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Preface

Understanding and mitigating the effects of human activities on air quality and the

earth’s climate are among the most significant challenges facing mankind today and

for future generations. A detailed understanding of the mechanisms of atmospheric

chemistry, and the physical and chemical processes leading to aerosol and cloud

formation, is necessary for accurate predictions of future air quality and climate.

Steps towards mitigation of pollutants at the source set the stage for smart policy

decisions. Some of the field’s leaders in atmospheric chemistry, in both the gas and

the aerosol phases, provide insights in this volume of Topics in Current Chemistry.
Sunlight, and specifically its ability to break several chemical bonds, is the major

driving force of atmospheric chemistry, normally through generation of reactive

radicals. In their chapter “Emerging Areas in Atmospheric Photochemistry,”

George and co-authors review new concepts in long-wavelength photochemistry

in the gas phase, in condensed phases, and at environmental interfaces.

Isoprene emissions are the highest among all non-methane hydrocarbons. Their

chemistry is critical for predicting atmospheric oxidant levels as well as organic

aerosol loadings. Heard et al. in their chapter “New Insights into the Tropospheric

Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chem-

ical Modelling, and Quantum Theory” review recent advances in our understanding

of the chemistry of isoprene in remote areas (i.e., regions of low NOx) driven by

surprising observations in the field.

Understanding aerosol volatility, i.e., the partitioning of chemical species be-

tween the gas and particulate phases, is important in order to determine atmospheric

aerosol loadings accurately. The volatility of organic aerosol species evolves

throughout the aerosol’s lifetime due to chemical “aging” in the oxidizing environ-

ment of the atmosphere. Likewise, the phase of an organic species influences the

rate and mechanisms of oxidative aging. In their chapter, Donahue and coauthors

review the principles behind the linkages between “Volatility and Aging of Atmo-

spheric Organic Aerosol.”

One of the major predicaments of evaluation of the physical–chemical transfor-

mations of chemicals in the earth’s atmosphere is their characterization at very low

v



detection limits. Bio-organic chemicals are ubiquitous in the earth’s atmosphere

and at air–snow interfaces. Besides impacts on the oxidative potential of the

atmosphere, aerosol–cloud interactions, and radiation, airborne biological sub-

stances play various roles in the transmission of disease in humans and in ecosys-

tems, and are linked to bio-terrorism. Ariya et al. explore existing techniques and

methods applicable to the physical characterization of bio-organic matter, and

which provide information on gases, liquids, and aerosols in the atmosphere and

at snow–air interfaces. They evaluate their strengths and weaknesses, and foresee

future directions in the domain.

Atmospheric aerosol particles serve an important role in establishing the climate

and in the hydrological cycle as nuclei in the formation of cloud droplets. The

relationship between an aerosol particle’s chemical composition and its ability to

serve as a cloud condensation nucleus (CCN) is complex. Organic material, a

ubiquitous component of tropospheric aerosols, is typically more hydrophobic

and less hygroscopic, and therefore less CCN active, than inorganic salts. However,

many common aerosol organics are amphiphilic and therefore surface-active.

Surface-active organics can lower aerosol surface tension, thereby enhancing

CCN activation. An organic surface film can also act as a kinetic barrier for uptake

of water or reactive gases to the aerosol, or serve as a nucleus for freezing in

aqueous droplets. In their chapter, McNeill et al. review the sources and impacts of

“Surface-Active Organics in Atmospheric Aerosols.”

New York, NY V. Faye McNeill

Montreal, QC Parisa A. Ariya
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Emerging Areas in Atmospheric Photochemistry

Christian George, Barbara D’Anna, Hartmut Herrmann, Christian Weller,

Veronica Vaida, D.J. Donaldson, Thorsten Bartels-Rausch,

and Markus Ammann

Abstract Sunlight is a major driving force of atmospheric processes. A detailed

knowledge of atmospheric photochemistry is therefore required in order to under-

stand atmospheric chemistry and climate. Considerable progress has been made in

this field in recent decades. This contribution will highlight a set of new and

emerging ideas (and will therefore not provide a complete review of the field)

mainly dealing with long wavelength photochemistry both in the gas phase and on a

wide range of environmental surfaces. Besides this, some interesting bulk photo-

chemistry processes are discussed. Altogether these processes have the potential to

introduce new chemical pathways into tropospheric chemistry and may impact

atmospheric radical formation.
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1 Introduction

From a chemical perspective, the atmosphere may be described as a giant, fairly

well-mixed photochemical reactor, in which most of the processes are initiated by

sunlight. As the light source in this context, the sun may be considered as a

spherical blackbody emitter at T ~ 5,770 K outside the atmosphere. One of the

most important photochemical processes in the atmosphere is the generation of free

radicals (such as the hydroxyl radical, OH) through the UV photolysis of precursors

such as ozone or carbonyl compounds. These reactions have been the focus of

numerous studies and will not be covered here [1]. The present contribution will

deal mainly with reactions which may occur at longer wavelengths than those

initiated by direct photolysis, such as vibrational overtone initiated processes and

photosensitized reactions. As illustrated in Fig. 1, visible light photons are signifi-

cantly more abundant in the atmosphere than UV photons, since several atmo-

spheric constituents (such as O2 and O3) absorb UV strongly, and thus filter out the

short wavelength light emitted by the sun. Nevertheless, a few important UV-

triggered processes, for example reactions of non-conventional precursors in aque-

ous systems, will also be discussed as the authors regard this as an emerging field in

atmospheric photochemistry.

An atmospheric photochemical reaction starts with the absorption of a photon by

an atmospheric molecule at an appropriate wavelength of available light, producing

an excited electronic or vibrational state. Typically, absorption of a photon by a

singlet ground state (S0) will initially produce primarily a singlet excited state (S1),

because the transition from a singlet to a triplet state (i.e., a transition in which

electron unpairing takes place with a changing spin) is spin-forbidden and may only

take place with a very low probability [2]. However, a triplet state of lower energy

2 C. George et al.



may be created by intersystem crossing (induced by spin-orbit coupling). In gen-

eral, the energy absorbed during the electronic transition can be dissipated by a

variety of photochemical and photophysical processes, such as fluorescence, colli-

sional deactivation, collisional or collisionless transition to a lower electronic state,

or chemical reaction (dissociation or rearrangement). Radiationless transitions may

connect the excited electronic state prepared by photon absorption with the ground

state as shown in Fig. 2. In such instances, the system is prepared in its ground

electronic state with large excess of thermal energy or in another configuration

favorable to photochemical product formation. In contrast, vibrational overtone

excitation initiated by red light prepares the system “cold,” in its ground electronic

state, with sufficient vibrational energy for reaction but little or no excess vibra-

tional or thermal excitation. Several of these energy transfer pathways are

illustrated in the Jablonski diagram in Fig. 2.

Fig. 2 Schematic Jablonski diagram
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Photodissociation leads to bond breaking and is of central importance in atmo-

spheric chemistry for free radical production. Photodissociation is well studied for

electronic transitions, and this will not be reviewed here. Direct excitation of

vibrationally excited states, which have sufficient energy to dissociate, can occur

with visible solar radiation; this process is discussed below.

Energy transfer between two molecules is also an important deactivation path-

way for excited states, allowing photosensitized reactions to take place. Such a

process can be simply described as

Dþ hn! D� (1)

D� þ A! Dþ A� (2)

where the excited molecule D* transfers its energy to A, producing the excited state

A*. The sequence of (1) and (2) is described as photosensitization of A by the

photosensitizer D. In another way of looking at this, D* has been quenched by A.

Energy transfers are named as a function of the spin multiplicity of the excited

states of D* and A*:

singlet-singlet energy transfer : 1D�þ1A!1Dþ1A� (3)

triplet-triplet energy transfer : 3D�þ1A!1Dþ3A� (4)

Such processes have been the focus of many studies, especially in liquid phases.

The triplet–triplet process is interesting as it allows excitation of the triplet state of

the molecule A that would otherwise be inaccessible (for instance due to a poor

intersystem crossing S1 ! T1). This then may increase the yield of a reaction but

also initiate specific reactions. If the energy required to excite the initial state 1D*

(prior to its transition to the triplet state) is lower than the excitation energy of 1A*,

then photosensitized reactions of 3A* become possible at longer wavelengths [3].

Let us illustrate this chemistry with an example. Benzophenone is a well-known

photosensitizer, which will phosphoresce at low temperature (77 K) after excitation

in the range 360–370 nm. This phosphorescence of benzophenone is quenched by

adding a polyaromatic hydrocarbon (PAH) such as naphthalene; phosphorescence

is then observed from this species even though it has no absorption band around

360–370 nm. Such observations clearly describe the activation at wavelengths

otherwise transparent for a given medium. This sequence of processes can be

described as follows:

ðC6H5Þ2COþ hn! 1 C6H5ð Þ2CO� Light absorption by the photosensitizer
1 C6H5ð Þ2CO�!3 C6H5ð Þ2CO� Intersystem crossing producing the triplet state
3 C6H5ð Þ2CO�þ3PAH!1 C6H5ð Þ2COþ3PAH� Triplet–triplet energy transfer to the added PAH
3PAH�!1PAHþ hn Deactivation of the triplet state – here by a

photophysical process such as

phosphorescence

4 C. George et al.



In this example, the triplet state of benzophenone is quenched by the added PAH.

However oxygen is also known to be an effective triplet state quencher:

D� T1ð Þþ3O2 ! D S0ð Þþ1O2 (5)

where, despite quenching of D*(T1), reactive singlet oxygen is produced by energy

transfer to the ground state triplet state of oxygen.

Light absorption by a molecule (R) promotes an electron to a higher energy

level, and this may affect the redox properties of this molecule. For example, this

molecule may become a better electron donor (reducing agent) in its excited state as

compared to its ground sate. In contrast, the electron vacancy created by the

electronic transition might exhibit better electron acceptor properties and thereby

be a better oxidizing agent. These two features, known as photoinduced electron

transfer, can be described in the case of R reacting with the molecule M as follows:

Rþ hn! R� Light absorption by R

R� þM! R�þ þM�� R acts as electron donor and is oxidized

R� þM! R�� þM�þ R acts as electron acceptor and is reduced

As mentioned above, photoinduced electron transfer occurs via electron

exchange interactions, which require overlap of the electronic densities of both

molecules R and M, and is therefore a process occurring over short distances.

While the above examples are often used to describe homogeneous organic

photochemistry, there are processes that are specific to heterogeneous processes

involving solid oxides (such as those found in mineral dust), i.e., heterogeneous

photocatalysis [4, 5]. Heterogeneous photocatalysis has been reported in gas and

liquid phases (aqueous and organic). Classically, the overall process can be broken

down into five independent steps:

1. Transfer of the reactants in gas or liquid phase to the surface

2. Adsorption of at least one of the reactants

3. Reaction in the adsorbed phase

4. Desorption of the product(s)

5. Removal of the products from the interface region

While these steps are common to all heterogeneous processes (such as the uptake

of a gas by a liquid droplet or heterogeneous catalysis), step 3 is where the

photocatalytic nature of certain metal oxides plays a role. In fact, when a semicon-

ductor catalyst (SC), such as a metal oxide (TiO2, ZnO, ZrO2, CeO2,. . .) or sulfide
(CdS, ZnS,. . .), is illuminated with photons carrying energy equal or in excess of its

band gap, absorption of light promotes one electron into the conduction band,

creating an electron–hole pair (Fig. 3) similar to photoinduced electron transfer.

The oxide may transfer its electron to any adsorbed electron acceptor (thereby

promoting its reduction), while the hole (or the electron vacancy) may accept an

electron from an adsorbed donor (promoting its oxidation).

In the case of an oxide exposed to ambient air, adsorbed oxygen (O2) will act as

the dominant electron acceptor and produce the highly reactive superoxide radical

anion (O2
�). Simultaneously, adsorbed water will be oxidized to hydroxyl radicals

Emerging Areas in Atmospheric Photochemistry 5



(OH). Hence the surface of such an illuminated oxide will be highly reactive toward

a series of organic (and adsorbed) compounds such as volatile organic compounds

(VOCs) often encountered in atmospheric chemistry.

Both photosensitized reactions and heterogeneous photocatalysis have been the

focus of many studies and reviews for the degradation of organic and inorganic

species in natural terrestrial surface water. This review will discuss their potential

importance in the atmosphere for two distinct cases – photochemistry of mineral

dust (which contains oxides able to initiate photocatalysis) and organic or carbona-

ceous aerosols (which contain aromatic compounds or humic like substances able

to act as photosensitizers). Additionally, direct photochemistry of unconventional

precursors, i.e., iron-dicarboxylic acid anionic complexes, will also be dealt with.

2 Vibrationally Excited Photochemical Processes in the Gas

Phase

Like all photolysis reactions, those initiated by vibrational overtone absorption are

analyzed as first-order kinetic processes with a photochemical rate, J, which

depends upon the absorption coefficient s(l) of the absorbing compound, the

Fig. 3 Schematic of a photocatalytic process. When illuminated with light of energy higher than

the band gap, electron–hole pairs are created in a semiconductor, thus allowing chemical reactions

on its surface

6 C. George et al.



quantum yield (that is, the ratio of dissociation events to the number of photons

absorbed for the dissociation ’(l)), and the available photon flux I(l):

J ¼
ð

l

sðlÞ’ðlÞIðlÞdl (6)

In the Earth’s atmosphere, visible light (l > 400 nm) is present to some extent at

all altitudes and solar zenith angles. Although such radiation may be sufficiently

energetic to rupture weaker chemical bonds, it is generally not in the correct

wavelength range to induce electronic transitions of the chemical compounds present

in the atmosphere. However, in polyatomic molecules containing O–H, C–H, and

N–H groups, the small mass of the hydrogen atom means that X–H stretching

frequencies are considerably higher than those of other vibrational modes. In the

absorption spectrum this feature and the generally large anharmonicities associated

with such X–H stretches give rise to the appearance of overtone transitions with

appreciable intensity [6]. Of particular atmospheric importance are the OH stretching

overtones of alcohols, organic acids, and peroxy-compounds which, for the most part,

are transparent to the ultraviolet wavelengths present in the lower atmosphere. Such

species are emitted directly into the troposphere, but are also products of atmospheric

oxidation reactions initiated by the OH radical.

The OH stretching frequency lies in the range 3,600–3,000 cm�1 and the

anharmonicity is approximately 85 cm�1 [7–10]. The light hydrogen oscillator

and the large anharmonicity value give rise to higher overtone transitions (generally

by the v ¼ 3 level) becoming sufficiently separated from the rest of the molecular

vibrations to be treated by the “local mode” approximation [11], in which each X–H

vibration is taken to be an independent anharmonic oscillator. Spectroscopically,

the latter condition means that overtone absorptions are well separated from other

absorptions, as shown for the case of nitric acid in Fig. 4.

The energies accessed by OH vibrational overtone transitions above vOH ¼ 3 or

so are sufficient to initiate reactions. However, the challenge of initiating reaction

by vibrational overtone excitation lies in the low cross section of vibrational

overtone transitions, which are typically three to six orders of magnitude lower in

intensity at chemically relevant regions compared to electronic transitions in the

ultraviolet. Intensities of vibrational overtone transitions generally decrease by an

order of magnitude with each quantum of excitation [12]. Nevertheless, under

conditions in which ultraviolet photochemistry is limited due to the lack of appro-

priate light and/or molecular absorptions, such overtone-initiated chemistry may

play an important role in the atmosphere [13–16]. As mentioned above, alcohols,

organic acids, and peroxy-compounds all possess OH stretching overtone

transitions in the visible spectral region.

What distinguishes vibrational overtone initiated chemistry from that driven by

electronic excitation is that the chemistry takes place exclusively in the ground

electronic state. In general, following absorption of a photon, chemistry is in

competition with energy dissipation; in the lower atmosphere this is often driven

Emerging Areas in Atmospheric Photochemistry 7



by collisional energy loss. Electronic transitions of atmospherically important

molecules such as NO2 and O3 access dissociative states with very short lifetimes

compared to the collisional time. By contrast, overtone chemistry requires energy

flow away from the initially excited mode (i.e., the OH stretch vibration) into

adjacent regions of the molecule. This intramolecular vibrational redistribution

(IVR) process takes place on the time scale of many vibrational periods, setting a

limit for the effectiveness of chemistry, depending on local temperature and

pressure. The efficiency of such processes is higher at high altitude where low

pressure limits the efficiency of collisional deactivation.

2.1 Bond Cleavage Reactions

This type of process has been studied reasonably extensively for systems in which

an OH moiety is adjacent to a weak bond, such as O–O or O–N. Vibrational

overtone transitions to states with 3–6 quanta of OH stretch occur in the near-

infrared to visible region of the spectrum and deliver sufficient energy to break the
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Fig. 4 Absorption spectrum of gas phase nitric acid in the near IR region, showing the overtone

transitions to the v ¼ 3 and v ¼ 4 levels of the OH stretch. Adapted from Fig. 1 of [7]
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adjacent weak bond in several atmospherically important molecules, such as the

O–O bond in peroxy-compounds such as HOOH [17–20] or the N–O bond in HNOx

type compounds (HONO, HONO2, HO2NO2) [19, 21–24]. These compounds are

very important sequestering agents for NO2 (which forms ozone through photolysis

to NO + O and recombination of the O-atom with O2) and OH (the primary agent

for oxidation reactions in the troposphere). Therefore, understanding their forma-

tion and destruction reactions is critical to being able to predict air quality and the

oxidative ability of the lower atmosphere.

In nitric acid (HONO2), for example, initial excitation of an OH stretching

motion at vOH � 5 accesses energies above the dissociation limit to OH + NO2

[19]. In the absence of collisional de-excitation, this energy will “flow” from the

initially excited vibration throughout the molecule, via IVR. During this equilibra-

tion process, sufficient energy may be deposited in motion along the N–O dissocia-

tion co-ordinate to induce bond cleavage. An upper limit to the enhancement due to

vibrational overtone pumping of the photolysis rate of HNO3 has been calculated

based on vibrational overtone cross sections [19, 21–24] with an assumed quantum

yield of 1. At 20 km altitude and at about 92� zenith angle the calculated enhance-

ment for the photolysis rate of HNO3 is about 30%.

In the well-studied case of hydrogen peroxide, H2O2, overtone levels of the OH

stretch may be excited at energies exceeding the O–O bond dissociation energy of

about 215 kJ mol�1. Reaction occurs by energy flow from the initially excited OH

stretch local mode to the weak O–O bond to give the OH radical. Simulations of the

dynamics following overtone excitation have shown that the initial step in the

dissociation is a rapid coupling of the OH stretching and OOH bending modes.

This type of coupling seems to allow flow of energy out of the OH moiety and into

the weak bond. Similar reaction mechanisms were used to explain dissociation

following vibrational overtone pumping in other, similar compounds.

In the case of HO2NO2 (peroxynitric acid or PNA) the thermochemical dissoci-

ation limit is reached at energies somewhat below the v ¼ 3 level of the OH stretch.

Thermally-assisted dissociation becomes possible from the v ¼ 2 level as well,

depending upon the temperature. This process has been shown to occur in labora-

tory measurements, using action spectra of HO2 formation as a function of the

excitation wavelength of PNA [23, 25]. These measurements show temperature-

dependent formation of HO2 from the v ¼ 2 level of OH stretch, and a smaller but

temperature-invariant formation efficiency from the v ¼ 3 level. Inclusion of

overtone-initiated dissociation of PNA from OH stretching vibrational levels

v � 2 in atmospheric models has shown this process to be an important source

for HOx in the free troposphere and lower stratosphere [26–30]. Reaction with HOx

radicals is a dominant sink in photochemical loss cycles of ozone in the lower

stratosphere. The vibrational overtone process is calculated to produce a 20–60%

increase in HOx at high latitudes in the spring, leading to a greater sensitivity of

ozone to atmospheric perturbations such as increased water vapor.

The postulated mechanism for energy flow from the OH to the weak bond by

IVR in examples where a weak bond ruptures following overtone excitation appears

to be more complicated in HONO and HONO2. Gerber and co-workers [22] have
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carried out dynamical simulations of the molecular motion following overtone

excitation and find that IVR to the N–O bond is not the only important process

taking place. Intramolecular hopping of the hydrogen atom from one oxygen atom

to another also occurs on very fast time scales. Interestingly, this H atom hopping

occurs at energies well below the bond dissociation energy for the O–H bond, so the

process is a concerted reaction where one O–H bond breaks while another is being

generated.

2.2 Rearrangement Followed by Dissociation

In addition to direct bond cleavage, molecules with a high degree of internal

excitation may undergo rearrangements followed by dissociation to molecular

products. This is the idea behind the well-known phenomenon of thermal

(unimolecular) decomposition. It is similar in initiation to the bond cleavage

process described above, with the important distinction that such “concerted”

chemistry may occur at energies lower than an individual bond dissociation energy.

For example, malonic acid undergoes thermally-induced decarboxylation at rela-

tively low temperatures [31]; this chemistry may also be induced by OH stretching

overtone excitation [32]. Similarly, sulfuric acid has been predicted to undergo a

unimolecular dehydration reaction to form SO3 and H2O following excitation to

v � 4 of an OH stretching vibration [33]. This level corresponds to energies well

below the weakest individual bond in the acid. The decomposition of H2SO4 is also

known to occur thermally but at very high temperatures [34].

Sulfuric acid is one of the main constituents of atmospheric aerosols, of enor-

mous interest because of the large and as yet not completely understood effect these

aerosols have on the planet’s climate. Sulfate aerosols form at low altitude in the

troposphere and the cool stratosphere and evaporate as they ascend towards the

warm stratopause. Modeling studies led to the conclusion that sunlight-initiated

chemistry of H2SO4 must occur at high altitude to explain measured stratospheric

SO2 concentrations [35]. Although the lowest electronic transitions are not accessi-

ble to the available solar radiation [36], several OH vibrational overtone transitions

do absorb in the actinic region and are therefore available to activate this molecule

[33, 37]. Below 70 km the relevant photodissociation mechanism for H2SO4 is

initiated by absorption of red light by OH vibrational overtones, specifically by

vOH ¼ 4 and 5 [38–40].

The possibility of vibrational overtone initiated dehydration of sulfuric acid to

SO3 + H2O has been investigated by spectroscopic [37, 41, 42] and theoretical [38,

43, 44] methods. Dynamical simulations of the dehydration reaction find two

mechanisms to be operative in this reaction: a fast loss of H2O initiated by hydrogen

atom hopping, similar to that found following nitric acid excitation, and a slower

dissociation, occurring after full or partial IVR [43, 45]. Based on these mechanisms

and rates, the dehydration of sulfuric acid is very effective under conditions of the

upper stratosphere and mesosphere [46]. The rate of dehydration thus obtained is
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sufficient to explain atmospheric observations of the SO2 vertical profile and the

formation of large concentrations of cloud condensation nuclei at the top of the

aerosol layer in polar spring or in mid-latitude air of recent polar origin [39, 40]. In

this example, no alternative photochemical process is available in the stratosphere,

since the electronically excited states of H2SO4 are at very high energy [33, 37].

Sunlight-initiated reactions of sulfuric acid will be important beyond the Earth’s

atmosphere, notably on Venus where sulfuric acid clouds are known to exist [47].

Concerted photoreactions initiated by OH vibrational overtone excitation have

also been proposed to occur in organic acids and their reaction mechanisms and

rates have recently been investigated by theoretical and spectroscopic methods [10,

42, 48]. The early time dynamics of vibrationally excited pyruvic and glyoxylic

acids have been studied by a combination of “on-the-fly” dynamics simulations and

cavity ringdown spectroscopy [48–50]. These combined studies concluded that

decarboxylation of the ketoacids occurs on sub-picosecond time scales following

OH overtone excitation. A strong correlation between structure and reactivity was

observed: conformers that possess intramolecular hydrogen bonded structures react

on excitation of the third and fourth OH overtone by hydrogen atom chattering,

while nearly isoenergetic conformers of trans geometry do not react by a fast

process. The “chattering” mechanism involves rapid hydrogen atom exchanges

between donor and acceptor oxygen atoms. In contrast with hydrogen atom

“tunneling,” chattering is a classically allowed process occurring above any

exchange barrier. Chattering proceeds on a time scale set by the vibrational

frequency and is consequently much faster than the tunneling motion [51].

The examples discussed above illustrate the utility of vibrational overtone

excitation by red sunlight in atmospheric photochemistry. The low absorption

cross-section of vibrational overtones limits the importance of such light-initiated

chemistry. However, when reactive electronic states are high in energy (as is the

case with most alcohols and acids) or when UV radiation is suppressed at high solar

zenith angles, vibrational overtone initiated photochemistry has been used to

explain discrepancies between measurements and model results.

3 Aerosol Photochemistry

3.1 Organic Aerosols

Organic material comprises a large fraction of the sub-micron aerosol mass ranging

from 20% to 50% in continental mid-latitudes and up to 90% in tropical forested

areas [52–54]. Significant amounts of carbonaceous aerosols are also observed in

the upper troposphere [55]. Organic particles may have a direct radiative forcing

through scattering and absorption of solar and infrared radiation and an indirect

radiative forcing by affecting cloud formation and by inducing changes in cloud

properties [56]. Organic aerosols are also related to health effects due partly to the
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presence of toxic compounds, such as polycyclic aromatic hydrocarbons (PAHs),

which are known for their carcinogenic and mutagenic potency to humans and

animals [57–59].

Chemical reactions proceeding at the surface or within the bulk of aerosol

particles can influence atmospheric gas phase chemistry as well as the properties

of the particles themselves, including their effects on climate and human health. So

far, the atmospheric chemistry community has mostly considered heterogeneous or

multiphase reactions under dark conditions between reactive atmospheric gas phase

oxidants and organic compounds known to be present in the particulate phase.

Many laboratory studies have used oxidation of PAHs and/or soot [60–87], oleic

acid, and other organic compounds as proxy systems to understand mechanisms and

kinetics of these reactions and to assess their significance [88–90].

This focus on dark reactions has ignored the fact that organic sub-micron

aerosols absorbing near-UV and visible light are ubiquitous in the atmosphere,

including soot as the most extreme example. Enhanced UV absorption features

were observed, for instance, in remote areas as well as in polluted environments

[41, 91–95]. Reference [91] showed strong spectral dependence of the light absorp-

tion by organic aerosols in the UV. Similar absorption attributed to organics has

been reported in several other measurements (e.g., [41, 94–102]). Sources of this

absorbing material in organic aerosols may include the resuspension of soil-derived

material by wind erosion or combustion processes such as biomass burning or fossil

fuel combustion [91, 103–107]. Laboratory studies have noted the formation of

solar light absorbing material following a few hours of oxidation in the condensed

phase. These studies have mostly concentrated on bulk solutions, with only a few

observing reaction in the aerosol phase directly (e.g., [92, 108–114]). During

processing, initially non-absorbing organic compounds are converted into

compounds that display significant absorption in the UV and even visible regions.

The presence of such light absorbing material in particles may enable photo-

induced and/or photo-sensitized processes. While a significant body of literature

exists on photo-induced charge and/or energy transfer in organic molecules of

relevance in terrestrial water chemistry, biochemistry, and water waste treatment

[115–117], relatively little work exists in the field of atmospheric aerosols, where

only a few groups have investigated the chemistry of the light-absorbing organic

material present in aerosols [118–123].

Stemmler et al. [124] used humic acid aerosols as a proxy for HULIS (HUmic-

LIke Substances) to study the photo-induced conversion of NO2 into HONO, which

was previously observed on various organic condensed films [125–128]. The light-

induced process was able to release more HONO than was obtained under dark

conditions, similar to what was observed for other organic substrates. The amount

of the enhancement is not dramatic: even if the whole organic aerosol was com-

posed of humic acids, for typical aerosol surface concentrations of 100 mm2 cm�3

for rural and 1,000 mm2 cm�3 for urban conditions, only1.2 and 17 pptv h�1 of

HONO would be formed on aerosol surfaces in rural and urban environments,

respectively. These values represent upper limits as in reality rural and urban

continental aerosol is composed only of 20–50 mass % of organic matter. On the
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other hand, HONO production reported for daytime at ground and over forested or

rural sites is up to 170–500 ppt h�1 [127] or in urban environments up to 2 ppb h�1.
Stemmler et al. [124] suggested that photochemical HONO formation on organic

aerosol is unlikely to be an important contributor to the HONO formation observed

in the boundary layer. In exceptionally highly polluted areas, such as in biomass

burning plumes or in mega-cities, environmentally relevant HONO photo forma-

tion rates on organic aerosol may occur.

Similar light-induced production of HONO upon exposure to NO2 has been

observed on soot [129]. The source strengths estimated for atmospheric conditions

are comparable to those for humic acids. The process therefore represents only a

small source of HONO in the gas phase. However, Monge et al. demonstrated that

HONO production on soot does not cease quickly due to deactivation of reactive

species under irradiation as it does under dark conditions, and so soot may act as a

photoactive substrate over its entire life cycle in the atmosphere.

The need for investigating the role of organic aerosols as a possible sink for

ozone has been suggested in the past by Jacob et al. [130], since this type of particle

has a sufficient source strength and potentially a high enough reactivity to provide a

significant sink for ozone in the continental boundary layer. The photo-reactivity of

ozone with humic acid aerosol was investigated by D’Anna and co-authors [131].

The authors concluded that the light-induced process is not able to affect gas phase

concentrations of ozone in the troposphere. Nevertheless, the amount of ozone

reacted may be significant for aerosol aging [131] because OH radical is produced

upon electron transfer from the organic substrate to ozone [132].

Because significant differences exist between terrestrial aquatic humic acids

(such as those used in most laboratory experiments on HULIS) and aerosol

humic-like substances (lower aromaticity, lower molecular weight, and better

droplet activation ability) [133], the photo-induced reactivity of genuine atmo-

spheric HULIS extracts with gas phase ozone was investigated by the same group

(Fig. 5) [134]. The authors used HULIS collected from winter filters in Chamonix,

which are strongly influenced by local emission of residential wood burning. The

experimental results indicate a much higher photo-induced uptake of ozone on films

prepared with such HULIS extracts than with films of humic acids. TOC (Total

Organic Carbon) analysis of the extract before and after photo-treatment showed a

reduction of the total amount of carbon; emission of VOCs and CO was interpreted

to be a consequence of ozonation [135], photolysis [136–138], and a combination of

both processes [131]. Functional group analysis suggested the formation of car-

bonyl and carboxylic groups under the combined action of light and ozone [134].

As in the case of NO2, soot particles also exhibit photoenhanced O3 uptake, in

both the UVA and the visible wavelength ranges [139]. While under dark conditions

over long times O3 shows only very low reactivity, the study by Zelenay et al. [139]

demonstrates that rates of O3 uptake are orders of magnitude higher under light than

under dark conditions. Surprisingly, this enhanced oxidation was accompanied

by an increase in the contact angle of water, i.e., the surface became less hydrophilic.

X-Ray absorption spectroscopy revealed a reduction in oxygenated organic

components upon irradiation, suggestive of decarboxylation processes and
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evaporation of highly oxidized small OVOC and CO2. This demonstrates that

indirect photochemistry affects the subtle feedbacks among oxidation, photochem-

istry, and hydroscopic properties (and thus climatic effects) of particles.

While the experiments related to photosensitized processes reviewed above were

concerned with inorganic oxidants from the gas phase, the question arises as to

whether comparable processes would occur with organic acceptors. Rouviere et al.

[140] noted significant light induced degradation of succinic acid in deliquesced

ammonium sulfate particles in the presence of small amounts of benzophenone.

This effect was also confirmed by experiments in aqueous solution showing effi-

cient triplet quenching by succinic acid. This has led to the idea that photosensitized

processes may play a role in secondary organic aerosol (SOA) formation. Recently,

Monge and co-authors [141] proposed that heterogeneous reactions activated by

light lead to fast uptake of non-condensable VOCs at the surface of particles when

traces of a photosensitizer were in the aerosol seeds. Seed particles containing

succinic acid and only traces of humic acids showed a rapid diameter growth when

irradiated with near-UV light in the presence of a terpene. An enhanced effect was

reported when traces of nitrate were added to the seed particles, while no growth

was observed, under the same experimental conditions, if the seed particles

contained only carboxylic acids. Replacing air by pure N2 (containing traces of

O2 up to 50 ppmv) drastically reduced the photo-induced particle growth,

Fig. 5 Evolution of the O3 gas phase mixing ratio (black dots) as a function of time after contact

with a film made of HULIS extracted from organic aerosols collected in the winter season at

Chamonix, France (photo). An ozone reduction of approximately 25 ppbv is observed during UVA

irradiation
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suggesting that O2 is involved in the reaction mechanism, a role well known from

previous studies on DOM- and humic-containing waters [142–144]. Figure 6 shows

how the particle growth rate depends upon the product between limonene concen-

tration and residence time in the aerosol flow tube for typical solar irradiance.

Ambient conditions are assumed to vary from 0.2 to 2 ppbv of limonene; the

exposure to solar irradiance is approximated to 10 h per day in the 300–420 nm

(near-UV) wavelength range. Therefore the experimentally determined growth rate

values matched field observations, suggesting that this photochemical process can

provide a new and unaccounted pathway for atmospheric particle growth and

should be considered by models [141]. These laboratory results represent a radical

change from the traditional view of gas phase oxidation of VOCs by atmospheric

oxidants leading to SOA formation.

3.2 Mineral Dust

Estimates of emissions of mineral dust into the atmosphere presently lie around

1,500–2,000 Tg per annum [145] making mineral dust an important component of

the coarse fraction of atmospheric aerosol and explaining its significant impact on

Fig. 6 Experimental results from an aerosol flow tube experiment using humic acid/succinic acid/

NH4NO3 (1:10:1 by weight) as seed particles exposed to 320 ppbv of limonene and to UV-A light.

The residence time of the aerosol in the flowtube is 9.7 min. Calculated growth rate values as a

function of the product between limonene concentration and residence time in the flow tube. These

values are calculated by considering the photoenhanced growth (GR ¼ DDm/Dt) vs VOCs con-
centration per exposure time. Values are evaluated for solar irradiance. The inset shows growth
rate (GR) values given by the photoinduced process compared to the literature GRs values

(1–20 nm h�1). Ambient conditions are assumed to vary from 0.2 ppbv to 2 ppbv of limonene

and exposure to solar irradiance for 10 h, in the 300–420 nm (near-UV) wavelength range
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several atmospheric processes including radiative forcing and the modification of

photochemical cycles. The direct radiative forcing effect (due to scattering and

absorption of incoming solar radiation) is accompanied by an indirect effect as clay

and silica particles are effective condensation and ice nuclei [146, 147], which can

ultimately affect cloud structure and precipitation patterns [148]. The indirect effect

will be modified by the physical state of the mineral dust particles, which will be

influenced by chemical ageing during atmospheric transport.

Uptake of several trace gases (such as N2O5, NOx, HNO3, SOx, O3) on mineral

dust particles and their surrogates has recently received attention [149–155]. Of

particular importance is the conversion of SO2 into sulfates and of NOx and NOy into

nitrates on dust particles during transport [156, 157]. Model studies have confirmed

that the nitrate content is consistent with the uptake of reactive NOy trace gases (such

as HNO3) [158]. The overall impact of NOy-mineral aerosol interactions on tropo-

spheric photochemical cycles has been assessed in combined aerosol/gas phase

models [158–161]. They potentially impact mineral dust hydroscopic and optical

properties, they change the gas phase composition (NOy/NOx ratio and ozone

concentrations), and they establish a transport route of nitrate and sulfate to regions

far from the sources (i.e., nitrogen fertilization of oceans) [162, 163]. The accuracy

of the simulations is severely impacted by a lack of high quality laboratory data

describing trace gas/dust interactions. As this section is focussing on dust photo-

chemistry, the reader is referred to recent reviews on dust heterogeneous chemistry

[164] for more information about the uptake of various gases on dust surfaces.

As dust particles are mobilised by strong winds and therefore eroded from the

ground, their composition reflects the chemical composition of crustal materials

from which they are produced. As the Earth’s crust is dominated by silicon and

aluminum oxides, the latter are also dominantly present in uplifted particles.

Indeed, several studies focusing on the chemical (elemental) composition of dust

originating from various locations around the world have demonstrated that mineral

dust is approximately 60% SiO2 and 10–15% Al2O3 (by weight) [165]. Beside these

major elements, some other oxides are found. The percentages of these other

oxides, namely Fe2O3, MgO, CaO, and TiO2, are slightly more variable and

dependent on source location. For instance, titanium dioxide is found in dust

particles at mass mixing ratios ranging from 0.1% to 10% depending on the exact

location from where the particles were uplifted [166].

Both titanium and iron oxides are known semiconductors used as photochemical

sources of radicals (see Sect. 1). In aqueous solutions, iron oxides are used to induce

the so-called Fenton or photo-Fenton reactions [167] (see section on bulk phase

chemistry). Pure TiO2 is used in a variety of remediation processes due to its

photocatalytic properties. The exposure of TiO2 to light with wavelengths below

400 nm leads to an electron hole pair. Each of these can reach the surface and react

with adsorbed species to form OH, O2
�, or singlet oxygen. These free-radicals are

very efficient oxidizers of organic and inorganic matter. For instance, pure TiO2 has

been demonstrated in a number of studies to be an effective photocatalyst for NO2

reduction [168–170]. Similar reactions also occur with other inorganic compounds

such as ozone and sulfur oxides with synergistic effects being active if these
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compounds are present in combination [171]. Accordingly, the TiO2 contained in

mineral dust could induce photochemical reactions that were not considered so far.

In turn, this could drastically modify the chemistry of the dust particles and their

potential impact on the tropospheric composition. As a consequence, there is a

recent but growing interest in studies focussing on photochemical transformation

at the air-dust interface. Several surface photochemical mechanisms are currently

being discussed in the literature, i.e., surface photolysis and photo-assisted reactions.

The photolysis of nitrate on surfaces is especially important as it could lead to the

renoxification of the atmosphere, whereby nitrate (or nitric acid) becomes a source of

NOx and thus mineral dust would not be a permanent sink for gaseous nitrogen

oxides. uptake of several gases, i.e., NO2 [126, 172, 173], O3 [174], and HCHO [175],

while [176] presented similar conclusion for the surface photooxidation of SO2.

The striking features in all cases are that under illumination (1) the uptake of

these gases is enhanced by more than one order of magnitude as compared to data

obtained in the dark and (2) the reaction is sustained as long as light is available

(while in the dark most surfaces are passivated in short time scales).

Let us focus on the case of nitrogen dioxide (NO2) [126, 172, 173, 177], which is

generally thought to be only very poorly reactive on a large variety of solid surfaces

at room temperature and low gas phase concentrations. (We note that high

concentrations may lead to the formation of N2O4 which, in turn, is known to be

quite reactive on various surfaces [178].) However, once a dust surface is irradiated,

in the range 300–400 nm and under conditions where gas phase photochemistry was

shown to be minor (typically by the use of short reaction times), a very rapid

chemical conversion of NO2 is observed. Not only is the uptake rate drastically

accelerated but it also appears that the uptake rate is catalytic in the sense that the

uptake rate does not depend on time, i.e., no surface saturation has been observed on

these synthetic samples over hours (even at NO2 concentrations as large as

300 ppb). The uptake coefficients (normalized to the BET surface area) were

observed to be close to 10�6, up to two orders of magnitude larger than without

light. Gustafsson et al. [179, 180] derived the uptake rate of NO2 onto pure TiO2 to

be ca. 8 � 10�3. Such photoenhancements were observed over a large range of dust

surfaces including synthetic surrogates and samples originating from Mauritania,

Algeria, Morocco, Tunisia, and Arizona (Arizona Test Dust, ATD); see Fig. 7.

While the uptake in the dark was always very small, a photoenhanced uptake of

NO2 was observed on all samples with an enhancement factor ranging from 8 to 15.

The photocatalytic action of TiO2 (and other semiconductors) is initiated by the

photo-production of excess electrons in the conduction band (e�cb) and holes in the
valence band (h+vb). The electron reduces the oxygen or the nitrogen dioxide while

the hole oxidizes water vapor. The associated reactions mechanism could be [5]

Dust TiO2ð Þ þ hn! hþvb þ e�cb (7)

hþvb þ H2O! OHþ Hþ (8)

e�cb þ O2 ! O2
� (9)
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where OH and the electrons or O2
�, respectively, can react with nitrogen dioxide

according to

NO2 þ OH! HNO3 (10)

NO2 þ O2
� or e�cbð Þ ! NO2

� þ O2 (11)

It must be emphasized that these reactions are just a subset of a large number of

possible reactions changing the final yield of each product. Depending on the

acidity of the surface, the production of nitrite anions is linked to that of gaseous

nitrous acid (HONO), known to be a very important source of hydroxyl radicals.

HONOwas observed from irradiated samples, but with varying yields. On synthetic

dust surfaces (i.e., 1 wt% TiO2 in SiO2) HONO was produced with an average yield

of 33% while, for an authentic Saharan sample, the yield was about 80%. This

indicates that surface acidity, microstructure, and other factors finally control

surface chemistry and the release of HONO.

It is well known that nitrate anions are formed as a consequence of the

photocatalytic oxidation of NO2 on UV-illuminated TiO2 surfaces [181–186].

Fig. 7 Schematic representation of the conversion of NO2 into HONO on UV-A (300–420 nm)

irradiated mineral dust, illustrating the chemistry initiated by the photoinduced electron and hole,

respectively. Dependence of the uptake coefficient (based on the BET surface) as a function of the

TiO2 content of synthetic dust
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In addition, on the dust surface, nitrate anions were observed to be the only product

formed during the photoconversion of NO2. The formation of nitrate on dust

particles is typically considered as a sink for atmospheric NOy (such as HNO3).

However, if dust is photochemically or photocatalytically active, surface nitrate

will photoreact according to

NO3
� þ hþvb ! NO3 (12)

NO3 þ hn! NOþ O2 (13)

NO3 þ hn! NO2 þ O (14)

The photocatalytic action of TiO2 is again initiated by the photo-production of

excess electrons in its conduction band (e�cb) and holes in its valence band (h+vb).

The nitrate ion adsorbed at the oxide surface can react with the holes in the valence

band to form a nitrate radical. The nitrate radical (NO3), which absorbs strongly in

the visible, can subsequently be photolyzed (occurring at longer wavelength com-

pared to the anion) and form NO2 and NO through reactions (13) and (14),

respectively, as observed by Ndour et al., leading to a potential renoxification

process of the atmosphere [177]. These processes are then in competition with

surface photolysis as described by Grassian and co-workers [176, 187–189].

The latter two reactions above produce atomic and molecular oxygen that may

lead to the formation of ozone at the surface. Monge et al. [129] investigated this

chemical route by exposing a mix of TiO2/KNO3 50 wt% to near-UV irradiation

(300–420 nm) using synthetic air or pure N2 as carrier gases with 30% RH under

atmospheric pressure and room temperature. The formation of ozone was indeed

observed and explained by reactions (7) to (14) followed by a surface

recombination:

O� þ O2 þM! O3 þM (15)

Although O3 has recently been proved to decompose on illuminated TiO2 surfaces

[174], its formation is observed when TiO2 treated surfaces are exposed to NOx under

illumination. Charge transfer reactions take place at the surface of TiO2, producing

nitrate radicals from the corresponding anions. The photochemistry of the NO3

radical leads to O3 formation, enhancing the oxidizing power of these surfaces.

Recent laboratory work has shown that the uptake and photooxidation of

organics on TiO2-containing mineral dust proxies can be an efficient process

[190]. n-Propyl and isopropyl alcohols were efficiently oxidized to propionalde-

hyde and acetone, respectively, after uptake to photoactive dust in a Knudsen cell

reactor when the dust substrate was exposed to actinic radiation. The presence

of trace amounts of O2 in the reactor enhanced the production of oxidized

product. These observations are consistent with the general mechanism for TiO2

photoactivity, as shown below for isopropanol:
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hþvb þ CH3ð Þ2CHOH !! CH3ð Þ2CO (16)

f>TiOH�gþ þ CH3ð Þ2CHOH!! CH3ð Þ2CO (17)

O2
�� þ CH3ð Þ2CHOH!! CH3ð Þ2CO (18)

Figure 8 displays the photoenhanced uptake of propanol and the corresponding

production of acetone on an illuminated TiO2 dust sample in the presence of 0.7 Pa

of O2(g).

4 Tropospheric Aqueous Phase Bulk Photochemistry

4.1 Introduction

Atmospheric particles very often contain water when they occur as deliquesced

aerosol particles, haze, fog, cloud droplets, or even rain droplets (hydrometeors). It

has been suggested before that the atmospheric aqueous bulk phase in these systems

might also host a lively and important photochemistry which, up to now, has mostly

been described insofar as hydroxyl (OH) radicals are generated by the photolysis of

nitrate, nitrite, hydrogen peroxide [191–198], and iron-hydroxyl complexes [199].

These processes have been treated in recent overviews such as [200, 201].
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Fig. 8 Photoenhanced uptake of propanol and the corresponding production of acetone on an
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Photosensitization has been studied not only in connection with interfaces but also

for bulk phase aqueous environmental systems [202].

Iron is the most abundant metal in the Earth’s crust and is always identified as a

component in tropospheric particle systems, either aqueous or dry [167]. It has been

known for a long time that iron forms chelate complexes very efficiently and that

oxalate forms complexes with Fe(III). These can be regarded as being very stable

from their complex stability constants but they also exhibit a considerable potential

for light absorption in the actinic range of the spectrum. Iron-oxalato-complexes

have been characterized with regard to their photochemical activity by the measure-

ment of their effective quantum yields for the formation of Fe(II) [203, 204]. As a

consequence of this chemistry the formation of iron-oxalate complexes is included

in the series of CAPRAM (Chemical Aqueous Phase Radical Mechanism) schemes

for atmospheric aqueous phase chemistry [205]. Leaving these very important

photochemical sink processes out of any description of tropospheric aqueous

phase chemistry results in a dramatic overestimation of aqueous phase oxalate

formation and, as a consequence, gives rise to misleading interpretations. Below,

we discuss the molecular mechanisms underlying bulk aqueous phase photochemis-

try of the iron-oxalato-complexes and present an introduction to the study of other

Fe(III) complex systems. There are strong interactions among the photochemically

generated radical species formed in complex photolysis reactions. We further

discuss the possible impacts of extending the iron complex photochemistry treat-

ment in tropospheric chemistry simulations. Such impacts include, for example, the

formation of Fe(II) in aqueous phase photochemical redox-cycling and the degrada-

tion of dissolved organics whichmay be “activated” by complexation to iron centers.

4.2 Ferrioxalate Photochemistry

Ferrioxalate complexes are thought to hold a major portion of Fe(III) in atmo-

spheric waters [167]. Although such complexes are widely used as chemical

actinometers [206] and have been the subject of numerous experimental

investigations [207–218], the exact primary step in ferrioxalate photochemistry is

still controversial. Two different versions of the ferrioxalate reaction mechanism

have been proposed following the excitation of the complex [219]. One possibility

is an intramolecular electron transfer from the oxalate ligand to the center ion

Fe(III) and the formation of a long lived radical complex (19) or the formation of a

C2O4
•� radical (20) [213, 215]:

½FeðIIIÞðC2O4Þ3	
3� þ hn! ½FeðIIÞðC2O4

�ÞðC2O4Þ2	
3�

or (19)

! ½FeðIIÞðC2O4Þ2	
2� þ C2O4

�� (20)

The C2O4
•� radical will then decarboxylate instantly and form CO2 and CO2

•�

[220]:
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C2O4
�� ! CO2

�� þ CO2 k1st ¼ 2� 106 s�1 (21)

Another option is the sequential cleavage of the Fe(III)–O bond between iron

and one oxalate ligand and its C–C bond which produces a biradical complex or two

CO2
•� radicals [211, 216, 221]:

½FeðIIIÞðC2O4Þ3	
3� þ hn! ½FeðIIIÞðCO2

�Þ2ðC2O4Þ2	
3�

or (22)

! ½FeðIIIÞðC2O4Þ2	
� þ 2CO2

�� (23)

The different proposed mechanisms were presented by two research groups;

[219, 222, 223], both groups presenting experimental evidence for their findings.

Thus, it might be possible that both reaction mechanisms take place simultaneously

depending on parameters such as mono-, bis-, or tris-oxalato coordination, excita-

tion wavelength, or excitation energy. In atmospheric aqueous phases chemistry it

is of importance which mechanism holds; that is, whether one Fe(II) and one CO2
•�

or two CO2
•� radicals are produced. CO2

•� is capable of producing Fe(II) via

secondary reactions with parent Fe(III)-oxalato complexes but can also react with

other electron acceptors such as O2 which are likely to compete in more or less

dilute atmospheric aqueous media (Fig. 9). Regardless of the exact reaction mech-

anism, the ferrioxalate system can produce Fe(II) quantum yields larger than unity

because of the secondary Fe-reduction by the CO2
•� radical formed.

Figure 9 illustrates the complicated interactions of iron-oxalato complex photo-

chemistry with radical chemistry and the chemistry of organic substances. The

main impacts of iron complex photochemistry are ultimately (1) breaking of C–C

bonds and thus degradation of the ligand (oxalate) and (2) formation of radicals

Fig. 9 Photolysis of Fe(III)-

oxalato complex in the

atmospheric aqueous phase,

including subsequent

reactions and possible

interactions with the gas

phase
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which can lead to turnover of substances present in the droplets or deliquesced

particles.

A prerequisite to simulate the impact of iron complex photochemistry in atmo-

spheric aqueous systems is the characterization of its efficiency. Figure 10 presents

an overview of quantum yield measurements in the ferrioxalate system as a function

of wavelength.

At first glance, the results appear quite scattered. The values obtained under

conditions of chemical ferrioxalate actinometry represent the upper boundary of the

reported values, which mostly agree with each other. Between 250 and 350 nm the

quantum yields are fairly constant around F ~ 1.25. Ferrioxalate actinometry is

performed under standardized conditions using millimolar concentrations of

ferrioxalate (and above millimolar at l � 436 nm) and an acidic pH (0.05 M

H2SO4) of about 1.2 [206]. Other measurements have been carried out at lower

initial Fe(III) concentrations as well as different Fe(III) to oxalate ratios and

different pH values; these mostly result in lower Fe(II)-quantum yields. Some

investigations discriminating between individual complexes of Fe(III) and oxalate

have been performed, while others did not provide an analysis of the individual

complexes and are thus valid only for their respective complex-mixtures. However,

all measurements with initial Fe(III) concentrations below millimolar result in

lower quantum yields. It is therefore desirable to characterize systemically any

possible effects of initial Fe(III) complex concentration, speciation, and other

experimental conditions on the ferrioxalate quantum yield to be able to interpret

reported differences.

At initial Fe(III) concentrations higher than 2 � 10�4 M, quantum yields of

F ~ 1.25 are obtained using 308-nm laser flash photolysis, in agreement with the

Fig. 10 Overview of Fe2+ quantum yield measurements in argon saturated solutions for the

ferrioxalate system, Actinometry: specified actinometry conditions, high initial Fe, [Fe(III)]

¼ 0.006–0.15 M, 0.05 M H2SO4, see Hatchard and Parker [206] for details; low [Fe(III)]: lower

initial Fe(III) concentrations than actinometry conditions, Fe(Ox)n: individual complexes
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values measured under actinometry conditions [204]. At lower initial Fe(III)

concentrations the measured quantum yields begin to decrease down to approxi-

mately half of the maximum value. This phenomenon can be explained by a kinetic

effect of the concentration decrease on the secondary reactions involved in Fe(II)

formation. The recombination of CO2
•� radicals to form oxalate becomes more

favored at more dilute conditions whereas the secondary reduction of unphotolyzed

Fe(III) species by CO2
•� becomes less effective at lower Fe(III) concentrations.

These findings can explain the discrepancies between measured ferrioxalate quan-

tum yields (Fig. 10) and should be considered when ferrioxalate photochemistry

takes place at sub-millimolar initial concentrations.

4.3 Photochemistry of Fe(III) Polycarboxylate Complexes

As discussed above, the first step in photochemical reactions of Fe(III) carboxylate

complexes has been thought to involve ligand to metal charge transfer [224, 225] as

a concerted inner sphere electron transfer, and the subsequent separation of the

photofragments into the bulk solution. It can be written in simplified form as

½FeðIIIÞðOOC-RÞ	� ! Fe2þ þ R-COO� (24)

where R-COO� is the carboxylate ligand and R-COO• is the primary organic

radical formed. Recently, investigations of the primary photochemical steps in

polycarboxylate complex photochemistry have been carried out using time resolved

transient spectroscopy. These investigations report the formation of long lived

radical complexes (25) with lifetimes in the millisecond range as the main

reaction path (90–98% of photoactivated complexes) whereas (24) only accounts

for 2–10% decay of photoactivated complexes [226–230]:

½FeðIIIÞðOOC-RÞ	� ! ½FeðIIÞð�COO-RÞ	 (25)

½FeðIIÞð�OOC-RÞ	 ! Fe2þþ�OOC-R (26)

However, it could be argued that, despite the discovery of the new transient, the

net chemical products are identical with those in (24). Possible reactions of the long

lived radical complex are poorly characterized but they will most likely influence

the quantum yield and product formation depending on the reaction conditions and

available reaction partners. In laboratory systems such reactions could involve

dissolved O2, other Fe(III) species, or back-electron transfer; reaction paths in the

atmospheric aqueous phase would be less restricted.

After the radical complex decays, R-COO• will decarboxylate instantaneously

(kR27 ~ 109–1012 s�1) [231–233]:
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R-COO� ! R� þ CO2 (27)

followed by the rapid reaction of the alkyl radical R• with dissolved oxygen,

forming a peroxyl radical with kR28 ~ 2 � 109 M�1 s�1 [234]:

R� þ O2 ! RO2
� (28)

Subsequent reactions of R• and RO2
• can be specific depending on the type of

ligand and its substitution. The scheme in Fig. 11 presents a critical evaluation of

possible reactions following complex photolysis proposed by Faust and Zepp

(1993). The main channels are electron transfer reactions of the alkyl radical R•

with Fe(III) species and the formation of peroxyl radicals RO2
•.

It should be noted that the formation of peroxyl radicals seems to be the most

favourable path, because dissolved O2 is present in concentrations of around

3 � 10�4 M at atmospheric pressure and (28) is usually fast (kR28 ~ 2 � 109

M�1 s�1 [234]). Furthermore, an electron transfer reaction of the alkyl radical R•

with Fe(III) or O2 seems to be feasible only if there is a hydroxyl, amino, diol, or

keto substitution on the radical bearing C atom [235, 236]. Unfortunately, the

pathway of an electron transfer reaction of the alkyl radical R• with O2 forming

O2
•� has been postulated as a general pathway following Fe(III)-organic complex

photolysis by a number of authors [167, 224, 237–241]. This is overly simplified

and can be misleading, since a mechanism can only be explained in the case of

hydroxyl-, amino-, diol-, or keto-substitution. It has to be emphasized that the

peroxyl radical formation is expected to be a major reaction route after Fe(III)

organic complex photolysis other than oxalate for the above-mentioned reasons.

Fig. 11 Scheme of Fe(III) complex photochemistry, modified after [203], 2 electron reduction can

only occur in case of hydroxyl, amino, diol, or keto substitution at the radical bearing C-atom;

questionable and rather improbable reaction paths have been marked with ?, see text for discussion
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Peroxyl radical formation has been suggested, for example, in the photolysis of Fe

(III) acetate [242] and Fe(III) malate [243]. According to the known pathways of

peroxyl radical chemistry in solution [234], formation of H2O2, HO2
•, and stable

organic end products will occur. Consequently, O2
•� can be produced indirectly via

HO2
• elimination in some cases.

Fe2+ quantum yield measurements of several other atmospherically relevant Fe(III)

carboxylate complexes have been performed for excimer laser flash photolysis

[204, 227] and Hg(Xe) lamp photolysis [203, 235, 244, 245]. Different experimen-

tal types of quantum yield determinations have been listed. Quantum yields labelled

with FFe(II) Ar are Fe(II) quantum yield measurements in argon saturated solution,

while those labeled FFe(II) O2 pertain to Fe(II) quantum yield measurement

in solutions saturated with atmospheric oxygen. For FFe(III) the initial Fe(III)

complex disappearance upon photolysis was measured. In the case of Fmalonate

the amount of the malonate ligand that was photochemically decomposed was

measured, leading to a ligand disappearance quantum yield. The range of measured

quantum yields among the different carboxylate ligand complexes with Fe3+ shows

a large variability with measured Fe2+ quantum yields from 0.021 to 1.21 at the

chosen reference wavelength 308 nm (Fig. 12).

Obviously, the choice of ligand seems to affect the measured quantum yields.

A trend of increasing overall Fe(III) quantum yields of Fe(III) complexes with

increasing oxygen to carbon ratio of the ligands is seen among the investigated

complexes (Fig. 12).

Oxygen can be present in three different binding modes in the carboxylates

considered here: the carboxylate, hydroxyl, and keto groups. Additionally, the

keto-form can be hydrated, forming a gem-diol with two hydroxyl groups at one

carbon atom. Oxygen substitution is thought to affect the photoreactivity in

two ways. The first is via inductive effects causing better ligand-to-metal charge

transfer (LMCT) in the primary reaction step, as explained for glyoxalate and
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pyruvate above. It is presumed that the increased electron density through the

oxygen lone electron pairs of the -OH, -C(O)-, or -CH(OH)2 groups can be

inductively propagated to the neighboring -COO� group, thus facilitating the

LMCT. Second, the influence can occur via the presence of an oxygen containing

group on the C-atom next to the LMCT-involved carboxylate group, which enables

a two electron oxidation product of the ligand. Ligand fragments, which are able to

undergo a two electron oxidation after decarboxylation, are those of tartronate and

tartrate (both •CHOH-R), pyruvate (•C(O)-R), and glyoxalate (•CH(OH)2). The

unpaired electron can be transferred to parent Fe(III) complexes and thus increase

the Fe(II) yield. Additionally, the peroxyl radicals formed from ligand fragments of

tartronate, tartrate, and glyoxalate can undergo an HO2
• elimination, which can

further cause secondary Fe(II) production.

Fe(III) complexes having a primary organic fragment after decarboxylation with
•CH2-R structure (such as complexes of malonate, succinate, and glutarate) all

display significantly lower quantum yields compared to the more oxygenated

compounds discussed above (Fig. 12). With the •CH2-R structure, a second electron

oxidation step of the ligand is not possible; instead the fragments can only decay

through peroxyl radical formation and subsequent recombination. Thus no relevant

secondary Fe(II) production occurs in systems with •CH2-R structure, and observed

quantum yields are accordingly low. An additional factor causing low Fe(II) quantum

yields in the case of malonate is the reported quenching mechanism with a free ligand

that causes reoxidation of Fe(II) [245]. Quenching was also reported for Cu(II)

malonate photolysis, but not for Cu(II) complexes with succinate and glutarate [246].

In the presence of dissolved O2, peroxyl radicals RO2
• can form in the reaction of

photochemically produced alkyl radicals R•. Generally, oxygen has the effect of

decreasing the quantum yield (Table 1). This is usually attributed to the secondary

production of oxidants such as H2O2, O2
•�/HO2

•, and RO2
• [203, 230]. The radical

species O2
•�/HO2

• can act as both oxidizing and reducing agents. According to a

kinetic reaction simulation of the Fe(III) glyoxalate system, the measured effects of

lower quantum yields in the presence of dissolved O2 could not be reproduced with

the simulation, despite using sensitivity test runs focusing on reaction paths that are

sensitive to O2 [204]. Consequently, the O2 effect cannot be kinetically simulated

and thus our knowledge about Fe(III) photochemical processes is not complete in

this respect. The causes of a quantum yield decrease seem to be complex and

therefore the O2 effect has to be considered separately for each system.

4.4 Atmospheric Chemistry Simulation with Extended Fe(III)
Complex Photochemistry in CAPRAM

The binding of Fe in different complex species is determined by the amount of

potential ligands present, their respective stability constants and the pH. Due to the

high stability constants and being a major fraction of organic compounds in the

atmospheric liquid phase, mono- and dicarboxylic acids are among the most
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important ligands for Fe to be considered [167, 247]. Realistic speciation

calculations have been performed using a set of iron complex reactions based on

kinetics implemented in the CAPRAM [248], which contains organic chemistry up

to C4 compounds.

The major fraction of Fe(III) is bound in carboxylate complexes, mainly with

oxalate, and a smaller fraction in inorganic complexes with hydroxide and sulfate in

both scenarios, cloud and deliquesced particles (Fig. 13). After oxalate, complexes

with tartronate, pyruvate, malonate, and glyoxalate altogether constitute a signifi-

cant portion of the total soluble Fe(III). It is important to distinguish cloud and

particle periods because the differences in pH (pHcloud ¼ 3.2, pHparticle ¼ 1.2) and

liquid water content (LWC) lead to a largely different Fe(III) species distribution.

Other calculations with an equilibrium speciation model show that complexes with

tartrate, lactate, and malate may also be able to compete with the aforementioned

carboxylates when their concentrations approach the upper limit that has been

reported for cloud water or ambient particles. Since oxalate complexes constitute

the largest fraction of bound Fe(III), their photochemistry is especially interesting.

Iron complex photolysis is one of the processes that produce reduced iron

(Fe(II)) in a highly oxidizing environment like the atmospheric aqueous phase.

There are numerous other processes such as reactions with HOx species or Cu(I)/

Cu(II) which can reduce or oxidize iron in the troposphere. These reactions can take

place simultaneously and cause iron to undergo a so-called redox-cycling [167].

Because of the large number of complex interactions in the atmospheric chemistry

of the transition metal iron, it is useful to utilize models to assess the impact of the

complex iron photochemistry.
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Photolysis reactions of Fe(III) complexes with malonate, tartronate, succinate,

tartrate, and glyoxalate were implemented in CAPRAM; Tilgner and Herrmann

[248]) as “extended Fe-carboxylate photochemistry.” The former version of

CAPRAM contained only Fe-sulfato, Fe-hydroxyl, and Fe-oxalato complex photo-

chemistry. CAPRAM as part of the SPectral Aerosol Cloud Chemistry Interaction

Model (SPACCIM [249]) has been applied in a 4.5-day non-permanent cloud

simulation including 8 cloud passages between deliquescent particle periods. Fe

(III) complex photolysis represented a small contribution to oxidant formation,

where 1.3% of the total O2
•�/HO2

• aqueous phase daytime sources in the model

could be directly attributed to complex photolysis. Because Fe(III) complex pho-

tolysis can only occur during the daytime, only the daytime source fluxes have been

considered. For this comparison, the daytime flux values of each reaction channel

contributing to O2
•�/HO2

• production were averaged over the entire simulation

time of 108 h and added to give the 100% reference. O2
•�/HO2

• contributing

channels for the aqueous phase are in situ decay reactions of peroxyl radicals

formed via oxidation processes, but the largest source is phase transfer from the

gas phase. The contribution of Fe(III) complex photoreduction to the average Fe(II)

formation flux over the total simulation time was 7% from Fe(III) oxalato complex

photolysis, and 1% from additionally implemented other Fe(III) carboxylato pho-

tolysis reactions. Additional sources of reduced iron were reactions with O2
•�/HO2

•

and reactions with copper. The Fe(III) complex photolysis reactions can be a major

sink for the carboxylate species besides radical reactions of OH, NO3, or SO4
�.

Almost the entire oxalate in the simulation is depleted through Fe(III) complex

photolysis, whereas 40% of the simulated pyruvate was degraded via complex

photolysis and the remaining 60% via radical reactions. Percentage values here

refer to averaged sink fluxes over the total simulation time.

Figure 14 shows simulated concentration time profiles for the Fe(III) ligands

pyruvate and oxalate, which have mostly lower concentrations during the daytime,

when the photochemistry as described here is active. Thus, it has to be emphasized

that Fe(III) complex photolysis reactions can be a major sink for the carboxylate

species besides radical reactions, and it is crucial not to neglect these reactions

when the fate of carboxylic acids in the atmospheric aqueous phase is considered.
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5 Photochemistry Associated with Ice

Ice is an abundant material found in the environment in the form of ice particles in

the atmosphere, sea ice on oceans, and snow and glaciers on the continents. The

surface of ice in each of these compartments is more or less continuously exposed to

the atmosphere. Thus potentially a continuous exchange in both directions of

atmospheric trace gases with these ice surfaces exists. The general role of environ-

mental and atmospheric ices in affecting the oxidative capacity of the atmosphere,

the biogeochemistry of short and long-lived organic pollutants, the cycling of

halogen gases, and the nitrogen oxide cycle has been reviewed recently

[250–253]. Those parts of environmental ice that are in direct contact with the

atmosphere and thus the most relevant parts also experience irradiation by the sun.

The illuminated, or photic, zone in snow packs in alpine or polar environments

constitutes a significant fraction of those parts of snow or firn that exchange with the

overlying air [254–256]. Similar arguments may hold for sea ice. The vanishingly

small absorption cross section for water in the visible and near UV regions of the

spectrum means that photochemistry in ice is governed by the presence of

chromophoric material there. One example of processes induced by chromophoric

material in snow is illustrated in Fig. 15 showing the emission of HONO from snow

containing humic material exposed to NO2 and UVA light, which will be discussed

further below.

Ice itself is a high temperature material in the sense that under environmental

conditions it is close to its melting point. The relatively weak hydrogen bonds

which are the basis for the crystalline solid (hexagonal Ih ice) allow the surface to

become disordered in response to the broken symmetry near the surface [258]. This

disordered layer is a general surface phenomenon of solid matter and also referred

to as surface premelting or quasi-liquid layer (QLL) [259] and involves the top few

nanometers near the surface. This layer may present a particular environment for

adsorbing trace gases, which may exist there with a local environment different

from that in a liquid or solid solution. Atmospheric ice particles nucleate from

solution droplets or on refractory material so that most of them remain with some

solutes left as solution pockets in equilibrium with ice or attached dust or carbona-

ceous material [260]. Those solution pockets must not be confused with the QLL as

they are considered a thermodynamically stable phase [261]. This microstructure

determines the specific environment for photochemical processes with ice in the

atmosphere, but also with snow derived from this ice. Once precipitated, snow

continuously changes its microstructure through metamorphosis [262–264] that

may lead again to relocation of associated material. The snow structure is also

crucial to determine the depths to which radiation reaches in the actinic wavelength

region [265]. Sea ice presents a polycrystalline structure with the solutes present

within a brine solution in cracks, veins, and triple junctions, or also on the surface

[266–269], out of which frost flowers may grow [270].

In the following paragraphs we will summarize the recent developments in

understanding direct and indirect photochemical processes in the “light” of this
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structural picture of ice in the environment [367]. The examples include organic

and inorganic chromophores as far as they are implicated in the chemistry of

atmospherically relevant gases.

The general significance of photochemical processes in snowpacks has been

reviewed by Grannas et al. [251]. Evidence has emerged that many insoluble and

soluble organic compounds are associated with ice in snow that may be responsible

for a wealth of direct and indirect photochemical processes [271]. While many

direct photolytic processes have been considered in the past [251], indirect pro-

cesses, especially those involving organic chromophores, have only been

recognized in this context recently. As an example, Rowland et al. [255] demon-

strate that organic and inorganic chromophores induce photochemical degradation

Fig. 15 Evolution of the HONO gas phase mixing ratio (solid line) with time after contact of NO2

with humic acid doped ice. Two consecutive irradiation periods in the visible range (orange
arrows) in the presence of NO2 in the gas phase are shown. The shaded area illustrates the

accuracy of the HONO measurement. Time zero denotes the beginning of the (first) irradiation

period [257]
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of aldrin and dieldrin in frozen aqueous solutions. They also argue that the specific

arrangement of soluble chromophores and the hydrophobic target leads to distinctly

different degradation behavior compared to that in solution.

Almost all laboratory studies of ice photochemistry have used illuminated bulk

ice samples, with reagents frozen in solution. Often it is assumed that the reagents

are excluded together and uniformly to the ice surface region in contact with the

overlying atmosphere. Various thermodynamic formulations have been used to

estimate the concentrations of the excluded reagents [272, 273], but such

approaches seem to be deficient in some cases [274]. Nevertheless, photolytic

kinetics experiments have generally, but not always, found similar loss rates for

species frozen from solution as in the liquid phase [192, 251, 275–277].

Recently it has become possible to test the assumption that photochemistry of

compounds present at the air-ice interface, whether through exclusion during

freezing or following deposition from the gas phase, is well described by the

corresponding solution-phase process. Donaldson and co-workers have used

glancing-angle laser fluorescence and Raman spectroscopy to probe chemical

processes at the condensed phase-air interface of water and ice surfaces [93,

278–280]. They report that at least in the case of aromatic organic compounds,

photolysis on “pure” ice surfaces is significantly faster than on liquid surfaces or

that occurring within the ice matrix. This is a true surface effect, as demonstrated by

experiments in which the photolysis rate is seen to be directly related to the surface/

volume ratio of the ice [281]. Another study altered the surface properties of the air-

ice interface, by freezing salt solutions such that an increasing amount of a “quasi-

brine-layer” was present at the interface [281]. The photolysis rate of an aromatic

test molecule at the air interface became slower as that interface became more

“liquid-like” on a microscopic level, until it became identical with the rate seen on a

liquid surface. This result also showed that increased light scattering at the ice vs

liquid surfaces (or within the ice matrix) is not responsible for the enhanced

photolysis rates.

One possible reason for this rate enhancement, at least in some instances, is a

change in absorption cross sections and/or photolysis quantum yields due to self-

association at the interface. This effect has been documented for aromatic

compounds both spectroscopically and by simulations [278, 282, 283], and is a

consequence of the different hydrogen bonding environment present at the air-ice

interface compared to the liquid surface. In the case of benzene in particular, the

self association gives rise to a significant red-shift in the absorption spectrum [279],

such that benzene present at the air-ice interface may absorb available solar radia-

tion in the lower atmosphere. This opens the possibility of a previously unconsid-

ered fate for several aromatic pollutants present in snow- and ice-covered regions.

The majority of the examples mentioned above are concerned with oxidative

degradation processes. Bartels-Rausch et al. [257] have shown that organic

chromophores in ice can also reduce atmospheric gases. Humic acid was

demonstrated to reduce nitrogen dioxide to gaseous nitrous acid, and this reaction

was further found to be significantly enhanced by visible light. It was argued that

organic sensitizers, such as benzophenone, receive an electron from a donor, such
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as phenols, upon irradiation and pass this electron to NO2 [127, 128, 202]. Both

benzophenone and phenols represent typical building blocks of humic matter and

have also been identified in polar surface snow [251]. Recent HONO emission

measurements at Barrow, Alaska indeed indicated that this process is responsible

for light induced HONO production during the day [284]. Bartels-Rausch et al.

[257] further showed that the rate of HONO production scales linearly with

increasing humic acid content in the ice and that extrapolations of the rate meet

rates previously found for pure humic acid films and in aqueous aerosol particles.

From this they concluded that the general chemistry in ice and in water is identical.

Interestingly, this correlation was found to be valid only for small concentrations of

humic acid in ice; at higher concentrations the rate of HONO production stagnated.

It was concluded that at high concentrations part of the organic material in the ice

matrix is no longer accessible to the gaseous NO2 due to specific agglomeration or

displacements in the ice matrix.

Another example of an environmentally relevant species that is strongly

involved in redox-cycling is mercury. Mercury is a globally distributed pollutant,

and as such is also found in snow and sea ice. Input to the surface snow comes

preliminarily from atmospheric deposition [253, 285]. Ocean currents transport

most mercury found in sea ice [286]. What makes mercury especially interesting

from a chemical point of view is that its environmental fate is largely given by its

oxidation state [253, 285]. Elemental mercury, Hg(0), is highly volatile and has a

negligible affinity to surfaces such as snow or ice [287]. Divalent mercury, Hg(II),

is highly water-soluble and the main oxidation state present in snow and ice. The

precise balance between Hg(0) in the gas phase and Hg(II) in the surface snow is not

static. For example, during spring episodes so-called Mercury Depletion Events

(MDE) occur where Hg(0) is almost completely removed from the air. These events

are driven through gas phase chemistry, which converts Hg(0) to Hg(II) that

subsequently becomes bound to particles and/or ground snow. Halogen emissions

from surface snow are currently thought to trigger those gas phase chemical cycles.

Snow may thus act as a reservoir in which mercury is accumulated during winter. In

spring this sequestered mercury may be released to the aquatic environment during

snowmelt [288] from which it may enter the food chain [289]. Field studies have,

however, shown that the Hg(II) initially trapped in the surface snow can be

reemitted as Hg(0) to the atmosphere and that this emission is enhanced by solar

radiation [290]. This light-driven emission of mercury from the snow thus lowers

the overall net transfer of atmospheric mercury to the aquatic environment. Only

the fraction of mercury that is buried in the snow below the photolytic zone is inert

to photochemistry and can be permanently stored.

The detailed mechanisms and rates of the underlying redox chemistry in ice and

snow are still open. In a recent laboratory study, Bartels-Rausch et al. [291] could

show that the light-driven emission of Hg(0) from an ice matrix is significantly

enhanced in the presence of organic chromophores (Fig. 16). That the photolytic

reduction of mercury is enhanced in the presence of organics is well established for

the aqueous phase [292]. There, two mechanisms seem to operate simultaneously

[293]. Organics easily form complexes with mercuric ions and light absorption of
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these complexes can lead to intramolecular redox reactions [294]. Also, the

organics can adsorb light and transfer electrons, or energy, intermolecularly, similar

to the chemistry described above for nitrogen oxides. In either case, Bartels-Rausch

et al. [291] argued that the reduction of Hg(II) to Hg(0) in ice most likely proceeds

via Hg(I) as intermediate. They observed that the presence of chloride and of

oxygen significantly lowers the photoreactivity of the mercury-organics mixtures

in ice, whereas the presence of bromide had little influence. This observation is in

line with the oxidation capacity of oxygen and of the halogens in irradiated aqueous

solutions [292, 295]. This preservation of mercury in the snow might partially

explain the higher mercury concentrations in halogen-rich snow on sea ice as

compared to more off-shore samples [253].

Turning our attention to inorganic chromophores, one of the most relevant is

certainly H2O2. H2O2 is ubiquitously present in environmental snow and ice and is

an important photolytic OH source [179]. While estimates based on photochemistry

in solution indicate a relatively short photolytic lifetime [195], Beine and Anastasio

[254] suggest that when H2O2 is dissolved in crystalline ice the apparent lifetime

becomes significantly longer because cage recombination may occur, while when

adsorbed in a QLL or dissolved in a brine, OH may escape as in solution. This is

therefore an example where a trace gas may become a solute in crystalline ice,

leading to an extended photolytic lifetime.

Of similar photochemical importance as H2O2 is nitrate, which absorbs light

above 290 nm. The ubiquitous presence of nitrate in environmental ices is well

documented for cirrus ice particles [296, 297] as well as permanent and perennial

snow packs [298–301]. In aqueous solution, photolysis of nitrate ion leads to either

OH and NO2 or O(
3P) and nitrite ion, with typically significantly higher quantum

yields for the first pathway [197, 200]. In the upper troposphere, it is currently

thought that uptake of HNO3 to ice makes it ineffective as a photolytic source of

Fig. 16 The effect of organic chromophores, halogens, and oxygen on the light-driven release of

elemental mercury from ice films. Results are given relative to the initial concentration of mercuric

ions in the ice after 30 min irradiation at 258 K. The solution to freeze the ice films was always

doped with Hg(II) (6 � 10�8 M) and additionally contained the following compounds as

indicated: “no OC” denotes experiments of pure HgO solutions; “BPh” 6 � 10�7 M benzophe-

none in unbuffered solutions at pH 7 (of the molten ice film); “BPh/Br�” 6 � 10�7 M benzophe-

none and 5 � 10�8 M bromide; “BPh/Cl�” 7 � 10�8 M chloride; “BPh/sea” 0.5 M chloride,

1 mM bromide; “BPh/air” 6 � 10�7 M benzophenone in the ice – 20% oxygen was present in the

carrier gas stream. In each box, the central mark is the median, the edges of the boxes are the 25th

and 75th percentiles, and the whiskers extend to the most extreme data points [291]
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NOX as it is in the gas phase, in spite of the fact that the nature of nitrate at the ice

surface is not well established. Recent spectroscopic experiments indicate that

nitrate exists at the ice surface in solvated form with a local environment similar

to that in concentrated solution [302]. Still, this does not rule out a reduced solvent

cage compared to dilute nitrate solution that would allow NO2 to escape, more

likely due to recombination being suppressed, as has been suggested based on

quantum yield measurements for frozen nitrate solutions [192]. Since in snow the

nitrate anion is often co-located with other ions, e.g., halogenide ions, in a brine

solution, ion specific effects may lead to enhancement of nitrate ions at the aqueous

brine-air interface. Such effects have been shown to lead to enhanced nitrate

photolysis rates in aqueous solution [303, 304]. In some contrast to the case of

H2O2, the particular environment in snow or ice makes photolysis of nitrate more

efficient than in solution. Such effects would help to explain the significant cycling

of NOX mediated by nitrate photolysis in polar snow [276, 298, 305–308].

Halogens have not been discussed so far. Halogens are important atmospheric

players in stratospheric and tropospheric ozone depletion. In the stratosphere direct

photolysis leads to ozone depletion. In surface ice, snow halogens can be activated

and released to overlying air, where they foster ozone depletion. In snow or ice the

most prevalent condensed phase halogen compounds do not absorb the available

light of the solar spectrum. Potentially, interhalogen complexes such as Br2I
� and

BrI2
� might absorb in the visible wavelengths [309] yet their existence at the low

halogen concentrations in typical snow samples is questionable. It might be pro-

posed that the light-induced reaction with excited organic chromophores might be

of higher relevance, similar to the chemistry observed in aqueous solutions [295].

This chemistry can interfere with light-driven redox reactions, as discussed above

for mercury where halogens can foster the back-reaction of the photochemistry.

Additionally, halogens might form complexes with metallic ions such as mercury.

Those complexes typically absorb at longer wavelength than the isolated species;

mercury-iodine complexes for example absorb at wavelengths above 300 nm [310].

Indirect photochemical processes involving halogen compounds associated with ice

have the potential to release Br2, BrCl or halogenated VOCs that are in turn strongly

implicated in gas phase photochemical cycles of the air mass in contact with ice or

snow.

In summary, atmospherically relevant photochemistry with environmental ices

is initiated by a range of organic and inorganic chromophores. In a wealth of

secondary energy transfer and redox processes species of atmospheric relevance

may be reduced or oxidized. Recent developments in the field have indicated the

role of the specific arrangement of chromophores and reaction partners as well as

their molecular level local environment in ice cloud particles, sea ice, or snow packs

that will require further attention in the future. Photochemical processes in ice

continue to be an important issue in the cycling of major and trace constituents as

highlighted in this chapter. They are also linked to albedo changes of the frozen

parts of the Earth’s surface and thus to the radiative budget of the atmosphere [311].

Furthermore, photochemical processes are important ingredients in the way trace

constituents are incorporated into ice archives from which past climates are

reconstructed [308].
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6 Photochemical processes on natural and built ground surfaces

In the preceding sections we addressed long-wavelength photoassisted reactions as

overtone processes and heterogeneous reactions on aerosols (photosensitized and

photocatalyzed) or on ice. However, the condensed material initiating these reactions

can also (and maybe even predominately) be found on the continental natural or

affected ground surface, such as soil, vegetation covered by plant degradation

products, and within films coating urban surfaces (such as roads and buildings).

Of special interest are the films on the ground in densely populated and urban

areas, also called ‘urban grime’, whose chemical composition partly resembles that

of urban atmospheric aerosols [312–314] but whose chemistry is still almost

unknown. In this section, we first turn our attention to urban grime and soil surfaces.

In the past decade or so, extensive work by Diamond and co-workers [312–317]

has shown that exposed outdoor surfaces in urban areas rapidly become coated with

a complex mixture of chemical compounds (“urban surface film”), most readily

encountered as “window grime.” This film grows via accretion from the atmosphere

and is removed by rain wash-off, or revolatilization processes, yielding an

(estimated) steady-state thickness of several tens to hundreds of nanometers. Chem-

ical analysis of these films has been carried out both in a “broad brush” approach

[312, 313], which identified the compound classes present, and by more detailed

studies [315–317] that determined the specific compounds within these classes.

Interestingly, organics make up only 5–10 mass % of the films; most of the

identified mass is nitrate (~7%), sulfate (~8%), and various metals (18%). The

organic fraction contains a wide array of natural and anthropogenic chemicals

including carbohydrates and aliphatic and aromatic compounds [313–321]. PAHs

account for approximately 20% of the organic mass of “urban grime” [313, 314].

Sources of PAHs are incomplete fossil fuel combustion [322], wood burning [323],

and industrial processes [324]. Some of these PAHs are reported to have carcino-

genic and mutagenic properties [312, 325, 326]; those bearing five aromatic rings or

more are predominantly adsorbed onto particulate matter [1] and therefore their

lifetime and fate are strongly influenced by heterogeneous oxidative processes [73,

76, 78, 80, 81, 84, 85, 328–341]. Raja and Valsaraj showed that particle bound

naphthalene and phenanthrene degrade much faster than in the gas phase [338].

Inorganic compounds represent the major mass fraction of “urban grime.”

Metals, sulfates and nitrates have been identified as the main components [314,

342]. Deposited nitrate ions can further undergo direct photolysis affecting the

atmosphere through the release of volatile and reactive nitrogen compounds to the

gas phase [276, 298, 305–308, 342, 343]. However, as shown above, the heteroge-

neous loss of gas phase molecules at surfaces containing photoreactive compounds

may be significantly enhanced under illumination [344–346]. Soot, pyrene, and

humic acids promote the photoenhanced heterogeneous removal of NO2 producing

both NO and HONO [124, 347, 348].

In one study [349] nitric acid was deposited from the gas phase onto films

prepared to mimic the organic fraction of urban grime [73]. Using acridine,
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a pH-sensitive fluorescent probe, acidification of the film upon exposure to

HNO3(g) was observed, indicating that the acid was taken up by the organic film

and remained there in (at least partially) dissociated form. Illumination of this

acidified film using the output of a Xe lamp, filtered optically to simulate actinic

radiation on the Earth’s surface, caused the pH to increase, eventually returning to

its original value (i.e., that which it displayed before acidification). Figure 17

displays these changes in the emission spectrum. At the same time, the concentra-

tion of nitrate anion also diminished, as measured by ion chromatography. Given

the known photochemistry of nitrate anion in water and ice [192, 197, 350–352],

and other arguments presented in Handley et al. [349], we proposed that these

observations indicate that the nitrate anion in organic films could photochemically

generate NO2 and HONO, which are then released to the gas phase.

This could have important atmospheric consequences. Because the primary

pathway for removal of inorganic nitrate (nitric acid or ammonium nitrate) from

the atmosphere is by wet (i.e., uptake by water droplets) or dry deposition, followed

by rainout/wash off to the ground, this photochemical reduction of NO3
� provides a

mechanism to recycle nitrate back to the gas phase as “active” nitrogen oxides

(HONO, NO2, or NO). These observations are finally “similar” to the renoxification

processes on dust discussed above.

Ammar et al. [353] studied the heterogeneous reaction between gaseous NO2 and

solid pyrene/KNO3 films, used as a proxy of “urban grime.” The uptake coefficients

measured under near-UV irradiation (300–420 nm) were between 7- and 15-fold

higher than the uptake under dark conditions, highlighting again a strong photo

enhancement (Fig. 18). The gaseous products thatwere identifiedwereNOandHONO.

The HONO yield was as high as 36% depending on the composition of the film.

If extrapolated to the solar spectral irradiance at the Earth’s surface under near-

UV irradiation, the uptake coefficient (at 50 ppbv of NO2) becomes g ¼ (8.8


 0.5) � 10�6. Such data can be used to estimate the HONO source flux from

these urban surfaces as 130 pptv h�1 just by assuming that only 1% of a street-

canyon surface with 10 m street width and 20 m building height is covered by
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pyrene/nitrate films (it is important to emphasize that this is potentially a quite

conservative assumption).

To explain the photoenhanced conversion of NO2 on pyrene (Py) films into

HONO, NO, NO2
�, and traces of 1-nitropyrene, the following mechanism was

suggested:

Py �!hn Py� (29)

Py� þ NO2 ! ½Pyþ þ NO2
�	 (30)

½Pyþ þ NO2
�	 ! Py0 þ NO2

� (31)

½Pyþ þ NO2
�	 ! PyNO2 (32)

NO2
� þ Hþ !HONO (33)

NO2
��!hn NO þ O� (34)

As discussed previously [347, 348], the heterogeneous reaction may proceed via

electron transfer from electronically excited states of the PAH (in this specific case

pyrene (Py*)) to NO2. As indicated in (5), HONO is formed by the acid–base

Fig. 18 Steady-state uptake coefficients for the heterogeneous reaction of NO2 with pyrene films

(empty circles) and pyrene/nitrate films (filled circles) under irradiation as a function of the initial

NO2 concentration. Errors bar are 1s precision
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reaction involving NO2
�. Miet et al. [337] have suggested HONO formation in the

mechanism to explain 1-nitropyrene production. The photo-stability of NO2
� on

the film was tested by Ammar et al. and emission of HONO and NO was indeed

observed, implying reactions (5)–(6) [353]. Similar conclusions about the mecha-

nism were also drawn by Sosedova et al. [89], who identified both direct and

indirect pathways of HONO formation from exposure of phenolic and polyphenolic

compounds to NO2 and light. HONO was also formed through photolysis of

nitrophenols formed as intermediates.

The main conclusion from these observations is that “dirty” urban surfaces may

contribute to urban air pollution and promote photochemical pollution.

We finally turn our attention to the natural soil. Soil on Earth is considered to be

the layered deposits of parent rock weathering and erosion, which is composed of a

large range of organic and mineral components. The relative abundance of these

two classes of components varies from pure mineral to almost entirely organic soils.

Within the context of atmospheric sciences, soil plays a tremendous role in the

biogeochemical cycles of carbon and nitrogen. Soil covers a large fraction of the

continental ground surfaces on Earth. Soil is composed of a significant fraction of

chromophoric material and is exposed to sunlight for significant periods of time. It

is therefore not surprising that the interaction of UV and visible radiation with the

biogeochemical cycles has received considerable attention [354]. Such interactions

have been investigated mainly in terms of direct and indirect effects of UV radiation

on metabolic and abiotic processes that affect carbon sequestration or nutrient

cycling. Relatively little attention has been given to direct photochemical processes

that would affect deposition to or emission from soil of species implicated in

atmospheric chemistry. A few studies have addressed the impact of UV on the

net efflux of carbon dioxide and methane [355, 356]. Following up on previous

knowledge on the implications of soil processes in the context of the carbon budget,

Derendorp et al. [357] specifically determined C2 to C5 hydrocarbon emission rates

from irradiated leaf litter. Emission of these saturated and unsaturated

hydrocarbons was clearly linked to UV irradiation and the presence of oxygen,

providing some evidence for reactive oxygen species inducing lipid peroxidation

processes. Degradation of vegetation, and especially lignin, a major structural

compound of vegetation, leads to both light absorbing and redox active aromatic

compounds as constituents of humic material [358, 359] that are implicated in the

production of singlet oxygen, superoxide, or phenoxy type radicals [360]. These in

turn are important promoters in the degradation and photobleaching of plant litter

itself. However, the radical induced degradation processes also lead to emission of

volatile products, such as those observed by Derendorp et al. mentioned above, and

also of CO2 [361] or CO [362, 363]. Some of these emitted species may be directly

involved in the photooxidation capacity of the troposphere. This is especially true

for the photolytic OH precursors like aldehydes or ketones. Such species have been

known to be emitted from degrading plant material [364]. D’Anna et al. [131]

observed the emission of several small aldehydes and ketones from humic acid as a

result of direct and indirect (sensitized) photochemical processes in the UV and

visible wavelengths. The implication to atmospheric chemistry is twofold: these
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OVOC species contribute to the atmospheric OH budget. On the other hand,

D’Anna et al. also observed a strongly enhanced reaction of humic and fulvic

acids with O3 and suggested that this may be a non-negligible contribution to the

overall O3 deposition to soil. A similar interaction has been discovered by

Stemmler et al. [128]. They observed that soil dust or macroscopic soil layers

emit nitrous acid (HONO) when exposed to nitrogen dioxide and light (both UV

and visible) that showed similar behavior to that observed in similar experiments

with humic acids. They suggested that the reaction is due to photosensitized

electron transfer from the donating humic acid moieties to nitrogen dioxide. Such

a process was suggested before based on similar experiments with mixtures of

aromatic ketones and phenolic species [127], which are considered building blocks

of humic matter. A third example is the mercury cycle in which photoreduction or

photooxidation of Hg(II) and Hg(0), respectively, through radiation induced redox

activity of humic material [365, 366], may play an important role in the bioavail-

ability of this toxic compound.

7 Summary and Outlook

The topics discussed in this chapter demonstrate the existence of a wide range of

photo-assisted processes in the troposphere not considered in atmospheric models

to date. These processes occur through various mechanisms on a wide range of

surfaces (including aerosols, urban grime, soil, liquid water, and ice), in aqueous

bulk solutions, and in the gas phase (through long wavelength overtone processes).

These sunlight driven processes have only recently been recognized as

addressing emerging issues in atmospheric chemistry and so there are still signifi-

cant gaps in our knowledge limiting our ability to quantify and predict their

atmospheric importance. Radical generation may occur in the bulk phase of aque-

ous particles and thus change reactive radical budgets. However, an important

emerging issue is the production of radicals at interfaces; this process may signifi-

cantly change our understanding of tropospheric heterogeneous chemistry because

radicals being formed in such interfacial processes can either increase the gross

reactivity of the surface or desorb and become active in the gas phase. Experiments

to quantify this radical production under a wider range of chemical composition and

conditions are now needed. Excitation of vibrational overtone transitions by red

light, followed by molecular dissociation, represents another example of “non-

classical” atmospheric photochemistry which may exert a significant influence on

radical budgets.

Optical properties of aerosols are currently the focus of many studies aiming to

characterize their potential impact on the Earth’s albedo and therefore on climate

change. However, light-absorbing chemical constituents of aerosols may also

change the physico-chemical properties of the particles. The current conceptual

view is that trace gases are taken up by aerosols depending on their volatility, the

latter being altered by gas phase oxidation processes. If light-absorbing species
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present within (or at the surface of) aerosols also act as photosensitizers (which is

still an open question), then maybe one should consider the aerosols as being

surrounded by reactive oxidizing species or radicals that will certainly alter the

phase partitioning of impinging trace gases. If true, this implies that surface

reactions are a general phenomenon during daytime in the atmosphere. Addition-

ally, the bulk of particles is probably also chemically very active because of

conventional radical chemistry together with species resulting from “new photo-

chemistry.” How important may the overall photo-induced chemistry be in terms of

coupling air pollution and climate change?

The general sense behind the illustrative examples presented here is that photo-

assisted processes are potentially accelerating reactions that would otherwise be too

slow to be of any importance, as shown in the case of NO2 and some organics

reacting on dust. But how general is that statement? Do we need to revisit dust

chemistry in the upper troposphere? Does this chemistry have the potential to affect

the budget of long lived species?

The forecasted impact of climate change is huge and naturally attracts attention.

However, air pollution is still an acute issue in the ever growing urban environment,

where little attention has been given to the built environment in terms of sinks of

pollutants. Given that the surface area of the built environment is by far larger than

that exposed by aerosols, we may ask the question whether such surfaces and the

urban grime found upon them may be key players in air pollution that have

previously been ignored.

Clearly, enhanced radical production through the range of photochemical

mechanisms discussed in this chapter could have a significant impact on atmo-

spheric chemistry. Assessing the full extent by which they influence the atmosphere

will certainly require further research. We look forward to a new era of atmospheric

photochemistry; one which recognizes that the full solar spectrum should be

considered as important to the chemistry which affects us all.
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New Insights into the Tropospheric Oxidation

of Isoprene: Combining Field Measurements,

Laboratory Studies, Chemical Modelling

and Quantum Theory

Lisa Whalley, Daniel Stone, and Dwayne Heard

Abstract In this chapter we discuss some of the recent work directed at further

understanding the chemistry of our atmosphere in regions of low NOx, such as

forests, where there are considerable emissions of biogenic volatile organic

compounds, for example reactive hydrocarbons such as isoprene. Recent field

measurements have revealed some surprising results, for example that OH

concentrations are measured to be considerably higher than can be understood

using current chemical mechanisms. It has also not proven possible to reconcile

field measurements of other species, such as oxygenated VOCs, or emission fluxes

of isoprene, using current mechanisms. Several complementary approaches have

been brought to bear on formulating a solution to this problem, namely field studies

using state-of-the-art instrumentation, chamber studies to isolate sub-sections of the

chemistry, laboratory studies to measure rate coefficients, product branching ratios

and photochemical yields, the development of ever more detailed chemical

mechanisms, and high quality ab initio quantum theory to calculate the energy

landscape for relevant reactions and to enable the rates of formation of products and

intermediates for previously unknown and unstudied reactions to be predicted. The

last few years have seen significant activity in this area, with several contrasting

postulates put forward to explain the experimental findings, and here we attempt to

synthesise the evidence and ideas.
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1 Introduction

The composition of the atmosphere is changing, with wide-ranging implications for

air quality and climate change. The future well-being of our atmosphere relies on a

detailed understanding of the chemistry responsible for the oxidation of man-made

and natural emissions. Photo-oxidation in the troposphere is highly complex, and is

initiated by short lived radical species, in the daytime dominated by the hydroxyl

radical, OH, and at night by the nitrate radical, NO3, or ozone. Chemical oxidation

cycles remove primary emitted trace species which are directly harmful to humans

or to the wider environment. The international societal response to deteriorating air

quality and the changing climate is guided by the predictions of numerical models

which make assumptions about both emission scenarios in the future for trace gases

and aerosols from natural and human activity, and global weather patterns which

disperse and mix these emissions. An integral part of any air quality or climate

model is a chemical mechanism which describes the degradation of all emissions

into a wide range of secondary products by reaction with oxidants, for example OH,

NO3, O3 and Cl atoms, as well as by photochemical degradation by sunlight or

removal by physical deposition. Some chemical schemes are very large, containing

thousands of individual chemical species and tens of thousands of individual

chemical reactions which eventually generate carbon dioxide and water vapour,

and along the way a richness of chemical functionality emerges. Many of the

secondary products produced by atmospheric photo-oxidation are also directly

harmful, for example O3, NO2, acids and multifunctional species. Some species

are relatively nonvolatile and partition to the aqueous phase to create secondary

organic aerosol (SOA) which contributes a significant fraction of tropospheric

aerosol, with associated impacts on climate and human health.
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It is the realm of laboratory chemical kinetics to measure the rate constants of

individual chemical reactions and the yields of products from different reaction

channels, under relevant conditions of temperature and pressure, for all processes

required to describe adequately chemical oxidation in a given environment.

Although very extensive chemical kinetics databases exist for gas phase and

heterogeneous reactions, for example from the IUPAC sub-committee for gas

kinetic data evaluation [1] (also http://www.iupac-kinetic.ch.cam.ac.uk/), and the

JPL kinetics data evaluation panel [2] (also http://jpldataeval.jpl.nasa.gov), and

which are used frequently by numerical modellers, there are many gaps, and

often the relevant chemistry may be completely missing. Sometimes it is not

possible to isolate an individual chemical reaction to study, and process studies in

chambers under relevant atmospheric conditions are used to extract kinetic data

indirectly. For some reactions it is not possible to synthesise the necessary reagents,

and structural–activity relationships (SAR) are used to estimate rate constants using

known data from similar molecules and established additivity rules. Estimating the

yield of products is more difficult via this method, and theoretical methods utilizing

advances in ab initio quantum mechanics have proven extremely useful to predict

the likely course of a reaction through calculation of energy barriers to reaction.

Field measurements of atmospheric composition provide crucial data with which

to test how complete and accurate chemical mechanisms are within atmospheric

models. In the atmosphere, concentrations of trace gases are dependent on the rate of

their chemical production and loss, as well as physical transport into or away from the

measurement volume. In order to separate chemistry from transport processes, it is

useful to measure a species whose chemical lifetime is short, such that transport plays

no direct role in controlling its abundance. Free radicals are examples of such species.

In steady-state, the abundance of OH is determined by equating the rate of its

production and loss, as its rate of loss is directly proportional the concentration of

OH. Therefore in order to calculate the abundance of OH it is necessary to measure as

wide a range as possible of OH sources and sinks at the same location. Of course,

goodmodel-to-measurement agreement for OHmay occur fortuitously if missing OH

sources counterbalance missing OH sinks in the model. In such cases field

measurements have not provided an adequate test of the level of understanding of

the underlying chemistry. A common example of missing sinks are some of the many

thousands of volatile organic compounds (VOCs) which exist in urban air and which

react with OH, and are either directly emitted or generated as reaction intermediates.

Although there are many examples of comparisons between modelled and

measured OH, and other radicals, there are relatively few in environments with

significant emissions of biogenic volatile organic compounds (BVOCs) at locations

which are significantly removed from pollution sources where levels of nitrogen

oxides are very low. Chemical mechanisms have been developed for the oxidative

degradation of a select few BVOCs, but these schemes are complex, with often only

the rate constant of OH with the parent BVOC and the initial branching to primary

products well established. The ensuing chemistry involving reactive intermediates

and further reactions or photochemistry is often written down, but with relatively

little experimental evidence to support the postulated mechanism.
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In this chapter we examine the mechanism for the OH initiated oxidation of

isoprene under low NOx levels (NO < 50 ppt). At higher NOx levels, although it is

likely that there are still processes that are missing within atmospheric models (e.g.

[3]), isoprene oxidation chemistry is simplified somewhat by the loss of the

isoprene-derived peroxy radicals being dominated by reaction with NO. Under

low NOx conditions the fate of these peroxy radicals is much less certain. New

insights into the isoprene mechanism have been derived using a combination of:

1. Field measurements of the concentrations of isoprene (and fluxes), OH and HO2

radicals, and isoprene secondary oxidation products and comparison to

calculations of a variety of models, from zero dimensional box models to global

three dimensional models.

2. Laboratory studies to study the oxidation of isoprene under carefully controlled

conditions, in particular using atmospheric simulation chambers, in order to

confirm the presence of reaction products and the rates of competing channels.

3. Theoretical methods using quantum mechanics and chemical rate theory to

calculate the multidimensional potential energy surface upon which the reaction

of isoprene and OH occurs, and the rates of different reaction pathways under

relevant conditions, and the incorporation of these calculated kinetic data into a

range of models for comparison with field data.

2 Model and Measurement Comparisons in High Isoprene Low

NOx Regions

A number of field campaigns in regions characterised by high concentrations of

isoprene (and sometimes other biogenic species) and low concentrations of NOx

(NOx ¼ NO þ NO2) have highlighted considerable differences between observed

and modelled concentrations of OH and HO2 radicals [4–14]. Appreciable HOx

(HOx ¼ OH þ HO2) concentrations have been observed in the presence of high

biogenic emissions that cannot be reconciled with chemical schemes currently

adopted in atmospheric models, indicating poor model representation of HOx

chemistry under high VOC and low NOx conditions. An alternative explanation is

that OH and/or HO2 detected by laser induced fluorescence (LIF) at low pressures

[15] may be biased in some way for some instruments in some types of forested

environments, for example by the presence of interference under high loadings of

isoprene and/or other BVOCs [16, 17].

The earliest reports of model discrepancies for OH and HO2 under high VOC

and low NOx conditions were made following the aerosols formation from biogenic

organic carbon (AEROBIC) campaign in a forested region of Greece in 1997

[5, 18]. The modelled concentrations of OH were, on average, a factor of two

lower than the observations, and although the source of the discrepancy was not

identified in this study, it was noted that the disagreement was most significant

when NO concentrations were low [5].
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The program for research on oxidants: photochemistry, emissions and transport

(PROPHET) campaign in a deciduous forest in northern Michigan in 1999 also

reported OH and HO2 concentrations that were significantly higher than model

calculations, with the OH observations a factor of at least six greater than the

modelled concentrations at NO mixing ratios below 100 ppt [12]. This study found

that reasonable agreement for OH could be obtained if the NO concentrations in the

model were tripled, or the NO doubled and the isoprene halved, indicating the

combination of low NOx and high isoprene as a source of the problem [12].

The suggestion that incomplete or incorrect treatment of reactions involving

organic peroxides (ROOH), either their formation via HO2 þ RO2 or their photol-

ysis to produce RO þ OH, may be responsible for the HOx model failure came as a

result of the southern oxidant study (SOS) in Nashville, Tennessee [13]. At high

NOx concentrations the dominant fate of HO2 and RO2 is generally reaction with

NO, resulting in production of OH, either directly (in the case of HO2) or via the

production of an alkoxy radical (RO) and its subsequent reaction with O2 (in the

case of RO2). Any misrepresentation of HO2 þ RO2 reactions, or their products, in

model simulations will therefore become more apparent at low NOx concentrations

owing to the reduced importance of HO2 þ NO and RO2 þ NO reactions.

2.1 Recycling of OH in Isoprene Oxidation

The Guyanas atmosphere–biosphere exchange and radicals intensive experiment

with the Learjet (GABRIEL) project carried out in 2005 reported the first boundary

layer measurements of OH and HO2 made over a tropical rainforest, with

measurements made over the Amazon rainforest in Suriname onboard a Learjet

aircraft using LIF [9]. Global models predict particularly low OH concentrations in

this region due to elevated levels of isoprene which rapidly reacts with OH [19–21],

but comparison with the GABRIEL dataset revealed significant differences between

model predictions and observations [4, 7, 8]. Disagreements between observed and

modelled OH concentrations for GABRIEL were found with both global models [4]

and box models [7], with the OH concentrations simulated by the box model,

constrained to the reduced Mainz isoprene mechanism (MIM), a factor of approxi-

mately 12 times lower than the observations at the highest isoprene concentrations.

Use of a more explicit isoprene oxidation scheme, similar to that described by the

master chemical mechanism (MCM), did little to improve the model failure [7].

The OHmodel discrepancy for GABRIEL was found to display a dependence on

isoprene [4, 7, 8], as shown in Fig. 1. This discrepancy was similar to that observed

over forested regions in North America, in the intercontinental chemical transport

experiment (INTEX-A), and during the PROPHET campaign [10] (also shown in

Fig. 1). The level of discrepancy between OH observed and predicted from other

isoprene-rich field studies (Oxidant and Particle Photochemical Processes – OP3

and Program of Regional Integrated Experiments of Pearl River Delta region –

PRIDE-PRD, discussed further below) were also consistent with this trend.
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Isoprene photo-oxidation products were also found to be higher than model

predictions [22], indicating the need for additional OH sources related to isoprene

in order to reconcile models with measurements. This observation led to an

extension of the idea that reactions involving HO2 and RO2 could be responsible

for model failure. It was proposed that direct formation of OH in HO2 þ RO2

reactions, and specifically those involving RO2 radicals generated in isoprene

oxidation (ISOPO2), could improve model simulations for OH over the Amazon

rainforest by providing an additional pathway for recycling of OH via HO2 under

low NOx conditions, as shown in Fig. 2 [4, 7, 8].

Generation of OH in HO2 þ RO2 reactions has been observed in several labora-

tory studies [23–28], and although inclusion of an OH yield in HO2 þ ISOPO2

reactions in atmospheric models has enabled replication of field observations, the

yields required (between 200% and 400%) are significantly higher than the labora-

tory data suggest for any reaction of this type. Moreover, production of OH in

such reactions has thus far only been observed for RO2 radicals containing acyl,

a-carbonyl, a-hydroxy or a-alkoxy functionalities [23–28], and experiments have

placed an upper limit of 6% on the OH yield from RO2 radicals structurally similar

to ISOPO2 [23].

2.2 The Role of Air Mass Segregation in Simulations
of HOx Chemistry

While the production of such large amounts of OH from HO2 þ RO2 reactions is

unlikely, its inclusion in atmospheric models does facilitate investigation of the

impact of underpredictions of OH in modelling studies. Butler et al. [4] found

that increasing the OH concentration in a global 3D model European centre

for medium-range weather forecasts-Hamburg/module earth submodel system

Fig. 1 Dependence of the

observed to modelled ratio for

OH as a function of the

isoprene mixing ratio

reported from PROPHET

(1998), INTEX (2004),

GABRIEL (2006), PRIDE-

PRD (2006) and OP3-I (2008)

projects (reproduced from Lu

et al. [57])
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(ECHAM/MESSy) led to unrealistically low concentrations of isoprene. In order

to achieve model agreement with observed concentrations of both OH and

isoprene it was necessary not only to include the additional OH source but also

to reduce the effective rate coefficient between OH and isoprene by approxi-

mately 50% [4]. The rationale behind the reduction in kOHþC5H8
lies in the

potential segregation of air masses containing OH from those containing iso-

prene, such that the two air masses do not fully mix and therefore do not react at

a rate given by kOHþC5H8
½OH�½C5H8� when considering the concentrations of OH

and isoprene in the two air masses.

This concept has also been investigated by Pugh et al. [29, 30] for the OP3

project which took place in Borneo in 2008, comprising both ground-based and

aircraft measurements of atmospheric composition in and over rainforest and oil

palm plantations [31]. Using the Cambridge tropospheric trajectory model of

chemistry and transport (CiTTyCAT) atmospheric chemistry box model with

MIM2 chemistry, Pugh et al. [29] demonstrated similar problems in simulating

OH concentrations to those reported by Lelieveld et al. [8], with the model unable

Fig. 2 Schematic to show the main processes controlling HOx concentrations in the troposphere

(reproduced from [8]). Pathway I shows the cycling of HO2 to OH through reaction with NO;

pathway II shows the production of peroxides from HO2, leading to loss of HOx; pathway III

indicates a potential route for production of OH from reactions of HO2 with VOC oxidation

products
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to replicate concurrent observations of OH and isoprene whilst maintaining agree-

ment with measurements of VOC emission fluxes.

Pugh et al. [29] included a recycling term for OH in the reaction between OH and

isoprene to investigate its impact on the model simulations, but found that any

improvements in the modelled OH were at the cost of model success for isoprene

and other VOCs. Further analysis of the model revealed that reasonable agreement

with observations could be achieved for OH and VOCs by a combination of a small

recycling term in OH, variation of the deposition rates of intermediate VOC oxidation

products, including methyl vinyl ketone (MVK) and methacrolein (MACR), and

segregation of OH-containing and isoprene-containing air masses. Similar to the

work of Butler et al. [4], Pugh et al. [29] represented the segregation of air masses

containing OH from those containing isoprene by a reduction in the effective rate

coefficient for the OH þ isoprene reaction, with a 50% reduction required to achieve

adequate model success. It was thus concluded that model success in tropical regions

may be less strongly influenced by mechanistic problems in isoprene oxidation

schemes than by detailed representation of physical and micrometeorological pro-

cesses. This conclusion is in contrast to those of Whalley et al. [14] and Stone et al.

[11], discussed below, which conclude that mechanistic changes can result in signifi-

cant differences in modelled HOx concentrations for the OP3 campaign.
The importance of boundary layer dynamics and potential segregation of

oxidant-rich and VOC-rich air parcels has also been investigated using a large

eddy simulation within a mixed-layer model [32]. Although the model uses a highly

condensed gas phase chemistry mechanism containing only 19 reactions, the results

of the study suggest that the chemistry is equally important as the dynamics in

reproducing isoprene mixing ratios measured during the tropical forest and fire

emissions experiment (TROFFEE) campaign in Central Amazonia in 2004.

The extent of segregation and turbulent mixing above a forest canopy has been

estimated using tower-based measurements of OH, HO2 and VOC above a decidu-

ous forest in Germany during the emission and chemical transformation of biogenic

volatile organic compounds (ECHO) campaign in conjunction with the eddy

covariance method [33]. This study showed that, although inhomogeneous mixing

can occur near emission sources, the degree of segregation of air masses observed

was significantly less than that required to improve the model simulations for the

Amazon rainforest [4] and the Borneo rainforest [29]. A reduction in the effective

rate coefficient for OH þ isoprene of 15% was justified by the measurements [33],

in contrast to the 50% proposed by Butler et al. [4] and Pugh et al. [29].

In addition, Pugh et al. [30] conducted a model analysis of high frequency isoprene

measurements, made by a proton transfer reaction-mass spectrometer (PTR-MS)

instrument during the OP3 campaign in Borneo, to provide an experimentally-based

estimate of the extent of segregation between OH and isoprene during OP3. To test the

analysis method, Pugh et al. [30] analysed data taken during the German ECHO project

and determined similar percentage segregations of OH and isoprene as reported by

Dlugi et al. [33]. When applied to the OP3 dataset, Pugh et al. [30] found that the 50%

reduction in the effective rate coefficient for the OH þ isoprene reaction required to

reconcile model discrepancies could not be justified. The results indicated that a
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maximum reduction of 15% in the effective rate coefficient for reaction between OH

and isoprene was more appropriate, suggesting that the chemistry may play a more

significant role than expected by Pugh et al. [29].

Further evidence for a limited role of air mass segregation in explaining OH

model discrepancies in tropical regions has been provided by Ouwersloot et al. [34]

using a large eddy simulation model. Ouwersloot et al. [34] propose that incomplete

mixing of reactive species in a turbulent boundary layer over a spatially homoge-

neous surface should reduce the OH þ isoprene rate coefficient by no more than

10%, while spatially heterogeneous surface emissions should result in no more than

a 20% reduction in OH þ VOC effective rate coefficients [34]. Comparing model

simulations with homogeneous surface emissions to those with heterogeneous

emissions yielded differences in OH concentrations of <2% [34]. Several papers

thus suggest a limited role of turbulent mixing and segregation of air masses in

explaining observed OH concentrations [30, 33, 34].

3 Unidentified Sources of OH in High Isoprene Environments

The possibility for production of OH through unknown chemistry was discussed by

Hofzumahaus et al. [6] as a potential explanation for model underestimates of OH

in the Pearl River Delta region in China. This study demonstrated the ability of a

box model to reproduce HO2 observations whilst underestimating OH observations

by a factor of up to 5, and postulated the presence of an unknown species able to

convert RO2 to HO2 and HO2 to OH independently of NO and without producing

ozone. Although the region surrounding the Pearl River Delta is characterised by

high biogenic VOC emissions, the noontime NO mixing ratios were significantly

higher than those encountered during the GABRIEL and OP3 projects (~200 ppt at

noon for the Pearl River Delta compared to ~20 ppt for the GABRIEL and OP3

campaigns). Nevertheless, the OH discrepancies were consistent with other field

studies which encountered similarly elevated isoprene concentrations (as shown in

Fig. 1), suggesting that problems with isoprene oxidation mechanisms can lead to

model failures even under moderate NOx conditions.

Further evidence for the involvement of isoprene oxidation chemistry in model

failures in low to moderate NOx regions has also come from laboratory and theoreti-

cal studies, revealing that the oxidation mechanisms currently adopted in atmospheric

models provide inaccurate representations of isoprene-related photochemistry, with

model discrepancies more likely to be apparent under low NOx conditions.

3.1 Experimental Indication for OH Formation During
Isoprene Oxidation

A chamber study by the California Institute of Technology (CalTech) group observed

epoxide formation during the gas phase Photo-oxidation of isoprene [35], with
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implications for OH production and generation of SOA. The CalTech environmental

chamber produces OH by photolysis of H2O2, resulting in low NOx conditions (initial

mixing ratios of NOx were varied between 0.1 and 1.3 ppb), and uses a chemical

ionisation mass spectrometry (CIMS) detection system to monitor stable reaction

products of the OH þ isoprene reaction. The experiments showed that peroxides

(ISOPOOH) were formed in high yields following OH addition to isoprene and

the subsequent reaction of peroxy radicals (ISOPO2) with HO2, with smaller

reaction channels resulting in production of OH, formaldehyde and either MACR

or MVK (depending on the site of the initial OH addition to isoprene). The reaction

scheme depicting these processes is shown in Fig. 3a and Table 1 provides the

structural formulas for abbreviations of isoprene-derived species discussed in

Sects. 3.2 and 3.3.

Production of peroxides and MVK/MACR following OH-addition to isoprene

has been observed in previous studies [36–38], and is included in chemical

mechanisms such as the MCM [39]. Prior to the CalTech study, the ISOPOOH

peroxides were expected to undergo physical loss, photolysis (yielding ISOPO

alkoxy radicals and OH) or react with OH to produce a peroxy radical (in the

case of the dominant ISOPOOH isomer of the four isomers in the MCM) or

carbonyl species with regeneration of OH (in the case of the three remaining

ISOPOOH isomers in the MCM).

However, the CalTech group showed that the reaction of ISOPOOH peroxides

with OH could produce epoxides (IEPOX) in an OH neutral reaction, as shown in

Fig. 3b. Although the IEPOX species are isobaric with ISOPOOH, and thus

appear as a combined IEPOX þ ISOPOOH CIMS signal, use of collision induced

dissociation enables the production of distinct daughter ions from each compound

and separation of the signals. Use of 18OH also enabled separation of the IEPOX

and ISOPOOH signals, since ISOPOOH requires addition of one 18OH on

isoprene, whereas IEPOX production involves addition of a second 18OH to

ISOPOOH and loss of a 16OH radical. Theoretical arguments also provide

Fig. 3 (a) Production of peroxides (ISOPOOH) and MACR following OH-addition to isoprene in

the atmosphere. (b) Formation of epoxides following addition of OH to isoprene peroxides

(reproduced from [35])
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Table 1 Abbreviations and structural formulas associated with isoprene oxidation products

Isoprene oxidation products Structural formula

b4-ISOPO2

d4-ISOPO2

b4-ISOPOOH

d4-ISOPOOH

b4-IEPOX

d4-IEPOX

(continued)
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Table 1 (continued)

Isoprene oxidation products Structural formula

b4-ISOPO

d4-ISOPO

b4-HPALD

d4-HPALD

b4-PACALD

HALD

MVK

MACR
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evidence for the existence of an energetically favourable pathway producing

IEPOX from ISOPOOH [35].

While the initial epoxide production from ISOPOOH is OH-neutral, and will

thus have little impact on modelled OH concentrations in low NOx environments,

the discovery of IEPOX species highlights significant gaps in our understanding of

isoprene oxidation chemistry. Moreover, the fate of the IEPOX species may be

important in terms of understanding field observations of OH and formation of

SOA. It is expected that the lifetime of IEPOX with respect to OH addition is of the

order of 18–22 h, and that reactive uptake of IEPOX to aerosol surfaces and

subsequent SOA formation could be important [35]. If IEPOX are involved in

SOA formation then isoprene-derived carbon will be sequestered from the gas

phase, potentially reducing the expected impact of isoprene on atmospheric OH

concentrations.

The production of ISOPOOH, and therefore IEPOX, is dependent on the reaction

of ISOPO2 radicals with HO2, and is thus expected to occur to a greater extent in

low NOx regions. However, recent theoretical studies have indicated that ISOPO2

radicals may undergo unimolecular decomposition processes which do not produce

ISOPOOH, but may result in regeneration of HOx radicals [40–43].

3.2 Theoretical Indication for OH Production in Isoprene
Oxidation

Density functional theory (DFT) calculations have predicted the unimolecular

decomposition of b-ISOPO2 radicals (the dominant ISOPO2 isomers), resulting in

production of OH, formaldehyde and (depending on the isomer) MVK or MACR

[40]. However, the rates of decomposition are expected to be slow, and may not be

sufficient to compete effectively with the bimolecular reactions of ISOPO2 radicals

with HO2 and NO in all but the most remote environments [40].

Theoretical investigation of the OH-initiated oxidation of isoprene by the

Leuven group has also led to the proposal of HOx radical production following

unimolecular processes in ISOPO2 radicals [41–43]. An outline of the initial steps

in the proposed mechanism – the Leuven isoprene mechanism (LIM) – are shown in

Fig. 4.

A key feature of the mechanism is the existence of an equilibrium between the

initial OH-isoprene radical adduct and the ISOPO2 peroxy radical formed on

addition of molecular oxygen to the adduct, leading to the greatest reaction flux

through the fastest product forming pathway [42]. Under low NOx conditions,

Peeters et al. [42] propose that the fastest pathways occur through unimolecular

1,6-H shifts in two of the ISOPO2 radicals, producing HO2 and unsaturated

hydroperoxy-aldehydes (HPALDs). Based on an average temperature of 303 K

and concentrations of 5 � 108 cm�3 NO (~20 ppt), 109 cm�3 HO2 (~40 ppt) and

109 cm�3 total RO2, Peeters et al. [42] calculated a value of 0.025 s�1 for
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fkNO½NO�+kHO2
½HO2�+kRO2

½RO2�g (where kx is the rate coefficient for the reaction
of ISOPO2 isomers with species X). In comparison, the proposed ISOPO2

isomerisation processes to produce the HPALD and HO2 were expected to occur

with k � 1 s�1 for the ISOPO2 isomer produced by 1-OH addition to isoprene and

k � 8 s�1 for the ISOPO2 isomer produced following 4-OH addition.

TheHPALDproducts are thought to photolyse rapidly during the day, owing to the

combination of the –OOH hydroperoxide moiety and an O═C–C═C chromophore,

thereby increasing the yield of both OH and HO2 [42]. Subsequent chemistry of the

organic fragments of HPALD photolysis, resulting in rapid production of photolabile

peroxy-acid-aldehydes (PACALDs), is also expected to increase further the OH and

HO2 yields [41–43]. More minor reaction pathways of the initial ISOPO2 peroxy

radicals, involving 1,5-H shifts, are also proposed to contribute to OH production, and

the potential for similar mechanisms in the oxidation of MVK and MACR has been

postulated [42] and, in the case of MACR, experimentally verified [44].

3.3 Experimental and Theoretical Evidence for OH Production
Combined

Peeters and Müller [43] surveyed available experimental evidence in order to assess

the strengths of the LIM, comparing the expected yields of key species in the novel

mechanism against those derived from previous work. Figure 5 shows the depen-

dence of a number of these key species (OH, HPALD, HALD,MVK andMACR) as

a function of the NO mixing ratio as derived from the LIM and used in the analysis

by Peeters and Müller.

Mechanisms, such as the MCM or MIM, currently adopted in atmospheric

models predict relatively high concentrations of hydroxy aldehydes (HALDs),

Fig. 4 Outline of the initial steps in the Leuven Isoprene Mechanism, with their predicted rates,

following 1-OH addition to isoprene (reproduced from [42])
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largely formed by hydroxy alkoxy ISOPO radicals produced in ISOPO2 þ NO

reactions. Such HALDs, however, have yet to be observed in the field or in

laboratory studies at NO mixing ratios below 1 ppb [43]. Peeters and Müller

provide an example of this in the work of Karl et al. [37], in which a MIM-based

mechanism would predict HALD yields of over 40% in their photoreactor study at

NO mixing ratios between 200 and 600 ppt. The LIM predicts a maximum HALD

yield of 5% at 400 ppt NO, as shown in Fig. 5, and the lack of HALD observations

at low NO mixing ratios is put forward in support of the LIM [43].

Peeters and Müller [43] also discussed the results of the CalTech chamber study

[35] in the context of the LIM, proposing that a significant proportion of ISOPO2

sinks were unaccounted for in the CalTech experiment, which could potentially be

explained by the additional 1,6-H shifts predicted by the LIM.

The CalTech study observed combined [MVK þ MACR] yields of approxi-

mately 12% in the absence of NO, attributable to the minor ISOPO2 1,5-H shift

channels [43]. Although this yield is somewhat higher than predicted by the LIM,

requiring a factor of 5 increase in the predicted 1,5-H shift rate coefficients, this

increased yield does help to rectify discrepancies in MVK/MACR ratios between

the LIM and field observations of Karl et al. [22] made in the Amazon rainforest.

The rate coefficients calculated for LIM by Peeters et al. [42] were stated to be

lower limits, owing to a possible underestimation of the effects of tunnelling.
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Peeters and Müller [43] proposed a similar argument to explain the low rates of

peroxy radical isomerisation processes calculated by da Silva et al. [40], and

discussed the uncertainties associated with the LIM calculations in greater detail.

The probable error on the rates of peroxy radical isomerisations was reported to be

of the order of a factor of 5, owing to possible errors on the calculated dissociation

energies and barrier heights, and thus within the bounds of the increase required to

reconcile the theory with the CalTech experiments. Moreover, calculations made

using higher levels of theory indicated that the computed barrier heights for the

isomerisation reactions were lower than had been initially reported, supporting the

expectation that the calculated rates represent a lower limit.

Low observed yields of a product with a CIMS signal consistent with the

HPALD products in the CalTech study were explained by Peeters and Müller

[43] as resulting from high chamber concentrations of HO2, making ISOPOOH

peroxide formation more favourable than the unimolecular process generating the

HPALDs. In addition, photolysis of HPALDs in the chamber, coupled with their

reaction with OH, is expected to have led to more rapid HPALD loss

(~4 � 104 s�1) compared to ISOPOOH loss (~6.4 � 10�5 s�1).

Very recently the photo-oxidation of HPALDs was incorporated into a detailed

chemical mechanism and embedded into a global atmospheric model which

generated higher levels of OH in better agreement with field measurements in

pristine forested regions [45].

Further work by the CalTech group [46] has provided more direct evidence for

the formation of HPALDs in isoprene oxidation, and hence for the occurrence of

rapid 1,6-H shifts in ISOPO2 radicals. The experiments were designed to investi-

gate the OH-initiated oxidation of isoprene in the chamber at concentrations of HO2

and NO pertinent to the pristine troposphere, with NO mixing ratios ranging

between 30 and 60 ppt, using photolysis of methyl nitrite (CH3ONO) as the HOx

source. The study was conducted over a range of temperatures, with experiments

also performed using fully deuterated isoprene (C5D8) in order to corroborate

conclusions drawn from the C5H8 system.

The HPALD production rates were measured relative to those of H2O2, pro-

duced by the HO2 self-reaction, and ISOPOOH, produced by HO2 þ ISOPO2 [46].

It was therefore possible to determine the ratio of the rate coefficient for the 1,6-H

shift in ISOPO2 (k1,6-H) relative to that for HO2 þ ISOPO2 (kHO2þISOPO2), using

literature recommendations for the HO2 self-reaction rate coefficient. This method

does, however, require knowledge of the CIMS sensitivity to the measured species.

For H2O2 the sensitivity can be determined using gas phase standards, but it was

necessary for HPALD and ISOPOOH sensitivities to be calculated [46].

The experimental analysis did not consider oxidation chemistry of the reaction

products (H2O2, ISOPOOH, HPALD), introducing a potential error of <10% [46].

Photolysis of the HPALD product was expected to be negligible under the experi-

mental conditions [46].

The results of the study provide clear evidence for the formation of HPALDs,

and thus for the 1,6-H shifts in ISOPO2 radicals predicted by Peeters et al. [42].

However, the rate of HPALD formation was observed to be approximately 50 times
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slower than that expected by Peeters et al. [42] and Peeters and Müller [43].

Implementation of the 1,6-H shifts in ISOPO2 radicals into the global 3D chemistry

transport model GEOS-Chem showed that while the isomerisation reaction produc-

ing HPALDs is an important process in isoprene oxidation, constituting 7.4% of the

global loss of ISOPO2 radicals, the reaction is not as dominant as previously

expected [46]. Recent work by the CalTech group has demonstrated that

isomerisation reactions in other organic peroxy radicals can also lead to OH

formation, with OH observed following a rapid 1,4-H shift in a peroxy radical

derived from MACR [44]. The impact of these novel OH sources on model

simulations is considered below.

4 Impacts of Additional OH Sources on Model Simulations

in High Isoprene Low NOx Regions

Several studies have been conducted to assess the impact of the potential mecha-

nistic changes in isoprene oxidation on tropospheric concentrations of OH and HO2,

including our own work as part of the OP3 project in Borneo [11, 14, 31].

Wolfe et al. [47] used the one-dimensional chemistry of atmosphere – forest

exchange (CAFE) model – to aid understanding of measurements made during the

biosphere effects on aerosols and photochemistry experiment (BEARPEX-2007)

campaign in a Ponderosa pine forest in the western foothills of the Sierra Nevada

Mountains in California. The chemistry scheme within the model was based on

MCMv3.1, with additional chemistry to represent the formation of isoprene-derived

epoxides as observed by Paulot et al. [35]. However, the model still underpredicted

OH observations by a factor of 6 during particularly warm periods when VOC

emissions were high [47]. During these ‘hot’ periods, Wolfe et al. [47] required

additional OH sources, which were represented in the model by the production of

OH from HO2 þ RO2 reactions, similar to the modelling studies for the GABRIEL

campaign [4, 7, 8]. Formation of epoxides in isoprene oxidation, although an

important discovery in terms of our understanding of isoprene chemistry, thus

appears to do little to rectify model discrepancies for OH.

This result has also been observed in a number of other modelling studies [11,

47–49]. Stavrakou et al. [49] used the intermediate model of global evolution of

species IMAGESv2 global chemistry transport model to investigate the impacts of

several of the previously described proposed mechanisms for OH recycling in

isoprene oxidation. The model used chemistry based on the MIM2 [50], with

simulations to assess the impacts of the artificial recycling scheme used by

Lelieveld et al. [8] and Wolfe et al. [47], the formation of isoprene epoxides and

the occurrence of ISOPO2 1,6-H shifts in the LIM. It was found that the LIM had the

greatest potential for increasing modelled HOx concentrations over densely

vegetated areas in the tropics and at mid-latitudes, with increases in OH

concentrations by a factor of 4 compared to the MIM2. In comparison, inclusion
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of epoxide forming chemistry gave increases in OH by a factor of only 1.25. As

described by Stavrakou et al. [49] and Peeters and Müller [43], inclusion of the LIM

in the IMAGESv2 model replicated average boundary layer observations of OH and

HO2 during the GABRIEL and INTEX campaigns to within 30%.

Archibald et al. [48] also investigated the impacts of OH formation from HO2

þ RO2 reactions, epoxide chemistry, and 1,5-H and 1,6-H shifts in ISOPO2

radicals, using a zero-dimensional model with chemistry based on the MCMv3.1.

Inclusion of OH-producing channels in HO2 þ RO2 reactions in which OH forma-

tion is expected to occur gave increases in OH concentrations of 7%, compared to a

16% increase on consideration of the epoxide chemistry and 330% for the 1,5-H

and 1,6-H shifts in ISOPO2.

Implementation of a modified version of CRIv2-R5 chemistry scheme [51]

within the UK meteorological office three-dimensional Lagrangian global model

(STOCHEM) indicated that use of the LIM resulted in significant elevations in

modelled OH concentrations over rainforested regions in the Amazon and in

Borneo, and concluded that the LIM had the greatest potential for increasing

modelled OH concentrations. It was noted, however, that it was likely that some

degree of parameter refinement and optimisation within the scheme would be

necessary before the mechanism could be fully reconciled with atmospheric

observations and other laboratory data.

While arguments to explain some of the apparent discrepancies between

laboratory data and the LIM may have been put forward by Peeters and Müller

[43], it would appear that there are outstanding issues in modelling HOx

observations with the mechanism as it currently stands. In our work as part of

the OP3 project in Borneo [31], measurements of OH and HO2 were made by

both ground-based instruments in the rainforest [14, 52] and by an aircraft

instrument on the BAe146 NERC research aircraft [11]. Analysis of the HOx

observations and detailed chemical modelling with the dynamically simple model

of atmospheric chemical complexity (DSMACC) [53] for both ground and aircraft

campaigns have revealed that HOx observations in tropical regions still cannot be

fully explained.

The combination of measurements of HOx concentrations and the OH reactivity

(a measure of the total OH sinks in an air mass) [52, 54] at the ground-based site

enabled quantification of the total OH source in the rainforest [14]. It was found that

to maintain the observed OH concentrations, given the measured reactivity,

required an OH production rate ten times greater than that calculated using all

measured OH sources. Model calculations were also shown to under-predict simul-

taneously the observed OH concentrations while over-predicting HO2. Inclusion of

an additional OH source formed as a recycled product of OH-initiated isoprene

oxidation improved the model agreement for OH, but served to worsen the model

failure for HO2. In order to replicate observations of both OH and HO2, the model

required additional loss process for HO2, or a process that converts HO2 to OH.

OP3 aircraft measurements have also been used to test our understanding of

isoprene oxidation chemistry, using the DSMACC box model to assess the ability

of the various proposed oxidation mechanisms to reproduce the observed
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concentrations of OH and HO2 [11]. The base model run for the aircraft campaign,

using the MCMv3.1, displayed a significant underestimate for OH in airmasses

impacted by isoprene, with a mean observed to modelled ratio of 5:32þ3:68
�4:43 com-

pared to a ratio of 1:62þ1:27
�1:24, for airmasses not significantly impacted by isoprene, as

shown in Fig. 6 [11]. For HO2, the model was generally able to replicate the

observations, with no significant dependence of the model success on the isoprene

concentration.

Table 2 shows the OP3 aircraft model results for the range of potential isoprene

oxidation mechanisms and additional OH sources discussed above, including

epoxide formation [35], unimolecular decomposition of isoprene peroxy radicals

[41–43] and recent updates to the MCM (MCMv3.2). In keeping with the results

of Whalley et al. [14], the LIM gave significant improvements to the modelled

OH concentrations, but resulted in a large model overestimate for HO2. However,

the experimental findings of Crounse et al. [46], indicating a slower HPALD

production rate than predicted by Peeters et al. [42] and Peeters and Müller [43],

reduces the impact of the LIM and thus its potential to rectify model discrepancies

for OH.

Analysis of our measurements during OP3 [11, 14] show that it is not possible to

remove simultaneously the model bias in both OH and HO2 using any of the

suggestions described above. The results of this field campaign show that, despite

significant recent advances in our understanding of isoprene oxidation chemistry,

there are still considerable gaps in our knowledge. Similar conclusions have been

drawn from field studies in anthropogenically influenced regions under high iso-

prene loadings [6, 55–58], indicating that uncertainties in the isoprene oxidation

mechanism are important not only under pristine forest conditions (NO < 50 ppt),

but also at moderate NOx levels (several hundred ppt) in populated areas where

ozone production and air quality predictions could be biased. Lu et al. found that the

LIM mechanism was unable to reconcile fully OH observed during PRIDE [57] and

CAREBeijing2006 (Campaigns of Air Quality Research in Beijing and Surrounding

Region 2006) [58], particularly if the reduced isomerisation rate determined by

Fig. 6 Probability distribution functions of the observed to modelled ratio for OH using the

MCMv3.1 for data points during the OP3 aircraft campaign with low (<15 ppt) isoprene

concentrations (black) and high (>15 ppt) isoprene concentrations (blue), with Gaussian fits to

the data shown by the broken lines. The red line indicates an observed to modelled ratio of 1. The

plot displays the ability of the model to replicate OH observations at low isoprene concentrations,

but a model failure at high isoprene concentrations (reproduced from [11])
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Crounse et al. [46] was implemented; inclusion of epoxide chemistry also had little

impact on the modelled OH in these studies. Inclusion of LIM led to overpredictions

of HO2 measured during PRIDE, CAREBeijing2006 and HOxCOMP [55–58]

similar to findings from OP3.

Archibald et al. [59] investigated the impact of HOx recycling in isoprene

oxidation on modelling of past, present and future atmospheres using the UKCA

global chemistry climate model. The study showed the potential for substantial

changes to our estimates of global methane lifetimes as a result of developments in

our understanding of isoprene chemistry. The changes to OH concentrations owing

to changes to the descriptions of isoprene chemistry result in an 11% reduction in

the global methane lifetime and a 9% increase in the global ozone burden by 2100.

The representation of isoprene chemistry in atmospheric models thus has important

consequences for predictions of future climate change scenarios.

The role of isoprene chemistry in controlling atmospheric composition and

climate, and the influence of temperature and land use change on isoprene

emissions, should not be underestimated. The field observations of OH in

isoprene-rich, NOx-poor environments discussed above indicate that isoprene has

a considerably smaller effect on OH concentrations than chemistry models predict.

This conclusion, based on direct measurements of OH and comparison with model

predictions, is also supported by observations of other atmospheric species

undertaken in VOC rich NOx poor environments. Discrepancies between isoprene

concentration measurements and model predictions when constrained to isoprene

emission inventories have been reported, as have discrepancies between model

predictions of isoprene oxidation product concentrations and those measured. Large

model underestimates of OH reactivity and SOA formation under isoprene-rich

conditions also point towards significant uncertainties in the OH-initiated isoprene

oxidation mechanism.

5 Isoprene Emission Rates and Mixing Ratios and Comparisons

with Model Predictions

Emission inventories of natural VOCs on regional and global scales have been

available since the late 1970s. Many of the regional and global early inventories

[60–62] suffered from considerable weaknesses owing to lack of available/relevant

data including accurate estimates of global vegetation coverage, VOC emissions

from different sources, how emissions change with changes in drivers such as

temperature and light intensity and how these drivers change [63]. With these

weaknesses in mind, considerable effort was put into generating a more robust

global emission inventory on a 1� � 1� grid for use in global chemistry and

transport models. The global emissions inventory activity (GEIA) developed a

model of isoprene and other VOC emissions [63] and a regional biogenic emissions

model [biogenic emissions inventory system (BEIS)] developed in the 1980s [64]

was updated [65]. The model of emissions of gases and aerosols from nature
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(MEGAN) was developed to replace GEIA and BEIS in 2006 [66]. The isoprene

emission rates recommended in the mid-1990s [63, 65] were greater by more than a

factor of two than those previously used in the early regional air quality and global

transport models [60–62, 64]. Global emission estimates of isoprene were of the

order of 570 Tg year–1 and were derived primarily from enclosure measurement

studies which assigned leaf level emission factors to many global ecosystems;

other ecosystems that were unmeasured were assigned default values. In the GEIA

and BEIS inventories only 3 of the 20 publications used to determine emissions

included studies conducted in tropical regions. In addition to this, emission

activity algorithms describing the response of isoprene emissions to temperature

and light were based on investigations of temperate plants rather than tropical

measurements [63].

Since the 1990s, thousands of isoprene emission rate measurements using

enclosure techniques have been conducted (Fig. 7) and are incorporated into the

most recent global emission inventories [66]. These are often extrapolated to

canopy scale using canopy environment models. Measurements conducted in

tropical regions are now much more abundant [67–72] and direct measurements

of above-canopy fluxes have become more widespread, enabling parameterisation

of emissions on an eco-system scale, e.g. [73, 74], which is particularly advanta-

geous in tropical landscapes where eco-system species are extremely diverse. With

much improved constraints, MEGAN estimates a global isoprene emission of

~600 Tg year�1. In many cases, when employed in chemistry and transport models

and global atmospheric chemistry models, these isoprene emission rates result in

unrealistically high concentrations of isoprene and ozone in the boundary layer [75,

76]. Scaling factors have been introduced in many instances which uniformly

reduce emissions by 20% or more or, in some cases, reduce emissions in selected

landscapes by up to a factor of 3 [77]. The intergovernmental panel on climate

change (IPCC) recommends a 56% reduction in global isoprene emission rates as

recommended by Guenther et al. [63] to allow models to replicate observations of

Fig. 7 Geographical distribution of ecoregions identified in Olson et al. [138] and the locations of

~90 isoprene field experiments used to develop isoprene emission factors (reproduced from [66])
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CO and isoprene concentrations [78]. Favourable comparisons between canopy-

scale emissions based on leaf-level emission measurements and above-canopy flux

measurements scaled up (or down) with a canopy environment model have been

made, however. Spirig et al. [79] found that above-canopy fluxes of isoprene

measured using eddy covariance and PTR-MS during the ECHO campaign,

which took place in a European deciduous forest, provided a top-down estimate

of isoprene emission rates at the leaf level comparable to cuvette measurements

made at the site. Similarly, Kuhn et al. [80], measuring isoprene and monoterpene

fluxes in a tropical forest in the Central Amazon basin, found that the observed

VOC fluxes were in good agreement with simulations using a single-column

chemistry and climate model (SCM). Comparison of the biogenic emission

model, MEGAN, with flux measurements made in the Amazon basin during

TROFFEE were also found to agree with each other within associated model and

measurement uncertainties [81].

Discrepancies between flux observations and emission models have been

reported; these differences tend to relate to the use of inappropriate base emission

rates (BER) (rate at which plants emit isoprene under a set of standard conditions;

T ¼ 30�C; photosynthetically active radiation ¼ 1,000 mmol m�2 s�1) within

emission models, however. Langford et al. (2010) report isoprene and mono-

terpene flux observations made during OP3. Comparison of the observations with

emissions estimated by the MEGAN model demonstrated that large discrepancies

could arise if default isoprene BER – based on measurements (Fig. 7, Table 3)

made over the Amazon rainforest where the emission factors are largely derived

from – were used, with model isoprene emissions being four times greater than

those observed. The modelled to measured flux agreement could be improved

considerably, however, if the model was constrained to typical photosynthetically

active radiation (PAR) and temperature variables measured at the Borneo

station [82]. Hewitt et al. [83] have recently demonstrated that BER for isoprene

is not necessarily constant and instead is under circadian control and can vary

throughout the day. Assuming a constant BER led to an overestimation in the

isoprene flux relative to those observed during OP3 [83]. These direct flux

observations and comparison to emission models suggest that emissions inven-

tories do not necessarily overestimate isoprene emission rates; rather, other model

factors such as deposition of isoprene oxidation products, oxidation schemes

employed or the factors controlling isoprene emissions may contribute to poor

model performance [66].

It must be noted that, although the examples given above demonstrate good

agreement between modelled emissions rates and directly measured isoprene

fluxes, many of these models overestimate VOC mixing ratios [76, 77]. For

example, Kuhn et al. [80] observed the vertical gradients of isoprene and isoprene

oxidation products; comparison between model and observations led Kuhn and co-

workers to suggest that the oxidation capacity was much higher than that assumed

by the model. A simple chemical kinetics study utilising the ratio of (MVK þ
MACR)/isoprene estimated an [OH] of ~8 � 106 molecule cm�3, an order of

magnitude higher than predictions made by the model employed. This high [OH]
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estimate was also supported by a simple budget analysis, which assumes that the

isoprene mixing ratio is in steady state with the chemical boundary layer and,

hence, the amount of isoprene emitted and entrained (FISO) is balanced by the

Table 3 Isoprene andmonoterpene fluxmeasurements from tropical forests and typical monoterpene:

isoprene ratio (units in mg C m�2 h�1; reproduced from Langford et al. 2010 [82]). See Langford et al.

[82] for details of the references cited in this table

Location Season Method Isoprene ∑Monoterpene Ratio References

Borneo SE Asia L wet vDEC 0.48 � 0.72 0.13 � 0.19 0.27 Langford et al.

(this study)

Borneo SE Asia E dry vDEC 1.04 � 1.3 0.25 � 0.33 0.24 Langford et al.

(this study)

Malaysia SE

Asia

Dry LL 1.1 – – Saito et al. (2008)

Amazon, Brazil E dry MB 2.7 0.24 0.23 Zimmerman et al.

(1998)

Amazon, Peru E dry MLG 7.2 0.45 0.06 Helmig et al.

(1998)

Amazon, Brazil L wet EC, REA 2.1 0.23 0.11 Rinne et al.

(2002)

Amazon, Brazil L dry vDEC 7.3 � 2.7 1.5 � 1.1 0.21 Karl et al. [81]

Amazon, Brazil L dry MLG 10.2 � 3.5 2.2 � 0.7 0.22 Karl et al. [81]

Amazon, Brazil L dry MLV 11.0 � 0.9 3.9 � 1.1 0.35 Karl et al. [81]

Amazon, Brazil E dry REA 2.1 � 1.6 0.39 � 0.43 0.19 Kuhn et al. [80]

Amazon, Brazil E dry SLG 3.4 � 3.6 0.38 � 0.58 0.11 Kuhn et al. [80]

Amazon, Brazil – REA 1.1 0.2 0.18 Stefani et al.

(2000)

Amazon, Brazil – BM 1.9 0.16 0.08 Greenberg et al.

(2004)

Amazon, Brazil – BM 4.7 0.20 0.04 Greenberg et al.

(2004)

Amazon, Brazil – BM 8.6 0.54 0.06 Greenberg et al.

(2004)

Amazon, Brazil Dry EC 0.4–1.5 – – Muller et al.

(2008)

Amazon, Brazil Wet EC 0.1–0.3 – – Muller et al.

(2008)

French Guyana

Suriname

Dry CBL 6.1 – – Eerdekens et al.

(2009)

Costa Rica Wet REA 2.2 – – Geron et al.

(2002)

Costa Rica Dry DEC 2.2 0.29 0.13 Karl et al. [74]

Congo, Africa – A-REA 0.9 – – Greenberg et al.

(1999)

Congo, Africa – LL 0.8–1 – – Klinger et al.

(1998)

Congo, Africa – REA 0.46–1.4 – – Serca et al. (2001)

EC eddy convariance, vDEC virtual disjunct eddy convariance, DEC disjunct eddy convariance,

(A)-REA (airborne) relaxed eddy accumulation, SLG surface layer gradient, MB mass budget,

MLG mixed layer gradient, MLV mixed layer variance, LL leaf level extrapolation, BM box

modelling, CBL convective boundary layer budgeting
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amount chemically degraded by oxidants such as OH and O3 at a particular

boundary layer height (zi). The respective flux-to-lifetime relationship can be

described as

FISO ¼ ðkOHðISOÞ � ½OH� þ kO3ðISOÞ � ½O3�Þ � ½ISO� � zi: (1)

Solving (1) for OH, Kuhn and co-workers estimate an OH radical concentration

of ~4.5 � 106 molecule cm�3 using mean observations of isoprene mixing ratios

and fluxes determined using mixed layer gradient measurements. These elevated

OH concentration estimates support the recent, direct, OH concentration

measurements made over Suriname [8]. Increasing the modelled OH concentration

was suggested to remedy isoprene emissions with the observed isoprene

concentrations [80]. Similarly, Karl et al. [81] found during a study conducted

during the dry season in the Amazon that OH modelled in the boundary layer using

a photochemical box model was significantly lower than that calculated using the

mixed layer budget analysis. Karl et al. [81] hypothesised that reactive

sesquiterpenes present at 1% of the isoprene concentration could produce sufficient

OH radicals by ozonolysis (assuming an OH yield of one) that could largely

reconcile the differences in the OH predicted by a zero dimensional detailed

chemical box model and estimates based on the budget analysis.

Pugh et al. [29], using a box model to simulate the atmospheric boundary layer

over the Borneo rainforest, constrained to the measured VOC fluxes [82], found that

the model, rather than overpredict isoprene (as is the case with many of the earlier

emission constrained models), was able to simulate concentrations well, but

underpredicted the measured OH concentration (by two to three times) and over-

predicted the concentrations of isoprene oxidation products of MVK and MACR

considerably (five to ten times) (consistent with findings by Kuhn et al. [80] and

Karl et al. [81]). Increasing the dry deposition velocity of the MVK and MACR

improved the modelled to measured agreement for these species and brought the

modelled OH into better agreement with observations due to a reduction in the

modelled OH sink. Pugh et al. [29] found that increasing OH in the model only

served to reduce the modelled isoprene concentration, with modelled isoprene

concentrations dropping below those observed. Increasing the isoprene emissions

(to greater than observed) to rectify the model underestimation only resulted in a

further re-suppression of OH [29]; Butler et al. [4] report similar findings from

model measurement comparisons undertaken as part of the GABRIEL project. As

discussed in Sect. 2.2, Pugh et al. found that a 50% segregation between OH and

isoprene was able to reconcile inconsistencies between measurements, although in

a later paper Pugh et al. [30] determined the degree of segregation explicitly for

observations conducted during OP3 and concluded that the segregation was not

>15%. These findings highlight that, despite an accurate representation of isoprene

emissions, observations of isoprene, isoprene oxidation products and OH cannot be

fully reconciled, suggesting that there are still gaps in our understanding of isoprene

oxidation chemistry.

New Insights into the Tropospheric Oxidation of Isoprene: Combining Field. . . 79



5.1 Isoprene Emissions Inferred from Satellite Measurements
of HCHO

Global and regional biogenic emissions, determined using bottom-up methods

which rely on as yet relatively sparse in-situ concentration data (Fig. 7) and/or

flux measurements extrapolated to regional or continental scales using satellite-

derived land cover, have large associated uncertainties. For example, the annual

global isoprene emission estimated with MEGAN ranges from 500 to 750 Tg

isoprene depending on driving variables such as temperature, solar radiation, leaf

index area and plant functional type [66]. A promising, alternative approach for

assessing global emission inventories and developing global isoprene emission

maps is to use a top-down approach based on satellite measurements of isoprene

oxidation products such as formaldehyde (HCHO). The success of this technique to

predict global isoprene emissions accurately relies heavily on an accurate descrip-

tion of isoprene oxidation leading to the formation of HCHO and upon the OH

concentration, however. The principal sink of isoprene is oxidation by the OH

radical; underestimating OH concentrations will directly affect isoprene and HCHO

concentrations. The method assumes that the HCHO column, O (molecule cm�2),

observed by satellites, and the sum of HCHO precursor emissions at steady state in

the absence of horizontal transport can be linearly related by

O ¼ 1

kHCHO

X
i

YiEi (2)

where kHCHO is the first order loss of HCHO from oxidation and photolysis applied

to the column, Ei is the emission of VOC species i and Yi is the HCHO yield from

species i. For isoprene the conversion time to HCHO may be as little as 1 h and the

lifetime of HCHO is of the order of a few hours during the daytime. For reactive

VOCs, such as isoprene, which produce HCHO promptly, transport away from the

point of emission can be considered minimal and, as such, any variability in the

HCHO column can be assumed to be largely caused by variability in isoprene

oxidation rather than transport into and out of the HCHO column. Fu et al. [84]

compared observed HCHO columns from the global ozone monitoring experiment

(GOME) satellite with those simulated using the Goddard Earth Observing System

chemical transport model (GEOS-Chem) constrained to biogenic emissions deter-

mined using MEGAN [66]. Isoprene emissions from east and south Asia inferred

from the satellite measurements were 53 � 30 Tg year�1 and compared well, on

average, with MEGAN predictions of 56 Tg year�1 for the region. MEGAN was

found to underestimate isoprene emissions by a factor of 3 for Chinese mixed

forests and croplands and overestimate emissions from tropical vegetation. Using a

similar approach, Millet et al. [85] studied the spatial distribution of HCHO over

North America, using HCHO column measurements taken from the ozone moni-

toring instrument (OMI), and compared to the bottom-up MEGAN emission

inventory. Although spatially consistent, OMI-derived isoprene emissions were
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found to be between 4% and 25% lower than those predicted by MEGAN on

average. Shim et al. [86] used the GEOS-Chem chemical transport model driven

by the GEIA biogenic emissions database to conduct a global inversion of GOME

HCHO column data. The estimated global isoprene annual emissions were higher

at mid-latitudes and lower in the tropics when compared to the GEIA inventory.

Barkley et al. [87] comparing isoprene emissions derived from HCHO GOME

columns and those derived from the MEGAN inventory found that over South

America MEGAN predicted much higher isoprene emissions than GOME; this

positive bias was found to be larger in the dry season than the wet season. The

mean [OH] from MEGAN and GOME simulations conducted by Barkley et al.

[87] were approximately 1.2–4.5 lower than values observed over the tropical

rainforest in Suriname during the GABRIEL project. Underestimating the OH

oxidation in the GOME model will in turn lead to an underestimation of isoprene

inferred from the observed HCHO column. Additional OH recycled during iso-

prene oxidation could help to resolve quantitatively MEGAN and GOME isoprene

emission estimates [87].

6 Isoprene Oxidation Products

Observations of other isoprene oxidation products such as MVK, MACR and

hydroxyacetone in a number of field studies and comparison with model predictions

also point towards large uncertainties in isoprene oxidation schemes currently

employed. Observed oxygenated volatile organic carbon (OVOC) mixing ratios

are determined by a balance of their production (largely dominated by photochem-

istry) and loss rates (which include reactive loss, dry deposition and vertical

mixing). Pugh et al. [29], for example, found that the model scheme used to assess

chemistry during the OP3 project that took place in the Borneo rainforest greatly

overestimated the sum of MVK and MACR measured and suggested that the dry

deposition rate of these OVOC could be larger than assumed by the model. Karl

et al. [22], comparing observations of MVK þ MACR and hydroxyacetone

(measured using PTR-MS) during the Amazonian aerosol characterisation experi-

ment (AMAZE-08) with model predictions, report a factor of 10 underprediction in

the hydroxyacetone/(MVK þ MACR) ratio, implying a missing source of

hydroxyacetone in the model. Karl et al. [22] also reanalysed data from five other

field campaigns and found that during all of them, hydroxyacetone mixing ratios

were significantly higher than what would be expected from model predictions

which assume that the major source of hydroxyacetone is an oxidation product of

MACR. Theoretical studies have proposed a primary source of hydroxyacetone

direct from isoprene [88], and laboratory studies have demonstrated a fast second-

ary production which is currently not included in atmospheric chemistry models

[3]. Karl et al. [22] implemented the additional hydroxyacetone pathway

proposed by Paulot et al. [3] extended to low NOx conditions in model runs and

found that the mechanism reproduced well the MVK/MACR ratio observed during
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the AMAZE campaign; the modelled hydroxyacetone/(MVK þ MACR) ratio

obtained from the Paulot mechanism was within 50% of observations,

suggesting that fast secondary production could explain 50% of the observed

hydroxyacetone/(MVK þ MACR) ratio. The remaining 50% may be related to

the primary production mechanism as suggested by [88]. Karl et al. [22] also

assessed the performance of the recently proposed Leuven mechanism in

reproducing the AMAZE OVOC observations. This mechanism was found to

predict an MVK/MACR ratio of ~10; observed ratios were typically ~1.34

(measured by GC-MS). The Leuven mechanism also significantly underestimated

the sum of MVK and MACR to isoprene ratio. The yields of MVK, MACR and

hydroxyacetone are highly sensitive to the rate of decomposition of the 1,6-H

shift reactions which are proposed to be rapid in the Leuven mechanism (Fig. 4).

Karl et al. [22] found that to reconcile the mechanism of Leuven with the

observed OVOC ratios during the AMAZE campaign would require the 1,6-H

shift reactions decomposition rate and the reverse reaction rates of the Z-1-OH-4-
OO* and Z-4-OH-1-OO* peroxy radicals to be reduced (consistent with the

experimental results of Crounse et al. [46]). Such an adjustment would lead to a

corresponding reduction in the overall HOx yield from the Leuven mechanism,

with an approximate yield of 0.1 HO2 and 0.12 OH radicals, just 33% of the

original.

7 OH Reactivity

If, as suggested by Karl et al. [22], the rate of formation of isoprene oxidation

products are underestimated, due to uncertainties in the isoprene oxidation method

employed in models, this will undoubtedly impact the oxidative capacity and OH

reactivity determined by models due to reaction of these OVOCs with OH.

Although the direct radiative forcing of these species is small, their indirect effect

on the lifetime of species such as CH4 and their role in the formation of organic

aerosol and tropospheric ozone have an important influence on climate as well as

local and regional air quality [89]. Observations of the total OH reactivity have

been made in a variety of chemical environments [52, 54, 90–101]. In most studies

the observed reactivity is underestimated by models constrained to the measured

OH sink species; this discrepancy is often greatest in regions of high biogenic

activity [52]. Much of this discrepancy may be caused by unmeasured VOCs using

standard observation techniques such as gas chromatography [102]. Chung et al.

[103] found that as much as 45% of the total non-methane organic carbon was

unmeasured during observations in the Los Angeles basin. The discrepancy

increased as the air mass aged, suggesting that the missing organic fraction was

made up largely by oxidation products of primarily emitted VOCs. In contrast to

this, Di Carlo et al. [90] found that the oxidation products of the VOCs observed in a
mid-latitude mixed hardwood forest accounted for <2% of the calculated OH

reactivity and instead suggested that unmeasured primarily emitted biogenic
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VOCs such as terpenes could account for the missing reactivity. Di Carlo et al. [90]

relied on a heavily lumped model, however.

Sinha et al., [100] determined during measurements taken in Suriname, within

the canopy at a height of approximately about 35 m, an average OH reactivity of

~53 s�1 with a peak OH reactivity of 72 � 18 s�1. The calculated OH reactivity

determined from concentration measurements of acetone, acetaldehyde, isoprene,

MVK and MACR made up just 35% of the measured OH sink; the limited dataset,

however, prevented any strong conclusions on the likely missing sink species.

Edwards et al. [52] assessed the measured OH reactivity observed in the Borneo

rainforest using a zero dimensional model based upon MCM chemistry and found

that the model was particularly sensitive to concentrations of unconstrained oxida-

tion products of the observed BVOCs, in particular isoprenal hydroperoxides,

carbonyls and alcohols, highlighting the importance of these species in the chemis-

try controlling oxidation in this environment. This importance of isoprene oxidation

products as a major sink for tropical OH has been suggested previously by Warneke

and Gouw [104], where measured concentrations of MVK, MACR and isoprenal

peroxides above the Amazon rainforest resulted in large reductions in OH

concentrations within a photochemical box model. Edwards et al. [52] demonstrate

from direct measurements of OH and OH reactivity within a tropical rainforest that

as much as 55% of the observed OH loss is potentially through reaction with

unmeasured oxidation products of primary BVOCs. This work highlights the

importance of an accurate description of the isoprene degradation mechanism

within models to understand ultimately the fate of the oxidised isoprene products

and their impact on the oxidising capacity (Figs. 8 and 9).

Fig. 8 Pie-chart showing the contributions to OH reactivity calculated using a zero-dimensional

box model constrained to the Master Chemical Mechanism for comparison with observations of

OH reactivity made during the OP3 campaign in the Borneo rainforest
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8 SOA Formation from Isoprene

The oxygenated products of isoprene may contribute to SOA formation and, as such,

any uncertainty in the isoprene oxidation mechanism will impact model predictions

of SOA. Atmospheric models consistently underpredict organic aerosol mass in both

the boundary layer and aloft [105–111]. This underprediction is not present in model

predictions of black (elemental) carbon, leading to the conclusion that this bias is due

to an underprediction in SOA specifically. Although isoprene is one of the most

abundant hydrocarbons emitted into the atmosphere, second only to methane [63], in

the early 1990s it was concluded that isoprene did not form SOA through gas-phase

oxidation owing to the assumption that SOA only forms when condensable products

reach concentrations exceeding their saturation vapour pressure [112]. In support of
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this, early chamber studies only observed SOA formation from isoprene at

concentrations much greater than ambient levels [113–115]. Kiendler-Scharr

suggests that the presence of isoprene may actually suppress SOA formation from

mono-terpene oxidation [116] owing to the scavenging of OH by isoprene (and the

assumed lack of SOA formation from isoprene oxidation). In contrast, offline field

measurements of organic aerosol in forested areas indicated that isoprene did play a

part in SOA formation [117–123]. Claeys et al. [118] detected considerable quantities

of methyl tetrols which have the isoprene skeleton in organic aerosols from the

Amazon rainforest. The authors estimated that the photo-oxidation of isoprene may

result in the global production of 2 Tg year�1 of the polyols, a significant fraction of

the total IPCC estimate of SOA from biogenic sources of 8–40 Tg year�1. Laboratory

studies have now demonstrated that absorption into condensed-phase organics could

provide a mechanism for SOA formation from gas-phase species at concentrations

below their saturation vapour pressure [115, 124]. In 2003 Limbeck and co-workers

proposed that isoprene, by direct reaction with acidic particles, was able to contribute

to the formation of humic-like substances that make up 20–50% of the water-soluble

organic aerosols in urban and rural European air [125]. The most recent results from

laboratory and chamber studies indicate that isoprene oxidation can form SOA even

in the absence of a strong seed aerosol [126–128], albeit over longer timescales [129].

Isoprene derived SOA species (e.g. epoxides, tetrols and organosulphates) have now

been measured in chamber studies [35, 123, 130–132] and observed in the offline

field samples. Kiendler-Scharr et al. [133], by introduction of fully deuterated

isoprene into plant chambers containing non-isoprene emitting poplars, determined

an aerosol mass yield from isoprene of ~2.3%. Online SOA field observations made,

for example, using aerosol mass spectrometry, which provide higher time-resolved

data and permit comparison to gas-phase isoprene oxidation products and fast

changing oxidant concentrations, have recently been reported. During OP3, Robinson

et al. [134] observed that up to 15% by mass of the sub-micron organic aerosol was

observed as methyl furan in the aerosol mass spectrum (AMS) and was assigned to be

representative of isoprene SOA owing to the simultaneous observation of gas-phase

isoprene oxidation products of MVK and MACR. Froyd et al. [135], using online

particle analysis by laser mass spectrometry (PALMS), also observed isoprene-

derived SOA in the form of IEPOX-derived organosulphates, a second generation

oxidation product of isoprene. From this study it was estimated that IEPOX

contributed >0.4% to tropospheric aerosol mass in the remote tropics and up to

20% in regions downwind of isoprene sources [135].

The distribution of isoprene oxidation products depends upon the fate of the RO2

radicals formed. Upon reaction with NO, MVK and MACR and hydroxynitrates

may form; conversely, under low NOx conditions hydroxyhydroperoxides form by

reaction of RO2 with HO2. SOA yields under low NOx conditions tend to be higher

than under higher NOx scenarios (~3% yield vs 1–2% yield at higher NOx

concentrations) [128], suggesting that further reactions of the hydroxyhydro-

peroxides can lead to lower volatility products. Surratt and Kroll and co-workers

have found that the oxidation of MACR generates SOA with very similar chemical
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composition to SOA formed from isoprene, suggesting that MACR is an important

intermediate in the formation of SOA from isoprene [128, 131]. Henze and Seinfeld

[136] demonstrated that inclusion of an SOA source from isoprene increased the

SOA yield in global model simulations considerably but the increase alone was not

sufficient to reconcile observations made during the ACE-Asia campaign [106].

Currently a single-step process for SOA formation from isoprene is assumed within

most atmospheric models used to estimate SOA formation [137]. The kinetic study

by Ng et al. [129], however, highlighted the multi-oxidation nature of SOA

formation from isoprene as it was found that most of the aerosol formation observed

only occurred after most of the isoprene was consumed. Carlton and co-workers

[137] suggest that modelling SOA formation from the individual isoprene products

may better reflect the multi-step nature of isoprene oxidation and SOA formation,

but an improved understanding of the chemical mechanisms involved in isoprene

oxidation is needed before this can be implemented.

9 Summary

Uncertainties in the isoprene oxidation mechanism impacts much of the work

currently being pursued in the atmospheric community. Discrepancies in the

modelled-to-measured OH concentration in isoprene rich environments can lead

to overestimations of the methane lifetime and reduction in the rate of VOC

degradation predicted by global models. Global or regional models currently able

to reproduce isoprene observations likely underestimate the flux of BVOCs into the

atmosphere; this underestimation will impact processes associated with their oxi-

dation, for example, the formation of OVOCs, which can impact OH reactivity

predictions and also SOA production, both of which are currently consistently

underpredicted by atmospheric models in isoprene-rich environments. As carbona-

ceous aerosol strongly influences air quality and climate change, the accurate

mechanism by which isoprene is oxidised to secondary gas-phase species and

ultimately to SOA becomes increasingly sought.

Although earlier modelling studies often reduced isoprene emissions to recon-

cile the modelled isoprene mixing ratio with those observed, a number of

observations of canopy scale fluxes have been reported which support the magni-

tude of isoprene emissions estimated by MEGAN. Perhaps as a consequence of this,

the focus in more recent years has turned to the uncertainties associated with the

isoprene oxidation mechanism itself rather than the estimated emissions. A number

of alternative oxidation schemes have been proposed, some of which are able to

reconcile the modelled OH radical concentration with observations (at times), for

example the Leuven mechanism. It has been highlighted by recent laboratory

studies, however, that the actual amount of OH recycled during isoprene oxidation

may be lower than the Leuven mechanism predicts, and currently there does not

seem to be one mechanism that can fully satisfy all field and laboratory based

observations to date.
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Uncertainty in the rate of deposition of isoprene oxidation products has also been

suggested as a potential source of error in models. Increasing the rate of deposition

of these species which act as important OH sinks could certainly extend the lifetime

of OH and increase radical concentrations. There is no consensus in the current

literature on how fast this deposition should be. Furthermore, increasing the depo-

sition would only increase the discrepancy between OH reactivity observations and

predictions. Although a bias in the measurement technique for OH could explain

the large discrepancy between the direct OH observations and model predictions,

this would not help to resolve the inconsistencies between observations and model

predictions of the ratio of isoprene to its oxidation products, and also the disagree-

ment between isoprene emission estimates based on satellite retrievals of HCHO

columns and those predicted by the most recent emissions inventories. These

discrepancies could certainly be improved, if not resolved, if mechanisms which

generated more OH were implemented in atmospheric chemistry models [80, 81,

87] supporting the direct observations of OH.
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1 Introduction

Until very recently organic aerosol (OA) was commonly regarded as a mixture of

non-volatile, non-reactive, primary organic aerosol (POA) [1, 2] augmented with a

coating of secondary organic aerosol (SOA). POA particles were regarded as

relatively non-volatile composites of organic compounds emitted by individual

sources, such as biomass burning [3–5], gasoline [6–8] and diesel [1, 9] vehicles,

food preparation [10–13], smoking [14], and numerous other small sources. SOA

was regarded as an additional coating of secondary organic compounds formed via

gas-phase oxidation of volatile organic carbon (VOC) precursors. Some of these

reaction products evidently had a sufficiently low vapor pressure to condense onto

pre-existing particles [15, 16]. Through a decade or so of research it became clear

that SOA consisted of a mixture containing a large fraction of semi-volatile organic

compounds that partitioned between the vapor and condensed phases based on well-

established solution thermodynamics [17, 18].

This basic picture of organic aerosol was relatively well developed by the end of

the 1990s. Chemical transport models were fed by inventories for POA emissions

from a wide array of sources, and those emissions were treated in a variety of

microphysics modules as effectively non-volatile and often chemically inert

particles [19, 20]. SOA models evolved from relatively primitive treatments that

simply converted a fixed fraction of VOC emissions into equally non-volatile

secondary material (for example 12% of monoterpene emissions) to more sophisti-

cated “two-product” representations that treated the equilibrium partitioning of

surrogate species based on smog-chamber experiments [21–23]. Even today some

global-scale models represent SOA as a fixed non-volatile fraction of VOC

emissions [24, 25].

In most model representations of OA behavior, there was little if any consider-

ation of long-term OA aging. With the realization that some OA could serve as

relatively efficient cloud condensation nuclei [26–28] and also that soluble salts
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such as ammonium sulfate would condense onto even the most hydrophobic

organic cores, many models added some form of ad hoc aging timescale, typically

converting a “hydrophobic” organic mode into a “hydrophilic” organic mode with a

fixed timescale (usually of order 2 days).

Recently this picture has been more or less turned upside down. We now

recognize that most POA emissions are actually fairly volatile, while SOA (at

least in the form found in the atmosphere) is not very volatile at all [29, 30].

There is some debate over the effective volatility of even “traditional” SOA formed

in smog-chamber experiments (called “chamber SOA” hereafter) [31], but it is also

clear that chamber SOA is often a poor match for the SOA observed in the

atmosphere. At the same time, recent papers have raised questions about the

physical state of OA particles. There is considerable evidence that some OA

particles may exist in a glassy or semi-solid state [32–34], and there is some

confusion about whether this glassy state invalidates the solution thermodynamics

treatments that have been developed to date (it does not) and debate over whether

the mixtures actually reach equilibrium (they may not).

Work in our groups over the past decade has focused on the hypothesis that the

coupling of gas-particle partitioning and gas-phase oxidation chemistry plays a

central role in the properties and evolution of organic aerosol in the atmosphere,

and that a very large fraction of all organic carbon atoms found in ambient particles

has been involved in gas-phase chemical reactions at some point during their stay in

the atmosphere. Volatility, in other words, plays a central role in the aging of

organic aerosol in the atmosphere.

This chapter will focus on the interplay between volatility and chemical aging as

it relates to organic aerosol. We shall emphasize the role of gas-phase oxidation

chemistry but address other mechanisms as well. That emphasis is not meant to

suggest that other aging mechanisms are unimportant, but rather that this one is

important. Many of those other processes are ably covered by other articles in this

volume.

2 Background

Of a total flux of non-methane reduced organic compounds into the atmosphere of

about 1,350 Tg year�1 [35, 36], only 10% or so leads to organic aerosol [25, 37].

However, less than 1% of the primary organic emissions into the atmosphere have a

sufficiently low volatility to remain in the condensed phase under ambient

conditions, so SOA formation must be a huge part (90% or more) of the OA story

[38]. The straightforward fact is that only a small fraction of all organic compounds

(by mass) in the atmosphere have what it takes to stay on or in a particle. That

special property is low volatility, and most compounds acquire that low volatility

via chemical transformation in the atmosphere.
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It is important to develop a sense of scale for volatility. A typical OA concen-

tration is of the order 1 mg m�3 (a mass fraction of 1 ppbm) and, if the molar weight

of the SOA molecules averages 200 g mole�1, the mole fraction of OA is roughly

100 ppt. If OA consisted of a single, pure organic compound and it had a saturation

vapor pressure of 10�7 Torr (1.3 � 10�5 Pa), that compound would be 50% in the

gas phase and 50% in the condensed phase at equilibrium under ambient conditions.

That is a good definition of a semi-volatile constituent. Compounds with this

saturation vapor pressure (over a sub-cooled liquid state) include pentacosane

(C25H52, the canonical paraffin) and glucose. Those are not molecules one normally

considers “semi volatile”; it is thus reasonable to expect standard intuition to be off

target when considering organic aerosol. Of course, OA particles are not pure but
rather contain thousands of different molecules, so mixing thermodynamics plays

an important role as well. Furthermore, paraffin and glucose are notably viscous, so

it is not necessarily surprising that viscosity effects may be important to OA

behavior.

2.1 Phase Partitioning Thermodynamics

The thermodynamics of semi-volatile phase partitioning for atmospheric OA

mixtures has been extensively treated in the literature [17, 18, 39, 40] and will

only briefly be reviewed here. We express the effective saturation concentration

C�
i

� �
of an organic compound by converting its saturation vapor pressure into mass

concentration units and multiplying by the appropriate activity coefficient for the

organic mixture (this is the inverse of the partitioning coefficient used in some

formulations: Kp;i ¼ 1=C�
i Þ: The general effect of a solution is to lower the

equilibrium partial pressure of a species from the equilibrium vapor pressure of

the pure species; if the fractional reduction in the partial pressure (the activity) is

equal to the fraction in the condensed phase, the solution is ideal and Raoult’s law

applies. One simplifying assumption is to treat the system as a “pseudo-ideal”

solution [23] in which the activity coefficients of individual compounds remain

more or less constant over ambient conditions, in which case C�
i for a given

compound will remain constant as well.

The fundamental property of interest is the equilibrium fraction xi of a com-

pound in the condensed phase (vs the total in the condensed and vapor phases).

With a total concentration of condensed-phase solute (often assumed to be the total

concentration of organic aerosol, COA), this is given very simply by

xi ¼ 1þ C�
i =COA

� ��1
: (1)

This is a straightforward equation. It is evident that when the total OA

concentration equals the saturation concentration of a constituent ðC�
i ¼ COAÞ ,

that constituent will be 50% in the condensed phase at equilibrium (xi ¼ 0.5).
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Furthermore, a constituent with C�
i ¼ 0:1 COA will be ~90% in the condensed

phase while a constituent with C�
i ¼ 10 COA will be only ~10% in the condensed

phase. There is thus a fairly narrow range of (extremely low) volatilities spanning

approximately a factor of 100 in C*, centered around COA, where a compound will

be “semi volatile.” Furthermore, this range varies with the aerosol loading – at

high COA of perhaps 100 mg m�3 found in very polluted cities (or source-

dominated locations such as highway tunnels), the whole range of semi-volatiles

will be shifted by a factor of 100 toward higher volatility. Also, experiments with

significantly higher aerosol concentrations may not have phase partitioning con-

sistent with the atmosphere. Until quite recently aerosol chamber experiments

were performed with hundreds to thousands of micrograms per cubic meter of

aerosol, resulting in phase partitioning very different from ambient conditions.

Emissions measurements are still routinely performed at these unrealistic

conditions.

There are at least three separate ways of treating partitioning for practical

application to atmospheric aerosol. One is to run a full thermodynamic model

containing an ensemble of specific molecules, while the other two are empirical.

2.1.1 Explicit Methods

Explicit methods seek to treat chemistry and thermodynamics with molecular

detail, either including as complete a set of compounds as possible [41] or

employing a reduced set of surrogate compounds to represent the full array of

atmospheric compounds [21]. In either case the thermodynamics for this model

system are treated as fully as possible, with individual vapor pressures and activity

coefficients for the mixture calculated using one of several thermodynamic schemes

[42–45]. A major challenge for this approach is the fact that the molecular compo-

sition of the vast majority of the OA mass is not known. However, when OA

composition is known or if it can be predicted, they do allow one to assess as

completely as possible the consistency of available data.

Recent studies on SOA derived from a-pinene are a good illustration of the

explicit methods. Simulations of a-pinene ozonolysis using detailed chemistry from

the Master Chemical Mechanism reproduce both SOA mass yields and the volatil-

ity distribution derived from chamber studies with good fidelity [46], though an

earlier simulation using similar MCM chemistry but different vapor pressure

estimation methods under-predicted SOA mass yields at low loading (COA < 10

mg m�3) [47]. A tailored a-pinene oxidation mechanism also performs well in

comparison with chamber experiments [48]. A generative mechanism (GECKO-

A) applied to a-pinene photo-oxidation generally over-predicts SOA formation,

especially under low-NOx conditions [49]. None of those simulations modeled

additional condensed-phase oligomerization chemistry. While the model-

measurement intercomparisons were in general good, the dual uncertainties of the

chemical mechanisms and vapor pressure estimation greatly complicated
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substantive intercomparisons, even when additional measurements such as oxida-

tion state of the SOA were included [46, 49].

2.1.2 Empirical Methods

Empirical methods are based on fits of partitioning data (generally chamber

observations) to identify a set of pseudo-compounds with different abundances,

which can then be used to simulate the gas-particle partitioning of OA. A major

challenge with this approach is whether the properties of these pseudo-compounds

are constant as one extrapolates away from the conditions under which the experi-

ment was conducted. To help minimize these errors, it is critical to condition the

partitioning experiments over as much atmospherically relevant space as possible.

N-Product Models

The most widely used empirical method is the “Odum two-product model” used to

interpret many chamber experiments and implemented widely in air-quality models

[23, 50]. When chamber SOA formation data are fitted to a two-product model, the

output parameters are two mass yield parameters and two partitioning coefficients

ðKp;i ¼ 1=C�
i Þ, giving a total of four free parameters. The two pseudo-species are

not typically associated with any particular molecular products but rather regarded

as completely empirical objects. In general they split into a “low-volatility” and a

“high-volatility” product. One issue is that the recovered C* values are highly

dependent on the experimental dataset. The C* values recovered from data fitting

often coincide approximately with the range of measured COA values in the data, so

the volatility of the two pseudo products depends on the concentration range of the

experiments [51]. As an example, the C* value commonly used for isoprene SOA is

approximately 1 mg m�3 [52], while the “low-volatility” C* value used until

recently for a-pinene SOA was higher, at 15 mg m�3 [53, 54]. It would be surprising

if SOA derived from isoprene (with five carbons) were less volatile than SOA

derived from a-pinene (with ten carbons); however, because isoprene SOA

experiments produce much less SOA than a-pinene SOA experiments, the empiri-

cally derived product volatilities are skewed. This can have unexpected

consequences when the two systems are mixed in a model simulation, where the

presence of isoprene SOA will “seed” more volatile a-pinene SOA formation.

Reality is more likely to be the opposite of this.

Some of the deficiencies of the empirical two-product model can be eliminated

by adding information to a multiple product model. One solution is to map products

from chamber experiments onto a “carbon-number–polarity grid” based not only on

the empirically observed SOA mass but also expected product properties [55].

Chemical evolution could be described on the grid, enabling a sensible description

of aging.
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Volatility Basis Set

Another empirical approach is known as the “Volatility Basis Set” (VBS). Like the

two-product model, the VBS is empirical. However, the pseudo-product volatilities

are fixed over a wide range, with C* values typically separated by a single order of

magnitude at 300 K [40]. An example is shown in Fig. 1. In a VBS fit the free

parameters correspond to the different total concentrations (in any phase) in each

volatility “bin” (each pseudo product). Thus, a VBS fit to SOA data with C* bins at

1, 10, 100, and 1,000 mg m�3 has the same number of formal degrees of freedom as

a two-product model, but there is a crucial difference. Because the VBS C* values

are fixed, the overall partitioning function (Eq. 1) is only sensitive to the volatility

of a given bin when COA is within about a single order of magnitude of the C* value

for that bin. The VBS parameters are thus relatively robust and independent of each

other (there is covariance among adjacent bins, however, and so data can often have

many equally good fits where material is divided differently among neighboring

bins [56]). VBS parameters can only be fitted to data over slightly more than the

range of COA values in a dataset – the extremes at lower or higher volatility must be

constrained by other means, such as an overall carbon balance. With those

constraints, a nine-bin VBS is often employed with C* ranging from 0.01 mg m�3

to 106 mg m�3 [38]. This spans the full range of fully condensed organics, semi-

volatile vapors, and “intermediate volatility” species and permits a good carbon

mass balance. Though this requires nine species for transport in a model, if all

organics form a pseudo-ideal solution the VBS fits from different OA sources can

easily be combined to predict overall partitioning for a mixture without the unex-

pected consequences sometimes emerging from the two-product model.
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Fig. 1 Partitioning behavior of organics for 1 mg m�3 of total organic aerosol (COA), shown as the

fraction in the condensed phase (x, height of bars and curve) vs saturation concentration (C*)
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Non-ideality

A downside of the empirical approaches is they give little insight into non-ideal

behavior of complex mixtures, including mixing effects of different organics (their

activity coefficients), interaction with water, and interaction with inorganic

constituents including salts and elemental carbon. These latter two types of

interactions typically involve significant extrapolation away from the conditions

of the experiments used to derive the fits. Unfortunately, there are very few direct

measurements of activity coefficients for relevant organic molecules over relevant

organic mixtures. It seems reasonable to expect seemingly similar OA, such as SOA

derived from different precursors, to interact in a more or less ideal fashion, and

indeed isotopic labeling experiments have confirmed this [57, 58]. However,

mixing of less similar organics, such as relatively non-polar POA and more polar

SOA, is less clear. Some experiments using non-polar organic “seeds” show little

enhancement in SOA formation over experiments employing inorganic seeds [59],

while other experiments directly observing mixing of SOA and POA by tracking

the evolution of different size modes using size-resolved mass spectrometry show

more nuanced behavior, with rapid mixing of semi-volatile POA into SOA seeds in

some cases but not in others [60].

While methods based on explicit surrogate molecules (or complete enumeration

of the organic mixture) can rely on calculated activity coefficients, the empirical

methods must rely on approximations. In two-product SOA schemes one approach

is to assume that generally similar classes of species mix with each other ideally

(for example all SOA pseudo-products), but to permit either ideal mixing or

complete phase separation of less similar constituents (for example SOA with

POA) [23]. More generally, the empirical methods contain very little information

about the molecular structure of OA constituents as they are based only on observed

gas-particle partitioning and total mass concentrations. This complicates

calculations not only of activity coefficients but also of important properties like

the organic mass to organic carbon ratio (OM:OC) or the closely related oxygen to

carbon ratio (O:C). Of course, composition information can be added based on

additional observations, as with the carbon-number–polarity grid described above

[61]. However, with the one-dimensional VBS there is an intrinsic problem:

compounds with similar volatility can be very different chemically. For example,

two compounds with a (sub-cooled liquid) saturation concentration near 10 mg m�3

are tricosane (C23H48) and levoglucosan (C6H10O5). Each are important in the

atmosphere – tricosane is a constituent of lubricating oil [9] while levoglucosan

is an important tracer for wood burning because it is a cellulose pyrolysis product

[62] – but it is not surprising that lumping both into an identical bin in the 1D-VBS

could obscure critical differences in their behavior.

An important issue to consider is the consequence of non-ideality. Interactions

that enhance partitioning to the particle phase are important because they increase
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aerosol concentrations and also often shield organics from the gas-phase oxidation

discussed below. However, interactions that increase volatility will drive

compounds into the gas phase where they will likely be oxidized quickly. In

many cases the reaction products will return to the condensed phase, though on

different particles and in a higher oxidation state. It is thus essential that one

considers phase partitioning and aging together, and also that the coupled issues

be considered jointly when developing simplified parameterizations for complex

chemical transport models.

Two-Dimensional Volatility Space

A two-dimensional version of the VBS addresses the issues just described, includ-

ing non-ideality and the substantial differences in species contained in a single bin

of the 1D-VBS [63, 64]. In addition, the two-dimensional volatility space (2D-

VBS) enables more realistic treatment of aging chemistry and important properties

such as hygroscopicity. The second dimension is formally the average oxidation

state of carbon (OSC) described in Kroll et al. [65], which is related to the oxygen to
carbon ratio (for “normally” bonded molecules, OSC ¼ 2 O:C – H:C). Figure 2a

shows the average molecular composition (carbon number, nC; hydrogen number

nH; oxygen number nO) in this space and also the approximate O:C for typical

ambient aerosol composition [66]. Also shown are the measured saturation

concentrations and OSC for tricosane and levoglucosan. This shows that the

approximate formulae given by the contours are not far off from observations,

that these seemingly non-volatile species are in fact quite volatile by atmospheric

standards, and that in the 2D space these quite different species are well separated

even though their volatilities are nearly identical.

The x axis in the 2D-VBS is formally the pure-component saturation concentra-

tion Co rather than the effective saturation concentration C*, which includes the

activity coefficient: C* ¼ gCo. A simplifying assumption in the 2D-VBS is that

the activity coefficient is a function of the average O:C of the OA as well as

the properties of the individual organic solute [63]. Figure 2b shows g as an

example for a case where the O:C of the bulk OA is 0.5 (typical of fairly fresh

oxidized organic aerosol (OOA) in an urban setting [67]). In this case the contours

are for different pseudo species (or bins) in the 2D-VBS. For example, a species

with a Co of 1 mg m�3 and an O:C of 0.1 would have g ¼ 10 (the last contour

shown), meaning C* ¼ 10 mg m�3 for that particular mixture. The notable thing in

Fig. 2b is that the predicted activity coefficients are mostly very close to 1, with the

exception of very reduced material in the paraffin range typically associated with

POA emissions. This confirms that most SOA species (with elevated O:C) will tend

to form a nearly ideal solution with each other and only the semi-volatile POA

species will tend to either phase separate into a distinct condensed phase or else

have a higher partial pressure and thus partition toward the gas phase.
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Temperature Dependence

The temperature dependence of saturation concentrations can be approximated to

first order by an Arrhenius type equation resembling the Clausius Clapeyron

equation [40, 68]:

CoðTÞ ¼ Co 300ð Þ exp DHvap=R 1=300� 1=Tð Þ� �
: (2)

In the VBS formalism the effect of changing temperature is to shift the C* (or Co)

values of the bins. The bins themselves shift with temperature – one does not
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Fig. 2 (a) Organic aerosol composition in 2D space defined by pure component saturation

concentration (Co) and average carbon oxidation state (OSC). Solid black lines extending from

lower left to upper right are average carbon number (nC). Solid green curves bending from top to

lower left are average oxygen number (nO). Dashed blue curves bending from bottom to upper left

are average hydrogen number (nH). Measured saturation concentrations for tricosane (C23H48,

gray circle) and levoglucosan (C6H10O5, brown circle) are shown as well. Both are semi volatile

under ambient conditions. (b) Activity coefficients of organics in an organic solution with an

average O:C ¼ 0.5 (typical of fresh SOA or urban conditions). Contours are spaced by 0.5 and

extend to 10.0. Values in the lower left of the space (occupied by compounds typically constituting

POA) are much larger than 10.0
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repartition material from one bin to another. This is straightforward [40, 69]. The

exact DHvap for organic compounds remain a topic of some debate, but for a DHvap

near 100 kJ mole�1, a temperature change of 20 K results in a one-decade shift in a

volatility bin.

2.2 Dynamics of Condensation and Evaporation

The equilibrium thermodynamics described above applies to all systems, but a key

question is whether atmospheric systems actually reach that equilibrium. Further-

more, equilibrium phase partitioning says little about what size particles organic

compounds end up on. The dynamics of organic condensation and evaporation have

recently gained renewed attention for several reasons. First, it is clear that in many

environments organic condensation plays a critical role in the growth of freshly

nucleated particles up to diameters of 100 nm or so [70–75], where they can

influence cloud physics by acting as cloud condensation nuclei. Because the

timescale for growth of these ultrafine particles is similar to the production and

loss timescales of the condensable vapors, a dynamic treatment is required. Second,

there is also growing evidence that many particles containing OA may be in a

highly viscous (glassy) state [32–34]. For particle growth, the net condensation
rate of organics to particles is critical because that controls the growth rate.

For glassy particles, diffusion limitations within particles may be rate limiting

in condensation and growth, potentially preventing semi-volatile organics from

reaching equilibrium on atmospherically relevant timescales [31]. In-particle

diffusion limitations could cause apparent mass accommodation coefficients well

below unity.

The VBS provides a convenient framework for organic dynamics in addition to

equilibrium partitioning because equilibrium is a balance between condensation (the

molecular flux from the gas to the particle phase) and evaporation (the molecular flux

from the particle phase to the gas). The difference between the vapor concentrations

at the particle surface and far away from it serves as a driving force for net
condensation or evaporation. Because the particle surface is usually assumed to be

in equilibrium with the gas phase adjacent to it, evaporation depends explicitly on

volatility. Condensation on the other hand depends only on the collision rate of

molecules with the surface and so it is first order independent of volatility. The

volatility of organic compounds thus affects the aerosol growth dynamics specifically

through its influence on the evaporation term in the driving force for mass transport.

It can be shown that the intrinsic growth or evaporation rate associated with a

given organic volatility is given by vDC
�
i where the characteristic velocity vD is

226 nm h�1/(mg m�3) [75]. This is modified by three important terms – the mass

accommodation coefficient, a, the surface-energy (Kelvin) term for particles smaller

than 50 nm or so, and the Fuchs term for gas-phase diffusion limitations in the

boundary layer around a particle for particles larger than 50 nm or so (with Knudsen
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numbersKn � 1). Barring other limitations, the evaporation rate (in nanometers per

hour) for a pure particle with a gas-phase concentrationCvap
i held at 0 is thus given by

ddp=dt ¼ F dp
� �

K dp
� �

C�
i aivD: (3)

This corresponds to a volume evaporation rate from a spherical particle of

dV=dt ¼ 1=2pd2pF dp
� �

K dp
� �

C�
i aivD: (4)

Given a volume V ¼ 1=6pd3p , we can define a timescale for mass transfer via

condensation or evaporation from a particle as te ¼ V/(dV/dt), or

te ¼ 3F dp
� �

K dp
� �

C�
i aivD

� ��1
dp: (5)

This timescale for a given species is independent of the fraction of that species

present in an ideal organic mixture, but it is based on the limit of little net diameter

change (evaporation of a pure particle will be quicker because the expression must

be integrated down to zero volume). The timescale as a function of d0 is shown in

Fig. 3 for unit mass accommodation and pure particles made up of constituents with

different C* values. The central bold curve is for C* ¼ 1 mg m�3. Actual equilibra-

tion timescales will differ from this characteristic evaporation timescale; the exact

timescale for equilibration of compounds in particles containing organic mixtures

will depend on the extent of growth or evaporation required for a mixed particle to

reach equilibrium. This in turn depends on the number concentration of particles

because that dictates the total mass exchange between condensed and vapor phases,

and for low volatility species equilibration timescales are often controlled by the

condensational timescale, which can be faster than the evaporation timescale [76,

77]. Regardless, the intrinsic evaporation timescale for C* ¼ 1 mg m�3 organics in

200 nm diameter particles is very nearly 1 h. Timescales for more or less volatile

compounds can be found simply by multiplying these values by C* in mg m�3, as

shown by the parallel curves for different C* bins. For example, in a typical SOA

formation experiment from a-pinene in which 100–1,000 mg m�3 of SOA is

formed, both VBS and two-product fits of product volatilities suggest that much

of the SOA consists of species with volatilities also in the 100–1,000 mg m�3 range.

One would thus expect these SOA particles to evaporate substantially in 30 s to

6 min if the gas phase were forced to remain free of vapors.

There are at least three reasons why an evaporation timescale could be longer
than the intrinsic value shown in Fig. 3. First, the actual mass accommodation

coefficient a for the compound could be less than 1 [78, 79]. Mass accommodation

is defined as the fraction of vapor collisions with the surface of a particle that wind up

adsorbed onto that surface as opposed to more or less immediately rebounding from

the surface. There is some debate for light molecules such as water as to whether a
must be unity or whether it may be as low as 0.04 [80–84], and the average a for CO2

from perfluoronated polyether (PFPE) is also approximately 0.5 [85]. Values of
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0.1 � a � 1 seem plausible and have been reported for pure systems [86]. Lower

values seem unlikely. However, even the meaning of a at a molecular level is not

firmly established and so non-unit accommodation coefficients must remain under

consideration. Regardless of the exact value, at any given time the accommodation

and evaporation coefficients for a molecule must be the same, or else the physical

process responsible for changing a would instead really be changing the C* value

itself.

The second possibility for slower evaporation is diffusion limitations within the

particle itself, or possibly slow annealing of a particle to its equilibrium morphol-

ogy (as in Ostwald’s ripening). In this case the surface composition would not

reflect the average composition of the particle. Glassy particles typify this possibil-

ity. The timescale for diffusive mixing of a constituent in a spherical particle is

tm ¼ dp
2/(4p2�3,600 D) [87], where D in cm2 s�1 is the diffusion constant of that

constituent in the particle, and tm is again expressed in h. Just as we use 1 mg m�3 as

a characteristic volatility, we shall use 200 nm as a characteristic diameter (200 nm2

is 4 � 10�10 cm2). Given these constraints, a 1-h or greater mixing timescale in a

200 nm diameter particle requires a diffusion constant (for the diffusing constituent

in the mixture) of D � 10�14 cm2 s�1. Alternately, it has been suggested that a thin

coating of very viscous material on particles may inhibit organic mass transfer of

higher volatility molecules to the particle surface, thus slowing or preventing

evaporation [31]. Assuming a coating thickness of 10 nm, the diffusion coefficient

of the evaporating molecules in this crust would have to beD � 3 � 10�16 cm2 s�1
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Fig. 3 Characteristic evaporation timescales for organics vs particle diameter for a series of

volatilities (C*) defined by contours. Organics with C* ¼ 1 mg m�3 in a 200-nm particle will

evaporate in approximately 1 h if mass accommodation is perfect and diffusion within the particle

is more rapid than 1 h
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for the timescale to exceed 1 h. These are very low numbers, and no direct

measurements of molecules/mixtures with such low binary diffusivities exist.

Koop et al. [34] report that the primary predictor for the glass transition temperature

in organics (indicative of D � 10�20 cm2 s�1) is the molecular weight, followed by

the degree of oxygenation (i.e., molecular polarity). Compounds with glass transi-

tion temperatures of 300 K are tricarboxylic acids with molecular weights of order

200 g/mole. Extension to D(T) for mixtures containing much less polar constituents

remains unclear.

A third factor potentially influencing evaporation timescales of organic

compounds is the presence of weakly bound oligomeric species or organic salts

with dissociation lifetimes greater than the evaporation timescale. Even a weakly

bound species, with a binding energy of 100 kJ mole�1 and a unimolecular

dissociation A factor of 1014 s�1, would have a 1-h dissociation timescale at

300 K. Alone among these confounding factors, thermal decomposition can easily

lead to an evaporation timescale that is independent of particle size; if the decom-

position itself is the rate-limiting step for particle evaporation, the timescale will be

fixed by the chemistry and not a mass-transfer limitation.

3 Evidence for Volatility in Atmospheric Aerosol

There is compelling evidence that a significant fraction of OA constituents are

semi-volatile, with dynamic gas-particle partitioning under atmospheric conditions.

However, the evidence also suggests that volatility is greatest near source regions,

where aerosol is “fresh” [69, 88]. This is consistent with the hypothesis that

chemical aging generally reduces, or really “resolves” volatility, driving semi-

volatile species either toward relatively stable lower volatility products or toward

highly volatile, highly oxidized small organic molecules (and ultimately CO2).

3.1 Volatility of Primary Organic Aerosol

Despite the historical tendency of models to represent POA as a non-volatile

mixture, there is longstanding and compelling evidence that POA emissions are

substantially semi-volatile. The evidence comes in two major forms. First, both

volatility-based chromatography and molecular elucidation of emissions profiles

for various sources show clearly that most POA emissions span a wide range of C*

values and that most of those are �1 mg m�3 [89, 90]. This is often simply a

consequence of the properties of the parent materials for the emissions, such as

lubricating oil. Second, when the gas-particle equilibrium is perturbed, either via

isothermal dilution or via heating, POA particles shrink.

The second characteristic of primary organic emissions is that they tend to be

relatively reduced. Using the average carbon oxidation state as a measure [65], most
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but not all primary organic emissions have an OSC � �1.5. This has significant

consequences for aging chemistry, but in practical terms it also means that the

emissions are relatively nonpolar and thus relatively easy to elute from standard

gas-chromatograph columns.

As just one example of volatility separation, in Fig. 4 we show chromatograms

of nebulized motor oil particles from an experiment in the CMU smog chamber

using a thermal-desorption aerosol gas-chromatography (TAG) system [91],

registered in the 1D-VBS. The figure shows two things. First, the red trace

shows the initial chromatogram from oil droplets at COA ~ 10 mg m�3. Only

hydrocarbons with nC � 23 appear in the condensed phase because the more

volatile constituents evaporate once the droplets are diluted to low concentrations

in the chamber. Second, the experiment involved subsequent exposure to OH

radicals, and the series of colored traces show chromatograms of non-polar

material for each hour [92, 93]. Clearly, the more volatile fraction of the motor

oil decayed much more rapidly than the less volatile fraction. The experiments

showed simultaneous buildup of secondary oxidized organics on the particles

[93]. This is consistent with gas-phase oxidation of vapors from that volatile

fraction causing evaporation to compensate for the gas-phase loss, while hetero-

geneous oxidation of the less volatile constituents via OH uptake is evidently

much slower [92].

Isothermal dilution consistently reveals that POA particles are semi-volatile

[90]. Specifically, when POA samples are diluted, the particles shrink. They shrink

because the gas-phase dilution lowers the partial pressure of vapors over the

particles, and the particles respond to this perturbation by evaporating to raise

the partial pressure of those vapors back to equilibrium. Analyses of POA dilution

data suggest that a large fraction of the POA mass falls in the 1–1,000 mg m�3

range [56, 94].

log10(C
∗) (saturation concentration, mg m−3)
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Fig. 4 Oxidation of a motor oil mixture by OH radicals in a smog chamber, followed by thermal

desorption gas chromatograms (TAG) taken every hour. Carbon numbers in the chromatogram are

registered to typical saturation concentrations. More volatile organics (nC < 28) are removed

more rapidly, indicating that gas-phase oxidation dominates the removal
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Evaporation upon heating can complement isothermal dilution. Most POA

species are saturated and so are relatively inert and thermally stable; heating is

thus unlikely to induce chemistry. Consequently, shrinking on heating in a

thermodenuder is unambiguous evidence that the condensed-phase species in a

POA particle are semi-volatile. An extra uncertainty associated with

thermodenuders is the vaporization enthalpy of the organics [68]; however, as

discussed above, a temperature change of 20 K corresponds roughly to an order

of magnitude change in C* (also a change in nC of 2 corresponds to an order of

magnitude change in C*). Most POA emissions evaporate quite readily in a

thermodenuder [56]. For example, lubricating oil such as that shown in Fig. 4

evaporates almost completely when heated by 40 K, and one can see that a shift in

the (unreacted) mode from nC ¼ 26.5 to 30.5 should indeed correspond by sub-

stantial evaporation.

Several studies of primary particles near sources such as roadways [95] and fires

[96] have also established that primary particles tend to shrink as they are isother-

mally diluted during dispersion downwind of a concentrated source [97, 98].

The bottom line is that emissions from (typically high-temperature) POA

sources such as internal combustion engines, wood burning, and food preparation

are all characterized by constituents with a broad range of volatilities, a large

fraction of which have C* > 1 mg m�3 [90]. Consequently, most of these emissions,

even those with vapor pressures many orders of magnitude lower than traditional

“volatile organic carbon,” will be in the gas phase very soon after emission (in

seconds to minutes). The subsequent gas-phase chemistry of those vapors is thus

one form of aging to consider in organic-aerosol evolution.

3.2 Volatility of Secondary Organic Aerosol

Somewhat ironically given the history of SOA and POA, SOA volatility is a more

complicated topic than POA volatility. The principal reason is that SOA species are

by definition products of reactions in the atmosphere, and many product compounds

are themselves highly reactive. In addition, more oxidized organic species tend to

be more polar than their reduced precursors and thus more difficult to sample using

separation techniques. Furthermore, the added functionality associated with

oxygenation opens up a vast space of potential chemical species, rendering com-

plete speciation of a sample practically impossible [65]. In spite of this, there is

every reason to believe that most SOA (especially “fresh” SOA) has a significant

amount of semi-volatile mass.

Because of their comparatively large flux to the atmosphere [99], terpenes have

long been a major focus of SOA-formation experiments [15]. Significant effort has

been expended on speciating SOA, and while the complete mass has not been

elucidated, many important product species have been identified [100, 101].

For example, with a-pinene SOA many C10 products have been identified, and

their C* values range from roughly 1 to > 1,000 mg m�3 [46, 49]. Recently,
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two-dimensional chromatography has been employed to combine volatility and

polarity separation in a manner highly complementary to the 2D-VBS described

above. 2D-GC can be mapped onto the 2D-VBS and, for example, a substantial

amount of the eluted material from SOA formed via the longifolene + ozone

reaction falls in the 0.1–10 mg m�3 range, with O:C varying systematically from

about 0.25 at the low C* end to about 0.1 at the high C* end [102]. Longifolene is a

sesquiterpene (C15H24), and the observed C
*–O:C range is consistent with the range

expected for product molecules with 12–15 carbons seen in Fig. 1a.

Less volatile compounds have been observed from terpene-ozone SOA as well,

including C20 and larger “oligomers” [103–105] and very low volatility

organosulfates [106]. It remains unclear what fraction of the SOA mass is

comprised of these less volatile species, but estimates range from 1/3 to 1/2

[105]. It is also not clear whether the majority of oligomers are formed irreversibly

or whether they are in equilibrium with monomer species [107]. What is clear is that

a substantial fraction of the SOA mass consists of semi-volatile monomeric species,

and one thus expects phase partitioning to play a major role in their behavior.

Indeed, absorptive partitioning theory [18] played a critical role in the interpre-

tation of SOA chamber data, making sense of a confusing disarray of mass yield

data [17]. Specifically, partitioning theory explains the general tendency for mass

yields to increase with increasing total OA concentrations. In Fig. 5 we show mass

yield data for the a-pinene + ozone reaction along with a representation of the

rising yields with increasing COA. In this figure COA (in micrograms per cubic

meter) is plotted on the same axis as C* (also in micrograms per cubic meter). The

concentration range over which mass yields rise sharply is the concentration range

where the bulk of the products lie – in this case C* � 1 mg m�3. An extremely

important caveat is that this partitioning analysis is only valid if the overall product

distribution (including the condensed and vapor phases) remains constant during a

chamber experiment, so that only thermodynamics and not chemical aging governs

the amount of material that partitions into the particle phase (in other words, COA

responds to the amount of identical products being produced and not to changes in

the product and volatility distribution over the course of a reaction). The very small

mass yields at very low COA pose a challenge to quantitative treatment of the

oligomerization reactions described above, as even at fairly low COA particles in

chamber experiments are quite stable, maintaining a constant diameter over many

hours [101] and thus showing no clear evidence (no increase of SOA mass) of any

slow chemical reactions that might slowly alter the volatility distribution.

To be truly consistent with partitioning theory, particles must also shrink upon

dilution, much like POA described above. Different experiments have confirmed

that a-pinene + ozone SOA particles do evaporate upon dilution, but not in the

minute or so suggested by the volatility distribution in Fig. 5 and the timescales in

Fig. 3. Rather, particles relax back to equilibrium after dilution over hours [31, 108],

though they do eventually reach the size predicted from equilibrium partitioning

theory [108]. This delay is consistent with some phenomenon slowing evaporation

by at least a factor of 100. Potential causes for this delay include dissociation of

weakly bound oligomers [108] or slowed diffusion in the particles themselves
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[31, 108]. A recent study [31] reports that size selected a-pinene + ozone SOA

particles at dp ¼ 160 and 250 nm showed nearly identical evaporation behavior,

whereas the timescales in Fig. 3 are a factor of 2 different. That is consistent with a

dissociation timescale being rate limiting as opposed to pure evaporation.

A final element in the evidence supporting a substantially semi-volatile

nature for most “fresh” SOA comes from thermodenuders. As with POA, SOA

formed in smog chambers evaporates quite readily in thermodenuders [109–113].

Quantitative analysis (inverting thermodenuder data to find a volatility distribution)

is difficult because of several confounding factors. These include uncertainties in

DHvap as well as the mass accommodation coefficient [69, 77]. An extra cause of

concern with SOA, unlike POA, is the potential for the SOA to change chemically

when it is heated [68]. However, with significant evaporation of chamber-derived

“fresh” SOA mass after only 40 K of heating, thermodenuder data are certainly

consistent with a substantial fraction of the SOA mass from chamber experiments

being semi volatile [110, 114].

Ambient SOA, or at least the highly-oxygenated OOA, generally loses much less

mass in thermodenuders [29, 69, 115] than fresh SOA, suggesting that it is much

less volatile. Inversions using a VBS framework find a very broad distribution of C*

values for OOA constituents, suggesting (along with the high degree of oxidation)

that OOA has undergone substantial oxidative aging in the atmosphere [64, 69].

3.2.1 Do OA Particles Form Mixtures?

In order for mixing thermodynamics to apply, an OA particle must actually be

mixed. There are compelling reasons to believe this is so but also some reasons

to question whether the mixing is complete. This question really splits into two

questions: is the equilibrium for OA constituents a uniform mixture and, if so, do
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Fig. 5 SOA mass yields from a-pinene ozonolysis vs total SOA mass (COA). Increasing mass

fractions with increasing COA are consistent with progressive partitioning of more volatile

products at higher loadings, as shown
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ambient particles relax to that equilibrium more rapidly than they are transported or

lost?

There is little doubt that most organic compounds in ambient particles exist in

some form of mixture, simply because the particles are composed of an enormous

number of different molecules. In the most extreme cases a single constituent can

make up as much as 10% of some ambient particles (for example levoglucosan near

some fire plumes or certain isoprene oligoesters in very isoprene-rich environ-

ments) [116, 117]. However, in most cases the most abundant identified constituent

in OA samples comprises less than 1% of the total OA mass. Consequently most

organic molecules in most particles are far more likely to be solvated by and

interacting with many different molecules with a variety of carbon chain lengths,

branching structures, and numbers and types of functional groups. This is one

reason why crystallization seems highly unlikely for most particles and conse-

quently why the mixing thermodynamics are developed for amorphous mixtures

(thus employing the sub-cooled liquid vapor pressure as the starting point for

partial-pressure calculations) [18]. This also provides information on experimental

design, especially relating to organic “seeds” for SOA formation that might pro-

mote condensation via absorptive partitioning. High fractions of any individual

seed species will enhance the probability that a separate (potentially crystalline)

“seed phase” will form in an experiment, while more realistic seed mixtures will be

less vulnerable to such phase separation.

A second factor favoring mixtures is that most OA constituents arrive in a

particle via condensation. The organic condensation rate in the boundary layer

under many conditions is roughly 1–10 nm h�1 [73]. Near sources there will be

(sometimes concurrent) evaporation and condensation of POA species, and both

near and far from sources there will be condensation of oxidized secondary

molecules as well as uptake of oxidants. Furthermore, in many cases important

inorganic species such as sulfuric acid, nitric acid, and ammonia are condensing

(and in the latter two cases evaporating) from particles simultaneously. Perhaps

most importantly, as relative humidity (RH) varies, the activity of water in a particle

will vary as well. Above about 90% RH, more than half of the volume of most

particles will be water, and this water will form an extremely high ionic strength

aqueous phase incorporating at least some of the more soluble organic molecules

(and even the “hydrophobic” residual organic phase may include significant water).

Under many circumstances air parcels move vertically through the boundary layer

in minutes, and consequently they cycle through a wide RH range (often including

saturation if a cloud layer is present) [118].

If the organic mixture does indeed form a single phase at equilibrium, then the

conditions for complete equilibration require equal composition in each particle.

Actually attaining this equilibrium requires mass exchange, which in turn can occur

only through coagulation (which is not really an exchange mechanism) or inter-

particle mass transfer (condensation–evaporation) [39]. Strict equilibration would

require that all species be present in (the organic fraction of) all particles in equal

abundances; however, we can also define a “volatility equilibrium” in which

particles are neither growing nor shrinking because their “volatility composition”
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is equilibrated even though their exact composition is not. Specifically, within the

VBS the mass fraction of each VBS bin represented in each particle would be the

same, so the fraction of semi-volatiles in each particle would be the same. A trivial

example of this is a suspension of single-component particles in which some

particles have an isotopic label. The particles would be at all times in volatility

equilibrium and there would be no driving force for a net mass change, and yet to

reach full equilibrium the isotopic composition of each particle would need to

become identical, driven by the entropy of mixing.

The concept of volatility equilibration is important when considering very low

volatility constituents in particles. The timescale for equilibration of extremely low

volatility molecules via net condensation approaches infinity; the molecules will

simply never leave their initial particles. However, the more volatile molecules in a

mixture can still attain volatility equilibrium by independently establishing equal

activity over all particles long before the less volatile constituents have been able to

equilibrate. The overall timescale for this process may be complex as different

constituents evolve simultaneously.

Condensation, Aging, and Mixing

Mixing for atmospheric aerosol essentially always involves some form of conden-

sational uptake to particles. A unique characteristic of condensational uptake is that

it is proportional to the (modified) surface area of particles and not their volume

(“modified” refers to the Fuchs correction for gas-phase diffusion for larger

particles with Kn ≲ 1, which reduces the effective surface area for condensation).

Because the surface area to volume ratio of particles increases as their diameter

decreases, condensation tends to have a larger effect on smaller particles, when

measured on a mass (or volume) basis. The concept of “surface limited” vs “volume

limited” aging has been used before to diagnose different processes in aerosol

evolution [119]. However, condensation also tends to drive mixtures out of equi-

librium, as the volume fraction of condensing vapors will grow more rapidly for

smaller particles than for larger particles. This can be a very useful diagnostic of

mixing effects in particles. As an example of “pure condensation” we shall discuss

condensation of SOA from the a-pinene + ozone reaction onto pre-existing ammo-

nium sulfate “seed” particles, and then we shall discuss two other cases with more

interesting mixing effects.

The condensation rate of organics to a particle surface is given by Eq. 3,

multiplied by the saturation ratio of the organic vapors ðS ¼ Ci gasð Þ=C�
i Þ [75]. In

Fig. 6 we show the theoretical condensation of organic vapors to inert seeds with an

initial lognormal mass mode centered at 300 nm and a Gaussian width of 0.2. The

vapors condense onto the inert seeds in proportion to the diffusion-modified seed

surface area. The figure shows the initial and final total aerosol size distributions

(dashed curves) as well as the final mass distribution of condensed organics and

inert seeds (labeled “sulfate” because we tend to use ammonium sulfate for seeds).

In the final distribution the condensed organics strongly favor the smaller particles.
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This weighting toward smaller sizes of a purely condensational process is charac-

teristic of the interaction between condensing vapors and an inert seed (or of

completely non-volatile condensation). It is what drives “condensational

narrowing” [120] which is evident in the distorted final distributions in the simula-

tion. In either case the composition of the particles is a strong function of size: in

Fig. 6 the 200-nm particles are more than 80% organic, while the 500-nm particles

are less than 20% organic; if the particles comprised a single condensed phase they

would be far out of equilibrium.

Many SOA formation experiments use inorganic seed particles to encourage

condensation onto suspended particles instead of chamber walls [121]. Often the

assumption in these experiments is that the inorganic seeds do not influence the

SOA mass yields, and mass-yield data confirm this assumption [122]. In Fig. 7 we

show size-resolved mass spectra obtained using an aerosol mass spectrometer in

particle time of flight (pToF) mode for SOA formed from the toluene + OH

reaction and condensed onto dried ammonium sulfate seeds at 15% RH from

experiments reported in Hildebrandt et al. [123]. The pToF data show exactly the

features expected for condensation onto inert seeds. Very similar data are shown in

Prisle et al. [124] for SOA formed from a-pinene + ozone. It is worth noting that
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Fig. 6 Calculated condensational growth of organics onto inert (sulfate) seeds, shown as mass

distributions vs log of particle diameter. Initial seeds are shown as a dashed red Gaussian centered
at 300 nm. The final total size distribution is shown as a dashed blue curve. The final sulfate mass

distribution is shown as a solid red curve, shifted to a 370-nm mode because of organic condensa-

tion. The final organic mass distribution is shown as a solid green curve. The organic mass mode

after condensation is at 270 nm because condensation (of organics in this case) strongly favors

smaller particles with larger surface area to volume and less inhibition from gas-phase diffusion.

Because the organics and sulfate do not form a mixture, the final composition (organic:sulfate) is a

strong function of particle diameter
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ambient particles often do not show this displacement between organics and sulfate

because both the organics and sulfate accumulate via condensation, often more or

less simultaneously. How particles anneal to a phase-separated morphology with

distinct inorganic and organic phases (if indeed this is the equilibrium state [125,

126]) remains unclear.

The situation is very different when organics mix with each other. In Fig. 8

we show AMS pToF data from a mixing experiment first reported by Asa Awuku

et al. [60]. In this case POA from a diesel engine was injected into a chamber

containing SOA from a-pinene + ozone. As shown in the top panel, the POA

initially appeared as a distinct mode with ion fragments characteristic of primary

emissions and a modal diameter significantly smaller than the SOA particles.

Within 5 min the distinct POA mode vanished and the characteristic ion fragments

migrated to the SOA mode, as shown in the lower panel. This clearly indicates that

relatively volatile POA evaporated and re-condensed into the SOA, with the lower

activity of the POA species in the SOA particles acting as a thermodynamic driving

force for the mixing. There were, however, strong indications that the mixing was

non-ideal. Both composition and concentration influenced these effects. Specifi-

cally, an injection of motor-oil droplets similar to the diesel POA remained stable

for hours as a distinct mode while the diesel POA quickly mixed with the SOA

seeds. The activity coefficients of the oil vapors were thus significantly greater than

1 in the SOA particles, so at some finite concentration of POA species in the SOA

(and vice versa, though the mass spectra did not show this directly) the suspension

became stable, with two distinct condensed phases present [60]. Also, the rapid

(5 min) mixing of a significant quantity of POA into the SOA particles clearly

shows that (in this case at least) diffusion of the POA species into the SOA was not a
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Fig. 7 Measured organic (green) and sulfate (red) mass distributions from Aerosol Mass Spec-

trometer particle time of flight (AMS pToF) data. Data are for SOA from toluene oxidation in the

presence of ammonium sulfate seeds. Observations closely follow predictions shown in Fig. 6

118 N.M. Donahue et al.



significant impediment; the lack of complete mixing in some cases likely indicates

non-ideality as opposed to delayed equilibration.

A final example involves gas-phase aging chemistry. In Fig. 9 we show two

pToF spectra from semi-volatile diesel oxidation experiments described elsewhere

[127–129]. In these experiments, diesel emissions were diluted to near ambient

levels and then exposed to photolytically generated OH radicals [128]. The pToF

data are shown for two key ion fragments, m/z ¼ 57 and 44, which are traditionally

indicative of reduced (“hydrocarbon like”) POA and oxidized SOA [130]. In these

experiments the total OA concentrations more than doubled in 5 h due to SOA

formation. The figure reveals that the m/z ¼ 44 marker characteristic of the SOA

remained locked into the mode characteristic of the POA defined bym/z ¼ 57, even

as the m/z ¼ 44 abundance increased due to condensation. Data are shown just

Vacuum Aerodynamic  Diameter (nm)

3 to 5.5 hours

d
M

/d
lo

g
D

va
 (

mg
 m

–
3
)

5 minutes
400

300
DIESEL

200

100

0
5 6 7 8 9

100
2 3 4 5 6 7 8 9

1000

400

300

200

100

0
5 6 7 8 9

100
2 3 4 5 6 7 8 9

1000

SOA

BLEND

Fig. 8 Measured AMS pToF distributions for diesel POA particles injected into a smog chamber

containing SOA from a-pinene ozonolysis. POA particles are evident as a distinct mode at 180 nm

for only 5 min (upper panel) after which they vanish into the SOA seeds (initially at 300 nm,

ultimately at 400 nm, lower panel). Both the timing and coincident size distributions of the

ultimate particle distribution confirm that mixing of POA into SOA occurred via evaporation of

fresh POA and subsequent condensation and full (volume) mixing into the SOA seeds
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before oxidation and after 1 h of photochemistry, but the OOA mode never lagged

behind the POA mode in the manner characteristic of condensation to inert seeds

shown in Figs. 6 and 7. The evidence is thus strong that the POA and SOA formed a

mixture throughout the diesel oxidation experiment.

To maintain the equal mixing shown in Fig. 9, condensation alone is not

sufficient; the only way to keep the volume (mass) distributions of species constant

during a period of strong condensational growth is via net condensation, meaning

that some species also evaporate significantly from relatively enriched particles

and re-condense on relatively depleted ones. From these data there is no way to

tell whether it was the POA or the SOA species (or both) evaporating and

recondensing, only that this surely occurred with more or less complete volume

mixing on a timescale faster than the growth (faster than 1 h or so). However, if

Fig. 9 SOA production on diesel seed particles. SOA formed from photooxidation of diesel vapors

shown by increasing mass fraction of m/z ¼ 44 (largely CO2
+, pink) fragment, left scale vs m/

z ¼ 57 (largely C4H9
+, gray) fragment, right scale. The horizontal arrows point toward each axis at

a constant y value in the two panels to illustrate the extent of condensation by SOA. Concurrent

diameter growth shows that condensation and evaporation maintain equal mass fractions of more

reduced and more oxidized organic species in all particles, independent of size
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the mixing experiment shown in Fig. 6 and the calculations shown in Fig. 3 offer

any indication, it is likely that the POA vapors were largely responsible for this

equilibration.

4 Aging

The previous example brings us to aging. Here “aging” refers to chemical aging – in

other words chemical reactions that alter the composition of an organic aerosol.

There are at least five modes of aging: gas-phase oxidation of organic vapors,

heterogeneous uptake of oxidants, condensed-phase reactions among organics,

acid–base reactions involving organics, and aqueous reactions involving organics.

As discussed in the introduction, the focus of this work is largely on gas-phase

aging.

4.1 Gas-Phase Oxidation

Gas-phase chemistry is a key player in organic-aerosol evolution. We shall discuss

organic oxidation chemistry first because this is a homogenous process. There are

no circumstances where it will not happen – no diffusion limitations or other

inhibiting phenomena. If an organic compound is oxidized in the gas phase and

an oxidation product has a sufficiently low C*, that product will condense to a

particle when it collides with it. Thus, when we consider gas-phase oxidation we are

interested principally in the volatility distribution of the reaction products as well as

their composition. All increases in OA mass due to gas-phase chemistry can be

called “secondary organic aerosol” (SOA) because the reaction products are sec-

ondary molecules and the aerosol mass increases, so the added mass is secondary

mass. These topics have been extensively covered in numerous publications and

reviews, and so we shall touch only briefly on key issues here. For historical and

practical reasons we shall split our discussion between SOA formed from volatile

precursors (sometimes called “traditional” SOA) and SOA formed from less vola-

tile precursors (one class of so-called “non-traditional” SOA). Hydrocarbon oxida-

tion is an inexorable process proceeding from a highly reduced primary compound

(often relatively volatile) ultimately to CO2 (also highly volatile) [65]; however,

intermediates in this process can have extremely low vapor pressures.

4.1.1 VOC Secondary Organic Aerosol

SOA from VOCs has a long history [15, 17, 51] and is also discussed elsewhere in

this volume. The key finding relevant to a broader aging discussion is that products

of gas-phase oxidation reactions can have lower C* than the precursor. A recent
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focus has been to conserve carbon when parameterizing an SOA formation process,

i.e., in a VBS formulation

VOC þ Ox ! ai C�
i

� �
;

where {ai} is a set of carbon mass yields (i.e., micrograms per cubic meter of OC

formed for 1 mg m�3 of VOC consumed). The total OA mass can then be obtained

with some added information – specifically OM:OCi, the ratio of organic mass to

organic carbon within each product bin. This can be estimated from loading-

dependent composition (C:H:O) measurements during SOA formation [131] and

is directly constrained within a 2D formulation of the VBS that includes composi-

tion information as a second dimension [63, 64].

The relevant issue here is that many analyses suggest that much of the SOAmass

is semi volatile, as discussed above. In addition, because the SOA mass yields are

generally well below 1, it is clear than many other reaction products are lower in

volatility than the precursor but too volatile to influence the SOA mass. All of those

vapors are in play for subsequent later-generation aging chemistry.

4.1.2 IVOC and SVOC Secondary Organic Aerosol

Intermediate volatility organics (IVOCs) are much less volatile than VOCs but still

much more volatile than species that can condense under ambient conditions. Most

of the first-generation SOA products shown in the VBS fits in Fig. 10, with 300 <
C* < 3 � 106 mg m�3, are considered IVOCs. In addition, a substantial fraction of

primary emissions from high-temperature combustion, including wood burning,

food preparation, internal combustion engines, and turbine engines, consists of

IVOCs and SVOC (with 0.3 < C* < 300 mg m�3) [90]. We shall discuss direct

formation of SOA from IVOC and primary emissions first because the kinetics and

initial mechanisms of these reactions have been studied more widely.

SOA from Primary IVOC Emissions

A challenge with the atmospheric chemistry of IVOC is the exponential increase in

chemical complexity with increasing carbon number, even for “simple”

hydrocarbons containing only carbon and hydrogen [35]. Consequently, studies

of SOA formation from IVOCs fall into two categories: study of individual

molecules or sequences of molecules as representative model systems and study

of undifferentiated “whole” emissions diluted to near ambient conditions to encour-

age atmospherically relevant partitioning of the primary emissions.

Two broad classes of lower volatility hydrocarbons have been studied exten-

sively: alkanes and polycyclic aromatics. Alkanes have been more systematically

treated with regard to their potential for SOA formation, while the chemistry and
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phase partitioning of polycyclic aromatics were in many ways the foundation for

the ambient partitioning theory described in this chapter because of the significant

concerns over PAH health effects.

Alkanes

Alkanes are an excellent model system because they present a homologous sequence

in both carbon number (and thus volatility) as well as structure (and thus varying

chemical behavior). Alkane SOA formation has been studied systematically by

Ziemann and coworkers [132] as well as others. Broadly, the SOA formation

potential of n-alkanes increases systematically with carbon number [132, 133] as

the precursor volatility decreases. Substitution in the form of branching significantly

decreases SOA formation at a given carbon number, while cyclization increases

SOA formation. In each case the reason is fragmentation of secondary products:

branched alkanes are more vulnerable to C–C bond cleavage during oxidation, while

cycloalkanes can sustain one C–C bond cleavage event without a decrease in carbon

number because of the tethering effect of the cyclic structure [134].

Polycyclic Aromatics

PAHs have been studied for decades because of their high potential for negative

health effects [135–137]. Investigators quickly realized that PAH volatility spanned

a wide range and thus that important PAH species would be found in both the gas

and condensed phases in the atmosphere. Partitioning theory was developed for

atmospheric applications in large measure to address these issues. For some time,

adsorption to surfaces was considered to be more important than absorption into an

organic condensed phase [138]; however, by stages it became evident that the total

mass of the condensed phase (TSP) was significant to partitioning [139] and

ultimately that absorptive partitioning with the condensed organic phase was

often the appropriate framework for partitioning [140]. While that work laid the

foundation for the perspective on partitioning described here, consideration of the

SOA formation from PAH oxidation is much more recent. Like the alkanes, PAH

oxidation has been studied as a potentially important model for SOA formation

from IVOCs [141].

Evaporated Primary Emissions

Real primary emissions consist of a complex mixture including linear and branched

alkanes, mono aromatics, substituted aromatics (alkyl benzenes), and PAHs, among

many other compounds [7, 142]. The most direct evidence that SOA formation is

important for typical atmospheric IVOC mixtures thus comes from experiments on

vapors from these very mixtures [127, 143–148].
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4.1.3 Aging of VOC SOA

All of the first-generation vapors from VOC SOA will certainly undergo further

gas-phase oxidation, which will in turn influence the phase partitioning thermody-

namics of the OA mixture, i.e., gas-phase aging of SOA.

Multiple Ozonolysis Generations

Several forms of aging of SOA vapors have been observed. One clear form is

oxidation of multiply unsaturated alkenes. Many terpenes have multiple

unsaturations, and in some cases different double bonds have very different rate

constants for reaction with ozone. Examples include terpinolene, myrcene, limo-

nene, a-humulene, and b-caryophyllene [149, 150]. In these systems, ozone will

react with one double bond in the terpene and produce some SOA. However, after

the precursor is completely removed, SOA levels can continue to rise as the first-

generation semi-volatile products continue to react with ozone to produce less

volatile second-generation products [149].

Limonene is a revealing example. It is similar to a-pinene in possessing a

methyl-substituted endocyclic double bond in a six-member ring, but in addition

it has an exocyclic terminal unsaturation. Figure 10 shows SOAmass-yield data and
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exocyclic double bond in limonene results in substantially less volatile SOA products and

correspondingly higher SOA yields
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a corresponding VBS product distribution (in light green) for the limonene þ ozone

reaction under low-NOx conditions [150]. The inset shows structures for limonene,

limona ketone, and a-pinene. The darker green histogram and yield curve is valid

for a-pinene and limona ketone, which generate almost identical SOA mass

distributions after ozonolysis [38]. Initial ozonation of limonene also produces

SOA much like a-pinene and limona ketone, but subsequent ozonation of the

exocyclic double bond in the first-generation products strongly favors the ketone-

oxide over the ketone moiety shown in limona ketone and consequently forms

substantially less volatile second-generation products [150–152]. As Fig. 10 shows,

the resulting product distribution is two to three orders of magnitude less volatile

than typical first-generation terpene ozonolysis products, which is consistent with

additional peroxide and carboxylic acid functionality [153] greatly offsetting the

loss of one carbon from the terminal methylene.

An interesting wrinkle in the limonene story is that the second ozonolysis

reaction can be heterogeneous. The fresh SOA produced when ozone reacts with

the endocyclic double bond is unsaturated [153], but under low-NOx conditions it

reacts much more rapidly than is plausible based on gas-phase kinetics, but at a rate

consistent with a heterogeneous ozone uptake coefficient of roughly 10�3 [150].

Under high-NOx conditions the SOA (which contains organic nitrate functionality)

has a much lower heterogeneous reactivity to ozone and consequently species

remain in the gas phase that oxidize at a rate consistent with the ozonolysis of

terminal double bonds, forming second-generation SOA more slowly, long after the

limonene itself has been completely oxidized [150].

Multi-generation OH Oxidation

Oxidation by OH radicals (or photooxidation in general) is much more difficult to

deconvolve than ozonolysis because there is seldom the clear separation in

timescales that can appear in the ozonolysis aging just discussed. However, later-

generation oxidation by OH is likely to be much more important in the atmo-

sphere because it is ubiquitous. OH will react with essentially all organic

molecules, though the kinetics and mechanisms of the highly substituted species

typical of first-generation and later-generation oxidation products remain highly

uncertain. Nonetheless, there is no doubt that these reactions will occur, and little

doubt that they will be quite rapid, in most cases oxidizing semi-volatile vapors

within hours [64].

Multiple-generation oxidation has been studied theoretically via mechanism

generators that apply structure activity relations for rate constants and product

distributions [49]. Several specific tracers of later-generation oxidation have been

proposed. One is a C8 triacid formed via gas-phase oxidation of cis-pinonic acid,

which is itself a first-generation oxidation product of a-pinene [154]. The triacid is

produced rapidly when gas-phase cis-pinonic acid is exposed to OH radicals, but

not when the pinonic acid is partitioned into SOA at low temperatures [155]. For

bulk SOA characteristics, Chhabra et al. [156] have shown that SOA formation
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from oxidized precursors results in SOA whose mass spectrum is higher in the

f44–f43 “triangle” space recently proposed as a diagnostic for ambient OA

processing [157].

In the recent multiple chamber chemical aerosol aging study (MUCHACHAS),

first-generation SOA was produced from a-pinene þ ozone and then exposed to

OH radicals in a subsequent, separate step [112, 113, 155, 158–160]. The OH

exposure caused a substantial jump in SOA mass concentrations [112, 113, 158]

and significant changes in SOA volatility and hygroscopicity [112, 113, 159]. This

controlled experiment strongly confirmed that long-term gas-phase aging by OH

radicals can substantially alter OA properties.

There is thus compelling evidence that gas-phase OH oxidation will age OA by

oxidizing semi-volatile vapors as well as slightly more volatile IVOC intermediate

products. This will occur throughout the atmosphere with a rate constant estimated

to be of order 2 � 10�11 cm3 molec�1 s�1, giving a lifetime for typical OH

concentrations of order 8 h [92, 158]. Other aging mechanisms can be scaled by

this ubiquitous value to assess their relative importance.

4.2 Heterogeneous Aging

A large body of work addresses aging of organic particulate matter via heteroge-

neous uptake of oxidants, especially OH and ozone. Just as partitioning theory

progressed from a focus on adsorptive to absorptive behavior, heterogeneous

uptake has been viewed in terms of uptake of oxidants controlled by Langmuir-

Hinshelwood type adsorptive isotherms [79, 161], but diffusion of oxidants into a

bulk aerosol has also been considered in various contexts [162]. Heterogeneous

formulations can differ depending on whether the principal focus is the loss of an

oxidant upon uptake [87] or the loss of condensed-phase constituents due to oxidant

uptake [163–166]. The “Pöschl Rudich Ammann” framework was initially

presented with a principal focus on gas–surface interactions for multiphase pro-

cesses, but has recently been extended to resolve diffusion into a spherically

symmetric bulk as well [87]. The objective here is not to review even a small

portion of the literature on heterogeneous oxidant uptake but to focus on the

interplay between heterogeneous oxidation and organic phase partitioning.

Heterogeneous oxidation by OH is intrinsically slower than homogeneous

gas-phase oxidation of organic vapors, since most molecules in a given particle

are shielded from gas-phase radicals colliding with the surface. A rate constant

for the gas-phase reaction of OH radicals with large organic species of

2 � 10�11 cm3 molec�1 s�1 is at least ten times larger than that of gas-phase OH

with an organic species within a submicron particle [92]. The rate at which a

molecule will undergo oxidation in each phase is a function not only of these rate

constants but also by its abundance (as measured by mole fraction) in each phase.

This is illustrated in Fig. 11 which shows the effective oxidation rate constant

in each phase as a function of volatility as well as the total rate constant including
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oxidation in either phase. Rates were calculated assuming a gas-phase rate constant

of 2 � 10�11 cm3 molec�1 s�1, reactive uptake coefficient (g) of 1, particle

diameter of 200 nm, and organic aerosol loading (COA) of 10 mg m�3. The figure

shows that gas-phase oxidation will almost always dominate over heterogeneous

oxidation unless the molecule is very low in volatility (C* of 0.1 mg m�3 or lower).

Molecules almost wholly in the condensed phase of course can only be oxidized

there. It is important to note that the heterogeneous timescale of 3–4 days is still

shorter than the characteristic atmospheric residence time of submicron particles of

1 week or more [167]. Consequently, heterogeneous oxidation is still clearly an

important process for organic compounds contained within aerosol particles.

In addition to providing insight into the kinetics of multiphase aging, studies of

heterogeneous oxidation also serve as indirect probes of the mixing effects

discussed earlier. Measuring the rate and extent of degradation of individual aerosol

components provides information not only on molecular-level reactivity but also on

mixing within the particle. This is because the reactive-diffusive length of OH in

organic particles is of order 1 nm [168], and so heterogeneous OH reactions will be
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Fig. 11 Effective OH oxidation rate constants for organics in gas phase (red curve) and

condensed phase (blue curve) for a gas-phase OH rate constant of 2 � 10�11 cm3 molec�1 s�1

and a heterogeneous OH uptake coefficient of 1, for 200 nm diameter particles and 10 mg m�3 total

organic aerosol. Results are given as equivalent gas-phase values, modified by the fraction of

organics in each phase and diffusion limitations of gas-phase OH to condensed-phase organics.

Oxidation lifetimes (in days) are given on left-hand y axis, for 2 � 106 OH cm�3
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confined to the particle surface. For example, in a study of the multigenerational

heterogeneous oxidation of squalane (C30H62), squalane degradation followed a

simple pseudo-first-order kinetics (exponential decay) over multiple oxidation

lifetimes, with concentrations eventually falling to zero [169]. Similarly, the first

and second generation products reacted away at the same rates. This indicates that,

at any given time, a sufficient amount of reactant (squalane and early-generation

products) is present at or near the surface of a (pump oil) particle to react with OH;

mixing within the particle is thus very fast on the timescale of the experiment (37 s).

A similar conclusion can be drawn for heterogeneous oxidation of a-pinene SOA

by OH. Experiments with very high SOA concentrations (which favors the

condensed phase and thus heterogeneous oxidation) and very high OH exposure

in 37 s found almost complete conversion of fresh SOA into highly aged material.

The aged aerosol strongly resembled ambient low-volatility oxidized organic

aerosol (LV-OOA) while maintaining almost no correlation with the original

fresh SOA mass spectrum [30]. This would not be possible unless essentially all

of the organic species within the particles were able to diffuse to the particle surface

(or even evaporate) in 30 s or less. On the other hand, in similar experiments on

the heterogeneous oxidation of levoglucosan (C6H10O5) and erythritol (C4H10O4),

the reactants were not totally lost after an initial rapid decay, consistent with the

formation of viscous materials with mixing timescales of at least several minutes.

This serves as an illustration that generalizations about diffusion limitations within

organic particles may be very difficult to draw, as the specific particle composition

(including organics, inorganics, and water) as well as temperature may alter

constituent diffusivities by many orders of magnitude.

Heterogeneous oxidation experiments also allow for the investigation of the

possibility that organic condensation may “coat” existing particles, isolating the

core of the particle from the surrounding gas. Such a coating implies a lack of

mixing between the condensing vapor (the coating material) and the particle core,

but this can be a dangerous assumption if the two are miscible. One example of this

is shown in Fig. 12, which is a relative kinetics plot of particle-phase cholestane loss

compared to gas-phase oxidation of meta-xylene by OH radicals [143]. For the

reasons discussed above, it is reasonable to regard heterogeneous loss of

condensed-phase organics as a fairly precise surface probe. Figure 12 shows two

things. First, coating of POA particles containing cholestane by a nominally quite

thick layer of a-pinene SOA did nothing to slow down heterogeneous cholestane

loss, suggesting that the SOA formed a uniform mixture with the POA. That is

consistent with the mixing experiments described above [60]. Second, cholestane

loss slowed significantly at high RH (~75%), suggesting that an aqueous surface

layer formed, excluding nonpolar compounds such as cholestane. This is consistent

with recent findings that two distinct condensed phases form for wet OA particles as

long as the O:C of the organics is below approximately 0.7 [125, 126].
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4.3 Aqueous-Phase Aging

In recent years there has been intense interest in the formation and evolution of

atmospheric particulate matter within the aqueous phase [170]. Such processes

occur by dissolution of organics into a water droplet (deliquesced particle or

cloud droplet) followed by oxidation by a dissolved oxidant (most likely OH).

Studies of these pathways have been reviewed in detail very recently [118, 171] and

so will not be discussed here; instead, as in the previous section, the focus here is on

the relationship between partitioning and aging chemistry.

The relative importance of the gas and the aqueous phases as media for the

oxidation of organic species depends critically on the fraction of the species present

in each phase. This in turn is a function both of the compound’s intrinsic tendency

to partition between each (as described by its effective Henry’s Law Constant, H*)

and the concentration of liquid water present [118]. Thus partitioning into the

aqueous phase is governed by the same general considerations as partitioning into

the organic phase (which is governed by saturation vapor pressure and organic

aerosol loading). In fact, the Henry’s Law solubility of a compound is really just a

measure of the volatility of that compound over water. As with purely organic

mixtures, Raoult’s law will apply for ideal solutions, but the activity can be strongly

modified by some activity coefficient related to the interaction of that species with

water. Accordingly, it is useful to express the Henry’s Law solubility as volatility

Fig. 12 Relative oxidation rates by OH radicals of condensed-phase cholestane vs gas-phase

m-xylene in different organic-aerosol matrices, all of which include a high fraction of motor oil.

Cholestane oxidation is independent of OA concentration or the presence of a substantial SOA

“coating” consisting of up to half of the total particle mass. However, high relative humidity slows

cholestane oxidation by an order of magnitude. This suggests that a thin film of water on oil can

significantly retard cholestane oxidation, perhaps by excluding the cholestane from the particle

surface; the SOA, on the other hand, does not coat the particle surface but rather mixes with the oil

and thus does not impede cholestane oxidation
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(micrograms per cubic meter), for comparison with the liquid water content ( just as

C* can be compared to COA). Following Ervens et al. [172], this volatility over

water is calledC�
aq, and is equal to (R T H*/rw)

�1, where H* is the effective Henry’s

Law constant (M atm�1), T is temperature (K), R is the gas constant (0.08206 L atm

K�1 mol�1), and rw is the density of water (1012 mg m�3).

Figure 13 shows the effective rate constants for gas-phase and aqueous-phase

oxidation as a function of C�
aq (and H*), assuming a liquid water content (Cw) of

10 mg m�3 (a typical ambient value for deliquesced aerosol). This is directly

analogous to Fig. 11, which shows the rates of heterogeneous vs gas-phase oxida-

tion as a function of C*. As in Fig. 11, the gas-phase OH rate constant is set at

2 � 10�11 cm3 molec�1 s�1. The effective aqueous-phase OH rate constant is

chosen to be ten times higher at 2 � 10�10 cm3 molec�1 s�1), reflecting the

possibility that aqueous OH concentrations may be higher than in the gas phase

[173]. (The actual aqueous-phase rate constants can be quite variable, but are
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Fig. 13 Effective OH oxidation rate constants for organics in gas phase (red curve) and aqueous

phase (cyan curve) for a gas-phase rate constant of 2 � 10�11 cm3 molec�1 s�1 and an effective

aqueous-phase OH rate constant of 2 � 10�10 cm3 molec�1 s�1. The principal abscissa is the

effective saturation concentration with respect to dissolution in 10 mg m�3 of liquid water.

Oxidation lifetimes (in days) are given on the left-hand y axis, for 2 � 106 OH cm�3 in the gas

phase
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generally similar to those in the gas phase [173].) Even with this higher rate,

aqueous-phase oxidation will dominate only when the molecule of interest is

exceedingly water soluble (H* > 7 � 108 M atm�1) due to the small amount of

liquid water available. Most atmospheric species, even those that are considered to

be highly water-soluble (such as glyoxal, glycolaldehyde, and diacids), have

H* well below this threshold [174], and thus will not partition sufficiently into the

aerosol aqueous phase to undergo significant aqueous-phase aging under these

conditions.

There are several important caveats to this analysis, however. First, OH

concentrations in the aqueous phase are highly uncertain, since there are no

measurements of [OH] in deliquesced particles or cloud droplets. If aqueous OH

concentrations are still higher than indicated in Fig. 13 (as suggested by some

models [173]), the threshold for aqueous-phase oxidation would move to higher

values ofC�
aq (lower values of H

*); on the other hand, if aqueous OH concentrations

are lower (as suggested by other models [170]), even lower values of C�
aq (higher

values of H*) would be needed for aqueous oxidation to dominate. This highlights

the need for an improved understanding of oxidant concentrations in the atmo-

spheric aqueous phase. Unless there is substantial radical recycling (OH regenera-

tion) in the aqueous phase, aqueous oxidation by OH will be subject to the same

diffusion limitations on heterogeneous oxidation.

A second caveat involves the effect of liquid water content Cw; the value used

(10 mg m�3) is reasonable for ambient fine particulate matter but would be orders of

magnitude higher for cloud water (with Cw as high as 1 g m�3). Under such

conditions, partitioning into the aqueous phase will happen for much more volatile

species (H* of 7 � 104 M atm�1 or higher), including the water-soluble species

mentioned above. Third, this analysis assumes that Henry’s Law accurately

describes partitioning between the gas and aqueous phase, independent of

aqueous-phase concentrations. In reality, the high concentrations in the aerosol

aqueous phase are likely to introduce substantial deviations from ideality; these

substantial activity coefficients could have a dramatic (and uncertain) effect on

partitioning. Finally, under some conditions, particles may include multiple phases

[125, 175], so that partitioning between at least three phases (gas, organic, aqueous)

must be considered. In such cases the simple two-phase picture in Fig. 13 (or

Fig. 11) is insufficient to describe the aging chemistry of the entire system, as the

relative values of C*, C�
aq , COA, and CW must be considered when predicting the

equilibrium phase of the organic species.

In spite of all these uncertainties, the description of aqueous oxidation in terms

of simple partitioning (Fig. 13) clearly shows that only molecules with very large

Henry’s Law solubilities can undergo significant oxidation in the aqueous phase.

This includes highly water-soluble species such as glyoxal, at least when aqueous

[OH] and/or liquid water content is high, but categorically excludes all

hydrocarbons as well as most monofunctional organic species that have more

Volatility and Aging of Atmospheric Organic Aerosol 131



than one carbon [174]. It also points to the need to run laboratory studies of aqueous

oxidative processing under atmospherically relevant partitioning conditions, with

liquid water contents in the range of 10 mg m�3 (for deliquesced particles) to

1 g m�3 (for cloud water). To date, most (though not all [176, 177]) laboratory

studies of aqueous oxidation have been carried out in bulk aqueous solution, with

liquid water contents that are far higher than this, on the order of 106 g m�3 (the

density of liquid water). These studies are unlikely to be representative of the gas-

droplet partitioning conditions typical of the atmosphere, and thus may not accu-

rately reflect atmospheric aging.

As with heterogeneous oxidation, aqueous-phase oxidation may play an impor-

tant role in aging water-soluble organics already present in particles, and it can also

play a unique role for a small but important set of highly water soluble, low carbon-

number organic vapors [172].

5 Conclusions

Phase partitioning and aging chemistry are inexorably linked when considering the

chemical evolution of organic aerosol, both because the phase defines the aerosol

and because absolute rate of aging depends strongly on the phase holding an

organic compound. A key observation in ambient organic aerosol is that the aerosol

becomes highly oxidized very rapidly [30, 178, 179]. Heterogeneous oxidation

mechanisms appear to be incapable of oxidizing OA with sufficient speed, while

gas-phase oxidation can do so. However, heterogeneous processes still compete

favorably with the residence time of OA in the atmosphere and thus certainly play

an important atmospheric role. In addition, processes that might simply retard mass

transfer between the particle and gas phases appear unable to provide sufficiently

rapid oxidation.

Overall, the coupling among these multiphase processes, including chemistry in

all phases and the equilibria and dynamics of mass transfer among the phases, needs

to be described in detail before we can resolve with certainty the relative role of

each process under atmospheric conditions. The timescales for all three processes

discussed here – gas-phase, heterogeneous, and aqueous-phase oxidation – are

competitive with the residence time of particles in the atmosphere. Gas-phase

oxidation will win out for most organic vapors because it is homogeneous and

fast, but condensed-phase processes may have a vital role in the full maturation of

organic aerosol over longer timescales during long-range transport.
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Reinnig M-C, Hoffmann T, Salow K, Hallquist M, Frosch M, Bilde M, Tritscher T, Barmet P,

Praplan AP, DeCarlo PF, Dommen J, Prévôt ASH, Baltensperger U (2012) Aging of biogenic

secondary organic aerosol via gas-phase OH radical reactions. Proc Natl Acad Sci 109(34):

13503–13508. doi:10.1073/pnas.1115186109

159. Frosch M, Bilde M, DeCarlo PF, Juranyi Z, Tritscher T, Dommen J, Donahue NM, Gysel M,

Weingartner E, Baltensperger U (2011) Relating cloud condensation nuclei activity and

oxidation level of alpha-pinene secondary organic aerosols. J Geophys Res Atmos 116:

D22212

160. Barmet P, Dommen J, DeCarlo PF, Tritscher T, Praplan AP, Platt SM, Prévôt ASH,

Donahue NM, Baltensperger U (2012) OH clock determination by proton transfer reaction

mass spectrometry at an environmental chamber. AtmosMeas Tech 5:7471–7498. doi:10.5194/

amt-5-647-2012

161. Rudich Y, Donahue NM, Mentel TF (2007) Aging of organic aerosol: bridging the gap

between laboratory and field studies. Annu Rev Phys Chem 58:321–352

162. Massoli P, Lambe AT, Ahern AT, Williams LR, Ehn M, Mikkila J, Canagaratna MR,

Brune WH, Onasch TB, Jayne JT, Petaja T, Kulmala M, Laaksonen A, Kolb CE,

Davidovits P,Worsnop DR (2011) Relationship between aerosol oxidation level and hygroscopic

properties of laboratory generated secondary organic aerosol (SOA) particles (vol 37, L24801,

2010). Geophys Res Lett 38:L03805. doi:10.1029/2011gl046687

163. Hearn JD, Lovett AJ, Smith GD (2005) Ozonolysis of oleic acid particles: evidence for a

surface reaction and secondary reactions involving Criegee intermediates. Phys Chem Chem

Phys 7(3):501–511

164. Sage AM, Weitkamp EA, Robinson AL, Donahue NM (2009) Reactivity of oleic acid in

organic particles: changes in oxidant uptake and reaction stoichiometry with particle oxida-

tion. Phys Chem Chem Phys 11(36):7951–7962. doi:10.1039/b904285g

165. Donahue NM, Robinson AL, Hartz KEH, Sage AM, Weitkamp EA (2005) Competitive

oxidation in atmospheric aerosols: the case for relative kinetics. Geophys Res Lett 32:L16805

166. Huff Hartz KE, Weitkamp EA, Sage AM, Donahue NM, Robinson AL (2007) Laboratory

measurements of the oxidation kinetics of organic aerosol mixtures using a relative rate

constants approach. J Geophys Res Atmos 112:D04204

142 N.M. Donahue et al.

http://dx.doi.org/10.1039/b820005j
http://dx.doi.org/10.5194/acp-12-1483-2012
http://dx.doi.org/10.5194/acp-10-4625-2010
http://dx.doi.org/10.1073/pnas.1115186109
http://dx.doi.org/10.5194/amt-5-647-2012
http://dx.doi.org/10.5194/amt-5-647-2012
http://dx.doi.org/10.1029/2011gl046687
http://dx.doi.org/10.1039/b904285g


167. Wagstrom KM, Pandis SN (2009) Determination of the age distribution of primary and

secondary aerosol species using a chemical transport model. J Geophys Res Atmos 114:

D14303. doi:10.1029/2009jd011784

168. Worsnop DR, Morris JW, Shi Q, Davidovits P, Kolb CE (2002) A chemical kinetic model for

reactive transformations of aerosol particles. Geophys Res Lett 29(20):1996

169. Smith JD, Kroll JH, Cappa CD, Che DL, Liu CL, Ahmed M, Leone SR, Worsnop DR,

Wilson KR (2009) The heterogeneous reaction of hydroxyl radicals with sub-micron

squalane particles: a model system for understanding the oxidative aging of ambient aerosols.

Atmos Chem Phys 9(9):3209–3222

170. Lim HJ, Carlton AG, Turpin BJ (2005) Isoprene forms secondary organic aerosol through

cloud processing: model simulations. Environ Sci Technol 39(12):4441–4446

171. Lim YB, Tan Y, Perri MJ, Seitzinger SP, Turpin BJ (2010) Aqueous chemistry and its role in

secondary organic aerosol (SOA) formation. Atmos Chem Phys 10(21):10521–10539

172. Ervens B, Volkamer R (2010) Glyoxal processing by aerosol multiphase chemistry: towards a

kinetic modeling framework of secondary organic aerosol formation in aqueous particles.

Atmos Chem Phys 10(17):8219–8244

173. Herrmann H, Hoffmann D, Schaefer T, Brauer P, Tilgner A (2010) Tropospheric aqueous-

phase free-radical chemistry: radical sources, spectra. Reaction kinetics and prediction tools.

Chemphyschem 11(18):3796–3822

174. Sander R (1999) Compilation of Henry’s law constants for inorganic and organic species of

potential importance in environmental chemistry. http://www.rolf-sander.net/henry/henry.pdf

175. Griffin RJ, Nguyen K, Dabdub D, Seinfeld JH (2003) A coupled hydrophobic-hydrophilic

model for predicting secondary organic aerosol formation. J Atmos Chem 44(2):171–190

176. Volkamer R, Ziemann PJ, Molina MJ (2009) Secondary organic aerosol formation from

acetylene (C(2)H(2)): seed effect on SOA yields due to organic photochemistry in the aerosol

aqueous phase. Atmos Chem Phys 9(6):1907–1928

177. GallowayMM, Huisman AJ, Yee LD, Chan AWH, Loza CL, Seinfeld JH, Keutsch FN (2011)

Yields of oxidized volatile organic compounds during the OH radical initiated oxidation of

isoprene, methyl vinyl ketone, and methacrolein under high-NO(x) conditions. Atmos Chem

Phys 11(21):10779–10790

178. DeCarlo PF, Dunlea EJ, Kimmel JR, Aiken AC, Sueper D, Crounse J, Wennberg PO, Emmons

L, Shinozuka Y, Clarke A, Zhou J, Tomlinson J, Collins DR, Knapp D, Weinheimer AJ,

Montzka DD, Campos T, Jimenez JL (2008) Fast airborne aerosol size and chemistry

measurements above Mexico City and central Mexico during the MILAGRO campaign.

Atmos Chem Phys 8(14):4027–4048

179. Hildebrandt L, Kostenidou E, Mihalopoulos N, Worsnop DR, Donahue NM, Pandis SN

(2010) Formation of highly oxygenated organic aerosol in the atmosphere: insights from

the Finokalia aerosol measurement experiments. Geophys Res Lett 37:L23801. doi:10.1029/

2010gl045193

Volatility and Aging of Atmospheric Organic Aerosol 143

http://dx.doi.org/10.1029/2009jd011784
http://www.rolf-sander.net/henry/henry.pdf
http://dx.doi.org/10.1029/2010gl045193
http://dx.doi.org/10.1029/2010gl045193


Top Curr Chem (2014) 339: 145–200
DOI: 10.1007/128_2013_461
# Springer-Verlag Berlin Heidelberg 2013
Published online: 7 July 2013

Bio-Organic Materials in the Atmosphere

and Snow: Measurement and

Characterization

P.A. Ariya, G. Kos, R. Mortazavi, E.D. Hudson, V. Kanthasamy,

N. Eltouny, J. Sun, and C. Wilde

Abstract Bio-organic chemicals are ubiquitous in the Earth’s atmosphere and at

air-snow interfaces, as well as in aerosols and in clouds. It has been known for

centuries that airborne biological matter plays various roles in the transmission of

disease in humans and in ecosystems. The implication of chemical compounds of

biological origins in cloud condensation and in ice nucleation processes has also

been studied during the last few decades, and implications have been suggested in

the reduction of visibility, in the influence on oxidative potential of the atmosphere

and transformation of compounds in the atmosphere, in the formation of haze,

change of snow-ice albedo, in agricultural processes, and bio-hazards and

bio-terrorism. In this review we critically examine existing observation data on

bio-organic compounds in the atmosphere and in snow. We also review both

conventional and cutting-edge analytical techniques and methods for measurement

and characterisation of bio-organic compounds and specifically for microbial

communities, in the atmosphere and snow. We also explore the link between

biological compounds and nucleation processes. Due to increased interest in

decreasing emissions of carbon-containing compounds, we also briefly review (in

an Appendix) methods and techniques that are currently deployed for bio-organic

remediation.
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1 Introduction

Airborne condensed bio-organic materials are called bioaerosols. These include

biological particles of living beings (or dead bodies) such as viruses, bacteria, fungi

and algae, as well as remnants of biological activities such as macromolecules and

(semi)volatile organic compounds. They can be emitted directly to the atmosphere

(primary source) or formed through (photo)chemical reactions of primary

bioaerosols (secondary source) in the atmosphere or at environmental interfaces.

Selected chemical reactions of gas-phase volatile organic compounds (VOC) lead

to the formation of less volatile compounds, which can form new aerosols or be

taken up by existing atmospheric particles. The importance of organic compounds

such as cloud condensation and ice forming nuclei has now been recognised.

Moreover, the importance of bio-organic matter such as green algae and bacteria

in snow and ice colour is known to affect the ice/snow reflectivity or albedo. There

is an increasing body of evidence pointing to the importance of the impact of

bio-organic matter, over the tropical and sub-tropical forests, on the chemistry and

physics of the atmosphere [1, 2], and even in studies of biological weapons [3, 4]. In

recent years, many reports have indicated an association between the presence of

bioaerosols (indoor or outdoor) and several respiratory, cardiovascular and health

disorders (e.g. cancer) [3, 4]. These processes and interactions are summarised and

illustrated in Fig. 1.

The role of bio-organic matter at atmospheric interfaces has also been studied. In

this review we focus on snow. The chemical composition of the snow pack has

received increased attention in recent years, focusing first on inorganic and selected

organic species, e.g. organic acids and PAH [5]. It has been shown that the snow

pack acts as source and sink of chemical species and that it has the ability to

transform compounds through photochemical and biological processes

(metabolisation) [6–9]. As a consequence, the chemical profile and concentrations
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of atmospheric species are dynamically changed. The chemical processes involved

may be very different from atmospheric reactions; as a result, the compounds

released into, or removed from, the troposphere by these processes may be very

different from those resulting from atmospheric processes alone [5, 10–12].

The foremost reason for these differences is the complex and variable structure

of the snow pack, which acts as a reaction medium for snow chemical reactions

[13]. Gaseous (interstitial air), liquid (water) and solid (ice) phases are present at

different ratios. The availability of reaction surfaces and media is typically very

large, and is exemplified by fine structure ice crystals, which change over time as

the snow pack consolidates and ages. The snow pack density, which regulates the

penetration depth of solar radiation and wind pumping, also changes over time.

These influence photochemistry and the supply of reactants deposited into the

snowpack and volatilisation of products [14]. The snowpack therefore potentially

plays a significant role in the availability and transformation of organic and

inorganic compounds in the boundary layer of the atmosphere. Given that

large parts of both hemispheres are covered with snow for at least parts of the

year [15, 16], it will profoundly influence not only the planetary albedo but also the

processing of atmospheric chemical species. Snow pack physical properties related

to snow photochemistry have been previously investigated and summarized [17].

Organic species present in the snow pack have not, however, been fully

explored. Some were suggested to have direct biological origins, while others result

Fig. 1 Simplified schematic of the role of bioaerosols in atmospheric processes
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from photochemical processes involving dissolved organic compounds

[18, 19]. The chemistry of volatile organic species (VOC), such as the light

aldehydes that directly affect atmospheric photochemistry through the production

of HOx radicals, is quite well studied [20]. A large variety of other VOC and semi-

volatile VOC (SVOC) species with different chemical functionalities have been

shown to occur, but their chemical change in the snow pack remains largely

unexplored [21].

SVOCs are higher aldehydes (e.g. nonanal), aromatics (e.g. toluene,

acetophenone) and compounds with six or more carbon atoms that have relatively

long atmospheric lifetimes compared to very volatile species such as formaldehyde.

SVOCs have biological and anthropogenic origins. The differentiation between

VOC and SVOC is not standardised and as a consequence the terms are always used

in conjunction with the compounds to be discussed. The United States Environ-

mental Protection Agency (USEPA) [22], citing the World Health Organisation

(WHO), defined very VOC as having a boiling point of <0 to 50–100�C, VOC as

boiling between 50–100 and 240–260�C and semi-volatile organic compounds as

boiling between 240–260 and 380–400�C. This definition encompasses a wide

range of species with different properties, and reflects the need for detailed

explanations in the scientific literature.

SVOCs, e.g. toluene [23], are nevertheless photochemically active species.

Furthermore, and relevant for snow pack chemistry, a number of species,

e.g. dicarboxylic acids [10], can serve as nutrients for bacteria and fungi.

Substituted aromatic species are the subject of significant research regarding

degradation by micro-organisms for bioremediation purposes [24]. It can be

speculated as to whether volatile photochemical and microbiological degradation

products can be re-emitted into the atmosphere, or whether this kind of degradation

permanently removes organic species from the atmospheric carbon pool.

Preliminary laboratory studies suggest that irradiation with the solar energy

spectrum results in changes to the chemical composition of melted snow [13],

providing further motivation to study the decomposition of organic species in the

snow pack. However, the analysis of the chemical composition of snow is complex

and challenging. The photochemical and biochemical availability would depend on

whether the compound is principally found in the ice, liquid or interstitial air

phases, and on suitable conditions for penetration of UV radiation and

microbiological growth [25].

Since there are several excellent review papers on ice nucleation by biological

particles [26, 27], cloud nucleation processes involving bio-materials, aerosol

analysis and microbiology of bio-particles, we intend here (1) to provide a

summary of the existing measurements of bio-organic materials in the atmosphere

and snow and (2) to review critically the atmospheric analytical techniques for

measurement and characterization of bio-organic matter in the gas-phase, aerosol

and ice matrices in atmosphere and atmosphere-snow interfaces. We will explore

their advantages and disadvantages, and will provide suggestions for progress in

this field.
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2 Measurement and Characterization of Bio-Organic

Material

The assessment of the role of biogenic and bioavailable compounds in the environ-

ment is a multi-faceted process that starts with the determination of concentrations

of individual compounds or compound groups in one or multiple environmental

matrices (e.g. air, soil, water). As a next step, it would then be possible to assess

their role, transformation, sources and sinks. A number of analytical methods with

different degrees of sensitivity and specificity have been reported and the following

section focuses on the compounds listed in Table 1 and selected matrices that have

received increased attention by researchers in recent years such as the snowpack,

where a large number of species (up to 50%) remain unidentified [28]. It is

noteworthy that several techniques described in this chapter can be used in a

complementary manner. Furthermore, a subsection deals with the determination

of biological species themselves, i.e. bacteria and fungi. While organic species

might be of either anthropogenic or biogenic origin, or both, the method of

environmental analysis is the same and typically non-discriminatory. Source attri-

bution is carried out by including additional information (e.g. emission inventories)

or experiments (e.g. bacterial degradation of organics under similar, but controlled

conditions and isotope measurements).

2.1 Methods for and Concentrations of Biogenic and
Bioavailable Organic Compounds in Snow and in Air

For the determination of volatile organic species in snow or the snow/air interface,

sampling procedures play a key role in determining how representative and inter-

pretable the analysis results are [29]. Since most of these compounds are present at

low concentrations (mixing ratios of low ppb to high ppt range), sample

pre-concentration is generally employed prior to analysis. Typically, gas-phase

samples are collected by drawing air through Teflon™ tubes into preconditioned

stainless-steel canisters for later analysis or into a pre-concentration set-up for in

situ analysis [30]. Firn air, which is interstitial air from multi-year aged and

compressed snow, was previously sampled using a stainless steel probe. It consists

of a stainless steel cylinder through which a Teflon™ sampling line is inserted. A

Teflon™ stainless tube and then the probe were carefully inserted so as not to

disturb the snowpack. The temperature was monitored with a thermocouple

mounted on the tip of the probe [19, 31]. Interstitial air sampling was also tested

by Albert et al. [32] using a Teflon™ snow probe that was inserted into a hole

drilled into the snow pack and pumping sample air into the laboratory for the
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determination of ozone. The authors critically evaluated the approach of continuous

sampling causing advection from different depths of atmospheric air. Sampling of

discrete volumes from each layer would be preferable. Other interstitial air sam-

pling methods included direct sampling for flow injection analysis and the use of

stainless steel probes [33–35]. Pumps have also been used for the transfer of firn air

into glass and stainless-steel flasks employing transfer lines made of nylon and

Dekabon, a polyethylene–aluminium composite [36, 37]. Although not for analysis

of organics, a snow sampling tower fitted with inlets at several depth levels was

employed for interstitial air sampling [38, 39]. Sampling of filtered air was achieved

using sampling lines employing pumps at a rate of 1.2 mL min�1 for 12 min at each

depth level, followed by 48 min equilibration time in order to minimise artificial air

flow. (Interstitial) air sampling for analysis for VOC and SVOC employing proton

transfer mass spectrometry (PTR-MS) required comparatively high flows of 3–100

standard litres per minute (slpm), the former for interstitial air, the latter for air

sampled by two inlets, suggesting artificial air flows for the former (especially

given the relatively shallow burial depth of 15 cm in the snow pack [40]). The air

sampling procedures described are quite generic and suitable for gaseous or very

small particulate species (i.e. passing a 1-μm filter), provided that interaction with

tubing or pumps causing loss of species by adhesion or reaction is avoided. Further

sample treatment such as adsorption [41], chemical reaction (e.g. by derivatization)

[42] or specific detection methods, e.g. PTR-MS [40], determine which species can

be investigated.

A similar principle (generic sampling, then specificity achieved by preparation

and analysis) applies to snow sampling. In the majority of recent studies, grab

sampling of solid surface snow or pit sampling of defined strata was carried out (e.g.

[43, 44]). Clean aluminium and stainless steel tools were usually employed,

although the pre-cleaning procedure was not always specified in detail [45]. Core

samplers were also employed and resolution by strata may or may not have been

provided [46]. The concentration of a wide variety of organic compounds in the

snow was determined using melted snow samples collected in glass jars or glass

vials with Teflon-lined lids [31, 47–51]. Specialised samplers for organic species

have been developed to overcome losses usually observed during grab sampling

and melting before analysis, though these devices are not widely used. These

samplers are gas tight and enable separation of the ice from liquid melt water. All

three phases can then be probed separately [29]. Herbert et al. [52] provided a

tabular summary of tools and containers used for snow sampling in previous

studies. While grab sampling is popular, convenient and easy to use, care has to

be taken when interpreting the data. While representativeness for the liquid water

and ice phase is maintained as a sum parameter, species present in interstitial air are

not properly accounted for. Sampling snow into a dedicated container will also shift

the different phase equilibria of the species under investigation, making this

approach error-prone and subject to positive and negative artefacts. In general,

however, any of the described set-ups for inorganic trace gases could be envisioned
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for the determination of organics, provided the sampled air can be transferred to a

suitable system for analysis or containers such as electropolished canisters or by

direct transfer to an analysis system.

2.1.1 Determination of Organics

Low molecular weight organic compounds play an important role in the chemistry

of the polar troposphere by influencing its oxidative capacity [35]. Observations,

monitoring enrichment and losses in firn air or interstitial air compared to tropo-

sphere concentrations require simultaneous measurements in all matrices [35]. For

example, formaldehyde is the most investigated low molecular weight carbonyl

compound in the polar regions and its concentrations in firn air, ambient air and

melted snow samples have been widely reported in the literature. Formaldehyde

was mostly analysed by flow injection analysis (FIA) with a fluorescence detector,

e.g. [53]. Gas phase formaldehyde was scrubbed into a liquid phase, derivatised

using a suitable agent and then analysed with a fluorescence detector in a flow

system set-up [19, 31, 51, 54–59]. Chromatography was also often used for

separation prior to analysis. For example, gas-phase formaldehyde was first

extracted into water through a Nafion™ membrane diffusion scrubber, wet effluent

diffusion denuder or coil scrubber and then reacted with 1,3-cyclohexanedione or

2,4-pentanedione and ammonium acetate for derivatisation. The fluorescent prod-

uct (emission at 465 nm) was then analysed [31, 60]. Interference from atmospheric

hydrogen peroxide was noted for this reaction since it also reacts with cyclohex-

anedione to form a competing fluorescent product and hydrogen peroxide-free

water was used as a scrubber [56]. However, it was shown that this interference

is insignificant in most cases compared to the measurement uncertainty at low

formaldehyde/hydrogen peroxide ratios [31]. Similarly gas-phase acetaldehyde and

acetone were analysed by derivatising with DaNSyl-Acetamido-Oxy-Amine

(DNSAOA), separated using HPLC and quantified with a fluorescence detector

[47, 49]. Acetaldehyde and acetone in firn air and ambient air were also measured

using a gas chromatography/ion-trap mass spectrometry (GC-ITMS) in which they

were detected as their CH3CO
+ ion fragment (43 amu) [61]. GC-MS-FID with

pre-concentration using stainless steel tubes filled with adsorbents such as

Carbotrap™ and Carbosieve™ was also employed for the detection of other low

molecular weight compounds such as methanol, ethanol, propanal, butanal and

methyl ethyl ketone in interstitial air [33]. GC-FID was common instrumentation

used for the analysis of lightweight alkanes and alkenes such as propane, ethane,

ethene and ethyne [33]. Compounds such as methyl bromide and methyl iodide are

measured with a combination of GC-MS with FID and ECD detectors

[30]. Swanson et al. [44] demonstrated the selective use of analytical

methodologies for optimised sensitivity by determining C2–C6 hydrocarbons

employing GC-FID, C1–C2 halocarbons and C1–C5 alkyl nitrates by GC-MS.
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Similar to their analysis in air, light aldehydes and ketones in the melted snow

samples were chemically modified using a derivatising agent in order to bring their

molecular mass and detection sensitivity into the optimal detector range, separated

chromatographically, and then analysed using a suitable detector [57, 62]. Bhatia

et al. have analyzed the dissolved organic carbon species in snow and ice in samples

from the Greenland ice sheet via electro-spray ionization (ESI) coupled to a Fourier

transform ion cyclotron resonance mass spectrometer (ESI FTICR-MS). Source

attribution is carried out (with dissolved organic compound species originating

from soot, but also a number of biological sources such as lignins, protein and lipids

[63]. Dissolved organic matter was also characterised using 1H NMR spectroscopy.

Results highlighted the importance of microbial sources for organic species in

Antarctic glacier ice [64].

In the case of carboxylic acids, analytical procedures are quite different due to

their ionic character. Ion chromatography is the method of choice for more volatile

carboxylic acids and data are regularly included with inorganic analysis of major

ions such as phosphate and sulphate [65, 66]. Formic, acetic and propionic acids are

most commonly reported. Recent studies have only been carried out in air.

Concentrations in snow were most recently reported by Kippenberger and

co-workers [67], who used a liquid chromatography method with time of flight

mass spectrometric detection on snow samples from the Fee glacier in Switzerland

(at altitudes from 3,056 to 3,580 m asl). The authors also provided older comparison

data from remote and urban sites [68–70].

The determination of amines in the atmosphere is rarely carried out. In the recent

past only a small number of reports have been published [71–73]. Akyüz [71]

provided amine concentrations in Zonguklak province, Turkey. Example concen-

tration ranges are given in Table 2. Finessi et al. [73] determined amines as part of

the evaluation of the biogenic secondary aerosol fraction in boreal forest samples

employing Aerosol Mass Spectrometry (AMS). The current state-of-the-art of AMS

was summarised by Pratt et al. in a two-part review [74, 75], discussing off-line and

on-line mass spectrometric analysis of aerosols. On-line AMS provides fast, real

time characterisation of the atmosphere’s aerosol load, typically implemented with

a particle sizer in order to obtain the aerosol size distribution [76–80]. Samples are

collected at ambient pressure and transferred into the vacuum via a series of

electronic focusing lenses. Ionization is available via hard (electron impact) and

soft (chemical ionization) techniques to generate mass spectra with different

degrees of fragmentation, which are subsequently detected through quadrupole or

time of flight (TOF) mass filters [81]. The former provides a robust set-up with unit

mass resolution and a maximum m/z limit of 700, suitable for smaller species. The

latter has a high mass range and better resolution that is well suited for large

molecules. A special case is chemical ionization using H+ ions from water

molecules (i.e. proton transfer reactions) leading to very little fragmentation.

Recent proton transfer reaction mass spectrometric (PTR-MS) results determining

organic species in snow and air were reported by Gao et al. [40]. Off-line
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instrumentation, while assembled from similar instrument components (EI, CI,

quadrupole or TOF mass filters) requires separate sample collection such as filters

and several preparation steps often including derivatization. Methods are prone to

artefact formation, but provide sensitive compound identification and quantification

for a wide range of organic species, which is not always achievable using on-line

instrumentation (see Gao et al. [40]). Other soft ionization techniques that are quite

widely used for the determination of polycyclic aromatic hydrocarbons are

electrospray ionization (ESI) [82] and atmospheric pressure chemical ionization

(APCI), e.g. [83].

Other nitrogen-containing species such as peptides and proteins were not

directly determined in the atmosphere, but typically as part of a general biological

characterisation of atmospheric samples, methods of which are covered in Sect. 2.3.

Older reports listed the concentration range of aliphatic amines from <0.0002 to

2.7 μmol N L�1 as compiled by Cornell et al. [84]. Lipids and carbohydrates,

together with other species of direct biological origin, were typically determined as

part of the characterisation of micro-organisms in air and snow and will be covered

in Sect. 2.3.

For sulphur-containing species such as methanethiol, which are mainly related to

anthropogenic activities (livestock, animal waste and composting), determination

has recently been carried out using mass spectrometry (GC-MS [85] and PTR-MS

[86]). Measurements of background atmospheric concentrations or data not directly

measured at the source do not exist. The determination of dimethylsulphide

together with other reduced sulphur compounds in air was reviewed by Pandey

and Kim [87], including ion chromatography, electrochemical methods (e.g.

voltammetry) and gas chromatographic methods, including GC-MS.

A summary of sampling locations, species’ identities and concentrations is given

in Tables 2 and 3. Additional concentration data for SVOC species were published

by Kos and Ariya [21].

2.1.2 SVOC Measurement and Characterisation

Gas chromatography, coupled with flame-ionisation, electron capture (for

halogenated species) and mass spectrometric detectors, is the most popular tool

for determination of SVOCs in melted snow samples [44]. A prerequisite is the

efficient separation of the analytes from the aqueous matrix, which can be accom-

plished using filtration onto quartz fibre filters and solid phase extraction [88]. Solid

phase micro-extraction, which utilises equilibrium-based adsorption of analytes

onto a polymer fibre bundle, has also been proposed and tested in laboratory studies

[13, 89]. Both methods allow for an efficient transfer into the injection port of a gas

chromatograph without water contamination. Directly coupled inlet sampler with

GC-FID instrumentation has also been used [90]. The air sample was

pre-concentrated using adsorbents (Carbotrap B, Carbosieve), followed by heating

and collection on a cryofocuser (a fused silica capillary tube packed with
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Carbopack and Envicarb X) before transfer to the GC by heating. A similar

approach for batch samples (electro polished SUMMA canisters) was employed

by trapping analytes at liquid nitrogen temperatures before introduction into a

GC-FID by Hudson and Ariya [91]. Both adsorption methods allowed for the

determination of VOC and SVOC.

Halogenated species were quantified using electron capture detection after gas

chromatographic separation to ensure best analyte sensitivity. For organic species,

gas chromatography coupled to a mass spectrometric detector (GC-MS) is by far

the most popular for laboratory-based measurements, but difficult to deploy in the

field [13, 88, 89]. The latter would be preferable to avoid potential changes in the

sample during storage and transport, which take up to several days for remote

regions, leading to inevitable warming of the samples. Blas et al. [92] provided an

extensive summary of atmospheric concentrations detected in snow samples and

the authors briefly mentioned the techniques employed for the determination of

inorganic and organic species. A summary of sampling locations, species identities

and concentrations is given in Table 2.

2.2 Sampling and Analysis of Bioaerosols

Biological airborne particles are collected by using two different methodologies

that can be classified as passive and active sampling. The efficacy of a bioaerosol

sampler is determined by its extraction efficiency, collection efficiency, and its

effect on the biological activity of the captured microorganisms. The existence of a

wide range of biological particles in air and sampling methods has effectively

inhibited the establishment of standardised protocols. In general an ideal sampling

technique fulfils two criteria: (1) capturing all bioaerosols and (2) preserving the

original state of viability. During air sampling, various factors such as aerosol

concentration and composition, inlet orientation, aerosol charge, particle desicca-

tion and shear forces, wind speed, particle breakup and sampling flow rate changes

may affect viability, cultivability and the number of microbes collected [93].

Bioaerosols can be analysed by two different means: (1) by total number of

cultivable species on the agar plate or (2) by total number in the air, including those

that are not cultivable such as airborne toxins or pollen grains. The latter is used

mainly for viable bacterial cells, endospores and some fungal spores. However,

classical methods for determining the number of viable bacteria rely on the ability

of cells to grow on solid medium. The number of detected colonies is not truly

representative of the total population of microorganisms collected in air sampling.

This is due to the fact that many of the microorganisms are not cultivable under

laboratory setting conditions [94], or because they have lost their ability to form

colonies during the sampling process [95]. To overcome this limitation, different

techniques have been used to detect their physiological viability [96], metabolic

activity and nucleic acid analysis [50, 97, 98] and to numerate microorganisms

using flow cytometry or fluorescent staining [99–101]. Over the years, different air
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sampling techniques have evolved that can be generally categorised as: (1) sedi-

mentation and inertial samplers, (2) filtration, (3) optical counters/analysers and (4)

electrical mobility techniques. For each technique the first reference given provides

a schematic of the discussed technique. All samplers discussed in Sects. 2.2.1–2.2.8,

have the capability to sample both aerosols and bioaerosols. Discrimination takes

place at the analysis stage by cultivation or, e.g. mass spectral analysis of specific

biological markers.

2.2.1 Sedimentation and Inertial Samplers

Sedimentation or settling plates are the most primitive method for sampling air-

borne microorganisms. A Petri dish containing a non-selective agar is exposed

directly to air for a given period of time and bioaerosols will eventually settle by

gravity. Plates are incubated at specific temperatures to permit the growth of

colonies. Results are obtained via colony forming units (CFU) or particles per

minute. It is a passive, non-volumetric method and imprecise due to over-

representing larger particles because of their rapid settling rate. The limitation of

this technique is the detection of only viable biological particles and those with a

specific size range, which are able to sediment. Thus, the results cannot be quanti-

tatively analysed. Furthermore, it can take from many hours to days for the growth

of microbes, since agar plates are prone to non-airborne contamination, and over-

growth occurs in highly polluted areas, which makes it difficult to analyse. The

advantage is that the method is simple and inexpensive.

In active monitoring, air sampling instruments bring a specific volume of air into

a collection vessel. The main methods that are used for sampling and quantification

of viable airborne microorganisms are impaction on solid surface, filtration, centri-

fugation, cyclones, electrostatic precipitation, and the impingement in liquids

(Table 4).

2.2.2 Impactors

The collection media in impactor samplers are solid or adhesive media. The

impactor is basically a jet (pump or fan) that draws air into a sampling device,

which then directs the air stream at the collection plate containing agar medium

[102]. On impact with the collection surface, the direction of the air diverges from

that of the suspended particles, which accumulate and stick to the surface of the

agar plate. Impaction results in low sampling stresses during collection, and sample

manipulation are not required. The impaction methods give higher particle recovery

than other methods. The number of colonies grown in agar media gives an estima-

tion of the number of microorganisms in the air. Impaction sample collector plates

tolerate high flow rates, are sterile and are easy to use. There are two different

impaction types: slit samplers (e.g. Casella slit sampler) and sieve samplers
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(e.g. Andersen multistage sieve sampler). Viable biological aerosols have recently

been determined by Raisi et al. using an Andersen type impactor [103].

Slit Samplers

Slit samplers are usually cylindrical and a known volume of air is drawn by vacuum

through a slit opening [104]. The air flow moves across a solid surface with abrupt

changes in direction and accelerated air is directed toward the surface of a Petri dish

containing agar media. Wetted wall cyclone samplers suitable for bioaerosols are

also available [105]. The plate containing the Petri dish rotates at a known rate,

which varies. Microorganisms with a higher mass are impacted on the agar surface

and the rest of the air flows around the plate and exits the air sampler. Slit samplers

are used to determine the concentration of microorganisms as a function of time.

The direct growth of microorganisms from Petri dishes allows the establishment of

the time of settlement for each particle.

This technique has several deficiencies. First, slit samplers do not separate and

differentiate the size of airborne particles. Second, between the vacuum action and

the rotating plate, the medium often dehydrates which can lead to poor bacterial

growth and reduction in the viable count of stress-sensitive microorganisms. Third,

the collected air sample is not a true representation of the air quality since about

10% of total particles are not deposited on the impaction medium. Lastly, only large

particles with sufficient inertia will deviate from the streamlines and impact onto

the agar surface. Small particles (<0.5 μm) miss the agar surface and are ejected

back into the atmosphere.

Sieve Samplers

Sieve samplers are operated by drawing air through a large number of small evenly

placed holes drilled in a metal plate (sieve), e.g. used by Wang et al. in a setup for

road dust sampling [106]. The suspended particles deviate from the air flow by

inertia and impact on an agar surface located a few millimetres below the perforated

plate. In multistage (e.g. Andersen) sieve samplers, particles are separated by size

through multistage acceleration and each perforated plate is held above an agar

plate with successive plates with smaller holes. This arrangement causes increased

particle velocity as air flows through the apparatus. At a constant flow, larger

particles impact on the first stage, whereas smaller particles impact on the last

impaction stage. Like slit samplers, no diluting or plating is required and results are

expressed as particles per unit volume. The major advantage of this sampler is that

it provides data on particle size. Limitations associated with sieve impactors are: (1)

significant inhibition of the growth of microorganisms by drying the nutrient agar

during long periods of sampling and low humidity, (2) expensive and cumbersome

and (3) lack of full capability of collecting very small particles, particularly

colloidal-type structures.
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2.2.3 Impingers

In impingers, the collection medium is liquid. In all-glass impingers (AGIs),

airborne particles are accelerated by a narrow orifice that is placed at a distance

from the bottom of the flask. A suction pump directs air through a curved narrow

suction glass inlet tube. A pressure drop in the flask forces the air to enter horizon-

tally through the inlet, which then curves to a vertical position. The air is forced

downward and impacted onto a liquid medium at the bottom of the flask and can be

used for sampling aerosols with diameters as small as the nanometre size

range [107].

Any suspended particles in air are impinged into the collection liquid as a result

of the sudden change in direction of the air after encountering the surface of liquid

medium. The air flow rate is determined by the diameter of the inlet tube. By using

the air flow rate, sample volume can be calculated, allowing for the quantitative

assessment of results. Bioaerosols were also separated by size using multiple liquid

impingers [108, 109]. For instance, in a design of impinger models, BioSampler™,

three tangential sonic nozzles force air toward the base of the flask, which contains

a liquid medium. The swirling motion of the collection medium provides less harsh

conditions compared to the old models (e.g. AGI [110]). The liquid medium

protects bioaerosols from dehydration and preserves their original state. The liquid

medium can later be analysed by culturing, filtering or molecular biology

techniques. Sampling time is an important factor in optimizing the original state

of bioaerosols in liquid impinger as deagglomeration and re-aerosolization of

microorganisms can occur [111, 112]. Moreover, the microbial stress and the

agitation motion may impact the viable count of microorganisms over time.

A suitable collecting medium must preserve the viability of the microorganism

while inhibiting its multiplication during the longer duration of sampling. The

advantage of this method is that it collects various sizes of microorganisms, and

the liquid medium containing the air sample can be analysed rapidly and directly by

different methods such as PCR. However, since the glass containers are not

disposable and must be sterile before each use, preparation time is long. Moreover,

the long duration of sample collection causes evaporation of the collected liquid as

well as cooling of the sample, thus affecting the retention rate of microorganisms.

2.2.4 Centrifugal Samplers

In centrifugal samplers, aerosols are spun in a circular path at high velocity toward

the inner wall of the drum that is lined with a plastic strip supporting a thin layer of

agar medium. The major advantage of these devices is that they are battery operated

and are small enough to be held in the hand [110]. This device has several

limitations. First, the vortex affects sampling accuracy by showing higher counts

not representative of the actual value in the atmosphere. Second, due to the use of

the strip, the counts should be done manually. Third, the sampler exhausts the air
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stream from the same opening used to create the vortex, which causes disruption of

the surrounding atmosphere. Thus, the flow rate can only be quantified theoreti-

cally, and the volumetric accuracy of the collected sample is in question. Lastly,

these devices fail to produce enough centrifugal force to propel small particles onto

the collection surface.

2.2.5 Cyclones

The principle separation of particles from a gas stream in a cyclone is by creating a

vortex that uses both gravitational and centrifugal forces. See Kim et al. for a

schematic in a combination instrument with an impinger [113]. The cyclone

sampler works by taking in air at an angle to the wall of the micro-centrifuge

tube, thus creating centrifugal force and pushing the denser particles into the walls

of the tube so that they eventually settle at the bottom of the tube. From the top of

the cyclone body, polluted air enters the inlet at high velocity and is moved along

the inner wall. Inertial forces push the particles outward. Larger particles cannot

follow the spinning path and impact on the cyclone wall. Meanwhile, gravity pulls

the spinning particulates down along the cyclone body where they are collected at

the bottom. It allows for spatially variable samples, and eliminates transfer losses

during analysis because the particle collection occurs in the micro-centrifuge tubes

with 90% for particles in the 1 μm range.

2.2.6 Filtration

Filters are widely used for aerosol sampling because of their low cost and simplicity

of operation. For example, see Moosmüller et al. for a filter setup for spectroscopic

characterisation of aerosols [114]. Filters with different pore sizes are able to trap

bioaerosols selectively. The efficiency of a filter is governed by the following five

basic mechanisms: (1) interception, (2) inertial impaction, (3) diffusion, (4) gravi-

tational settling and (5) electrostatic attraction. Filters are made commercially in

different compositions (e.g. cellulose, polycarbonate and polytetrafluoroethylene),

pore size and thickness.

The air filtration apparatus consists of cellulose fibre, sodium alginate, glass

fibre, a gelatine membrane filter (GMF; pore size 3 μm) or synthetic membrane

filters (pore size 0.45 or 0.22 μm) mounted in an appropriate holder and connected

to a vacuum source through a flow rate controller. For analysis, the filter containing

microbes can be analysed directly using microscopic examination. The whole fibre

filter or a section of it may further be agitated in a suitable liquid until the particles

are uniformly dispersed. Aliquots of the suspension are then assayed by appropriate

microbiological and molecular techniques. Membrane filters can either be treated

similarly to fibre filters or placed directly on an agar surface and incubated.

Bioaerosols collected on filters are exposed to desiccation, which might reduce

the viability of cells using culture analysis. Specific filters are able to trap ultra-fine
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particles. For instance, High-Efficiency Particulate Air (HEPA) filter traps 99.97%

of airborne particles with an aerodynamic diameter of 0.3 μm and larger. The Ultra-

Low Penetration Air (ULPA) filter traps even more, 99.99% of particles 0.12 μm
and larger and HyperHEPA filters are certified to filter down to 0.003 μm with a

guaranteed minimum efficiency of over 99.5%.

2.2.7 Optical Counters/Analysers

Aerosols can be analysed using techniques that are based on the interactions

between particles and light. The examination of a scattered beam of light by a

detector after hitting a particle is the basis for many optical instruments. For

example, the number of scattered light pulses is a measure of particle number.

Furthermore, the intensity and spatial scattering pattern can also be used for

determination of particle size and particle shape, respectively. Optical methods

are sensitive and easy to use. These methods are classified into four categories: (1)

optical particle counter, (2) laser diffractometer, (3) phase Doppler system and (4)

intensity deconvolution system.

Optical Particle Counter

The optical particle counter (OPS) uses the principle of light scattering from

airborne particles to determine particle size distribution [26]. It is a real time

instrument that is typically used to measure particles above 0.05 μm in diameter.

Many well established techniques are available for counting air particles. However,

the calibration of any two air particle counters with the same reproducibility while

taking the same air sample has created many challenges.

OPSs are capable of characterizing particle size within the range 0.25–20 μm.

They are compact laser-based devices which use a 90� scattering angle in combi-

nation with a high-intensity white light source. Their high sensitivity allows for the

use in low and high aerosol concentration (1 � 107 cm�3) in clean room or

industrial filter testing [26]. The size of particles are determined by using a

calibration curve based on the refractive index of a broad range of monodisperse

size classes of aerosol particles in the super-micrometre size range. The coverage of

the laser by dust, and measuring of various particles with very different refractive

indices (and shape factors), affect its calibration and performance. Thus, periodical

calibration and recalibration of such devices is often required.

Laser Diffractometer

Laser diffractometry (LD) determines particle size (either solid particles or liquid

droplets) indirectly from the interpretation of the pattern of light scattering intensity

falling on the detector of the instrument [115]. Only the diffraction component of
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scattered light (not reflection, refraction and polarization) is used for analysis in

laser diffractometers. Laser diffraction measurements are based on particle

ensembles rather than on single particles. A suitable optical model is necessary to

convert this information accurately into a particle size distribution [116,

117]. There are two theoretical optical models to convert light energy diffraction

patterns into size distributions: Fraunhofer and Lorenz–Mie theories. According to

the Lorenz–Mie theory, the calculation is based on the comparison of the complex

refractive index of the particle with the supporting medium to account for light

deflection and absorption components. The Fraunhofer theory assumes that all

particles are much larger than the laser wavelength and considers only near/forward

scattering. The measurements are only accurate for particles >25 μm in diameter

[115]. Comparing these two theories, the Mie theory gives a better analysis for

small particles in the micrometre size range since the Fraunhofer theory simulates

non-existing fine particle fractions [118].

Phase Doppler Particle Analysis Systems

The phase Doppler method, a non-intrusive optical method, is based upon the

principles of light scattering interferometry to measure the size or speed of spheri-

cal particles (typically liquid sprays, but also some bubbles and solid spheres)

[119]. Measurements are made repeatedly at a small, optical probe volume defined

by the intersection of two laser beams. As a particle passes through the probe

volume, it scatters light from the beams into a multi-detector receiving probe,

strategically located at an off-axis collection angle. The phase shift between the

Doppler burst signals from different detectors is proportional to the size of the

spherical particles.

The velocity of the drops/particles is also determined by the scattered light

which forms an interference fringe pattern. The scattered interference pattern

produced by the moving particle is proportional to the drop velocity. The fringe

spacing can be calculated from the optical set-up. The fringe spacing divided by the

time to transit one fringe, gives the velocity of the particle passing through the

probe volume.

Intensity Deconvolution System

An intensity deconvolution system measures the absolute light intensity scattered

from a focused laser beam on an optically defined volume, and a deconvolution

algorithm is used to determine the variation of particle size [120]. After the

collection of a large number of scattered light signals, the absolute particle concen-

tration, particle size distribution and average particle speed are determined by using

an intensity deconvolution algorithm. This technique is capable of resolving a size

range of 0.2–200 μm up to a concentration of 107 particles/cm3, but is very

expensive.
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2.2.8 Electrical Mobility Techniques

Electrical methods use the physical properties of charged particles, especially the

mobility in an electric field.

Electrical Aerosol Analyser

The electrical aerosol analyser (EAA) consists of three main components: an

aerosol charger, a mobility analyser, and an electrometer current sensor

[121]. The aerosol charger is based on diffusion charging from a positive corona

discharge. Under well-controlled conditions, each particle size is charged with a

certain number of charges. The charged particle flows into the annular shell of the

mobility analyser. In fact it operates as an electrostatic precipitator and accumulates

those particles with a high electrical mobility. The specific electrical mobility of

each particle can be used to compute the size distribution (to within about 10 nm) of

the aerosol sample [122]. EAA can be used for both solid and volatile particles.

Furthermore, it is rapid and is able to do repetitive in situ measurements [123].

Differential Mobility Analyser

A differential mobility analyser (DMA) works on the same principle as the EAA,

with some operational differences. In a DMA, an electrostatic classifier is used

instead of a mobility analyser and aerosol particles can be sorted by size from 0.01

to 0.9 μm while suspended in air [124].

DMA applies an electric charge to the particles. Small particles with single

positive charges are sorted while other uncharged particles will be discarded. After

entering the DMA, the migration of charged particles is controlled by an electric

field. The rate of migration is determined by electrical mobility of the particles,

which is dependent on both the size and the electrical charge. To determine the size

distribution of particles, DMA scans over the segment of particles’ mobilities by

varying the applied field. The measured number concentrations in each segment are

then converted to a size distribution by using the distribution of charges produced

by the charger and the known relation between mobility and size.

Light Detection and Ranging

Light Detection and Ranging (LIDAR or LADAR) is an optical remote sensing

technology that can measure the distance to – or other properties of – a target by

illuminating the target with light, often using pulses from a laser. It uses ultraviolet

(UV) light to excite natural substances such as amino acids, coenzymes and

fluorophores to fluoresce [125]. The most common UV laser wavelengths are
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266 and 355 nm. A grating spectrometer combined with an intensified charge-

coupled device (iCCD) camera collects the emitted fluorescence from

microorganisms and the fluorescence spectra are identified as their laser-induced

fluorescence (LIF) spectral signatures [126]. Simard et al. have employed LIDAR

effectively for detection of bacterial clouds at long distances; a schematic of their

system is also illustrated [127, 128].

2.2.9 Biosensors

Biosensors detect pathogens by using analytical, biochemical and/or genetic recog-

nition methods. The main analytical methods used are mass spectrometry (MS)

[53], modern infra-red [129, 130] and Raman spectroscopy [130, 131].

Biosensors are categorised into four main groups: optical, mass, electrochemical

and thermal sensors [132–134]. Recently, a novel method – triangulation identifi-

cation for the genetic evaluation of risks (TIGER) – has been developed which is

able to identify bioaerosols or pathogens at strain level without prior knowledge of

the pathogen’s nucleic acid sequence [135]. This technique incorporates the poly-

merase chain reaction (PCR) to amplify DNA and high-performance electrospray

mass spectrometry time-of-flight (TOF) instrument to drive base compositions of

PCR products. In this method, certain selected DNA regions of the microorganism

are amplified by using multiple pairs of primers that target conserved regions such

as ribosomal sequences and conserved elements from essential protein-coding

genes. The resulting amplicons are purified for electrospray using a mass spectrom-

eter. The mass spectrometer detects the amplicons. A list of all detected masses

based on spectral signals, and their conversion to base composition (adenosines,

guanosines, cytidines and thymidines) is prepared and compared with a database of

calculated base compositions that is derived from the sequences of known

organisms to determine the identities of any microorganism, down to strain level.

2.2.10 Other Sampling and Detection Methods

Swabbing

Airborne microorganisms can also be detected by simple methods of swabbing the

surfaces of air purifier filters (Table 4) [136, 137].

Total VOC

Markers of moulds, such as ergosterol, beta-glucans or VOC of microbial origin

(MVOC) that are emitted during different developmental stages of fungi are used as

an indication of fungal growth or degradation. A Radiello™ type passive diffusion

tube is able to collect the VOC. Then the VOC can be analysed using a combination
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of three techniques: gas chromatography (GC) to separate the VOC, a flame

ionization detector (FID) to detect different compounds (best for detecting

hydrocarbons and other easily flammable components) and mass spectrometry

(MS) to identify the different compounds (based on measuring the mass-to-charge

ratio of charged particles) [138].

Cytometry Analysis

In solid-phase cytometry (SPC), microorganisms are analysed by a combination of

both epifluorescence microscopy and flow cytometry [139]. Air is impacted on a

water-soluble polymer film present in a standard Petri dish (polyvinyl alcohol

plate). After filtration, viable cells are labeled. The filter is scanned by a laser in a

solid-phase cytometer. Using different software, fluorescent particles are distin-

guished from microorganisms.

Total luminescence spectroscopy (TLS) is the simultaneous measurement of

excitation, emission and intensity wavelengths of compound fluorophores

[140–142]. This technique is mainly used for large cell numbers in aqueous

suspensions. In TLS the distinct fluorescence data that is generated from a three-

dimensional matrix or excitation-emission matrix (EEM) of a specific microorgan-

ism is used for identification. Compared to two-dimensional emission spectra, this

technique is highly sensitive and selective [143].

Before recent advances in molecular biology, identification of microorganisms

was based on similarities and differences observed in their phenotypic

characteristics which relied on availability of pure culture, subsequent growth

characteristics and biochemical profiling. The limitations of monitoring and identi-

fication of microorganisms imposed by microscopy and cultural methods are

overcome by molecular biology techniques [144]. Molecular approaches using

full length sequencing of 16S ribosomal gene in bacteria have provided a powerful

identification tool. In this method, DNA is extracted and its 16S rDNA sequence is

analysed by PCR. The microorganism is identified by matching its DNA sequence

to known sequences in GenBank. Quantitative PCR (qPCR) provides both quanti-

tative and qualitative analysis [145, 146]. An important limitation of the

DNA-based technologies is its inability to distinguish between live and dead

microorganisms.

The sequence of prokaryote 16S rDNA is unique and highly conserved [147]

among various bacteria. Moreover, 16S rDNA gene can be easily and rapidly

sequenced for accurate identification of bacteria, and phylogenetic relationships

which have facilitated the discovery of novel bacterial species [148–150]. The

earliest in-depth analyses of microbial communities with high phylogenetic resolu-

tion power were carried out using Sanger sequencing [151–155]. Phylogenetic

oligonucleotide microarrays, and next-generation sequencing (NGS) including

pyrosequencing (introduced by 454 Life Sciences, Inc.) as well as other platforms

such as Solexa (Illumina, Inc.) and SOLid (ABI, Inc.) are the recent advances in

DNA sequencing techniques. Compared to the Sanger method, the DNAmicroarray
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offers simultaneous detection of thousands of genes on a single glass slide or silicon

surface [156]. Furthermore, the new high throughput 454 GS-FLX Titanium

pyrosequencing (released to market in 2005) is a superior method compared to

the Sanger method in terms of its capacity of sequencing per run, time, cost per

sequenced nucleotide [157] and its no a priori sequence information. It is based on

sequencing-by-synthesis and the pyrosequencing is performed within a complex

reaction that includes enzymes (ATP sulphurylase and luciferase) and substrates

(adenosine 50 phosphosulphate and luciferin).

The first step of the 454 techniques is the generation of a DNA library (single

stranded DNA or PCR amplicons) containing flanking adaptor sequences, which

are used to immobilise the DNA library fragments to capture streptavidin beads.

Then emulsion PCR is performed for the DNA amplification step. By using the

correct stoichiometric amount of the DNA library, each adaptor-modified DNA

library is independently confined in a droplet of oil and water containing PCR

reagents, and beads. This ensures the amplification of one DNA fragment per bead.

The next step after amplification is the breakage of emulsions and enrichment of

beads with streptavidin-coated magnetic beads for selective purification of beads

containing the biotin-labeled amplified product. The isolated DNA bound to beads

are annealed with a sequencing primer and are distributed into a fibre-optic

PicoTiter™ plate containing 1.6 million picoliter wells that are surrounded by

enzyme beads for pyrosequencing. The diameter of each well is designed to

allow only one bead per well. Nucleotides are allowed to flow one at a time over

the plate and template-dependent incorporation releases pyrophosphate, which is

converted to light through an enzymatic process.

The steps involved in pyro-sequencing can be summarised as the release of

pyrophosphate (PPi) during the DNA polymerase reaction, the quantitative conver-

sion of pyrophosphate to ATP by sulphurylase and ATP-dependent conversion of

luciferin to oxyluciferin by luciferase. Light pulses are emitted with the production

of oxyluciferin, which is directly proportional to the incorporation of one or more

nucleosides. The amount of light produced by luciferase is detected by a

light-sensitive device such as a luminometer or a CCD (charge-coupled device)

camera. The flowgrams are analysed and a nucleotide sequence is determined for

each read using specific software.

2.3 Role of Biogenic Aerosols in Nucleation Processes

Aerosols, including those of biogenic origin, have important impacts on atmo-

spheric radiation, both directly, and indirectly through the nucleation of atmo-

spheric water. The impact of biogenic aerosols on radiation through direct and

indirect effects depends on their physical and chemical properties. Table 5 shows

the main chemical and physical properties of aerosols that influence their interac-

tion with radiation, and with other atmospheric compounds, resulting in the forma-

tion of secondary particles, as well as their influence on cloud formation. Chemical
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composition is affected by partitioning, e.g. increased hydrophilicity [158], which

influences hygroscopicity and CCN ability. Chemical composition influences

subsequent aging reactions, which were found to depend on chemical structure

[159] and oxidation states [160, 161]. Physical state such as size, shape and

morphology is also affected by partitioning, e.g. restructuring of aggregated

particles (e.g. soot) [162]. Physical state directly affects the interaction of the

aerosol with light and the ability to act as surfaces for heterogeneous ice nucleation.

Depicted in Figs. 2 and 3, are some examples of atmospheric modelling runs that

attempt to address the importance of bioaerosols in the atmosphere.

Fig. 2 The simulation with

Phillips’ Scheme in the

condensation and immersion

freezing modes. (a) Spatial

and temporal evolution of the

primary ice nucleation rate

(L�1 s�1) (shaded area) and
the ice splinter production

rate (L�1 s�1) (solid lines).
(b) Spatial and temporal

evolution of ice particles

(L�1) (shaded area) and
bacteria-containing ice

particles (L�1) (solid lines).
Courtesy of Sun et al.

(Personal Communication,

2013)
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3 Future Outlook

Herein we attempted to review conventional and current state-of-the-art techniques

and methods involving bio-organic matter, as well as to provide a summary of

existing measurement methods for bio-organic compounds. We have explored

advantages and disadvantages, and the limits and uncertainties of the measured

data. To obtain complementary information on physical and chemical characteriza-

tion of bio-organic matter, there is an increasing tendency to deploy several

techniques and methods. There is currently no “perfect” technique to address

most chemical and physical characteristics that atmospheric scientists might be

interested in. However, there has been significant progress during the last couple of

decades, namely in optical spectroscopy, mass spectrometry and genomics, which

can assist scientists to address more fundamental questions about nucleation,

Fig. 3 Spatial and temporal

evolution of the primary ice

nucleation rate (L�1 s�1)

(shaded area) and the ice

splinter production rate

(L�1 s�1) (solid lines) for the
simulation with Chen’s

scheme in the immersion

freezing mode. (a) Spatial

and temporal evolution of the

primary ice nucleation rate

(L�1 s�1) (shaded area) and
the ice splinter production

rate (L�1 s�1) (solid lines).
(b) Spatial and temporal

evolution of ice particles

(L�1) (shaded area) and
bacteria-containing ice

particles (L�1) (solid lines).
Courtesy of Sun et al.

(Personal Communication,

2013)
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surface interactions, volatilisation, gas-to-particle conditioning, new aerosol forma-

tion and so forth. Our abilities are negligible when it concerns studies of surface

processes that are relevant to environmental conditions. Understanding

aerosol–ice–snow interfaces still cannot be achieved at molecular levels.

Non-destructive, preferably (ultra)fast-resolved real-time instruments capable of

studying physical and chemical properties as well as exploring biological

characteristics of bio-organic matters will provide better means for next-generation

research. However, we are not there yet!
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Appendix

A Brief Review of Mitigation of Atmospheric Bio-organic
Compounds

Bioaerosols are not released as a result of human activity to the same extent as other

pollutants. However, significant anthropogenic sources include waste treatment,

agriculture, food production, paper and wood production and horticulture, as well

as municipal composting [163, 164]. Development and deployment of bioaerosol

mitigation technologies is very limited due to the lack of regulations governing

acceptable bioaerosol emission rates and ambient concentrations [60]. The Repub-

lic of Korea has set a maximum allowable total bacterial bioaerosol concentration

of 800 CFU m�3 for indoor environments [165]. Licensed “green waste”

composting sites in England and Wales are subject to guidelines limiting total

fungi and bacteria concentrations to below 1,000 CFU m�3, and Gram-negative

bacteria below 300 CFU m�3 at 250 m from the site boundary [163]. However,

neither the US Environmental Protection Agency (EPA) nor the World Health

Organization (WHO) has established bioaerosol concentration standards [165]

(incineration or biofiltration), but also include UV radiation and ion emission

[164, 166, 167]. In industrial settings, the measures in place to control dust and

odour emissions will generally remove bioaerosols as well, but some reports

indicate that these do not always control the emission of certain pathogens

[168]. The above-mentioned pollution control technologies and other techniques

can also be applied to treat indoor air. Increased ventilation rates and the use of

high-efficiency particulate air (HEPA) filters are popular approaches, but both

greatly increase the power requirements of heating, ventilation and air conditioning

(HVAC) systems. Methods such as thermal degradation or ESP could be more

energy efficient, but work needs to be done to determine the best way to implement

these technologies into HVAC systems [60, 169].
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VOCs are one class of compounds that can be emitted from biogenic or anthro-

pogenic sources. Among anthropogenic activities, the transport and industrial

sectors and biomass burning are responsible for most of the global anthropogenic

VOCs emissions. Their detrimental impact on the atmosphere is multifaceted, as

they are readily oxidised by OH radical and through a series of reactions allowing

the formation of tropospheric ozone, a main component of photochemical smog

plaguing the air quality of many urban cities and causing increased premature

deaths [170]. Exposure to benzene, an aromatic compound, has been directly linked

to leukaemia [171]. Consequently, a variety of control technologies to prevent the

release of VOC by degradation or recovery have been developed. Detailed accounts

of existing and emerging techniques have been reviewed [172, 173].

Destruction techniques aim at oxidizing the parent VOC into CO2 and

H2O. High removal efficiencies are obtained by common techniques like thermal

and catalytic oxidation, which can achieve more than 95% removal of VOCs [173].

Destruction can also be achieved by radical formation, using photo-catalysts

like TiO2, for example. However, thermal processes have a high energy demand

due to the high temperature required for oxidation. In addition, both thermal- and

photocatalytic-based oxidation involve the formation of toxic by-products and can

reduce a catalyst’s lifetime due to poisoning [174–176]. Recovery techniques

involve two steps. First a transfer of the pollutants from the air stream to another

medium and second the recovery of the pollutants. In adsorption-based techniques

the pollutant is separated from the polluted stream by binding chemically or

physically to the adsorbent upon exposure. The pollutant is then collected during

the regeneration of the saturated adsorbent; details on various regeneration methods

are reported in the literature [177–179]. So far the two leading materials in

adsorption have been activated carbon for its high surface area and zeolites for

their thermal stability and size selective properties. New materials, however, are

being developed to overcome some of the challenges that face activated carbon and

zeolites such as humidity sensitivity, flammability during regeneration and cost

[172]. In the context of VOC remediation, mesoporous transition metal oxides,

ordered mesoporous silica (OMS) and carbon nanotubes (CNT) can overcome some

of the challenges faced by the traditional adsorbents [172, 180]. However, the

complexity and inherent formation of wastes during the large-scale synthesis of

these new materials, particularly OMS and CNT, is a subject of environmental

concern for large scale production [180–182]. Recovery by absorption is based on

transferring the gaseous pollutants to a liquid. The system is limited to highly

soluble gases [173]. Investigations on phthalates as absorbents for VOCS have

recently been reported [183]. Recovery by membranes is based on separation due to

a concentration gradient, pressure differential and electrochemical potential

[173]. Separation by membranes is selective, which can limit its efficiency since

VOCs are made up of a mixture of gases. Improving membranes involves develop-

ing materials that can separate a range of organic compounds [173]. VOCs can also

be separated by condensation techniques where the VOCs are cooled to low

temperatures. The various remediation techniques for VOCs are summarised in

Table 6.
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Simultaneous Mitigation of Multiple Air Pollutants

While mitigation options for VOCs and bioaerosols were considered separately

here, the implementation of some pollution mitigation options to target one pollut-

ant may have an effect on the amount of another pollutant released. In many cases,

the implementation of some mitigation options will reduce the emission rates of

several pollutants. However, some process modifications and material substitutions

lead to trade-offs, limiting the production of one pollutant while increasing that of

another. For example, operating a combustion process at a higher temperature with

excess oxygen will generally improve combustion efficiency, reducing the amount

of carbonaceous aerosols and VOCs produced, but will increase the quantity of NOx

produced.

Future Anthropogenic Emission Projections

A wide variety of different pollution control approaches exist and in many cases

emissions of pollutants such as VOCs and bioaerosols from anthropogenic sources

can be effectively reduced to zero. Pollution control technologies are constantly

being refined and adapted to more and more emission sources that release some of

the above-mentioned pollutants.
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Abstract Surface-active organic material is a key component of atmospheric

aerosols. The presence of surfactants can influence aerosol heterogeneous chemistry,

cloud formation, and ice nucleation. We review the current state of the science on the

sources, properties, and impacts of surfactants in atmospheric aerosols.
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List of Abbreviations and Symbols Used

AMS Aerodyne aerosol mass spectrometer

ARG Abdul-Razzak and Ghan

CCN Cloud condensation nucleus/nuclei

CCNc Thermal gradient static cloud diffusion chamber

CDN Cloud droplet nuclei

CFSTGC Continuous-flow streamwise thermal gradient chamber

CMC Critical micelle concentration

DOM Dissolved organic matter

ESP Equilibrium spreading pressure

FTIR Fourier transform infrared spectroscopy

HTDMA Humidified tandem differential mobility analyzer

HULIS Humic-like substances

IHSS International Humic Substances Society

IN Ice nucleus/nuclei

KTA Köhler theory analysis

LC/ESI MS-MS Liquid chromatography/electrospray ionization tandem mass

spectrometry

MVK Methylvinylketone

OA Organic aerosol

OC Organic carbon

SD CCNC Static diffusion CCN counter

SDS Sodium dodecyl sulfate

S–L Szyszkowski–Langmuir

SFRA Suwannee River fulvic acid

SOA Secondary organic aerosol

TEM Transmission electron microscopy

TOC Total organic carbon

TOF-SIMS Time of flight secondary ionization mass spectrometry

UV Ultraviolet

VOC Volatile organic compound

WSOC Water-soluble organic compound

a Parameter, Szyszkowski–Langmuir equation

ai Activity of species i
b Parameter, Szyszkowski–Langmuir equation

C Molality of organic carbon

χi Molality fraction of compound i, Szyszkowski–Langmuir

equation

d Diameter

dc Critical diameter

γ Reactive uptake coefficient

κ Hygroscopicity parameter

M Molarity
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m Mass, Köhler equation

Mi Molecular weight of species i
ν Number of ions

ϕ Osmotic coefficient

R Universal gas constant

r Radius

ρ Density

S Saturation ratio

Sc Critical supersaturation

σ Surface tension

T Temperature

V Volume

1 Introduction

Atmospheric particulate matter impacts Earth’s climate both directly, by scattering

and absorbing solar radiation, and indirectly by influencing cloud formation and

properties [1]. Internal mixtures of inorganic and organic material are common in

tropospheric aerosols, with organic matter typically comprising 10–90% of fine

aerosol mass [2, 3]. While hundreds of organic species found in atmospheric

particles have been identified, the majority of organic aerosol mass often remains

unspeciated. Organic aerosol material (OA) can affect the heterogeneous reactivity

of aerosol particles, their ability to act as cloud condensation nuclei (CCN) or ice

nuclei (IN), and their optical properties.

One special class of organic material commonly found in atmospheric aerosols

are surface-active species, also known as surfactants, including organic acids and

diacids, proteins, and humic-like substances (HULIS). The distinguishing charac-

teristic of surface-active molecules is that they are comprised of both hydrophilic and

hydrophobic moieties. In aqueous solutions they will tend to form structures that

allow the hydrophobic groups to avoid contact with water while the hydrophilic

groups remain in solution. To this end, surface-active molecules may partition to the

gas–liquid interface, where they form a film with the hydrophobic groups protruding

into the gas phase. Surface-active organic molecules may form a surface layer on

aqueous atmospheric aerosols, in what has been referred to as an “inverted micelle”

configuration (Fig. 1) [4, 5]. Other arrangements are also possible, including micelles

(aggregates with the hydrophilic head groups in solution), lenses, oil or lamellar

phases, and crystals, and these may exist in equilibrium with each other and/or a

surface monolayer [6–11]. Furthermore, liquid–liquid phase separations are possible

for mixed inorganic–organic systems under atmospherically relevant conditions [12],

and at low temperatures glasses may form [13, 14]. An organic film at the gas–aerosol

interface will lower the aerosol surface tension and may act as a barrier to mass

transport between the gas and aqueous phases. In this chapter we discuss the
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implications of those physical phenomena for aerosol heterogeneous chemistry and

cloud droplet formation.

Despite their potential significance, the existence of organic surface films on

ambient aqueous aerosols has not been confirmed directly to date due to a lack of

appropriate analytical techniques. However, abundant indirect evidence for these

films exists. Surfactants were first extracted from marine (sea salt) aerosol by

Blanchard almost 50 years ago by collecting the aerosol onto fine platinum wire

and observing the spreading of an organic film from the wire into a film of partially

oxidized motor oil [15]. Atmospheric aerosols have been collected and observed ex

situ to consist of organic coatings surrounding crystalline inorganic cores

[9, 16–22]. Soft X-ray spectromicroscopy and time-of-flight secondary ion mass

spectrometry (TOF-SIMS) have revealed organic coatings on marine and continen-

tal aerosol particles [17–23]. For all these studies particles were dried before

analysis. It is well known that salts tend to expel impurities to the surface as they

crystallize [24], so the possibility exists that the observed core-shell morphology

could have been an artifact of the sampling and drying processes. Additional

indirect evidence of surface films on atmospheric aerosols has been obtained via

measurements of surface tension depression in aqueous extracts of collected aerosol

particles [25–31] as well as in fogwater [27, 28, 32] and rainwater [33]. However,

the dilution of aerosol chemical components inherent in these techniques makes it

difficult to infer conclusively a surface film on the in situ aerosol from observations

of surface tension depression in the sample. Other morphologies have also been

observed for mixed organic/inorganic particles, such as primarily organic particles

with inorganic inclusions [9] and gel-like mixtures [7, 8].

We currently lack sufficient data on the phase behavior and surface-bulk

partitioning of most naturally occurring organic surfactants under conditions

typical of aqueous aerosols to predict accurately the formation of organic surface

films in ambient aerosols. The pH of atmospheric aerosols can range from 0 to 8, a

range that includes the pKa of most naturally occurring organic acids [34, 35]. Most

Fig. 1 Schematic of surface-active organic material in a deliquesced aerosol particle. Surface

organics can potentially inhibit the uptake of gas-phase species to the particle, enhance ice nucle-

ation, and depress particle surface tension, with important implications for aerosol heterogeneous

chemistry and cloud formation
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experimental work has been performed at pH > 3, and few studies deal with the

transition from ionized to unionized state. In addition, at typical atmospheric

relative humidity, aerosols generally become supersaturated with salt. It is not

possible to perform routine measurements in bulk solutions at those salt

concentrations; as a result, most studies in the literature have focused only on

surface tension behavior in water or dilute salt solutions. Phase behavior, especially

for fatty acids, is highly temperature dependent, and little data are available for

temperatures lower than ambient, which would be particularly relevant for

surfactants in clouds. Finally, for many systems only surface tension has been

studied and other important parameters including phase, equilibrium spreading

pressures, and critical micelle concentrations are not known. Some recent studies

have highlighted the dynamic nature of the organic surface layer using techniques

including aerosol optical tweezers coupled with nonlinear Raman spectroscopy

[36], sum frequency generation [37, 38], and neutron reflection [39].

Surface-active organics and organic surface films likely influence aerosol

chemistry and physics in a number of ways. Organic coatings have been shown to

influence ice nucleation in aerosols. By reducing the droplet surface tension,

surface films can reduce the critical supersaturation required for cloud droplet

activation, but they may also present a barrier to gas–aerosol mass transport that

can retard water uptake. This resistance to the transfer of gas phase species to and

from the particle bulk can also affect its heterogeneous chemistry. Consequences

include impacts on atmospheric composition (due to changes in aerosol heteroge-

neous chemistry) and climate (via cloud formation and freezing). In this chapter we

review the current understanding of the sources, properties, and impacts of surface-

active organics in atmospheric aerosols.

2 Sources

Many primary sources of surface-active organic aerosol material exist, including

biomass burning [9, 22, 25, 40–42], leaf abrasion and other primary biological

sources [43–48], emissions from vehicles and other fossil fuel combustion [22, 43,

49–59], and cooking emissions [60–67]. Marine aerosols may obtain a surfactant

component (including long-chain fatty acids) via a bubble-bursting mechanism due

to the organic-rich surface layer that is present on seawater during periods of high

biological activity [15, 68–76]. Fatty acids have been shown to be prevalent in

marine aerosol sampled over the North Atlantic [26, 77] and North Pacific [75, 78,

79], with maximum concentrations occurring during periods of high biological

productivity. Tervahattu and coworkers used TOF-SIMS to identify the main

component of the organic layer on dried marine aerosols as palmitic acid [20, 21].

Gas-to-particle conversion is an important secondary source of aerosol

surfactants. Inorganic aerosols may acquire an organic component via in situ

interactions with volatile organic compounds (VOCs), a family of processes
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known as secondary organic aerosol (SOA) formation. Two major pathways for

SOA formation have been identified:

• “Traditional” (condensational) SOA formation: gas-phase oxidation of VOCs in
the atmosphere can lead to the formation of less-volatile products, which may

then condense onto existing aerosol particles, increasing their organic content

[80, 81].

• Condensed-phase SOA formation: water-soluble VOCs may dissolve into the

aqueous phase of cloud droplets or wet aerosols. Subsequent aqueous-phase

reactions (e.g., oxidation and/or oligomerization) can lead to the formation of

low-volatility secondary organic material [82–87]. In particular, the dicarbonyl

VOCs glyoxal and methylglyoxal have been studied as potential precursors for

this SOA formation pathway. Recently, aqueous-phase reactions of isoprene-

derived epoxydiols have also been shown to be efficient pathways to SOA

formation in the aerosol aqueous phase [88–91].

SOA material formed by either pathway may be surface-active. For example,

organic acids including cis-pinonic acid, which is formed via the oxidation of the

biogenic VOC α-pinene, are “traditional” SOA products which have been shown to

be surface-active [92–96]. Alkene ozonolysis has also been shown to yield water-

soluble surface-active organic compounds [97].

Condensed-phase chemistry is another possible source of aerosol surfactants.

The oxidation of aerosol organic material yields functionalized products which may

be surface-active [98]. Oxidative processing of water-soluble species in cloud or

aerosol water may result in the formation of surface-active organic acids such as

malonic and malic acids [99, 100]. Surface-active HULIS or organosulfate species

may also form in situ in aerosol or cloud water [84, 85, 101–104].

3 Impact on Aerosol Heterogeneous Chemistry

It has long been known that the presence of a long-chain fatty acid layer at the

air–water interface inhibits the evaporation of a macroscopic water film [105–107].

In recent years it has been shown that organic surface films can significantly

influence reactive gas uptake to laboratory-generated aerosols as well [108–117].

Film thickness in these studies ranged from less than a monolayer (single molecule

layer) [112, 113] to macroscopic [108, 111]. The composition of the organic films

in these laboratory aerosols had varying degrees of complexity, from single-

component monolayers [112, 113, 115, 118–120] to mixtures of SOA species

[108, 110, 111] to humic acid [109].

Not all organic surface monolayers block gas–aerosol mass transport to the same

degree; the barrier action of the surfactant monolayer tends to increase with

increasing organic chain length and packing density [115, 116, 119, 121–127].

Fatty acids with 16 or more carbon atoms form close-packed, incompressible films

due to the attractive forces between the neighboring hydrophobic tails [107, 128].
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Short-chained surfactants (and those with irregular, bent, or branched chains) are

known to form less tightly packed films and provide a lower barrier to water

evaporation than longer-chained surfactants [105, 107]. For these films, which are

sometimes referred to as “compressible” or “expanded,” the degree of packing of

the surfactant will change with increasing surface coverage, resulting in a nonlinear

relationship between the number of surfactant molecules on the surface and the

degree of inhibition of gas-to-aerosol mass transfer [113].

For single-chain surfactants like fatty acids the head group also influences how

closely the surfactant molecules can pack at the surface [129]. Surfactants typically

present in atmospheric aerosols can have carboxylic acid, alcohol, aldehyde,

ketone, ester, or amine head groups [5, 18, 19, 21, 75]. Studies of uptake or water

evaporation through two-component mixed films show that the barrier action is

generally intermediate between that of the two pure components [107, 114, 119,

127, 130]. Additionally, barrier action depends on the identity of the penetrating

gas-phase molecule. For example, monolayers of oleic acid (C18H34O2), which has

a double bond that prevents close packing, have been observed to inhibit efficiently

the uptake of N2O5, but not HNO3, from the gas phase [112, 115].

In the following sections we review laboratory, field, and modeling studies of the

influence of surfactant films on aerosol heterogeneous chemistry.

3.1 Laboratory Studies

Early studies of the influence of interfacial organic films on gas uptake to aqueous

films and aerosols were reviewed previously by Donaldson and Vaida [131].

Donaldson and Valsaraj also recently reviewed the adsorption of VOCs at the

air–aqueous interface and their reaction with atmospheric oxidants [132]. For an

overview of techniques and principles of laboratory studies of aerosol heteroge-

neous chemistry the reader is referred to the recent review article of Kolb et al.

[133].

Gilman and Vaida studied acetic acid (CH3COOH) uptake to an aqueous film

through long-chain alcohol monolayers, and surface layers of the alkane

nonacosane [130]. They showed that straight-chain alcohols which form close-

packed monolayers were more effective at inhibiting CH3COOH uptake than bent-

chain species, and the monolayer resistance increased with increasing chain length.

Clifford et al. showed that submonolayer coverage of 1-octanol inhibited the rate of

nitric acid and ammonia uptake to aqueous films [134]. They saw little effect from

butanol films and uncompressed stearic acid films.

Nathanson and coworkers performed a series of molecular beam scattering

studies of reactive gas uptake to supercooled (213 K) deuterated sulfuric acid

films coated with short chain monolayers [135]. They found that a butanol coating

did not inhibit proton exchange by HCl and HBr, and in fact suggest that the

hydrophilic head groups of the butanol may provide additional sites for interaction

with the adsorbate [126]. They also investigated evaporation of HCl and HBr
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through hexanol films [124]. Enhanced HCl-DCl proton exchange was observed at

low organic surface coverage, and inhibition was observed at higher coverage when

the film was expected to be more tightly packed. Similar observations were made

for pentanoic acid films [136].

Many laboratory and modeling studies of the impact of organic surface films on

aerosol heterogeneous chemistry have focused on N2O5 uptake. This process is an

important sink of NOx, and therefore has a significant impact on tropospheric

photochemistry [137, 138], influencing surface-level O3 concentrations by up to

35% [139]. The results of several laboratory studies are summarized in Fig. 2,

which shows the impact of organic surface films on the measured reactive uptake

coefficient for N2O5 (γN2O5).
Badger et al. investigated the effect of humic acid – a high molecular weight,

water-soluble, compressible surfactant – on N2O5 uptake to ammonium sulfate

aerosols and found that the reactive uptake decreased with increasing humic acid

mass fraction [109]. Nathanson and coworkers observed that butanol and hexanol

Fig. 2 Summary of N2O5

uptake suppression for coated

particles and films. The ratio

of the reactive uptake

coefficient, γN2O5, with and

without an organic surface

coating, as a function of

aerosol organic mass fraction

(top panel) and fractional

surface coverage (bottom
panel)
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films inhibit N2O5 uptake to supercooled (216 K) deuterated sulfuric acid films

[127]. Thornton and Abbatt found that the presence of hexanoic acid decreased the

N2O5 reactive uptake coefficient on artificial seawater aerosol by a factor of 3–4 at

room temperature and 70% relative humidity [116]. Malonic acid, a short-chain,

water-soluble dicarboxylic acid that is known to depress surface tension in bulk

solutions [93, 96, 140–143] did not present a barrier to N2O5 uptake [117]. McNeill

et al. later showed that even small, submonolayer amounts of sodium dodecyl

sulfate (SDS) or sodium oleate can decrease the reactive uptake of N2O5 to aqueous

aerosols by up to a factor of 10 [112, 113]. Bertram and coworkers studied N2O5

uptake to sulfuric acid films at 273 K and found that uptake was inhibited by

monolayers of stearic acid, 1-hexadecanol, or 1-octadecanol, but not the branched-

chain fatty acid phytanic acid [119, 120]. Due to its smaller head group and thus

closer packing, 1-octadecanol showed greater uptake resistance than stearic acid, its

fatty acid analog. When even a small fraction of phytanic acid was introduced to the

1-octadecanol monolayers, the uptake resistance was greatly reduced [118].

Ammann and coworkers found that expanded monolayers, such as those formed

by short-chain fatty acids or bent molecules like oleic acid, did not efficiently

inhibit the uptake of HNO3 by sea salt aerosols [115], unlike what was observed

previously for N2O5 [112, 113, 116]. They also observed that monolayers of stearic

acid, the saturated straight-chain analog to oleic acid which makes compressed

films, did inhibit HNO3 uptake.

Halogen activation is another important class of aerosol heterogeneous

reactions, primarily involving sea salt aerosols [144]. Besides inhibiting gas-aerosol

mass transfer, organics at the gas–aerosol interface could have an additional impact

on surface-specific heterogeneous halide chemistry by repelling anionic reactants

from the near-surface region with their hydrophilic head groups [145]. McNeill

et al. found that, although the reactive uptake coefficient for N2O5 reacting with

NaCl and laboratory-generated seawater aerosols was significantly suppressed by

submonolayer surfactant coatings; the yield of ClNO2 per molecule of N2O5 taken

up was not affected [113]. Clifford and Donaldson investigated the uptake of O3 by

NaBr solutions and found that 1-octanol films promoted halogen activation by

enhancing the surface concentration of O3 [146]. Rouvière and Ammann studied

O3 uptake to aqueous potassium iodide aerosol with fatty acid coatings [114]. They

observed that the reactive uptake coefficient decreased for long straight-chain

surfactants, and the barrier action of mixed component films was intermediate

between that of the individual pure component films.

Another type of organic material that has been investigated for its influence on

the heterogeneous chemistry of aerosols is SOA. While the SOA coatings used in

these experiments are often macroscopic, many SOA species are surface-active,

and at low organic loadings thin layers may form. Folkers et al. showed that a

multilayer α-pinene SOA coating (�15 nm) reduced N2O5 uptake significantly

[111]. Anttila extended this study to lower organic loadings and other precursors

(myrcene, sabinene, and limonene), and established a modeling framework to

describe N2O5 uptake to aerosols with multilayer organic coatings [108]. Escoreia

et al. studied the impact of α-pinene coatings on N2O5 uptake to ammonium
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bisulfate aerosols, and found a factor of 10 reduction in the uptake coefficient with

the smallest amount of SOA material present (9 wt% organic), with smaller

additional reductions as aerosol organic content increased [110].

3.2 Field Studies

While ample evidence from the laboratory suggests that surfactant films signifi-

cantly influence aerosol heterogeneous chemistry, no direct evidence of this effect

for ambient aerosols exists at this time. In part this is due to the challenges of

characterizing aerosol morphology in situ.

Studies of aerosol heterogeneous chemistry in the field have generally consisted

of simultaneous measurements of expected gas phase reactants and products as well

as aerosol properties, followed by data analysis using models to infer reactive

uptake coefficients. For example, during the New England Air Quality Study,

Brown et al. found high N2O5 reactive uptake in regions with high aerosol

sulfate:organic ratio as measured by an Aerodyne Aerosol Mass Spectrometer,

and low N2O5 uptake when the sulfate:organic ratio was low [147]. While this is

consistent with organic material inhibiting N2O5 uptake, no information is available

as to whether the organic material was surface-active, or the morphology or phase

state of the particles.

Bertram and Thornton recently introduced a method for performing direct

aerosol flow tube uptake studies on ambient aerosol particles [148, 149]. They are

able to correlate observed N2O5 reactive uptake coefficients with simultaneous

measurements of aerosol composition using other techniques. When the flow tube

technique of Bertram and Thornton is coupled with a technique capable of detecting

the presence of surface-active organics in the aerosol, potential exists for the

influence of these organics on N2O5 uptake by ambient aerosol to be inferred.

3.3 Modeling

Parameterizations of the effects of organic surface films on aerosol heterogeneous

chemistry are not included in most large-scale prognostic atmospheric chemistry

models at this time. This is mostly due to uncertainty in predictions of film

formation as a function of aerosol chemical composition, and the additional

complexity this phenomenon adds to models. Evans and Jacob recommended a

low reactive uptake coefficient for N2O5 on aerosols classified as “organic,” and

their parameterization was implemented into the GEOS-CHEM model [138].

Bertram and Thornton provided a more detailed parameterization of the impact of

organic material on N2O5 uptake to aerosols [150]. They focused on the influence of

organic material on aerosol liquid water content, and the effect of surface films was

not treated.
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Anttila and coworkers developed a parameterization for N2O5 uptake to aerosols

with SOA coatings ranging from ~3 to 150 nm in thickness based on laboratory

studies [108]. Riemer et al. extended this parameterization to study the impact of

coatings originating from α-pinene and limonene on summertime N2O5 chemistry

in Europe [151]. They found a significant impact of aerosol organic coatings on

nighttime mixing ratios of N2O5, NO3, aerosol nitrate, and VOCs for conditions

where N2O5 and SOA coexist, with (NO3 + 2N2O5) increasing 15–90% depending

on initial particle nitrate content.

In the most detailed modeling treatment to date, Smoydzin and von Glasow

investigated the impact of organic surface films on sea salt aerosol heterogeneous

chemistry [152]. Starting with various initial concentrations of organic material in

the aerosols, they assumed that all aerosol organics partitioned to the gas–aerosol

interface, and that a full monolayer was necessary to reduce the uptake of gas phase

species. They also considered the oxidation of the surfactants by gas-phase species.

Despite significant uncertainties in their treatment of the surfactant surface layer,

they found that gas-phase concentrations of halogen species in the marine boundary

layer could decrease if organic coatings on marine aerosols block the uptake of gas-

phase species involved in halogen activation or the diffusion of halogen-containing

product gases out of the aqueous phase.

4 Impact on Ice Nucleation

In the absence of ice nuclei, pure water droplets in the atmosphere supercool to

~�35 �C due to kinetic limitations on homogeneous nucleation [153]. Ice nuclei,

for example aerosol particles included in or which come in contact with

supercooled water droplets, can induce freezing closer to the melting point of ice.

Organic surface films, such as those formed by partitioning of surfactant to the

gas–droplet interface, have also been suggested to serve as a nucleus for ice in

aqueous droplets.

Lahav, Leiserowitz, and coworkers performed a series of laboratory studies

demonstrating the ability of a surface monolayer of long-chain aliphatic alcohols

and/or fatty acids to nucleate ice in supercooled water droplets [154–157]. They

found that the presence of a monolayer enhanced ice nucleation inside the droplets

by acting as a template for the formation of hexagonal ice. Pure component films

and those composed of longer-chain surfactants were more effective ice templates,

probably due to their tendency to form compressed, well-ordered surface films

[154, 155, 157]. Majewski et al. [156] observed that the tilt angle of a long-chain

alcohol monolayer changed as temperature decreased until freezing occurred, then

the structure of the monolayer was preserved upon freezing and even after the

temperature was elevated and the ice melted [156]. Their results suggest that

freezing is preceded by the formation of critical ice nuclei consisting of approxi-

mately 50 water molecules each. Inspired by this work, Seeley and Seidler

performed a theoretical study of nucleation in drops with monolayer coatings of
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long-chain aliphatic alcohols. Their results suggest that nucleation in these systems

is a two-dimensional process, and hence should scale with droplet surface area

rather than volume [158]. This is supported by the experimental observations of

Cantrell and coworkers. They studied the freezing of water [159] and electrolyte

solutions [160] catalyzed by long-chain alcohols using attenuated total reflection

(ATR) Fourier transform infrared spectroscopy (FTIR). They observed change in

the structure of the alcohol monolayer coupled with change in the hydrogen

bonding network of the water as temperature decreased to the point of freezing.

This led them to conclude that freezing occurs via the formation of ordered water

clusters adjacent to the organic film, with order extending further into the bulk with

decreasing temperature. They suggested that the ability of the organic monolayer to

adapt to the strain at the ice–nucleus interface created by freezing was part of what

made it a particularly good nucleus.

Zobrist and coworkers showed that nucleation rates in water droplets coated with

nonadecanol have a weaker dependence on temperature than the homogeneous

nucleation rates for uncoated droplets [161]. They were able to reproduce the

observed behavior using classical nucleation theory with a parameterized change

in contact angle with temperature. They later performed freezing experiments on

particles of various compositions, including aqueous droplets with monolayer

coatings of nonadecanol. They showed that water activity is a convenient basis

for parameterizing the freezing temperatures for heterogeneous nucleation, regard-

less of the chemical composition of the freezing solution [162].

Recently, Knopf and Forrester studied the freezing of aqueous NaCl droplets

coated with monolayers of 1-nonadecanol or 1-nonadecanoic acid [163]. They

found that 1-nonadecanol coatings, which result in a compressed film, led to a

freezing temperature ~25 K higher than homogeneous nucleation in uncoated

droplets. 1-Nonadecanoic acid coatings also promoted freezing, but not as

effectively as 1-nonadecanol. Based on their measurements of the equilibrium

spreading pressure and Langmuir isotherms, they found that 1-nonadecanoic acid

monolayers exist in an expanded state but form compressed films at high (20 wt%)

NaCl concentrations; the freezing enhancement was observed only at high NaCl

concentrations and low water activities. This apparent requirement of a compressed

film for ice nucleation is consistent with the findings of Lahav, Leiserowitz, and

coworkers [154, 155, 157]. Knopf and Forrester also found similar trends in the

contact angle as a function of temperature as Zobrist et al. [161], providing further

support to the notion that the monolayer is restructured with decreasing temperature

[161]. Finally they presented a parameterization of freezing rates as well as freezing

temperatures for heterogeneous ice nucleation as a function of water activity.

5 Impact on Cloud Droplet Formation

Cloud droplets are formed in the atmosphere when water vapor condenses onto

aerosol particles. The influence of aerosols largely determines the number distribu-

tion, chemical composition, and reflectivity of cloud droplets, thereby also affecting
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cloud albedo [122]. Numerous experimental [122, 141, 164–169] and field studies

[32, 170] have shown that the presence of surfactants in aerosols can impact the

ability of an aerosol to nucleate and grow into cloud droplets, also known as CCN

activity. In this section, we give brief overviews of the theoretical description of

aerosol CCN activity and the effect of organics on surface tension, and expand on

the impacts of surface-active organics on CCN activity and cloud droplet growth

kinetics.

5.1 Köhler Theory and κ-Köhler Theory

Köhler theory describes cloud droplet activation and growth from soluble particles

as an equilibrium process [171]. The Köhler equation takes into account two

competing effects: the Raoult or solute, effect which tends to decrease the equilib-

rium vapor pressure of water over the growing droplet, and the Kelvin, or curvature

effect, which serves to increase the equilibrium vapor pressure. The Köhler curve

(Fig. 3) for a growing droplet describes the equilibrium saturation ratio of water as

a function of droplet size and several parameters inherent to the aerosol particle

[171, 172]:

Fig. 3 Köhler curve, showing the contributions of the Kelvin and Raoult terms. Reproduced with

permission from [299]
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RTρw

and B ¼ 6nsMw

πρw
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where pwðDpÞ is the water vapor pressure over the droplet of diameter Dp, p
o is the

water vapor pressure over a flat surface at the same temperature, Mw is the

molecular weight of water, σw is the droplet surface tension; ρw is the water density,

R is the universal gas constant, T is temperature, and ns is the moles of solute.

The maximization of (1) with respect to particle size defines the critical satura-

tion ratio (Sc) and the corresponding critical droplet diameter (dc). According to the
assumptions of Köhler theory, when the ambient water saturation ratios exceed Sc
(or when particle size exceeds dc), the particles spontaneously activate and grow to

form cloud droplets. In real systems, droplet growth may be inhibited by various

kinetic limitations, which will be discussed in Sect. 5.5 [173, 174]. It should also be

noted that Köhler theory is strictly not applicable for systems containing volatile

solutes. A one-dimensonal cloud model using the three-component Köhler theory

has been developed by Kulmala and coworkers to study the effects of acid vapors

on CCN activity [175]. Their simulations show that including the effect of nitric

acid vapors alters the cloud activation potential of particles as compared to tradi-

tional Köhler theory. This work has been further extended by reformulating Köhler

theory to include the effect of soluble gases and slightly soluble aerosol matter

[176]. Recently, Topping and McFiggans developed a method to study the volatility

effect of more than one organic component. They observed that the saturation

ratio of water vapor needed for droplet activation decreases significantly when

co-condensation of multiple organics is taken into account [177].

Padró et al. developed a method called Köhler theory analysis (KTA) which uses

Köhler theory coupled with measurements of surface tension, chemical composi-

tion, and CCN activity to infer molar volume and solubility [178]. This is a

powerful tool for the characterization of the cloud droplet formation potential of

ambient particles containing water-soluble organic compounds (WSOC).

Equation (1) is very effective in modeling the CCN activity of water-soluble

inorganic compounds, but it does not describe particles with lower hygroscopicity

(especially organic or mixed organic–inorganic particles) so successfully. In order

to do so, extensions of Köhler theory have been used, which require knowledge of

various properties of the aerosol components such as molecular weight, dry particle

density, dissociable ions, and water activity coefficients [93, 176, 179]. In a simpler

approach, an extension of Köhler theory, known as κ-Köhler theory, was developed
by Petters and Kreidenweis [180]. This theory uses a single parameter, κ, the
hygroscopicity parameter, which is defined as
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1

aw
¼ 1þ κ

Vs

Vw

(2)

where aw is the activity of water in solution, Vs is the volume of the dry particulate

matter, and Vw is the volume of water. Essentially, for any compound, κ is a

constant parameter that describes its aerosol water uptake characteristics and

CCN activity. κ values between 0.5 and 1.4 are indicative of highly-CCN-active

salts, those between 0.01 and 0.5 indicate slightly to very hygroscopic organic

species, and 0 indicates non-hygroscopic components. Based on experiments

conducted with the surfactant fulvic acid, it seems that this approach may be

appropriate for mixed particles that contain surface-active material, but further

verifications are needed [180].

Additionally, models have been developed and molecular dynamic simulations

performed in order to understand the effects of surfactants on water droplets and

CCN activity; more details can be found in Sect. 5.4.

5.2 Observations of Surface Tension Depression

The presence of an organic film at the gas–liquid interface of an aerosol can depress

the surface tension, possibly affecting the aerosol’s ability to nucleate cloud

droplets. Observations of depressed surface tension in collected aerosol particles,

fogwater, rainwater, or laboratory aerosol mimics are also an indirect indicator of

surface film formation. Surface tension is easily studied for bulk samples in the

laboratory setting by various dynamic and static methods, such as a Wilhelmy plate,

de Nouy tensiometry, oscillating bubble tensiometry, axisymmetric drop analysis,

pendant drop tensiometry, and ring down tensiometry. Dynamic surface tension

measurements occur as surfactant molecules undergo surface-bulk partitioning

in solution as the mixture approaches an equilibrium state, whereas static

measurements occur at equilibrium. The surface tension of aerosol particles can

only be inferred indirectly through observations of CCN activation coupled with

Köhler theory, or by measuring the surface tension of water extract of collected

aerosols.

The International Critical Tables [181] are often used as a reference for surface

tension data for both isolated inorganic and organic systems, but mixed systems are

not well-represented. Multiple semi-empirical models have been developed to

describe the surface tension behavior of (mixed) electrolyte solutions, over a

range of temperatures [182–185]. For a review of quantitative structure–property

relationship studies of surfactants, we refer the reader to Hu et al. [186].

The presence of salt alone in an aqueous solution is known to increase surface

tension. However, a net decrease in surface tension with respect to that of water is

commonly observed in mixed inorganic/organic aqueous solutions containing

surfactants. In mixed inorganic/organic solutions, especially at high ionic

concentrations, the solubility of the organic component may decrease, in a
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phenomenon known as “salting out” [187]. This may result in enhanced organic

film formation at the gas–solution interface [188]; [257] and further surface tension

depression, possibly offsetting the surface-tension increase due to the inorganic

component.

The Szyszkowski–Langmuir (S–L) equation is often used to empirically

describe measured surface tension data:

σ ¼ σ0ðTÞ � aT lnð1þ bCÞ (3)

where σ and σ0 are the surface tension of the solution with and without the presence
of an organic, respectively, T is temperature (K), C is the molality of the organic

carbon (mol carbon (kg water)�1), and a and b are fit parameters [189]. Henning

and coworkers developed the following linearly additive model for systems

containing a complex mixture of non-reacting organics:

σ ¼ σ0ðTÞ �
X

i

χiaiT lnð1þ biCÞ (4)

where i is the ith organic compound, and χi is the molality fraction of compound i
out of the total soluble carbon concentration in solution (χi ¼ Ci C

�1) [166]. Some

mixed organic and inorganic/organic systems have been modeled using (4) and

similar models [85, 95, 102, 166, 190–192], but none have captured the behavior of

reactive systems well.

In the following discussion we focus on studies of organic compounds and

systems directly relevant to atmospheric aerosols.

5.2.1 Ambient Fog/Cloud/Aerosol Measurements and HULIS

Measurements of surface tension depression in aqueous extracts of collected

aerosol particles [25–31], fogwater [27, 28, 32], and rainwater [33] have in general

shown decreasing surface tension with increasing organic concentration, with

increased surface tension depression in samples collected in more polluted regions.

The results of several studies are summarized in Fig. 4.

Barger and Garrett collected airborne particulate matter on ships in both the

Mediterranean Sea (during July 1973) and the Pacific Ocean near the Galapagos

Islands (during February 1974) [194]. Film pressure-vs-area isotherms were

calculated and the surface tension was measured using a Wilhelmy plate. There

was evidence of surface-active organics, including C9–C18 fatty acids, and polar

compounds, but surface-active species were not the majority of the detected organic

compounds. Assuming certain fog properties (fog droplet diameter, concentration,

and organic distribution), they calculated that there was enough organic material to

coat a particle the size of the nuclei of typical fog droplets (0.08–0.8 μm diameter);

however, there was not enough organic material present to coat fully formed

fog droplets.
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The surface tension of rainwater, melted snow, and atmospheric particles was

sampled 1979–1981 in Frankfurt/Main by Seidl and Hänel [195]. They found that

concentrations of both soluble and insoluble organic material were too small

(normalized to 2 � 10�6 and 2.5 � 10�7 mol L�1, respectively) to affect both

water uptake and loss, but that there was slight surface tension depression. They

suggested that in areas with higher urban pollution, these effects might be

enhanced.

Capel et al. collected urban area fog water in Dübendorf, Switzerland (near

Zurich) over a period of 6 nights in November–December 1986–1987 [196]. The

samples (tested at 20 �C) showed increasing surface tension depression with increas-
ing organic concentration. Most of the organic material remained unspeciated;

however, alkanes, biphenyls, alkylbenzenes, formate, and acetate were detected.

Hitzenberger et al. collected 26 cloud water samples at Rax mountain in central

Europe in March 2000 [193]. Surface tension measurements, using ring tensiometry

at ambient temperature, showed an average surface tension of 95.2% (�3.7%) of

the surface tension of water, with a range from 83.8% to 100.5%. The minimum

surface tension lowered Sc by 25%, which could affect cloud droplet number and

size; the average surface tension value lowered Sc by 7%. They calculated, using the

known liquid water content and assuming a cloud number concentration, that the

amount of organic carbon in the samples could not form a full monolayer on all

cloud droplets but could form a monolayer just before cloud droplet activation.

Moore et al. measured the surface tension of oceanic dissolved organic matter

(DOM) from Atlantic Ocean samples off the coast of Georgia, USA [197]. Using

pendant drop tensiometry at 24 �C they saw clear surface tension depression

from surface-active organics, which followed the Szyszkowski–Langmuir equation,

σ ¼ σo � 2.952T ln (1 + 2 � 10�6C), where C is in units mg L�1. Surface tension

as inferred using KTA also showed excellent agreement with the direct measurements.

Fig. 4 Summary of surface tension data for ambient samples. Adapted from Facchini et al. [28]

and Hitzenberger et al. [193]
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HULIS are a common component of aerosol organic matter and are

characterized as high molecular weight, highly functionalized, surface-active,

light absorbing organic materials which resemble humic or fulvic acids in their

properties [198]. Aerosol HULIS can originate from biomass burning [31] or be

formed in situ via oligomerization reactions [84]. Table 1 summarizes surface

tension measurements performed on ambient and laboratory samples including

natural humic and fulvic acids. Measurements of the surface tension of aqueous

solutions of humic and fulvic acids originating from terrestrial or aquatic sources

indicate that surface tension depression depends on concentration, pH, temperature,

and the presence of metal ions [199–201, 205, 206]. Surface tension decreases with

increasing temperature, but the dependence on pH is complex. The formation of

micelles likely influences surface tension under some conditions, especially when

metal ions are present [201]. Aumann et al. observed that “salting out” by NaCl and

(NH4)2SO4 did not significantly affect the surface tension of humic and fulvic acids

in water [204]. Surface tension has also been shown to have a synergistic effect

when humic acids are mixed with surfactants like SDS [207].

Facchini and coworkers collected fog water in the Po Valley, Italy (a heavily

polluted site) and measured up to 30% surface tension depression compared to that

of water at droplet activation concentrations [32]. The S–L equation was fit to the

data, giving σ ¼ 72.8 � 0.0187T ln (1 + 629.14C). The samples were determined

to be 80% salt and 20% organic, containing a complex mixture of acidic

oxygenated compounds. The depressed surface tension lowered the cloud droplet

concentration by up to 20%, and changed the mean particle size by �6%. In a

separate study they collected aerosol and fog water samples from the S. Pietro

Capofiume field station in the Po Valley, with some additional cloud water samples

collected at the Puy de Dôme and in Tenerife [28]. Significant surface tension

depression (10–20%) was seen in the wet aerosol and fog droplets, positively

correlated with the organic concentration. After fractionating the Po Valley fog

samples into three organic classes and measuring the surface tension of each

(at 20 �C), the overall surface tension depression was attributed mainly to

polycarboxylic acids, analogous to humic substances. In addition, dynamic surface

tension measurements showed that the majority of the organic material present was

water soluble. The dynamic surface tension of fulvic acid and water was later

measured at ambient temperature by Decesari and coworkers [27]. In comparisons

of ambient cloud water and aerosol from Brazil during the burning season, from

Mexico City, Los Angeles, the Po Valley, Italy, and Korea, the data showed that

ambient samples have dynamic surface tensions and elasticity properties highly

similar to fulvic acid, a water-soluble surfactant. This implied that a majority of the

organics that form organic films on aerosols are WSOC. In the spring and autumn of

2002, Cavalli and coworkers collected ambient marine aerosols from Mace Head

Atmospheric Research Station [26]. The surface tension of both fine and coarse

aerosol particles was measured, showing a decrease with increasing organic con-

tent, following σ ¼ 72 � 0.17T ln (1 + 11.86C). WSOC speciation identified

some of the organic compounds as dicarboxylic acids, possible humic substances,

and other surface-active species.
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Table 1 Summary of surface tension measurements for humic and fulvic acids

Organic

compound Type Concentration

Minimum σ
(mN m�1) pH Ref.

Humic acid Canadian soil 3% w/v 51.8 7 [199]

O Horizon 145 mg C/L 63.9 7 [200]

50 mg C/L 59 2.7

A Horizon 60 mg C/L 67 7

50 mg C/L 64 2.76

SRa 150 mg C/L 71 7

50 mg C/L 66.7 2.8

IHSS soila 150 mg C/L 70.4 7

50 mg C/L 66 2.8

Leonardite 500 mg/L 59.4 4 [201]

SRa 500 mg/L 61 3.7

Latahco silt loam 500 mg/L 63.6 2.5

Leonardite blend 500 mg/L 64.3 6

Acros organics 5 mg/mL 59 [95]

Aerosol from K-puszta, Hungary 1.6 g/L 41.6 2 [29]

1.35 g/L in

2 M ASa
37.5 2

Urban aerosol from Budapest 1.023 mg/mL 50 [30]

102 mg/L 55 12

Wood burning HULIS 1 mg/mL 40.4 [31]

Sigma Aldrich 0.5 wt% 57.5 9.7 [202]

Sigma Aldrich 1 g/L 63.4 [203]

IHSS soila 1 g/L 64.0

Lignohumate 1 g/L 68.4

Synthesized (lab) 1 g/L 52.2

Daugava River 1 g/L 69.9

Olaine bog peat 1 g/L 62.4

Livani bog peat 1 g/L 55.1

Kemeri bog peat 1 g/L 63.5

Sewer sludge 1 g/L 52.1

sulfopropyl derivatized 1 g/L 61.0

Trimethylammonio derivatized 1 g/L 55.3

Sulfoalkyl derivatized 1 g/L 54.0

Hydroxyl derivatized 1 g/L 49.6

Sigma Aldrich 10.7 g/L 52.5 [204]

Fluka 10.7 g/L 65.9

Fulvic acid Canadian soil 3% w/v 47.4 1.8–3.2 [199]

SRa 500 mg/L 65 2.8–3.5 [201]

Waskish peat 10.7 g/L 44.4 [204]

SRa 10.7 g/L 44.8 [204]

Nordic reference IHSS in AS

(50:50 mass mixture)a
1 wt% 61 [205]

All measurements were performed in aqueous solution (σ0 ¼ 72 mN m�1) unless otherwise noted
aIHSS International Humic Substances Society, SR Suwannee River, AS (NH4)2SO4
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Ambient aerosols containing HULIS, collected at K-puszta on the Great

Hungarian Plain near Budapest (from September 1999 to August 2000), were

compared to laboratory measurements by Kiss et al. [29]. The aerosol samples

were acidified to pH 2 before measurement at 25 �C. The laboratory humic and

fulvic acid samples, from both natural sources and Suwannee River standards, were

at alkaline pH levels. Aerosol samples with the highest organic concentration

(1 g L�1) depressed surface tension by 25–42% from that of water. A seasonal

trend was also apparent, with minimum surface tensions in the summer, increasing

in the spring, fall, and then winter. The elemental composition over all seasons was

similar, leading to the idea that any surface tension variability throughout the

seasons must be due to different types of functional groups, aromaticity, etc. The

addition of 2 M (NH4)2SO4 to the ambient samples depressed the surface tension

further. Laboratory experiments of natural humic material showed similar trends to

the aerosol data, but showed less efficient surface tension depression. A marked

difference was also visible between aquatic and terrestrial sources.

Salma and coworkers collected ambient humic substances in PM2.5 from

Budapest, Hungary from April to May 2002, and measured OC, WSOC, TOC,

and surface tension at 20 �C [30]. The surface tension for the most concentrated

solution (~1 g L�1) was depressed by 30% from that of water, whereas the more

dilute solutions (~44 mg L�1) showed an 18% decrease. The maximum organic

concentration approximately corresponded to the amount of organic material at the

critical activation size. The time scale necessary to reach the minimum surface

tension for both solutions was different, attributable to the different amphiphilic

properties of the functional groups of the HULIS in solution. They also performed

experiments with varying pH and saw similar behavior to Yates et al. [201]; the

surface tension initially decreased with decreasing pH, but increased again at the

lowest pH values tested due to low organic surface activity. Ambient HULIS were

collected from both fresh and slightly aged wood burning smoke particles and

ambient urban aerosols and compared to Suwannee River fulvic acid by Taraniuk

and coworkers [31]. The surface tension was found to decrease as a function of time

as the sample approached equilibrium, and to decrease with increasing organic

concentration (measurements were performed at 24 �C).
Asa-Awuku et al. collected biomass burning particulate matter from prescribed

burnings in Georgia in April 2004 [25]. The surface tension of the aqueous extracts

was measured as a function of carbon concentration at 25 �C. At a WSOC

concentration of 850 mg C L�1, the surface tension of the sample was

59 mN m�1, an 18% reduction from the surface tension of water. Fractionating

the sample and taking surface tension measurements, the majority of the surface

tension depression was found to be from the presence of hydrophobic organics.

(NH4)2SO4 and NaCl were also added to the aqueous extract to determine the effect

of electrolytes on surface tension; these salts further depressed the surface tension

of the sample by up to 20%, probably due to “salting out” [187].

More recently, Klavins and Purmalis studied the specific effect of humic

substances on surface tension and found that industrially produced humic materials

did not strongly impact surface tension, whereas substances isolated from nature
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had a much larger effect [203]. Humic acids were isolated in Latvia from soil, peat,

and water and compared to commercial humic acid (Sigma Aldrich), reference

International Humic Substances Society (IHSS) humic acid (Pahokee, USA), and

derivatized humic acid (lab synthesized). Surface tension measurements were

performed in triplicate using a tensiometer at 22 �C. They found that different

natural humic acids (100 mg/L) had surface tension values between 50 and

69 mN m�1, while commercial humic acid was 63 mN m�1.

5.2.2 Saccharides

Saccharides are common components in atmospheric aerosols associated with

biomass burning [41, 42]. Their impact on aerosol surface tension is thought to

be small. The results of existing laboratory studies are summarized in Table 2.

Tuckermann and Cammenga measured the surface tension of levoglucosan (with

increasing concentrations up to 5 g L�1) in water using a Wilhelmy plate at 20 �C,
and saw no apparent decrease in surface tension [95]. Aumann and coworkers

measured the surface tension of aqueous solutions containing varying

concentrations of levoglucosan, glucose, galactose, maltose, and sucrose using a

thermostated tensiometer at 25 �C [204]. Levoglucosan and maltose were the only

two that decreased the surface tension with increasing concentration, though the

overall effect was nearly negligible. Glucose, galactose, and sucrose increased the

surface tension of water, similar to inorganic salts. Aumann et al. measured

levoglucosan at concentrations up to 40� higher than those of Tuckermann and

Cammenga, which could explain the discrepancies between the two studies.

5.2.3 Carboxylic Acids (�10 Carbons)

Significant progress has been made in the parameterization of surface tension

depression by water-soluble dicarboxylic acids in solution, including in the

presence of salts and multiple water soluble organic species. In general it is

observed that surface tension depression for these species increases with increasing

carbon chain length and concentration. The results of several laboratory studies are

summarized in Table 3.

Table 2 Summary of surface tension measurements for saccharides

Organic compound Concentration (g L�1) Minimum σ (mN m�1) Ref.

Levoglucosan <5 – [95]

<215 69.5 [204]

D-glucose <595a 76.3

D-galactose <450a 74.2

D-maltose <534a 69.9

Sucrose <705a 75.8

All measurements were performed in aqueous solution (σ0 ¼ 72 mN m�1)
aExperiments performed up to solubility limit
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Table 3 Summary of surface tension measurements for carboxylic acids (�10 carbons)

Organic compound Concentration

Minimum

σ (mN m�1) Fitted equation Ref.

3-Hydroxybutanoic

acid

5.5 mg/mL 67.5 [95]

3-Hydroxybenzoic

acid

5 mg/mL 70.4

Malonic acid 3.2 M 59.8 [93]

Solubility limit 62.2 [142]

40 wt% 64 71.5 � 0.381c þ 0.00503c2 [96]

2.02 M 61.5 [141]

Maleic acid Solubility limit 59.5 [142]

40 wt% 61 71.3 � 58.9 exp(�5.08c�0.292) [96]

Malic acid Solubility limit 66.8 [142]

40 wt% 68 72.04 � 285 exp(�7.086c�0.143) [96]

Glutaric acid 2.4 M 51.8 [93]

Solubility limit 51.8 10�3(72 � 0.0222T log

(1 þ 189.61x))

[208]

40 wt% 58 70.4 � 112 exp(�4.17c�0.176) [96]

2.8 M 54 [204]

Succinic acid 0.45 M 67 [93]

Solubility limit 67.5 10�3(72 � 0.0127T log

(1 þ 175.28x))

[208]

Solubility limit 66.7 [142]

1 wt% 70 [96]

0.15 M 69.2 [141]

0.6 M 66.4 [204]

in NaCl, x ¼ 0.06 x ¼ 0.0075 70.7 [209]

in AS (50:50 mass) 20 wt% 66 [205]

Oxalic acid 0.65 M 71.3 [93]

Solubility limit 70.1 [142]

5 wt% 71 [96]

0.93 M 70.4 [204]

in AS (50:50 mass) 5 wt% 72 [205]

Adipic acid 0.15 M 64.8 [93]

1 wt% 68 67.2/(1 þ (�0.0675 exp

(�2.39c)))

[96]

0.12 M 64.9 [141]

0.12 M 65.5 [204]

Solubility limit 64.6 [210]

in AS (50:50 mass) 1 wt% 69 [205]

Phthalic acid 0.04 M 70.6 [93]

0.04 M 68.9 [204]

(continued)

222 V.F. McNeill et al.



Shulman and coworkers measured the surface tensions of malonic, glutaric,

succinic, oxalic, adipic, phthalic, and cis-pinonic acids in water and 0.5–2 M

(NH4)2SO4 at room temperature [93]. Surface tension depression was visible with

increasing organic concentration and carbon number for all species except for

phthalic and oxalic acid, which had no surface tension effect. The concentration

of salt used did not affect the surface tension of any organic material except for

cis-pinonic acid, which showed increased surface tension depression as salt

concentration increased, possibly due to “salting out” [187]. Vanhanen et al. studied

succinic acid in NaCl solutions from 283 to 303 K, and found enhanced surface

tension depression as soon as succinic acid was added [209].

Dash and Mohanty measured the surface tension of oxalic, malonic, succinic,

adipic, and glutaric acid in aqueous solutions between 288 and 318 K [140]. Surface

tension depression was apparent in all of the solutions, and increased further if the

concentration of the organic and temperature increased. In addition, calculated

ΔG0, ΔH0, and ΔS0 values suggested that the organic was absorbed in the surface

region as a disordered organic layer.

Tuckermann and Cammenga measured the surface tension of azelaic,

3-hydroxybutanoic, cis-pinonic, 3-hydroxybenzoic, and humic acids in water at

20 �C [95]. 3-Hydroxybenzoic acid showed negligible surface tension depression,

while the other compounds were more surface active. Azelaic acid reduced surface

tension up to 14 mN m�1 at a concentration of 1 mg mL�1.

Oxalic, malonic, succinic, maleic, malic, and cis-pinonic acids were studied by

Hyvärinen and coworkers in water up to each compound’s solubility limit and with

varying temperature (10–30 �C) [142]. Surface tension depression was visible as

the carbon chain length and concentration increased, with the greatest depression

for cis-pinonic acid. Riipinen performed similar studies on adipic acid in water up

to the solubility limit and with varying temperature (278–313 K), and saw the same

Table 3 (continued)

Organic compound Concentration

Minimum

σ (mN m�1) Fitted equation Ref.

Azelaic acid 5 mg/mL 45.7 [95]

0.01 M 61.1 [204]

Trimesic acid 0.01 M 71.3 [204]

Citric acid 40 wt% 65 70.1 � 0.339c þ 0.00497c2 [96]

in AS (50:50 mass) 20 wt% 66 [205]

cis-Pinonic acid 0.04 M 58.3 [93]

in 2 M NaCl 0.006 M 55.4

Solubility limit 53.9 [142]

5.2 mg/mL 57.8 [95]

in 5.4 M NaCl 1 g/L 60.5 [94]

0.5 wt% 58 70.9 � 48.4c þ 43.6c2 [96]

in AS (50:50 mass) 2 wt% 56 [205]

All measurements were performed in aqueous solution (σ0 ¼ 72 mN m�1) except as noted
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trend as Hyvärinen [210]. Tuckermann later used a thermostated tensiometer at

20 �C to measure the surface tension of varying concentrations of cis-pinonic acid
in varying amounts of NaCl (~0.01–5 M) [94]. At low organic concentrations the

surface tension trended upwards, due to the dominance of the inorganic species. At

higher organic concentrations the surface tension decreased as the organic material

was forced towards the surface of the droplet by “salting out,” consistent with the

observations of Shulman et al.

Varga et al. measured surface tension at room temperature of aqueous solutions

of oxalic, malonic, succinic, glutaric, adipic, maleic, malic, citric, and cis-pinonic
acid [96]. Surface tension decreased with increasing hydrophobic chain length.

cis-Pinonic acid was found to decrease the surface tension effectively over a wider

range of concentrations than the other organics.

The surface tension was measured for malonic, succinic, and adipic acids and

polyols (C3–C6) (all ranging between 0 and 2 M) in 0–1 M (NH4)2SO4 and/or NaCl

by Ekström and coworkers [141]. Linear polyols were found to have negligible

surface tension depression. 2-Methyltetrol had a very small effect (σsol
(0.1 M) ~ 70 mN m�1) in water. The organic acids decreased surface tension

more efficiently in water (adipic acid, σsol (0.1 M) ~ 66 mNm�1). Complete Köhler

curves (assuming a dry particle diameter of 60 nm) were developed for each organic

species studied.

Aumann et al. measured the surface tension of oxalic, succinic, glutaric, adipic,

azelaic, phthalic, and trimesic acids up to their solubility points in water using a

thermostated tensiometer at 25 �C [204]. The surface activity for the dicarboxylic

acids showed an increase with carbon chain length. Phthalic acid was also found to

be surface active, but trimesic acid (only slightly soluble) had negligible surface

tension depression.

Frosch and coworkers studied the surface tension of binary solutions of adipic,

citric, oxalic, succinic, and cis-pinonic acids in either ammonium sulfate or sodium

chloride aqueous solutions using tensiometry at room temperature [205]. They

observed no surface tension depression in solutions containing oxalic acid, and

cis-pinonic acid had the highest surface activity among the compounds studied.

5.2.4 Long Chain Fatty Acids (�12 Carbons)

Fatty acid film formation and the associated surface tension depression has been

studied extensively for idealized systems (i.e., pure water subphases) by the colloid

science community, starting with the work of Langmuir nearly a century ago [211,

212]. Since it is known that fatty acid phase behavior depends strongly on factors

such as pH, the presence of salts, and mixed organic content [6, 213, 214], it is not

possible to extrapolate measurements performed in pure water or very dilute

systems to the relevant aerosol conditions. Here we focus on studies which move

towards more atmospherically relevant systems. The results of several studies are

summarized in Table 4.
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Aumann and coworkers studied the dynamics of organic film formation by

stearic acid on various subphases, including electrolytes, acids, and humic acid

solutions [202]. By adding droplets of stearic acid to an aqueous solution of humic

acid, they determined that the stearic acid crystallized on top of the humic acid

surface film without affecting the underlying film in any way. Organic films only

formed on the electrolyte solutions (25 wt% NaCl or (NH4)2SO4) in an atmospheri-

cally relevant time frame. In a separate study, they measured the surface tension of

sodium laurate and sodium myristate up to their solubility limit in water with a

thermostated tensiometer at 25 �C. These species were observed to be highly

surface active, especially compared to smaller organic compounds.

Reid and coworkers studied the morphology of aqueous oleic acid/NaCl aerosols

using Raman spectroscopy [10]. It appeared that, rather than spreading to form a

uniform surface film, the oleic acid formed a lens on the NaCl droplet. They also

measured the surface tension of bulk aqueous oleic acid/NaCl mixtures using the

Wilhelmy plate method. The minimum surface tension in these mixtures was

25.1 mN m�1, at a concentration of 0.3 mM oleic acid/2.5 M NaCl.

Schwier et al. [216] studied solutions of oleic and stearic acid individually at

varying pH, varying (NH4)2SO4 concentration, and varying organic concentration

with a pendant drop tensiometer at 25 �C. Both oleic and stearic acids showed

increasing surface tension depression with increasing organic concentration and

decreasing (NH4)2SO4 concentration. At all pH values tested (pH 1–8), significant

surface tension depression was seen in water, NaCl, and (NH4)2SO4. In water, the

surface tension for both organics decreased between pH 3 and 6 due to the ioniza-

tion range of the organics. The surface tension depression by these organics in

saturated salt solutions was approximately constant with pH, showing that the

maximum organic concentration had partitioned to the gas–liquid interface due to

“salting out”.

Bertram and coworkers investigated organic monolayer coatings on 60 wt%

aqueous sulfuric acid at 273 K [118, 119]. Studying single-component systems of

1-octadecanol, 1-hexdecanol, stearic acid. and phytanic acid, and a two-component

system (1-octadecanol and phytanic acid), they calculated the surface pressure,

collapse pressure, and molecular surface area of the organic film (summarized in

Table 5), in order to determine how film properties, such as packing efficiency,

Table 4 Summary of surface tension measurements for long chain fatty acids (�12 carbons)

Organic Concentrationa Minimum σ (mN m�1) Ref.

Stearic acid Saturated 57 (bubble surface tension) [215]

Sodium stearate Saturated 35 [216]

4.2 mM in 3.1 M AS 55

Oleic acid 0.3 mM in 2.5 M NaCl 25.1 [10]

Sodium oleate Saturated 26 [216]

0.02 M in 3.1 M AS 38

Sodium laurate 0.01 M 25.7 [204]

Sodium myristate 0.004 M 24.7

All measurements were performed in aqueous solution (σ0 ¼ 72 mN m�1) except as noted
aAS ¼ (NH4)2SO4
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affected N2O5 uptake. They also found that the two-component organic monolayer

was immiscible and could be described as “. . .patches of phytanic acid distributed

within a monolayer of 1-octadecanol (or vice versa).” Knopf and Forrester studied

1-nonadecanol and 1-nonadecanoic acid (1–1.6 mg/mL) monolayer coatings with

water and aqueous NaCl solutions (5, 10, 15, and 20 wt%) at 20 or 25 �C,
determined the equilibrium spreading pressure, and showed that by altering the

sub-phase (adding increasing amounts of NaCl), the packing efficiency of the

organic monolayer changes from the expanded to the condensed state [163].

5.2.5 Complex Organic Mixtures

While most available surface tension data are for individual organic species in

isolation, ambient aerosols are generally complex mixtures of many organic

species. Here we highlight recent studies of surface tension depression in complex

organic mixtures (summarized in Table 6).

Tuckermann and Cammenga performed surface tension studies on complex

mixtures of water-soluble organics at 20 �C [95]. Mixture WSOC1 was prepared

with levoglucosan and humic, cis-pinonic, azelaic, 3-hydroxybutanoic, and

3-hydroxybenzoic acids. Mixture WSOC2 contained the same organics in different

amounts with the absence of cis-pinonic acid. They also used a linearly additive

model to describe the contributions of each species to the observed surface tension

depression; the predictions by the linearly additive models showed good agreement

with the experimental surface tension results, but neither sample showed as much

surface tension depression as ambient aerosol measurements taken by Facchini

Table 5 Equilibrium surface pressure (ESP) and surface area for long chain fatty acids and

alcohols

Organic compound Sub-phase

ESP

(mN m�1)a

Surface area at

collapse pressure

(Å2 molec�1) Ref.

1-Octadecanol 60 wt% sulfuric acid 19 [118]

Phytanic acid 60 wt% sulfuric acid 44.5

1-Octadecanol þ phytanic

acid

60 wt% sulfuric acid 21.3–47.2

(varies with

composition)

1-Hexdecanol 60 wt% sulfuric acid 19 [119]

Stearic acid 60 wt% sulfuric acid 19

1-Nonadecanol Water 24.6 � 1.0 [163]

5 wt% NaCl 30.3 � 1.3

10 wt% NaCl 31.3 � 1.9

20 wt% NaCl 35.21 � 0.2

1-Nonadecanoic acid Water 12.2 � 0.7

5 wt% NaCl 23.9 � 0.9

10 wt% NaCl 24.2 � 0.8

20 wt% NaCl 29.7 � 1.5
aUncertainty with ESP represents 1σ
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et al. [32] over the same concentration range (0.01–0.1 mg C/mL). This suggested

that possible synergistic effects occur among the complex mixture of surface-active

species in ambient aerosols.

Adipic (aa) and succinic (sa) acid surface tension in 2 wt% aqueous NaCl

solutions was studied by Henning et al. [166]. Three different mixtures (in mass%)

of the organics and salt were tested between 273 and 306 K: 93%aa/5%sa, 80%

aa/18%sa, and 5%aa/93%sa. The concentrations of organics were chosen to corres-

pond to those at the moment of droplet activation for dry particles with d ¼ 50,

100 nm (mixtures 1 and 2), and d ¼ 40, 50, and 100 nm (mixture 3). All mixtures

showed a linear dependence of surface tension on temperature, and pure adipic acid

was found to cause more surface tension depression than pure succinic acid. Surface

tension depression in this non-reactive system was described very well by a linearly

additive model based on the S–L equation.

Svenningsson et al. studied mixtures representative of ambient atmospheric

aerosols by using varying weight percentages of levoglucosan, succinic, and fulvic

acids, and (NH4)2SO4, NaCl, and NH4NO3 [218]. The surface tension was measured

as a function of carbon concentration using bubble tensiometry. Four different

Table 6 Surface tension summary of complex mixtures

Organic compound Conc.
Minimum
σ (mN m�1)

Szyszkowski fit parameters
σ ¼ σo � aT ln 1þ bCð Þ

Ref.a (mN m�1 K�1) b (kg mol�1)

WSOC1 (42% humic acid,
17% pinonic acid,
14% azelaic acid,
15% 3-hydroxybutanoic
acid, 9% levoglucosan,
3% 3-hydroxybenzoic
acid)

10 mg/mL 57.5 [95]

WSOC2 (50% humic acid,
17% azelaic acid,
11% levoglucosan,
18% 3-hydroxybutanoic
acid,
4% 3-hydroxybenzoic
acid)

10 mg/mL 59.9

MIXPO (35% NH4NO3,
35% (NH4)2SO4),
12% fulvic acid,
12% succinic acid,
6% levoglucosan)

1.7 mol C/
kg H2O

48.5 0.0316 7.692 [218]

MIXBIO (30% (NH4)2SO4,
18% levoglucosan,
27% succinic acid,
25% fulvic acid)

5.3 mol C/
kg H2O

44 0.0175 50.000

MIXSEA (50% (NH4)2SO4,
30% NaCl,
10% succinic acid,
10% fulvic acid)

1.2 mol C/
kg H2O

48 0.0437 5.0429

MIXORG (40% fulvic
acid, 20% levoglucosan,
40% succinic acid)

3.5 mol C/
kg H2O

48 0.0206 16.004

All measurements were performed in aqueous solution (σ0 ¼ 72 mN m�1)
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mixtures were studied, representative of biomass burning aerosol, marine aerosol,

polluted continental aerosol, and a purely organic aerosol. The minimum surface

tension of all the mixtures was approximately the same (44–48 mNm�1). The Sc was
measured using a CCN counter, and compared to the value calculated using the

experimental surface tension and Köhler theory; these values were found to be in

close agreement (within 0.05%), but the model tended to overestimate the Sc.
Topping and coworkers also focused on multiple organics (including

levoglucosan and oxalic, pinonic, glutaric, succinic, fulvic, malonic, maleic,

malic, adipic, and citric acids) in mixed systems with inorganics ((NH4)2SO4,

NaCl, and NH4NO3) to determine whether predictive models could accurately

describe experimental surface tension [143]. Axisymmetric drop analysis was

used to measure the surface tension, and the data were compared to multiple

predictive surface tension models (based on individual parameters of the organic

compounds (volume weighted fraction, surface tension, type of organic, etc.) and

solution thermodynamics (including activity coefficients and surface-bulk

partitioning)). The best model, the LiLu model, described mixtures of up to

four organics well [185]; however no model performed well in recreating the

experimental surface tension magnitude if salt was present in the solution.

Booth and coworkers also studied the surface tension of binary systems (dicar-

boxylic acids (oxalic, malonic, succinic, glutaric, and adipic acids) and ammonium

sulfate) both experimentally (at 21 �C) and using modeling to determine whether

additive or thermodynamic surface tension models agreed better with experimental

data [190]. Following the methodology of Topping et al. [143] they found that the

LiLu model best predicted binary systems.

5.2.6 Secondary Surfactants: Small Carbonyl-Containing Compounds

Carbonyl-containing VOCs such as glyoxal, methylglyoxal, formaldehyde, and

acetaldehyde are water-soluble and may be taken up into aerosol or cloud water

following Henry’s law. Once in the aqueous aerosol phase, these species spontane-

ously oligomerize to form SOA, including hemiacetals and aldol condensation

products [84–86, 102]. In the presence of (NH4)2SO4, organosulfates and nitrogen

containing products may also form. These organics may also react with oxidants in

the aqueous phase to form surface-active organic acids [99, 100]. The results of

recent surface tension studies of these systems are summarized in Table 7.

Formaldehyde, CH2O, and acetaldehyde, C2H4O, are two highly volatile carbonyl

compounds, yet evidence from as early as the 1980s suggests that these organics can

exist in the particulate phase in significant quantities [219]. McNeill and coworkers

used pendant drop tensiometry (at 25 �C) to study the surface tension of mixtures of

formaldehyde (0.015–0.21 M) and acetaldehyde (0.018–0.54 M) individually in H2O

and in 3.1 M (NH4)2SO4 [102]. The formaldehyde–(NH4)2SO4 mixture showed a

9% reduction in surface tension after 24 h of reaction (minimum surface tension

71.4 dyn cm�1), but none in water, due to the hydrophilic nature of hydrated

formaldehyde and its oligomer products. Acetaldehyde and its reaction products

depressed surface tension 20.6% and 10% in (NH4)2SO4 and water, respectively.
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The McNeill group also studied the surface tension of glyoxal (0–1.62 M) and

methylglyoxal (0–2M) in H2O and at high salt concentrations (5.1MNaCl and 3.1M

(NH4)2SO4) at 25 �C [84, 86]. The glyoxal mixtures showed no surface tension

depression. Methylglyoxal showed surface tension depression in all solutions tested,

with an observed minimum surface tension of 41 dyn cm�1 in (NH4)2SO4. Although

glyoxal and methylglyoxal undergo similar self-oligomerization chemistry, glyoxal

and its reaction products are highly hydrophilic, whereas the methyl group lends

some hydrophobic surface-active character to the methylglyoxal reaction mixture.

Since these compounds are likely to coexist in the ambient atmosphere, surface

tension depression in mixtures of methylglyoxal and glyoxal (total organic concentra-

tion 0–2 M) in H2O and 3.1 M (NH4)2SO4 was also studied using the same technique

[85]. The surface tension trend was described well by the additive Henning model (4)

[166] because glyoxal is not surface active, so its contribution to overall surface tension

was zero. The same was not observed to be true for binary mixtures of formaldehyde/

methylglyoxal and acetaldehyde/methylglyoxal or tertiary mixtures of those three

compounds in 3.1 M (NH4)2SO4 [102]. Unlike the glyoxal/methylglyoxal mixtures,

the surface tensions of the binary and tertiary mixtures were lower than those predicted

by the additive Henning model, suggesting a synergistic effect between the reactive

species. However, methylglyoxal did dominate the surface tension depression: the

surface tensions of the mixtures were similar if the methylglyoxal concentration was

the same, regardless of the identity of the other organic(s).

5.2.7 Secondary Surfactants: Organosulfates

Nozière and coworkers studied organosulfate formation in aqueous aerosol mimics

in mixtures of 11 mM isoprene, 0.1–0.5 M methyl vinyl ketone (MVK), 0.1–0.5 M

methacrolein, or 0.15 mM α-pinene in either 3.7 M (NH4)2SO4 or 1 M Na2SO4

[103]. After these solutions were exposed to UV light (280–320 nm), organosulfate

products were formed via a sulfate radical pathway, and were detected within 3 h

using liquid chromatography/electrospray ionization tandem mass spectrometry

(LC/ESI-MSMS). While the organic/sulfate solutions showed no surface tension

depression prior to irradiation, the organosulfate products detected after irradiation

reduced surface tension by 25–35%. The surface-active organosulfate products

were confirmed to be oligomers.

5.3 Observations of Surfactant Effects on CCN Activity

Experimental laboratory and field studies show that, depending on the surfactant

type and ambient conditions, surfactants may or may not play a role in affecting the

CCN activity.

A field study was conducted in March–April 1992 on El Yunque peak in Puerto

Rico, a site that is influenced by both marine air masses and anthropogenic

emissions, to determine the relative contributions of sulfate and organic aerosols
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to CCN concentrations. It was found that in regions with significant anthropogenic

pollutants, organic aerosols may affect the CCN fractions to levels similar to sulfate

aerosols [220]. Rivera-Carpio et al. also showed that organic aerosols can dominate

CCN concentrations at a marine site like Point Reyes, California [221]. Lab studies

done by the same group have provided additional evidence of the role of organics in

CCN activity; experiments showed that the CCN activity of biomass smoke

particles can be attributed to the water-soluble organics present in these particles

[222]. Field measurements at Chebogue Point, Nova Scotia in August–September

1993 have also suggested that oxalate may play a role in CCN activation [170].

In the study previously mentioned in Sect. 5.2.1, Asa-Awuku et al. not only

measured surface tension but also characterized the CCN activity of WSOC

collected from biomass burning aerosol in a prescribed burning event in Georgia

in April 2004 [25]. They found that the presence of inorganics, like ammonium

sulfate, in the hydrophobic fraction further depressed surface tension and a syner-

gistic effect between the salts and organics acts to enhance considerably CCN

activity. Mochida et al. investigated the relationship between CCN activity and

hygroscopicity for urban aerosols in Tokyo and they stressed the importance of

knowing the surface tension properties of organics in order to explain accurately the

measurements [223]. A CCN closure study conducted on measurements over

Houston, Texas as part of the 2006 GoMACCS campaign also suggested that

knowledge of surfactant properties of the aerosols are needed to reduce the

uncertainties in closure studies [224].

Various studies have determined that the aerosol hygroscopicity and CCN

activity of pure oleic acid increases upon oxidation [225, 226]. Recently, to study

a more atmospherically relevant system, the CCN activity of sodium salt aerosols

(NaCl, Na2SO4) internally mixed with oleic acid (OA) was quantified [227]. These

multicomponent aerosols showed depressed CCN activity upon oxidation with O3.

The behavior after oxidation was consistent with the disappearance of the organic

surface film, supported by KTA. κ-Köhler calculations showed a small decrease in

hygroscopicity after oxidation. The important implication of this finding is that

oxidative aging may not always enhance the hygroscopicity of internally mixed

inorganic–organic aerosols. This trend has also been observed in some smog

chamber studies. VanReken et al. [228] measured the CCN activity of biogenic

SOAs formed from the ozonolysis of five different compounds (four monoterpenes

and one terpenoid alcohol). They observed that each type of SOA becomes less

hygroscopic with aging, which may be attributed to the progressive oligomerization

of the SOA. In another chamber study, the hygroscopicity of sesquiterpene SOA

also decreases with time, which can, like the previous study, be explained by the

formation of higher-molecular-weight oligomers [229].

HULIS can also impact aerosol CCN properties and cloud microphysics

[3, 228]. The presence of HULIS in aerosols can lower aerosol surface tension

(see Sect. 5.2.1 and Table 1). HULIS diffusion to the surface of forming droplets is

faster than the rate of droplet growth, which has important implications for their

effect on cloud microphysical properties [31]. Dinar et al. studied the CCN activity

of HULIS extracted from fresh, aged, and pollution particles collected at the
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Weizmann Institute, Rehovot, Israel and compared them to an aquatic source,

Suwannee River Fulvic Acid (SRFA) [230]. They found that if the molecular

weight and surface tension of the HULIS are known, then Köhler theory can predict

the activation diameters. In a follow-up study they measured the hygroscopic

growth of these ambient HULIS samples and found them to be more hygroscopic

than SRFA fractions [231]. Wex et al. also measured the hygroscopic growth and

critical supersaturations of HULIS samples extracted from filters collected in

downtown Budapest, Hungary, and then used simple Köhler theory to model

these parameters [232]. Their measured and modeled supersaturation values agreed

when the effect of HULIS on the surface tension of the droplets was taken into

account. In another study, the hygroscopic properties of HULIS extracted from

aerosol samples collected at two different sites – a rural site in Hungary and a

biomass burning site in Rondônia – were studied using an HTDMA and a CCNC.

The Hungarian HULIS samples showed a significant lowering of surface tension

(between 34% and 31%) compared to pure water. When the entire water soluble

aerosol sample, which includes both the organic and the inorganic components, is

studied, the surface tension decrease is not as large, ranging from 2% to 13% [233].

The effect of water-soluble dicarboxylic acid films on aerosol CCN activity has

been characterized [93, 94, 143, 166, 178, 209, 210]. Here we will discuss some of

the laboratory experiments that look into these effects. Figure 5 and Table 8 show

comparisons of the experimental and theoretical activation diameters for some of

these organics. Classical Köhler theory or modified forms that account for solubility

and surface tension were used to calculate the theoretical activation diameters.

Most of the organics mentioned here exhibit surface tension depression; for details

please refer to Sect. 5.2.3 and Table 3. Cruz and Pandis [122, 165] initially

investigated the ability of pure organics like glutaric acid and adipic acid to act as

CCN and then expanded these results to study ammonium sulfate particles coated

with glutaric acid. For the pure organic studies, both acids were able to act as CCN

at the supersaturations studied (0.3% and 1.0%), with cloud nucleating properties

similar to those of ammonium sulfate and sodium chloride [165]. For the mixed

studies they concluded that a glutaric acid coating on ammonium sulfate increases

the CCN activity of the inorganic core and this behavior could be predicted using

Köhler theory [122].

Raymond and Pandis in two separate studies experimentally determined the

CCN activities of various single-component organic particles [169] and internally

mixed, multicomponent particles [168] such as glutaric acid, adipic acid, pinonic

acid, glutamic acid, leucine, cholesterol, pinic acid, norpinic acid, hexadecane,

hexadecanol, myristic acid, palmitic acid, and stearic acid with sodium chloride

and ammonium sulfate in the latter study. Their results are summarized in Table 8

and Fig. 5.

In agreement with previous studies, Pradeep Kumar et al. showed that particles

composed of highly soluble smaller acids like oxalic, malonic, and glutaric acids

activate as predicted by Köhler theory, whereas particles containing long-chain

fatty acids such as stearic and oleic acids, which are essentially insoluble in water,

do not activate for particle diameters up to 140 nm and supersaturations of 0.6 and
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below [235]. Prenni et al. used a humidified tandem differential mobility analyzer

(HTDMA) to investigate the hygroscopic behavior (below saturation) of organic

compounds like oxalic, malonic, succinic, glutaric, and adipic acids [167]. Their

data suggest that under most humidity conditions, adipic and succinic acids are not

likely to exhibit hygroscopic growth. At high humidities, oxalic, malonic, and

glutaric acids showed similar water uptake behavior to inorganic particles. Hori

et al. explored the CCN activation of water-soluble organics such as ammonium

oxalate and malonic, succinic, glutaric, adipic, malic, and phthalic acids [236].

Amongst all of these, ammonium oxalate showed the highest activation capability,

comparable to that of ammonium sulfate. The presence of trace levels of a surface-

active species such as azelaic acid and nonanoic acid can dramatically enhance the

activation of adipic acid, a moderately soluble organic [225]. C3–C6 polyols and

2-methyltetrols, though highly water-soluble, are less CCN efficient than organic

acids [141]. Henning et al. stressed the importance of particle phase for cloud

droplet activation for aerosols containing organics and inorganics [166].

l

l

Fig. 5 Experimental results of Broekhuizen et al. [225] and Raymond and Pandis [169] compared

to those predicted by Köhler theory. For Broekhuizen et al. [225] each point represents an

experiment conducted at a fixed supersaturation between 0.33% and 0.89%. The solid symbols
represent experimental results compared to the “full” Köhler theory for the crystalline organic and

the open symbols represent those compared to traditional Köhler theory assuming full solubility.

The different species studied by Raymond and Pandis [169] are listed on the graph. In this case, the

open symbols represent a supersaturation of 0.3% and the solid symbols represent a supersaturation
of 1.0%. In this case, for the theoretical diameters, Kohler theory assuming complete solubility is

used for species which are wetted by water and assuming limited solubility theory for those species

which make a finite, nonzero contact angle with water
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Abbatt et al. studied the ability of mixed ammonium sulfate and organic acid

(malonic, azelaic, hexanoic, cis-pinonic, oleic, and stearic acids) particles to act as

CCN [237]. Their goal was to test whether surface-tension lowering by these

species would have a significant effect on particle activation. They observed highly

variable results for different combinations of organics, leading them to conclude

that CCN behavior of mixed inorganic–organic aerosols is not characterized solely

by surface tension depression effects of the organics and that solubility is the

primary factor.

Recently we studied the effect of surfactants like methylglyoxal and acetalde-

hyde by exposing deliquesced ammonium sulfate seed aerosols (65% RH) 8 ppb or

250 ppb of the organic gas in a 3.5-m3 continuous flow aerosol reaction chamber

[238]. The CCN activity was measured using a Continuous-Flow Streamwise

Table 8 Theoretical and activation diameters for various surfactants

Organic compounda Supersaturation (%)
Theoretical activation
diameter (nm)

Experimental activation
diameter (nm) Ref.

Glutaric acid 0.3 98 111 [165]
1.0 44 60

Adipic acid 0.3 103 115
1.0 46 52
0.4 80 148 [164]
0.5 69 116
0.8 51 No data

Succinic acid 0.4 71 82
0.5 64 64
0.8 45 41

Glucose 0.4 83 74
0.5 71 57
0.8 52 41

Pinic acid 1.0 35 38 � 6 [168]
GA 1.0 41 38 � 6
PA 1.0 41 50 � 9
L 1.0 184 200 � 34
Norpinic acid 1.0 43 42 � 7
Hexadecane 1.0 >200 >200
50% NaCl, 50%L 1.0 27–28 21 � 4
10% NaCl, 90%L 1.0 41–44 39 � 7
1% NaCl, 99%L 1.0 80–85 67 � 11
50% GA, 50%L 1.0 48 48 � 8
10% NaCl,

90% GA
1.0 36–37 36 � 6

10 % AS, 90 % PA 1.0 34–37 46 � 8
33% PA,

33% Pinic acid,
33% Norpinic
acid

1.0 35–44 47 � 8

10% AS,
30% PA, 30%
GA, 30% L

1.0 32–44 49 � 8

In most cases the deviation from the theoretical diameters could be attributed to the activation

kinetics
aAS ammonium sulfate, GA glutamic acid, L leucine, PA pinonic acid
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Thermal Gradient CCN Chamber (CFSTGC). Both of these organic species were

observed to cause significant enhancements in CCN activity at small particle sizes.

No detectable particle volume growth associated with uptake was observed,

consistent with the observations of Kroll et al. [239] and with the relatively low

Henry’s law constants of methylglyoxal and acetaldehyde [240]. Furthermore, the

particle surface tensions inferred from the CCN data using KTA were significantly

lower than those measured for bulk solutions with the equivalent aqueous phase

composition predicted using Henry’s law. This suggests that surface adsorption is

also important for determining aerosol surface tension and thus CCN activity [241].

A few recent field studies have highlighted the challenges in using current

instrumentation to understand the composition dependent effects on hygroscopicity.

These discrepancies in the measured hygroscopicity can have important implications

for other inferred parameters such as surface tension. Good et al. measured aerosol

composition, hygroscopicity, and CCN activity in the tropical Atlantic on board the

RHaMBLe Discovery Cruise D319 and evaluated the ability of κ to represent water

uptake [242]. They observed noticeable differences in the measured and predicted

CCN activity for all three measurement periods, which can be partially attributed

to limitations in measurement and analytical techniques including the use of the

HTDMA to validate the applicability of the κ-model for relative humidities over

94%. In another field study, aerosol physical, chemical, and hygroscopic properties

were measured during the COPS campaign in Germany [243]. They found

inconsistencies between critical supersaturations derived using the CCNC and those

derived using the HTDMA κ-model. Inability to resolve these differences would

result in inaccurate predictions of aerosol indirect effects.

5.4 Modeling Surfactant Effects on CCN Activity

In recent years several groups have developed models to analyze the effect of

surfactants on aerosol surface tension behavior [25, 32, 93, 143, 232, 244].

Seidl created a model based on the state of the surface film (e.g. expanded or

condensed), the equilibrium spreading pressure, and the area per film molecule to

describe organic film formation from fatty acids, then applied it to rainwater

and aerosol particles [245]. He concluded that, in most cases, only dilute films

(with concentrations below that necessary to form a complete monolayer) would

form on aerosols and raindrops, and such films would not affect their physical or

chemical properties. However, dense films were predicted to form on aerosols in the

western U.S., mainly attributable to biomass burning. Mazurek and coworkers

developed a model to describe structural parameters (elastic properties, etc.) of fatty

acid films on rainwater without requiring knowledge of the surfactant concentration

or composition by using surface pressure-area and surface pressure–temperature

isochors and the rain rate and drop diameter distribution [33]. This model can be

used to identify the origin of specific compounds and an approximate chemical

composition based on the force–area characteristics of collected rainwater films.
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Based on the thermodynamics of aggregate formation, Tabazadeh suggested that

micelle formation would limit the surface tension depression capability of organics

in ambient aerosols to 10 dyn cm�1, but she pointed out that even this limited

amount of surface tension could impact cloud activation [11].

Djikaev and Tabazadeh developed a model by including adsorption as well as

Henry’s law to describe trace gas uptake into cloud droplets for binary systems

(water and the trace gas) [241]. Testing properties for both soluble and insoluble

organic species, they found that a large fraction of the organic will remain near the

gas–liquid interface if it is surface active, which could affect the surface tension and

cloud physics.

Prisle and coworkers implemented parameterization of surfactant effects on cloud

activation and cloud radiative properties in a global climate model [246], and found

that including only surface tension parameterization gave erroneous results. They

found that detailed parameterization of surfactant properties were required to achieve

accurate predictions of cloud droplet number calculations (CDNC).

5.4.1 Molecular Dynamics Simulations of Surfactant Effects

Molecular dynamic simulations have also been used to study surfactant films on

water droplets [247–255]. Ågren and coworkers simulated the surface-bulk

partitioning of various organics in atmospheric droplets [250–253]. They studied

amino acids (<50 molecules), HULIS (<162 molecules), and cis-pinonic acid

(<243 molecules) in water droplets (<10,000 molecules). As expected, the amino

acids affected the surface tension depending on their hydrophobic character, with

the most amphiphilic species depressing surface tension to the greatest extent [252].

Model HULIS compounds (cis-pinonic acid, pinic acid, and pinonaldehyde) formed

aggregates both at the surface and in the bulk of the water droplets, dependent on

the number of organic molecules present [250].

Zachariah and coworkers used molecular dynamics simulations to study the effect

of organic coatings on water uptake by aqueous droplets [247–249, 254]. They

determined that the sticking coefficient of water decreased if an organic layer was

present over a pure water surface, and that the sticking coefficient was dependent on

the structure of the organic molecules and chain–chain interactions. Takahama and

Russell [255] simulated the accommodation of impinging water molecules by slabs

of water with and without interfacial surfactant films. Consistent with the findings of

Zachariah and coworkers, they found that a surfactant film decreased the water

accommodation coefficient by 70–100%, depending on the packing density and

projected surface coverage of the surfactant hydrocarbon chains.

5.4.2 Modeling Surface-Bulk Partitioning

Several modeling and experimental studies have been conducted recently in order

to understand the role of surface-bulk partitioning of surfactants in cloud droplet

activation [256–263].
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Li and coworkers modeled the surface-bulk partitioning of SDS inmixed SDS/NaCl

particles using Köhler theory and chemical properties of the surfactant, allowing the

solute concentration and surface tension of the aerosol to vary as the organic partitioned

between the gas–aerosol interface and the particle bulk [257]. This partitioning was

found to affect both the Raoult and Kelvin terms, leading to a net increase in Sc.
Sorjamaa and coworkers also demonstrated theoretically the importance of includ-

ing the partitioning of the surfactant between the bulk and the surface in Köhler

theory calculations [263]. This model differed from that of Li et al. in that surface

effects were rigorously derived using Gibbs’ surface thermodynamics. Including

surface-bulk partitioning in models of the aqueous SDS/NaCl and cis-pinonic acid/

(NH4)2SO4 systems showed, in agreement with the conclusions of Li et al., that Sc is
underestimated if partitioning is neglected, leading to decreased cloud droplet acti-

vation. The effect of surface-bulk partitioning is greater for smaller particles. In a

second study, Sorjamaa et al. studied fatty acids, diols, and HULIS by varying the two

surface tension parameters of the S–L equation within a specified range to control the

surface-bulk partitioning of each organic [262]. They found that for slightly surface-

active species, neglecting partitioning would not be a large source of error as long as

the surface tension including organics was used in Köhler theory. However, for more

surface-active species, partitioning was important to include. Additionally, they

determined that strong surfactants might not affect the Köhler curve as much as a

slightly surface-active species, because the organic would partition to the surface of

the droplet more efficiently, possibly increasing the critical radius. Efforts have been

made to simplify the surface-bulk partitioning model of Sorjamaa et al. in order to

reduce computational expense [258, 261].

Romakkaniemi and coworkers modeled the reactive uptake of gaseous

methylglyoxal to an (NH4)2SO4 aerosol, based on Henry’s law equilibrium, and

also allowed aqueous phase reactions of methylglyoxal with ammonium, hydronium

and OH radicals to take place [264]. They showed that by including surface-bulk

partitioning of surface-active SOA products, an order of magnitude higher concen-

tration of methylglyoxal would enter into the aqueous aerosols (for particles with

r < 200 nm). However, even with this additional organic within the aerosol, the

surface tension depression at the point of activation was predicted to be negligible.

More recently, Topping developed a methodology for an analytical solution to

calculate the movement of organic material from the bulk to a surface layer,

requiring only surface tension parameters from binary systems [265]. He found

that the method was computationally efficient, but it must be validated by

comparisons with laboratory experimental data, and then further with ambient

studies and smog chambers.

5.5 Kinetic Limitations to Cloud Droplet Growth

It is assumed in Köhler theory that cloud droplet activation is a process whereby the

particle instantly reaches thermodynamic equilibrium with the local supersaturation

condition [266]. However, kinetic limitations on droplet growth can render this
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equilibrium assumption invalid under certain realistic conditions [173, 174]. It is

well known that organic films at the air–aqueous interface inhibit the mass transfer

of water between the gas and liquid phases [105, 107]. Non-instantaneous dissolu-

tion of organic particulate matter can also serve as a kinetic limitation to equilibra-

tion. In this section we review theoretical, field, and experimental approaches to

characterize kinetic limitations to cloud droplet growth and their impacts.

5.5.1 Theory

Chuang et al. distinguished between CCN and cloud droplet nuclei (CDN) by

describing CCN as particles that activate to become droplets within a cloud

chamber of fixed or prescribed supersaturation, whereas CDN are particles that

activate in the atmosphere under the more relevant time-varying supersaturation

conditions [173]. They compared the timescale for particle growth at equilibrium to

the condensational growth timescale, and concluded that the discrepancies in

empirical correlations between cloud droplet and CCN concentrations could be at

least partly attributed to limitations in kinetic growth. In such cases, the equilibrium

assumption can lead to an overestimation of the droplet number concentrations,

causing errors in models of cloud droplet populations and consequently affecting

estimates of cloud radiative climate forcing. Phinney et al. compared the cloud

droplet formation and growth parameterization developed by Abdul-Razzak et al.

[267] and Abdul-Razzak and Ghan [268] (ARG) [267, 268] to an adiabatic parcel

model that accounts for the kinetics of droplet growth [269]. They found that there

are certain conditions under which the ARG parameterization underpredicts

the supersaturation and the cloud droplet number concentration, especially in

highly polluted urban areas where updraft velocities are low and aerosol number

concentrations are high.

Typically WSOC are the compounds in atmospheric aerosols that exhibit sub-

stantial surfactant behavior [93]. In general, the presence of WSOC can affect CCN

activity by either changing the surface tension (Kelvin) or by changing the moles of

solute in the droplet (Raoult). The use of a numerical model to investigate the effect

of organics on cloud droplet activation has suggested that WSOC can influence

droplet concentrations by increasing the amount of solute in a particle and by

reducing the surface tension [270]. Nenes et al. [271] used a cloud parcel model

and found numerous conditions under which chemical effects on cloud droplet

number were comparable to the first indirect effect [271]. They studied various

chemical effects including dissolution of soluble gases and partially soluble solutes

in the growing droplet, accommodation coefficient changes from the formation of

organic films at the droplet surface, and surface tension depression by dissolved

organic substances. Their simulations indicated that all these effects show a strong

dependence on updraft velocity. The mass accommodation coefficient has a

negligible effect on the cloud droplet number for marine aerosols, but the aerosol

number increased considerably for urban environments. Under marine conditions

the surface tension effect can be up to 50% of the Twomey effect, whereas under
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urban conditions it can exceed the Twomey effect. In this study the authors

concluded that the uncertainties in the surface tension behavior are probably

more influential than uncertainties in the solute concentration alone. The influence

of WSOC would also be greater if they are distributed according to the CCN surface

area (vs volume), as a greater mass of WSOC will be present on CCN with high Sc.
Additionally, the presence of surfactants and condensable gases can act synergisti-

cally to increase cloud droplet number. Using an aerosol activation parameteri-

zation that includes surface tension effects, it has been shown that the addition of

surfactants to CCN affects drastically how the CCN responds to changes in the

updraft velocity [272].

Ervens et al. used an adiabatic cloud parcel model to confirm that the largest

changes in droplet number due to the presence of WSOC occur at low updraft

velocities and high aerosol concentration [273]. This is because, under these

conditions, the kinetic effects on growth are important and the equilibrium assump-

tion leads to an overestimate of the composition effects. Film-forming compounds

have also been shown, using a cloud parcel model, to have an effect on droplet

growth and they can reduce the cloud droplet number concentration, which has

direct consequences for climate-cloud feedbacks [274]. Lance et al. extended this

analysis to scales larger than individual updrafts and used a detailed numerical

cloud parcel model to show that organic surfactants can impact cloud droplet

number as much as changes in updraft velocity [275].

Khvorostyanov and Curry recently developed an alternative parameterization to

calculate droplet activation kinetics that reduces the uncertainties associated with

cloud parcel models and allows changes in basic assumptions like the kinetic

corrections in the droplet growth rate to be accommodated more easily [276].

Their method is computationally more efficient and flexible as it eliminates the

need to run numerous simulations using cloud parcel models; instead, it is based on

a direct numerical solution of the integral supersaturation equation.

Asa-Awuku and Nenes developed a numerical model to investigate the effect of

dissolution kinetics on CCN activity [244]. According to their parameterization,

solution dissolution kinetics will not cause a change in the critical supersaturation if

there are substantial amounts of inorganic electrolytes and low molecular weight

organic acids present in ambient CCN. The effect of dissolution kinetics is not

enough to inhibit CCN activity but, under certain conditions, affected droplets can

undergo a slower growth rate and require a higher supersaturation level to activate.

5.5.2 Lab

A number of laboratory studies have shown how the presence of surfactants can

affect the growth kinetics of aerosols. Figure 4 and Table 8 show theoretically and

experimentally derived activation diameters for various surface-active organics.

When activation is observed at a larger critical diameter than the one predicted

theoretically, this can be an indication of kinetic limitations, especially those

related to solubility. Additionally, in the past few years, chamber studies have

Surface-Active Organics in Atmospheric Aerosols 239



tried to study specifically the CCN activity of WSOC [25, 97, 197, 277, 278]. Most

of these indicate that the presence of WSOC does not affect droplet growth kinetics,

but it is important to note that the organics in these experiments are also not strong

surfactants. Typically in these studies, the activated droplet diameter at each

supersaturation is plotted for the different samples and compared to the activation

of a pure inorganic salt. If the sample particles can grow to similar diameters as the

inorganic, it implies that droplet growth kinetics are not affected, at least in the

environment of the cloud chamber. For instance, SOA was generated in the 12 m3

Carnegie Mellon University chamber from the ozonolysis of a sesquiterpene,

β-caryophyllene, and online measurements were made using a Static Diffusion

(SD) CCN counter and a Continuous-Flow Streamwise Thermal Gradient CCN

chamber (CFSTGC) to study the droplet formation characteristics of this SOA

[277]. The WSOC fraction and the droplet growth kinetics of the CCN were

found to be strongly anti-correlated, implying that the insoluble material in the

SOA can delay droplet growth by forming a kinetic barrier to water uptake.

Additionally, the less volatile material in the SOA was not very hygroscopic, but

it impacted growth kinetics. The gas phase uptake of surfactants like methylglyoxal

and acetaldehyde has been observed in chamber studies to enhance CCN activity of

inorganic seed aerosols but not to have an effect on activation kinetics [238].

Corrigan and Novakov [164] observed that the measured values of the critical

diameter for adipic acid are around two times greater than the calculated values,

unlike the more soluble succinic acid, which shows closer agreement [164]. This

could possibly be due to the lower solubility of adipic acid causing a delay in the

growth of the cloud droplet.

To study the importance of solubility on the activation of a cloud droplet, Shantz

et al. measured the growth rates of water droplets on pure organic particles, such as

succinic, glutaric, adipic, pimelic, and suberic acids, and their mixtures with

ammonium sulfate, using a thermal gradient static cloud diffusion chamber

(CCNc) [279]. Additionally, they used a kinetic model of droplet growth modified

to account for solubility, and were able to reproduce successfully the observed

delays in particle growth. Their results once again assert the importance of

solubility for cloud droplet activation; the particles exhibited a short delay (1–2 s)

in activation if the organic coats the ammonium sulfate and can reduce the CDNC

relative to ammonium sulfate by up to 85%.

Hegg et al. studied the CCN activity of products of cyclohexane and α-pinene
oxidation by ozone generated in a 600-m3 Calspan Corporation chamber by coupling

the chamber outflow to a static thermal diffusion chamber to measure the CCN

activation spectrum [280]. They concluded that the presence of organic components,

or at least sparingly soluble or relatively low-hygroscopicity organics, may signifi-

cantly alter the CCN efficiency of the aerosol and increase the time necessary to

activate.

Small amounts of salt can have a great effect on the cloud droplet activation of

leucine [168]. This effect has also been observed with adipic and succinic acids

[281]. Essentially, the barrier to water uptake and activation is decreased in the

presence of an inorganic salt.
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The effect of palmitic acid (water insoluble, surface active organic) coatings on

water uptake by ammonium sulfate was studied using a combination of FTIR,

Transmission Electron Microscopy (TEM), and Aerosol Mass Spectrometry

(AMS) [282]. The results indicated that a thin coating will not change the kinetics

of water uptake of ammonium sulfate particles greatly, but a thicker coating (~50 wt

% organic) may have a discernible effect.

Andrews and Larson coated black carbon particles with organic surfactants like

Tween 80 or azelaic acid and observed an enhancement in the hygroscopicity of

these ordinarily hydrophobic compounds [283]. Knowing that these elemental

carbon particles are quite abundant in the atmosphere, typically formed in combus-

tion processes, this study is key in trying to understand how organic compounds on

their surface can change their chemical and physical interactions in the atmosphere.

The laboratory studies discussed in this section highlight the importance of the

solubility of aerosol organic material on CCN activity. As stated previously,

solubility affects the Raoult term in the Köhler equation (1). The solubility limits

the amount of organic material that is incorporated into the particle and thus

influences the potential for the formation of a surface film and/or micelles.

Hence, solubility indirectly also impacts the surface tension of the particle, thereby

influencing the CCN activity via the Kelvin effect.

5.5.3 Field

CCN closure studies, where observations of ambient aerosol CCN activity are

compared to the CCN concentration predicted via Köhler theory based on the

particle size distribution and composition, often show discrepancies that can be

attributed to kinetic limitations to droplet growth. Besides affecting cloud

properties, kinetic limitations to droplet growth in the atmosphere may also impact

the lifetime of aerosol particles. Changes in particle lifetime may influence the

aerosol composition due to photochemical aging or heterogeneous processing of

the aerosol.

In a study conducted in a semi-rural location (Egbert, Ontario) in the fall of

2005, good CCN closure was attained in most cases when it was assumed that the

particulate organics were insoluble and that the growing droplet had the surface

tension of water [284]. However, when organic content was high the closure was

not as good. Sensitivity analyses suggested that organic solubility limitations and/or

surface tension depression were important.

Shantz et al. incorporated the results from another field study conducted in

Egbert in May–June 2007 into a cloud droplet model [285]. This field study

compared the CCN cloud droplet water uptake by aerosol particles containing

organics from anthropogenic or biogenic sources. Fresher biogenic particles,

distinguished using AMS, exhibited the same initial growth rate as ammonium

sulfate, but organics from anthropogenic sources delayed initial growth of particles,

possibly due to film formation.
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Ruehl et al. measured the rate of cloud droplet formation in August–September

2006 at four different sites in the US to represent various air masses: Houston, TX

(urban), Great Smokey Mountain National Park, TN (polluted regional), Bondville,

IL (background continental), and the Southern Great Plains site (Lamont, OK)

[286]. They used a fully-coupled numerical flow model to transform the observed

size distributions into mass accommodation coefficient (α) distributions. The mass

accommodation is defined as the probability that a water vapor molecule will be

incorporated into the liquid phase upon collision with a droplet. They reported that

59% of ambient CCN grew at a rate similar to ammonium sulfate and that kinetic

limitations were important only for some air masses. Contradicting results were

found by Lance et al. [224] where another CCN closure study in Houston, Texas

around the same time showed no substantial delay in activation kinetics [224]. The

origin of this discrepancy is unclear, but the use of different instruments in both

studies may have contributed to the differences in observations.

In another field study near the central Californian coast in July–August 2007,

persistent bimodal spectra were observed for the cloud droplets, which are

attributed to the presence of kinetic limitations to droplet growth. The inferred

mass accommodation coefficients for the slowly-growing mode were smaller

than ammonium sulfate. Additionally, the particles with low accommodation

coefficients showed a small and narrow size distribution, indicating that the

observed kinetic limitations arose due to the presence of a condensed film rather

than slow dissolution [287].

The first joint shipboard and airborne study related to the chemical composition

and water-uptake behavior of particulates in ship emissions was conducted on

emissions from a Post-Panamax class container ship off the central coast of

California. The results showed that the majority of particles outside the ship

plume did not show slow water uptake kinetics as compared to ammonium sulfate,

but in-plume particles with critical supersaturation between 0.1% and 0.35% had

slower uptake kinetics than ammonium sulfate [288].

Water-soluble organics present in Mexico City aerosols were found to act as

surfactants, but they did not retard activation kinetics [289]. The ocean surface also

contains significant amounts of slightly soluble surfactants, which could potentially

affect activation kinetics. The CCN activity of the DOM in seawater samples

collected near the Georgia coast showed growth similar to ammonium sulfate

even though this DOM form compressed surface films that altered surface tension,

suggesting that DOM primarily affects CCN activity through its impact on surface

tension [197].

6 Summary and Outlook

It is clear that surface-active organics in atmospheric aerosols can significantly

impact aerosol heterogeneous chemistry, cloud formation, and freezing. Most of

these effects stem from the tendency of surface-active molecules to partition to the
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gas–aerosol interface, forming an organic surface film and reducing the surface

tension. At this time, the prevalence of organic surface films on ambient atmo-

spheric aerosols is not completely known. There is a need for the development of

new techniques capable of directly detecting organic films on ambient aerosols in

situ without sample drying.

It is also not currently possible to predict reliably the formation of organic surface

films on aerosols as a function of aerosol chemical composition. To this end, there is a

need for more laboratory experiments to characterize phase behavior and surface

tension depression for naturally occurring organic surfactants under the range of

conditions typical of the aqueous aerosol environment (i.e., supersaturated salt

concentrations, pH ~0–8, multiple organic species [34, 290–295]). The potential for

liquid–liquid phase separation [12] and glass formation [13, 14] in aerosols

containing surfactants should be evaluated, and the concomitant effects on aerosol

freezing, CCN activity and heterogeneous chemistry should be explored.

Figure 6 summarizes the maximum measured surface tension depression for

organic surfactant species in aqueous solution (data from Tables 2, 3, 4 and 7) in the

context of the carbon oxidation state (OSC) vs carbon number (nC) diagram of Kroll

et al. [296]. The highest surface tension depression is observed for fatty acid salts

with relatively low (OSC ) and high nC. However, significant surface tension

depression potential exists for species with a wide range of (OSC ) vs nC, typical
of both freshly emitted and aged primary organic aerosol, or SOA. It is also

Fig. 6 Bubble diagram depicting maximum measured surface tension depression for organic

surfactant species in aqueous solution (from Tables 2, 3, 4 and 7) as a function of average carbon

oxidation state (OSC ) in the molecule and number of carbon atoms (nC) [296]. The size of the

bubble is proportional to the maximum measured departure from the surface tension of water

(72 mN m�1) for each species. Also shown are typical values of (OSC) and nC for atmospheric

organic aerosol material as classified from Aerodyne Aerosol Mass Spectrometer measurements.

“HOA” indicates hydrocarbon-like organic aerosol, “BBOA” is biomass burning aerosol,

“SV-OOA” is semivolatile oxidized organic aerosol, and “LV-OOA” is low-volatility oxidized

organic aerosol
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apparent from Fig. 6 that more surface tension measurements are needed for species

with ðOSCÞ and nC values that fall within the ranges defined by Kroll et al. [296] as

being typical for atmospheric organic aerosol material.

Finally, for a complete picture of the multiple roles of surface-active organic

material in the chemistry and physics of aerosols, field experiments are needed

which couple direct observations of aerosol heterogeneous chemistry [148], CCN,

and IN activity with studies of aerosol composition, surface tension, and particle

morphology. New techniques which provide speciated ambient aerosol organic

composition [297] or functional group information [298] are expected to yield

additional insight.
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