the existing test bed leveraging both hardware and software
resources, which has seen over 1000 slices created in the last 6 months of 2015
alone, pointing the way to a compelling solution for many researchers.

Future expansion of SDN research goals on GENI and similar test beds will have
to strongly consider the supported use cases and funding available, and provision
accordingly. Software-Defined Infrastructure capabilities will expand the ability
to do SDN research, regardless of whether the underlying infrastructure is itself
SDN-enabled. Ultimately hardware-infrastructure-as-test-bed-resource is a solution
that should be reserved for only the most well funded and performance-sensitive
experiments.

7 New Opportunities with OpenFlow and SDN

The experience of using OpenFlow and SDN in campus deployments and with
GENI in the wide area not only taught experiences of deployment, but also
illustrated a number of use cases and advantages for OpenFlow and SDN far beyond
the original experimentation vision.

Persistent Addresses Across Broadcast Domains Many end-host services and
applications are intolerant of connection disruption. Good examples are ssh,
voip, video streaming, and games. For this reason, both servers and clients in
these applications tend to be tied to fixed network locations. In various special
circumstances (e.g., cellular networks) network operators can manipulate routing
tables to maintain persistent addresses, but in general this has not been possible.
Managing the migration of addresses across broadcast domains was one of the first
demonstrations of OpenFlow, at SIGCOMM 2008; it has since been used in campus
deployments to offer seamless migration between wired and wireless networks and
migration of virtual machines in data centers.

Partial Deployment of SDN in Enterprise Networks It has been observed [20]
that many of the benefits of SDN deployments can be achieved in an enterprise
with partial SDN deployments, where traffic crosses only one SDN-enabled switch.
This enables partial and incremental upgrades of networks from classic to SDN
networking, reducing the barriers to adoption.

Programmable, Controllable Networks 171

Verification of Network Configuration The forwarding plane of a switch is
stateless; the actual forwarding of packets by a switch is done entirely on the basis
of its forwarding tables. Mathematically, a switching network is therefore equivalent
to a combinational logic network, and its verification properties are therefore in NP
[23]. A practical implementation of network verification of OpenFlow networks
was given in [17], which demonstrated its practicability on campus networks, and
a comprehensive approach in [18]. A survey of verification of software-defined
networks is given in [50].

Safe and Secure Network Updates The open transparency of the network control
plane and the relatively low latency of network updates offered a prospect of
reliable network updates (that is, updates where routing invariants were maintained
throughout the update process). Reitblatt et al. [36] offered the first reliable algo-
rithm, with guaranteed correctness (all packets arrived in order at all destinations)
at the expense of TCAM space; however, this algorithm was guaranteed correct
independent of update arrival times of the various switches in the network. McGeer
[22] offered a different procedure which guaranteed correctness under all schedules,
using the same criterion of correctness as [36]. McGeer [24] and Katta et al.
[16] took a different approach, giving schedules for correct updates; McGeer [24]
used a slightly different correctness criterion, namely the maintenance of network
verification invariants throughout the update process.

Open Architecture for Middleboxes A middlebox, to a first approximation, is
nothing more than a computer running some service or other (email sniffing, web
proxy, etc) fronted by a switch which acts as a filter, bringing down the incoming
packet stream to something a computer can handle. Given a programmable switch in
the network, an easy, programmable architecture for middleboxes. Combined with
the insights of [19], this offers a fundamentally new paradigm for Internet architec-
ture: a collection of stateful proxies coupled with stateless switches throughout the
network, where the proxies act to provide in-network computational services on a
local domain. The InstaGENI racks used as the backbone of the GENI mesoscale
deployment are the prototypes of this universal, programmable middlebox which,
in turn, will be the backbone of the next Internet. A diagram of classic vs the new
universal middlebox is shown in Fig. 8.

Power- and Server-Aware Routing Routing is currently done independently of
conditions at the end-host. If the network is a black box to end-hosts, the end-
hosts—their power consumption, load, memory usage, etc.—are a black box to
the network. Heller et al. [14] proposed a method of incorporating end-host usage,
power, and load information into routing, offering clients the best server among
many for a services, incorporating both end-host and routing information.

More Insightful and Finer-Gained Network Monitoring One advantage of
OpenFlow was that both network routing became completely transparent and the
state of the switches was transparent to the network controller. A unified host-based
network monitoring platform was therefore available to provide finer-grained but
less intrusive network measurements. OpenNetMon [48] was one of many network
monitoring procedures made possible by OpenFlow.

172 N. Bastin and R. McGeer

Packets|In

Filtering Switch
Processing| CPU

Middlebox

Irrelevant Packets
Processed‘ FP.ackets

Classic Middlebox

@ Openiiow

_— -

Openfjlow switch Small Cigud on LAN

Universal, Programmable Middlebox

Fig. 8 Classic and universal middlebox

Better Security, Including Admission Control on a Per-Flow Basis This was
the original OpenFlow application with Ethane. Though not unanticipated, it will
have perhaps the most profound immediate impact on networking and distributed
systems. To date, admission control has been done at the endpoint or on an
indiscriminate basis by a firewall. For example, many enterprise systems block
external access to most internal systems, and then stand up Virtual Private Networks
(VPNGs) to grant access on a selective basis to authenticated external users. The VPN
is a misnomer; it is neither private, nor virtualized, nor a network. Rather, it is an
encrypted tunnel over the public Internet, a glorified https connection. A network
with OpenFlow switches everywhere offers the prospect of truly private, virtualized
networks, dynamically established and dynamically modified, instantiated over the
wide area. In effect, the enterprise intranet can be extended seamlessly over the wide

Programmable, Controllable Networks 173

area. This is merely the coarsest, and most immediate application of this capability:
in the future, any user will be able to construct his own instance-specific network
for any application, as easily as he today sets up a conference call.

Enabler for Network Function Virtualization Network Function Virtualization
(NFV) is a technology of significant recent interest in the telecommunications
industry. In the words of the industry white paper on the subject [8]: “Network
Functions Virtualization aims to transform the way that network operators architect
networks by evolving standard IT virtualization technology to consolidate many
network equipment types onto industry standard high volume servers, switches and
storage, which could be located in Datacentres, Network Nodes and in the end
user premises”. In other words, dump the special-purpose equipment and switches
that currently run telco functions and replace them with something a lot cheaper,
more transparent, flexible, and scalable: x86 servers running Linux VMs. This is
made concrete in the current Open Networking Lab/AT&T collaboration “Central
Office Re-architected as a Data Center” [31], which uses as its base technology the
OpenStack-based XOS [33, 34] and ON.LAB’s Open Network Operating System
(ONOS) as the SDN controller [2]. In this, CORD combines sophisticated cloud
technology with SDN, as both GENI envisioned and as envisioned in [8]: “(NFV)
approaches relying on the separation of the control and data forwarding planes as
proposed by SDN can enhance performance, simplify compatibility with existing
deployments, and facilitate operation and maintenance procedures”.

Telco motivation to pursue NFV is largely rooted in dramatic reductions in
internal CAPEX and OPEX: bluntly, NFV is viewed primarily as a way to make
current telco operations much cheaper and more efficient. However, in time this may
become the physical realization of the distributed, open cloud envisioned by GENI:
a Central Office as a Datacenter is not readily distinguishable from the Digital Town
Square described in [37], and opening this up to third-party developers will make
over-the-top service providers into telco customers.

The recent introduction of OpenFlow has inspired a plethora of papers, and
the tide does not seem to be receding. The networking and distributed systems
community has only begun to explore the possibilities inherent in a programmable,
transparent, verifiable network.

8 SDN: The Next Generation

The promises and opportunities of Software-Defined Networking are too com-
pelling for this technology to fail: widespread adoption of SDN is inevitable. As
always, it is happening much more slowly than enthusiasts hope. Greg Papadopou-
los of New Enterprise Associates points out that new technologies follow a
well-known curve: first, there is the peak of unrealistic expectations, followed by
the “valley of disappointment” where the technology is dismissed as a flash in the
pan, finally followed by a period of slow but inexorable growth which eventually
outstrips all expectations.

174 N. Bastin and R. McGeer

As we write this, we’re in the Valley of Disappointment for SDN. It’s been an
enormous success in greenfield deployments such as data centers (and even non-
greenfield data centers in advanced firms such as Google). It has shown tremendous
promise in the carrier space, and (given the usual slow rate of technology introduc-
tion by carriers) it is more or less on track there. But the original motivation for
OpenFlow was to rationalize campus enterprise networks, and there the adoption
rate has been very slow. Moreover, adoption across the wide area, required for
the application-specific private networks that we envision, is currently non-existent.
We forecast the next Internet will be characterized by the inexorable growth of the
campus, and then inter-campus, SDN.

This ultimate phase of inexorable growth happens when the tools and technolo-
gies conceived during the unrealistic expectations phase have matured to the level
where they can be deployed and reliably used. This phase is now upon us. There are
three major thrusts of technology development which are now nearing maturity:

¢ A “Northbound” Open Networking API and network-specification lan-
guage, or languages. Just as the relational model of storage required SQL
before databases could be used reliably in application programs, so too does
SDN required one (or more) network specification and programming languages
to bring this technology to the application developer and network administrator.
A number of recent candidates have emerged, including FreNetlc [9, 35] more
recently P4 [3] among many others. One thing that is certain is that the ultimate
successful language will be state-free in order to preserve the validation and
verification properties of an open data plane.

* Better match of the switch ASICs and processing to SDNs. Switches generally
don’t present the simple abstraction of the data plane anticipated by SDN.
In particular, naive OpenFlow implementations are profligate with the most
expensive resource in a switch, the TCAM, and fail to use other, cheaper
resources such as prefix matching, and don’t accurately mirror the switch packet-
processing pipeline. In order for SDN to succeed, the switch processing pipeline
must be made more transparent and effective use of limited memories must be
used. Intel’s DPDK is a very promising start, and more general purpose silicon
will emerge as greater parallelism on silicon becomes available.

* Software-defined Exchanges. A number of researchers and industrial operators
have observed that OpenFlow can simplify the operation of Internet Exchange
points [12] and hence can simplify and enrich the Border Gateway Protocol. It is
certainly the case that such a “Software-Defined Exchange” will make the routing
and operation of the current Internet far more flexible and efficient. However, this
only scratches the surface of the possibilities inherent in this.

The vision of the Internet put forward in this chapter, and more generally in
this book; the vision that is at the heart of GENI, and that inspired PlanetLab, is
of erasing the boundaries between network and application and eliminating the
distance between service and user. Calit2 Director Larry Smarr speaks of using

Programmable, Controllable Networks 175

high-bandwidth networks to create a world where “distance is eliminated”.?
Smarr’s vision was of a world where the perception of distance was eliminated
between user and service. By moving programs to universal middleboxes
throughout the network, we can fruly eliminate the distance between user and
service, by siting services close to users, wherever they happen to be.

To make this vision a reality, a Software-Defined Exchange will have to be
richer than that envisioned by Gupta et al. [12]. In this new exchange, users
will send specifications of slices with management and orchestration information
across the exchange point, to autonomously instantiate a network of services
in a remote Autonomous System. The GENI RSPEC, with extensions for
orchestration and management, is a first attempt at the information that must
be put through such an exchange, and the GENI AM API is an early prototype of
the implementation of such an exchange.

As with any new technology, the reaction to the introduction of OpenFlow and
SDN was highly optimistic, and the prospect of immediate solutions to longstanding
problems seemed imminent. And as always, this early optimism met the realities of
brownfield deployment, existing hardware mismatched to the technology, existing
IT policies and skill sets, etc. Revolutions in IT do not happen overnight.

But they do happen. The promise of SDN is real, and the tools and technologies
to deploy SDN successfully in enterprise and service provider arenas are under
continuous development. Hardware is becoming more compatible with SDN tech-
nologies. The trial deployments of OpenFlow, particularly under GENI, have been
critical in developing the experience necessary for enterprise and service provider
deployments of the near future of network technology.

Acknowledgements We have been fortunate to enjoy the support of a number of brilliant
colleagues and a vibrant ecosystem throughout the course of this project. Sujata Banerjee was
instrumental in ensuring that many of the commercial and academic researchers who wanted to
experiment with OpenFlow could do so on commercial switches. Charles Clark of HP Networking
was the first person to suggest hybrid switching and using OpenFlow on specific VLANs. Nick
McKeown and Guru Parulkar of Stanford were unfailingly supportive throughout this process.
The legions of GENI users and experimenters provided invaluable feedback. The initiative of the
campuses first involved in the initial OpenFlow trials was critical, and Nick Feamster, Jennifer
Rexford, Russ Clark, and Ron Hutchins. were notably helpful.

References

1. Baldin, 1., Chase, J., Xin, Y., Mandal, A., Ruth, P., Castillo, C., Orlikowski, V., Heermann, C.,
Mills, J.: Exogeni: a multi-domain infrastructure-as-a-service testbed. In: GENI: Prototype of
the Next Internet. Springer, New York (2016)

3See, for example, http://Ismarr.calit2.net/multimedia?vid=VqAjLalPEmQ.

http://lsmarr.calit2.net/multimedia?vid=VqAjLalPEmQ

176

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

N. Bastin and R. McGeer

Berde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M., Koide, T., Lantz, B., O’Connor, B.,
Radoslavov, P., Snow, W, et al.: ONOS: towards an open, distributed SDN OS. In: Proceedings
of the Third Workshop on Hot Topics in Software Defined Networking, pp. 1-6. ACM, New
York (2014)

. Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger, C.,

Talayco, D., Vahdat, A., Varghese, G., Walker, D.: P4: programming protocol-independent
packet processors. SIGCOMM Comput. Commun. Rev. 44(3), 87-95 (2014)

. Casado, M., Freedman, M.J., Pettit, J., Luo, J., McKeown, N., Shenker, S.: Ethane: taking

control of the enterprise. In: Proceedings of ACM SIGCOMM (2007)

. Covington, G.A. Naous, J., Erickson, D., Mckeown, N.: Implementing an openflow switch on

the NetFPGA platform. In: Proceedings of ANCS (2008)

. Davy, M., Parulkar, G., van Reijendam, J., Schmiedt, D., Clark, R., Tengi, C., Seskar,

I., Christian, P, Cote, I., China, G.: A case for expanding openflow/SDN deployments
on university campuses. http://archive.openflow.org/wp/wp-content/uploads/2011/07/GENI-
‘Workshop-Whitepaper.pdf, (2011)

. Dempsey, H.: The GENI mesoscale network. In: GENI: Prototype of the Next Internet.

Springer, New York (2016)

. ETSI. Network functions virtualisation: an introduction, benefits, enablers, challenges & call

for action. In: SDN and OpenFlow World Congress (2012)

. Foster, N., Guha, A., Reitblatt, M., Story, A., Freedman, M., Katta, N., Monsanto, C., Reich,

J., Rexford, J., Schlesinger, C., Walker, D., Harrison, R.: Languages for software-defined
networks. IEEE Commun. Mag. 51(2), 128-134 (2013)

G.M.-O. Center: Geni Openflow Map. http:/gmoc.grnoc.iu.edu/uploads/a5/b4/
a5b452ec193¢769a309d5adcbe801ecd/OF-INT-BB-14-Dec-2012.png (2012)

Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., Shenker, S.: Nox:
towards an operating system for networks. ACM SIGCOMM CCR 38(3), 105-110 (2008)
Gupta, A., Vanbever, L., Shahbaz, M., Donovan, S.P., Schlinker, B., Feamster, N., Rexford,
J., Shenker, S., Clark, R., Katz-Bassett, E.: SDX: a software defined internet exchange. In:
Proceedings of the 2014 ACM Conference on SIGCOMM, pp. 551-562. ACM, New York
(2014)

Gurkan, D., Dane, L., Bastin, N.: Split data plane switches on GENI. http://groups.geni.net/
geni/raw-attachment/wiki/GEC20Agenda/EveningDemoSession/1959_GEC20SDPonGENI.
pdf (2012)

Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P., Banerjee, S., Mckeown,
N.: Elastictree: saving energy in data center networks. In: Proceedings of IN NSDI (2010)
Jacobson, V., Mosko, M., Smetters, D., Garcia-Luna-Aceves, J.: Content-centric networking.
Whitepaper, Palo Alto Research Center, pp. 2—4 (2007)

Katta, N.P., Rexford, J., Walker, D.: Incremental consistent updates. In: Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, pp. 49—
54. ACM, New York (2013)

Kazemian, P, Varghese, G., McKeown, N.: Header space analysis: Static checking for
networks. In: Proceedings of the 9th USENIX Conference on Networked Systems Design and
Implementation, NSDI’12, pp. 9-9. USENIX Association, Berkeley, CA (2012)

Khurshid, A., Zhou, W., Caesar, M., Godfrey, P.: Veriflow: verifying network-wide invariants
in real time. ACM SIGCOMM Comput. Commun. Rev. 42(4), 467-472 (2012)

Knutsson, B., Peterson, L.: Transparent proxy signalling. J. Commun. Netw. 3(2), 164—174
(2001)

Levin, D., Canini, M., Schmid, S., Schaffert, F., Feldmann, A., et al.: Panopticon: reaping the
benefits of incremental SDN deployment in enterprise networks. In: Proceedings of USENIX
ATC (2014)

Lockwood, J.W., Mckeown, N., Watson, G., Gibb, G., Hartke, P., Naous, J., Raghuraman,
R., Luo, J.: Netfpga - an open platform for gigabit-rate network switching and routing. In:
Proceedings of MSE °07, pp. 3—4 (2007)

http://groups.geni.net/geni/raw-attachment/wiki/GEC20Agenda/EveningDemoSession/1959_GEC20 SDP on GENI.pdf
http://groups.geni.net/geni/raw-attachment/wiki/GEC20Agenda/EveningDemoSession/1959_GEC20 SDP on GENI.pdf
http://groups.geni.net/geni/raw-attachment/wiki/GEC20Agenda/EveningDemoSession/1959_GEC20 SDP on GENI.pdf
http://gmoc.grnoc.iu.edu/uploads/a5/b4/a5b452ec193c769a309d5adcbe801ecd/OF-INT-BB-14-Dec-2012.png
http://gmoc.grnoc.iu.edu/uploads/a5/b4/a5b452ec193c769a309d5adcbe801ecd/OF-INT-BB-14-Dec-2012.png
http://archive.openflow.org/wp/wp-content/uploads/2011/07/GENI-Workshop-Whitepaper.pdf
http://archive.openflow.org/wp/wp-content/uploads/2011/07/GENI-Workshop-Whitepaper.pdf

Programmable, Controllable Networks 177

22.

23.

24.

25.

26.

27

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

McGeer, R.: A safe, efficient update protocol for openflow networks. In: Proceedings of the
First Workshop on Hot Topics in Software Defined Networks, HotSDN ’11, pp. 61-66. ACM,
New York (2011)

McGeer, R.: Verification of switching network properties using satisfiability. In: ICC Workshop
on Software-Defined Networks (2012)

McGeer, R.: A correct, zero-overhead protocol for network updates. In: Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, pp. 161-
162. ACM, New York (2013)

McGeer, R., Ricci, R.: The instaGENI project. In: GENI: Prototype of the Next Internet.
Springer, New York (2016)

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker,
S., Turner, J.: Openflow: enabling innovation in campus networks. ACM SIGCOMM CCR
38(2), 69-74 (2008)

. McLaggan, D.: Web cache communication protocol v2, revision 1. http://tools.ietf.org/html/

draft-mclaggan-wcep-v2rev1-00 (2012)

Naous, J., Bolouki, S.: Netfpga: reusable router architecture for experimental research. In:
Proceedings of the ACM Workshop on Programmable Routers for Extensible Services of
Tomorrow PRESTO ’08, pp. 1-7. ACM, New York (2008)

Nunes, B., Mendonca, M., Nguyen, X.-N., Obraczka, K., Turletti, T., et al.: A survey of
software-defined networking: past, present, and future of programmable networks. IEEE
Commun. Surv. Tutorials 16(3), 1617-1634 (2014)

ON.LAB. Introducing ONOS - a SDN network operating system for service providers. http://
onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf (2014)

ON.LAB. Central office re-architected as a datacenter (cord). http://onrc.stanford.edu/
protected%?20files/PDF/ONRC-CORD-Larry.pdf (2015)

P.C.I.S.S. Council. Payment card industry data security standard requirements and security
assessment procedures version 2.0. https://www.pcisecuritystandards.org/documents/pci_dss_
v2.pdf (2010)

Peterson, L.L.: Opencloud: a showcase for cloud applications, SDN and NFV. http://
ftp.tiaonline.org/Technical %20Committee/CCSC/2014.03.27/CCSC-20140327-05%20-
9%20Larry%?20Peterson%?20-%200penCloud%20A%20Showcase%20for%20Cloud
%20Application, %20SDN%20and%20NFV.pdf (2014)

Peterson, L., Baker, S., De Leenheer, M., Bavier, A., Bhatia, S., Nelson, J., Wawrzoniak, M.,
Hartman, J.: XOS: an extensible cloud operating system. In: Proceedings of BigSystem (2015)
Reich, J., Monsanto, C., Foster, N., Rexford, J., Walker, D.: Modular SDN programming with
Pyretic. USENIX ;login 38(5), 128-134 (2013)

Reitblatt, M., Foster, N., Rexford, J., Schlesinger, C., Walker, D.: Abstractions for network
update. In: Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication, pp. 323-334. ACM,
New York (2012)

Ricart, G., McGeer, R.: US ignite and smarter GENI cities. In: GENI: Prototype of the Next
Internet. Springer, New York (2016)

Sakurauchi, Y., McGeer, R., Takada, H.: Openweb: seamless proxy interconnection at the
switching layer. Int. J. Netw. Comput. 1(2), 157-177 (2011)

Saltzer, J.H., Reed, D.P., Clark, D.D.: End-to-end arguments in system design. ACM Trans.
Comput. Syst. (TOCS) 2(4), 277-288 (1984)

Sherwood, R., Gibb, G., Yap, K.-K., Appenzeller, G., Casado, M., McKeown, N., Parulkar, G.:
Flowvisor: a network virtualization layer. Technical report, OPENFLOW-TR-2009-1, Open
Network Foundation (2009)

Sherwood, R., Gibb, G., Kobayashi, M.: Carving research slices out of your production
networks with openflow. ACM SIGCOMM CCR 40(1), 129-130 (2010)

Sherwood, R., Gibb, G., Yap, K.-K., Appenzeller, G., Casado, M., McKeown, N., Parulkar, G.:
Can the production network be the testbed? In: Operating Systems Design and Implementation
(OSDI) (2010)

http://ftp.tiaonline.org/Technical%20Committee/CCSC/2014.03.27/CCSC-20140327-05%20-%20Larry%20Peterson%20-%20OpenCloud%20A%20Showcase%20for%20Cloud%20Application
http://ftp.tiaonline.org/Technical%20Committee/CCSC/2014.03.27/CCSC-20140327-05%20-%20Larry%20Peterson%20-%20OpenCloud%20A%20Showcase%20for%20Cloud%20Application
http://ftp.tiaonline.org/Technical%20Committee/CCSC/2014.03.27/CCSC-20140327-05%20-%20Larry%20Peterson%20-%20OpenCloud%20A%20Showcase%20for%20Cloud%20Application
http://ftp.tiaonline.org/Technical%20Committee/CCSC/2014.03.27/CCSC-20140327-05%20-%20Larry%20Peterson%20-%20OpenCloud%20A%20Showcase%20for%20Cloud%20Application
https://www.pcisecuritystandards.org/documents/pci_dss_v2.pdf
https://www.pcisecuritystandards.org/documents/pci_dss_v2.pdf
http://onrc.stanford.edu/protected%20files/PDF/ONRC-CORD-Larry.pdf
http://onrc.stanford.edu/protected%20files/PDF/ONRC-CORD-Larry.pdf
http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf
http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf
http://tools.ietf.org/html/draft-mclaggan-wccp-v2rev1-00
http://tools.ietf.org/html/draft-mclaggan-wccp-v2rev1-00

178 N. Bastin and R. McGeer

43. Society, I.: A ten-year tribute to Jon postel. http://www.internetsociety.org/what-we-do/grants-
and-awards/awards/postel-service-award/ten-year-tribute- jon-postel, (2008)

44. Stoica, 1., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a scalable peer-to-
peer lookup service for internet applications. In: Proceedings of SIGCOMM’01, pp. 149-160
(2001)

45. Szalay, A.S.: Jim gray, astronomer. Commun. ACM 51(11), 58-65 (2008)

46. Szalay, A.S., Gray, J., Thakar, A., Kunszt, PZ., Malik, T., Raddick, J., Stoughton, C., van den
Berg, J.: The SDSS skyserver: public access to the sloan digital sky server data. In: Proceedings
of the 2002 ACM SIGMOD International Conference on Management of Data, Madison, W1,
3-6 June 2002, pp. 570-581 (2002)

47. The Openflow Switch Specification. http://OpenFlowSwitch.org (2009)

48. Van Adrichem, N.L., Doerr, C., Kuipers, F.,, et al.: Opennetmon: network monitoring in
openflow software-defined networks. In: 2014 IEEE Network Operations and Management
Symposium (NOMS), pp. 1-8. IEEE, New York (2014)

49. Wetherall, D.: Active network vision and reality: lessons from a capsule-based system. In:
Symposium on Operating Systems Principles (1999)

50. Zhang, S., Malik, S., McGeer, R.: Verification of computer switching networks: an overview.
In: Proceedings of the 10th International Conference on Automated Technology for Verifica-
tion and Analysis, ATVA’12, pp. 1-16. Springer, Berlin/Heidelberg (2012)

51. Zhao, B.Y., Kubiatowicz, J., Joseph, A.D.: Tapestry: an infrastructure for fault-tolerant wide-
area location and routing. Technical report, UC-Berkeley (2001)

http://OpenFlowSwitch.org
http://www.internetsociety.org/what-we-do/grants-and-awards/awards/postel-service-award/ten-year-tribute-jon-postel
http://www.internetsociety.org/what-we-do/grants-and-awards/awards/postel-service-award/ten-year-tribute-jon-postel

4G Cellular Systems in GENI

Ivan Seskar, Dipankar Raychaudhuri, and Abhimanyu Gosain

1 Introduction

Open, programmable networks are an important enabler for the future Internet
because of their ability to support flexible experimentation and to evolve function-
ality as new network architectures are deployed on a trial basis. The NSF supported
GENI initiative is an ongoing effort to build a national scale open programmable
network using a combination of open switching, routing and wireless technologies.
The main features of open networking devices used in such testbeds are: (a) an open
API which provides access to link-layer technology parameters; (b) downloadable
programmability of protocols used at the network layer; (c) virtualization of network
resources such as routers and base stations in order to enable multiple simultaneous
experiments; and (d) observability of key performance measures such as throughput
and packet loss. At the start of the GENI project, it became clear that wireless
edge networks and mobile devices are critically important to the future Internet,
indicating the need for open programmable wireless access technologies that can be
deployed to supplement the virtualized routers and server racks described in other
chapters. As a first step, wireless access based on open/programmable WiFi access
points has been provisioned into various campus deployments associated with GENI
(see for example, the ORBIT testbed described in Chapter 4). Although WiFi is
an important mode of access, an increasing proportion of Internet traffic originates

I. Seskar (<) « D. Raychaudhuri

WINLAB, Department of ECE, Rutgers University, 671 Rt. 1 South, North Brunswick,
NJ 08902, USA

e-mail: seskar@winlab.rutgers.edu

A. Gosain

GENI Project Office, Raytheon BBN Technologies, 10 Moulton street, Cambridge, MA 02138,
USA

e-mail: agosain@bbn.co

© Springer International Publishing Switzerland 2016 179
R. McGeer et al. (eds.), The GENI Book, DOI 10.1007/978-3-319-33769-2_9

mailto:agosain@bbn.co
mailto:seskar@winlab.rutgers.edu

180 1. Seskar et al.

from cellular devices such as smartphones, motivating consideration of open cellular
systems using the latest available technologies such as 4G WiMax and LTE.

The main goal of 4G wireless deployment in GENI was to address the two
key issues: (1) providing campus-wide GENI wireless coverage for opt-in users;
and (2) offering programmable wireless networking capabilities which reflect the
growing importance of mobility service scenarios in the Internet. The WiMAX
base station kit was designed to directly address both of these needs by providing
wireless/mobile access together with the ability to attract opt-in users over a
relatively large coverage area 25-50 sq-km, sufficient to cover a significant portion
of many university campuses. With the availability of 802.16e PC cards [1] and
mobile handsets [2] as commodity products, the setup makes it possible to support
large numbers of mobile or fixed end-users on a campus as needed for certain classes
of experiments. Specific examples of experimental research that are supported by
a GENI WiMAX device include: mobile network routing, hybrid P2P and wide-
area access, vehicular networking, transport-layer protocols for wireless, cross-layer
optimization of transport and link scheduling, location-aware applications, content
delivery networks and wireless network security. Of course, these deployments can
also serve as the “last mile” for any wired network protocol experiment that would
benefit from opt-in users who do not have access to a GENI enabled Ethernet
connection. 802.16e base station products were viewed as a good starting point for
the addition of 4G wireless into GENI.

In 1960s, the FCC designated the so called Instructional Television Fixed Service
(ITFS) consisting of a band of 20 microwave channels totaling 120 MHz bandwidth
in the 2.5-2.7 GHz spectrum for local credit granting educational institutions. The
primary purpose of this allocation was for educational institutions to deliver live
or pre-recorded video instruction to multiple sites within school districts and to
higher education branch campuses. Originally, the authorization was for one-way,
line of sight analog TV operation and each institution was required to carry at least
40 h of programming per week. Over the years, two FCC rulings had huge impact
on the actual use of this spectrum: in the late 70s FCC allowed commercial use
of the spectrum (i.e. leasing by commercial entities from the institutions that had
excess capacity) while in the late 90s, the rules were changed to allow for two-way
and cellular like operation opening the door for wireless data delivery. In the later
ruling, FCC also reduced the 40 h requirement to “5 % of channel capacity”; the
service was also renamed to Educational Broadband Service (EBS) [3]. Finally, in
2003 FCC was petitioned and subsequently allowed use of ITFS/EBS spectrum for
wireless broadband service.

On the technology side, the project was initially focused on developing and
deploying wide-area wireless experimentation services with WiMAX technology.
The fact that the equipment was readily available at the time, is inherently IP
based, and that it operates in EBS spectrum (i.e. that quite a few institutions
already owned spectrum) was a reason for initial choice of WiMAX as a wide-
area wireless technology for GENI deployment. In the 6 years since the projects
started, LTE technology, owing to its prevalence in commercial world and more
recently availability of equipment in the EBS spectrum (most notably the fact that
commercial handsets started supporting 2.6 GHz TDD variant of LTE), was chosen

4G Cellular Systems in GENI 181

as a technology for the next round of deployment. It is noted here that the project had
to deal with a fundamental technical challenge of modifying available 4G cellular
technologies to separate the basic radio access functionality from the 3GPP protocol
stack in order to allow for flexible experimentation with new network protocols.
The concept of an “open base station” which can be plugged in to an arbitrary
(virtual, programmable) network infrastructure is still an evolving one, though the
basic idea has gained considerable momentum on the wired network side with the
emergence of software-defined network (SDN) standards. Just as wired network
devices such as Ethernet switches and routers can be made programmable with
SDN, our concept for programmable wireless in GENI is to modify existing 4G base
stations to expose an “open API” and then migrate the functionality to an external
controller which can be programmed and virtualized.

On the legal side, the project had to deal with the spectrum licensing issues.
Given the shortage of spectrum, two major telecom companies (Sprint and Clear-
wire) began offering WiMAX on EBS frequencies leased from schools and other
license holders. The caveat was that FCC rules required such leases to reserve 5 %
of system capacity for license holders’ educational mission, but were otherwise
free to use the system as they saw fit. Initially each campus was either applying
for a separate experimental FCC license for WiMAX operation or using existing
EBS allocation (in cases where spectrum was not leased to carriers). One of the
administrative issues is that experimental licenses have requirements for coordi-
nating with the primary owner. The more permanent solution was found in Q2 2013
when, through Rutgers University master agreement with Clearwire, GENI WiMAX
base stations at 13 campuses across the United States were allowed to operate as a
unified experimental system that is closely coordinated with Sprint (which acquired
Clearwire in second half of 2013).

Another major achievement of the project was that, for advanced experimenta-
tion, even in the case of NEC base station, that was designed for use with a pre-
standard gateway, the project was able to unbundle the basic layer-2 functionality
of the device and make it accessible through an external control “open API”. This
enabled development of GENI control software on an external (PC based) controller,
substantially meeting layer 2,3 programmability and virtualization requirements in
a manner that is very similar to the software approach used for wired GENI routers.

2 Deployment

GENI WiMAX kit design and development was carried out in Spirals I while larger
scale deployments were carried out in the Spiral III and Spiral VI. The current
deployment sites are shown in Fig. 1. The original GENI WiMAX design was based
on the first generation NEC base stations while the second round of deployments
was based on the second generation WiMAX base stations from Airspan. At the end
of Spiral IV, the project started development of the LTE kit for the next round of 4G
deployment in GENIL.

182 1. Seskar et al.

UWisconsin
Madison

UColorado
Boulder

Fig. 1 GENI 4G deployment sites

Also, the service (software) development is closely coordinated with the EU
FP7 FIRE project “FIRE LTE testbeds for open Experimentation” (FLEX) that is
developing a range of LTE experimentation facilities in Europe [4] and using the
same testbed management framework.

2.1 Spiral I1I Deployment Sites

Spiral IIT deployments were carried out at seven University campuses and at the
GENI Project office in Cambridge, MA. Each site received one NEC Profile A base
station, one 12 dbi Omni directional antenna, one high performance HP rack server
and 10 AWB US210 USB dongles. All outdoor deployments provided 360° campus
coverage in a 2-3 km radius, depending on urban or suburban terrain surrounding
the campus. The sites also acquired five USB WiMAX modem adapters that had an
open source Linux driver to allow for finer grain control on the client side and use
with opt-in laptops and other compatible devices.

2.2 Spiral IV Deployment Sites

In Spiral IV, 13 Airspan Profile C base stations were deployed at five
existing sites and five new campuses. Two of the deployments were multi-cell/

4G Cellular Systems in GENI 183

multi-sector operations: Wayne State University and Clemson University supporting
both vehicular nodes for mobility experiments and opt-in end users for service-
level evaluations. Each of these sites deployed multiple base stations: Wayne
State University in downtown Detroit area covering two major highways around
the campus and Clemson University covering sections of the sub-urban area in
Greenville, South Carolina and their campus downtown. In addition to the BS and
2 x 4 17 dbi MIMO antenna, each site received a full GENI WiMAX kit consisting
of one console (ORBIT) node, three client (ORBIT) nodes with WiMAX modems
and multiple Samsung Galaxy S2 handsets.

3 Typical Deployment Architecture

Figure 2 shows a schematic of a typical GENI 4G deployment. As shown, one
or more base stations are typically connected directly to a base station controller
over L2 or L3 network. That same controller is in turn connected to a GENI
access network with layer 2 switched connectivity using Ethernet or optical fiber
technology.! The figure also indicates three distinct interfaces associated with a
deployment: (a) the RF interface (WiMAX or LTE) between clients and the base
station, (b) the controller interface (R6 for WiMAX and S1/X1 for LTE) and (c) the
GENI facing network interface.

3.1 NEC WiMAX Base Station

The NEC Release 1 (PassoWings) first generation WiMAX base-station hardware
that was cornerstone of the initial GENI 4G deployment, is shown in Fig. 3.

GENI terminals
{handsets and laptops with
commercial devices)

Coverage area
(~2-3 Km)
GENI Control .
Interface

GENI Backbone
Network

/

=
Base Station g oo RF Interface
Controller Interface {WiMAX, LTE) @

(R6+, R6,51,X2)

Fig. 2 4G deployment architecture

'Remote deployments that lack direct GENI backbone connectivity can be connected to the core
over the L2TP tunnel through one of the other sites or any GENI rack machines.

184 1. Seskar et al.

Fig. 3 NEC PasoWing basestation

It consists of the Indoor (IDU) and Outdoor (ODU) units. The IDU is a 5U rack
based system with two types of cards: Channel Cards (CHC) and a Network
Interface Card. The shelf can be populated with up to three CHCs, each supporting
one sector for a maximum of three sectors. Each channel card (sector card) can be
connected through a fiber with a pair of ODU units (bottom white box in Fig. 3)
that are typically mounted close to the antenna. The BS operates in the 2.5 GHz
or the 3.5 GHz bands and can be tuned to use either 5, 7 or 10 MHz channels.
At the MAC frame level, 5 ms frames are supported as per the 802.16e standard.
The TDD standard for multiplexing is supported where the sub-channels for the
Downlink (DL) and Uplink (UL) can be partitioned in multiple time-frequency
configurations. The base-station supports standard adaptive modulation schemes
based on QPSK, 16QAM and 64QAM. The interface card provides one Ethernet
Interface (10/100/1000) which is used to connect the base station to the controller.
The base station has been tested for radio coverage and performance in realistic
urban environments and has been used in WiMAX deployments with a typical
coverage radius of 2-3 km, and peak downlink service bit-rates achieved in the
range of 15-30 Mbps depending on operating mode and terrain (all of the sites
deployed in spiral IIT received only a single ODU and were thus not capable of
MIMO operation). Note that these service bit-rates are significantly higher than
those achievable with third generation cellular technology (such as EVDO), and
are sufficient to support advanced network service concepts to be investigated in a
typical wireless GENI experiment.

4G Cellular Systems in GENI 185

Fig. 4 Airspan base station

3.2 Airspan WiMAX Base Station (Fig. 4)

The AirdG-W24 (a.k.a. MacroMAXe) is a highly-integrated second-generation
WiMAX base station manufactured by Airspan that was chosen for Spiral IV
deployment. As opposed to a single RF front-end that covers the entire 2.5-2.7 GHz
band as in case of the NEC base station, AirdG-W24 is offered in three different RF
variants: 2510 Lo (low band covering 2496-2570 MHz), 2510 Mid (mid-band with
2560-2630 MHz) and 2510 Hi (hi-band covering 2620-2690 MHz) with maximum
transmit power of 43 dBm (2 x 40 dBm) and EIRP of 61 dBm. As shown in Fig. 2, in
addition to the actual base station, the setup includes 2.3-2.7 GHz 90° Quad X-Polar
panel antenna with —4° (downward) tilt and effective gain of 17.0 dBi. AirdG-W24
also supports mode for fixed/nomadic applications which do not require support for
handovers (i.e. no need for asn-gw deployment). It is a IEEE802.16e-2005 Wave 2
compliant device that supports the two main MIMO downlink configurations:

* Matrix A: space-time coding (STC) in which the base station transmits each data
symbol twice with slightly different coding which is a form of diversity that
increases range/error rate but does not affect channel bit-rate.

* Matrix B: vertical encoding (2 x 2 MIMO) where the date is split among the two
antennas which theoretically doubles the bit-rate.

On the physical layer, the base station feature set includes both 512 and 1024
OFDMA, configurable downlink/uplink split, QPSK, 16QAM and 64 QAM on both
downlink and uplink, as well as, fractional frequency reuse, open and closed loop
power control (power adjustment range of 20 dB with 1 dB steps) and fast feedback
(ACKCH for H-ARQ and CQICH for MIMO). It supports all five standard service
flow types (BE, NRT, ERT, RT and UGS) with up to 32 service flows per single
mobile station and up to 4096 service flows and up to 256 mobile stations per
10 MHz channel. The Air4dG-W24 base station has power consumption of 370 W
under the full load.

186 1. Seskar et al.

Fig. 5 LTE base-stations

3.3 LTE Base Stations

In recent years, LTE has emerged as a dominant wide-are wireless system. The
majority of LTE deployments in the US are using paired spectrum (i.e. Frequency
Division Duplex — FDD) and, given the scarcity, experimental licenses and per-
mission for operation from primary licenses holder are much harder to obtain.
Fortunately, recent push by equipment vendors to support an unpaired version
of LTE (i.e. Time Division Duplexing—TDD) that is using mid-band EBS RF
spectrum, opened a smooth path for transition from WiMAX to LTE. The two base
stations that are used for GENI LTE support (Fig. 5) are: Airspan AirSynergy LTE
and Amarisfot LTE 100.

AirSynergy LTE is a production grade base station with dual 30dBm (2 x 1 W)
transmitters with support for full range of channel bandwidth: 1.4, 3, 5, 10, 15 and
20 MHz. The base station antenna is a multi-element cross polarized (dual slant)
design which can be used in directional or omni modes of operation with average
gain of 2 or 8 dBi respectively. AirSynergy supports QPSK, 16QAM and 64QAM
modulations on both downlink and uplink with all modulation and coding schemes
(MCS) defined in 3GPP TS 36.211.

The Amarisoft LTE 100 is an example of new breed of pure Software Defined
Radio (SDR) eNodeB implementations. It is a user-space software solution running
under Linux OS on a commodity PC that uses RF head-end (Ettus Research/NI
USRP N2x0) front-end for RF conversion. It is a LTE release 9 compliant that
supports both FDD and TDD configurations and full range of bandwidths (1.4, 3, 5,
10, 15 and 20 MHz). It also implements the MAC, RLC, PDCP and RRC protocol
layers and intra eNodeB, “S1” or “X2” handovers. Due to flexible nature of used
SDR front-end (USRP with SBX daughter-card that covers 400 MHz—4 GHz) and
the configurability of software based solution, this platform can be, in addition to all
of the standard LTE frequencies, tuned to arbitrary frequency within the range of RF

4G Cellular Systems in GENI 187

WEM: 0231S81CECC
W 00101385600

TA: E62815-011

AWB US210 Intel 6250 Teltonika UM6225

Fig. 6 WiMAX modem devices

front-end which makes it ideal for experimentation with new frequency allocations.
It also exposes large number of control parameters through configuration files which
are made available to the experimenters via the LTE Aggregate Manager.

3.4 4G Client Devices

Over the years, GENI WiMAX deployed all three classes of client devices: (a)
external and internal modems, (b) mobile phones and (c) WiFi gateways. In Fig. 6,
the three dominant modem devices are shown.

The AWB US210 is a IEEE802.16e-2005 WiMAX Wave 2 compatible device
that was shipped with the WiMAX kit as a reference device. The shipped variant
(US210-2.5), operates in 2.496-2.696 GHz range and supports 5, 7, 8.75, 10 MHz
channel bandwidths. The device has one transmit and two receive antennas and
supports mobile connectivity for speeds of up to 30 km speed with (combined) peak
rates of up to 33 Mbps.

Intel” Centrino” Advanced-N + WiMAX 6250 [5] is a PCle form factor half
MiniCard. It is a combination device that includes both WiFi and WiMax radios. On
the WiFi side, it supports 2 x 2 Tx/Rx streams with maximum speed of 300 Mbps
and supports both 2.4 and 5 GHz operation. It also has an open source Linux driver
that enables flexible experimentation on the client side.

Teltonika UM6225 is an IEEE802.16e-2005 WiMAX Wave 2 compatible USB
modem with somewhat unique design since it has an embedded CPU. Among other
features, it supports 2 transmit streams closed-loop diversity, both Matrix A and B
MIMO types and HARQ category 7 with max downlink rate of 40 Mbps. The device
supports two operational modes: NAT-ed Ethernet device with non-routable address
or as bridged Ethernet device.

The new generations of TDD LTE client devices have also been tested with the
Airspan Airsynergy Base stations. As shown in Fig. 7, all devices have drivers for

188 1. Seskar et al.

Bandl e |
-
a.) BandLuxe E580 b.) Gemtek c.) Netgear 341u
Outdoor CPE WLTUBS-100

Fig. 7 LTE modem devices

the Linux OS providing flexibility for experimenters. (a) Bandrich BandLuxe E580
outdoor CPE supports both Router and bridge mode and has an embedded 10—
13 dBi directional MIMO antenna set. It supports upto 20 MHz bandwidth with
data rates upto 10 Mbps DL and 50 Mbps UL. (b) Gemtek WLTUBS-100 is a TDD
LTE USB dongle using the Sequans baseband processor chip. It complies with the
3GPP Release 8 Category 3, providing data rates up to 100 megabits per second
(Mbps) in downlink and 50 megabits per second (Mbps) in uplink. (c) The Netgear
341uis a USB based LTE modem. It emulates a USB router, and supports NAT and
other standard features. It supports LTE Bands 25, 26, and 41 (TDD).

The ubiquity of mobile phones and their popularity as a development tool for
experimenters is well known. As such, the GENI WiMAX project provided sites
with a number of HTC Evo 4G and Samsung SII WiMAX handheld devices shown
in Fig. 8. These Android [6] operating system based handsets are ideal for research
use since, in addition to open-source nature of the OS and the abundance of
open-source applications, have alternative (open-source) ROMs allowing for even
greater customization. GENI wireless sites received these handsets with custom
applications like: WiMAX frequency switching application by Rutgers Univer-
sity, spectrum sensing app from University of Wisconsin, range and throughout
measurement application by Clemson University pre-installed. These handsets also
seamlessly connect to both the GENI network as well as SciWiNet [7] (MVNO
running on top of Sprint 3G/4G network).

WIMAX + Wifi gateways are also deployed at various GENI WiMAX sites to
provide high speed 4G connectivity to legacy Wifi devices and increase the coverage
range for non-WiMAX radios. Greenpacket DX Indoor/Outdoor Modem is a Wave
2 compliant device used in GENI. On the WiMAX backhaul, the device operates
in the 2.3, 2.5-2.7 and 3.5 GHz spectrum and on the WLAN side is 802.11b/g/n
compliant. On the WiMAX backhaul, it has a maximum Tx power of 25 dBm and
an Omni directional antenna with a gain of 5 dBi.

4G Cellular Systems in GENI 189

HTC Evo 4G Samsung Galaxy SII (WiMAX)
(WIiMAX)

CPU Qualcomm Scorpion @ 1GHz Qualcomm QSC6085 @ 1.4GHz (dual core)

Storage 512MB LPDDR1/ 1GB ROM 1GB RAM/ 16 GB ROM
Battery Removable 1500 mAh 1650 mAh
Connectivity Dual-band CDMA/EVDO Rev. A (800 1900 MHz) GSM + UMTS (800 1900 2100 Mhz)
WiMAX 802.16e WiMAX 802.16e
802.11b/g/n, Bluetooth 2.1 + EDR 802.11 b/g/n, Bluetooth 4.0 + HS + FM
WiMAX 2.3-2.4,2.5-2.7,3.3-3.8 GHz 2.5-2.7 GHz
Features 2 X 23 dBm transmit power Supports all Mobile WIMAX Wave2
DL MIMO: MRC, Matrix A + MRC, Matrix B Profiles
UL MIMO: Matrix A 2x2 MIMO
Tx Diversity Matrix A & Matrix B
Fast feedback Space Time Coding (STC)
Fast scanning Low power
WIiMAX Combined UL/DL: > 40 Mbps Max DL: 40 Mbps Max UL: 15 Mbps
Performance

Fig. 8 WiMAX handheld devices

4 GENI Wireless Site Management Framework

The GENI wireless site management framework is an extension of Orbit Manage-
ment Framework (OMF). OMF was originally developed for the ORBIT wireless
testbed at Rutgers University. GENI project has extended this framework to operate
with its network and resource technologies.

As shown in Fig. 9 each site deployment consists of a console machine, three
bare metal client nodes and a number of WiMAX handsets. Two of these client
nodes have a fixed power supply. The third client has a 12 V power supply so that
it can function as a mobile node in a vehicular environment. The console machine
functions as a portal/gateway to allow experimenters to login to the client resources
and manages identity, security and resource allocation functions. It is running Linux
OS with a set of standard services (DHCP,DNS, LDAP, etc.) and the OMF packages
needed for operating the setup as a testbed.

This controller manages the base station(s) as well as performs layer 2 and layer 3
processing of client packets. The core of the base station controller software revolves

190 1. Seskar et al.

€M Switch Control Network

pata Swurc Data Network
Control Sw

CM Network

Fig. 9 Spiral IV site kit

GENI Traffic Scheduler/Shaper

e

RF Aggregate R'ﬁ;’a:g“
Manager
NEC Modified CLICK NEC Modified -
ASNGW Controller router ASNGW Controller fpenv Sy

oth1 eth1

¥
- _.-JJ

a.) Click-based datapath b.) OpenVSwitch-based datatpath

Fig. 10 GENI WiMAX controller

around three components: (a) Access Service Network Gateway (asn-gw), (b) GENI
(WIiMAX, LTE) RF Aggregate Manager (a.k.a. wimaxrf, lterf) and (c) one or more
datapath routers.

802.16 standards introduce three choices for access network implementation
(the “Profiles”): A, B and C. The main difference between these is the place at
which certain functionalities are implemented [8]: in Profile A, the handoff control
and radio resource control (RRC) are implemented in the asn-gw; in Profile B,
most of the functions are implemented in the base station (even if access network
implementation is distributed among multiple base stations); in Profile C, both
handoff and RRC are implemented in the base station; NEC base stations are
Profile A while Airspan base stations are Profile C. The main role of asn-gw
in GENI deployments is to provide connectivity (and in general case mobility)
management across one or more base-stations. The asn-gw exchanges control and
management information with the base-station over the R6 bearer logical interface
(802.16 standard interface for communication between WiMAX base station and
the controller) through control port on the south-side interface in Fig. 10.

4G Cellular Systems in GENI 191
4.1 RF Aggregate Manager

The RF Aggregate Manager is the experimenter-facing component that is used to
configure and manage the GENI wireless controller. It is a standard OMF Aggregate
Manager with REST-like web based interface that allows experimenters to get
and set all exposed parameters of the base station and asn-gw. It performs three
sets of functions: (1) connection manager functionality (the default implemen-
tation is Simple Authorization Manager that is only using client MAC address
for authentication), (2) base station and asn-gw parameter getters/setters and (3)
datapath configuration and management functions. This service also exposes hooks
for interfacing with the GENI slices.

One of the objectives of the GENI wireless controller development was to enable
experimentation with the handoff algorithms. To support this, the whole range
of additional handoff related control functions was exposed through the RF AM
REST interface for both Profile A and Profile C base stations enabling a range of
(system independent) handoff solutions (e.g. University of Wisconsin and Clemson
University handoff implementations as described in Sect. 5).

4.2 Datapath Management

The 802.16e base station allocates time-frequency resources on the OFDMA link
with a number of service classes as specified in the standard—these include
unsolicited grant service (UGS), expedited real time polling service (ertPS), real-
time polling service (rtPS), non-real time polling (nrtPS) and best effort (BE). The
radio module as currently implemented includes scheduler support for the above
service classes in strict priority order, with round-robin, or deficit round-robin being
used to serve multiple queues within each service class. These packet queuing and
service scheduling features provide adequate granularity for virtualization of radio
resources used by each slice in GENI [9]. It is noted here that OFDMA in 802.16e
with its dynamic allocation of time-frequency bursts provides resource management
capabilities qualitatively similar to that of a wired router with multiple traffic
classes and priority based queuing. The GENI aggregate manager is responsible
for mapping “Rspec” requirements (such as bandwidth or delay) to the available
802.16e common packet layer services. Slices which do not require bandwidth
guarantees are allocated to the BE class, while slices with specific bandwidth
requirements (for quantitatively oriented experiments, for example) are allocated
to the other categories. In GENI wireless controller, each slice contains a datapath
“router” implementation that is either Click [10] or OpenVSwitch [11] based (RF
Aggregate Manager allows for other datapath implementations). These datapath
implementations are in charge of handling all of the data packets for a set of clients
that belong to the slice. When a data packet is received by the controller, it is
classified based on the client MAC address and routed to appropriate datapath where

192 1. Seskar et al.

— [eh2 |

SEa Hss
|
MME I—j; r
fsu
e
m
* Handoff
hn* Mgmt

Fig. 11 LTE controller

it is processed by either Click or an OpenVSwitch software router and forwarded
to the appropriate slice (VLAN) for further processing. Outgoing packets on virtual
interfaces mapped to the layer 2 interface of the WiMAX base station can also be
tagged so that they can be assigned traffic class and bandwidth parameters (BE,
ertPS, rtPS etc.) as determined by the flow connection identifier (CID).

In keeping with the programmability and virtualization requirements of GENI
testbeds, an open LTE base station controller is under development using the same
model that was used for WiMax as shown in Fig. 11. The basic idea is to replace all
the LTE GW (gateway), MME (Mobility Management Entity), Handoff and other
functionality with software modules in the Aggregate Manager with southbound
interfaces to the base station hardware and northbound interfaces to the access
network.

4.3 Virtualization

As part of the development of an open API WiMax base station, we addressed
the problem of virtualization of wireless resources. Isolation of resources between
multiple virtual slices is complicated by the fact that the capacity of a radio channel
varies with signal strength at the mobile clients being served. In addition, because
wireless devices are mobile, the network topology and interference regions change
with time implying the need for virtualization methods which are dynamic and can
respond in real time to changes in available resources (Fig. 12).

Our implementation for WiMax uses load adaptive traffic shaping in an Open-
VSwitch framework to maintain fairness between virtual networks when the channel
approaches saturation. An example result with two virtual networks on WiMAX is
shown in Fig. 13. The figure shows how the bit-rate of slice 1 varies with time due to
signal fluctuations, and the corresponding bit-rate of slice 2 is also affected severely

4G Cellular Systems in GENI 193

L e

VNTS Console

Kermed
| remt - Fecaback |

ASN - GW

VNTS Controller

ey

P b e

I WIMAX B seStation

Fig. 12 Architecture of virtual WiMax base station in GENI

Observed Throughput (Mbps)

=== Slice 1 - No Shaping
Slice 2 - No Shaping -
= Slice 1 - VNTS

. A "

0 20 40 60 80 100
Experiment Duration (secs)

Fig. 13 Bit-rate traces for VNs in experimental WiMAX network

194 1. Seskar et al.

<FIELDS>oml_tuple_id oml_sender_id oml_seq oml_ts_client oml_ts_server
bsid ma mac ulrssi ulcinr dlrssi dlcinr mcsulmod mcsdlmod dlsdu ulsdu
dlpdu Ipdu

</FIELDS>

<ROW>440547 21 6674 5548804.206924 5548805.266831
44:51:db:00:00:01 Fri Aug 22 16:48:04 -0400 2014 00:1d:e1:3b:4f:9a -
107.75-7.5-32768.0 -30.0 QPSK 1/2 QPSK 1/2 380857179 388059377
24053448 30551329</ROW>

Fig. 14 Local measurements

<DATABASE ExperimentID="GENI-wimaxrf">

<QUERY>select * from wimaxrf_basestation limit 10</QUERY>

<RESULT>

<FIELDS>oml_tuple_id oml_sender_id oml_seq oml_ts_client oml_ts_server bsid frequency power noclient ulsdu ulpdu dlsdu
dlpdu</FIELDS>

<ROW>11161.860506 62.811513 44:51:db:00:00:03 2590.0 38.15 2</ROW>

<ROW>2 12 62.427304 63.376368 44:51:db:00:00:01 2590000.0 100.0 2 0.0 96.0 1992.0 90880.0</ROW>
<ROW>313121.909544 122.859186 44:51:db:00:00:03 2590.0 38.15 1</ROW>

Fig. 15 Global measurements

when traffic shaping is not used. The bit-rate trace with VNTS traffic shaping [12]
shows that this method is effective in maintaining bit-rate isolation between multiple
virtual network slices.

4.4 Monitoring

GENI monitoring is an essential tool available to network operators and experi-
menters to get the status and health of the end to end GENI network (Figs. 14 and
15). GENI WiMAX resources are particularly important as they share spectrum
with commercial providers such as Sprint. This framework allows the network
providers to monitor transmission parameters of all GENI WiMAX sites. The GENI
WiMAX aggregate manager (AM) uses OML (Orbit Measurement Library) to
collect real-time measurements from the Base station. The collection process runs
on the WiMAX controller and records per flow and per client measurements and
stores them in a local database. In addition to wireless client related measurements,
the AM uses OML for both Layer 2 and 3 base station aggregate measurements.
The service extends the GENI Monitoring framework and stores the measurements
in a local datastore, which is queried periodically by a global collector and all
active measurements are stored in a global database. The measurements collected
include: WiMAX base station transmit power, center frequency, Downlink and
Uplink modulation scheme and number of clients associated with each BS.

4G Cellular Systems in GENI 195
4.5 Portal Integration and Account Federation

GENI WiMAX experimenters have access to all 13 WiMAX sites for experimen-
tation using their account at the GENI portal and clearinghouse [13]. This allows
an experimenter to reserve either a single campus testbed or even multiple campus
testbeds connected via the Internet2 [14] research backbone for an experiment. In
a deviation from common GENI philosophy, the GENI WiMAX resources are time
sliced and only one project can access the resources at a time. This is primarily done
to avoid any conflict in modifying the WiMAX base station parameters by multiple
experiments. The resource reservation is performed by using web-based scheduler
at each site independently. Account federation between the portal and individual
sites is performed in two steps: The GENI clearinghouse periodically communicates
with the ORBIT site account management service over HTTPS to sync account and
project information. The ORBIT login service is responsible for syncing account
events with the remaining 12 sites and resolves any discrepancies that may arise.

4.6 Integration with GENI Rack

GENI wireless resources shown in Sect. 4 are representative of single site deploy-
ment. The rollout of GENI racks (both ExoGENI and InstaGENI) at these sites has
allowed them to include the high performance computing and Internet2 connectivity
into their experimenter offerings as shown in Fig. 16. The basestation controller
supports arbitrary number of datapaths each of which corresponds to a separate
slice and is identified with a VLAN. In all sites that have GENI racks, these VLANSs
are carried through a single Ethernet trunk, through the campus or even external
network, to the local rack’s dataplane switch where they can be distributed to
various computing or networking components. This also enables the aggregation
function for the local rack for wireless client traffic and provides support for
local and multi-site complex topologies to experimenters. At least two VLANS are
mandatory at each campus deployment: “wireless-local” and “wireless-multipoint™.
The wireless-local VLAN carries traffic that terminates on the local campus and is
the default VLAN that RF Aggregate Manager(s) use for its clients. As the name
implies, the wireless-multipoint VLAN carries traffic that is passed onto permanent
Internat2 Advanced Layer 2 Service (AL2S) [15] slice dedicated for wireless
experimentation that connects all of the wireless enabled campuses. This facilitates
experiments that span the entire GENI wireless footprint, as well as, enables
management functions that are typically used by wireless carriers (e.g. multi-site
coordination, over-the-air device provisioning, profile updates, etc.). Given that the
rack switches are SDN capable, and the fact that both wireless datapath is also
based on SDN components (and the abundance of computing resources at each
site) resulting collection of resource introduces additional flexibility in the wireless
control plane and is enabling significantly more complex experimentation as shown

196 I. Seskar et al.

in Fig. 17 (whether itspans multiple wireless deployments of heterogeneous wireless
technologies on a single camps or multiple campuses that are connected over one or
more computing/networking slices).

S Experimentation

Given that GENI WiMAX deployment was one of the first cases of research
community getting their hands on a wide-area cellular system, the first series of
experiments and research results were focused mostly on service development and
performance evaluation. Initial group of papers introduced the design of the open
BS architecture [12, 16] while the second set of reports was on coverage for the
initial deployment [17]. In [18], a series of experiments was performed on two
GENI WiMAX campuses (NYU Poly and UMass) under various wireless signal
conditions and network traffic patterns and the performance of several popular
wireless Internet applications was characterized while in [19] the authors evaluate
the performance of a novel video delivery service in typical mobile environment.
The complexity of these experiments continued to rise and client side mobility
management and handoff techniques were developed at Clemson University and
University of Wisconsin. The implementation on the client side device was based
on a Floodlight OpenFlow [7] controller, which managed client data flows over
multiple radio interfaces. This handoff technique was demonstrated in mobility
scenarios across the Clemson University campus and later developed into a tutorial
and offered at multiple GENI Engineering conferences.

One of the first production uses of a WiMAX deployment was in Brooklyn by the
ParkNet project [20]. As shown in Fig. 18, a fleet of eight vehicles drove the streets
around MetroTech Center collecting and transmitting live data about availability of
parking spaces along the streets. Each vehicle was equipped with a mobile node
with external side-sweeping sensor pack (external attachment on the side of the car
in Fig. 16) and an Intel 6250 client device. The node ran an OML-ised ParkNet
application that collected measurements from ultrasonic sensor, video camera and
an on-board GPS receiver, pre-processing and aggregating the data and streaming
the results over NYU Poly WiMAX connection to the remote collection server at
Rutgers campus in North Brunswick. The interesting feature of this deployment was
the use of disconnected OML mode which supported opportunistic transmission of
collected measurements as vehicles entered the WiMAX coverage area (i.e. OML
proxy that buffers the data while node is not in the coverage area and delivers
it as soon as connection is re-established). This deployment scenario was also
demonstrated live during the plenary session of GEC9.

The research use of wireless infrastructure was quickly followed by the educa-
tional use with a number of tutorials and classroom courses [21-24]. NYU-Poly
and WINLAB, Rutgers have conducted a series of WiMAX tutorials at GENI
Engineering conferences to familiarize the community with 4G wireless experi-
mentation environment including experiment orchestration and scripting language,

4G Cellular Systems in GENI 197

OPEN BS2

OPEN BS3

Generic Resource Controller

Fig. 17 GENI software defined wireless edge

198 1. Seskar et al.

= Saersc car s by

— — = —
11D - I
— —

Parked cas Parked car

&
PPN

Fig. 18 ParkNet deployment in Brooklyn

WiMAX radio resources framework and wireless applications to experimenters.
From the wireless perspective, the tutorials ranged from basic introduction to
WiMAX to introduction of video streaming services such as DASH over WiMAX,
self-healing adaptive wireless sensor networks and over the air TV transmission
capture over WiMAX. In the classroom, Columbia University is using GENI
WiMAX deployment for hands-on laboratory exercises designed for a graduate
course in wireless and mobile networking [22] while NYU-Poly is hosting a number
of coursework sites for universities that don’t have a WiMAX deployment [23].
The hosting site includes a portal that allows instructor to customize and manage
each course [24] and combine experiments related to physical layer (including
wireless signal propagation and link adaptation), network and transport layers (like
effects of multiple access on QoS, impact of TCP congestion control algorithms
as well as impacts of mobility management protocols) all the way to application
layer (including testing application performance in both indoor and outdoor campus
wireless environments).

More recently, a new long-term use case of GENI deployments is starting to
appear. One such deployment consists of provisioned Xen VMs (1 GB mem and a
2.9 GHz core) on InstaGENI racks across seven sites (U.Utah, U.Wisconsin, UTUC,
NYSERNET, GPO-BBN, NYU/NYU-Poly, Rutgers-WINLAB) (Fig. 19). Each of
the nodes is running a MF (MobilityFirst) software router and naming service.
The core interconnection between machines is set up using a multi-point VLAN
provided by Internet2’s advanced layer-2 services (AL2S) and the edge network at

4G Cellular Systems in GENI 199

Madison, WI

é p Cambridge, MA |

Syracuse, @
NY

=

Salt Lake, UT

Urbana-Champaign, IL

Wimax BS .'l'. Wifi AP

52 MF Router ;,-:‘",r..h Cloudlet with

&) withgNRs S Transcoder New Brunswick, NJ

% | ContentS Video Client
g Conten ervergS

Fig. 19 MobilityFirst Deployment

three of these sites (Rutgers, NYU and Wisconsin) is made up of clients connected
over the WiIMAX and WiFi networks. The wireless edge access is provided by
a combination of MF edge routers deployed on the WiMAX kit nodes (that are
also acting as WiFi APs) and MF edge routers deployed on the campus GENI rack
machines that are connected to the WiMAX controllers (at Wisconsin, Rutgers and
NYU Polytechnic).

6 Extending GENI Cellular Coverage Using SciWiNet

GENI Wireless (WiMAX) deployments are restricted to 13 campuses across the
nation. As the popularity of this infrastructure has grown the scale and com-
plexity of experiments has also increased. GENI needed support for real world
mobility scenarios and experiments that require a large coverage footprint. A NSF
exploratory project to evaluate the efficacy of an MVNO (Mobile Virtual Network
Operator) model to provide a wireless testbed for the academic research community
“Science Wireless Network for the Research Community” (SciWiNet) [7] was
funded. The SciWiNet project currently offers cellular data services to researchers
using Sprint’s 3G, WiMAX, and LTE networks providing country-wide service
availability. A coverage map of the Clemson University area is shown in Fig. 20.
The project also has a number of devices (modems and phones) that are loaned
to research project/institutions on demand and it also honors a BYOD (bring your
own device) system to alleviate stress on its resources. Given the synergy with

200 1. Seskar et al.

-

CEwCE ra TRy

oKL B

Bllsslomsl==[~[a]e =——"tac S

Fig. 20 SciWiNet coverage portal

WiMAX campus deployments, most of the early users were members of the GENI
community. Vehicular experiments conducted at Wayne State University to capture
high resolution video for mapping a city used SciWiNet USB dongles to offload
data to a public server, when the cars were not in range of their campus WiMAX
base stations.

SciWiNet has also developed an Android app that enables on demand switching
between the two network providers so that registered devices can connect to either
GENI WiMAX, Sprint WiMAX, Sprint 3G, or WiFi networks. This tool was
demonstrated at GEC 20 by showcasing seamless handoffs between heterogeneous
GENI and Sprint networks based on signal strength measurements.

References

—

. Raychaudhuri, D., et al.: Overview of the ORBIT radio grid testbed for evaluation of
next-generation wireless network protocols. In: Wireless Communications and Networking
Conference. www.orbit-lab.org (2005)

2. Paul, S., Yates, R., Raychaudhuri, D., Kurose, J.: The cache-and-forward network architecture
for efficient mobile content delivery services in the future internet. To Appear in ITU-T Next
Generation Networks (NGN) Conference, Geneva (May 2008)

3. Federal Communications Commission. http://wireless.fcc.gov/services/index.htm?job=
service_home&id=ebs_brs

4. FIRE LTE testbeds for open experimentation (FLEX). http://www.flex-project.eu/.

5. Intel 6250. http://ark.intel.com/products/59468/Intel-Centrino- Advanced-N-- WiMAX-6250-
Dual-Band

6. Android Operating System. www.android.com

7. SciWiNet: http://www.sciwinet.org

http://www.sciwinet.org/
http://www.android.com/
http://ark.intel.com/products/59468/Intel-Centrino-Advanced-N--WiMAX-6250-Dual-Band
http://ark.intel.com/products/59468/Intel-Centrino-Advanced-N--WiMAX-6250-Dual-Band
http://www.flex-project.eu/
http://wireless.fcc.gov/services/index.htm?job=service_home&id=ebs_brs
http://wireless.fcc.gov/services/index.htm?job=service_home&id=ebs_brs
http://www.orbit-lab.org/

4G Cellular Systems in GENI 201

11.

12.

13.
14.
15.
16.

17.
18.

19.

20.

21.
22.
23.
24.

. WiMAX Forum Network Architecture: Stage 2: Architecture Tenets, Reference Model and

Reference Points [Part 2]. WMF-T32-003-R010v05 (March 2009)

. Wireless virtualization in GENI. GDD-06-17. www.geni.net/GDD/GDD-06-17.pdf (2006)
. Kohler, E., Morris, R., Chen, B., Jannotti, J., Frans Kaashoek, M.: The Click modular router.

ACM Trans. Comput. Syst. 18(3), 263297 (2000)

Pettit, J., Gross, J., Pfaff, B., Casado, M., Crosby, S.: Virtual switching in an era of advanced
edges. In: 2nd Workshop on Data Center—Converged and Virtual Ethernet Switching (DC-
CAVES), ITC 22, 6 September 2010

Bhanage, G., Daya, R., Seskar, 1., Raychaudhuri, D.: VNTS: a virtual network traffic shaper
for air time fairness in 802:16e slices. In: Proceedings of IEEE ICC—Wireless and Mobile
Networking Symposium, South Africa (May 2010)

GENI Portal. https://portal.geni.net

The Internet2 Community. http://www.internet2.edu/

Internet2 AL2S. http://noc.net.internet2.edu/i2network/advanced-layer-2-service.html
Bhanage, G., Seskar, 1., Mahindra, R., Raychaudhuri, D.: Virtual base station: architecture
for an open shared WiMAX framework. In: Proceedings of the ACM SIGCOMM VISA
Workshop, New Delhi (August 2010)
http://groups.geni.net/geni/wiki/GEC10WiMaxCampusDeployment

Fund, F.,, Wang, C., Korakis, T., Zink, M., Panwar, S.: GENI WiMAX performance: evaluation
and comparison of two campus testbeds. In: Research and Educational Experiment Workshop
(GREE), 2013 Second GENI, pp. 73, 80, 20-22 (March 2013)

Fund, F., Wang, C., Liu, Y., Korakis, T., Zink, M., Panwar, S.S.: Performance of DASH and
WebRTC video services for mobile users. In: Proceedings of the 2013 20th International Packet
Video Workshop, San Jose, California, USA, pp. 1-8 (2013)

Mathur, S., Jin, T., Kasturirangan, N., Chandrasekaran, J., Xue, W., Gruteser, M., Trappe,
W.: ParkNet: drive-by sensing of road-side parking statistics. In Proceedings of the 8th
International Conference on Mobile Systems, Applications, and Services (MobiSys *10)
(2010)

http://groups.geni.net/geni/wiki/GEC19Agenda/WimaxTutorial
http://groups.geni.net/geni/wiki/GEC 14 Agenda/WiM A X Tutorial
http://groups.geni.net/geni/wiki/GEC18 Agenda/LabWikiAndOEDL

WiMAX GEC Tutorials Repository. https://github.com/mytestbed/gec_demos_tutorial

https://github.com/mytestbed/gec_demos_tutorial
http://groups.geni.net/geni/wiki/GEC18Agenda/LabWikiAndOEDL
http://groups.geni.net/geni/wiki/GEC14Agenda/WiMAXTutorial
http://groups.geni.net/geni/wiki/GEC19Agenda/WimaxTutorial
http://groups.geni.net/geni/wiki/GEC10WiMaxCampusDeployment
http://noc.net.internet2.edu/i2network/advanced-layer-2-service.html
http://www.internet2.edu/
https://portal.geni.net/
http://www.geni.net/GDD/GDD-06-17.pdf

Authorization and Access Control: ABAC

Ted Faber, Stephen Schwab, and John Wroclawski

1 Introduction

GENT’s goal of wide-scale collaboration on infrastructure owned by independent
and diverse stakeholders stresses current access control systems to the breaking
point. Challenges not well addressed by current systems include, at minimum,
support for distributed identity and policy management, correctness and auditability,
and approachability. The Attribute Based Access Control (ABAC) system [1, 2]
is an attribute-based authorization system that combines attributes using a simple
reasoning system to provide authorization that (1) expresses delegation and other
authorization models efficiently and scalably; (2) provides auditing information that
includes both the decision and reasoning; and (3) supports multiple authentication
frameworks as entry points into the attribute space. The GENI project has taken this
powerful theoretical system and matured it into a form ready for practical use.

ABAC facilitates authorization decisions by providing rules under which actors
in the system, called principals, prove that they have certain attributes necessary
for accessing resources. Which attributes are required for a given resource is a
matter of policy, to be defined and encoded with statements that are meaningful
to stakeholders yet precise enough for automatic determination of authorization.
ABAC represents delegation of various forms in scalable and separable ways that
can be reasoned about formally. This section introduces key security concepts
and challenges underlying large-scale decentralized systems, such as GENI, and
illustrates the ideas behind ABAC.

T. Faber ¢ J. Wroclawski
USC Information Sciences Institute, Los Angeles, CA, USA

S. Schwab ()
USC Information Sciences Institute, Arlington, VA, USA
e-mail: schwab@isi.edu

© Springer International Publishing Switzerland 2016 203
R. McGeer et al. (eds.), The GENI Book, DOI 10.1007/978-3-319-33769-2_10

mailto:schwab@isi.edu

204 T. Faber et al.

First, we introduce principals, attributes, and rules of reasoning and delegation
that support authorization decisions. Using ABAC, principals can represent an
individual or larger organization. An attribute is a property of a principal, created
by the assertion of other principals. Each principal may define their own attribute
names, and issue statements assigning those attributes as needed to express security
policies. Assertions are represented as a digitally signed statement, called a creden-
tial. Principals can use a range of systems to authenticate themselves, as well as
using public-key cryptography to securely exchange credentials.

A principal’s requests will be the subject of authorization decisions based on
attributes asserted about it by other principals. Two classes of delegation rules,
introduced in the example below and more formally described later in the chapter,
enable very concise policies to assign attributes to large numbers of principles
distributed across many organizations. Service providers combine attributes with
rules of delegation and inference to check security policy. Enforcement decisions are
ultimately made based on whether a requestor has presented the necessary attributes,
assigned either directly or indirectly via delegation rules, to authorize a request or
action.

We next illustrate, with examples drawn from GENI, how fine-grained access
control may be enforced via policies. For example, an individual GENI researcher,
Ted Faber, may request to use resources controlled by policies established by
authorities such as the NSF, the University of Southern California (USC), or the
GENI Project Office (GPO). USC (a principal) may say (assert) that Ted Faber (a
principal) is a local GENI user (attribute), and enforce a policy at USC that grants
access to a local GENI Rack by checking for this attribute.

Delegation may govern attributes to set policy. For example, the GPO may assert
that all USC GENI users are also “GPO prototypers.” This rule delegates authority
to USC to add to the set of GPO prototypers. In this case the delegated attribute
(GPO prototypers) is given to principals who also possess the delegating attribute
(USC GENI user). Resource providers can, for example, grant access to slices at
many GENI Racks, by enforcing a policy that checks for GPO prototypers.

Finally, a principal may delegate at one level of indirection. The GPO may assert
that any NSF PI (any principal that the NSF says is a PI by signing a credential) can
designate another principal as a GENI user and that user (principal) will furthermore
be treated as a GPO prototyper. The NSF can affect the set of GPO prototypers by
adding or removing assertions that a particular principal is a PI.

Note the flexible and fine-grained nature of decision-making afforded by using
attributes, in contrast to the limited set of choices possible in less expressive
identification and access control schemes. For example, to grant access to a server
or resource in existing systems, each user might be given a login account, or have
their individual ssh public key added to a list of authorized keys enabling login to
a privileged account. In the worst case, a user may require root access. While this
situation may violate best practices, early versions of GENI required users to upload
their ssh private key to tools on third-party servers, granting those tools access to
their GENI resources to perform tasks such as automating data collection during

Authorization and Access Control: ABAC 205

an experiment. Using ABAC, resource owners set policy via the set of attributes
required rather than the set of user identities granted carte blanche.

The advantage of fine-grained policies is amplified by the indirection allowed via
delegation rules. Adopting this approach eliminates an inherent source of insecurity:
the need to grant overly general privilege (e.g. root access via sudo) because there
is no precise way to name and enable a user to perform a specific action or access a
specific resource. Moreover, a central authority is not essential to track all users and
their associated privileges. Rather, different principals (users, system administrators,
resource owners, etc.) may make local decisions and the collective policy defined
by all these stakeholders will determine privileges.

In our GENI example, the delegated attribute (GPO prototyper) is delegated to
principals who possess a set of attributes (e.g. P GENI user for many different
principals P). That set is defined in terms of an authorizer attribute (NSF PI). Any
principal with the authorizer attribute can assign the delegated attribute by assigning
their local version of the delegating attribute (P GENI user where P has the NSF PI
attribute). This links the authorizer attribute to the delegating attributes, and is a
potent form of ABAC delegation called a linked attribute.

The distinction between high-level policies expressed in ABAC rules and
attributes, and the low-level implementation of credentials, signing formats, valida-
tion schemes and inference algorithms provides another benefit. The authentication-
and-authorization (AA) logic is entirely separated from the implementation of the
facility or service itself, such as a GENI aggregate manager that uses ABAC as its
authorization engine. Furthermore, a record of the decisions made and the attributes
and rules that factored into each decision are always available for post-mortem audit,
compliance verification, or pro-active forecasting of the impact of a policy change.

Until an authorization decision needs to be made, all of the relevant credentials
can be kept locally and brought together just-in-time. Principals can also pass them
around so they are pre-positioned when needed, or upload them to retrieval services
for ease of accessibility. For example, when the NSF designates a PI, it may send
them the signed attribute credential and also forward a bulk set of certificate updates
to a central organization, e.g. a GENI clearinghouse.

Reliance on signed credentials carrying attributes instead of identities also
reduces the need for each facility to maintain and securely manage a separate
authentication database. Rather than supporting a large number of users directly and
increasing the security risks due to account break-ins through password theft, ABAC
enables a much smaller and more manageable set of policy credentials to be signed,
stored and shared as needed. More importantly, potentially vulnerable passwords
are replaced with credentials, offering a path to improved security overall.

This chapter describes work on Attribute-Based Access Control (ABAC) that
addresses the challenge of creation, management, and implementation of rich,
‘audience- appropriate’ authorization and access control policy management mech-
anisms suitable for GENI. We argue that such next-generation policy mechanisms
offer a powerful tool for securing GENI as well as future national-scale cyber
infrastructures such as those identified and supported by NSF and other U.S.

206 T. Faber et al.

Government agencies in a manner that provides effective security while fostering
wide-spread use and catalyzes collaboration.

The ABAC system, currently in the process of being integrated in GENI, supports
authorization policy expression and enforcement mechanisms that provide:

* Formally grounded policy definition and interpretation. ABAC is based upon
rigorous underlying theory and logical formalisms and semantics. Logical under-
pinnings are embedded deeply within the system, while users are only exposed
to authorization concepts appropriate to their role and domain of expertise;

» (Capability to define common vocabulary across communities and organizations.
Common, well understood vocabulary may be rapidly adopted for entities,
resources, and privileges within common use cases, while preserving the exten-
sibility required to support diverse specialized policies for specialized sub-
communities;

* Auditability of requests, authorizations, and policy changes. ABAC decisions
result in tangible proofs of authorization derived from distributed policies, or
explicit indications of what policies or insufficient privileges resulted in a request
being denied;

* Library implementations suitable for incorporation into a range of GENI and
future cyber infrastructures. ABAC software provides a compact library imple-
mentation and language bindings for several of the standard programming
languages used throughout the Networks, Grid, Cloud and Cyber infrastructure
communities.

Together, these capabilities provide a strong foundation for the implementation
of strong, secure authorization and access control capabilities within large-scale,
federated cyber infrastructures, while simultaneously facilitating the key objectives
of flexible collaboration and local control. This chapter describes development
and prototyping efforts pursued under the GENI Trial Integration Environment in
DETER (TIED) project in re-implementing and delivering the ABAC authorization
system [1] as a mature technology providing an expressive, practical, distributed
authorization system based on formal logic. The remainder of this chapter is
structured as follows. The next section elaborates on GENI’s authorization require-
ments and how ABAC satisfies those needs, followed by a section that presents
an introduction to the logical formalism that underpins ABAC and a detailed
example of using ABAC to encode GENI’s “speaks-for” authorization policy.
This background material is followed by sections discussing system design issues
related to the incorporation of a distributed authorization framework into GENI; a
description of the ABAC architecture; and a brief overview of the current ABAC
implementation. The chapter concludes with a brief synopsis of future directions
and work.

Authorization and Access Control: ABAC 207
2 GENI Authorization Requirements

GENT’s primary goal is to create a distributed laboratory for large scale networking
experimentation, composed as a federation of resources owned and managed by
many independent organizations. Because resources are provided and managed
locally, GENI spreads out the cost of administration and maintenance. Resources
are supplied to researchers on-demand in accord with each resource owners’ policy.

This means that an effective authorization system for GENI must be able to
express resource utilization policies that are created by distributed actors, gather
and apply distributed policies when considering requests, and to produce auditable
information about the reasons underlying the authorization decisions to assure
stakeholders that all parties are respecting their agreements.

2.1 GENI Authorization Needs

The benefits of the GENI distributed, collaborative structure can only be realized if
the system as a whole can easily incorporate new researchers and new equipment
and make decisions about who can use resources. Different contributors may have
different requirements on who can use what resources. Though convention and
agreements can minimize these differences, the GENI cyber infrastructure as a
whole will be more powerful if it can potentially include interesting resources that
require more restrictive access policies than those of the most generic nodes and
networks present in the resource pool.

To support GENI’s growth and incorporation of national and international
resources, the system must be able to accept contributed resources and services, and
admit users from many different institutions of diverse types with minimal a priori
negotiations. These institutions will have different policies for how their resources
are used and means of identifying their users.

The authorization system is responsible for finding the rights of an identified
user, finding the policy that governs access to an independently managed resource
and determining if that user can carry out an action on it. GENI’s size and service
model requires an expressiveness that local systems often do not. In particular, the
resources it allocates may be used by a set of researchers with different rights. Those
rights may be delegated from leaders of a project to other members and simplicity
requires that these delegations be managed locally and respected globally.

In addition to delegating rights between researchers, GENI supports long-
running services that operate on users’ behalf. Users must be able to delegate tools
the right to act on their behalf, e.g. to speak for them. This speaks-for right is
a particularly interesting requirement for the GENI authorization system, and is
discussed further in Sect. 3.5.

208 T. Faber et al.
3 Attribute Based Access Control and ABAC

Speaking generically, an attribute based access control or authorization system is
any system that makes decisions about authorization based on some set of explicit
attributes associated with the entity seeking authorization. One widely known
form of attribute based access control is role based access control, in which the
decision to allow access to a resource (for use, for configuration, or for some other
purpose) is based on the role the requestor seeking access is playing—for example,
“Sheila is granted access to administer the LDAP directory because she holds the
‘DIRADM? attribute”, which states that she is acting in the Directory Administrator
role. Attribute based access control systems typically contrast with identity based
access control systems, in which the fundamental information exchanged between
requester and requestee, and the consequent action taken by the requestee, is based
on who the requester is, rather than the attributes the requester may hold.!

Somewhat confusingly, the acronym ABAC,? standing for Attribute Based
Access Control, is also the name given to one specific, and particularly elegant,
attribute based access control system by its original developers. ABAC was
developed at the theoretical level in the early 2000s at Stanford and NAIT Labs®
to address distributed authorization using simple predicate logic [1]. ABAC allows
service requesters and providers to attach attributes to principals in the system,
define rules for deriving one attribute from others, and express those attributes and
rules in a common logical framework. ABAC then employs formal logics and proofs
to implement authorization decisions based on these rules, and provides interested
parties with auditable evidence of the rationale behind these decisions in the form
of completed proofs.

ABAC’s logic is designed around the concept of principals assigning attributes
to other principals, directly or through delegation rules. Attributes are scoped by the
principal assigning the attribute, meaning that two attributes with the same name,
but assigned by different principals, are different attributes. Delegation rules are also
issued by principals and define how an attribute scoped by the issuing principal can
be derived from other attributes.

Both service requesters and service providers may be ABAC principals. Services
are bound to attributes (usually attributes scoped by the service provider), so that
when a principal requests a service the principal providing the service does so
only if the requesting principal has the appropriate attribute. Consequently, the
authorization decision consists, ultimately, of proving through formal logic that the

!Strictly speaking, identity based systems are a subset of attribute based systems, because
“identity” can be viewed as an attribute.

2In this chapter, use of the capitalized ABAC acronym always refers to the specific ABAC system,
rather than attribute based access control systems generally.

3Later renamed McAfee Research. Subsequently, this research lab was acquired by SPARTA, Inc.
and operated as the Security Research Division of SPARTA.

Authorization and Access Control: ABAC 209

requesting principal has the attributes required to obtain the service. We discuss
ABAC’s authorization logics in significantly more detail below.

To simplify integrating many practical systems’ notions of principals, ABAC
imposes only three constraints on principal semantics. First, a principal must be
able to prove its identity. Second, when two principals refer to a third by identity,
they always refer to the same unique principal. Third, a principal must be able to
issue assertions about attributes that are unambiguously bound to it. A public key
cryptosystem such as RSA [3, 4], where the identity of a principal is its public key,
meets these constraints. A principal can perform a challenge/response authentication
to prove it holds the private key; a public key always refers to the same principal;
and principals can issue cryptographically signed attribute assertions.*

Because principals are so simple and do not require significant coordination to
generate, they can be created easily and without appeal to a central authority. This is
a critical requirement for a system that must scale to national or global size. Many
elements can be principals in such a system, and even if we only consider humans,
decentralized assignment and management is key to a scalable distributed approach.

ABAC implements a fully distributed system authorization policy. The autho-
rization policy of any system utilizing ABAC is distributed because a principal’s
direct assignment of attributes and derivation rules are managed by the issuing
principal. The system’s policy as a whole is the union of those distributed policy
fragments (attributes and rules) but for any given decision, only the relevant rules
must be consulted. Changes to a given principal’s policy are only relevant to those
dealing with that principal, e.g. making a resource or service request from that
specific GENI aggregate manager.

Importantly, the structure of ABAC attributes—specifically, that each attribute is
scoped to a principal, and that each rule assigns one attribute—allows the ABAC
logic designers to ensure that a principal is assured that it can obtain all of the data
relevant to an authorization decision if each principal’s store of assertions can be
located [2]. This insures that the correct decision can always be reached, even with
the distributed management of policy.

Finally, ABAC’s well-defined, logic-based framework implements a common,
system-wide semantics within which authorization decisions can be clearly and
unambiguously expressed and evaluated. This use of formal logic ensures that
decisions are clear and transparent, and allows for both extremely simple and
extremely sophisticated authorization policies to be implemented, as required by
each specific use case. To increase this flexibility, ABAC defines a family of logics
that form a hierarchy of increasingly more complex predicate logics, each reducible
to datalog [5]. Because of their close relationship to role-based authorization
principles, these logics are referred to as Role-based Trust management, or RT,
logics. RT logics are discussed further below.

“A misbehaving principal can undermine these properties, e.g., by sharing a private key. ABAC
assumes good behavior of principals.

210 T. Faber et al.
3.1 ABAC and GENI

ABAC meets GENI's needs because it is flexible with respect to identity rep-
resentation, designed to resolve distributed policy, structures its logic to make
policy discovery feasible, and as mentioned provides a proof structure that supports
both unambiguous decision-making and auditing. Though GENI does not currently
require this capability, ABAC also allows authorization to make use of restricted
information—for example security clearances or sensitive attributes—in ways that
tightly limit direct and indirect disclosure.

Conceptually, ABAC’s authorization logic can be applied to principals identified
and authenticated by a number of different systems, independently or simulta-
neously. One of our contributions to GENI is providing bindings from GENI’s
identity system, based on X.509 certificates, to an ABAC logic system. The GENI
infrastructure allows researchers to bind to X.509 identity certificates from other
identity services, including Shibboleth and the InCommon [6] attribute framework.

In GENI, most of the authorization decisions can be encoded in the simplest of
ABAC’s RT logics, RTO. Section 4 of this chapter discusses libabac, a concrete
implementation of the ABAC system. This software distribution supports core
ABAC functionality and a robust, efficient RTO prover, that been integrated into
the GENI software base, and is in wide use today for this purpose.

3.2 ABAC Logics

ABAC presents a family of logics designed to be simple to reason about while
capturing useful authorization abstractions. All the logics are based on attaching
principal-scoped attributes to other principals. The logics primarily differ in the
extent to which attributes can be parameterized and the rules used to delegate
attributes.

Here and in subsequent sections, we give an overview of these RT authorization
logics. The reader interested in a more detailed discussion of these logics is referred
to Refs. 1, 2. Readers primarily focused on system implementation issues may wish
to review these sections quickly before moving to Sect. 4.

ABAC defines a family of five RT logics. These include:

e RTO0: a basic delegation logic that attaches un-parameterized attributes to
principals. The basic delegation rules are direct assignment, simple delegation
and linked delegation. This logic is described in detail in Sect. 3.3.

e RT1: RTO extended with typed parameters attached to the attributes. Attribute
parameters can be used to scope the delegation rules and further control how
attributes are assigned. Described in Sect. 3.4.

» RT2: RT2 adds the ability to attach attributes to non-principals and reason about
them. This allows one to reason about RT1 parameters using RTO delegation
rules. RT?2 is described in Sect. 3.4.

Authorization and Access Control: ABAC 211

e RTT: RT2 with the addition of a delegation rule that express consensus among
some number of principals. This logic is not further discussed below.

e RTD: RTD with the addition of a delegation rule to delegate attributes to
principals only within a specific context. This logic is not further discussed
below.

Each of these logics can be expressed as datalog rules. Datalog is a negation-
constrained, safe prolog subset that is efficient to implement [5].

All the logics scope their attributes by principal and share the property that a
principal making a query can always ensure it can discover all delegation rules
needed to reason about a request [2].

At present most of GENI’s authorization needs can be met using RT0, though
some forms of authorization are more elegantly and compactly represented in RT2.
The GENI community has primarily focused on implementing and using these
simpler logics.

The remainder of this section describes RT0, RT1, and RT2 in enough detail to
give the reader a feel for their expressive power and notation. We also comment on
how we use RTO to meet GENI's needs when RT2 might be more elegant. Finally
we present an extended example that shows how to use ABAC logic to express a
complex GENI authorization feature, the “speaks-for” right.

3.3 RTO0 Logic

ABAC’s RTO logic allows one to attach an attribute to a principal, define a direct
delegation rule and define a rule linking the possession of an attribute to the ability
to delegate attributes. This section introduces the notation and semantics.

In ABAC’s logic an attribute is a string attached to a principal by another
principal. Using a GENI example, if an aggregate manager identified as AM wishes
to attach the ListResources attribute to a user identified as U, we say that AM has
attached AM. ListResources to U. Only AM can assign attributes from the AM space.
Furthermore AM . ListResources and AM2.ListResources are distinct.

There are three ways to attach an attribute to a principal:

1. Direct assignment.
Meaning: U has attribute AM. ListResources.
Notation: AM.ListResources <— U
2. Delegation.
Meaning: All principals with attribute AM2.ListResources have AMI.List
Resources. Notation: AM1.ListResources <— AM2.ListResources
3. Linked Delegation.
Meaning: Any principal P with the AM2.Linked attribute can assign the
AM .ListResources attribute by assigning the P.ListResources attribute.
Notation: AM1.ListResources < (AM2.LinkedResources).ListResources

212 T. Faber et al.

Direct assignment is straightforward. A principal binds an attribute to another
principal. If we take AM.ListResources to indicate the ability to invoke the ListRe-
sources operation on AM, the example in case 1 above is interpreted to assert that
AM has explicitly granted that ability to user U.

In the second example, AMI has expressed a rule delegating the ability to
assign principals the AMI.ListResources attribute to AM2. In turn, AM2 exercises
that delegation by assigning its AM2.ListResources attribute. Consequently, any
principal that knows both
AM1.ListResources< AM2.ListResources
and
AM2.ListResources< U

can conclude that U has AMI.ListResources.

In some cases, AM1 and AM?2 will want to closely coordinate such a delegation.
In others, however, AM2 may be entirely oblivious to the delegation. If AM?2 is
a well-known certifier, or AMI and AM?2 have a pre-existing general relationship
where they agree on the semantics of ListResources, there is no need or reason
to discuss each specific delegation. In any case, ABAC does not require any
coordination to make the delegation.

The last example above adds a second indirection. This delegates AMI.List
Resources to a number of other principals that have an attribute assigned by AM2,
rather than to AM?2 itself. In this case a principal must know that
AM1.ListResources<— (AM2.Linked) .ListResources
and
AM2.Linked< P and P.ListResources<—U

to conclude that U has AM1.ListResources.

Linked delegation is best viewed as allowing a principal to appoint agents. An
agent is another principal that can assign an attribute on the first principal’s behalf.
The example above illustrated one principal (AM1) directly delegating that authority
to the agents of another (AM?2). A ruleset of the form
AM2.ListResources<— (AM2.Linked) .ListResources
AM1.ListResources<— AM2.ListResources

lets AM2 express its creation of agents and AM 1 delegate to this second principal.
The first rule is controlled by AM2, because it controls the AM2.ListResources
attribute, while the second rule is controlled by AM1.

The requirements for a delegation—the right hand side of the arrows above—can
include conjunctions. For example in a scenario involving a Clearing House (CH)
and Slice Authority (SA),

AM.CreateSlice< CH.CreateSlice N SA.CreateSlice

asserts that AM will assign the AM.CreateSlice attribute to a principal that
has demonstrated it has both CH.CreateSlice and SA.CreateSlice. The intersection
symbol N underscores that the conjunction in the attribute interpretation is a set
intersection in the set inclusion sense.

In practice, each of these declarations—the assignment of an attribute or the
creation of a delegation rule, is expressed in an ABAC credential. The simplest

Authorization and Access Control: ABAC 213

credential is a signed statement of the rule or assignment in RTO0 logic, signed by the
principal that controls the attribute being assigned or delegated. That is, a credential
is signed by the principal whose identity is attached to the attribute on the left side
of the arrow. In general, a credential may express one or several RTO rules. Such
credentials carry the assertions that form the basis of proofs in the ABAC system,
and are consumable by any entity that can verify the signatures.

3.4 RTI and RT2

RT1 adds typed parameters to attributes and the ability to reason about them.
Rather than reasoning about the AM.ListResources attribute which might allow a
principal to list any kind of resource, an RT1 rule can further scope that attribute
by binding it to a named subset of resources, e.g., a particular GENI slice:
AM.ListResources(Slicel).

The parameters can be integers, floating-point numbers, dates, times and enumer-
ations. The enumerations can be closed enumerations (‘read’, ‘write’, ‘execute’) or
open-ended—for example, any principal name or file name.

ABAC can reason using parameters in three ways:

Case 1: Using literal parameters:

AM . ListResources(“Slicel ”) <— AM2.ListResources(“Slicel ”)

Here any principal that has attribute AM?2.ListResources, parameterized by the
literal string “Slicel” also has AM 1. ListResources parameterized by “Slicel”.
A principal that can list the resources of “Slicel” from principal AM2 can also
do so from principal AM 1.

Case 2: Named parameters, implicitly constrained:

AM | .ListResources(?Slice) < AM2.ListResources(?Slice)

Prefixing the parameter name with a ? marks it as a variable; the requirement for
a match is that the parameter must have the same value on both sides of the
assignment.’

For example, of a principal has attribute AM2.ListResources(“Slicel”) this rule
implies that the principal also has attribute AM1.ListResources(“Slicel), just
as in case 1. It also means that a principal with attribute AM2.ListResources
(“Some other slice”) also has attribute AMI.ListResources(“Some other
slice”).

SThe typing is implicit. AM1.ListResources and AM2.ListResources must have direct assignments
made so the system can determine the type and types must be consistent. This is a place where the
theoretical nature of the ABAC papers is abundantly clear. In our implementation of RT2 we added
syntax to declare types of parameters and perform explicit type checking.

214 T. Faber et al.

To insure that the rules are tractable, any parameter name on the left hand
side must also appear somewhere on the right hand side. A rule such as
AM .ListResources(?Slice) <— AM2.KnownUser is illegal.

Case 3: Named parameters, explicitly constrained (the constraint set follows the :):

AM 1.ListResources(?Slice) < AM2.ListResources(?Slice:[“Slicel ”, “Slice2”,
“Slice3”])

This means that any principal that possesses attribute AM2.ListResources
(“Slicel”) also has attribute AM1.ListResources(“Slicel”), and likewise
for attributes parameterized by “Slice2” or “Slice3”. A principal that is
granted attribute AM2.ListResources(“Slice4”) is not granted any new
AM 1 .ListResources(?Slice) attribute as a result.

The constraint sets must be finite, though the ABAC papers describe several
syntaxes to enumerate those sets.

RT1 lets policy writers naturally express authorization to certain objects for
certain operations scoped by principal. It is easy to manage one principal granting
another the rights to read certain objects even through complicated delegation.

RT2 relaxes the limitation that the set used to constrain parameters must be
a static parts of the delegation rule. RT2 attaches principal-scoped attributes to
parameter values and allows the sets of parameter values defined by those attributes
to constrain parameter variables. These sets of parameter values are called o-sets
(object sets) in the ABAC descriptions.

To see how they work, consider this rule:

AM 1.ListResources(?Slice) <— AM2.ListResources(?Slice:AM2.ValidSlice)

This rule says that a principal that has AM2.ListResources() for any slice name
that has the attribute AM2.ValidSlice also has AM1.ListResources() for that slice.
This is basically the same rule as example 3 above, except that the set of valid slice
names is dynamic.

As with principal attributes, slice name attributes are assigned by ABAC
RTO logic rules.” The AM2 principal can directly declare a slice name to have
AM?2.ValidSlice by issuing the rule:

AM2.ValidSlice< “Slice5”

The AM?2 principal may also delegate the ability to designate valid slice names
to principal AM3:
AM2.ValidSlice<- AM3.ValidSlice

Or delegate that right to a dynamically defined set of principals:
AM2.ValidSlice< (AM2.SliceNamer) .ValidSlice

SFor example, there is syntax for referring to the principal being evaluated when looking at a
parameterized linking role. This is useful, but well beyond the scope of this document. The
interested reader is referred to [1] Sections 3.1 and 3.3.

"In the TIED ABAC RT?2 library, we use distinct notation for o-set rules and attribute rules, to
ensure that each is represented by a unique type.

Authorization and Access Control: ABAC 215

Moving from RTO to RT1 requires a reasoning engine of sufficient expressive
power to operate on constrained parameters. Moving from RT1 to RT2 does not
require any expansion of the reasoning engine’s abilities, simply the application of
those features to sets of parameter values as well as sets of principals.

The rules for encoding current GENI access are generally only scoped to a
given slice or sliver name. In an RT1 implementation, we would express this as
AM . DeleteSliver(uuid). But even without an RT1 implementation, we can express
this scoping within the name of an RTO attribute, such as AM.DeleteSliver_uuid .

Because the rules for GENI access never require arithmetic or other operations,
but only matching, and only principals who issue scoped attributes need to re-
interpret them, we can express a these rules in RTO and use a simpler reasoning
engine. In the case study below, we adopt RT1 as the policy language for clarity.
In practice, our implementation of “speaks-for” is based on RTO, leveraging our
understanding of the GENI system to ensure soundness when these rules are, as
described above, expressed in RTO rather than RT1 format. Many GENI documents
refer to this convention as RT1 Lite.

3.5 Case Study: GENI Authorization and Speaks-for

To motivate the adoption of ABAC as the primary authorization system for the
GENI AM API, the authors and their team demonstrated how the existing GENI
authorization model can be expressed in ABAC logic. A first step in this direction
was to implement current GENI policy—including a new “speaks-for” feature—
using ABAC logic [7].

This section delves into considerable detail showing how to express GENI
authorization checks and “speaks-for” in RT1. The intent is to provide enough detail
to convey the expressive power of the logic and illustrate the usefulness of ABAC’s
abstractions.

The GENI authorization model centers on specific named privileges for accessing
GENI objects such as slices and resources. Resource providers grant these privileges
to GENI principals (users) by issuing signed certificates that encode the privileges.
These privileges are ad hoc and tied to the service definitions, and a given GENI
credential could assign multiple such privileges. The specific list of privileges
corresponds to operations or groups of operations supported by the GENI APIs.
The GENI authorization model also allows further delegation of privileges to other
principals, provided the GENI credential carrying the privilege grants that right.

The “speaks-for” privilege is an additional privilege intended to be used as
follows. A user wishes to use a tool to access GENI services, but, due to security
concerns, does not want to upload their identity certificate and private key to that
tool, which may be a web service.

Instead, the user issues a GENI credential granting the “speaks-for” privilege to
the tool (which is itself an ABAC principal). The tool includes that credential in

216 T. Faber et al.

its requests. Consequently, the GENI services will, for authorization purposes, treat
these requests from the tool as though they came directly from the user.
This differs from delegation in three ways:

1. Semantically, a tool operating under “speaks-for” authority is exercising the
user’s authority under close supervision. The user is taking the action through the
tool and the user is responsible for the actions. In contrast, a delegated privilege
is exercised independently by the recipient of that delegation. The user who has
been delegated authority is responsible for its use, not the delegator.

2. All credentials may be used in conjunction with “speaks-for” authority. In
contrast, credential issuers need not issue delegatable privileges.

3. A tool requires far fewer speaks-for privileges when compared to delegated
privileges. (For example, a tool need not have all of a user’s slice credentials
to look up the status of all the user’s slices.)

3.5.1 Semantics of GENI Privilege Credentials

This section describes the content and use of GENI privilege credentials [18] as
used to implement speaks-for privileges using ABAC in this case study.

A GENI privilege credential encodes a set of statements of the form “The issuer
of this credential (a principal) gives the owner of the credential (a principal) these
privileges (strings) with respect to the target (a principal).” The privilege strings are
defined with respect to the GENI APIs.

For each of the privileges, the additional optional right to delegate that privilege
to others is indicated with a Boolean value. For example, a slice authority (issuer)
can grant the resolve privilege to a GENI user (owner) on a given slice (target). The
issuer is always the principal that signed the credential. The target and owner are
given explicitly as X.509 certificates.

Under the GENI authorization semantics, a credential chain is used to encode
delegation. If the credential is delegated, the original credential granting the
delegatable privilege, called the base credential, is included verbatim in a new
credential signed by the owner of the base credential. The owner of the base
credential is the issuer of the new, delegating, credential. This new credential assigns
privileges to a new owner. The new credential is valid if the base one is, if the
delegated rights are marked delegatable (e.g. true), and the expiration time of the
new credential does not extend beyond the expiration time of the base credential. If
multiple delegations are performed, then the credential chain grows to reflect these
delegations.

Authorization and Access Control: ABAC 217

3.5.2 GENI Policy in RT1

Next we describe RT1 rules that express the GENI authorization policy. The policy
and credential formats are entwined, and we cannot speak of one independently
without the other.

Taking a different approach from the description of GENI privilege credentials
above, we first describe how to encode an ABAC policy that supports “speaks-for”
and subsequently extend the policy to add delegation. Speaks-for requires simpler
rules to encode.

GENI Privileges with Speaks-for in RT1

For a given service request, the aggregate manager (AM) service provider knows
the principal making the request, the target of the request, and which privilege
is required to execute it. The service provider initializes a prover with its policy
encoded as RT1 rules, augmented with any additional RT1 rules conveyed with
the request. Finally, the initialized prover is queried with the question required for
authorization: “does the principal making this request have the proper privilege?”

Let’s examine how to encode this question in ABAC, starting with “the proper
privilege.” The RT1 attribute AM.privilege(Target) means that AM believes princi-
pals in that set have a specific privilege with respect to Target. For example, the
privilege to issue resolve on a slice S would be the RT1 attribute AM.resolve(S).

When a principal P requests an operation that requires resolve rights on slice S,
the provider AM asks the prover if P is a member of AM.resolve(S)—or in other
words, if P has the attribute AM.resolve(S).

Service providers do not issue credentials conferring AM.privilege() directly to
users. Instead, these privileges are inferred based on RT1 rules in the local policy.
While RT1 can express complex delegation, our use case presents a series of simple
delegations.

There exists a collection of issuers that each service provider trusts, and hence
believes RT1 statements signed by these issuers. For each Issuer that AM trusts, it
includes a policy rule of the form:

AM.privilege (Target) <— Issuer.privilege (Target)

There is one rule of this form for each privilege covered by AM’s policy. E.g.,
for the privileges resolve and info, there exist corresponding rules
AM.resolve (Target) <— Issuer.resolve (Target)

AM.info (Target) <— Issuer.info (Target)

Issuers, such as Slice Authorities and Clearinghouses, issue credentials to users.
Here we describe how RT1 expresses a credential as multiple RT1 statements.
Because GENI policy allows all privileges to be transferred to another entity using
“speaks-for”, the ABAC translation of a credential issuing a privilege to a user P is
expressed as:

218 T. Faber et al.

. Issuer.privilege(Target) <— Issuer.speaks_for(P)
. Issuer.speaks_for(P)<— P
3. Issuer.speaks_for(P) < Issuer.TrustedTool N P.speaks_for(P)

N —

These RT1 statements mean:

1. The Issuer says that anyone that speaks for P can exercise the privilege as P. Note
that this means that the speaker-for, P, must also have the right under these rules.
If we want only the actual principal (and whoever that principal delegates to) to
have the right (1) can be modified to read Issuer.privilege(Target) <— P.

2. The Issuer says P speaks for itself.

3. The Issuer says that any entity that both the Issuer believes is a trusted tool and
that P says speaks for P, speaks for P.

When an Issuer signs and delivers a GENI credential assigning privilege with
respect to Target, it is making those three statements in ABAC. The first line is
repeated for each privilege in the credential; the last two are added to the prover’s
state only once per credential.

When a user P issues a speaks-for credential for a tool T, that credential is
translated into RT1 as:

P.speaks for(P) < T

To recap concretely in GENI terms: if T makes a request including credentials
carrying all the following assertions, the corresponding rules express the policy
at AM:

GENI Statement ABAC RT1 Rules

AM trusts Issuer about AM.resolve(Target) <— Issuer.resolve(Target)
resolve on Target

Issuer has delivered to P a | Issuer.resolve(Target) <— Issuer.speaks_for(P)Issuer.speaks
GENI privilege credential _for(P) <= Plssuer.speaks_for(P) <— P.speaks_for(P)
assigning resolve on Target

P has issued a “speaks-for” | P.speaks_for(P) <— T

credential to tool T

The Issuer trusts tool T Issuer. TrustedTool <— T

When AM decides if T can proceed (e.g., if T is in AM.resolve(Target)), the proof
chain supporting this inference will be:
AM.resolve (Target) <— Issuer.resolve (Target) <— Issuer.
speaks for (P) < P.speaks for (P)<«T

4 Implementing ABAC—The libabac System

This section describes libabac, an implementation of ABAC suitable for use in large,
decentralized, heterogeneous distributed system designs. Libabac was developed by

Authorization and Access Control: ABAC 219

the authors and their team for use within the DETER Cybersecurity Testbed [8] and
later GENI, and is used by both of these systems today.
At time of writing, the core libabac distribution includes:

* Libabac itself, a linkable C/C++ library

* Perl and Python bindings to libabac

* A standalone java implementation

* creddy, a command line credential management tool

Two additional general-purpose tools that build on libabac are also available:

* crudge is a visual editor for ABAC policies and proofs
* credential printer is an XMLRPC service to convert credentials from standard
system formats to a readable text representation

Libabac is both a system design architecture and a concrete implementation. At
the time of writing, the concrete implementation supports a subset of the complete
design architecture. This subset is sufficient to fully implement the distributed
authorization policies used in both the GENI and DETER projects. However, it
is expected that additional architectural elements will be incorporated into the
implementation over time. Sections 4.1 and 4.2 of this chapter present system design
considerations and the libabac system architecture, respectively, while Sect. 4.4
discusses the current implementation as incorporated into the GENI system at the
time of writing.

4.1 System Design Issues

This section discusses some concrete design requirements and approaches arising
from the core ABAC concept, and from issues touched on in Sects. 1 and 2. We
discuss the requirements on principals, on information representation, on protocol
integration and on the negotiation and collection of information.

4.1.1 Principal Requirements

In an authorization system, principals are the key entities on behalf of which
the system carries out its function. In an attribute-based authorization system, a
principal can do two things: it can ask for the system to take an action on its behalf,
and it can assert attributes about itself or another principal.

For a distributed authorization system to scale, the creation of principals must
be decentralized; no single entity can vet all principals or issue all identities.
Consequently, what is required is a format for principal identifiers that can be issued,
assigned, and managed in a decentralized fashion, and can meet three semantic
requirements:

220 T. Faber et al.

1. A principal can prove its identity to another entity.

2. If two parties reference a principal by identity, they are referencing the same
principal.

3. A principal can assert attributes about other principals.

A natural implementation of these requirements is to create a public/private key
pair, and make the principal’s identity the public key. The principal keeps the private
key secret and can prove its identity by responding to cryptographic challenges and
make assertions by signing them. As long as the key space is large enough, collision
probabilities can be made effectively zero, insuring a unique identity. ®

Such a principal identifier contains minimal information in and of itself. Impor-
tantly, there is no information about the role that the principal plays, its relationship
with other principals, or even a short human-readable name to print. Instead,
such information is created and maintained by system applications. In particular,
authorization attributes are part of the authorization framework.

Binding a Principal to a Request

Defining a principal representation sets the stage for binding principles to attributes
that are used to make an authorization decision, but such a decision is also predicated
on knowing which principal is requesting the action. A request must be bound to
a principal and then any required attributes proven about the principal before the
requestee will allow the action.

This binding is, strictly speaking, outside the responsibility of the authorization
system. Formally, the system needs to know only what attribute must be proven
about what principal—the binding of attributes and principals to a protocol request
itself is application-specific. However, the presence of principal identifiers meeting
the three requirements enumerated above requirements simplifies this task. In
particular:

An interactive, channel-based request—that is, a request arriving over a specific
communication channel established to support the request—can include a challenge
from the requestee system to the principal that establishes the principal’s identity
using Property 1. Requests made across this channel can then be attributed to this
principal. Network protocols based on TLS connections typically make use of this
approach.

For non-interactive requests, some form of explicit binding of identity to request
is required. Many practical implementations of principals—including the public/pri-
vate key implementation mentioned above—allow for non-interactive binding of
a principal to a request message. For example, such a message could be digitally
signed and timestamped.

8 Alternatively, a public key fingerprint can be utilized as the identity, if the benefits of the smaller
identifier outweigh the increased collision probability.

Authorization and Access Control: ABAC 221

4.1.2 Representing Attributes and Rules

Any distributed authorization system must represent the various attributes and rules
that are communicated between system elements in a format that is comprehensible
to each element and can be transmitted between elements effectively. Such a
representation must communicate the semantics of the rule and also validate its
source. In other words, when presented with a concrete representation of this logical
object, a principal must be able to determine both what it means and that it is valid.
We call this object a credential.

To support validation, the asserting principal must be bound tightly to each
credential, typically through use of a digital signature. Consequently, reformatting a
credential or converting between credential representations to obtain compatibility
is challenging, because reformatting the credential necessarily invalidates its signa-
ture. If the conversation action is required at a point where the asserting principal
is not available to resign the new version, the converted version cannot be signed
correctly.

The implication for practical distributed authorization systems is that a single,
or at worst a very small number, of canonical credential formats must be defined,
which are understood by all participants, and in which credentials can be exchanged
between principals and services.

While architecturally sound, this approach is unfortunately problematic from an
implementation perspective, because a number of existing credential formats are
already in some use today, without necessarily being either semantically sufficient
or widespread enough to be adoptable as a canonical format for our purposes. At
the same time, it is problematic to assume that existing credentials can be converted
to some new canonical format without losing key signature information.

As examples, certain modern authentication and authorization systems, such
as X.509 [9, 10] and Shibboleth/SAML [11] include the ideas of attributes and
represent them naturally. In these cases, the “local” attributes render naturally into
desired ABAC system attributes from a semantic perspective, but are represented in
two distinct, concrete formats. Consequently, neither existing format is ideal as a
canonical representation, due to the conversion issue.

Many authorization systems are based simply on identity, or alternatively do
not export internal attributes used for access control, such as group membership
or access control lists. For example, Kerberos acts primarily as a trusted introducer
between services and clients. In a Kerberos [12] environment each service makes
independent access control decisions based on trusted identity of the requesting
Kerberos principal, together with internally stored authorization policy information
and/or information acquired elsewhere (e.g., system group files). To integrate such
information into a distributed attribute-based authorization system, we need to
provide an additional translation from local information to credentials.

One way to address this discrepancy is for identity management domain to
provide attribute servers. An attribute server explicitly provides credentials based
on local identity. For example a Kerberized attribute service would provide, on
request by a client validated by identity, a signed set of credentials in a format the

222 T. Faber et al.

distributed authorization system understands. Similar services could be provided by
enterprise systems based on password control or keyed by a PGP key. In some cases,
the credential server may even generate credentials and an identity for the requesting
principal. In practice, the GENI Clearinghouse is such a server.

4.1.3 Negotiation

Semantically expressive attribute-based authorization in a fully distributed environ-
ment may, in general, require a multi-party, multi-phase negotiation to complete an
authorization decision. This is in contrast with the simple table lookup that char-
acterizes local authorization. In addition, principals may need to gather credentials
from others to complete the proof chains necessary to make decisions.

For an authorization system designed with this perspective, negotiation is part of
the process of requesting service. As the authorization function is typically embed-
ded within a some larger overall system, it is this larger system that must implement
the protocol support for negotiated authorization function if this function is to be
supported directly. Often legacy systems using pre-existing network protocols will
need to be integrated as well, which demands an alternative implementation tactic.
We briefly discuss those cases.

Protocol Support for Multi-Phase Negotiation

A protocol designed to support multi-phase authorization directly must include mes-
sages and function codes that indicate that a negotiation needs more information. To
implement this function the application protocol must support, or be adaptable to
support, a workflow as follows:

1. A service requester collects local credentials and includes them in the request.

2. The request recipient (“‘Server”) passes request credentials and local credentials
to a reasoning engine. The server library may also attempt to gather more
information from its environment to support the reasoning process.

3. If necessary, the reasoning engine returns a failure code indicating that more
information is necessary and an encoding of the proof so far (as credentials).

4. The server returns to the requestor a code indicating more work is required and
the proof so far.

5. The requester calls its local routines that attempt to extend the proof.

6. If the local routines have extended the proof, the requester can make the request
again with the additional information.

7. When neither party can extend the proof, the request fails. Alternatively, when
the proof is completed, it succeeds.

Authorization and Access Control: ABAC 223

Legacy Applications and Pre-Proving

If an application utilizes existing network protocols that are not amenable to the
multi-phase strategy set out above, another choice is to implement a separate pre-
approval service using the same principal that offers the service. The requester
asks for the same service it would request directly and interacts with the pre-
approval service using a protocol designed to carry out negotiation. Once the
protocol completes, either the requester and pre-approval service know that the
request will not be allowed, or the requester holds the set of credentials necessary to
be authorized for the action.

If the pre-approval service is conducted by the same entity providing the service,
or the pre-approval service and the actual service can communicate securely, the
server can be seeded with the complete proof and its result, and the requester need
only provide its identity. The server binds the request to the identity and is able to
“complete” the proof and authorize service for the requester.

4.1.4 Negotiating with Sensitive Data

A distributed authorization system may wish to support the notion that principals
hold credentials that they may not be willing to share with all principals.

Control of these credentials is essentially a recursive application of the autho-
rization system. A principal that holds a sensitive credential might only reveal it to
a second principal if that principal can prove it has a particular required attribute.

If one principal sees that a negotiation can only be extended by revealing a
sensitive credential, it inserts a sub-proof into the ongoing negotiation with the other
endpoint as the target principal and the required attribute for the sensitive credential
as the goal. If that sub-proof is completed, the sensitive credential can be introduced
and the main proof continued.

These controls place several requirements on the negotiation. First, it introduces
the requirement that all servers be principals. If controlled data is not involved,
there is no reason from the negotiation semantics perspective that the server needs
to be a principal.” The authorization decision is just a matter of collecting the
proper public credentials that prove the requester has the required attribute. Because
all this information is public, there is no need for the requester to restrict which
entities receive its credentials. IN the case of controlled credentials, however, the
requirement that all participants in a negotiation potentially be able to prove their
identity mandates that all participants be principals.

Similarly, support for controlled credentials forces negotiations to be pairwise.
If negotiations were even three-way, a server Server could construct a proof that
contained information from Client! that Client2 did not have permission to see, or

9There may be other reasons to make the server a principal; mutual authentication is rarely a
mistake.

224 T. Faber et al.

vice versa. This proof is useful to the server, but neither of the parties has permission
to view it. Such a scenario undermines the transparency and logging value of the
system.

It is an open problem to design a system to correctly control information in this
kind of scenario. Consequently, the libabac system currently restricts negotiations
to two parties.

4.2 libabac Software System Architecture

This section describes key aspects of the libabac software system architecture. It
presents the basic software modules, processes, and interfaces used to implement
ABAC-style authorization within libabac, and discusses topics related to integration
of libabac into larger software packages. The architecture takes into account
the full complexity of the ABAC authorization function, including multi-step
negotiations, use of credentials gathered from third parties and negotiating with
sensitive credentials.

At the time of writing this chapter, only a portion of the conceptual architecture
has been implemented in the publicly available libabac code base. Section 4.4
provides some additional detail about the implemented libabac functionality.

Figure 1 shows the core components of the libabac implementation architecture.
The application communicates with a prover that reasons about credentials, a
credential access controller that controls access to sensitive credentials, and an
asynchronous discovery subsystem that finds publically available credentials. These
modules are linked directly with the application. Separately, the implementation
provides a credential discovery daemon, implemented as an independent service
that gathers credentials at the request of an application.

The subsystems that can be linked directly with the application (the components
inside the dashed rectangle) are referred to as the endpoint engine. We describe key
aspects of the endpoint engine’s operation below.

4.2.1 Basic Operation

Applications interface with the endpoint engine primarily through the core module.
The application passes relevant credentials and proof targets into the core. The core
coordinates the actions of the various /ibabac subsystems to carry out as much of
the proof as possible, and return either a result or a partial proof as discussed in
Section “Negotiation”.

From a user’s perspective, the endpoint engine is primarily focused on manip-
ulating contexts in which proofs are carried out. Contexts can be created, copied,
deleted, and have credentials loaded into them. Each context encapsulates the
knowledge directly accessible to the prover.

Authorization and Access Control: ABAC 225

Application
& Proofs or Credentials &
& Partial ProofsT l proof targets

eo
o\e’f‘./ g "‘-\._.
e \

Credential Asynchronous Credential
Discovery |——— P Info Access Prover
Daemon Discovery Control

Fig. 1 libabac architecture components

Credentials are opaque to the user. The core provides interfaces for adding
credentials to a context as required and returns them as a proof, but the user is
not required to understand credential encoding. The core interface validates the
credentials. An interface is provided for a user to create new credentials from an
encoding-independent data structure.

When an application starts up, it creates a base context containing the credentials
that define its local delegation rules as well as any other information it has stored
locally or has public access to. When a request comes in, the base context is
cloned into a proving context for the particular authorization being requested. The
application binds a principal to the request as described in Section “Binding a
Principal to a Request”, and looks up the relevant authorization attribute for the
requested action from its configuration. It then adds any credentials in the request to
the proving context and makes a call into the library for the proof. The call includes
the context, the target principal and the target attribute.

If the proof succeeds, the list of credentials constituting the complete proof is
returned, with an indication that the proof is complete and successful. The proof
is logged, the action authorized, and the proof returned to the requester for their
logging purposes (assuming that the application interface allows that).

If the proof fails, a list of credentials that the prover believes are relevant to
extending the proof are returned, along with an indication that the proof has failed.
At this point the response is up to the application, but the architecture admits several
options.

Particularly, the application may conclude that the request should not be autho-
rized and return an appropriate error. Alternatively, the application may request an
asynchronous search of public data, driven by the partial proof information. When

226 T. Faber et al.

that search completes, the application adds the retrieved data to the proving context
(or the base context) and retries the proof.

In parallel with this search, the application may return the failure message and
partial proof to the requester. If the application is a pre-approver (Section “Legacy
Applications and Pre-Proving”) or the underlying protocol supports negotiation this
would lead to a longer authorization negotiation. As each side adds information to
their proof, the added information is collected in the proving context.

When neither side can extend the proof further—which an application can detect
because there is no change in the size or content of the returned partial proof—the
two sides must decide that the authorization has failed.

After the authorization has been concluded, the context can be deleted.

4.2.2 Asynchronous Public Data

The interface to asynchronous public data is one of the most interesting and least
solidified aspects of the current libabac architecture. Accessing publicly available
data can require long latency and may require understanding and supporting
multiple externally defined query protocols. The application may want to hide this
latency or place it in parallel with endpoint negotiations. The current libabac design
encapsulates each of these alternatives.

As Fig. 1 shows, a separate process gathers credentials. It encapsulates the
knowledge of outside query protocols and carries out searches asynchronously.
A standard interface is defined and provided between the endpoint engine’s
asynchronous information discovery module and the system search daemon.

To fully meet system goals, the interface between daemon and discovery system
must be generic and extensible. The discovery system must be able to guide the
search, by suggesting attested attributes to search for and likely storage sites, as
well as an indication of how exhaustively to search. Requests to the daemon also
include an identifier so the application can route the return information to the right
context. The daemon returns a list of results to the application, including the query
identifier for demultiplexing them.

An important implementation consideration is the method by which these
returned results are delivered to the application. In order to make libabac useful in
as many system implementation environments as possible, it is desirable to support
both traditional single threaded applications as well as more complex threaded
and event-driven programming models. The libabac design must not limit the
application designer’s choices unnecessarily.

Libabac’s solution is to make the interface to the asynchronous info discovery
module as simple as possible. In the Unix/Linux implementation, the application
makes a synchronous call into the library with hints to the search daemon, and
implementations return a communications socket on which the list of returned
results will be delivered. The socket itself binds requests to responses. A single-
threaded application can simply block waiting for the response, while threaded and
event driven programming systems should be able to easily integrate checking a

Authorization and Access Control: ABAC 227

socket into their event loops and thread schedules. As the architecture matures,
adapters will be included to link the response sockets into additional commonly
used programming environments.

4.2.3 Controlling Sensitive Credentials

Figure 1 also shows the Credential Access Control block for controlling access to
sensitive credentials. This block encapsulates a data vault that provides a storage
facility for controlled credentials. Credentials are added to the store through the
same software interface as they are added to a context, but a required attribute is
also associated with each. In order to release the credential, the principal must hold
the attribute.

Generally, authorization negotiations continue as previously described until the
endpoint can make no further progress using its unconstrained credentials. The
application can then clone the proving context and try adding each of the controlled
credentials to see if the proof progresses—the prover will tell if a credential is useful,
as it will be included in the output partial proof. If a controlled credential would be
useful, the application will instead add the target attribute and the other principal to
the list of proof targets and return that request to the other side. When the sub-goal
is met—again, the prover will tell the application this—the controlled credential can
be added to the mix.

In order to fully support the use of controlled credentials, the library needs to
support the idea of pseudo-credentials. A pseudo-credential is a credential that
the application does not have, but that would trigger a sub-proof request if the
application did. The absence of a challenge could be taken as the absence of a
protected credential.

Pseudo-credentials must be handled like credentials by the prover, except that a
proof involving a pseudo-credential is invalid. Applications add pseudo-credentials
to the controlled store, and treat them like credentials to trigger the extra proofs that
hide the leakage.

4.2.4 Representing Partial Proofs

A partial proof is the representation of the current proof goals and the current state of
their satisfaction. A partial proof represents the state of an authorization negotiation
in progress, as described in Section “Negotiation”. The representation of a partial
proof includes:

» The negotiation partners (one of which should be this entity)

* The current attribute graph (represented as credentials)

* The proof “goals”—a set of pairs indicating which attributes are to be proven
about which principals

» A list of target attribute/principal pairs that will terminate the proof process

228 T. Faber et al.

While the attribute graph shows the inferences that have been made, they are
only meaningful with respect to a given goal. Any ABAC engine will connect the
credentials into the same graph, but unless they agree on the proof goals, they cannot
agree that it is complete, or on meaningful ways to advance the proof. There may be
more than one proof goal because access control may introduce subordinate proofs,
as we describe below.

The list of terminating credentials is required to indicate that some attribute
proofs may be discarded if the negotiators are able to prove the real attributes of
interest after discarding a subordinate objective. Only the prover cares about this
list.

Although not currently part of the system design, it will likely be useful to
include control interfaces that tell the prover to try to prove any one of the requested
attributes or to prove all of them that it can. The prover may be able to prove a set
of credentials as a set rather than serially.

4.3 Integration

The endpoint engine described above implements one side of the negotiation. An
authorization decision is generally made as a result of a request for some service,
and it is in that context that an endpoint engine must be embedded. Generally, we
would like the endpoint engine to minimally constrain the design and operation of
the larger application or service that incorporates it. Figure 2 shows two libabac
endpoint engines working on behalf of a client and server.

The applications, client and server, primarily communicate with one another,
passing requests and partial proofs between one another as described in Sect. 4.1.

If the application is using the pre-proving strategy of Section “Legacy Applica-
tions and Pre-Proving”, the legacy client and server calls out to an application set
up as in Fig. 2. That application then passes the success or failure of the negotiation
back to the server in a way that the legacy system understands.

4.4 A libabac Implementation

At the time of writing, a publicly available, open-source software package imple-
menting key elements of the libabac conceptual system architecture has been
developed by the authors and their team [13]. This implementation offers support
for multiple operating systems and programming languages, and is in production
use by the DETER Cybersecurity Testbed [8, 14], as well as by the GENI Program
Office’s GENI toolchain. While presently providing only a subset of the full libabac
architecture, the implementation has proven robust, flexible, and useful across a
number of complex distributed authorization scenarios.

Authorization and Access Control: ABAC 229

Fig. 2 Communicating applications

Application

Proofs or Credentials &
Partial Proofs proor targ,ets

N r

e 7

Fig. 3 libabac implementation components

Figure 3 shows the subset of the libabac conceptual system architecture available
in the implementation available at time of writing. This includes an implementation
of the core functions module and two independent provers—one for RTO and one for
RT2. The core and RTO prover are well tested and in wide use within the DETER and
GENI systems. The RT?2 prover is presently considered experimental, with further
development expected in the future.

230 T. Faber et al.

Below, we describe some key aspects of the DETER/GENI libabac software
package. The reader desiring further information should obtain the libabac software
distribution [13], which includes full documentation describing the implementation
and its use.

4.4.1 Core Objects

The core interface that the application uses to interact with libabac include
implementations of the following software objects'®:

* Proof contexts that hold valid credentials and can be queried to return proofs or
partial proofs. Files or data buffers that encode Identities and Credentials (below)
can be imported or exported from a Context. Contexts can be created, deleted
and cloned. A context can be queried by asking if a principal (represented by an
ID) holds a particular attribute (represented by a string). The result is success or
failure along with a list of credentials that are a proof or partial proof.

» Identities of principals that can be used to validate credentials. If the application
has appropriate information—a private key—the identity object can be used to
create new credentials. These are created from a file or data buffer containing a
valid X.509 certificate and optionally a matching private key.

* Credentials are valid attested rules (either RTO or RT2, as appropriate) as
described in Sect. 3.3. Initially, credentials were implemented using a single
canonical format: as X.509 attribute certificates, an existing standard. Over
time it became clear that few of the software’s target users—including GENI
system builders—were using this format, resulting in the conversion limitations
described in Section “Representing Attributes and Rules”. Consequently, the
library has been expanded to accept GENI specific credential formats [19].

4.4.2 Interfaces for Creating, Managing, and Utilizing Identities
and Credentials

When an authorization action is required, the typical workflow for a client is to
collect its relevant credentials and identity from local files and include them with
a request to a server. A server typically has a context initialized with the service’s
policies. When a request is passed to it, the server clones the context, imports the
request’s additional information, and queries the more complete context for the
appropriate attribute.

The libabac software package provides system interfaces to support this work-
flow and variants. These interfaces are provided by the “core” module within the
software.

10These are objects in the software engineering sense, containing and providing both executable
methods and data.

Authorization and Access Control: ABAC 231

Interfaces are also provided to create identities and credentials on the fly. Users
can utilize the following interfaces to work with identities and credentials. In
addition, libabac is packaged with simple pre-built command line and GUI tools
that can perform these tasks. While intended primarily as examples, these tools are
functional in their own right.

» The Identity object described above includes interfaces to create new identities
as well. Once a new ID is created, there are interfaces to return the data needed
to store the identity and its keys in files.'!

* An Artribute object represents an RTO or RT2 statement that will be turned into
a credential. It features a head, representing the right hand side of the rule (the
attribute being assigned) and one or more tails that represent the conditions used
to assign the attribute. The head and tail are Role objects. The Attribute object
can have Roles attached to it and then be baked into a Credential. Once baked,
the credential data can be returned and added to a Context.

* A Role object represents a term in an RTO or RT2 statement. It can be a principal
(valid only on the right hand side of a type 1 rule), an attested role (valid as either
a left hand side, or on the right hand side in a type 2 rule), or a linked role (valid
as a right hand side of a type 3 rule). The rule types are described in Sect. 3.3.

Attributes with multiple Role objects attached to the right hand side are
intersection rules.

A user who wishes to create a new identity and a credential based on it takes the
following steps:

1. Create a new identity object without loading any data. The core interface will
create a new ID and private key. The user may choose to save this data locally.

2. Create a new Attribute object with the ID as a basis, and the Attribute to be
assigned as a Role.

3. Create Role objects for the element(s) on the right hand side and attach them to
the Attribute.

4. Call the Attribute’s bake interface to create a credential.

5. Get credential data from the Attribute object and either add it to a Context and
carry out proofs, or save it to local storage for later use.

4.5 libabac Adoption

The libabac implementation discussed here is presently in use by both the GENI
system and the DETER Cybersecurity Testbed. This section outlines the use of
ABAC authorization and libabac in these systems. In both cases, ABAC concepts
and the /ibabac implementation are integral to the construction, operation, and evo-

T some sense this is extraneous code, as any X.509 toolkit can create an identity certificate and
key files, but we have found the unified interface to be helpful.

232 T. Faber et al.

lution of a large, heterogeneous distributed system with increasingly decentralized
resource ownership and policy control.

4.5.1 Usein GENI

ABAC and libabac were selected by the GENI effort in 2013 to replace GENI’s
original ad-hoc authorization approach. This decision followed a lengthy evaluation
and consideration process by the GENI Architecture Group, in which the group
studied the power of the logics and state of the implementation before deciding to
integrate /ibabac into the code base.

Currently GENI uses ABAC in a number of places.

* A tool to create GENI speaks-for credentials in the format libabac can process
(Section “GENI Privileges with Speaks-for in RT17)

* The GENI Clearinghouse [15] evaluates these credentials when authorizing
requests from tools

* The GENI Clearinghouse generates GENI credentials [17] that encode ABAC
credentials directly.

* The Clearinghouse uses ABAC directly to authorize clearinghouse operations

* The GPO designers are adding ABAC authorization to Aggregate Managers, the
components that directly allocate resources

* The GPO has built standalone tools for generating credentials

These systems use a mix of libabac software and tools written to GENI specifi-
cations that the authors and their team worked with the GPO and other stakeholders
to produce. Additional tools that generate or manipulate GENI credentials, and
have their own infrastructure for generating signed XML [16] have adapted that
infrastructure to produce libabac-compatible credentials.

4.5.2 Usein DETER

The libabac developers are members of the DETER Cybersecurity Testbed project
and have actively integrated ABAC ideas and libabac implementations into this
facility. Libabac is currently fundamental to two core DETER software systems:

* The DETER Federation System (DFS) is a key element of the DETER facility.
The Federation System allows DETER to create experiments that span a wide
range of cyber- and cyber-physical testbed environments, each with its own use
policies. DFS uses ABAC for all authorization decisions between federants. All
coordination of these operations in DETER is supported directly by libabac.

* DETER developers are defining and implementing a new unified System Pro-
gramming Interface for the DETERLab testbed and other testbed clusters that
run DETER software. In this system, all testbed policies are encoded in ABAC
and decisions are made using libabac.

Authorization and Access Control: ABAC 233

5 Conclusions and Future Directions

GENI developers have explored the problem of distributed authorization in a
national-scale distributed system and made several significant contributions to that
area as part of addressing GENI’s challenges. These include:

» Identifying ABAC as a viable logic to support distributed authorization.

* Definition of a software architecture to support the full expression of such a
system.

* Detailed analysis of GENI’s authorization needs and how they are met by both
the logic and the architecture.

* A robust implementation of core ABAC functions and RTO logic that is in
current use in both GENI and DETER [8] and that will form the basis for future
development in both systems.

* Prototyping an RT?2 prover and studying the limitations of that prototype.

Of crucial importance, mainline system managers and operators, rather than only
a small group of experts, must be able to generate policies and credentials that meet
the needs of their organization and system resources. ABAC, as implemented by
libabac, provides a firm basis for this activity, by implementing a well-defined logic
that supports distributed decision making and auditing. What is needed next is a
collection of tools that make this technical capability available to a much wider
range of potential users.

Designing such policy and credential generating tools is the authors’ key near-
term future objective. These tools must be significantly more intuitive to policy
designers than are existing tools that manipulate ABAC logic, which poses a
challenge to policy designers and user interface designers alike. Though we have
been successful in creating prototypes that capture ABAC logics directly and simple
grouping and attribute assignment, we recognize that tools will need to intuitively
represent more complex constructs to be useful.

Overall, GENI designers succeeded in showing that a sophisticated distributed
logic can be practically applied to a national-scale system, laid out the architectural
structure for future development and identified steps that will make ABAC more
widely applicable.

References

1. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust management system.
In: Proceedings of the 2002 IEEE Symposium on Security and Privacy (May 2002)

2. Li, N., Winsborough, W.H., Mitchell, J.C.: Distributed credential chain discovery in trust
management (extended abstract). In: Proceedings of the Eighth ACM Conference on Computer
and Communications Security (CCS-8), pp. 156-165 (November 2001)

3. Callas, J., Donnerhacke, L., Finney, H., Shaw, D., Thayer, R.: Open PGP Message Format.
RFC 4880 (November 2007)

234

4.

5

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

T. Faber et al.

Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key
cryptosystems. Commun. ACM 21(2), 120-126 (1978)

. Huang, S.S., Green, T.J., and Loo, B.T.: Datalog and emerging applications: an interactive

tutorial. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management
of Data (SIGMOD °11), pp. 1213-1216. New York, NY, USA (June 2011)

. Internet 2, InCommon: InCommon Basics and Participating in InCommon. http://www.

incommon.org/docs/guides/InCommon_Resources.pdf. Retrieved Aug 2014

. TIED Team: GENI-Compatible ABAC Credentials. http://groups.geni.net/geni/wiki/TIEDC

redentials. Retrieved Aug 2014

. ProtoGENI Team: Privileges in the Reference Implementation. http://www.protogeni.net/

ProtoGeni/wiki/ReferencelmplementationPrivileges. Retrieved Aug 2014

. Benzel, T.: The science of cyber-security experimentation: the DETER project. In: Proceedings

of the Annual Computer Security Applications Conference (ACSAC) ’11, Orlando, FL
(December 2011)

Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Polk, W.: Internet X.509 Public Key
Infrastructure Certificate and Certificate RevocationList (CRL) Profile. RFC 5280 (May 2008)
Yee, P.: Updates to the Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile. RFC 6818 (January 2013)

Shibboleth Consortium: Shibboleth 3—A New Identity Platform. https://shibboleth.net/
consortium/documents.html. Retrieved Aug 2014

Kohl, J., Neuman, C.: The Kerberos Network Authentication Service (V5). Internet RFC 1510
(September 1993)

TIED Team Libabac Software Distribution. http://abac.deterlab.net. Retrieved Aug 2014

The DETER Team: The DETER Federation Architecture. http:/fedd.deterlab.net/wiki/
FeddAbout. Retrieved Aug 2014

TIED Team: GENI ABAC Credentials. http://groups.geni.net/geni/wiki/TIEDABACCredential.
Retrieved Aug 2014

GENI Program Office: Clearinghouse. http://groups.geni.net/geni/wiki/GeniClearinghouse.
Retrieved Aug 2014

GENI Program Office: GENI Credentials. http://groups.geni.net/geni/wiki/GeniApiCredentials.
Retrieved Aug 2014

Bartel, M., Boyer, J., Fox, B., LaMacchia, B., Simon, E.: XML Signature and Processing, 2nd
edn. W3C Recommendation. http://www.w3.org/TR/xmldsig-core/ (June 2008)

http://www.w3.org/TR/xmldsig-core/
http://groups.geni.net/geni/wiki/GeniApiCredentials
http://groups.geni.net/geni/wiki/GeniClearinghouse
http://groups.geni.net/geni/wiki/TIEDABACCredential
http://fedd.deterlab.net/wiki/FeddAbout
http://fedd.deterlab.net/wiki/FeddAbout
http://abac.deterlab.net/
https://shibboleth.net/consortium/documents.html
https://shibboleth.net/consortium/documents.html
http://www.protogeni.net/ProtoGeni/wiki/ReferenceImplementationPrivileges
http://www.protogeni.net/ProtoGeni/wiki/ReferenceImplementationPrivileges
http://groups.geni.net/geni/wiki/TIEDCredentials
http://www.incommon.org/docs/guides/InCommon_Resources.pdf
http://www.incommon.org/docs/guides/InCommon_Resources.pdf

The GENI Experiment Engine

Andy Bavier and Rick McGeer

Abstract The GENI Experiment Engine (GEE) is a lightweight, easy-to-use
Platform-as-a-Service on GENI inspired by PlanetLab. The GEE offers one-click
creation of slicelets (sets of lightweight containers), single-pane-of-glass orches-
tration and configuration of slice execution, an integrated intra-slice messaging
system, and will soon offer a wide-area file system, and an integrated reverse proxy
mechanism. A key design goal of the GEE was simplicity: it should be possible for a
new user to get up-and-running with GEE in less than 5 min. The GEE is constructed
as an overlay on GENI resources and is available to all GENI users.

1 Introduction and Motivation

GENI is a distributed, highly-flexible Infrastructure-as-a-Service (IaaS) Cloud with
deeply-programmable networking. This platform offers great power and flexibility
to its users, experimenters, and application developers. However, GENI’s general
configuration mechanisms provide more power than necessary for some classes
of users. One class is users studying how distributed applications can leverage
programmable networks; examples of such applications are content distribution
networks, distributed hash tables, wide-area stores, network observation platforms,
distributed DNS, distributed messaging services, multicast overlays, and wide-
area programming environments. Experience with PlanetLab [4, 25] indicates that
many such applications can be built using fully-connected networks of lightweight
operating system containers, rather than the more expensive virtual machines,
dedicated physical servers, and stitched network topologies that GENI allocates.
GENI could support more users in this class by making it easy for them to
allocate lightweight resources for running their experiments. Another class contains
novice users that can be intimidated by the complexity of GENI, for example
its authentication and authorization mechanisms that involve multiple keys and

A. Bavier ()
Princeton University and PlanetWorks, LLC, Princeton, NJ, USA
e-mail: acb@cs.princeton.edu

R. McGeer
Chief Scientist, US Ignite, 1150, 18th St NW, Suite 900, Washington, DC 20036, USA
e-mail: rick.mcgeer @us-ignite.org

© Springer International Publishing Switzerland 2016 235
R. McGeer et al. (eds.), The GENI Book, DOI 10.1007/978-3-319-33769-2_11

mailto:rick.mcgeer@us-ignite.org
mailto:acb@cs.princeton.edu

236 A. Bavier and R. McGeer

certificates to demonstrate agreement from multiple authorities. GENI could attract
more novice users by providing a quick and simple on-ramp for GENI. These
considerations point to the need to have, within GENI, a lightweight, easy-to-use
infrastructure for potentially long-duration use of inexpensive resources.

Lower-level as-a-service platforms easily support higher-level as-a-service plat-
forms. TaaS platforms support overlay Platforms-as-a-Service (PaaS), and this is
exploited both in the academic and commercial sectors. The overlay platforms are
always specializations of the underlying infrastructure: one can limit the capabilities
and flexibility in an overlay, for ease of use and to encourage the use of specific
types of resources; it’s difficult to enhance capabilities not present in the underlying
platform. GENI was specifically designed to permit the construction of overlay
Clouds built within GENI itself; after all, Cloud research is a major driving use
case for GENL.

This made our strategy clear: to construct an easy-to-use PaaS Cloud within
GENI that offered long-duration slices of containers, distributed throughout the
GENI infrastructure. It is straightforward to construct lightweight, easy-to-use,
PaaS infrastructures on top of highly-customizable, IaaS infrastructures as overlays;
one simply instantiates a slice with appropriate configuration choices within the
underlying infrastructure and then hands out nested, lightweight slicelets within
the underlying slice. This offers multiple advantages: the underlying infrastructure
can provide most of the services required (keeping nodes up, maintaining network
connections, authenticating users) while the nested service focuses on providing the
specific functionality it was designed to offer.

PlanetLab is a successful example of this type of infrastructure. PlanetLab is a
Cloud that offers long-duration slices of distributed containers, with a large user
base, a decade of 24/7 operation, and a mature toolchain. However the PlanetLab
code base itself is dated. PlanetLab was one of the first Clouds in the world, and
came of age before the underlying virtualization and distribution technologies were
fully mature. As a result, PlanetLab adapted nascent and developing technologies
for its early implementation, such as VServers as a containerization technology.
Since that time, technology has evolved; containerization technology has become a
standard part of Linux distributions, various specialized container tools have become
available (e.g., Docker [15]), and a significant number of Cloud management
platforms have emerged. These platforms and technologies subsume many of the
functions provided by the PlanetLab platform.

Given our familiarity with the PlanetLab toolchain, our implementation strategy
for GEE had three parts. First, bootstrap the system using the classic PlanetLab
code base running on GENI, and construct the GEE as an overlay on PlanetLab-
on-GENI. Second, refactor the PlanetLab code base by replacing its components
with open-source Cloud technologies and GENI services as they became mature.
In other words, we designed the platform to evolve, while maintaining architectural
consistency, from being based on PlanetLab to running a modern software stack.
Third, sharpen and focus the platform by extending the range of services offered
on the GEE, to make it easy for users to create and deploy slices, and to enrich
the set of tools available to running experiments and applications. These new tools,

The GENI Experiment Engine 237

where possible, would be deployed in slices, much as we deployed all services that
didn’t absolutely have to be part of the PlanetLab distribution in slices on classic
PlanetLab. We also hoped to influence the future direction of the PlanetLab platform
by demonstrating a similar system running on a modern code base.

The remainder of this chapter is organized as follows. In Sect. 2 we describe the
user-level view of the services offered by the GENI Experiment Engine. In Sect. 3
we outline the architecture of the GENI Experiment Engine; Sect. 4 describes the
current implementation of the GEE and how it has evolved over time. Section 5
relates experiences deploying an actual application on the GEE. In Sect.6 we
discuss related work and similar infrastructures. In Sect.7 we share some final
thoughts and consider where these infrastructures will go next.

2 A User’s View of the GEE

The GENI Experiment Engine (GEE) is designed as a restricted, easy-to-use
programming platform on GENI. Each user allocates a slicelet of lightweight
containers connected to the public Internet as well as interconnected by a private
L2 network. The user can choose the disk image that runs in his container from
a curated set; advanced users can provide their own image. A rich set of services
are available from within the slicelet for building and deploying experiments. Our
fundamental mantra is that it should be easier to configure, deploy, and run an
experiment than it is to design and write it. In the extreme, this translates into the
“five-minute rule”: one should be able to compile, deploy, and run a “Hello, World”
experiment in 5 min.

One inspiration for the GENI Experiment Engine is the Google App Engine [29].
This is a high-level platform-as-a-service (PaaS) API that offers access to automated
scalability through the Google infrastructure. The developer writes a standard
program, typically a web page to act as a front end to the application, and a small
configuration file. An SDK permits prototyping the application on the developer’s
personal computer, and then a simple command-line tool can be invoked to upload
the program.

The GEE is intended for several purposes:

e To permit high-in-the-stack distributed systems experimenters to use GENI
without having to allocate virtual machines, configure virtual networks, write
Resource Specifications (RSPECs), configure VMs, etc.

» To provide single-pane-of-glass control of an experiment from the user’s desktop.

* To provide a GENI-wide filesystem-like storage infrastructure for GEE Experi-
menters.

* To provide a messaging infrastructure for GEE experiments.

» To provide shared, application-level HTTP server access to the public Internet.

We derived these features from an analysis of a number of applications and
demonstrations of GENI that we had built over the years, notably TransCloud [5]

238 A. Bavier and R. McGeer

at GEC-10 and TransGeo at GEC-16. After both of these demonstrations, one of
the most common questions that we were asked was “Can my experiment use the
infrastructure you built for that system?” People wanted access to more than the
various GENI aggregates we used; they meant the specific set of application-level
services that we built to undergird our demonstrations, and the deployment engines
that we used to deploy our application across GENI.

From these questions, the idea for the GEE was born. Specifically, we asked our-
selves which chunks of our demonstrations could be re-used by other experimenters,
and what tools and services would we have found useful in building and deploying
these demonstrations; then we asked what barriers to deployment we encountered
and how we could remove those.

The easiest way to get a feel for an architecture like GEE is to consider its usage.
To use the GEE, a user logs in to the GEE portal using his GENI credentials. The
GEE portal stores no user information or credentials; instead, OpenlID [26] is used
to call back to the GENI portal, and the user’s returned email is used as the userid
for the purposes of the GEE. The user is then presented with his dashboard, where
he can choose his slicelet’s disk image from a list and, with the click of a single
button, allocate a GEE slicelet. When this process is completed (typically within
30s), a download link to a small zip file appears on his dashboard for download.
The zip file contains these items:

* An SSH keypair (public and private key) for the slicelet.

* An SSH config file, enabling simple login to the slicelet from the command line,
e.g., ssh -F ssh-config ig-princeton.

* A Fabric [16] file whose environment imports the SSH config file and lists all the
nodes in the slicelet.

* An Ansible [2] config file.

* An Ansible inventory file listing all the nodes in the slicelet.

» Ansible playbooks for starting the GEE Message Service in the slicelet, and
for generating a Python file linking symbolic names to containers’ private IP
addresses.

* A README file.

Only the first item (the private key) is required to access the slice. The rest are
convenience items to make it easy for the user to access and configure the containers
in his slicelet, and deploy and run his application. Once the user has the private key
he is immediately able to ssh into nodes in his slicelet and configure them using
standard Linux tools. The user can leverage any SSH-based tool of his choosing
to populate or control his slice. The GEE provides starter configurations for Fabric
and Ansible; using either of these tools makes upload and execution easy and quick
(roughly, as easy as uploading a Python program to the Google App Engine).

Scalable control of large Cloud instances is a requirement, and a number of tools
have emerged in recent years to enable that. The fundamental goal is single-pane-of-
glass control of multiple running nodes. We support two, in the sense of providing
pre-packaged configuration and host scripts: Fabric and Ansible.

The GENI Experiment Engine 239

Fabric is a slicelet-control tool with imperative semantics. It is a Python wrapper
around SSH commands that automates the execution of both remote and local
commands. We have pre-loaded the Fabric file with a number of commands to
both introduce the user to Fabric and to provide out-of-the-box functionality for
his slicelet. For instance, typing: “fab nmap” runs a script on each host that reports
the reachable IP addresses on the private network. If additional software is required
to run an experiment (beyond that pre-installed on a typical Ubuntu distribution)
then the commands to install it can be added to the “fab install” hook. Commands
to run the experiment are added to the “fab run” hook.

The other tool that the GEE leverages for slicelet control is Ansible. Ansible has
declarative semantics: users describe the desired configuration of the nodes in their
slicelet in a markup language, and Ansible executes the necessary commands to
build the desired configuration. Ansible is an IT automation and orchestration tool
that leverages built-in modules to perform system tasks on remote systems. Ansible

Design request
experimenter [J_=Pees

Execute

Command

credentials Slice History
scripts || Identifiers

scripts
—_—

:

draft
request
rspecs

Command |
History .Og
By 3 files
Execute
A Experiment
. Command
Archive o [Experiment \ History
Handles Finish output

Meas.
data

Meas.
¢ Graphs
Archive
Metadata
Storage
Metadata

Analysis
data

Analysis
Graphs

Fig. 1 GENI workflow

240 A. Bavier and R. McGeer

modules make it straightforward to install packages, copy files, and run scripts on
all the nodes in the GEE. Ansible tasks can be executed from the command-line
(e.g., “ansible -i ansible-hosts -m ping”’) or from within an Ansible playbook.

To see the simplified workflow from a user’s perspective, consider the GENI
Experiment Workflow shown in Fig. 1. In this figure, we have annotated the work-
flow items. The dark bubbles represent configuration and deployment activities, and
it is easy to see that these steps dominate GENI experiment workflows. The light
bubbles are experimental activities. The fundamental goal of the GEE is to automate
all but the light bubbles.

GENI is a distributed system, and so a network will be required for most
experiments. The processes in the right-hand side box throw off a great deal of data,
which must be conveniently stored, so a global storage system is a requirement.
Finally, distributed systems require some form of coordination through distributed
messaging, so a global communications bus is a requirement. And, of course,
ubiquitous execution environments are inherent in any slice.

These user requirements defined the GEE tightly. The platform required fast allo-
cation of distributed computing resources; a ready-to-use application environment;
a storage service accessible both from the user’s desktop and from every sliver in
his slicelet; a pre-deployed messaging system for task coordination; and the single
pane-of-glass control described above.

3 GEE Architecture

We designed the GENI Experiment Engine as a structured set of overlays on GENL
Each overlay specializes the functions provided by the ones below, effectively acting
as a set of applications on the underlying infrastructure. The net effect is to provide
arestricted and simplified view of GENI that is targeted towards distributed systems
experimenters and novice users.

The overall GEE architecture was derived from abstracting the architectures of
a number of large-scale demonstration applications that we and our colleagues had
built over the years. An example architecture is show in Fig. 2.

TransGeo was a multi-site Cloud GIS platform deployed under GENI. Using
various off-the-shelf open-source GIS libraries and tools, notably OpenLayers
for mapping, PostGIS as a back-end relational server, and the openGIS Python
libraries for computation, it was designed to replicate the functionality of desktop
GIS clients, but using distributed resources for computation and the Web as a
presentation layer. The processing tasks for this job are highly parallel; the primary
task is image analysis of satellite photographs, and analysis of the image requires
only the image itself and a few associated images.

The TransGeo architecture shared much in common with earlier architectures
we had built, and thus it was a good candidate to abstract the interfaces and
determine what could be generalized for a PaaS platform for GENI. We examined

The GENI Experiment Engine 241

< Message Queue Service >

!

Worker Site
Worker Node 1 |- ‘ Worker Node n Front
End/Boss

Packet Cache

Packet Cache

Storage Storage
Proxy Proxy

| Disk | | Disk | I Disk |

Repository Site

Fig. 2 TransGeo architecture

the TransGeo experiment architecture to determine which elements were common
across multiple similar infrastructures, and what was specific to TransGeo. In this
architectural diagram, the Message Queue Service and set of Repository Sites
represented facilities that TransGeo required, but were not essential elements
developed by the TransGeo team; they represented generic distributed facilities
which could be used by any similar experiment. The Front End/Boss Node was a
head node designed to show results and control the experiment; though it was done
by us, it was not an element deployed in the TransGeo slice—it could have been
placed on any convenient site on the commodity Internet. The only code specific
to TransGeo was the Worker Node code, a few thousand lines of Python programs
and several tens of thousands of lines of generic Python third-party libraries. The
resulting abstracted picture is shown in Fig. 3.

The GEE is our generalized version of the TransGeo architecture. It is configured
as a set of four services: a Compute Service, which allocates and configures GEE
slicelets; a Storage Service, which offers a filesystem interface onto a distributed
store; a Message Service, which offers a simple mechanism for slivers within a
slicelet to send messages to each other; and a Reverse Proxy, which offers outbound
HTTP access to slivers within a slicelet. Slice control is done through off-the-shelf
orchestration engines, Fabric and Ansible. These services all rely on a persistent,
GENI-wide layer-2 network, the GEE Network.

242 A. Bavier and R. McGeer

Slicelet Control (Fabric, Ansible) >

i % GENIVM i 3@&&.‘@ """"" E
| User1 User2 |::| User1 User2 ||
Expt Node | | Expt Node | | | | Expt Node | | Expt Node

GENI Experiment
Engine File System

Storage Storage % > User
Proxy Proxy Computer

Fig. 3 Architecture of GEE

Of the four services, the GEE Compute Service is offered through the GEE
Portal: it hands out slicelets of lightweight containers, with some additional
software pre-installed. The GEE Storage Service and the GEE Message Service
are offered through loadable Python libraries. The GEE Filesystem service is just
Syndicate [22, 23]: once the library is loaded the developer can simply issue
standard filesystem calls. The library itself then makes REpresentational State
Transfer (REST) calls to a network of storage proxies to store and retrieve data.
The Message Service is simply a server which can be loaded into the slicelet, and
a client library; a user activates the server on whichever nodes in the slicelet she
prefers through a simple fabric command. The Reverse Proxy Service runs in a
slicelet, and controls HTTP ports on the routable interfaces of the GEE nodes. A
slicelet registers to use the reverse proxy service through the GEE Portal. After that,
HTTP requests to that slicelet’s sliver are routed by the reverse proxy to the sliver’s
HTTP server.

In the GENI Experiment Engine we have adopted the PlanetLab philosophy
that, wherever possible, services should be provided within slicelets running on the
GEE. This is one example of a key architectural idea underlying the GEE: reducing
dependency on both the underlying implementation and our own legacy code base.
This is a solution to the Innovator’s Dilemma [14]: we need to continuously
modernize and update our existing implementation while minimizing disruption
of user services. For this reason, wherever possible we factor services away from
our implementation code base, both pushing services down into the underlying
infrastructure and up into slices. Further, we minimize the contact surface between

The GENI Experiment Engine 243

our legacy code base and overlying and underlying services. How this principle was
applied will become clear in the next section.

4 GEE Implementation

The implementation of the GENI Experiment Engine evolved over time in accor-
dance with the architecture described in Sect. 3. We bootstrapped the GEE using
PlanetLab-on-GENI, an instantiation of the PlanetLab code base running on bare-
metal machines obtained from GENI. This early version of the GEE provided the
GEE Compute Service using PlanetLab slivers, the GEE Network Service using a
GENI virtual topology, and had minimal support for the other services required by
our architecture. Over time we reimplemented the Compute and Network Services,
and added support for new services, while continually maintaining a facility that
could be used by the GENI community. To do this we leveraged GENI slices: the
production GEE ran in one GENI slice and we would develop the next version
of GEE in another slice. Once the development version was ready, we cut the
GEE Portal over to use it and helped existing GEE users to migrate to the new
infrastructure. In this way we were able to develop the GEE with only infrequent
disruption of user experiments.
The base GEE infrastructure went through three major revisions:

1. Compute Service as an overlay on PlanetLab-on-GENI; Network Service at L2,
provided by GENI topology formed from stitched links.

2. Compute Service as an overlay created by the Fabric, Ansible, Docker (FAD)
Architecture (more on this below) on GENI VMs; Network Service at L3,
provided by a GENI topology formed from EGRE tunnels.

3. Compute Service as an overlay created by FAD on GENI VMs with more
resources (e.g. CPU cores, memory, disk space); Network Service at L2 that we
built ourselves using Open vSwitch running inside the VMs.

The rest of the section describes the current state of the various services that
compose the GEE (as of this writing) as well as discusses the issues that caused us
to significantly evolve the implementation from one revision to the next.

4.1 The GEE Portal

The GEE Portal (at http://www.gee-project.org) is the primary means by which
users access and manipulate their resources on GEE. The user is redirected to the
GENI Portal to log in. After logging in at the GENI Portal he is returned to his
dashboard, which initially has a single button: an invitation to “Get a Slicelet”. The
user also is presented with a dropdown list of curated images that he can load into
the slicelet to be allocated (e.g, various flavors of Ubuntu, CentOS, and Fedora);

http://www.gee-project.org

244 A. Bavier and R. McGeer

ni experiment engine

Dashboard for User rick@mcgeer.com

Admin Dashboard Free Sliceletig 93 Renew Sliceletig 93 wnloa i Fi

User rick@mcgeer.com logged in, currently has slicelet ig_93, which expires on Tue Aug 06 2019 03:09:43
GMT+0000 (UTQ).

Eeedback | GEMI

Fig. 4 GEE portal user dashboard

power users can supply an arbitrary Docker image as well. If the user clicks on the
button (or already has a slicelet), he is directed to a dashboard with three options:
free his slicelet, renew his slicelet, or download the file containing the slicelet helper
files. A screenshot of the user dashboard is shown in Fig. 4.

Authentication and user access were questions that we considered carefully. One
fundamental design goal was to offer the use of GEE to any user with GENI access,
without maintaining a separate database of authentication information. Indeed, the
goal was to retain no authentication information for a user of any sort. This was
chosen for reasons of user convenience, maintainability, and user security. Users,
once they have registered with GENI, should not need to add themselves to a
separate database. Further, delegating authentication promotes maintainability, and
not keeping user authentication information afforded attackers one fewer place to
obtain SSH keys and passwords.

To authenticate users on the GEE portal, GEE uses an OpenlD callback to the
GENI portal, obtaining the minimum information needed to create and maintain
user slices—the user’s email address, which was the only indexing information used
in the GEE portal database. OpenlD authentication was present in all revisions of
the GEE. In v1 we were able to leverage the PlanetLab database to store the minimal
information that GEE maintains for each user. In v2 and later we did not have this
option so we used a MongoDB [21] database.

The GEE Portal creates a public/private SSH keypair for each slicelet; the
user must download a tarball containing the keypair prior to accessing the slicelet
containers. The GEE creates this use-once, or “burner” key for two primary reasons:
speed and security. Speed is obvious: interaction with the GEE Portal is streamlined
because the user does not need to upload his own public key. Also, v1 of the GEE
used the PlanetLab code base deployed on GENI bare-metal machines; using a
burner key allowed us to pre-allocate a pool of slices and pre-propagate the keys to
avoid the 15-min delay in creating PlanetLab slices. Security is nearly as obvious:
if a user’s slicelet is compromised, or the use-once key is discovered, all that is

The GENI Experiment Engine 245

compromised is the user’s slicelet. The GEE Portal retains no credential from the
user of any sort, and therefore cannot be a vector for compromise of any user
information or credentials. Similarly, compromise of a user’s personal SSH key
won’t result in an attacker gaining access to a GEE slicelet. Use-once keys are the
infrastructure equivalent of hotel room cardkeys; they are allocated when the slicelet
is instantiated, used only to access the slicelet, and are destroyed when the slicelet
is de-allocated. As a result, they come with many fewer security concerns than do
standard keys, just as a hotel is completely unconcerned with travelers departing
with room cardkeys in their pockets.

The GEE Portal’s interfaces with both the GENI Portal and, in v1, with
PlanetLab-on-GENI were deliberately minimized: in the case of the GEE Portal,
it is roughly 15 lines of node.js code, primarily configuring a Passport module
for OpenID. In the case of PlanetLab-on-GENI, it was six scripts written to the
PLC API. These interfaces were kept simple so that the GEE can be extended over
other infrastructures easily, and to enable changes to the underlying services to be
transparent to GEE users.

Another goal we had for the GEE was to make it easy for anyone to bring up
their own GEE infrastructure on any Cloud provider. Our approach was to structure
the GEE Portal as two Docker containers: one running the portal code (written
primarily in node.js) and the other containing the MongoDB database. Docker
streamlines the process of bring up a new GEE Portal to launching two containers.
This structure also simplifies management of a production GEE Portal by providing
snapshot/rollback capabilities, and making it trivial to deploy new versions of the
web server code in production.

4.2 The GEE Compute Service

The GEE Compute Service is a simple compute overlay on the GENI infrastructure.
For each slicelet, a Docker container is launched inside a VM obtained from the
Aggregate Manager at a particular GENI site. Currently the GEE is active at 20
GENI sites. Figure 5 shows the distribution of GEE v3 across the United States.

The “five-minute rule” has dominated our design consideration. The GEE drew
inspiration from PlanetLab, and v1 leveraged the PlanetLab code base. However
one problem with PlanetLab is that it can take up to 15 min to initialize a PlanetLab
slice across the infrastructure. Our requirement for the GEE was that it take less
than a minute to initialize the slicelet, install the SSH keys required for access, and
pre-install the software required for bootstrapping the experiment. At a minimum,
we pre-install: Python; pip; the GEE Filesystem Python library; a package manager
(e.g., apt or yum as appropriate); and a use-once public key. A number of other
services, such as the GEE Message Service, can be activated with a simple Fabric
command. The effect of all of this is that the slice is usable as soon as the use-once
slice private key is downloaded; the user won’t have to wait for slice configuration
or key propagation.

246 A. Bavier and R. McGeer

’ ON Qc

WA ND
MT 7Y
)
SD
NV ot United States
co KS MO
c

? TN /
_—\—N\ it

Al Map data © 2016 Google, INEGI

GEE Site - Single Rack YA GEE Site - Multiple Racks

Fig. 5 GEE current deployment

‘We maintained the PlanetLab convention of using the slice name as the user name
on the slivers of the slice (e.g., slice25). Universities haven’t agreed on a common
naming scheme for GENI slivers, and the experimenter shouldn’t need to know the
servers on which his GEE slicelet is instantiated. Thus, we implemented a DNS
service which standardizes GEE node names and abstracts away all but the location
information for a GEE slicelet’s slivers. One can log in to slice25 on the GEE node
running in Georgia Tech’s InstaGENI rack as follows:

$ ssh -i ./id_rsa slice25@gatech.gee-project.net

This illustrates our overall naming scheme: gee-project.org is used for our control
nodes: www.gee-project.org is the address of the GEE Portal. The DNS domain gee-
project.net is used for slivers. However, the authors are lazy and even the above is
rather too much typing to login to a GEE slicelet. The GEE portal provides a ssh-
config file along with the public key that provides short nicknames for each node in
the slicelet, as well as specifying the user name and private key. Assuming that the
helper files downloaded from the GEE Portal are in the current directory, the user
can log into the Georgia Tech node as:

$ ssh -F ssh-config ig-gatech

Version 1 of the GEE was deployed as an overlay on PlanetLab-on-GENI.
Likewise, PlanetLab-on-GENI was an overlay service running over ProtoGENI [28]

gee-project.net
gee-project.net
www.gee-project.org
gee-project.org

The GENI Experiment Engine 247

Web
server

el
] Yo

'
.

GEE private network

Fig. 6 The GEE’s FAD architecture

on the InstaGENI racks, envisioned as a convenient way for GENI users to run
experiments based on Linux that did not require modifying the kernel. To meet the
“five-minute rule” requirement, GEE v1 maintained a pool of pre-allocated and pre-
configured PlanetLab slices that could be handed out instantly to GEE users.

The GEE architecture described in Sect. 3 places minimal requirements on the
underlying compute infrastructure, and so we were easily able to replace PlanetLab
with a more modern code base. Versions 2 and later used an approach we called
the FAD Architecture to create and configure GEE slicelets across the pre-allocated
GENI VMs [8]. FAD stands for Fabric, Ansible, and Docker.

Figure 6 shows the current implementation of the GEE Compute Service using
the FAD Architecture. The GEE Portal internally runs an Event Daemon that uses
Ansible to create and destroy Docker containers for slicelets across GENI, as well
as configure the SSH keys that enable the user to login to the slicelet. This process
typically takes less than 30 s (the exception is when the user has specified a custom
Docker image that is not already cached on the nodes and needs to be downloaded).
The user then leverages Fabric to further customize his slicelet prior to running his
experiment as explained below.

248 A. Bavier and R. McGeer

4.3 Fabric and Ansible: Single Pane-of-Glass Control
and Configuration

One of the central services provided by the GEE is single pane-of-class control,
orchestration, and configuration of user slicelets. Single pane-of-glass control is
required for high scalability and reasonable extensibility of slices, and it has a
synergistic effect: if it’s easy for a user to customize, configure, and extend his
own slice post-allocation, it reduces user demand for a high degree of pre-allocation
configurability. Pre-allocation configuration is highly undesirable: it both increases
the length of time before a slice becomes usable after allocation, and it adds to
complexity and maintenance burden—and thus reduces the reliability of the GEE
infrastructure. Since no single tool will please everyone, the GEE Portal creates
configuration files for using two popular open-source orchestration tools with a GEE
slicelet: Fabric and Ansible.

Both Fabric and Ansible are open-source Python wrappers around SSH. Fabric
fabfiles are Python programs that execute arbitrary commands on subsets of
machines chosen by Python decorators. The use of flexible decorators and the full
logic of a programming language permits us to write highly flexible configuration
and control schemes. In contrast, Ansible provides a declarative environment for
configuring machines. Ansible playbooks consist of tasks invoking idempotent
modules that bring the machine into the state declared by the task; if the machine is
already in that state, the task is not run.

Fabric and Ansible provide the GEE with easy tools to offer additional services to
GEE experimenters without either unnecessarily cluttering the image nor requiring
extensive customization at or before slice allocation. For example, enabling the user
to install and activate the messaging service (see below) merely required adding a
little additional Fabric code to the fabfile that the user downloads from the GEE
Portal. The GEE included support for Fabric from the beginning; Ansible support
was added in v2.

4.4 The GEE File System

The GENI Experiment Engine File System (GEE FS) is designed to be an easy-to-
use file system provided on all GEE slices. This file system is accessible both inside
and outside experiments to allow users to access stored data from inside and outside
GENI experiments. The GEE FS provides a persistent environment for all GENI
experiments. It has the following design goals:

* Unix-like semantics

* Convenient, reliable, distributed storage
* Accessible from any GENI experiment
* Runs on any reasonable host backend

The GENI Experiment Engine 249

* Exposed API
* Web interface for file browsing

A file system consists of a block storage layer, and a metadata service which
groups blocks into files, implements naming and directory structures and enforces
access control. The GEE FS is built using the Syndicate [22, 23] wide-area file
system for the metadata service. Syndicate handles metadata in the file system
as well as access control, versioning, and replication, while providing a familiar
Unix-like interface. Syndicate allows us to use multiple backend services distributed
around the GENI network.

The most integral component of the file system is the Metadata Server (MS),
which handles all file system metadata requests. For this we need a reliable service
that can handle a lot of concurrent connections, and is easily accessible. The
Syndicate MS [22] is implemented as a Google App Engine application and stores
its data in BigTable. By using Google App Engine, Syndicate gets efficient app
scaling under various loads, as well as efficient key-value lookups in BigTable.
Users and Groups are handled by the MS restricting what a given user can access
locally through the file system client. Users register an account through the file
system client and provide a password for authentication. The password is used to
authenticate subsequent file system requests.

Apart from the MS, Syndicate has client processes and storage processes. The
storage service is a Python process that runs on remote nodes, and acts as a translator
between Syndicate and the storage service being used. Syndicate writes blocks of
data to a storage service, and replicates the data for data durability. The GEE FS
uses Swift installations running in GEE slicelets as its storage service. Swift is
accessed via HTTP and also provides a Python API which allows easy integration
with Syndicate. Storage services can be added and removed from Syndicate on the
fly as the MS handles the actual layout of data (and its replicas), which gives GEE
FS the flexibility to grow its storage capacity to meet the demands of GENI users.

The file system client exists as both a Filesystem in Userspace (FUSE) [17] and a
Python module. The FUSE module allows users to mount the file system directly on
any Unix-like system. The Python module allows Python processes to bypass FUSE
and access the file system directly. The API allows clients to control the physical
location of their files.

4.5 The GEE Message Service

The GEE Message Service, available since GEE v2, is used to route job control
messages within a slicelet; this is a common feature of many Cloud systems, and as a
result a number of open-source message service implementations are available. Our
requirements were that the software be extremely simple, configure automatically,

250 A. Bavier and R. McGeer

have a rich set of client libraries, be enabled on the server side with a simple
service start command, and be well-documented.

We chose Beanstalk [1]. Beanstalk has libraries in a wide variety of client
languages, notably including Python. It installs as a service on Fedora, with a
configurable port. It has an extremely simple put/get interface and supports a
wide variety of use models, including pub/sub. As with many Message Service
systems, Beanstalk is configured for a single-tenant environment. Its use mode is
not that a multi-tenant provider offers messaging-as-a-service, but rather that each
job or service instantiate its own messaging server accessible only from its own
nodes: security is assumed at the network, not the service, level. This dictated
our deployment choice: rather than instantiating a GEE- or GENI-wide messaging
service, the GEE provides the experimenter with an Ansible playbook to turn the
service on in the slicelet if appropriate.

4.6 The GEE Reverse Proxy Service

PlanetLab has hosted many public-facing distributed services. The most notable of
these are the Content Distribution Networks (CoDeeN and Coral) [30], End-System
Multicast [13], and the Distributed Hash Tables [27]. Clearly, for such services to
use the GEE, some method must be found to enable public-facing services at each
site.

Most GENI member institutions have been unwilling or unable to devote large
banks of routable IP addresses to GENI slices; thus we are not able to give a routable
IP address to each GEE sliver in a slicelet. It isn’t really feasible to assign each its
own port: an http service that isn’t on port 80 faces multiple logistical problems,
from firewalls to configuration of client-side software. The solution we hit upon
was to multiplex the http ports and isolate at the URL level, enabled and enforced
by the GEE Reverse Proxy.

The GEE Reverse Proxy Service operates a reverse proxy in a sliver on each
GEE site. HTTP requests of the form http://<hostname>/<sliceletname>/<request>
are caught by the reverse proxy and sent to the HTTP server in the slicelet’s sliver
over the GEE private network; the returned value is sent back to the requester.

The initial version of the GEE Reverse Proxy Service was deployed in GEE v2.
By default, the GEE Reverse Proxy Service is disabled for a slicelet, to prevent the
slicelet’s server from dealing with unanticipated requests. The experimenter selects
the proxy service for his slicelet from the GEE Portal dashboard; the portal then
sends an authenticated request to enable proxy service for this slicelet to the reverse
proxy. This is disabled on experimenter request or when the slicelet is destroyed.

http://<hostname>/<sliceletname>/<request>

The GENI Experiment Engine 251

4.7 The GEE Network

The GEE Network is a private layer-2 network spanning the infrastructure on which
the GENI Experiment Engine is deployed. Each GEE Sliver has a single interface on
this network, with a RFC 1918 address. Intra-slicelet communication on the GENI
Experiment Engine is primarily through the private network.

Since the network is allocated by the GEE rather than set up by the user as is
standard in GENI, the user won’t know the IP addresses of his slicelet until he
acquires it. To simply link these private IP addresses to symbolic names, GEE makes
it easy to create a Python file for each slicelet that defines constants, one per sliver,
by symbolic location; for example, Northwestern = 10.64.136.1".The
programmer can then import this file into code.

GEE slicelet networks are not completely isolated from one another. One of the
use cases for PlanetLab is slices providing services for other slices: e.g., PSEPR [9]
provided monitoring information and Stork [10] loaded software packages for other
slices efficiently. The PlanetLab mantra for services is “put it in a slice”, which
led to a micro-kernel architecture for a distributed system: if it didn’t absolutely
need to be in the PlanetLab controller, it was in a services slice. This greatly
simplifies the design of PlanetLab, permits experimentation in utilities and services,
and contributes to the lifespan and maintainability of the PlanetLab infrastructure.

The GENI Experiment Engine adopted the same design philosophy. The GEE
File System is deployed in a slicelet, as is the GENI Reverse Proxy Service. Our
original intent was to offer the messaging service in a slicelet, but the requirement
for a secure multi-tenant service restricted our choices and added unnecessary
complexity to what was otherwise a simple mechanism: hence our choice to add
a service to the slicelet rather than offer a multi-tenant service in its own slicelet.
Slicelets can contact the APIs of these services over the GEE Network, so it provides
both intra- and inter-slicelet connectivity.

Implementation of the GEE Network has changed significantly over time. GEE
v1 used a collection of temporary circuits from Internet2 ION with a spanning tree
topology. However occasionally a circuit would go down or disappear, which was
not ideal for a long-lived overlay like GEE. For version 2 we moved GEE to VMs
and used GENI's GRE tunneled topology to interconnect them into a full mesh.
With this scheme the most straightforward way to interconnect a slicelet’s containers
was at L3, which required assigning unique IP address blocks for Docker’s private
network at each node, and maintaining IP routing tables with entries for all the other
nodes. Also the GENI tools at the time did not support incrementally modifying
topologies, e.g., to grow the GEE by adding new nodes without re-installing the old
ones.

Version 3 of the GEE includes a L2 topology over EGRE tunnels that we
construct ourselves using Open vSwitch (OvS). Since the v3 topology is a full mesh
at L2, we faced the problem of L2 broadcast packets being continually forwarded on
all virtual links and bringing down the network. We solved this by adding OpenFlow
rules to the OvS bridges to suppress rebroadcasting of these packets. Creating

252 A. Bavier and R. McGeer

the topology ourselves gives us complete control and enables us to dynamically
change the topology without issues. Eventually, we may be able to expose SDN
functionality to GEE slicelets.

S Deploying an Application on GEE

Five minutes to set up, deploy, run, and tear down “Hello, World” makes a great
demo; but the real question is whether the GEE can be used to get significant
applications deployed, and how long it takes to do that. So the major test for us,
which drove a number of feature decisions, was deploying and running the Ignite
Distributed Collaborative Visualization System.

This system is described in another chapter in this book. Here, we restrict
ourselves to the relevant characteristics for deployment on the GEE. The salient
characteristic of the Distributed Collaborative Visualization System, and the Pollu-
tion Visualizer application, was the distribution of three major pieces of software
and data:

1. The Lively Web network application platform.

2. The Pollution visualizer data set, consisting of some 9 GB (uncompressed)
spread over 600,000 files.

3. A special-purpose data server written for the application.

To accomplish the first, on slicelet allocation the experimenter requested a
purpose-built Docker image containing the Lively web. The Visualization System
also requires access to three external TCP ports. Once the GEE administrators
had approved the request to deploy the custom Docker image and allocated the
ports, the slicelet was deployed across the GEE. The database and data server were
automatically started by the Ansible script in Fig.7. The authors report that the
deployment was entirely automated by this script, and took under an hour—almost
all of which was spent in copying the tarball with the data.

6 Related Work

The GENI Experiment Engine is a Platform-as-a-Service (PaaS) operated on top of
an Infrastructure-as-a-Service (IaaS) base. In this, it is not unique: after all, to a first
approximation offering PaaS on IaaS is simply populating component VMs with a
set of programming environments and platforms.

Commercial PaaS offerings focus on scalability and automatically scaling
applications. For example, the Google App Engine is a heavily-used PaaS offering
on Google’s infrastructure; OpenShift [24] from RedHat orchestrates application
deployment on the public cloud and offers PaaS on the enterprise cloud. In the GENI
context, auto-scaling is not a consideration: we do not have arbitrary resources on

The GENI Experiment Engine 253

any single rack to scale the application; for GENI applications, location matters far
more than scalability. Our primary concern is communication across the wide area
and network design, concerns that are not relevant for data-center oriented PaaS
systems.

A key goal of Seattle [11, 12] (a.k.a. Million Node GENI) is to provide a platform
for wide deployment of networked applications on end-user systems such as PCs
and smartphones; to this end, Seattle leverages a constrained PaaS in the form of
a safe, restricted code execution environment based on Python. Seattle has similar
motivation to the GEE, but Seattle runs on crowdsourced resources rather than the
GENI infrastructure, and offers a more limited runtime environment (Python rather
than a Linux container). AptLab [3] is also similar in spirit to GEE: it provides a set
of pre-configured “profiles” (essentially, pre-defined slices) on Emulab to get users
up and running quickly.

- hosts: nodes
remote_user: slicelb
vars:
repo: https://github.com/rickmcgeer/PollutionVisualizerDataServer.git
pvdest: /data/PollutionVisualizerDataServer
supconf: "{{ pvdest }}/pollutionServer-supervisor.conf"
tasks:
- name: unpack tarball
shell: cd /data; tar -xzf /data/db-strip.tar.gz
- name: move to db
shell: mv /data/db-strip /data/db
- name: set up data server
git: repo="{{ repo }}"
dest="{{ pvdest }}"
accept_hostkey=yes
- name: install Flask’s CORS module
pip: name=’flask-cors’
- name: install supervisor
apt: name=supervisor update_cache=yes
- name: install supervisorctl
easy_install: name=supervisor
- name: copy configuration file
shell: cp {{ supconf }} /etc/supervisor/conf.d
- name: start supervisor
service: name=supervisor state=restarted
- name: start server
supervisorctl: name=’PollutionDataServer’ state=started

Fig. 7 Ansible script to deploy and run the pollution data server

254 A. Bavier and R. McGeer
7 Conclusions

The GEE has been brought up and deployed in stages, as the various services mature.
As of October 2015, the GEE Portal is available to all users that can authenticate
with the GENI Portal. The GEE Compute and Network Services are mature. We
demonstrated the GEE Compute Service and the Fabric-based single-pane-of-glass
experiment control at GEC-19 [20]. All code necessary to bring up a new GEE from
scratch is open sourced and available on GitHub [18, 19].

The GEE File System is nearly as mature. The integration between the Swift
proxies and the Syndicate metadata service is complete, and has been tested on
GENI and Emulab. The GEE File System browser exists in prototype form. The
GEE Proxy Service and the GEE Message Service are available for use.

GEE is functional and stable because it is built on well-tested and deployed
infrastructure services and off-the-shelf components. The initial base for our
compute service was PlanetLab, a 24/7 infrastructure that has run continuously for
more than a decade; later we refactored the service to leverage Fabric, Ansible, and
Docker. For storage, we used Swift, the block store for OpenStack, and Syndicate;
for messaging, we used Beanstalk; and for single-pane-of-glass control, we used
Fabric and Ansible again. Networking builds on Open vSwitch.

GEE lives light on the land. Our interface to ID providers like the GENI Portal is
an OpenlD callback. A GEE compute node (for hosting GEE slicelets, i.e., Docker
containers) requires only a VM with a public IP address and sufficient resources.
Most GEE services either run inside their own GEE slicelets or can be instantiated
inside the user’s slicelet. Docker images exist for bringing up new GEE Portals.
As a result of these design decisions, we should be able to bring up the GEE on
any distributed infrastructure with key-based access to the allocated VM’s, such
as an OpenStack-based facility or a commercial Cloud. This gives the GEE vast
growth potential. We envision a future where the GEE becomes the go-to platform
for lightweight, multi-tenant edge computing.

Acknowledgements The authors thank Leigh Stoller and Rob Ricci of the University of Utah
and Niky Riga and Mark Berman of the GPO for much logistical assistance in setting up and
maintaining the GEE Slicelets; Niky Riga, Vic Thomas, and Sarah Edwards of the GPO for counsel
and logistical assistance in setting up GEE tutorials; Marshall Brinn of the GPO and Nick Bastin of
Barnstomer Softworks for productive conversations; Chip Elliott of the GPO for years of guidance;
Bill Wallace, Joe Kochan and the staff at US Ignite; Patrick Scaglia, Dan Ingalls, Alan Kay, Sanjay
Rajagopalan, and Carlie Pham of SAP/CDG for financial and logistical support and mentoring;
Robert Krahn and Marko Roder of SAP/CDG for assistance with our Lively Web monitoring front
end; and Jack Brassil of the InstaGENI project and HP Labs for invaluable help. This chapter is
an extension and update of previous workshop [6] and conference [7] papers, and we thank our
co-authors: Jim Chen, Yvonne Coady, Joe Mambretti, Jude Nelson, Sean McGeer, Pat O’Connell,
Glenn Ricart and Stephen Tredger. Sean McGeer designed the GENI Experiment Engine logo and
is responsible for the look and feel of the GEE portal, and the aesthetically-challenged authors
thank him for our portal. The students of CS 462/CS 662 at the University of Victoria, Canada,
used the GEE for assignments and class projects in the spring of 2015, and gave us invaluable
feedback. Of particular note was Matt Hemmings, who used the GEE to deploy the Distributed
Visualizer and whose feedback was very helpful. This project was partially funded by the GENI
Project Office under subaward from the National Science Foundation.

The GENI Experiment Engine 255

References

B WL =

10.

11.

12.

13.

14.

15.
16.
17.
18.
19.
20.

21

23.

24.

. About - Beanstalkd. https://kr.github.io/beanstalkd/ (2016)

. Ansible. http://docs.ansible.com/ (2016)

. AptLab. http://www.aptlab.net/ (2016)

. Bavier, A.C., Bowman, M., Chun, B.N., Culler, D.E., Karlin, S., Muir, S., Peterson, L.L.,

Roscoe, T., Spalink, T., Wawrzoniak, M.: Operating systems support for planetary-scale
network services. In: Proceedings of NSDI, pp. 253-266. USENIX (2004)

. Bavier, A., Coady, Y., Mack, T., Matthews, C., Mambretti, J., McGeer, R., Mueller, P., Snoeren,

A., Yuen, M.: GENICloud and TransCloud: towards a standard interface for cloud federates.
In: Proceedings of the 2012 Workshop on Cloud Services, Federation, and the 8th Open Cirrus
Summit, FederatedClouds ’12, pp. 13—-18. ACM, New York (2012)

. Bavier, A., Chen, J., Mambretti, J., McGeer, R., McGeer, S., Nelson, J., O’Connell, P., Ricart,

G., Tredger, S., Coady, Y.: The GENI experiment engine. In: 2014 26th International Teletraffic
Congress (ITC), pp. 1-6. IEEE, New York (2014)

. Bavier, A., Chen, J., Mambretti, J., McGeer, R., McGeer, S., Nelson, J., O’Connell, P, Ricart,

G., Tredger, S., Coady, Y.: The GENI experiment engine. In: Proceedings of TRIDENTCOM
(2015)

. Bavier, A., Chen, J., Mambretti, J., McGeer, R., McGeer, S., Nelson, J., O’Connell,

P, Ricart, G., Tredger, S., Coady, Y.: The GENI experiment engine. In: Proceedings of
TRIDENTCOM’15 (2015)

. Brett, P, Knauerhase, R., Bowman, M., Adams, R., Nataraj, A., Sedayao, J., Spindel, M.:

A shared global event propagation system to enable next generation distributed services. In:
Proceedings of WORLDS ’04 (2004)

Cappos, J., Baker, S., Plichta, J., Nyugen, D., Hardies, J., Borgard, M., Johnston, J., Hartman,
J.: Stork: package management for distributed VM environments. In: The 21st Large Installa-
tion System Administration Conference *07 (2007)

Cappos, J., Beschastnikh, I., Krishnamurthy, A., Anderson, T.: Seattle: a platform for educa-
tional cloud computing. In: Proceedings of the 40th ACM Technical Symposium on Computer
Science Education, SIGCSE 09, pp. 111-115. ACM, New York (2009)

Cappos, J., Dadgar, A., Rasley, J., Samuel, J., Beschastnikh, I., Barsan, C., Krishnamurthy, A.,
Anderson, T.: Retaining sandbox containment despite bugs in privileged memory-safe code. In:
Proceedings of the 17th ACM Conference on Computer and Communications Security, CCS
’10, pp. 212-223. ACM, New York (2010)

Castro, M., Druschel, P., Kermarrec, A.-M., Nandi, A., Rowstron, A., Singh, A.: Splitstream:
high-bandwidth multicast in a cooperative environment. In: Proceedings of SOSP *03 (2003)
Christensen, C.M.: The Innovator’s Dilemma: When New Technologies Cause Great Firms to
Fail. Harvard Business School Press, Boston (1997)

Docker - Build, Ship, and Run Any App, Anywhere. https://www.docker.com/ (2016)

Fabric Api Documentation. http://docs.fabfile.org/en/1.8/ (2016)

Fuse. http://fuse.sourceforge.net/ (2016)

GEE Node Install Scripts. https://github.com/rickmcgeer/geni-expt-engine (2016)

GEE Portal Code. https://github.com/rickmcgeer/geni-expt-engine (2016)

McGeer, R.: GEC 19 GEE demo video. https://www.youtube.com/watch?v=RDnWIqtatkA
(2016)

. MongoDB for GIANT Ideas. https://www.mongodb.org/ (2016)
22.

Nelson, J., Peterson, L.: Syndicate: democratizing cloud storage and caching through service
composition. In: Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC ’13,
pp. 46:1-46:2. ACM, New York (2013)

Nelson, J.C., Peterson, L.L.: Syndicate: virtual cloud storage through provider composition.
In: Proceedings of the 2014 ACM International Workshop on Software-defined Ecosystems,
BigSystem *14, pp. 1-8. ACM, New York (2014)

OpenShift by RedHat. http://www.openshift.com/ (2016)

http://www.openshift.com/
https://www.mongodb.org/
https://www.youtube.com/watch?v=RDnWIqtatkA
https://github.com/rickmcgeer/geni-expt-engine
https://github.com/rickmcgeer/geni-expt-engine
http://fuse.sourceforge.net/
http://docs.fabfile.org/en/1.8/
https://www.docker.com/
http://www.aptlab.net/
http://docs.ansible.com/
https://kr.github.io/beanstalkd/

256 A. Bavier and R. McGeer

25. Peterson, L., Bavier, A., Fiuczynski, M.E., Muir, S.: Experiences building PlanetLab. In: Pro-
ceedings of the 7th USENIX Symp. on Operating Systems Design and Implementation (OSDI)
(2006)

26. Recordon, D., Reed, D.: OpenID 2.0: a platform for user-centric identity management.
In: Proceedings of the Second ACM Workshop on Digital Identity Management, DIM 06,
pp. 11-16. ACM, New York (2006)

27. Rhea, S.C.: OpenDHT: a public DHT service. PhD thesis, University of California at Berkeley,
Berkeley, CA (2005)

28. Ricci, R., Duerig, J., Stoller, L., Wong, G., Chikkulapelly, S., Seok, W.: Designing a federated
testbed as a distributed system. In: Proceedings of the 8th International ICST Conference on
Testbeds and Research Infrastructures for the Development of Networks and Communities
(Tridentcom) (2012)

29. Sanderson, D.: Programming Google App Engine: Build and Run Scalable Web Apps on
Google’s Infrastructure (Animal Guide). O’Reilly Media, Sebastopol, CA (2009)

30. Wang, L., Park, K.S., Pang, R., Pai, V., Peterson, L.: Reliability and security in the CoDeeN
content distribution network. In: Proceedings of the Annual Conference on USENIX Annual
Technical Conference, ATEC *04, pp. 14—14. USENIX Association, Berkeley, CA (2004)

Part I11
The GENI National Buildout

Once the GENI architectural elements were in place and had been deployed and
tested at small scale, it was time for a full GENI deployment. There was a significant
tradeoff to consider: a broad national deployment was required, both because a
number of the potential experiments and services required broad distribution, and
because GENI’s own raison d’etre was to be a prototype of the next Internet, and
this goal could only be explored with broad geographic distribution. However, one
lesson of PlanetLab was that low-provisioned sites could easily be oversubscribed.
Given finite resources, there was a “beefy and small” vs “thin and broad” tradeoff—
more, less-powerful sites or fewer, more-powerful sites? Moreover, PlanetLab used
the routable Internet for inter-site connectivity, which excluded programmable inter-
site networking. GENI had to offer a private inter-site network.

There were other, more minor, tradeoffs to consider. PlanetLab had strongly
encouraged participating sites to put their PlanetLab nodes outside the University
firewall, to ensure that PlanetLab traffic could not conceivably pose a security
risk (unlikely in any event) or trigger spurious alarms (almost certain; security
appliances are designed to detect unusual traffic, and experimental traffic is always
benign but often unusual). GENI nodes obviously faced the same constraints. But
in addition, a number of GENI services and experiments (see the next section)
anticipated the use of campus resources, which are generally inside the firewall.

The ultimate decision was to plan for a deployment of approximately 50 sites
across the United States, with a “GENI Rack” as the basic unit of deployment,
interconnected by a programmable layer-2 network provided by Internet-2. The
rationale for the deployment choices and the design of the underlying Mesoscale
network is described by Heidi Picher Dempsey in chapter “The GENI Mesoscale
Network”. Each rack would function as a standalone GENI site, but experiments
and services were expected to construct slices across a number of sites.

Two rack designs were chosen, representing different points in the tradeoff space
and following the GENI principle of preferring multiple implementations of major
capabilities. The InstaGENI rack, described by Rob Ricci and Rick McGeer in
chapter “The InstaGENI Project”, is a minimal-resource expandable, affordable
design based on a proven and deployed aggregate manager, ProtoGENI, the direct

http://dx.doi.org/10.1007/978-3-319-33769-2_14
http://dx.doi.org/10.1007/978-3-319-33769-2_12

258 III The GENI National Buildout

descendant of the Emulab software stack which had run the Emulab cluster for a
decade. As its portmanteau implies, it was designed to be “instant-on” and deployed
widely across the United States; in the event, 34 were deployed. Each, however, was
relatively resource-poor, at 80 worker cores/site.

The ExoGENI rack, described by Ilya Baldin, Claris Castillo, Jeff Chase,
Victor Orlikowski, Yufeng Xin, Chris Heermann, Anirban Mandal, Paul Ruth, and
Jonathan Mills in chapter “ExoGENI: A Multi-Domain Infrastructure-as-a-Service
Testbed”, is a more resource-rich design managed by a newer aggregate manager,
ORCA, which was described in the previous section. Since ORCA was newer
than ProtoGENI, it took advantage of modern underlying cluster-management
technologies, notably OpenStack, and its ten sites were primarily designed for the
deployment of Virtual Machines and containers as the execution environments.

It should be noted that these prototype rack designs are simply that: working
prototypes. A GENI rack is simply a small cluster with an Aggregate Manager
compatible with the GENI AM API, so that an experimenter or developer can
construct slices or attach local resources to slices from that rack. In addition
to the rack designs described in chapters “ExoGENI: A Multi-Domain Infras-
tructure-as-a-Service Testbed” and “The InstaGENI Project”, rack designs based
on native OpenStack have been built. ExoGENI is a largely IBM-based rack;
InstaGENI, HP-based. In addition, Cisco UCS and Dell-based racks have been built,
and there’s no reason in principle why one couldn’t build a rack from heterogenous
equipment. Just as the Internet protocol didn’t prescribe switches from a specific
vendor, neither does the GENI AM API.

http://dx.doi.org/10.1007/978-3-319-33769-2_14
http://dx.doi.org/10.1007/978-3-319-33769-2_13
http://dx.doi.org/10.1007/978-3-319-33769-2_13

The GENI Mesoscale Network

Heidi Picher Dempsey

Abstract GENI is a national network of computation, storage, and networking
resources interconnected by a deeply programmable nationwide infrastructure. The
GENI mesoscale infrastructure was not built from scratch in a green-field design,
but was a truly cooperative design, integration and operations effort. The challenge
confronting the design and development team was to combine existing capabilities
to virtualize individual resources across resource types to create an environment that
supports smoothly interoperating “slices” of the shared GENI infrastructure.

1 Introduction

GENI is a national network of computation, storage, and networking resources
interconnected by a deeply programmable nationwide infrastructure. The GENI
mesoscale infrastructure was not built from scratch in a green-field design, but
was a truly cooperative design, integration and operations effort. The National
Science Foundation inaugurated this effort by contributing support for the project to
select and integrate commercial hardware with open-source software that allowed
compute, storage, and network resources to be “sliced” such that multiple experi-
menters could use the shared resources concurrently for independent experiments,
applications, and education.

At the time the GENI project began, it was already possible to slice standalone
resources individually: a single server could be divided into multiple Virtual
Machines (VMs) with software such as VMware or Xen, a network could be divided
into multiple concurrent active connections on a single node interface with VLANs
or MPLS, and there were many proprietary and open source options for sharing
storage. The challenge of building the mesoscale infrastructure was combining these
independent capabilities in a research infrastructure that could be used 24 x 7 365
days a year. Three major factors drove the requirements, design, and integration
efforts for the mesoscale: (1) resources were contributed by many different organi-
zations, each of whom chose the vendor and technology that was most efficient for

H.P. Dempsey (<)
GENI Project Office, Raytheon BBN Technologies, 10 Moulton St. Cambridge, MA 02138, USA
e-mail: hdempsey @bbn.com

© Springer International Publishing Switzerland 2016 259
R. McGeer et al. (eds.), The GENI Book, DOI 10.1007/978-3-319-33769-2_12

mailto:hdempsey@bbn.com

260 H.P. Dempsey

themselves, and managed their infrastructure independently, so interoperability was
essential; (2) experiments and applications required a compatible way to specify
and slice all three types of resources, while ensuring that they all were all connected
only to each other on the dataplane, so developing standard interfaces and resource
descriptions for widely varied technologies was required; and (3) most GENI users
did not own or control any resources, and could not be expected to know the native
platform commands for provisioning them, so GENI tools needed to provide an
abstraction for requesting and provisioning resources into slices regardless of who
was providing the resource or what technology they were using to deliver it.

2 Early Design Activities

Early in GENI development, the community explored software standards for
specifying resources and negotiating access on the GENI control plane to meet
these challenges. Five original GENI integration clusters explored this space,!
and eventually settled on a single interoperable GENI Resource Specification
(RSPEC) and GENI Application Program Interfaces (APIs) for resource aggregates,
the clearinghouse, and portal. GENI used credentials from InCommon or other
existing Identity Providers (IdPs), so that GENI experimenters could use resources
from any of the groups that implemented the GENI APIs (PlanetLab, ProtoGENI,
ExoGENI, InstaGENI and OpenFlow), combining resources from any of those
systems. (Each cluster also supported additional features that were not interoperable
for experimenters who only operated inside one cluster, but that was not a factor in
building the mesoscale, so is not described here. See individual project chapters for
more information on their unique capabilities.) Participants in the mesoscale agreed
on a common rough policy for usage and security that was reflected in the GENI
Aggregate Provider Agreement,” and agreed to a cooperative operations approach
involving several operations and development groups around the country.
Mesoscale network design, integration and testing proceeded in year-long “spi-
rals,” where the community explored the best way to create, maintain, and operate
the resources that would eventually be accessible using the GENI APIs and
Resource Specifications (RSPECs). The mesoscale network provided separate
control plane and data plane connections to each GENI resource, and eventually
also to the GENI clearinghouse and portal, which provided an easy-to-use graphical
experimenter interface. During the first GENI Spiral design activities, participants
agreed that the control plane should rely on resource owner’s existing IP connec-
tivity to reach other resource owners and experimenters. Resource owners could
leverage the effort they’d already invested in making their existing production IP

"Emulab (ProtoGENI/InstaGENI), PlanetLab (SPP), ORCA (ExoGENI), TIED (DETER), and
ORBIT (WiMAX and LTE) were the original clusters. OpenFlow was a separate early project,
but not a cluster because it did not include a complete control framework for experimenters.

2See http://groups.geni.net/geni/attachment/wiki/ComprehensiveSecurityPgm/Aggregate%20Provider
%20Agreement%20v04.pdf.

http://groups.geni.net/geni/attachment/wiki/ComprehensiveSecurityPgm/Aggregate%20Provider%20Agreement%20v04.pdf
http://www.openflow.org/
http://groups.geni.net/geni/wiki/GENIRacksHome/InstageniRacks
http://www.exogeni.net/
http://www.protogeni.net/trac/protogeni
http://www.planet-lab.org/

The GENI Mesoscale Network 261

Adopters/ .-. [

Experimente,

GPO
GENI

Administrative
Staff
RACK
&Sne GENI |

Administrative RACK
Staff

@ ~| GENI

Site RACK
Administrative
Staff

Internet
(layer 3)

GPO

Adopters/Experimenters Data Plane

GENI Mesoscale Campuses
Control Plane pu

Fig. 1 GENI mesoscale functional design. GENI mesoscale racks supported various mixes of
OpenFlow adopters and administrators at each campus (left side example racks), along with
standard interfaces for remote GENI experimenters and administrators (GPO example). Racks
separated control plane and data plane interfaces. Dynamic VLAN stitching was supported in later
stages of the mesoscale deployment (2013)

networks resilient, and the additional control plane traffic load was negligible.
Participants also agreed to base the GENI dataplane on Layer 2 Ethernet connections
between GENI participants. Doing so gave experimenters the freedom to use
protocols other than IP, or to design their own protocols to connect experimental
compute and storage slices. Participating networks used MPLS tags or VLAN IDs
to slice connections between nodes. VLANs were most widely deployed, and they
became the dataplane lingua franca for requesting and allocating network resources
to experimenters. (Some GENI experimenters also took advantage of IP connectivity
on the control plane to build IP tunnels between their resources, which could support
limited-bandwidth alternate connections for some GENI resources.) Figure 1 shows
the basic functional design concept of the mesoscale network.

262 H.P. Dempsey

e
T (s
CENIC
X) . it
—_—
Tu --...
) camous! \ Bl Faso (AEARN ‘,m“. Eias
B%) Campus M awark \m
L WMAXLTE
E Layar2 SavwePOP L

Fig. 2 GENI aggregate resources and connectivity (2015)

GENI mesoscale operations required cooperation among several groups
with GENI expertise. Indiana University, the GPO, and Stanford University
provided early operations support. Indiana University’s Global Resources Network
Operations Center, which provided network operations for many other R&E
networks and campuses, provided 24 x 7 ticketing and escalation service, and
experienced inputs to GENI operations designs. “GENI Meta Operations” and
the resultant GENI Meta Operations Center (GMOC) grew out of Indiana’s
early participation. Security engineers from NCSA, SPARTA, and ISI contributed
expertise to security design and security reviews for the mesoscale, as well support
for incident escalation and analysis. Eventually operations groups from RENCI, the
University of Utah and the University of Kentucky also became part of the shared
operations activities.

During each of seven spirals, network engineers and developers who owned
and developed resources collaborated with many national, regional and campus IT
and network engineers and the GENI Project Office (GPO) engineers to deploy,
interconnect, integrate and test connections between the GENI aggregates. These
efforts began with five resource owners (eventually called aggregates) and grew
to include over 90 in 2015 (see Fig. 2). These engineers also collaborated in
operating and supporting the infrastructure through all spirals, developing shared
tools, documentation and procedures for making sure that the mesoscale functioned

The GENI Mesoscale Network 263

continuously, kept pace with new software and systems as they became available to
GENI, and responded to events or emergencies as needed.

3 Nationwide Layer-2 Dataplane Network in GENI

GENI mesoscale prototyping in the field began in Spiral 2 with initial build-outs
through more than a dozen US campuses, ten regional networks and two national
research backbones: Internet2 (I2) and National LambdaRail (NLR). The initial
GENI mesoscale build installed GENI-enabled equipment in 14 campuses, linking
them through their adjacent regional networks and the Internet2 and NLR core
networks. (Internet2 and NLR were coexisting but separate nationwide Research
and Engineering (R&E) networks at the time, and most campuses were members
of only one core network.) The initial build-out focused on connecting OpenFlow
switches in several participating campuses and in the network core with Layer 2
VLANSs from several participating network providers. In parallel, the mesoscale
supported a campus WiMAX buildout (described in the 4G Cellular Systems in
GENI chapter) that also used the Layer 2 mesoscale VLANSs to connect outdoor
wireless networks to other GENI resources and to WiMAX sites at other campus.

From the beginning, GENI included participants from the academic and commer-
cial worlds, and this combined approach was critical to GENI’s success at building a
shared network that was easy to expand and maintain, but still usable for innovative
network research. Early mesoscale deployments in the network core included the
ProtoGENI backbone nodes and Supercharged PlanetLab Processor (SPP) nodes,
both of which were installed at five Internet2 Points of Presence (PoPs). Both
nodes included processing, storage, and switching resources in their aggregate, all
connected to the shared Dense Wavelength Division Multiplexing (DWDM) wave
that Internet2 allocated to GENI. Figures 3 and 4 show the first sketch of the core
mesoscale infrastructure, worked out by participants in an early GENI working
group meeting. The ProtoGENI switch at each site had one 10 Gbps Ethernet
interface per out-degree of the PoP connected to Internet2’s DWDM equipment (see
Fig. 5). In addition to connecting its own processing and storage resources to the
network, the ProtoGENI backbone switch also connected multiple 1 Gbps Ethernet
ports to the SPP (see Fig. 6). ProtoGENI separated control and experimenter traffic
between the between nodes on the dataplane by allocating VLANs from a pre-
defined reserved Internet2 range to individual flows or aggregated groups of flows
(depending on traffic source and destination). Unlike the SPP’s NetFPGA custom
programmable switches, PG nodes used HP commercial switches capable of sup-
porting OpenFlow, eventually allowing programmable OpenFlow experimentation
between ProtoGENI and Emulab nodes.?

3Although ProtoGENI hardware switches supported OpenFlow, the nodes were originally
deployed without OpenFlow configured.

264 H.P. Dempsey

Fig. 3 First sketch of GENI Internet2 mesoscale connectivity in the Internet2 backbone, with
example SPP and ProtoGENI connections (2008)

Fig. 4 Detail sketch of the Salt Lake City GENI node, showing various connect types for SPP
node, ProtoGENI switches (GPO and HP) and Internet2 routers at Salt Lake City and Los Angeles

The GENI Mesoscale Network 265

Internet2
Wave
System

To Other Sites

Al

N
f1 SR\ Internet2
~ P SESL . SSSS Production
€<5 é E<5 Network
i il N (IP, DCN, etc.)
(0] Q (0]
z z z
- y |9 J

Fig. 5 ProtoGENI Backbone Node Design. Courtesy Rob Ricci, ProtoGENI wiki Backbone Node
Design page (http://www.protogeni.net/ProtoGeni/wiki/BackboneNode). University of Utah Flux
Research Group (2008)

The original campuses participating in the mesoscale buildout were Clemson,
Columbia, UCLA, University of Colorado at Boulder, Georgia Institute of Tech-
nology, Indiana University, University of Kentucky, University of Massachusetts
Ambherst, NYU Polytechnic, Princeton, Rutgers, Stanford University, University
of Washington, University of Wisconsin-Madison, and BBN Technologies (GPO).
Stanford University collaborated with all GENI campuses involved in the earliest
deployments, providing valuable lead expertise along with prototype software for
slicing network resources (Flow Visor) and controlling OpenFlow access (Expedient
and Opt-in Manager) based on their original Stanford deployment work [1].
OpenFlow switches from many vendors were evaluated and used during mesoscale
deployments (listed in roughly chronological order of their involvement): HP, NEC,
Indigo, Quanta, Juniper, Brocade, Arista (evaluated, but not deployed), Pica8, IBM,
Cisco, and Dell. The Open vSwitch (OVS) software-only switch was also used
extensively by GENI experimenters on various mesoscale hardware platforms.

After the initial OpenFlow deployments demonstrated that Layer 2 dataplane and
GENI standard IP control plane design operated successfully to support researchers,
the mesoscale expanded to include GENI racks in 2012. (For details on the

http://www.protogeni.net/ProtoGeni/wiki/BackboneNode

266 H.P. Dempsey

& Washington University in St.Louis

SALT Configuration

Engineering

private IP
addresses 1Ghys

each
connection SPP ﬁll GbE
BN Switch
to CP (10/100) 2
public IP 3 J (Proto- Network
& GENI)
8910 |LCports
public IP copper connections
addresses
1 Gb/s g
each GbE Router
Switch (12)
(I12) |10Gb/s

3

Fig. 6 ProtoGENI and SPP core node dataplane connections at the Salt Lake City Internet2 PoP.
Courtesy John DeHart and Jon Turner, SPP Deployment Plan. Applied Research Lab, Washington
University (2008)

design of GENI racks, see the appropriate GENI Rack chapters.) Each GENI
rack included an OpenFlow-capable dataplane switch and a separate IP control
plane switch. The selection of processing, data, and network resources available
to experimenters in each rack varied, depending on the rack design. InstaGENI
racks could support either 1 Gbps or 10 Gbps Layer 2 Ethernet interfaces. Because
these racks were meant to be affordable, most were built with 1Gbps interfaces.
ExoGENI racks could support 10Gbps or 40Gbps Layer 2 Ethernet interfaces (most
were built with 10Gbps interfaces). Later racks built by Cisco and Dell also offered
1 Gbps or 10 Gbps interfaces. A 100 Gbps Ciena rack was under construction and
partially integrated into the mesoscale at this writing. To date, 61 racks have been
deployed in GENI (13 ExoGENI, 42 InstaGENI, 2 OpenGENI (Dell), 3 Cisco, 1
Ciena). (More rack documentation is available at http://groups.geni.net/geni/wiki/
GENIRacksHome.)

The GPO also built three quick-turnaround “starter” racks in Cleveland,
Chattanooga and Cambridge to demonstrate that virtualized experimenter resources
based on a Layer 2 Ethernet VLAN dataplane, an IP control plane, and GENI
resource allocation and control software would integrate successfully with
metropolitan broadband networks. These racks, deployed as part of early USIgnite
efforts, were based on the Eucalyptus software for creating and managing virtual

http://groups.geni.net/geni/wiki/GENIRacksHome
http://groups.geni.net/geni/wiki/GENIRacksHome

The GENI Mesoscale Network 267

machines provisioned on PowerEdge R510 Dell servers running Ubuntu 10.04 OS.
The racks provided a Eucalyptus head node and two worker nodes for provisioning
experimenter virtual machines along with a bare-metal application host, and a
monitoring host. A Cisco 2901 router for IP control plane and commodity Internet
access, and an HP ProCurve 6600 OpenFlow switch provided 1 Gbps or 10 Gbps
Layer 2 dataplane connections to an upstream research network participating
in GENI and the downstream local broadband infrastructure. Starter racks also
included an IOGEAR KVM switch to support remote access from the GENI
operations center. Starter racks were eventually decommissioned or replaced with
standard GENI racks.

3.1 Internet2

The Internet2 core network infrastructure in GENI developed in three different
phases. Initially Internet2 dedicated a 10 Gbps wave on their nationwide fiber
infrastructure to the GENI project via a memorandum of understanding that was
in place from 2008 to 2010. Internet2 configured access to the wave using an
Infinera DTN packet-optical transport platform. Projects connecting to the optical
infrastructure had to provide a dedicated switch on one of the DTN digital ports,
or share access with an existing Internet2 digital switch or router in the production
network. Some Internet2 PoPs did not have any spare digital ports, and so were not
available to the GENI mesoscale.

Internet 2 migrated their core infrastructure for the mesoscale (along with some
other Internet2 services) from the Infinera platform to the Ciena Core Director
platform, beginning in 2010. The Ciena hardware allowed Internet2 to offer a
Dynamic Circuit Network (DCN) service, with a member-programmable API and
GUI called ION (Interoperable On-demand Network). Members could connect to
Juniper MX-960 routers at several ION access points located in Internet2 router
PoPs throughout the country (see Fig. 7). All connections from a regional network
into Internet2 shared the same physical ports on the MX-960s, which meant
that traffic from multiple campuses and multiple projects including GENI shared
available ION bandwidth. MPLS circuits provisioned with QoS guarantees between
the MX-960s routers limited the total available ION bandwidth and provided some
priority service for ION traffic on those circuits. Any ION traffic queued in the
router was served before any L3 traffic, as long as the offered traffic was within
the parameters of the member’s ION request. Internet2 supported ION connection
requests of up to 2 Gbps by default, and up to 4 Gbps at one connector or 10 Gbps
in the core by special arrangement. ION connections were originally expected
to be in place for no more than a few hours, but Internet2 supported longer-
duration connections when it became clear that most GENI experiments ran longer
than a week. If an experiment offered more traffic that what was specified in its
associated ION request, Internet2 could shape, drop, or deliver the excess traffic at
a lower priority than other traffic, depending on what competing traffic was present

268 H.P. Dempsey

{ CPataeiona, PA

i, Whsnngion, CC
5

@ Layor 2 GENI Node

Fig. 7 Internet2 Initial Mesoscale Deployment. Courtesy Rick Summerhill, Internet2 (2008)

simultaneously on Internet2 routers supporting the experiment. This design also
allowed Internet2’s production IP traffic to burst into unused ION circuit capacity
for efficiency, although this was a rare occurrence in practice. Figure 8 shows
how the initial OpenFlow switch deployment in Internet2 combined static VLANs
configured between Internet 2 PoPs with ION VLAN access to regional network
members to create the Internet2 OpenFlow mesoscale core network. Note that Fig. 8
also shows statically configured VLANSs that interconnected the Internet2 and NLR
OpenFlow core networks in Atlanta.

Internet2 deployed NEC IP8800 OpenFlow switches with 1GigE interfaces at
PoP locations in New York, Salt Lake City, Washington, DC, Atlanta, and Chicago.
The Houston deployment shown in Fig. 8 was replaced with Salt Lake City due to
power issues in Houston. Internet2 also deployed an OpenFlow Aggregate Manager
(FOAM) in 2010. After some experimentation with FlowVisor (the software that
virtualized experimenter flows on shared VLANSs), Internet2 determined that it
would not scale to support a nationwide production network, and began developing
alternative SDN slicer called FlowSpace Firewall (FSFW). The FSFW software
was eventually used in Internet2’s production OpenFlow network to segregate large
numbers of flows by VLANID in a network with over 35 switches from two vendors
(Brocade and Juniper). Internet2 eventually released FSFW as open-source software
for use on GENI and other projects, and development on Flow Visor ceased.

Originally GENI engineers used the GUI ION interface to set up persistent
VLANSs between GENI campuses over Internet2 instead of manually engineering
static VLANs with Internet2, campuses and regional networks. 12 could provide
VLAN translation in ION if needed, or match the ION VLAN ID to one stati-
cally configured in the member regional network or campus aggregate. Because

The GENI Mesoscale Network 269

New

1G circuits \Yark

Internet2
OpenFlow Wash
Deployment Be
2010-08-31

1GE ION
access
at every

Los \ node
Angeles 10GE LR to NLR
Atlanta OpenFlow
@

Fig. 8 Internet2 Initial OpenFlow Core Deployment. Courtesy Matt Zekauskas, Internet2 (2008)

GENI aggregates did not have a programmable interface to ION, it was still not
possible for experimenters to set up their own dynamic end-to-end experimental
VLANSs through Internet2. When the GENI stitching project produced prototype
stitching Aggregate Manager and Stitching Computation Service software, along
with stitching extensions to the GENI API and RSPECs, Internet2 began running a
production Stitching Aggregate Manager and SCS to support dynamic stitching for
experimenters. Stitching also used the Inter-Domain Controller IDC) and OSCARs
software that Internet2 was supporting for international dynamic connections for the
GLIF project.

12 decommissioned ION in early 2015 and replaced it first with the NDDI and
then with the AL2S network and OESS service, which was a production deployment
of OpenFlow switches supporting all of Internet2’s Layer 3 and Layer 2 services,
including GENI. By 2015, GENI was also moving away from the several well-
known original shared mesoscale VLANSs used for OpenFlow to a more production
service design based on GENI stitching, that allocated a VLAN per network sliver
in each aggregate. Rather than share a single VLAN for multiple experiments with
Flow Visor slicing for flows, the AL2S core network allocated a VLAN per network
sliver, and relied on FlowSpace Firewall to provide traffic separation and adequate
bandwidth for each of the various VLANS supported in AL2S. The OESS GUI
and API software used OpenFlow to manipulate the Brocade switch flow tables in
the 12 core network to create the dynamic end-to-end VLAN connections, along
with out-of-band manipulation, when necessary, to ensure VLAN isolation. (Note
that it is also still possible to configure static VLANs or multipoint VLANs on
Internet2, both of which have been used for projects like MobilityFirst that manage

270 H.P. Dempsey

OpenFlow Deployment

MNLR OpenFlow WaveNet/ ‘ X
FrameNel access PoP WLR faatprint KL Banringer
OpenFlow WaveNet path 13 April 2010

Fig. 9 Initial NLR Mesoscale Deployment. Courtesy Kathy Benninger, NLR (2010)

their own connections, or other projects that require well-known static VLAN IDs.)
The flexibility of the AL2S design combined with GENI stitching also allowed
Internet2 to offer higher-throughput connections for GENI, which had previously
been limited to 1Gbps throughput in most of the core network.

3.2 NLR

NLR provided GENI access to NLR’s FrameNet Layer 2 and Layer 3 services,
along with their WaveNet optical services. NLR deployed and operated OpenFlow-
enabled HP ProCurve 6600 switches at five NLR PoPs (Chicago, Denver, Seattle,
Sunnyvale and Atlanta) interconnected at up to 10 Gbps, permitting members and
non-members of NLR to connect to GENI OpenFlow services. Like Internet2, NLR
allowed experimenters to run their own controllers to manage their OpenFlow traffic
in NLR. NLR supported higher bandwidth connections to their core OpenFlow
switches than those that were available in Internet2, making NLR more attractive
to experimenters initially. Figure 9 shows the initial NLR core mesoscale infrastruc-
ture.

The NLR OpenFlow switch in Atlanta also connected to the Internet2 OpenFlow
core network switch in Atlanta at 10 Gbps. This constituted the first SDN peering

The GENI Mesoscale Network 271

VLAN 3715
N
Dpenfiom :
Campund
& s S
—— Operfiaw Goertiow
Campus/ Campun/
RON / \ BON /
—— b 4
WLAN A Translated :o_m\l 3718)-‘-_\u\ B
Trarslated to VLAN 3715
Logical “break” in South
3715

WLAN 3715 (pyhsical cannection) y

Fig. 10 Shared Mesoscale VLAN for OpenFlow Provisioned in NLR, RONs, and Campuses.
Courtesy Kathy Benninger, NLR (2010)

point, later christened an SDN Exchange, between SDN networks. This exchange
was particularly notable because NLR and Internet2 had no common IP peering
point at the time. NLR supported connections between their OpenFlow switches
with the FrameNet VLAN provisioning service. Figure 10 shows an example of how
a shared OpenFlow VLAN was engineered to connect multiple mesoscale campuses
to NLR.

In the second phase of the mesoscale build, NLR planned to expand their SDN
deployment with more 10Gbps switches in El Paso, Houston and Kansas City,
along with an extra North/West fiber connection between El Paso and Denver to
increase path diversity. NLR planned to use the less-expensive Pica8 switches for
their expanded deployment, maintaining interoperability between the original HP-
based SDN core and the new Pica8 switches. NLR was purchased by the Chan
Soon-Shiong Institute of Advanced Health in 2011, and became less able to support
OpenFlow deployments, which were not part of their new owner’s mission. NLR
thus halted OpenFlow expansion before completing deployment. (Two switches
shipped to the field.) Eventually, NLR ceased operations in March 2014, and
Internet2 became the sole mesoscale core network provider for GENI.

272 H.P. Dempsey

NLR/GENI OF switch

Proposed CENIC Openflow Topology

o Sunnyvale
.)
ucsc /)
Stanford HPR-L2 Switch | RLYfEme: VLAN Translation h’
5 Sunnyvale le: Temi;imm* Sunnyvale A€ > 1750
ucs .

/ TR d A
UCSF
CENIC OF switch
Campus Access link
——> with VLAN Translation Sunnyvale .
(Campus OF VLAN) ¢ > X

CENIC OF switch IN2/GENI OF switch

ucm \ Sacramento Ny - Los Angeles
y- : N
—

uco HPR-L2 Switch ' P A L
Swrs .l (IN2/ION
/ — Los Angeles | viaN Translation
uco) Be1750
E 3
CENIC OF switch o
%

Med Ctr
Caltech Los Angeles

~ NLR/FrameNet
s Los Angeles

HPR-L2 Switch
Los Angeles NLR/GENI OF switch

— - . El Paso

ucss (NLR/FrameNet
El Paso | VLAN Translation
usc y C&>1750

R e

Fig. 11 CENIC Mesoscale OpenFlow Infrastructure. Courtesy Erick Sizelove, CENIC (2012)

4 Regional and International Networks in GENI

Several regional networks were early participants in GENI. In most cases, they
were supporting their member campuses with regional OpenFlow deployments.
The original regional networks participating in the OpenFlow mesoscale build-
out were CENIC (California), KanREN plus the Great Plains Network (GPN)
(Kansas, Nebraska, Missouri), MAX (Maryland, Virginia, Washington, DC), MOXI
(midwest region), SoX (southern region) and UEN (Utah). Other regionals—
NYSERNet, GPN, KyRON, LEARN and NCREN and MERIT—deployed their
own OpenFlow infrastructure and connected to the OpenFlow mesoscale in the
second phase of the OpenFlow buildout, beginning in 2012. Additional regional
networks—3ROX, MAGPI, MOREnet, NOX, OneNet, OSCnet and PNWGP—
supported GENI integration by helping to engineer VLANSs, IP routes, or MPLS
paths between GENI campuses and core R&E networks, and by supporting dynamic
connection services to Internet2. (NLR did not offer dynamic connection services
during the mesoscale build.) Regional network designs varied widely, depending on
the existing infrastructure. Figure 11 shows the initial CENIC OpenFlow mesoscale
design, which provided multiple Brocade OpenFlow switches with 10Gbps connec-
tivity between them for experimenters to use.

The GENI Mesoscale Network 273

The Quilt, which is a consortium of regional networks with a particular emphasis
on networking for research and education, was also active in early phases of GENI
mesoscale work. The Quilt sponsored a GENI workshop in 2010 to encourage more
regionals to build GENI infrastructure for OpenFlow, and that resulted in several
regional networks applying to start projects with GENI. The Quilt also organized
an RFP effort for its members to help them get consistent and favorable quotes
from OpenFlow switch vendors. These activities helped increase the diversity and
availability of regional OpenFlow infrastructure.

StarLight specialized in enabling international dataplane connections between
research organizations from its base in Chicago at Northwestern University.
Although by no means a regional network, StarLight often functioned the same
way as a regional in GENI integration because StarLight engineered connections
to campuses that had no direct connections to Internet2 or NLR. Such campuses
appeared to access the GENI core through StarLight’s network. At times StarLight
also served the same function for locations inside the US that were not already
connected to GENI core networks (e.g. Oak Ridge National Laboratory). StarLight
had the capability to make optical, digital (MPLS), routed or switched connections
to international or US destinations. Although not one of the original OpenFlow
campuses, StarLight added several different types of OpenFlow switches to their
suite of network equipment during the mesoscale work, and became one of the first
two SDN Exchange projects in GENI. StarLight was also the only site besides the
GPO to host both an ExoGENI and an InstaGENI rack.

International experiments were an important part of GENI. GENI engineered
international connectivity by special arrangement, rather than supporting it as a
standard part of the mesoscale, which covered only US infrastructure. In fact, there
was at least one “special” international connection to GENI active during all phases
of the mesocale build and integration work, even though international federation
was not included in the GENI software architecture until 2012. The first interna-
tional connections to GENI were to Korea (ETRI), Australia (NICTA) and Japan
(University of Tokyo), and were all engineered differently, based on the specifics
on the networks and exchanges involved. NICTA resources connected to GENI
solely via Layer 3 IP, while ETRI and University of Tokyo both used static Layer
2 VLANSs individually engineered with each involved network provider. European
researchers involved with FIRE also participated in international federation efforts
with GENI, resulting in additional Layer 2 engineering efforts with European R&E
networks such as GEANT. The Brazilian RNP network was also actively involved
in OpenFlow and participated in GENI, eventually becoming part of an SDX
project with StarLight. A 2012 GENI demonstration called the “slice around the
world” highlighted many of these international participants, connecting them to the
GENI Engineering Conference floor at NYU. In each international case, network
engineering was supporting a close partnership between GENI PIs and international
researchers that allowed for similar close network collaboration.

274 H.P. Dempsey

Georgia Tech: a great example
One of the first 14 GENI-enabled campuses

* OpenFlow in 2 GT-
RNOC lab bldgs now

» OpenFlow/BGPMux
coursework now

Mick Feamster Ellen Zegura

A8

Russ Clark,
GT-RNOC Hulr.nms
om -

Trials of “GENI enabled” commercial equipment

— N b=

HP ProCurve S400 Switch Juniper MX240 Ethernct
Services Router NEC WAMAX Basw Statlon HTC Androkd smant phone

=y (@ Openilow oo B
Arista 71245 Switch RN ks

NEC IPES0O Exheract Switch

» Dormitory trial

« Students will “live in
the future” — Internet
in one slice, multiple
future internets in
additional slices

Taorokd LightSwitch 4810

Fig. 12 Georgia Tech Mesoscale Campus Deployment (from a presentation highlighting the
importance of collaboration between research and IT staff in GENI). Courtesy Chip Elliott, Heidi
Dempsey, BBN Technologies (2010)

5 Campus Networks in GENI

From the earliest stages, the GENI mesoscale design and buildout included close
collaborations between researchers, developers, and the network engineers and IT
staff on many campuses. In particular, the OpenFlow infrastructure and GENI
rack deployments required close coordination with campuses. Although the local
campus network infrastructure varied widely among different universities, all GENI
campuses were able to provide upstream connectivity to a research network and
downstream connectivity to local compute, storage, or more network resources for
experimenters to use. During the early stages of the GENI project, connectivity
could be as simple as one OpenFlow switch, with an upstream connection to the
local Layer 2 regional network, and a downstream connection to an Ethernet with
one or two shared servers. USIgnite downstream infrastructure included entire
broadband networks, providing commercial Internet and experimental dataplane
service to multiple homes and businesses. The downstream connectivity associated
with GENI racks could also include dormitory networks, research labs, connections
to other specialized optical network testbeds, or GENI WiMAX and LTE wireless
networks covering several miles and users. Figure 12 shows an example of an early
GENI campus network deployment at Georgia Tech.

The GENI Mesoscale Network 275

Network engineering for campus networks required close collaboration with the
GPO and with regional and core networks supporting GENI. In fact, the campus,
regional and GPO network engineers met regularly in teleconferences and at GENI
Engineering Conferences to exchange information and continuously improve their
integration with each other and with the rest of GENI. The practical experience
of the campus engineers helped the GENI design to be sustainable, supportable,
and more robust for operations than a pure research testbed. The close cooperation
between researchers, developers, and IT staff was a very successful example of the
“DevOps” concept that later became popular in commercial networking, especially
for cloud environments.

6 VLAN Stitching

Early mesocale deployments relied on carefully engineered VLAN connections
between participating networks and campuses in GENI, which was labor-intensive
and not scalable to larger deployments. This solution also often required GENI
experimenters to know many details about how particular VLANs interconnected
in GENIL In fact, all VLAN engineering information was tracked in detailed
configuration files and on the GENI wiki to allow experimenters and network
engineers to reference it when changing the network or setting up new experiments.
Early experimenters tended to already be very familiar with network infrastructure,
because most early GENI builders were also GENI users, so understanding the low-
level complexity that made GENI work was not an issue.

As GENI expanded, researchers from different domain sciences besides com-
puter science and students without much networking experience began to use the
infrastructure. Application developers who were only peripherally interested in the
network also became more active, particularly as the USIgnite project solicited
new application ideas. It was unreasonable to expect these new experimenters and
students to understand the details of the engineered network in order to use GENIL.
The systems and software development efforts associated with GENI racks provided
a more standardized interface for describing and accessing GENI resources than
what had been available early in the mesoscale work. The standard interfaces in
turn, allowed us to develop a more standardized way of connecting GENI dataplane
resources dynamically, called GENI stitching.

Engineers from the MAX regional network led the earliest GENI stitching
efforts, using a dynamic network approach based on earlier work from the GLIF
and DRAGON projects. MAX researchers developed a stitching prototype based on
the ION/DYNES GENI Aggregate Manager, and successfully demonstrated end-to-
end stitching in a demo between the MAX and CRON networks.

The ExoGENI development team at RENCI and Northwestern University also
developed an early type of VLAN stitching mediated by the ORCA control frame-
work. This stitching functioned cooperatively with NLR and StarLight to connect
VLANSs between ExoGENI racks, and to allocate experimental traffic between

276 H.P. Dempsey

the ExoGENI processing resources on different racks with a centralized service
manager that ensured provided topology and bandwidth matched experimenter
requests. Similarly, the InstaGENI development team at the University of Utah
managed traffic allocation and delivery using a pool of VLANSs in Internet2 reserved
for the ProtGENI/Emulab control framework and connected to other networks
using the QinQ protocol. This early InstaGENI and ExoGENI stitching could not
interoperate, nor stitch Layer 2 connections to OpenFlow resources. Thus, the
GENI community developed and adopted interoperable RSPEC extensions and
GENI AM API features for stitching, based on early concepts from MAX, RENCI,
Northwestern, the University of Utah, and Internet2. (NLR did not participate fully
in this effort because it changed missions during this time, and did not field a
stitching aggregate manager.) The GPO conducted stitching operations trials for
an extended period, and incorporated stitching tests as part of GENI rack validation
and site acceptance testing.*

Internet2 implemented the Open Exchange Software Suite (OE-SS) on their
Advanced Layer 2 Service to support dynamic VLAN stitching with a pro-
grammable user interface (as well as via a web-based GUI). Internet2 and the GPO
jointly demonstrated crossover connections passing traffic over paths that combined
the GENI mesoscale and AL2S infrastructures at the Interent2 Joint Techs meeting
in January 2013. Internet2 also supported stitching operations trials jointly with
MAX and the GPO, culminating in a plenary demonstration at GEC17 (July 2013).
CENIC, NoX, MAX. KyRON, UEN, the University of Utah, the University of
Kentucky, RENCI and Stanford also participated in the initial stitching Operations
Trials.

At a high level, GENI stitching provides cross-aggregate dynamic Layer2
datapaths between GENI endpoints in an experiment. The “stitcher” tool was
originally part of the OMNI command line client (stitcher.py) and has now been
integrated into GENI aggregates and GUI tools. A topology service, called the
Stitching Computation Service (SCS), determines whether there is an available path
that can satisfy the experimenter’s request with GENI Layer 2 VLANSs. Together,
these components take a simple cross-aggregate request and compute the network
hops required to establish that connectivity. This capability was demonstrated at
GEC17 and continues to be refined for scalability, performance and reliability.
Stitching also requires that the experimenter have GENI credentials, which are used
to request GENI VLAN resources from the aggregates that are part of the stitched
dataplane, so experimenters must be known to the GENI Clearinghouse. In addition,
GENI aggregates participating in stitching must have delegated VLAN IDs from
their available pools to GENI for exclusive use in stitching.’

4See http://groups.geni.net/geni/wiki/GeniNetworkStitchingTestPlan and http://groups.geni.net/
geni/wiki/GeniNetworkStitchingTestStatus.

SVLAN delegation list: https://wiki.maxgigapop.net/twiki/bin/view/GENI/StaticNetworks View.

https://wiki.maxgigapop.net/twiki/bin/view/GENI/StaticNetworksView
http://groups.geni.net/geni/wiki/GeniNetworkStitchingTestStatus
http://groups.geni.net/geni/wiki/GeniNetworkStitchingTestStatus
http://groups.geni.net/geni/wiki/GeniNetworkStitchingTestPlan

The GENI Mesoscale Network 277

Reference

1. Kobayashi, M., Seetharaman, S., Parulkar, G., Appenzeller, G., Little, J., Van Reijendam, J.,
Weissmann, P., McKeown, N.: Maturing of OpenFlow and software-defined networking through
deployments. Comput. Netw. 61, 151-175 (2014)

ExoGENI: A Multi-Domain
Infrastructure-as-a-Service Testbed

Ilya Baldin, Jeff Chase, Yufeng Xin, Anirban Mandal, Paul Ruth,
Claris Castillo, Victor Orlikowski, Chris Heermann, and Jonathan Mills

Abstract This chapter describes ExoGENI, a multi-domain testbed infrastructure
built using the ORCA control framework. ExoGENI links GENI to two advances
in virtual infrastructure (IaaS) services outside of GENI: open cloud computing
(OpenStack) and dynamic circuit fabrics. It orchestrates a federation of independent
cloud sites and circuit providers through their native IaaS interfaces, and links them
to other GENI tools and resources. ExoGENI slivers are instances of basic IaaS
resources: variously sized virtual machines, bare-metal nodes, iSCSI block storage
volumes, and Layer 2 network links with optional OpenFlow control.

ExoGENI offers a powerful unified hosting platform for deeply networked,
multi-domain, multi-site cloud applications. ExoGENI operates its own stitching
engine and Layer 2 (L2) network exchanges that work in concert to interconnect
the sites with dynamic point-to-point and multi-point L2 links via multiple circuit
providers. It also supports stitchports—named attachment points enabling direct L2
connections to resources outside the system’s control.

ExoGENI is seeding a larger, evolving platform linking third-party cloud
sites, transport networks, new resource types, and other infrastructure services.
It facilitates real-world deployment of innovative distributed services, leading to
a new vision of a future federated, more resilient, and deeply networked cyber-
infrastructure. This chapter explores the unique features of ExoGENI and, in
particular, how it differs from other GENI testbeds.

1 Introduction

ExoGENI is a new testbed that federates distributed resources for innovative
projects in networking, operating systems (OSs), future Internet architectures, and
deeply networked, data-intensive cloud computing. It supports novel applications

L. Baldin (><)) * Y. Xin ¢ A. Mandal ¢ P. Ruth ¢ C. Castillo * C. Heermann
Renaissance Computing Institute (RENCI)/UNC Chapel Hill, Chapel Hill, NC, USA
e-mail: ibaldin@renci.org

J. Chase ¢ V. Orlikowski
Duke University, Durham, NC, USA

J. Mills
NASA Center for Climate Simulation, Goddard Space Flight Center, Greenbelt, MD, USA

© Springer International Publishing Switzerland 2016 279
R. McGeer et al. (eds.), The GENI Book, DOI 10.1007/978-3-319-33769-2_13

mailto:ibaldin@renci.org

280 1. Baldin et al.

and services, e.g., for the U.S. Ignite initiative. NSF’s GENI project, the major U.S.
program to develop and deploy integrated network testbeds, funds ExoGENI.

Deployment of ExoGENI began in 2012. The initial ExoGENI deployment
consists of close to 20 site “racks” on host campuses around the world, linked with
national research networks and other L2 circuit networks. The individual cloud sites
include hardware from multiple vendors: IBM, Cisco, Dell and Ciena. ExoGENI
also includes the Breakable Experimental Network (BEN), a multi-layered network
testbed that connects several sites in North Carolina with a dynamic L2 circuit
service. The control software for BEN and ExoGENI is built using ORCA (Open
Resource Control Architecture), which is described in a separate chapter of this
book [7].

ExoGENI is based on an extended Infrastructure-as-a-Service (IaaS) cloud
model with orchestrated provisioning across sites. Each ExoGENI site is a private
TaaS cloud using a standard cloud stack to manage a pool of servers. The sites
federate by delegating to common coordinator services a portion of their resource
capacity and various functions for identity management, authorization, and resource
management. This structure enables a network of private clouds to operate as a
hybrid community cloud. Thus, ExoGENI is an example of a multi-domain or
federated cloud system, which some have called an intercloud.

ExoGENI combines this structure with a high degree of control over networking
functions. These include VLAN-based and OpenFlow networking within each site,
multi-homed cloud servers that can act as virtual routers, site connectivity to
national circuit backbone fabrics through host campus networks, and linkages to
international circuits through programmable exchange points.

The key contribution of ExoGENI to US research cyberinfrastructure capabilities
lies in developing and deploying a topology embedding as-a-service approach,
which allows users to realize their virtual network topologies easily on top of a
distributed multi-domain substrate. A user specifies the desired topology, providing
some hints as to its properties along with the locations of key elements. The system,
in turn, finds available resources, produces a homeomorphic embedding of the
request graph into the substrate, and coordinates the allocation of resources across
multiple providers.

This capability is enhanced by addition of other advanced features, such as:

* On-ramps to advanced network fabrics. ExoGENI succeeds in using campus
clouds to bridge from campus networks to national transport network fabrics,
overcoming a key limitation identified by the National Science Foundation (NSF)
in its vision of a Cyberinfrastructure Framework for 21st Century Science and
Engineering (CF21). ExoGENI cloud sites can act as virtual colocation centers
that offer on-demand cloud services adjacent to fabric access points. Sites at
fabric intersection points can also act as virtual network exchanges to bridge “air
gaps” stemming from lack of direct connectivity or from incompatible circuit
interfaces among fabrics.

* Cloud peering and data mobility. ExoGENI can facilitate the peering and
sharing of private clouds. It offers a means to bring data and computation together
by migrating datasets to compute sites or placing computation close to data
at rest.

ExoGENI: A Multi-Domain IaaS Testbed 281

* Support for application-driven topology management. By providing a toolkit
capable of communicating with the platform APIs, ExoGENI allows applications
to manage their own resources and their topologies autonomously. This concept
enables development of a new class of resource-aware networked cloud applica-
tions that can track their resource needs and use available resources to move and
place data and computation efficiently, improving time-to-discovery for domain
scientists.

This chapter gives an overview of the ExoGENI testbed, its control software,
deployment, and uses. In the following sections, we discuss the deployment of
ExoGENI (Sect. 2); details of its software infrastructure operation (Sect. 3); methods
and tools for its administration and use (Sects. 4 and 5); and, finally, its integration
with the larger GENI ecosystem (Sect. 6).

2 Overview: A Testbed of Federated IaaS Providers

2.1 Operational Principles

ExoGENI supports virtual infrastructure resources, instances of “fundamental
computing resources, such as processing, storage, and networks”, in accordance
with the definition of Infrastructure-as-a-Service [22] by the National Institute of
Standards and Technology (NIST). Testbed users may instantiate and program
multiple slices, each containing a private virtual topology consisting of virtual
machines (VMs), physical (bare-metal) nodes, block storage (iSCSI) volumes,
programmable-switch datapaths, and virtual network links at various layers (LO, L1,
and L2). Deployment is based on an evolving set of technologies including point-to-
point Ethernet circuits, OpenFlow-enabled hybrid Ethernet switches, and standard
cloud-computing software—OpenStack and xCAT [10].

The “Exo0” (outside) prefix reflected our view early in the project of how GENI
should evolve and what capabilities would be needed to deliver on the promise of
GENI to “explore networks of the future at scale”. GENI was evolving alongside
cloud technologies and open network control systems whose functions and goals
overlap with GENI. Even at that time, the rate of investment in developing and
deploying these systems was quite a bit more than an order of magnitude larger than
the GENI effort.

One purpose of ExoGENI was to define reliable methods to leverage these
technologies and substrates in the GENI project. At the same time, GENI control
software offers new ways to combine and to extend such systems as a unified
deployment platform for advances in network science and engineering. ExoGENI
establishes paths by which GENI control software can leverage IaaS advances while
successfully addressing important orchestration challenges for networked cloud
computing.

282

1. Baldin et al.

1

L |

Aux
Testbed | AM | [Resource > site ?jtsh;'
user handler Service

requests

requests —I

A 4 Y

laaS API

Infrastructure Service
(e.g., cloud stack or transport service)

Fig. 1 Structure of a resource provider or aggregate. Each provider runs a native infrastructure
service (IaaS) of its choice, which may serve requests from local users through a native application
programming interface (API). To join a federation, the aggregate is fronted with a generic
Aggregate Manager (AM) service. The AM validates user requests against local policy and serves
them by invoking the native IaaS API through resource-specific plugin handlers. A handler
may incorporate other auxiliary services for some functions, e.g., image loading, OpenFlow
authorization, or network proxying

The “Exo-” prefix in “ExoGENI” captures four related principles that are
illustrated in Fig. 1:

El

E2

E3

E4

Decouple infrastructure control from orchestration. Each provider domain
(aggregate) runs a generic front-end service (an Aggregate Manager or AM)
that exports the testbed APIs. The AM cooperates with other services in the
federation, invoking a back-end infrastructure service to manage the resources
in the domain.

Use off-the-shelf software and IaaS services for infrastructure control.
Standard laaS software and services offer a ready back-end solution to
instantiate and release virtual resources in cloud sites, circuit services, and
other virtual infrastructure services. The generic AM interfaces to these
standard APIs use plugin handler modules.

Leverage shared third-party substrates through their native IaaS inter-
faces. This compatibility with standard back-end infrastructure control ser-
vices facilitates inclusion of independent resource providers in federations.
The provider deploys an off-the-shelf IaaS service and “wraps” it with an AM
to link it into the testbed federation.

Enable substrate owners to contribute resources on their own terms.
Participating providers are autonomous: they may approve or deny any
request according to their policies. Providers allocate virtual resources that
have specified Quality of Service (QoS) properties for defined intervals. The
callers choose the resources to request, and specify how to expose them to
applications. Resource allotments are visible to both parties and are controlled
by the providers.

ExoGENI: A Multi-Domain IaaS Testbed 283

These principles presume explicit resource control, in which all parties can
determine and quantify the resources they receive or provide, and are empowered to
control or influence their resource exchanges according to local policies. This idea
echoes the principles of the exokernel extensible operating system [18] developed
at the Massachusetts Institute of Technology (MIT) in the 1990s. The name of
ExoGENI also pays homage to that project [17].

Based on these principles, ExoGENI provides a framework to incorporate
“outside” resources and infrastructure services into a federation and to orchestrate
their operation. For example, providers may deploy new cloud sites using open-
source cloud stacks, such as Eucalyptus [24] or OpenStack [26], which support
TaaS cloud APIs. Similarly, for transport-network circuit services, common APIs
such as OSCARS [12] and the Network Service Interface (NSI) [25] are emerging.
Providers may deploy these and other systems independently. Once a system is
deployed, we can install a front-end orchestration service (AM) to link it into the
federation without interfering with its other functions and users. The AM may be
operated by the provider itself, by a delegate, or by an authorized client.

2.2 Hardware and Topology

Each ExoGENI cloud site includes a packaged rack with a small cloud-server cluster
and an integrated OpenFlow network. Most of the existing ExoGENI sites are
based on server racks preassembled by IBM—our partner in the initial NSF-funded
deployment. ExoGENI now also incorporates a number of racks built by Dell, Cisco
and Ciena and contributed to the ExoGENI effort by their respective campus owners.

Figure 2 depicts the rack components and connections. The nodes in the 2012
IBM racks are M4 IBM X-series servers. The worker nodes are the server substrate
for dynamic provisioning of nodes for slices. A single management node (head
node) runs the control servers for the site, including the OpenStack head and ORCA
servers. The rack also includes an iSCSI storage unit for compute OS images and
instrumentation data. Crucially, it also serves as a resource that is sliverable by users.
Software developed jointly by RENCI and the University of Amsterdam allows for
flexible slivering of iSCSI volumes. This action is built on varying combinations
of open and proprietary APIs, supporting LVM, ZFS, Gluster, and several vendor
appliances. Some racks contain commercial storage appliances, like the IBM DS-
3512, and others provide storage from specially configured worker nodes upgraded
with large amounts of tiered storage (SSD and/or rotating disks) managed by the
Linux-based open-source software stack.

All components are connected to a management switch, which has a L3
connection to the campus network and, from there, to the public Internet. This
switch is used for intra-site access to the iSCSI storage, for remote management
by the testbed operator (RENCI) through a VPN appliance (not shown), and for
slice connectivity to the public Internet. Each worker has multiple 1Gbps ports for
these uses.

284 1. Baldin et al.

To campus Layer 3
Network

Management switch]
o Worker node Of
o Worker node Of
o Worker node Of
o Worker node Of
o Worker node Of
o Of
o Of
o Of
o Of

Static VLAN
segments to the
core provider

sdqp
0¥ 10 01

Worker node
Worker node
Worker node

Management node

"'1Gbps remote management

_ﬁD and iSCSI storage connection
| T I1Ti1]11]]

[e el T

OpenFlow-enabled L2 switch ==

0

’
'
'

Direct L2 Peering
'w/ the core provider

Dataplane to campus
OpenFlow Network

*" Dataplane to dynamic
circuit backbone
(10/40/100Gbps)

Fig. 2 Structure of an ExoGENI site rack for the initial deployment. Each rack has low-bandwidth
Internet Protocol (IP) connectivity for management and a high-bandwidth hybrid OpenFlow switch
for the slice dataplanes. The site ORCA server controls L2 dataplane connections among local
nodes and external circuits

A separate dataplane switch carries experiment traffic on the slice dataplanes.
It is the termination point for L2 links to external circuit providers and to VLANs
or subnets on the host campus network, if permitted by the host campus. The IBM
racks have an IBM/BNT G8264R 10Gbps/40Gbps OpenFlow-enabled hybrid L2
switch with VLAN support. Cisco racks use a combination of Unified Computing
Systems (UCS-B) Fabric Interconnect and Nexus-series switches. Dell racks use
PowerConnect-series switches or Ciena 8700 switches. Each worker node typically
has two 10Gbps links to the dataplane switch, although Ciena rack servers have
40Gbps interfaces.

Slice owners can access their nodes over public IP through a management
interface. As in other GENI systems, the slice owner specifies a set of named
accounts and associated public keys, and the control software configures these
accounts on the nodes. Nodes typically have public IP addresses when allowed them
by the host campus. For cloud site racks, public IP access is managed by OpenStack
and is proxied through its head node.

The racks are interconnected by regional and global transit providers. To leverage
network fabrics operated by third parties (e.g., Internet2 and ESnet), ExoGENI
deploys AMs with plug-in handlers that invoke the native APIs of the network
providers to establish dynamic L2 connections, as described below.

ExoGENI: A Multi-Domain IaaS Testbed 285

The rollout of ExoGENI coincided with the push by network providers to expose
more of their networks’ capabilities through OpenFlow. Thus, ExoGENI control
software continues to evolve to make use of those capabilities.

2.3 ORCA ExoGENI Control Software

The control software for ExoGENI was developed and refined in an ongoing
collaboration between RENCI and Duke University to create a GENI testbed
“island” around the Breakable Experimental Network [3] (BEN), a multi-layer
optical testbed built by the State of North Carolina and managed by RENCI. Some
early results of the project have been reported in previous publications [4, 5, 19, 34].

An initial goal of the project (2008) was to build a native multi-layered circuit
service for BEN, based on the Open Resource Control Architecture (ORCA [7]).
From these initial steps, the project grew into a more comprehensive effort to
support a federated IaaS system linking BEN and other infrastructure systems
under orchestrated control within a common authorization framework. The project
developed a set of plugin modules for ORCA, which were later used in ExoGENL
Table 1 gives an overview of the various plugins, which are described in more detail
below.

Building the native BEN circuit service presented an interesting test case for the
ORCA control framework. We built policy plugins to plan requested paths through
the BEN network by issuing queries on semantic resource models, which are logic-
based declarative descriptions of the network expressed in an extended variant of the
Network Description Language (NDL) [9, 13, 14]. The paths are multi-layered, i.e.,
in order to create a desired L2 path, the underlying L.1 (Dense Wavelength Division
Multiplexer, or DWDM, wavelengths) and LO (fiber) paths must be established first.
Alternatively, the system must utilize the available bandwidth efficiently, cross-
connecting resources by overlaying new L2 connections onto existing L1 paths
whenever capacity is available. All of this was achieved by developing a BEN
plugin for ORCA to manage this logic. We also built handler plugins that manage
paths over the BEN management network by forming and issuing commands to
a variety of network devices, such as Cisco and Juniper L2 switches, Infinera
DWDM equipment, Polatis fiber switches, based on path descriptions generated by
the queries.

Later, we implemented new ORCA plugins to interface with external circuit
APIs used in the various national circuit fabrics around the globe. These include
National LambdaRail’s Sherpa FrameNet service (now defunct), Internet2 Open
Exchange Software Suite (OESS), ESnet On-demand Secure Circuits and Advance
Reservation System (OSCARS), and GEANT NSI. These plugins allow for the
abstraction of provisioning operations and for stitching among providers, making
the topology-embedding generic and leaving the details of provisioning actions to
the plugins.

286 1. Baldin et al.

Table 1 ORCA plugins developed to support ExoGENI

Plugin
name Description In use

Eucalyptus | Supports calling EC2 API in Eucalyptus to instantiate virtual machines. | N
Interfaces with custom code that we introduced into Eucalyptus to
support arbitrary networking configurations. Includes an AM control
policy and a handler capable of interfacing to EC2 tools

OpenStack | Supports calling Nova API to instantiate virtual machines. Passes addi- | Y
tional information to guests using user data. Nova has been modified to
allow asynchronous updates to user data

OpenStack | Supports generating the necessary networking configuration for virtual | Y
quantum machines once they are created by Nova. Interfaces to our custom
implementation of a Quantum plugin to OpenStack

Network | Mainly handler plugins that include implementations of abstract oper- | Y
drivers ations, like create VLAN, add port to VLAN, and their opposites for
a variety of vendors and switches: Cisco 6509 and 3400, Juniper
EX2400 and QFX3500, IBM G8264, Infinera DWDM, and Polatis fiber
switches. The handlers operate over a variety of interfaces (CLI, XML,
Netconf) to program the switch behavior

OpenFlow | Includes an AM control for issuing VLAN tags to avoid conflicts | N
between slices. Allows stitching to external VLANSs. Supports inter-
facing with FlowVisor to create per-VLAN slices in the rack switches
and optionally attaching a controller which emulates learning switch
behavior

Hybrid Includes an updated AM control for issuing VLAN tags and determin- | Y

VLAN/ ing whether the best mode for the switch to instantiate a particular

OpenFlow | connection in a slice is VLAN or OpenFlow. Includes the functionality

plugin of OpenFlow plugin. An additional interface to the switch supports
native VLAN provisioning (e.g., in G8264 above)

iSCSI Includes an AM control that can provision iSCSI LUNs on demand. | Y

storage Supports IBM DS3512 appliances as well as server-based solutions
using Linux iSCSI software stack

NLR Includes an AM control and a handler for now-defunct NLR Sherpa | N

Sherpa circuit service

OSCARS/ | Includes an AM control that passes the correct parameters for end-to- | Y

OESS/NSI | end circuit creation in OSCARS, OESS, or NSI domains. The handler
plugin distinguishes among domain types and invokes the proper driver
tasks to drive the domain-specific APIs

BEN A complex control that implements multi-layered connection provi- | Y
sioning inside BEN and calls on a custom handler interfacing to
Polatis fiber switches, Infinera DWDM gear, and the available Layer-2
switches to create on-demand connections in BEN at multiple layers

VLAN A complex AM control that allows for creation of multi-point con- | Y
SDX nections in slices using a series of switches connected to each other
to support complex stitching and multipoint arrangements of VLANs
from multiple providers. Can use any of the switches supported by
network drivers above
Topology- | A plugin that interfaces to the experimenters, implementing GENI and | Y
embedding | ORCA-native outward-facing APIs. Internally processes slice topology
controller | descriptions. Uses ORCA APIs to communicate with brokers and AM
controls to provision the slice. There is a single controller code that
works both for intra-rack and inter-rack topologies

ExoGENI: A Multi-Domain IaaS Testbed 287

We also extended other handlers to drive cloud APIs. With the emergence
of Eucalyptus [24], we focused our development on integration with standard
EC2-compatible cloud stacks, replacing our older cloud software, Cluster-on-
Demand [8]. ExoGENI rack sites currently use these plugins to drive the OpenStack
cloud service, which exposes a similar interface. Due to better modularity of Open-
Stack software, however, ExoGENI enhancement also included a new Quantum
plugin for OpenStack that enables dynamic attachment of L2 networks to VM
instances. In addition, we developed an ORCA handler plugin to unify these pro-
visioning tasks under a common abstraction. We developed a similar plugin for the
xCAT open-source provisioning system to accommodate bare-metal provisioning.

For work with OpenFlow, we produced a set of embedding extensions and
plugins that communicate with Flow Visor, using its API to create OpenFlow slices.
This capability was used in two ways. In situations in which a user wants explicit
control over forwarding, ORCA allows the user to specify an external OpenFlow
controller, which then attaches to the FlowVisor slice. To emulate traditional
VLANs, ORCA dynamically creates VLAN-based flowspace slices and attaches
them to an internal controller that emulates the behavior of a traditional VLAN with
learning switches.

Many of these ORCA plugins process logic-based semantic resource descriptions
(NDL-OWL models). Early in the project we augmented ORCA with a common
library (NDL-Commons, ~13,000 lines of code) with software to process NDL-
OWL models, and another larger library to handle various model query tasks
including topology embedding. This library simplifies the development of ORCA
plugins that use the native semantics models to describe resources. For example, the
plugins to manage OpenStack VMs, which include the control policy for OpenStack
AM as well as the handlers to perform operations on OpenStack and Quantum, take
~300 lines of code (LOC) for the control policy; this is because OpenStack offers
its own placement and scheduling of VMs in worker nodes, relieving ORCA of the
need to perform these tasks. The handlers responsible for interfacing to OpenStack
and to Quantum total ~6000 LOC in Ant, bash, and Python to manage the creation
of virtual machines and their network interface configurations. In contrast, BEN,
which lacks its own IaaS system, requires direct management of the various network
elements in its topology and is significantly more complex. It includes a ~500 LOC
control policy and a handler requiring a combined ~8000 LOC in Ant and Java.

The structure of software deployed on an individual rack is layered as shown
in Fig. 3. In the bottom layer, there are IaaS software stacks of various providers,
exposing their native APIs to ORCA plugins. Users and their tools interact with the
infrastructure via interfaces exposed by ORCA (marked as GENI API and ORCA
API). Similarly, monitoring infrastructure is built around the open-source Nagios
system, with custom plugins for various pieces of infrastructure that are specific to
ExoGENI, e.g., to monitor the liveness of individual ORCA actors.

This modular architecture has had significant benefits for ExoGENI and its
users. It reduces the time needed to bring new technologies into GENI, as ORCA
developers are not concerned with the inner workings of an IaaS system, but rather
with its provisioning APIs. The amount of code that must be written to support a new

288

—

. Baldin et al.

Exo GENI
Layer

Monitoring System
(Nagios) Layer
Testbed
Substrate

Fig. 3 Conceptual view of the ExoGENI software stack deployed in a rack. An IaaS layer consists
of standard off-the-shelf software and services for server clouds, network transport services, and
OpenFlow networking, which control the testbed substrate. Testbed users and tools access the
testbed resources through GENI APIs and an alternative API (labeled ORCA NIaaS API in the
figure) based on semantic resource models. The ORCA resource-leasing system tracks resource
allocation and orchestrates calls to handler plugins, which invoke the APIs for services in the IaaS
layer. The monitoring system has a similar structure

technology is reduced, as is its testing time. The design leverages the significant
efforts of other teams and vendors in developing IaaS solutions, which are then
federated under ORCA.

Users and their tools invoke GENI or ORCA APIs to instantiate and program
virtual resources from participating providers. A slice is a set of virtualized
resources under common user control. A slice may serve as a container or execution
context to host an application or a network service. An ExoGENI slice may contain a
network topology with programmable nodes, storage, and links woven together into
a virtual distributed environment [31]. The links in the topology comprise the slice
dataplane. Software running within a slice may manage its dataplane as a private
packet network. To do so, it may use either IP or alternative protocol suites, as
specified by the slice owner. A slice may span multiple sites and link to further GENI
resources or to other external resources as permitted by peering and interconnection
agreements.

ExoGENI: A Multi-Domain IaaS Testbed 289
2.4 Deployed Software Ecosystem

Requests from users enter an ORCA control system through an ORCA server
called a Slice Manager (SM), which invokes the AMs to obtain the requested
resources. Each SM runs controller plugins that encapsulate application-specific
or slice-specific logic for managing a slice. In essence, the SM is an extensible
user tool running as a recoverable server. In general, an SM runs on behalf of
slice owners with no special trust from other services. However, the ExoGENI SMs
are trusted: the ExoGENI AMs accept requests only from SMs endorsed by the
testbed root. The ExoGENI SMs run a controller plugin that offers standard GENI
APIs to GENI users and tools. The controller validates the GENI authorizations for
the slice and for the user identity in each request, translates between GENI’s RSpec-
XML resource descriptions and the logic-based semantic resource models used in
ORCA, and encapsulates the topology embedding logic.

Within ExoGENI, SM controllers interact with other ORCA coordinators called
brokers. Brokers collect and share information about ExoGENI aggregates, includ-
ing their advertised resources, services, and links to circuit providers. Each ORCA
broker is trusted by some set of aggregates to advertise and to offer shares of their
resources. A broker may also coordinate resource allocation across its aggregates,
guiding or limiting the flow of requests to them. It does this based on, e.g.,
scheduling policies and capacity constraints, as described in previous work on
SHARP resource-peering [11, 16]. Each request for resources is approved by a
broker before the SM passes it to an AM.

Two distinct SM configurations in ExoGENI are shown in Fig. 4. Each ExoGENI
rack site runs a SM called a rack SM. Each rack SM exposes its rack site as a distinct
GENI aggregate. Requests to a rack SM can operate only on the local rack; each rack
SM uses a local broker with a share of local site resources.

In addition, a global ExoGENI SM called an ExoSM can access all aggregates
within the ExoGENI testbed. There may be any number of ExoSMs, but the
initial deployment has a single ExoSM. The ExoSM exposes ExoGENI as a single
GENI aggregate. The ExoSM offers a unified view of the testbed, supporting vir-
tual topology-mapping and circuit-path planning across the ExoGENI aggregates,
including the circuit providers and network exchanges. User requests to ExoSM
may request a complete slice topology spanning multiple sites and circuit providers.
The ExoSM coordinates construction and stitching of end-to-end slices.

A controller plans and sequences the resource requests and stitching actions to
the AMs, based on declarative semantic models that advertise the resources and
capabilities of the participating aggregates [4, 5, 34]. It obtains these domain models
from a common testbed-wide broker (ExoBroker) that is accepted by all ExoGENI
aggregates and receives all of their advertisements. Notably, both types of SMs use
the same controller plugin: the topology embedding logic embeds user requests in
whatever resources are available to it—either within one rack or across the entire
ExoGENI testbed. The SMs differ only in the resources advertised to them in their
declarative models.

290 1. Baldin et al.

Global ExoGENI Actors

SDX AM

ExoBroker | m OSCARS/OESS
AM
S

headnode

£

Raé? D

rci-hn.exogeni.nej

A Broker

AAM

mojquado Y

headnode

Departure
Drive

mojjuado

RCI XO

Mmojquado

mojquado

BBNXO Rack C

Fig. 4 ExoGENI software deployment on several ExoGENI (XO) sites connected to campus OF
(OpenFlow) networks. In addition to ORCA actors responsible for carrying out the provisioning
actions on the available resources, each rack runs its own ORCA controller/SM to support the
GENI model of operation. The controller views the rack as a separate individually programmable
substrate. In addition, we deployed the ExoSM controller, which has access to a fraction of
resources from each rack as well as access to inter-rack circuit providers. The ExoSM performs
complex topology-embedding tasks across the entire testbed

Thus, a user can request resources from an individual rack, using its local
controller, and then use GENI tools to attempt to create a slice that spans multiple
racks. Alternatively, the user can submit the full inter-rack request to an ExoSM
actor. The latter has a global view of resources across the testbed. It can embed
the user’s request into multiple racks and transit providers. The ExoSM then
attempts to fulfill the request by binding it to the available resources and stitching
connections together into a linked topology. The ExoSM actor provides critical
features that many ExoGENI experimenters find useful: (I) load-balancing their
requests across the system, thus avoiding manual “hunting” for available resources;
and (II) advanced stitching among multiple racks, which supports point-to-point
and multi-point SDX L2 connections. Supporting these features and adding new
capabilities to ExoSM remains a significant focus of ongoing ExoGENI/ORCA
development efforts.

Over time, we added to ORCA many components and services that help manage
the large, distributed infrastructure of ExoGENI in a scalable manner. They go
beyond developing plugins for ORCA, adding functionality that is required in a

ExoGENI: A Multi-Domain IaaS Testbed 291

world-wide deployment of ExoGENI to be managed by a small team of operators
and developers. Shown in Fig. 5, those include:

* ImageProxy: Support for compute-instance image retrieval and dissemination
across racks, as described in Sect. 3.1.

¢ Distributed registry services for ORCA actors and other elements of the
infrastructure, based on CouchDB, as described in Sect. 4.1.

* Scalable monitoring and notifications using XMPP pub sub (XEP-0060), as
described in Sect. 4.2.

* Administration tools for site and federation operators, as described in Sect. 4.3.

* ORCA user tools for creating slices using its native APIs and resource descrip-
tion mechanisms, as described in Sect. 5.1.

* Support for interoperability with GENI: translation between GENI RSpecs
and ORCA native NDL-OWL resource descriptions, as described in Sect. 5.2.

Figure 5 shows the communications among these various components using
a variety of protocols, including SOAP, XMLRPC, and REST, depending on
the availability of protocol implementations and the needs of the particular use
scenario within ExoGENI. This ecosystem largely relies on off-the-shelf open-
source software, sometimes with custom plugins to serve ExoGENI needs. This
reduces our development time and allows us to leverage the best solutions that the
open-source community has to offer.

3 ExoGENI Services

Each ExoGENI rack site is reconfigurable at the physical layer, providing a flexible
substrate for repeatable experiments. Most testbed users employ a virtual machine
(VM) service; however, we also support bare-metal provisioning systems. In
addition, most racks offer sliverable storage in the form of dynamically configurable
iSCSI volumes and, of course, VLANs that can interconnect slice components
together within- or between racks, including optional OpenFlow controls. VMs are
offered using OpenStack, while bare-metal provisioning is done using xCAT [10],
which is developed and maintained by IBM. iSCSI is offered using a variety
of interfaces supported by storage appliances. Networking configuration is done
directly on the switches of various brands, while OpenFlow support is accomplished
by interfacing with FlowVisor. All of these separate IaaS solutions operate in a
single rack, separated on operator-determined resource boundaries such as pre-
assigned worker nodes and VLAN ranges as well as LUN tags and sizes. Their APIs
are hidden underneath ORCA and the users are never exposed to the differences,
or indeed know which particular solution is being used to provide them with the
requested resources. Depending on the rack implementation, similar services can
be provided in different ways in different racks without intruding on the user’s
awareness.

292

1. Baldin et al.

In this section, we discuss in more detail each type of resource, and how
ExoGENI accomplishes the provisioning and orchestration needed to create user

slices.

3.1 Compute Resources

Many of the ways in which ExoGENI provides compute

services to its users are

similar to those used by other testbeds. In this section, we concentrate on a few

aspects of our approach that, in our opinion, are original

and create value-adding

services for the experimenters. These aspects include compute-image management,
instance network-interface configuration, and post-boot application configuration as

well as -scripting.

Compute instances are provisioned for users using a combination of OpenStack
and xCAT, depending on whether the type is VM or bare-metal. A key orchestration
challenge for multi-domain networked clouds is uniform management of images to

l_BlOWhOl‘Z Scalable Asynchronous
(s ICGGEGJIOF 5 | Notifications

- Slice manifest updates

monitoring) N

N

Scalable Stateless

'
T~

GENI
- Member Authority
- Slice Authority
- Clearinghouse

- ¥
A \

Flukes
User slices

GENI Tools
(User slices)

Experimenter

ImageProxy i . NDL-RSpec conversion
~ (IS N
5 i L
o D [i .
- o] e
o 25 IORCAY .
[J] | /] .
= 272 8 — <-rr ORCAAM L
o Ec 3 . H S
= S o3 A (P
s o8] Gy S
o i e
= S | U’
7 v 1
) v
()
© .
=z ORCA SM and
Controller -

Pequod
(Admin)

Distributed Registry Services
(CouchDB)
- Actor Registry
- Instance meta-data
- Stitchport registry

Site or federation
administrator

Fig. 5 The structure of ExoGENI software components and tools, in addition to the core ORCA
components, includes a number of ancillary software components that act as registries, notification
services, and management tools. Critically, the majority of them leverage common libraries and
off-the-shelf open-source software, with extensions for ExoGENI

ExoGENI: A Multi-Domain IaaS Testbed 293

program the node instances. With standard IaaS cloud stacks, following the Amazon
Elastic Compute Cloud (EC2) model, each cloud site requires a local user to pre-
register each image with the site’s cloud service, which then generates an image
token that is local to that site. Networked clouds need a way to manage images
across the member sites of a federation.

To increase flexibility, ExoGENI practices the BYOI (Bring Your Own Image)
approach. Compute-instance images are merely cached inside each rack’s object
store, leaving their permanent storage to the users. Each rack AM includes a
cloud-handler plugin to invoke EC2/OpenStack APIs and an ImageProxy server to
obtain node images named by a URL in the user request. An image file specifies
a canned operating system and application stack selected by the user in the form
of a kernel file, an optional ramdisk file, and a filesystem. All components of the
image are named independently by public URLs, thus allowing for mixing and
matching of kernels, filesystems, and ram disks, possibly created by different users.
ImageProxy is a stand-alone caching server that enables the cloud site to import
images on demand from the network. In order to avoid unauthorized tainting, the
image descriptor file specifies the SHA1 hash of each file, in addition to its URL.

In our approach, the creator of an image registers it at some shared image
depository and names it by a URL. A request to instantiate a VM names the image
descriptor file by a URL and a content hash for validation. The ORCA AM’s cloud-
handler plugin passes the image URL and hash to the local ImageProxy server. The
ImageProxy fetches and caches any image components in the local object store if
they are not already cached, and registers the image with the local cloud service if it
is not already registered. It then returns a local token that the AM cloud handler
may use to name the image to the local cloud service when it requests a VM
instance. If a particular image is cached, ImageProxy merely returns the identifiers
of the image components in the object store, skipping the download and registration
steps. In principle, ImageProxy can work with any image server that supports image
fetch by URL, e.g., the various Virtual Appliance Marketplaces operating on the
web, Dropbox, Google Drive, and other cloud-storage services. It also supports
BitTorrent URLSs to allow scalable content swarming of images across many cloud
sites.

To stitch various elements of slices together using network links, the compute
instances must be informed of the specific VLANs picked to represent specific
links, such that the virtual topology mimics the requested one. OpenStack Quantum
presents a convenient API through which to inform virtual machines of their
networking configuration, for which we implemented a custom Quantum plugin
that is invoked by the AM handler code. Based on the configuration created by
the controller from the user request, it creates the necessary Ethernet interface
configuration for the VM. It then attaches the tap interfaces to tagged interfaces
of the worker node in which the VM is being created. Notably, the interface
configuration is generated after the VM starts to boot, such that the network
interfaces appear in the VM as it is booting. This approach clears the way for us to
have fully dynamic slices in which nodes and links can come and go independently
of each other, rather than assuming a static slice topology.

294 1. Baldin et al.

Layer-3 (L3) configuration, i.e., [P-addressing and routing, is done guest-side
(from inside the compute instance) by a set of guest extensions that we call
NEuca-Quantum. The name is a combination of the legacy name “NEuca” for
Networked Eucalyptus, originally developed for the Eucalyptus cloud platform,
and the name “Quantum”. The extensions comprise a set of scripts and a running
service that are installed in every ExoGENI image. They perform necessary guest-
side configurations based on metadata available to them via a REST interface.
The metadata is presented to the service in the form of an INI file with a number of
sections related to global, network, and storage configurations along with post-boot
scripts. This information helps to configure application behavior inside the compute
instance. Our plans include supporting fully dynamic behavior for slices, including
network interfaces that can come and go as links are created and destroyed in a
slice. Thus, we designed this guest-side service to expect the metadata to change
over time. It periodically compares the metadata to what it has seen before and
reconfigures the guest if there are any changes. This allows the user to update the
behavior of the slice, attaching or removing links and storage, in the knowledge
that the configuration of the instance OS will follow such user-specified changes in
topology or behavior.

Post-boot scripts run on a compute instance at startup. They are used to install
and configure software that is specific to each compute instance. Specifying post-
boot scripts for each compute instance in an experiment enables other users to repeat
the experiment using the same configuration. It is extremely desirable that scientists
and experimenters should not have to rewrite these post-boot scripts when they scale
their experiments to a larger number of resources, or when they make changes to
topologies. Hence, ExoGENI offers templated post-boot scripts that allow scientists
to scale their experiments from small test runs to large production runs with minimal
effort.

A scalable post-boot script can configure the compute instance correctly regard-
less of the size of the experiment. This is achieved by allowing various elements
of the slice named by the user (nodes, links, interfaces) to be referenced directly in
the post-boot script templates. ORCA controller then takes care of substituting the
templated variables with their slice-specific values. ORCA thus relieves users of the
need to remember assigned values such as interface IP addresses. It also adds values
that user scripts may need to know but that they cannot control, such as compute
instance interface MAC addresses.

A common use of a scalable post-boot script is to create entries in /etc/hosts
for each virtual machine so that machine names will resolve to IP addresses. High-
performance and high-throughput distributed systems often require name resolution
for proper functioning (e.g., HTCondor [32] and Hadoop [2, 19]). A slice typically
consists of a group of worker nodes. A group may vary in size; however, all nodes
are configured identically. Other nodes may be present in the topology as well, e.g.,
a head node. Since a slice has its own private network with user-assigned IP address
space, it is desirable to enable the user software to learn this assignment easily. The
remainder of this section is an example of a scalable post-boot script that configures
/etc/hosts.

ExoGENI: A Multi-Domain IaaS Testbed 295

This example includes a head-node server (named Server) and a varying number
of clients (named Clientl, Client2, etc.) in a group, and a broadcast network (named
VLANO) connecting them. The clients might use the following post-boot script to
configure /etc/hosts and to start the client software that connects to the server
using its resolvable name. Note that this post-boot script has been simplified for
formatting. It is written in bash, although any other scripting language executable
in the guest VM would also work. Template variables have $ before them and lines
beginning with # are commands for the Velocity templating engine, which is Turing-
complete, allowing for rich capabilities for code auto-generation.

#!/bin/bash

echo $Server.IP("VLANO") $Server.Name() >> /etc/hosts
#iset (Smax = $Client.size() - 1)
#iforeach ($i in [0..Smax])
echo $Client.get ($i) .IP("VLANO") ‘echo $Client.get
($1) .Name () | \ sed 's/\//-/g'" >> /etc/
hosts
#end

/path/to/my/software/client-start $Server.Name ()

In this example, respective entries for the server and for each client are added to
the /etc/hosts file. The templated post-boot script uses variables to reference
properties of resources in the request. For example, the IP address on the server ass-
igned to the interface on VLANO can be referred to as SServer . IP ("VLANO").
The user submits the script with $Server.IP ("VLANO"), and the template
engine replaces it with the actual IP address of the interface that is configured on
the virtual machine towards the link named VLANO in the slice request. In addition,
node groupings of various sizes can be referenced using template language loops
and conditionals, which expand to reference any number of compute nodes.

The example uses template variables to reference hostnames and IP addresses
of a group of clients that varies in size. For the server and for each client, an entry
is added to /etc/hosts, allowing each node’s name to resolve to the IP address
that is assigned to its interface on VLANO. This templated script does not contain
the actual names and IP addresses of the nodes, allowing a slice to be recreated
with different IP addresses assigned to the compute nodes without modifying the
script. After template expansion, the post-boot script adds an entry to /et c/hosts
for the server and for each virtual machine in the group. The two output scripts
displayed in Fig. 6 show the template expansions in cases in which the group has two
and four virtual machines, respectively. The post-boot script makes the experiment
scalable because it can be repeated with any number of compute nodes by simply
modifying the number of nodes in the group, without affecting the template specified
by the user.

The templating mechanism allows access to the following variables available to
ORCA during topology-embedding: slice name and GUID, link and node names,

296 1. Baldin et al.

Original template

Cluster with 4 clients

Cluster with 2 clients

Fig. 6 Template expansion of a post-boot script with variable size compute node groups

interface MAC and IP addresses, and the size of a node group. The list of template
variables is growing with user requirements.

3.2 Storage Resources

Many ExoGENI racks contain a 6-TB or larger iSCSI network-storage device that
can be slivered by users; i.e., upon request, portions of this storage can be allocated
dynamically to iSCSI targets that are accessible to compute nodes in the slices. In
addition, the ExoGENI request can instruct the system to attach the iSCSI target
to a particular compute node, to format the target block device with a specified
filesystem, and to mount the filesystem at a specified point within a compute node.

Storage requirements of data-intensive applications often greatly exceed the
available capacities of individual compute nodes, each of which typically is limited
to a few tens of gigabytes. Such applications normally use dedicated network
storage facilities available to dedicated compute resources. Typical multi-tenant
cloud environments provide abstracted block devices that are virtualized by the
hypervisor. Virtual machines’ method of access to remote block storage through
these virtual block devices is similar to that of access to their root block devices.
Although this abstraction simplifies access to virtual block storage from the
guest, it adds computational overhead and latency to I/O. Further, it limits the
network storage to that which is managed by the local cloud system. It does not
permit attaching multiple compute instances to the same block device without an
intervening compute node.

In contrast, in ExoGENI, the racks contain network storage devices (iSCSI) that
are sliverable and that can be partitioned into virtual iSCSI targets. The latter can

ExoGENI: A Multi-Domain IaaS Testbed 297

be allocated to individual slices and accessed over dynamic L2 circuits in a manner
that is independent of compute resources. These iSCSI targets are provisioned using
mechanisms similar to those applied to compute and network resources. When the
user requests a virtual storage device from ExoGENI, the storage target is created
dynamically. The iSCSI target is stitched directly to the provisioned L2 network,
opening it to access by other computational resources within the slice from the
same or other racks. Storage stitching allows remote access over high-bandwidth
low-latency networks. It also allows remote storage to use low-overhead network-
virtualization technologies (e.g., single-root I/O virtualization, or SR-IOV).

Importantly, this approach allows infrastructure providers to expose different
types of storage, depending on their capabilities. Broadly, we separate them into
two models: a ‘shared channel’ model, in which the pool of storage is available to all
tenants over a single shared VLAN, and a ‘dedicated channel’, in which individual
storage targets can be reached by the individually bandwidth-provisioned channels.
The provider’s choice of the model to support is determined largely by the capability
of the deployed storage technology. Appliances that are capable of tagging traffic to
or from a particular target, e.g., to a specific channel or VLAN, can support the
‘dedicated channel’ model. Others must rely on the ‘shared channel’ model.

This choice has implications for performance and functionality. The ‘dedicated
channel’ model isolates tenants’ individual I/O-performance levels more effectively
than the ‘shared channel’ model. Further, stitching of storage targets into slices is
more robust when the ‘dedicated VLAN’ model is chosen, as it closely resembles
the stitching of compute nodes.

To support guest-side configuration, the NEuca-Quantum tools described above
were augmented to attach, to format, and to mount ExoGENI’s iSCSI storage
based on metadata parameters passed to the tools. When a virtual storage device
is included in a request, the NEuca-Quantum tools can be instructed to configure
the iSCSI initiator, to attach to the appropriate target, to format a filesystem, and
to mount it within the machine. Alternatively, the tools can ignore remote storage,
leaving the configuration to the user.

3.3 Rack-Local VLANs and OpenFlow

To connect edge resources such as storage and compute together, ExoGENI can
allocate VLANs dynamically inside the rack, provision them using one of several
available mechanisms, and stitch them into the edge resources. (See the chapter
about ORCA for details of the stitching logic.) The capability of note that separates
ExoGENI from other testbeds is its explicit support for hybrid switching, in which
the users get to pick the type of VLAN that they wish to use in their slice. The
worker nodes of the rack are dual-homed into the rack switches, with each switch
logically separated into the “legacy VLAN” and the “OpenFlow” parts by ports.
Due to limitations of switch implementations, the OpenFlow part is “uplinked” to
the “VLAN” part, which is then uplinked to the outside world. When a request

298 1. Baldin et al.

is submitted, the control software determines what type of connection the user
is requesting and provisions the network appropriately. This approach provides
the benefits of supporting reliable legacy VLAN functionality and experimental
OpenFlow features in one platform, making it a user-selectable option, rather than
an architectural or a deployment choice.

When the user requests an OpenFlow-type connection and passes information
about its external controller, the control software allocates a VLAN tag. This tag
is common to creating OpenFlow and VLAN connections. The control software
proceeds to plumb the connection from the VM interface to the appropriate worker-
node interface and, then, into the OpenFlow part of the switch. A separate handler
interfaces with Flow Visor to create a slice matching the issued VLAN tag and points
it at the user’s OpenFlow controller. The user then can manage explicitly the way in
which packets are forwarded inside this connection, which can be point-to-point or
multipoint.

On the other hand, if the user does not request OpenFlow explicitly, the system
assumes that the user prefers a legacy VLAN connection. It similarly allocates the
VLAN tag. This time, however, it plumbs the VM interfaces to a different worker-
node interface that is directed to the “legacy VLAN” part of the rack switch. Then,
a separate handler uses one of the available interfaces, such as CLI (command-line
interface) or Netconf, to provision the VLAN in the rack switch on appropriate
ports.

3.4 Transit Network Providers

To stitch slices from slivers belonging to different providers or racks, ExoGENI
offers its own inter-domain stitching engine. The engine can find and select paths,
as well as allocate and provision, based on the model of inter-domain topology
that ExoGENI maintains. This logic is encapsulated in the combination of the
coordinator service and the various ExoGENI AMs interfacing to the transit
network providers that provide L2 connectivity among the various racks. Figure 7
demonstrates the logical topology of ExoGENI with its various transit providers.
Notably, the transit providers fall into two separate categories. Some provide
dynamic bandwidth-on-demand via a form of API and some do not. The former
case includes the core providers, such as Internet2 AL2S (Advanced Layer-2
Service) and ION services, ESnet OSCARS, and the GEANT NSI. The latter
case includes the majority of the regional providers or connectors that support the
connectivity between the racks and the core providers. These providers typically
provide pools of static VLANs provisioned with resources from the rack switch,
the interface to the core provider, and other points. Each of these VLANSs is
identified by a single tag, with ExoGENI software managing the allocation of tags
to specific requested connections. In some cases, the providers require that the tags
be remapped internally within their infrastructures, such that VLAN is seen as a
tag X at the rack, while it appears at the interface to the core provider as tag Y.

ExoGENI: A Multi-Domain IaaS Testbed 299

CIENA,
Ottawa, Canada

= ION ——
= AL2S ——
» StarLight —— ESnet ——

SL,
Chicago, IL

406 =

10G /é\ W
: ExoGENI
: SDX :

- Switch @SL.____...\ : /

OSF/DOE,
Oakland, CA

RCI,
10G Pacific NW Chapel Hill, NC

t - E

Departure Drive
Raleigh, NC 106

ExoGENI

E “1o6 f,./* .
TAMU, LEARN O 1006
College Station, TX
——— 4
100 ¢ i BEN
Swm:h @DD (y_,-J

E B
= 2| e

/ N
[T e o G - A A — U
Amsterdam, we . CENIC\ LoTP

The Netherlands \;_/J Tunnel
‘Nox Q_} © Duke,
. S 106 | Durham,NC
10G / E‘ I |
E UFL, FIU,

Gainesville, FL Miami, FL NICTA, Sydney,
ok ueo. Australia

, BBN,
Washington, DC Boston,MA Holyoke, MA Davis, CA

Fig. 7 Logical topology of ExoGENI racks as of mid-2014. The racks are interconnected by a
variety of regional and global providers (Internet2, ESnet) with either static or programmable paths.
ORCA native stitching manages the connectivity across ExoGENI racks, supporting point-to-point
and multi-point connections, using stitching switches in Raleigh and Chicago

Some providers support Q-in-Q (provider bridging). ExoGENI accommodates all
of these options using its coordination logic and topology descriptions. In addition
to point-to-point connections, it also supports multi-point inter-rack connections, as
described in detail in the following section.

ExoGENT’s pathfinding and stitching guarantee path continuity, supporting
dynamic tag translation when necessary to create end-to-end L2 connections among
rack sites. Authorized slices also may link to other VLANs entering the dataplane
switch from the campus network or backbone, such as the GENI Meso-Scale
OpenFlow Waves on Internet2. Further, for connections to resources lying outside
of ExoGENI control, we support the notion of a “stitchport”, a named peering L2
point with the outside world, described in Sect. 3.6. The topology-embedding logic
of ExoGENI can create slices that include a connection from a slice element, like a
compute node, to a known stitchport.

300 1. Baldin et al.
3.5 Network Exchange Points and Multi-Point Connections

Architecturally, GENI focused on providing L2 environments for experimenters to
support better security and performance isolation, thus improving the repeatability
of experiments. Typically, L2 dataplane environments linking multiple cloud sites
lack dynamic control capabilities. Thus, it is the job of the control middleware to
coordinate VLAN link creation, to tag choices from each of the underlying domains,
and to assemble them into end-to-end paths via a stitching mechanism. As VLAN
translation is not available in all domains in this inter-cloud environment, we came
up with a novel label exchange mechanism, implemented by deploying extra VLAN
exchange switches in strategically chosen locations. Label-translation capability
thus becomes a sparsely distributed network function requiring scheduling. In
ExoGENI, the two chosen locations are a L3 PoP (point of presence) in Raleigh,
N.C., and the StarLight facility in Chicago, which lies at the intersection of a large
number of commercial and research L2 providers.

Mapping virtual topologies to a data center with a tree-type physical network
topology has been studied extensively, and many efficient solutions have been
developed. Such mapping is not possible in a distributed cloud environment
interconnected by multi-domain mesh networks because (1) none of the existing
network providers today provide inter-domain L2 broadcast services; (2) it would
be very difficult to use point-to-point connections to serve a virtual cluster placed
in N cloud sites, either by setting up a full-mesh virtual topology among the N
sites or by setting up extra routing nodes for a non-mesh virtual topology, as O(N?)
connections are required; (3) dynamic circuit service and VLAN translation are only
available in a few advanced providers among some of the cloud sites. As a result,
an advanced stitching mechanism, by itself, is not enough to achieve the maximum
capacity.

We designed our VLAN exchange mechanism and deployed it in strategically
chosen locations to serve two purposes. It supports dynamic VLAN circuit service
among cloud sites that can only preconfigure static VLAN circuits to other places,
i.e., a L2 exchange service. Critically, the same architectural approach allows us
to set up dynamic large-scale virtual L2 broadcast domains among multiple VLAN
segments, which we call a L2 broadcast service. Figure 8 displays just such a
VLAN exchange, consisting of two high-capacity Ethernet switches controlled by the
provisioning software as part of the distributed cloud-provisioning software system.
In our multi-domain multi-cloud network, the exchange is modeled as a separate
domain, as it is owned not by transit network providers but by a separate entity
offering the exchange service.

Our architecture uses switches in pairs due to a typical limitation of Ethernet
switches, which are unable to translate more than one label to- and from the
same tag on the same port. In Fig. 8, these labels are shown as V, and V3. This
is typical in our environment, in which the exchange sits next to a large transit
provider, such that connections from multiple sites can coalesce simultaneously on
a single port connecting the exchange to this provider. The addition of the second

ExoGENI: A Multi-Domain IaaS Testbed 301

Fig. 8 Inter-domain VLAN
exchange comprised of two
switches that support
remapping from one tag to
another and creation of
multi-point broadcast
connections

Exchange Switch

Exchange Switch, connected to the Access Switch by several cables in parallel,
allows each connection arriving at the Exchange Switch to be allocated a separate
port on that switch, thus overcoming the tag-translation limitation. The number of
cables connecting the two switches effectively limits the maximum cardinality of the
multipoint connection. The Access switch provides tag translation for simple point-
to-point connections. For multi-point broadcast requests, it forwards each incoming
connection to a separate port on the Exchange Switch, which then internally creates
a common tag to- and from which the incoming tags are translated.

The advantages of this solution are several. (1) Instead of O(M?), only O(M)
static connections are needed for M static sites in a federation. Consequently, instead
of negotiating with preconfiguring static connections to every other site, a static
transit provider only needs to do so with the exchange. (2) The basic stitching
mechanism in the exchange is VLAN or other label translation, i.e., each site can
preconfigure connections to the exchange domain with different VLAN ranges.
The domain can pick up two arbitrary VLAN tags and connect them together via
VLAN translation. This mechanism relieves operators of the obligation to enforce
the stringent VLAN continuity requirement and to deal with the complexity of
creating multi-domain VLAN connections. It also reduces the dependency on other
advanced carrier Ethernet capabilities (e.g., Q-in-Q) in order to set up end-to-end L2
connections. (3) The additional benefit of the enabled L2 broadcast service makes
it a relatively simple process to create a virtual L2 broadcast domain for a virtual
cluster embedded in multiple cloud sites. Each participating cloud site creates a
connection to the exchange domain, and the exchange switch translates the incoming
VLANSs into one common VLAN. (4) L2 network isolation is ensured between
different users’ virtual systems and bandwidth guarantees. (5) Every cloud site still
can implement, independently, its own virtual networking solution (provisioning
Vi), as long as it can interface with the exchange service via the negotiated set of
services, e.g., VLANS.

302 1. Baldin et al.
3.6 Stitchports

A stitchport is a flexible abstraction, which gives ExoGENI the capability of
including in a slice a number of resources outside the direct control of Exo-
GENI (i.e., not allocatable; static from the perspective of ExoGENI). A stitchport
comprises a specified network interface within ExoGENI topology along with
an available VLAN range on a physical switch or a URN of a network transit
service (i.e., Internet2 OSCARS service), advertised as a special resource type
in ExoGENI. A stitchport may have additional meta-information associated with
it, such as available IP ranges, as well as local DNS and router information to
support connecting the elements of the slice to the external static elements via
L3. Dynamic Host Configuration Protocol (DHCP) can be used by the campus to
support this functionality as well, issuing dynamic elements of the slice connected
to the stitchport leases for locally available IP addresses. This meta-information is
stored in the distributed directory services deployed in ExoGENI, as described in
Sect.4.1.

Since its deployment, the stitchport capability has found many uses in the
interoperation of ExoGENI with external resources. The primary use case is so-
called cloud bursting, which allows additional cloud computational resources (from
ExoGENI) to be used on demand, for instance, when the user’s campus HPC share is
insufficient, or when certain data-analytic tasks need to be done, but the user has no
dedicated computational and network resources. Another use case is referred to as
an on-ramp, and is used to ferry data between campus resources and elements of user
slices. This mechanism was also used for doing hardware-in-the-loop experiments
with SmartGrid equipment emulating the behavior of a large number of PMUs. The
information from the PMU emulator was delivered into the slice via a stitchport,
then processed and stored by elements of the slice [6].

4 ExoGENI Administration

This section concentrates on the operational aspects of ExoGENI as they relate to
scalable configuration as well as to the monitoring and administration of this widely
distributed infrastructure. Considering the relatively small size of the ExoGENI
operations team (two system administrators and a network administrator), which
is responsible for maintaining, managing, and upgrading a large number of widely
distributed sites, we paid special attention to procedures and tools that could be
brought in to help with these tasks.

ExoGENI: A Multi-Domain IaaS Testbed 303
4.1 Scalable Configuration

ExoGENI comprises many layers, combining off-the-shelf and custom software
with diverse hardware. Yet, it must present a relatively uniform view of its capabili-
ties to users and, further, must remain secure from a variety of abuses. It is difficult
to maintain a consistent configuration of the various elements across sites while
accounting for differences among racks in hardware and software deployments. To
achieve this goal, we took a two-pronged approach. On the one hand, ExoGENI
reduces the amount of configuration that administrators must perform and, on the
other hand, it automates configuration processes across racks.

We decided on Puppet [28] as the main supportive tool and mechanism to use in
automating the configuration process. From our perspective, Puppet offered a num-
ber of advantages. It is modular and easily customizable, allowing us to reuse many
existing configuration modules and to write our own, when necessary, to support
configuration of custom pieces of ExoGENI. It is templated, therefore allowing us
to maintain consistency while introducing customizations into each rack’s template
as necessary. Our initial deployment of Puppet was fully hierarchical. One Puppet
master, on the testbed control node, was able to trigger changes across all racks at
the same time. In the end, while being convenient in many respects, this approach
did not work well in situations in which control over racks was shared between
ExoGENI operators and campus owners, as is the case in a federated system. Thus,
the Puppet configuration on which we settled was deployed in each rack’s head node
based on templates that are stored and updated using a version-control system from
a central repository. This arrangement nicely balances consistency of behavior with
the needs of individual substrate owners.

At this writing, each rack is set up initially using Puppet by installing it on the
partially installed head node along with its templates. The latter then trigger the
installation of all the software on the head node and worker nodes, the adjustment
of file permissions, and the automatic generation of many of the configuration files.
This significantly reduces the time it takes to set up a rack and guarantees that
the setup is consistent across the racks. In normal operation, Puppet is used to
trigger maintenances by managing user whitelists, deploying common changes to
configuration files, and updating the software. The modularity, extensibility, and
open-source nature of Puppet allow us to continue customizing it to take on an ever-
larger portion of administration tasks in ExoGENI.

The second part of our strategy in reducing operator load and making configu-
ration more scalable involved deploying a CouchDB-based [1] distributed registry
service (Fig.4) with which various parts of ExoGENI can communicate. The first
use case for this infrastructure was the establishment of security associations among
ORCA actors in various racks. ORCA depends on establishing these relationships
using self-signed certificates and private keys generated by each actor in the
testbed. There are dozens of these actors: four per rack, not counting those from
transit providers, exchanges, and other global actors. Many of these actors need to
communicate with each other. Manually propagating certificates to establish trust

304 1. Baldin et al.

among them is not feasible for the operators, since the process is quite vulnerable
to errors. Instead, we rely on a CouchDB-based registry to store actor certificates.
Distribution of certificates to other actors is done using a simple GUI for the
operators.

Upon start-up, each actor automatically registers its GUID, certificate, and other
meta-data with the registry service. The operator can approve the actor as “trusted”
through a CouchDB custom plugin interface. Other actors can request information
about approved actors, including their certificates, thus automatically creating the
necessary trust relationships and removing the need for the operator to do it.
Additionally, this registry service is used to store metadata about stitchports. We
anticipate that other uses will be found in future, wherever structurally simple
metadata needs to be stored in a resilient fashion and to be made accessible across
the testbed.

We reviewed a number of NoSQL (eventually) consistent database solutions.
We decided on CouchDB because of its relative maturity and its ability to support
master-master replication, which is important in a federated environment such
as ExoGENI. Its distributed nature makes the infrastructure resilient to failures
of individual instances, while the ability to support master-master replication
means that individual clients can choose to contact any of the replicas with
their updates (first available) and the changes eventually will propagate to other
masters. Currently, ExoGENI operates several instances of CouchDB, deployed on
geographically distributed head nodes in the testbed.

4.2 Monitoring

Another important aspect of ExoGENI operation is monitoring the hardware and
software infrastructure. There are two primary tasks that the monitoring infrastruc-
ture performs. One is the liveness checks of components in order to send alarms
to operators when a particular component is no longer reachable. The other is the
monitoring of mappings between virtual infrastructure created by users and the
physical infrastructure of the testbed. This latter task supports multiple goals. From
the point of view of operators, it is critical to know which user slivers correspond
to which physical components to support debugging and troubleshooting. It also
fulfills LLR requirements in case unauthorized activities like network scans or
storage and distribution of illegal content are traced back to user slivers. From the
point of view of users, this information is part of the overall picture that they may
need to analyze the performance of the slices in their experiments.

ExoGENI relies on two primary solutions. Nagios CheckMK [21] is used for
liveness monitoring and collection of performance information from the substrate.
At the same time, a combination of XMPP pubsub and a custom tool called
Blowhole helps to collect, distribute, and store information about the mappings
between virtual and physical resources (see Fig. 4).

ExoGENI: A Multi-Domain IaaS Testbed 305

As is the case with Puppet, CheckMK is deployed independently in each rack
to monitor rack components. An additional instance of it monitors the state of
other components of ExoGENI, like ORCA actors operating on transit providers,
CouchDB instances, LDAP, and other logically centralized testbed functions. Also
as with Puppet, we rely on a mix of standard and custom modules to monitor
the various parts of the infrastructure. Modularity and the open-source nature of
CheckMK make this an easily extensible solution that grew scalably with the
testbed.

Timely information about the mapping between slivers and physical components
can only come from the control framework software performing the topology-
embedding. In our case, this information is held by the controller, either in the rack
SM or in the ExoSM. The ExoGENI slice manifest holds the definitive information.

Importantly, since slices in ExoGENI change over time, the manifest can change
over time as well. Another critical consideration is that the number of consumers of
this information can be quite large, with various tools acting on behalf of different
users and of various components in the monitoring framework. Thus, we needed
a solution that would scale both with the number of racks and with the number
of users, even as it reduced the communication load on the system by proactively
propagating any changes in the manifests to those entities that were interested in
them.

This brought us to a design based on a publish-subscribe paradigm, which has
been implemented in a number of protocols. One of the most common of these
is XMPP (XEP-0060) [23], a subset of the XMPP protocol that is used in Jabber
Instant Messaging. Another candidate was AMQP. At the time, however, XMPP
implementations were more robust, so we selected the OpenFire [15] open-sourced
XMPP server with robust support for XEP-0060. Using the XMPP protocol with
pubsub provided us with the necessary features. XMPP servers can be federated
to create resilient distributed infrastructure to use for publishing and updating
manifests. Their support of pubsub means that clients can express interest in specific
manifests for particular slices and can be notified whenever a controller publishes
an updated manifest. This approach also creates an architectural separation between
controllers (the originators of the manifests) and their consumers. Since both are
relying on a well defined protocol, both types of entities can evolve independently.

We then developed Blowhole, an XMPP client that could operate on the
manifests generated by controllers and perform various actions on them via a
system of plugins. The currently supported actions include saving the manifest into
a history database, converting it to RSpec, publishing it to the GMOC (GENI Meta-
Operations Center), and parsing it out to provide detailed mapping information for
GENI monitoring. A number of Blowhole instances are deployed in the testbed; a
central instance collects all manifests from all coordinator controllers to preserve
historical information about testbed use. Each head node also has an instance of
Blowhole supplying the mapping information to GENI for monitoring purposes.
This information is correlated with the data collected by CheckMK to create a
complete picture of the health of the testbed. We anticipate using this capability
in user tools to notify them of changes in their slices and to avoid polling.

306 1. Baldin et al.

4.3 Administration

A vital requirement to operate the testbed is support for the management of the states
of ORCA actors, both by administrators at campuses hosting the ExoGENI racks
and by our team. Our chosen solution needed to operate in a federated environment
featuring shared responsibilities for rack management while supporting separate
management of varying subsets of aggregates, ranging from the entire ExoGENI
to a single rack, according to need.

Like many other projects, ORCA started with a portal-based solution, in which a
JSP-based portal was attached to each container hosting ORCA actors. This solution
rapidly became non-scalable, since completing even simple tasks involving multiple
actors required the operator to be logged into several portals simultaneously. As
a result, we replaced the portal with an ORCA management Web-services-based
API, which then permitted us to design a command-line tool called Pequod (named
after the ship in “Moby Dick”). Pequod could communicate with any number
of containers and actors as well as perform complex actions without having the
operator think about how those are deployed. Our approach does not preclude the
construction of a portal; however, we found that operators prefer command-line
tools to portals.

The configuration file of Pequod accepts specification of any number of ORCA
containers to which the configuring operator holds authorizing credentials. This
allows several operators to share responsibilities for the same rack at a granularity
of a single container. Once logged in, the operator can inspect the state of ORCA
actors in the containers, see active slices and slivers, extend and close slivers on
demand, and perform other management tasks. The operator uses actor names to
refer to them without the need to specify in which container they reside. Importantly,
Pequod is scriptable using its own language, making it possible to automate many
of the frequently performed operations and simplifying the jobs of the operators.

5 ExoGENI User Tools

5.1 Flukes

When designing tools for users, we were guided by two main concerns. We wanted
to expose the full capabilities of ExoGENI, and to make it easy for experimenters
using ExoGENI to run large multi-domain experiments at a variety of scales. To
fulfill those requirements, we developed Flukes (see Fig.9), a Java Webstart GUI-
based tool that allows the experimenter to draw the desired slice graphically, to
request it from the system, and to interact with the manifest. To improve the
usability of Flukes, we applied automatic graph-layout algorithms to manifests so
that they could be displayed more intuitively and more easily. Flukes operates using
NDL-OWL resource descriptions (discussed in more detail in Sect.5.2) and an
ORCA native API, as shown in Fig. 3.

ExoGENI: A Multi-Domain IaaS Testbed 307

ann __ DRCA FLUKES - The ORCA Netwark Edeior ; motifnetwork.nfs multiracks.rdl
File Ovca Controller Output Format Graph Layout Help
Resource View | Request View

Wy Shces | | Query boe Mardtest | peuth metifnerwerk big Ram Reiponse | | Estend Reservation | | Comm Mofy Actiess | | Clear Madily Arons | | Delere Shee

g S T e o,
Py Sioraged e NP2
Link1282 Sanaged Linkss
=i \%'% /M
T it

-5 e
- g
werksed et kb0 ampdLing - k717
workeedl woeral Steeagel [T [N— . P e ismrin

Fig. 9 Flukes, the ExoGENI graphical user tool, is designed to exercise the most advanced
features that ExoGENI offers to support scalable experiments. It uses ORCA APIs and resource
descriptions. Flukes supports automatic graph layouts to help users to construct and to display
complex slices. The slice in the figure includes a five-way broadcast connection across multiple
sites, each of which instantiates a large number of compute instances (yellow) and an iSCSI storage
volume (green). Grey crossconnect icons indicate transit network domains on each path (Color
figure online)

The approach to user tools is one of the deep differences between ExoGENI and
other GENI testbeds. In GENI, the portion of logic responsible for stitching and
embedding resides with the user tools. In contrast, in ExoGENI, the tools are very
simple. Flukes is merely a converter from a graphical representation of a slice on the
screen to NDL-OWL and back. The main logic is contained in the controller. The
controller acts on behalf of the user; however, it is integrated more closely with the
rest of the control framework. It has access to resource-scheduling decisions via the
broker, a component not present in GENI architecture. Thus, while the controller
performs all of the complex functions of topology-embedding and stitching, it can
do so reliably because it can request resources from the broker directly, rather than
performing two-phase commit- or request/release cycles, as is done, e.g., in GENI
stitching. To support diverse user needs, multiple controller plugins with different
logics can be present, and they can interact with end-user tools in different ways
using the APIs and resource descriptions of their choice.

308 1. Baldin et al.
5.2 Supporting Compatibility with GENI Tools

To describe resources, ORCA adopted NDL-OWL, a variant of semantic Network
Description Language developed by the University of Amsterdam. Unlike the
syntax-schema-based RSpecs, NDL is semantically enriched with schema-encoded
class and predicate relationships. ORCA uses standard semantic inference, query,
and rule-oriented mechanisms to support functions such as topology-embedding and
verification of requests. To support GENI tools, it was necessary to implement the
GENI API endpoint function as well as conversion to- and from RSpecs and NDL-
OWL.

We implemented the GENI API as part of our controller functionality. It is
a thin layer on top of the native ORCA API. Thus, GENI tools can enter the
system in the same manner as do ORCA tools, with a similar level of access to
resources. The GENI API even allowed us to expose some of the advanced features
of ExoGENI, such as point-to-point inter-domain stitching, provisioning of storage,
and others. The primary effort went into converting RSpecs into appropriate NDL-
OWL representations to allow our main topology-embedding and stitching logics to
operate on them regardless of which API was chosen by the user.

We developed an on-line facility that translates GENI RSpec documents into
NDL-OWL and back (see Fig.5). Three types of documents had to be converted:
slice requests, slice manifests, and aggregate advertisements. It is worth noting
that the full two-way conversion was not required in all cases. We did need to
convert RSpec requests into NDL-OWL requests as well as to convert NDL-OWL
manifests and advertisements into RSpec. We insisted that translation be stateless,
i.e., that one document go in and one document come out without any state stored
in the system or acquired from elsewhere. Acquiring extra information might have
required the conversion process to hold the same authorization level as the user.
Such a requirement would have prevented the decoupling of the conversion from
the rest of the logic, resulting in a less scalable system.

The “progressive annotation” approach used in RSpecs for conversions from
requests to manifests was mostly compatible with this vision. However, we encoun-
tered difficulties with some user tools that wanted to use their private RSpec schema
extensions. These extensions would not normally be interpreted by the control
framework, but simply would emerge as part of the manifest unchanged, attached
to the same topology elements. The XML schema approach practiced in RSpecs
explicitly supports this behavior, essentially turning the RSpec into a channel of
communication that the user tool can use to pass information to itself or other user
tools from a slice request into its manifest. On the other hand, the conversion of the
request to NDL-OWL relies on an established information model; it omits anything
that it does not recognize as an extension important for the control framework.
The reverse conversion of NDL-OWL manifest to RSpec then loses the information
presented by the tool in the request.

We addressed this problem with proper modeling. The proposed use cases from
the experimenters for this facility amounted to using RSpec request as a property

ExoGENI: A Multi-Domain IaaS Testbed 309

graph that could be annotated arbitrarily on edges and links, with the ability to add
dependencies between elements of the request. The annotation needed to re-emerge
in the manifest in the same way to be useful to the tool. We defined a coloring
extension to our NDL-OWL information model that encodes annotations to nodes
and links, allowing the establishment of “colored” dependencies between them. The
color is represented by an arbitrary label and denotes a namespace of the application.
The application then can add property lists or XML documents as annotations to
elements of the RSpec graph. These annotations would be converted into a NDL-
OWL model, pass through the control framework as expected, and re-emerge as
RSpec manifests after conversion.

In the following example, request excerpt node genil is annotated under color
“gemini” with an XML blob that is understood by the application, but not by the
control framework:

<node client_id="genil" component manager id="urn:
publicid:IDN+rcivmsite+authority+cm">
<sliver type name="xo.medium">
<disk image
name="http://geni-images.renci.org/images/
standard/debian/deb6-neuca-v1.0.9.xml"
version="el972b5a5b30faladbd42f2dfleffbd40084fb3e" />
</sliver type>
<interface client id="genil:0">
<ip address="172.16.22.1" netmask="255.255.255.0" />
</interface>
<color:resource_color color="gemini">
<color:xmlblob xmlns:gemini="http://geni.net/
resources/rspec/ext/gemini/1">
<color:blob>
<gemini:node type="mp_node" >
<gemini:servicess>
<gemini:active install="yes" enable="yes"/>
<gemini:passive install="yes" enable="yes"/>
</gemini:services>
</gemini:node>
</color:blob>
</color:xmlblob>
</color:resource_colors>
</node>

Relying on the stateless nature of the translation, we were able to deploy a
number of RSpec-to-NDL-OWL translators across the testbed to support highly
scalable demands from the various GENI tools. ORCA agents communicating with
the tools requested translation as necessary from these translators, with the available
translators picked randomly from the preconfigured available list. This approach
proved both scalable and easy to manage, as converters could be upgraded easily,
separately from the rest of ORCA. It allows gradual introduction of new features
from ORCA into GENI by adding new translation capabilities into the translators
simply by updating their code.

310 1. Baldin et al.

6 ExoGENI and the GENI Federation

6.1 Relationship to Other GENI Testbeds

ExoGENI is significant in part because it offers our first opportunity to evaluate the
federated TaaS model in a production testbed. The ExoGENI principles represent
a departure in the GENI effort, whose current standards evolved from testbeds
that were established and accepted by the research community at the start of the
GENI program in 2007: PlanetLab [27], Emulab [33], and ORBIT [29]. Each
testbed developed its own control software to manage substrates that are dedicated
permanently to that testbed and remain under the direct control of its central testbed
authority.

The ExoGENI testbed is the first GENI-funded substrate whose control software
preserves provider autonomy by departing from that model. Instead, it uses standard
virtual infrastructure services that may be deployed and administered independently
and/or shared with other applications. Unlike other GENI testbeds, ExoGENI does
not mandate GENI as its only access interface; native OpenStack interface is still
available on each ExoGENI installation, and providers can choose the exact portion
of their capacity that they wish to delegate to GENI uses.

We intend that ExoGENI serve as a nucleus for a larger, evolving federation
encouraging participation from independent cloud sites, transport networks, and
testbed providers, beyond the core GENI-funded substrate. An important goal of the
project is to provide a foundation for intuitive and sustainable growth of a networked
intercloud through a flexible federation model that allows private cloud sites and
other services to interconnect and to share resources on their own terms. The
ExoGENI model offers potential to grow the power of the testbed as infrastructure
providers join the effort and as their capabilities continue to advance. In time, these
advances may lead not just to real deployment of innovative distributed services but
also to new visions of a Future Internet.

This goal requires an architecture that supports and encourages federation of sites
and providers. It must expose their raw laaS capabilities, including QoS, to testbed
users through common APIs. It requires a structure that differs from those of the
GENI predecessors, whose primary uses have been to evaluate new ideas under
controlled conditions (for Emulab and ORBIT) and to measure the public Internet
as it currently exists (for PlanetLab).

ExoGENI may be viewed as a group of resource providers (aggregates) within a
larger GENI federation. ExoGENTI itself is an instance of the GENI architecture and
supports GENI APIs as well as additional native ORCA interfaces and capabilities
that are not yet available through standard GENI APIs. This section outlines
the integration of ExoGENI with GENI and concomitant extension of the GENI
federation model.

ExoGENI: A Multi-Domain IaaS Testbed 311
6.2 Aggregates

GENI aggregates implement standard GENI APIs for user tools to request resources.
ExoGENI AMs, as described in this chapter, are orchestration servers built with
the ORCA toolkit. They support internal ORCA protocols rather than the standard
GENI aggregate APIs. The GENI APIs are evolving rapidly to support more
advanced control and interconnection of slices as well as of rich resource repre-
sentations and credential formats. Rather than implementing the GENI API directly
in the AMs, the initial ExoGENI deployment proxies them through a GENI API
implementation on its controllers.

This approach enables ExoGENI to present a secure and flexible interface to
the GENI federation and to support standard user tooling for GENI. At the same
time, ExoGENI supports end-to-end slice construction across ExoGENI aggregates,
based on native ORCA capabilities. The AM operator interface also allows local
policies that limit the local resources available to the testbed over time. This feature
enables ExoGENI providers to hold back resources from the testbed for other uses,
according to their own policies.

6.3 GENI Federation: Coordinators

GENI aggregates delegate certain powers and trust to coordinator services. The
coordinators help aggregates to cooperate and to function as a unified testbed.
For example, GENI currently defines coordinators to endorse and to monitor
participating aggregates; to authorize and to monitor use of the testbed for approved
projects; and to manage user identities along with their associations with projects.
The GENI coordinators are grouped together under the umbrella of a GENI
Clearinghouse, but they act as a group of distinct services endorsed by a common
GENI root authority.

The GENI federation architecture allows participating aggregates to choose for
themselves whether to accept any given coordinator as well as what degree of trust to
place in it. These choices are driven by federation governance structure. For reasons
of safety and simplicity, GENI opted for a hierarchical governance structure for its
initial trial deployment. To join the GENI federation, an aggregate must enter into
certain agreements, including compliance with various policies and the export of
monitoring data to GENI coordinators.

The aggregates in the initial ExoGENI deployment enter into mandated agree-
ments with GENI. They must accept and trust all GENI coordinators. Specifically,
ExoGENI controllers trust GENI-endorsed coordinators to certify users, issue
keypairs to users, authorize projects, approve creation of new slices for projects,
authorize users to operate on approved slices, and endorse other aggregates in GENI.
The GENI coordinators, in turn, delegate some identity management functions to
identity systems operated by other GENI testbeds and participating institutions
(Shibboleth/inCommon).

312 1. Baldin et al.
6.4 Integration with GENI

For each slice, GENI users and their tools choose whether to access the ExoGENI
testbed as a single aggregate through the ExoSM or as a collection of distinct site
aggregates through the site SMs. External GENI tools can interact with ExoGENI
site aggregates based on the current GENI architecture and API, in which aggregates
are loosely coupled except for common authorization of users and slices. Each
ExoGENI slice may also link to other GENI resources to the extent that the standard
GENI tools and APIs support that interconnection.

At the same time, the ExoSMs and ExoBroker allow ExoGENI to offer auto-
mated cross-aggregate topology-embedding, stitching, and allocation of resources
within the ExoGENI testbed. These capabilities are currently unique within GENI.
They are based on coordinator services, APIs, resource representations, and tools
that are not part of a GENI standard. In particular, GENI defines no coordinators
for resource management, so cooperation among GENI aggregates is based on
direct interaction among AMs or exchanges through untrusted user tools. GENI
is developing new extensions that would offer capabilities similar to those of
ExoGENI, such as automated configuration of cross-aggregate virtual networks.

ExoGENI also differs from current GENI practice with respect to the usage
model for OpenFlow networks. GENI views an OpenFlow datapath as a separate
aggregate that allocates the right to direct network traffic flows matching specified
packet header (flowspace) patterns, which are approved by an administrator. In
ExoGENI, OpenFlow is an integrated capability of the ExoGENI rack aggregates,
rather than a distinct aggregate in itself. ExoGENI slices may designate OpenFlow
controllers to direct network traffic within the virtual network topology that
makes up the dataplane of the slice. ExoGENI is VLAN-sliced: each virtual link
corresponds to a unique VLAN tag at any given point in the network. The handler
plugins of the ExoGENI rack AMs authorize the controllers automatically, so that
the designated controllers may install flow entries in the datapath for VLANs
assigned to the slice’s dataplane. We believe that this approach can generalize to
other OpenFlow use cases in GENI and cloud networks.

7 Conclusion

This chapter describes the design of the ExoGENI testbed, which addresses the
goals of GENI by federating diverse virtual infrastructure services and providers.
The approach taken in ExoGENI offers a means by which to leverage IaaS advances
and infrastructure deployments occurring outside of GENI. It also harnesses GENI
technologies to address key problems of interest outside of the GENI community,
such as linking and peering cloud sites, deploying multi-site cloud applications, and
controlling cloud network functions.

ExoGENI: A Multi-Domain IaaS Testbed 313

Many experimenters, including ourselves, are actively exploring the use of
ExoGENI-like infrastructure for domain science. The list of projects include the
aforementioned SmartGrid “hardware-in-the-loop” [6], a project called Adaptive
Data-Aware Multi-domain Application Network Topologies (ADAMANT) [20],
funded by NSF, to couple closely the Pegasus Workflow Management System and a
class of NIaaS infrastructures, the latter represented by ExoGENI.

We and other teams are exploring how to run computational science applications
on ExoGENI. For example, we have demonstrated successfully how ADCIRC [30]
storm-surge modeling software can run in a GENI slice. Other teams have explored
running Hadoop in a widely distributed environment across multiple ExoGENI
sites, aided by its advanced topology-embedding features. The list of applications
is growing every day, which we consider a very positive development and a confir-
mation of our vision. ExoGENI offers an architecture for federating cloud sites,
linking them with advanced circuit fabrics, and deploying multi-domain virtual
network topologies. The initial deployment combines off-the-shelf cloud stacks,
integrated OpenFlow capability, linkages to national-footprint research networks,
and exchange points with international reach.

ExoGENI and its ORCA control framework make possible the construction
of elastic Ethernet/OpenFlow networks across multiple clouds and circuit fabrics.
Built-to-order virtual networks are suitable for flexible packet-layer overlays that
use IP or other protocols selected by the owner. IP overlays may be configured
with routed connections to the public Internet through gateways and flow switches.
ExoGENI can also serve a broader role as a model and platform for future deeply
networked cloud services and applications.

Acknowledgements We thank NSF, IBM, and the GENI Project Office (GPO) at BBN-Raytheon
for their support. Many colleagues at GPO and other GENI projects have helped work through
issues relating to ExoGENI. We’d like to thank our colleagues from the EU: University of
Amsterdam SNE Group and Ghent University/iMinds for their help and code contributions.

This work is supported by the US National Science Foundation through the GENI initiative and
NSF awards OCI-1032873, CNS-0910653, and CNS-0720829; by IBM and NetApp; and by the
State of North Carolina through RENCIL.

References

1. Apache Foundation. CouchDB (2016). http://couchdb.apache.org/

2. Apache Hadoop (2016). http://hadoop.apache.org/core

3. Baldine, I.: Unique optical networking facilities and cross-layer networking. In: Proceedings
of IEEE LEOS Summer Topicals Future Global Networks Workshop (2009)

4. Baldine, 1., Xin, Y., Evans, D., Heermann, C., Chase, J., Marupadi, V., Yumerefendi, A.: The
missing link: putting the network in networked cloud computing. In: ICVCI: International
Conference on the Virtual Computing Initiative (an IBM-Sponsored Workshop) (2009)

5. Baldine, I., Xin, Y., Mandal, A., Heermann, C., Chase, J., Marupadi, V., Yumerefendi, A.,
Irwin, D.: Autonomic cloud network orchestration: A GENI perspective. In: 2nd International
Workshop on Management of Emerging Networks and Services (IEEE MENS ’10), in
Conjunction with GLOBECOM’10 (2010)

http://hadoop.apache.org/core
http://couchdb.apache.org/

314

6.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21
22.

23.

24.

25.

26.
217.

28.

1. Baldin et al.

Chakrabortty, A., Xin, Y.: Hardware-in-the-loop simulations and verifications of smart power
systems over an exo-geni testbed. In: 2013 Second GENI Research and Educational Experi-
ment Workshop (GREE), pp. 16-19 (2013)

. Chase, J., Baldin, I.: A retrospective on ORCA: Open resource control architecture. In: GENI:

Prototype of the Next Internet. Springer, New York (2016)

. Chase, J.S., Irwin, D.E., Grit, L.E., Moore, J.D., Sprenkle, S.E.: Dynamic virtual clusters in a

grid site manager. In: Proceedings of the 12th International Symposium on High Performance
Distributed Computing (HPDC) (2003)

. Dijkstra, F.: Framework for path finding in multi-layer transport networks. Ph.D. thesis,

Universiteit van Amsterdam (2009)

Ford, E.: From Clusters To Clouds: xCAT 2 Is Out Of The Bag. Linux Magazine, Jan 2009
Fu, Y., Chase, J., Chun, B., Schwab, S., Vahdat, A.: SHARP: an architecture for secure resource
peering. In: Proceedings of the 19th ACM Symposium on Operating System Principles (2003)
Guok, C., Robertson, D., Thompson, M., Lee, J., Tierney, B., Johnston, W.: Intra and
interdomain circuit provisioning using the OSCARS reservation system. In: Proceedings of
the 3rd International Conference on Broadband Communications, Networks and Systems
(BROADNETS) (2006)

Ham, J.V.: A semantic model for complex computer networks. Ph.D. thesis, University of
Amsterdam (2010)

Ham, J., Dijkstra, F., Grosso, P., Pol, R., Toonk, A., Laat, C.: A distributed topology
information system for optical networks based on the semantic web. J. Opt. Switch. Netw.
5(2-3), 85-93 (2008)

Ignite Realtime. OpenFire (2016). http://www.igniterealtime.org/projects/openfire/

Irwin, D., Chase, J.S., Grit, L., Yumerefendi, A., Becker, D., Yocum, K.G.: Sharing networked
resources with brokered leases. In: Proceedings of the USENIX Technical Conference (2006)
Irwin, D., Chase, J., Grit, L., Yumerefendi, A.: Underware: an exokernel for the Internet?
Technical report, Duke University Department of Computer Science (2007)

Kaashoek, M.E,, Engler, D.R., Ganger, G.R., Briceno, H.M., Hunt, R., Mazieres, D., Pinckney,
T., Grimm, R., Janotti, J., Mackenzie, K.: Application performance and flexibility on exokernel
systems. In: Proceedings of the Sixteenth Symposium on Operating Systems Principles (SOSP)
(1997)

Mandal, A., Xin, Y., Ruth, P., Heerman, C., Chase, J., Orlikowski, V., Yumerefendi, A.:
Provisioning and evaluating multi-domain networked clouds for Hadoop-based applications.
In: Proceedings of the 3rd International Conference on Cloud Computing Technologies and
Science 2011 (IEEE Cloudcom ’11) (2011)

Mandal, A., Ruth, P,, Baldin, L., Xin, Y., Castillo, C., Rynge, M., Deelman, E.: Leveraging and
adapting ExoGENI infrastructure for data-driven domain science workflows. In: 2014 Third
GENI Research and Educational Experiment Workshop (GREE), pp. 57-60. IEEE, New York
(2014)

. Mathias Kettner. CheckMK (2016). https://mathias-kettner.de/check_mk.html

Mell, P., Grance, T.: The NIST definition of cloud computing. Special Publication 800-145,
Recommendations of the National Institute of Standards and Technology (2011)

Millard, P., Saint-Andre, P, Meijer, R.: XEP-0060: Publish-Subscribe (2010). http://www.
xmpp.org/extensions/xep-0060.html

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorodnov, D.:
The eucalyptus open-source cloud-computing system. In: Proceedings of the 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid (CCGRID) (2009)

OGF NSI WG. Network Service Interface (2012). http://redmine.ogf.org/projects/nsi-wg
OpenStack (2016). http://www.openstack.org

Peterson, L., Bavier, A., Fiuczynski, M.E., Muir, S.: Experiences building PlanetLab.
In: Proceedings of the 7th Symposium on Operating Systems Design and Implementation
(OSDI) (2006)

PuppetLabs. Puppet Configuration Management tool (2016). http://puppetlabs.com/puppet/
what-is-puppet

http://puppetlabs.com/puppet/what-is-puppet
http://puppetlabs.com/puppet/what-is-puppet
http://www.openstack.org
http://redmine.ogf.org/projects/nsi-wg
http://www.xmpp.org/extensions/xep-0060.html
http://www.xmpp.org/extensions/xep-0060.html
https://mathias-kettner.de/check_mk.html
http://www.igniterealtime.org/projects/openfire/

ExoGENI: A Multi-Domain IaaS Testbed 315

29.

30.

31.

32.

33.

34.

Raychaudhuri, D., Seskar, 1., Ott, M., Ganu, S., Ramachandran, K., Kremo, H., Siracusa,
R., Liu, H., Singh, M.: Overview of the ORBIT radio grid testbed for evaluation of next-
generation wireless network protocols. In: Proceedings of the IEEE Wireless Communications
and Networking Conference (WCNC) (2005)

Ruth, P., Mandal, A.: Toward evaluating GENI for domain science applications. In: Interna-
tional Workshop on Computer and Networking Experimental Research using Testbeds (2014)
Ruth, P, Jiang, X., Xu, D., Goasguen, S.: Virtual distributed environments in a shared
infrastructure. Computer 38(5), 63-69 (2005)

Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the condor experi-
ence. Concurr. Pract. Exp. 17(2—4), 323-356 (2005)

White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler, M., Barb, C.,
Joglekar, A.: An integrated experimental environment for distributed systems and networks. In:
Proceedings of the 5th Symposium on Operating Systems Design and Implementation (OSDI),
pp. 255-270 (2002)

Xin, Y., Baldine, I., Mandal, A., Heermann, C., Chase, J., Yumerefendi, A.: Embedding virtual
topologies in networked clouds. In: 6th ACM International Conference on Future Internet
Technologies (CFI) (2011)

The InstaGENI Project

Rick McGeer and Robert Ricci

Abstract In this chapter we describe InstaGENI, built in response to the GENI
Mesoscale initiative (Berman et al., Comput Netw 61:5-23, 2014). InstaGENI was
designed both as a distributed cloud, to permit experimenters to run distributed
systems and networking experiments, across the wide area, and as a meta-cloud,
to permit systems researchers to build experimental clouds within the underlying
InstaGENI cloud. InstaGENI consists of more than 36 sites spread across the
GENI infrastructure, interconnected by a nationwide, deeply-programmable layer-
2 network. Each site is capable of functioning as an autonomous, standalone
cloud, with builtin Haa$S, TaaS, and OpenFlow (The Openflow Switch Specification.
http://OpenFlowSwitch.org; McKeown et al., ACM SIGCOMM CCR 38(2):69—
74, 2008) native support. Sites are also and by default linked, to offer slices
across the entire GENI Mesoscale infrastructure. InstaGENI targeted and has
realized its key design goals of expandability, reliability, resistance to partition,
ease of maintenance upgrade, high distribution, and affordability. InstaGENI offers a
highly-scalable infrastructure with OpenFlow native both between and across sites.
It has demonstrated a high degree of autonomy and remote management, and has
demonstrated its meta-cloud properties by hosting an IaaS and PaaS service within
it, GENI PlanetLab and the GENI Experiment Engine (Bavier et al., The GENI
experiment engine. In: Proceedings of Tridentcom, 2015).

1 Introduction and Motivation

The GENI [13] Mesoscale deployment was a first-in-its-kind infrastructure: small
clouds (called, collectively “GENI Racks”) spread across the United States, inter-
connected over a private, programmable layer-2 network with OpenFlow [49, 68]
networking native to each cloud. The GENI Mesoscale combined the essential
elements of the two principal precursors to GENI [27, 34]: the wide-area distribution

R. McGeer (<)
Chief Scientist, US Ignite, 1150, 18th St NW, Suite 900, Washington, DC 20036, USA
e-mail: rick.mcgeer @us-ignite.org

R. Ricci
Flux Research Group, University of Utah, Salt Lake City, UT, USA
e-mail: ricci@cs.cs.utah.edu

© Springer International Publishing Switzerland 2016 317
R. McGeer et al. (eds.), The GENI Book, DOI 10.1007/978-3-319-33769-2_14

mailto:ricci@cs.cs.utah.edu
mailto:rick.mcgeer@us-ignite.org
http://OpenFlowSwitch.org

318 R. McGeer and R. Ricci

and scale of PlanetLab [1, 10, 23, 59] with Emulab’s [40, 72] ability to do controlled,
repeatable experimentation, and added the entirely novel feature of programmable
networking through the OpenFlow protocol. The Mesoscale was to offer the ability
to allocate customizable virtual machines, containers, and physical machines at
any of 50 or more sites across the United States, interconnected with deeply-
programmable networking on a private layer-2 substrate and with programmable
networking on each rack.

In this, the Mesoscale envisioned three features not available in any commercial
or operational academic cloud: geographic distribution, highly-customizable com-
puting elements, and deeply-programmable networking [2]. The primary challenge
is that each node in the network is hosted by a separate individual donor institution,
which offers bandwidth and maintenance services as a donation to the community.
Under these circumstances, the node and each experiment running on it must behave
as a polite guest; it should not unduly consume resources, it should require hands-on
maintenance very infrequently, and it should not do harmful things to the institution,
or to third parties who will interpret the damage as emanating from the institution.
This means every node in the network must have two distinct administrators: a
central authority representing GENI, and the host institution. It further means that
the node must be heavily instrumented, and either the central authority or the local
authority must be able to shut it down immediately in the event of abuse or excessive
resource consumption.

All of this is well known from PlanetLab [60]; GENI merely deepens the require-
ment, since it introduces programmable networks and heterogeneous computing
environments (VMs, containers, and bare-metal machines running a variety of
operating systems; PlanetLab permitted only Linux containers under VServers [66],
which simplified administration significantly).

The geographic distribution and need to reduce the burden of on-site maintenance
implied a requirement for highly-autonomous operation, intensive in situ measure-
ment, and an ability to shut down slices rapidly, automatically, and selectively.

Since no facility prior to the Mesoscale had combined these features, we had
no way of knowing precisely what experiments and services would be run on the
Mesoscale. We drew on both the PlanetLab and Emulab experiences, but since both
omitted some essential features present in the Mesoscale, it was certain that entirely
new experiments would be run on this facility. As a result, flexibility became a
crucial design criterion: we need to be able to rapidly customize the testbed to meet
users’ needs.

In InstaGENI, this implied a decision to go broad and small rather than narrow
and heavy: given a choice between a lighter-weight rack that could be deployed to
more sites vs a heavier-weight rack with more features, we opted for the former
once we’d achieved a critical mass of functionality within the rack. There were
multiple rationales for this decision. First, is far easier to add resources to an
existing site than it is to bring up a new one, since the later task involves identifying
and training administrative personnel at the site, arranging network connections,
acceptance and site tests, physical siting, installation, and plumbing, and so on;
adding resources to an existing site is usually “just” a matter of buying computers

The InstaGENI Project 319

and line cards and plugging them in. Second, we didn’t know the right size for
a site until we had some experience. Experiments which required more resources
than were present at a particular site could always simply add more sites to the
experiment. The only real penalty for using other sites rather than adding resources
from the same sites was latency. However, the penalty for missing a site was
an area which lacked geographic coverage from GENI, and this is problematic
from a coverage perspective for applications and services that require distribution.
Further, GENI already had sites with many concentrated resources, notably the
various Emulab-based testbeds spread around the country; experiments requiring
concentrated resources could go there. Third, we wanted the community and the
sites to be able to expand the racks in ways that we couldn’t anticipate. Leaving
space in the racks and letting people install devices with interesting properties made
for a variegated and rich testbed. For example, sites have installed electrical grid
monitoring devices in GENI racks, offering virtual power grid labs on GENI [21].
Room for expansion offered the community the ability to offer such services very
easily.

The next dictated design decision was to use a proven software base (ProtoGENI
[62]) rather than install a new, experimental software base. Building a distributed,
flexible infrastructure is a large challenge; building one on a new software base
would be extremely challenging, both for developers and users. Moreover, fidelity
and repeatability of experiments required that the infrastructure on which they
were run was stable and, to the extent that we could make it so, artifact-free.
Even subtle bugs and peculiarities in the infrastructure can lead to misleading
experimental results. The ProtoGENI software stack is descended from Emulab,
which had operated its eponymous Utah cluster 24/7 for a decade; we knew it was
stable. Finally, GENI and the Mesoscale initiative represented a large bet for the
systems community and the National Science Foundation. We needed to make the
GENI Mesoscale a reliable experimental facility, good for constant use by a large
community, within the lifetime of the GENI project. Spending a year debugging the
infrastructure was contraindicated.

While we could not anticipate all the research that would be done on the
Mesoscale, research and experiments in cloud management systems was certain to
be a dominant theme. This is a topic of great current interest in both the systems
community and in the industry, and an area of extremely active development.
Moreover, while it’s relatively straightforward to do applications research on
operational clouds, even at large scale, it’s difficult to do cloud management
research. For this reason, a key requirement was to ensure that InstaGENI would be
a platform for research into the management and monitoring of both centralized and
distributed clouds. Experimenters needed to be able to build and manipulate their
own cloud platforms within the InstaGENI architecture. Thus, InstaGENI had to be
a meta-cloud, the first of its kind: a cloud that permitted within it the nesting of other
clouds. Indeed, it was anticipated from the first design of InstaGENI that at least
one cloud would be instantiated inside the underlying ProtoGENI base code: the
GENI PlanetLab infrastructure would be nested within the rack. This would serve
as the prototype for our clouds-within-clouds strategy, simultaneously satisfying the

320 R. McGeer and R. Ricci

need for an infrastructure that would support seamlessly long-running distributed
experiments and services using lightweight, end-system resources. The architecture
that we designed together with the GENI PlanetLab team remained unchanged as
GENI PlanetLab evolved into the GENI Experiment Engine [11]. Indeed, the switch
from GENI PlanetLab to the GENI Experiment Engine was entirely transparent to
InstaGENI: the GEE team used the standard InstaGENI tools unchanged, just as any
other experimenter would.

This combination of a distributed cloud and meta-cloud strategy—small clouds
everywhere and embedded clouds-within-clouds—is also used by projects National
Science Foundation’s NSF Future Cloud concept, notably in CloudLab [63].
InstaGENI served as a validation point and proof-of-concept for this design.

A final requirement was nothing exotic: components can and do break, and
must be easily replaced. Further, interest in InstaGENI racks is evident around the
world, from Japan, Korea, Germany, Taiwan, and Brazil: hence the racks must be
easily delivered anywhere. Further, though our original design was based entirely
on HP equipment, we wanted to ensure that both expansion in the current racks and
designs for future racks could incorporate equipment from other manufacturers as
circumstances warranted. These considerations led to a COTS design philosophy:
we would use only commodity components and build as little hardware dependence
into our design as possible.

Thus, InstaGENI: a network of 35 small clouds, spread across the United
States. The design requirements, discussed above, dictate the global architecture
of InstaGENI: each cloud is small, expandable, built from commodity components,
with a high degree of remote management and monitoring built-in. The network
itself is designed to withstand partition: each rack is capable of acting autonomously.
OpenFlow is native to the racks and the racks are interconnected in the control plane
across both the routable Internet and the private GENI network, and the data plane
across the racks is interconnected over layer 2. Then-GENI Project Director Chip
Elliott’s vision for the GENIRacks was to be the successor to the router in the new
network architecture implied by GENI: we believe that the InstaGENI design is a
good start on that.

The remainder of this chapter is organized as follows: in Sect.2 we consider
the role that GENIRacks, and specifically InstaGENI, play in the Mesoscale and
in the architecture of the future Internet. In Sect.3 we describe the architecture
of InstaGENI. In Sect.4 we describe the architecture and implementation of
InstaGENI. In Sect.5 we describe the hardware and software implementation of
InstaGENI. In Sect.6 we describe deployment considerations and concerns. In
Sect.7 we describe operating and maintaining an InstaGENI rack. In Sect. 8 we
describe the current status of the InstaGENI deployment. In Sect.9 we describe
related work, particularly our cousin project ExoGENI [3], and in Sect. 10 we
conclude and offer thoughts on further work.

The InstaGENI Project 321

2 InstaGENI’s Place in the Universe

Testbeds and experiments are all very well; however, the implications of Insta-
GENT’s design are much broader than experimental facilities for systems computer
scientists. Though this was and remains GENI’s primary mission, it was always
far more than that: put simply, GENI is a prototype of the next Internet—and
the GENIRacks were always envisioned as the “software routers” of that next
generation of the Internet. This is a sufficiently ambitious goal, and a sufficiently
deep topic, to warrant some discussion here.

We should start with the obvious: why do we need a new Internet at all? The
fundamental answer is that both the fundamental underlying technology of the
Internet and the use cases which informed its design point have changed radically
in the generation since its architecture was finalized. In the founding era of the
Internet, memory and computation were expensive relative to data transmission, and
the fundamental use case was bulk, asynchronous data transfer. Today, computation
and memory are cheap relative to networking, and the bulk of Internet traffic
is in latency-sensitive high-bandwidth applications: video, real-time interactive
simulation, high-bandwidth interactive communication, and the like.

Even the fundamental use case, bulk data transfer, has been significantly affected
by the change in underlying technology. When computation and memory were
expensive, moving data to computation—no matter how slow or painful—was a
necessity. Now, however, cheap computation and memory are ubiquitous: it is
feasible to move computation to data. And when it is feasible, it is almost always
attractive. Programs are generally small relative to the data they process, and many
programs reduce data. Some simple examples demonstrate the point. The CASA
Nowcasting experiment [46] looks for significant severe weather events; local
processing, sited at the weather radar, can find events of interest and propagate them
to a cluster which can do detailed processing. Doing the reduction locally, at the
weather radar, saves enormously on bandwidth and focuses the network on those
events of interest.

This is a simple example, but many more in the same vein can be described; and
as the Internet of Things becomes dominant, many more examples of this sort will
emerge. The CASA radar is merely one example of a very large class of device: the
high-bandwidth, high-capacity sensor. Choose virtually any Internet of Things use
case that involves such sensors, from driverless cars to real-time crime detection.
A straightforward, back-of-the-envelope calculation will demonstrate that the take
from the various sensors will overwhelm the network; the IoT will require not just
higher-capacity networks, but an entirely new architecture, with pervasive local
computing.

Other examples include latency-sensitive computation. Real-time Interactive
Simulation (RTIS) has long been a staple of computing entertainment and technical
training; it is also now being used more generally in Science, Technology, Educa-
tion, and Mathematics (STEM) education, educational assessment, and maintenance
applications. “Gamification” is largely the deployment of RTIS for non-gaming

322 R. McGeer and R. Ricci

applications. This has been spurred by the sophistication of the HTMLS5 platform,
which has meant that the browser can now support significant, intensive 3D
interactive applications.

Use of the browser as a rendering platform is preferred for a variety of reasons:
ubiquity of access implies that demand on the client be minimized, and use of a
standard browser platform is the best that we can do to minimize demands on the
client. Further, for many use cases (educational assessment, for example) one wants
to protect the application from client interference: the student shouldn’t be able to
cheat on the test. These requirements imply the need for cloud-based hosting of at
least some RTIS applications: in general, as much as one can get away with.

However, the Achilles’ Heel of cloud-based RTIS is latency; in general, the
computing engine should be no more than a 50 ms round-trip from the user. Any
latency more than that invites significant artifacts from a user’s perspective: jitter,
jumpy displays, out-of-order event sequencing, and so on. The combination of the
need for cloud-based hosting of the service with the application requirement of low
latency to the end-user points at the need for a pervasive cloud [20].

An excellent example of a low-latency high-bandwidth application delivered to
the user through a thin-client web browser is the Ignite Distributed Collaborative
Scientific Visualization System [15, 16], described in another chapter in this book
[39]. A combination of a large data set (9 GB), required high data rate between
visualization client and data server (100 Mb/s—1 Gb/s) and low required round trip
time (<20ms) required the use of a distributed, pervasive cloud. It is a prime
example of the kinds of applications that require the InstaGENI distributed cloud.

This pervasive cloud, driven by the twin needs for in-situ data reduction and low
latency between application host and application consumer, is the next generation of
the network. The fundamental architecture of the current Internet is centered around
moving data between fixed computation sites; the architecture of the next generation
may well be centered around sending programs to be executed near data sources or
users. In the argot of networking, provision of in-network layer 7 services will be
the dominant use case for the network in the coming decades.

Provision of layer 4-7 services in the network is nothing new, of course: this
has been the province of middleboxes and proxies almost since the inception of
the Internet. What is different now is degree rather than kind: rather than being
an ad-hoc appendage to the Internet, the pervasive cloud will make proxies and
middleboxes the central component of the emerging new Internet architecture.
In this architecture, universal, programmable middleboxes will play the role that
routers played in the first generation of the Internet architecture. Fundamentally,
a GENIRack is a platform for the deployment of universal, highly-programmable
middleboxes; in other words, the prototype of this new central component of the
emerging Internet.

The InstaGENI Project 323
3 Architecture of InstaGENI

Above all, InstaGENI is designed to meet the primary goals of the GENI project,
which are directed at creating a highly customizable environment for innovative
research, without restrictions and pre-conditions and with complete direct control
over all resource elements. Consequently, InstaGENI is a deployment platform
for GENI control frameworks, which enable researchers to discover, integrate,
and experiment with GENI resources. Fundamentally, GENI is a platform for the
deployment of virtual networks interconnecting virtual computational resources.
“Virtual” here is used in the classic sense: details of the physical attributes and
specific implementations are, to the extent possible and appropriate for the use of
the resource, hidden from the programmer; further, the programmer is given the
abstraction of an isolated network of isolated resources, all of which have guaran-
teed properties. The computational resources are generally but not always virtual
machines or their close cousins, OS containers. On occasion the virtual resources
are physical machines, radio nodes, specialized instruments, etc. [14, 33,57, 67, 69].
GENI has been designed to enable novel edge components to be integrated into the
experimental environment. In sum, InstaGENI is a distributed systems cluster with
sliceability at the end-host, distributed systems, and network level.

3.1 The InstaGENI Software Architecture

The InstaGENI software architecture is designed to provide deeply configurable
and deeply-programmable Infrastructure-as-a-Service and customizable OpenFlow
networks as a service. A critical design consideration was user familiarity: an
InstaGENI is essentially a small Emulab, with an embedded OpenFlow switch
to permit the construction of virtual networks. Further, a collection of InstaGENI
racks should behave as a distributed Emulab. While new capabilities and functions
are provided within the InstaGENI rack—GENI Experiment Engine nodes hosted
on InstaGENI Racks, more virtualization options, a Network Aggregate Manager,
and the ability to run long-term slices within networks of virtual machines—it was
critical that a user unfamiliar with InstaGENI be able to use InstaGENI just as he
was used to using Emulab. Further, each rack must be independently manageable.

Management and control functions for nodes in InstaGENI racks are primarily
provided by the ProtoGENI software stack. Each rack has its own installation of the
control software, and is capable of operating as an independent unit.

The software architecture of InstaGENI is shown in Fig. 1. The important thing
to take away from this diagram is nested and distributed control. The key element
is the ProtoGENI Base Manager (or ProtoGENI Controller, or Boss Node) on the
rack, which plays essentially the same role for an element of a distributed cloud that
a node manager does in a cloud: it orchestrates resources on the individual rack.
Nested controllers, whether they be entities such as the central GENI Portal or other

324 R. McGeer and R. Ricci

OpenVZ | Physical

OpenFlow
Container| Node GEE Node [VM

Controller

ProtoGENI Base Manager FOAM

—

External Tools, ProtoGENI Central

Nested Slice
Manager

Fig. 1 The InstaGENI software architecture

controllers such as the GENI Experiment Engine, use the ProtoGENI Base Manager
as an agent to manipulate resources on the individual rack: allocate and free VM’s
and bare metal nodes, load images, etc.

The Control Node in each rack runs Xen. This allows multiple pieces of control
software to run side-by-side in different virtual machines, with potentially different
operating systems and administrative control. This configuration also eases the
deployment, backup, and update of the control software. At installation, there are
four such virtual machines:

1. An Emulab/ProtoGENI boss node: this is a database, web, and GENI API server,
and also manages boot services for the nodes

2. A local fileserver and give users shells so that they can manage and manipulate
the data on the fileserver even if they do not currently have a sliver. This VM
can also act as a gateway for remote logins to sites that do not have sufficient
Internet Protocol (IP) addresses to give every experiment node a publicly routable
address.

3. An OpenFlow Aggregate Manager (FOAM) node to control the OpenFlow
resources on the in-rack switch

4. A FlowVisor controller to provide support for control-plane multi-tenancy on the
OpenFlow network.

Node Control and Imaging

The experiment nodes in the InstaGENI rack are managed by the normal Pro-
toGENI/Emulab software stack, which provides boot services, account creation,
experimental management, etc. Users have full control over physical hosts, includ-
ing loading new operating system images and making changes to the kernel, in
particular, to the network stack. The ProtoGENI/Emulab software uses a combi-
nation of network booting, locked down BIOS, and power cycling to ensure that
nodes can be returned to the control of the facility and to a clean state, meaning that

The InstaGENI Project 325

accidental or intentional changes that render a node’s operating system unbootable
or cut off from the network can be corrected. Nodes are scrubbed between uses; after
a sliver is terminated, the node is re-loaded with a clean image for the next user.

Images for OSes popular with network researchers, including at least two Linux
distributions and FreeBSD, are provided. Users may customize these images and
make their own snapshots. Installation of other operating systems is possible,
but involves significant expertise on the part of the experimenter and manual
intervention on the part of the rack administrators. Users making images in this
fashion are strongly encouraged to do so on the InstaGENI installation at the
University of Utah, where the most assistance is available. One use of this capability
is to boot nodes into images that support other control frameworks: e.g., to create
slivers that act as GEE nodes or OpenFlow controllers.

In addition to raw hardware nodes, ProtoGENI also provides the ability to
create multiple virtual machines (VMs) on the experimental nodes. ProtoGENI
supports this in two forms; in the first, an experimenter can allocate a dedicated
physical machine, and then slice that into any number of virtual containers. All
of the containers are part of the one slice that is being run by the user. In the
second form, one or more of the physical nodes are placed into shared mode,
which allows multiple users to allocate containers alongside other experimenters.
Typically, nodes running in shared mode exhibit better utilization. Physical nodes
may be dynamically moved in and out of the shared pool at any time. InstaGENI
racks typically allocate three nodes per rack as shared hosts; more nodes may be
moved into this pool as required.

The slicing technology used for ProtoGENI virtual hosts is the Xen [6] virtual
machine monitor. Earlier in its history, InstaGENI used OpenVZ, a Linux container
technology for slicing shared hosts. OpenVZ has the advantage of being very
lightweight and booting quickly [31], but we found that it was too restrictive for
the types of experiments that GENI users wanted: many wanted the ability to run
different Linux kernels, to move images back and forth between physical and virtual
hosts, etc. Using a single kernel, as is done in OpenVZ, also proved to be less
stable when exposed to the types of workloads offered by systems and network
researchers.

Administration, Clearinghouse, and Local Control

The InstaGENI racks are registered as aggregate managers with the GENI clear-
inghouse, which provides for registration and resolution of metadata associated
with users, slices, and component managers. The clearinghouse also serves as a
“root of trust,” exchanging root cryptographic materials (such as CA certificates)
between all parties, so that they do not have to do so pairwise. This means that
these entities are visible to, and usable from, existing tools that support the GENI
APIs and clearinghouse; these tools include the GENI portal, ProtoGENI command
line tools, Jacks (a graphical experiment design tool) [26], GENI Desktop [19], and
Omni(a command line tool for reserving resources across control frameworks) [36].

326 R. McGeer and R. Ricci

Details on the GENI Desktop and the GENI Architecture are given in other chapters
in this volume [17, 38]. Local administrators are given several policy knobs, which
allow the administrator to make the following simple policy decisions:

* Allow all GENI users access to the rack

* Allow GENI users to access the rack, but limit how many nodes each user may
allocate at a time

* Block all external users (e.g. those who do not have accounts registered on the
particular rack) from using the rack

 Issue credential to specific users that allow them to bypass the policies above

Other policies of these types (e.g. user and resource restrictions) can be added as
required by sites.

Each rack is given its own Certification Authority (CA) certificate; to establish
trust with the rest of the GENI and ProtoGENI federations, a bundle of these
certificates are available from the ProtoGENI clearinghouse. ProtoGENI federates
fetch this bundle nightly, so all current member of the ProtoGENI federation will,
by default, accept the InstaGENI racks as members of the federation. An InstaGENI
rack can participate in any number of federations by registering at more than one
clearinghouse and adding CAs from other federates to its local set. This feature has
been used to prototype federations that cross international boundaries [12, 18].

Nested Control Frameworks and PlanetLab/GENI Experiment
Engine Integration

The ability to nest control frameworks was a major design goal of InstaGENL
There are two major drivers for this design goal: first, to enable researchers in cloud
technologies to bring up their own clouds within InstaGENI; and, second, to offer
customized, simplified clouds for specific purposes, utilizing the mechanisms of
the underlying meta-cloud for various services (network configuration, image load,
and so on). PlanetLab was always designed as our prototype nested cloud. It, and
its successor, the GENI Experiment Engine, are described more fully in another
chapter [9] in this volume. Here, we cover some simple basics.

InstaGENI provides a GEE node image. Fundamentally, this is simply an Ubuntu
14.04 LTE image with the Docker container management system installed. GEE
nodes use a container-based virtualization technology that provides an isolated
Linux environment, rather than a standard VM, to a sliver. Containers can offer
better efficiency than VMs, particularly for I/O, because a hypervisor typically
introduces an extra layer in the software stack relative to a container-based OS.
In the PlanetLab model, all slivers on a physical host run on an underlying
shared kernel that slices cannot change. However it is possible to base the Linux
environment offered to slivers on different Linux distributions.

The GEE uses Linux Containers (LXC) [48] running under Docker [25] as the
core virtualization technology. LXC extends end-host networking with integrated
network namespaces. Network namespaces provide each Linux container with

The InstaGENI Project 327

its own view of the network. Within each container it is possible to customize
many aspects of the network stack, including virtual device information such as
IP and MAC address, IP forwarding rules, packet filtering rules, traffic shaping,
Transmission Control Protocol (TCP) parameters, etc.

GEE nodes are managed through the GENI Experiment Engine portal and
head node at http://www.gee-project.org. A full description of the GEE and its
administration may be found in the GEE Chapter in this volume.

The essential elements of the GEE form the recipe for future nested clouds:
form a base image which is deployed by the InstaGENI underlying service; choose
which nodes to allocate in each rack to the nested cloud; use the InstaGENI service
to allocate them and deploy the boss images; and write a separate, standalone
controller to allocate slices on the nodes. We believe that this recipe can be
followed for a large number of future nested Clouds on the InstaGENI infrastructure.
Notably, we believe that it would be not only possible but easy to instantiate a
distributed OpenStack-administered Cloud on the InstaGENI racks. Good examples
of such OpenStack-administered distributed Clouds are the Canadian SAVI Network
[5,43,44,47] and the OpenCloud/XOS [61] from Stanford’s ONLab, so this feature
offers a potential area of expansion for both these infrastructures.

4 The InstaGENI Network

InstaGENI features two networks: a control network over the routable Internet
and a private layer-2 data plane network provided over the GENI Mesoscale [24],
transitioning to Internet 2’s Advanced Layer 2 Service (AL2S). Experimenters have
access to the raw network interfaces on nodes allocated to their slices.

A diagram of the rack network is shown in Fig. 2. Control plane connections are
through a dedicated, relatively low-bandwidth conventional switch. This handles

Control: 4x 1Gb/s

I ProtoGENI Boss Node I } Control Plane Switch

iLO: 1x100
Scalable, Control: 1x1Gbs
minimum 5 I ProtoGENI Worker Node | iLO: 1x100Mb/s

nodes 3x1Gb

Routable Interne
Control Connection
1x1Gb/s ‘
\

GENI Data Plane connection
1-5 1Gb/s Mesoscale Network
ossibly also routable Internet

Fig. 2 The InstaGENI rack network

5406 data plane switch

http://www.gee-project.org

328 R. McGeer and R. Ricci

boss/worker control communications, Integrated Lights-Out (iLO) connections' and
external control connections. The external control interface is over the routable
Internet and is a single 1 Gb/s connection.

Data plane switching is over an OpenFlow switch. Each worker node has three
1 Gb/s connections to the data plane switch. There must be at least one 1 Gb/s
connection to the GENI Mesoscale network, and with a single 20-port linecard
the switch can support up to five external dataplane connections (assuming the
minimum of five worker nodes in the rack, and a single 20 x 1 Gb/s linecard). The
additional connections can either be to the GENI layer-2 network, or to the routable
Internet, or to another network. The switch can also be configured with 10 Gb/s or
above optical connections.

Virtual Local Area Networks (VLANSs) are created on the rack’s switch to
instantiate links requested in users’ Resource Specifications (RSpecs), and to
provide isolation for each experiment’s traffic. A small number of the available
4096 VLAN numbers are reserved for control purposes, leaving most available
to experiments. Using 802.1q tagging, each physical interface has the ability, if
requested, to act as many virtual interfaces, making use of many VLANs. With
the exception of stitching, user traffic within racks is segregated by VLAN. The
InstaGENI rack’s switch is capable of providing full line-rate service to all ports
simultaneously, avoiding artifacts due to interference between experiments.

OpenFlow is separately enabled or disabled for individual VLANs. VLANs
requested by users default to having OpenFlow disabled. Users are able to request
OpenFlow for particular VLANS; in this case, the OpenFlow controller for the
VLAN is pointed to the address supplied by the user. Some shared OpenFlow
VLANS are available (such as those with access to other shared resources such as
Wide-Area Network (WAN) connectivity), and requests for slices of those VLANs
are regulated by FOAM [7] and sliced via FlowVisor [65]. A single switch is
shared for experiment traffic and control traffic, so experimenters are able to enable
OpenFlow only on the VLANS that are part of their slices; OpenFlow is not enabled
on VLANSs used for control traffic or connections to campus or wide-area networks.

Network ports that are not currently in use for slices or control purposes are
disabled in order to reduce the possibility for traffic to inadvertently enter or exit the
network.

ProtoGENI virtual containers also permit the experimental network interfaces
to be virtualized so that links and LANs may be formed with other containers
or physical nodes in the local rack. This technique is accomplished via the use
of tagged VLANSs and virtual network interfaces inside the containers. Note that
ProtoGENI does not permit a particular physical interface to be oversubscribed;
users must specify how much bandwidth they intend to use; once all of the
bandwidth is allocated, that physical interface is no longer available for new

'HP’s proprietary embedded server management technology, similar to Dell Remote Access Con-
troller, Oracle/Sun iLOM, Cisco Integrated Management Controller and IBM Remote Supervisor
Adapter.

The InstaGENI Project 329

InstaGENI
Network

______ _______

P AED éésn.;‘.tnl.m
i &= & [MREN

Il nstaGENI Rack
[] Legacy Switch

[] OpenFlow Switch

Fig. 3 The InstaGENI external network

containers. Bandwidth limits are enforced through the use of traffic shaping rules
in the outer host environment. In addition to VLANSs between nodes, ProtoGENI
also supports Generic Routing Encapsulation (GRE) tunnels [29] that can be used
to form point-to-point links between nodes residing in different locations.

The initial nationwide InstaGENI Network is shown in Fig. 3.> The InstaGENI
Network Architecture was driven by two principal considerations: the need to offer
layer-2 services across the wide area and the need to permit deep programmability
and end-to-end OpenFlow capability across the entire Mesoscale.

The InstaGENI design required close consideration of three major classes of
WAN connectivity. One class of WAN resources consists of those that constitute
core foundation infrastructure, including those that support management planes,
control planes and data planes beyond the support provided by the local rack
network, which includes support provided by the local site, campus, regional,
national, and international networks. A second class of WAN connectivity consists
of the actual management plane, control plane, and data plane channels, which will
be supported by the core infrastructure.

2Diagram thanks to Joe Mambretti and Jim Chen at iCAIR, primary designers of the InstaGENT
network.

330 R. McGeer and R. Ricci

A third class of connectivity consists of the networks that are created, managed
and controlled by experimenters.

One set of resources that constitutes part of the core foundation infrastructure
includes those that support management planes, control planes and data planes
provided by the local rack network, the site network, the campus network, the
regional network and national and international networks. The InstaGENI design is
based on an assumption that, in general, the WAN core foundation resources will
be fairly similar and static. Also, the rack based interface for these capabilities
will be fairly uniform. However, there are multiple options for the design and
implementation of individual campus network resources, including those that enable
resource segmentation, a critically important attribute especially for research exper-
imentation, which requires reproducibility. Consequently, the basic connections
to the InstaGENI racks are customized for individual sites. Also, considerations
vary depending on local ownership and operations procedures. For example, some
university research groups and CS departments manage their own networks, while
others rely on division level or integrated campus-wide networks. In any case,
the InstaGENI design is sufficiently flexible to accommodate all major potential
options.

S Implementation of InstaGENI

The InstaGENI hardware design was driven by three principal considerations. First,
the goal was to support the software architecture described above; InstaGENI
is fundamentally characterized by code, not boxes. Second, commodity off-the-
shelf hardware was to be used, for reasons of maintenance and operations. When
something broke, it had to be easy to fix or replace. Finally, a large collection
of inexpensive racks is preferred to a smaller collection of more capable racks. It
is relatively easy to add capacity—more worker nodes, more switch ports—to a
modest rack, and somewhat more difficult to install a new rack. Therefore, our goal
was to get a broad footprint of modest, but usable racks early, and make them more
capable later. This strategy turned out to have unexpected benefits: lots of blank
area in the rack made it possible for experimenters to install specialized hardware
in individual racks, and use GENI to make that hardware available to experimenters
nationwide.

The base design of the InstaGENI rack is shown in Fig.4. It consists of five
experiment nodes, one control node, an OpenFlow switch for internal routing and
data plane connectivity to the Mesoscale infrastructure and thence to the Internet,
and a small control plane switch/router for control plane communication with the
Internet.

Figure 5 shows how the software architecture shown in Fig. 1 maps onto the
physical racks. The embedded rack controller and user storage are on the control
node. Each worker node can use any ProtoGENI image, including (but not limited
to) XEN VMs, the GENI Experiment Engine node image, designed to host GEE

The InstaGENI Project 331

6 cores, 48 GB
RAM, 1 TB Disk,
41G ports

Worker Node

Worker Node
Worker Node
Worker Node |

Worker Node
Control Node

6 Cores, 4TB
Disk, 24 GB
RAM

Routable Internet
(Layer 3)

L

GENI Mesoscale
Network (Layer 2)

Control Plane Switch

HP 5406 OpenFlow Switch

Fig. 4 Hardware diagram of the base InstaGENI rack

slivers, or physical nodes running the image of the experimenter’s choice. Data plane
connectivity is through GENI VLANSs on the Internet-2 Advanced Layer-2 Service
(AL2S) or the Mesoscale, and control connections to external embedded managers,
such as the GEE, to ProtoGENI Central, and to the GENI Meta-Operations Center
for logging and monitoring, are through the control connection.

The InstaGENI rack has been designed for expandability, while providing
standalone functionality capable of running most ProtoGENI experiment or an
exceptionally capable PlanetLab [10] site. As with all designs, the result is a
compromise, yet with much potential for revision and expansion.

The base computation node is the HP ProLiant DL360e Gen8, which is used
for both experiment and control nodes. The control node features a six-core,
1.9GHz processor. The experiment node has dual 2.10 GHz eight-core processors.
InstaGENI therefore has 80 experimental cores/rack and six cores in the control
node. Experiment nodes are configured for images and transient storage: hence disk
(1 TB/node) is relatively light. Permanent user and image storage is on the control
node, with features 4 TB/disk in a RAID array. Nodes in InstaGENI racks have
local disk rather than a Storage-Area Network (SAN): this configuration enables
isolation, when required, by allocating an entire physical node to a single slice,
avoiding contention for disk or controller resources.

The experiment nodes and switch have been designed for highly flexible, rather
than high-performance networking. The experiment node features four 1 Gb/s ports

332 R. McGeer and R. Ricci

GEE
Containers
within VM

ProtoGENI
Central, GMOC,
GEE Portal

Worker Node
Worker Node

Routable Internet
(Layer 3)
Stitched

Worker N
orker Node Experiment

Network

ProtoGENI Boss Node, User
Storage

Worker Node

GENI Mesoscale

Worker Node Network (Layer 2)

il

HP 5406 OpenFlow Switch

Control Plane Switch

Fig. 5 Software diagram of the base InstaGENI rack

total with TCP/IP Offload Engine. The control node is configured with 12 GB
of memory. The experiment node has been specified for 48 GB of memory. The
nodes may be extended by the use of two Peripheral Component Interconnect (PCI)
express cards.

The primary network device shipped with the InstaGENI rack is the HP ProCurve
(now E-Series) 5406 switch with v2 linecards. The 5406 offers rich OpenFlow
matching capabilities.

The control connection for the wide area goes through the HP 2610-24 switch.
The ProCurve 2610-24 provides 24-port 10/100Base-TX connectivity, and includes
two dual personality (RJ-45 10/100/1000 or Small Form-factor Pluggable (SFP))
slots for Gigabit uplink connectivity. An optional redundant external power supply
also is available to provide redundancy in the event of a power supply failure. The
2610 switch also carries the six (one control Node and five experiment nodes) iLO
connections.

Remote monitoring and management is an especially important InstaGENI con-
sideration. Hence all nodes, experiment and control, ship with HP integrated Lights
Out Advanced remote management, version 4 (iLO4). HP iLO is a separately-
powered card with separate network connection in the server chassis, with the ability
to reboot, setup the server and do power and thermal optimization, and enable
embedded health monitoring.

iLO connections to both control and data nodes go through the small 2610 control
switch, as does the Control Plane connection into the boss node switch from the

The InstaGENI Project 333

external world. The three ProtoGENI/FOAM control connections from the boss
node are wired into the HP 5406 rack switch, as are the 15 (3/node x 5 experiment
nodes) experiment node data connections and 5 (1/node x 5 nodes) experiment node
control connections. Finally, the data plane egress link to the wide area is hosted on
the 5406 rack switch.

6 Deployment of InstaGENI

A critical design objective for the InstaGENI racks was that InstaGENI live up to
its portmanteau: the InstaGENI racks had to be up and running out of the box,
and instantly connected through appropriate communication services to GENI. This
is the cornerstone of the InstaGENI design: the goal of InstaGENI was to have a
working, at-scale GENI network up and running and ready for experiments, with
each node up and on the network within a couple of weeks from hardware delivery.
We felt that this was achievable: PlanetLab went from O to 300 nodes in its first 2
years [60].

Careful preparation of both the racks and the sites were required for this.
We began in the proposal stage: each prospective site filled out an extensive
survey and questionnaire before the proposal went into the GENI Project Office,
which determined both physical and cyber characteristics of the sites: proposed
physical location of the rack, needs regarding power supply, details of incoming
connectivity including available VLANSs, availability of routable IP addresses,
details of boundary and firewall configuration, etc. Key personnel for both technical
and administrative support were identified and briefed on the installation needs for
the racks. These surveys were renewed as deployment approached.

7 Operations and Maintenance

Software installation for the ProtoGENI control nodes is accomplished through
virtual machine images. The local administrator first configures the iLO on the
control node (e.g. its IP address, default router, etc.) Generic control nodes images,
to run inside the Xen VM, are provided by the ProtoGENI team—in particular,
ProtoGENI has developed software that allows the local administrators to fill in a
configuration file describing the local network environment (such as IP addresses,
routers, DNS severs, etc.), and to generate from that a set of virtual machine images
customized to the rack. This functionality can also be used to move an InstaGENI
rack to another part of the hosting institution’s network, if needed. A default Xen
image running the FOAM software is also supplied.

Racks arrive at sites pre-wired. The ProtoGENI stack tests connections by
enabling all switch ports, booting all nodes, and sending specially crafted packets
on all interfaces. Learned MAC addresses are harvested from the switches and

334 R. McGeer and R. Ricci

compared against the specified wiring list. This detects mis-wired ports and
potentially failed interfaces, so that they can be corrected. The ongoing health of
the network is monitored by running Emulab’s “linktest” program after each slice is
created; this program tests the actual configured topology against the experimenter’s
requests.

InstaGENI racks’ control software is updated frequently and in accordance with
an announced schedule to keep up to date on GENI functionality and security
patches; the “frequent update” strategy has proved effective on the Utah ProtoGENI
site, which rarely suffers downtime due to software updates. All updates are tested
first on the InstaGENI rack at the University of Utah for a minimum of 1 week before
being rolled out to other sites. All racks receive at least 1 week of warning before
software updates, and updates may be postponed in the face of upcoming paper
deadlines, course projects, and other high-priority events. Most updates involve no
disruption of running slices; updates that do carry this risk are announced ahead of
time to the GENI community and scheduled for specific (off-peak) times.

A snapshot of the control VM is taken before upgrades are undertaken, so that
in the case of update problems, the control node can be returned to a working state
quickly. Backwards compatibility with the two previous versions of the GENI APIs
is preserved at all times to avoid the need for flag days.

Most administration of InstaGENI racks is undertaken through the Emulab/Pro-
toGENI web interface and via command line tools on the control node; physical
access to the racks for administration is therefore not required.

All nodes in InstaGENI racks, including control nodes, include HP’s iLO
technology, which includes power control and console access. This allows both
InstaGENI and local personnel to administer the nodes without requiring a physical
presence. iLO console capabilities are used for diagnosing faulty nodes (iLO
continues to function in the presence of many type of hardware failures) and during
the upgrade of control software. Access to iLO on experiment nodes is accomplished
through the control nodes so that public IP addresses are not required. iLO on the
control node itself requires a public address; this enables remote administration and
minimizes downtime in the case of software failures (and many types of hardware
failures) on the control node.

Full logs of resource allocations, including information about slices and users
who requested them, are available to the local administrators via a web interface.
The raw data used in this interface are stored in a database on the control node,
should local administrators wish to process this information in their own way. Using
existing ProtoGENI APIs, the GMOC are given credentials for each rack that allow
them to poll the rack for slice and sliver allocation status. InstaGENI racks use the
logging service that is provided by the GENI-wide clearinghouse.

InstaGENI Racks follow the Emergency Stop procedures outlined by the GMOC
in [35], and will follow newer versions as they become available.

Emergency stop of slices that are suspected of misbehavior are provided through
three interfaces:

The InstaGENI Project 335

* A web interface for rack administrators for cases in which they are made aware
of misbehavior

* A GENI API call for use by the owner of a slice or the leader of a project, for
cases when the slice may be compromised and used for purposes not intended by
the experimenters.

* A GENI API call for use by the GMOC, for cases when misbehavior is GENI-
wide, is reported through GMOC channels, or occurs when local administrators
are not reachable

The GMOC is given a credential for each InstaGENI rack giving them full privileges
to execute emergency shutdown on any slice. The GMOC is the primary point of
contact for any detected problematic behavior that occurs after hours or on weekends
or holidays. Three levels of emergency stop are provided:

* Cutting off the experiment from the control plane, but not the data plane: this
is appropriate for cases in which as slice is having unwanted interactions with
the outside Internet, but there is believed to be state within the slice worth
preserving. This particular level of emergency shutdown is for cases where the
unwanted communication is on the control plane, e.g. scanning/attacking external
networks.

* Powering off the affected nodes and/or shutting down the affected virtual
machine

* Deletion of the slice and all associated slivers

When emergency stop is invoked on a slice, the owner of the slice is prevented
from manipulating it further, and administrative action is required to complete the
shutdown. This property can be used to preserve forensic evidence.

8 Experience and Status

The InstaGENI deployment is now essentially complete in the Mesoscale infras-
tructure, and a full map of the deployed racks can be seen in Fig.6. The racks
in general are the minimum configured with five worker nodes, though the Utah
Downtown Data Center rack has over 30 worker nodes. Since the basic software
stack is ProtoGENI, and since the Emulab stack from which it has descended has
managed clusters up to 1000 nodes, we are confident that the basic architecture of
the InstaGENI rack can scale to 1000 nodes and above.

The primary obstacle to installing InstaGENI racks turned out to be the varying
types of infrastructure and policies at each site. Different sites had differing types
and topologies of connectivity (both to the public Internet and to the Mesoscale),
different types of firewalls, different policies regarding connectivity to outside and
use of resources by users external to campus, different methods of assigning public
IP addresses, etc. While these did not affect the rack itself, they did affect things
such as how its external connectivity had to be configured, what domain name it

336 R. McGeer and R. Ricci

WASHING TON MONTANA DAKOTA

NEVADA United States ' . :
TAM SOLORAC wEST

SanF o) KANSAS VIRGINIA
wul Ly VIRGINIA
PAL IS
gt

! OLas Veges LLAMOMA L , NORTM
Loa ARIZONA ARKANEAS .'_' ‘t LA
i L o
W TEXAS CIORGIA
: L ANA
o \ P — (-]
& Houskn
= = Map data £2016, Google, INEGI
@ InstaGEN! Site - Single Y InstaGENI Site - Multipie
Rack Racks

. Planned InstaGENI Site

Fig. 6 The InstaGENI deployment

could be under, etc. and often involved delays while network administrators had to
approve firewall bypasses, configure campus and/or regional networks, etc. Once
these issues were resolved, installation of the rack software itself typically took a
few days.

The InstaGENI racks are in constant use by GENI experimenters. Typical usage
will have approximately 500 Xen VMs, 300 OpenVZ containers, and 30 bare-
metal nodes in constant operation. This still represents a somewhat light load on
the overall system; our experiments indicate that we could accommodate 2000
VMs or OpenVZ containers simultaneously with 60 bare-metal nodes in the racks
themselves. Currently, about 2500 individual GENI users are creating roughly 4000
slivers monthly on the InstaGENI racks, and using them in a wide variety of
experiments.

The nesting strategy has proved to be successful as well, with PlanetLab on
InstaGENI and its own nested Platform-as-a-Service offering, the GENI Experiment
Engine, maintaining 24/7 service at www.gee-project.net.

http://dx.doi.org/www.gee-project.net

The InstaGENI Project 337
9 Related Work

The most prominent related work is our sister project at the GENI Project,
ExoGENI, described in an adjacent chapter in this volume [4]. ExoGENI is aimed at
a different design point from InstaGENI: ExoGENI supports slivers only as VM’s
and containers, rather than supporting the allocation of bare-metal nodes as well.
In addition, ExoGENTI’s basic rack is somewhat richer, offering ten worker nodes
rather than five, 10 Gb/s uplinks in every rack, and incorporated a storage-area
network.

Each ExoGENI rack thus more resembles a conventional OpenStack-based
cloud rather than the meta-cloud that forms the primary design motivation of
InstaGENI. This incorporates some tradeoffs: on the one hand, InstaGENI enables
some services and experiments that would be more difficult to do on ExoGENI.
Conversely, ExoGENI’s design permits it to easily and efficiently allocate resources
for conventional cloud services and applications.

In addition to the GENI infrastructures, several other research clouds have
adopted models similar to GENI and InstaGENI. BonFIRE [42] in the EU’s FIRE
project offers a distributed cloud with six sites, and on-request access to a substantial
site at INRIA. Like InstaGENI, BonFIRE offers physical node access. Japan’s V-
Node [53] project under the umbrella of JGN-X, using a rack similar in many
ways to the InstaGENI rack but with a different control framework. Canada’s Smart
Applications over Virtual Infrastructure (SAVI) [5, 28, 43, 44, 47] project operates a
distributed cloud with similarities to both ExoGENI and InstaGENI. Like ExoGENI,
SAVI is a VM-only infrastructure based on OpenStack. Like InstaGENI (and, we
believe, like ExoGENI as well), each rack (or “site” in the SAVI terminology)
can operate as a standalone cloud. SAVI is described in a subsequent chapter in
this book [47]. Koren [45] is a Korean testbed primarily focused on multi-site
OpenFlow experimentation, but a VM creation and orchestration capability exists
at each of the six Koren sites. Ofelia [50, 56] is an EU testbed, similarly focused
on multi-site OpenFlow, with VMs available at each site. The G-Lab architecture
[52, 64] featured a similar distributed cloud architecture to InstaGENI, relying more
heavily on the central node in Kaiserslautern than InstaGENI does: in G-Lab, boot
management and resource management was done at the central node, and the local
boss—HeadNode in G-Lab terminology—was mostly focused on housekeeping
and low-level node management activities. NorNet [37, 55] is a PlanetLab-like
infrastructure which consists of two tiers of service. NorNet Core is a twenty-
site testbed, primarily of sites in Norway, each multi-homed to several network
providers. NorNet Edge consists of several hundreds of smaller nodes that are
connected to all mobile broadband providers in Norway. FITS [30, 51] is a joint
Brazilian-European project with more than 20 sites across the two continents.

Under the Federation API all three of the FIRE, V-Node, and SAVI infrastruc-
tures should be fully interoperable with the GENI racks, creating the possibility of a
instantiating a worldwide slice across these infrastructures. Indeed, full integration
of GENI and SAVI has already been demonstrated this year.

338 R. McGeer and R. Ricci
10 Conclusions, Extensions and Further Work

The initial goal of the InstaGENI project was to provide a workhorse cluster
design for the GENI Mesoscale project. In that, it has succeeded, as demonstrated
by its usage. Installation of the racks is complete, and ongoing maintenance and
troubleshooting have proven to be smooth. The software stack is stable and largely
trouble-free. Nesting control frameworks has been a successful experiment, with
InstaGENI PlanetLab and the GENI Experiment Engine running seamlessly under
the basic ProtoGENI infrastructure.

Difficulties have largely been site-related, and specifically related to site network
policies. An ongoing issue is the paucity of public IPv4 addresses at the various
InstaGENI sites. Our hosts, primarily Universities, have often been reluctant to
allocate IPv4 addresses. We require only the bare minimum number of addresses to
give the InstaGENI maintainers, GPO staff, and GENI experimenters control plane
access to the boss node on the rack. In the ideal case, each sliver could have two
routable v4 addresses—one for the control plane interface, so an experimenter could
directly ssh into his sliver and host public-facing services, and one for the data plane,
so that localized services could be offered from each sliver. Various strategies have
been employed to get around the lack of v4 addresses, primarily using application-
level port-sharing and multiplexing. The GENI Experiment Engine is planning to do
this with a shared http reverse proxy, to permit GEE slivers to offer public services.
At the moment, the GEE offers routable ports to individual slivers on a per-request
basis.

The v4 address shortage is an area that needs significant attention over the
coming months and years. While the primary networking needs of GENI and
other experimental testbeds can largely be met with private networks—where the
private /8, combined with the VLAN address space, is more than sufficient—
services offered to end-users require access to the routable Internet, since users
typically don’t have access to the private GENI network. There are many examples
of such services: end-system multicast trees [22], wide-area stores [54, 74], virtual
shared worlds [70], Content Distribution Networks [32, 71], and collaborative
visualization systems [15, 16] to name five. Use of centralized servers in places
where v4’s are plentiful is not the answer: the whole point of putting these
services on GENI, instead of, say, EC2, is to offer low-latency access to local end-
users. Wholesale adoption of IPv6 would solve the problem, of course, as would
the availability of more advanced network architectures such as content-centric
networking [41, 58, 73]. However, it’s important to note that the reason we have
this problem is we’re trying to offer services to people over the routable Internet,
which we don’t control. The problem with v6 is not that we’d have any trouble
implementing or enforcing it; it’s that an end-user, transiting multiple academic and
commercial networks to reach his local GENI node, must be able to do so reliably.
Thus, we need v6 implemented by every network, and this presents some challenges.

The InstaGENI Project 339

A second strategy is to canonize the port-sharing work that PlanetLab pioneered,
using a combination of OpenFlow switching and unused header bits to run realtime
NAT transparently to the external Internet.

Use and accommodation of OpenFlow, and specifically restricted forms of
OpenFlow, is an area of ongoing investigation. There are a large number of use
cases where developers want to direct routing at a high level, but don’t need to
access the full machinery of an OpenFlow controller. A restricted, high-level, easy-
to-use northbound API to OpenFlow (and, more generally, the network allocation
substrate) is under active investigation.

We are actively investigating both expanding the capabilities of the current
GENI rack, by adding more worker nodes and by adding heterogeneous resources,
in concert with related projects such as CloudLab. We are further working with
partners such as US Ignite to investigate applications of GENI racks in the domain
sciences, smart cities, and distributed education arenas. The fundamental purpose
of the InstaGENI cluster is to permit people to create virtual machines anywhere, to
reduce data, reduce latency to the end user, add application resiliency in the face of
network or physical outage, or increase bandwidth to a sensor or application. In our
view, the set of such applications is very large.

Acknowledgements InstaGENI is a large, complex project, and there are many people who
contributed to its success. This paper is an extension of, and based heavily, on a journal paper
signed by the entire InstaGENI team [8], and we would first like to express our heartfelt thanks to
them. Of especial note are Joe Mambretti, Fei Yeh, and Jim Chen, who worked closely with us on
network design; Narayan Krishnan, who did the original hardware design to match ProtoGENI’s
software specifications. It is hard to adequately describe the logistical challenges in working 35
non-standard orders through a manufacturer, ensuring their delivery to 35 separate sites, and
maintaining a complex, multi-year, multi-million dollar budget. InstaGENI was an enormous
project management challenge, and we were fortunate that Nicki Watts was kind enough to devote
a great deal of time to this project; it literally would not have happened without her. When
one of us (McGeer) moved on from HP, Jack Brassil took over as Principal Investigator on the
project and completed it brilliantly. We had tremendous support from the GENI Project Office,
notably Niky Riga, Heidi Dempsey, Vic Thomas, Henry Yeh, and especially Mark Berman. Leigh
Stoller of the Flux research group has been extremely generous in offering operational support
to InstaGENI users and experimenters. Larry Singer, then of HP Americas, offered his support
for commercialization and Michaela Mezo helped enormously in that area. Shannon Champion of
Matrix Integration was instrumental in making InstaGENI an HP product. Moreover, the 36+ PIs
and system administrators at the InstaGENI sites have been responsive to our requests and to keep
InstaGENI going. We thank all of them.

A special note is given to Chip Elliott. InstaGENI and ExoGENI were Chip’s inspiration when
he was GENI Project Director. It was Chip who mapped out the deployment strategy for the GENI
Racks, and he worked closely with us on the initial strategic decisions that gave the project its
focus. He also sharpened for us the role of these racks in the coming Internet. This project is very
much his creation.

340 R. McGeer and R. Ricci

References

1. Anderson, T., Peterson, L., Shenker, S., Turner, J.: Overcoming the Internet impasse through
virtualization. Computer 38(4), 34—41 (2005)

2. Baldine, I., Xin, Y., Mandal, A., Renci, C., Chase, J., Marupadi, V., Yumerefendi, A., Irwin, D.:
Networked cloud orchestration: a GENI perspective. In: 2010 IEEE GLOBECOM Workshops
(GC Wkshps), pp. 573-578 (2010)

3. Baldine, I., Xin, Y., Mandal, A., Ruth, P., Heerman, C., Chase, J.: ExoGENI: a multi-domain
infrastructure-as-a-service testbed. In: Testbeds and Research Infrastructure. Development of
Networks and Communities, pp. 97-113. Springer, New York (2012)

4. Baldin, I., Castillo, C., Chase, J., Orlikowski, V., Xin, Y., Heermann, C., Mandal, A., Ruth, P.,
Mills, J.: ExoGENI: a multi-domain infrastructure-as-a-service testbed. In: GENI: Prototype
of the Next Internet. Springer, New York (2016)

5. Bannazadeh, H., Leon-Garcia, A., Redmond, K., Tam, G., Khan, A., Ma, M., Dani, S., Chow,
P.: Virtualized application networking infrastructure. In: Testbeds and Research Infrastructures.
Development of Networks and Communities - 6th International ICST Conference, TridentCom
2010, Berlin, 18-20 May 2010, Revised Selected Papers, pp. 363-382 (2010)

6. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, 1.,
Warfield, A.: Xen and the art of virtualization. ACM SIGOPS Oper. Syst. Rev. 37(5), 164-177
(2003)

7. Bastin, N.: Foam: an openflow aggregate manager. http://groups.geni.net/geni/wiki/OpenFlow/
FOAM (2013)

8. Bastin, N., Bavier, A., Blaine, J., Chen, J., Krishnan, N., Mambretti, J., Mcgeer, R., Ricci,
R., Watts, N.: The instaGENI initiative: an architecture for distributed systems and advanced
programmable networks. Comput. Netw. 61, 24-38 (2014)

9. Bavier, A., McGeer, R.: The GENI experiment engine. In: GENI: Prototype of the Next
Internet. Springer, New York (2016)

10. Bavier, A.C., Bowman, M., Chun, B.N., Culler, D.E., Karlin, S., Muir, S., Peterson, L.L.,
Roscoe, T., Spalink, T., Wawrzoniak, M.: Operating systems support for planetary-scale
network services. In: NSDI, vol. 4, pp. 19-19 (2004)

11. Bavier, A., Chen, J., Mambretti, J., McGeer, R., McGeer, S., Nelson, J., O’Connell, P., Tredger,
S., Coady, Y.: The GENI experiment engine. In: Proceedings of Tridentcom (2015)

12. Berman, M., Brinn, M.: Progress and challenges in worldwide federation of future internet and
distributed cloud testbeds. In: 2014 International Science and Technology Conference (Modern
Networking Technologies) (MoNeTeC), pp. 1-6 (2014)

13. Berman, M., Chase, J.S., Landweber, L., Nakao, A., Ott, M., Raychaudhuri, D., Ricci, R.,
Seskar, I.: GENI: a federated testbed for innovative network experiments. Comput. Netw. 61,
5-23 (2014). Special issue on Future Internet Testbeds - Part I

14. Bhanage, G., Seskar, 1., Raychaudhuri, D.: A virtualization architecture for mobile WiMAX
networks. SIGMOBILE Mob. Comput. Commun. Rev. 15(4), 26-37 (2012)

15. Bhojwani, S., Hemmings, M., Ingalls, D., Krahn, R., Lary, D., Lincke, J., McGeer, R., Ricart,
G., Roder, M., Coady, Y., Stege, U.: The ignite distributed collaborative scientific visualization
system. In: Distributed Cloud Computing Workshop (2015)

16. Bhojwani, S., Hemmings, M., Ingalls, D., Krahn, R., Lary, D., Lincke, J., McGeer, R., Ricart,
G., Roder, M., Coady, Y., Stege, U.: The ignite distributed collaborative scientific visualization
system. In: Proceedings of IEEE CloudCom (2015)

17. Brinn, M.: GENI architecture foundation. In: GENI: Prototype of the Next Internet. Springer,
New York (2016)

18. Brinn, M., Bastin, N., Bavier, A., Berman, M., Chase, J., Ricci, R.: Trust as the foundation
of resource exchange in GENIL In: Proceedings of the 10th International Conference on
Testbeds and Research Infrastructures for the Development of Networks and Communities
(TRIDENTCOM) (2015)

http://groups.geni.net/geni/ wiki/OpenFlow/FOAM
http://groups.geni.net/geni/ wiki/OpenFlow/FOAM

The InstaGENI Project 341

19.

20.

21.

22.

23.

24.
25.
26.
217.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

41.

Brown, D., Ascigil, O., Nasir, H., Carpenter, C., Griffioen, J., Calvert, K.: Designing a
GENI experimenter tool to support the choice net internet architecture. In: 2014 IEEE 22nd
International Conference on Network Protocols (ICNP), pp. 548-554 (2014)

Brown, D., Nasir, H., Carpenter, C., Ascigil, O., Griffioen, J., Calvert, K.: Choicenet gaming:
changing the gaming experience with economics. In: Computer Games: Al, Animation,
Mobile, Multimedia, Educational and Serious Games (CGAMES), 2014, pp. 1-5 (2014)
Chakrabortty, A., Xin, Y.: Hardware-in-the-loop simulations and verifications of smart power
systems over an exo-GENI testbed. In: 2013 Second GENI Research and Educational
Experiment Workshop (GREE), pp. 16-19 (2013)

Chu, Y.-h., Rao, S.G., Zhang, H.: A case for end system multicast (keynote address). In: ACM
SIGMETRICS Performance Evaluation Review, vol. 28, pp. 1-12. ACM, New York (2000)
Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bowman,
M.: PlanetLab: an overlay testbed for broad-coverage services. ACM SIGCOMM Comput.
Commun. Rev. 33(3), 3-12 (2003)

Dempsey, H.: The GENI mesoscale network. In: GENI: Prototype of the Next Internet.
Springer, New York (2016)

Docker. https://www.docker.com/ (2015)

Duerig, J.: Jacks. https://www.emulab.net/protogeni/jacks-doc/ (2014)

Elliott, C., Falk, A.: An update on the GENI project. SIGCOMM Comput. Commun. Rev.
39(3), 28-34 (2009)

Faraji, M., Kang, J., Bannazadeh, H., Leon-Garcia, A.: Identity access management for multi-
tier cloud infrastructures. In: 2014 IEEE Network Operations and Management Symposium,
NOMS 2014, Krakow, 5-9 May 2014, pp. 1-9 (2014)

Farinacci, D., Li, T., Hanks, S., Meyer, D., Traina, P.: Generic Routing Encapsulation (GRE).
RFC 2784 (Proposed Standard) (2000). Updated by RFC 2890

FITS. Future internet testbed with security. http://www.gta.ufrj.br/fits/index.php/ (2015)
Fragni, C., Moreira, M.D., Mattos, D.M., Costa, L.H.M., Duarte, O.C.M.: Evaluating Xen,
VMware, and OpenVZ virtualization platforms for network virtualization. Universidade
Federal do Rio de Janeiro’GTA/PEE/COPPE - Rio de Janeiro (2010)

Freedman, M.J., Freudenthal, E., Mazieres, D.: Democratizing content publication with coral.
In: NSDI, vol. 4, pp. 18-18 (2004)

Fund, F,, Dong, C., Korakis, T., Panwar, S.: A framework for multidimensional measurements
on an experimental wimax testbed. In: Korakis, T., Zink, M., Ott, M. (eds.) Testbeds and
Research Infrastructure. Development of Networks and Communities. Lecture Notes of the
Institute for Computer Sciences. Social Informatics and Telecommunications Engineering,
vol. 44, pp. 369-371. Springer, Berlin/Heidelberg (2012)

GENI Planning Group. GENI design principles. Computer 39(9), 102-105 (2006)

GMOC. GENI - emergency stop procedure workflow (spiral 4). http://gmoc.grnoc.iu.edu/
uploads/7e/39/7e39c5ec9577a5badab80eal 5419ece8/GENI- Emergency- Stop-Procedure-
and-Workflow.pdf (2013)

GPO. The omni GENI client. http://trac.gpolab.bbn.com/gcf/wiki/OmniOverview/ (2011)
Gran, E.G., Dreibholz, T., Kvalbein, A.: Nornet core-a multi-homed research testbed. Comput.
Netw. 61, 75-87 (2014)

Griffioen, J., Fei, Z., Nasir, H., Carpenter, C., Reed, J., Wu, X., S.R.P.: The GENI desktop. In:
GENI: Prototype of the Next Internet. Springer, New York (2016)

Hemmings, M., Lary, D., McGeer, R., Ricart, G.: The ignite distributed collaborative scientific
visualization system. In: GENI: Prototype of the Next Internet. Springer, New York (2016)
Hermenier, F., Ricci, R.: How to build a better testbed: lessons from a decade of network
experiments on Emulab. In: Proceedings of the 8th International ICST Conference on Testbeds
and Research Infrastructures for the Development of Networks and Communities (Tridentcom)
(2012)

Jacobson, V., Mosko, M., Smetters, D., Garcia-Luna-Aceves, J.: Content-centric networking.
Whitepaper, Palo Alto Research Center, pp. 2—4 (2007)

http://trac.gpolab.bbn.com/gcf/wiki/ OmniOverview/
http://gmoc.grnoc.iu.edu/uploads/7e/39/7e39c5ec9577a5badab80ea15419ece8/GENI-Emergency-Stop-Procedure-and-Workflow.pdf
http://gmoc.grnoc.iu.edu/uploads/7e/39/7e39c5ec9577a5badab80ea15419ece8/GENI-Emergency-Stop-Procedure-and-Workflow.pdf
http://gmoc.grnoc.iu.edu/uploads/7e/39/7e39c5ec9577a5badab80ea15419ece8/GENI-Emergency-Stop-Procedure-and-Workflow.pdf
http://www.gta.ufrj.br/fits/index.php/
https://www.emulab.net/protogeni/jacks-doc/
https://www.docker.com/

342 R. McGeer and R. Ricci

42. Jofre, J., Velayos, C., Landi, G., Giertych, M., Hume, A.C., Francis, G., Oton, A.V.: Federation
of the bonfire multi-cloud infrastructure with networking facilities. Comput. Netw. 61,
184-196 (2014)

43. Kang, J., Bannazadeh, H., Leon-Garcia, A.: SAVI testbed: control and management of
converged virtual ICT resources. In: 2013 IFIP/IEEE International Symposium on Integrated
Network Management (IM 2013), Ghent, 27-31 May 2013, pp. 664—667 (2013)

44. Kang, J., Lin, T., Bannazadeh, H., Leon-Garcia, A.: Software-defined infrastructure and
the SAVI testbed. In: Testbeds and Research Infrastructure: Development of Networks and
Communities - 9th International ICST Conference, TridentCom 2014, Guangzhou, 5-7 May
2014, Revised Selected Papers, pp. 3-13 (2014)

45. Koren Future Network Testbed. http://www.koren.kr/koren/eng/ (2015)

46. Krishnappa, D., Lyons, E., Irwin, D., Zink, M.: Network capabilities of cloud services for a
real time scientific application. In: 2012 IEEE 37th Conference on Local Computer Networks
(LCN), pp. 487-495 (2012)

47. Leon-Garcia, A., Bannazadeh, H.: Savi testbed for applications on software-defined infrastruc-
ture. In: GENI: Prototype of the Next Internet. Springer, New York (2016)

48. Linux Containers. https:/linuxcontainers.org/lxc/downloads/ (2015)

49. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker,
S., Turner, J.: Openflow: enabling innovation in campus networks. ACM SIGCOMM CCR
38(2), 69-74 (2008)

50. Melazzi, N.B., Detti, A., Mazza, G., Morabito, G., Salsano, S., Veltri, L.: An openflow-
based testbed for information centric networking. In: Future Network & Mobile Summit
(FutureNetw), 2012, pp. 1-9. IEEE, New York (2012)

51. Moraes, I.M., Mattos, D.M., Ferraz, L.H.G., Campista, M.E.M., Rubinstein, M.G., Costa,
L.H.M., de Amorim, M.D., Velloso, P.B., Duarte, O.C.M., Pujolle, G.: Fits: a flexible virtual
network testbed architecture. Comput. Netw. 63, 221-237 (2014)

52. Mueller, P.: Europe’s mission in next-generation networking with special emphasis on the
German-lab project. In: GENI: Prototype of the Next Internet. Springer, New York (2016)

53. Nakao, A.: Vnode: a deeply programmable network testbed through network virtualization.
http://www.ieice.org/~nv/05-nv20120302-nakao.pdf (2012)

54. Nelson, J., Peterson, L.: Syndicate: democratizing cloud storage and caching through service
composition. In: Proceedings of the 4th annual Symposium on Cloud Computing, p. 46. ACM,
New York (2013)

55. NorNet. A real-world, large-scale multi-homing testbed. https://www.nntb.no/ (2015)

56. Ofelia. Openflow in Europe linking infrastructure and applications. http://www.fp7-ofelia.eu/
(2015)

57. Ozcelik, 1., Brooks, R.R.: Security experimentation using operational systems. In: Proceedings
of the Seventh Annual Workshop on Cyber Security and Information Intelligence Research,
CSIIRW 11, pp. 79:1-79:1. ACM, New York (2011)

58. Perino, D., Varvello, M.: A reality check for content centric networking. In: Proceedings of the
ACM SIGCOMM Workshop on Information-Centric Networking, pp. 44—49. ACM, New York
(2011)

59. Peterson, L., Anderson, T., Culler, D., Roscoe, T.: A blueprint for introducing disruptive
technology into the Internet. In: Proceedings of HotNets-I, Princeton, NJ (2002)

60. Peterson, L., Bavier, A., Fiuczynski, M.E., Muir, S.: Experiences building planetlab.
In: Proceedings of the 7th Symposium on Operating Systems Design and Implementation,
pp. 351-366. USENIX Association (2006)

61. Peterson, L.L., Baker, S., Leenheer, M.D., Bavier, A.C., Bhatia, S., Wawrzoniak, M., Nelson,
J.C., Hartman, J.H.: XOS: an extensible cloud operating system. In: Proceedings of the 2nd
International Workshop on Software-Defined Ecosystems, BigSystem 2015, Portland, OR, 16
June 2015, pp. 23-30 (2015)

62. Ricci, R., Duerig, J., Stoller, L., Wong, G., Chikkulapelly, S., Seok, W.: Designing a federated
testbed as a distributed system. In: Proceedings of the 8th International ICST Conference on
Testbeds and Research Infrastructures for the Development of Networks and Communities
(Tridentcom) (2012)

http://www.fp7-ofelia.eu/
https://www.nntb.no/
http://www.ieice.org/~nv/05-nv20120302-nakao.pdf
https://linuxcontainers.org/lxc/downloads/
http://www.koren.kr/koren/eng/

The InstaGENI Project 343

63.

64.

65.

66.

67.

68.

69.

70.
71.

72.

73.

74.

Ricci, R., Eide, E., The CloudLab Team.: Introducing CloudLab: scientific infrastructure for
advancing cloud architectures and applications. USENIX ;login: 39(6), 36-38 (2014)
Schwerdel, D., Reuther, B., Zinner, T., Miiller, P., Tran-Gia, P.: Future Internet research and
experimentation: the G-lab approach. Comput. Netw. 61, 102-117 (2014)

Sherwood, R., Gibb, G., Yap, K.-K., Appenzeller, G., Casado, M., McKeown, N., Parulkar, G.:
Can the production network be the testbed? In: Operating Systems Design and Implementation
(OSDI) (2010)

Soltesz, S., Potzl, H., Fiuczynski, M.E., Bavier, A., Peterson, L.: Container-based operating
system virtualization: a scalable, high-performance alternative to hypervisors. SIGOPS Oper.
Syst. Rev. 41(3), 275-287 (2007)

Soroush, H., Banerjee, N., Corner, M., Levine, B., Lynn, B.: A retrospective look at the UMass
dome mobile testbed. ACM SIGMOBILE Mobile Comput. Commun. Rev. 15(4), 2-15 (2012).
The Openflow Switch Specification. http://OpenFlowSwitch.org (2009)

Vercher, J., Hernandez-Munoz, J., Gomez, L., Sepulveda, A.: An experimental platform
for large-scale research facing FI-IoT scenarios. In: Future Network Mobile Summit
(FutureNetw), pp. 1-8 (2011)

Virtual Worlds Framework. https://virtual.wf/ (2015)

Wang, L., Park, K., Pang, R., Pai, V.S., Peterson, L.L.: Reliability and security in the codeen
content distribution network. In: USENIX Annual Technical Conference, General Track,
pp- 171-184 (2004)

White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler, M., Barb,
C.,Joglekar, A.: An integrated experimental environment for distributed systems and networks.
In: Proceedings of the Fifth Symposium on Operating Systems Design and Implementation,
pp- 255-270. USENIX Association, Boston (2002)

Yuan, H., Song, T., Crowley, P.: Scalable NDN forwarding: Concepts, issues and principles. In:
2012 21st International Conference on Computer Communications and Networks (ICCCN),
pp. 1-9. IEEE, New York (2012)

Zurawski, J., Swany, M., Beck, M., Ding, Y.: Logistical multicast for data distribution. In: IEEE
International Symposium on Cluster Computing and the Grid, 2005. CCGrid 2005, vol. 1,
pp- 434-441. IEEE, New York (2005)

https://virtual.wf/
http://OpenFlowSwitch.org

Part IV
GENI Experiments and Applications

The most interesting aspect of GENI is, of course, the experiments and applications
that are deployed on GENI. After all, these were the purpose of the entire exercise.
It is an axiom for startup companies that, after the development team, the most
important element for success is an initial lighthouse customer who will not only
provide a proof point for demand for the company’s product, but also help the
company shape it. Similarly, the success of an infrastructure such as GENI is
heavily boosted by early-adopter developers and experimenters, whose feedback
and participation shapes the infrastructure. Each of GENI’s precursors had had
early-design customers. PlanetLab was heavily shaped by the Distributed Hash
Tables and Content Distribution Networks, particularly CoDeeN; DeterLab had an
initial core constituency of cybersecurity experimenters and a long list of exploits
and malware to offer; Emulab worked closely with investigators from a number
of DARPA projects, including the Control Plane program to radically improve the
performance of TCP; and ORBIT, similarly, was strongly influenced by the Mobile
Ad-Hoc Network (MANET) projects that dominated wireless network research in
the 2000’s.

GENI has to date been used by more than 7500 experimenters, and has been (as
mentioned in chapter “Programmable, Controllable Networks”) the premier testbed
for Software-Defined Networking, with well over 50 SDN sites installed across the
United States. In this section, we have selected a few of the GENI experiments and
applications to give the reader a sense of the breadth of the GENI experiments and
services landscape.

We begin with an experimental focus. GENI is, at bottom, a meta-infrastructure;
experimenters and developers construct their own, application-specific infrastruc-
tures from the GENI substrate. It has long been a goal of the GENI project to
create a distributed laboratory that not only supports conducting computer science
experiments but also facilitates and encourages good scientific discipline in their
design, execution, and documentation. One of the major focuses of the GENI Project
Office over the past few years has been to walk experimenters through the tasks of
selecting and allocating this infrastructure, deploying an application or experiment
over it, and orchestrating the action of the application across the wide area. In

http://dx.doi.org/10.1007/978-3-319-33769-2_8

346 IV GENI Experiments and Applications

chapter “The Experimenter View of GENI”, Niky Riga, Sarah Edwards, and Vicraj
Thomas of the GPO describe this process both in the abstract and through an
extended example application, the GENI Cinema.

Constructing, deploying, and orchestrating an experiment or application is
obviously a substantial task, and a number of tools and services have been developed
just for that—much as, in an earlier age, tools and services were developed to deploy
software across the wide area on PlanetLab. In chapter “The GENI Desktop”, James
Griffioen, Zongming Fei, Hussamuddin Nasir, Charles Carpenter, Jeremy Reed,
Xiongqi Wu and Sergio Rivera P. describe one of these tools, the GENI Desktop—a
Web Portal-based front end on a GENI Experiment or Application.

Repeatability is an essential part of experimental science, both for an individual
researcher who requires consistency across trials in his or her own work and for
the scientific community seeking to validate and expand on published research.
Unfortunately, repeatability often receives short shrift in published computer sci-
ence research. In chapter “Walk through the GENI Experiment Cycle”, Thierry
Rakotoarivelo, Guillaume Jourjon, Olivier Mehani, Max Ott, and Michael Zink take
us on “A Walk Through the GENI Experiment Cycle,” using the LabWiki toolkit.
LabWiki is a suite of experimenter support tools developed for GENI and other
testbed environments with a strong emphasis on experiment repeatability. They
argue that proper tool support can make a major difference in repeatability and make
a researcher’s life more pleasant at the same time.

One of GENI’s most important contributions is in Computer Science and
Engineering education. GENI offers a unique educational resource, and affords
graduate and undergraduate students across the United States the ability to conduct
experiments on wide-area systems and networks that would have been impossible
without this resource. Moreover, GENI offers a unique platform for Massive Open
Online Courses, for both Computer Science and for other students, including the
K-12 arena. It was this unique capability that attracted the developers of The Mars
Game to the GENI platform. In chapter “GENI in the Classroom”, Vicraj Thomas,
Niky Riga, Sarah Edwards, Fraida Fund, Thanasis Korakis describe the uses of
GENI in the Classroom.

As mentioned in the introduction, interactive big-data applications are the last
obstacle to Eric Schmidt’s long-anticipated (and ongoing) “hollowing-out” of the
personal computer—the migration of desktop applications to the Cloud. GENI’s
ability to offer high-bandwidth, low-latency connections to anywhere permits these
applications to move to the Cloud. This does more than simply migrate the existing
application to the Cloud and thus make it available on a broader range of devices—
it permits the development of collaborative, interactive big data applications—an
entirely new application class. In chapter “The Ignite Distributed Collaborative
Scientific Visualization System”, Matt Hemmings, David Lary, Rick McGeer, and
Glenn Ricart describe both the first example of this class and a new application
platform, The Ignite Distributed Collaborative Scientific Visualization System.

The use of GENI in the classroom, The Mars Game, and the Ignite Visualization
System, along with a large body of smart-campus applications developed under the
GENI program, are indications that a new network is the key to a broad range of

http://dx.doi.org/10.1007/978-3-319-33769-2_19
http://dx.doi.org/10.1007/978-3-319-33769-2_18
http://dx.doi.org/10.1007/978-3-319-33769-2_17
http://dx.doi.org/10.1007/978-3-319-33769-2_16
http://dx.doi.org/10.1007/978-3-319-33769-2_15

IV GENI Experiments and Applications 347

network applications which can offer dramatic improvements to health care, public
safety, education, clean energy, transportation, and manufacturing. This new, smart
network powering smart cities is the heart of the US Ignite vision, described in
chapter “US Ignite and Smarter GENI Cities” by Glenn Ricart, US Ignite Chief
Technologist, and Rick McGeer.

http://dx.doi.org/10.1007/978-3-319-33769-2_20

The Experimenter’s View of GENI

Niky Riga, Sarah Edwards, and Vicraj Thomas

Abstract GENI is a federated infrastructure that provides GENI experimenters
with access to multiple different testbeds, enabling networking and distributed
systems research. Although GENI resources are owned and operated by different
organizations from a users perspective GENI appears as a unified virtual laboratory.
An experimenter can instantiate custom Layer 2 topologies that include a variety
of compute and network elements. This ability is achieved through the use of tools,
as well as common APIs and shared authentication and authorization procedures
across the federation.

GENI is a federated infrastructure that provides GENI experimenters with access to
multiple different testbeds, enabling networking and distributed systems research.
Although GENI resources are owned and operated by different organizations from
a user’s perspective GENI appears as a unified virtual laboratory. An experimenter
can instantiate custom Layer 2 topologies that include a variety of compute and
network elements. This is achieved by tools (see [5]) with the use of common APIs
and shared authentication and authorization procedures across the federation.

In more detail, a GENI user can obtain compute resources from locations around
the United States,' connect them using Layer 2 networks and can program every
aspect of their topology including how traffic is routed within their network. It is
important to note that all networking in GENI (wireless and wired) is done at Layer
2, allowing experimenters to run non-IP protocols.

All reservations in GENI are limited in time. When a reservation expires,
resources are returned to the pool of available resources. The federated design of

'Through common APIs and policy agreements, GENI users can actually access resources from
around the globe.

N. Riga (<) S. Edwards
GENI Project Office, Raytheon BBN Technologies, 10 Moulton St. Cambridge, MA 02138, USA

V. Thomas

GENI Project Office, Raytheon BBN Technologies, 5775, Wayzata Blvd., Suite 630, St. Louis
Park, MN 55416, USA

e-mail: vthomas@bbn.com

© Springer International Publishing Switzerland 2016 349
R. McGeer et al. (eds.), The GENI Book, DOI 10.1007/978-3-319-33769-2_15

mailto:vthomas@bbn.com

350 N. Riga et al.

Fig. 1 Multiple GENI experiments run concurrently in isolated slices of the infrastructure

GENI makes it feasible to scale to a testbed that is much larger than one typically
found in a laboratory. It provides the geographic diversity often needed in network
research and the resource variety (from VMs to bare metal machines, from switches
to WiMAX and LTE base stations) to make new configurations possible and to spur
innovation.

Two of the major design principles in GENI that affect the interactions of users
with the testbed are:

1. Sliceability. Each experiment is instantiated within a separate slice of the
testbed, see Fig. 1. All slices are isolated from each other, i.e. the traffic of
one experiment is not accessible or visible to an experiment running in another
slice. This enables experiments that might be incompatible with each other to
run concurrently on the same physical resources. For example one experimenter
might be exploring the performance of a TCP variant that runs on top of IP, while
a second experimenter might be investigating the feasibility of a new non-IP
internet architecture in another slice. It is worth noting that several new internet
architectures have been deployed and evaluated on GENI [1, 7, 15, 16, 26, 28],
running concurrently in different slices. Although GENI does not provide any
hard performance isolation guarantees, its architecture and resource slicing?
provides best effort performance isolation between experiments. Sliceability not
only enables different experimenters to use the testbed concurrently but also
enables one user to run multiple experiments at the same time.

2Network slicing is done by VLAN with the appropriate bandwidth limits and there is no over-
provisioning of network capacity. Some resource providers may over-provision compute resources
by allocating more virtual machines on a server than available cores or memory. GENI also
provides a limited number of bare metal machines that users can reserve in their experiments.

The Experimenter’s View of GENI 351

2. Deep Programmability. A user is allowed to program the behavior of as many
elements in a slice as possible. This includes hosts at the edge of the topology
(the user can choose an operating system and have full root access on the hosts
to further customize them, including modifying the kernel as needed), as well
as switching and computing elements in the core of the network. GENI has
deployed programmable switches—mainly OpenFlow [19]—in the edge and
core networks, as well as computation and storage in centrally located network
exchange points, e.g. within a regional network. From the user’s point of view,
the slice includes a topology that can be programmed at different layers of the
networking stack and allows for functionality (e.g. caching) to be placed in the
middle of the network.

Accessing the GENI Testbed GENI is free for use in research and education. For
users from many academic institutions accessing GENI is as simple as logging
in any other service offered by their university. As described in [5], GENI has
outsourced, when possible, the authentication of the users to their home institu-
tions. This design choice not only makes user management much simpler for the
federation, but also simplifies the user experience by allowing them to use their
institution’s credentials to login and use GENI. The single sign-on mechanism used
in GENI is very similar to the prevalent practice in the web today of using well
known identity providers such as Google or Facebook to access third party services.
The technology used for single sign-on in GENI is Shibboleth [21]. For institutions
that do not support this technology the GENI Project Office runs a Shibboleth
Identity Provider to manage and authenticate users from these institutions.

1 Useful GENI Concepts

Before we delve into more details about how a user accesses GENI and instantiates
experiments, we will go over some basic concepts and terminology.

1.1 GENI Resources and Resource Aggregates

Resource in GENI is used to describe elements that can be reserved by users
and used in their experiments. Examples of resources include virtual machines
(VMs), bare metal machines, storage, VLANs, OpenFlow datapaths, flowspace in
OpenFlow-enabled devices, NetFPGAs, switches, sensors, monitoring cards and
cameras. Resources can be contained within one physical device (e.g. VM) or
distributed across a set of devices (e.g. VLAN), depending on the nature of the
resource.

352 N. Riga et al.

The following is a list of major GENI resource types. The elements in the list
are not necessarily mutually exclusive i.e. a resource may belong to more than
one type.

* Compute resources: Compute resources in GENI can be Virtual Machines, Linux
containers or bare metal hosts. Depending on the requirements of an experiment
the user can choose the resources that are most appropriate. For example, if
performance is critical to the experiment, the user can reserve bare metal hosts.
On the other hand if geographic diversity is more important then containers might
be the right choice since they are much more widely available.

» Wireless resources: GENI Wireless sites have one or more WiMAX or LTE
antennae that provide 4G coverage. Resources are sliced at Layer 2 by VLANS.
For more information see [29]. Also each site has 2 or more wireless devices,
usually referred to as yellow nodes that support regular *nix operating systems
and can be reserved as bare metal nodes to run remote wireless experiments using
WiMAX or WiFi interfaces. For users local to the sites there are 3G Android
phones available for mobile experiments.

» Storage resources: Some sites also provide external storage that can be reserved
and attached to an experiment, providing extra storage space when needed.

e Network resources: In addition to the wireless resources described above, GENI
provides a variety of wired network resources that can be used to (1) connect
resources from different locations in Layer 2 topologies and (2) allow the user
to control forwarding within the network. Many of the network providers in
GENI, including Internet2 [13] that provides the GENI backbone network, have
deployed OpenFlow [19] switches and allow users to control the forwarding of
their traffic as it traverses the network.

» Unique resources: The architecture GENI allows participants to connect unique
resources into GENI and provide access to them to remote users. For example
some of the compute nodes also have NetFPGAs or NPUs, that a user can
program. This capability is not limited to networking resources and sites can
connect diverse devices such as advanced microscopes and weather radars.

Resources are made available to experimenters by Aggregate Managers. An
Aggregate Manager (AM) is a service that manages a collection (an aggregate)
of physical devices in order to provide users with the requested resources. For
example an AM can manage one or more VM servers providing VMs to users, it
can manage a set of switches and provision links across them or manage a unique
resource like a microscope. The AM is responsible for provisioning the resources,
slicing shared devices ensuring isolation, providing remote access to the users when
appropriate, reclaiming the resources for expired reservations, and enforcing local
and global usage policies. An AM can manage any number of different devices from
computation servers to switches to storage. The set of devices to be managed is an
implementation and policy decision by the owners of the devices and the operator
of the AM.

The Experimenter’s View of GENI 353

All AMs implement a GENI standard API called the AM API. This API is used
by experimenter tools to learn about and reserve resources at the AM. See Sect. 1.2
for details.

Following are examples of some existing Aggregates that will clarify their role
in the GENI ecosystem:

GENI Racks. These are the most widely deployed GENI resources. A GENI Rack
consists of compute, storage and networking devices, all controlled by one or
more Aggregate Managers. Details on the design and deployment of GENI Racks
can be found in [3, 8, 18].

Network Providers. Several network providers that provide connectivity between
GENI sites have deployed GENI-compliant Aggregate Managers for users to
obtain and configure networking resources using the GENI AM API. Some
characteristic examples are:

» Internet2 and MAX that allow GENI users to dynamically configure Layer 2
circuits across their network.

* SOX (Southern Crossroads), StarLight, CENIC, and MOXI regional networks
that allow GENI users to dynamically reserve flowspace on their OpenFlow
switches and control the specified traffic with a user-defined OpenFlow
controller.

Federated testbeds. Several existing testbeds have modified their resource man-
agers to support the GENI AM API and thus allow users to reserve resources
using the same tools they would use to resources GENI resources. Notable
examples include PlanetLab [24] and Emulab [36].

1.2 GENI RSpecs and the GENI AM API

To allow interoperability among different Aggregate Managers(AMs) and a variety
of tools, GENI has specified a standardized API called the GENI Aggregate
Manager API (GENI AM API) [5]. The GENI AM API specifies the interactions
between an AM and tools (which are a proxy for users). It defines methods to
manage resource reservations (create one, expand the duration of the reservation,
delete it), get status of reserved resources and discover resources offered by AMs.
Resources in GENI are described using a standardized language called Resource
Specification (RSpecs) [27]. RSpecs are XML documents following an agreed upon
schema to represent resources. The schema supports aggregate or resource specific
extensions. As shown in Fig. 2, there are three different types of RSpecs:

1. Advertisement RSpec. Used by an AM to describe the resources it makes
available to users.

2. Request RSpec. The document a user (usually a tool) uses to describe the
resources to be reserved and how they should be configured including network
topology.

354 N. Riga et al.

Fig. 2 There are three different types of RSpecs in GENI

3. Manifest RSpec. Describes the resources a user has already reserved at an AM.

Figure 2 shows the API calls that use RSpecs to communicate between the tools
and the AMs. Since (1) all experimenter tools and AMs use the same API and
RSpec schema, and (2) all information about resources is stored at the AMs, an
experimenter may use different tools at different times for the same experiment. For
example, the experimenter may reserve resources using tool A, check on their status
using tool B and release them using tool C.

1.3 Slice

As mentioned earlier, one the major design pillars of GENI is sliceability, the ability
to share the same infrastructure among multiple users and the ability to concurrently
run multiple experiments. To achieve this GENI adopted, and expanded on the
concept of a slice from PlanetLab [24] and the SFA architecture [23].

A GENI slice is:

* A container for resources used in an experiment. Users add GENI resources
(compute resources, network links, etc.) to slices and run experiments that use
these resources.

* A unit of access control. The experimenter that creates a slice can determine who
has access to the slice i.e. are members of the slice.

» The unit of isolation for experiments. Resources assigned to the slice are
dedicated to that slice and protected from access or interference from other slices,
up to the capabilities of the specific virtualization technology used to slice each
specific resource.

All slices in GENI are ephemeral, i.e. they have an expiration time. It is worth
noting that although the resource reservations within a slice can not outlive the slice,

The Experimenter’s View of GENI 355

the expiration times can be different, i.e. a slice can (and usually does) outlive the
resource reservations.

A slice can contain resources from any number of federated aggregates. Although
slice is an abstraction, it is the concept that allows an experiment to span multiple
administrative domains. Before starting an experiment, the user has to register a
slice with a trusted Slice Authority.? Using this registered slice, the user can request
resources from individual aggregates. In some sense, the aggregates trust and grant
resources to slices.

From an operator’s perspective, slices are the primary abstraction for accounting
and accountability—resources are acquired and consumed by slices, and experiment
behavior can be traced back to a slice.

1.4 GENI Projects

GENI is a shared, federated infrastructure that is used by experimenters around the
globe at no cost. However, when running experiments in GENI, a user accesses and
instruments real physical devices that are located within administrative domains
usually not owned by the user or his institution. To address the accountability issues
that arise in such a federated environment GENI expands on Emulab’s [36] concept
of a Project.

Projects organize research in GENI. Projects contain both people and their exper-
iments. A project is led by a single responsible individual, known as the Project
Lead. At the time of this writing, only academic faculty, senior technical staff
and GENI Rack administrators can be Project Leads. The Project Lead takes
responsibility for all experiments running within his projects and agrees to respond
appropriately if a problem is discovered.

Any user who meets the requirements to be a Project Lead can request to be one.
Leads can create GENI projects without the need for further approvals. Although
only Project Leads can create projects, a lead can choose to have other individuals
administer a specific project by making them project admins. Project admins have
the same privileges within a project as the Project Lead, but they can not create new
projects.

A project may or may not have an expiration time depending on the purpose of
the project. A project that will be used by the students of a class is typically set to
expire after the end of the semester. Research projects on the other hand tend not to
have an expiration date.

3GENT’s architecture supports multiple Slice Authorities. For example GENI currently has three
Slice Authorities that can register slices used in the federation: The GENI Slice Authority operated
by the GPO and the PlanetLab and Emulab Slice Authorities.

356 N. Riga et al.

2 The GENI Experimenter Workflow

The GENI Experimenter workflow is a structured approach to running experiments
on GENI. It serves as a framework for experimenters to be systematic with their
experimentation. For GENI tool developers it serves as a framework for describing
the steps of the workflow supported by their tools and their interfaces with other
tools.

The GENI experimenter workflow is illustrated in Fig. 3. The major phases of
running any experiment—Design/setup, Execute and Finish—are the three large
areas of the figure, The ovals represent the steps in the workflow. The white boxes
are experiment artifacts produced or consumed at each step.

Even though the workflow is depicted as a linear set of steps, in reality there
will be loops in the workflow with the experimenter going back to an earlier step or
skipping some steps altogether.

2.1 Design and Setup Experiment

Experiment Design In this step, experimenters lay out a detailed plan in advance
of running their experiments. When experimenters come to GENI to run an

.
Design/Setup
Post-boot
Manifest i
RSpecs
Experimenter
credentials Custom 08
Images

Resource
availability

GENI info
resource Request
listing RSpecs
Measurement Experiment
graphs Scripts

Measurement
Custom OS Ansible/ data
Images Chefl...
scripts,

Measurement
graphs

Artifacts for
archival

Handle to
RSpecs archived
artifacts

Fig. 3 Major steps in the GENI workflow and artifacts associated with each step

The Experimenter’s View of GENI 357

experiment, they typically have certain objectives in mind, the kind of experiment
that will achieve the objectives and measurements needed to test if the objectives
have been met.

Developing a detailed plan for an experiment on GENI includes deciding on:

1. The types, numbers and locations of resources needed. For example, experi-
menters must choose between virtual machines and raw-PCs for computation;
configuration of these resources including memory, disk space, network inter-
faces and operating system; the location of the resources; the experiment
topology and types of links; and the need for specialized resources such as
hardware switches. Experimenters may consult the GENI web pages to find
aggregates that have the resources they need.

2. How these resources will be programmed. They may choose to: (1) log into
each resources separately and configure it, (2) write scripts that are automatically
installed and executed when the resources come up, or (3) use custom OS images
that have the needed software installed and possibly configured. Section 5 has a
discussion on why experimenters should use scripts and custom images to make
experiments repeatable and reproducible.

3. How the necessary network traffic will be generated and what will be measured.
Options for network traffic generation include standard networking tools such as
iperf and ping; more sophisticated traffic generation tools such as Tmix [35]; and
the use of real user traffic (also know as opt-in user traffic). Experimenters may
collect their own measurements or use GENI Instrumentation and Measurement
tools such as LabWiki and GENI Desktop (Sect. 4.4).

Obtain Resources The next step in the experiment lifecycle is obtaining the
resources needed for the experiments. Experimenters specify the resources they
need including compute resources, network topology, operating systems to be
loaded, bandwidth of network links, etc. by creating a Request RSpec. RSpecs
are typically created using a tool such as Jacks Sect.4.1. Figure 4 shows Jacks
being used to create a Request RSpec for two virtual machines from two different
aggregates.

Experimenters need to pick the aggregates where they want to reserve resources.
This is typically a subset of the aggregates identified in the Experiment Design step
of the workflow. They may pick aggregates based on factors such as availability and
load. The GENI Meta-Operations Center (GMOC) maintains a calendar that shows
scheduled and unscheduled maintenance events. The GENI monitoring service has
information on resource utilization at each aggregate.

Experimenters submit their RSpecs to the selected aggregates using tools such as
the GENI Portal and Omni. If their reservation is successful, they get a Manifest
RSpec, an XML document with information needed to use the resources. For
example, for VMs the manifest includes login information, OS installed, and MAC
and IP addresses of the interfaces.

Since GENI is a shared testbed, resources have expiration times on them i.e. these
resources are released when they expire. Experimenters can extend the expiration

358 N. Riga et al.

=
Drag to Add

=

0 B 23

“rigac xmlege"hULp: /e, gond. net/resources/ ripec/ 3" xmlng, !Wl‘i “meep:s tageni ABLAS I Lour="RELp: / fuww, protogent . ne
T/ PEROUrCESS P APRC R /apT - tonr /17 xmlng: Jackie"] g fents Jacks/1” nlf‘ x" “heep: h‘-— w3, 0rg/ 2001/ 00 Schena - instance” x8
1 schenalocations="hetp: / fowe. goni muroswrnunp«n 1t ,, type="request s

«roda xmLng="HELD: f e, GO ORE /£ RSOUFCRLIPIGC 3" €LinnE_ide HoRt-10 Comporant_manager.. eysarnet yoens

“igon xmlngs"hTTp:/imer. prOTORInL AL/ FASOUrCRS/rapec exts Jacks 1 urls"hitps /ipertal ml T LARpes SRen- VU, g o
“Sliver_type x=lnys"hutp:/ wwe.geni. Getirescurces/ripec/3” nases"esulab-sen"s
<divh_imape walage hutp:/ /e, geni. fet/rescurces/ripec/d” nises’ ¥ £ BUNTU12-64-5T0° />
«/sliver. v
ASREVIERS aRlngs"HELD!/ S, GO AL/ CASOUPCHSITIPRESY
“interface xslngs"BLTP:/ i, genl mrromrnwm:n el it intertace- 17
>

rcde smlngs"Btp: by raE/resoUrCHs Tapec) client_id=Meat- =mm,-mnr £t stanfs authar ityves™s
“icon xmlng="hitp spec/ext/ jacksi1” wrl="hetp 1.gend. et/ inage S
l Iv« i n1n; “hap: . l!"l PRI FEISLrCHL/ T IpRE/ ST nimee " pmulab-xee”r
Ah_iskpe calnis"hEtp:/fwem. geni reT/rescurces ripec/d™ nases . £ BUNTUIT-64-5T07
-n]mr e

“SArVICHS calnge"HELR: //mw, BORL ARL/CRBOUMCRSSFIGRHES "1
<interface xmlngs"BUTR: / fuww, Eond neL/FRBOUTCRI/FIPRCIE" =lun: id="interface-0°/»

<lirk ERLoS = BLCR: o, GO DAL/ ESOUTCHS 543" CLiEnT40e")
o o,

“interface_ref xaleg="h inter face-0-rn

“interface_ref zalegs"h inter face-1°/n
“eompinent_sanager xsln * naaeurn:publicid: agent. stanford edusauthoritysca®
“comporent_manager xmlngs"hitp:/ me. gan T/ rEICUrCRR/rSpec/3® nases~urn:publicie: RN Ayseraet . o i ityreai
/1 ke
<rrapecs

Fig. 4 Tools such as Jacks are commonly used to created request RSpecs. (a) Experiment topology
drawn using Jacks. (b) Corresponding request RSpec generated by Jacks

time using their GENI resource reservation tools. Policies on default expiration
times and the maximum duration by which a reservation can be extended at one
time are set by the aggregate owners.

2.2 Execute Experiment

Configure Resources After resources have been obtained, experimenters configure
them for their experiment. They may do this by installing software, modifying
configuration files, changing settings on network interfaces, etc. Experimenters may
automate the configuration of their resources by:

The Experimenter’s View of GENI 359

1. The use of install and execute scripts (also called post-boot scripts). These scripts,
specified in the request RSpec, are installed and executed on the resources when
they are setup by the aggregate.

2. Using system administration tools such as Ansible [2] and Chef [6].

After the resources are configured, experimenters may choose to create custom
images, which are snapshots of operating systems they have configured. For future
experiments they can specify these custom images as the operating system to be
loaded on their resources. The operating system to be loaded is specified in the
Request RSpec.

Execute Experiment Execution can be triggered manually by logging into each
resource and starting up the experiment. Experiments can also be started up
automatically using execute scripts.

GENI experiment orchestration tools such as LabWiki [17] and OMF/OML
[22, 25] allow experimenters to describe and instrument an experiment, execute it
and collect its results.

GENI tools for instrumenting experiments and collecting measurements are the
GENI Desktop and LabWiki (Sect. 4.4). These tools allow experimenters to specify
measurements to be collected, view graphs of these measurements and save the
measurements.

Experiments may archive measurements and other experiment related artifacts
such as RSpecs and scripts using a GENI-provided iRODS service Sect. 4.6.1. Items
archived on this service survive the releasing of resources used in the experiment,
the expiration of slice or project.

Setup for Additional Runs Experimenters may run the same experiment multiple
times with the same or with different inputs, or resource configurations. The changes
they make to the experiment before each run may be based on measurements
gathered during an earlier execution.

2.3 Finish Experiment

Release Resource Since GENI is a shared testbed, experimenters are expected to
release their use as soon as they are done. Experimenters can use any of the resource
reservation tools to release resources. If resources are not explicitly released by the
experimenter, they will automatically be released when they expire.

Publish Results The final step of the workflow is the publication of the results
of the experiment. Experiment reprodicibility is a tenet of scientific research and
GENI provides mechanisms for researchers to make the experiments reproducible.
The artifacts required to reproduce the experiment may be archived on the GENI
iRODS service and made accessible by other researchers. The RSpecs used for the
experiment may be uploaded and shared on the GENI Portal. Any custom image
used in the experiment can also be made public and available for others to use.

360 N. Riga et al.

Section 5.1 describes how experimenters can make their experiments reproducible
by others.

3 Case Study: GENI Cinema, Implementing an Advanced
Service on GENI

This section is based on the GENI Cinema Architecture document [14] written by
Ryan Izard, Parmesh Ramanathan and KC Wang.

GENI Cinema is a persistent live video streaming service that capitalizes on the
advanced capabilities of GENI. It allows any user (organization or individual) with
access to the GENI network to publish a live video stream through this service.
The users can also search, select and watch video streams. Being a geographically-
distributed testbed, the GENI infrastructure provides an ideal platform to implement
a content delivery network for efficient broadcasting of video content to customers
at the edges. Combined with Software Defined Networking (SDN), this allows both
network and compute resources to be conserved while users from different areas
choose between the available video “channels” hosted by GENI Cinema.

In this section we describe the deployment story of GENI Cinema from an
idea to a prototype service and highlight some of the design choices made. GENI
Cinema was developed by teams of researchers at the University of Wisconsin
(Principal Investigator Parmesh Ramanathan) and at Clemson University (Principal
Investigator Kuang-Ching Wang).

3.1 Designing GENI Cinema

Designing such a complicated service is an iterative process, where the design is
constantly being improved as the service is developed and deployed.

GENI Cinema consists of two main subsystems: one addressing end-to-end
video/audio stream handling and the other addressing optimal forwarding in the net-
work. Both subsystems heavily leverage GENI SDN capabilities. Each subsystem
was developed separately by each of the universities on the project. Each group
ran single site experiments and updated its design to optimize for performance.
Once both systems were fully developed they were integrated into one system.
Figure 5 shows the combined architecture that consists of the many functional
blocks that comprise the GENI Cinema service. There are ingress and egress
gateways for receiving and sending video streams, ingress and egress VideoLAN
Client (VLC) servers for hosting video streams on the backend and providing them
on the frontend, a global OpenFlow controller, hardware and software OpenFlow
switches for controlling the flow of video streams internal to the GENI Cinema
service, and a web server for customer interaction.

The Experimenter’s View of GENI 361

GENI Cinema
i OpenFlow
Private OpenFlow Network I, Sort
24 Switches
’ L
o
T 7
' o 2
G 1 P
Ingress VLC Servers |- ----- + Floodlight OpenFlow Controller | Egress VLC Servers
P RESTT L <L
= Ingress Gateways S\:_::r Egress Gateways =
P
Live Video ‘a" ""\.‘ Live Video
Streams P ""‘-..‘_ Streams
"’J Qn“'.‘
-~
Video -~ S Video
Producers Consumers

Fig. 5 Logical components of the GENI Cinema architecture

Sort || Sort Sort Sort
Switch [= Switch |3 Switch [Switch
7
Ingress 2 Ingress | REST I I I T I
[VLC Serverf” C Server” Egress Egress Egress Egress Egress Egress Egress

Web [VLC Server| [VLCServer| |VLC Server| (VLCServer| [VLCServer| [VLC Server) [VLC Server
Server 2

1 2
1 3 4 5 6 7
Live ’," b Live Live
Video - vy Videa Video
Streams ," \"., Streams Streams
” ~,
N |
Producers

Consumers
Fig. 6 The GENI Cinema SDN architecture. Note that each stitched link also contains two
physical OpenFlow switches under the control of a floodlight controller—one at each end of the
link

Sort
Switch

Floodlight OpenFlow
Controller

5

3.2 Use of Software Defined Networking

The GENI Cinema implementation heavily relies on the software defined capabili-
ties of the GENI network and in particular on the deployment of OpenFlow switches.

All video traffic output from the ingress VLC servers into the private GENI
Cinema network is unicast UDP in order to allow fast video stream switching
without regard for connection state, sequence, or source as TCP would impose. Each
UDP video stream is directed through the network toward all egress VLC servers
where there is at least one video consumer wishing to watch that particular stream.
Prior to each egress VLC server is an OpenFlow switch called a “sort switch”, as
depicted in Fig. 6.

362 N. Riga et al.

Each sort switch is responsible for taking the UDP video streams supplied as
input on the northbound interface, duplicating these streams if appropriate, and
sending them to the VLC instances on the associated egress VLC server. This
involves rewriting the destination MAC, IP, and/or UDP port numbers in order for
the network stack on the egress VLC server to accept the packets and send them to
the VLC instances running as applications, which is enabled by OpenFlow.

GENI Cinema reduces duplicate transmissions of video streams until the last
hop at the egress point where the consumers are connected. For example, if there
are 100 video consumers on a particular egress VLC server and all 100 video
consumers wish to watch the same video stream, a single stream will be sent by
the private GENI Cinema network to the sort switch, using 1 Mbps bandwidth. This
single stream will be made into 100 copies where each copy’s destination headers
are rewritten such that the packets are routed to the VLC instance of each video
consumer on the associated and nearby egress VLC server. This means 1 Mbps of
traffic enters the sort switch and 100 Mbps exits. On the other hand, if there are
100 video consumers that collectively select all 20 of 20 available channels, then
each channel’s stream enters the sort switch for a total of 20 Mbps. The sort switch
will make copies of each stream and rewrite the destination headers of each stream
to send it to the VLC instance of the video consumer that wishes to watch that
particular stream. After duplication, the total exit traffic is still 100 Mbps leaving the
sort switch. The exit traffic is directly proportional to the number of video consumers
presently attached to that particular egress gateway. The traffic entering can be no
more than the total number of video channels available or the number of consumers
at the egress point—whichever is less. Note that if there is no consumer watching a
particular video stream at an egress point, this stream is not sent to the sort switch.

As described, when a video consumer selects a channel to watch, the sort switch
is responsible for selecting the appropriate input stream. OpenFlow 1.1+ groups
and buckets are used at the sort switch to implement this channel changing feature
(Fig. 7). Every video is classified as an OpenFlow group, and every video consumer
has a single OpenFlow bucket. An OpenFlow bucket is a list of actions, which in
this case each action list rewrites the destination MAC, IP, and/or UDP port in the
headers of the packets. If a video consumer switches video channels, its bucket
is removed from the previous video group of the channel it was viewing, and the
bucket is simply added to the group of the new video channel. In this way, only one
connection and video stream per consumer is ever present at a given time within
the private GENI Cinema network, and no connection is set up or torn down upon a
channel change. This optimizes the bandwidth usage, as well as reduces the load on
the server resources during frequent channel changes.

The Experimenter’s View of GENI 363
Grou .
P Group Group Sort Switch
Table Table Table
1) Receives unique UDP streams
1 2 n from northbound network
nak - 2) Default table sends each
BUCket A Blleet B 5 stream to a separate group
: H H table
3) Each group table contains a
| Bucket t | (Bucket u/ list of buckets. All buckets in
the sort switch are unigue and
represent distinct consumers.
Default Flow Table (Table 0) 4) Each bucket receives a copy of
each packet, rewrites the
d ion header to the
GC Network GC Network cons:b-;er,;nd e the
two .
Northbound Interface | | Southbound Interface souihonnd et pe

Fig. 7 The use of OpenFlow groups in the sort switch

Fig. 8 The egress/ingress
gateways can also serve as
firewalls to the GENI Cinema
private network

Firewall

\

Ingress/Egress
Gateways

Cameras, Viewers,
and Bad Guys

GENI Cinema
Private Network

3.3 Deploying GENI Cinema

GENI Cinema started with a couple of single site deployments, one at Clemson
University and the other at the University of Wisconsin. Originally the team
broadcast local classes while debugging and enhancing the system.

While running in a single site, the team also developed the ingress and egress
gateways that not only bypass any local issues due to NATing but can also secure
the GENI Cinema system by acting as a firewall (Fig. 8).

Once GENI Cinema was stable, the deployment expanded to multiple sites. The
first multi-site deployment was to connect the two prototype systems, the one at
Clemson and the one at Wisconsin. After the two-site system was operational the
team started working on a multi-site deployment. The first step was to enhance the
system architecture to clearly identify which systems needed to be deployed on each
site, how they are connected and how they interact with the rest of the system, i.e.
they designed a distributed version of their system. Each new site can be an ingress

364 N. Riga et al.

[=
D/ |controller
-
web-server|

Kentucky InstaGENI

Fig. 9 Current GENI Cinema deployment

site (where new video streams are connected), an egress site (where new consumers
are connected) or both. One or more sites are chosen to run central programmable
switches responsible for routing the video streams from producers to consumers.

Currently the prototype deployment spans nine sites (Fig.9). The deployment
of new sites is completely automated and they can add new sites on demand. This
helps them manage occasional unavailability of sites due to failures or maintenance
events.

3.4 Connecting Users to GENI Cinema

GENI Cinema is open to users without GENI accounts. Connecting users to the
GENI Cinema network is challenging, since the deployment lives within GENL
While the deployment was within the Clemson and Wisconsin Universities, the
labs of the researchers were connected to the GENI deployment through their local
GENI Rack. Classrooms in GENI-enabled campuses can be connected in a similar
way, by expanding connectivity to the GENI network through the local GENI Rack.
However, users should be able to access GENI Cinema from anywhere. To achieve
this goal, users (producers or consumers) connect to the GENI Cinema service
through the egress and ingress gateways using the public facing interface of these
gateways. To avoid overloading the public interface, the users are load balanced
across multiple gateways.
The workflow for video publishers and consumers is as follows:

The Experimenter’s View of GENI 365

* A producer wishing to publish a video on GENI Cinema makes a request on the
GENI Cinema web service. The request is relayed to the OpenFlow controller,
which responds with an ingress gateway IP address and transport port number.
The producer connects and sends the video stream to the assigned address and
port. The incoming video stream is relayed to an ingress VLC server where the
live stream is hosted.

* When a consumer requests a video stream on the GENI Cinema web service,
the request is relayed to the OpenFlow controller, which responds with an
appropriate egress gateway IP address and port number where the consumer
can connect and watch the video. The video selected is routed, duplicated and
rewritten within the private network of GENI Cinema from the ingress VLC
server on which it is being hosted to the private interface of the egress VLC server
where the customer is connected. A VLC instance on this egress VLC server
outputs the video on the public interface and relays it to the video consumer.

4 Experimenter Tools

The experimenters’ main interface to GENI are the experimenter tools that serve
to support the experimenter workflow (Sect. 2). Some tools support the experiment
design/setup parts of the workflow by helping create Request RSpecs. Other tools
support experiment execution by helping with installing and configuring software,
orchestration (the automation and scheduling of the steps in the experiment), and
instrumentation and measurement (the taking of and collection of data related to or
produced by the experiment). Finally, other tools support the archiving and sharing
of experiment results.

4.1 RSpec Creation Tools

Jacks, Flack and jFed are all graphical user interface (GUISs) tools for creating and
editing Request RSpecs. They are used to define topologies and set properties of
nodes and the links that connect them. Node properties include node name, OS and
scripts to be installed and executed at boot time. Link properties include link type
(VLAN or GRE tunnel) and IP addresses of end-points and others.

Flack and jFed can also be used as resource reservation tools (Sect. 4.2); they can
be used to submit RSpecs to specified aggregates using the GENI AM API. While
Jacks does not do resource reservations, the RSpecs it generates can be exported for
use with other tools.

366 N. Riga et al.

Drag to Add

Fig. 10 Jacks GUI showing a topology spanning three aggregates

4.1.1 Jacks and Flack

Jacks and Flack are created by the Flux Research Group at the University of Utah.
Both are browser-based: Jacks is written in HTMLS and Flack in Flash. Flack is no
longer maintained.

Jacks is primarily an RSpec creation and viewing tool and is usually embedded in
another tool such as the GENI Portal or GENI Desktop. A unique feature of Jacks
is its constraint system that prevents experimenters from creating invalid RSpecs.
For example, it will warn experimenters if they try to create a Layer 2 link between
sites that do not support it or load an OS image in an incompatible compute resource
(Fig. 10).

4.1.2 jFed

The jFed tool [12] is created by the iMinds Research Institute in Belgium. It is a Java
application that runs on the experimenter’s workstation. It can be used to create and
view RSpecs, make resource reservations, launch ssh clients to log into nodes and
do some experiment orchestration (Fig. 11).

4.1.3 geni-lib

geni-lib [4] is a python library from Barnstormer Softworks. It provides an
object oriented scripting interface to both the AM API and GENI RSpecs. The
purpose of geni-lib is to allow developers to build custom GENI tools. This is
particularly helpful for advanced GENI experimenters. An example is the scaleup
tool distributed with geni-lib which allows experimenters to write small topologies
using standard node types (e.g. a topology might consist of multiple client, server,

The Experimenter’s View of GENI 367

(eoe ', [Fed Experimenter Toolkit
Garenl | Topooay Eator || Spes Eator, || Timeina Editer. |)
| =) f&l D A 7 & a 9
Run Reserve Save i Duplicate Auto Zoom Zoom Rosat
Layout In Out Zoom
Edit Layout Zoom

¥ Computing Elements

= N
Ganeric Node Physical Node
2P |
1 |
h:'il::m XEN VM m T
i ?._-_Wum —.— router-2 [stichedo | l:“!mm-q

.
=i n:-\;_ﬁ L B

= -~
Dedicated Ext

© Wireless

Connection Chammnol

I_Q test_request_rspec.xmi X

Fig. 11 jFed GUI showing a topology spanning three aggregates

>>> ad = IGAM.MAX.listresources(context)
>>> for node in ad.nodes:
if node.available and IGUtil.shared xen(node):
print node.component_id

urn:publicid:IDN+instageni.maxgigapop.net+node+pec3
urn:publicid: IDN+instageni.maxgigapop.net+node+pcl
urn:publicid: IDN+instageni.maxgigapop.net+node+pc2

Fig. 12 Using geni-lib to list all available Xen servers at an InstaGENI rack

and router nodes) which can then be easily scaled up to a larger number of nodes in
a wide range of topologies (e.g. ring, grid, random) (Fig. 12).

4.2 Resource Reservation Tools

The Omni, geni-lib, the GENI Portal, jFed, and Flack allow experimenters to
communicate with resource providers (i.e. aggregates) using the GENI AM API
(Sect. 1.2).

These tools allow experimenters to determine the resources advertised by an
aggregate (i.e. to request an advertisement RSpec), to reserve resources in a slice
(i.e. to submit a request RSpec), and to determine the resources reserved at an
aggregate in a particular slice (i.e. to retrieve a manifest RSpec).

368 N. Riga et al.

4.2.1 Omni

Omni [11] is acommand line tool that can be used to invoke any AM API method on
a GENI aggregate. It was developed by the GENI Project Office. Benefits of Omni
include:

1. Omni is usually the first tool to make new AM API versions or functionality
available to experimenters. This is because it originated as a developer tool and
is still used to test new AM API functions.

2. Omni works well with aggregates that use atypical or novel RSpec extensions
and features. This is because it does very little parsing of the RSpecs.

3. Omni is a command line tool and can be used in shell scripts and/or over poor
Internet Connections.

4. Omni is written in Python and can be used by other Python scripts. Examples of
commonly used tools that take advantage of this are Stitcher and readyToLogin.
The Stitcher tool is used for dynamically connecting compute resources on
different aggregates using VLANSs. ReadyToLogin is used to determine the status
of reserved resources and to get information needed to log into those resources.
Additionally, tools such as the GENI Portal and GENI Desktop use Omni behind
the scenes to make AM API calls.

The downside to Omni is that much of the burden of manipulating RSpecs
(generating Request RSpecs, parsing Advertisement and Manifest RSpecs) falls on
experimenters. Of course, experimenters can use other tools for RSpec manipulation
and use Omni for resource management.

4.2.2 The GENI Portal

The GENI Portal [10] is probably the most widely used of GENI experimenter tools
because it is the only tool for account and project management. It is a web-based tool
that requires no software installation on the experimenters’ computers, it supports
much of the experimenter workflow and it serves as an identify provider for other
tools and services. The GENI Portal was developed by the GENI Project Office.

The GENI Portal can be used for account management (requesting accounts,
requesting Project Lead status), project and slice management (creating projects and
slices, adding and removing users from projects and slices), resource management
(reserving and deleting resources, extending resource reservations) and sharing of
RSpecs. The GENI Portal embeds the Jacks tool for creating and viewing RSpecs.

The GENI Portal also serves as an OpenlD identity provider for tools, services
and testbeds hosted by other organizations. Experimenters log into the Portal and
then click from the Portal to access these tools and services without having to
separately log into those tools. Some examples of tools and services that are
accessible from the portal inlcude JFed, GENI Desktop, the Canadiatn SAVI testned,
GENI wireless, CloudLab.

The Experimenter’s View of GENI 369

i GENI Porta: Home
L c hitps:i/portal geninet/secure /dashboard phpesiices
£ Apps g Beskmares W Bockmara [GEN GENI Portak Projects

GENI Portal Home Partners
Projects. Logs

Slices

Filter by

26 days (]

pinzdays @

GENI Portal Version 3.8
Copyright © 2015 Raytheon BBN T

ANl Rights Reserved - NSF Award CNS-OT14770

GEN) is sponsoned by the ™ National Science Foundation

Fig. 13 Slice dashboard view of the GENI portal

Figure 13 shows the slice dashboard view for a user. In this figure the user has
filtered the slices he has access, to only view the ones he leads. He can manage a
slice or add resources to the slice by clicking on the dots by the name of the slice.

4.3 Experiment Orchestration and Scripting Tools

Experiment orchestration allows experimenters to automate or script their exper-
iment procedure: start/stop data collection, start/stop traffic, schedule network
events, etc. As such, orchestration is critical to the repeatability of experiments by
allowing an experimenter to do multiple runs of the same procedure and to vary
parameters as necessary.

While trivial procedures can be orchestrated with simple scripts (for example
install scripts), GENI supports more complicated procedures using OEDL which is
language to script and instrument data collection.

370 N. Riga et al.

4.3.1 OEDL

OEDL is a domain-specific language for the description of an experiment’s exe-
cution [33]. It is based on the Ruby language with domain specific extensions
for experiment-oriented commands and statements. An OEDL script consists of
two main parts: (1) A part where resources used in the experiment and their
configurations are declared, and (2) a part where events are defined along with tasks
to be executed when those events occur. An experiment controller interprets OEDL
scripts to orchestrate experiments. The LabWiki tool (Sect. 4.4.2) uses OEDL as its
scripting language.

4.4 Instrumentation and Measurement Tools

Measurement is a key to scientific experimentation and to this end GENI provides
experimenters with a couple of Instrumentation and Measurement (I&M) tools:
GENI Desktop/GEMINI and LabWiki/GIMI. Both tools allow experimenters to
specify the measurements to be collected, and to graph, view and archive measure-
ments.

4.4.1 GENI Desktop

GENI Desktop [34] is a web-based experimenter tool that, like the GENI Portal, can
be used to create projects and slices, create Request RSpecs using the embedded
Jacks tool, and manage resources. It was developed by the University of Kentucky.

A key feature of the GENI Desktop is the ability to instrument a slice to collect
and view live measurements. It includes a number of pre-defined measurements such
as CPU load on the hosts and number of packets sent/received on a network inter-
face. Experimenters may also provide scripts to collect and view their own custom
measurements. To select pre-defined measurements, the experimenter simply clicks
on a host or link in the “Topology View” of the GENI Desktop and then selects the
measurements of interest. Figure 14 shows the Topology View of an experiment and
a graph of traffic on one of the interfaces attached to the link in the experiment.

4.4.2 LabWiki

LabWiki [17] is a web-based tool to design, describe and run GENI experiments.
It was developed by NICTA, Australia’s Information Communications Technology
Research Centre of Excellence and the University of Massachusetts at Amherst.
LabWiki is designed to help experimenters develop experiments that are repeatable
and reproducible. LabWiki includes a panel where experimenters write experiment
scripts using the OEDL scripting language (Sect.4.3.1), a second panel for running
and viewing graphs, and a third panel for recording notes and saving experiment

The Experimenter’s View of GENI 371

vthomas &

Toggle GN

esktop

Exploring Networks of the Future

Fig. 14 GENI desktop showing graph of traffic on a network link

Lab

B O ewenmentt

B D pitusertoidifexperimenti.rb [E user-2013-10-11T03-08-31

3 1.
2 detipplionionl pisg’) &
[

ST —
o 11 [¥MPPCommunicator: Connecting 1o srv.mylestbecinet

¥ Graphs
o ez

S O T o T
[

Fig. 15 Scripting and running an experiment using the LabWiki tool

results including graphs. Experiment scripts can be shared with other LabWiki users
wishing to reproduce or extend the experiment.

Figure 15 shows the three panels of the LabWiki tool: The panel labeled
“Prepare” is used to write or load experiment scripts, the “Execute” panel is where
experimenters drop scripts to be executed and view graphs of experiment data and
the “Plan” panel is used for notes, observations and saving graphs from the Execute
panel.

4.5 Software Installation and Resource Configuration

Almost any experiment in GENI involves installing software or configuring compute
resources. Automating this process helps experimenters easily and quickly repeat

372 N. Riga et al.

experiments or share them with others. It also makes large-scale experiments
feasible as experimenters do not have to log into each resource to configure it.
Three mechanisms are widely used in GENI to automate software installation and
configuration of compute resources: (1) Install and execute scripts specified in the
Request RSpecs, (2) Custom OS images with the desired configuration or software
installed and (3) Configuration management tools such as Chef [6] and Ansible [2].

4.5.1 Install and Execute Scripts

Install and execute scripts (also called postboot scripts), are listed in the Request
RSpec as part of the specification for a compute resource. Install scripts are
bundled in tarballs (.tgz files) posted on a publicly accessible web server. They are
downloaded and installed on compute nodes by the Aggregate Manager when the
resources are provisioned. Install scrips are typically executable scripts but any type
of data can be bundled in tarballs and installed on the nodes. ExoGENI aggregates
support templating in the scripts so they can be customized based on attributes such
as slice name, hostname and node type.

Execute commands specified in the RSpec are run in the compute resource; they
may be used to configure the resource or run the installed scripts. Multiple install
and execute scripts may be specified in the RSpec; the order of installation of the
scripts and execution of the commands is not specified though all installations will
be completed before any commands are executed.

Install and execute scripts can also be used as a primitive means to orchestrate
experiments by scripting actions such as starting traffic or data collection.

4.5.2 Custom Images

Custom images are bootable operating system images with the configurations or
software needed for an experiment. Experimenters may create their own custom
image by starting with a standard OS image, configuring it as needed, and taking
a “snapshot” of the image. They can then specify this snapshotted image in their
Request RSpecs as the operating system to be loaded when their compute resources
are provisioned.

Custom images are particularly useful if configuring and installing software on a
compute resource takes a long time since the experimenter has to do this just once
on an instance of the operating system and then snapshot it. They are also useful if it
is important that a certain version of the operating system be used for the experiment
as standard images provided by the aggregates tend to keep up with newer releases
of the operating system.

The Experimenter’s View of GENI 373

4.5.3 Configuration Management Tools

Industry standard configuration management tools such as Ansible and Chef are
a user-friendly way of installing and configuring software on the nodes in an
experiment.

Configuration management tools ensure an experiment is in a known configura-
tion regardless of it’s original state. The experimenter usually writes a playbook or
recipe that describes the desired state of the node. When the playbook is run the
tool uses the playbook to bring the resource to the desired known configuration.
The commands in the playbooks are idempotent which means that the commands
can be run repeatedly without concern for the initial state and no harm will result
from the repeated invocations. These playbooks are usually easier to write than shell
scripts or install scripts, because the experimenter is only required to describe the
final intended state (e.g. Apache is installed, file.txt is present) and not how to get
the node into that state (e.g. install Apache) or error handling (e.g. if Apache is not
installed, then install Apache).

Configuration management tools make it easy to reproduce experiment configu-
rations and therefore make it easy to do multiple runs with the same setup or with
systematic variations such as changing parameters and scaling topologies.

4.6 Archiving
4.6.1 The GENIiRODS Service

GENI provides experimenters a long-term archival service for experiment related
data such as measurements. This is the main GENI-provided storage that outlives
resource reservations, slices and projects.

The GENI archival service is based on iRODS [32], an open source data
management system. iRODS enables data discovery using a meta-data catalog.
IRODS meta-data may be attached to files, users, groups, collections (iRODS
equivalent of sub-directories), and resources (e.g., a hard drive).

The GENI iRODS service is hosted by RENCI, a research institute in North
Carolina. GENI experimenters get iRODS accounts through the GENI Portal. GENI
tools such as the GENI Desktop and the GENI Wireless experimentation tools can
be configured to use this iRODS account to archive the measurements they collect.

S Experiment Repeatability and Reproducibility

GENI makes it relatively easy for experimenters to recreate their setup and rerun
their experiments. This is important because it encourages experimenters to collect
statistics on the repeatability [31] of their experiments by recreating and rerunning

374 N. Riga et al.

their experiments multiple times. As a side-effect, they are less likely to hold on to
resources between runs of their experiments, an important consideration in a shared
testbed.

Reproducibility, an important principle of the scientific method, is the ability
to run experiments created by others and verify their results [30]. GENI supports
reprodicibility by: (1) providing tools and mechanisms that make it easy to recreate
experiment setups, (2) defining a workflow that produces and consumes formally-
defined artifacts such as experiment scripts and resource specifications, and (3)
making it easy to share these artifacts for others to reproduce experiments.

5.1 Making Experiments Repeatable and Reproducible
5.1.1 Reducing Variability Across Runs of an Experiment

Picking Resources A measure of experiment repeatability is the variability in
measurements across runs. Since GENI is a shared testbed this variability cannot
be eliminated. However, experimenters can minimize this variability by picking
non-shared resources such as bare machines and by picking the same set of
aggregates for different runs of multi-aggregate experiments to minimize latency
related variability.

They can also minimize variability by being specific in the Request RSpec about
the characteristics of the resources being requested. For example, experimenters
can specify the number of cores and memory assigned to compute resources,
the locations of these resources down to the physical computer at the aggregate
providing these resources and versions of operating systems installed.

Scripting Experiments To ensure resources are programmed and configured iden-
tically for every run, experimenters can use one of the techniques for software
installation and resource configuration described in Sect.4.5. In addition, experi-
ment scripting and orchestration using tools such as OEDL and LabWiki (Sect. 4.3)
can be used to reduce variability across runs of an experiment.

5.1.2 Sharing Experiment Artifacts for Reprodicibility

GENI supports experiment reprodicibility by making it easy to share artifacts such
as RSpecs, custom images, experiment scripts and measurements. RSpecs and
install scripts are plain files easily shared on web pages or websites such as GitHub
designed for sharing programs and scripts. In addition, experimenters can choose
to upload and make their RSpecs public on the GENI Portal. Experimenters can
reserve resources from the Portal using RSpecs they or others have uploaded. They
can also choose to make their custom images public for others to use. Likewise, the
LabWiki tool allows scripts to be shared among experimenters.

The Experimenter’s View of GENI 375

Experiment related data including measurements can be archived on the GENI
iRODS service (Sect. 4.6.1); experimenters can make these archives public or share
them with specific people.

6 Scaling Up Experiments

GENI supports experimentation at scale by providing resources at about 50
geographical locations (as of 2015) connected with Layer 2 VLANS.

In addition, GENI makes it easy to repeatedly bring up similar topologies
of different sizes. This supports best practices from software engineering and
system administration. GENI experimenters can start small with a modest topology
consisting of a trivial number of nodes which are representative of the larger
topology. Then experimenters can change one thing at a time to bring up a
sequence of larger topologies with more geographical diversity. Edwards et al. [9]
provides advice for novice experimenters when dealing with these issues as well as
illustrating this approach with a use case.

GENI tooling supports scaling experiments in a variety of ways. First, the use of
the software installation and configuration techniques described in Sect. 4.5) makes
it easy to set up and run large experiments without having to manually configure
each resource.

Second, carefully crafted install scripts or configuration management playbooks,
often make it possible to completely specify the configuration of a given node type
(i.e. to use the same script to configure all nodes with the same purpose, OS image,
software, and configuration). These node types can then be mixed and matched in
different combinations to create topologies of different configurations and different
sizes. GENI supports this with the following tooling:

e The scaleup tool distributed with geni-lib (Sect.4.1.3) lets experimenters
describe node types and one of several standard topologies (grid, ring, full
mesh) or a custom topology using a file in INI format. The output of scaleup
is a Request RSpec that can be used with any of the resource reservation tools
(Sect. 4.2).

* In addition, the GENI Portal, jFed, and Flack all support a “copy and paste”
feature in their graphical user interfaces so a given node type can be replicated to
easily create large experiments that have a large number of a few node types.

Third, once an experiment has been tested in a single Aggregate it can be easily
modified to run as a multi-Aggregate experiment. Tools such as Jacks and jFed allow
a single Aggregate Request RSpec to be imported and then for different resources
to be assigned to different Aggregates. This new RSpec can then be used to reserve
resources and run a multi-Aggregate version of the original experiment.

376 N. Riga et al.
7 Collaboration

GENI supports collaborative experimentation by allowing researchers from differ-
ent institutions to operate on the same experiment and providing them the ability to
add collaborators over the life of a project. This is important for large project teams
such as the NSF Future Internet Architecture projects [20] and for long-running
experiments.

7.1 Mechanisms for Collaboration

Research in GENI is organized into projects. A project contains both people and
their experiments. A project may have many experimenters as its members and
an experimenter may be a member of many projects. Every project has a Project
Lead who can add or remove members. The project lead can designate one or more
Admins who manage project membership as well.

Project members create slices in the context of a project; there can be many slices
in a project. The person who created a slice and the Project Lead can choose to add
other project members to the slice. Slice members can add and remove resources
in the slice and run experiments using resources in the slice. Accounts for slice
members are automatically set up on compute resources when the resources are
instantiated.

This organization of research enables collaborative experimentation. A researcher
can create a project and add collaborators as project members. When a new
collaborator joins the team, she can be added to the project and to any slices to
which she would need access.

Figure 16 shows a professor who is a project lead and has created separate
projects for research and classroom use. For the class project, the professor has
given his teaching assistant Admin privileges and has given the project an expiration
which means the students will not be able to use the project after that date.

Figure 17 shows two slices created in the same project by the same person.
The Project Lead is added to each slice by default. One of the slices contains an
additional member. The two slices contain different resources and all members will
have accounts to login to the resources when the resources are reserved.

References

1. Anand, A., Dogar, F., Han, D., Li, B., Lim, H., Machado, M., Wu, W., Akella, A., Andersen,
D.G., Byers, J.W., Seshan, S., Steenkiste, P.: XIA: an architecture for an evolvable and
trustworthy internet. In: Proceedings of the 10th ACM Workshop on Hot Topics in Networks,
HotNets-X, pp. 2:1-2:6. ACM, New York (2011)

2. Ansible Inc. Ansible. http://www.ansible.com (2016). Accessed Jan 2016

http://www.ansible.com

The Experimenter’s View of GENI 377
O (? o
e \\
! Expiration
Professor
Profect Lead mm
4 5 z &
Research Assistant Post-Doc Tﬂd‘llnnw
Projedt Bember Project Msnbar mm
Project Hactar Project CS404

Typical Research

Typical Class

Fig. 16 A professor with separate projects for research and classroom use

Professor
I '\ S{:’;e.Agmr’n
B \' _9

Slice .Lead - H
Slics 1 m;g_“u'gfm

RuearchAut| ‘]
Slice Admin
Pro]ectllaclar

Fig. 17 Different slices can have different resources. The Project Lead is added to the slice by
default as a Slice Admin. The slice creator (a.k.a. Slice Lead) can add additional people to the slice
as desired. When resources are reserved, accounts will be created for all current slice members

3. Baldin, 1., Castillo, C., Chase, J., Orlikowski, V., Xin, Y., Heermann, C., Mandal, A., Ruth, P.,
Mills, J.: ExoGENI: a multi-domain infrastructure-as-a-service testbed. In: The GENI Book.

Springer, New York (2016)

4. Barnstormer Softworks. Welcome to geni-lib documentation! http://geni-lib.readthedocs.org/

en/latest/ (2016). Accessed Jan 2016

W

. Brinn, M.: GENI architecture foundation. In: The GENI Book. Springer, New York (2016)

6. Chef Software Inc. Chef. https://www.chef.io (2016). Accessed Jan 2016

https://www.chef.io
http://geni-lib.readthedocs.org/en/latest/
http://geni-lib.readthedocs.org/en/latest/

378 N. Riga et al.

7. Day, J., Matta, 1., Mattar, K.: Networking is IPC: a guiding principle to a better internet.
In: Proceedings of the 2008 ACM CoNEXT Conference, CONEXT ’08, pp. 67:1-67:6. ACM,
New York (2008)

. Dempsey, H.: The GENI mesoscale network. In: The GENI Book. Springer, New York (2016)
9. Edwards, S., Liu, X., Riga, N.: Creating repeatable computer science and networking experi-

ments on shared, public testbeds. SIGOPS Oper. Syst. Rev. 49(1), 90-99 (2015)

10. GENI Project Office. The GENI Portal. https://portal.geni.net (2016). Accessed Jan 2016

11. GENI Project Office. Omni. http:/trac.gpolab.bbn.com/gcf/wiki/Omni (2016). Accessed Jan
2016

12. iMinds Research Institute. jFed is a java-based framework for testbed federation. http://jfed.
iminds.be (2016). Accessed Jan 2016

13. Internet2. http://www.internet2.edu (2016). Accessed Jan 2016

14. Izard, R., Ramanathan, P., Wang, K.: GENI Cinema architecture. http:/groups.geni.net/geni/
raw-attachment/wiki/sol4/GENICinema/GENI-Cinema- Architecture.pdf (2016). Accessed
Jan 2016

15. Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F,, Briggs, N.H., Braynard, R.L.:
Networking named content. In: Proceedings of the 5th International Conference on Emerging
Networking Experiments and Technologies, CONEXT ’09, pp. 1-12. ACM, New York (2009)

16. Jain, S., Chen, Y., Zhang, Z.-L.: VIRO: a scalable, robust and namespace independent virtual
Id routing for future networks. In: 2011 Proceedings IEEE INFOCOM, pp. 2381-2389 (2011)

17. Jourjon, G., Rakotoarivelo, T., Dwertmann, C., Ott, M.: Labwiki: an executable paper platform
for experiment-based research. Proc. Comput. Sci. 4, 697-706 (2011)

18. McGeer, R., Ricci, R.: The instaGENI project. In: The GENI Book. Springer, New York (2016)

19. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker,
S., Turner, J.: Openflow: enabling innovation in campus networks. SIGCOMM Comput.
Commun. Rev. 38(2), 69-74 (2008)

20. National Science Foundation. NSF Future Internet Architecture Project. http://www.nets-fia.
net (2016). Accessed Jan 2016

21. OASIS SAML Working Group. Shibboleth Federated Identity Solution. http://www.shibboleth.
net (2016). Accessed Jan 2016

22. OMF Overview. http://omf.mytestbed.net/projects/omf (2016). Accessed Jan 2016

23. Peterson, L., Ricci, R., Falk, A., Chase, J.: Slice-Based Federation Architecture. http://groups.
geni.net/geni/raw-attachment/wiki/SliceFed Arch/SFA2.0.pdf (2016). Accessed Jan 2016

24. Peterson, L., Anderson, T., Culler, D., Roscoe, T.: A blueprint for introducing disruptive
technology into the Internet. SIGCOMM Comput. Commun. Rev. 33(1), 59-64 (2003)

25. Rakotoarivelo, T., Ott, M., Seskar, 1., Jourjon, G.: OMF: a control and management framework
for networking testbeds. In: SOSP Workshop on Real Overlays and Distributed Systems
(ROADS) (2009)

26. Raychaudhuri, D., Nagaraja, K., Venkataramani, A.: MobilityFirst: a robust and trustworthy
mobility-centric architecture for the future internet. SIGMOBILE Mob. Comput. Commun.
Rev. 16(3), 2-13 (2012)

27. Resource Specification Documents. http://groups.geni.net/geni/wiki/GENIExperimenter/
RSpecs (2016). Accessed Jan 2016

28. Rouskas, G., Baldine, I, Calvert, K., Dutta, R., Griffioen, J., Nagurney, A., Wolf, T.: Choicenet:
network innovation through choice. In: 2013 17th International Conference on Optical Network
Design and Modeling (ONDM), pp. 1-6 (2013)

29. Seskar, 1., Raychaudhuri, D., Gosain, A.: 4G cellular systems in GENI. In: The GENI Book.
Springer, New York (2016)

30. Stodden, V.C.: The scientific method in practice: Reproducibility in the computational
sciences. Technical Report 4773-10, MIT Sloan School of Management (2010)

31. Taylor, B.N., Kuyatt, C.E.: Guidelines for Evaluating and Expressing the Uncertainty of NIST
Measurement Results, Chapter D.1.1.2 Repeatability (of results of measurements). Number
Technical Note 1297. National Institute of Standards and Technology (1994)

32. The iRODS Consortium. iRODS. http://irods.org (2016). Accessed Jan 2016

e

http://irods.org
http://groups.geni.net/geni/wiki/GENIExperimenter/RSpecs
http://groups.geni.net/geni/wiki/GENIExperimenter/RSpecs
http://groups.geni.net/geni/raw-attachment/wiki/SliceFedArch/SFA2.0.pdf
http://groups.geni.net/geni/raw-attachment/wiki/SliceFedArch/SFA2.0.pdf
http://omf.mytestbed.net/projects/omf
http://www.shibboleth.net
http://www.shibboleth.net
http://www.nets-fia.net
http://www.nets-fia.net
http://groups.geni.net/geni/raw-attachment/wiki/sol4/GENICinema/GENI-Cinema-Architecture.pdf
http://groups.geni.net/geni/raw-attachment/wiki/sol4/GENICinema/GENI-Cinema-Architecture.pdf
http://www.internet2.edu
http://jfed.iminds.be
http://jfed.iminds.be
http://trac.gpolab.bbn.com/gcf/wiki/Omni
https://portal.geni.net

The Experimenter’s View of GENI 379

33. The OMF Experiment Description Language (OEDL). https://mytestbed.net/projects/omf6/
wiki/OEDLOMEF6, Accessed Jan 2016

34. University of Kentucky. The GENI Desktop. http://genidesktop.netlab.uky.edu (2016).
Accessed Jan 2016

35. Weigle, M.C., Adurthi, P, Herndndez-Campos, F., Jeffay, K., Smith, ED.: Tmix: a tool for
generating realistic TCP application workloads in NS-2. ACM SIGCOMM Comput. Commun.
Rev. 36(3), 67-76 (2006)

36. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler, M., Barb,
C., Joglekar, A.: An integrated experimental environment for distributed systems and networks.
SIGOPS Oper. Syst. Rev. 36(SI), 255-270 (2002)

http://genidesktop.netlab.uky.edu
https://mytestbed.net/projects/omf6/wiki/OEDLOMF6
https://mytestbed.net/projects/omf6/wiki/OEDLOMF6

The GENI Desktop

James Griffioen, Zongming Fei, Hussamuddin Nasir, Charles Carpenter,
Jeremy Reed, Xiongqi Wu, and Sergio Rivera P.

Abstract The GENI Desktop supports users through the entire lifecycle of an
experiment, including creating and setting up an experiment, running and interacting
with the experiment, monitoring the experiment and collecting performance data,
archiving the results and tearing down the experiment. It provides a single simple
web-based graphical interface to access these functions. In addition, it also provides
a command line interface for expert users to write scripts to control the whole
process of their experiments. This chapter describes the design goals and features
of the GENI Desktop. It also demonstrates usage examples showing how the GENI
Desktop can help users with their experiments.

1 Running Experiments in GENI

The primary goal of the Global Environment for Network Innovations (GENI) [14] is
to provide an infrastructure that enables research and development of new network
architectures, protocols, and services at scale. Over the past few years the GENI
network has developed into a large-scale network testbed infrastructure offering a
wide variety of network resources that geographically span the United States and
also connect to similar testbeds in other countries. While the size and reach of GENI
is impressive, one can argue that the real contribution of GENI is the ability for users
(experimenters) to program and control the network, or more specifically their own
experimental slice [6] of the network, from the ground up. This capability gives
users unprecedented control over the network, allowing them to redefine almost
every aspect of the network, its protocols, and its services. However, redefining
every aspect of a network is a massive undertaking. Even if existing protocols
and services are leveraged and used as a starting point, experimenting with and
testing the user’s network involves running (i.e., operating) a potentially large-scale
network infrastructure—something that, historically, has been done by network
providers, not individual users/researchers. In other words, enabling experimenters
to allocate resources and connect them together to form an experimental network

J. Griffioen (D<) » Z. Fei » H. Nasir ¢ C. Carpenter ¢ J. Reed * X. Wu ¢ S. Rivera P.

Laboratory for Advanced Networking, University of Kentucky, Lexington, KY 40506, USA
e-mail: griff @netlab.uky.edu; fei@netlab.uky.edu; nasir@netlab.uky.edu; xwu@netlab.uky.edu;
jeremy @netlab.uky.edu; charles @netlab.uky.edu; sergio@netlab.uky.edu

© Springer International Publishing Switzerland 2016 381
R. McGeer et al. (eds.), The GENI Book, DOI 10.1007/978-3-319-33769-2_16

mailto:sergio@netlab.uky.edu
mailto:charles@netlab.uky.edu
mailto:jeremy@netlab.uky.edu
mailto:xwu@netlab.uky.edu
mailto:nasir@netlab.uky.edu
mailto:fei@netlab.uky.edu
mailto:griff@netlab.uky.edu

382 J. Griffioen et al.

(i.e., slice) is only the first step of many needed to carry out a network experiment on
GENI. Moreover, the APIs used to allocate resources and create slices are anything
but user-friendly—as anyone who has had to work with the GENI AM API and
RSPEC:s can attest.

1.1 The Need for Higher-Level Tools and Services

To simplify the task of running experiments in GENI, higher-level tools and services
are needed by users. In fact, the GENI architecture assumes that the GENI network
consists of not only allocatable resources, but also higher-level tools and services
that build on and enhance the underlying GENI API calls supported by the GENI
aggregate managers (AMs). As a result, a variety of tools have been developed to
help experimenters use GENI. However, the lifecycle of an experiment typically
involves several steps or phases, with each step requiring tools and services designed
specifically for that step in the experiment. Ideally, there would be a single tool or
service that experimenters could use to perform an experiment from beginning to
end.

A key goal of the GENI Desktop (GDT) is to provide a “one stop shop” where
experimenters can go to carry out their experiment from beginning to end. In
addition, the GENI Desktop fills in gaps in the experiment lifecycle where no other
tools exist, offering its own tools and allowing users to create their own tool and
include it in the GENI Desktop as an add-on module.

Take, for example, the experiment lifecycle illustrated in Fig. 1. An experiment’s
lifecycle typically involves several phases that may repeat as needed. For example,
after running some initial tests and analyzing the results, the user may decide to
modify the network topology and run the tests again.

During the early days of GENI, much of the focus was on the control frameworks
and the ability to obtain resources. Not surprisingly, several tools quickly emerged to
make these steps (i.e., steps 1-3 in Fig. 1) easier for users. Example tools included
graphical tools such as Jacks [9] (previously Flack [12]) and command line tools
such as OMNI [10] that helped experimenters discover the set of GENI resources
that are available and reserve them. Tools such as the GENI Portal [5] provided
additional services such as helping users obtain the appropriate credentials needed
to access and manage slices.

In contrast, the set of tools designed to help users execute their experiment,
monitor and measure its performance, and then analyze and/or save the results (i.e.,
all other steps in Fig. 1) were at best primitive and at worst non-existent. The GENI
Desktop addresses these missing pieces of the experiment lifecycle by providing
the services, software, and infrastructure needed to run experiments, instrument and
measure experiments, view and analyze performance, and archive results for future
analysis, comparison, and repeatability.

The GENI Desktop 383

Reserve
Experimenter Create Slice Resources
Credentials and Slice Credentials (slivers)

Manifest

Create TestII

Discover I Scripts 2. Establish 3. Obtain Rspecs
Management Configure
Resources Envi ¢ Resources 9
nvironmen Resources
(slivers)
S 1. Design 4. Configure
ustomize oeri & Initialize
Test Image Experiment Servi
ervices Start Support

Services

Launch

5. Execute Experiment

Experiment

8. Teardown
Experiment

6. Visualize &
Analyze
Experiment

Generate
Log Files

7. Archive
Experiment

Collect
Data

Save
Configs
and

Data

Display Analyze
Graphs Data Produce
Graphs

Fig. 1 Example lifecycle of an experiment (a variation of the lifecycles found in [3, 4])

1.2 History of the GENI Desktop

The origins of the GENI Desktop can be traced back to early user experiences
running experiments on the Emulab [11] testbed. The initial Emulab system (much
like the initial GENI network) enabled users to obtain resources over which
they could have complete control (e.g., root access). The target user community
was network and operating system researchers—users who typically were highly
skilled in system administration tools and techniques not to mention network
administration. In other words, the initial user community had the skills needed
to “get an experiment running” and then “see what was going on”. Things like
monitoring the CPU or memory usage/loads, configuring routing tables, reading
packet counters, collecting packet traces, adding advanced kernel modules, etc.
However, not all users possessed these skills. As Emulab began to be used as
an instructional tool in operating system and networking classes, a new set of
users emerged—namely students—who did not possess the system and network
administration skills needed to effectively execute and monitor experiments. To
make it easier for students to measure and view an Emulab experiment, Emulab
was modified and enhanced, resulting in EduLab [16]—the first instantiation of the
GENI Desktop. While EduLab simplified the management environment (step 2 in
Fig. 1), its key contribution was the ability to automatically install, configure, and
run an instrumentation and measurement system on behalf of the user, measuring,
recording, and displaying (via a web interface) network traffic graphs, load average

384 J. Griffioen et al.

graphs, etc. It also allowed users to easily capture packet traces on user-specified
links in the topology. However, the EduLab features were deeply embedded in the
Emulab system as opposed to being implemented as a tool, or set of tools, used in
conjunction with Emulab.

As GENI began to take shape, it was clear that it would need high-level user
friendly services similar to those offered by EduLab. To address this need, the
INSTOOLSs [15] project began developing EduLab-like services in the context of
GENI, but this time implementing the needed features as a service/tool built on
top of the underlying GENI functionality (not embedded in it). A key goal of
the INSTOOLs project (short for Instrumentation Tools) was to bring EduLab’s
automated instrumentation and measurement capabilities to GENI. INSTOOLS:,
like EduLab, primarily focused on making passive network measurements (e.g.,
SNMP data) automatically available to experimenters. To allow experimenters to
also perform active measurements by injecting traffic into the network, INSTOOLs
was enhanced as part of the GEMINI project [2] to allow users to schedule active
measurements and write and deploy their own active measurement applications. In
short, the initial focus was on making measurement information (e.g., traffic graphs)
easily accessible to users who did not possess the necessary system and network
administration skills (e.g., students). Even users who had the skills began using the
tools because of their ease-of-use and simplicity.

The next step was to extend the user-friendly instrumentation and measurement
interface to all other tools in all phases of an experiment’s lifecycle. To meet this
need, the concept of a GENI Desktop that provided a one-stop user interface for
all tools was born. The goal was to offer users a single, easy-to-use, interface
that ties together existing tools (e.g., Jacks, OMNI, the GENI Portal, and the
INSTOOLs/GEMINI measurement tools) and adds new functionality to simplify
the task of running and interacting with experiments—e.g., functionality such as
loading experiment software, launch tests, logging into and directly interacting with
specific resources or downloading and archiving results.

2 GENI Desktop Design Goals

The overarching goal of the GENI Desktop is to provide an environment in which
experimenters can control and interact with every phase of an experiment, from
the initial design of an experiment to its termination and teardown. In other words,
the GENI Desktop should be a “one stop shop” for experimenters, assisting in the
design of their experiment, establishing the management environment, obtaining
resources, configuring and initializing services, executing the experiment, analyzing
and visualizing the experiment, archiving the experiment, and eventually tearing
down the experiment. Several high-level design goals follow from this objective:

The GENI Desktop 385

Leverage and incorporate existing tools and services: Many excellent tools alr-
eady exist and are highly specialized. Do not reinvent the wheel, but rather
combine them into a single tool/work environment.

Develop a unified, consistent, and simple interface: In addition to being a one
stop shop for all their needs, the interface to the GENI Desktop should be easy
to understand and use, making it easy for experimenters—both novice users and
expert users—to launch, run, and measure their experiment.

Allow access from anywhere: Experimenter’s local computational environments
vary widely including differences in hardware, operating systems, installed
software, etc. The GENI Desktop should be usable from the largest number of
experimenter environments possible. This implies placing as few requirements
on the user’s environment as possible.

Support extensibility: Not only should the GENI Desktop be able to support
existing tools and services, but it should be easily extensible to be able to
incorporate new tools and services that arise in the future.

Ensure security and accountability: In many cases, making it easy for experi-
menters to use GENI means doing tasks on their behalf (e.g., defining RSPECs
and setting up the topology, or loading software onto all nodes in the experiment).
To ensure that security is maintained and usage is properly accounted for, it is
important that the GENI Desktop support and use GENI’s speaks-for authenti-
cation and authorization mechanism when interacting with users, allowing the
GENI Desktop to operate on behalf of its users.

The next section describes how these design goals were achieved in the GENI
Desktop.

3 GENI Desktop

The GENI Desktop is designed to make it easy for experimenters to carry out
every phase of their GENI experiment. The typical user will access the GENI
Desktop using a web browser which means that it is accessible from a wide
range of compute devices (e.g., desktops, laptops, and tablets) running any of
the popular operating systems. Although web browser compatibility issues are a
challenge for any web site, most common browsers can be used, possibly after minor
configuration changes or add-on enhancements. In addition to the web interface, the
GENI Desktop supports a command line interface (CLI) that users can use to script
their experiments. Using the CLI, users can write programs (scripts) that set up
experiments, install software, launch tests, collect data, and generate graphs that
can be later viewed.

Regardless of the interface used to access the GENI Desktop, the task of running
an experiment is greatly simplified because the GENI Desktop performs many (often
complex) operations on the user’s behalf. It does this using the GENI “speaks-for”
capabilities to authenticate to GENI, indicating that it is a tool that has been given

386 J. Griffioen et al.

permission to act on the user’s behalf. This enables GENI to associate resource
usage with the user, but yet allows the GENI Desktop to be the entity that actually
uses the resource.

Using the web interface, users are presented with the ability to start a new
experiment (i.e., create a new slice) or work with an existing slice. The GENI
Desktop leverages existing tools and services such as OMNI, Jacks, and the GENI
Portal to design the experimental topology, create slices, and allocate/free resources.
It leverages services previously developed as part of the INSTOOLs and GEMINI
projects to support instrumentation and measurement, and it also provides new
services not offered by other tools (e.g., file upload/download services, login
services, verification services, archival services, etc.)

Perhaps the most obvious contribution of the GENI Desktop is the GUI it
provides for working with experiments. First, the GENI Desktop gets its name
from the fact that it provides a “desktop” windowing system look and feel within
the context of a web browser, allowing the user to open up multiple windows
used for displaying traffic graphs, visualizing the topology, logging into nodes,
and generally managing all the components of the experiment. Second, the GENI
Desktop provides a unified abstraction for working with the resources used in an
experiment. The abstraction is based on the well-known file browser model in which
users select files and then apply operations to those files (e.g., copying the files or
deleting the files). In the GDT, users select resources and apply operations (tools and
services) to those resources. For example, a user might select a set of nodes in the
network and ask to see a graph of the TCP traffic going through those nodes. Or the
user might select a set of nodes and ask to be logged into those nodes (i.e., ssh).
The unified interface enables new tools and services to be directly incorporated into
the interface simply by adding the tool or service as yet another operation that can
be applied to a resource. This extensibility allows the GENI Desktop to adapt and
evolve as new tools and services become available.

3.1 An Example Workflow

Before describing the various features and capabilities offered by the GENI
Desktop, it is useful to consider an example workflow that an experimenter might
use to carry out an experiment using the GENI Desktop.

Initially a user will use a browser to visit the GENI Desktop web page. The
GDT welcome page asks the user to login—using, for example, their InCommon
login ID and password. Having successfully logged in, the user is presented with
the option to create a new slice or work with a previously created slice. Assuming
the user is starting a new experiment, the user will create a new slice in which
to run the experiment. Creating and setting up a slice can be accomplished by
either defining the slice topology and resources graphically—dragging and dropping
resources onto a canvas and drawing the network links between resources—or by
selecting a predefined topology from a list (of RSPECs). The GENI Desktop will
then automatically create and setup the slice on the user’s behalf.

The GENI Desktop 387

Having created a slice, the user can use the GENI Desktop to view and interact
with the resources in the slice. A user often begins by selecting and loading
experiment-specific software onto certain nodes in the slice. The user then runs
the experiment by logging into nodes and starting up the software used to drive
the experiment.

Once the experiment is running, the user can use the GENI Desktop to view
graphs of the network traffic flowing through nodes or across links. The user may
also change or alter the behavior of the running experiment by dynamically sending
(shell) commands to certain nodes in the experiment.

When the experiment finishes, users may save (i.e., archive) the measurement
data collected during the experiment (e.g., traffic graphs) for future analysis. Having
completed the experiment, a user will then tear down the slice and release the
resources so they can be used by other experimenters.

The following sections provide a more detailed look at the set of features
supported by the GENI Desktop and then give some example usage scenarios that
demonstrate how one might use these features in the various steps of an experiment’s
workflow.

3.2 Designing and Creating an Experimental Network (Slice)

The first step in the lifecycle of a GENI experiment is designing the network (slice)
that will be used in the experiment. Designing the slice requires an understanding
of the resources that can be used to create experimental networks. The GENI
Desktop leverages the Jacks tool (embedded in the GENI Desktop web pages) to
help users discover the types and location of resources that experimenters can use
in their slices. Using the Jacks RSPEC editor, users can select the types of resources
and the location of the resources (i.e., the aggregate) that they want to include in
their experimental topology. After designing the network with Jacks, the resulting
RSPEC is then returned to the GENI Desktop where it can be used to instantiate a
slice.

The next step involves establishing a management environment for creating
the experimental network. The GENI Desktop leverages existing GENI member
and slice authority services to manage user identities and create slices—abstract
“network containers” to which a user can add resources (slivers) needed by
his/her experiment. As mentioned earlier, the GENI Desktop uses GENI speaks-
for credentials to communicate with slice authority services to create and register
the slice on behalf of the user. The resulting slice credentials can then be used by
the GENI Desktop to assign resources to a slice.

To create an experiment network, an experimenter must add resources to a
slice. The GENI Desktop offers three methods for adding resources to slices. The
first method involves the user providing the GENI Desktop with an RSPEC file
describing the resources and network topology to be used in the experiment. Users
can upload the RSPEC file from their local machine, specify a URL where the

388 J. Griffioen et al.

RSPEC file can be found, or paste the RSPEC into a web page on the GENI Desktop.
The GENI Desktop will then invoke the set of OMNI tools to communicate with
GENI aggregates (using the GENI speaks-for credential) and allocate resources for
the user’s slice as specified in the RSPEC provided by the user.

The second method makes it possible to reuse the setup of a previous experiment.
The GENI Desktop allows users to save an experiment’s network setup (i.e.,
RSPEC) either as a private network specification—if it is intended to be used
exclusively by the user—or as a public specification that is made available to other
users. In this model, a user simply needs to select a past RSPEC and use it to allocate
resources for a slice.

The third method involves creating the experimental network (i.e., RSPEC) from
scratch. To assist with the creation of new RSPECs, the GENI Desktop integrates
the Jacks tool. Using the Jacks tool, users can define the set of resources they want to
include in their slice. The resulting RSPEC is then allocated (by the GENI Desktop)
on the user’s behalf.

After creating a slice and allocating resource to the slice, experimenters need to
verify that the slice was instantiated correctly and is operating correctly. To assist
with this task in the lifecycle, the GENI Desktop supports a slice verification and
testing service. Based on the manifest describing a slice, the verification service
analyzes the topology and performs tests to determine if the interfaces of all nodes
in the experiment are operating correctly. A variety of tests can be performed on
the slice. The simplest test checks to see if each interface is up and whether it is
reachable using a ping test. The test results are collected by the GENI Desktop
verification service and are then presented on a web page showing the status of
all the interfaces of all the nodes in an experiment. More advanced tests evaluate
the QoS of the network to determine if the links are operating with the speed and
performance specified in the RSPEC describing the network. The most advanced
tests include user-defined tests in which users write their own verification scripts to
test for things of importance to their experiment.

3.3 Creating Superslices

In addition to helping users design their experiments and create slices with
resources, the GENI Desktop also allows users to combine network experiments
(slices) together to create superslices—slices connected together to form large
multi-slice network topologies.

Creating large network topologies can be challenging because the failure of a
single component during the “obtain resources” phase typically requires freeing
all resources (even ones that came up correctly) and starting the process all
over. Moreover, trying again is no guarantee that the subsequent attempt(s) will
succeed. This problem could be fixed if the underlying control framework supported
dynamic addition (and deletion) of resources from a slice, but a variety of subtle
implementation issues have prevented this type of feature from being widely
adopted and supported.

The GENI Desktop 389

In addition to enabling larger topologies, superslices have several other salient
features and benefits. Because the superslice consists of independent slices, it is
possible for certain parts of the topology (a subset of the slices) to fail without
bringing down the entire topology. Superslices also allow slices from different
users/experimenters to be combined into a single shared experiment. This enables
independently operated slices to join or leave a shared superslice at any time, much
like an internet consists of independently operated ASes that are able to join or leave
at any time.

The GENI Desktop supports the concept of superslices by allowing experi-
menters to take individual slices and combine them into a single large superslice.
In particular, the GENI Desktop provides a GUI for users to display (in a GENI
Desktop web page) the topology of multiple slices and pick any pair of nodes from
different slices to establish a new network link connecting the two slices together.
At present the newly created link connecting slices together is a GRE tunnel
which can be done without the knowledge of the underlying control frameworks.
In other words, the superslice abstraction is something supported solely by the
GENI Desktop—the underlying control frameworks know nothing about the fact
that multiple slices have been combined together.

3.4 Running and Interacting with an Experiment

After creating the experimental network to be tested and evaluated, the GENI Desk-
top provides several features to help users run and interact with their experiment.

In order to interact with and control resources in a slice, users need a convenient
way to identify resources in the slice. As anyone who has had to work with
RSPEC:s will tell you, remembering and working with the identifiers in an RSPEC is
anything but convenient or easy. To make it easy for users to view and control their
experiment, the GENI Desktop provides three distinct “views” of the slice topology
that experimenters use to think about, or picture, their slice. All views allow users
to visually point at and select the resources they want to operate on (e.g., see traffic
graphs or login to).

The geographic view shows the geographic locations of nodes on a map and
visually indicates the locality or wide area features of the experimental network
as well as the physical location of nodes. The logical view shows the logical
connections between nodes without regard for their physical location. The logical
view is useful when the information of importance is the connectivity between
nodes. Lastly, the list view shows a list of all resources (i.e., nodes and links)
in the topology. It supports searching the list by name and type of resource and
is particularly useful for large networks consisting of many resources. Each view
appears in a separate window, and the three views can be display simultaneously if
desired. All three views are kept consistent and synchronized. Selecting a node in
one view causes it to be selected in all views. Users can select the most appropriate
view, as some operations may be performed more easily in one view than another.

390 J. Griffioen et al.

Given the ability to “view” the network, users can easily upload experimental
software, issue commands to start experiments, login and control particular nodes,
see traffic graphs, capture packet traces, and perform various other operations
supported by underlying tools and modules in the GENI Desktop. As described
earlier, the GENI Desktop user interface is designed around a common unifying
abstraction similar to the abstraction used in file browsers. Using any one of the
“views” described above, users can select a set of resources and apply an operation
to run or control their experiment. For example, a user may select several nodes in
the logical view (say by dragging the mouse over the nodes much like one would
select a set of files in a file browser) and apply an operation. Alternatively, a user
may search for a node with a particular name in the list view and then apply an
operation to that specific node. All interactions with tools and services are defined
in this way, and give users easy control over their running experiments.

Several operations supported by the GENI Desktop are specifically designed
to help users run their experiments. For example, the quick information window
operation in the GENI Desktop pops up a window with information about the node
currently selected in the view, including information about the node’s name and
IP address and port needed to login to the node. Once opened, information about
other resources in the view can be found by simply mousing over the resource. For
example, when the mouse moves over a link, the IP addresses of the end points of
the link are displayed. Being able to quickly obtain information about the resources
is particularly useful while running an experiment.

Another useful operation when running experiments is the ability to upload files
to experimental nodes. Without the GENI Desktop, this can be a cumbersome
process because users may have to upload the same set of files to many nodes in
the experiment. The GENI Desktop implements a feature to allow users to select a
file and select a set of nodes from the GUI. The user can then choose the destination
directory on the experimental nodes, and the GENI Desktop will upload the selected
file to the specified directory on the selected set of nodes.

Similarly, users may want to run their program on multiple experimental nodes.
It can take a long time for users to login to each node, go to the correct directory
and run their program. To address this common need, the GENI Desktop supports a
“run” operation which allows the user to select a set of nodes and issue a command
to be run on those nods. The GENI Desktop will run the program on all the machines
selected and display the results without requiring the user to login to these nodes.

To work on a specific node, the user may want to login to it. This normally
involves using an ssh-based tool with a correctly configured private ssh key. The
GENI Desktop provides an easy-to-use interface for logging in to an experimental
node. The user simply selects the node(s) and clicks on “ssh” operation. An ssh tab
in the browser will be created for each of the selected machines, and the user will
find themselves logged in without any additional effort.

The GENI Desktop 391
3.5 Monitoring an Experiment

When an experiment is created with the GENI Desktop, it will be automatically
instrumented with measurement software and tools for collecting data about the
experiment. If an experiment is created by other tools, such as the GENI portal and
Jacks, it will be instrumented the first time the GENI Desktop is used for viewing the
experiment. The instrumentation process involves installing measurement software
and tools at experimental nodes and configuring and initializing them to start
collecting the data for users. In addition, an additional node, called the global node
will be created for the experiment to store the collected data and process them for
presentation to the user.

The default measurement software collects standard TCP/IP network perfor-
mance data such as packet and byte counts of TCP and IP traffic on each interface.
It also collects data about CPU load and memory usage. The data collection is
configurable by the user to specify what information is to be collected at which
node. In addition, the GENI Desktop can also set up NetFlow services for capturing
data on a per-flow basis. The flows to be monitored are preconfigured so that the
user can simply go to the web interface and see the most common types of flows.
Similarly, users can use the GENI Desktop’s web interface to configure what flows
should be captured.

Like the INSTOOLs project, the basic monitoring capabilities of the GENI
Desktop use passive measurements. However, the GENI Desktop also supports
active measurement by allowing users to schedule tasks for measuring the latency
and bandwidth of the network by using tools such as ping, iperf and pathchar.

The measurement data collected by the GENI Desktop is presented to the user
through the web interface. The data is displayed and automatically refreshed every
5s to give the impression of a “live” view of the running system. The GENI Desktop
can display a variety of graphs, including IP traffic, TCP traffic, UDP traffic, ICMP
traffic and total traffic of an experimental node or a link in the topology. The units
displayed can be either byte counts or packet counts. CPU and memory usage
graph can also be displayed for nodes, showing load averages over time. Users can
configure which graphs are to be displayed and for which nodes or links. The user
can also specify an alert condition by setting a minimum and/or a maximum value
for any measure of interest in the graph. If the measure goes out of the range, an
alert will be presented to the user for special attention. The user can also configure
the way these graphs are displayed, such as the size of the graphs, the number of
graphs per row, the scale of time unit, and the start time (offset) of the graphs.

Netflow graphs are displayed using a netflow operation. The user can select the
nodes of interest and then specify the traffic of interest based on the protocol number
such as protocol 169 and protocol 255, or based on the protocol name such as TCP,
UDP, GRE, IPinIP, IMAP, DNS, Gnutella, and Kazza. The user can also configure
what traffic should be collected and what graphs should be displayed. Similar to
other graphs, the user can select the way these graphs are displayed.

392 J. Griffioen et al.

The GENI Desktop also provides the ability to access X window software run-
ning on experimental nodes via the GENI Desktop’s web interface. It allows users
to leverage existing network monitoring tools, such as Wireshark and EtherApe,
in order to observe the behavior of experimental nodes. These tools are helpful to
collect packet traces, node statistics, and to visualize link traffic. However, they
need X window support. To support such access, the GENI Desktop adds the ability
to dynamically load X-window software onto the experimental nodes and then
provides indirect access through the web browser and the VNC protocol. The GENI
Desktop currently has two VNC templates that are preconfigured to run xterm and
wireshark respectively on the nodes in the slice via VNC.

3.6 Tearing Down an Experiment and Archiving the Results

GENI slice and sliver resources for an experiment expire after a certain period of
time for the benefit of resource sharing. The GENI Desktop provides an automatic
renew function for the slices so that users do not need to do that manually
(continually). Users can also explicitly renew the lifetime of their resources via the
GENI Desktop. When an experiment is no longer needed, users can tear down the
experiment by deleting resources explicitly through the GENI Desktop, instead of
holding the resources longer than necessary.

Data collected during experimentation may be needed beyond the lifetime of the
experiment. The archival service of the GENI Desktop leverages the iRODS storage
service to store and later retrieve measurement data collected by the GENI Desktop.
It generates the necessary metadata to describe the archived content so that the user
can associate the archived data with the particular resource in the experiment that
generated the data. Data can be retrieved from the archival sites independent of the
GENI Desktop as long as the user can provide the credentials to the archival servers.
Archived data can be downloaded to a user’s machine for postmortem processing
and use in documentation and publications.

To make it easier for users to quickly access, view, and make sense of archived
measurement data, the GENI Desktop also supports an advanced archival service
that not only archives the measurement data, but also archives the software and
context needed to display the data. Because the data and the environment needed
to view the data are both saved away, users can be assured that they will be able to
access an archive and view the saved data using the same tools available at the time
the data was collected.

To support this advanced archival service, the GENI Desktop implements an
archival server that not only captures the measurement data stored on the global node
(where measurement data is collected), but it also captures the state of the drupal
system used to display the data, including all web server (Apache) and database
(mysql) files. GENI Desktop users can request that an archive be made, which is then
sent to the archive server. When a user visits the archive web page on the archive
server, they can select from any of the archived snapshots. The archive server will

The GENI Desktop 393

dynamically launch a Xen VM, set up the apache, mysql, and Drupal state needed
to view the measurement data, install the archived measurement data, create login
credentials for the user, and share the credentials with the GENI Desktop so the user
is automatically logged into the archive VM. The result is that the user is presented
with the same look-and-feel as if they had gone to the global node at the time the
snapshot was taken.

3.7 GENI Desktop Command Line Interface

The GENI Desktop’s web interface greatly simplifies the task of instrumenting and
monitoring a user’s experiment (slice) for most users. However, expert users often
find it easier to control their experiments through scripts and programs. In other
words, they prefer a programmatic way to leverage the GENI Desktop functionality.

To address this need, the GENI Desktop provides a command line interface (CLI)
that can be used to programmatically upload files, run commands, download mea-
surement graphs, etc.—functions previously only possible via the GENI Desktop
web interface. In particular, an application called the gdcli program running on
Linux (or other Unix-based systems), Mac, and Window is available and can be
used to invoke operations on the GENI Desktop. For example, the gdcli program
can be used to:

» Upload files to a select set of nodes

¢ Run a command on a select set of nodes

e Download a traffic measurement graph (as PNG or CSV) from a select set of
nodes

¢ Download a normal file from a select set of nodes

¢ Get a list of slices

¢ Check the status of a slice

* Get the topology of a slice

» Validate the setup of a slice

¢ List the nodes in a slice

¢ List the links in a slice

The gdcli program can be called from any scripting language (e.g., python,
perl, sh (bash), .BAT files, etc.). As a result, users are able to write programs
in their favorite scripting language that makes calls to the GENI Desktop to
upload/download files, download measurement graphs, run commands, etc. Because
the gdcli program is a python script, the only requirement to run it on a user’s local
machine is a python interpreter. Moreover, users that want to issue calls directly to
the server can integrate the python functions found in the gdcli program into their
own python scripts.

394 J. Griffioen et al.

GENI Admin Services GENI Aggregates

User’s Machine

Browser Window

GUI

Modules Web Server

" Experimental '
. Nt Global Nodes
Archive SN Node
Server

Fig. 2 GENI Desktop components

3.8 Components of the GENI Desktop System

Figure 2 illustrates the components of the GENI Desktop (shown in light blue)
and their relationship to other GENI components/services (shown in orange). At
the heart of the GENI Desktop is the GDT web server. The GUI that users see in
their browser (i.e., the GENI desktop windowing system) is hosted by the GDT
web server. As users work with their slices, the browser communicates with the
GDT web server. The GDT web server in turn communicates with various control
framework components such as member authorities, slice authorities, and aggregate
managers (using the GENI speaks-for capabilities) to perform operations on the
user’s behalf.

To achieve scalable and efficient collection of measurement data from experi-
mental nodes, the GENI Desktop automatically adds extra nodes to the user’s slice
called global nodes (GNs). One GN is added to each aggregate in the slice allowing
data collection to be localized and confined within an aggregate. Experimental nodes
are instrumented to send their measurement information to their local GN. The GDT
web server retrieves information from the appropriate GNs when asked to display
measurement information (e.g., traffic graphs). The GDT web server is also capable
of executing commands on experimental nodes on the user’s behalf.

Extensibility in the GENI Desktop is supported through the use of GDT modules.
GDT modules are loaded from the GDT web server into the user’s browser where
they execute and interact with the other windows in the GDT window system. A
basic set of modules is loaded into the user’s browser by default. The basic set
includes modules that enable features such as viewing traffic graphs, ssh access
to nodes, file upload capabilities, running commands on sets of nodes, viewing

The GENI Desktop 395

information stored on the GN, archiving measurement data, rebooting nodes, and
creating a disk image. Modules may communicate with the GN, or in the case of
the archive module, with an archive service that stores measurement data for later
analysis.

In addition, the set of modules supported by the GENI Desktop can be easily
extended and enhanced, both by the GDT operators (e.g., to extend the default
set of modules) and by general users (via a “module maker” feature). Additional
modules that have been developed include modules to automatically generate
network traffic, support netflow data collection, modify routing paths, and insert
rules in an OpenFlow controller.

4 Using the GENI Desktop

In the following, we describe and illustrate examples of how users might perform
all the phases in the lifecycle of an experiment (i.e., create, run, measure/monitor,
archive/analyze, and teardown an experiment) using the GENI Desktop. We first
describe how to perform these tasks in the context of the GDT GUI and then in
the context of the GDT CLI. For more detailed examples of how to perform an
experiment using the GDT, interested readers can find additional detailed GDT
tutorials on the GENI web pages (http://www.geni.net).

4.1 The GENI Desktop GUI

When the GENI Desktop page is opened, it first asks users to allow it to act on
their behalf to reserve resources and have access to these resources, as shown in
Fig. 3. For most university users, this will be their InCommon credentials which are
their user name and password for their university account. By authorizing the GENI
Desktop, the user signs the “speaks-for” certificate used by the GENI Desktop to act
on their behalf.

After login, users can create a new slice by providing the slice name as shown
in Fig. 4a. The slice is the container to which resources can be reserved and added
for the experiment. Figure 4b shows several ways in which a user can specify the
RSPEC for an experiment. For example, a user can use the Jacks tool to create a new
topology from scratch (Create New). Alternatively, a user can choose a topology
from a previous experiment (Choose Existing), or upload the topology from a file
(Upload File), or get the topology from a URL (Get Via URL). In addition, a user
can just write/paste the content of an RSPEC file into a text window (Paste Text).

If the user chooses to create the experiment topology from scratch, the GENI
Desktop has an integrated RSPEC editing tool, Jacks, which allows users to drag
and drop the nodes and links for the experiment, as shown in Fig.5. There are a
variety of types of nodes that can be requested, including raw PCs, VMs, and OVS

http://www.geni.net

396 J. Griffioen et al.

F

\.f

enldesktoo

Explmng Networks of the Futare

To log in to the GENI Desktop click "Authorize the GENI Desktop".

‘Authorize the GENI Desktop

The GENI Desktop requires your authorization in order to act on your
behalf. This requires that you sign a credential authorizing the GENI
Desktop to speak for you when interacting with GENI services.

FAQ/Help | Feedback/Bug Report | Get A GENI Account

Fig. 3 Authorize the GENI Desktop

b genidesktop
Your slice "mydemo” does not have any resources.
a . You must add resources before viewing with the
W GENI Desktop.
oose an ich will define the resources
enideskto ch RSPEC which will define th
e 2 i to be allocated to your slice.
(Create New)
Project UKGENI v (Choose Existing)
i (Upload File]
Create New Slice (T —
(Paste Text)

Fig. 4 Create a slice and add resources. (a) Create a new slice. (b) Add resources to a slice

nodes. In this example, the user creates a topology with two nodes connected by a
link. The GENI Desktop will request resources from the aggregates specified by the
user.

After reserving the resources, the GENI Desktop will then automatically instru-
ment the slice to collect measurement data for the user. Figure 6 shows the topology
of the slice on the GENI Desktop. The small information window in the upper right
corner shows the IP addresses of the link highlighted in the topology window. The
upper left side shows the list of modules (possible operations) that can be used in
this slice. The user can select a subset of nodes from the topology and choose an
operation to be performed on the selected nodes.

The first operation often performed is to upload files (programs or data files) to a
selected set of nodes. In Fig. 7 we show that a selected file (curl_uploader.tgz) from
the local machine will be first uploaded to the GENI Desktop, and then distributed
to the selected nodes (node-0 and node-1).

The GENI Desktop 397

...' v
mydemo genideskiop ®
[Aocate Resources Using This RSPEC)
Save to Cloud For Future Use
Extra Features
Auto IP
Drag to Add
|||
M xenvm | | EGvm

Raw PC IG| RawPC EG OF OVS

\EJ\

node-1
Fig. 5 Create a topology from scratch
Slice Settings
Modules - pet.mev.sdn.uky.edu:30266
s =
File Download node-0 (mydemo)
File Upload - Cloud
File Upload - Direct
Module Maker ks Welcome To The GENI Desktop
i .
=t o) =2l |mydemo i
Template Getting slice topology...manifest recieved...lopology recieved.
Validation
It will take a few minutes for your slice to to be ready. Please wail while your slivers
are being created/booted.
GOGNO.
Thegraph will be perhdh:a!yupdawdas the slivers progress. Red nodes have
nodes are Booting. Green nodes are Ready.
Slivers O,

— In order 1o use the basic features of the GENIDeskwn.yourm must be
mmou Please wait while your shce is being initial
cmmmlmhn..,

Exploring Networks of the] Slice is intakzed. You may make use of the basic featuras of the GENI Deskiop.

Slica is currently bel ion is complate, you may
nukamadmmmwmdmﬁfmm

Checking Instrumentation...

Fig. 6 View the topology and link information from the GENI Desktop

The “Command” module of the GENI Desktop allows users to run Unix
commands or user programs on a selected set of nodes. Figure 8 shows that the
“Is” command will be run on the nodes selected (node-0 and node-1). The results of
running this command are shown in Fig. 9.

398

| Slice Settings |

File Download

J. Griffioen et al.

link-0

[Your GENI Cloud Files
[Selected Cloud Directory

GN View
(Module Maker | New Directory |
Passive Config Delete | Refresh |

Passive Graphs
Passive Graphs Lite
Reboot Nodes

Validation

!
curl_uploader.tgz

&

node-0

Upload Files To GENI Cloud
JUpload Choosen Files To Selected Cloud

D

» curl_uploadertgz

 Disiributo Files To Nodes

IDistribute All Contents Of Selected Cloud
[Directory

[To |~/

jon Nodes | Set Selected Nodes

jnode-0
jnode-1

L4

Fig. 7 Upload a user file to a selected set of nodes

Modules -
Archive

GN View

Template

Validation

link-0

[

Run Command |

Is -ni ~/

jnode-0
jnode-1

[Nodes | Set Selection

Fig. 8 Run a user program on a selected set of nodes

The GENI Desktop 399

node-1+

node-0+

Fig. 9 Results of the Run command

Slice Settings |

(Modules- |

| Archive

(=)

| Command | o "“‘____. _ﬂl
I_ Disk Image b7 [y
[File Downioad |
[File Upload - Cloud |
| File Upload - Direct
GN View
Module Maker
Passive Config
Passive Graphs
Passive Graphs Lite |
Rebool Nodes |
[SSH |
[T Tables |

| Template

| Validation |

+ LiveUpdate(On) || Graphs = | Nodes = || Links ~ || Display = | ApplyConfig | | Alert = LockView

+ Markers
Chart Size
Seale
Offset

wode-d : IP Traffic mode-0 : TCP Graph

IP Traffic TCP Traffic

MBS AR

[batrt//genidesktopnetlabuky.eduy,

[beept) /genidesktopnetlabuky.edy

MNODE-1 IP Traffic MODE-1 ICHP Traffic

130) %
B Incening Traffic B outgeing Traffic

13t
10

0.5

A EREEE

Trafficipackets)
Trafficipackets]

0.0
[FreEy

W Outgeing Traffic

B Incoming Traffic

Fig. 10 Traffic at node-0

Traffic counts are automatically captured during the experiment by the GENI
Desktop. Figure 10 shows the IP traffic and TCP traffic over time observed at
node-0. The bottom two windows show the IP traffic and TCP traffic at node-1.
Figure 11 shows the interface traffic observed at 1ink-0. The graphs show two
obvious traffic peaks that occur during the experiment. The way in which these
graphs are displayed and which nodes/links should be displayed can be configured
by using the drop-down menus at the top of the window. This provides great
flexibility for users to observe measurements of interest to them.

The results of the experiment can be stored for long-term use in the archive
servers. Figure 12 shows the menu for archiving the measurement results to an
iRODS server. Users can select what data to send and which iRODS server to store

400

les -
ive
mand
File Upload - Cloud

[+ LiveUpdate(On)
|'v Markers
Chart Size
Scale
Offsct

Module Maker

— sn)

Validation

link-0

Traffic{ Bytes)

Graphs ~

: mode-0 : Link Octets

Interface Traffic

Nodes = | | Links = || Display = = ApplyConfig

link-0 : node-1 : Link Octets

B bt/ /genidesktop.netlab.aky.edu,

23kt
1ok

o5k

Trafficipackets)

NOCE-1 link-0 Unicast Traffic

Interface Traffic

J. Griffioen et al.

Alert ~ LockView

T T ax ITEPRTES

-a-Incoming Traffic

it

[E1Outgoing Traffic

1

wn
B Incoming Traffic

Fig. 11 Traffic at link-0

14: 30
B Outgoing Traffic

Choose the Global Nodes you want to archive.

|[GDGNO

Archiving to IRODS requires username and password.

iRods Username |

B

iRods Password |
Server

Lgeni-gimi.renci.org

Y

v

Archive ToIRODS |

Fig. 12 The archive service

The GENI Desktop 401

Geni Desktop Archives

(All times listed are In US Eastern)

= mydemo
o 05/31/2016 14:41:40 View Archive Re-Download Archive Delete Local Archive Delete Remote Archive

Downloading Archive ...
This may take a few minutes.
| Enable Auto Scroll

D- fvar/www/html/archives/mydemo/05_31 2016 14 41 48/mcv_sdn_uky edu/tables :
D- /fvar/www/html/archives/mydemo/05 31 2016 14 41 48/mcv_sdn_uky edu/tables/node-0 :

ARP_Table.tbl 9.801 MB | ©.099 sec | 6 thr | ©.008 MB/s
Address_Table.tbl ©9.001 MB | ©.899 sec | © thr | ©.086 MB/s
Loaded Modules.tbl 9.062 MB | ©.180 sec | @ thr | ©.816 MB/s
Process_Info.tbl ©.025 MB | ©.100 sec | © thr | ©.250 MB/s
Route Table.tbl 0.001 MB | ©.899 sec | @ thr | ©.010 MB/s
TCP_Connections.tbl 9.001 MB | ©.164 sec | © thr | ©.914 MB/s
UDP_Listeners.tbl 9.861 MB | ©.899 sec | @ thr | ©.088 MB/s

|
|
|
|
|
|
D- fvar/wew/html/archives/mydemo/85_31 2016_14_41 406/mcv_sdn_uky edu/tables/node-1 :
|
|
|
|
|
|
|
|
|
|

ARP Table.tbl 9.801 MB | ©.098 sec | & thr | ©.008 MB/s
Address Table.tbl ©.861 MB | 9.999 sec | @ thr | ©.006 MB/s
Loaded Modules. tbl 0.802 MB | 0.104 sec | © thr | ©.816 MB/s
Process_Info.tbl 9.825 MB | ©.102 sec | & thr | ©.248 MB/s
Route_Table.tbl 0.001 MB 9.105 sec | & thr | ©.009 MB/s
TCP_Connections.tbl ©.002 MB | ©.100 sec | @ thr | ©.016 MB/s
UDP Listeners.tbl 0.661 MB | ©.100 sec | 6 thr | ©.868 MB/s
htmldir-ubuntu.tgz ©9.513 MB | ©.151 sec | @ thr | 3.387 MB/s
timestamp_end ©9.060 MB | ©.101 sec | & thr | ©.000 MB/s
timestamp start 9.000 MB | ©.101 sec | @ thr | ©.000 MB/s

Done retrieving Archive for Slice mydemo dated 05/31/2016 14:41:40.

Please go to http://192.168,33.22/archives/mydemo/0S 31 2016 14 41 40/index.php to view your archive

Fig. 13 Sample archives of a user

the data on. Figure 13 shows sample archives stored at the GENI Desktop archive
site. They are identified by the slice name and time the archive was stored. Multiple
archives can be stored for the same slice at different times.

4.2 The GENI Desktop CLI

Many of the functions provided by the GENI Desktop graphical interface are
available through the command line interface of the GENI Desktop. Because slice
creation and resource allocation are provided by OMNI, the GENI Desktop CLI
did not re-implement these functions. They can already be invoked from user
scripts. Figure 14 shows a shell script invoking the gdcli library to list the nodes
in an experiment, run a series of commands on selected nodes and download the
performance results from selected nodes.

402 J. Griffioen et al.

#!/bir/cash

SLICENAME=$2
PROCECTNAM==51
2f [-z "S$SLICEZNAME"™] ; then
eche "Missing Slicename™
echo "USAGE $0 <PROJECTIKAVE> <SLICENAME>"

exit 1;
i
2f [-z "$PRCIZTCTNAME" | ; <hen
echo "Missing Projectnzame”
echo "USAGE $C <PROJECTNAVE> <SLICENAME>"
exit 1;
ri

echo "Running List nodes cormrand™
gdcli listnodes -s SSLICENAME -r S$PROJZCTNAME

echo "Instzalling iperZ on a_’ nodes”
gccli zun -s $SLICENAMI -r SPROJECTNAME -n "ncde-0,node-1" \
—-¢ "sudo apt-cet -y update;sudo apt-get -y irstall iperf"
echo "Starting Iperf server Ir daemor mode on noce-0"
gGeli zrun -s $SLICENAMZ -r SPROJECTNAME -n "ncde-0"
-¢ "iperZ -s -D> /dev/null 2>&l"
echo "Starting Zperf client or node-1"
echo "Connecting tc rode-0 blastirg traffic at 1CCb/s for 3C seconds"
gcécli zun s $SLICENAMZ 1r SPROJECTNAME n "node 1"
-c "iperf -t 30 -c node-C -b 10G00M"

echo "Fetca graoh for data collected on Zink at interZace con node-0"
gdcli getpng —-s $SLICENAME -r $PROJZCTNAME -¢ lirkkytes -1 lirnk-G

-n node-0 -o ~/Desktop/tyyraphs
echo "Open Folder $HOM=/Desk-op/mvagraphs t¢ view crzaphs just downloaded"

Fig. 14 An example shell script using gdcli [18]

The project name and slice name are the two parameters provided to the script.
The first gdcli library call is 1istnodes, which gives a list of nodes in the
experiment. Next, the script calls the gdcli library to install the iperf software on
nodes node - 0 and node - 1. It then starts the iperf server on node - 0 and runs the
iperf client on node -1 with the specified parameters. Finally, the script downloads
the png graph generated by the monitoring functions to the desktop under directory
mygraphs of the local machine. The graph records the byte count for 1ink-0 at
node- 0 over time. The whole process is automated by using the script. It can be
repeated to reproduce the results and modified to perform any new tests.

4.3 Common Usage Models

The GENI Desktop can support a variety of types of applications. We describe three
examples to show how to make effective use of the GENI Desktop to carry out
experiments.

The GENI Desktop 403

In the first example, a user wants to use GENI to develop and test a distributed
application layer service, such as a Content Distribution Network (CDN). The GENI
Desktop can be used to create a slice and set up a topology with nodes distributed
to the locations the user wants. This can be done using the Jacks integrated in the
GENI Desktop by specifying which aggregate each node should be allocated from.
The user can upload the CDN software to all the nodes with the upload feature of
the GENI Desktop. Running the experiment is as easy as selecting all the nodes and
typing the CDN program the user intends to run. The performance results can be
collected by the monitoring and archiving services of the GENI Desktop.

In the second example, a user may want to change the “router” functionality
by testing new routing protocols. One way to do that is to use the linux routers
and user-level netfilter scripts to intercept traffic passing through the router. The
user can write a new protocol to process the packets. After creating the topology
of the experiment, the user can write a gdcli script specifying the program with
the new protocol to be uploaded to the experimental nodes and also specify how
the program should be run at each node. The user may try different parameters
for the new protocol and repeat the experiment as many times as required. The
corresponding result for each run can be collected and stored to the local machine
for later analysis.

In the final example, a user wants to write an SDN application that interacts with
the northbound interface of an OpenFlow controller. The user needs to create a slice
with OVS images and a node to run the OpenFlow controller, set up default routes
across the slice, and possibly change routes. With the tailored Jacks in the GENI
Desktop, the user can create a topology using the GD OVS node, which is a special
OVS image that initializes the OVS node and points the OVS node to the controller.
The user can also add a special AAG Controller to the topology [17]. With the Flow
Install module provided by the GENI Desktop, the user can specify a routing path
for a flow and the corresponding OpenFlow rules will be installed at the OVS nodes
by the Flow Install module automatically. Using the GENI Desktop Flow Monitor
module, the user can monitor the performance of any selected flow.

5 Interacting with Other Tools and Services

A key goal of the GENI Desktop is to leverage existing tools and services. To
that end, the GENI Desktop incorporates and uses a variety of existing tools
such as OMNI [10], Jacks [9], and iRODS [8] in several of its key services. The
GENI Desktop also provides an extensible framework capable of incorporating new
add-on modules designed to offer enhanced functionality. In addition, the GENI
Desktop has been designed to interoperate seamlessly with several peer tools and
services such as the GENI Portal [5]. In the following, we briefly highlight some of
these related tools and services.

The GENI Desktop windowing systems has been designed to support inter-
window messages as a fundamental feature of all services running in the GENI

404 J. Griffioen et al.

Desktop. Services such as displaying traffic graphs, or logging into nodes, are all
driven by window messaging system. Resources selected in one of the three GENI
Desktop “views” are passed as click events to the other modules (windows) in the
GENI Desktop. As a result, all modules are aware of the resources that have been
selected and to which the operation should be applied.

Cytoscape [1] is a graphical tool that is being used by the GENI Desktop for
network topology visualization and interaction. Once a slice is instrumented using
the GENI Desktop, a user can view and interact with the topology by clicking
on the nodes and links in the network view drawn by Cytoscape. It has been
enhanced to support the GENI Desktop window message passing service, enabling
click/select events to be passed to the GENI Desktop messaging framework for
further interaction with other add-on modules.

More recently we began developing an enhanced version of the Jacks [9] RSPEC
editor to incorporate the GENI Desktop window messaging events. As a result,
Jacks can be added as a plug-in module to the GENI Desktop and run in the user’s
browser. The GENI Desktop window messaging system then sends and receives
events to/from JACKS which can then modify the RSPEC being drawn in it. One
such app used in the GENI Desktop is the “Auto IP”, which assigns non-conflicting
private IP addresses to links drawn by the user.

GENI slices and slivers created by the GENI Desktop can also be used by other
GENI Tools such as the GENI Portal [5] and LabWiki [7]. This is made possible
by interoperability standards. Both the GENI Desktop and the GENI Portal rely
on the GENI Clearing House for user and slice information. The GENI Desktop
relies on the GENI Portal (and Clearing House) for authorization and authentication.
The speaks-for feature of the GENI Desktop is used for the GENI users whose
accounts have been issued by the GENI Clearing House. GENI slice and sliver
operations, such as creation, deletion, renewal and slice membership modification,
are all reported back to the GENI Clearing House and then relayed back to the GENI
Portal. Thus both tools are always in sync with regard to the user account and the
slice status. OMNI [10], another python based CLI tool for GENI, can also operate
on the user’s slices and slivers while keeping GENI Portal and GENI Desktop tools
in sync. The GENI Desktop and GENI Portal both use OMNI as a library for their
respective back-ends.

LabWiki [7] is a web-based interface developed as part of the GIMI project.
It provides a web-based interface that can be used to design, describe and run
repeatable experiments using GENI resources. GENI slices created in the GENI
Desktop can also be used in the GIMI instrumentation framework. In addition, if
a GIMI Disk image that is compatible with the GENI Desktop is used for a GENI
slice, it becomes inter-operable with the instrumentation framework of the GENI
Desktop.

Also related is the GENI Experiment Engine [13], a distributed platform-as-a-
service tool that provides an easy way for a novice user to get an experiment up
and running very quickly. It assigns one of a set of pre-allocated slicelets to the
user to release the user from the burden of allocating virtual machines, configuring
virtual machines/networks, and writing RSPECs. It is very helpful for new users

The GENI Desktop 405

when they are getting started and learning how to use GENI. However, the number
of pre-allocated slicelets is limited, and the topology/configuration of these slicelets
is pre-defined and may not necessarily satisfy the user’s requirement. The GENI
Desktop and the GENI Experiment Engine are complementary in the sense that after
learning how to use GENI with the GENI Experiment Engine, a user can transition
to the GENI Desktop to develop custom experiments.

GENI also provides access to archive tools such as iRODS [8]. An iRODS
account can be created at the GENI Portal. Once an iRODS account is activated,
a user can gain access to the iRODS interfaces (web-based or CLI) directly or
use other tools such as the GENI Desktop and LabWiki that interact with the
GENI iRODS server to archive user’s measurement data being collected. The GENI
Desktop also hosts its own archive server that provides an interface to visualize the
data archived in addition to the basic archival feature.

6 Summary

The GENI Desktop provides a “one stop shop” for experimenters to carry out their
experiments from beginning to end. It leverages existing tools wherever possible and
provides both a web-based interface and a command line interface to support novice
and expert users alike. It automates many of the tasks required by experimenters
allowing them to focus on the objectives of their experiments, relying on the GENI
Desktop to handle many of the details and complexities of creating, configuring,
running, and measuring experiments. Moreover, the GENI Desktop makes it easy
for users to run experiments by supporting a simple well-known abstraction for
applying operations to resources in a common way. This abstraction, combined with
a flexible and extensible event message passing system, makes it possible to add
enhanced functionality as new tools and services emerge in the future.

References

. Cytoscape: http://www.cytoscape.org/ (2015)

. GEMINI: A GENI measurement and instrumentation infrastructure. http://groups.geni.net/
geni/wiki/GEMINI (2014)

. GENI experiment lifecycle diagram. http://groups.geni.net/geni/wiki/ExperimentLifecycle
(2014)

. GENI experiment workflows. http://groups.geni.net/geni/wiki/GeniExperiments (2013)

. GENI Portal: https://portal.geni.net/ (2015)

. GENI System Overview. http://www.geni.net/docs/GENISysOvrvw(092908.pdf (2008)

. Introduction to LabWiki and OEDL. https://github.com/mytestbed/labwiki (2015)

. iRODS: http://www.irods.org/ (2015)

. Jacks: https://www.emulab.net/protogeni/jacks-doc/ (2015)

. Omni: http:/trac.gpolab.bbn.com/gcf/wiki/Omni (2015)

. The Emulab: http://www.emulab.net (2015)

— O 0 00N LA w N =

—_—

http://www.emulab.net
http://trac.gpolab.bbn.com/gcf/wiki/Omni
https://www.emulab.net/protogeni/jacks-doc/
http://www.irods.org/
https://github.com/mytestbed/labwiki
http://www.geni.net/docs/GENISysOvrvw092908.pdf
https://portal.geni.net/
http://groups.geni.net/geni/wiki/GeniExperiments
http://groups.geni.net/geni/wiki/ExperimentLifecycle
http://groups.geni.net/geni/wiki /GEMINI
http://groups.geni.net/geni/wiki /GEMINI
http://www.cytoscape.org/

406 J. Griffioen et al.

12. The Flack GUI: http://www.protogeni.net (2012)

13. Bavier, A., Chen, J., Mambretti, J., McGeer, R., McGeer, S., Nelson, J., O’Connell, P., Tredger,
S., Ricart, G., Tredger, S., Coady, Y.: The GENI experiment engine. In: Proceedings of the 2014
26th International Teletraffic Congress (ITC), Karlskrona, September 2014, pp. 1-6 (2014)

14. Berman, M., Chase, J.S., Landweber, L., Nakao, A., Ott, M., Raychaudhuri, D., Ricci, R.,
Seskar, I.: GENI: a federated testbed for innovative network experiments. Comput. Netw. 61,
5-23 (2014). Special Issue on Future Internet Testbeds—Part I

15. Griffioen, J., Fei, Z., Nasir, H., Wu, X., Reed, J., Carpenter, C.: Measuring experiments in
GENI. Comput. Netw. 63, 17-32 (2014). Special Issue on Future Internet Testbeds—Part 1T

16. Laverell, W.D., Fei, Z., Griffioen, J.N.: Isn’t it time you had an emulab? In: ACM SIGCSE
2008 Technical Symposium on Computer Science Education, Portland, OR, March 2008

17. Rivera P.,, S., Fei, Z., Griffioen, J.: Providing a high level abstraction for SDN networks
in GENL In: Proceedings of the 2nd International Workshop on Computer and Networking
Experimental Research Using Testbeds (CNERT 2015), Columbus, OH, June 2015

18. The GENI Desktop Tutorial, http://groups.geni.net/geni/wiki/GENIExperimenter/Tutorials/
GENIDesktop (2016)

http://groups.geni.net/geni/wiki/GENIExperimenter/Tutorials/GENIDesktop
http://groups.geni.net/geni/wiki/GENIExperimenter/Tutorials/GENIDesktop
http://www.protogeni.net

A Walk Through the GENI Experiment Cycle

Thierry Rakotoarivelo, Guillaume Jourjon, Olivier Mehani,
Max Ott, and Michael Zink

Abstract The ability to repeat experiments from a research study and obtain similar
results is a corner stone in experiment-based scientific discovery. This essential
feature has often been overlooked by the distributed computing and networking
community. There are many reasons for that, such as the complexity of provisioning,
configuring, and orchestrating the resources used by experiments, their multiple
external dependencies, or the difficulty to seamlessly record these dependencies.
This chapter describes a methodology based on well-established principles to plan,
prepare and execute reproducible experiments. We propose and describe a family
of tools, the LabWiki workspace, to support an experimenter’s workflow based
on that methodology. This proposed workspace provides services and mechanisms
for each step of an experiment-based study, while automatically capturing the
necessary information to allow others to repeat, inspect, validate and modify prior
experiments. Our LabWiki workspace builds on existing contributions, de-facto
protocols, and model standards, which emerged from recent experimental facility
initiatives. We use a real experiment as a thread to guide and illustrate the discussion
throughout this chapter.

1 Introduction

One of the cornerstones of scientific discovery is validation by the community.
In experimental science, this requires others to repeat the experiments and obtain
similar results within acceptable statistical bounds. Traditionally, the distributed
computing and networking community has been largely ignoring this. There are few
publications in top-tier venues, which primarily report on the successful validation
of somebody else’s work, while problems with repeatability are sometimes buried

T. Rakotoarivelo * G. Jourjon * O. Mehani « M. Ott

NICTA, Australian Technology Park, Eveleigh, NSW, Australia

e-mail: thierry.rakotoarivelo@nicta.com.au; guillaume.jourjon@nicta.com.au;
olivier.mehani @nicta.com.au; max.ott@nicta.com.au

M. Zink (54)

Department of Electrical and Computer Engineering, University of Massachusetts in Amherst,
Ambherst, MA 01003, USA

e-mail: zink@ecs.umass.edu

© Springer International Publishing Switzerland 2016 407
R. McGeer et al. (eds.), The GENI Book, DOI 10.1007/978-3-319-33769-2_17

mailto:zink@ecs.umass.edu
mailto:max.ott@nicta.com.au
mailto:olivier.mehani@nicta.com.au
mailto:guillaume.jourjon@nicta.com.au
mailto:thierry.rakotoarivelo@nicta.com.au

408 T. Rakotoarivelo et al.

in vague references. There are many reasons for that. Advances in the underlying
technology continuously create new opportunities to explore new ideas leaving little
time to reflect on the “old”. But there are also very pragmatic reasons. First of
all, most experiments are conducted in complex environments with many external
dependencies, such as type and speed of computers and networks, size of storage,
chip sets, or operating system and driver versions. Some of them will only affect the
measured “utility” of the reported phenomena, while others are essential to having a
successful experiment in the first place. Unfortunately, many of these dependencies
are never reported and therefore making it very difficult for others to repeat an
experiment.

We argue, that our inability in Computer Science to repeat reported experiments
is not only bad practice, but also hampers progress in general. It reduces our ability
to expand on prior work, verify and adapt it to different contexts, compare different
methods in different environments and much more. We also argue that the “paper”
as the traditional publication mechanism is one of the major obstacles in improving
the status quo.

We are clearly not alone, initiatives, such as the Elsevier’s Executable Paper
Challenge [4] have been exploring new avenues for disseminating scientific results.
In addition, easy access to emerging large scale experimental facilities, funded and
coordinated by programs, such as GENI in the US [1], FIRE in Europe [5], and
similar activities in China, Korea, and Japan, provide the community with a common
“playground” in which to conduct experiments. But only providing experimental
facilities is not sufficient. The sharable resources we have available today still need
to get provisioned, configured and modified before they can be used in experiments.
We see those steps as the crucial pieces that are needed to perform repeatable
experiments.

In the remainder of this chapter we propose and describe a family of tools to
support an experimenter’s workflow, while also automatically capturing most of the
necessary information to allow others to repeat, inspect, validate and modify prior
experiments.

More specifically, we propose to model the experimenter workflow on the
Scientific Method' which we interpret, as shown in Fig. 1, as a repeated cycle of
stating a hypothesis, designing and conducting an experiment, and finally analyzing
the measurements taken during the experiments with the intent to test or disprove
the hypothesis.

We observed that many of these steps follow the same internal workflow of
planning, preparing, and executing. We therefore built an experimenter-facing web-
based tool, called LABWIKI, which supports this three-step workflow in different
contexts. LABWIKI, as the name implies, is modeled after the traditional laboratory
book, which experimenters use for a very similar workflow and purpose. LABWIKI
takes this further, by not only being the recording mechanism, but also the operating
platform for many activities within the experiment workflow.

Thttps://en.wikipedia.org/wiki/Scientific_method.

https://en.wikipedia.org/wiki/Scientific_method

A Walk Through the GENI Experiment Cycle 409

L

We start the remainder of this chapter with a brief overview of LABWIKI
(Sect.2) and then introduce its user interface (Sect.3). In Sect.4, we introduce a
real experiment used to research a time synchronization approach and published
in [13], which will be used as a guiding example in the remainder of this chapter.
An overview on experimental facilities and testbed resources is given in Sect. 5.
We will illustrate the experiment workflow by taking the reader through every
step, namely the experiment design (Sect. 6), the setup of and experiment (Sects. 7
and 8), the execution of an experiment (Sect.9), and the analysis (Sect. 10) of
a previously published research result [13]. Finally, we briefly describe how the
LABWIKI workspace can support educators in harnessing these large facilities for
lab tutorials (Sect. 11).

Fig. 1 Scientific method

2 LabWiki Overview

The web-based LABWIKI service strives to be the primary tool for an experimenter
to plan, prepare, execute, analyse and even publish experimental-driven research.
While the classical UNIX approach of “many little tools” often leads to a very
rich and versatile environment it also requires great discipline on behalf of an
experimenter to keep a detailed record of what combination of tools and their
configurations have been used for what experimental artefact. On the other hand,
a single comprehensive tool rarely works for cutting-edge research as requirements
for new features often outstrip the development resources of the “mega tool” builder.

LABWIKI attempts to find a sweet spot by defining a framework which a) is based
on well established, unifying methodology, b) supports the tracking of artefacts,
their meta data and relationships to others, c) is extensible, and d) allows for easy
integration of external tasks and services. Simplistically, it can be viewed as an
easily customisable glue between the many little tools and the “history keeper” on
how they were all used in the pursuit of a scientific discovery.

410 T. Rakotoarivelo et al.

Fig. 2 LABWIKI and ST T TTTTT T T T T T T T S LN
supporting services |' LabWiki :
! Web | 1
| B |
I < o rowser | |
! c c |
| =) > [
> =}
: 5 5 Backend :
!)
N\ L N A -
Slice Job
Service Service
OMF
SFA EC OML

LABWIKI is the result of the shared experience of the authors in their respective
roles as tool builders, testbed operators, researchers, educators, engineers, admin-
istrators and many more. The following is a description of LABWIKI’s current
“universe” of components, services, and capabilities.

LABWIKI, as shown in Fig. 2, is sitting on top of a suite of supporting tools
and services, which can be used directly by an experimenter, or more likely by other
tools acting on her behalf, specifically the SliceService (Sect. 8.3) which harmonizes
resource provisioning across many different testbeds; OEDL (Sect.7), a domain-
specific language for describing the orchestration of an experiment; JobService
(Sect. 9) for scheduling an experiment; OMF & FRCP (Sect. 9) for executing and
coordinating individual experiment runs (or trials); and OML (Sect. 7) for collecting
and managing measurements during a trial.

In addition LABWIKI can be easily extended through plugins to extend it’s
functionality or adapt it to a new environment. Example plugins described in this
chapter are the Topology Editor (Sect.8.2), Experiment Executer (Sect.9.1 and
right panel in Fig. 3), the Analysis Widget (Sect. 10), and the iBook Widget Creator
(Sect. 11.2).

3 LabWiki User Experience

As mentioned in the Introduction, the experimenter interacts with LABWIKI
primarily through a web browser. After a standard login process, the user will
see (Fig. 3) a browser window split into three columns, labeled “Plan”, “Prepare”,
and “Execute”. This reflects the basic workflow identified above. Each column
comprises a tool & search bar, followed by a widget header, an optional widget
toolbar and the widget body. The top tool & search bar allows the user to quickly
locate or create resources relevant to the respective activity and choose the desired

A Walk Through the GENI Experiment Cycle

411

by NICTA = = GIMITesting * & Thierry
Plan
LabWiki Quickstart hello-world- f NEW
Guide % wireless.oed|
system:wiki/quickstart/quickstart. md system:ceditutorialhelic-worid-
wireless.oedl name:
P E=2 LabWiki Quickstart Guide ~ =
R project: GIMITesting
LabWiki Quickstart Guide S TREOEI L Mpat MRt
. slice: default_slice
LabWiki is a web application which defProperty(‘resl’', "omf.nicta.nod
; 3 defProperty('res2’', 'omf.nicta.nod system:oedl/tutorial/hello-
provides you with tools to plan, seript: L rid-wireless.oed]

execute, observe, and review

defProperty('duration’, 60, “Durat

defProperty(‘channel’, '6', "The W|

series of experiments. It 3 o : IDof
accompanies you through the entire ST R, S e resi: omi.nicta.node :d“:"
life-cycle of an experiment-based node. addhpelication|"testappiok

ts":gdx'a;ecord[ng each steps E[OI'IQ app.setProperty(‘udp:local_hos res2: omi.nicta.node2 :D o "

app.setProperty('udp:dst_host’' nodae

Fig. 3 Main interface of LABWIKI

widget to interact with that resource. LABWIKI itself is a framework with most of
the functionality provided by plugins, which in turn provide one or more widgets.
For instance, the wiki widget for the “Plan” column supports editing of rich text
resources.

All widgets are stateless and only provide mechanisms for a user to interact
with one or more named resources. These resources may reside on a separate
service, such as the JobService (Sect.9.2), or are file-like resources, such as a
wiki entry, or an image. For these kinds of objects, LABWIKI provides layered,
pluggable artifact stores. Current implementations support persistence through the
local filesystem, versioned and access-controlled repositories such as Git [2], and
via iRODS [16]. The clean separation of stateless widgets and state-full, externally
resolvable resources allows for interacting and embedding of these resources outside
of LABWIKI as well. For instance, plots of experiment measurements, hosted
on JobService (Sect.9.2) can be embedded into a wiki page, which then can be
published from the wiki widget to a third-party blog service. Importantly, the link
from the plot in the blog entry to the actual experiment is maintained, including
access control mechanisms.

LABWIKI supports multiple user accounts and uses OpenlD for authentication.
Resources, managed through LABWIKI belong to projects and a user’s membership
and role in a project are the basis of LABWIKI’s authorization mechanism.
Information about membership and respective roles are sourced from external
services, such as the GENI ClearingHouse. Currently LABWIKI is also facilitating
the transfer of delegation and speaks-for credentials for the services some of the
plug-ins call upon (e.g. SliceService Sect. 8.3).

412 T. Rakotoarivelo et al.
4 Experiment Overview

As the main objective of LABWIKI is to support a group of researchers in producing
verifiable experiments, we will use a real research experiment as the guide through
the reminder of this chapter. This experiment was first designed as part of a research
effort on time synchronization in networked sensors, with the results published
in [13].

Researchers in many domains, such as human-computer interaction, are increas-
ingly collecting large amounts of data from heterogeneous distributed sensors.
Accurately synchronizing these data streams is crucial for meaningful analysis and
conclusions. While there are many, well-established techniques for synchronizing
clocks in distributed entities [14, 19], they require additional software to be deployed
on these entities, or depend on variables which may not be under the experimenter’s
control (e.g., the offset between a NTP client and a server depends on the network’s
round-trip delay). The above mentioned research project proposed a different
approach based on measurements of the data collection system itself and uses the
obtained meta data to synchronize the original data a-posteriori.

The main experiment assumes a scenario where certain events can be measured
by more than one sensor and where all sensors then forward these measurements to
a common collection server. Figure 4 illustrates the resulting experiment topology.
A series of events are generated by a source S and measured by two entities
E1 and E2. The respective measurement samples are sent to the same collection
server C. Time delays may be added at the various Dij points. E1, E2, and C
add locally sourced timestamps ¢ to all samples that they produce and receive,
respectively.

5 Experimental Facilities

Major initiatives such as GENI [1] and FIRE [5] have focused on providing
distributed, virtual laboratories for transformative, at-scale experiments in network
science and services. Designed in response to the Internet ossification issue, these
so-called festbeds enable a wide variety of experiments in many areas, including
clean-slate networking, protocol design, distributed service offerings, social net-
work integration, content management, and in-network service deployment. Many
software tools were proposed to allow operators and experimenters to manage,

Fig. 4 Topology of the Time t

Calibration experiment e t
from [13] E1 D1b \
=2 (020) (02—

\

y

A Walk Through the GENI Experiment Cycle 413

access and control the resources from these testbeds. The models, protocols, and
APIs from some of these contributions are currently converging towards de-facto
standards within the community.

A RSpec? defines a set of resources that can be used in an experiments. These
resources may be requested from a variety of GENI or FIRE testbeds, such as
ExoGENI, OpenFlow Mesoscale, or Fed4FIRE [20]. There are three different types
of RSpecs, (a) the Advertisement which is sent by an Aggregate Manager (AM) to
an experimenter to describe its available resources; (b) the Request which is sent
by the experimenter to the AM to describe the resources she wants to reserve; and
(c) the Manifest which is returned by the AM to describe which resources have been
reserved by the experimenter. These RSpecs are exchanged in the previous sequence
between the AM and the experimenter. The requested resources will be available to
the experimenter after the successful completion of that sequence.

The Aggregate Manager APIs [1] define a common interface for software to
provide, request, reserve, and provision resources over different facilities. They are
based on a slice abstraction, which is a container for all the resources used in a
project. Experimenters are associated with slices and use these APIs to interact
with various entities (e.g., Clearinghouse, Aggregate Manager) in order to discover,
reserve, and provision resources. These interactions are mostly performed through
third-party interfaces. For example, Omni® is a command line tool used to specify
and reserve resources from GENI facilities. It allows stitching, a technique to con-
nect resources via layer 2 VLans. In contrast, Flack* and Jacks® are graphical tools,
which allow experimenters to reserve resources and specify RSpecs through a visual
topology editor. Finally, JFed® is a Java-based tool, which allows experimenters
to obtain large distributed topologies using resources from both FIRE and GENI
testbeds.

The Federated Resource Control Protocol (FRCP) and the OML Measurement
Stream Protocol’” (OMSP) [12, 18] are two protocols to control resources and
collect data from them. They are commonly used in both GENI and FIRE facilities.
FRCP defines a short set of asynchronous interactions over a publish-and-subscribe
system, which allows experimenters to configure resources and instruct them to
execute given tasks. The OMF and NEPI control tools both implement FRCP [8, 17].
OMSP defines the format and transport of measurement tuples from producers
(e.g., a resource) to consumers (e.g., a storage server). It supports various types
of measurements, encodings, and the use of metadata. The OML framework [12]

Zhttp://geni.net/resources/rspec.
3http://trac.gpolab.bbn.com/gcf/wiki/Omni.
“http://www.protogeni.net/wiki/Flack.
Shttps://www.emulab.net/protogeni/jacks-doc/.
Shttp://jfed.iminds.be.
"http://oml.mytestbed.net/doc/doxygen/omsp.html.

http://oml.mytestbed.net/doc/doxygen/omsp.html
http://jfed.iminds.be
https://www.emulab.net/protogeni/jacks-doc/
http://www.protogeni.net/wiki/Flack
http://trac.gpolab.bbn.com/gcf/wiki/Omni
http://geni.net/resources/rspec

414 T. Rakotoarivelo et al.

provides an OMSP storage server and a C client library to instrument resources.
Other client libraries also exist (e.g., OML4R,* OML4Py® or OML4J'?).

6 Experiment Design

The first step of an experimental study is the design of the experiment itself. It is
driven by research goals, such as testing a hypothesis, measuring performance, or
demonstrating capabilities.

There have been many contributions related to experiment design since the sem-
inal work of Fisher [3]. Examples in the area of computer science include [9, 15].
While there are many variations, a good starting point is the identification of the
dependent, independent, and confounding variable sets. The dependent variables
are measured attributes of the studied system, their analysis will provide answers to
the study’s questions. The independent variables would impact the studied system
and modify its dependent variables. The third set of confounding variables may be
unknown or uncontrollable by the experimenter and may have some effect on any
of the former variables.

Given these three variable sets, the researcher then devises an experiment plan
where usually the dependent variables are measured, the independent variables
are controlled and varied across different repeated trial batches, and the effect
of confounding variables are mitigated through techniques such as replication or
randomization. The choice of controlled values for the independent variables and
the number of trials and their repetition depends on the objectives of the study.

The LABWIKI workspace has a set of tools to support the experiment design
process. The “Plan” column on the left-hand side of its interface (Fig.5) provides
a Wiki widget that allows the experimenter to describe and record her design. This
design strives to replace her pen-and-paper laboratory notebook. It currently uses
the popular Markdown syntax,'' and figures and plots from other widgets can be
easily dragged-and-dropped into the write-up.

The Design of Our Example Experiment In the case of our example experiment,
we identify the dependent variables as the arrival times of a measurement sample
at different points in the system. Our independent variables consist of configurable
clock offsets and network delays, generally referred to as Dij in Fig. 4. One potential
confounding variable would be the varying delays in processing measurement
samples inside the sensors.

8https://github.com/mytestbed/oml4r.
“https://github.com/mytestbed/oml4py.
10https://github.com/NitLab/oml4;.
http://daringfireball.net/projects/markdown.

http://daringfireball.net/projects/markdown
https://github.com/NitLab/oml4j
https://github.com/mytestbed/oml4py
https://github.com/mytestbed/oml4r

A Walk Through the GENI Experiment Cycle 415

Prepare

Time calibration of network E omlsync.md
=i manowilkdlomilsyne. md

—| sensors
maxotwikifomisync. md

[E= comection ~ #Time calibration of network sensors

&8 Problen
. Experiment setup

Distributed time-synchronisation
Intraduce vanations in How to correct OML timestamp to account for

1. unsynchronised senders
2. network delays

#2 Experiment
3. both at the same time

Al t[Esperisent getupl (upload/experimentSetup

ce variations in
t clients
 delays
both at the same time

1. static variations
2. dynamic vaniations

Correction

= Alen =

Fig. 5 The experiment design notes are shown in the “Plan” panel. They can be written down in a
wiki form in the “Prepare” using Markdown source

In this particular realization of the experiment, we chose a classic ICMP ping
to the network’s broadcast address as the event generated by the source S and
measured through their respective network interfaces on E1 and E2. In the first
round of trials, the entities are quasi-synchronized and no delay is added on the
collection network. This establishes a baseline for future results. We then planned
to run a series of trials, where various known time offsets are introduced to each
entity’s clock and on their respective paths on the collection network. To mitigate the
potential impacts of confounding factors, we decide to run multiple trials for each
specific offset configuration and further repeat these multiple trials over different
instantiations of our topology. More details about this experiment design and each
series of trials are available in the original study [13].

As mentioned above, we primarily use the Wiki widget to describe the design and
work plan. Dragging experiment results and other artifacts onto the wiki will allow
us to keep track of progress. This will be especially important if an experiment is
carried out by a team where different members are pursuing different parts of the
work plan.

7 Experiment Description and Instrumentation

Once the design of the experiment is finalized and documented in LABWIKT’s Plan
panel, the next step is to translate it into a machine-readable description.

416 T. Rakotoarivelo et al.
7.1 Describing an Experiment

We propose to use the existing OEDL language [17] to describe an experiment.
OEDL has been widely used to describe repeatable experiments on both GENI
and FIRE facilities. A typical OEDL script is primarily composed of two sections.
The first one declares the resources used in the experiment and their initial
configurations. For example, an experimenter may declare a given application to
be used, along with its available parameters and measurement capabilities; and
the specific initial settings for both of them. The second section of the OEDL
script defines the orchestration of tasks the resources have to execute throughout an
experiment trial. These tasks are grouped into experimenter-defined events, which
may be triggered either by timers or experiment-specific conditions. This event-
based approach allows complex experiment orchestrations, such as changing the
parameters of an application X seconds after the measurement of ¥ from another
application reaches the value Z.

LABWIKI has inspired a third, optional section for a typical OEDL script.
It allows an experimenter to define charts to provide quick feedback on the progress
or outcome of an experiment trial. The experiment widget in LABWIKI uses that
to display line, pie, or histogram charts in the respective column with relevant
measurement data streams sourced from the JobService. We do want to note, that
this is primarily to provide a graphical live feedback on an individual execution of
an experiment trial, and will usually not replace a thorough data analysis over the
complete result set obtained for an experiment (Sect. 10).

Listing 1 provides a shortened OEDL script for our example experiment. While
the complete OEDL script'? describes the entire experiment with all required
settings as designed in Sect. 6, this shortened version only shows the experiment
for the baseline trials. We will now briefly describe this script and refer the reader
to the OEDL Reference document'? for further details.

Lines 1-4 fetch and load additional OEDL scripts, similar to the include state-
ment found in many programming languages. Lines 6-9 define some experiment
parameters which may be modified for different trials. Lines 11-18 define a group of
resources comprising of the entities E1 and E2 from Fig. 4. An ICMP packet capture
application is associated to each resource in that group (line 13). The parameters
and measurements to collect for this application are set using the setProperty and
measure commands, respectively. Lines 20-29 define another group of resource
with only the source S from Fig. 4. The ICMP ping application is associated to that
resource (line 22), and configured to ping the network’s broadcast address (line 23).
Lines 31-39 define a third group which include all the previous resources. A time
statistic reporting application is associated to all these resources (line 34). Finally,
Lines 41-49 define the sequence of tasks to perform once all the resources are ready

2http://git.io/clock-delay-impairments.rb.
Bhttp://omf6.mytestbed.net/ OEDLOMF6.

http://omf6.mytestbed.net/OEDLOMF6
http://git.io/clock-delay-impairments.rb

O 00~ O\ B W -

A Walk Through the GENI Experiment Cycle 417

loadOEDL (" http :// goo. gl /4bi2MW ")

loadOEDL (" http :// goo. gl/qg8Alo”)

From the trace—oml2 package

loadOEDL("’ file :/// usr/share/trace—oml2/trace.rb’)

defProperty(’entityl’, node20’,’1st entity ID”)
defProperty(’entity2’,’node2l’,’2nd entity ID’)
defProperty(’source’,’nodel9’,’Event source ID’)
defProperty(’time’,180%60," Trial duration [s]’)

defGroup(’ Entities ’,prop.entityl ,prop.entity2) do Igl
Capture ICMP echo packets
g.addApplication(’trace’) do lappl
app . setProperty(’filter’, ’icmp[icmptype]=icmp—echo’)

app . setProperty(’interface’, ’ethl’)
app .measure(’ethernet’, :samples => 1)
end

end

defGroup(’ Source’ ,prop.source) do gl
Broadcast ICMP echo requests every 10s
g.addApplication(’ping’) do lappl
app . setProperty(’dest_addr’, *10.0.0.255")
app . setProperty(’broadcast’, true)
app . setProperty(’interval’, 10)
app . setProperty (' quiet’, true)
app . measure(’ping’, :samples => 1)
end
end

defGroup(’ All’ ,prop.source ,
prop.entityl ,prop.entity2) do Igl
Report time synchronisation every minute
g.addApplication(’ntpq’) do lappl
app . setProperty("loop—interval >, 60)
app . setProperty (' quiet’, true)
app . measure(’'ntpq’, :samples => 1)
end
end

onEvent (:ALL_UP_AND_INSTALLED) do
group(’ All’).startApplications
group(’ Entities ’).startApplications
group(’Source’).startApplications
after prop.time do
allGroups . stopApplications
Experiment.done
end
end

Listing 1 Example of an OEDL script

and their associated applications are installed. In this simple case, all the resources
first start their time reporting applications. Then the resources within the “Entities”
group start their applications. Then the resource in the “Source” group does the
same. After a set duration, all resources in all the groups stop their applications, and
the trial is finished.

418 T. Rakotoarivelo et al.

Injection
point

Processing
point

Collection
point

[> source
>1] Sink

Fig. 6 Applications can be instrumented with OML to inject timestamped samples into various
measurements streams (MS) which can be processed in-line (e.g., aggregated or sub-sampled)
before finally being collected and written into a storage backend

7.2 Instrumenting Resources

LABWIKI leverages the OML measurement framework [12] for measurement
collection and storage. OML is based on the concept of measurement points (MPs).
The schema of an MP defines a tuple of typed metrics meaningfully linked together
(e.g., sampled at the same time, or pertaining to the same group). The series of tuples
generated by reporting measurements through an MP defines a measurement stream
(MS). OML defines several entities along the reporting chain that can generate,
manipulate, or consume MSs. This is illustrated in Fig. 6.

Instrumentation Process

The instrumentation of a resource consists of enabling applications to act as
injection points (Fig.6). By providing a structured way of defining MPs, OML
fosters the reusability and interchangeability of instrumented applications, and
simplifies the assembly of subsequent experiments. For example the “wget” and
“cURL” applications report similar information about web transfers, and should
therefore attempt to reuse the same MPs.

It is therefore important to first identify all the measurements that can be
extracted from an application. For example, ping not only provides latency infor-
mation, but also sequence and TTL information for each received packet from any
identified host, as well as overall statistics. A rule-of-thumb is that measurements,
which are calculated, measured or printed at the same time/line are good candidates
to be grouped together into a single MP. For more complex cases, where samples
from multiple MPs need to be linked together, OML provides a specific data type
for globally unique identifiers (GUID). They can be used in a similar way as foreign
keys in databases. For example, in the case of the trace-oml2 application, it
was decided to create one MP per protocol encapsulated in a packet (e.g., ethernet
or IP). A fresh GUID is generated for each packet, which is then parsed, injecting
information about each header in the relevant MP, along with the GUID.

It is also possible to report metadata about the current conditions. Such details
as description, unit and precision of the fields of an MP are primordial for the

A Walk Through the GENI Experiment Cycle 419

later understanding of the collected measurements.'* Other information such as the
command line invocation, or application version and parameters are also worthy of
inclusion as part of this metadata.

Instrumentation Libraries

The most complete OML implementation is the C libom12(1,3)."> It pro-
vides an API, which can be used to define MPs within the source code of
an application, and mechanisms to process the injected samples at the source.
The oml2-scaffold(l) tool can be used to generate most of the boiler-
plate instrumentation code, along with the supporting OEDL description [12,
App. A]. An example application written from scratch to report network packets
is trace-oml2,'® used in Listing 1 (line 13).

The Ruby and Python bindings (OML4R & OMLA4Py) are particularly useful
for writing wrappers for applications for which the source code is unavailable.
Wrappers work by parsing the standard output of an application, and extracting
the desired metrics to report. An example is the ping-oml2 wrapper,!” using
OMLA4R'®, used in Listing 1 (line 22).

7.3 The Prepare Panel

Our LABWIKI workspace has a “Prepare” panel at the center of its interface (center
widget in Fig. 3), which provides a simple code editor widget. The experimenter
may use this widget to edit an OEDL script, as described previously. All OEDL
scripts created within this editor widget are versioned and saved within LABWIKI’s
artefact store with group-based access control. While this widget is a convenient
tool for users to edit their OEDL scripts, the may use alternate means to do so, as
well. For example, they may edit their scripts in other editors and then cut & paste
it into the “Prepare” panel’s code editor, as illustrated in Fig. 7. Alternatively, they
may directly use a git repository, and push it into LABWIKT’s artefact store.

!4Base SI units should be preferred whenever possible.

5Manpages for OML system components can be found at http://oml.mytestbed.net/doc.
16http://git.mytestbed.net/?p=oml-apps.git;a=blob;f=trace/trace.c.

7We generally use APPNAME-oml2 as the binary’s name of OML-instrumented versions of

upstream APPNAME utilities; the OEDL application description however only uses APPNAME
for conciseness.

8http://git.io/oml4r-ping-oml2.

http://git.io/oml4r-ping-oml2
http://git.mytestbed.net/?p=oml-apps.git;a=blob;f=trace/trace.c
http://oml.mytestbed.net/doc

420 T. Rakotoarivelo et al.

Prepare

Time calibration of network e

—| sensors omisyr OEDL

maxottwikifomisyne. md Create

It 2= Comres -
[2= Comection Edr
. Experiment setup Choose file | Mo file chosen
Upload
Intraduce vanations in Topology Editor
Create
3. both at the same time E omlsync.oedl|
siso maxott:oedliomisyne. oedl
=
1. static variations app.setProperty(‘interface’, ‘ethl’) =
2. dynamic variations app.measure(ethernet samples => 1)
end

Correction end

Fig. 7 The “Prepare” panel can be used to upload and edit the various files and scripts needed to
describe the experiment (e.g., Markdown or OEDL)

8 Resource Selection and Provisioning

While the previous section dealt with describing the entire experiment and its
resource needs, it did not consider where these resources come from. For instance,
the OEDL script in Listing 1 refers to resources, such as virtual machines (nodes)
and applications (trace, ping). It is the former kind of resources, which we assume
will be provided by testbeds and the programmable networks, as offered by GENI,
connecting them.

More specifically, an experimenter needs to first define a topology of nodes,
their interconnecting networks, and their specific characteristics. For our example
experiment, at least four (virtual) machines and four links are required to create the
topology in Fig. 4. We note, that should the experiment be extended (e.g., by adding
new entities E3 and E4), additional resources have to be reserved. Alternatively, the
experimenter may reserve a larger topology and run different trials on a subset of
the reserved resources.

8.1 Process Overview

Specification The very first step is the specification of resources that are required
for an experiment. Section 5 described several approaches for resource description
and tools to create them. The most common specification is the XML-based GENI
RSpec.!”

Yhttp://groups.geni.net/geni/wiki/GENIExperimenter/RSpecs.

http://groups.geni.net/geni/wiki/GENIExperimenter/RSpecs

A Walk Through the GENI Experiment Cycle 421

Reservation Once specified, a set of resources needs to be reserved. This requires
a negotiation phase between the provisioning tools and the corresponding services
on the testbed side. A negative outcome of this negotiation means that the requested
resources can currently not be provisioned, or the requestor does not have sufficient
privileges, or has exceeded her quota. For example, a VM is requested but all the
physical machines’ resources have been already allocated to other experimenters. In
such a case, the experimenter either waits or hopes that the desired resources will
become available in the near future or modifies the request for a different set of
resources. A positive response means that the provisioning process will move on to
the next step.

Provisioning After specific resources have been identified, they need to be provi-
sioned before the experimenter can gain access to them. In the case of a physical
machine, this may require a power up. In the case of a VM, a disk image containing
the requested operating system needs to be loaded and the VM started up with
the appropriate configurations. This may also include the distribution of security
credentials to limit access to those resources to the requesting party. As each step
may take time and in the case of large requests never fully complete successfully,
proper communication between the requesting and providing services need to be
maintained as even a subset of successfully provisioned services can already be
used for successful experimentation.

Monitoring Most of the resources provided are virtualized in some form or
depend on other services in non-obvious ways. It is therefore important for most
experiments to be able to monitor their resources and potentially even the broader
context in which they are provided. For instance, CPU and memory allocations
to VMs may change over time, or there may be external interference in wireless
testbeds. While some of these parameters can be monitored by the experimenter
herself, others may need special access and therefore need to be collected by the
resource provider with the results forwarded to the experimenter. For instance, the
BonFIRE [7] testbed provides monitoring information on the physical server to
the VM “owners” for the respective server. An experimenter can either use such
infrastructure information after the completion of the experiment during the analysis
phase or display this information in real time in LabWiki for actual monitoring.

8.2 Labwiki Topology Editor Plugin

LABWIKI provides a topology editor plugin, which supports the experimenter in
navigating the above described steps. The plugin provides two widgets, one for the
“Prepare” panel to specify the topology, and one for the “Execute” panel to request
the provisioning of a defined topology and its ongoing monitoring.

422 T. Rakotoarivelo et al.

Fig. 8 LABWIKI’s topology o
widget - =
f o
m' Time_sync
B X 0O
i—q
| -
Name Source A
URN
Sliver Type tiny Def &
Disk Image Def
Exclusive? Def

Figure 8 shows a screenshot of the first widget, the graphical topology editor.
The widget is split vertically with the graph editor on top and the property panel
for the selected resource (dotted outline) at the bottom. Interactive graphical editors
are usually easy to learn, but do not scale well to large topologies. Hierarchical
grouping with associated visual “collapsing” can mitigate some of these scaling
issues. However, larger topologies will not be “hand crafted” but generated by
tools, such as BRITE [11]. The topology editor has a text-mode, which allows the
experimenter to specify a BRITE model as well as provisioning information for the
nodes and links created.

The topology description can either be stored as RSpec or extended Graphl-
SON.? It is this textual representation, which the “Slice” widget is sending to
the SliceService when requesting the reservation and provisioning of a specific
topology. This widget uses the same graph editor (now read-only) to convey
progress by animating the graph elements accordingly. Monitoring information is
also overlaid to provide experimenters with quick feedback on the overall topology
status.

2Ohttps://github.com/GraphAlchemist/GraphJSON.

https://github.com/GraphAlchemist/GraphJSON

A Walk Through the GENI Experiment Cycle 423

8.3 The SliceService

The SliceService provides a REST API for requesting and provisioning of resources
for a testbed federation. It is essentially a proxy service to the SFA APIs of the Clear-
ingHouse (CH) and AggregateManager (AM). We reluctantly chose this path as the
legacy decisions regarding technology (XML-RPC and client-authenticated SSL),
as well as multiple versions for both API and RSpec put a considerable maintenance
burden on the upstream tools. Therefore, we designed and implemented a service,
which is based on current best practices for web-based services. We want to stress,
that this is not a value judgement of the SFA APIs but a commonly encountered
legacy problem. This decision allows us to concentrate our development as well
as debugging efforts regarding testbed interactions on a single service. In fact, some
design decisions for the SliceService have been heavily influenced by JFed,?! which
seems to have similar objectives.

Following the REST philosophy, SliceService defines a distinct set of resources
and provides a consistent set of actions to create, modify, and delete those resources.
It also takes advantage of the recently introduced delegation mechanism based on
credentials. Traditionally, SFA tools were assumed to have access to the requesting
user’s private key. However, in this context, the user is authenticated with LABWIKI
which in turn requests SliceService to perform certain actions on behalf of a specific
user. In addition, a specific SliceService instance may serve many different users.
To maintain full transparency on who is operating on whose behalf we need to
ensure that every request made by SliceService to a CH or AM contains the full
delegation chain back to the user. This will allow each CH or AM to decide if it
trusts the intermediate services. In turn it increases the security of both LABWIKI
and SliceService as user authentication can be delegated to dedicated federation
services, such as the CH.

The SliceService also plays a crucial role in the security mechanism of FRCP
(Sect. 5) by providing the newly created resources with proper credentials in a secure
manner. However, a detailed description of the overall security mechanism is beyond
the scope of this chapter.

9 Running an Experiment Trial

Once an experiment is designed, described, and all necessary resources have been
allocated, the next step is to execute an instance (or trial) of that experiment.
Running an experiment trial should be effortless for the experimenter, as she will
need to repeat this process many times in order to gather sufficient data to derive
statistically meaningful conclusions.

2Ihttp://jfed.iminds.be.

http://jfed.iminds.be

424 T. Rakotoarivelo et al.

Prepare

Edit

Time calibration of network maxott-omlsync-2016-01-

= sktisoie omisyT OEDL v 15T11-12-20
mazottwikiiomisyne. md Create —
[E= comection ~ Edit _
Experiment satup Choose file | No file chosen
Upload
P ¥ Graphs

Intraduce vanations in Topology Editor

1--me st cherts Create 18

2. netwark delz J

3. both at the same time E omlisync.oed| £
i masatt:oedliomisyne. oedl s

19 e 82 10 o

Static \arations app.setProperty('interface’, ‘ethl') = Pt
2. dynamic variations app.eeasure [‘ethernet sasples => 1) Flgure: Graph cn Ping
end

Correction end ¥ Logging

Fig. 9 The “Execute” panel shows details of the currently running experiment, including real-time
graphs of the measurements being collected

9.1 The Execute Panel

Our LABWIKI workspace has an “Execute” panel on the right-hand side of
its interface (Fig.3), which hosts an experiment widget. This widget allows an
experimenter to configure, start, and observe individual experiment trials, as shown
in Fig.9. To initiate this process, an experimenter intuitively drags & drops the
experiment’s icon from the previous “Prepare” panel into the “Execute” one. This
action triggers LABWIKI to display a list of the experiment properties defined
in the respective OEDL script which can now be configured for a specific trial.
For example, the experiment design might require that 20 trials should be run
with property A set to 1, followed by another 20 trials with A set to 2. Once the
experimenter is satisfied with the trial’s configuration, she may press the start button
at the bottom of the panel, which instructs LABWIKI’s experiment widget to post a
request for trial execution to an external JobService instance.

9.2 The JobService and Its Scheduler

Our LABWIKI workspace de-couples the frontend interface used to develop and
interact with experiment artifacts from the backend processes orchestrating the
execution of an experiment trial. The JobService software is the backend entity
in charge of supervising this execution. This decoupling enables our tools to cater
for a wide range of usage scenarios, such as use of an alternative user frontend,
automated trial request (e.g., software can request a given trial to be run at a periodic
time), optimization of a shared pool of resources among trial requests from the same
project.

A Walk Through the GENI Experiment Cycle 425

The JobService provides a REST API, which allows clients such as a LABWIKI
instance to post trial requests (i.e. experiment OEDL scripts, property config-
uration). Each request is passed to an internal scheduler, which queues it and
periodically decides which job to run next. This scheduler function is a plugable
module of the JobService, thus a third party deploying its own JobService may
define its own scheduling policies. In its simplest form, our default Scheduler is just
a plain FIFO queue. However, in an education context it could be a more complex
function, which could allow a lecturer to optimize the use of a pool of resources
(allocated as in Sect. 8) between parallel experiment trials submitted by multiple
groups of students. The JobService’s REST API also allows a client to query for the
execution status and other related information about its submitted trials. LABWIKI
uses this feature and displays the returned information in its “Execute” panel once
the trial execution has started.

9.3 Orchestrating Resources

The JobService uses the existing OMF framework [17], which is available on
many GENI facilities to orchestrate experiment trials. More specifically, when
the JobService’s Scheduler selects a given trial request for execution, it starts an
OMF Experiment Controller process (EC). This EC interacts with a Resource
Controller (RC) running on each of the involved resources, and have them enact
the tasks required in the experiment description. This interaction is done via the
FRCP protocol (Sect. 5). While the trial is being executed, the JobService constantly
monitors the information from the output of the EC process and uses it as part of
the status provided back to LABWIKI. While our current JobService uses OMF for
its underlying experiment trial execution, its design also permits the use of other
alternative frameworks, such as NEPI [8].

9.4 Collecting Measurements

The applications instrumented in Sect.7.1 inject measurement streams from mea-
surement points as selected by the experiment description (e.g., Listing 1 line 16
or 27). In Fig.6, the reporting chain is terminated by a collection point. The
OML suite [12] provides an implement