
Cheng-Chi Wong · Hsie-Chia Chang

Turbo Decoder
Architecture
for Beyond-4G
Applications

Turbo Decoder Architecture for Beyond-4G
Applications

Cheng-Chi Wong • Hsie-Chia Chang

Turbo Decoder Architecture
for Beyond-4G Applications

123

Cheng-Chi Wong
Department of Electronics Engineering
National Chiao-Tung University
Hsinchu, Taiwan

Hsie-Chia Chang
Department of Electronics Engineering
National Chiao-Tung University
Hsinchu, Taiwan

ISBN 978-1-4614-8309-0 ISBN 978-1-4614-8310-6 (eBook)
DOI 10.1007/978-1-4614-8310-6
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013947477

© Springer Science+Business Media New York 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

Turbo code is one of the error-correcting techniques of the standards for 4G
telecommunication system. From current development trend, there is a growing
demand for faster data transmission; therefore, the throughput of turbo decoder
should be raised to support the next-generation application. The common way to
reach this objective is using parallel architecture. However, it causes increasing
complexity and decreasing efficiency. These problems will limit the achievable
improvement. The aim of this book is to resolve the two design issues, and our
main emphasis is on the practical turbo decoders for 3GPP LTE-Advanced and
IEEE 802.16m standards. Chapter 1 gives an overview of the code specifications,
theoretical principles, and essential algorithms. Then Chap. 2 introduces basic
functional units and main processor of a conventional turbo decoder. It further
indicates the architecture with superior performance and reasonable overhead. Next,
Chap. 3 illustrates the characteristics of advanced parallel architecture and explains
the negative effects on complexity and efficiency. There are several implementation
results supporting the introductions in Chaps. 2 and 3. All of them are derived with
90 nm technology. Chapter 4 presents how to simplify the parallel turbo decoder,
while Chap. 5 shows how to get a better utilization of the component circuits.
Moreover, the last two chapters highlight the conditions in which these proposed
methods are suitable to use. With the materials of this book, the readers would learn
about choosing the decoder architecture that can fulfill their requirements.

We wish to thank United Microelectronics Corporation for their technical
support. We also wish to thank National Chiao Tung University for providing a
supportive environment. In particular, we thank Professor Chen-Yi Lee for his help.
Finally, we would like to express our sincere gratitude to everyone who assisted us
in writing, editing, and publishing this book.

Hsinchu, Taiwan Cheng-Chi Wong
Hsinchu, Taiwan Hsie-Chia Chang

v

Contents

1 Introduction . 1
1.1 Turbo Codes: Parallel Concatenated Convolutional Codes 3

1.1.1 Principles of Encoding and Decoding . 3
1.1.2 Turbo Codes in Advanced Communication Systems 4

1.2 Decoding Procedure of Turbo Decoders . 8
1.2.1 MAP Algorithm for 3GPP LTE-Advanced Turbo Code 8
1.2.2 Iterative Flow for 3GPP LTE-Advanced Turbo Code 14
1.2.3 MAP Algorithm for IEEE 802.16m Turbo Code 19
1.2.4 Iterative Flow for IEEE 802.16m Turbo Code 21

1.3 Techniques for Efficient Decoding Process . 24
1.3.1 Simplified MAP Algorithms . 24
1.3.2 Sliding Window Technique.. 25
1.3.3 Early Stopping Criteria . 28

2 Conventional Architecture of Turbo Decoder . 33
2.1 Practical Turbo Decoder Architecture . 34

2.1.1 Circuits of Address Generators . 35
2.1.2 Circuits of Main Functional Units . 37

2.2 Design of Conventional SISO Decoders . 39
2.2.1 Decoder Architecture and Processing Schedule 39
2.2.2 Data Width and Normalization .. 41

2.3 Design of Modified SISO Decoders. 46

3 Turbo Decoder with Parallel Processing . 53
3.1 Multiple Turbo Decoders for Multiple Codewords .. 54
3.2 Multiple SISO Decoders for One Codeword . 54

3.2.1 Important Characteristics . 54
3.2.2 Speedup and Performance .. 59
3.2.3 Hardware Cost . 60

3.3 Sophisticated Functional Units for Successive Trellis Stages. 62
3.4 Hybrid Parallel Architecture . 66
3.5 State-of-the-Art Chip Implementation . 67

vii

viii Contents

4 Low-Complexity Solution for Highly Parallel Architecture 69
4.1 Interconnection for Parallel Design with QPP Interleavers 70
4.2 Interconnection for Parallel Design with ARP Interleavers 73

4.2.1 Parallel Architecture Using Modulo Mapping 73
4.2.2 Parallel Architecture Using Division Mapping 75

4.3 Performance Compensation for Parallel Design . 77

5 High-Efficiency Solution for Highly Parallel Architecture 81
5.1 Processing Schedule with Interlaced Decoding Rounds 82
5.2 Processing Schedule with Overlapping Decoding Rounds. 84

5.2.1 QPP Interleaver Design for Overlapping Decoding Rounds. . . 85
5.2.2 ARP Interleaver Design for Overlapping

Decoding Rounds .. 88
5.2.3 Application of Overlapping Decoding Rounds.. 92
5.2.4 Performance of Overlapping Decoding Rounds.. 94

Bibliography . 97

Chapter 1
Introduction

A successful transfer of information over a physical channel or a transmission
medium involves a series of procedures. The model of data transmission can be
depicted as Fig. 1.1. Generally, it consists of a transmitter, a channel, and a receiver.
The elements inside the transmitter and receiver are utilized to guarantee reliable
and efficient transmission. For less resources usage, the source encoder uses a
shorter symbol sequence to replace the source information, while the source decoder
performs the data decompression. When data pass through the channel, they will
suffer from the channel noise and may become incorrect. To make sure the accurate
information can be delivered to the destination, the channel encoder will transform
its inputs into a structured sequence where parity check symbols are introduced.
With these redundancies, the channel decoder is capable of recovering the messages
even though the received data contain errors caused by channel impairments.
In addition to the elements for signal processing, the transmitter needs a modulator
to translate the data into analog forms which is suitable for transmission; and
the receiver uses a demodulator to convert the channel outputs back to quantized
symbols. All of the components determine the quality of data transmission. The
development of the corresponding techniques will lead to the advancement of
communication systems.

In a communication system, the correctness of data transmission is one of the
most essential issues. This task of protecting the transmitted information against the
channel noise is done by the channel encoder and channel decoder. The study about
these subjects is called forward error correction or channel coding. It originated
from the landmark paper by C. E. Shannon in 1948 [1,2]. Shannon’s channel coding
theorem indicated that arbitrary transmission can be asymptotically error-free by
appropriate coding techniques if the code rate is less than the channel capacity. The
theoretical limits on performance can be calculated for various signaling schemes,
rates, and channels. A lot of coding techniques are developed since then, and there
are two main classes of codes: block codes and convolutional codes [3, 4]. The
ultimate objective is approaching the Shannon limit by a practical coding technique,
and such investigation has lasted for several decades. In the 1990s, the advent of

C.-C. Wong and H.-C. Chang, Turbo Decoder Architecture for Beyond-4G
Applications, DOI 10.1007/978-1-4614-8310-6__1,
© Springer Science+Business Media New York 2014

1

2 1 Introduction

Transmitter

Receiver

Source Source
Encoder

Channel
Encoder

Modulator

Destination Source
Decoder

Channel
Decoder

Demodulator

Channel

Fig. 1.1 Basic elements of a communication system

turbo codes in [5] and the rediscovery of low-density parity check codes in [6] made
major breakthroughs in channel coding. The two techniques both can achieve the
performance close to Shannon limit at the expense of reasonable complexity [7–9].
Because of their outstanding features, they have been chosen as the forward error
correction solutions in many modern communication systems [9–17].

This book focuses on the turbo codes for 3GPP LTE-Advanced standard [15]
and IEEE 802.16m standard [17]. In this chapter, we begin with an overview of
turbo codec structure. We will outline the relevant specifications of these up-to-date
applications and mention the marked differences between these turbo codes. Then
the optimal decoding algorithm toward the best performance for each standard is
presented. The fundamental principles of turbo codes will be illustrated here. For
avoiding complicated operations in the original algorithm, we demonstrate several
suboptimal methods and examine their performance. They can make the practical
implementation easier but still keep great error correction capability. Further, we
discuss the order of calculation steps in every algorithm due to its dominance
over the decoding latency. The technique that utilizes auxiliary calculations and
rearranges the schedule to let the decoder start executions before it receives the
whole data block will be introduced. It also can reduce the hardware for storing
temporary calculation results. These substantial benefits let this method be applied
to almost all practical designs. The last topic is about shortening the average
processing time. By using well-designed criteria, the decoding flow can finish earlier
than normal without causing performance loss. Our discussions will involve two of
the simplest criteria, and the simulation results will prove their effectiveness.

1.1 Turbo Codes: Parallel Concatenated Convolutional Codes 3

1.1 Turbo Codes: Parallel Concatenated Convolutional
Codes

1.1.1 Principles of Encoding and Decoding

The classic turbo code is also known as the parallel concatenated convolutional code
due to the special combination of two convolutional codes [5]. Figure 1.2 shows the
typical framework, and its main characteristic is using interleavers in encoding and
decoding procedures. The task of the interleaver is to permute its input sequence in a
pseudo random way; while the de-interleaver can perform the inverse function to get
the normal order back. In the turbo encoder, the interleaver is located between the
two convolutional encoders. Thus, the first constituent encoder encodes the original
information sequence u and get the first parity check c ŒP1�, while the second one
transforms reordered information sequence Qu into the second parity check c ŒP2�. The
codeword of turbo code is the concatenation of the first convolutional code (u and
c ŒP1�) and the second convolutional code (Qu and c ŒP2�). Since Qu is just a permuted
version of u, the turbo encoder will send only u rather than both of them to its
output, and this copy of information sequence u is usually called the systematic data
c ŒU�. A complete codeword sequence of turbo code contains three parts: c ŒU�, c ŒP1�,
and c ŒP2�. The modulator translates the codeword sequence into analog signals (xŒU�,
xŒP1�, and xŒP2�) and then forward them to the channel. After the receiver gets these
modulated signals, the demodulator produces the corresponding quantized data (r ŒU�,
r ŒP1�, and r ŒP2�) for the subsequent flows. Like encoder architecture, the turbo decoder
contains two individual soft-in/soft-out (SISO) decoders, each of which deals with
one constituent code. Based on the decoding algorithm for convolutional codes, the
component decoder can calculate the probability of every information symbol. The
first SISO decoder works with the first parity check part r ŒP1� and the systematic
part r ŒU� to find the soft values of u, whereas the second SISO decoder processes
the second parity check part r ŒP2� and the interleaved systematic part Qr ŒU� to derive

Convolutional
Encoder-I

Convolutional
Encoder-II

SISO
Decoder-I

SISO
Decoder-II

M
odulator

C
hannel

D
em

odulator

[U]

[P1]

[P2]˜

[U]

[P1]

[P2]

[U]

[P1]

[P2]
˜[U]

Turbo Encoder

II

II II

II
IIII

Turbo Decoder

Interleaver De-interleaver

Fig. 1.2 Typical codec structure of the turbo code

4 1 Introduction

+

+ +

+

ui

pi [pi
(Tail)]

[ui
(Tail)]

0
1

(i < N) ⇒ 0
(i ≥ N) ⇒ 1

+ + +

+ +

+

+

pi
(0)

pi
(1)

ui
(0)

ui
(1)

a b

Fig. 1.3 Constituent convolutional encoders of turbo codes in advanced wireless communication
systems. (a) In 3GPP LTE-Advanced standard. (b) In IEEE 802.16m standard

the soft values of Qu. Thanks to the equivalence between u and Qu, the outputs of
either constituent code can be treated as the a priori probability estimation for
the other one. The interleaver and de-interleaver between the two SISO decoders
can rearrange these messages in proper order. This procedure will be performed
alternatively between the two constituent codes until certain criteria are satisfied.
With the random-like properties of turbo code, this iterative decoding method can
be very efficient.

1.1.2 Turbo Codes in Advanced Communication Systems

Both 3GPP LTE-Advanced standard [15] and IEEE 802.16m standard [17] adopt
turbo code as one of their channel coding techniques. The constituent encoders
in either standard are two identical recursive convolutional encoders, and their
architecture is shown in Fig. 1.3, where each mainly constructs of three 1-bit
memory cells and several XOR gates. As the information symbols (ui or u.0/

i u.1/

i)
are fed into the encoder, the data in the memory will be updated, and the code
symbols (pi or p

.0/

i p
.1/

i) will be produced. There are some rules of initializing and
finalizing the encoding procedure by setting the memory cells. In Fig. 1.4, the state
transition diagrams depict the operations of these convolutional encoders. Here the
contents of the memory cells (from left to right) are regarded as the states, and
either case involves eight states: S.0/ D 000, S.1/ D 001, S.2/ D 010, S.3/ D 011,
S.4/ D 100, S.5/ D 101, S.6/ D 110 and S.7/ D 111. These branches that indicate
the possible changes in states are labeled with their respective input/output patterns
(ui =pi or u.0/

i u.1/

i =p
.0/

i p
.1/

i). By serially connecting the state diagrams of successive
input symbols, we can further obtain the trellis diagram. The encoding procedure
of the constituent code can correspond to a unique trellis path on this diagram.
Such a graphical representation also serves as a basis for the decoding procedure.
Besides the realization of encoder, the turbo code construction requires the input
block size N, the code rate R, and the interleaving rules. The specifications for the
two applications state these requisite data in detail.

In 3GPP LTE-Advanced standard, the constituent encoder in Fig. 1.3a deals with
one information bit ui and outputs one parity check bit pi per unit time. The initial
values of all memory cells are zeroes. After inputting the last information bit uN�1,
we change the selection signal of the multiplexer to force the input to the leftmost

1.1 Turbo Codes: Parallel Concatenated Convolutional Codes 5

0/0

1/1

0/0

1/1

0/1

1/0

0/1

1/0

0/1

1/0

0/1

1/
0

0/0

1/
1

0/
0

1/1

ui/pi

branchcurrent
state

next
state

current
state

next
state

000=S(0)

001=S(1)

010=S(2)

011=S(3)

100=S(4)

101=S(5)

110=S(6)

111=S(7)

S(0)

S(1)

S(2)

S(3)

S(4)

S(5)

S(6)

S(7)

00/00

01/11

10/11

11/00

00/00

01/11

10/11

11/00

00/10

01/01

10/01

11/10

00/10

01/01

10
/01

11/10

00/11

01
/0

0

10
/00

11/11

00
/1

1

01/00

10/00

11
/1

1

00/01

01
/1

0

10
/1

0

11/0
1

00
/0

1

01
/1

0

10/10

11
/0

1

ui

(1)(1) (0)(0)
ui /pi pi

branch

000=S(0)

001=S(1)

010=S(2)

011=S(3)

100=S(4)

101=S(5)

110=S(6)

111=S(7)

S(0)

S(1)

S(2)

S(3)

S(4)

S(5)

S(6)

S(7)

a b

Fig. 1.4 State transition diagrams for the encoders in Fig. 1.3. (a) State transitions for Fig. 1.3a.
(b) State transitions for Fig. 1.3b

memory cell to zero. The corresponding trellis diagram is given in Fig. 1.5, where
the state at the initial trellis stage T0 and the state at the last trellis stage TNC3 are both
all-zero state S.0/. This termination step will take three more ticks to reset these
memory cells and result in six extra tail bits. Hence, for every size-N information
block Œu0; u1; : : : ; uN�1�, the corresponding parity check sequence of one constituent
code includes Œp0; p1; : : : ; pN�1� and Œu.Tail/

N ; p
.Tail/
N ; u.Tail/

NC1; p
.Tail/
NC1; u.Tail/

NC2; p
.Tail/
NC2�. Since the

two constituent encoders will generate .2NC 12/ parity check bits in total, the code
rate R of this turbo code is equal to N=.3N C 12/. This specification defines 188

block sizes, ranging from 40 to 6144, and these N’s can be summarized as follows:

N D

8
ˆ̂
<

ˆ̂
:

40C 8�.k� 0/ for kD 0� 58;

512C16�.k� 59/ for kD 59� 90;

1024C32�.k� 91/ for kD 91�122;

2048C64�.k�123/ for kD123�187:

Every information block Œu0; u1; : : : ; uN�1� will be reordered into ŒQu0; Qu1; : : : ; QuN�1�

by the quadratic permutation polynomial (QPP) interleaver [18]. The relationship
between the two data blocks is fQui D uQ.i / j 0 � i;Q.i/ < Ng, and their indexes
(i and Q.i/) satisfy

6 1 Introduction

S(0)

S(1)

S(2)

S(3)

S(4)

S(5)

S(6)

S(7)

S(0)

S(1)

S(2)

S(3)

S(4)

S(5)

S(6)

S(7)

T0 T1 T2 T3 T4 Ti−1 Ti Ti+1 TN−1 TN TN+1TN+2TN+3

u0 u1 u2 u3 ui−1 ui uN−1 uN

(Tail)
uN+1

(Tail)
uN+2

(Tail)

Fig. 1.5 The trellis diagram of constituent code in IEEE 802.16m standard

Q.i/ D f1 � i C f2 � i 2 .mod N/; (1.1)

where the determination of f1 and f2 is related to N [18]. The turbo encoders and
decoders for this standard must support 188 sets of .N; f1; f2/. The parameters will
share some characteristics. It is obvious that all N’s are multiples of 8. For each
.N; f1; f2/, f1 is an odd number and is relatively prime to N; while f2 is an even
number. These common characteristics are useful for practical implementation.

In IEEE 802.16m standard, the constituent encoder in Fig. 1.3b is a double binary
convolutional encoder whose every input symbol consists of two information bits
.u.0/

i ; u.1/

i /. It can get two parity check bits .p
.0/

i ; p
.1/

i / per unit time. Note that block
size N stands for the amount of input symbols, so there are 2N bits in an information
block in this case. This constituent encoder utilizes the tail-biting technique to
let the final contents of the memory cells agree with their initial contents [19].
The encoding procedure is divided into two steps: the pre-encoding and the actual
encoding. At the first step, the memory cells are reset to zeroes, and then all
information symbols are input. Based on the final contents of the memory cells at the
pre-encoding step, we calculate the corresponding initial values for the succeeding
step and encode the same information block again. Only the parity check bits
generated at the actual encoding process are valid code symbols. This method makes
the trellis diagram become a circular structure as Fig. 1.6, where the initial trellis
stage T0 and the last trellis stage TN are merged. For a size-N information block
Œ.u.0/

0 ; u.1/

0 /; .u.0/

1 ; u.1/

1 /; : : : ; .u.0/

N�1; u.1/

N�1/�, the corresponding parity check sequence of
one constituent code includes Œ.p

.0/

0 ; p
.1/

0 /; .p
.0/

1 ; p
.1/

1 /; : : : ; .p
.0/

N�1; p
.1/

N�1/�. Because the
two constituent encoders will generate 4N parity check bits in total, the code rate R

1.1 Turbo Codes: Parallel Concatenated Convolutional Codes 7

S(0)

S(1)

S(2)

S(3)

S(4)

S(5)

S(6)

S(7)

S(0)

S(1)

S(2)

S(3)

S(4)

S(5)

S(6)

S(7)

TN−2 TNTN−1 T0 T1 T2 Ti−1 Ti Ti+1 TN−2 TN−1TN T0 T1 T2

uN−2

uN−1

uN−1

uN−2

uN−2

uN−1

uN−1

uN−2

(0)

(1)

(0)

(1)
u0

(0)

u0
(1)

u1
(0)

u1
(1)

ui−1

ui

ui

ui−1

(0)

(1)

(0)

(1)

(0)

(1)

(0)

(1)
u0

(0)

u0
(1)

u1
(0)

u1
(1)

Fig. 1.6 The trellis diagram of constituent code in 3GPP LTE-Advanced standard

of this turbo code is equal to 2N=6N .D 1=3/. This specification defines 39 block
sizes, ranging from 24 to 2400, and these N’s are listed as follows:

N D

8
ˆ̂
<̂

ˆ̂
:̂

24; 32; 36; 40; 44; 48; 52; 60; 68; 76;

88; 100; 108; 124; 144; 160; 176; 200; 228; 256;

284; 320; 360; 400; 456; 512; 576; 656; 720; 816;

928; 1056; 1184; 1312; 1472; 1664; 1888; 2112; 2400:

9
>>>=

>>>;

In this turbo encoder, the interleaver first swaps the two component bits of each
information symbol with odd-numbered index. This intra-symbol permutation
results in Œ.u0.0/

0 ; u0.1/

0 /; .u0.0/

1 ; u0.1/

1 /; : : : ; .u0.0/

N�1; u0.1/

N�1/�, a permuted data block with the
property:

�
.u0.0/

i ; u0.1/

i / D .u.1/

i ; u.0/

i / if i mod 2 D 1;

.u0.0/

i ; u0.1/

i / D .u.0/

i ; u.1/

i / if i mod 2 D 0:
(1.2)

After the production of Œ.u0.0/

0 ; u0.1/

0 /; .u0.0/

1 ; u0.1/

1 /; : : : ; .u0.0/

N�1; u0.1/

N�1/�, there follows the
almost regular permutation (ARP) interleaver [20] to further arrange this interme-
diate data block into Œ.Qu.0/

0 ; Qu.1/

0 /; .Qu.0/

1 ; Qu.1/

1 /; : : : ; .Qu.0/

N�1; Qu.1/

N�1/�. The symbols of these
data blocks satisfy f.Qu.0/

i ; Qu.1/

i / D .u0.0/

A.i /; u0.1/

A.i // j 0 � i;A.i/ < Ng, and the index
A.i/ is derived by (1.3).

A.i/ D

8
ˆ̂
<

ˆ̂
:

" � i C g0 .mod N/ if i mod 4 D 0

" � i C g1 .mod N/ if i mod 4 D 1

" � i C g2 .mod N/ if i mod 4 D 2

" � i C g3 .mod N/ if i mod 4 D 3

and

8
ˆ̂
<

ˆ̂
:

g0D1

g1D1Cg0
1CN

2

g2D1Cg0
2

g3D1Cg0
3CN

2

(1.3)

For each N, there is a specific set of ."; g0
1; g0

2; g0
3/ in this standard. All of the 39

parameter sets also have some characteristics in common: every N is a multiple of
4; " is an odd prime number; and the other three .g0

1; g0
2; g0

3/ are even numbers.

8 1 Introduction

1.2 Decoding Procedure of Turbo Decoders

The main idea of turbo decoding process is the message propagation between the
two constituent codes. In the first paper of turbo code [5], the maximum a posteriori
probability (MAP) algorithm [21] is applied to the SISO decoder for calculating
the soft values of each component convolutional code. These outputs of one SISO
decoder should undergo some modifications before being passed to the other one.
For facilitating the computation, the expressions of some variables used in the
decoding algorithms may vary slightly according to the codec structure. Hence,
the decoding algorithms for the 3GPP LTE-Advanced turbo codes and for IEEE
802.16m turbo codes are presented separately. Our discussions in either part start
with the MAP algorithm and then demonstrate the iterative decoding flow. During
the derivation, we only consider the first constituent code or the sequence in original
order; and it can be easily generalized to the other component by substitution of
notations.

1.2.1 MAP Algorithm for 3GPP LTE-Advanced Turbo Code

Based on the received data and the trellis structure, the SISO decoder can use
the MAP algorithm to get the probabilities of all information symbols. Every
information block u D Œu0; u1; : : : ; uN�1� will be encoded into a parity check
sequence p D Œp0; p1; : : : ; pN�1�. The constituent convolutional encoder will send
out six more bits Œu.Tail/

N ; p
.Tail/
N ; u.Tail/

NC1; p
.Tail/
NC1 ; u.Tail/

NC2; p
.Tail/
NC2 � for trellis termination. These

parts will make up the codeword block c D Œc0; c1; : : : ; cNC2�, where each symbol
with the form ci D .c

.0/

i ; c
.1/

i / is .ui ; pi/ for i D 0 � .N � 1/ and represents
.u.Tail/

i ; p
.Tail/
i / for i D N � .N C 2/. Since the binary phase shift keying (BPSK)

modulation is applied, the code bits .c
.0/

i ; c
.1/

i / are translated into xi D .x
.0/

i ; x
.1/

i /.
The mapping between c

.j /

i and x
.j /

i for i D 0 � .NC 2/ and j D 0 � 1 is given in
(1.4); then we have a modulated signal sequence x D Œx0; x1; : : : ; xNC2�.

x.j /

i
D 1 � 2 � c.j /

i
D

� C1 if c
.j /

i D 0

�1 if c
.j /

i D 1
(1.4)

The data received from the channel are denoted by r D Œr0; r1; : : : ; rNC2� with ri D
.r

.0/

i ; r
.1/

i /. Under the assumption of additive white Gaussian noise (AWGN) channel,
each r

.j /

i can be viewed as the summation of the modulated signal x
.j /

i and the zero-
mean white Gaussian noise n

.j /

i with variance �2.

r.j /

i
D x.j /

i
C n.j /

i
(1.5)

The value of � is determined by the bit signal-to-noise ratio (SNR), usually
termed Eb=N0. Given a transmitted codeword block x, the probability of r can be
expressed as

1.2 Decoding Procedure of Turbo Decoders 9

Pr .r0; : : : ; rNC2 j x0; : : : ; xNC2/ ,
NC2Y

iD0

Pr
�
r.0/

i
; r .1/

i
j x.0/

i
; x.1/

i

�
; (1.6)

where

Pr
�
r.0/

i
; r .1/

i
j x.0/

i
; x.1/

i

�
,

1Y

j D0

Pr
�
r.j /

i
j x.j /

i

�
(1.7)

and

Pr
�
r.j /

i
j x.j /

i

�
, 1p

2� �
exp

�

� 1

2�2

�
r.j /

i
� x.j /

i

�2

�

: (1.8)

These probabilities provide the foundation for deriving the likelihood of each
information bit.

The practical SISO decoder only has the knowledge about the received data
sequence r, so it will calculate the a posteriori probability (APP) of ui as

Pr .ui j r0; : : : ; rNC2/ , i D 0 � N � 1: (1.9)

With the mapping in (1.4) and ui D c
.0/

i for i D 0 � .N � 1/, this probability is
equivalent to the APP of x

.0/

i , and the set of possible values becomes from ui 2 f0; 1g
to x

.0/

i 2 fC1;�1g. The SISO decoder will compare the APPs relating to ui D 0 and
ui D 1 to make the decision on the i -th information bit. If Pr .ui D 0 j r0; : : : ; rNC2/

is larger than or equal to Pr .ui D 1 j r0; : : : ; rNC2/, the decision is 0; otherwise, the
decision is 1. The log-likelihood ratio (LLR) in (1.10) is commonly used for the
computation.

L.ui / , ln
Pr .ui D 0 j r0; : : : ; rNC2/

Pr .ui D 1 j r0; : : : ; rNC2/
(1.10)

The hard decision u�
i

depends on the sign of L.ui /:

u�
i
D

�
0 if L.ui / � 0;

1 if L.ui / < 0:
(1.11)

We can derive the LLR as (1.12) by the characteristic of conditional probability.

L.ui / D ln
Pr .ui D 0I r0; : : : ; rNC2/ = Pr .r0; : : : ; rNC2/

Pr .ui D 1I r0; : : : ; rNC2/ = Pr .r0; : : : ; rNC2/

D ln
Pr .ui D 0I r0; : : : ; rNC2/

Pr .ui D 1I r0; : : : ; rNC2/
(1.12)

10 1 Introduction

Since ui D 0 and ui D 1 correspond to certain state transitions between the i -th
trellis stage Ti and the .i C 1/-th trellis stage TiC1, the probability of ui can be
written as

Pr .ui / D
X

.Si ;SiC1/

Pr .ui ISi ; SiC1/ D
X

.ui ISi ;SiC1/

Pr .Si ; SiC1/ ; (1.13)

where Si and SiC1 represent one of the eight states (S.0/ � S.7/) at Ti and TiC1

respectively; and .Si ; SiC1/ is the transition from Si to SiC1. The equation causes a
modification to the LLR in (1.12):

L.ui / D ln

P

.Si ;SiC1/

Pr .ui D 0ISi; SiC1I r0; : : : ; rNC2/

P

.Si ;SiC1/

Pr .ui D 1ISi; SiC1I r0; : : : ; rNC2/

D ln

P

.ui D0ISi ;SiC1/

Pr .Si ; SiC1I r0; : : : ; rNC2/

P

.ui D1ISi ;SiC1/

Pr .Si ; SiC1I r0; : : : ; rNC2/
: (1.14)

The LLR calculation involves the joint probability Pr .Si ; SiC1I r0; : : : ; rNC2/. Note
that this probability will be zero as there is no branch linking Si and SiC1. It can be
decomposed as (1.15) with Bayes’ law.

Pr .Si ; SiC1I r0; : : : ; rNC2/ D Pr .Si I r0; : : : ; ri�1/

� Pr .SiC1I ri j Si I r0; : : : ; ri�1/

� Pr .riC1; : : : ; rNC2 j Si; SiC1I r0; : : : ; ri / (1.15)

We can simplify the two conditional probabilities in (1.15) by removing the redun-
dant conditions. For Pr .SiC1I ri j Si I r0; : : : ; ri�1/, when Si is given, the transition
to SiC1 with ri is independent of previous data .r0; : : : ; ri�1/. Similarly, the event
.riC1; : : : ; rNC2/ of the last conditional probability are affected by SiC1 only. The
removal of unnecessary conditions results in (1.16) and (1.17).

Pr .SiC1I ri j Si I r0; : : : ; ri�1/ D Pr .SiC1I ri j Si/ (1.16)

Pr .riC1; : : : ; rNC2 j Si ; SiC1I r0; : : : ; ri / D Pr .riC1; : : : ; rNC2 j SiC1/ (1.17)

Then the factorization of Pr .Si ; SiC1I r0; : : : ; rNC2/ becomes

Pr .Si I r0; : : : ; ri�1/ � Pr .SiC1I ri j Si/ � Pr .riC1; : : : ; rNC2 j SiC1/ : (1.18)

Now we define the logarithmic version of the three probabilities as (1.19), (1.20),
and (1.21).

1.2 Decoding Procedure of Turbo Decoders 11

˛.Si/ , ln Pr .Si I r0; : : : ; ri�1/ (1.19)

�.Si ; SiC1/ , ln Pr .SiC1I ri j Si/ (1.20)

ˇ.Si/ , ln Pr .ri ; : : : ; rNC2 j Si/ (1.21)

Thus, (1.18) can be expressed with these notations:

Pr .Si ; SiC1I r0; : : : ; rNC2/ D exp
�
˛.Si/

��exp
�
�.Si; SiC1/

��exp
�
ˇ.SiC1/

�
: (1.22)

By substituting (1.22) for the APPs in (1.14), the LLR will be changed into

L.ui / D ln

2

4
X

.ui D0ISi ;SiC1/

exp
�
˛.Si /C �.Si; SiC1/C ˇ.SiC1/

�

3

5

� ln

2

4
X

.ui D1ISi ;SiC1/

exp
�
˛.Si/C �.Si ; SiC1/C ˇ.SiC1/

�

3

5 : (1.23)

Such a expression suggests that the SISO decoder should find out ˛.Si/, ˇ.SiC1/,
and �.Si ; SiC1/ first.

In the MAP algorithm, there are efficient ways to compute (1.19)–(1.21). The
˛.Si/ can be obtained alternatively from its original definition:

exp
�
˛.Si/

� D Pr .Si I r0; : : : ; ri�1/

D
X

Si�1

Pr .Si�1; Si I r0; : : : ; ri�1/

D
X

Si�1

Pr .Si�1I r0; : : : ; ri�2/ � Pr .Si I ri�1 j Si�1I r0; : : : ; ri�2/

D
X

Si�1

Pr .Si�1I r0; : : : ; ri�2/ � Pr .Si I ri�1 j Si�1/

D
X

Si�1

exp
�
˛.Si�1/

� � exp
�
�.Si�1; Si /

�
: (1.24)

The subsequent flow is taking the natural logarithm on both sides in (1.24).

˛.Si/ D ln
X

Si�1

exp
�
˛.Si�1/C �.Si�1; Si/

�
(1.25)

In the above equation, it just requires ˛.Si�1/ and �.Si�1; Si/ to compute ˛.Si/.
This calculation is a recursive process from i D 0 to i D N C 3; hence, ˛.Si/

is also named the forward metric. It needs an appropriate initial value ˛.S0/.

12 1 Introduction

From Fig. 1.5, the trellis for the constituent code starts at S.0/. The condition implies
that Pr .S0 D S.0// D 1 and Pr .S0 ¤ S.0// D 0. Here we make use of (1.19) again
and get

˛.S0/ D
�

0 if S0 D S.0/;

�1 if S0 ¤ S.0/:
(1.26)

The derivation of ˇ.Si/ is much the same as that of ˛.Si/. The first step is

exp
�
ˇ.Si/

� D Pr .ri ; : : : ; rNC2 j Si/

D
X

SiC1

Pr .SiC1I ri ; : : : ; rNC2 j Si/

D
X

SiC1

Pr .SiC1I ri j Si/ � Pr .riC1; : : : ; rNC2 j Si ; SiC1I ri /

D
X

SiC1

Pr .SiC1I ri j Si/ � Pr .riC1; : : : ; rNC2 j SiC1/

D
X

SiC1

exp
�
�.Si ; SiC1/

� � exp
�
ˇ.SiC1/

�
: (1.27)

After the computation of natural logarithm, (1.27) changes to

ˇ.Si/ D ln
X

SiC1

exp
�
�.Si ; SiC1/C ˇ.SiC1/

�
: (1.28)

The calculation of ˇ.Si/ needs both ˇ.SiC1/ and �.Si ; SiC1/, and it is performed
recursively in descending order; so we call ˇ.Si/ the backward metric. The trellis
diagram in Fig. 1.5 whose the last state SNC3 is S.0/ indicates the initialization:

ˇ.SNC3/ D
�

0 if SNC3 D S.0/;

�1 if SNC3 ¤ S.0/:
(1.29)

Furthermore, the �.Si; SiC1/ in (1.20) can be

exp
�
�.Si; SiC1/

� D Pr .SiC1I ri j Si/

D Pr .Si ; SiC1I ri/

Pr .Si /

D Pr .Si ; SiC1/

Pr .Si/
� Pr .Si ; SiC1I ri /

Pr .Si ; SiC1/

D Pr .SiC1 j Si/ � Pr .ri j Si; SiC1/

D Pr .ui / � Pr .ri j xi/ : (1.30)

1.2 Decoding Procedure of Turbo Decoders 13

The relationship among ui , c
.0/

i , and x
.0/

i promises that we can interchange Pr .ui /

with Pr
�
x

.0/

i

�
. To find the Pr .ui /, we need the a priori information with the

definition as

La.ui / , ln
Pr .ui D 0/

Pr .ui D 1/
D La.x.0/

i
/ , ln

Pr
�
x

.0/

i D C1
�

Pr
�
x

.0/

i D �1
� : (1.31)

The La.x
.0/

i / is utilized to calculate the a priori probability Pr
�
x

.0/

i

�
:

Pr
�
x.0/

i
D ˙1

� D exp
�˙ La.x

.0/

i /
�

1C exp
�˙ La.x

.0/

i /
�

D
"

exp
� �La.x

.0/

i /=2
�

1C exp
� �La.x

.0/

i /
�

#

„ ƒ‚ …
#i

� exp
�
x.0/

i
� La.x.0/

i
/=2

�

D #i � exp
�
x.0/

i
� La.x.0/

i
/=2

�
; (1.32)

where #i depends only on La.x
.0/

i / and remains constant for either x
.0/

i D C1 or
x

.0/

i D �1. Based on (1.7) and (1.8), the Pr .ri j xi / can be modified to

Pr .ri j xi/ D
1Y

j D0

�
1p

2� �
exp

� � 1

2�2
.r.j /

i
� x.j /

i
/2

�
�

D
�

1p
2� �

�2

� exp
� � 1

2�2

1X

j D0

	
.r.j /

i
/2 C .x.j /

i
/2

 �

„ ƒ‚ …
'i

� exp
� 1

�2

1X

j D0

	
r.j /

i
� x.j /

i

 �

D 'i � exp
�1

2
Lc

1X

j D0

	
r.j /

i
� x.j /

i

 �
: (1.33)

For all possible combinations of .x
.0/

i ; x
.1/

i /, r
.j /

i is the same, and the square of x
.j /

i is
1; so 'i will be a constant. In addition, the channel reliability value Lc whose value
is 2=�2 is introduced in (1.33). It will equal to 4REb=N0 in the AWGN channel [22].
With (1.32) and (1.33), we can rewritten (1.30) as

� 0.Si ; SiC1/ D ln #i C ln 'i C
1

2
x.j /

i
�La.x.j /

i
/C 1

2
Lc

1X

j D0

	
r.j /

i
� x.j /

i

: (1.34)

Both #i and '
i

will be canceled out in the LLR calculation in (1.23). For this reason,
we drop out #i and '

i
in advance and define �.Si; SiC1/, also known as the branch

metric, in (1.35).

14 1 Introduction

a b

Fig. 1.7 Forward metric calculation and backward metric calculation. (a) Recursive ˛.Si / com-
putation. (b) Recursive ˇ.Si / computation

�.Si ; SiC1/ D 1

2
x.j /

i
La.x.j /

i
/C 1

2
Lc

1X

j D0

	
r.j /

i
� x.j /

i

(1.35)

Consequently, the SISO decoder exploits the MAP algorithm over .N C 3/

received codeword symbols to get the probabilities of N information bits. The
initial conditions of this component convolutional code are ˛.S0/ and ˇ.SNC3/. After
receiving ri , the decoder can derive �.Si; SiC1/ of each branch between trellis stages
Ti and TiC1. Then the decoder uses these branch metrics to calculate forward metrics
and backward metrics in a recursive way. Figure 1.7 is the graphical description
of these computations. In this case, every state Si at Ti has exactly two incoming
branches connecting to two different states (S 0

i�1
and S 00

i�1
) at Ti�1 and has exactly

two outgoing branches connecting to two different states (S 0
iC1

and S 00
iC1

) at TiC1.
As ˛.Si/ and ˇ.SiC1/ are available, the L.ui / and decision u�

i
can be further

determined.

1.2.2 Iterative Flow for 3GPP LTE-Advanced Turbo Code

Like the MAP algorithm, the discussion about the iterative decoding flow relies
heavily on the APP of the i -th information bit ui . Instead of the definition in (1.9),
we take the Pr .ui I r0; : : : ; rNC2/ into account here, for both them can result in the
same LLR as (1.12). By applying Bayes’ law, the joint probability can be factorized
into (1.36).

Pr .ui I r/ D
X

uWui

Pr
�
u0; : : : ; uN�1I r.0/

0
; r .1/

0
; : : : ; r

.0/

NC2; r
.1/

NC2

�

D
X

uWui

�

Pr .u0; : : : ; uN�1/ � Pr
�
r.0/

0
; : : : ; r

.0/

NC2

ˇ
ˇ u0; : : : ; uN�1

�

� Pr
�
r.1/

0
; : : : ; r

.1/

NC2

ˇ
ˇ u0; : : : ; uN�1I r.0/

0
; : : : ; r

.0/

NC2

�
�

(1.36)

1.2 Decoding Procedure of Turbo Decoders 15

Since the constituent encoder generates an unique modulated codeword sequence
Œx

.0/

0 ; x
.1/

0 ; : : : ; x
.0/

NC2; x
.1/

NC2� from every information block Œu0; : : : ; uN�1�, this one-to-
one mapping allows for the interchangeability in (1.37)–(1.39).

Pr .u0; : : : ; uN�1/ D Pr
�
x.0/

0
; : : : ; x.0/

N�1

�
(1.37)

D Pr
�
x.0/

0
; : : : ; x.0/

N�1
; x.0/

N ; x
.0/

NC1; x
.0/

NC2

�
(1.38)

D Pr
�
x.0/

0
; : : : ; x

.0/

NC2I x.1/

0
; : : : ; x

.1/

NC2

�
(1.39)

With the relations of equality, we can modify the Pr .ui I r/ from (1.36) to

Pr .ui I r/ D
X

uWui

�

Pr
�
x.0/

0
; : : : ; x

.0/

NC2

� � Pr
�
r.0/

0
; : : : ; r

.0/

NC2

ˇ
ˇ x.0/

0
; : : : ; x

.0/

NC2

�

� Pr
�
r.1/

0
; : : : ; r

.1/

NC2

ˇ
ˇ x.0/

0
; : : : ; x

.0/

NC2I x.1/

0
; : : : ; x

.1/

NC2I r.0/

0
; : : : ; r

.0/

NC2

�
�

D
X

uWui

�

Pr
�
x.0/

0
; : : : ; x

.0/

NC2

� � Pr
�
r.0/

0
; : : : ; r

.0/

NC2

ˇ
ˇ x.0/

0
; : : : ; x

.0/

NC2

�

� Pr
�
r.1/

0
; : : : ; r

.1/

NC2

ˇ
ˇ x.1/

0
; : : : ; x

.1/

NC2

�
�

; (1.40)

where the probability about Œr
.1/

0 ; : : : ; r
.1/

NC2� ignores the conditions Œx
.0/

0 ; : : : ; x
.0/

NC2�

and Œr
.0/

0 ; : : : ; r
.0/

NC2� while Œx
.1/

0 ; : : : ; x
.1/

NC2� is given. For the discrete memoryless
channel, (1.41) is another expression of Pr .ui I r/. In (1.42), the probabilities directly
relating to ui , x

.0/

i , and r
.0/

i bit are taken out; and the rest excludes the i -th systematic
data.

Pr .ui I r/ D
X

uWui

� NC2Y

j D0

Pr
�
x.0/

j

� � Pr
�
r.0/

j

ˇ
ˇ x.0/

j

� � Pr
�
r.1/

j

ˇ
ˇ x.1/

j

�
�

(1.41)

D Pr
�
x.0/

i

� � Pr
�
r.0/

i

ˇ
ˇ x.0/

i

�

�
X

uWui

"
NC2Y

j D0
j ¤i

Pr
�
x.0/

j

� � Pr
�
r.0/

j

ˇ
ˇ x.0/

j

� �
NC2Y

lD0

Pr
�
r

.1/

l

ˇ
ˇ x

.1/

l

�
#

(1.42)

Now we substitute (1.42) for the probabilities in (1.12) and then derive the LLR of
i -th information bit as (1.43), where the last term is called the extrinsic information
Le.ui /.

16 1 Introduction

L.ui / D ln
Pr .ui D 0I r/

Pr .ui D 1I r/

D ln
Pr

�
x

.0/

i D C1
�

Pr
�
x

.0/

i D �1
� C ln

Pr
�
r

.0/

i j x
.0/

i D C1
�

Pr
�
r

.0/

i j x
.0/

i D �1
�

C ln

P

uWui D0

"
NC2Q

j D0

j ¤i

Pr
�
x

.0/

j

� � Pr
�
r

.0/

j

ˇ
ˇ x

.0/

j

� �
NC2Q

lD0

Pr
�
r

.1/

l

ˇ
ˇ x

.1/

l

�
#

P

uWui D1

"
NC2Q

j D0
j ¤i

Pr
�
x

.0/

j

� � Pr
�
r

.0/

j

ˇ
ˇ x

.0/

j

� �
NC2Q

lD0

Pr
�
r

.1/

l

ˇ
ˇ x

.1/

l

�
#

„ ƒ‚ …
Le.ui /

(1.43)

The first term in (1.43) is La.ui / in (1.31); the second term can also be written as
(1.44) by the definition in (1.8) and Lc D 2=�2.

ln
Pr

�
r

.0/

i j x
.0/

i D C1
�

Pr
�
r

.0/

i j x
.0/

i D �1
� D ln

1p
2� �
� exp

�� 1
2�2 .r

.0/

i � 1/2
�

1p
2� �
� exp

�� 1
2�2 .r

.0/

i C 1/2
�

D 1

2�2
� 	

.r.0/

i
C 1/2 � .r.0/

i
� 1/2

D 2

�2
� r.0/

i
D Lc � r.0/

i
(1.44)

As a result, L.ui / is regarded as the summation of a priori probability, the weighted
received data, and the extrinsic information:

L.ui / D La.ui /CLc � r.0/

i
C Le.ui /: (1.45)

Figure 1.8 shows the detailed decoding procedure for passing soft values from
one SISO decoder to the other. The SISO decoders can update useful estimation
about every information bit ui with the applications of (1.23) and (1.45). In general,
the first SISO decoder performs the MAP algorithm on the systematic part and first
parity check part to compute all necessary metrics. We assume that Pr .ui D 0/

and Pr .ui D 1/ are both 1=2; thus, the a priori value La1.ui / which is involved
in the �.Si; SiC1/ calculation is initialized with 0. This SISO decoder will output
L1.ui /, the LLR of the i -th information bit. From (1.45), the corresponding extrinsic
information Le1.ui / can be obtained by

Le1.ui / D L1.ui / �Lc � r.0/

i
�La1.ui /: (1.46)

Since Le1.ui / is derived from the whole codeword except the i -th systematic
data, it can provide newer information than the probabilities calculated from r

.0/

i and
La1.ui / directly. We use Le1.ui / as an estimate for the a priori value of the other
constituent code. The second SISO decoder also does the trellis-based decoding

1.2 Decoding Procedure of Turbo Decoders 17

Fig. 1.8 The propagation of soft values in the iterative decoding flow

procedure with Qr ŒU�, r ŒP2�, and La2.Qui /. Then it evaluates L2.Qui /, the LLR for the
permuted information sequence, and it further gets the extrinsic information Le2.Qui /

of the second constituent code by

Le2.Qui / D L2.Qui / �Lc � Qr.0/

i
�La2.Qui /: (1.47)

The Le2.Qui / is passed back to the first SISO decoder. A de-interleaver rearranges
the sequence order so that Le2.Qui / can be the a priori value La1.uQ.i // for the
first constituent code. After updating the La1.ui / for i D 0 � .N � 1/, the first
SISO decoder performs the MAP algorithm again. Such soft value calculation of
each constituent code is named as a half-iteration, and two successive processes
form one complete iteration. Usually, we will set a maximum iteration number
I as the conventional stopping criterion. At the last half-iteration, the decoder
makes hard decisions from the LLRs by (1.11). Note that the tail bits of both
constituent codes are excluded in the message propagation; their probabilities
remain the same throughout the iterative flow, and we only need to calculate the
corresponding metrics once. Because the correlation between APP estimations
and received data will become stronger after every half-iteration, the benefit of
extrinsic information diminishes gradually. This phenomenon leads to very small
enhancement in performance when the decoding flow has proceeded repeatedly for
certain iterations. Hence, the determination of I depends on the trade-off between
performance requirement and processing time.

The bit error rate (BER) versus SNR diagrams in Fig. 1.9 present how the
performance of 3GPP LTE-Advanced turbo code with N D f40; 512; 6144g varies
as the iteration increases from 1 to 16. The simulation results show that the
iterative message propagation can provide greater error correction capability in
larger blocks than in small blocks. Moreover, it is easy to notice that there is slighter
performance gain at higher iterations, especially when N is small. In spite of the
excellent performance at I D 16, the decoding latency is too long. Considering
the improvement, it is inefficient to use so many iterations for all blocks. From
Fig. 1.9c, the result at I D 16 is merely 0:1 dB better than at I D 8, but its process

18 1 Introduction

100

10−1

10−2

10−3

10−4

10−5

10−6

100

10−1

10−2

10−3

10−4

10−5

10−6

100

10−1

10−2

10−3

10−4

10−5

10−6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Eb/N0 (dB)

B
it

 E
rr

or
 R

at
e

B
it

 E
rr

or
 R

at
e

B
it

 E
rr

or
 R

at
e

01 iteration
02 iterations
03 iterations
04 iterations
05 iterations

06 iterations
07 iterations
08 iterations
12 iterations
16 iterations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Eb/N0 (dB)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Eb/N0 (dB)

01 iteration
02 iterations
03 iterations
04 iterations
05 iterations

06 iterations
07 iterations
08 iterations
12 iterations
16 iterations

a

b

c
01 iteration
02 iterations
03 iterations
04 iterations
05 iterations

06 iterations
07 iterations
08 iterations
12 iterations
16 iterations

Fig. 1.9 Performance of 3GPP LTE-Advanced turbo code with various block sizes and iteration
numbers. (a) 3GPP LTE-Advanced turbo code: N D 40 and I D f1; 2; 3; 4; 5; 6; 7; 8; 12; 16g.
(b) 3GPP LTE-Advanced turbo code: N D 512 and I D f1; 2; 3; 4; 5; 6; 7; 8; 12; 16g. (c) 3GPP
LTE-Advanced turbo code: N D 6144 and I D f1; 2; 3; 4; 5; 6; 7; 8; 12; 16g

1.2 Decoding Procedure of Turbo Decoders 19

takes double time. Thus, choosing I D 8 is more suitable for N D 6144 in this
application. Similarly, based on Figs. 1.9a and 1.9b, we can use I D 4 for N D 40

and I D 5 for N D 512. In summary, the 3GPP LTE-Advanced turbo decoder
generally needs four to eight iterations for all N’s in the standard.

1.2.3 MAP Algorithm for IEEE 802.16m Turbo Code

To support the double binary codec structure and tail-biting technique of this turbo
code, we must make some modifications to the MAP algorithm. The first step is
redefinition of notations. The encoder will transform a size-N information block
u D Œu0; u1; : : : ; uN�1� with ui D .u.0/

i ; u.1/

i / into N pairs of parity check bits:
p D Œ.p

.0/

0 ; p
.1/

0 /; .p
.0/

1 ; p
.1/

1 /; : : : ; .p
.0/

N�1; p
.1/

N�1/�. The two parts form the constituent
codeword c D Œc0; c1; : : : ; cN�1�, of which every symbol ci D .c

.0/

i ; c
.1/

i ; c
.2/

i ; c
.3/

i /

represents .u.0/

i ; u.1/

i ; p
.0/

i ; p
.1/

i /. According to (1.4), the code bit c
.j /

i is mapped into
a BPSK signal x

.j /

i for i D 0 � .N � 1/ and j D 0 � 3. The modulated
signal sequence x D Œx0; x1; : : : ; xN�1� with xi D .x

.0/

i ; x
.1/

i ; x
.2/

i ; x
.3/

i / will be passed
into the channel, and each signal x

.j /

i may suffer from noise n
.j /

i as (1.5) during
the transmission. Then the SISO decoder will receive r D Œr0; r1; : : : ; rN�1� with
ri D .r

.0/

i ; r
.1/

i ; r
.2/

i ; r
.3/

i / from the channel. Therefore, the probability of r can be
derived as (1.48) by changing the upper bounds of i and j in (1.6) and (1.7).

Pr .r0; : : : ; rN�1 j x0; : : : ; xN�1/ ,
N�1Y

iD0

Pr
�
r.0/

i
; r .1/

i
; r .2/

i
; r .3/

i
j x.0/

i
; x.1/

i
; x.2/

i
; x.3/

i

�

D
N�1Y

iD0

� 3Y

j D0

Pr
�
r.j /

i
j x.j /

i

�
�

(1.48)

The APP becomes (1.49) as well.

Pr .ui j r0; : : : ; rN�1/ D Pr
�
u.0/

i
; u.1/

i
j r0; : : : ; rN�1

�
; i D 0 � N � 1: (1.49)

The combination of ui D .u.0/

i ; u.1/

i / with the largest possibility will be selected as
the decisions. We often use LLRs rather than APPs to make this comparison. For
simplicity, we define the following 2-tuple representations:

fU.`/ D .`.0/; `.1//
ˇ
ˇ U.0/ D .0; 0/; U.1/ D .0; 1/; U.2/ D .1; 0/; U.3/ D .1; 1/g:

Thus, the LLR for the double binary scheme will be (1.50) with ` D 0 � 3. The
APP of ui D .0; 0/ in the denominator is served as the reference value.

LŒ`�.ui / , ln
Pr .ui D U.`/ j r0; : : : ; rN�1/

Pr .ui D U.0/ j r0; : : : ; rN�1/

D ln
Pr .ui D U.`/I r0; : : : ; rN�1/

Pr .ui D U.0/I r0; : : : ; rN�1/
(1.50)

20 1 Introduction

With these LLRs, we can get the hard decisions u�
i

by

u�
i
D U.`0/; if LŒ`0 �.ui / D max

�
LŒ0�.ui /; LŒ1�.ui /; LŒ2�.ui /; LŒ3�.ui /

�
: (1.51)

Since the same principle can apply here, the LLR can be also modified into the
equation in (1.23) while changing the number of received symbols to N. The
definitions of ˛.Si/ and ˇ.Si/ are still (1.25) and (1.28) respectively; but it needs
distinct initial values for the trellis path with undetermined beginning state and
ending state. To solve this problem, we assume that each Pr .S0 D S.m// D 1=8

and Pr .SN D S.m// D 1=8 for m D 0 � 7; and we introduces an auxiliary forward
metric ˛0.Si / with ˛0.S0 D S.m// D 0 and an auxiliary backward metric ˇ0.Si /

with ˇ0.SN D S.m// D 0. Then we compute ˛0.Si/ in a forward recursive behavior
until we get ˛0.SN/. The property S0 D SN allows us to treat ˛0.SN/ as ˛.S0/ in the
circular trellis structure. For backward metric, the initial ˇ.SN/ can be updated with
ˇ0.S0/, the final results of auxiliary computation. In addition to the initialization,
there is a small change in the branch metric calculation. The basic calculation
of �.Si ; SiC1/ is identical to (1.30). However, the Pr .ui / and Pr .ri j xi/ must be
redefined to match the current version of constituent codeword. The new expressions
will cover all four cases of the i -th symbol. We first give the a priori value as (1.52)
whose format agrees with that of LLR.

LŒ`�

a .ui / , ln
Pr .ui D U.`//

Pr .ui D U.0//
; ` D 0 � 3 (1.52)

Then the probability of ui D U.`/ is determined by

Pr .ui D U.`// D
� 3X

j D0

exp
�
LŒj �

a .ui /
�

��1

„ ƒ‚ …
0

i

� exp
�
LŒ`�

a .ui /
�

D # 0
i
� exp

�
LŒ`�

a .ui /
�

; (1.53)

where # 0
i

is fixed for any `. We also renew the index of Pr .ri j xi/ as

Pr .ri j xi/ D
�

1p
2� �

�4

� exp
� � 1

2�2

3X

j D0

	
.r.j /

i
/2 C .x.j /

i
/2

 �

„ ƒ‚ …
'0

i

� exp
� 1

�2

3X

j D0

	
r.j /

i
� x.j /

i

 �

D '0
i
� exp

�1

2
Lc

3X

j D0

	
r.j /

i
� x.j /

i

 �
: (1.54)

1.2 Decoding Procedure of Turbo Decoders 21

This equation involves another constant number '0
i
. By replacing the probabilities in

(1.30) and removing the constant part, we have the branch metric for this constituent
code:

�.Si; SiC1/ D La.ui D U.`//C 1

2
Lc

3X

j D0

	
r.j /

i
� x.j /

i

: (1.55)

1.2.4 Iterative Flow for IEEE 802.16m Turbo Code

When we consider the iterative decoding flow on the basis of this constituent code,
the derivation of useful soft values should be revised for the compatibility with the
LLR definition in (1.50). The first step is factorizing Pr .ui I r/ in the same way as
(1.42). The equivalence Pr

�
u.0/

i ; u.1/

i

� D Pr
�
x

.0/

i ; x
.1/

i

�
let this joint probability be

factorized to

Pr .ui I r0; : : : ; rN�1/

D Pr
�
x.0/

i
; x.1/

i

� � Pr
�
r.0/

i
; r .1/

i

ˇ
ˇ x.0/

i
; x.1/

i

�

�
X

uWui

"
N�1Y

j D0
j ¤i

Pr
�
x.0/

j
; x.1/

j

�
Pr

�
r.0/

j
; r .1/

j

ˇ
ˇ x.0/

j
; x.1/

j

�
N�1Y

lD0

Pr
�
r

.2/

l ; r
.3/

l

ˇ
ˇ x

.2/

l ; x
.3/

l

�
#

:

Therefore, the LLR in (1.50) can be rewritten as

LŒ`�.ui / D ln
Pr .ui D U.`//

Pr .ui D U.0//
C ln

Pr
�
r

.0/

i ; r
.1/

i j ui D U.`/
�

Pr
�
r

.0/

i ; r
.1/

i j ui D U.0/
� C LŒ`�

e .ui /; (1.56)

where the last term LŒ`�
e .ui / is

ln

P

uWui

"
N�1Q

j D0
j ¤i

Pr
�
uj D U.`/

�
Pr

�
r

.0/

j ; r
.1/

j

ˇ
ˇ uj D U.`/

� N�1Q

lD0

Pr
�
r

.2/

l ; r
.3/

l

ˇ
ˇ x

.2/

l ; x
.3/

l

�
#

P

uWui

"
N�1Q

j D0
j ¤i

Pr
�
uj D U.0/

�
Pr

�
r

.0/

j ; r
.1/

j

ˇ
ˇ uj D U.0/

� N�1Q

lD0

Pr
�
r

.2/

l ; r
.3/

l

ˇ
ˇ x

.2/

l ; x
.3/

l

�
:

The second term in (1.56) can be simplified into (1.57) by the following properties:
U.`/ D .`.0/; `.1//, .u.0/; u.1// D .c.0/; c.1//, (1.4), and (1.8).

ln
Pr

�
.r

.0/

i ; r
.1/

i / j .u.0/

i ; u.1/

i / D U.`/
�

Pr
�
.r

.0/

i ; r
.1/

i / j .u.0/

i ; u.1/

i / D U.0/
� D �Lc � Œr .0/

i
� `.0/ C r.1/

i
� `.1/� (1.57)

22 1 Introduction

Moreover, we can use LŒ`�
a .ui / in (1.52) to take the place of the first term. These

substitutions lead to a proper LLR representation for the double binary scheme as
(1.58) with ` D 0 � 3.

LŒ`�.ui / D LŒ`�

a .ui / �Lc � Œr .0/

i
� `.0/ C r.1/

i
� `.1/�C LŒ`�

e .ui /: (1.58)

Notice that the definition of LŒ`�.ui / in (1.50) will have identical numerator and
denominator when ` is 0. It implies LŒ0�.ui / D 0 for i D 0 � .N � 1/. For the
same reason, LŒ0�

a .ui / and LŒ0�
e .ui / always keep zero. The calculations of these three

likelihood ratios can be skipped.
The message propagation between the two constituent codes are also affected

by the double binary code structure. Initially, we set the a priori value L
Œ`�

a1.ui / for
the first constituent code to zero and utilize the MAP algorithm to calculate the a
posteriori information L

Œ`�

1 .ui / D 0 for all i ’s and `’s. From (1.58), the extrinsic
information L

Œ`�

e1.ui / will be

L
Œ`�

e1.ui / D L
Œ`�

1 .ui /�L
Œ`�

a1.ui /C Lc � Œr .0/

i
� `.0/ C r.1/

i
� `.1/�: (1.59)

The L
Œ`�

e1.ui / is regarded as the a priori value of the second constituent code. Due
to the periodical intra-symbol permutation in (1.2), we must exchange the results
about U.`/ D .`.1/; `.0// for those about U.`/ D .`.0/; `.1// as long as the symbol
index satisfy the condition. If the Qui has an even index, its a priori value estimation
is updated according to (1.60); otherwise, the L

Œ`�

a2.Qui / comes directly from L
Œ`�

e1.Qui /

for each `.

�
`.0/ ¤ `.1/ W L

Œ1�

a2.Qui / L
Œ2�

e1.uA.i //; L
Œ2�

a2.Qui / L
Œ1�

e1.uA.i //

`.0/ D `.1/ W L
Œ0�

a2.Qui / L
Œ0�

e1.uA.i //; L
Œ3�

a2.Qui / L
Œ3�

e1.uA.i //
(1.60)

When the second SISO decoder collects all requisite inputs, it will get the LLR
L

Œ`�

2 .Qui / by the MAP algorithm and derive the extrinsic information L
Œ`�

e2.Qui / by

L
Œ`�

e2.Qui / D L
Œ`�

2 .Qui /�L
Œ`�

a2.Qui /C Lc � ŒQr.0/

i
� `.0/ C Qr.1/

i
� `.1/�: (1.61)

This result will be the a priori information L
Œ`�

a1.uA.i // of the other constituent code.
Those cases relating to the U.`/ with `.0/ ¤ `.1/ for an even-indexed Qui must be
swapped, too. After all a priori values are ready, a new half-iteration for the first
constituent code can start. The turbo decoding runs iteratively until the iteration
number reaches I, and then the hard decisions that are determined by (1.51) are
outputted.

Figure 1.10 shows the BER performance of IEEE 802.16m turbo code with
N D f24; 256; 2400g at various iterations. Compared to Fig. 1.9, the results of
the examples with similar number of information bits are alike. In any example,
the curve of I D 16 can approximately be viewed as the ultimate performance
bound. Actually, when I exceeds a certain threshold, the improvement caused by
further iterations will be limited to 0:2 dB. Due to the insignificant difference in

1.2 Decoding Procedure of Turbo Decoders 23

100

10−1

10−2

10−3

10−4

10−5

10−6

100

10−1

10−2

10−3

10−4

10−5

10−6

100

10−1

10−2

10−3

10−4

10−5

10−6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Eb/N0 (dB)

B
it

 E
rr

or
 R

at
e

B
it

 E
rr

or
 R

at
e

B
it

 E
rr

or
 R

at
e

01 iteration
02 iterations
03 iterations
04 iterations
05 iterations

06 iterations
07 iterations
08 iterations
12 iterations
16 iterations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Eb/N0 (dB)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Eb/N0 (dB)

01 iteration
02 iterations
03 iterations
04 iterations
05 iterations

06 iterations
07 iterations
08 iterations
12 iterations
16 iterations

01 iteration
02 iterations
03 iterations
04 iterations
05 iterations

06 iterations
07 iterations
08 iterations
12 iterations
16 iterations

a

b

c

Fig. 1.10 Performance of IEEE 802.16m turbo code with various block sizes and iteration
numbers. (a) IEEE 802.16m turbo code: N D 24 and I D f1; 2; 3; 4; 5; 6; 7; 8; 12; 16g. (b) IEEE
802.16m turbo code: N D 256 and I D f1; 2; 3; 4; 5; 6; 7; 8; 12; 16g. (c) IEEE 802.16m turbo
code: N D 2400 and I D f1; 2; 3; 4; 5; 6; 7; 8; 12; 16g

24 1 Introduction

performance and considerable saving in latency, we prefer that threshold to 16 while
determining the necessary iteration number. According to the simulation results, the
common value of I can be set to 4 for N D 24, 5 for N D 256, and 8 for N D 2400.
It is easy to infer that the suitable I for any other N in this standard is in the range
of four to eight, and we will adopt these choices in later discussions.

1.3 Techniques for Efficient Decoding Process

1.3.1 Simplified MAP Algorithms

Although the turbo code can achieve the impressive performance, the complex
algorithm will be an obstacle to implement the decoders. The main operations of
the MAP algorithm are exponentiation and logarithm. Both of them take more
hardware resources than most basic arithmetic operations. To reduce the complexity,
the works in [23–25] proposed simpler algorithms that chiefly use addition and
subtraction to calculate the metrics and LLRs. These alternative methods are
developed with the following Jacobian function

ln.ey1 C ey2 / , max�.y1; y2/ D max.y1; y2/C ln.1C e�jy1�y2j/; (1.62)

and its extension form

ln.ey1 C ey2 C ey3/ D max�.y1; y2; y3/ D max�.max�.y1; y2/; y3/: (1.63)

Note that the logarithmic function is equivalent to the summation of the normal
max.�/ function and a correction term ln.1 C e�jy1�y2j/. The normal max.�/
function is just the comparison and selection among all inputs. In addition, the
ln.1C e�jy1�y2j/, whose value depends on jy1 � y2j, can be calculated beforehand
and stored in a lookup table. Thus, the max�.�/ function can be realized easily.
After replacing the original computations in (1.23), (1.25), and (1.28) with the
max�.�/ functions, we can write the forward metric, backward metric, and LLR as
(1.64)–(1.66) respectively.

˛.Si/ D max�
Si�1

h
�.Si�1; Si/C ˛.Si�1/

i
(1.64)

ˇ.Si/ D max�
SiC1

h
�.Si ; SiC1/C ˇ.SiC1/

i
(1.65)

L.ui / D max�
.Si ;SiC1/Wui D0

Œ˛.Si /C �.Si ; SiC1/C ˇ.SiC1/�

� max�
.Si ;SiC1/Wui D1

Œ˛.Si /C �.Si; SiC1/C ˇ.SiC1/� : (1.66)

1.3 Techniques for Efficient Decoding Process 25

The decoding algorithm based on the above three equations is named the Log-MAP
algorithm. For the Log-MAP algorithm, a lookup table with high accuracy can lead
to the same performance as the MAP algorithm, but it also means the requirement
of larger memory.

A further simplification can be achieved by completely discarding the lookup
table. The correction term will be omitted from the max�.�/ function:

max�.y1; y2/ � max.y1; y2/: (1.67)

This approximation leads to the Max-Log-MAP algorithm that involves only the
additions and the max.�/ functions. However, the lack of the correction term would
make the LLR calculation too optimistic and then cause performance degradation.
From [26, 27], the problem can be solve by scaling the extrinsic information.
While the SISO decoder get the extrinsic information through the Max-Log-MAP
algorithm, it will multiply Le.ui / by a scaling factor �. Afterward, the scaled L0

e.ui /

in (1.68) is send to the other SISO decoder as more reliable a priori value.

L0
e.ui / D � � Le.ui / (1.68)

The effect of � depends on the code structure and channel condition. With the aid of
simulation, we can determine if the scaling factor is beneficial. Figure 1.11 shows
the variations in performance after using the simplified MAP algorithms. For these
3GPP LTE-Advanced turbo codes, choosing � D 0:75 achieves better improvement
than the other cases with respect to Max-Log-MAP algorithms; but � D 0:5 would
be an unwise choice for its inferior performance as Eb=N0 exceeds 0:8 dB. The
results of IEEE 802.16m turbo codes indicates that both � D 0:875 and � D 0:75

successfully compensate the information loss in (1.67), while � D 0:625 and
� D 0:5 worsen the performance. In our applications, the Max-Log-MAP algorithm
with � D 0:75 would be an effective solution that provides a compromise between
complexity and performance.

1.3.2 Sliding Window Technique

The processing schedule also has a great influence on the overhead of a practical
SISO decoder. Here we consider a general case of a size-N data block and assume
that initial state S0 and the last state SN of the corresponding trellis path are known.
The inputs includes received data and a priori values, and they are usually sent
to the SISO decoder in ascending order. With the initial condition ˛.S0/, the
forward metric can be derived immediately after the reception of ri and La.ui /;
but all backward metrics, which are initialized with ˇ.SN/, cannot be computed
until the last input data (rN�1 and La.uN�1/) are ready. According to the decoding
algorithm, the calculation of L.ui / involves ˛.Si / and ˇ.SiC1/, so it needs to wait the
completion of the two types of metrics. The dependencies force the SISO decoder

26 1 Introduction

MAP
Log-MAP
Max-Log-MAP
Max-Log-MAP with ζ= 0.875
Max-Log-MAP with ζ= 0.750
Max-Log-MAP with ζ= 0.625
Max-Log-MAP with ζ= 0.500

MAP
Log-MAP
Max-Log-MAP
Max-Log-MAP with ζ= 0.875
Max-Log-MAP with ζ= 0.750
Max-Log-MAP with ζ= 0.625
Max-Log-MAP with ζ= 0.500

100

10−1

10−2

10−3

10−4

10−5

10−6

100

10−1

10−2

10−3

10−4

10−5

10−6

0 10.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 10.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Eb/N0 (dB)

Eb/N0 (dB)

B
it
 E

rr
or

 R
at

e
B

it
 E

rr
or

 R
at

e
a

b

Fig. 1.11 Performance of turbo codes with various decoding algorithms. (a) 3GPP LTE-Advanced
turbo code: N D 6144 and I D 8. (b) IEEE 802.16m turbo code: N D 2400 and I D 8

1.3 Techniques for Efficient Decoding Process 27

a b

Fig. 1.12 Basic processing schedule of the SISO decoder. (a) Data access and execution of ˛.Si /.
(b) Execution of ˇ.Si / and L.ui /

keeping the input data and forward metrics in memories before it starts computing
the backward metrics and LLRs. Figure 1.12 demonstrates the conventional order
of main executions. The execution of L.ui / follows the generations of ˇ.SiC1/; and
all LLRs are outputted in descending order. The period between the first input and
the first output is directly proportional to the block size, and so is the requirement of
extra memories. As N is large, the SISO decoder will have long processing latency
and use many storage elements; it would be impractical to implement such a design.

The sliding window technique introduced in [28, 29] can avoid considerable
overhead of the SISO decoder with large N. It exploits a dummy backward metric
calculation, symbolized as ˇd .Si/ for the states at i -th trellis stage, to establish the
initial conditions for the true backward metric. With this technique, the data block
is divided into dN=Le windows. Here we let Wk stand for the k-th window, and the
length of Wk obeys

�
L if k 2 f0; � � � ; ˙ N

L

� � 2gI
N � L � .

˙
N
L

� � 1/ if k D ˙
N
L

� � 1:
(1.69)

Except for the last window, the SISO decoder performs the dummy backward metric
calculation over each Wk with the initial value ˇd .S.kC1/L D S.m// D 0 for m D 0 �
7 when all necessary inputs are ready; and it can get ˇd .SkL/ after L recursion steps.
This result will be assigned to the true backward metric at the .kL/-th trellis stage:
ˇ.SkL/ D ˇd .SkL/; then there is an initialization for calculating ˇ.Si/ for i � kL.
Notice that the process of calculating the initial backward metric of the last window
is exactly like the conventional way, but the ˇ.SN/ in a circular trellis structure will
be derived from the dummy backward calculation of W0. The executions can be
scheduled as Fig. 1.13, where the data access and forward metric calculation remain
unchanged. The SISO decoder is allowed to calculate the ˇd .Si /’s of Wk whenever
it collects the data of Wk . At the same time, the executions of ˇ.Si/ and L.ui /

28 1 Introduction

Fig. 1.13 Decoding process with the sliding window technique

relating to Wk�2 can start with ˇ.S.k�1/L/ D ˇd .S.k�1/L/. Now the processing latency
and storage requirement depend on window length L rather than block size N. As
a consequence, the LLRs can be generated earlier than those in the conventional
process; besides, the memory usage for ri , La.ui /, and ˛.Si/ will decrease.

The overhead and performance must be considered together when the sliding
window technique is employed. Although this method with short L can favor the
cost reduction of one SISO decoder, the dummy backward metric calculation might
fail to provide robust initialization for true backward metrics; that is, too short
L might cause performance loss. The suitable L will vary with the turbo code
specifications such as N and R. Figure 1.14 presents the performance of turbo codes
with different combinations of N and L in each standard. For those 3GPP LTE-
Advanced turbo codes, choosing L D 8 degrades the performance significantly,
especially for N D 6144 and N D 512; whereas choosing L > 16 can make
the performance very close to the ideal results. For IEEE 802.16m application, the
schemes with L � 16 work as successfully as the conventional cases (L D N) for
both N D 2400 and N D 256; and the choices of L � 8 are preferable for N D 24.
As a result, the practical turbo decoders should support the maximum L of 32 and
of 16 for all N’s in 3GPP LTE-Advanced and IEEE 802.16m standards respectively
so that it can approximate the optimal BER at reasonable cost.

1.3.3 Early Stopping Criteria

The iteration number is another dominant factor in the overall decoding time. In
the previous discussion, the value of I is typically determined based on the worst
case. Actually, from Figs. 1.9 and 1.10, the decoder can correct some received

1.3 Techniques for Efficient Decoding Process 29

N = 6144, N = 512, N = 40,I = 8 I = 5 I = 4
L = 8
L = 16
L = 32
L = 64
L = 128

L = 8

L = 6144

L = 8
L = 16
L = 32
L = 64
L = 128
L = 512

L = 8
L = 16
L = 20
L = 40

=
L = 4

100

10−1

10−2

10−3

10−4

10−5

10−6

B
it

 E
rr

or
 R

at
e

100

10−1

10−2

10−3

10−4

10−5

10−6

B
it

 E
rr

or
 R

at
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Eb/N0 (dB)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Eb/N0 (dB)

N = 2400, N = 256, N = 24,I = 8 I = 5 I = 4

L = 16
L = 8

L = 32
L = 60
L = 2400

L = 4

L = 16
L = 8

L = 32

L = 4

L = 12
L = 8

L = 24
L = 64
L = 256

a

b

Fig. 1.14 Performance of turbo codes with various block sizes and window lengths. (a) 3GPP
LTE-Advanced turbo code: � D 0:75, and N D f40; 512; 6144g. (b) IEEE 802.16m turbo code:
� D 0:75, and N D f24; 256; 2400g

data blocks before the maximum iteration. It is unnecessary to spend the same I
iterations in decoding every received data block [22]. During the turbo decoding of
most erroneous data blocks, the corresponding soft values will converge after certain
iterations; so the performance gain in the subsequent process is very insignificant. If
the data suffer from slighter noise, there is a high possibility that the iteration bound
about the convergence is smaller than preset I. The process from the lower bound
to I is viewed as a waste of computation and time. To avoid too much redundant
process, we will terminate the decoding flow dynamically by early stopping criteria.
Most criteria are the statistics for difference between the temporary results at
different half-iterations. Among all criteria, the hard-decision-aided (HDA) criterion

30 1 Introduction

in [30] and the sign-difference-ratio (SDR) criterion in [31] are two of the simplest
schemes. The HDA criterion is the consistency check between the hard decisions
of two consecutive half-iterations; and the SDR criterion is the examination of the
sign changes of the extrinsic information between two consecutive half-iterations.
Generally, the HDA criterion can result in more reduction of iteration, while the
SDR criterion can achieve better BER performance. In either criterion, there will
be a threshold indicating the maximum allowable difference. If the number of sign
changes is less than the threshold, the decoding process for the current data block
will finish; otherwise, it will run for at most I iterations. A common choice of the
threshold is around 0:01N � 0:001N for the SDR criterion and is 0 for the HDA
criterion. Loose constraints can lead to more savings in iteration, but undesirable
performance degradation may occur.

Figure 1.15 presents the frame error rate (FER) performance and average itera-
tions of turbo codes using different stopping criteria. Here we denote the threshold
by �. These results about iterations are obtained based on at least 10000 data blocks,
except for the trivial case with fixed iterations. For 3GPP LTE-Advanced turbo
codes, the criteria with � D 0 make the decoder take fewer iterations to achieve
nearly the same performance; and the saving by the HDA criterion is superior to
that by the SDR criterion. The other �’s are improper threshold values for this
application. Although � D 8 is a relatively small for the SDR criterion, it still
causes poor judgment about when to terminate the decoding process, particularly for
Eb=N0 � 0:7 dB. The outcomes of IEEE 802.16m turbo codes are analogous with
those of the preceding example. This turbo decoder can also get advantage from
the criteria with � D 0. Nevertheless, now it is safe to use the SDR criterion with a
small but nonzero threshold .� D 6/ for Eb=N0 between 0 and 1 dB. This distinction
between these two examples shows that the effectiveness of the stopping rules varies
greatly according to applications. We should choose the appropriate criterion in an
adaptive way to shorten the decoding time and avoid performance loss.

1.3 Techniques for Efficient Decoding Process 31

Fixed Iterations (I =8)
SDR with ξ = 0
SDR with ξ = 6
SDR with ξ = 48
HDA with ξ = 0

HDA with ξ = 48
HDA with ξ = 6

100

10−1

10−2

10−3

10−4

100

10−1

10−2

10−3

10−4

8

6

4

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Eb/N0 (dB)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Eb/N0 (dB)

F
ra

m
e

E
rr

or
 R

at
e

F
ra

m
e

E
rr

or
 R

at
e

It
er

at
io

n
It

er
at

io
n

8

6

4

2

Fixed Iterations (I =8)
SDR with ξ = 0
SDR with ξ = 8
SDR with ξ = 64
HDA with ξ = 0

HDA with ξ = 64
HDA with ξ = 8

a

b

Fig. 1.15 Performance and iterations of turbo codes with various stopping criteria. (a) 3GPP LTE-
Advanced turbo code: N D 6144, L D 32, and � D 0:75. (b) IEEE 802.16m turbo code: N D
2400, L D 16, and � D 0:75

Chapter 2
Conventional Architecture of Turbo Decoder

When digital circuits and storage elements are exploited to perform the theoretical
algorithm, we should pay attention to how the cycle-based process and resource
limitation affect the turbo decoding. During the implementation, the hardware cost
is of top priority. Our targets are usually fast processing speed and great decoding
performance at the least expense of hardware. Of course those techniques toward
lower complexity in the previous chapter will be applied. The practical design
contains several functional units for the major computations in the simplified
algorithm; besides, it needs a few control units to handle the data flow for the
sliding window method and the message propagation between two constituent
codes. These internal devices will run a variety of arithmetic operations. Among
all the operations, the multiplication and division should be avoided because their
corresponding circuits take much longer execution time and much larger hardware
resource. In this chapter, we introduce the major component circuits of a practical
turbo decoder at first. Then we shift the focus to the conventional architecture of
the SISO decoder as well as its processing schedule. Based on such a prototype,
the design issues about replacing the floating-point data with fixed-point data are
highlighted. It is possible that the loss of precision gives rise to performance
degradation. On the other hand, the bit number for data expression, also called
data width, dominates the hardware cost. Thus, the choice of adequate data width
is dependent on both the required performance and acceptable overhead. The
subsequent discussions address the potential overflow problem and show the effects
of several solutions. At the end of the chapter, two modified SISO decoders that
have advantages such as shorter latency or less hardware over the conventional one
are presented.

C.-C. Wong and H.-C. Chang, Turbo Decoder Architecture for Beyond-4G
Applications, DOI 10.1007/978-1-4614-8310-6__2,
© Springer Science+Business Media New York 2014

33

34 2 Conventional Architecture of Turbo Decoder

2.1 Practical Turbo Decoder Architecture

The practical turbo decoder mainly consists of a few size-N memory modules and
one SISO decoder. Although the conceptual structure in Fig. 1.8 uses two SISO
decoders, either of them remains idle as the other one is in operation. The decoding
process of each constituent code requires the a priori information from the other
constituent code, and the randomness of the interleaver makes it hard to start
the half-iteration for this constituent code until all necessary inputs are available.
Moreover, the two constituent codes are identical in code structure; so they can share
the same SISO decoder. The practical architecture is usually depicted as Fig. 2.1,
where these memories will store the received data and temporary decoding results,
and a global controller can handle the alternation between the constituent codes.
The SISO decoder can process the codes derived from the original data sequence by
setting the selection signals of these multiplexers to 0; whereas it can process the
codes derived from the permuted data sequence by changing all selection signals
to 1. Because of the regular alternation, the process throughout an half-iteration is
called a decoding round, too. The interleavers and de-interleavers are implemented
in the form of address generators that indicate which data in the memory should
be outputted. Note that the special address generators are activated only during
the decoding rounds for the permuted data sequence. The SISO decoder can get
La2.Qui / by reading the Q.i/-th (or A.i/-th) word from the extrinsic information
memory, and afterwards it will write the corresponding output Le2.Qui / back to the

r[U]

memory
r[P1]

memory
r[P2]

memory
Le1/La1

memory

r[U] r̃[U] La1(·)

Le1(·)

La2(·)

Le1(·) La1(·)

Le2(·)

Π Π

Π

0 1 0 1 0 1 0 1

output
memory

0 1
u∗

i u∗
i

ũ∗
i

Π

SISO decoder

input buffer

branch metric calculation

LLR calculation / extrinsic information calculation

forward metric
calculation

backward metric
calculation

Fig. 2.1 Practical architecture of a turbo decoder

2.1 Practical Turbo Decoder Architecture 35

same location as the Q.i/-th (or A.i/-th) a priori value estimation for the next
round. With such hardware arrangement, single memory module is sufficient for the
temporary results of both constituent codes. The output memory is another storage
device for the decoding results. It buffers the final decisions and adjusts their order
so that the format of output sequence can meet the system requirement. Basically
these memories and their controllers greatly influence the area and power of the
design.

Compared to the memory modules, the SISO decoder plays a relatively major
role in the processing speed. In fact, the speed bottleneck is caused by the arithmetic
calculations inside the SISO decoder. When the MAP algorithm is implemented
with flip-flops and logic gates, we spend one or more cycles on each kind of
calculation. There are an enormous amount of logic paths in this circuit, and the one
with the longest delay determines the operating frequency. Unless the clock period
is larger than the critical path delay, there is a risk that some flip-flops may fetch
unstable and incorrect values from logic gates. This means that shortening this path
is one major implementation issue for faster decoding process. In addition to the
clock cycle time, the total cycle number is also of great importance. The fact that
the SISO decoder must collect ˛.Si / and ˇ.SiC1/ to calculate L.ui / makes every
decoding round take some execution time to prepare these metrics before getting
any LLR. Here we represent the cycle number per decoding round as �R and assume
that the period for outputting the results of all N symbols equals � N cycles; then the
operating efficiency of the SISO decoder can be defined as

� D �N

�R

: (2.1)

For conventional designs, the general value of �N is N. The relevant design issue is
achieving higher � by the minimization of � R. It takes .2� I ��R/ cycles to derive
the decisions of N symbols. When the turbo decoder operates with the frequency of
F Hz, and one symbol contains 	 information bits (D 1 for 3GPP LTE-Advanced
standard and 	 D 2 for IEEE 802.16m standard), the corresponding throughput in
bits per second will be

‚ D 	 � � N

2 � I � �R � .1=F/
D 	 � � �F

2 � I : (2.2)

The pursuit of high throughput relies on the improvement of � or F . It might lead
to a more complicated data flow. The design challenge is to attain the objective with
the least complexity.

2.1.1 Circuits of Address Generators

The most complex component within the controller for memory access is the address
generator. It has to compute the interleaving indexes Q.i/ or A.i/ from i when we
processing the constituent codes from permuted information blocks. From (1.1) and

36 2 Conventional Architecture of Turbo Decoder

(1.3), the direct use of either equation involves multiplication and modulo operation.
The address generator should support all block sizes and all parameter sets in each
application; that is, the operands for these complicated calculations are variables
rather than constants. Their implementation not only costs numerous logic gates
but requires many cycles to get the answer. Since the time for accessing memory
is extended, the decoding process becomes inefficient, and the throughput decreases.
To sidestep this problem, we must find other simpler approaches to calculating Q.i/

and A.i/.
In [32], an indirect way of generating these interleaving indexes is illustrated.

It is free from the use of complicated calculations. The key to the simplification of
QPP interleaving function is given in (2.3), where the .iCı/-th interleaving index is
derived by the summation ofQ.i/ and an auxiliary function Q0.i I ı/ defined in (2.4).

Q.i C ı/ D f1 � .i C ı/C f2 � .i C ı/2 .mod N/

D f1 � i C f2 � i 2 C f1 � ı C f2 � ı2 C 2f2 � i � ı .mod N/

D Q.i/CQ0.i I ı/ .mod N/ (2.3)

Q0.i I ı/ D f1 � ı C f2 � ı2 C 2f2 � i � ı .mod N/ (2.4)

Now we examine the correlation between Q0.i C ıI ı/ and Q0.i I ı/ by (2.5) and
discover that their difference is independent of i .

Q0.i C ıI ı/ D f1 � ı C f2 � ı2 C 2f2 � .i C ı/ � ı .mod N/

D f1 � ı C f2 � ı2 C 2f2 � i � ı C 2f2 � ı2 .mod N/

D Q0.i I ı/C 2f2 � ı2 .mod N/ (2.5)

Assuming that Q.i/ and Q0.i I ı/ are already known, we can derive Q.i C ı/ and
Q0.i C ıI ı/ easily in short time. Then we can substitute .i C ı/ for i in these two
equations to find Q.i C 2ı/. The subsequent interleaving indexes can be calculated
by renewing the value of i and repeating such procedure. Both Q.0/ and Q0.0I ı/ are
necessary for starting the recursive calculation. The offset 2f2ı

2 modulo N has to be
determined in advance as well. For a fixed ı, these pre-defined terms are constants.
After remodeling the interleaving functions, the address generator can accomplish
its task with much simpler arithmetic operations.

This concept of recursive calculation is also applicable to the ARP inter-
leaver [32]. At first, we define another auxiliary function A0.i/ as (2.6) and rewrite
(1.3) as (2.7).

A0.i/ D " � i .mod N/ (2.6)

A.i/ D A0.i/C gi mod 4 .mod N/ (2.7)

The next step is to modify the expressions of A0.i C ı/ and A.i C ı/.

2.1 Practical Turbo Decoder Architecture 37

A0.i C ı/ D " � .i C ı/ .mod N/

D A0.i/C " � ı .mod N/ (2.8)

A.i C ı/ D A0.i C ı/C g.iCı/ mod 4 .mod N/ (2.9)

These equations allow us to update A.i/ and A0.i C ı/ from a given A0.i/ at the
same time; then the A0.i C ı/ can be further used for A.i C ı/ and A0.i C 2ı/. For
this recursion, the base case is A0.0/ D 0. The other essential parameters include
g0, g1, g2, g3, and "ı modulo N. In spite of the varying offset values for updating
A.i/, the selection of the right one merely depends on the least significant 2 bits of
i . It is still easy to perform these modified equations.

With the alternative address generation, the hardware consists primarily of adders
and subtractors. The addition of each equation has two operands whose values are
both less than N, so the upper bound of their summation is 2N. For those summations
greater than N, the modulo operation is carried out easily by subtracting N from
them. We can complete all calculations of every recursion step within one cycle.
Consequently, the address generator is able to output the interleaving indexes on
the fly.

2.1.2 Circuits of Main Functional Units

When the Max-Log-MAP algorithm is applied, the major computations of the SISO
decoder include �.Si; SiC1/ in (1.35) or (1.55), ˛.Si / in (1.64), ˇ.Si/ in (1.65),
and LLR in (1.66) with the approximation in (1.67). Because the value of x

.j /

i

is ˙1, the circuits for branch metric calculations are common adders. There are
4	 combinations of fx.0/

i ; � � � ; x
.2	�1/

i g for a given i and either state transition in
Fig. 1.4; we need to calculate at most 4	 branch metrics for all branches between
two successive trellis stages. The other three calculations, which all involve the
max.�/ functions, will perform the additions followed by comparison and selection.
Such a series of executions is the typical add-compare-select (ACS) operation [33].
Figure 2.2a demonstrates the basic hardware for forward metric calculation of a
single state. It contains 2	 2-input adders, one 2	-input comparator, and one 2	-to-1
multiplexer. Note that the computation of ˛.Si/ can be regarded as the accumulation
of branch metrics; the circuits for normalization are connected to the multiplexer
for fear that the arithmetic overflow occurs. Finally, the flip-flop will capture the
normalized results at the active clock edge, and its original content ˛.Si�1/ will be
overwritten by ˛.Si/. In either application, the SISO decoder requires eight such
functional units for all states. By appropriate substitution of inputs and outputs, the
same circuits can be exploited for the backward metric calculation. In Fig. 2.2b,
the hardware for calculating the log-likelihood value of one information symbol is
presented. Its components are eight 3-input adders, one 8-input comparator, and one
8-to-1 multiplexer. We need two such functional units to calculate the log-likelihood

38 2 Conventional Architecture of Turbo Decoder

comparator

norm
alization

α(Si−1)

α(Si−1)

α(Si)γ(Si−1, Si)

γ(Si−1, Si)

comparator
α(Si)

α(Si)

γ(Si, Si+1)

γ(Si , Si+1)

β(Si+1)

β(Si+1)

log-likelihood
value

a b

Fig. 2.2 Functional units for calculating forward metric and log-likelihood value. (a) Circuits for
forward metric. (b) Circuits for log-likelihood value

values about ui D 0 and ui D 1 individually for 3GPP LTE-Advanced turbo codes,
then we send their results to a subtractor to get L.ui /. For the turbo decoder that
supports IEEE 802.16m standard, there are four such functional units for all possible
cases of fu.0/

i ; u.1/

i g. Since LŒ0�.ui / is always zero, it uses three extra subtractors to find
LŒ1�.ui /, LŒ2�.ui /, and LŒ3�.ui /. After computing the LLR, the design takes one more
step to produce extrinsic information and make decisions with a smaller number of
adders and subtractors. In conclusion, the practical SISO decoder with the simplified
algorithm is composed of basic arithmetic and logic circuits.

The ACS operation is the most time-consuming computation of the decoder.
For this reason, the critical path of the whole design is generally located in either
function unit in Fig. 2.2. The traditional method of shortening the path delay is
the pipelining technique. However, it is effective only for the circuits for log-
likelihood value. While we insert additional registers inside the circuits for forward
or backward metrics, the other functional units will be stalled for some cycles on
account of the data dependency of recursive metric calculation. This drawback
may lead to inferior throughput. Therefore, most research works develop different
methods to improve this data path. For example, the position of normalization circuit
is changed in [34], and the double state technique is applied to the design in [35].
The fundamental idea is the modification to the circuit structure. In most cases, the
improvement of path delay is accompanied by increases in hardware overhead. If
there is a great demand for high operating frequency, we need to put more effort
into the minimization of circuit area.

Apart from the hardware for arithmetic calculations, the SISO decoder also
utilizes two types of buffers to facilitate its work flow. According to Figs. 1.12
and 1.13, different functional units will need ri and La.ui / at different time. Hence,
the data received from the memories should be stored until the related calculations
are completed. Furthermore, these figures imply that ˛.Si/ is generated earlier than
ˇ.SiC1/, so those forward metrics must be retained temporarily for computing the
LLR of i -th information symbol. The buffer size relies on the period between when
the data are available and when they can be released. We have to make it as short
as possible for the less cost of these buffers. As a matter of fact, the operating

2.2 Design of Conventional SISO Decoders 39

efficiency can be enhanced by the reduction of this duration, too. The arrangement
of the processing schedule with sliding window technique will be the most essential
design issue here.

2.2 Design of Conventional SISO Decoders

2.2.1 Decoder Architecture and Processing Schedule

The SISO decoder architecture correlates strongly with its processing schedule.
Figure 2.3 presents the conventional SISO decoder [36]. For simplicity, all the
functional units for forward metrics are called ˛-ACS unit; similarly, ˇd -ACS unit
and ˇ-ACS unit are the circuits for all dummy backward metrics and all backward
metrics respectively; the circuits for LLRs, extrinsic probabilities, and decisions are
also grouped together and named as LLR unit. This architecture uses three separate
input buffers, each of which can store the data of one window. From the decoding
flow in Fig. 2.3b, the data are inputted to the SISO decoder in ascending order. After
any of the input buffers is filled with all L sets of La.ui / and ri within the k-th
window Wk , it will send them to the ˇd -ACS, ˛-ACS, and ˇ-ACS as the processing
schedule in order to get the metrics that correspond to Wk. This buffer must hold
the i -th data until the calculation of ˇ.Si/ finish, so the succeeding data of WkC1

and WkC2 will be forwarded to the other two input buffers, and its contents will
be overwritten with the data of WkC3. Because of the circular trellis structure of
the IEEE 802.16m turbo codes, we need to do additional executions for metric
initialization, including the forward metric of the last window and the dummy
backward metric of the first window. For the SISO decoder that supports 3GPP
LTE-Advanced standard, these executions will be skipped; instead, the decoder
calculates the backward metric of the tail parts, from the .N C 3/-th trellis stage
to the N-th trellis stage, as soon as it gets the tail bits; then we have the ˇ.SN/’s to
initialize the backward metric of the last windows in both constituent codes. Except
for the distinction between their initial calculations, the SISO decoders for these two
standards are alike in architecture and schedule.

Each decoding round can be divided as follows: both
a and
b are pipeline delay
time and memory access time;
x is the interval for initial metric calculation between
receiving the first input and producing the first output; and
y is the time to output
all LLR and decisions. Note that �R is the summation of the four periods, and �N

is equal to
y . Thus, the operating efficiency in (2.1) can be expressed as .
y/=.
aC

b C
x C
y/. Based on Fig. 2.3b, the values of these execution periods are (2.10),
where �L is the cycle number that are required to run every kind of computations
for an entire window.

40 2 Conventional Architecture of Turbo Decoder

a

b

c

Fig. 2.3 Architecture and schedule of the conventional SISO decoder for the block with four
windows. (a) SISO decoder architecture. (b) Processing schedule with � D 44:4 %. (c)
Corresponding active periods of main components

2.2 Design of Conventional SISO Decoders 41

8
<

:

0 �
a;
b � �L

4�L �
x � 5�L

y D 4�L

(2.10)

Typically,
a,
b, and
x are constant numbers, but
y will be in proportion to the
block size. Here we assume that .
aC
bC
x/ is 5�L and that N can be divisible by L.
While the SISO decoder has to process N=L windows,
y becomes .N=L/ � �L

cycles. Now the operating efficiency can be roughly estimated by

� D N
NC 5L

: (2.11)

If the tail-biting technique is not applied, the value of
x is between 3�L and 4�L;
and .
a C
b C
x/ equals 4�L; so � changes to N=.N C 4L/. In either case, the
decoding process will be inefficient when N=L is small. Minimizing
a,
b, and

x of the SISO decoder is a trivial solution; however, the improvement is very
slight owing to their bounds in (2.10). The negative effect raises concern about the
inconsistent throughput of a practical turbo decoder that supports multiple block
sizes. We are obliged to ensure the fulfillment of the throughput requirement even
for the shortest N.

Another disadvantage of decoding small blocks is the poor utilization of the
component circuits. As shown in Fig. 2.3c with N D 4L, the main units remain
idle for around half time of every decoding round. Nevertheless, they still consume
certain energy during these inactive periods, and such waste is harmful to the
average power. The enhancement of operating efficiency is undoubtedly the best
solution to this problem. For minimizing unnecessary energy dissipation, some low-
power techniques such as gated clock are often exploited, especially when the SISO
decoder is more likely to deal with small blocks.

2.2.2 Data Width and Normalization

The issue of data width involves the quantization bits and expression format of
the received symbols, a priori probabilities, metrics, and LLRs. Both of them are
determined by the distribution of the channel noise, the correlation among these
data, and the design objective. In the following discussions, we define the total bit
number of each sort of data as %.�/; then we use the notations %I.�/ and %F.�/ for
integer and fractional bits respectively. The two’s-complement numeral system is
used, and it can represent the value in the range of�2.%I.�/�1/ to .2.%I.�/�1/�2.�%F.�///.
Since the BPSK modulated coded data pass through the AWGN channel, almost
every received symbol needs only single-digit number for its integer part; in other
words, %I.ri/ can be tiny. If the quantity of ri is beyond the range that %.ri / can
represent, the quantized ri will be clamped into the largest or the smallest value.
Despite the rounding error, the performance degradation can be negligible with

42 2 Conventional Architecture of Turbo Decoder

sufficient data width [37]. For the other data, their integer bits will obey the rule in
(2.12). The maximum value of quantized La.ui / must be larger than the quantized
ri so that the erroneous data can be corrected by the strong APP estimations. The
relations between L.ui /, ˛.Si/, ˇ.Si/, and �.Si; SiC1/ come from their respective
equations.

%I.L.ui //�%I.˛.Si //D%I.ˇ.Si//�%I.�.Si ; SiC1//�%I.La.ui //�%I.ri/ (2.12)

While selecting the number of fractional bits, we first consider how closely the
quantized input can approximate to the raw ri . Larger %F.ri/ means higher accuracy
of the input data. Once we decide the %F.ri/, the other data will need the same or
fewer bits for their fractional parts.

˚
%F.L.ui //; %F.˛.Si //; %I.ˇ.Si//; %F.�.Si ; SiC1//; %F.La.ui //

��%F.ri / (2.13)

The fixed-point implementation can function properly only by continuously
adjusting path metrics and extrinsic information. Figure 2.2a has stated that the
adjustment for path metrics is normalization. Both the normalized ˛.Si/ and ˇ.Si/

must be expressed correctly by %.˛.Si // (D %.ˇ.Si//) bits. The relevant techniques
are based on the essential property in [38]: for the metrics of any two states at the
i -th trellis stage, the absolute value of their difference is bounded; and the bounds
for all i ’s are identical. For either code that we are interested in, the necessary bit
number for the bound is a little larger than %.ri /. The classic normalization is to
subtract a constant number from all path metrics at the same trellis stage; then ˛.Si/

and ˇ.Si/ can be represented by a fixed amount of bits throughout the decoding
process. The modification of extrinsic information is analogous to the saturation
of quantized inputs. According to the arithmetic calculation of Le.ui /, %.Le.ui //

should be equal to or larger than %.L.ui //, but converting it directly into the APP for
the other constituent code may violate (2.12). To resolve this contradiction, Le.ui /

will be clamped to the extrema of .%I.La.ui //; %F.La.ui /// when it is outside the
representable range.

The most appropriate data widths of a practical turbo decoder are decided
by checking whether its performance and complexity can reach the objective;
and the straightforward method is running simulations. With the help of the
above-mentioned rules and tactics, we can conduct a systematic search of some
combinations of fixed-point representations. The performance is mostly affected
by the quantization format .%I.�/; %F.�//, whereas the hardware cost is dominated
by the total width %.�/. Hence, we examine the performance of all 16 cases with
respect to f.%I.ri /; %F.ri// j 2 � %I.ri/; %F.ri / � 5g and compare the circuit
area of designs with f%.ri/ j 4 � %.ri / � 10g. The required internal precision
varies with the code structure. For 3GPP LTE-Advanced turbo codes, the quantized
data will satisfy %I.La.ui // D %I.ri / C 1, %I.�.Si; SiC1// D %I.La.ui // C 1,
%I.˛.Si // D %I.ˇ.Si// D %I.�.Si ; SiC1// C 1, and %I.L.ui // D %I.˛.Si // C 1.
Note that the path metrics are normalized by (2.14), where the offset value is the
minimum path metric at the i -th trellis stage. The modified metrics are always

2.2 Design of Conventional SISO Decoders 43

100

10−1

10−2

10−3

10−4

10−5

10−6

100

10−1

10−2

10−3

10−4

10−5

10−6

0 0.2 0.4 0.6 0.8 1
Eb/N0 (dB)

0 0.2 0.4 0.6 0.8 1
Eb/N0 (dB)

0 0.2 0.4 0.6 0.8 1
Eb/N0 (dB)

0 0.2 0.4 0.6 0.8 1
Eb/N0 (dB)

B
it

E
rr

or
 R

at
e

B
it

E
rr

or
 R

at
e

100

10−1

10−2

10−3

10−4

10−5

10−6

100

10−1

10−2

10−3

10−4

10−5

10−6

B
it

E
rr

or
 R

at
e

B
it

E
rr

or
 R

at
e

ri La(ui)
(2, 2)
(2, 3)
(2, 4)
(2, 5)

(3, 2)
(3, 3)
(3, 4)
(3, 5)

ri La(ui)
(4, 2)
(4, 3)
(4, 4)
(4, 5)

(5, 3)
(5, 2)

(5, 4)
(5, 5)

ri L
a(ui)

(3, 2)
(3, 3)
(3, 4)
(3, 5)

(4, 3)
(4, 2)

(4, 4)
(4, 5)

ri La(ui)
(5, 2)
(5, 3)
(5, 4)
(5, 5)

(6, 3)
(6, 2)

(6, 4)
(6, 5)

Fig. 2.4 Fixed-point simulation results of 3GPP LTE-Advanced turbo codes with Max-Log-MAP
algorithm, I D 8, N D 6144, L D 32, � D 0:75, and different data width formats: .%I.ri /; %F.ri //

and .%I.La.ui //; %F.La.ui ///

Table 2.1 Area of 3GPP LTE-Advanced turbo decoders with various data widths

%.ri /

4 5 6 7 8 9 10

ı Turbo decoder 467:3 530:6 593:6 656:6 720:9 786:1 851:0

˘ SISO decoder 108:1 127:2 145:8 164:6 184:8 205:8 226:1

7! Input buffer 37:3 39:3 46:6 53:4 60:6 67:7 74:7

7! Branch metric unit 3:2 3:7 4:3 4:8 5:4 5:9 6:5

7! ˛; ˇd ; ˇ-ACS 17:7 20:7 23:6 26:6 31:0 36:4 41:0

7! ˛ buffer 38:9 45:4 51:8 58:4 64:8 71:2 77:7

7! LLR unit 8:4 9:7 10:9 12:1 13:3 14:6 15:8

˘ Memory 324:6 368:4 412:3 456:0 499:6 543:3 587:5

¾ Synthesis results with 10 ns clock period (area unit: 103 � �m2)

positive or zeros, so it is needless to store their sign bits in the storage elements.
The capacity of the forward metric buffer will be 8 � L � .%.˛.Si // � 1/ bits.

8
<

:

˛.Si/ � min
0�m�7

.˛.Si D S.m///; 8Si 2 fS.0/; � � � ; S.7/g
ˇ.Si/ � min

0�m�7
.ˇ.Si D S.m///; 8Si 2 fS.0/; � � � ; S.7/g (2.14)

Figure 2.4 provides the performance curves of these practical decoders. At the
BER of 10�6, the results of those cases with %I.ri / � 3 and %F.ri/ � 3 are quite
close to the floating-point simulation results with L D 32 in Fig. 1.14a. Table 2.1

44 2 Conventional Architecture of Turbo Decoder

lists the areas of the main component circuits after the syntheses under loose timing
constraints. The area growth is proportional to the increment in data width, but
the percentage of each part remains stable. For IEEE 802.16m turbo code, the
requisite %I.La.ui // is %I.ri/ C 2, and the other rules are the same as those in the
preceding example. Figure 2.5 and Table 2.2 give the corresponding simulation
results. Similarly, the performance degradation can be minimized by selecting
%I.ri/ � 3 and %F.ri/ � 3. The double binary code structure causes substantial
rises in circuit area of most components; while the shorter window length makes the
hardware cost for buffering ˛.Si/ decrease. Considering performance and overhead,
.%I.ri/; %F.ri// D .3; 3/ will be our first choice in later implementation examples for
both applications.

The next issue of interest is the optimization of decoding speed. We run the
syntheses with accuracy of 0:1 ns and look for the shortest clock period that can
prevent negative slacks. These results indicate that the shortest periods of our
SISO decoders using .%I.ri/; %F.ri// D .3; 3/ are 3:4 ns for 3GPP LTE-Advanced
application and 3:9 ns for IEEE 802.16m application. From the timing reports, the
critical path locates in the functional unit for path metrics, and most execution time
is spent on metric normalization. We need faster normalization methods to improve
decoding speed. The functional unit in Fig. 2.2a will be modified, and the circuit
area will be affected as well. A common normalization method is given in (2.15),
where the offset value is always the path metric at state S.0/. The decoder can skip
the comparison among all path metrics and perform subtractions immediately after
the ACS operation; it has shorter path delays and costs fewer normalization circuits.
The normalized ˛.Si D S.0// is fixed to zero. There is no need to keep its value, so
the forward metric buffer will store 7 � L � %.˛.Si // bits. In general, the design
with (2.15) is smaller than the design with (2.14), provided they are implemented
with equal clock periods.

�
˛.Si/� ˛.Si D S.0//; 8Si 2 fS.0/; � � � ; S.7/g
ˇ.Si/� ˇ.Si D S.0//; 8Si 2 fS.0/; � � � ; S.7/g (2.15)

The modulo normalization is another way to avoid arithmetic overflow of the
path metrics [38–41]. Unlike (2.14) and (2.15), the design with this technique only
runs the ACS operations for path metric calculation. The data width will be extended
to ensure the correctness of computation, but the increase in area is small. Due to the
elimination of extra subtractors, the hardware cost of this functional unit is reduced,
and it results in shorter path delay than the unit using (2.14). However, the overhead
is transferred to the succeeding circuits. The capacity of the forward metric buffer
grows to 8�L�%.˛.Si // bits, and the LLR unit becomes more complicated to deal
with those unrefined path metrics. It is probable that the overall cost will be larger
than the design with (2.14).

Tables 2.3 and 2.4 list the synthesis results of the SISO decoders with various
ways to normalize path metrics. Under the same loose timing constraint (10 ns),
the designs with (2.14) has the largest ACS units for the path metrics, whereas
the designs with modulo normalization has the largest buffers for ˛.Si/ and LLR
units. These tables also indicate the shortest clock period of each SISO decoder

2.2 Design of Conventional SISO Decoders 45

100

10−1

10−2

10−3

10−4

10−5

10−6

100

10−1

10−2

10−3

10−4

10−5

10−6

0 0.2 0.4 0.6 0.8 1
Eb/N0 (dB)

0 0.2 0.4 0.6 0.8 1
Eb/N0 (dB)

0 0.2 0.4 0.6 0.8 1
Eb/N0 (dB)

0 0.2 0.4 0.6 0.8 1
Eb/N0 (dB)

B
it

E
rr

or
 R

at
e

B
it

E
rr

or
 R

at
e

100

10−1

10−2

10−3

10−4

10−5

10−6

100

10−1

10−2

10−3

10−4

10−5

10−6

B
it

E
rr

or
 R

at
e

B
it

E
rr

or
 R

at
e

r
i L

a
(u

i
)

(2, 2)
(2, 3)
(2, 4)
(2, 5)

(4, 2)
(4, 3)
(4, 4)
(4, 5)

r
i L

a
(u

i
)

(4, 2)
(4, 3)
(4, 4)
(4, 5)

(6, 3)
(6, 2)

(6, 4)
(6, 5)

r
i L

a
(u

i
)

(3, 2)
(3, 3)
(3, 4)
(3, 5)

(5, 3)
(5, 2)

(5, 4)
(5, 5)

r
i L

a
(u

i
)

(5, 2)
(5, 3)
(5, 4)
(5, 5)

(7, 3)
(7, 2)

(7, 4)
(7, 5)

Fig. 2.5 Fixed-point simulation results of IEEE 802.16m turbo codes with Max-Log-MAP
algorithm, I D 8, N D 2400, L D 16, � D 0:75, and different data width formats: .%I.ri /; %F.ri //

and .%I.La.ui //; %F.La.ui ///

Table 2.2 Area of IEEE 802.16m turbo decoders with various data widths

%.ri /

4 5 6 7 8 9 10

ı Turbo decoder 495:6 570:5 645:4 724:1 812:8 891:0 967:7

˘ SISO decoder 142:2 164:3 186:7 212:7 248:9 274:3 298:6

7! Input buffer 41:2 49:4 57:7 66:1 74:4 82:6 90:9

7! Branch metric unit 16:2 19:1 22:1 25:1 28:0 31:0 34:0

7! ˛; ˇd ; ˇ-ACS 33:9 38:6 43:5 51:9 70:7 78:5 85:3

7! ˛ buffer 22:8 26:0 29:3 32:5 35:7 38:9 42:1

7! LLR unit 20:6 23:3 25:9 28:6 31:3 34:0 36:7

˘ Memory 320:2 372:3 424:0 476:0 527:6 579:6 631:3

¾ Synthesis results with 10 ns clock period (area unit: 103 � �m2).

and their respective overhead. The designs using either modulo normalization or
(2.15) can operate 1:4 times faster than the design using (2.14). To meet the tightest
constraints, the component circuits of each design require larger logic gates with
greater driving capability, and there is a particularly rapid escalation in the area of
all ACS units. Although the latter two methods can achieve similar speedup, the
distinct code properties of these standards make their costs quite different.

46 2 Conventional Architecture of Turbo Decoder

Table 2.3 Area of conventional SISO decoders with various normalization meth-
ods for 3GPP LTE-Advanced standard (unit: 103 � �m2)

Normalization (2.14) (2.15) Modulo

%.˛.Si //;%.L.ui // 09;10 09;10 10;11

Clock period (ns) 10:0 3:4 10:0 2:3 10:0 2:4

˘ SISO decoder 145:8 168:1 142:8 166:2 161:7 178:7

7! Input buffer 46:3 46:4 46:3 46:9 46:3 46:6

7! Branch metric unit 4:3 5:9 4:3 7:8 4:3 6:5

7! ˛; ˇd ; ˇ-ACS 23:6 42:9 20:9 34:6 20:7 31:0

7! ˛ buffer 51:8 51:8 51:1 51:2 64:8 64:8

7! LLR unit 10:9 11:9 11:3 16:2 16:8 20:6

Table 2.4 Area of conventional SISO decoders with various normalization
methods for IEEE 802.16m standard (unit: 103 � �m2)

Normalization (2.14) (2.15) Modulo

%.˛.Si //;%.L.ui // 10;11 10;11 11;12

Clock period (ns) 10:0 3:9 10:0 2:5 10:0 2:6

˘ SISO decoder 186:7 233:1 183:8 274:4 201:0 229:2

7! Input buffer 57:7 57:8 57:7 59:0 57:7 58:6

7! Branch metric unit 22:1 26:7 22:1 41:9 22:1 29:4

7! ˛; ˇd ; ˇ-ACS 43:5 81:9 40:4 101:2 41:6 54:6

7! ˛ buffer 29:3 29:2 28:5 28:4 35:7 35:7

7! LLR unit 25:9 28:8 26:8 34:9 35:6 42:3

2.3 Design of Modified SISO Decoders

The main drawback of the conventional SISO decoder in Fig. 2.3 is the low
operating efficiency when small blocks are processed. From Fig. 2.3b and (2.10),
it is clear that
x is the primary factor of such inefficiency. Shortening
x will
be the direct way to alleviate this problem, and it involves several changes in
processing schedule as well as in decoder architecture. There are two major
types of modifications: reversing data order [42] and utilizing previous metrics
[43, 44]. Besides the improvement in �, some functional units that are required in
conventional SISO decoder can be eliminated. However, the two techniques may
introduce extra overhead, and the modified decoder may requires more area than
the conventional one in certain cases. To find out the techniques well suited to
the designs for 3GPP LTE-Advanced standard and IEEE 802.16m standard, the
corresponding gains in � and variations in area will be discussed in this section.

Figure 2.6 shows how the work in [42] arranges the input data of the SISO
decoder. For each window, the received symbols are sent in descending order rather
than in ascending order. Since the order matches the backward recursive operations,
the ˇd -ACS can get its required data immediately. It is needless to wait till the input
buffers get all data of every window. This modified schedule can save �L cycles.
Furthermore, the design just needs to store the data of two succeeding windows

2.3 Design of Modified SISO Decoders 47

a

b

c

Fig. 2.6 Architecture and schedule of the SISO decoder using reverse input order for the block
with four windows. (a) SISO decoder architecture. (b) Processing schedule with � D 57:1 %. (c)
Corresponding active periods of main components

48 2 Conventional Architecture of Turbo Decoder

for ˛-ACS and ˇ-ACS, so we can use less input buffers. The size of input buffers
will be 2� L� .2%.ri/C %.La.ui /// bits for 3GPP LTE-Advanced application and
2 � L � .4%.ri /C 3%.La.ui /// bits for IEEE 802.16m application. For turbo codes
with circular trellis structure, the dummy forward metric calculation over the last
window is also a cause of lengthy
x. Here we borrow the idea from [43, 44] to cut
the initialization time. The ˛.S0/ will be updated by the ˛.SN/ at previous iteration,
and we use ˛.S0 D S.m// D 0 for 0 � m � 7 at the first iteration. It makes a
reduction of another �L cycles at the cost of a few storage elements for 16%.˛.Si //

bits. As a result, the
x in either case will decrease to within 2�L and 3�L cycles.
If we let .
a C
b C
x/ equal 3�L, then the � will be improved to N=.N C 3L/.
The only difference between Figs. 2.3 and 2.6 is the order of input data. Both the
SISO decoders will generate the same soft outputs; that is, they will get identical
performance. Currently, the superior architecture and schedule have taken the place
of the conventional SISO decoder.

The second technique can minimize
x by getting rid of all dummy metric
calculations [43, 44]. Instead of computing ˇd .Si/ of WkC1, we exploit ˇ.S.kC1/L/

at the last iteration as the initialization of ˇ.Si/ of Wk . Figure 2.7 illustrates the
modified architecture and process. Now the SISO decoder consists of ˛-ACS and
ˇ-ACS. Besides the removal of the ˇd -ACS and its branch metric unit, the size
of total input buffer is only half as that of the design in Fig. 2.6a. On the other
hand, we add some registers for the previous metrics. The data will be inputted in
ascending order, and the ˛-ACS can start its work right away. The value of
x is
between �L and 2�L, and the � becomes N=.N C 2L/. Even with the noticeable
improvement in operating efficiency, the performance might degrade because the
metrics at previous iterations are usually less reliable than the dummy metric
calculation at current iteration. The storage of these previous metrics will be another
serious obstacle to implement this design. To keep the initial backward metrics
for all windows of both constituent codes, the additional registers must store at
most 14 � .N=L/ � %.˛.Si // or 16 � .N=L/ � %.˛.Si // bits, depending on which
normalization method is employed. Like the other decoders that support circular
trellis structure, it also requires 16%.˛.Si //-bit registers for forward metrics. When
the designs need to process lots of windows, the area of these registers will far
outweigh the savings in other hardware. The concern for performance and overhead
will limit the applicability of this technique to 3GPP LTE-Advanced and IEEE
802.16m turbo decoders.

Figure 2.8 shows that, for both applications, the design with the architecture
and schedule in Fig. 2.7 will lead to about 0:1 dB performance loss. Basically,
the slightly inferior BER is tolerable. Table 2.5 gives the synthesis results of the
two modified SISO decoders for 3GPP LTE-Advanced standard. Here we make a
comparison with the conventional designs in Table 2.3. With the modification as
Fig. 2.6, there is a moderate reduction in area. While we utilize the SISO decoder
in Fig. 2.7, the first three component circuits require much less area. However, the
storage for the initial metrics of 384 windows (N D 6144; L D 32) makes the
overall hardware cost escalate. We also list the area of SISO decoders for IEEE
802.16m standard in Table 2.6. Similarly, using the SISO decoder in Fig. 2.6 can

2.3 Design of Modified SISO Decoders 49

a

b

c

Fig. 2.7 Architecture and schedule of the SISO decoder using previous metrics for the block
with four windows. (a) SISO decoder architecture. (b) Processing schedule with � D 66:7 %.
(c) Corresponding active periods of main components

50 2 Conventional Architecture of Turbo Decoder

N = 0040, I = 4, L = 16
SISO Decoder: Fig. 2.6
SISO Decoder: Fig. 2.7

N = 0512, I = 5, L = 32
SISO Decoder: Fig. 2.6
SISO Decoder: Fig. 2.7

N = 6144, I = 8, L = 32
SISO Decoder: Fig. 2.6
SISO Decoder: Fig. 2.7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Eb/N0 (dB)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Eb/N0 (dB)

B
it

E
rr

or
 R

at
e

10−6

10−5

10−4

10−3

10−2

10−1

100

B
it

E
rr

or
 R

at
e

N = 0024, I = 4, L = 08
SISO Decoder: Fig. 2.6
SISO Decoder: Fig. 2.7

N = 0256, I = 5, L = 16
SISO Decoder: Fig. 2.6
SISO Decoder: Fig. 2.7

N = 2400, I = 8, L = 16
SISO Decoder: Fig. 2.6
SISO Decoder: Fig. 2.7

a

b

Fig. 2.8 Fixed-point simulation results of 3GPP LTE-Advanced and IEEE 802.16m turbo codes
with various processing schedules: Max-Log-MAP algorithm with � D 0:75 and .%I.ri /; %F.ri // D
.3; 3/. (a) 3GPP LTE-Advanced turbo codes: N D f40; 512; 6144g. (b) IEEE 802.16m turbo codes:
N D f24; 256; 2400g

get the minimum overhead. For the SISO decoder in Fig. 2.7, now it has to store
the initial metrics of 300 windows (N D 2400; L D 16), but the difference in
overhead between both modified SISO decoders with (2.15) is insignificant. From
these results, both 3GPP LTE-Advanced and IEEE 802.16m turbo decoders prefer
the design in Fig. 2.6, and they should exploit (2.15) and modulo normalization
respectively. Unless the window number .2 � N=L/ decreases, most practical
decoders rarely consider the second type of architecture and schedule. Actually,

2.3 Design of Modified SISO Decoders 51

Table 2.5 Area of modified SISO decoders with various normal-
ization methods for 3GPP LTE-Advanced standard (unit: 103 �
�m2)

SISO decoder Figure 2.6 Figure 2.7

Normalization (2.15) Modulo (2.15) Modulo
%.˛.Si //;%.L.ui // 09;10 10;11 09;10 10;11

Clock period (ns) 2:3 2:4 2:4 2:4

˘ SISO decoder 146:4 162:2 218:1 256:1

7! Input buffer 30:9 31:1 15:8 15:5

7! Branch metric unit 6:5 5:9 4:2 3:8

7! ˛; ˇd ; ˇ-ACS 34:6 32:8 27:0 25:0

7! ˛ buffer 51:2 64:8 51:2 64:8

7! LLR unit 16:2 20:7 20:0 20:7

7! Initial ˇ registers – – 97:8 119:3

Table 2.6 Area of modified SISO decoders with various normalization
methods for IEEE 802.16m standard (unit: 103 � �m2)

SISO decoder Figure 2.6 Figure 2.7

Normalization (2.15) Modulo (2.15) Modulo
%.˛.Si //;%.L.ui // 10;11 11;12 10;11 11;12

Clock period (ns) 2:5 2:6 2:7 2:7

˘ SISO decoder 244:0 207:1 270:0 275:2

7! Input buffer 39:7 39:7 19:9 19:9

7! Branch metric unit 28:2 17:1 18:1 16:7

7! ˛; ˇd ; ˇ-ACS 77:2 59:6 74:0 45:2

7! ˛ buffer 28:4 35:7 28:4 35:7

7! LLR unit 35:0 42:1 32:2 40:3

7! Initial ˇ registers – – 92:6 112:3

the cost of these extra registers is also determined by the CMOS technology and
memory structure. As either the design objective or available resource varies, it is
still possible to use the SISO decoder in Fig. 2.7 to get the best operating efficiency
at relatively lower cost.

Chapter 3
Turbo Decoder with Parallel Processing

The operating frequency F is the decisive factor in throughput calculation of
conventional turbo decoders. Although the modification to circuits can improve
this factor, there is a limit to the critical path delay, and it is difficult to supply a
stable clock signal with high frequency. We need other methods to further raise the
decoding speed. The general idea is exploiting parallel architecture, which includes
the turbo decoder level, the SISO decoder level, and the trellis stage level [45, 46].
In the turbo decoder level, multiple dedicated turbo decoders are used to decode
multiple codeword blocks independently. In the SISO decoder level, every codeword
block is split into several sub-blocks first, and then these sub-blocks are processed
by multiple SISO decoders simultaneously. In the trellis stage level, the functional
units inside the SISO decoder are duplicated to complete the computations related
to two or more trellis stages within one clock cycle. This chapter will describe the
features of each level. The parallel turbo decoder level is an intuitive method, so we
only give a brief introduction. Our discussions center on the parallel SISO decoder
level in particular because the turbo codes of 3GPP LTE-Advanced standard and
IEEE 802.16m standard, or more precisely, the QPP interleaver in (1.1) and the ARP
interleaver in (1.3) are designed to support this type of architecture. The available
divisions of one codeword block and the largest parallelism in each application are
stated first, then the variations of decoding speed and performance are presented.
The parallel trellis stage level needs a minor modification to the decoding algorithm,
and it also can be employed by the turbo decoders for above-mentioned standards.
Even with the same parallelism, the gains of these levels are dissimilar, and so are
their respective costs. Thus, the selection of the best parallel architecture will depend
on the required throughput and hardware resource.

C.-C. Wong and H.-C. Chang, Turbo Decoder Architecture for Beyond-4G
Applications, DOI 10.1007/978-1-4614-8310-6__3,
© Springer Science+Business Media New York 2014

53

54 3 Turbo Decoder with Parallel Processing

3.1 Multiple Turbo Decoders for Multiple Codewords

The fundamental concept of this parallel level is duplication of the whole turbo
decoder. It has several individual sets of memory modules and SISO decoder.
A global controller will deliver one received codeword block from input ports to
the memory modules of one turbo decoder via a de-multiplexer; then it activates the
corresponding SISO decoder to calculate the soft values of information symbols.
During the above process, the design can deal with the following blocks by assigning
them to other unoccupied turbo decoders. These turbo decoders are connected to a
multiplexer so that the decisions of the sequential blocks can be sent to output ports
through it. The parallel design still spends 2IN=� cycles decoding every codeword
block, but the processes of new blocks can start much earlier. If PC turbo decoders
are used, the throughput could increase from (2.2) to at most

‚C D PC � 	 � F � �

2 � I : (3.1)

The theoretically maximum parallelism is determined by how many codeword
blocks are received within the decoding latency. Assuming that the reception of one
block takes N cycles, the upper bound of PC will be 2I=�. The use of parallel turbo
decoder level is free from any constraint on interleavers, and it can achieve exactly
the same performance as traditional turbo decoders. However, there is a potential
problem with the memory modules for extra codeword blocks. The actual value of
PC can be estimated by dividing the allowable design area by the area of a single
turbo decoder. When N is large, the overhead of memory modules will increase,
and the attainable PC might decrease. Consequently, the parallel turbo decoder level
is usually applied for small blocks or low parallelism to lessen the effect of the
drawback.

3.2 Multiple SISO Decoders for One Codeword

3.2.1 Important Characteristics

In this parallel architecture, PS SISO decoders work together to decode one size-
N codeword block. According to decoding rounds, each SISO decoder deals with
M (M D N=PS) successive data of the original sequence or permuted sequence.
All SISO decoders will submit requests for their respective data at the same time.
To support the simultaneous access, we store the codeword block in PS separate
memory modules, of which the s-th memory (0 � s < PS) usually includes one
sub-block: .rsM; rsMC1; : : : ; rsMC.M�1//. With such allocation, the s-th SISO decoder
will continue accessing rsMCj from the s-th sub-block memory for j D 0 to .M�1/

during the decoding rounds for original sequence. When the design processes the

3.2 Multiple SISO Decoders for One Codeword 55

sub-block
memory sub-block

memorysub-block
memory sub-block

memory

SISO
decoder SISO

decoderSISO
decoder SISO

decoder

r0M+j

r1M+j

r2M+j

r3M+j

\
\
\
\

r̃0M+j

r̃1M+j

r̃2M+j

r̃3M+j

Le1(r0M+j)

Le1(r1M+j)

Le1(r2M+j)

Le1(r3M+j)

\
\
\
\

Le2(r̃0M+j)

Le2(r̃1M+j)

Le2(r̃2M+j)

Le2(r̃3M+j)

Fig. 3.1 Architecture with parallel SISO decoder level (PS D 4)

permuted data sequence with a certain interleaving function ….�/, the s-th SISO
decoder will request QrsMCj from the b….sMC j /=Mc-th sub-block memory. The
PS SISO decoders will send their decoding results to the memory modules in
the same manner as they get their respective inputs. Every SISO decoder must be
able to access any sub-block memory, so the design needs interconnection networks
to support all possible data transmission. Most designs utilize the fully-connected
network to link SISO decoders and memory modules for its powerful functionality.
A typical example with PS D 4 is given in Fig. 3.1, where the networks can
correctly direct the parallel data to their destinations.

The most important issue of the parallel SISO decoder level is manipulating
the apparatus for parallel data transmission. The controller needs to generate
the addresses for accessing memory modules and the instructions for arranging
interconnection networks. However, one sub-block memory might be accessed by
two or more decoders at the same time. When this collision problem occurs, the
design will halt the ordinary process and start an interrupt routine [47, 48]. It takes
several cycles to handle each of the concurrent requests, one by one. Such increased
workload results in extended processing time and inferior throughput improvement.
The only advantage is its compatibility with all turbo decoders. Unless the design is
unlikely to encounter the collision problem, it is impractical to apply this solution.

Another strategy is preventing the occurrence of this problem, and there are
two types of methodologies. The first one is the management of data storage.
The algorithm proposed in [49] can obtain a particular function that maps each
data to one of the PS memories. As the turbo decoder stores data in accordance
with this mapping function, it can be free from collision problems throughout all
decoding rounds. This solution is suitable for any turbo code, but the decoder
needs more memories to keep all special memory addresses and interconnection
patterns for every parameter set. If the application involves many block sizes, the
overhead might become unaffordable. The second methodology is the adoption

56 3 Turbo Decoder with Parallel Processing

of contention-free interleavers [18, 20, 50–55], of which two representatives are
QPP and ARP interleavers. They can ensure instant access to the PS memories
of the designs employing simple, regular mapping functions. Because of their well-
organized permutation rules, the parallel architecture can handle data access at low
cost. Additionally, they promise outstanding error correction capability. The benefits
make the use of contention-free interleavers supersede the other solutions to the
collision problem.

The parameters of contention-free interleavers determine the parallelism and
memory mapping. While QPP interleavers are adopted, the permissible number of
SISO decoders can be any factor of block size. Since the greatest common divisor of
all N’s in 3GPP LTE-Advanced turbo codes is 8, the corresponding design typically
consists of 8 SISO decoders and 8 memory modules. It is also possible to use more
SISO decoders and alter the parallelism in various cases. For example, a 3GPP
LTE-Advanced turbo decoder with PS D 32 can activate all SISO decoders for
1024 � N, 16 SISO decoders for 512 � N � 1024, and 8 SISO decoders for
N � 512. The QPP interleavers are aimed for the division mapping [18, 56]; that is,
the data in the s-th memory module must comply with

frsMCj j 0 � j < Mg: (3.2)

The control over these memories needs to locate where QrsMCj is stored during the
decoding rounds for the permuted data sequence. For this purpose, the interleaving
function is modified to match (3.2). Here we replace i in (1.1) with .sM C j /

and rewrite the interleaving index as (3.3). This equation indicates that QrsMCj is
equivalent to rs

Q
sI j MCj

Q
sI j ; the value of sQ

sIj
and j Q

sIj
can be derived by (3.4) and (3.5)

respectively.

Q.sMC j / D f1 � .sMC j /C f2 � .sMC j /2 .mod N/

D sQ
sIj

MC j Q
sIj

.mod N/ (3.3)

sQ
sIj
D bQ.sMC j /=Mc .mod PS/ (3.4)

j Q
sIj
D f1sMC f2s

2M2 C 2f2sMj C f1j C f2j 2 .mod M/

D f1j C f2j
2 D Q.j / .mod M/ (3.5)

Note that j Q
sIj

is independent of s; fj Q
0Ij

; j Q
1Ij

; : : : ; j Q
PS�1Ij

g are the same in value.
The controlling unit can calculate j Q

0Ij
only and send the result to all memories as

the read or write address; and it can use the PS pairs of .s; sQ
sIj

/ to establish links
between the s-th SISO decoder and the sQ

sIj
-th memory. The main computations

include the original QPP interleaving function and the division by M. By the
recursive computations introduced in Chap. 2, Q.sM C j / can be generated
promptly at every cycle. Thanks to the limited range of Q.sM C j / and the
predetermined M, the controlling unit can perform the division in (3.4) with simple
subtractors rather than complex dividers. Therefore, the transition from Q.sMC j /

to sQ
sIj

and j Q
sIj

will be done in short time at reasonable cost.

3.2 Multiple SISO Decoders for One Codeword 57

Based on the design concepts of ARP interleavers [20, 56], the fitting scheme of
the corresponding parallel architecture is modulo mapping as (3.6): the Os-th memory
stores the data whose indexes are congruent to Os modulo PS .

fr
OsC O|PS j 0 � O| < Mg: (3.6)

Under the scheme, both PS D 2 and PS D 4 are valid for all parameter sets in
IEEE 802.16m turbo codes. Higher parallelism can be permitted as long as the
parameters satisfy 4 j PS and PS j N. Besides these restrictions, the sequence
length of the data sent to each SISO decoder must be relatively prime to PS .
Thus, the actual sequence length must be adjusted accordingly. We can simplify the
adjustment by letting PS be a power of 2. Now the s-th SISO decoder will deal with
ŒrsM0 ; rsM0

C1; : : : ; rsM0

C.M0

�1/� and ŒQrsM0 ; QrsM0

C1; : : : ; QrsM0

C.M0

�1/�, where M0 is defined as

M0 D
�

N=PS C 1 if .N=PS/ 	 0 .mod 2/;

N=PS if .N=PS/ 	 1 .mod 2/:
(3.7)

When .N=PS/ is an even number and M0 is larger than PS , Œr0; r1; : : : ; rPS�1� and
ŒQr0; Qr1; : : : ; QrPS�1� will be processed twice, by the first SISO decoder and then by
the last SISO decoder, at each of their respective decoding rounds. Although this
decoding process takes a few more cycles for the extended sub-block size, the
decrease in throughput is slight and tolerable. The utilization of modulo mapping
has a great impact on control signal generation. The controller has to translate
.sM0 C j / into .OssIj C O|sIjPS/ by (3.8) and (3.9) to find which memory contains
rsM0

Cj . Similarly, the translation from A.sM0Cj / into .OsA
sIj
C O|A

sIj
PS/ by (3.10) and

(3.11) is necessary for accessing QrsM0

Cj .

OssIj D .sM0 C j / .mod PS/ (3.8)

O|sIj D

.sM0 C j /=PS

˘
(3.9)

OsA
sIj
D A.sM0 C j / .mod PS/ (3.10)

O|A
sIj
D

A.sM0 C j /=PS

˘
(3.11)

Both s and j affect the values of O|sIj and O|A
sIj

. For a given j , f O|0Ij ; O|1Ij ; : : : ; O|PS�1Ij g
tend to be dissimilar, and so do f O|A

0Ij
; O|A

1Ij
; : : : ; O|A

PS �1Ij
g. The design needs multiple

address generators to get these addresses and another network to send them to right
memories. If the premise that log2 PS is an integer holds, OssIj and OsA

sIj
are the copies

of the least significant log2 PS bits of .sM0 C j / and A.sM0 C j / respectively,
while O|sIj and O|A

sIj
are the remaining most significant parts. It will be an effortless

conversion from .sM0 C j / and A.sM0 C j / to control signals.
Actually, as the parameters satisfy (3.12) for all j ’s, the parallel architecture with

ARP interleavers can utilize division mapping in (3.2), too.

fg.sMCj / mod 4 	 g.s0MCj / mod 4 .mod M/ j 0 � s < s0 < PSg (3.12)

58 3 Turbo Decoder with Parallel Processing

The applicability can be proven easily by comparing the interleaving indexes:
fA.j /;A.M C j /; : : : ;A..PS � 1/M C j /g. The initial step is the substitution
of .sM C j / for i in (1.3). Then we convert the result to (3.13) with sA

sIj
in (3.14)

and j A
sIj

in (3.15). After applying the constraint in (3.12), fj A
0Ij

; j A
1Ij

; : : : ; j A
PS�1Ij

g
are equal to each other. Because A.sMC j / ¤ A.s0MC j / is always true if s and
s0 are different, the equivalence j A

sIj
D j A

s0

Ij
implies sA

sIj
¤ sA

s0

Ij
. It shows that this

scheme also possesses the contention-free property.

A.sMC j / D " � .sMC j /C g.sMCj / mod 4 .mod N/

D sA
sIj

MC j A
sIj

.mod N/ (3.13)

sA
sIj
D bA.sMC j /=Mc .mod PS/ (3.14)

j A
sIj
D "sMC "j C g.sMCj / mod 4 .mod M/

D "j C g.sMCj / mod 4 .mod M/ (3.15)

Obviously, it is unwise to check whether all possible indexes and parameters can
meet (3.12). To reduce the computational effort, we exploit the periodicity of
fg0; g1; g2; g3g and develop three alternative conditions. The first one requires that
M is divisible by 4, and we can infer g.sMCj / mod 4 D gj mod 4 for any s [56]. The second
condition is (3.16); it promises that, regardless of the values of M, s and j , there is
only one outcome of g.sMCj / mod 4 modulo M.

g0 	 g1 	 g2 	 g3 .mod M/ (3.16)

The last condition in (3.17) specifies a special case of even-numbered M’s, where
g.sMCj / mod 4 can be simplified to either gj mod 4 or g.j C2/ mod 4. With the equivalence
relations imposed here, gj mod 4 and g.j C2/ mod 4 are congruent modulo M.

8
<

:

M 	 0 .mod 2/

g0 	 g2 .mod M/

g1 	 g3 .mod M/

(3.17)

These conditions can remove the dependence of g.sMCj / mod 4 on s. Any of 4 j M,
(3.16), and (3.17) can lead to the fulfillment of (3.12). Since they just involve the
parameters fM; g0; g1; g2; g3g, their verification is much easier than a thorough
examination of (3.12). In IEEE 802.16m turbo codes, the numbers of parameter
sets that can support division mapping are 25 for PS D 4, 18 for PS D 8, and 9

for PS D 16. The controller for this scheme comprises the address generators for
ARP interleaving functions and the converters for (3.14) and (3.15). It is possible to
integrate this with the controller for modulo mapping in the same turbo decoder, and
the cost can be minimized by sharing the core component circuits. Such flexibility
will enable a wider range of applications.

3.2 Multiple SISO Decoders for One Codeword 59

Table 3.1 Speedup of 3GPP LTE-Advanced turbo decoders with PS D f2; 4; 8g

N L � (%)

PS D 2 PS D 4 PS D 8

�S (%) PS�S=� �S(%) PS�S=� �S.%/ PS�S=�

40 10 57 40 1:40 25 1:75 20 2:80

256 16 86 75 1:75 60 2:81 43 4:02

512 32 87 78 1:78 63 2:90 46 4:25

1024 32 93 87 1:87 78 3:33 63 5:43

3072 32 98 95 1:95 91 3:74 84 6:87

6144 32 99 98 1:98 95 3:86 91 7:38

Table 3.2 Speedup of IEEE 802.16m turbo decoders with PS D f2; 4; 8g

N L � (%)

PS D 2 PS D 4 PS D 8

�S (%) PS�S=� �S (%) PS�S=� �S (%) PS�S=�

24 8 48 32 1:32 23 1:88 18 3:03

144 12 81 68 1:68 51 2:54 35 3:42

256 16 86 75 1:75 60 2:81 43 4:03

512 16 92 86 1:86 75 3:26 60 5:23

1184 16 97 93 1:93 88 3:63 78 6:45

2400 16 98 97 1:97 93 3:80 88 7:14

3.2.2 Speedup and Performance

Each SISO decoder in this parallel architecture processes shorter sub-blocks, so
the decoding time per half-iteration can be reduced, and the throughput can be
increased. However, the operating efficiency is easily affected by the block size,
and the speedup must take its variation into account. The value of
y is scaled down
by a factor of PS , while
a,
b, and
x are unchanged. Then we redefine the operating
efficiency of the parallel SISO decoder level as

�S D
y=PS

a C
b C
x C
y=PS
D
y

PS.
a C
b C
x/C
y

: (3.18)

Owing to larger denominator, �S is less than the original �. The total decoding time
becomes .2�I �N/=.PS ��S/ cycles, and the throughput calculation changes into

‚S D PS � 	 � F � �S

2 � I : (3.19)

The parallel SISO decoder level causes declining operating efficiency [57–59].
Tables 3.1 and 3.2 show the side effects on the parallel architecture for 3GPP LTE-
Advanced and IEEE 802.16m turbo codes, whose typical schemes are PS D 8

and PS D 4 respectively. These data are estimated based on the implementation
examples in Chap. 2. If L is less than M, the precise value of .
a C
b C
x/ is
.2L C 10/; otherwise, it is .2M C 10/. The processes for all blocks inevitably

60 3 Turbo Decoder with Parallel Processing

suffer the loss of efficiency. High parallelism will widen the gap between the actual
speedup .PS��S=�/ and the expected speedupPS . Moreover, this problem becomes
more serious as the designs deal with small blocks. For example, the cases with
the smallest N and PS � 4 have very low efficiency in either application. Their
M’s are so short that the execution time is dominated by the unimproved part
(.
y=PS/ < .
a C
b C
x/). In fact, the situation occurs for most blocks at PS � 8.
Only a few number of cases can get the near-ideal speedup from the parallel SISO
decoder level. Despite the drawback, it is possible for the parallel designs to achieve
the required throughput of any block size because the decoding processes for smaller
blocks take fewer iterations.

The use of multiple SISO decoders for every single codeword block also has
a negative influence over the error correction capability. Now the computations of
one SISO decoder only involves M trellis stages. For the sub-blocks without known
initial conditions, their forward metrics at the first trellis stage are set to zeroes.
Because of the shortened trellis and rough initialization, the forward metrics are less
accurate than those of a non-parallelized design. To lessen the impact, the designs
update the forward metrics with the results at previous iterations [43,44]. The major
hardware costs of this method are just a few buffers for additional 16%.˛.Si // �
PS bits. The calculation of backward metrics encounters similar problems. Some
M’s cannot be divisible by L, and the last window in each sub-block has a length
of M modulo L. It might decrease the effectiveness of dummy backward metric
calculation and fail to provide reliable initialization for adjacent windows. We can
easily solve the problem by changing L and assuring sufficient length of the last
window in each sub-block. Thus, there will be a need for the SISO decoder that
supports configurable window length.

Figure 3.2 illustrates the BER performance of various combinations of fPS; Lg in
practical 3GPP LTE-Advanced and IEEE 802.16m turbo decoders. Each subfigure
contains the fixed-point simulation results of six N’s. Note that the typical designs
for IEEE 802.16m standard must obey (3.7). Basically, the L’s used in the
simulations of PS > 1 and of PS D 1 are identical, but some cases, including
N D f136; 288g in Fig. 3.2a and N D f48; 144; 256; 512g in Fig. 3.2b, cause
significant degradation. After we adjust L to guarantee sufficient length of the
last window, the performance losses of most cases are less than 0:1 dB. There
are, however, a few exceptions. Only one choice of L is available for very small
sub-blocks such as the example with N D 40 and PS D 8 in Fig. 3.2a, and
the adjustment of L is inapplicable here. Excluding the rare extreme cases, the
designs with parallel SISO decoder level can accelerate the decoding process while
maintaining comparable error correction capability.

3.2.3 Hardware Cost

Table 3.3 lists the synthesis results of 3GPP LTE-Advanced and IEEE 802.16m
turbo decoders with high parallelism. This table also details the area of the main
components of each design. It is easy to notice that the SISO decoders, whose area

3.2 Multiple SISO Decoders for One Codeword 61

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Eb/N0 (dB)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Eb/N0 (dB)

N = 40, I = 4
PS = 1,L = 10
PS = 8,L = 05

N = 136, I = 4
PS = 1,L = 16
PS = 8,L = 16
PS = 8,L = 17

N = 288, I = 4
PS = 1,L = 16
PS = 8,L = 16
PS = 8,L = 18

N = 512, I = 5
PS = 1,L = 32
PS = 8,L = 32

N = 1024, I = 6
PS = 1,L = 32
PS = 8,L = 32

N = 6144, I = 8
PS = 1, L = 32
PS = 8, L = 32

N = 24, I = 4
PS = 1,L = 08
PS = 4,L = 07

N = 48, I = 4
PS = 1,L = 12
PS = 4,L = 12
PS = 4,L = 13

N = 144, I = 4
PS = 1,L = 12
PS = 4,L = 12
PS = 4,L = 13

N = 256, I = 5
PS = 1,L = 16
PS = 4,L = 16
PS = 4,L = 13

N = 512, I = 6
PS = 1,L = 16
PS = 4,L = 16
PS = 4,L = 13

N = 2400, I = 8
PS = 1,L = 16
PS = 4,L = 16

100

10−1

10−2

10−3

10−4

10−5

10−6

B
it

E
rr

or
 R

at
e

100

10−1

10−2

10−3

10−4

10−5

10−6

B
it

E
rr

or
 R

at
e

a

b

Fig. 3.2 Fixed-point simulation results of 3GPP LTE-Advanced and IEEE 802.16m
turbo codes with various cases of .N; I;PS ; L/: Max-Log-MAP algorithm with
� D 0:75 and .%I.ri /; %F.ri // D .3; 3/. (a) 3GPP LTE-Advanced turbo codes:
N D f40; 136; 288; 512; 1024; 6144g, PS D f1; 8g with division mapping, and normalization
with (2.15). (b) IEEE 802.16m turbo codes: N D f24; 48; 144; 256; 512; 2400g, PS D f1; 4g with
modulo mapping, and modulo normalization

62 3 Turbo Decoder with Parallel Processing

Table 3.3 Area of turbo decoders using parallel SISO decoder level (unit: 103 � �m2)

3GPP LTE-Advanced IEEE 802.16m

PS D 8 PS D 16 PS D 32 PS D 4 PS D 8 PS D 16

ı Turbo decoder 1774.4 3150.6 5769.2 1348.8 2385.4 4346.0
˘ SISO decoders 1120.6 2240.3 4469.0 813.8 1628.7 3255.1
˘ Memory 555.4 764.9 1039.4 450.3 614.6 799.2
˘ Memory controller 78.8 107.4 158.0 65.2 107.9 200.9
˘ Network 5.4 21.4 81.3 5.1 17.4 69.0

is in direct proportion to PS , dominate the overall hardware cost. However, the
costs of the other three parts are difficult to estimate. Those designs for the same
application store N sets of received data and extrinsic information, but the area of
their memories are quite different. The reason is the use of small memory hard
macros, where certain portions are power rings. As PS increases, we need more
separate memories to support parallel processing, and these power rings become a
significant overhead. This problem can be resolved by merging the memories whose
read and write addresses are always identical into single one with wider data width.
The number of memory hard macros decreases, and so does the overhead of the
power rings. Note that such a method will restrict the configurablePS , and there has
to be a trade-off between flexibility and overhead. The area of memory controller
depends on the how to get parallel QPP and ARP interleaving indexes. Since we
use one and PS address generators for calculating j Q

sIj
and O|A

sIj
respectively, the

IEEE 802.16m turbo decoder usually has a larger memory controller even with
lower parallelism. The wires of the interconnection network spread over the whole
design, and they corresponds to the global routing. When PS doubles, the network
complexity will nearly quadruple. That is, the implementation of a highly parallel
turbo decoder takes considerable effort.

3.3 Sophisticated Functional Units for Successive
Trellis Stages

The design exploiting the parallel trellis stage level spends one cycle doing the
computations that originally take PT cycles in the conventional turbo decoder.
Such parallel architecture is realized by rearranging the decoding algorithm as
well as restructuring the circuits. Among all components, the modified functional
units for forward and backward metrics receive the most attention for their close
connection with the critical path delay [60–64]. In this section, the functional unit
for forward metrics of the 3GPP LTE-Advanced turbo decoder with PT D 2 is
used for illustration. With the forward metrics at the .i � 2/-th trellis stage and the
necessary branch metrics, it can calculate any ˛.Si/ in a clock cycle. There are two
possible implementation methodologies. Figure 3.3a shows the functional unit of
the first type, which is based on the concatenation of two successive trellis stages.
Its executions can be represented as (3.20).

3.3 Sophisticated Functional Units for Successive Trellis Stages 63

max(·)

norm
al-

ization

max(·)

norm
al-

ization

max(·)

norm
al-

ization

α(Si−2)

α(Si−2)

α(Si−2)

α(Si−2)

α(Si−1)

α(Si−1)

γ(Si−2, Si−1)

γ(Si−2, Si−1)

γ(Si−2, Si−1)

γ(Si−2, Si−1)

γ(Si−1, Si)

γ(Si−1, Si)

α(Si)

max(·)
norm

al-
ization

α(Si−2)

α(Si−2)

α(Si−2)

α(Si−2)

γ(Si−2, Si)

γ(Si−2, Si)

γ(Si−2, Si)

γ(Si−2, Si)

α(Si)

a b

Fig. 3.3 Functional units for calculating ˛.Si / in the design with PT D 2. (a) Circuits for
concatenated trellis. (b) Circuits for merged trellis

Table 3.4 Hardware cost and path delay of the ACS unit with 	 and PT

Concatenated trellis Merged trellis

H
ar

dw
ar

e
co

st

2	PT � 8 adders 2	PT � 8 adders
PT � 8 2	 -input comparators 8 2	PT -input comparators
PT � 8 2	 -to-1 multiplexers 8 2	PT -to-1 multiplexers
PT � 8 normalization circuits 8 normalization circuits

Pa
th

de
la

y

PT addition 1 addition
PT 2	 -input comparison 1 2	PT -input comparison
PT 2	 -to-1 selection 1 2	PT -to-1 selection
PT normalization 1 normalization

˛.Si/ D max
h
max

	
˛.S 0

i�2/C �.S 0
i�2; S 0

i�1/; ˛.S 00
i�2/C �.S 00

i�2; S 0
i�1/

C �.S 0
i�1; Si /;

max
	
˛.S 000

i�2/C �.S 000
i�2; S 00

i�1/; ˛.S 0000
i�2/C �.S 0000

i�2; S 00
i�1/

C �.S 00
i�1; Si /

i
(3.20)

Figure 3.3b presents the functional unit of the second type, which is developed by
merging two trellis stages into one. We need to redefine the branch metric as

�.Si�PT ; Si/ D
i�1X

`Di�PT

�.S`; S`C1/; (3.21)

and complete the summation in advance to perform the calculation in (3.22).

˛.Si/ D max
h
˛.S 0

i�2
/C �.S 0

i�2
; Si/; ˛.S 00

i�2
/C �.S 00

i�2
; Si /;

˛.S 000
i�2

/C �.S 000
i�2

; Si/; ˛.S 0000
i�2

/C �.S 0000
i�2

; Si /
i
: (3.22)

The circuits in Figs. 3.3a and 3.3b have common functionality, but their required
resources and execution time are dissimilar. Table 3.4 gives these data of the func-
tional units for all forward or backward metrics of eight states in an SISO decoder.
The ACS unit for concatenated trellis structure needs PT times the hardware of a

64 3 Turbo Decoder with Parallel Processing

conventional ACS unit. Its path delay is increased by PT times, too. For the ACS
unit that supports merged trellis structure, there is an exponential growth of the
number of adders; the comparator and multiplexer must handle 2	PT inputs; the
normalization circuits are unaffected by PT > 1. Compared to the conventional
case, this ACS unit uses longer execution time to perform more complex comparison
and selection. The overall hardware cost and total path delay are determined by 	,
PT , and the normalization method. If the modulo normalization is applied, the cost
and delay related to normalization circuits can be ignored. While we utilize the cas-
caded structure, the 2	PT -input comparator/multiplexer is larger than PT 2	-input
comparators/multiplexers; on the other hand, the 2	PT -input comparison/selection
takes similar execution time as PT 2	-input comparison/selection. In general, the
second type of ACS unit needs more area but has faster speed than the other one.

The extended data path lowers the maximum operating frequency, thereby
diminishing the benefit of the parallel trellis stage level. The effect is particularly
harmful in the ACS unit for concatenated trellis structure because the loss of
frequency would negate the gain of PT . This type of ACS unit can bring about
throughput improvement only when the obtainable frequency of the design still
exceeds the highest clock rate of the clock generator. It is improbable to meet this
condition as the parallelism is high. The problem is less severe in the ACS unit for
merged trellis structure, but the dramatic increase in hardware cost obstructs the use
of large PT . As a consequence, most designs prefer the second type of ACS unit
with 	 D 1 and PT D 2 [60–64]. The works in [65,66] show the feasibility of SISO
decoders with 	 D 1 and PT D 4. They exploit the two-dimensional technique,
combining both types of circuits in Fig. 3.3, to reach a compromise between area and
speed of the implementation; then they apply the relocation technique, rearranging
the position of adders and registers in the functional units, to further shorten the data
path. We can regard 	PT � 4 as a restriction of using the parallel trellis stage level
in practical designs. Hence, the allowable parallelism of 3GPP LTE-Advanced and
IEEE 802.16m turbo decoders are PT D 4 and PT D 2 respectively.

This parallel design needs simultaneous access to PT successive data every cycle,
so the received data and extrinsic information of a codeword block are stored in
multiple memory banks with the modulo mapping as (3.23), where the t-th memory
bank keeps the data whose indexes are congruent to t modulo PT .

frtCkPT j 0 � k < N=PT g: (3.23)

This allocation ensures smooth memory access during the decoding rounds for the
original data sequence, but it might create the collision problem during the decoding
rounds for the permuted data sequence. Like the parallel SISO decoder level, the
favorable solution is an interleaver with contention-free property. The definition of
this property for QPP interleavers is that any .t C kPT / must satisfy

fQ.t C kPT / 6	 Q.t C kPT C `/ .mod PT / j 0 < ` < PT g: (3.24)

3.3 Sophisticated Functional Units for Successive Trellis Stages 65

All interleavers of the 3GPP LTE-Advanced turbo code can pass the verification
of (3.24) with PT D 4. The relations between Q.t C kPT / and its succeeding
three interleaving indexes can be expressed as (3.25) with the help of the following
constraints: 2 6 j f1 and 2 j f2.

8
<

:

Q.t C kPT C 1/ 	 Q.t C kPT /C f1 C f2 .mod 4/

Q.t C kPT C 2/ 	 Q.t C kPT /C 2 .mod 4/

Q.t C kPT C 3/ 	 Q.t C kPT /C f1 C f2 C 2 .mod 4/

(3.25)

Since .f1 C f2/ modulo 4 is either 1 or 3, any two of the four successive indexes
are incongruent modulo 4, and fQrtCkPT ; QrtCkPT C1; QrtCkPT C2; QrtCkPT C3g are stored in
different memory banks. The parallelism can be either 2 or 4. The design needs
PT address generators to get the indexes concurrently. Each of them makes use of
(2.3) and (2.5) with ı D PT . The index Q.t C kPT / will be further translated
into .tQ

tIk
C kQ

tIk
PT / by (3.26) and (3.27), where tQ

tIk
is the least significant log2 PT

bits of Q.t C kPT /, and kQ
tIk

is the most significant .dlog2 Ne � log2 PT / bits of
Q.t C kPT /. Then the controller can send the address kQ

tIk
to the tQ

tIk
-th memory

bank to access QrtCkPT .

tQ
tIk
D Q.t C kPT / mod PT (3.26)

kQ
tIk
D bQ.t C kPT /=PT c (3.27)

For IEEE 802.16m turbo codes, their ARP interleavers in (1.3) are designed to be
compatible with the modulo mapping [20,56]; so (3.28) is always true wheneverPT

is equal to or less than 4.

fA.t C kPT / 6	 A.t C kPT C `/ .mod PT / j 0 < ` < PT g: (3.28)

Its controller is identical to that of the 3GPP LTE-Advanced turbo decoder using
parallel trellis stage level except that the address generators are replaced by the
circuits for executing (2.8) and (2.9) with ı D PT . There is also a transition from
A.tCkPT / to .tA

tIk
CkA

tIk
PT / by (3.29) and (3.30). When PT is a power of two, the

control signals can be derived directly from the binary expression of A.t C kPT /.

tA
tIk
D A.t C kPT / mod PT (3.29)

kA
tIk
D bA.t C kPT /=PT c (3.30)

After the turbo decoder exploits this parallel architecture, the execution time (
x

and
y) are scaled down by a factor of PT , whereas the pipeline delay and memory
access time (
a and
b) stay the same. The operating efficiency becomes

�T D
y=PT

a C
b C
x=PT C
y=PT
D
y

PT .
a C
b/C
x C
y

: (3.31)

66 3 Turbo Decoder with Parallel Processing

The shorter execution time decreases the operating efficiency. Now the decoding
process takes .2 � I � N/=.PT � �T / cycles. To avoid overestimating throughput,
the variations in the critical path should be considered as well. We represent
the maximum clock frequency of this design as FT and rewrite the equation for
throughput calculation as

‚T D PT � 	 � FT � �T

2 � I : (3.32)

The parallel trellis stage level contributes a speedup of .PT � FT � �T /=.F � �/.
Because of the limited parallelism, the loss of efficiency is insignificant for large
N’s, and the discrepancy between the expected gain PT and the real speedup is
dominated by FT =F . For small N’s, even PT D 2 could cause a sharp drop in
operating efficiency, and the speedup would be far less than PT . The potential risk
is .PT � FT � �T / � .F � �/. This parallel architecture requires extreme caution
in use, particularly when the design has to process small blocks.

3.4 Hybrid Parallel Architecture

These three types of parallel architecture have their respective advantages and
disadvantages. Some of their features are different but complementary, so they can
be combined together and become suitable to a variety of conditions. Such a design
with hybrid parallel architecture contains PC separate groups of PS SISO decoders,
each of which runs the computations related toPT successive trellis stages per cycle;
and every group of SISO decoders deals with one codeword block. The overall
throughput is

‚H D PH � 	 � FH � �H

2 � I : (3.33)

The values of the essential factors affected by the hybrid parallel architecture are
given in (3.34)–(3.36). Its
y becomes .PS � PT / smaller than original execution
cycles, and the
x is reduced by a factor of PT . For the cases with fPC;PS;PT g > 1,
only PH increases, whereas both FH and �H decrease.

PH D PC � PS � PT (3.34)

FH D FT (3.35)

�H D
y=.PS � PT /

a C
b C
x=PT C
y=.PS � PT /
(3.36)

The product of PC and PS will be a constant number. It indicates how many SISO
decoders and memory modules are used. The practical design can adjust PC and
PS dynamically according to block size. While processing small blocks, it uses

3.5 State-of-the-Art Chip Implementation 67

higher PC and lower PS because the parallel turbo decoder level is harmless to
operating efficiency. Conversely, the decoding flows for large blocks prefer lower
PC and higher PS for the least cost in memory modules and the shorter latency.
If there is a shortage of high-frequency clock signal, the parallel trellis stage level
can help the design achieve better throughput.

The hybrid parallelism with PS > 1 and PT > 1 complicates the memory
mapping. Each of the PS memory modules consists of PT memory banks. The
basic constraints are PS j N and PT j M. As long as PT is divisible by 2, the
M0 in (3.7) is in breach of the second constraint. The parallel trellis stage level is
incompatible with the design applying the parallel SISO decoder level with modulo
mapping, so we only discuss the mixture of the division mapping in (3.2) and the
modulo mapping in (3.23) here. The data ri .0 � i < N/ will be stored in the t-th
memory bank of the s-th memory module under the transformation of (3.37); then
the simultaneous access to rsMCtCkPT for all possible pairs of .s; t/ and a given k can
be done easily.

fri) rsMCtCkPT j s D bi=Mc ; t D i mod PT ; k D b.i mod M/=PT cg (3.37)

The hybrid parallel architecture is typically subject to more strict constraints on
interleaving rules to circumvent the collision problem during the decoding rounds
for the permuted data sequence. The restrictions of the two parallel levels and the
prerequisite PT j M should be considered jointly. For 3GPP LTE-Advanced and
IEEE 802.16m turbo codes, either s ¤ s0 or t ¤ t 0 will fulfill at least one of (3.38)
and (3.39), where ….�/ stands for Q.�/ and A.�/. That is, every memory bank of
every memory module always receives exactly one request while the design accesses
fQrsMCtCkPT j 0 � s < PSI 0 � t < PT g.

b….sMC t C kPT /=Mc ¤

….s0MC t 0 C kPT /=M

˘
(3.38)

….sMC t C kPT / 6	 ….s0MC t 0 C kPT / .mod PT / (3.39)

The supportablePT is either 2 or 4, and it leads to fewer choices of PS at each block
size. As a result, the objective throughput and the interleaver parameters determine
which combination of these parallel levels is best.

3.5 State-of-the-Art Chip Implementation

The published turbo decoder chips with parallel architecture in [67–71] are aimed
at 3GPP LTE standard [14] and/or IEEE 802.16e standard [16], whose revisions are
3GPP LTE-Advanced standard and IEEE 802.16m standard respectively. The 3GPP
LTE turbo decoder in [67] outperforms the others in decoding speed. With the hybrid
of PS D 8 and PT D 2, its throughput can reach 390 Mb/s. Both designs in [68] and
[69] support all block sizes of 3GPP LTE turbo code. The former can reconfigure

68 3 Turbo Decoder with Parallel Processing

the parallelism .PS D f1; 2; 4; 8g/; the latter with PS D 4 can adaptively adjust the
iteration number, clock frequency, and supply voltage. The two designs in [70] and
[71] feature dual-mode architecture. Their decoders are regarded as the combination
of PS D 8 and PT D 2 for 3GPP LTE application and as PS D 8 for IEEE
802.16e application. High throughput, great flexibility, and variable functionality
are the major accomplishments of these works. Most of their techniques are still
successful in 3GPP LTE-Advanced and IEEE 802.16m turbo decoders, and higher
parallelism (PS � 8) will be the direct method toward faster speed. It implies
the increasing complexity and decreasing efficiency. The growing importance of
their solutions is especially apparent in the decoder chip implementation for next-
generation telecommunication systems.

Chapter 4
Low-Complexity Solution for Highly Parallel
Architecture

The complexity of highly parallel architecture depends on the parallelism, the
area of a single SISO decoder, and the apparatus for parallel data transmission.
Chapter 2 and 3 have given the guidelines of choosing proper processing schedule
and normalization method of the SISO decoder. Thus, the focus of this chapter
is on the circuits that interconnect SISO decoders and memory modules. The
trivial apparatus is the fully-connected network. It can offer arbitrary one-to-
one interconnection patterns. However, its area overhead escalates rapidly as PS

increases, and the routing congestion would be another crucial design issue. Many
research works have developed alternative solutions[72–75]. The networks in either
[72] or [73] can support any interleaver, while those in [74] and [75] are designed
for specific interleavers. In general, using application-specific networks to handle
data transmission between multiple sources and multiple destinations requires
simpler controllers and takes fewer clock cycles. For 3GPP LTE-Advanced and
IEEE 802.16m turbo decoders, such type of interconnection is preferable. Here
we will introduce the multistage network in [75] for the parallel design with QPP
interleavers. Despite some restrictions on the parameters, it is applicable to all
block sizes of the 3GPP LTE-Advanced turbo codes. We then present the apparatus,
founded on the same principle as [75], for the parallel design with ARP interleavers.
Both the cases with modulo mapping and division mapping will be mentioned.
For simplicity, our discussions only take the case that PS is a power of two
into consideration. In addition to the interconnection, this chapter illustrates how
to compensate performance in the highly parallel architecture without changing
window length. It avoids the search of appropriate L for each .N;PS/ and makes
the parallel architecture easier to use.

C.-C. Wong and H.-C. Chang, Turbo Decoder Architecture for Beyond-4G
Applications, DOI 10.1007/978-1-4614-8310-6__4,
© Springer Science+Business Media New York 2014

69

70 4 Low-Complexity Solution for Highly Parallel Architecture

4.1 Interconnection for Parallel Design with QPP
Interleavers

The multistage network for the parallel design with QPP interleavers functions like
a barrel shifter, so we also call it barrel-shift network. Figure 4.1 shows the networks
of interest, including the most powerful apparatus and the ingenious solution.
Extensions of these networks to other parallelism is straightforward. The fully-
connected network consists of PS�PS data links. It needs PS PS-to-1 multiplexers,
of which the s-th multiplexer uses sQ

sIj
in (3.4) as its selection signal. In a barrel-shift

network, the total number of data links is 2PS � log2 PS . There are PS � log2 PS

basic 2-to-1 multiplexers. At the `-th stage (0 � ` < log2 PS), the transmitted
data will be shifted upward by either 0 or 2` positions; besides, the s-th and the
.s C 2`/-th multiplexers have to share the same 1-bit selection signal to make sure
all data can be relayed to the next stage or destinations. The control signals for the
whole network add up to .PS�1/ bits. Clearly, the simpler barrel-shift network will
facilitate the implementation of a highly parallel turbo decoder.

The main task of the barrel-shift network is to establish the interconnection
between the sQ

sIj
-th memory module and the s-th SISO decoder. For each pair of

.s; sQ
sIj

/, the difference between the two indexes is indispensable for controlling data
transmission. We define this displacement value as

�sQ
sIj
D .sQ

sIj
� s/ mod PS : (4.1)

Memory
Modules

0

1

2

3

4

5

6

7

SISO
Decoders

0

1

2

3

4

5

6

7

Memory
Modules

0

1

2

3

4

5

6

7

SISO
Decoders

stage 0 stage 1 stage 2

0

1

2

3

4

5

6

7

a b

Fig. 4.1 Interconnection networks for the design with PS D 8. (a) Fully-connected network.
(b) Barrel-shift network

4.1 Interconnection for Parallel Design with QPP Interleavers 71

The following proposition that states the relations among all offset values is the
basis for the verification of usability of barrel-shift networks and for the generation
of selection signals for the component multiplexers.

Proposition 4.1. If the QPP interleaver parameters satisfy PS j N, 2 6 j f1, and 2 j
f2, then �sQ

sIj
is congruent to �sQ

sC2`
Ij

modulo 2`C1 for 0 � ` < log2 PS .

Proof. (a) From (3.5), the interleaved index j Q
sIj

can be calculated by subtracting a
multiple of M from Q.j /:

j Q
sIj
D f1j C f2j

2 � �M; (4.2)

where the integer � is independent of s.
(b) On replacing j Q

sIj
by (4.2) in (3.3), we obtain sQ

sIj
M as (4.3). Then we divide

both sides by M to get (4.4).

sQ
sIj

M D f1sMC f2s
2M2 C 2f2sMj C �M .mod N/ (4.3)

sQ
sIj
D f1s C f2s2MC 2f2sj C � .mod PS/ (4.4)

(c) The subsequent step is rewriting �sQ
sIj

in (4.1) with sQ
sIj

in (4.4):

�sQ
sIj
D .f1 � 1/s C f2s2MC 2f2sj C � .mod PS/: (4.5)

(d) After the substitution of .s C 2`/ for s in (4.5) and some adjustments, �sQ
sC2`

Ij

can be simplified to (4.6), where � is an integer.

�sQ
sC2`

Ij
D .f1 � 1/.s C 2`/C f2.s C 2`/2MC 2f2.s C 2`/j C �

D �sQ
sIj
C 2` Œ.f1 � 1/C f2.2

` C 2s/MC 2f2j �
„ ƒ‚ …

�

D �sQ
sIj
C 2`� .mod PS/ (4.6)

(e) Because of 2 j .f1 � 1/ and 2 j f2, the � is always an even number, and
2`� is divisible by 2`C1. With the precondition of PS , 2`C1 j PS is true for
0 � ` < log2 PS . Consequently, we have

�sQ
sIj
	 �sQ

sC2`
Ij

.mod 2`C1/: (4.7)

�

In fact, the �sQ
sIj

modulo 2`C1 means the displacement of data in the first `

stages of a barrel-shift network. The relation in (4.7) completely fits the behavior
of the proposed apparatus. We let �s

Œ`�

sIj be the `-th least significant bit of �sQ
sIj

.
It can be directly used to control the s-th multiplexer at the `-th stage. Due to
(4.7), f�sQ

sIj
j 0 � s < PS=2g is sufficient to control all multiplexers. The 188

sets of .f1; f2/ of 3GPP LTE-Advanced standard can fulfill the constraints in the

72 4 Low-Complexity Solution for Highly Parallel Architecture

01234 01234 01234cycle cycle
stage 0 stage 1 stage 2

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12
r13
r14
r15
r16
r17
r18
r19
r20
r21
r22
r23
r24
r25
r26
r27
r28
r29
r30
r31
r32
r33
r34
r35
r36
r37
r38
r39

r0
r13
r6
r19
r12
r25
r18
r31
r24
r37
r30
r3
r36
r9
r2
r15
r8
r21
r14
r27
r20
r33
r26
r39
r32
r5
r38
r11
r4
r17
r10
r23
r16
r29
r22
r35
r28
r1
r34
r7

r0r3r1r4r2

r0r3r1r4r2

r5r8r6r9r7

r10r13r11r14r12

r15r18r16r19r17

r20r23r21r24r22

r25r28r26r29r27

r30r33r31r34r32

r35r38r36r39r37

r5r8r6r9r7

r10r13r11r14r12

r15r18r16r19r17

r20r23r21r24r22

r25r28r26r29r27

r30r33r31r34r32

r35r38r36r39r37

r0r3r6r9r2

r5r8r11r14r7

r0r3r6r9r2

r5r8r11r14r7

r10r13r16r19r12

r15r18r21r24r17

r20r23r26r29r22

r25r28r31r34r27

r30r33r36r39r32

r35r38r1r4r37

r10r13r16r19r12

r15r18r21r24r17

r20r23r26r29r22

r25r28r31r34r27

r30r33r36r39r32

r35r38r1r4r37

r0r13r6r19r12

r5r18r11r24r17

r10r23r16r29r22

r15r28r21r34r27

r0r13r6r19r12

r5r18r11r24r17

r10r23r16r29r22

r15r28r21r34r27

r20r33r26r39r32

r25r38r31r4r37

r30r3r36r9r2

r35r8r1r14r7

r20r33r26r39r32

r25r38r31r4r37

r30r3r36r9r2

r35r8r1r14r7

Δ
s

[0
]

0
,j

Δ
s

[0
]

0
,j

Δ
s

[0
]

0
,j

Δ
s

[0
]

0
,j

Δ
s

[0
]

0
,j

Δ
s

[0
]

0
,j

Δ
s

[0
]

0
,j

Δ
s

[0
]

0
,j

Δ
s

[1
]

0
,j

Δ
s

[1
]

1
,j

Δ
s

[1
]

0
,j

Δ
s

[1
]

1
,j

Δ
s

[1
]

0
,j

Δ
s

[1
]

1
,j

Δ
s

[1
]

0
,j

Δ
s

[1
]

1
,j

Δ
s

[2
]

0
,j

Δ
s

[2
]

1
,j

Δ
s

[2
]

2
,j

Δ
s

[2
]

3
,j

Δ
s

[2
]

0
,j

Δ
s

[2
]

1
,j

Δ
s

[2
]

2
,j

Δ
s

[2
]

3
,j

Fig. 4.2 Parallel data transmission at the decoding rounds for permuted sequence: the 3GPP LTE-
Advanced turbo code with N D 40, PS D 8, and division mapping (.f1; f2/ D .3; 10/)

Table 4.1 Interleaving indexes and displacement values of the 3GPP LTE-Advanced turbo code
with N D 40, PS D 8, and division mapping

j D 0 j D 1 j D 2 j D 3 j D 4

sQ
sIj

, j Q
sIj

�sQ
sIj

sQ
sIj

, j Q
sIj

�sQ
sIj

sQ
sIj

, j Q
sIj

�sQ
sIj

sQ
sIj

, j Q
sIj

�sQ
sIj

sQ
sIj

, j Q
sIj

�sQ
sIj

s D 0 0 , 0 0 2 , 3 2 1 , 1 1 3 , 4 3 2 , 2 2

s D 1 5 , 0 4 3 , 3 2 6 , 1 5 4 , 4 3 7 , 2 6

s D 2 6 , 0 4 0 , 3 6 7 , 1 5 1 , 4 7 0 , 2 6

s D 3 3 , 0 0 1 , 3 6 4 , 1 1 2 , 4 7 5 , 2 2

s D 4 4 , 0 0 6 , 3 2 5 , 1 1 7 , 4 3 6 , 2 2

s D 5 1 , 0 4 7 , 3 2 2 , 1 5 0 , 4 3 3 , 2 6

s D 6 2 , 0 4 4 , 3 6 3 , 1 5 5 , 4 7 4 , 2 6

s D 7 7 , 0 0 5 , 3 6 0 , 1 1 6 , 4 7 1 , 2 2

above proposition, so the turbo decoder can utilize this barrel-shift network for its
parallel data transmission. Figure 4.2 gives an example of parallel data transmission
in the 3GPP LTE-Advanced turbo decoder using division mapping. This figure
shows which input of each multiplexer is selected at each cycle. For the design
with PS D 8, the selection signals include f�s

Œ0�

0Ij g at the first stage, f�s
Œ1�

0Ij ; �s
Œ1�

1Ij g
at the second stage, and f�s

Œ2�

0Ij ; �s
Œ2�

1Ij ; �s
Œ2�

2Ij ; �s
Œ2�

3Ij g at the third stage. Table 4.1 lists

4.2 Interconnection for Parallel Design with ARP Interleavers 73

sQ
sIj

, j Q
sIj

, and �sQ
sIj

of all combinations of .s; j / for easy reference. In the proof of
Proposition 4.1, the equation (4.6) reveals another way to obtain all selection signals.
Rather than calculating f�sQ

sIj
j 0 � s < PS=2g by (3.4), the controller first finds

�sQ
0Ij

and then adds an offset value to it. The corresponding calculation involves
merely log2 PS bits and can be done quickly.

4.2 Interconnection for Parallel Design with ARP
Interleavers

4.2.1 Parallel Architecture Using Modulo Mapping

The property like (4.7) is the key to the usability of barrel-shift networks. When the
turbo decoder with ARP interleavers stores data by the modulo mapping as (3.6),
the s-th SISO decoder will access data from the OsA

sIj
-th memory module during the

decoding rounds for permuted data sequence, and the definition of displacement
becomes

�OsA
sIj
D .OsA

sIj
� s/ mod PS : (4.8)

For this case, its parallelism must comply with 4 j PS and PS j N; and the sub-block
size M0 in (3.7) is always an odd number. The following proposition introduces the
required parameters for the desired property.

Proposition 4.2. If the ARP interleaver parameters satisfy

8

<̂

:̂

2 6 j " (4.9a)

2 j .g.sM0

Cj ˙1/ mod 4 � g.sM0

Cj / mod 4/ (4.9b)

4 j .g.sM0

Cj ˙2/ mod 4 � g.sM0

Cj / mod 4/; (4.9c)

then �OsA
sIj

is congruent to �OsA
sC2`

Ij
modulo 2`C1 for 0 � ` < log2 PS .

Proof. (a) After the expansion of (3.10), OsA
sIj

can be rewritten as

OsA
sIj
D "sM0 C "j C g.sM0

Cj / mod 4 .mod PS/: (4.10)

(b) On replacing OsA
sIj

with (4.10) in (4.8), we get

�OsA
sIj
D ."M0 � 1/s C "j C g.sM0

Cj / mod 4 .mod PS/: (4.11)

(c) We substitute .sC2`/ for s in (4.11), modify the equation, and express �OsA
sC2`

Ij

as the summation of �OsA
sIj

and other terms.

74 4 Low-Complexity Solution for Highly Parallel Architecture

�OsA
sC2`

Ij
D .s C 2`/."M0 � 1/C "j C g.sM0

C2`M0

Cj / mod 4

D �OsA
sIj
C 2`."M0 � 1/C g.sM0

C2`M0

Cj / mod 4 � g.sM0

Cj / mod 4
„ ƒ‚ …

�0

D �OsA
sIj
C 2`."M0 � 1/C �0 .mod PS/ (4.12)

(d) The constraints 2 6 j " and 2 6 jM0 lead to 2 6 j ."M0/; that is, ."M0�1/ is a multiple
of 2. Hence, 2`."M0 � 1/ is divisible by 2`C1.

(e) Each constituent term in �0 is one of fg0; g1; g2; g3g. The result of �0 relies on
2`M0 modulo 4. Because of 2 6 j M0, M0 is congruent to either 1 or �1 modulo
4, and we have

2`M0 	 ˙2` .mod 4/:

There are three possible results of �0:

�0 D
8
<

:

g.sM0

Cj ˙1/ mod 4 � g.sM0

Cj / mod 4 if ` D 0;

g.sM0

Cj ˙2/ mod 4 � g.sM0

Cj / mod 4 if ` D 1;

0 if ` � 2:

For ` � 2, the value of 2`M0 modulo 4 is 0; therefore, �0 is 0 and can be omitted
from (4.12). The constraints (4.9b) and (4.9c) promise that 2`C1 j �0 can hold
true for ` D 0 and ` D 1 respectively.

(f) With 2`C1 j .2`."M0 � 1/ C �0/ and 2`C1 j PS , the relation in (4.13) can be
derived from (4.12).

�OsA
sIj
	 �OsA

sC2`
Ij

.mod 2`C1/ (4.13)

�

For IEEE 802.16m turbo codes, all 39 sets of ."; g0; g1; g2; g3/ can fulfill
these constraints in Proposition 4.2. Notice that (4.9b) requires the examination
of fjg0 � g1j; jg1 � g2j; jg2 � g3j; jg3 � g0jg; whereas (4.9c) necessitates the check
on fjg0 � g2j; jg1 � g3jg. Figure 4.3 illustrates how to transmit data from multiple
memory modules with module mapping to multiple SISO decoders for N D 24

and PS D 4. Here each multiplexer is labeled with its selection signal �OsŒ`�

sIj
, the

`-th bit (from right) of �OsA
sIj

. Table 4.2 details the indexes and displacement of
this example. Unlike division mapping, the modulo mapping also complicates the
parallel data transmission of original data sequence. However, we can regard it as a
special case of Proposition 4.2, whose " is 1 and all of fg0; g1; g2; g3g are zeroes.
The barrel-shift network is therefore sufficient to support such parallel architecture
at every decoding round.

4.2 Interconnection for Parallel Design with ARP Interleavers 75

0123456 0123456cycle cycle
stage 0 stage 1

0

1

2

3

0

1

2

3

r0
r4
r8
r12
r16
r20
r1
r5
r9
r13
r17
r21
r2
r6
r10
r14
r18
r22
r3
r7
r11
r15
r19
r23

r1r18r11r4r21r14r7
r0r17r10r3r20r13r6
r23r16r9r2r19r12r5
r22r15r8r1r18r11r4

r0r16r8r4r20r12r4

r0r16r8r4r20r12r4

r1r17r9r1r21r13r5

r22r18r10r2r18r14r6

r23r15r11r3r19r11r7

r1r17r9r1r21r13r5

r22r18r10r2r18r14r6

r23r15r11r3r19r11r7

r1r16r9r4r21r12r5

r22r17r10r1r18r13r6

r1r16r9r4r21r12r5

r22r17r10r1r18r13r6

r23r18r11r2r19r14r7

r0r15r8r3r20r11r4

r23r18r11r2r19r14r7

r0r15r8r3r20r11r4

Δ
s

[0
]

0
,j

Δ
s

[0
]

0
,j

Δ
s

[0
]

0
,j

Δ
s

[0
]

0
,j

Δ
s

[1
]

0
,j

Δ
s

[1
]

1
,j

Δ
s

[1
]

0
,j

Δ
s

[1
]

1
,j

Fig. 4.3 Parallel data transmission at the decoding rounds for permuted sequence: the IEEE
802.16m turbo code with N D 24, PS D 4, and modulo mapping (."; g0; g1; g2; g3/ D
.5; 1; 13; 1; 13/)

Table 4.2 Interleaving indexes and displacement values of the IEEE 802.16m turbo code
with N D 24, PS D 4, and modulo mapping

j D 0 j D 1 j D 2 j D 3 j D 4 j D 5 j D 6

OsA
sIj

; O|A
sIj

�OsA
sIj

OsA
sIj

; O|A
sIj

�OsA
sIj

OsA
sIj

; O|A
sIj

�OsA
sIj

OsA
sIj

; O|A
sIj

�OsA
sIj

OsA
sIj

; O|A
sIj

�OsA
sIj

OsA
sIj

; O|A
sIj

�OsA
sIj

OsA
sIj

; O|A
sIj

�OsA
sIj

s D 0 1,0 1 2,4 2 3,2 3 0,1 0 1,5 1 2,3 2 3,1 3
s D 1 0,0 3 1,4 0 2,2 1 3,0 2 0,5 3 1,3 0 2,1 1
s D 2 3,5 1 0,4 2 1,2 3 2,0 0 3,4 1 0,3 2 1,1 3
s D 3 2,5 3 3,3 0 0,2 1 1,0 2 2,4 3 3,2 0 0,1 1

4.2.2 Parallel Architecture Using Division Mapping

With the same procedure, we can verify whether the barrel-shift network is
applicable to the design with ARP interleavers and division mapping. Now the
displacement is redefined as

�sA
sIj
D .sA

sIj
� s/ mod PS : (4.14)

The corresponding requirements is given in the following proposition.

Proposition 4.3. If the ARP interleaver parameters satisfy

(
2 6 j " (4.15a)

g.sMCj / mod 4 	 gj mod 4 .mod M/ (4.15b)

then �sA
sIj

is congruent to �sA
sC2`

Ij
modulo 2`C1 for 0 � ` < log2 PS .

76 4 Low-Complexity Solution for Highly Parallel Architecture

Proof. (a) From (3.15), the interleaved index j A
sIj

can be calculated by subtracting
a multiple of M from A.j /:

j A
sIj
D "j C g.sMCj / mod 4 � �0M: (4.16)

Because of (4.15b), fj A
0Ij

; j A
1Ij

; : : : ; j A
PS�1Ij

g are the same, and the integer �0 is
independent of s.

(b) On replacing j A
sIj

by (4.16) in (3.13), we obtain sA
sIj

M as (4.17). Then we get a
new expression of sA

sIj
by dividing both sides of (4.17) by M.

sA
sIj

M D "sMC �0M .mod N / (4.17)

sA
sIj
D "s C �0 .mod PS/ (4.18)

(c) The subsequent step is rewriting �sA
sIj

in (4.14) with sA
sIj

in (4.18):

�sA
sIj
D ." � 1/s C �0 .mod PS/: (4.19)

(d) We substitute .s C 2`/ for s in (4.19) and then simplify it to (4.20).

�sA
sC2`

Ij
D ." � 1/.s C 2`/C �0

D �sA
sIj
C 2`." � 1/ .mod PS/ (4.20)

(e) The constraint (4.15a) implies that 2 is a factor of ." � 1/, and 2`." � 1/ is
divisible by 2`C1. Moreover, PS can be divided by 2`C1 for 0 � ` < log2 PS .
Consequently, we have.

�sA
sIj
	 �sA

sC2`
Ij

.mod 2`C1/: (4.21)

�

The constraint (4.15b) is identical with (3.12). Hence, the parameter sets of
IEEE 802.16m turbo codes that support division mapping can definitely allow for
the use of barrel-shift networks. Figure 4.4 provides an example of the case with
N D 24 and PS D 4, and Table 4.3 gives the essential information about this
parallel data transmission. The `-th bit of �sA

sIj
is symbolized as �LsŒ`�

sIj
here. Since

(4.21) indicates that both the s-th and the .s C 2`/-th multiplexers at the `-th stage
are controlled by �LsŒ`�

sIj
for 0 � ` < log2 PS , the design in this example uses

f�LsŒ0�

0Ij
; �LsŒ1�

0Ij
; �LsŒ1�

1Ij
g for all multiplexers. After calculating �s0Ij with (3.14), we

can employ (4.20) to get the other displacement values. The offset 2`." � 1/ in this
equation is a constant. Thanks to this feature, the generation of selection signals
becomes much simpler.

Figures 4.3 and 4.4 consider the shortest block of IEEE 802.16m turbo codes
under the same parallelism but distinct memory mapping. Although they store
and transmit data in different manners, there are lots of similarities in their

4.3 Performance Compensation for Parallel Design 77

cycle cycle
stage 0 stage 1

0

1

2

3

0

1

2

3

r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12
r13
r14
r15
r16
r17
r18
r19
r20
r21
r22
r23

r1
r18
r11
r4
r21
r14
r7
r0
r17
r10
r3
r20
r13
r6
r23
r16
r9
r2
r19
r12
r5
r22
r15
r8

r1r0r5r4r3r2

r1r0r5r4r3r2

r7r6r11r10r9r8

r13r12r17r16r15r14

r19r18r23r22r21r20

r7r6r11r10r9r8

r13r12r17r16r15r14

r19r18r23r22r21r20

r1r6r11r4r9r2

r7r12r17r10r15r8

r1r6r11r4r9r2

r7r12r17r10r15r8

r13r18r23r16r21r14

r19r0r5r22r3r20

r13r18r23r16r21r14

r19r0r5r22r3r20

Δ
š

[0
]

0
,j

Δ
š

[0
]

0
,j

Δ
š

[0
]

0
,j

Δ
š

[0
]

0
,j

Δ
š

[1
]

0
,j

Δ
š

[1
]

1
,j

Δ
š

[1
]

0
,j

Δ
š

[1
]

1
,j

012345 012345

Fig. 4.4 Parallel data transmission at the decoding rounds for permuted sequence: the IEEE
802.16m turbo code with N D 24, PS D 4, and division mapping (."; g0; g1; g2; g3/ D
.5; 1; 13; 1; 13/)

Table 4.3 Interleaving indexes and displacement values of the IEEE 802.16m turbo code with
N D 24, PS D 4, and division mapping

j D 0 j D 1 j D 2 j D 3 j D 4 j D 5

sA
sIj

, j A
sIj

�sA
sIj

sA
sIj

, j A
sIj

�sA
sIj

sA
sIj

, j A
sIj

�sA
sIj

sA
sIj

, j A
sIj

�sA
sIj

sA
sIj

, j A
sIj

�sA
sIj

sA
sIj

, j A
sIj

�sA
sIj

s D 0 0 , 1 0 3 , 0 3 1 , 5 1 0 , 4 0 3 , 3 3 2 , 2 2

s D 1 1 , 1 0 0 , 0 3 2 , 5 1 1 , 4 0 0 , 3 3 3 , 2 2

s D 2 2 , 1 0 1 , 0 3 3 , 5 1 2 , 4 0 1 , 3 3 0 , 2 2

s D 3 3 , 1 0 2 , 0 3 0 , 5 1 3 , 4 0 2 , 3 3 1 , 2 2

core component circuits, including the barrel-shift network. By integration of the
controllers over memory modules and barrel-shift networks, the IEEE 802.16m
turbo decoder that supports both types of memory mappings is feasible.

4.3 Performance Compensation for Parallel Design

The less reliable path metric initialization of smaller sub-blocks is the major cause
of inferior performance of the turbo decoder with PS > 1. In Chap. 3, we utilize the
˛.SsM/ at previous iterations to reinforce forward metric calculation and change L to
enhance backward metric calculation. This method is successful for almost all cases.
However, the proper L varies with different M’s, and its value must be found in
advance. To minimize such effort, this section presents another methodical approach
which permits consistent window length in any parallelism. It could be viewed as
a full hybrid of the dummy metric calculation in [42] and the compensation from
previous metrics in [43, 44] because the parallel design makes use of both forward
and backward metrics at the boundary of every sub-block. Figure 4.5 shows how the

78 4 Low-Complexity Solution for Highly Parallel Architecture

previous iteration current iteration

βd α β LLR

βd α β LLR

βd α β LLR

βd α β LLR

βd

βd

βd

βd

α

α

βd

β

α

W0

W1

(s
+

1)
-t

h
su

b-
bl

oc
k

W M/L 1

W M/L 2

s-
th

su
b-

bl
oc

k

Fig. 4.5 Path metric transmission between two parallel SISO decoders

SISO decoder updates its path metrics from the adjacent one. The ˇd
0 and ˛0 are

normal initialization procedures, while ˇ0 acts as a supplementary compensation.
As depicted in the figure, the ˇd .SsM/ of the s-th sub-block at the current iteration
is initialized with the ˇ.SsM/ of the .s C 1/-th sub-block at the previous iteration
instead of equal probability. The design will need extra buffers with a capacity of
16%.˛.Si //�PS bits to support this ˇ0 compensation. Since the reliability of dummy
backward metric calculation is raised, the problem caused by insufficient window
length is relieved.

Figure 4.6 shows the fixed-point simulation results of practical decoders that
adopt the above approach. The L is fixed in the examples of the same N except
for too small sub-blocks. From these results, the performance of the designs with
PS > 1 is close to that of non-parallelized turbo decoders. Even though the last
window of every sub-block has a length of merely 1 or 2, the worst degradation
is less than 0:3 dB at the BER of 10�6. Compared to the results in Fig. 3.2, the
ˇ0 compensation can achieve similar improvements to the adjustment of L. This
approach also works well for the extreme case that has only one available L. For
instance, it can greatly reduce the performance loss of the 3GPP LTE-Advanced
turbo code with N D 40 and PS D 8 (M D L D 5). In summary, its distinct
advantages include the consistency in L and the suitability for any fN;PSg.

4.3 Performance Compensation for Parallel Design 79

N = 40, I = 4
PS = 1,L = 10
PS = 8,L = 05,
β compensation

N = 136, I = 4
PS = 1,L = 16
PS = 8,L = 16,
β compensation

N = 288, I = 4
PS = 1,L = 16
PS = 8,L = 16,
β compensation

N = 512, I = 5
PS = 1,L = 32
PS = 8,L = 32,
β compensation

N = 1024, I = 6
PS = 1,L = 32
PS = 8,L = 32,
β compensation

N = 6144, I = 8
PS = 1,L = 32
PS = 8,L = 32,
β compensation

N = 24, I = 4
PS = 1,L = 08
PS = 4,L = 07,
β compensation

N = 48, I = 4
PS = 1,L = 12
PS = 4,L = 12,
β compensation

N = 144, I = 4
PS = 1,L = 12
PS = 4,L = 12,
β compensation

N = 256, I = 5
PS = 1,L = 16
PS = 4,L = 16,
β compensation

N = 512, I = 6
PS = 1,L = 16
PS = 4,L = 16,
β compensation

N = 2400, I = 8
PS = 1,L = 16
PS = 4,L = 16,
β compensation

10−1

10−2

10−3

10−4

10−5

10−6

B
it

E
rr

or
 R

at
e

100

100

10−1

10−2

10−3

10−4

10−5

10−6

B
it

E
rr

or
 R

at
e

a

b

Eb/N0 (dB)

Eb/N0 (dB)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fig. 4.6 Fixed-point simulation results of 3GPP LTE-Advanced and IEEE 802.16m turbo
codes with various cases of .N; I;PS ; L/ and ˇ0 compensation: Max-Log-MAP algorithm
with � D 0:75 and .%I.ri /; %F.ri // D .3; 3/. (a) 3GPP LTE-Advanced turbo codes: N D
f40; 136; 288; 512; 1024; 6144g, PS D f1; 8g with division mapping, and normalization with
(2.15). (b) IEEE 802.16m turbo codes: N D f24; 48; 144; 256; 512; 2400g, PS D f1; 4g with
modulo mapping, and modulo normalization

Chapter 5
High-Efficiency Solution for Highly Parallel
Architecture

The data dependency between the constituent codes is the reason for imperfect
operating efficiency. Before the beginning of any decoding round (half-iteration),
the turbo decoder must renew all extrinsic information with the latest results to
get the maximum benefit of message-passing algorithm. Such a basic rule makes
the functional units idle for many clock cycles during the transition between
two consecutive decoding rounds. For the highly parallel architecture whose each
component SISO decoder frequently deals with small sub-blocks, these inactive
periods can be very detrimental to its throughput. In this chapter, we introduce
two methodologies able to fill the processing schedule with the tasks relating to
independent data. The first one is interlacing the decoding rounds for multiple
codeword blocks [74]. It could be applied to any turbo decoder; however, it might
cost more storage elements and take longer processing time. Our discussions will
point out in which cases the operating efficiency can be optimized with the least
overhead. The second solution is overlapping the decoding rounds for the original
and permuted data sequences [59, 76]. It is a clear violation of the rule mentioned
above and quite likely to create problems with decoding performance and memory
access. The former is due to the lack of reliable APP estimation for succeeding
decoding rounds; the latter occurs when the memory address for write operation of
unfinished decoding round coincides with that for read operation of new decoding
round. Based on the central idea in [59, 76], these problems can be avoided by
designing interleaving rules and arranging data execution order. Here we propose the
specialized QPP and ARP interleavers and show the modified processing schedule.
Moreover, the best suitable case will be highlighted. As the interleavers match the
propositions, the turbo decoder can maximize the usage of all functional units and
raise its throughput significantly.

C.-C. Wong and H.-C. Chang, Turbo Decoder Architecture for Beyond-4G
Applications, DOI 10.1007/978-1-4614-8310-6__5,
© Springer Science+Business Media New York 2014

81

82 5 High-Efficiency Solution for Highly Parallel Architecture

5.1 Processing Schedule with Interlaced Decoding Rounds

The concept of interlaced decoding rounds is derived from the parallel turbo decoder
level. Instead of adding physical SISO decoders, we utilize the inactive periods
of functional units in ordinary schedule to decode multiple codewords. When any
functional unit finishes the operations of current decoding round for one sub-block,
it soon starts the decoding round for the other equal-sized sub-block at the next clock
cycle. Figure 5.1 shows how to switch the processes of two independent sub-blocks,
each of which follows the typical schedule in Fig. 2.6. In this example with M D 4L,
the methodology increases the operating efficiency to 100%; however, it produces
a delay between two successive decoding rounds for the same codeword because
the process for the other codeword occupies the functional units. The interlaced
decoding rounds might extend the latency of a single codeword. On the other hand,
the overlapping interval can save much time for every two codewords. Actually, the
advantage will outweigh the timing overhead, and the decoder can get the decisions
of most codewords in a data stream much earlier.

For the design with interlaced decoding rounds, its operating efficiency �0
S and

cycle number per round � 0
R depends on the sub-block size. Every functional unit

spends
y or M cycles on one sub-block per decoding round. The inactive period

read data
from memories

calculation of
metrics or LLR

write results
to memories

-th codeword: original sequence
-th codeword: permuted sequence

(+ 1)-th codeword: original sequence
(+ 1)-th codeword: permuted sequence

βd α β LLR

βd α β LLR

βd α β LLR

βd α β LLR

βd

βd

βd

α

α

ββd α β LLR

βd α β LLR

βd α β LLR

βd α β LLR

LLR

LLR

LLR

β

βα

W0

W1

W2

W3

βd

α

β

LLR

W0

W0

W0

W0

W0

W0

W0

W0

W1

W1

W1

W1

W1

W1

W1

W1

W2

W2

W2

W2

W2

W2

W2

W2

W3

W3

W3

W3

W3

W3

W3

W3

W0 W1 W2

W0 W1

W0

W3

W3

W3

W2

W2W1

a

b

Fig. 5.1 Interlaced decoding rounds of two 4-windowed sub-blocks. (a) Processing schedule with
100% operating efficiency. (b) Corresponding active periods of main components

5.1 Processing Schedule with Interlaced Decoding Rounds 83

in ordinary schedule is .
a C
b C
x/, abbreviated to
a;b;x for convenience. It
is also the maximum interval in which the processes of two independent sub-
blocks overlap. Note that
y is a variable determined by N and PS ; whereas
a;b;x

is a constant for M � L. If
y is less than
a;b;x , or equivalently �S < 50%, all
functional units will have double operating efficiency but still become inactive for
a short while. Otherwise, �0

S will rise to 100%, but the next decoding round for
the same codeword will be postponed by .
y �
a;b;x/ cycles. Therefore we can
summarize �0

S in (5.1) and � 0
R in (5.2). Generally, .�0

S=�S/ is the upper bound of
throughput improvement. Because the decoding rounds for these two codewords
are joined together, total processing time is the necessary information for exact
throughput calculation. We denote the overall clock cycles for the designs with
ordinary schedule and interlaced rounds to finish decoding the `-th codeword by
�C`

and � 0
C`

respectively. Like �0
S and � 0

R, the value of � 0
C`

is also affected by
�S . The variations from � C`

to � 0
C`

are shown in (5.3) for ` D 0 and (5.4) for
` D 1. Although the increasing latency for the first codeword (� 0

C0
��C0

) is at most
.2I � 1/ � .
y �
a;b;x/ cycles, the reducing time to get the initial two codewords
(�C1
� � 0

C1
) is .2I � 1/� .
y �
a;b;x/ and .4I � 2/�
a;b;x cycles for �S < 50% and

�S � 50% respectively.

�SD
y=.
y C
a;b;x/) �0
SD

�
2
y=.
y C
a;b;x/

100%
if �S < 50%

if �S � 50%
(5.1)

� RD
yC
a;b;x) � 0
RD

�

yC
a;b;x

2
y

if �S < 50%

if �S � 50%
(5.2)

�C0
D2I�.
yC
a;b;x/)� 0

C0
D

�
2I�.
yC
a;b;x/

2I�2
y�
yC
a;b;x

if �S < 50%

if �S � 50%
(5.3)

�C1
D4I�.
yC
a;b;x/�
a;b;x)� 0

C1
D

�
2I�.
yC
a;b;x/C
y

2I�2
yC
a;b;x

if �S < 50%

if �S � 50%
(5.4)

We can use (5.4) to further derive the general forms of �C`
in (5.5) and � 0

C`
in

(5.6) for those `’s satisfying 2 j .` C 1/. That is, only even number of codewords
are considered. The actual speedup is �C`

=� 0
C`

. It will more closely approximate to
�0

S=�S as the design processes more codewords.

� C`
D.b`=2cC1/��C1

�b`=2c�
a;b;x (5.5)

� 0
C`
D.b`=2cC1/�� 0

C1
�b`=2c�
a;b;x (5.6)

Table 5.1 lists the gain and loss in efficiency and latency of this schedule as the
design processes six different small sub-blocks. All these calculations are based
on the following assumptions: I D 8, L D 32, and
a;b;x D 74. The examples with

84 5 High-Efficiency Solution for Highly Parallel Architecture

Table 5.1 Comparison between ordinary schedule and interlaced decoding rounds

M

Ordinary schedule Interlaced rounds

�S (%) �R �C0
�C1

�0

S
(%) � 0

R � 0

C0
� 0

C1

32 30 106 1696 3318 60 106 1696 1728

64 46 138 2208 4342 92 138 2208 2272

96 56 170 2720 5366 100 192 3050 3146

128 63 202 3232 6390 100 256 4042 4170

160 68 234 3744 7414 100 320 5034 5194

192 72 266 4256 8438 100 384 6026 6218

y <
a;b;x can achieve �0
S D 2�S without sacrificing � 0

C0
, while those with
y �
a;b;x

can get the maximum .�C1
� � 0

C1
/ equal to 2220. It is obvious that the extra delay

of the first codeword becomes much longer for larger sub-blocks. Consequently, we
prefer applying this modified schedule to those cases whose M’s are close to
a;b;x

so that the design can enjoy more benefits.

5.2 Processing Schedule with Overlapping Decoding Rounds

For successful overlapping decoding rounds, we must develop the interleaving
function and the processing schedule jointly. The window-wise strategy in [76]
is adopted here. All original data are divided equally into two window groups
fWI;WIIg according to their window indexes. Similarly, all permuted data are
classified into f QWI; QWIIg. Note that the total window number .N=L/ should be an
even number. The interleaver needs to map WI exactly onto either one of QWI or
QWII. It implies that WII and the remaining window group of permuted data will be

correlated with each other. Then we take the advantage of the schedule in [43, 44],
where all windows can be processed in arbitrary order by utilizing previous path
metrics. If the mapping is WI 7! QWI and WII 7! QWII, after proper arrangement,
the processes of WI and of WII can overlap with the processes of QWII and of
QWI respectively. Thus, the design using overlapping decoding rounds can prevent

memory hazards and great performance loss.
Both the classification methods and permutation rules are main topics of

interleaver design for overlapping decoding rounds. To support our discussion, the
i -th data, ri and Qri , will be denoted by, respectively, rsLCj and QrsLCj , indicating the
j -th data of the s-th window in either sequence. The expression is analogous to
(3.2). By replacing M with L, we can get Q.sL C j / from (3.3) and A.sL C j /

from (3.13). Since we are interested in the relation between window indexes, it is
necessary to find out sQ

sIj
by (3.4) and sA

sIj
by (3.14). Furthermore, the circular trellis

structure is treated as a prerequisite for a wider choice of QPP and ARP interleavers.
It allows the turbo decoder to process the rotated data sequence with an offset
:
ŒQr
; Qr
C1; : : : ; QrN�1; Qr0; : : : ; Qr
�1�. Without loss of generality, the range of
 is set to

5.2 Processing Schedule with Overlapping Decoding Rounds 85

0 �
 < L. We redefine this sequence as ŒQr 0
0
; Qr 0

1
; : : : ; Qr 0

N�1
� and express their data

indexes with the alternative form: s
.
/

sIj LC j .
/

sIj
. The connection between the normal

and new indexes is

sLC j D s.
/

sIj
LC j .
/

sIj
C
 .mod N/I (5.7)

so we can derive the conversions in (5.8) and (5.9).

j D j .
/

sIj
C
 .mod L / (5.8)

s D s.
/

sIj
C

$
j .
/

sIj
C

L

%

.mod
N
L

/ (5.9)

In this section, the windows are classified by their indexes (s.
/

sIj , sQ
sIj

, and sA
sIj

)
modulo 2. The determination of
 is one essential part of classification method.
We will present some constraints on interleavers and specify
 to guarantee that
certain relation between s

.
/

sIj and sQ
sIj

or sA
sIj

can hold true for 0 � s
.
/

sIj < .N=L/

and 0 � j .
/

sIj
< L. Based on these propositions, we can further plan the schedule

with overlapping decoding rounds and examine its speedup. The corresponding
error correction capability is the last issue. The comparison between the unusual
interleavers with restricted parameters and the normal interleavers defined in
standards will show to what extent the constraints affect performance.

5.2.1 QPP Interleaver Design for Overlapping Decoding
Rounds

The QPP interleaver design involves the parameters .f1; f2/, the window length L,
and the indexes .s

.
/

sIj ; j .
/

sIj
/. Our introduction starts with (5.10), the expansion of

(3.4) with M D L and PS D N=L.

sQ
sIj
D f1s C f2sLC 2f2sLj C

�
f1j C f2j

2

L

�

.mod
N
L

/ (5.10)

Under the precondition 2 j .N=L/, both sides in this equation are congruent
modulo 2. We impose two basic constraints, 2 6 j f1 and 2 j f2, to simplify it. The
first one implies that f1s is congruent to s modulo 2; while the second one makes
both f2sL and 2f2sLj modulo 2 equal 0. Thanks to these properties, (5.10) can be
rewritten as

sQ
sIj
	 s C

�
f1j C f2j

2

L

�

.mod 2/: (5.11)

86 5 High-Efficiency Solution for Highly Parallel Architecture

In the following two propositions, we state the major constraints on .f1; f2/ and
their respective
’s that can transform the summation in the right side of (5.11) into
s

.
/

sIj plus a constant number.

Proposition 5.1. If the QPP interleaver parameters satisfy

8

<̂

:̂

L j .f1 � 1/ (5.12a)

L j f2 (5.12b)

.f1 � 1/=L 	 f2=L .mod 2/ (5.12c)

and
 D 0, then sQ
sIj

is congruent to s
.
/

sIj modulo 2.

Proof. (a) We can factorize b.f1j C f2j
2/=Lc into

�
.f1 � 1/j

L
C f2j

2

L
C j

L

�

: (5.13)

(b) Because of (5.12a) and (5.12b), both .f1� 1/j=L and f2j
2=L are integers, and

they can be moved out from the floor function as

.f1 � 1/j

L
C f2j

2

L
C

�
j

L

�

: (5.14)

(c) If j is an odd number, .f1 � 1/j=L and f2j 2=L are congruent modulo 2 after
applying (5.12c); otherwise, they both contain a factor of 2. In either case, these
constraints make their summation always be an even integer; so we can view
the first two terms in (5.14) as 0 in modulo-2 arithmetic and only take account
of bj=Lc.

(d) The range of j (0 � j < L) implies 0 � j=L < 1 and bj=Lc D 0, that
is, the last term in (5.14) can be eliminated. As a result, b.f1j C f2j

2/=Lc is
congruent to 0 modulo 2. On employing this property in (5.11), sQ

sIj
is congruent

to s modulo 2.
(e) The conversion in (5.9) with
 D 0 means that s is exactly equal to s

.
/

sIj , so we
have

sQ
sIj
	 s.
/

sIj
.mod 2/: (5.15)

�

Proposition 5.2. If the QPP interleaver parameters satisfy

8

<̂

:̂

L j .f1 C 1/ (5.16a)

L j f2 (5.16b)

.f1 C 1/=L 	 f2=L .mod 2/ (5.16c)

and
 D 1, then sQ
sIj

is congruent to .s
.
/

sIj C 1/ modulo 2.

5.2 Processing Schedule with Overlapping Decoding Rounds 87

Proof. (a) First, b.f1j C f2j
2/=Lc is factorized into

�
.f1 C 1/j

L
C f2j

2

L
� j

L

�

: (5.17)

(b) Next, we substitute (5.17) for b.f1j C f2j 2/=Lc in (5.11). The constraints
(5.16a)–(5.16c) imply that the summation of the first two terms in (5.17) is
an even integer, so we have the following equality:

sQ
sIj
	 s C .f1 C 1/j

L
C f2j

2

L
C

�

� j

L

�

.mod 2/

	 s C
�

� j

L

�

.mod 2/: (5.18)

(c) The conversions in (5.8) and (5.9) with
 D 1 can change (5.18) into

sQ
sIj
	 s.
/

sIj
C

$
j .
/

sIj
C 1

L

%

C
$

� .j .
/

sIj
C 1/ mod L

L

%

.mod 2/; (5.19)

where the value of each floor function is dependent on j .
/

sIj
. The first floor

function generates 0 for 0 � j .
/

sIj
< .L� 1/ and 1 for j .
/

sIj
D .L� 1/; while the

second floor function equals�1 for 0 � j .
/

sIj
< .L�1/ and 0 for j .
/

sIj
D .L�1/.

Then we list all possible cases of (5.19):

sQ
sIj
	

(
s

.
/

sIj C 0 � 1 .mod 2/ if j .
/

sIj
¤ .L � 1/;

s
.
/

sIj C 1C 0 .mod 2/ if j .
/

sIj
D .L � 1/:

(5.20)

(d) Because 1 and .�1/ are congruent modulo 2, for every j .
/

sIj
, the summation of

the two floor functions in (5.19) modulo 2 is always 1. By merging both cases
in (5.20), we obtain

sQ
sIj
	 s.
/

sIj
C 1 .mod 2/ (5.21)

�

The decomposition of b.f1j C f2j 2/=Lc is the most critical step in proving
these propositions. Each set of constraints imposed on .f1; f2/ and L minimizes
the possible outcomes of this floor function. Although the number of outcomes
might be still more than one, we can use index transformation with a nonzero

to resolve it. Since (5.15) and (5.21) are valid for s
.
/

sIj rather than s, the practical
design should adjust the way of accessing memory to support the schedule with
overlapping decoding rounds.

88 5 High-Efficiency Solution for Highly Parallel Architecture

5.2.2 ARP Interleaver Design for Overlapping Decoding
Rounds

Analogous to the QPP interleaver design, we correlates the parameters of ARP
interleaver, ."; g0; g1; g2; g3/, with L to accomplish the design objective. The first
step is deriving (5.22) by expanding (3.14) and then replacing M with L and PS

with N=L.

sA
sIj
D "s C

�
"j C g.sLCj / mod 4

L

�

.mod
N
L

/: (5.22)

This equality is still valid under modulo-2 arithmetic. There are also two basic
constraints: 2 6 j " and 4 j L; the first one indicates that "s and s are congruent
modulo 2, and the second one means g.sLCj / mod 4 D gj mod 4. With these properties,
(5.22) can be modified into

sA
sIj
	 s C

�
"j C gj mod 4

L

�

.mod 2/: (5.23)

The following two propositions give the major constraints on ."; g0; g1; g2; g3/ and
their respective
’s to transform the summation in the right side of (5.23) into s

.
/

sIj

plus a constant number.

Proposition 5.3. If the ARP interleaver parameters satisfy

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

L j ."� 1/ (5.24a)

g0 	 g1 	 g2 	 g3 .mod L/ (5.24b)

bg0=Lc 	 bg2=Lc .mod 2/ (5.24c)

bg1=Lc 	 bg3=Lc .mod 2/ (5.24d)

." � 1/=L 	 bg0=Lc C bg1=Lc .mod 2/ (5.24e)

and

 D L � .g0 mod L/; (5.25)

then sA
sIj

is congruent to .s
.
/

sIj C bg0=Lc C 1/ modulo 2.

Proof. (a) We first factorize "j and gj mod 4 separately. It is straightforward to
replace "j with the summation of ." � 1/j and j . For the decomposition of
gj mod 4, the division of gj mod 4 by L, whose quotient is bgj mod 4=Lc and remainder
is gj mod 4 modulo L, is exploited to get

gj mod 4 D
�

gj mod 4

L

�

� LC ..gj mod 4/ mod L/: (5.26)

5.2 Processing Schedule with Overlapping Decoding Rounds 89

The constraint (5.24a) implies that ." � 1/j=L is an integer, and bgj mod 4=Lc
is trivially an integer. After substituting these results back to (5.23), we can
therefore obtain

sA
sIj
	 sC ." � 1/j

L
C

�
gj mod 4

L

�

C
�

j

L
C .gj mod 4/ mod L

L

�

.mod 2/: (5.27)

(b) Then we examine all cases of (5.27). If j is divisible by 2, ." � 1/j=L also
contains a factor of 2. Since gj mod 4 is either g0 or g2 now, the constraints (5.24b)
and (5.24c) promise that, for any even j , (5.27) can be rewritten as (5.28), where
the terms in the right side are simplified to .s C �0 C �0/.

sA
sIj
	 s C 0 C

�
g0

L

�

„ ƒ‚ …
�0

C
�

j

L
C g0 mod L

L

�

„ ƒ‚ …
�0

.mod 2/ (5.28)

If j modulo 2 is 1, ." � 1/j=L modulo 2 become independent of j , and the
possible values of gj mod 4 include g1 and g3. Under this condition, we apply
(5.24b) and (5.24d) so that, for any odd j , (5.29) is an alternative to (5.27).
This equation is also expressed as .s C �1 C �1/ here.

sA
sIj
	 s C ." � 1/

L
C

�
g1

L

�

„ ƒ‚ …
�1

C
�

j

L
C g1 mod L

L

�

„ ƒ‚ …
�1

.mod 2/ (5.29)

In fact, we can infer from (5.24e) that �0 and �1 are congruent modulo 2.
Moreover, (5.24b) suggests that the constant terms inside �0 and �1 are the
same. Hence, (5.28) and (5.29) both can be used to find the relation between
sA

sIj
and s for all j ’s.

(c) On substituting (5.8) for j , (5.9) for s, and (5.25) for
, the right side of (5.28)
can be converted into

s.
/

sIj
C

�
g0

L

�

C
$

j .
/

sIj
C

L

%

„ ƒ‚ …
�2

C
�

.j .
/

sIj
C
/ mod L

L
C L �

L

�

„ ƒ‚ …
�2

; (5.30)

where we express g0 modulo L by .L�
/ and denote the last two floor functions
by �2 and �2 respectively. The variable j .
/

sIj
affects the outcomes of �2 and �2.

If j .
/

sIj
is less than .L �
/, we can get upper and lower bounds of the terms

involving j .
/

sIj
as (5.31); otherwise, we derive (5.32).

0�j .
/

sIj
<L �
)

(

� j .
/

sIj
C
 <L

�.j .
/

sIj
C
/ mod L<L

)

(5.31)

90 5 High-Efficiency Solution for Highly Parallel Architecture

L>j .
/

sIj
�L �
)

(
L� j .
/

sIj
C
 <LC

0�.j .
/

sIj
C
/ mod L<

)

(5.32)

Based on these derivations, �2 and �2 can be determined as

(
�2 D 0 and �2 D 1 for 0 � j .
/

sIj
< L �
;

�2 D 1 and �2 D 0 for L > j .
/

sIj
� L �
:

(5.33)

In either case, the summation of �2 and �2 is 1. Consequently, we have

sA
sIj
	 s.
/

sIj
C

�
g0

L

�

C 1 .mod 2/: (5.34)

�

Proposition 5.4. If the ARP interleaver parameters satisfy

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

L j ."C 1/ (5.35a)

g0 	 g1 	 g2 	 g3 6	 .L� 1/ .mod L/ (5.35b)

bg0=Lc 	 bg2=Lc .mod 2/ (5.35c)

bg1=Lc 	 bg3=Lc .mod 2/ (5.35d)

."C 1/=L 	 bg0=Lc C bg1=Lc .mod 2/ (5.35e)

and

 D ..g0 C 1/ mod L/; (5.36)

then sA
sIj

is congruent to .s
.
/

sIj C bg0=Lc C 1/ modulo 2.

Proof. (a) The initial step is factorizing "j into the summation of ." C 1/j and
.�j /. Because of (5.35a), ."C1/j=L is an integer. Furthermore, the substitution
of (5.26) for gj mod 4 results in another integer bgj mod 4=Lc. By moving these
integers out from the floor function in (5.23), we have

sA
sIj
	 sC ."C 1/j

L
C

�
gj mod 4

L

�

C
�

.gj mod 4/ mod L
L

� j

L

�

.mod 2/: (5.37)

(b) The subsequent step is examining (5.37) for all j ’s. If j modulo 2 is 0, we treat
."C 1/j=L as 0 under modulo-2 arithmetic; otherwise, we replace the variable
j within ."C1/j=L by 1. In addition, the three constraints (5.35b), (5.35c), and
(5.35d) mean that gj mod 4 and g.j C2/ mod 4 are interchangeable in (5.37). Hence, we
can rewrite (5.37) as .sC�0

0
C�0

0
/ in (5.38) for any even j and as .sC�0

1
C�0

1
/

in (5.39) for any odd j .

5.2 Processing Schedule with Overlapping Decoding Rounds 91

sA
sIj
	 s C 0 C

�
g0

L

�

„ ƒ‚ …
�0

0

C
�

g0 mod L
L

� j

L

�

„ ƒ‚ …
�0

0

.mod 2/ (5.38)

sA
sIj
	 s C ."C 1/

L
C

�
g1

L

�

„ ƒ‚ …
�0

1

C
�

g1 mod L
L

� j

L

�

„ ƒ‚ …
�0

1

.mod 2/ (5.39)

With (5.35e), �0

0
modulo 2 equals �0

1
modulo 2. Besides, (5.35b) implies �0

0

and �0

1
have identical constant terms. Thus, (5.38) and (5.39) are both valid for

describing the relation between sA
sIj

and s for any j .
(c) The last step is making substitutions with (5.8), (5.9), and (5.36); then we

modify the right side of (5.38) into

s.
/

sIj
C

�
g0

L

�

C
$

j .
/

sIj
C

L

%

„ ƒ‚ …
�0

2

C
�

 � 1

L
� .j .
/

sIj
C
/ mod L

L

�

„ ƒ‚ …
�0

2

.mod 2/;

(5.40)
where g0 modulo L is represented as .
�1/, and the last two floor functions are
denoted by �0

2
and �0

2
respectively. From the derivations in (5.31) and (5.32),

we can further develop (5.41) and (5.42). Note that the inequality in (5.35b),
that leads to 1 �
 � .L � 1/, can prevent .
 � 1/ from being .L � 1/ and
contradicting (5.41) and prevent .
�1/ from being�1 and contradicting (5.42).

0�j .
/

sIj
<L �
) f�1�.
 � 1/�..j .
/

sIj
C
/ mod L/>
 � 1 � Lg (5.41)

L>j .
/

sIj
�L �
) f�1<.
 � 1/�..j .
/

sIj
C
/ mod L/�
 � 1 g (5.42)

As a result, we can get �0

2
and �0

2
as

(
�0

2
D 0 and �0

2
D �1 for 0 � j .
/

sIj
< L �
;

�0

2
D 1 and �0

2
D 0 for L > j .
/

sIj
� L �
:

(5.43)

Since the summation of �0

2
and �0

2
is always 1, (5.40) is equivalent to .s

.
/

sIj C
bg0=Lc C 1/, and (5.34) holds true for 0 � j .
/

sIj
< L.

�

Propositions 5.3 and 5.4 mainly differ in the constraints on ", which affect
the factorization in their proofs; but they impose almost the same constraints on
.g0; g1; g2; g3/. In either proposition, the value of
 and the relation between sA

sIj

and s
.
/

sIj varies with g0 and L, so we need a more flexible controller that can handle
memory access according to input parameters. If we set g0 as a constant such as the

92 5 High-Efficiency Solution for Highly Parallel Architecture

read data
from memories

calculation of
metrics or LLR

write results
to memories

decoding round for
original sequence

decoding round for
permuted sequence

α β LLR

α β LLR

α β LLR

α β LLR

α β LLR

α β LLR

α β LLR

α β LLR

α

α

α

β

β

LLR

LLRβ

LLR

W0

W1

W2

W3

α

β

LLR

W0

W0

W0

W0

W0

W0

W2

W2

W2

W2

W2

W2

W1

W1

W1

W1

W1

W1

W3

W3

W3

W3

W3

W3

W0 W2 W1

W0 W2

W0

W3

W3W1

a

b

Fig. 5.2 Overlapping decoding rounds of one 4-windowed sub-blocks. (a) Processing schedule
with 100% operating efficiency. (b) Corresponding active periods of main components

standard parameter in (1.3), there will be fixed outcomes of
 and (5.34), and the
memory controller will become less complicated.

5.2.3 Application of Overlapping Decoding Rounds

The attainable improvement in throughput by overlapping decoding rounds is
determined by
y and
a;b;x . Here we assume that sQ

sIj
or sA

sIj
is congruent to s

.
/

sIj

modulo 2 and
 is 0. Besides, we let the SISO decoder first deal with the even-
indexed windows and then the odd-indexed windows at every decoding round.
Figure 5.2 exemplifies how to rearrange and overlap the processes of 4 windows.
The SISO decoder can decode the uncorrelated parts of these constituent codes
simultaneously and achieve 100% operating efficiency. Since the execution time for
one window group takes .
y=2C
a;b;x/ cycles, the subsequent decoding round can
start
y=2 cycles earlier than the completion of current decoding round. However,
every function unit will be occupied for
y cycles during each round. The finite
hardware resources make the period in which two successive decoding rounds

5.2 Processing Schedule with Overlapping Decoding Rounds 93

Table 5.2 Comparison between ordinary schedule and overlapping
decoding rounds

L D 32 L D 16

M �S.%/ �00

S.%/ �00

S=�S M �S.%/ �00

S.%/ �00

S=�S

064 60 086 1:43 32 55 076 1:38

128 75 100 1:33 64 71 100 1:40

192 82 100 1:22 96 79 100 1:27

overlap bounded by
a;b;x cycles. Because of this limitation, we have to consider
the cases of
y=2 <
a;b;x and
y=2 �
a;b;x. If
y=2 is less than
a;b;x, or equivalently
�S is less than 2=3, the cycle number of one decoding round can be regarded as
.
y=2C
a;b;x/; otherwise, it can be regarded as
y . The operating efficiency of this
design is �00

S in (5.44), and the total decoding time for the first .`C 1/ codewords is
� 00

C`
in (5.45) for ` � 0.

�00
SD

�

y=.
y=2C
a;b;x/

100%
if �S < 2=3

if �S � 2=3
(5.44)

� 00
C`
D

�
.`C1/�2I�.
y=2C
a;b;x/C
y=2

.`C1/�2I�
yC
a;b;x

if �S < 2=3

if �S � 2=3
(5.45)

Both the throughput and latency are improved, and the speedup .�00
S=�S/ is

maximized at
y=2 D
a;b;x . Considering the range of
a;b;x , when each sub-block
contains 2 or 4 windows, the design can approximate the optimal speedup. Based
on the examples relating to Fig. 2.7 where
a;b;x is .LC 10/, Table 5.2 lists both �S

and �00
S for M D f2L; 4L; 6Lg. It is obvious that, for M � 4L, the gain in efficiency

decreases, so the schedule with overlapping decoding rounds is more suitable for
the SISO decoders that mainly process small sub-blocks.

In addition to the interleaver constraints, each SISO decoder should follow two
basic rules, fixed window length and even window number, to allow for this high-
efficiency schedule. These rules imply that M must be an even number and cause
the choice of PS for each N narrow. They also prohibit the modification of M as
(3.7). Hence, the schedule with overlapping decoding rounds is inapplicable to
the parallel design with modulo mapping. By contrast, the preconditions of these
specific QPP and ARP interleavers are consistent with the requirements of both
division mapping and barrel-shift network. In consequence, except for the above-
mentioned application, these techniques for parallel processing can be compatible
with each other.

94 5 High-Efficiency Solution for Highly Parallel Architecture

5.2.4 Performance of Overlapping Decoding Rounds

The overlapping decoding rounds can be put into practice only if the turbo
codes with these specific QPP and ARP interleavers could provide satisfactory
performance. For both interleavers, there will be numerous parameters fulfilling
the proposed constraints, and we must look for those parameters with better error
correction capability. The first step is listing the possible case. During the search of
QPP interleaver, .f1; f2/ will be preset to one of .LC1; L/, .2LC1; 2L/, .L�1; L/,
and .2L�1; 2L/. It is easy to derive the other parameter sets by adding any multiples
of 2L to f1 or f2. We follow the same procedure to search valid ARP interleaver
parameters and only consider g0 D 1. The initial values of ."; g1; g2; g3/ can be
either .L ˙ 1; L C 1; 1; L C 1/ or .2L ˙ 1; 1; 1; 1/. Similarly, we can get more
sets of ."; g1; g2; g3/ by adding arbitrary multiples of 2L to them. To reduce the
search time, the subsequent step is filtering out some inferior interleavers. We can
make an estimate of performance by the spread factor (SF) and minimum distance
(MD) [18, 77–79]. The two properties depends on code structure and interleaver,
and their values can be computed quickly. If they are too small, the iterative
message propagation is likely to be inefficient and lead to insignificant coding gain.
Therefore, we can skip these cases and only examine the error rate of the turbo codes
with higher SF and MD.

Figures 5.3 and 5.4 show the BER performance of turbo codes with various
interleaver parameters. In these simulations, all windows are processed in parallel,
and the metrics of each window are initialized with the metrics of its adjacent
windows at previous iterations. Tables 5.3 and 5.4 list the corresponding SF and
MD. For the examples with the same N, the first set of parameters comes from 3GPP
LTE-Advanced or IEEE 802.16 m specifications, and their simulation results are a
useful benchmark for judging the quality of other parameters; while the second and
third sets can comply with one of the propositions in this section. Compared with
the standard cases, some of these constrained parameters can result in better SF and
equal MD, and they provide similar performance. However, even with an exhaustive
search, several examples still have lower SF or MD, and the worst performance
loss is around 0:3 dB at the BER of 10�6. Basically, as N is larger, it is more
possible to find proper interleavers for overlapping decoding rounds. From Fig. 5.3
and Table 5.3, the presented sets of .f1; f2/ at N D 4096 and N D 6144 are good
choices. For ARP interleaver design, Fig. 5.4 and Table 5.4 indicate that the selected
sets of ."; g0; g1; g2; g3/ at N D 2400 are acceptable.

In addition to error correction capability and contention-free property, the
major concerns of the interleavers in 3GPP LTE-Advanced and IEEE 802.16 m
standards, the proposed interleaver also takes operating efficiency into account.
Since the interleaver design only involves the changes in parameters, it ensures the
compatibility with current standards. According to above discussions, the favorable
conditions for comparable performance and faster decoding process are large N
and small M respectively, and they imply the applicability of overlapping decoding

5.2 Processing Schedule with Overlapping Decoding Rounds 95

0 0.5 1 1.5 2

N= 512, I = 5
f1, f2
31, 64
65, 128

447, 384

N= 4096, I = 8
f1, f2
31, 64

193, 256
831, 128

N= 1024, I = 6
f1, f2
31, 64

577, 640
319, 128

0 0.5 1 1.5 2

0 0.5 1 1.5 2

0 0.5 1 1.5 2

N= 6144, I = 8
f1, f2

263, 480
65, 1152

319, 4992

Eb/N0(dB)

Eb/N0(dB)

Eb/N0(dB)

Eb/N0(dB)

100

10−1

10−2

10−3

10−4

10−5

10−6

100

10−1

10−2

10−3

10−4

10−5

10−6

B
it

E
rr

or
 R

at
e

B
it

E
rr

or
 R

at
e

100

10−1

10−2

10−3

10−4

10−5

10−6

100

10−1

10−2

10−3

10−4

10−5

10−6

B
it

E
rr

or
 R

at
e

B
it

E
rr

or
 R

at
e

Fig. 5.3 Fixed-point simulation results of turbo codes (tail-biting trellis structure with Fig. 1.4a)
using QPP interleavers with different sets of parameters at N D f512; 1024; 4096; 6144g: Max-
Log-MAP algorithm with � D 0:75, L D 32, and .%I.ri /; %F.ri // D .3; 3/

Table 5.3 Properties of various sets of N’s and QPP interleaver
parameters

N f1 f2 SF MD N f1 f2 SF MD

512

31 64 32 33

1024

31 64 32 43

65 128 16 31 577 640 32 38

447 384 16 36 319 128 32 38

4096

31 64 32 44

6144

263 480 24 50

193 256 64 50 65 1152 64 50

831 128 64 44 319 4992 64 50

rounds to the turbo decoder with PS. Moreover, the implementation results in
[76] prove the feasibility. Such an effective methodology will be useful for the
development of telecommunication systems in next generation.

96 5 High-Efficiency Solution for Highly Parallel Architecture

0.5 1 1.5 2 0.5 1 1.5 2

0.5 1 1.5 2 0.5 1 1.5 2

N= 256, I = 5
ε g0 g1 g2 g3, , , ,

N= 512, I = 6
ε g0 g1 g2 g3, , , ,

N= 1664, I = 8
ε g0 g1 g2 g3,

,
,
,
,
,

,

,

,
N= I =,
ε g0 g1 g2 g3,

,
,
,

,
,

, ,
2400 8

19, 1, 193, 53, 253
97, 1, 129, 225, 161

223, 1, 225, 33, 129

29, 1, 65, 237, 69
97, 1, 225, 33, 385

463, 1, 337, 353, 497

37 11091, 29, 691
881, 114891249,1329
31, 11313, 705, 609

53 11267, 25,1203
17 1, 881, 353,1297
79 1,2097,2177,1073

100

10−1

10−2

10−3

10−4

10−5

10−6

100

10−1

10−2

10−3

10−4

10−5

10−6

0
Eb/N0(dB)

0
Eb/N0(dB)

0
Eb/N0(dB)

0
Eb/N0(dB)

B
it

E
rr

or
 R

at
e

B
it

E
rr

or
 R

at
e

100

10−1

10−2

10−3

10−4

10−5

10−6

100

10−1

10−2

10−3

10−4

10−5

10−6

B
it

E
rr

or
 R

at
e

B
it

E
rr

or
 R

at
e

Fig. 5.4 Fixed-point simulation results of turbo codes (tail-biting trellis structure with Fig. 1.4b)
using ARP interleavers with different sets of parameters at N D f256; 512; 1664; 2400g: Max-
Log-MAP algorithm with � D 0:75, L D 16, and .%I.ri /; %F.ri // D .3; 3/

Table 5.4 Properties of various sets of N’s and ARP interleaver parameters

N " g0 g1 g2 g3 SF MD N " g0 g1 g2 g3 SF MD

256

19 1 193 53 0253 16 30

512

29 1 65 237 69 24 32

97 1 129 225 161 16 25 97 1 225 33 385 32 26

223 1 225 33 129 16 30 463 1 337 353 497 28 24

1664

37 1 1091 29 691 40 36

2400

53 1 1267 25 1203 42 36

881 1 1489 1249 1329 38 36 17 1 881 353 1297 44 36

31 1 1313 705 609 44 32 79 1 2097 2177 1073 58 36

Bibliography

1. C. E. Shannon, “A mathematical theory of communication (Part I),” Bell Syst. Tech. J., vol. 27,
pp. 379–428, Jul. 1948.

2. C. E. Shannon, “A mathematical theory of communication (Part II),” Bell Syst. Tech.J., vol. 27,
pp. 623–656, Oct. 1948.

3. R. J. McEliece, The theory of information and coding, 2nd ed. Cambridge, UK: Cambridge
University Press, 2004.

4. S. Lin and D. J. Costello, Jr., Error control coding: fundamentals and applications, 2nd ed.
Englewood Cliffs, NJ: Pearson-Hall, 2004.

5. C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting coding
and decoding: turbo-codes,” in IEEE Proc. Int. Conf. on Communications, May 1993,
pp. 1064–1070.

6. D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity
check codes,” Electronics Letters, vol. 33, no. 6, pp. 457–458, Mar. 1997.

7. D. J. Costello, Jr. and G. D. Forney, Jr., “Channel coding: The road to channel capacity,” Proc.
IEEE, vol. 95, no. 6, pp. 1150–1177, Jun. 2007.

8. B. Vucetic, Y. Li, L. C. Pérez, and F. Jiang, “Recent advances in turbo code design and theory,”
Proc. IEEE, vol. 95, no. 6, pp. 1323–1344, Jun. 2007.

9. K. Gracie and M.-H. Hamon, “Turbo and turbo-like codes: Principles and applications in
telecommunications,” Proc. IEEE, vol. 95, no. 6, pp. 1228–1254, Jun. 2007.

10. Digital Video Broadcasting (DVB); Second Generation Framing Structure, Channel Coding
and Modulation Systems for Broadcasting, Interactive Services, News Gathering and other
broadband satellite applications (DVB-S2), European Telecommunications Standard Institute
Std. ETSI EN 302 307 v1.2.1, 2009.

11. Recommendation for Space Data System Standards: TM Synchronization and Channel
Coding, The Consultative Committee for Space Data Systems Std. CCSDS 131.0-B-2, 2011.

12. Technical Specification Group Radio Access Network; Multiplexing and channel coding
(FDD), 3rd Generation Partnership Project Std. TS 25.212 v11.3.0, 2012.

13. Physical Layer Standard for CDMA2000 Spread Spectrum Systems, 3rd Generation Partner-
ship Project 2 Std. C.S0002-E, 2011.

14. Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA); Multiplexing and channel coding, 3rd Generation Partnership Project Std.
TS 36.212 v8.7.0, 2009.

15. Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA); Multiplexing and channel coding, 3rd Generation Partnership Project Std.
TS 36.212 v11.0.0, 2012.

C.-C. Wong and H.-C. Chang, Turbo Decoder Architecture for Beyond-4G
Applications, DOI 10.1007/978-1-4614-8310-6,
© Springer Science+Business Media New York 2014

97

98 Bibliography

16. IEEE Standards for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed
and Mobile Broadband Wireless Access Systems, Inst. Electrical and Electronics Engineers
(IEEE) Std. IEEE 802.16e-2005, 2005.

17. IEEE Standards for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed
and Mobile Broadband Wireless Access Systems, Inst. Electrical and Electronics Engineers
(IEEE) Std. IEEE 802.16m-2009, 2009.

18. O. Y. Takeshita, “On maximum contention-free interleavers and permutation polynomials
over integer rings,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 1249–1253, Mar. 2006.

19. C. Weiß, C. Bettstetter, S. Riedel, and D. J. Costello, Jr., “Turbo decoding with tail-biting
trellises,” in IEEE Proc. URSI Int. Symp. on Signals, Systems, and Electronics, Oct. 1998,
pp. 343–348.

20. C. Berrou, Y. Saouter, C. Douillard, S. Kerouédan et al., “Desiging good permutations for
turbo codes: toward a single model,” in IEEE Int. Conf. on Communications, Jun. 2004,
pp. 341–345.

21. L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for
minimizing symbol error rate,” IEEE Trans. Inf. Theory, vol. IT-20, pp. 284–287, Mar. 1974.

22. J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and convolutional
codes,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp. 429–445, Mar. 1996.

23. W. Koch and A. Baier, “Optimum and sub-optimum detection of coded data disturbed by
time-varying intersymbol interference,” in IEEE Global Telecommunications Conf.

24. J. A. Erfanian, S. Pasupathy, and G. Gulak, “Reduced complexity symbol detectors with
parallel structures for ISI channels,” IEEE Trans. Commun., vol. 42, no. 2/3/4, pp. 1261–1271,
Feb./Mar./Apr. 1994.

25. P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-optimal
MAP decoding algorithms operating in the log domain,” in IEEE Proc. Int. Conf. on
Communications, Jun. 1995, pp. 1009–1013.

26. L. Papke and P. Robertson, “Improved decoding with the SOVA in a parallel concatenated
(turbo-code) scheme,” in IEEE Proc. Int. Conf. on Communications, Jun. 1996, pp. 102–106.

27. J. Vogt and A. Finger, “Improving the Max-Log-MAP turbo decoder,” IET Electronics Letters,
vol. 36, no. 23, pp. 1937–1937, Nov. 2000.

28. S. A. Barbulescu, “Iterative decoding of turbo codes and other concatenated codes,” Ph.D.
dissertation, University of South Australia, 1996.

29. A. J. Viterbi, “An intuitive justification and a simplified implementation of the MAP decoder
for convolutional codes,” IEEE J. Sel. Areas Commun., vol. 16, no. 2, pp. 260–264, Feb. 1998.

30. R. Y. Shao, S. Lin, and P. C. Fossorier, “Two simple stopping criteria for turbo decoding,”
IEEE Trans. Commun., vol. 47, no. 8, pp. 1117–1120, Aug. 1999.

31. Y. Wu, B. D. Woener, and W. J. Ebel, “A simple stopping criteria for turbo decoding,” IEEE
Commun. Lett., vol. 4, no. 8, pp. 258–260, Aug. 2000.

32. R. Asghar, D. Wu, J. Eilert, and D. Liu, “Memory conflict analysis and implementation of a
re-configurable interleaver architecture supporting unified parallel turbo decoding,” Journal
of Signal Processing Systems, vol. 60, no. 1, pp. 15–29, Jul. 2010.

33. A. J. Viterbi, “Error bounds for convolutional codes and asymptotically optimum decoding
algorithm,” IEEE Trans. Inf. Theory, vol. IT-13, no. 2, pp. 260–269, Apr. 1967.

34. J. H. Han, A. T. Erdogan, and T. Arslan, “High speed Max-Log-MAP turbo SISO decoder
implementation using branch metric normalization,” in IEEE Computer Society Annual Symp.
on VLSI, 2005, pp. 173–178.

35. I. Lee and J. L. Sonntag, “A new architecture for the fast Viterbi algorithm,” IEEE Trans.
Commun., vol. 51, no. 10, pp. 1624–1628, Oct. 2003.

36. H. Dawid and H. Meyr, “Real-time algorithms and VLSI architectures for soft output MAP
convolutional decoding,” in Sixth IEEE Int. Symp. on Personal, Indoor and Mobile Radio
Communications, Sep. 1996, pp. 193–197.

37. G. Jeong and D. Hsia, “Optimal quantization for soft-decision turbo decoder,” in IEEE
Vehicular Tech. Conf., Sep. 1999, pp. 1620–1624.

Bibliography 99

38. A. P. Hekstra, “An alternative to metric rescaling in Viterbi decoders,” IEEE Trans. Commun.,
vol. 37, no. 11, pp. 1220–1222, Nov. 1989.

39. C. B. Shung, P. H. Siegel, G. Ungerboeck, and H. K. Thapar, “VLSI architectures for metric
normalization in the Viterbi algorithm,” in IEEE Proc. Int. Conf. on Communications, vol. 4,
Apr. 1990, pp. 1723–1728.

40. G. Masra, G. Piccinini, M. R. Roch, and M. Zamboni, “VLSI architecture for turbo codes,”
IEEE Trans. VLSI Syst., vol. 7, no. 3, pp. 369–379, Sep. 1999.

41. Y. Wu, B. D. Woener, and T. K. Blankenship, “Data width requirements in SISO decoding
with modulo normalization,” IEEE Trans. Commun., vol. 49, no. 11, pp. 1861–1868, Nov.
2001.

42. G. Masera, M. Mazza, G. Piccinini, F. Viglione et al., “Architectural strategies for low-power
VLSI turbo decoders,” IEEE Trans. VLSI Syst., vol. 10, no. 3, pp. 279–285, Jun. 2002.

43. S. Yoon and Y. Bar-Ness, “A parallel MAP algorithm for low latency turbo decoding,” IEEE
Commun. Lett., vol. 6, no. 7, pp. 288–290, Jul. 2002.

44. Z. He, P. Fortier, and S. Roy, “Highly-parallel decoding architecture for convolutional turbo
codes,” IEEE Trans. VLSI Syst., vol. 14, no. 10, pp. 1147–1151, Oct. 2006.

45. O. Muller, A. Baghdadi, and M. Jézéquel, “Exploring parallel processing levels for convo-
lutional turbo decoding,” in 2nd Information and Communication Technologies, Apr. 2006,
pp. 2353–2358.

46. E. Boutillon, C. Douillard, and G. Montorsi, “Iterative decoding of concatenated convolu-
tional codes: Implementation issues,” Proc. IEEE, vol. 95, no. 6, pp. 1201–1227, Jun. 2007.

47. M. J. Thul, N. Wehn, and L. P. Rao, “Enabling high-speed turbo decoding through concurrent
interleaving,” in IEEE Proc. Int. Symp. on Circuits and Systems, May 2002, pp. 26–29.

48. M. J. Thul, F. Gilbert, and N. Wehn, “Concurrent interleaving architecture for high-throughput
channel coding,” in IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Apr. 2003,
pp. 613–616.

49. A. Tarable, S. Benedetto, and G. Montorsi, “Mapping interleaving laws to parallel turbo and
LDPC decoder architecture,” IEEE Trans. Inf. Theory, vol. 50, no. 9, pp. 2002–2009, Sep.
2004.

50. A. Giulietti, L. V. der Perre, and M. Strum, “Parallel turbo coding interleavers: Avoiding
collisions in accesses to storage elements,” Elec. Lett., vol. 38, no. 5, pp. 232–234, Feb. 2002.

51. Y.-X. Zheng and Y.-T. Su, “A new interleaver design and its application to turbo codes,” in
Proc. IEEE Vehicular Technology Conf., vol. 3, Sep. 2002, pp. 1437–1441.

52. D. Gnaedig, E. Boutillon, M. Jezequel, V. C. Gaudet et al., “On multiple slice turbo code,” in
Proc. 3rd Int. Symp. on Turbo Codes and Related Topics, Sep. 2003, pp. 343–346.

53. A. Abbasfar and K. Yao, “Interleaver design for high speed turbo decoders,” in IEEE Wireless
Communications and Networking Conf., Mar. 2004, pp. 1611–1615.

54. L. Dinoi and S. Benedetto, “Variable-size interleaver design for parallel turbo decoder
architectures,” in IEEE Global Telecommunications Conf., Nov. 2004, pp. 3108–3112.

55. Z. He, S. Roy, and P. Fortier, “High speed and low power design of parallel turbo decoder,” in
IEEE Proc. Int. Symp. on Circuits and Systems, 2005, pp. 6018–6021.

56. T. K. Lee and B.-Z. Shen, “A flexible memory-mpaaing scheme for parallel turbo
decoders with periodic interleavers,” in IEEE Int. Symp. on Information Theory, Jun. 2007,
pp. 651–654.

57. R. Dobkin, M. Peleg, and R. Ginosar, “Parallel VLSI architecure for MAP turbo decoder,”
in IEEE Int. Symp. on Personal, Indoor and Mobile Radio Communications, Sep. 2002,
pp. 15–18.

58. R. Dobkin, M. Peleg, and R. Ginosar, “Parallel interleaver design and VLSI architecture for
low-latency MAP turbo decoders,” IEEE Trans. VLSI Syst., vol. 13, no. 4, pp. 427–438, Apr.
2005.

59. D. Gnaedig, E. Boutillon, J. Tousch, and M. Jézéquel, “Towards an optimal parallel decoding
of turbo codes,” in Proc. 4th Int Symp. on Turbo Codes Related Topics, Apr. 2006.

60. P. J. Black and T. H. Meng, “A 140 Mb/s, 32-state, radix-4 Viterbi decoder,” pp. 70–71, Feb.
1992.

100 Bibliography

61. M. Bickerstaff, L. Davis, C. Thomas, D. Garrett et al., “A 24Mb/s radix-4 LogMAP turbo
decoder for 3GPP-HSDPA mobile wireless,” in IEEE Int. Solid-State Circuit Conf., Feb. 2003,
pp. 151–484.

62. C. C. Lin, C. C. Wu, and C. Y. Lee, “A low power and high speed Viterbi decoder
chip for WLAN applications,” in Proc. 29th Europe Solid State Circuits Conf., Sep. 2003,
pp. 723–726.

63. M. Anders, S. Mathew, R. Krishnamurthy, and S. Borkar, “A 64-state 2GHz 500Mbps 40mW
Viterbi accelerator in 90nm CMOS,” in Symp. on VLSI Circuits Digest of Technical Papers,
2004, pp. 174–175.

64. S. W. Choi and S. S. Choi, “200Mbps Viterbi decoder for UWB,” in Int. Conf. Advanced
Communication Tech., vol. 2, 2005, pp. 904–907.

65. C.-C. Lin, “Channel decoder design and implementation,” Ph.D. dissertation, National Chiao-
Tung University, 2006.

66. C.-H. Tang, C.-C. Wong, C.-L. Chen, C.-C. Lin et al., “A 952Mb/s Max-Log MAP decoder
chip using radix-4�4 ACS architecture,” in IEEE Asian Solid-State Circuits Conf., Nov. 2006,
pp. 79–82.

67. C. Studer, C. Benkeser, S. Belfanti, and Q. Huang, “A 390Mb/s 3.57mm2 3GPP-LTE
turbo decoder ASIC in 0.13�m CMOS,” in IEEE Int. Solid-State Circuit Conf., Feb. 2010,
pp. 274–276.

68. C.-C. Wong, Y.-Y. Lee, and H.-C. Chang, “A 188-size 2.1mm2 reconfigurable turbo decoder
chip with parallel architecture for 3GPP LTE system,” in Symp. on VLSI Circuits, Jun. 2009,
pp. 288–289.

69. C.-C. Cheng, Y.-M. Tsai, L.-G. Chen, and A. P. Chanderakasan, “A 0.077 to 0.168
nJ/bit/iteration scalable 3GPP LTE turbo decoder with an adaptive sub-block parallel scheme
and an embedded DVFS engine,” in IEEE Custom Integrated Circuits Conf., Sep. 2010.

70. J.-H. Kim and I.-C. Park, “A unified parallel radix-4 turbo decoder for mobile WiMAX and
3GPP-LTE,” in IEEE Custom Integrated Circuits Conf., Sep. 2009, pp. 487–490.

71. C.-H. Lin, C.-Y. Chen, E.-J. Chang, and A.-Y. Wu, “A 0.16nJ/bit/iteration 3.38mm2 turbo
decoder chip for WiMAX/LTE standards,” in 13th Symp. on Integrated Circuits, Dec. 2011,
pp. 168–171.

72. H. Moussa, O. Muller, A. Baghdadi, and M. Jézéquel, “Butterfly and bene-based on-chip
communication networks for multiprocessor turbo decoding,” in Design, Automation and Test
in Europe Conference and Exhibition, Apr. 2007, pp. 1–6.

73. C. Studer, C. Benkeser, S. Belfanti, and Q. Huang, “Design and implementation of a parallel
turbo-decoder ASIC for 3GPP-LTE,” IEEE J. Solid-State Circuits, vol. 46, no. 1, pp. 1–10,
Jan. 2011.

74. C.-C. Wong, M.-W. Lai, C.-C. Lin, H.-C. Chang et al., “Turbo decoder using contention-free
interleaver and parallel architecture,” IEEE J. Solid-State Circuits, vol. 45, no. 2, pp. 422–432,
Feb. 2010.

75. C.-C. Wong and H.-C. Chang, “Reconfigurable turbo decoder with parallel architecture for
3GPP LTE system,” IEEE Trans. Circuits Syst. II, vol. 57, no. 7, pp. 566–570, Jul. 2010.

76. C.-C. Wong and H.-C. Chang, “High-efficiency processing schedule for parallel turbo
decoders using QPP interleaver,” IEEE Trans. Circuits Syst. I, vol. 58, no. 6, pp. 1412–1420,
Jun. 2011.

77. S. Dolinar and D. Divsalar, “Weight distribution of turbo codes using random and nonrandom
permutations,” Jet Propulsion Lab., TDA Progress Report 42–122, Aug. 1995.

78. S. Crozier, “New high-spread high-distance interleavers for turbo-codes,” in Proc. 20th
Biennial Symp. on Communications, May 2000, pp. 3–7.

79. S. Crozier, P. Guinand, and A. Hunt, “Estimating the minimum distance of turbo-codes using
double and triple impulse methods,” IEEE Commun. Lett., vol. 9, no. 7, pp. 631–633, Jul.
2005.

	Preface
	Contents
	1 Introduction
	1.1 Turbo Codes: Parallel Concatenated Convolutional Codes
	1.1.1 Principles of Encoding and Decoding
	1.1.2 Turbo Codes in Advanced Communication Systems

	1.2 Decoding Procedure of Turbo Decoders
	1.2.1 MAP Algorithm for 3GPP LTE-Advanced Turbo Code
	1.2.2 Iterative Flow for 3GPP LTE-Advanced Turbo Code
	1.2.3 MAP Algorithm for IEEE 802.16m Turbo Code
	1.2.4 Iterative Flow for IEEE 802.16m Turbo Code

	1.3 Techniques for Efficient Decoding Process
	1.3.1 Simplified MAP Algorithms
	1.3.2 Sliding Window Technique
	1.3.3 Early Stopping Criteria

	2 Conventional Architecture of Turbo Decoder
	2.1 Practical Turbo Decoder Architecture
	2.1.1 Circuits of Address Generators
	2.1.2 Circuits of Main Functional Units

	2.2 Design of Conventional SISO Decoders
	2.2.1 Decoder Architecture and Processing Schedule
	2.2.2 Data Width and Normalization

	2.3 Design of Modified SISO Decoders

	3 Turbo Decoder with Parallel Processing
	3.1 Multiple Turbo Decoders for Multiple Codewords
	3.2 Multiple SISO Decoders for One Codeword
	3.2.1 Important Characteristics
	3.2.2 Speedup and Performance
	3.2.3 Hardware Cost

	3.3 Sophisticated Functional Units for Successive Trellis Stages
	3.4 Hybrid Parallel Architecture
	3.5 State-of-the-Art Chip Implementation

	4 Low-Complexity Solution for Highly Parallel Architecture
	4.1 Interconnection for Parallel Design with QPP Interleavers
	4.2 Interconnection for Parallel Design with ARP Interleavers
	4.2.1 Parallel Architecture Using Modulo Mapping
	4.2.2 Parallel Architecture Using Division Mapping

	4.3 Performance Compensation for Parallel Design

	5 High-Efficiency Solution for Highly Parallel Architecture
	5.1 Processing Schedule with Interlaced Decoding Rounds
	5.2 Processing Schedule with Overlapping Decoding Rounds
	5.2.1 QPP Interleaver Design for Overlapping Decoding Rounds
	5.2.2 ARP Interleaver Design for Overlapping Decoding Rounds
	5.2.3 Application of Overlapping Decoding Rounds
	5.2.4 Performance of Overlapping Decoding Rounds

	Bibliography

