

Advances in Intelligent and
Soft Computing 97
Editor-in-Chief: J. Kacprzyk

Advances in Intelligent and Soft Computing

Editor-in-Chief

Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our homepage: springer.com

Vol. 87. E. Corchado, V. Snášel,
J. Sedano, A.E. Hassanien, J.L. Calvo,
and D. Ślęzak (Eds.)
Soft Computing Models in Industrial and
Environmental Applications,
6th International Workshop SOCO 2011
ISBN 978-3-642-19643-0

Vol. 88. Y. Demazeau, M. Pěchoucěk,
J.M. Corchado, and J.B. Pérez (Eds.)
Advances on Practical Applications of Agents
and Multiagent Systems, 2011
ISBN 978-3-642-19874-8

Vol. 89. J.B. Pérez, J.M. Corchado,
M.N. Moreno, V. Julián, P. Mathieu,
J. Canada-Bago, A. Ortega, and
A.F. Caballero (Eds.)
Highlights in Practical Applications of Agents
and Multiagent Systems, 2011
ISBN 978-3-642-19916-5

Vol. 90. J.M. Corchado, J.B. Pérez,
K. Hallenborg, P. Golinska, and
R. Corchuelo (Eds.)
Trends in Practical Applications of Agents
and Multiagent Systems, 2011
ISBN 978-3-642-19930-1

Vol. 91. A. Abraham, J.M. Corchado,
S.R. González, J.F. de Paz Santana (Eds.)
International Symposium on Distributed
Computing and Artificial Intelligence, 2011
ISBN 978-3-642-19933-2

Vol. 92. P. Novais, D. Preuveneers, and
J.M. Corchado (Eds.)
Ambient Intelligence - Software and
Applications, 2011
ISBN 978-3-642-19936-3

Vol. 93. M.P. Rocha, J.M. Corchado,
F. Fernández-Riverola, and A. Valencia (Eds.)
5th International Conference on Practical
Applications of Computational Biology &
Bioinformatics 6-8th, 2011
ISBN 978-3-642-19913-4

Vol. 94. J.M. Molina, J.R. Casar Corredera,
M.F. Cátedra Pérez, J. Ortega-García, and
A.M. Bernardos Barbolla (Eds.)
User-Centric Technologies and
Applications, 2011
ISBN 978-3-642-19907-3

Vol. 95. Robert Burduk, Marek Kurzyński,
Michał Woźniak, and Andrzej Żołnierek (Eds.)
Computer Recognition Systems 4, 2011
ISBN 978-3-642-20319-0

Vol. 96. A. Gaspar-Cunha, R. Takahashi,
G. Schaefer, and L. Costa (Eds.)
Soft Computing in Industrial Applications, 2011
ISBN 978-3-642-20504-0

Vol. 97. W. Zamojski, J. Kacprzyk,
J. Mazurkiewicz, J. Sugier,
and T. Walkowiak (Eds.)
Dependable Computer Systems, 2011
ISBN 978-3-642-21392-2

Wojciech Zamojski, Janusz Kacprzyk,
Jacek Mazurkiewicz, Jarosław Sugier,
and Tomasz Walkowiak (Eds.)

Dependable Computer
Systems

ABC

Editors

Wojciech Zamojski
Wrocław University of Technology
Institute of Computer Engineering,
Control and Robotics
ul. Janiszewskiego 11/17
50-372 Wrocław
Poland
E-mail: wojciech.zamojski@pwr.wroc.pl

Janusz Kacprzyk
Polish Academy of Sciences
Systems Research Institute
ul. Newelska 6
01-447 Warszawa
Poland
E-mail: kacprzyk@ibspan.waw.pl

Jacek Mazurkiewicz
Wrocław University of Technology
Institute of Computer Engineering,
Control and Robotics
ul. Janiszewskiego 11/17
50-372 Wrocław
Poland
E-mail: jacek.mazurkiewicz@pwr.wroc.pl

Jarosław Sugier
Wrocław University of Technology
Institute of Computer Engineering,
Control and Robotics
ul. Janiszewskiego 11/17
50-372 Wrocław
Poland
E-mail: jaroslaw.sugier@pwr.wroc.pl

Tomasz Walkowiak
Wrocław University of Technology
Institute of Computer Engineering,
Control and Robotics
ul. Janiszewskiego 11/17
50-372 Wrocław
Poland
E-mail: tomasz.walkowiak@pwr.wroc.pl

ISBN 978-3-642-21392-2 e-ISBN 978-3-642-21393-9

DOI 10.1007/978-3-642-21393-9

Advances in Intelligent and Soft Computing ISSN 1867-5662

Library of Congress Control Number: 2011928737

c© 2011 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India

Printed on acid-free paper
5 4 3 2 1 0
springer.com

Preface

We would like to present the monographic studies on selected problems of depend-
able computer systems and networks which are published in the series Advances in
Intelligent and Soft Computing.

The systems under consideration

Contemporary systems are created as very sophisticated products of human ideas
and they are characterized by complex structure. The three main elements that
should be identified in any system are: users, services (functionalities), and tech-
nological resources. The technological resources are understood as technical assets
(engineering stuff) and information resources (algorithms, processes and man-
agement procedures). In the most general operation flow the users generate tasks
which are realized by the system. The task to be realized requires some services
(functionalities) available in the system and realization of the services needs a de-
fined set of technical resources. In a case when any resource component of this set
is in the state “out of order” or “busy”, the task may wait until the moment when
the component returns to the state “available”, or the service may try to create
other configuration based on available technical resources.

The modern systems are equipped with suitable measures which minimise the
negative effects of these inefficiencies (a check-diagnostic infrastructure, fault re-
covery, information renewal, time and hardware redundancy, reconfiguration or
graceful degradation, restart etc). The special service resources (service persons,
different redundancy devices, etc.) supported by so called maintenance policies
(procedures of resource services used to minimize negative consequences of faults
that are prepared before or created ad hoc by the system manager) are incorpo-
rated in every real system.

System dependability

The dependability is a modern approach to reliability problems of contemporary sys-
tems. It is worth to underline the difference between the terms of system dependabil-
ity and systems reliability. Dependability of systems, specially computer systems
and networks, is based on a multi-disciplinary approach to theory, technology, and
maintenance of systems operating in real (and very often unfriendly) environment.
Dependability of systems concentrates on a probability of tasks realization by
a system which is the unity of technical, information and human resources, while
“classical” reliability focuses mainly on technical system resources.

VI Preface

The system dependability can be described by such attributes as availability
(readiness for correct service), reliability (continuity of correct service), safety (ab-
sence of catastrophic consequences for the users and the environment), security
(availability of the system only for authorized users), confidentiality (absence of
unauthorized disclosure of information), integrity (absence of improper system
state alterations) and maintainability (ability to undergo repairs and modifications).

System dependability and soft computing

The following main assumptions are usually made during dependability analyses
and syntheses: system user tasks are realized on the basis of available services (func-
tionalities) and information or technical resources. This means that the realized task
is dynamical mapped on the services and then the services are dynamical mapped
on the system resources. The system operates in unfriendly environment and its
components (services and resources) are working with limited performance and with
unreliable parameters, so consequently the user task is executed with limited per-
formability parameters too. Sometimes a combination of unfriendly conditions of
the environment together with possible faults produced by the technical infrastruc-
ture and/or by the users may create a critical situation in system operation which
may lead not only to incorrect task realization but even to system collapse.

The functional and reliability parameters of system functionalities (services)
and resources are often tightly inter-dependent – hence dependability analysis or
synthesis of such contemporary systems need adequate formal and mathematical
models and calculation (evaluation) methods suitable for systems and processes
which are created by mix of stochastic and deterministic events generated by hard-
ware resources, information resources (algorithms and procedures of operations
and system management) and human-factors (managers, administrators and users).
It is very often difficult to find a relation between system elements and system
events (the relation between reasons and results) and it is even more difficult to
define mathematical models with “analytical” relationships between such phe-
nomena as, for example, a system user (administrator) mistake and the time exten-
sion of task execution in a distant node of the system. Of course, these problems
are not only associated with human factors but the same difficulties are generated
by complexity of technological and information system resources too. The prob-
lems may be solved only by using artificial intelligence and soft computing meth-
ods and, in this situation, contemporary systems, especially computer systems and
networks, are the actual examples of undependable artificial intelligence systems
which are not formally and mathematically described yet.

The topical scope of the monograph

In the following few points we are presenting the main subject areas of the chap-
ters selected for our monograph.

Methodology

Compliant methodology and tools to develop and manage development environ-
ments of IT security-enhanced products and systems for the purposes of their cer-
tification are standardized in the ISO/IEC 15408 Common Criteria. In chapter 1,

Preface VII

Białas presents results of research on how to develop the set of patterns for differ-
ent kinds of evidences that should be delivered together with the IT product or
system for independent evaluation of its dependability, safety, security etc. levels.
The work summarizes the methodology with respect to the achieved and planned
project results.

An original methodology for dependability analysis which uses semi-Markov
models is described in chapter 16. In this approach the models represent equip-
ment ageing and also incorporate various maintenance activities. Having available
some basic representation it is possible to adjust its parameters so that it corre-
sponds to some hypothetical new maintenance policy and then to examine impact
that this new policy has on various reliability characteristics of the system. The
work deals with a methodology of model adjustment and specifically investigates
its one particular problem: avoiding probability saturation in cases when the tun-
ing is aimed at reaching increased repair frequencies.

Mathematical models

A model of client – server computing system is proposed by Zuberek in chapter
23. The main problem is how to model services requested by clients. The author
presents a component language for description of system elements (service, client)
and proposes interleaving requests from different components to increment per-
formance of the system.

Design models can be analyzed to predict whether the future system satisfies re-
quirements prior to its implementation. In Ghezzi and Sharifloo’s work (chapter 4)
it is proposed to use a model-driven approach in analyzing design models against
non-functional requirements (reliability, performance, cost, and energy consump-
tion). The authors also show how probabilistic model checking techniques can be
used to achieve this purpose. In the method it is assumed that initially the software
engineer describes the desired system functionalities using behavioural models that
represent high-level scenarios specified by UML Sequence Diagrams.

Functional approach to dependable operation of the system considered as net-
work of services is presented by Walkowiak and Michalska in chapter 21 and by
Toporkov et al. in chapter 19. The latter work proposes a slot selection algorithm
with non-rectangular time-slot window. The slot algorithms are used in economic
models for independent job batch scheduling in distributed computing with non-
dedicated resources. Economic models of scheduling are based on the concept of
fair resource distribution between users and owners of computational nodes. They
are effectively used in such spheres of distributed computing as Grid, cloud com-
puting, and multiagent systems. Resource brokers usually implement some eco-
nomic policy in accordance with the application-level scheduling concept. When
establishing virtual organizations, the optimization is performed for the job-flow
scheduling. Application of the set of specific rules leads to overall increase in the
quality of service (QoS) and in efficiency of resource usage.

Duration graphs are an extension of timed automata and are suitable for model-
ling the accumulated times spent by computations in duration systems. Majdoub in
chapter 12 proposes a framework for automatic generation of test cases directly
from the specification model represented by states and trees.

VIII Preface

Software

Nowadays computer systems fail mainly due to software faults. One of the main
reasons of software failures is software ageing. The ageing is the progressive soft-
ware performance degradation due to accumulation of error conditions that leads
to system resource exhaustion. To counteract aging, software rejuvenation has
been recently proposed. Rejuvenation is the concept of periodically stopping the
software, cleaning its internal state and then restarting. Koutras in chapter 8 exam-
ines how software availability is affected by rejuvenation technology and tries to
find an optimal rejuvenation policy in terms of availability and downtime cost.

Effective testing is one of the key issues in development of dependable soft-
ware systems. The objective of Bluemke and Kulesza’s work in chapter 2 is to
compare dataflow and mutation testing of several Java programs. Results of ex-
periments conducted in the Eclipse environment are also included.

Computer oriented languages are very often used in system modelling and the
examples can be found in chapters 2, 4, 9, 10, 18 and 13. The UML formalization
is often undertaken by projecting the notation in a rigorously defined semantic
domain. When the target formalism is of state transition type, the derived models
are verified by model checking. Meziani and Bouabana-Tebibel verify in chapter
13 a model using the Petri nets approach. The work of Kowalski and Magott in
chapters 9 and 10 proposes UML models of maintenance policies which are built
on the base of fault trees and Petri nets. The problem of developing dependable
software (a metamodel and an UML profile for functional programming lan-
guages) is discussed by Szlenk in chapter 18.

Tools and technologies for dependable system operation

In many applications microcontroller circuits are used for improving dependability
of reactive systems with real time requirements. In order to evaluate their fault
susceptibility various fault injection techniques have been developed. The soft-
ware for fault injection analysis applied for a case of satellite microcontroller on-
board power system is presented by Iwi ski and Sosnowski in chapter 5.

Memory failures are quite common in contemporary technology. When they
occur, the whole memory bank has to be replaced, even if only few bytes of mem-
ory are faulty. With increasing sizes of memory chips the urge not to waste these
“not quite properly working” pieces of equipment becomes larger and larger. Op-
erating systems such as Linux already provide mechanisms for memory manage-
ment which could be utilized to avoid allocating bad memory blocks which have
been identified earlier, allowing for a failure-free software operation despite
hardware problems. Surmacz and Zawistowski describe in chapter 17 problems of
detecting memory failures and deal with OS (Linux) mechanisms that can be used
for bad block exclusion.

The crucial role of evaluation during development of the information retrieval
systems is to provide useful evidence of performance improvements and the qual-
ity of results that they return. However, the classic evaluation approaches have
limitations and shortcomings especially regarding the user consideration, the
measure of the adequacy between the query and the returned documents and the
consideration of characteristics, specifications and behaviours of the search tool.

Preface IX

Bouramoul et al.’s chapter 3 presents a new approach for Web search engines
evaluation that takes into account the context during the assessment process. The
experiments included at the end prove the applicability of the proposed approach
to the real research tools.

Theory of the systems reliability is particularly applicable to electronic protec-
tion systems (alarm systems) which, due to their specific character of use, should
be characterized by the high level of reliability. The devices and electronic units
applied in the wide range in those systems, in particular the microprocessor sys-
tems, require a new perspective on the system reliability and safety. The Ser-
giejczyk and Rosinski’s chapter (15) presents a reliability analysis of the electronic
protection systems using optical links. Some theoretical and practical problems of
detecting encrypted files in evidence data during digital forensics investigations are
presented by Jó wiak et al. in chapter 6.

Probabilistic assessment methods

One of the most difficult problem in development of the critical computer based
systems is evaluation of system measures that are strongly related to probabilistic
description of the events in the considered system. Sharvia and Papadopoulos
(chapter 14) propose an approach to safety analysis which systematically inte-
grates both compositional and behavioural safety analysis paradigms. The process
starts with compositional analysis and uses its results to provide a systematic con-
struction and refinement of state machines, which can be subsequently analyzed
by behavioural analysis. Kharchenko et al. in chapter 7 try to built a technique for
assessment of probabilistic dependability metrics of systems with different struc-
tures and failures. The technique is useful for synthesis of systems with applied
redundancy and FTC concepts.

Summary

The brief overview of the chapters above illustrates a wide diversity of depend-
ability problems in contemporary technical systems. We believe that this mono-
graph will be interesting to all scientists, students, practitioners and researchers
who deal with problems of dependability on practical grounds. It is our hope that
it may be an inspiring source of original ideas and can help to define new chal-
lenges, as well as can provide a general insight into selected topics of the subject.
As the editors we would like to express our sincere gratitude to all authors who
have contributed to this volume and to all reviewers whose remarks has helped us
to refine its contents.

Wojciech Zamojski
Janusz Kacprzyk

Jacek Mazurkiewicz
Jarosław Sugier

Tomasz Walkowiak

Contents

Patterns Improving the Common Criteria Compliant IT
Security Development Process . 1
Andrzej Bia�las

A Comparison of Dataflow and Mutation Testing of Java
Methods . 17
Ilona Bluemke, Karol Kulesza

A New Three Levels Context Based Approach for Web
Search Engines Evaluation . 31
Abdelkrim Bouramoul, Mohamed-Khireddine Kholladi,
Bich-Lien Doan

Quantitative Verification of Non-functional Requirements
with Uncertainty . 47
Carlo Ghezzi, Amir Molzam Sharifloo

Testing Fault Susceptibility of a Satellite Power
Controller . 63
Marcin Iwiński, Janusz Sosnowski

Theoretical and Practical Aspects of Encrypted Containers
Detection - Digital Forensics Approach . 75
Ireneusz Jozwiak, Michal Kedziora, Aleksandra Melinska

Metric-Probabilistic Assessment of Multi-Version Systems:
Some Models and Techniques . 87
Vyacheslav Kharchenko, Andriy Volkoviy, Olexandr Siora,
Vyacheslav Duzhyi

Two-Level Software Rejuvenation Model with Increasing
Failure Rate Degradation . 101
Vasilis P. Koutras

XII Contents

Towards a UML Profile for Maintenance Process and
Reliability Analysis . 117
Marcin Kowalski, Jan Magott

Conjoining Fault Trees with Petri Nets to Model Repair
Policies . 131
Marcin Kowalski, Jan Magott

Analysis of Geometric Features of Handwriting to Discover
a Forgery . 145
Henryk Maciejewski, Roman Ptak

A Formal Framework for Testing Duration Systems 155
Lotfi Majdoub

Dynamic Model Initialization Using UML 169
Lila Meziani, Thouraya Bouabana-Tebibel

Integrated Application of Compositional and Behavioural
Safety Analysis . 179
Septavera Sharvia, Yiannis Papadopoulos

Reliability Analysis of Electronic Protection Systems Using
Optical Links . 193
Miros�law Siergiejczyk, Adam Rosiński

Avoiding Probability Saturation during Adjustment of
Markov Models of Ageing Equipment . 205
Jaros�law Sugier

Bad Memory Blocks Exclusion in Linux Operating
System . 219
Tomasz Surmacz, Bartosz Zawistowski

Metamodel and UML Profile for Functional Programming
Languages . 233
Marcin Szlenk

Resource Co-allocation Algorithms for Job Batch
Scheduling in Dependable Distributed Computing 243
Victor Toporkov, Dmitry Yemelyanov, Anna Toporkova,
Alexander Bobchenkov

Functional Based Reliability Analysis of Web Based
Information Systems . 257
Tomasz Walkowiak, Katarzyna Michalska

Contents XIII

Human Resource Influence on Dependability of Discrete
Transportation Systems . 271
Tomasz Walkowiak, Jacek Mazurkiewicz

An Effective Learning Environment . 285
Marek Woda, Konrad Kubacki-Gorwecki

Incremental Composition of Software Components 301
W.M. Zuberek

Author Index . 313

W. Zamojski et al. (Eds.): Dependable Computer Systems, AISC 97, pp. 1–16.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Patterns Improving the Common Criteria Compliant
IT Security Development Process

Andrzej Białas

Institute of Innovative Technologies EMAG,
40-189 Katowice, Leopolda 31, Poland
e-mail: a.bialas@emag.pl

Abstract. The chapter concerns the project of the methodology used to create and
manage development environments of IT security-enhanced products and systems
for the purposes of their future Common Criteria certification. The key issues of
the patterns-based project are discussed: how to develop the set of patterns for dif-
ferent kinds of evidences to be delivered with the IT product or system for inde-
pendent evaluation. The author characterizes the IT security development process
and the elaborated evidences, and presents analyses provided to develop such pat-
terns. The patterns usage is shown by a few examples which are part of a more
complex case study. Such patterns facilitate and speed up the IT security devel-
opment process, improve the quality of evaluation evidences, as they are more
consistent and include all details required by the considered assurance compo-
nents, facilitate the computer support of the IT security development process. The
chapter concludes the methodology with respect to the achieved and planned pro-
ject results.

1 Introduction

Information technologies (IT/ICT) are often meant to fulfil social and business ob-
jectives in high-risk environments. The main issue, related to the term “assur-
ance”, is which factors ensure that the measures meant to protect certain resources
in a critical situation will really work. The assurance is understood that an IT
product or system meets its security objectives expressing these measures. The ba-
sic assurance methodology is specified within the ISO/IEC 15408 Common Crite-
ria (CC) standard [14]. According to the CC paradigm the source of measurable
assurance are the rigour applied during the development and manufacturing proc-
esses, independent third-party evaluation, operation and maintenance according to
the received certificate. The reliable IT products and systems with measurable
level of assurance are developed in a rigorous manner in special “development en-
vironments” (exactly: development, production and maintenance environments).
Assurance is measured with the use of Evaluation Assurance Levels (EALs) in the
range: EAL1 (min.) to EAL7 (max.).

The chapter presents the concept, first results and future plans of the CCMODE
(Common Criteria compliant, Modular, Open IT security Development Environment)

2 A. Białas

R&D Project carried out by the Institute of Innovative Technologies EMAG [13].
CCMODE is co-financed by the EU within the European Fund of Regional Develop-
ment. The objective of the project is to work out a CC-compliant methodology and
tools to develop and manage development environments of IT security-enhanced
products and systems for the purposes of their future certification. The basic products
of the project will be the following: knowledge, patterns (including documentation,
procedures, evidences, etc.), methodology and tools used to create and manage devel-
opment environments by different business organizations. The IT products and sys-
tems developed in these environments, having measurable assurance (EAL), can be
certified and used in high risk applications.

CCMODE assumes participation in activities dealing with the Common Criteria
methodology improvement and extending the range of the standard application:

1. The project does not provide a solution dedicated to one environment only. It
provides patterns and methods for developing a wide range of environments –
generally where the Common Criteria standard is applicable. For this purpose a
set of modules will be developed, along with the methodology of adapting them
to the needs of a given environment. The possible reusing of the same patterns
many times will bring significant financial benefits.

2. The project will provide an integrated solution (based on ISO/IEC 15408 and
ISO/IEC 27001) for the IT security management system, dedicated to devel-
opment environments. The solution will enable better protection of information
related to projects carried out in these environments and will consider business
continuity aspects of manufacturing and maintenance processes.

3. The project considers both – traditional “sites” organized to develop a certain
IT product or system, and sites compliant with the “site-certification” concept
[24], allowing to reuse some evidences in the elaboration of a certain group of
similar IT products or systems.

4. The project will provide a computer tool which will support even the most la-
borious and difficult operations related to the management of the environment
and product or system in the life cycle (security analyses, management of evi-
dences, configuration, flaws and tools). This will bring extra benefits to organi-
zations in the form of management processes automation.

5. The project is strongly based on the life cycle model, knowledge engineering
and risk analysis methods.

The project has its national aspect – disseminating and finally implementing the
ISO/IEC 15408 Common Criteria (CC) standard in Poland, creating the CC com-
munity and elaborating best practices.

The chapter gives a short introduction to the project domain, surveys current
state of the works, discusses the key issues of the project: how to develop the set
of patterns for the security specification means and for the evaluation evidences to
be delivered with the IT product or system for independent evaluation. All kinds
of patterns are identified and presented. Some of them are shown by examples.
The last section concludes the project efforts and specifies the planned works.

Patterns Improving the Common Criteria Compliant IT Security Development Process 3

2 Project Background

The project background is founded on the Common Criteria methodology speci-
fied within the [14]. The project concerns the development-, production- and
maintenance processes of any IT product or system which should be protected
against threats. In practice the Common Criteria standard, as well as the
CCMODE project, concerns all kinds of IT products or systems, called TOEs
(Targets of Evaluation). The TOE can be: hardware, software, combination of the
above, application programs, tools for products development, complete systems,
etc. More than 1200 TOEs have been developed and evaluated so far [15].

2.1 The Common Criteria IT Security Development Methodology

The Common Criteria methodology [14] encompasses the three main processes:

• the IT security development process, related to the elaboration of the document
called ST (Security Target) or PP (Protection Profile) for the given TOE, pre-
senting the TOE, specifying its security problem definition, security objectives,
requirements, and finally the TOE security functions for ST which are later im-
plemented on the claimed EAL level;

• the TOE development process, related to the IT product or system development
with the use of the assumed technology, including its TOE security functions
implementation on the claimed EAL level;

• the IT security evaluation process, performed by an independent, accredited se-
curity lab – the process completed by the certification; during this process the
TOE, its Security Target and evidences are evaluated according to the CC
methodology with respect to the declared EAL requirements.

The Common Criteria (CC) methodology is matured but still improved. The main
challenges are: raising the design preciseness, facilitating the development and
evaluation, decreasing the development cost and time. The general motivation of
the author’s works is to improve the IT security development process using the
advantages and new possibilities offered by the patterns-based approach, and to
minimize the barrier for developers related to the lack of knowledge, methods and
exemplars of evidences, etc.

Thanks to the patterns, the evidences can be elaborated in a unified proven way
and developers can acquire knowledge how to elaborate evidences. More informa-
tion about the Common Criteria methodology can be found in [15], [18], [9], [2].

2.2 Patterns-Based Development

Design patterns are often used by engineers in many technology domains, includ-
ing here discussed IT- and IT security domains. These patterns can be considered
as reusable, proven solutions to problems with respect to a specific context. They

4 A. Białas

provide development process knowledge helping to achieve the expected solution
within the project domain. Patterns-based development enforces standard solu-
tions, saves time and money and improves quality.

The patterns are specified in a formalized way, e.g. using UML (Unified Mod-
elling Language), OCL (Object Constraints Language), different kinds of codes,
ontologies, formalized descriptors, etc. Numerous patterns concern software archi-
tecture, including applied security mechanisms.

The paper [25] surveys approaches to the security patterns categorized with re-
spect to the software life cycle phases, i.e. requirements-, design- and implemen-
tation phases. No approaches closely related to the Common Criteria methodology
were encountered in this paper.

The commonly used security design patterns related to software solutions are
specified in [23]. These architectural patterns related to the enterprise management
applications concern, for example: enterprise security and risk management, iden-
tification and authentication, access control models and systems, operating system
access control, accounting facilities, firewall architecture, secure Internet applica-
tions, IP telephony, and cryptographic key management. With respect to the CC
methodology, this kind of security design patterns can be used to implement the
security functions (on a given EAL) within an IT product or system.

The book [19] introduces a UML extension called UMLsec. It provides a uni-
fied approach to security features description during the secure systems develop-
ment. UMLsec allows to define the UML patterns that encapsulate the design
knowledge in the form of recurring design problems, and consist of the “pattern
name”, “problem description”, “problem solution”, and “consequences”. The es-
tablished formal rules of security engineering can be used by a wider group of de-
velopers. The elaborated patterns present the basic security engineering solutions,
like: electronic signature, secure Java programs, electronic purse, secure channel,
TLS Internet protocol, bank applications, biometric authentication systems, etc.
Please note that these patterns focus on modelling IT security features and behav-
iour within the system. The UMLsec patterns defined in [19] do not concern the
IT security development process compliant with the Common Criteria standard,
although they can be helpful in this process, e.g. to evaluate UML specifications
against different vulnerabilities. This issue was discussed in the monograph [9].

The author’s preliminary researches discussed in the Section 2.3 concern
security specification means patterns. They are not focused on IT security func-
tionality, as the above mentioned security design patterns, but rather on risk
management- and assurance issues closely related to the Common Criteria meth-
odology. From this point of view they differ from the above mentioned on one
hand, and supplement them on the other hand. The security specification means
patterns are related to the IT security development process mentioned in the
Section 2.1.

CCMODE adopts the specification means patterns, though it is focused on the de-
velopment of a new class of the CC-related patterns – patterns of the evaluation evi-
dences, related mainly to the TOE development process. There are no researches

Patterns Improving the Common Criteria Compliant IT Security Development Process 5

focused on the elaboration of evaluation evidences patterns. Some guidance is pro-
vided by the standard [14] and BSI guide [17] restricted to EAL 1-5.

2.3 The CCMODE Project Background and Current Results

The project background was based on the preliminary, multidirectional researches.
The first direction was focused on the UML/OCL modelling. The Common

Criteria compliant, UML/OCL-based IT security development framework
(ITSDF) [9], [3], [10], [8] was elaborated, which embraces:

• models of data structures and processes of IT security development stages, in-
cluding: security problem definition (SPD), security objectives (SOs) elabora-
tion, security functional requirements (SFRs), and TOE security functions
(TSFs) workout; two kinds of classes are distinguished: classes responsible for
the ST elaboration and classes representing specification data containers;

• models of the specification means used for these IT security development
stages, including CC security components – functional- (SFRs) and assurance
components (SARs) [14] and the semiformal enhanced generics; please note
that generics and components constitute a security specification language.

The semiformal ITSDF framework was implemented as a software tool to support
IT security developers. Please note that the introduced enhanced generics are de-
rived from “generics” commonly used by IT security developers. The enhanced
generics are defined as mnemonic names expressing common features, behaviours
or actions related to IT security issues, like: subjects (active entities), objects (pas-
sive entities), threats, assumptions, organizational security policies (OSP), security
objectives, and security functions [3], [9]. They are “enhanced” since they are
semiformal and have features comparable to CC components, allowing such op-
erations as: parameterization, derivation, iteration, and refinement. Enhanced ge-
nerics can be grouped by domains of applications. They allow to create generics
chains which express solutions to elementary security problems. This way the pre-
liminary version of the Security Target (ST) pattern and specification means
patterns used to fulfil this ST structure was elaborated.

The second direction of the preliminary researches deals with the application of
the ontological approach [21], [22] to this framework [4], [7]. Please note that the
ontology represents explicit formal specifications of the terms in the project do-
main and relations between these terms. The elaborated ITSDO (IT Security De-
velopment Ontology) represents the security requirements structures (i.e. ST, PP),
specification means to fill in these structures with contents for different TOEs (au-
thor’s defined enhanced generics, CC-defined functional and assurance compo-
nents) as well as patterns for evidences. During these works about 350 enhanced
generics were predefined as elementary items designed to specify general security
features of commonly used IT products or systems.

The third direction of preliminary researches is focused on the validation of the
specification means patterns on different TOE designs (firewall [12], motion

6 A. Białas

sensor [5], [6], medical sensor [2], gas detecting sensor [1]), their improvement
and the elaboration of patterns for selected evidences.

CCMODE should bring these partial results together, supplement them and cre-
ate a complex and unified CC related patterns system facilitating the IT security
development. To achieve this, the following 7 project tasks were scheduled:

1. Research of development environments of IT security-enhanced products with
respect to life cycle processes – identification of developers’ needs and expec-
tations, building a reference model.

2. Working out an open, modular development (manufacturing, maintenance) en-
vironment – patterns developed for evidence material related to the environ-
ment and to the product developed in this environment.

3. Working out a methodology for implementation and management of develop-
ment environments – key issues: how to adapt open patterns to the identified
needs, how to develop an environment based on these needs, and how to man-
age this environment.

4. Validation of the implementation methodology – with the participation of secu-
rity developers and evaluators.

5. Working out a tool to support the development environment management –
automation of difficult and repeatable operations.

6. Validation of the tool supporting the management of development environ-
ments – with the participation of security developers and evaluators.

7. Creating an experimental development environment – also: promotion,
CMODE community.

The task 1 focused on researches of development environments of IT security-
enhanced products or systems with respect to the life cycle processes. The knowl-
edge was acquired about the structure, operation of development environments of
security-enhanced products. The assurance components were analyzed in terms of
their relationships with the development environment and the IT product or sys-
tem developed in the environment. On this basis the reference model of the devel-
opment environment with an embedded life cycle was made. Then the method to
assess the compliance of any development environment with the CC-based refer-
ence model was elaborated and validated with the participation of IT developers.

The task 2, closely related to this chapter, was focused on working out an open,
modular development (manufacturing, maintenance) environment, represented by
a set of Common Criteria related patterns, i.e.:

• SST (Site Security Target) document pattern for a local development environ-
ment according to the site certification approach,

• evidences patterns to evaluate the environment based on the requirements of the
ALC (Life cycle support) assurance class,

• pattern modules of the information security management system compliant with
ISO/IEC 27001 for the development environment,

• security specification patterns in the form of Security Target (ST) and Protec-
tion Profile (PP), including their low-assurance versions,

• evidences patterns for IT products and systems developed in the environment.

Patterns Improving the Common Criteria Compliant IT Security Development Process 7

Currently the set of patterns of the evaluation evidences as well as the specifica-
tion means are elaborated and the third task of the project has been carried out –
focused on the implementation of the development environments. The gap analy-
sis method has been elaborated. The organization which plans this implementation
should be first audited to identify its needs, restrictions and any incompliance with
the Common Criteria standard. The gap analysis gives input to the adaptation of
patterns for the created development environment. The customized patterns define
the development-, production- and maintenance processes of the organization, re-
flecting the assumed life cycle model and helping to manage this environment.

3 Patterns in the CCMODE Project

There are three kinds of patterns considered in the project: patterns of evaluation
evidences, patterns of specification means, and patterns of auxiliary documents.

The patterns of evaluation evidences required by the standard and delivered for
the independent evaluation are of key importance for the CCMODE project. They
play the roles of “open modules” that should be refined and customized according
to the developers’ needs and expectations to implement the development environ-
ment for the given IT product or system, and to elaborate evaluation evidences for
the given TOE. They will be discussed in the next subsection.

The patterns of the specification means include the author’s defined enhanced
generics and standard-defined functional and assurance components. They can be
expressed informally using the dot separated notation, semi-formally using the
UML notation or as knowledge base items. Currently the enhanced generics are
validated on different designs and optimized. Moreover the generics subsets for
particular domains of application are elaborated, e.g. for intelligent sensors [1],
[2]. The patterns of the specification means are omitted in this chapter because the
author’s many publications have discussed this issue.

During the development-, manufacturing- and maintaining processes as well as
the evaluation process many auxiliary documents, procedures, forms, checklists,
reports, etc. can be useful. Many patterns belonging to this family are related to
the ISMS (Information Security Management System) implementation within the
development environment. These patterns will be omitted in this chapter.

3.1 Identification of the Evaluation Evidences Patterns

Two important issues were solved during the initial tasks of CCMODE: how many
patterns of the evaluation evidences are needed and what their organization and
shape look like.

Analyzing the contents of the assurance classes components, five groups of
evaluation evidences patterns were distinguished:

• patterns for basic security requirements,
• patterns of evaluation evidences closely related to the development environment,

its organization and development-, production- and maintenance processes,

8 A. Białas

• patterns of evaluation evidences closely related to the IT product or system
(TOE),

• patterns of evaluation evidences related to both the development environment
and the IT product or system,

• patterns of evaluation evidences related to the composition.

Basic security requirements are considered as evaluation evidences as well. The
following five patterns were defined:

• Security Target pattern (STp), low assurance Security Target pattern (laSTp)
used for EAL1 – both based on the ASE (Security Target Evaluation) assurance
class,

• Protection Profile pattern (PPp), low assurance Protection Profile pattern
(laPPp) used for EAL1 – both based on the APE (Protection Profile Evaluation)
class,

• Site Security Target pattern (SSTp) – based on the AST (Site Security Target
Evaluation) class defined outside the [14], i.e. in the [24] guide.

The first four of them contain basic security requirements for the TOE, while the
latter one, concerning the site certification, deals with the site, considered as the
development environment. Each Common Criteria project uses one of the basic
security requirements. This main document helps to organize other evidences. Site
Security Target is optional.

The second group of patterns is closely related to the requirements for the de-
velopment environment, its organization and its development-, production- and
maintenance processes. All these issues are specified in seven assurance families
belonging to the ALC (Life-cycle support) assurance class:

• Life-cycle model definition pattern (ALC_LCDp) presents the high-level de-
scription of the TOE life-cycle and creates the framework for the entire devel-
opment environment;

• Development security pattern (ALC_DVSp) presents physical, procedural, per-
sonnel, and other measures used in the development environment to protect the
TOE and its parts; it can be extended by the Information Security Management
System pattern (ISMSp) compliant with ISO/IEC 27001; ISMSp represents an
extensive set of patterns needed to implement the standard in the development
environment to better protect design data and manage information security;

• Configuration management (CM) capabilities pattern (ALC_CMCp) defines a
more detailed description of the management of the configuration items and en-
forces discipline and control in the processes of refinement and modification of
the TOE and the related information;

• Configuration management scope pattern (ALC_CMSp) shows how to specify
items to be included as configuration items and hence controlled by the above
CM capabilities (ALC_CMCp);

• Tools and techniques pattern (ALC_TATp) is responsible for control tools,
their options and techniques used in the development environment (program-
ming languages, documentation, implementation standards, runtime libraries,
different equipment, etc.);

Patterns Improving the Common Criteria Compliant IT Security Development Process 9

• Delivery pattern (ALC_DELp) describes the secure transfer of the finished
TOE from the development environment into the responsibility of the user;

• Flaw remediation pattern (ALC_FLRp) presents requirements that the detected
security flaws should be traced and corrected by the developer.

It was assumed that for each assurance family of the given assurance class only
one pattern of evidences will be defined. Please note that in the given family there
are many possible assurance components of rising rigour. This is considered in the
pattern definition by extra sections or details. Each of the mentioned seven pat-
terns was developed in two versions: in the basic, TOE-centric version (develop-
ment environment is organized for the given TOE) and in the site-certification
version (development environment as the “site” is organized for the certification
and then to develop inside it a certain group of the TOE) – nuances of these two
approaches are omitted in this chapter.

The third group of evaluation evidences patterns is closely related to the IT
product or system (TOE). As it was mentioned above for the given assurance fam-
ily only one pattern has been elaborated. Rising rigour represented by hierarchi-
cally ordered components is expressed by extra sections or details in patterns. All
TOE-related issues are specified in 12 assurance families belonging to the ADV
(Development), AGD (Guidance documents) and ATE (Tests) assurance classes:

• Security Architecture pattern (ADV_ARCp) presents a description of the secu-
rity architecture of the TOE security functions to show if they achieve desired
properties;

• Functional specification pattern (ADV_FSPp) describes the TOE security func-
tions (TSFs) interfaces (TSFIs) which consist of all means for users to invoke a
service from the TSF (by supplying data that is processed by the TSF) and the
corresponding responses to those service invocations;

• TOE design pattern (ADV_TDSp) provides context for a description of the
TSFs and describes the TSFs; with respect to the applied rigour (EAL) the TOE
decomposition is specified on different levels of detail (subsystems, modules);

• Implementation representation pattern (ADV_IMPp) expresses how the TSFs
are implemented (software/firmware/hardware design language source code,
hardware/IC diagrams, layouts, binary files);

• TSF internals pattern (ADV_INTp) addresses the assessment of the internal
structure of the TSFs; the well-structured TSFs are easier to implement and
have fewer flaws and vulnerabilities;

• Security policy modelling pattern (ADV_SPMp) provides additional assurance
from the development of a formal security policy model of the TSF and helps
to gain correspondence between the functional specification and this security
policy model;

• Preparative procedures pattern (AGD_PREp) presents how the TOE has been
received and installed in a secure manner as intended by the developer;

• Operational user guidance pattern (AGD_OPEp) shows how to prepare material
intended for all types of users of the TOE in its evaluated configuration;

• Functional tests pattern (ATE_FUNp) enforces the right specification, execu-
tion and documentation of tests;

10 A. Białas

• Test Coverage pattern (ATE_COVp) helps to demonstrate that the above men-
tioned TSFIs are properly covered by tests;

• Test Depth pattern (ATE_DPTp) helps to demonstrate that specified TOE de-
sign elements (subsystems, modules) are properly covered by tests;

• Independent testing pattern (ATE_INDp) has auxiliary meaning because the
ATE_IND evidence is elaborated by evaluators; this pattern is used to verify
the developer testing and performing additional tests by the evaluator.

The fourth group of evaluation evidences patterns is related to the development
environment and the IT product or system developed there. This group of patterns
concerns the AVA (Vulnerability assessment) assurance class which has only one
family (AVA_VAN). This pattern is called Vulnerability analysis (AVA_VANp)
and has auxiliary meaning as this kind of evidences (similarly to ATE_IND) are
elaborated by evaluators. Please note that some vulnerabilities are TOE-inherent
while some can be transferred from the development environment to the TOE.

The fifth group of evaluation evidences patterns is related to composition and
their elaboration has been suspended at the moment.

3.2 Patterns Shape and Contents

Currently all patterns are defined as electronic documents editable with Microsoft
Word. The patterns usually have a dozen or even more pages with well defined
structures of data fields filled in by developers according to the precise guidance.

The patterns have their structures and contents elaborated on the basis of
Common Criteria [14] Part 3 and the BSI Guidance [17]. The evidences related to
the site-certification concepts were elaborated with the use of the [24] guide. All
evaluation evidences were additionally verified against work units of the CC
Evaluation methodology [16].

The hierarchical data structure of the given pattern includes different types of
data fields placed within the CCMODE database. After the patterns validation,
more advanced automation will be considered.

3.3 Patterns Validation and Examples

The complex validation of patterns is planned in the task 4, still several validations
of the selected patterns were performed, with the focus on the elaboration of:

• Site Security Target for EMAG Security Lab,
• Security Target for a methane detector for mines,
• Security Target for a coal weighing system,
• Security Target for a hearing screening software application,
• ALC_LCD.1 evidence for the methane detector for mines,
• ALC_CMC.2 and ALC_CMC.4 evidences for the methane detector for mines,
• ALC_CMS.1 evidence for the methane detector for mines,
• ADV_ARC.1 evidence for the methane detector for mines,

Patterns Improving the Common Criteria Compliant IT Security Development Process 11

• ADV_TDS.1 and ADV_TDS.2 evidences for the methane detector for mines,
• ADV_TDS.1 for the hearing screening software application,
• ADV_FSP.2 evidence for the methane detector for mines.

The patterns can be shown by a few examples from these validations.

Example 1: Site Security Target elaboration on the SSTp pattern basis
Figure 1 presents the pattern of the Site Security Target. On the left the SST

structure is shown that should be filled in by the SST developer. The right panel
presents one of the key SST sections with Security Problem Definition (SPD) ac-
cording to the AST_SPD family. This section begins with an introductory text
about SPD that can be supplemented by the developer. Please note subsections re-
lated to the assets, subjects and threats. The author should place the right enhanced
generics into tables and supplement tables with his/her own comments. The con-
tents of the SPD definition is formulated according to the on-line displayed hints.

Fig. 1 Using the Site Security Target pattern (SSTp)

Please note a few enhanced generics placed in the figure, and a hint about threat
description shown on the data field, marked by square brackets.

Example 2: Simple TOE design evidence
Figure 2 presents the ADV_TDSp pattern filled in with contents specific to the

hearing screening software application.
It is the simplest case of this evidence due to the lowest rigour ADV_TDS.1 com-

ponent used (EAL2). The left panel shows the structure of evidence, while the right
one presents the TOE structure description. The developer placed an introductory text

12 A. Białas

and block scheme in the UML. Please note next fields that should be filled in with the
proper data. Please note that the developer focuses only on describing the issues that
are requested. He/she does not need to think about the structure and contents of evi-
dences and the compliance with the CC standard.

Fig. 2 Filling in the ADV_TDSp pattern for AudioPC application

Fig. 3 Defining the security problem (SPD) for the AudioPC Security Target (ST)

Patterns Improving the Common Criteria Compliant IT Security Development Process 13

Example 3: Specification means patterns
The example differs from the two above. It concerns patterns for the specifica-

tion means, i.e. the author’s defined enhanced generics and the standard defined
components. Figure 3 presents a simple Java application for semi-automatic secu-
rity target generation [20] in the form of pdf files. The main window has two pan-
els. The upper one presents a design tree, i.e. its part presenting the Security Prob-
lem Definition – a few enhanced generics, specifying threats, are shown in
Figure 3.

These generics are predefined as the specification means patterns and placed in
the generics library (bottom panel). The developer selects the right generic and
puts it into the design tree, this way defining the entire security target. The
TDA.AppLicViolat generic is shown in the pop-up window. The TDA prefix means
“direct attacks against the TOE” category. The string AppLicViolat is a mnemonic
of the generic. The window contains the generic description with two parameters
DTO and SAU. DTO means the TOE-related asset which was substituted by the
DTO.AppServices generic selected from the list, while SAU means “authorized
subject”. The latter one was left uncompleted (means “any of SAU”).

3.4 Patterns Customization

Currently the project works are focused on the customization processes of the
evaluation evidences patterns. The customization of patterns dealing with the TOE
development-, manufacturing- and maintenance processes embraces:

• identification of the developers’ needs, restrictions, current standard incompli-
ance and requirements,

• risk analysis within the development environment,
• transforming the Site Security Target pattern (SSTp) into the Site Security Tar-

get (SST) – for the “site-certification” option only,
• transforming patterns of evidences related to the TOE life-cycle support

(mostly ALC-based) into the evidences,
• transforming the ISO/IEC 27001 patterns into the ISMS (Information Security

Management System) documentation (an option),
• standard compliance and coherency checking.

The customization processes of the TOE development patterns encompass:

• transforming the Security Target pattern (STp) into the Security Target (ST) –
similarly PP and their low assurance versions are processed,

• transforming patterns of evidences related to the TOE (ADV, AGD, ATE) into
the evidences reflecting the character and technology of the elaborated IT prod-
uct or system,

• coherency checking.

14 A. Białas

4 Conclusions

The chapter discusses briefly the IT security development process and presents the
introduced patterns for evaluation evidences, along with the analyses provided to
develop such patterns. The patterns usage is shown by a few examples being a part
of a more complex case study made during the project. Please note that:

• the patterns have the right structure, verified against the CC standard and re-
lated documents,

• the contents of evidences is enforced by precise guidance (hints) elaborated on
the basis of the CC standard and related documents;

• the developer fills in the pattern with knowledge related to the development en-
vironment or related to the developed IT product or system; he/she is asked
about issues required exactly by evaluators,

• evidences are elaborated in a unified way and their presentation is also unified,
• some data fields of common meaning can be placed once, some fields describe

specific issues for the given pattern; this facilitates change management and fu-
ture automation.

The chapter concludes the presented pattern-based methodology with respect to
the achieved and planned project results. Currently the elaborated basic set of pat-
terns is validated. The implementation method with respect to the identified de-
velopers’ needs and expectations has been elaborated as well.

CCMODE assumptions and achieved results were presented at the 11th Interna-
tional Common Criteria Conference [11]. Providing IT security developers with
the CC-related security design patterns and related knowledge allows to:

• facilitate and speed up the IT security development process,
• improve the quality of evidences, because they are more consistent and include

all details required by the considered assurance components and best practices,
• get computer support of the IT security development process.

CCMODE provides a new commercial solution, i.e. a methodology of building
specialized environments for the development, production and maintenance of IT
products and systems in compliance with rigorous regulations of ISO/IEC 15408
Common Criteria, called development environments. The chapter intents to en-
courage practitioners: developers, programmers and technology specialists respon-
sible for IT security development to apply the project results in the future. It pre-
sents only an idea of the project products. The project results will be available on
commercial basis according to EU regulations for this kind of projects.

References

[1] Bialas, A.: Common Criteria Related Security Design Patterns—Validation on the In-
telligent Sensor Example Designed for Mine Environment. Sensors 10, 4456–4496
(2010)

[2] Bialas, A.: Intelligent Sensors Security. Sensors 10, 822–859 (2010)

Patterns Improving the Common Criteria Compliant IT Security Development Process 15

[3] Bialas, A.: IT security development – computer-aided tool supporting design and
evaluation. In: Kowalik, J., Górski, J., Sachenko, A. (eds.) Cyberspace Security and
Defense: Research Issues, NATO Science Series II, vol. 196, pp. 3–23. Springer,
Heidelberg (2005)

[4] Bialas, A.: Ontological approach to the IT security development process. In: Tkacz,
E., Kapczynski, A. (eds.) Internet – Technical Development and Applications Series:
Advances in Intelligent and Soft Computing, pp. 261–270. Springer, Heidelberg
(2009)

[5] Bialas, A.: Ontological approach to the motion sensor security development. Electri-
cal Review (Przeglkąd Elektrotechniczny) 85(R.85), 36–44 (2009)

[6] Bialas, A.: Security-related design patterns for intelligent sensors requiring measur-
able assurance. Electrical Review (Przeglkąd Elektrotechniczny) 85(R.85), 92–99
(2009)

[7] Bialas, A.: Ontology-Based Security Problem Definition and Solution for the Com-
mon Criteria Compliant Development Process. In: Zamojski, W., Mazurkiewicz, J.,
Sugier, J., Walkowiak, T. (eds.) Proc. of Int. Conf. on Dependability of Computer
Systems (DepCoS-RELCOMEX 2009, pp. 3–10. IEEE Computer Society, Washing-
ton (2009)

[8] Bialas, A.: Semiformal Approach to the IT Security Development. In: Zamojski, W.,
Mazurkiewicz, J., Sugier, J., Walkowiak, T. (eds.) Proc. of the Int. Conf. on Depend-
ability of Computer Systems (DepCoS-RELCOMEX 2007), pp. 3–11. IEEE Com-
puter Society, Washington (2007)

[9] Bialas, A.: Semiformal Common Criteria Compliant IT Security Development Frame-
work. In: Stud. Inf., vol. 292(2B(77)). Silesian University of Technology Press, Gli-
wice (2008), http://www.znsi.aei.polsl.pl/ (accessed on January 2,
2011)

[10] Bialas, A.: Semiformal Framework for ICT Security Development. In: Presentation on
the 8th International Common Criteria Conference, Rome, Italy, September 25–27
(2007)

[11] Bialas, A.: Patterns-based development of IT security evaluation evidences. In: The
11th Int. Common Criteria Conf., Antalya, http://www.11iccc.org.tr/
 (accessed 3 January 3, 2011)

[12] Bialas, A.: Validation of the Specification Means Ontology on the Simple Firewall
Case. In: Proc. of the Int. Conf. on Security and Management, Las Vegas, vol. 1,
pp. 278–284 (2009)

[13] CCMODE project home page, http://ccmode.emag.pl/ (accessed January 3,
2011)

[14] Common Criteria for IT Security Evaluation version 3.1, part 1-3 (2009),
http://www.commoncriteriaportal.org/ (accessed January 3, 2011)

[15] Common Criteria Portal home page,
http://www.commoncriteriaportal.org/ (accessed January 3, 2011)

[16] Common Evaluation Methodology for Information Technology Security version 3.1
(2009), http://www.commoncriteriaportal.org/ (accessed January 3,
2011)

[17] Guidelines for Developer Documentation according to Common Criteria version 3.1,
Bundesamt für Sicherheit in der Informationstechnik (2007)

[18] Hermann, D.S.: Using the Common Criteria for IT Security Evaluation. CRC Press,
Boca Raton (2003)

16 A. Białas

[19] Juerjens, J.: Secure Systems Development with UML. Springer, Heidelberg (2005)
[20] Nowak, P.: Oprogramowanie do wspomagania konstruowania zabezpieczeń telein-

formatycznych wykonane zgodnie z metodyką Common Criteria w technologii
Java/XML. Instytut Informatyki Politechniki Śląskiej, Gliwice (the master thesis)
(2009)

[21] Noy, N F., McGuiness, D L.: Ontology Development 101: A Guide to Creating Your
First Ontology, Knowledge Systems Laboratory (2011), http://www-
ksl.stanford.edu/people/dl/papers/ontology-tutorial-noy-
mcguinness-abstract.html (accessed January 2, 2011)

[22] Protégé Ontology Editor and Knowledge Acquisition System, Stanford University,
http://protege.stanford.edu/ (accessed January 2, 2011)

[23] Schumacher, M., Fernancez-Buglioni, E., Hybertson, D., Buschmann, F., Sommer-
land, P.: Security Patterns: Integrating Security and Systems Engineering. John Wiley
and Sons, Chichester (2006)

[24] Site Certification. Supporting Document Guidance (2007) version 1.0, revision 1
(CCDB-2007-11-001), http://www.commoncriteriaportal.org/ (ac-
cessed January 2, 2011)

[25] Yoshioka, N., Washikazi, H., Maruyama, K.: A survey on security patterns. Progress
in Informatics 5, 35–47 (2008)

W. Zamojski et al. (Eds.): Dependable Computer Systems, AISC 97, pp. 17–30.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

A Comparison of Dataflow and Mutation Testing of
Java Methods

Ilona Bluemke and Karol Kulesza

Institute of Computer Science, Warsaw University of Technology,
Nowowiejska 15/19, 00-665 Warsaw, Poland
e-mail: I.Bluemke@ii.pw.edu.pl

Abstract. The objective of this chapter is to compare the dataflow and the muta-
tion testing of several Java programs. Experiments were conducted in the Eclipse
environment. DFC plugin was used to support the dataflow testing while MuC-
lipse and Jumble plugins were used for the mutation testing. The results of testing
six Java programs using data flow and mutation techniques are presented. Experi-
ment shown, that the effectiveness of mutation testing is higher than the effective-
ness of dataflow testing. Mutation technique appeared also to be more expensive
than the data flow one, if time and effort are considered.

1 Introduction

Effective testing is one of the key issues in developing dependable software sys-
tems. Popular approaches to testing include "black box" and "white box”. In white
box approach the test cases can be derived from the code of the unit under test.
Code based approach can be divided into two main types: data flow coverage me-
thods [9, 10, 26, 28] and control flow coverage e.g. [18, 30]. In the dataflow test-
ing relationships between data are used to select test cases. Such approach was in-
troduced for structural programming languages by Rapps and Weyuker [26] and
later adopted for object languages [9, 10, 28,]. Dataflow testing of Java programs
is also described in [2, 24].

Mutation testing is a fault based software testing technique that was introduced
more than thirty years ago. The general idea is that the faults used in mutation
testing represent the mistakes made by a programmer so they are deliberately in-
troduced into the program to create a set of faulty programs called mutants. Each
mutant program is obtained by applying a mutant operator to a location in the
original program. To assess the quality of a given set of tests these mutants
are executed against the set of input data to see, if the inserted faults can be de-
tected. A very good survey of mutation techniques was written in 1996 by Jia and
Harman [12].

Since their introduction, mutation and data flow testing were considered as
potentially effective but there were very few experiments examining the effective-
ness of these methods. Several researchers conducted empirical studies in years

18 I. Bluemke and K. Kulesza

1993-1996 on Fortran, Pascal and C programs. They evaluated various measures,
including the effectiveness at exposing faults, the difficulty and the cost of usage.
The results of these experiments are presented in section 3. The moment we
started our experiment there were no similar experiments conducted on Java pro-
grams. We wanted to check, if the results obtained for Fortran and C programs are
still valid for Java programs.

The objective of this chapter is to compare the dataflow and the mutation test-
ing of several Java programs. The main ideas of dataflow and mutation testing are
briefly described in section 2 while related work is presented in section 3. Our ex-
periments were conducted in the Eclipse environment. DFC (Data Flow Cover)
plugin implemented at the Institute of Computer Science, Warsaw University of
Technology [2, 25], was used to support the dataflow testing. MuClipse [21] and
Jumble[13] plugins were used for the mutation testing. The results of experiments
are presented in section 4 and some conclusions are given in section 5.

2 Data Flow and Mutation Testing

Below the basics information on the data flow and the mutation testing are given.

2.1 Data Flow Testing

The dataflow testing is one of “white box” techniques, the test cases are derived
from the source code. In the dataflow testing [9, 26] the relations between data are
the basis to design test cases. Different sub-paths from definition of a variable (e.g.
assignment) into its use are tested. A definition-use pair (denoted as def-u) is an
ordered pair <s, u>, where s is a statement containing the definition of the varia-
ble v, and u is a statement containing the use of v, or some memory location
bound to v, that can be reached from s over some program path. For code given in
appendix on listing 1, def-u pairs for variable customer are following: <30,44>,
<30,55>, <30,53>, <30,34>, <30,45>.

The test criteria are used to select particular def-u pairs. A test satisfies def-u
pair, if executing the program with this test causes the traversal a sub-path from
the definition to the use of this variable v without any v redefinition. A def-u pair
is feasible if exists some program input that will cause it to be executed. The data-
flow testing criteria [26] use the def-use graph (denoted as DUG), which is de-
rived from the control flow graph. On the control flow graph the information
about the set of variables defined - def() and used - use() in each node/edge are
added. Many def-u criteria have been proposed and compared [1, 2, 4]. One crite-
rion, called all-defs states, that for each DUG node i and all variables v, defined in
this node, v def(i) at least one path <i, j> is covered. In node j this variable is
used v use(j) and on this path the variable v is not redefined.

∈
∈

A Comparison of Dataflow and Mutation Testing of Java Methods 19

The first dataflow technique [26] was proposed to structural programming lan-
guages and does not consider dataflow interactions that arise when methods are
invoked in an arbitrary order. In [10] an algorithm was proposed, called PLR, to
find def-u pairs, if the variable definition is introduced in one procedure, and the
variable usage is in called or calling procedures. The algorithm works on
inter-procedural control flow graph built from control flow graphs of dependent
procedures. This method can be adapted to global variables, class attributes and
referenced method arguments in testing object programs.

For object programs three levels of dataflow testing were proposed in [9]: in-
tra-method, inter-method, intra-class. For each of these testing levels appropriate
def-u pairs were defined i.e. intra-method, inter-method and intra-class.

The data flow testing would be a tedious work without a proper tool support.
Among many tools supporting code based testing of object programs, only JaBU-
Ti [11] and DFC (Data Flow Coverage) [2] are dedicated to Java. DFC was im-
plemented as an Eclipse plugin at the Institute of Computer Science, Warsaw Uni-
versity of Technology. DFC [2] finds all definition-uses pairs in tested unit and
provides also the definition-uses graph for methods. After the execution of each
test, the tester is provided with the information which def-u pairs were covered so
can add new tests for not covered pairs. The tester can also configure the DFC,
decide which methods are changing the state of an object.

2.2 Mutation Testing

The mutation testing is a fault based software testing technique that was intro-
duced in 1971 by Richard Lipton (according to [20]). A very good survey of muta-
tion techniques was written in 1996 by Jia and Harman [12].They also constructed
mutation testing repository [22] with many papers on mutation testing.

The general idea of mutation testing is that the faults used represent mistakes
made by a programmer, so they are deliberately introduced into the program to
create a set of faulty programs called mutants. Each mutant program is obtained
by applying a mutant operator to a location in the original program. Typical muta-
tion operators include replacing one operator e. g. ‘+’ by another e.g. ‘-‘ or replac-
ing one variable by another. To assess the quality of a given set of tests the mu-
tants are executed on a set of input data to see, if the inserted faults can be
detected. If the test is able to detect the change (i.e. one of the tests fails), then the
mutant is said to be killed. The input data for test should cause different program
states for the mutant and the original program.

A variety of mutation operators were explored by researchers. Below are given
some examples of mutation operators for imperative languages:

• statement deletion,
• replacement of each boolean subexpression with true and fals,
• replacement of each arithmetic operation with another one, e.g.: “*” with “ /”,
• replacement of each boolean relation with another one, e.g.: > with >=, == .

20 I. Bluemke and K. Kulesza

These mutation operators are also called traditional mutation operators. There are
also mutation operators for object-oriented languages e.g. [3, 8, 24], for concurrent
constructions, complex objects like containers etc., they are called class-level mu-
tation operators. In appendix in listing 2 the mutated line, for code given in
listing 1, is shown.

Many mutation operators can produce equivalent mutants. The resulting pro-
gram is equivalent to the original one and produces the same output as the original
one. Determining which mutants are equivalent is a tedious activity, usually not
implemented in tools. An example of equivalent mutant is given in appendix in
listing 3, for code shown in listing 1.

Mutation score is a kind of quantitative test quality measurement that examines
a test set's effectiveness. It is defined as a ratio of the number of killed mutants to
the total number of non-equivalent mutants (1). ݉݁ݎ݋ܿݏ ݊݋݅ݐܽݐݑሺܲ, ܶሻ ൌ ܯܭ െ (1) ܧ

Where: P – tested program, T – set of tests, K – number of killed mutants, M – to-
tal number of mutants, E – number of equivalent mutants.

The total number of nonequivalent mutants results from the difference between
the total number of mutants and the number of equivalent mutants which cannot
be killed.

Mutation testing can be used for software testing at the unit [1, 3, 6, 7] or inte-
gration level [5]. It has been applied to many programming languages, as a white
box unit testing: for example Fortran programs [7], C# [6], C [1], Java [3]. Muta-
tion testing of software would be difficult without a reliable, fast and automated
tool that generates mutants, runs them against a test suit and reports the results.
Among several Java mutation tools we choose Muclipse[21] and Jumble [13], Ec-
lipse plugins.

3 Related Work

To our best knowledge the first empirical comparison of data flow and mutation
testing was preformed by Mathur and Wong [19]. They randomly generated 30
adequate test sets for each of three variants of mutation analysis and for all-uses
for each of five programs. They did not report on the size of the test sets but it can
be expected that the mutations sets are much larger than the all-uses ones. In all
ten of their subjects mutation testing was at least as effective as all-uses. Less ex-
pensive variants of mutation testing were reported by them as superior to all-uses.
They did not use any statistical inference procedure so it is not clear whether the
reported advantage is statistically significant. The high effectiveness they demon-
strated for mutation testing may be an artifact of large test set sizes.

In [23] Offutt et al. described an experiment in which they evaluate the data
flow and the mutation testing. They chose 10 Fortran program that cover a range
of applications e.g. bubble sort, transitive closure of a matrix, median of three
integers). These programs were rather small (size from 10 to 29 executable

A Comparison of Dataflow and Mutation Testing of Java Methods 21

statements), have from 183 to 3010 mutants, and have from 10 to 101 def-u pairs.
They also give the number of def-u pairs and the number of infeasible def-u pairs,
the number of mutants and equivalent mutants. Because of the nature of the two
testing techniques, programs typically have many more mutants than def-u pairs.
They observed, that the test cases overlap: in the sense that one test case usually
kills many mutants, and often covers several def-u pairs. Mutation tool for Fortran
– Mothra, and ATAC - a data flow tool for C were used in the experiment, so
Fortran programs have to be translated into C language. The requirements for mu-
tation test cases was killing mutants while executing def-u pairs were test require-
ments for the data flow testing. Both mutation and data flow test have problems
with unrealizable test requirements. Mutation systems create equivalent mutants,
which cannot be killed, and data flow systems ask for infeasible def-u pairs to be
covered. For each program, as a part of preparation, they identified all equivalent
mutants and infeasible def-u pairs “by hand”.

They presented results from three empirical studies. Firstly, they compared
mutation with all-uses data flow on the basis of a “cross scoring", where tests gen-
erated for each criterion were measured against the other one. Secondly, they
measured the fault detection of the test data generated for each criterion, and com-
pared the results. Thirdly, they compared the two testing techniques on the basis
of the number of test cases generated to satisfy them, in a rough attempt to com-
pare their relative costs. For these programs, the mutation scores for the data flow-
adequate test sets were reasonably high, with an average coverage of mutation by
data flow of 88.66%. While this implies that a program tested with the all-uses da-
ta flow criterion has been tested to a level close to mutation-adequate, it may still
have to be tested further to obtain the testing strength afforded by mutation.

However, the mutation-adequate test sets come very close to covering the data
flow criterion. The average coverage of data flow by mutation was 98.99% for
their ten programs. They infer, that a program that has been completely tested with
mutation analysis will usually be very close to having been tested to the all-uses
data flow criterion, within one or two def-u pairs of being complete. On the other
hand, mutation required more test cases in almost every case than the data flow
testing did, providing a cost to be the trade of these two techniques. These con-
clusions are supported by the faults that the test sets detected. Although both mu-
tation adequate and data flow-adequate test sets detected significant percentages of
the faults, the mutation-adequate test sets detected an average of 16% more faults
than the data flow-adequate test sets. The difference was as high as 60% for one
program. This provides some evidence that mutation is better than all-uses data
flow. These results are in general in an agreement with those of Mathur and Wong
[19]. Both studies found that mutation offers more coverage than data flow, but at
a higher cost. Although Mathur’ and Wong’ study did not include any fault detec-
tion, Offutt et al. also found, that mutation-adequate test sets detected more faults.
The fact that both studies, performed at about the same time by different research-
ers using different programs and test cases, got similar results, greatly strengthens
these conclusions.

Other experiments were conducted by Frankl, Weiss and Hu in 1996 [7]. They
were testing ten programs (obtained from seven) rather simple (the LOC for these

22 I. Bluemke and K. Kulesza

programs were in the range 22-78). Pascal versions were used for the all-uses sub-
ject and equivalent Fortran versions, as close as possible in structure, were used
for mutation testing.

In [16] all-uses and mutation testing of Java classes was also compared. The
authors were testing twenty-nine Java small classes. They were taken from various
sources, including open source software websites, the accompanying CD to the
Java or testing textbook. Faults were seeded into the Java classes by one of the
authors. The testing process was as follows. The tests to satisfy all-uses, were ran
on the mutants, and tests that did not contribute to mutation coverage were elimi-
nated. Finally, additional tests to kill the remaining mutants were added. The re-
sults of this experiment indicate, that mutation testing found more faults than oth-
er criteria. A little surprising to the authors was that, despite its widespread
reputation as being the “most expensive test criterion,” mutation did not require
significantly more tests. In [16] authors wrote, that the expense of mutation is
worthwhile, because it will help the tester to find more faults. The author claim al-
so that the faults that mutation did not catch, can be instructive; it may be possible
to design additional mutation operators that can detect these faults.

Other interesting experiment on mutation and coverage testing of Java pro-
grams was conducted in 2009 and is presented by Madeyski in [17]. The goal of
this experiment was different, than those described above. In this experiment the
impact of the “test first” programming on mutation score was examined. Addi-
tionally, code coverage was measured to get a more complete picture of the expe-
rimental manipulation. Branch coverage and mutation score indicator were ex-
amined to get some insights how thoroughly unit tests exercise programs, and how
effective they are. The main result of this experiment is that the “test first” pro-
gramming practice, used instead of the classic “test last” technique, does not sig-
nificantly affect the branch coverage and the mutation score indicator.

An overview of unit testing experiments is given in [15].

4 Comparison of Dataflow and Mutation Testing

The goal of our experiment was to compare the mutation and the dataflow testing of
Java code. When we started our study there were no similar experiments reported in
the literature. Following tools were used in the experiment: DFC (Data Flow Cover)
[2, 25] for data flow testing, for mutation testing MuClipse [21] and Jumble[13] plu-
gins and JUnit [14].

Six Java classes were used as experiments subjects. They were taken from various
sources, including websites and author’s private repositories. Since in DFC only intra-
method data flow testing is performed we used only six methods. We choose simple
methods but with nontrivial control flow graph and for which the def-use graph con-
tained several branches. The methods used in experiment are listed in Table1. The me-
thods used in other similar experiments (section 3) were of comparable complexity.

MuClipse and Jumble generate mutants, exercise them on a test cases prepared
by the tester, and after a series of executed test show, which mutants are alive and
which one are killed. The mutation score for a class is also calculated. These tools
do not calculate the mutation score for a method. To calculate the mutation score

A Comparison of Dataflow and Mutation Testing of Java Methods 23

Table 1 Tested methods

 Class.method project source LOC

1 CoffeeMaker.addRecipe CoffeeMaker [4] 23

2 Shop.doShopping Shop [5], appendix listing 1 26

3 Bank.grantCredit theBank private 20

4 Board.insertShip NetworkShipBattl [27] 43

5 PizzaClub.makePizza thePizzaClub private 20

6 Library.borrowBook theLibrary private 21

for a method the tester has to identify mutants for this method, and next calculate
the ratio of the number of killed mutants to the total number of non-equivalent
mutants (“by hand”). Unfortunately MuClipse and Jumble are not able to find
equivalent mutants automatically, so the code analysis of mutants by the tester
was necessary. As this is a tedious activity, especially in MuClipse with so many
generated mutants only six simple methods were the subject of this experiment.

The DFC [2, 25] Eclipse plugin instruments the source Java code (adds extra
instructions needed for finding dataflow coverage) and builds def-use graph
(DUG). DUG contains information concerning the control flow, variable defini-
tions and usage in its nodes. Instrumented code should be compiled and run in Ec-
lipse environment on a set of test cases prepared by the tester. The extra code add-
ed by a module of DFC sends the data concerning the coverage to DFC. Another
module of DFC is locating covered and not covered def-u pairs. After the execu-
tion of a test, the tester is provided with the information which def-u pairs were
covered so can add new tests for not covered ones. The tester decides which test
criteria to use e.g. all-defs. In our experiment the all-uses criterion was used. The
all-uses criterion requires tests to tour at least one subpath from each definition to
each reachable use. In DFC in the “standard” configuration, all methods are in-
itially identified as not modifying the state of the object and using it. In “option-
al” configuration the tester manually identifies defining and using methods. De-
tails on DFC implementation and its usage can be found in [25]. The “infeasible”
pairs, not possible to cover by test, were identified by the tester “by hand”, but
with the information provided by DFC (e.g. DUG graph), we found it easier and
faster than finding equivalent mutants.

Test cases were prepared separately for the mutation and the data flow testing.
The goal of testing was to kill all nonequivalent mutants and to cover all feasible
def-u pairs. Different approach was used in [16], where the tests satisfying all-
uses, were ran on the mutants, tests not contributing to mutation coverage were
eliminated and additional tests to kill the remaining mutants were added.

In Table 2 the number of mutants obtained for each tested method by MuClipse
and Jumble plugins are given. The number of mutants generated by MuClipse is
greater than the number of mutants generated by Jumble, because the number of
mutation operators available in MuClipse is 43 (15 at the class level and 28 at the
method level), is also significantly greater than in Jumble (only 7).

24 I. Bluemke and K. Kulesza

The effectiveness of mutation testing is usually measured as mutation score
(section 2, equation (1)). We introduce similar formula for the data flow testing: ݀ܽ݁ݎ݋ܿݏ ݓ݋݈݂ ܽݐሺܲ, ܶሻ ൌ ܷܦܲܥ െ (2) ܫ

Where: P – tested program, T – set of tests, C – number of covered def-u pairs,
PDU – total number of def-u pairs, I – number of infeasible def-u pairs.

Table 2 Mutants and def-u pairs for methods

Number of
Class.method
(Table 1)

mutants Equivalent mutants def-u pairs infeasible def-u
pairs

conf. conf. op-
tional

conf. conf. op-
tional MuClipse Jumble MuClipse Jumble

1 44 20 2 1 32 32 9 9

2 58 13 4 0 31 38 2 3

3 108 24 8 0 29 28 2 0

4 218 52 8 3 65 65 4 4

5 94 22 12 0 34 35 5 5

6 47 15 2 0 34 27 11 3

We conducted several experiments comparing different aspects of data flow

and mutation testing. One of such experiments comparing the mutation testing and
the data flow testing using mutation score (1) and data flow score (2) is described
in next section.

4.1 Experiment

In the experiment we wanted to check what efficiency in mutation testing can be
obtained using the test covering all feasible def-u pairs and vice versa. Tests, cov-
ering all feasible def-u pairs, were given as input to mutants generated by MuC-
lipse and Jumble.

Let’s TM denote the set of test cases killing all non equivalent mutants and TDF

the set of test cases covering all feasible def-u pairs. The goal of this experiment
can be expressed as comparing the mutation score (P, TDF) and data flow score
(P, TM).

The mutation score (P, TDF) for mutants generated by MuClipse and Jumble
and for both possible DFC configurations are given in Table 3. The average values
for all tested methods are 87,84% for MuClipse and 93,62% for Jumble. These
values do not depend on the DFC configuration. In the “optional” DFC configura-
tion (the tester marks methods as defining or using object state [2, 25]) sometimes
new test cases are necessary to cover the specific data flow. These test cases in
methods from Table 1 were not able to ‘kill’ additional mutants. In “killing”
mutants often boundary data values are successful and such values not appeared in
the added test cases.

A Comparison of Dataflow and Mutation Testing of Java Methods 25

Table 3 Mutation score for mutants generated by MuClipse and Jumble on test sets
designed for DFC

Class.method

Mutation score obtained
for test sets designed for
DFC in standard configu-
ration

Mutation score obtained
for test sets designed for
DFC in optional configu-
ration

MuClipse Jumble MuClipse Jumble

CoffeeMaker.addRecipe 95,24% 100% 95,24% 100%
Shop.doShopping 85,19% 100% 85,19% 100%
Bank.grantCredit 74% 79,16% 74% 79,16%
Board.insertShip 87,61% 95,91% 87,61% 95,91%
PizzaClub.makePizza 93,90% 100% 93,90% 100%
Library.borrowBook 91,11% 86,67% 91,11% 86,67%

87,84% 93,62% 87,84% 93,62%

Table 4 Data flow score and mutation score for test cases designed for MuClipse

Class.method

Mutation score
for Jumble

Data flow score

Standard
conf.

Optional
conf.

CoffeeMaker.addRecipe 100% 100% 100%
Shop.doShopping 100% 100% 85,71%
Bank.grantCredit 91,67% 96,30% 96,43%
Board.insertShip 89,80% 100% 100%
PizzaClub.makePizza 100% 93,10% 90%
Library.borrowBook 93,33% 91,30% 91,67%

95,80% 96,78% 93,97%

Table 5 Data flow score and mutation score for test cases designed for Jumble

Class.method Mutation
score for
MuClipse

Data flow score

Standard
conf.

Optional
conf.

CoffeeMaker.addRecipe 95,24% 100% 100%

Shop.doShopping 83,33% 93,10% 74,29%

Bank.grantCredit 72% 96,30% 96,30%

Board.insertShip 96,19% 100% 100%

PizzaClub.makePizza 95,12% 93,10% 90%

Library.borrowBook 86,76% 78,26% 79,17%

88,11 93,46% 89,96%

26 I. Bluemke and K. Kulesza

Fig. 1 Ratio of the number of test cases in mutation tools and DFC in standard configuration

In Table 4 and Table 5 the data flow score (P, TM) for test sets designed for
MuClipse and Jumble are given. The average value of data flow score (P, TM) for
test sets from MuClipse is very high - 96,78%. For three methods the test cases
covered all feasible def-u pairs. Such high value can be obtained because the num-
ber of MuClipse mutation test cases is significantly higher than the data flow test
cases (Fig. 1).

For Jumble plugin the number of test cases is smaller (Fig. 1) and close to the
number of test cases covering def-u pairs, so lower is also the data flow score (P,
TM) i.e. 93,46% for standard and 89,96% for optional configuration. The lower
values of data flow score(P, TM) for “optional” DFC configuration are caused by
new def-u pairs which often appear in this configuration. and TM. tests were not
able to cover them. For the method doShopping (appendix - listing 1) the dif-
ference of values of the data flow score is significant (from 93% into 74%).

4.2 Results of Experiments

The results of experiment show that data flow score(P, TM) depends on the muta-
tion tool used. Test prepared for MuClipse are able to provide high values of data
flow score(P, TM), higher than mutation score (P, TDF) – Fig. 2.

Tests prepared for Jumble, providing only seven mutation operators, are not
able to cover all def-u pairs, especially when the tester marks methods as defining
or using object state (optional DFC configuration). Such activity causes usually
the increase in the number of def-u pairs. In Fig. 3 we can see that only for two
methods (grantCredit, insertShip) data flow score(P, TM) is higher than
mutation score (P, TDF) .

0

0,5

1

1,5

2

2,5

addRecipe doShopping grantCredit insertShip makePizza borrowBook

ratio of the number of test cases generated for plugins MuClipse and
DFC
ratio of the number of test cases generated for plugins Jumble and DFC

A Comparison of Dataflow a

Fig. 2 data flow score (P,TM

configuration

Fig. 3 data flow score (P,T
configuration.

In Table 4 and Table 5
tool and tested with test
signed for MuClipse wer
three out of six methods 1

The results obtained b
mutants, are not as good.
by tests designed for Jum
the test cases designed to k
tool with fewer number of

5 Conclusions

In this chapter we compar
simple Java applications.

0%

20%

40%

60%

80%

100%

120%

addRecipe d
data fl

and Mutation Testing of Java Methods 2

TM) and mutation score (P,TDF) – MuClipse and standard DF

TM) and mutation score (P,TDF) – Jumble and optional DF

5 mutation scores for mutants generated by one mutatio
cases designed for other tool are also given. Tests de

re able to kill in average 95,80% Jumble’ mutants, fo
100% mutants were killed.
y testing MuClipse mutants by test prepared for Jumb
Only 88,11% of mutants created by MuClipse were kille

mble mutants. As MuClipse uses many mutation operato
kill them are very effective in killing mutants generated b
f mutation operators and in covering def-u pairs.

red all-uses data flow testing with mutation testing on si
To our best knowledge where our research started ther

oShopping grantCredit insertShip makePizza borrowBook
ow score(P,TM) - Jumble mutation score(P,TDF)

27

FC

FC

on
e-
or

ble
ed

ors
by

ix
re

28 I. Bluemke and K. Kulesza

were no similar experiments described in the literature. For the simple methods
used in our experiments, the data flow scores for mutation adequate test sets are
reasonably high, higher than 90% for mutation tool with many mutation operators.
Mutation scores for data flow adequate test sets are slightly lower (about 80%) but
also acceptable in many applications. In 2009 the results of similar experiment
(described in section 3) which are very close to ours, were published.

Our study has several limitations. As in all studies that use software as subjects,
external validity is limited by the number of subjects and the fact that we have no
way of knowing whether they are representative of the general population. All the
classes were quite simple, as in other experiments (section 3), and we must leave it
to a future replicated study to see if the results would be similar for larger and
more complicated classes.

If results like ours, those of Mathur and Wong and of Offut et al. could be show
to scale up to larger programs and to be statistically significant, they would pro-
vide an argument in favor of choosing mutation testing over all-uses, if cost were
not a factor. We estimate that the effort needed for mutation testing with MuClipse
is twice, or even more bigger than the effort in data flow testing.

Acknowledgments. We are very grateful to the reviewers for many valuable remarks.

References

[1] Agraval, H., Demilo, RA., et. al: Design of Mutant Operators for the C Programming
Language. Purdue University, West Lafayette, Technical Report SERC-TR-41-P
(1989)

[2] Bluemke, I., Rembiszewski, A.: Dataflow approach to testing Java programs. In: Pro-
ceedings of International Conference on Dependability of Computer Systems DepCoS
- RELCOMEX 2009, pp. 69-76 (2009), ISBN 978-0-7695-3674-3

[3] Chevalley, P., Thevenod-Fosse, P.: Mutation Analysis Tool for Java Programs. Inter-
national Journal on Software Tools for Technology Transfer 5(1), 90–103 (2002)

[4] Coffeemaker, http://agile.csc.ncsu.edu/SEMaterials/tutorials/
coffee_maker (accessed 2010)

[5] Delamaro, M.E., Maldonado, J.C.: Interface Mutation: Assessing Testing Quality at
Interprocedural Level. In: Proceedings of the International Conference of the Chilean
Computer Science Society (SCCC 1999), Talca, Chile, pp. 78–86 (1999)

[6] Derezińska, A., Szustek, A.: Tool supported Advanced Mutation Approach for Verifi-
cation of C# Programs. In: Proceedings of International Conference on Dependability
of Computer Systems DepCoS - RELCOMEX 2008, Szklarska Poręba, Poland, pp.
261–268 (2008)

[7] Frankl, P.G., Weiss, S.N., Hu, C.: All-uses versus mutation testing: An experimental
comparison of effectiveness. Journal of Systems and Software 38, 235–253 (1997)

[8] Garhwal, S., Kumar, A., Sehrawat, P.: Mutation Testing for Java. In: Proceedings of
National Conference on Challenges & Opportunities in Information Technology
(COIT-2007), pp. 22–28 (2007)

[9] Harrold, M.J., Rothermel, G.: Performing data flow testing on classes. In: Proceedings
of the 2nd ACM SIGSOFT Symposium on Foundations of Software Engineering, pp.
154–163 (1994)

A Comparison of Dataflow and Mutation Testing of Java Methods 29

[10] Harold, M.J., Soffa, M.L.: Interprocedural data flow testing. In: Proceedings of the
Third Testing, Analysis, and Verification Symposium, pp. 158–167 (1989)

[11] Jabuti, http://jabuti.incubadora.fapesp.br/ (accessed 2009)
[12] Jia, Y., Harman, M.: An Analysis and Survey of the Development of Mutation Test-

ing. Technical report TR-09-06, Crest Centre, Kong’s College London (1996),
http://www.dcs.kcl.ac.uk/pg/jiayue/repository/TR-09-
06.pdf (accessed 2010)

[13] Jumble, http://jumble.sourceforge.net/index.ht (accessed 2010)
[14] Junit, http://www.junit.org/ (accessed 2010)
[15] Juristo, N., Moreno, A.M., Vegas, S., Solari, M.: Search of What We Experimentally

Know about Unit Testing. IEEE Software, 72–80 (2006)
[16] Li, N., Praphamontripong, U., Offutt, J.: An Experimental Comparison of Four Unit

Test Criteria: Mutation, Edge-Pair, All-uses and Prime Path Coverage. In: Proceed-
ings of the 4th International Workshop on Mutation Analysis (MUTATION 2009),
Denver, Colorado (2009)

[17] Madeyski, L.: The impact of test-first programming on branch coverage and mutation
score indicator of unit tests: An experiment. Information and Software Technolo-
gy 52(2), 169–184 (2010)

[18] Malevris, N., Yates, D.F.: The collateral coverage of data flow criteria when branch
test-ing. Information and Software Technology 48, 676–686 (2006)

[19] Mathur, A.P., Wong, W.E.: An empirical comparison of data flow and mutation-based
test adequacy criteria. The Journal of Software Testing, Verification, and Reliabili-
ty 4(1), 9–31 (1994)

[20] Mathur, A.P.: Mutation Testing. In: Marciniak, J.J. (ed.) Encyclopedia of Software
Engineering, pp. 707–713 (1994)

[21] Muclipse, http://muclipse.sourceforge.net/index.php (accessed
January 2011)

[22] Mutation repository,
http://www.dcs.kcl.ac.uk/pg/jiayue/repository (accessed January
2011)

[23] Offutt, A.J., Pan, J., Tewary, K., Zhang, T.: An Experimental Evaluation of Data Flow
and mutation Testing. Software Practice and Experience 26(2), 165–176 (1996)

[24] Offutt, A.J., Untch, R.H.: Mutation 2000: Uniting the Orthogonal. In: Wong, W.E.
(ed.) Mutation testing for the new century, pp. 34–44. Kluver Academic Publishers,
Boston (2001)

[25] Rembiszewski, A.: Testing object programs by data flow coverage. MSc thesis, Insti-
tute of Computer Science, Warsaw University of Technology (2009)

[26] Rapps, S., Weyuker, E.J.: Selecting software test data using data flow information.
IEEE Transactions on Software Engineering 11, 367–375 (1985)

[27] Suchowski, J.: Network game – NetworkShips Battle. Institute of Computer Science,
Warsaw University of Technology (2010)

[28] Vincenzi, A.M.R., Maldonado, J.C., Wong, W.E., Delamaro, M.E.: Coverage testing of
Java programs and components. Science of Computer Programming 56, 211–230 (2005)

[29] Vincenzi, A., Delamaro, M., Höhn, E., Maldonado, J.C.: Functional, control and data flow,
and mutation testing: Theory and practice. In: Borba, P., Cavalcanti, A., Sampaio, A.,
Woodcook, J. (eds.) PSSE 2007. LNCS, vol. 6153, pp. 18–58. Springer, Heidelberg (2010)

[30] Woodward, M.R., Hennell, M.A.: On the relationship between two control-flow cov-
erage criteria: all JJ-paths and MCDC. Information & Software Technology 48, 433–
440 (2006)

30 I. Bluemke and K. Kulesza

Appendix

30) public Bill doShopping(theShop.Customer customer) {
31) Bill bill = new theShop.Bill();
32) for (int i = 0; i < items.length; ++i) {
33) Item item = items[i];
34) if (customer.need(item)) {
35) bill.add(item.getPrice());
36) }
37) }
38)
39) double vatAmount = vatPercent / 100 * bill.getTotalSum();
40) if (addVat) {
41) bill.add(vatAmount);
42) }
43)
44) double discountAmount = bill.getTotalSum() *
 (customer.getDiscountPercent() / 100);
45) if (customer.isSpecial()) {
46) if (bill.getTotalSum() > minSumForDiscount) {
47) bill.subtract(discountAmount);
48) }
49) }
50)
51) bill.close();
52)
53) if (bill.getTotalSum() <= customer.getMoneyAmount()) {
54) bill.pay();
55) customer.getFromAcount(bill.getTotalSum());
56) } else {
57) bill.cancel();
58) }
59) return bill;
60) }

Listing 1. Source code of method doShopping

53) if (bill.getTotalSum() <= customer.getDiscountPercent()) {

Listing 2. Mutant EAM (accessor method change) getMoneyAmount() -> getDiscountPercent()

41) bill.add(vatAmount++);

Listing 3. Equivalent mutant - postincrement operator

W. Zamojski et al. (Eds.): Dependable Computer Systems, AISC 97, pp. 31–45.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

A New Three Levels Context Based Approach for
Web Search Engines Evaluation

Abdelkrim Bouramoul1, Mohamed-Khireddine Kholladi1, and Bich-Lien Doan2

1 Computer Science Department, Misc Laboratory, University of Mentouri Constantine,
B.P. 325, Constantine 25017, Algeria
e-mail: a.bouramoul@yahoo.fr, kholladi@yahoo.fr

2 Computer Science Department, SUPELEC,
Rue Joliot-Curie, 91192 Gif Sur Yvette, France
e-mail: bich-lien.doan@supelec.fr

Abstract. Classical approaches for evaluating information retrieval tools have
limitations and shortcomings, particularly regarding to the consideration of the
user, the manner in which these approaches measure the adequacy between the
user's query and the returned documents, and the consideration of the search tool
characteristics. This critical finding prompted our reflections for the exploitation
of contextual elements around the user, the query and the search tool during the
evaluation process. This paper presents a new approach based on three comple-
mentary levels of context for evaluating information retrieval tools. The experi-
ments gives at the end of this article has shown the applicability of the proposed
approach to real research tools. The tests were performed with the most popular
searching engine (i.e. Google, Bing and Yahoo) selected in particular for their
high selectivity. The results have revealed that the evaluation of search engines at
three different levels of context is a promising way to diagnose the performance,
characteristics and behavior of these engines and the relevance of the results that
they return.

1 Introduction

Information Retrieval Systems (IRS) are tools for finding information in closed
document collections or on the Web. The challenge is to finding, among the large
volume of documents available, those that best fit our needs. Consequently several
questions arise about these information retrieval tools, particularly in terms of
their performance and the relevance of the results that they offer.

It is therefore in the field of the evaluation of IRS and more specifically that of
the contextual evaluation that our work falls. After a deep investigation around
research and synthesis activities we realized that despite the abundant literature
produced in this area dealing with both experimental results and methods that pro-
vide evaluation criteria and metrics of relevance, few of these methods are inter-
ested in the consideration of the context during the evaluation process. Our

32 A. Bouramoul, M.-K. Kholladi, and B.-L. Doan

contribution is guided by two main reasons: firstly the lack that we observed
around the context-based methodologies for measuring the quality of information
retrieval tools, this finding is reinforced by the work of [1] and [2]. And secondly
by the requirement to which we are confronted recently after conducting work in
the field of the consideration of context in information retrieval systems [3];
Where we have failed to find a contextual evaluation protocol to validate of our
proposal. This work will therefore be a logical continuation of what has been done
before, and a promising way to cover the process of the contextual evaluation of
IRS.

This paper is organized as follows: we start first by giving a definition of the
concept of context and its use in the field of information retrieval, we then present
an overview of classical approaches for evaluating information retrieval systems
and we focus on the limits and shortcomings faced by these approaches. In the
next section we discuss our contribution by giving an overview of the contextual
evaluation approach that we propose and describing its principle and its tech-
niques. Finally, we present an experimentation of our approach to evaluate the
performance of search engines Google, Yahoo and Bing, followed by a discussion
of results and conclusion.

2 How Context Can Be Used in IR

2.1 Definition of Context

The context is not a new notion in computer science: from the sixties, operating
systems, language theory and artificial intelligence already exploited this concept.
With the emergence of information retrieval systems, the term was rediscovered
and placed at the core of the debates without making subject of a consensus, clear
and definitive definition. However, analysis of existing definitions in the literature
leads to two conclusions:

“There is no context without context” [4]. In other words, the context does not
exist as such. It is defined or it emerges for a purpose or precise utility.

“The context is a set of information. This set is structured, it is shared, it
evolves and serves the interpretation” [5]. The nature of information and interpre-
tations got from it depend on the purpose.

In information retrieval, the context is defined as “All cognitive and social fac-
tors as well as the user’s aims and intentions during a search session”, [6]. Gener-
ally speaking, the context includes elements of various natures that delimit the
understanding, the application fields or the possible choice. The most commonly

A New Three Levels Context Based Approach for Web Search Engines Evaluation 33

cited elements concern the spatiotemporal data (location, time, date) or specific
knowledge in relation to the studied area.

2.2 Use of Context in Information Retrieval

In information retrieval, context can be used at three different stages depending on
the progress of the research process. Table 1, summarizes the potential to appeal
to context in IR and presents the possible mechanisms of its use.

Table 1 Different opportunities to use the context in IR

Phase (Where) Usage (How) Examples of work (Who / What)

At the begin-
ning of the
search process

To solve the ambiguous terms
problem in the query and im-
prove the quality of the search
tool results.

[7]: uses ontology with equivalence
and subsumption relationships for ex-
tracting terms to be added to
the initial query.

 To introduce the spatiotemporal
constraints on search algorithms.

[8]: Proposes an algorithm for search-
ing videos that capitalizes the context
via spatio-temporal entities.

During the
search process

To guide interactions with the
system in order to make possible
the real operating of the overall
results once displayed.

[9]: Proposes a contextual dialogue
platform that allowing a user to ask
questions orally, and interact with
IRS.

At the end of
the search
process

To guide the relevance feedback
principle, with the idea of relying
on results of the first search and
the current context in order to re-
formulate the user query

[3]: Proposes a context based queries
reformulation tool that use user's pro-
files to minimize the user intervention
during reformulation.

3 Classic Evaluation of IRS, Principles and Limits

The classic evaluation of information retrieval systems is based on the perform-
ance of the systems in themselves; it is quantitative and is based on work done in
the sixties at Cranfield (United Kingdom) on indexing systems [2]. Such ap-
proaches are mainly based on documents corpus, queries corpus, relevance judg-
ments and evaluation metrics that are generally the recall and precision. [11]

3.1 The TREC and CLEF Evaluation Campaigns

The evaluation campaigns represent the current dominant model. Indeed, it is on
the experience of the Cranfield tests that was based the NIST (National Institute of
Science and Technology) to create the TREC evaluation campaign (Text REtrieval

34 A. Bouramoul, M.-K. Kholladi, and B.-L. Doan

Conference) in 1992. The TREC campaigns have become the reference in the
evaluation of systems but we can also quote the CLEF Campaigns (Cross-
Language Evaluation Forum) which specifically relate to the multilingual systems,
the NTCIR campaigns on the Asian languages, and Amaryllis, specializing in
French systems.

The TREC evaluation campaign is a series of annual evaluation of information
retrieval technologies. The participants are usually researchers for large companies
which offer systems and that want to improve it and academic research groups.
The TREC is now considered as the most important development in experimental
information retrieval. The main explored tracks are filtering, ad hoc task and ques-
tion-answering. For 2010 TREC has focused on the following tracks: The blog,
chemical IR, entity, legal, relevance feedback, and session tracks1.

The CLEF campaign was launched in 2000 as an European project of evaluat-
ing information retrieval systems. The objective of the CLEF project is to promote
research in the field of multilingual system development. This is done through the
organization of annual evaluation campaigns in which a series of tracks designed
to test different aspects of mono- and cross-language information retrieval are of-
fered. The intention is to encourage experimentation with all kinds of multilingual
information access – from the development of systems for monolingual retrieval
operating on many languages to the implementation of complete multilingual mul-
timedia search services. This has been achieved by offering an increasingly com-
plex and varied set of evaluation tasks over the years. The aim is not only to meet
but also to anticipate the emerging needs of the R&D community and to encour-
age the development of next generation multilingual IR systems [12]. CLEF 2009
offered eight main tracks designed to evaluate the performance of systems, the
most important of these tasks are: Multilingual textual document retrieval, interac-
tive cross-language retrieval, cross-language retrieval in image collections, intel-
lectual property and log file analysis2.

3.2 Limits of Classic Approaches for Evaluating IRS

Despite the popularity and recognition of these two evaluation campaigns that are
TREC and CLEF. These approaches for evaluating information retrieval systems
have some limits particularly with regard to the user consideration, the constitu-
tion of the queries corpus but also about the evaluation itself. To better identify the
limits of classic approaches for evaluating information retrieval systems, we are
based on the work of [1], [2] and [13]. A Synthesis of this work has allowed us to
define six classes of problems, Table 2 summarizes these limits.

1 TREC campaign web site: http://trec.nist.gov/
2 CLEF campaign web site: http://www.clef-campaign.org/

A New Three Levels Context Based Approach for Web Search Engines Evaluation 35

Table 2 Limits of classical approaches for evaluating IRS

Nature of limit Discussion

Absence of the
user

– The notion of end user requires personal knowledge, experience and
different search capabilities for which the classic IRS evaluation does not
care.

– [13]: classical evaluations do not take into account the context in which
search is conducted, because they are not made in situations of actual use.

Relevance
judgments

– The relevance judgments in TREC operate on a binary manner: a docu-
ment is considered as relevant or irrelevant. Yet this is not always the
case, some documents are more relevant than others who are also rele-
vant.

– [1]: The relevance considered in the classic evaluation of IRS
is thematic, independent of context, of the research situation and interests
of users.

Corpus of que-
ries

– The problem with formulating queries in IR, transforms the task of
search to a task of knows ask questions to these systems, because the dif-
ferences are significant between what we think and what is interpreted.

– [1]: in the batch mode of evaluation protocols, queries are assumed to
represent alone the user. Consequently the direct user having made these
queries does not form part of the collection.

Corpus of doc-
uments

– In the traditional corpus, a document is a text in itself, and the evalua-
tion is made according to the number of documents found, but in general,
a user is not looking for documents but information, and documents never
contain the same amount of information.

Metrics – [1]: The evaluation measures are not comprehensive and they do not
permit evaluation of an operational search tool.

System Interac-
tion

– [13]: The classical evaluation does not take into account the interactive
nature of an information retrieval. An evaluation model that neglects the
interaction is unrealistic and inappropriate for today IRS.

4 Detailed Presentation of the Proposed Approach

The aim of our evaluation approach is to consider the context of the user, of the
query and that of the search tool during evaluation. It consists of three parts:
evaluation of the search tool performance, evaluation of the results relevance com-
pared to the query, and finally evaluation of the relevance by the user's judgments.
Figure 1, summarizes the three evaluation levels and illustrates the link between
the context type and the evaluation level.

Fig. 1 Link between the context type and the evaluation level

36 A. Bouramoul, M.-K. Kholladi, and B.-L. Doan

4.1 Evaluation of the Search Tool Performance

This is the first component of our approach; the evaluation referred to this level is
based on a number of criteria summarizing the problems generally encountered by
users during a search session. The criteria that we have defined depend on the na-
ture of the manipulated information, of the source of this information and finally
of the mechanism used to retrieve this information. The values assigned to these
criteria are automatically calculated by the system soon obtaining results pro-
vided by the search tool. The estimation of these values gives subsequently an
overview of the quality of the search tool. These criteria are the following:

– The redundant results: This involves measuring the ability of the search tool
to discard the redundant results. This means that the search tool should return only
once the results coming from the same site but with different pages.

– The dead Links: A dead link is a link that leads to a page that no longer exists,
In this case the browser returns in this case the error codes ‘404’. Evaluate this cri-
terion consists to identify the ability of the search tool to detect and remove the
dead links.

– The parasites pages: They include advertising pages and those that can iden-
tify only promotional links. These pages provide no useful information to the user
and generally make false results. Their elimination depends to the quality of the
algorithms used by search engines.

– Response time: This is the time consumed by the search engine to return the
expected results. A short response time implies a good search tool performance.

4.2 Automatic Evaluation of the Results Relevance

This is the second part of our evaluation approach; this is the weighting, by in-
creasing the number of terms, of the query words compared to the words of the re-
turned documents. This includes choosing the weighted terms in the first time,
then apply the formula that we propose.

4.2.1 Weighted Terms Choice, an Incremental Weighting

In an information retrieval process, queries reflect an information need and they
are composed of one or more words. In such cases, groups of words in a query are
often more semantically rich than the words that compose it taken separately, and
can therefore better respond to what users expect.

We have chosen to define several hierarchal levels during weighting according
to the number of words forming the query. Each level is composed of one or more
words (a group of words) starting from the user’s query. The incremental weight-
ing of query terms instead of a classic weighting of each word separately allows to
better taking into consideration the query context during the evaluation. For ex-
ample, assuming that the query sent by the user is ‘contextual evaluation of infor-
mation retrieval systems’, documents containing the group of words : ‘contextual
evaluation of information’ or ‘contextual evaluation’ are certainly nearest to what

A New Three Levels Context Based Approach for Web Search Engines Evaluation 37

the user expect compared to those in which we find the words: ‘contextual’,
‘evaluation’, ‘information’, ‘retrieval’ or ‘systems’ taken separately.

4.2.2 Relevance Calculating, a Contextual Formula

Once the groups of words to be weighted are defined, it comes to assigning a
weight that determines their importance in the document. We have therefore de-
veloped a weighting formula that takes into account the context of the query in
terms of number of words composing it. This formula is inspired from the TF IDF
weighting [14] to which we added two dimensions; the document length and the
hierarchy of words groups according to the length of the query. So, it is incre-
mental and is defined as follows:

With:

– R: The set of query terms.
– R’: The terms of the words group to weighted.
– W (R’,D): The frequency of the word group R' in the document D.
– Length (R): the length the query.
– Length (R’): the length the query words group to weighted.
– Length (D): Length of the document.
– TNRD: Total number of returned documents.
– NDWGR’: Number of documents containing the words group R'.

4.3 Evaluation of the Relevance by the User's Judgments

The interest that a user gives to information depends heavily on individuals and
context of use. Information will therefore be important for a given user in a given
context. Based on this principle and to allow consideration of the user's judg-
ments during the evaluation, we use an adaptation of our proposal [3] which is to
model the context of the user via their profile. This adaptation requires a redefini-
tion of the concepts of static and dynamic context to make them usable for
evaluation.

4.3.1 Static Context

These are the personal characteristics of the user that can influence the evaluation
context. This information is to be recovered during the first connection to the sys-
tem. For this purpose we have identified four categories of information relating to
the static context, this information is summarized in:

– Connection parameters: e-mail and password.
– Personal characteristics: name, country, language,...
– Interests and preferences: domains, specialty,...
– Competence expertise level: profession, level of study,...

38 A. Bouramoul, M.-K. Kholladi, and B.-L. Doan

4.3.2 Dynamic Context

In order to optimize the reuse of the user's judgments, this second component of
context aims to associate the relevance judgments with the user's context. The
principle is as follows: at the end of each search session the recovery of
the dynamic context is performed and this by allowing users to express their judg-
ments of relevance regarding to the documents returned by the search tool. This
judgment is to vote on a scale from 0 to 5, where 0 corresponds to a document
completely useless or off-topic, 5 corresponding to a document that responds per-
fectly to the asked query. The evaluation is activated automatically whenever the
user expresses a judgment by recalculating the relevance score of the considered
result.

5 Application of the Proposed Approach to the Evaluation of
Search Engines

To prove the applicability of the proposed approach, we will use it for evaluating
search engines. Our choice was fixed on three search engines (Google, Yahoo and
Bing). This choice is motivated by their popularity in the web community on the
one hand, and by the high degree of selectivity that they provide on the other
hand.

We therefore propose to establish a system that conducting an open search on
the web, and perform by following the evaluation of the results returned by each
search engine. To this end we use the three levels of the contextual evalua-
tion approach that we have proposed. This system should allow:

• Make the same queries set to the three search engines (Google, Yahoo, Bing).
• Retrieve the results returned by each search engine;
• Check the informational content of all the resulting pages;
• Capture the user's static and dynamic context for the current search session, and

used them for the evaluation of the results by the user's judgment;
• Measuring the relevance degree of results returned by each engine by the appli-

cation of the proposed contextual formula.
• Diagnose performance, characteristics and behavior of each search engine by

taking into account its context accordance to the third level of our approach.
• Coupling of the relevance scores obtained in the three evaluation levels for

each search engine and thus obtained the final score.

The system consists of two main modules: a first module for managing interac-
tions between the user and the search engine (identification and search), and a sec-
ond which covers the three evaluation levels described in our proposal. These two
modules are closely interrelated in the sense that the outputs of a module are the
inputs of the other. We present in what follows, modules components the system
and we illustrate the functionalities offered by each of them.

A New Three Levels Context Based Approach for Web Search Engines Evaluation 39

5.1 Managing of Users / Search Engine Interactions Module

A preliminary phase to this evaluation is absolutely necessary, it is necessary to
recover the user’s information need and then interrogate the search engine to re-
trieve results to be evaluated. The managing of users/search engine interactions
module supports all interactions from the connection to the system until the results
deliverance. It takes care capturing of the user's static context, managing of its
identification, he also manages the transmission of the user request to the search
engine and retrieval of results, and finally, it communicates these results to the
evaluation module. This module consists of two complementary processes,
Figure. 2, shows the operating principle of this module.

Fig. 2 Managing of users/search engine interactions module.

5.1.1 The Static Context Capturing Process

The static context previously defined during the presentation of our approach is
represented by the user profile. The user profile data can be indicated by the user
himself, learned by the system during use or indicated by selecting an existing
profile created by experts.

In our case, we construct the user static context at the first connection to the
system. This construction is done by asking the user to fill the four categories of
information defined previously. The categorization of users has the advantage of
having typical information with the opportunity to refine it as and when. Once the
identification made the user can conduct open research on the web.

40 A. Bouramoul, M.-K. Kholladi, and B.-L. Doan

5.1.2 The Search Process

We opted for a system that offers an open search on the web using the following
principle: after connecting to the system, the user expresses his information need
as a query. The research process therefore takes as input the query and the search
operation is initiated by running in parallel the nucleus of each search engine with
as only parameter the user query. The obtained result is finally communicated to
the user and the evaluation module.

Fig. 3 Summary of the evaluation approach applied to search engines

5.2 Contextual Evaluation Module

To precede with the evaluation of the three search engines, the system retrieves
the results of each of them and performs their analysis. The contextual evaluation
module consists of three processes representing the three evaluation levels of the
proposed approach. The following algorithm illustrates the operating principle of
the evaluation module, and Figure 3, summarizes our evaluation approach applied
to search engines.

A New Three Levels Context Based Approach for Web Search Engines Evaluation 41

This paper is o

6 Results and Discussion

6.1 The Used Protocol

To measure the contribution of our approach to the search engines evaluation, we
use an extension of the evaluation scenario proposed in [15].The evaluation was
conducted with the help of 24 students from the second year license STIC (Sci-
ence and Technology of Information and Communication) at the Mentouri Con-
stantine University, playing the role of users. The goal was not to make
an evaluation by experts but by a basic public, reasonably familiar with search en-
gines. 6 topics were chosen, to reflect diverse fields of use. These topics are:
News, Animals, Movies, Health, Sports and Travel. Each topic was assigned to a
group of 4 students who chose freely 5 queries. For example, for the sports topic,
the chosen queries were as follows: {World Cup 2010, France cycling tour, For-
mula 1 racing cars, Famous football players, Roland-Garros tournament}.

Queries were submitted to different search engines, and the first two pages con-
taining the 20 results were archived for each query and each search engine. In to-
tal, 1800 ‘url’ ware retrieved (6 topics x 5 queries x 20 results x 3 search engine)

Algorithm word group = ""
 For each search engine Do
 For each query Do
 Calculate the response time
 For each resulting webpage Do
 Extract all the url of the webpage
 For url(i) = 1 To 20 Do
 If url(i) = url(i+1) Then
 Nbr Redundant Link ++
 End If

 End For
 Open the corresponding page for each url
 If the returned error code is 'http 404' Then
 Nbr Dead Links ++
 End If
 For j = 1 to length (Q) Do

 Calculate the frequency of the word(j) in the resulting page
 If frequency of the word(j)=0 Then
 Nbr Parasite Page ++
 End If
 End For
 End For
 Update the performance evaluation of search engine
 For k = 1 to length (Q) Do
 G = G + Word (K)/Concatenation
 Apply the formula1 for the words group 'G'
 End For
 Update the evaluation of the relevance of results
 Capture of the static context
 Capture of the dynamic context
 Retrieve the relevant user judgments
 Update the evaluation by the user’s judgments
 End For
 End For
End

42 A. Bouramoul, M.-K. Kholladi, and B.-L. Doan

and organized in the form of triplet (Query, url, page content). Finally the set of
triples has been communicated to the system for analysis and evaluation.

6.2 Performance of Search Engines

Regarding the dead links, Table 3 shows that the rate of dead links is low, this is
explained partly by the fact that some web site do not return the error code 404
‘Page not found’ when the page no longer exists, but a normal HTML page
with an ad hoc message, which cannot be interpreted as an error only by a human
reader. We note also that 71% of dead links returned by Yahoo and 79% of those
returned by Google are caused by the Amazon which, for unknown reasons, re-
turned an error code during the experiment. Finally, Bing has got the best score
with only 1.67% of dead link.

Table 3 Search engines performance evaluation

Performance Search
engines Dead

links

Parasites
pages

Redundant
results

Average re-
sponse time

Google 2,03% 5,30 % 4,04% 0,17 Sec

Yahoo 2,13% 10,19 % 4,81% 0,21 Sec

Bing 1,67% 8,64 % 5,32% 0,22 Sec

In terms of parasites pages, which are essentially links that referring to com-

mercial web sites. We notice that search engines have different strategies to ex-
clude the parasite pages. Among the commercial sites that appear several times we
notice two companies: Amazon and E-Bay. Overall, it is Google that returns the
fewest links to commercial sites with 5.30%.

Concerning redundant results, we find that the ability of the three search en-
gines to eliminate them varied according to the type of queries. We also note that
the majority of redundant links returned by Google and Yahoo comes from the use
of Wikipedia web site. Of the 20 analyzed results, Google returned 4.04% redun-
dant links whose 80% from Wikipedia, and Yahoo 4.81% redundant links whose
78% from Wikipedia.

Finally, the average response time depends heavily on internet connection
speed and the machine power. For this reason and to ensure homogeneity when
calculating this criterion, all queries have been tested on the same machine with
the same internet speed. The obtained results show that the average response time
is almost identical in the three search engines. However, we note that Google top
the list with 0.17 seconds, this can be explained by the power of the PageRank al-
gorithm used by this engine.

A New Three Levels Context Based Approach for Web Search Engines Evaluation 43

6.3 Relevance by the User's Judgments

We are interested in the relevance judgments given by the user for the first result
returned by each search engine (R@1). The latter is of particular importance, since
it is the closest link clicked by users. The 24 students also expressed their rele-
vance judgments for 5, 10, 15 and 20 first retrieved documents (R@5, R@10,
R@10, R@15, R@20). At each level of relevance, a note of 0-5 was assigned by
each student. 0 corresponding to a document completely useless or off-topic, 5
corresponding to a document responding in a perfect way to the question. Table 4,
shows the obtained scores.

Table 4 Evaluation of the relevance by the user's judgments

Search engines Relevance level

Google Yahoo Bing

R@01 3,15 2,92 2,70

R@05 2,79 2,14 2,58

R@10 2,34 2,51 2,16

R@15 2,00 1,83 1,72

R@20 1,91 1,77 1,69

The overall scores obtained by each search engine for the 20 results are extremely

low, since no engine reaches the average note of 2.5 at R@20. The search engine that
had the best note of 1.91 is Google. The situation is remarkably improved if one con-
siders only the first result R@1; the three search engines are exceeding the average.

6.4 Results Relevance according to the Query

Using our formula, we calculate the relevance of the first 20 returned results regarding
to each of the 30 queries, and that for the three search engines. A note average for each
group of 5 queries in the same topic was calculated and the obtained score was
rounded to a note on 10. The overall results are summarized in Table 5.

Table 5 Evaluation of the results relevance according to the query

Search engines Queries category

Google Yahoo Bing

R01 - R05 (News) 6,91 6,77 6,19

R06 - R10 (Animals) 5,25 6,13 5,87

R11 - R15 (Movies) 5,72 5,13 5,67

R16 - R20 (Health) 4,98 4,83 4,66

R21 - R25(Sports) 5,93 5,89 5,16

R26 - R30(Travel) 6,19 6,09 6,10

44 A. Bouramoul, M.-K. Kholladi, and B.-L. Doan

The analysis of the obtained results show that the Google search engine ranks
first in terms of results relevance according to the query, and that for the 5 query
categories of the 6 available categories. This finding may be explained by a possi-
ble match or an unintended complicity between the formula that we proposed and
the mechanism used by Google to rank results. We also note that the scores of the
‘health’ category are below average for the three search engines, this is due to the
fact that the queries in this category contain few of words, which decreases terms
for which we calculate the number of occurrence and thus weaken the final score.

7 Conclusion

In this paper we are interested in proposing a new contextual approach for evaluat-
ing information retrieval tools. Our main contribution consists of the consideration
of context during the evaluation at three complementary levels. First the context of
the system is considered by estimating the ability of the search tool to eliminate
the dead links, redundant results and parasites pages. In a second level our ap-
proach takes into account the query context based on an incremental formula for
calculating the relevance of the returned results according to the user’s query. The
last level of the approach takes into consideration the user's judgments via his
static and dynamic context. Finally, a synthesis of the three levels of contextual
evaluation was proposed.

The application of the proposed approach to the search engines evaluation was
used to demonstrate its applicability for real research tools. This study which is
certainly far from exhaustive, nevertheless gives a snapshot of the search engines
performance and the relevancy of results that they return. Finally, this study paves
the way for diverse perspectives; particularly in terms of enlarging the application
field of the realized research. It would be interesting to test the proposed approach
to evaluate personalized search tools and enrich the obtained results with search
engines.

References

[1] Tamine, L., Boughanem, M., Daoud, M.: Evaluation of contextual information re-
trieval effectiveness: overview of issues and research. Journal of Knowledge and In-
formation Systems 24(1), 1–34 (2010)

[2] Menegon, D., Mizzaro, S., Nazzi, E., Vassena, L.: Benchmark evaluation of context-
aware Web search. In: Workshop on Contextual Information Access, Seeking and Re-
trieval Evaluation, Toulouse, France. Springer, Heidelberg (2009)

[3] Bouramoul, A., Kholladi, M.K., Doan, B.L.: PRESY: A Context based query refor-
mulation tool for information retrieval on the Web. Journal of Computer Science 6(4),
470–477 (2010), ISSN 1549-3636

[4] Brézillon, P.: Making context explicit in communicating objects. In: Kintzig, C., Pou-
lain, G., Privat, G., Favennec, P.-N. (eds.) Communicating with Smart Objects, ch. 21,
pp. 273–284. Kogan Page Science, London (2003)

A New Three Levels Context Based Approach for Web Search Engines Evaluation 45

[5] Winograd, T.: Architectures for context, human-computer interaction, vol. 16, pp.
402–419. L. Erlbaum Associates Inc., Hillsdale (2001)

[6] Belkin, N., Muresan, G., Zhang, X.: Using User’s Context for IR Personalization. In:
Proceedings of the ACM/SIGIR Workshop on Information Retrieval in Context
(2004)

[7] Navigli, R., Velardi, P.: An analysis of ontology-based query expansion strategies. In:
Proceeding of the Workshop on Adaptive Text Extraction and Mining, Dubrovnik –
Croatia (2003)

[8] Chen, X., Jia, K., Deng, Z.: A Video Retrieval Algorithm Based on Spatio-temporal
Feature Curves and Key Frames. In: Fifth International Conference on Intelligent In-
formation Hiding and Multimedia Signal Processing, Kyoto, Japan, pp. 1078–1081
(2009)

[9] Rosset, S., Galibert, O., Illouz, G., Max, A.: Interaction et recherche d’information: le
projet Ritel. Traitement Automatique des Langues (2006)

[10] Lin, H.-C., Wang, L.-H.: Query expansion for document retrieval based on fuzzy rules
and user relevance feedback techniques. Expert Systems with Applications 31(2),
397–405 (2006)

[11] Daoud, M., Tamine, L., Boughanem, M.: A contextual evaluation protocol for a ses-
sion-based personalized search. In: Workshop on Contextual Information Access,
Seeking and Retrieval Evaluation, Toulouse, France. Springer, Heidelberg (2009)

[12] Peters, C.: What Happened in CLEF 2009. In: Peters, C., Di Nunzio, G.M., Kurimo,
M., Mostefa, D., Penas, A., Roda, G. (eds.) CLEF 2009. LNCS, vol. 6241, pp. 1–12.
Springer, Heidelberg (2010)

[13] Chaudiron, S., Ihadjadenem, M.: Quelle place pour l’usager dans l’évaluation des
SRI? In: Couzinet, V., Regimbeau, G. (eds.) Recherches récentes en sciences de
l’information: Convergences et dynamiques. Actes du colloque international MICS
LERASS, Toulouse, March 2002, pp. 211–232 (2002)

[14] Soucy, P., Mineau, G.W.: Beyond TFIDF Weighting for Text Categorization in the
Vector Space Model. In: Proceedings of the 19th International Joint Conference on
Artificial Intelligence (IJCAI 2005), Edinburgh, Scotland (2005)

[15] Véronis,J.: Etude comparative de six moteurs de recherche. Université de Provence
(2006),
http://sites.univ-provence.fr/veronis/pdf/
2006-etude-comparative.pdf

W. Zamojski et al. (Eds.): Dependable Computer Systems, AISC 97, pp. 47–62.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Quantitative Verification of Non-functional
Requirements with Uncertainty

Carlo Ghezzi1 and Amir Molzam Sharifloo2

1 Dipartimento di Elettronica e Informazione, Politecnico di Milano,
 P.zza Leonardo da Vinci 32, 20133 Milano, Italy
 e-mail: carlo.ghezzi@polimi.it
2 Dipartimento di Elettronica e Informazione, Politecnico di Milano,
 P.zza Leonardo da Vinci 32, 20133 Milano, Italy
 e-mail: molzam@elet.polimi.it

Abstract. We focus on non-functional requirements, such as those concerning
reliability, performance, or cost and examine how to support the transition from
requirements to design models that can be analyzed formally in quantitative terms. We
assume that the initial description is given in behavioral terms, using annotated UML
Sequence Diagrams. Annotations are used to express environmental assumptions,
which are subject to uncertainty, in probabilistic terms. We also assume that a set of
requirements is expressed via Structured English statements, which provide predefined
patterns to support specification of common probabilistic properties. We discuss how
sequence diagrams can be automatically translated into formal models that support
software engineers in reasoning about the application being developed. In particular,
requirements are transformed into appropriate logic statements while sequence
diagrams are translated into Markov models, which can then be analyzed by using
probabilistic model checking.

1 Introduction

The complexity of modern software systems has grown enormously in the past
years. Moreover, they are increasingly used in critical applications that require
high dependability. In addition, users are always demanding for new features and
better quality of service (QoS). The traditional approach to achieving quality relies
on software models that capture the relevant aspects of the system being designed.
Models can be analyzed to predict whether the future system satisfies the
requirements prior to the system implementation. By following a model-driven
approach and by applying verification at the model level, software engineers can
anticipate detection of possible flaws that would otherwise become part of the
implementation. This is indeed the main driving force behind model-driven
engineering (MDE) [3].

Very often the system under development will live in an environment that
cannot be fully anticipated at design time. On the other hand, the properties of the

48 C. Ghezzi and A.M. Sharifloo

environment influence requirements satisfaction. For example, some assumptions
concerning the way the application will be used (usage profiles), which may be
hard to know in advance, may ultimately affect the application performance.

In general this is true for non-functional requirements, which depend on
uncertain and difficult to predict environmental data. Uncertainty is normally dealt
within probabilistic terms. For example, one may assume a certain intensity
probability distribution, and based on that one may be able to prove that the design
satisfies the requirements in terms of response time.

This paper focuses on requirements verification in the initial design phases of
software development. It focuses on non-functional requirements and high-level
design models. It shows how model checking can be used to assess models against
the requirements. More precisely, we assume that initially the software engineer
describes the desired system functionalities through behavioral models that
represent high-level scenarios, specified via UML Sequence Diagrams (SDs).
Quantitative stochastic annotations are used to decorate SDs with assumptions on
the external world. For example, they may describe the probability that a certain
branch of the scenario can be selected, due to the expected usage profile. A
probability may also be attached to an asynchronous message, to state the
probability that invocation of an external service terminates successfully. It is also
possible to attach an average duration to the transmission of a message or to the
execution of certain operation. Concerning QoS requirements (in this paper, our
focus is on reliability, performance, and cost), we assume that the software
engineer specifies global system requirements by using Structural English
statements, which support predefined patterns to specify common properties, as
described by [8]. These statements are then transformed into probabilistic logic
formulae that can be verified to hold on the model.

To achieve verification, the paper presents a translation step from annotated
SDs into formal models on which requirements can be verified. Because of the
nature of the properties, we wish to express, analyze and translate it into Markov
models: DTMCs (Discrete Time Markov Chains), CTMCs (Continuous Time
Markov Chains), and Reward DTMCs [10]. Once the translation is performed,
probabilistic model checking algorithms can be applied to verify if the
requirements for a given behavioral system description hold on the corresponding
Markov models.

The paper is structured as follows. Section 2 describes the proposed frame-
work. Section 3 focuses on the transformations from SD diagrams into Markov
models. A running example is presented in Section 4. Finally Section 5 gives an
overview of related work and Section 6 discusses future work.

2 The U-MarMo Framework

This section describes the proposed framework for quantitative verification of
non-functional requirements and introduces the notations of the source and target
models used in transformations. U-MarMo (UML to Markov Models) consists of a
model-to-model transformation step followed by model checking (e.g., [13]) to
formally verify non-functional requirements on UML diagrams. Currently

Quantitative Verification of Non-functional Requirements with Uncertainty 49

U-MarMo supports SDs decorated with quantitative annotations and generates
Markov models. DTMCs and CTMCs are used to verify reliability and
performance properties. A variant of DTMCs is used to verify cost properties,
such as energy consumption.

According to Fig. 1, initially developers provide system descriptions in the
form of annotated SDs. They also provide non-functional requirements written in
Structured English using predefined patterns [8]. SDs are annotated with
probabilities to support reasoning about reliability via transformation into
DTMCs. SDs annotated with performance rates may be translated into CTMCs.
SDs annotated with cost parameters can be transformed into Reward DTMCs, a
variant of DTMCs used for reliability verification. Annotations and transformation
are described later in Sections 2.1 and also 3.

To annotate SD diagrams, we use the MARTE profile. For more details about
UML SDs and the MARTE profile, please refer to [20] and [12].

Fig. 1 The U-MarMo Framework

2.1 Sequence Diagrams, Semantics, and Annotation

U-MarMo supports initial high-level system descriptions given in terms of SDs.
Precisely, U-MarMo supports the following building blocks: lifelines, messages,
and combined fragments. It also supports the following types of messages:
synchronous, asynchronous, and reply; they are indicated by a line with solid
arrowhead, a line with an open arrowhead, and a dashed line with an open
arrowhead, respectively. Messages play a major role; they are used to represent
both communication and computation. In fact, we use self-messages to indicate
the execution of internal actions by a lifeline. While inter-object messages stand

50 C. Ghezzi and A.M. Sharifloo

for a communication. Fig. 2(a) illustrates these various message types. Please note
that if an object sends a synchronous message, it remains blocked until it receives
a reply message. Instead, when an object sends an asynchronous message, it
continues with the rest of the actions it is expected to perform. A reply message is
a kind of asynchronous message, as far as the issuer is concerned.

As for semantics, every lifeline describes a parallel process (a state machine).
The state machines representing the various lifelines evolve continuously and
obey partial order semantics, which includes two rules: (1) the actions of a lifeline
are sequentially ordered from top to bottom, (2) a message cannot be received
before it is sent.

Sets of messages can be grouped together in combined fragments, graphically
represented by a box. The official specification of UML comprises many different
types of combined fragments. Hereafter we focus on the four major fragments: (1)
Alternative, (2) Option, (3) Loop, and (4) Parallel.

Mutually exclusive choices between two or more sequences of messages are
represented using Alternative. Each Alternative contains a set of operands (each of
which is a group of messages) separated by a dashed line. Each operand is
associated with a condition and is executed if the condition evaluates to true (Fig.
2(b)). Note that the condition of the Alternative is evaluated only once when all
the lifelines participating in it have reached the Alternative. In fact, we follow the
proposal by Alur [2] and apply a synchronous approach, which is also used for the
other fragments (Option and Loop) in which there are conditions.

The Option fragment is used to model a sequence that occurs if and only if a
certain condition evaluates to true (Fig. 2(c)). SDs represent iterating sequences of
messages through loops. A Loop is associated with a condition and the sequence
of messages included in the fragment is executed as long as the condition
evaluates to true (Fig. 2(d)). The Parallel fragment represents parallel
computations (Fig. 2(e)).

The elements of SDs are annotated using the MARTE profile. We annotate all
messages of a diagram with two MARTE properties: execTime and prob. The
former – a non-negative real number – represents the mean time for transmission.
The latter represents the probability that message transmission is successfully
performed. Note that since self-messages represent an internal operation, these
properties represent duration time and operation reliability, respectively. For cost
properties, there are different choices depending on the type of cost: message size,
power, and energy are examples that can be used in the MARTE profile. All of
them are represented by a real number and can be seen as cost of resource usage.
In the rest of this paper, we implicitly focus on energy consumption.

Combined fragments, except Parallel, are annotated with execution
probabilities. A probability attached to an Option indicates the likelihood that the
Option is chosen. Similarly, each loop is annotated with a probability, which
expresses the probability that the loop may iterate. Since Alternative includes
more than one operand, each operand is annotated with an execution probability.

Quantitative Verification of Non-functional Requirements with Uncertainty 51

a

b c

d

e

Fig. 2 Sequence Diagrams

2.2 Using Property Patterns to Specify Non-functional
Requirements

Our framework uses the probabilistic pattern system ProProST introduced by
Grunske [8] to specify non-functional requirements using Structured English.
Although there exist other pattern systems to specify non-functional requirements
[19], ProProST is the one specifically presented for probabilistic properties. That
is the reason we chose ProProST. Moreover, the property specified via ProProST
can be translated into the logic specification languages PCTL or CSL
automatically. Examples will be given in the case study we will discuss next.

For cost properties, we use a variation of Grunske’s patterns. Since cost
properties are expressed as real numbers, we replace the probabilities with real
numbers (which represent cost) in the grammar of ProProST. The formulae we
obtain by the translation are cost/reward formulae as used by the PRISM model
checker for cost/reward properties [10].

2.3 Target Models and Requirements Specification

To support formal analysis of requirements, we generate Markov models that are
amenable to model checking. We generate Discrete-Time Markov Chains
(DTMCs) for reliability analysis and Continuous-Time Markov Chains (CTMCs)
for performance. DTMCs with rewards are used for cost analysis. For space
reasons, we only provide a sketchy introduction to DTMCs and CTMCs and to the

52 C. Ghezzi and A.M. Sharifloo

languages (PCTL, CSL) in which properties may be expressed and analyzed. The
reader may refer to [10] for details.

A Markov Chain can be viewed as a state machine, where transitions are
annotated. Annotations are probabilities for DTMCs and rates for CTMCs. For
example, the DTMC in Fig. 3 describes a system where in the initial states two
actions may be chosen (A, with probability 0.7 and B, with probability 0.3).
Execution of A may then succeed with probability 0.9 – leading to state C – or fail
–leading to state D. Similarly, B may succeed with probability 0.99 or fail with
probability 0.01. CTMCs label transitions with real numbers, representing rates
instead of probabilities. DTMCs with reward instead label transitions with real
numbers representing costs.

Fig. 3 Sample DTMC model

As for the property languages – PCTL, CSL, and cost/reward formulae – they
all belong to the family of temporal logic languages. For example, in PCTL we
can express a property concerning the reachability of a failure (or success) state.
Similarly, in CSL we can express properties on the response time distribution of a
certain transaction. Examples will be given later in the paper.

Annotated SDs are the main notations we use to formally describe system
models that allow us to reason on requirements specification during design. As
mentioned before, each message of the diagram is annotated with reliability,
performance, and cost parameters. These values are elicited by consulting domain
experts or simply based on previous experience with similar systems. Moreover,
each combined fragment (except for Parallel) is annotated with execution
probabilities.

3 From Sequence Diagrams to Markov Models

According to the semantics of SDs outlined in Section 2, each lifeline can be
represented by a state machine. The overall state machine that represents the entire
state machine can be obtained by performing a parallel composition of the state
machines representing the different lifelines, under the constraints imposed by the
messages exchanged between them. If we also consider the annotations on the
transitions, the resulting state machines can be either DTMCs or CTMCs
depending on the type of annotations we consider. The model transformations
from SDs to DTMCs and to CTMCs, discussed in this section, are exactly based
on these semantic foundations. For example, Fig. 4(a) shows the state machine for
each lifeline of the SD in Fig. 2(a), while Fig. 4(b) illustrates the corresponding

Quantitative Verification of Non-functional Requirements with Uncertainty 53

A B

Fig. 4 (a) The state machines for the lifelines in Fig. 2(a) - (b) The corresponding DTMC
for the SD in Fig. 2(a)

Pseudo-code 1. Retrieving performable actions

54 C. Ghezzi and A.M. Sharifloo

DTMC constructed through composition of the state machines. Note that S stands
for Send, R stands for Receive, and SM for Self-Message. Unlike Send and Self-
Message, Receive has a condition to make sure that the message is sent before. Let
us consider the lifeline A. As shown in Fig. 4(a), the lifeline A has three states and
two transitions. The first transition says that message 1 is sent. The second
transition expresses that the message 4 is received only if the lifeline B is in the
state 5, 6 or 7, which are possible states after having the message 4 sent. Also note
that the state machine for lifeline B has a branch, which represents the fact the
completion of sending the message 3 may occur either before or after the
completion of sending of the message 4. The two branches describe exactly these
two possibilities. The state machines of the other lifelines can be explained in the
same manner. Although the semantics behind the transformation can be seen as
composition of state machines, we do not create any state machine in the
transformation. Instead, we directly transform SDs into Markov models. The
remainder of the section describes the transformation in details.

Regardless of the transformation, first we need to find the order in which
actions are performed (which in our case corresponds to finding the order in which
messages are transmitted) by iteratively performing a search in the diagram to find
performable actions. We start in an initial state in which lifelines are initiated, and
then we find performable actions (self-message or message) and transform them
into transitions of target Markov models.

Pseudo-code 1 illustrates the algorithm to extract performable actions. For
simplicity, let us assume that the SD does not include any combined fragment. To
find the actions, the method goes through each lifeline and checks the upcoming
actions that the lifeline is supposed to perform. If the action is a self-message, it is
performable without any condition. In case it is a receive action, it is necessary to
check whether the sender lifeline has transmitted the message. If it has done so,
receiving is performed and also the next action is checked. If action is sending a
message, the type of message is considered. If it is synchronous, it is added as a
performable action. If it is asynchronous, not only it is added to the list of
performable actions, but also the next performable action is sought. The reason is
that sending an asynchronous message does not block a lifeline, so it can continue
immediately with the next action.

3.1 Transforming SDs into DTMCs

An SD is transformed into a DTMC to analyze satisfaction of reliability
requirements. The actions on the source SD are annotated with their success
probability P (1-P is the probability of failure). Pseudo-code 2 describes how to
map an SD onto DTMC. The method Transform invokes the method
RetrievePerformableAction (discussed earlier) to extract actions given the
execution locations of each lifeline. Each action is transformed into two transitions
in the DTMC, representing success and failure. If an action is performed correctly,
the corresponding lifeline in the SD moves to the next action and a success
transition is added to the DTMC. Otherwise, the receiver lifeline involved in the
action fails and a failure transition is added to the DTMC (Fig. 5(a)). In

Quantitative Verification of Non-functional Requirements with Uncertainty 55

a

b

Fig. 5 Transformation rules for DTMCs

pseudo-code 2, the methods Create-Success and Create-Failure are responsible for
adding these transitions to DTMC.

After performing any action, the DTMC transitions from the current state to a
new state. If there is more than one performable action, we add new transitions to
represent the interleaving. For instance, Fig. 5(b) shows that N transitions are
added to the DTMC. Each of these transitions assumes that one particular action is
performed before the others. The probability of each transition equals 1/N, N
being the number of performable actions. Fig. 4(b) presents the DTMC for the SD
of Fig. 2(a).

For space reasons, we explicitly omitted the treatment of combined fragments
Option, Alternative, Loop, and Parallel in the SD to DTMC translation. Their
treatment, however, is rather straight-forward and does not introduce new
conceptual problems.

3.2 Transforming SDs into CTMCs

An SD is transformed into a CTMC to verify performance requirements. As for
translation into DTMC, we start with an initial state, find performable actions, and
then transform them into states and transitions of a CTMC. The main difference
here is that transitions of a CTMC are labelled with rates instead of probabilities.
We again refer to the method RetrievePerformableActions to find actions, but the
rest of the transformation is different. Each action is mapped onto a transition with
the corresponding performance rate. Fig. 6(a) shows the corresponding CTMC for
the SD in Fig. 2(a). After performing any action, CTMC transitions to a new state.
Similarly to DTMC, if more than one performable action can be chosen, we
explore all the interleavings, but we do not need to add new transitions.

In the case of an Option (Fig. 2(c)) (with a probability associated with the
branch), we use a suitable rule to combine the probabilities and the rates of
transitions. The rule is that both the first action inside the Option (message 2) and
the first action after the Option (message 4) are performable. Thus when an Option
is reached, two different traces may be executed. To map onto CTMC, we go back
to the last transition visited (with rate ’r1’ in the Fig. 6(b)) and divide it into two
transitions with different rates. The first transition has rate (r1*opt), where r1
stands for the action rate of message 1 and opt is the probability that the option

56 C. Ghezzi and A.M. Sharifloo

Psuedo-code 2. The basic algorithm to transform SDs into DTMCs

evaluates to true. The second has a rate equal to r1*(1-opt), which corresponds to
the path when Option is not executed. Fig. 6(b) shows the output CTMC for the
SD in Fig. 2(c).

The transformation of a Loop is similar to an Option with the difference that
when the last action of Loop is performed the condition of the loop shall be again
checked. If it evaluates to true, the first action of the loop is performed (message
2). Otherwise, the first action after Loop is performed (message 4). Therefore,
both the first action of Loop and the first action after Loop are added as
performable actions. Fig. 6(d) illustrates the CTMC for the SD with Loop (Fig.
2(d)). Alternative fragment is also treated similarly to Option. The difference is
that when the first action of the first operand (message 2) is extracted, the first
actions of the other operands (message 3) are added as performable actions
(Fig. 6(c) shows the output CTMC). Unlike the other combined fragments, the

Quantitative Verification of Non-functional Requirements with Uncertainty 57

Parallel structure is simply transformed by using interleaving techniques. In fact,
when the first action of the first operand is extracted, the first actions of the other
operands are extracted and added as performable actions (Fig. 6(e)).

(a) Basic (b) Option (c) Alternative (d) Loop (e) Parallel

Fig. 6 The resultant CTMCs for the SDs shown in Fig. 2

3.3 Transforming SDs into Reward DTMCs

An SD is transformed into a Reward DTMC to verify cost properties specified in
cost/reward logic. This transformation works similarly to the transformation we
described for DTMC except that a cost value is attached to each transition that
corresponds to a message.

4 The Framework at Work

Hereafter we describe how our approach can be applied on a running example of a
health-care service provided for people suffering from life-threatening illnesses.
Because of their physical problems, patients should be in touch with medical
centers, and be able to get continuous assistance. To use the service, each person
is required to carry a small device which includes some sensors and is capable to
monitor and store vital data. Whenever a person needs a medical help, he or she
pushes the Help button on the device. The device automatically sends the vital
data and the position of the person to the health care center. To detect the position,
the device finds and uses one of available positioning services provided by an
external device (GPS or GSM), and searches for a communication network to
transmit data to the center. After the center receives a help request, it requests the
laboratory for medical analysis and problem diagnosis. Based on the result and
the severity of the problem, the center decides how to help the person. In the end,
the center performs two actions concurrently: It informs the emergency team and
also notifies the patient. Fig. 7 shows the SD diagram of the above scenario. The

58 C. Ghezzi and A.M. Sharifloo

Fig. 7 The SD for the case study1

diagram is annotated with reliability, performance, and cost assumptions. As for
cost, we consider energy consumption by the application.

Let us consider the following informal performance requirement for the
running example: the emergency team shall be informed within 40 seconds after
the button is pushed. The requirement can be rephrased in Structured English
using ProProST as follows:

The system shall have a behavior where with a probability greater or equal
0.90 it is the case that (EmergencyTeam = Informed) will eventually hold within
40 seconds. From this property formulation in Structured English, we can
automatically derive corresponding CSL property:

P ≥ 0.90 true()∪ ≤ 40 state =18 | state = 23()[]

(1)

1 For readability reasons we did not include in the annotations the probabilities associated

with Loop and Alternative. However, we assume the probability of iterating is 0.66 and
the probability of THEN branch of Alternative is 0.7.

Quantitative Verification of Non-functional Requirements with Uncertainty 59

This CSL formula is verified against the CTMC (Fig. 8(a)), which is derived from the
SD in Fig. 7. Using the PRISM model checker, we can verify the property. Actually
PRISM tells us that the estimated probability for this property is 0.96, so the
performance requirement is successfully satisfied. Regarding the CSL formula, note
that the states 18 and 23 are the states exactly after the occurrence of the message 17,
when the emergency team is informed. The reason that there are two states in the CSL
formula is due to the interleaving of the messages 17 and 19. In other words, the
message 17 can be transmitted either before or after the message 19. Let us now
consider the following reliability requirement, expressed in ProProST:

The system shall have a behavior where with a probability greater or equal 0.97
it is the case that ((Person = Notified and HealthCenter = InformedByTeam) will
eventually hold. The corresponding PCTL formula is:

P ≥ 0.97 F state = 25 | state = 31 | state = 32()[] (2)

The PCTL formula is verified against the DTMC in Fig. 8(b), which is derived
from the SD in Fig. 7. Note that because of the complexity of the DTMC, we did
not include failure transitions and states. The only failure shown is for message 1.
Given the DTMC, PRISM tells us that the property is evaluated with probability
0.94. The requirement says that the probability must be above 0.97, so it is
violated. Note that states 25, 31, and 32 are the states exactly after having the
messages 18 and 19 transmitted.

Let us now consider a requirement expressed as a cost property about energy.
According to the requirement, the total amount of the energy needed for the
scenario shall be less or equal 200. This may be expressed in our extension of
ProProST as:

(a) CTMC (b) DTMC

Fig. 8 The output of the transformation

60 C. Ghezzi and A.M. Sharifloo

The system shall have a behavior where with a cost less or equal 200 it is the
case that (Person = Notified and HealthCenter = InformedByTeam) will
eventually hold. In turn, this is translated into cost/reward logic as:

R ≤ 200 F state = 25 | state = 31 | state = 32()[] (3)

Note that the states 25, 31 and 32 are the states in which the patient is notified
after receiving the message 19 from Health Center and also Health Center has
received the message 18 from Emergency Team. The result of verification is about
180, which properly satisfies the property.

5 Related Work

Several approaches exist to transform UML diagrams into other formalism and
then take advantage of existing tools for such formalism. For example, in [17] and
[11] UML diagrams are mapped onto stochastic Petri Nets and then tools like SPE
[11] or TimeNET [14] are used for performance evaluation. In [9], the authors
discuss performance analysis of an activity diagram decorated with time
constraints through probabilistic model checking. In fact, they transform a
diagram into a DTMC (in terms of Prism language) and then verify their discrete-
time properties. To perform performance analysis, [15-16] transform UML
activity and sequence diagrams into the PEPA performance language. In [1], the
authors give general guidelines to make a Markov chain from a given SD diagram.
However, they never discuss how to use the generated models for performance
analysis. Cheung et al [5] propose a framework to assess reliability of a
component-based architecture. The main idea of the framework is to specify state-
based behavior of components and to generate a Markov chain to assess the
reliability. In [6], the authors take SD diagrams and deployment diagrams, and
formulate a reliability model using a mathematical equation, by which the
reliability of the system is calculated. Moreover, some intermediate languages
CSM [18], Klaper [7], and Palladio [4] have been proposed to provide the bridges
between generic high-level models like UML and analyzable low-level models
like Queuing Networks and Markov chains. They essentially propose meta-
models, which abstract away irrelevant data with respect to performance and
reliability. To best of our knowledge, our framework is the only work that starts
with both system models and requirements and ends up with probabilistic models.
We cover three major non-functional requirements (performance, reliability and
cost) in the framework and provide logic and analyzable formalism and tools for
all of them.

6 Conclusions and Future Work

In this paper, a model-based framework has been proposed by which non-
functional requirements can be analyzed with respect to system models developed
at an early stage of development. The core part of the framework includes

Quantitative Verification of Non-functional Requirements with Uncertainty 61

different model-to-model transformations from SDs to Markov models, each of
which is used to analyze a particular non-functional requirement. U-MarMo is
under implementation, and at this time the mapping from UML SDs to DTMC is
complete. As future work, we plan to move the framework and use it for run-time
adaptation. Also, we are considering non-determinism as another way to express
uncertainty. To support non-determinism, we consider using Markov Decision
Processes.

Acknowledgements. This research has been partially funded by the European Commission,
Programme IDEAS-ERC, Project 227977-SMScom.

References

[1] Abdullatif, A.A., Pooley, R.: A computer assisted state marking method for extracting
performance models from design models. IJSSST (8), 36–46 (2008)

[2] Alur, R., Yannakakis, M.: Model checking of message sequence charts. In:
Proceedings of the 10th International Conference on Concurrency Theory,
pp. 114–129 (1999)

[3] Ardagna, D., Ghezzi, C., Mirandola, R.: Rethinking the use of models in software
architecture. In: QoSA, pp. 1–27 (2008)

[4] Becker, S., Koziolek, H., Reussner, R.: The palladio component model for model-
driven performance prediction. J. Syst. Softw. 82(1), 3–22 (2009)

[5] Cheung, L., Roshandel, R., Medvidovic, N., Golubchik, L.: Early prediction of
software component reliability. In: ICSE, pp. 111–120 (2008)

[6] Cortellessa, V., Singh, H., Cukic, B.: Early reliability assessment of uml based
software models. In: WOSP, pp. 302–309 (2002)

[7] Grassi, V., Mirandola, R., Randazzo, E., Sabetta, A.: Klaper: An intermediate
language for model-driven predictive analysis of performance and reliability. In:
CoCoME, pp. 327–356 (2007)

[8] Grunske, L.: pecification patterns for probabilistic quality properties. In: ICSE,
pp. 31–40 (2008)

[9] Jarraya, Y., Soeanu, A., Debbabi, M., Hassaine, F.: Automatic verification and
performance analysis of time-constrained sysml activity diagrams. In: ECBS,
pp. 515–522 (2007)

[10] Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Formal
Methods for the Design of Computer, Communication and Software Systems:
Performance Evaluation, pp. 220–270 (2007)

[11] Merseguer, J., Campos, J.: Software performance modeling using uml and petri nets.
In: MASCOTS Tutorials, pp. 265–289 (2003)

[12] MARTE Specification, http://www.omgmarte.org/
[13] PRISM Probabilistic Model Checker,

http://www.prismmodelchecker.org/
[14] TimeNET Tool, http://www.tu-ilmenau.de/fakia/8086.html/
[15] Tribastone, M., Gilmore, S.: Automatic extraction of pepa performance models from

uml activity diagrams annotated with the marte profile. In: WOSP, pp. 67–78 (2008)
[16] Tribastone, M., Gilmore, S.: Automatic translation of uml sequence diagrams into

pepa models. In: QEST, pp. 205–214 (2008)

62 C. Ghezzi and A.M. Sharifloo

[17] Trowitzsch, J., Zimmermann, A., Hommel, G.: Towards quantitative analysis of real-
time uml using stochastic petri nets. In: IODPS, pp. 139b (2005)

[18] Woodside, M., Petriu, D.C., Shen, H., Israr, T., Merseguer, J.: Performance by unified
model analysis (puma). In: WOSP, pp. 1–12 (2005)

[19] Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: ICSE, pp. 411–420 (1999)

[20] UML 2.0, http://www.uml.org/

W. Zamojski et al. (Eds.): Dependable Computer Systems, AISC 97, pp. 63–74.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Testing Fault Susceptibility of a Satellite
Power Controller

Marcin Iwiński1 and Janusz Sosnowski2

1 Institute of Computer Science, Warsaw University of Technology,
ul. Nowowiejska 15/19, Warsaw 00-665, Poland
e-mail: M.Iwiński@ii.pw.edu.pl

2 Institute of Computer Science, Warsaw University of Technology,
ul. Nowowiejska 15/19, Warsaw 00-665, Poland
e-mail: J.Sosnowski@ii.pw.edu.pl

Abstract. The paper presents some experience with developing a satellite power
controller. Due to high probability of transient faults (in particular caused by cos-
mic radiation) we had to check their impact on the controller operation. For this
purpose we have developed a special test bed. It comprises some universal fault
simulator (FITS), a software model of the controller and its environment. Simula-
tion results show relatively high fault robustness. We also outline some further
improvements of the controller code.

1 Introduction

In many applications microcontroller circuits with high dependability require-
ments are needed. Moreover they usually operate in harsh environment e.g. indus-
trial, automotive, avionic, cosmic applications. Designing such systems we have to
evaluate their fault susceptibility (dependability). For this purpose various fault in-
jection techniques have been developed and described in the literature [1,2,4,5,7],
including those developed in our Institute [7,8]. They provide a capability to simu-
late faults in the analysed system (or its model) and observe their effects in
comparison with non –faulty behaviour (golden-run). Such experiments allow
identification of critical points to mitigate fault effects with special techniques.
This approach has been widely used in calculation oriented applications ([1,7,14]
and references therein). Real time reactive applications (typical for microcontrol-
lers) create more problems due to the need of considering system environment
(e.g. the controlled object and its reaction to the controller signals) and more com-
plex fault effect evaluation [4,10,12,21].

To deal with real-time applications we have developed an original fault
injection methodology based on the fault injector FITS [6-9] enhanced with an
interface to the model of the environment (control object) and special evaluation
module which qualifies test results. These additional modules are application de-
pendent however they use the provided interface to FITS. Hence an important is-
sue is to gain more experience with various real-time systems, especially within

64 M. Iwiński and J. Sosnowski

the above mentioned extensions of FITS. Some experiment results with industrial
and automotive controllers have been described in [5,8,17-19]. This paper deals
with a special satellite controller responsible for powering the satellite on-board
electronics. The software of this controller has been adapted to PC environment in
order to check its fault susceptibility with FITS simulator.

The prototype of the controller has been developed for a student satellite mis-
sion. It was implemented around COTS (commercial of the shelf) circuits (includ-
ing Atmel microcontroller) . On–board equipment of satellites is exposed to cos-
mic radiation, which can result in single event upsets (SEUs) or latch-ups. These
effects can disturb normal operation or even cause damages. The impact of cosmic
radiation on electronic equipment has been studied in many publications (e.g.
[3,11,16] and references). To reduce this impact we can use expensive radiation
hardened circuitry or standard COTS elements supported with special fault effect
mitigation techniques implemented in software. This approach is becoming more
attractive in recent cosmic technology [3], however it needs deeper analysis of
possible fault effects, for this purpose we can use fault injection techniques.

Section 2 descries the controller functionality, the developed testbed and ex-
periment scenarios are presented in section 3. Experimental results based on simu-
lation are illustrated in section 4 and concluded in section 5.

2 Satellite Power Controller

The main purpose of the satellite power supply unit (PSU) is to provide power to
all other satellite subsystems. The electric power is produced by solar cells; during
satellite flight the solar cells are susceptible to varying sun illumination which re-
sults in significant power fluctuation. To assure smooth powering the excess of the
energy is stored in Li-Ion battery to maintain continuous operation during shad-
owed part of the orbit. To optimise the energy balance PSU uses a special control
algorithm MPTT described in the sequel. Moreover the PSU performs some other
supplementary functions:

• Providing overcurrent protection function for satellite subsystems (in-
cluding latch-up elimination)
• Providing basic telecommands and telemetry
• Turning on and off other subsystems on demand (e.g. satellite payload)
• Collecting statistic data on various events or faults
• Autodiagnostics of PSU

The PSU software is organized as a control loop (with 10 ms period) performing
MPPT calculations to deliver control signal PWM, monitoring currents and volt-
ages, detecting latch-ups. Moreover it handles interrupts related to interfaces and
watchdog timer. Events (compare fig. 1).

Testing Fault Susceptibility of a Satellite Power Controller 65

The PSU module has been implemented using ATmega1280 microcontroller. It
is based on 8-bit AVR RISC architecture [22]. Microcontroller operates at 8 MHz
clock and 3V power supply, which is best compromise between processing power
and current consumption. It comprises CPU, on chip RAM (8kB), FLASH
(128kB) some peripherals/(ADC converters) and interfaces used to monitor and
control other functional blocks (shown in fig. 1). In particular this includes 3 pairs
of solar cells (each pair relates to two parallel sides of the satellite cubic module),
3 DC/DC converters responsible for charging the battery from solar cells, 2 tem-
perature sensors (digital thermometers with 1-wire interface - measuring the tem-
perature of the battery and PSU circuit board), and 2 additional modules related to
so called payload (PLD1 and PLD2). PSU uses UART and redundant SPI inter-
faces to exchange messages with satellite Communication Subsystem (COM) and
its On-Board Computer (OBC). PSU has also outputs controlling P-MOSFET
switches, which can be used to turn on or off all the subsystems, when latch-up
occurs or appropriate command from Earth arrives through COM subsystem The
DC/DC converters are controlled with PWM signals defining their duty cycles.
Solar cells are connected in pairs separated by Shottky diodes and placed on oppo-
site sides of the satellite. Hence only one solar cell within the pair is exposed to
direct sunlight, so we need to use only 3 PWM channels and DC/DC converters
instead of 6. All PSU inputs and outputs are shown on the edges of the graph in
Fig 1. Most of microcontroller inputs are analogue inputs, which are responsible
for measuring voltages and currents. PSU can also measure its own current using
sense resistor and cut it off in case of latch up event. In this case the power resto-
ration is delayed by about 500ms.

Fig. 1 PSU microcontroller inputs and outputs

66 M. Iwiński and J. Sosnowski

Due to various light and temperature conditions solar cell current-voltage char-
acteristics continuously change during satellite flight. Typical characteristics are
shown on Fig. 2. Change of light intensity results in variation of maximum possi-
ble current which can be drawn from solar cell, while temperature influences max-
imum output voltage of the cell. The characteristic describing the solar cell output
power in function of its voltage is also given in fig. 2. An important issue is to op-
erate in the area of maximal output power.

Fig. 2 Solar cell characteristics for two levels of light intensity IN1 > IN2 and temperature
T1 < T2

To maintain maximum output power of the solar cells we have to use a special
algorithm (MPPT - Maximum Power Point Tracking) to control DC/DC convert-
ers. This algorithm matches dynamic resistance on satellite power input with cur-
rent solar panel characteristic to ensure that solar cell produce maximum available
power. This is achieved with special DC-DC step-down switching regulators
which present to the solar cells a load resistance dependent on controlling signal
PWM. The microcontroller uses ADC channels to measure solar cells current and
voltage, and then using implemented MPPT algorithm calculates PWM signal
which determines the duty cycle for DC-DC converters.

Some MPPT algorithms are described in literature [13], and we have selected
P&O (Perturb & Observe) version for the developed PSU. This algorithm provides
good performance and uses only basic ALU operations: addition, subtraction and
multiplication on integer values. More complicated MPPT-INC algorithm is 3%
percent more accurate [15], but it requires integer division, which is only sup-
ported on 8-bit AVR architecture by software.

In the PSU the MPPT-P&O algorithm is executed every 10ms with new
measured voltage and current values in appropriate points of the system. PWM
control signal typically ranges from 0 to 80. This assures satisfactory control reso-
lution and power tracking speed during satellite rotations (up to few rotations per
minute).

Testing Fault Susceptibility of a Satellite Power Controller 67

3 Fault Injection Testbed

Fault injection experiments are based on FITS [8] injector, which has been devel-
oped in our Institute as a versatile fault injecting tool for Intel x86 platform. It
provides an environment which works similarly to software debugger. FITS uses
Windows Debugging API to control the execution of the application under tests
(AUT). It can suspend/resume the AUT’s threads, read/write AUT’s memory (da-
ta, stack or code), CPU/FPU registers states, etc. FITS can emulate the faults of
different types e.g. stuck-at or bit-flips by disturbing registers, memory cells etc.
However, here we concentrate on single bit-flip faults which mimic Single Event
Upsets (SEUs) [1,3,7].

Fault injection experiments usually involve many tests. Each test is a single ex-
ecution of the AUT with the disturbance of a given type (injected fault). During
the test FITS suspends the AUT at some time instant of its execution (fault trigger-
ing moment), injects the fault into a specified location (e.g. modifying CPU regis-
ter, memory data or code area) and monitors fault effects after AUT resumes the
execution. Fault effect analysis is based on the comparison of the registered AUT
behaviour (generated exceptions, messages, timeouts, control signals, etc.) with
the non-faulty reference run image (called golden run). In general, four classes of
test results are distinguished: C (correct results produced), INC (incor-
rect/unacceptable results), S (test terminated by the system due to un-handled ex-
ception, e.g. memory access violation, invalid opcode), and T (timed-out test).
Moreover, user defined messages (U) generated by AUT can also be included (e.g.
related to detection of a specific error). Experiment configuration involves specifi-
cation of the number of faults, their types, fault triggering and fault location sce-
narios. In most cases we use pseudorandom distribution of faults in time and space
(location).

Checking fault susceptibility of reactive systems we have to provide not only
the controlling application (AUT) but also its environment (controlled object).
Here we present the results of testing only MPPT-P&O algorithm of the satellite
controller. The controller environment is restricted to models of the solar cells
and battery charging circuitry (DC/DC converters), they take into account chang-
ing external conditions (temperature, illumination, current load). Moreover
defining test scenarios we have prepared various input data, which can represent
changing environment parameters like light intensity, temperature or variable
power load consistent with real operational conditions. AUT and its environment
model have been integrated with FITS injector within a single IBM PC platform.
However, faults can be injected only within the AUT. Executing each test FITS
performs result qualification and provides us not only with individual test results
but also with aggregated results for all tests within experiment (typically many
hundreds of faults). To assure more accurate result qualification we have devel-
oped special module (coupled to FITS) in which we can define test result qualifi-
cation conditions.

The performed experiments have been targeted at transient faults (bit flips), due
to high probability of SEUs in the on-board electronic equipment of the orbiting
satellite. We have considered two classes of transient faults: latched (bit flips in

68 M. Iwiński and J. Sosnowski

memory cells, registers) and non-latched (temporary state changes). The non-
latched transient faults simulate disturbances on bus, instruction register, and
internal data paths. In particular they are especially interesting as program code
disturbance, which can be related to controllers with programs stored in flash
memories. State disturbance of this memory is of low probability, however tempo-
rary code disturbance (e.g. on the bus) during instruction fetching process is worth
considering.

In the paper we present experiment results related to the most complex and im-
portant part of PSU controller i.e. MPPT-P&O algorithm. In particular we ana-
lyze the fault impact on the amount of power lost as compared with the golden
run result. For this purpose we have developed a solar cell model described by the
following equations:

()⎪
⎪
⎩

⎪⎪
⎨

⎧

+>+−−−=

+≤⎟
⎠
⎞

⎜
⎝
⎛ +−−=

bUabUaI

bU
b

UaI

5,35,3

5,31
40400

35

40

1

2

 (1)

⎟
⎠
⎞

⎜
⎝
⎛ +=

PWMR
UI

41

 (2)

where: I - cell current [A], U - cell voltage[V], a - light intensity factor [0.0-1.0], b
- temperature factor [-0.5,0.5], R - parallel resistance modeling solar cell load
generated by PSU and other subsystems, PWM - PWM value generated by
MPPT.

Equations 1 describe current dependence on voltage for given a,b values. The
first part of the characteristic can be described as linear, while the second is gener-
ated by quadric equation. Equation 2 represents a dynamic resistance, which is the
result of given PWM value. Solving Equation 1 with Equation 2 gives us voltage
and current values defined by specified parameters a, b, R and PWM. For ex-
perimental simulations we have to provide a,b,R values for each iteration of the
MPPT-P&O algorithm for each DC/DC channel. They relate to some considered
scenario of temperature, illumination and load changes during satellite orbiting
(operational environment). It is worth mentioning that parameter a (light intensity)
can change relatively fast comparing to b (cell temperature). However R parame-
ter remains usually constant for most of the experiment time changing only few
times by a large step.

The tested algorithm has been implemented in version MPPT-P&O described
in [13] and adapted to x86 platform with some small modification - optional re-
striction for minimal or maximal PWM value, to keep it in the allowed range. The
algorithm uses as inputs appropriate voltage and current values delivered by the
environment model and produces PWM signal as an output (controlling DC/DC
converters - included in the environment model). The behavioral model of these
converters is relatively simple: linear increase of input load (1/R) with PWM
in the range [0, 80], for PWM > 80 the load visible by the solar cell pair is still

Testing Fault Susceptibility of a Satellite Power Controller 69

constant. The recent current and voltage signals provided by the environment
model are stored in local variables used by the algorithm.

The block diagram of the test bed is given in fig. 3. The tested application
(AUT) is coupled to the environment model which describes the behavior of solar
cells (signals I(t), U(t)) in function of the PSU control signal PWM(t) and current
load R(t) for every iteration t of the implemented algorithm (AUT). The experi-
ment conditions are specified by the number of iterations (N) and tables compris-
ing parameters a(t), b(t) and R(t) for each solar cell channel. FITS simulator in-
jects faults into AUT according to the specified experiment configuration (number
and types of injected faults, fault localization and distribution). Moreover, it col-
lects results of each test (single fault injection) and produces the experiment statis-
tics (over all performed tests). The qualification of the correct (C) and incorrect
(INC) test results is performed by RQ module. This module monitors the behavior
of environment (I(t), U(t)) and PSU (PWM(t)) in comparison with reference gol-
den run parameters provided by golden run (GR) module. The test is considered as
correct if the power (P(t) = I(t)*U(t)) deviates from the reference level less than a
specified threshold - ∆P percent. To have a better insight into fault effects we can
specify this condition as related to temporary power deviation (within one algo-
rithm iteration) or as an average deviation within the whole test run (N iterations).
It is also possible to register power characteristics in time for selected faults. This
helps better fault interpretation.

AUTFITS

START

Faults

Golden Run
(GR)

Result
Qualification

(RQ)

Timeouts,
 exceptions

Run

Faultless Results

Sollar cell models,
DC-DC channels

a(t),b(t),R(t)

PWM(t)

I(t)

U(t)

a,b,R
parameter

table

Result
Qualification

settings

U(t),I(t)

U(t),I(t)

Fig. 3 Experiment testbed

4 Experimental Results

In the performed experiments we have injected bit flip faults in CPU registers, da-
ta and program code areas. Simulating faults in the program code two cases have
been considered: latched (the program code is disturbed by a bit flip) and non-
latched faults (the code is disturbed by a bit flip, but after executing the disturbed

70 M. Iwiński and J. Sosnowski

code it is recovered to the correct state). The latched faults are typical for micro-
controllers fetching program code from RAM or cache memories. The non-latched
faults relate to the case of codes fetched directly from flash memory (the fault
models here disturbances on the bus or instruction register - the state of flash is
assumed to be robust).

In tab. 1 and 2 we give a sample of results of fault injections into the program
code (latched and non-latched respectively). These results relate to 11 different
configurations of experiments (the first column). For each experiment N=500
faults have been injected randomly (in time and space). The basic experiments
deal with a single DC/DC channel and assume PWM signal bounding in the range
[0, 80]. Experiments marked with asterix (*) take into account two independent
DC-DC channels, which shared only algorithm code and static data. Experiments
with id in underlined bold (6, 7) relate to the algorithm with no bounds on PWM
signal. The column ΔP specifies the assumed maximal percentage of power losses
to qualify the tests as correct. Here we also distinguish result qualification based
on temporary or averaged (underlined bold) power losses (compare section 3).

Table 1 Experimental results for non-latched faults (in program code)

Experiment
number

ΔP [%]
Result

correct (%)
Result

incorrect (%)
Terminated
by OS (%)

1 10% 47,80 9,20 43,00
2 30% 44,40 9,80 45,80
3 0,1% 42,20 10,80 47,00
4 1% 45,20 8,60 46,20
5 5% 53,80 0,40 45,80
6 1% 48,80 0,60 50,60
7 0,1% 46,00 5,40 48,60
8* 10% 45,40 11,00 43,60
9* 1% 50,40 4,60 45,00
10* 5% 55,40 0,20 44,40
11* 1% 56,80 2,20 41,00

All experiments covered 500 iterations of the control algorithm. The environ-

ment has been defined by a table comprising 500 rows with specified a, b and R
parameters (for each iteration). Experiments with 2 DC/DC channels needed two
sets of such tables. Parameter a (related to light intensity) may change signifi-
cantly during satellite mission, so we model a few changes of this parameter dur-
ing the whole simulation time (500 iterations) from an almost minimal to almost
maximal values. Parameter b (related to temperature factor) changes its value
slowly due to quite large thermal capacity of the satellite. So we simulate slow
changes in the range of 10% of the initial value. Defining parameter R we have as-
sumed one additional load (e.g. related to switching in the communication mod-
ule) for 50 iterations in the middle of the simulation time.

Testing Fault Susceptibility of a Satellite Power Controller 71

Table 2 Experimental results for latched faults (in program code).

Experiment
number

ΔP [%]
Result

correct (%)
Result

incorrect (%)
Terminated
by OS (%)

1 10% 18,40 38,80 42,80
2 30% 21,80 30,60 47,60
3 0,1% 14,80 37,80 47,40
4 1% 16,20 40,00 43,40
5 5% 24,40 24,00 51,00
6 1% 22,40 29,20 48,40
7 0,1% 16,80 32,60 50,60
8* 10% 11,60 39,00 48,40
9* 1% 18,20 35,40 45,20
10* 5% 26,40 28,00 45,20
11* 1% 29,80 23,80 45,20

Comparing results of tab. 1 and 2 we observe much lower percentage of incor-

rect results for non-latched faults than for latched ones. This confirms that flash
memory used for the program code improved system robustness significantly as
compare with RAM or cache. Injecting bit flips into CPU registers we observed
typically 1-4.2% of incorrect results and 36-43% system exceptions. Faults in data
area resulted in 0-2.7% of incorrect results and no exceptions (so 97-100% results
were correct). Timeouts contributed less than 1.6% in the case of faults in code,
for other fault locations it was practically close to 0. Relatively high fault robust-
ness for register and data memory cell faults results from the iterative nature of the
algorithm and some kind of self-repair in calculations. Faults resulting in excep-
tions can be easily handled by starting the algorithm in a predefined state. It is
worth noting that increasing the acceptable power loss level (ΔP) we get higher
percentage of correct results.

The presented test platform provides also possibility to record PWM value be-
haviour for every single test. From thousands of test runs we have chosen two in-
teresting simulation plots. Figure 4 represents PWM value during one of test runs
in function of the iteration number (equivalent to time). Black line represents
PWM value during fault injection run, while the grey one is faultless run. Most of
the time black line covers the grey one. In iteration 141 a non-latched fault in the
instruction code has been injected. The fault caused corruption of a compare in-
struction responsible for keeping PWM value in desired range. PWM value was
changed to zero due to faulty behaviour of this mechanism. In the subsequent it-
erations MPPT-P&O algorithm tried to recover from this state and finally it suc-
ceeded. The plot representing the provided power is similar, which means that a
few percents of possible power were lost due to this fault.

Figure 5 presents result of latched fault injection into instruction code. Con-
trasting to figure 4, this time PWM value continued to increase as a result of fault.
The MPPT-P&O algorithm could not recover itself from this state causing signifi-
cant power loss starting at the time of fault injection (iteration 379). We investi-
gated what exactly happened resulting in so unpredictable behaviour of the tested

72 M. Iwiński and J. Sosnowski

Fig. 4 PWM disturbance with a non-latched fault

Fig. 5 PWM disturbance with a latched fault

algorithm. The reason was a disturbance of a compare instruction, causing its con-
dition to be always true. This resulted in steady PWM value increase in following
iterations.

Fault robustness can be improved with various software mechanisms e.g. based
on control flow checking, data redundancy, reinitilization of variables or opera-
tional modes of interfaces, etc. [3,7,9,12,14,17-20]. Some of these approaches
have been also incorporated in the PSU, as well as some autodiagnostic programs.

Testing Fault Susceptibility of a Satellite Power Controller 73

5 Conclusion

The paper confirms that FITS simulator together with the controller and its envi-
ronment models assure high experiment controllability and observability Moreover,
the application dependent test qualification is an efficient approach to fault injection
experiments with reactive systems. An important issue is to assure some controlla-
bility in defining different classes of the system behavior (in our case the level of
power anomalies). Basing on FITS fault injector (targeted at Windows environment
and Intelx86 platform) we could only deal with an appropriate model of the control-
ler. Nevertheless it allows us to identify the algorithm sensitivity to faults and to find
the most critical points for improvement (the data and control flow of the controller
and its model are compatible). Recently we develop a dedicated fault injector tar-
geted at the Atmel platform, which will allow us to perform the experiments with
the real physical controller. Moreover, further research will deal with fault detection
and fault handling mechanisms (including autodiagnostics).

As compared with our previous experience with reactive system e.g. [6,18-20]
in the satellite controller we also observe quite high natural fault robustness higher
for higher level of accepted power deviation. Moreover, simple software mecha-
nisms are sufficient to assure relatively high dependability especially for the con-
troller with flash program memory.

We express our appreciation to P. Gawkowski for consulting the usage of FITS
simulator in the experiments.

References

[1] Arlat, et al.: Comparison of physical and software-implemented fault injection tech-
niques. IEEE Trans. on Computers 52(9), 1115–1133 (2003)

[2] Benso, A., Prinetto, P.: Fault Injection Techniques and Tools for Embedded Systems
Reliability Evaluation. Kluwer Academic Publishers, Boston (2003)

[3] Campagna, S., Violante, M.: A framework to support the design of COTS based reli-
able space computers for on-board data handling. In: Proc. of IEEE IOLTS Sympo-
sium, pp. 91–96 (2010)

[4] Cunha, J.C., et al.: A study of failure models in feedback control systems. In: Proc. In-
ternational Conference on Dependable Systems and Networks DSN 2001, Goteborg,
Sweden, pp. 314–326 (2001)

[5] Fidalgo, A.V., et al.: Real Time Fault Injection Using a Modified Debugging Infra-
structure. In: Proceedings of the 12th IEEE International Symposium on On-Line
Testing (2006)

[6] Gawkowski, P., et al.: Software implementation of explicit DMC algorithm with im-
proved dependability. In: Novel Algorithms and Techniques in Telecommunications
Automation and Industrial Electronics, pp. 214–219. Springer, Heidelberg (2008)

[7] Gawkowski, P., Sosnowski, J.: Dependability evaluation with fault injection experi-
ments. IEICE Transactions on Information & System E86-D, 2642–2649 (2003)

[8] Gawkowski, P., Sosnowski, J.: Experiences with software implemented fault injec-
tion. In: Proc. of the International Conference on Architecture of Computing Systems,
pp. 73–80. VDE Verlag, GMBH (2007)

74 M. Iwiński and J. Sosnowski

[9] Gawkowski, P., Grochowski, K., Ławryńczuk, M., Marusak, P., Sosnowski, J., Tat-
jewski, P.: Testing Fault Robustness of Model Predictive Control Algorithms. In:
Giese, H. (ed.) ISARCS 2010. LNCS, vol. 6150, pp. 109–124. Springer, Heidelberg
(2010)

[10] Kopetz, H.: Real-Time Systems - Design Principles for Distributed Embedded Appli-
cations. Kluwer Academic, Netherlands (1998)

[11] Lovelette, M.N., et al.: Strategies for Fault-Tolerant, Space-Based Computing: Les-
sons Learned from the ARGOS Testbed. In: Aerospace Conference Proceedings,
vol. 5, pp. 5-2109–5-2119 (2002)

[12] Muranho, J., et al.: Failure boundness in discrete applications. In: Proc. 3rd Latin-
American Symposium on Dependable Computing, Morella, Mexico, pp. 160–169
(2007)

[13] Omole, A.: Analysis, Modeling and Simulation of Optimal Power Tracking of Multi-
ple-Modules of Paralleled Solar Cell Systems. The Florida State University/College of
Engineering (2006)

[14] Rebaudengo, M., Reorda, M., Villante, M.: A new software based technique for low
cost fault tolerant application. In: Proc. of IEEE Annual Reliability and Maintainabil-
ity Symposium, pp. 23–28 (2003)

[15] Sera, D., Kerekes, T., Teodorescu, R., Blaabjerg, F.: Improved MPPT algorithms for
rapidly changing environmental conditions. In: 12th International Power Electronics
and Motion Control Conference, pp. 1614–1616 (2006)

[16] Shirvani, P.P., McCluskey, E.J.: Fault-Tolerant Systems in a Space Environment: The
CRC ARGOS Project, CRCTR 98-2. Stanford University, Stanford (December 1998)

[17] Skarin, D., Karlsson, J.: Software implemented detection and recovery of soft errors
in a break by wire system. In: Proc. of 7th European Dependable Computing Confer-
ence, pp. 145–154. IEEE Comp. Soc, Los Alamitos (2008)

[18] Trawczynski, D., Sosnowski, J., Gawkowski, P.: Analyzing Fault Susceptibility of
ABS Microcontroller. In: Harrison, M.D., Sujan, M.-A. (eds.) SAFECOMP 2008.
LNCS, vol. 5219, pp. 360–372. Springer, Heidelberg (2008)

[19] Trawczynski, D., Sosnowski, J., Gawkowski, P.: Testing Distributed ABS System
with Fault Injection. In: Proc. International Joint On-Line Conference on Computer,
Information, and System Sciences, and Engineering – CISSE 2009, On-line Conf.
(2009)

[20] Trawczynski, D., Sosnowski, J.: Delayed based SWIFI approach to ABS dependabil-
ity. In: Sugier., J., et al. (eds.) Technical Approach to Dependability, Oficyna Wy-
dawnicza Politechniki Wrocławskiej, Wrocław 2010, Poland, pp. 147–158 (2010),
ISBN 978-83-7493-528-9

[21] Vinter, J., et al.: Experimental dependability evaluation of a fail-bounded jet engine
control system for unmanned aerial vehicles. In: Proc. International Conference on
Dependable Systems and Networks DSN 2005, Yokohama, Japan, pp. 666–671
(2005)

[22] ATmega640/1280/1281/2560/2561 Preliminary, revision L, ATMEL Corporation
(2007), (updated September 2007)

W. Zamojski et al. (Eds.): Dependable Computer Systems, AISC 97, pp. 75 – 85.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Theoretical and Practical Aspects of Encrypted
Containers Detection - Digital Forensics Approach

Ireneusz Jozwiak1, Michal Kedziora2, and Aleksandra Melinska3

1 Wroclaw University of Technology, Wroclaw, Poland
2 Wroclaw University of Technology, Wroclaw

email: Michal.kedziora@pwr.wroc.pl
3 Wroclaw University of Technology, Wroclaw, Poland

Abstract. This paper covers problem of detecting encrypted files in evidence data
during digital forensics investigations. We present comparison of popular detec-
tion methods like file signature and extension analysis, metadata analysis and
searching operation system artifacts. We present research on theoretical and prac-
tical use of some indicators that can suggest encryption used like entropy,
chi-square test, Arithmetic Mean and Monte Carlo Value for Pi.

1 Introduction

This paper describes theoretical and practical aspects of detecting encrypted data
and files during computer forensics investigation. We start with simple and obvi-
ous methods like file signatures analysis, but our main research is done with ad-
vanced mathematical statistical methods of encryption detection that can be used
nowadays.

Digital forensics investigation is wide and complicated process. One of popular
definition says that computer forensic is “the use of scientifically derived and
proven methods toward the preservation, collection, validation, identification,
analysis, interpretation, documentation, and presentation of digital evidence de-
rived from digital sources for the purpose of facilitation or furthering the recon-
struction of events found to be criminal, or helping to anticipate unauthorized
actions shown to be disruptive to planned operations”[17], so we can see clearly
that one of the main objective of computer forensic investigation is to search and
analyze any data and files which may contain any interesting information.

Naturally one of the first steps, which people do to make their information safe
is to hide it. It is not so unusual that users move valuable files into system folders
or rename them to make them inconspicuous[6]. Of course usually this methods
are not much effective, further more in the most cases those files are highlighted
and revealed on the beginning of investigation. Some of techniques used for that
aim will be described later e.g. hash analysis, binary search, time line analysis and
signature analysis. More advanced users are aware that hiding data in the best case
will delay revealing of evidences, but in most cases it will make it even faster[7].

76 I. Jozwiak, M. Kedziora, and A. Melinska

That is one of the reason why users encrypt valuable data[13]. It should be said
here clear that encryption is not reserved for criminals who want to hide evidences
of illegal actions. Encryption is part of computer security, we can encrypt data to
make it safe from being steeled, from competition, sometimes legal regulations
force us to encrypt fragile data. Whatever reason of encryption is, the first ques-
tion digital forensic investigator will ask himself will be why suspect encrypts his
data, maybe he want to hide something important. That is why it should be priority
to find those files in computer forensic investigation process.

There is plenty of free and commercial tools to encrypt and decrypt data[19]
and to create encrypted containers where users can copy files to make them en-
crypted. We decided not to describe different cryptographic algorithms because
from practice we can observe that it does not matter. It is because in the most
computer forensic cases there is no need to perform full cryptanalysis process. It is
because most of cryptographic algorithms are based on Auguste Kerckhoffs rule
that says that algorithms security must be based on well-known algorithm and se-
cret password. For sure this rule is positive, but there is a huge sore point of this
approach – password. Research are pointing that most users use very week pass-
words[20]. Microsoft research which involved half a million users over a three
month period have given result of average password bit strength equal 37.86. This
means passwords where short, included mainly lowercase letters, without upper-
case, digits and special characters. Other research based on password lists revealed
by hackers can conclude that most of password are short words which can be find
in dictionary, or words related to personal details of user (name of pet, date of
birth). For sure it is huge issue for security professionals how to convince users to
use harder passwords, but for forensic investigators it is easy ability to guess
password and analyze decrypted data. Next problem with passwords (or more with
users) is that one password is almost for sure used in several applications (mail,
webpage, logins). This means that during investigations we can find hardly pro-
tected passwords from e.g. mail or internet browser (where they are typically
stored in clear text), and then use this passwords to decrypt files. Third way to get
encrypted data password during digital forensic investigation is to ask suspect (or
ask prosecutor to do it)[9][10]. In some law systems for example in UK, if you
will not give passwords that authority believe you possess, you will have to serve
a sentence 5 years in prison for failing to comply with police or military orders to
hand over either the cryptographic keys, or the data in a decrypted form. Actually
5 years imprisonment is reserved for terrorism cases, and 2 years sentence in any
other cases[8].

When we put all this together we can conclude that in contemporary computer
forensic investigations, the biggest problem is not to decrypt encrypted files but to
find those encrypted. The chapter is divided into three parts. The first part will
present methods of detecting encrypted files based on file metadata. These are
simple and fast methods to discover encrypted files. The second part will present
advanced statistical algorithms we can use to detect not only encrypted files but
also encrypted data hidden in unallocated space. In the third part we present

Theoretical and Practical Aspects of Encrypted Containers Detection 77

indirect methods to detect that encrypted files can be found on the disk. Those
methods do not point to encrypted files but they tell that is high possibility that
those files are located on a disk.

2 Signature Analysis

Methods presented in this section are based not on encrypted data inside a file, but
on file metadata. This methods are not quite accurate but there are fast and in
some cases they can give immediate results.

First method is based on searching files with specific extensions[11]. Encryp-
tion tools usually create unique filename extensions to identify them by operation
system. This process is called Application Binding and it is very comfortable situ-
ation for user because operation system can associate encrypted file with specific
software and decrypt it with minimal user action. From computer forensic point of
view searching files by specific extension is the easiest way to find specific
encrypted files. Some example of encrypted files extensions: .aes (AES Crypt en-
crypted file), .asc (Pretty Good Privacy armored encrypted file), .axx (Encrypted
file), .cef (SanDisk CruzerLock encrypted file), .cry (Cryptainer encrypted volume
file format), .dez (DES encrypted zip file), .drc (DriveCrypt container file), .fcfe
(Microsoft Access encrypted database), .jbc (BestCrypt file), .pgp (Pretty Good
Privacy encrypted file), .sde (Steganos Disk Encryption file format). We must
know that Windows Operation Systems uses extensions to associate files with ap-
plications but in Unix not extension but header is mostly used. In MAC OS is used
combination of extension, header and 32bit metadata information called file type
code. Process of identifying and comparing extensions, headers and footers of
files is called file signature analysis. It is part of standard digital forensic investi-
gation procedure that is why it can be successfully used also to detect files which
signatures point to be encrypted files. The signature analysis can also detect files
which extensions were changed on purpose, to mislead investigation (it is com-
mon to change .jpg or .zip files into .sys, or .temp). Performing signature analysis
we can have four outputs[5]. First is when header of file is known and extension is
also known and mach. This is absolutely normal situation where file e.g. exam-
ple.zip as Zlock pro encrypted ZIP has file header equal 50 4B 03 04 14 00 01 00
63 00 00 00 00 00 and extension ZIP. Second situation is when header and exten-
sion is known, but extension not match with header, corresponding to last example
it would be example.dll, where someone intentionally has changed extension to
mislead investigation. For sure this attempt will be discovered in a short time.
Third situation is when file header and extension are both unknown, this situation
can occur by dealing with e.g temp files. Fourth situation is when header is un-
known and extension is known but doesn’t match. This case can be spot during
processing True Crypt files. Encrypted True Crypt containers usually have default
.tc extension but it is not mandatory. True crypt containers can have any extension
to work properly and file itself does not have any signature. Often true crypt
encrypted containers have extensions of other files to mislead investigation. It can
also be used as a trace because relatively small amount of files are without any

78 I. Jozwiak, M. Kedziora, and A. Melinska

header. As we can see signature analysis is a powerful tool to discover encrypted
files in operation system, but still we have to realize that this method does not
detect encryption used but points that file was created by cryptographic tool. To
confirm that file has encrypted data inside we have to adopt statistical algorithms.

3 Statistical Data Analysis Algorithms

To detect encrypted data in the most accurate way, we have to understand mathe-
matical fundaments of cryptography. As a definition encryption function εk with
key k, where c is cipher text, p is plaintext is equal to:

(p)=c kε (1)

In the beginning of cryptography history there where simple substitution ciphers
which weren’t very strong. Cryptanalyst could easily guess massage by analysing
the frequency distribution of the cipher text. In the course of time ciphers were
evolving into block ciphers, which were not so easily broken with frequency
analysis. One of the techniques to prevent cryptanalysis of cipher, was called
whitening[15]. At the end cipher text started to look like random data stream. It
helped to make cryptographic algorithms stronger, but it also made possible to
identify encrypted data by measuring randomness of data[4]. In fact there is no
other simple explanation to keep random data then the file is encrypted massage.
Statistical data analysis encryption detection algorithms are based on statement
that encrypted massage is similar to pseudorandom data[14]. There are several
methods and techniques to test data sequences to be random. Most of them are
based on Golomb’s randomness postulates[12]. The first postulate tells that in the
cycle N of s, the number of 1 differs from the number of 0 by at most 1. Second
postulate tells that in the cycle N, at least half the runs have length 1, at least one
fourth have length 2, at least one eighth have length 3, etc., as long as the number
of runs so indicated exceeds 1. Moreover, for each of these lengths, there should
be equally many gaps and blocks. Third postulate tells that the autocorrelation
function C(t) is two valued. That is for some integer K,

∑
−

=
+

⎩
⎨
⎧

−≤≤
=

=−⋅−=⋅
1

0
1 11,

0,
)12()12()(

n

i
ii NtK

tN
sstCN (2)

These postulates are not sufficient to consider data as random but there are neces-
sary to be fulfilled by all random data. Next we present chosen algorithms which
can be used to determine if data is much or less random.

3.1 Entropy Based Detection

First factor we present will be entropy. Originally entropy comes from physics
and thermodynamics and is a measure of the disorder or randomness of the

Theoretical and Practical Aspects of Encrypted Containers Detection 79

constituents of a thermodynamic system. Entropy was adopted into computer sci-
ence where it represents measure of the uncertainty associated with a random vari-
able[1]. From definition entropy H of a discrete random variable X with possible
values {x1,…,xn} is equal:

E(I(X))=H(X) (3)

Where I is the information content of X. I(X) is a random variable and E is the
expected value. If p denotes the probability mass function of X then entropy is
equal to:

,)p(x)logp(x))I(xp(x=H(X)
1

ibi

n

1i
ii ∑∑

==

−==
n

i

 (4)

Where b is the base of the logarithm. Entropy value will be close to max value
when the input will be random data. Any signs of data order will lower entropy
value. We can predict efficiency issues while using this algorithm to compute en-
tropy, it is because we have to compute logarithms. To avoid this some encryption
detection tools are implemented with simple other simpler randomness tests[3].

Fig. 1 Entropy test values

After testing various types of files we received range of encrypted data to be
from 7,99984 to 7.99999. Compressed files (mainly we used files with zip and rar
compression algorithms) where just slightly lower, but difference is almost unno-
ticeable. This tells as that method of encrypted data detection can have false posi-
tive hits with some compressed files. With other types of files we do not have such
doubts. PDF files have entropy based of kind of data they consist, but in most
cases entropy level is much lower than 7,99. MPEG3 files have entropy at level
around 7,9 and its constant in different files, it can be explained by compression
algorithm used in this file types.

80 I. Jozwiak, M. Kedziora, and A. Melinska

3.2 Chi Square Test

Chi Square test is a statistical hypothesis test in which the distribution of the test is
a chi-square distribution when the null hypothesis is true[2]. There are several
tests build on this assumption, but the main use is to confirm randomness of data.
From the definition chi-square[16] test with k probable outcomes, performed n
times, in which Y1, Y2, Y3… Yk is the number of experiments which resulted in
outcome, where the probabilities of each outcome are p1, p2,… pk is:

∑
<< ks1 s

ss2

np
)2np-(y

=χ (5)

In result we should expect the lower chi square sum for more random data. From a
chi-square, the probability Q that the X² sum for the test with d degrees of free-
dom is regular with null hypothesis and can be compute as:

∫
∞ −−

−

⎥⎦
⎤

⎢⎣
⎡ Γ

2

2
1

2

1

2
d2)()

2
(2=d,

x

td

dtet
d

Qx (6)

Where Γ is a factorial function to complex and real arguments:

∫
∞ −−Γ

0

1= dtet tx
x (7)

We have performed several tests with different encrypted, compressed, MPEG and
PDF files. Encrypted files had chi square on constant value of near to 256.Any
other files had Chi Square value thousands or millions higher. For compressed
files average value was 16276778 It is 63581 times higher than Chi Square value
of encrypted files. For MPEG and PDF files values where successively 9157435
and 5131275. Chi Square is extremely sensitive, that is the reason why it is used to
check pseudorandom generators. It is also accurate way to detect encrypted files
and distinguish them from any other.

Fig. 2 Chi Square test values

3.3 Other Algorithms

There are other random detection tests like Frequency tests. For example monobit test
which checks if number of values in data stream is near equal, for two bit we have:

Theoretical and Practical Aspects of Encrypted Containers Detection 81

n
X

2
10)n-(n

= (8)

For bytes when we get 255 possibilities we can use modification of frequency test
which is ease to implement based on equation:

max(hist)

min(hist)
n= ∗hX (9)

This method of calculating entropy is based on histogram of data we are interested
with. We take minimum value from histogram and divide it to maximum value.
The smaller difference between these two values, there is the more random data.
Output of division will give entropy near one for random data, and less random
data will have near zero value. Output is multiplied by 8 to make it compatible
with definition of entropy. To make output more comparable to entropy calculated
from definition, outcome is multiplied by 8. Third simple of implementation of
frequency test is summing all the bytes and divide it by the file length in bytes.
We should get value about 127.5 for byte stream or 0.5 for bit stream. Any other
value mean that data is not random from Golomb’s randomness postulates.

We have performed a series of experiments on encrypted, compressed and
other files. Result was that encrypted data is in conformity with random data fre-
quency test and value is 127,5 ± 0,5. Compressed values are divergent but rarely
in detection threshold of encrypted files. MPEG files have mean values much be-
low encryption mean values in range between 124 and 125.

Fig. 3 Frequency Mean test values

Next algorithm is serial correlation Xac which idea is to examine the correlations
between the shifted sequences and it is computed from equation:

d-n

)
2

d-n
-2(A(d)

=acx (10)

82 I. Jozwiak, M. Kedziora, and A. Melinska

Where ∑
=

+⊕
1-d-n

0i
is=)(dsdA i , d is fixed integer, and s is a tested sequence.

Monte Carlo Value for Pi is algorithm in which each following 6 bytes se-
quence is use as 24 bit X and Y coordinate. If the distance from random point is
less than the radius of a circle placed in the square, sequence is called hit and the
number of hits can be used to calculate the value of Pi. If the sequence is random,
value should be equal to Pi value 3,14159265.

After performing series of tests we can conclude that Monte Carlo Pi algorithm
is efficient in detecting encrypted data. All encrypted files are values near Pi value
of 3,14. Compressed files have clearly lower (or higher) values, MPEG and PDF
files are much outside encrypted file values.

Fig. 4 Monte Carlo Pi test values

Other test algorithm which can be used for detection of random data are poker test
which is generalization of frequency test for sequence values, two bit test which
check occurrences of 00, 11, 01, 10 subsequence’s, or runs test which checks
number of chosen data blocks inside data sequence.

3.4 Data Length

One of the problem correlated with encrypted data detection based on statistical
algorithms is length of input. If the data input will be to short algorithms will not
have enough data to give accurate result. Main cryptographic tool used nowadays
is True Crypt, fortunately minimum size of NTFS formatted encrypted container is
3792 KB. We prepared series of tests to check how file length corresponds with
algorithms accuracy. We have performed described algorithms on several files
from 148576 KB to 524288000 KB. Chosen results are presented on Table 1.

Theoretical and Practical Aspects of Encrypted Containers Detection 83

Table 1 Detection values with different file lengths

File Length Entropy Chi Square Art. Mean Monte Carlo Pi
1048576 7,99984 231,9458 127,4971 3,14201
8388608 7,999979 246,9846 127,516 3,141936
9437184 7,999979 270,3573 127,5294 3,143995
10485760 7,999982 255,3956 127,4814 3,141654
15728640 7,999987 291,6301 127,496 3,143619
19922944 7,99999 284,8628 127,5186 3,141409
20971520 7,999992 224,4152 127,4918 3,141268
26214400 7,999992 283,1507 127,5276 3,141438
31457280 7,999994 243,771 127,5057 3,14201
62914560 7,999997 225,1659 127,4941 3,1417
209715200 7,999999 264,4227 127,5002 3,141689
314572800 7,999999 265,5303 127,4986 3,141408
524288000 8 281,2614 127,5017 3,141526
1048576 7,99984 231,9458 127,4971 3,14201
8388608 7,999979 246,9846 127,516 3,141936
9437184 7,999979 270,3573 127,5294 3,143995

As we predicted length has some effect on entropy based algorithm, an average

mean, and Monte Carlo Value for Pi, but it is not effective for chi square test and.
Furthermore even for 148576 KB input is accurate enough to detect encrypted da-
ta and reject other files.

4 Indirect Methods

Main disadvantage of statistical methods when searching for encrypted data is
amount of time necessary to search all hard disk area. In contemporary forensic
investigations we often have to analyze Terabyte hard drives and it can make days
to finish. Forensic investigators cannot afford to use all detection techniques be-
cause it would take to long amount of time, that is why we should consider use of
some indirect methods which can say as there is high possibility to find encrypted
data on the computer. These methods are not supposed to detect encrypted file
themselves, but they detect e.g. artifacts of cryptography tools used by system.
First technique is to search for any files or records which are related to encrypting
tools. Most effective method to search files is to use hash analysis which is one of
the basic tool used in computer forensic investigations. In first stage of analysis
hash value is computed for every file on evidence disk image. Most often 128 bit
Message Digest 5 Algorithm (md5) is used in this purpose. Second stage of hash
analysis is to compare computed hash values with hash sets. This helps to exclude
files which are not related to case, or highlight those which are related to e.g.
malware, illegal software or in our case files created by cryptographic tools.

Next method is to find any traces of cryptographic tools in operation system
registry. Even if application is uninstalled there should be remaining keys, foren-
sic investigators can use registry backups (snapshots) to examine registry in
specific time line.

84 I. Jozwiak, M. Kedziora, and A. Melinska

Third method is time-consuming but it should be used in the most demanding
cases. It is based on performing binary search of unallocated disk area using key-
words related to cryptographic tools. If any of cryptographic tools traces are
found we can expect that encrypted files can be stored on evidence disk image,
and we have good reason to use superior methods of encryption detection based
e.g. on entropy.

5 Summary

In the chapter we have explained that in computer forensic investigations one of
the most challenging problems is to find encrypted data stored on disk. Most accu-
rate solution would be using all detection techniques presented in this chapter. Un-
fortunately in most cases we have limited resources and we cannot do it. We think
optimal algorithm should consist of hash analysis to exclude known files and to
find any files correlated to cryptographic tools. Subsequently indirect method of
detecting encryption tools should be used to specify most probable encrypted files
types. Next step is to perform signature analysis. As a result we should get all files
pointed as encrypted from its signature, and those which doesn’t have any known
header. Output files should be checked by statistical analysis to confirm or deny
that they in very high probability are encrypted files. One problem which can be
significant when using statistical algorithms is distortion caused by header of a
file. Even if data of file is encrypted, headers usually are in plain text, which can
affect result of algorithm in the way that detection algorithm values will drop be-
low detection threshold. Simple defense is to bypass first KB of file. In case of
True Crypt it is not necessary because container does not possess its own header.
Our tests confirmed that encrypted files are possible to discover using statistical
methods based on randomness tests. Most accurate results were given by chi
square tests, where values between encrypted and other files where thousand times
higher. Surprising was low accuracy of entropy based techniques in differencing
encrypted and compressed files. Using entropy would produce a large number of
false positive hits. On the other hand compressed files should be excluded from
encryption detection by using signature analysis. Our future research will include
efficiency issues with large data sets, to choose the most practical statistical
algorithm.

References

[1] Hamming, R.W.: Coding and Information Theory. Prentice-Hall, Englewood Cliffs
(1980)

[2] Knuth, D.E.: The Art of Computer Programming, Seminumerical Algorithms, vol. 2.
Addison-Wesley, Reading (1969)

[3] Ziv, J., Lempel, A.: A Universal Algorithm for Sequential Data Compression. IEEE
Transactions on Information Theory 23(3), 337–343

[4] Park, S.K., Miller, K.W.: Random Number Generators: Good Ones Are Hard to Find.
Communications of the ACM, 1192 (October 1988)

Theoretical and Practical Aspects of Encrypted Containers Detection 85

[5] Steve, B.: The Official EnCase Certified Examiner Study Guide. Wiley Publishing,
Chichester (2008), ISBN: 978-0-470-18145-4

[6] Liu, V., Brown, F.: Bleeding-Edge Anti-Forensics, InfoSec World (April 3, 2006)
[7] Rogers, D. M.: Anti-Forensic Presentation, Lockheed Martin. San Diego (2005)
[8] Regulation of Investigatory Powers Act 2000, ch.23, UK legislation (July 28, 2000)
[9] Schneier, B.: Rubber-Hose Cryptanalysis. Schneier on Security (October 27, 2008)

[10] Soghoian, C.: Turkish police may have beaten encryption key out of TJ Maxx suspect.
Surveillance State, CNET Networks (October 24, 2008)

[11] Huebnera, E., Bema, D., Wee, C.K.: Data hiding in the NTFS file system. Digital In-
vestigation 3(4), 211–226 (2006)

[12] Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, Boca Raton (1996)

[13] Eoghan, C., Stellatos, G.J.: The impact of full disk encryption on digital forensics.
ACM SIGOPS Operating Systems Review 42(3) (April 2008)

[14] Hamming, R.W.: Coding and Information Theory, 2nd edn. Prentice-Hall, Englewood
Cliffs (1986)

[15] Haahr, M.: An Introduction to Randomness and Random NumbersRandom (June
1999); Random.org

[16] Walker, J.: Introduction to Probability and Statistics. A Pseudorandom Number
Sequence Test Program, Fourmilab (January 28, 2008)

[17] Marco, S.G.: Corresponding The birth of a new industry: entry by start-ups and the
drivers of firm growth: The case of encryption software. Research Policy 33(5),
787–806 (2004)

W. Zamojski et al. (Eds.): Dependable Computer Systems, AISC 97, pp. 87 – 100.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Metric-Probabilistic Assessment of Multi-Version
Systems: Some Models and Techniques

Vyacheslav Kharchenko1,2, Andriy Volkoviy1,2, Olexandr Siora1,
and Vyacheslav Duzhyi2

1 Research and Production Corporation "Radiy",
Ukraine, 25006, Kirovograd, 29, Geroyev Stalingrada str.
email: research@radiy.com

2 National Aerospace University "KhAI",
Ukraine, 61070, Kharkiv, 17, Chkalov str.
email: v.duzhy@csac.khai.edu

Abstract. This chapter presents a set of models of multi-version systems and re-
lated techniques of diversity level and multi-version systems safety assessment.
Spectrum of concepts related to common cause failure (CCF) is expanded, as well
as models of multi-version systems (MVS) and multi-version projects (MVP).
Approach to metric-probabilistic assessment is proposed and considered in the
context of evaluating the software-based and FPGA-based MVS. Direct and indi-
rect estimation of diversity with metrics are considered as parts of system safety or
reliability assessment with relevant reliability models. Comparative analysis of the
reliability of redundant multi-channel systems of different architectures with the
option of diverse components is carried out.

1 Introduction

To ensure reliability, safety and other attributes of dependability of critical com-
puter-based systems and to decrease a probability of common cause failure (CCF)
diversity approach is used. This approach implies creation of a few diverse design
options of redundant channels (chains which include receiving input data, logic
and output signals generation) or parts of the channels (hardware-software prod-
ucts) [1]. Application of product-process diversity is a severe requirement of
national and international standards and actual practice in safety engineering [2,3].

The probability of common cause failure and effect of diversity may be essen-
tially decreased due to combined usage of a few of version redundancy kinds on
the assumption of maximal independence of redundant channels (designed ver-
sions). Application of the modern IT and electronic technologies, on the one hand,
improve dependability characteristics of the critical computer-based systems, but
on the other hand, some technologies cause additional risks or safety deficits. For
example, the advantages of microprocessor technology are well-known; however,
a program realization may increase CCF probability of complex software-based

88 V. Kharchenko et al.

systems [1,4]. Software faults for microprocessor-based systems and design faults
for any systems, including FPGA-based, are the most probable reason of CCFs,
because these faults are replicated in redundant channels. In fact, redundant sys-
tems with identical channels are non-tolerant to design faults.

There are two main problems in the area of diversity approach application:
choice of product-process diversity kinds and assessment of multi-version systems
(MVS) safety. In our opinion, inaccurate evaluation of actual level of diversity
(and system safety in whole) is a key challenge. If the assessment result is under-
estimated, it causes additional efforts, costs and increases time of implementation.
If the assessment result is overestimated, it causes inadmissible increasing of CCF
risks. Methods of diversity level assessment and evaluation of MVS dependability
and safety were analyzed in [3-5].

Set-theoretical and metric-oriented methods are based on: (1) set diagrams
(Venn diagrams) for design, physical and interaction faults and vulnerabilities of
versions and units of voting and reconfiguration; (2) matrix of diversity metrics
for individual, group and absolute faults of versions; (3) calculation of diversity
metrics using set diagrams and other data of versions testing. Probabilistic meth-
ods use reliability block-diagrams (RBDs), Markovian chains (MC), Bayesian
method, etc. The RBD and MC-based methods were developed and researched for
typical duplicated and majority multi-version architectures. Statistical methods in-
clude: gathering and normalization of version fault trends using testing and opera-
tion data; choice of software reliability growth model (SRGM) taking into account
product and processes features and fitting SRGM parameters; metrics diversity as-
sessment; calculation of reliability and safety indicators. Fault injection-based as-
sessment consists of: receiving project-oriented fault profiles; performing of faults
injection procedure; proceeding of data and metrics diversity calculation; calcula-
tion of reliability and safety indicators. Expert-oriented methods use two groups of
metrics: direct diversity metrics; indirect diversity metrics.

Objective of the chapter is generalization of multi-version systems models and
development of some procedures for metric-probabilistic safety assessment tech-
nique for software- and FPGA-based systems.

2 Multi-Version Systems and Common Cause Failures:
Elements of Taxonomy

2.1 Multi-Version Computing

The concept of multi-version computing, which is a part of dependable computing
based on the use of diversity approach, includes the following elements [5]: ver-
sion – an option identical task (product or process) realization in different ways;
version redundancy (VR) – a kind of redundancy in which different versions are
used; diversity or multiversity (MV) – the principle providing the use of several
versions and performance of the same function (realization of a product or
process) by two and more options; multi-version system (MVS) – a system in

Metric-Probabilistic Assessment of Multi-Version Systems 89

which a few versions-products are used; multi-version technology (MVT) – a set
of the interconnected rules and design actions in which in accordance with МV
strategy a few versions-processes leading to development of two or more interme-
diate or end-products are used; multi-version project (MVP) - a project in which
the multi-version technology is applied (version redundancy of processes is used)
leading to creation of one- or multi-version system; multi-version life cycle – a
collection of interconnected processes and products realized by use of version re-
dundancy and ensuring development of MVS (or one-version system using MVT)
according with specification; strategy of diversity – a set of general criteria and
rules for selection of MVTs; diversity metric – a indicator of local process/product
diversity level or summarized MVS diversity level.

There are a few concepts for multi-version computing performed by use of two
or more kinds of product-process version redundancy (principle of multi-diversity
or “diversity of diversity” (Di2)) in frameworks of the system. Every kind of di-
versity is peculiar echelon of defence in depth decreasing risks of CCFs.

2.2 Common Event and Common Cause Failures

CCF is an event when ef (two or more) channels (versions) of redundant e-channel
(e-version) system fail simultaneously and there is a common reason caused this
event. Thus, CCF is a multiple failure (MF). It is an alternative of a single failure
(SF). On the other hand, multiple failures occur as a result of not only one (com-
mon) cause. Multiple failures may be caused by influence of a few different rea-
sons if these reasons concur or spread of influence time values is less than speed
of on-line testing and reconfiguration means. In this case MF may be called a
common time failure (CTF). Hence, CCF and CTF are multiple failures or
common event failures (CEF).

Attributes of the classification form simple hierarchy. CCFs and CTFs may be
additionally divided in two groups in accordance with a number of failures (partial
and full CCFs, i.e. PCCFs and FCCFs, and partial and full CTFs, i.e. PCTFs and
FCTFs) and distinguishability of channel output data on failures, i.e. distinguish-
able (DCCFs, DCTFs) and undistinguishable (UDCCFs, UDCTFs) failures.

Authors of works related to NPP safety problems, first of all, attend to CCFs analy-
sis. However, CTFs are the important objective of research as there are examples of
serial failures caused by attacks on vulnerabilities of redundant channels and other rea-
sons. Besides, a very important problem, in our opinion, is the analysis of distin-
guishability of effect failures, because it allows determining the moment of partial or
full CCFs (or CTFs) by simple means of channel output data comparison.

2.3 Diversity Metrics: β-Factor

To assess a probability of common cause failure it is necessary to calculate the met-
rics for different CCF vulnerabilities (Fig. 1). Circles of these diagrams correspond to
sets of version defects (faults) causing failure. For one-version (one-channel) system

90 V. Kharchenko et al.

(Fig. 1,a) a number of faults equals N (N = Card F) and any fault of set F is fatal
(equivalent of CCF). In this case metric of CCF β determining relation of number of
CCFs to total number of failures equals 1 (and α =β = 1).

For two-version system (Fig. 1,b,c) CCF metric β = NCCF / N, NCCF = CardF1 ∩
F2; value of N may be calculated as an arithmetic mean N = (N1 + N2) / 2, Ni =
Card Fi; SF metric αi = 1 - β; DCCF metric βd = NDCCF / N; UDCCF metric

d
β =

NUDCCF / N; β = βd + d
β . Besides, it is possible to use metrics of relative number of

DCCFs and UDCCFs: *
dβ = βd / β, *

d
β =

d
β /β.

For three-version system (Fig. 1,d) α = 1 - β - 2γ, where γ is PCCF metric (met-
ric determining part of CCFs of any two versions, γ = 2NPCCF / N). Metrics of dis-
tinguishable and undistinguishable PSSFs are calculated by analogy βd and

d
β . If

γ = 0 (Fig. 1,e), α =1 - β. This approach is based on the results described in [6]
and may be extended to systems in which a set of faults is added a set of vulner-
abilities attacked by external system. In the Section 4 metric-based assessment
will be used to calculate probability of CCF and MDVS safety indicators.

Fig. 1 Diagrams of failures of one-version (a), two-version (b,c) and three-version (d,e)
systems

3 Models of MVSs

3.1 W(n): Simplest MVS

One-version W(1) and multi-version W(n) systems are defined by 4 and 6 variables:

W(1) = {X, Y, Z. Ф}, (1)

α2

v2

α1 β

v1

1-β

v2

1-β
βd

v1

d
β

1-β-2γ

v2

1-β-2γ

β

v1

γ

γγ

v3

1-β-2γ

1-β

1-β

v2

1-β
β

v1

0

00

v3

α=β=1

v

a b c

d e

Metric-Probabilistic Assessment of Multi-Version Systems 91

W(n) = {X, Y, Z. Ф, V, Ψ}, (2)

where X, Y, Z – sets of input signals, internal conditions (states) and output signals
correspondingly; Ф = {ϕi, i=1, ..., a} – a set of I&C functions (for examples, ac-
tuation functions or algorithms of reactor trip system); V = {vj, j=1, ..., n} – a set
of versions with output signals Z1,…, Zn (or signals Zid , d = 1,…, ni; ni is a number
of versions for function ϕi; ∀ϕi ~ vj= { vij, j =1,...,ni}); Ψ = {ψs, s=1, ..., в} – map-
ping Zi →Z.

If the function ϕi is performed, local mapping is true: ψs:{zi(vi1),..., zi(iinv)}→

)(S
iZ . Taking into account formulas (1) and (2), multi-version system and one-

version system are connected by relationship:

W(n) = {W(1), V, Ψ }. (3)

System W(1) may be structure-redundant and contain usual meansΨ for signals
processing from identical channels (versions). In this case card V=1. For system

W(n) is true that: ∀j = a�,1 : ∃j: ni>1.
Mapping ψs is generally described by: a subset of versions Δvs⊂ vj for receiving

output signal Zi; a vector st of version vij initialization time (st = {t(vi1),...,

(
iinv)}); a mean of transforming ηs values zi(vi1),..., zi(iinv) in output signal S

iZ .

Hence,∀ψs∈Ψ:ψs = { Δvs, st , ηs} and)(S
iZ =ηs [zi(vij), st], vij∈Δvs.

There are the following means of transforming ηs: (a) the conjunctive, when
S
iZ =Vzi(vij); (b) the time conjunctive, when S

iZ =Vzi(vij)σij , where σij=1, if

t=t(vij), and if not σij= 0; (c) the majority, when S
iZ =М[zi(vij)], where М – a ma-

jority function k out of l (or k out of n); (d) the majority-weighted, when weights
of versions ω(vij) are additionally defined on majorization; (e) the functional,

when S
iZ =f[zi(vij)], where f – some function of transforming output signals of

every version.

3.2 W(n,m) and W(n,m,l): Multi-Diversion Systems

The model (2) describes system with n versions that ∑
=

=
a

i
inn

1

. This model does

not take into account the possibility of applying several diversity kinds. A set of
version redundancy kinds R={rd, d=1,..., m} may be decomposed on subsets for
versions of products vprd(tj) and processes vprc(tj): R=(∪

j

Δ Rprdj)∪ (∪
j

Δ Rprcj),

where ΔRprdj and ΔRprcj – appropriate subsets.

92 V. Kharchenko et al.

Thus, different diversity kinds, r∈R, are accumulated in final versions of a
multi-version system. It is described by special mapping Θ : R → V. Mapping Θ

may be presented by Boolean matrix ⎟⎜Θdj⎟⎜, md ,1= , nj ,1= , where Θdj =1, if

diversity kind rp is used in version vj, and if not Θdj = 0. Then multi-version sys-
tem W(n,m) or multi-diversion system is described by formula:

W(n,m) = { X, Y, Z, Ф, V, Ψ, R, Θ } = {W(n), R,Θ } = {W(1), V, Ψ,R, Θ }. (4)

It is important to describe correspondence between a set of versions V and a set of
redundant channels С={cq, q=1,...,l}. This correspondence may be defined by
mapping Q: V→ C. This mapping is presented by Boolean matrix Q = ⎟⎜ωjg⎟⎜,

md ,1= , lg ,1= , where ωgj = 1, if version vi is realized by channel cj, and if not

ωgj = 0. Then model of multi-version (multi-diversion) system is the following:

W(n,m,l) = { X, Y, Z, Ф, V, Ψ, R, Θ, С, Q }= { W(n,m), С, Q }. (5)

3.3 General Model of MVS

MVSs with temporal redundancy and р iterations of algorithms are indicated
as W(n,m,n,р) dividing number of parallel (structural) versions пс, and sequential
versions realized by using one channel. Set Х may be decomposed for different
versions if

Х =∪
j

jX , ∀j1j2∈ n,1 , j1≠j2: 21 jj XX ∩ , 21 =jj XX ∩ ∅.

Such MVSs are called multi-version systems with naturally divided input alpha-
bet:

WNХ = { {Хj}, Y, Z, Ф, V, Ψ, R, Θ, С, Q}. (6)

If versions process data presented in different notations, such MVSs are called
multi-version systems with artificially divided input alphabet WAХ. A special func-
tion-transformer Пх (Пхj) should be specified in addition to alphabet Х :

WNХ = {X, {Пхj}, Y, Z, Ф, V, Ψ, R, Θ, С, Q}. (7)

4 Metric-Probabilistic Assessment of MVS Safety

4.1 General Approach to Metric-Probabilistic Assessment

The proposed approach to assessment of diversity level and MVS safety is based
on the following basic procedures analysis and evaluation:

• check-list-based analysis of applicable diversity types (CLD); initial data for the
CLD analysis are I&C design and documentation, a table of diversity types (sub-
types) was developed in advance; a result of the CLD analysis is a formalized
structured information about used diversity types and subtypes in analyzed I&C
system;

Metric-Probabilistic Assessment of Multi-Version Systems 93

• metric-based assessment of diversity (MAD); initial data for the MAD proce-
dure are results of the CLD analysis and values of metrics and weight coeffi-
cients for diversity types (subtypes) used in I&C systems; a result of the MAD
assessment is a value of general diversity metric;

• RBD and Markovian model-based assessment (RDM); initial data for the RDM
procedure are I&C design and documentation, results of the CLD and MAD
analysis; results of the RDM procedure are values of safety and dependability
indicators.

4.2 Assessment of FPGA-Based MVS

The main stages and operations of diversity analysis and MVS assessment depend
on the type of the evaluated system. The following description takes into account
the peculiarities of FPGA-based systems.

The first stage is a Check-list-based analysis of MVS design and documenta-
tion. This stage contains two operations:

1) Analysis of I&C specification and requirements to system, definition of sys-
tem safety class; requirements to diversity (necessary for diversity application);

2) Analysis of I&C design and development process that involves activities: (a)
identification of MVS types: which of the subsystems are FPGA-based and which
are software and microprocessor-based; (b) identification of product diversity; for
FPGA-based MVSs: manufacturer of chips; FPGA technology; FPGA families;
FPGA chips, languages; tools, etc); (c) identification of process diversity kinds.

Results of analysis are entered in a check-list in accordance with rule Yes (if cor-
responding diversity type is used in a system) / No (in opposite case) and is pre-
sented as a n-bit Boolean vector.

The second stage is a metric-based assessment of diversity:

1) Determination of metric values for different types of applied diversity, i.e.
performing two activities: (a) determination of metric values (local diversity met-
rics μi for diversity type di and local diversity metrics μij for diversity subtype dij);
the metric values may be predefined; (b) correction of metric values in accordance
with development and operation experience.

2) Calculation of general diversity metric μ for a system: (a) determination
(correction) of weight coefficients ωi (ωij) of metrics (taking into account multi-
diversity aspect); sum of weight coefficients ωi (ωij) is equal 1; (b) convolution
(additive or more complex) of metrics and calculating value of general diversity
metric μ = Σ ωi Σ ωij μij, i = 1,…, n; j = 1,…ni.

Thus, result of this stage is a value of general diversity metric μ, which is some
approximation of β, and can characterize the diversity effect on CCF probability.

4.3 Assessment of Software-Based MVS

The metric-based assessment of software-based MVS can be made using direct
metrics. General assessment technique of software-based MVS is considered by
the example of two-version projects.

94 V. Kharchenko et al.

To assess diversity indicator β, using direct metrics, testing results of each pro-
gram-version in MVS are required. Direct metrics-based assessment of diversity
indicator β of two-version design has the following stages: (1) testing each pro-
gram-version on the common test set; (2) error determination common for both
program-versions; (3) diversity indicator determination by formula:

21

2

nn

ncom

+
⋅=β ,

where ncom – a number of errors common for both program-versions;
n1, n2 – a number of errors in the first and the second program-version, respec-

tively.
In accordance with the formula, diversity indicator β changes from 0 to 1 and

takes on limit values in the following cases:

⎩
⎨
⎧

=
=

=
21 if,1

0 if,0

errerr

com

nn

n
β .

Gain, obtained by diversity, is β−=Δ 1 .

If all errors match in both program-versions (β=1), there will be no gain (Δ=0),
because both MVS versions will operate inaccurately. If errors differ in each ver-
sion (ideal case) (β=0), majority element will be able to determine different values
in each channel; so, in this case there will be the largest gain (Δ=1). If diversity
indicator is in the range (0<β<1), obtained gain indicates that in both versions
number of undetected errors is decreased by value (Δ*100) percentagewise.

Indirect metrics-based assessment of diversity indicator β of two-version design
has the following stages: (1) measurement of absolute values of each program-
version metrics, using statistical code analyzer; (2) calculation of absolute value
of remainder obtained from a pair of each program-version metrics; (3) rating
absolute values of metrics obtained at stage 2; (4) determination of diversity
indicator β.

Further, values of diversity indicators, obtained by using direct and indirect
metrics, should be compared to determine their correlation.

To assess proposed MVS assessment techniques two-version projects were ob-
tained in programming languages С#, Java, C++. Only versions of initial pro-
grams with errors were assessed. Assessment results of two-version projects are
presented in Table 1. Each project is a solution for one of the five tasks character-
ized by complexity level, where I – the lowest level of task complexity, III – the
highest level [7]. From the table it appears:

• diversity allows increasing quality of most projects;
• subject diversity allows increasing project quality independently of program-

ming language;
• using diversity for solving complex tasks (Levels of complexity II and III), gain

turns to be larger than for simple ones (more than 90%).

Metric-Probabilistic Assessment of Multi-Version Systems 95

Table 1 Results of MVP experimental researches

β
Task

 Level of
complexity

Language
Number of pro-

jects (MVP)
0 0...1 1

Gain by
diversity, %

by MVP
C# 3 2 0 1 67

Java 91 16 61 14 85 1 I
C++ 465 99 343 23 95
C# 21 0 21 0 100
Java 153 12 132 9 94 2 II
C++ 465 20 439 6 99
C# 45 6 38 1 98

Java 45 0 38 7 84 3 I

C++ 435 64 323 48 89
Java 3 2 1 0 100

4 II
C++ 231 0 211 20 91
Java 3 0 3 0 100

5 III
C++ 10 4 6 0 100

5 Probabilistic Assessment of MVS Safety

5.1 Reliability Models of MVS

Probabilistic assessment is considered in terms of Two-channel Reactor Trip System
with three parallel tracks (sub-channels) of voting logic “2-out-of-3” in each independ-
ent channel. A real system produced by RPC Radiy was taken as a basis [8]. Each of
the channels of the system independently receives inputs and form outputs.

A simplified diagram of components of this system is shown in Fig. 2, where Ti.j is
a track j in channel i. A reliability block diagram of Two-channel System that does not
use diversity (channel diversity) is shown in Fig. 3,a. This diagram does not take into
account element of voting logic “1-out-of-2” (element OR in the simplest case).

Fig. 2 Simplified structure of Two-channel Three-track System

96 V. Kharchenko et al.

a

Pph1.1

Pph1.2

Pph1.3

Pd

Pph2.1

Pph2.2

Pph2.3

 b

Pph1.1

Pph1.2

Pph1.3

Pdr1

Pda

Pdr2

Pph2.1

Pph2.2

Pph2.3

Fig. 3 Reliability Block Diagrams of Two-channel Redundant System

A reliability index Pphi.j determines HW reliability of the track Ti.j (defined,
first of all, by physical failures). Reliability index Pd determines reliability defined
by design faults, which may be the main source of common cause failures (CCF).
Majority elements have reliability index PM. Reliability of the One-version Major-
ity Redundant System is represented by the following formula:

()[] dMphphD PPPPP
⎭⎬
⎫

⎩⎨
⎧ −−−=

232
1 2311 . (8)

If channels are implemented in different HW and SW versions, value of Pd will
consist of three components (see Fig. 3,b):

• Pdr1 = 1 – Qdr1, where Qdr1 – a probability of failure caused by relative design
faults of the first version;

• Pdr2 = 1 – Qdr2, where Qdr2 – a probability of failure caused by relative design
faults of the second version;

• Pdа = 1 – Qda, where Qda – a probability of failure caused by absolute design
faults (common faults of the versions).

Reliability of Diverse System is calculated by the formula:

()[] daMdrphphD PPPPPP
⎭⎬
⎫

⎩⎨
⎧ −−−=

232
2 2311 . (9)

We consider that Pdr1 = Pdr2 = Pdr and majority elements are equally reliable.
Diversity is usually applied in such a configuration, where different channels

are independently implemented with different types of diversity. However, this is
not the only variant of the redundant circuit. A variant of using redundancy in
tracks of one channel is shown in Fig. 4.

Metric-Probabilistic Assessment of Multi-Version Systems 97

Fig. 4 Simplified structure of Single-channel Three-track System

Reliability block diagrams for the system, represented in Fig. 4, are shown in
Fig. 5. Reliability of such system, that use one version for redundancy (Fig. 5,a),
can be described by the formula:

()[] ()[] dMphphM PPPPP
⎭
⎬
⎫

⎩
⎨
⎧ −−−−−=

3222
1 112113 . (10)

In case of using two different versions for T1.i and T2.i, system has RBD, shown in
Fig. 5,b, and a formula for reliability calculation:

() ()[] ()[] dadrMphphM PPPPPP 232
22

2 11112113 −−
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−−⎥⎦
⎤

⎢⎣
⎡ −−= . (11)

a

Pph1.1

Pph1.2

Pph1.3

Pd

Pph2.1

Pph2.2

Pph2.3
b

Pph1.1

Pph1.2

Pph1.3

Pdr1

Pda
Pdr2

Pph2.1

Pph2.2

Pph2.3

Fig. 5 Reliability Block Diagrams of Single-channel Three-track Redundant System

5.2 MVS Reliability Analysis

If we express the values of reliability (probability of no-failure operation) through
failure rates as P = e-λt, we can calculate and compare the values of reliability for
certain values of λph, λd, λM, λdr, λda and β (the fraction of absolute design faults).

98 V. Kharchenko et al.

Dependence of P1D, P2D, P1M and P2M (formulas (8),(9),(10) and (11)) on the
time is graphically shown in Fig. 6. In the calculations the following values of the
failure rate were used λph=10-4 1/h, λd=λph/2, λM=λph/100, λdr=(1-β)×λd, λda=β×λd,
where β=0,1.

Fig. 7 shows how fraction of absolute design faults (FADF is β) effects on reli-
ability of single-channel divers system.

Fig. 8 shows dependence of ΔP2M-1M (the difference of probabilities P2M and
P1M) and ΔP2M-2D (the difference of probabilities P2M and P2D) on time.

It should be noted that, although the single-channel two-version three-track re-
dundant system has the greater effect of the use of diversity, its application in
many ways violates the principle of independence. Therefore, the use of such ar-
chitecture for safety systems of nuclear power plants is complicated.

Fig. 6 Dependence of P1D, P2D, P1M and P2M on the time (for systems with diversity β=0,1)

Fig. 7 Dependence of P2M on time and β

Metric-Probabilistic Assessment of Multi-Version Systems 99

Fig. 8 Dependence of ΔP2M-1M and ΔP2M-2D on time

6 Conclusion

In this work we discussed some problems regarding to diversity approach application,
decreasing probability of common cause failures and assessment of multi-version
systems safety. One of the main challenges in this area is a fact that multi-version sys-
tems are still unique, failures occurred very rarely, information about failures is not
enough representative and is not generalized taking into account development and
operation experience for different applications.

Described models of multi-version systems (formulas (2), (4)-(7)) are a base for
the development of different architecture variants. The proposed techniques of di-
versity level and multi-version systems safety assessment are founded on two in-
terconnected approaches. First of them is the metric-based technique allowing to
assess a diversity level and to compare multi-version systems on application of
different kinds and different volume of diversity. Second one is based on the prob-
abilistic models, which include β calculated using metric analysis.

These theoretical issues were used on development and assessment of RadiyTM
Platform-based instrumentation and control systems safety related to NPPs. Next
steps of research and development activities may be connected with creation and
implementation of tool-based support of all life cycle processes for multi-version
systems including decision making related to choice of diversity kinds taking into
account results of qualitative and quantitative assessment.

References

[1] Pullum L.: Software Fault Tolerance Techniques and Implementation, AHC Library
(2001)

[2] Wood R., Belles R., Cetiner M., et al.: Diversity Strategies for NPP I&C Systems,
NUREG/CR-7007 ORNL/TM-2009/302 (2009)

[3] Kharchenko, V., Siora, A., Sklyar, V., et al.: Multi-Diversity Versus Common Cause
Failures: FPGA-Based Multi-Version NPP I&C Systems. In: Proceedings of the 76th
Conference NPIC&HMIT, Las-Vegas, Nevada, USA (2010)

100 V. Kharchenko et al.

[4] Littlewood B., Strigini L. A Discussion of Practices for Enhancing Diversity in Soft-
ware Designs. Technical report LS_DI_TR-04, City University, London, Great Britain
(2000)

[5] Kharchenko, V., Siora, A., Sklyar, V., et al.: Diversity-Oriented FPGA-Based NPP
I&C Systems: Safety Assessment, Development, Implementation, In: Proceeding by
18th International Conference on Nuclear Engineering (ICONE18), Xi’an, China, 10 p
(2010)

[6] Hokstad, P., Rausand, M.: Common Cause Failure Modeling: Status and Trends. In:
Misra, K.B. (ed.) Handbook of Performability Engineering, pp. 621–640. Springer,
Heidelberg (2008), doi:10.1007/978-1-84800-131-2_39

[7] Duzhyi, V., Kharchenko, V., Starov, O., Rusin, D.: Research Sports Programming
Services as Multi-version Projects. Radioelectronic and Computer 47, 29–35 (2010)

[8] Kharchenko, V., Sklyar, V. (eds.): FPGA-based NPP Instrumentation and Control Sys-
tems: Development and Safety Assessment, RPC Radiy, National Aerospace Univer-
sity KhAI, State Scientific and Technical Center for Nuclear and Radiation Safety, 188
p (2008)

W. Zamojski et al. (Eds.): Dependable Computer Systems, AISC 97, pp. 101 – 115.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Two-Level Software Rejuvenation Model with
Increasing Failure Rate Degradation

Vasilis P. Koutras

Department of Financial and Management Engineering, University of the Aegean,
Kountouriotou 41 st., Chios GR82100, Greece
email: v.koutras@fme.aegean.gr

Abstract. Nowadays computer systems fail mainly due to software faults. Conse-
quently the need of improving software availability and reliability arises. One of
the main reasons of software failures is software aging. To counteract aging, soft-
ware rejuvenation has been recently proposed. The main aim when dealing with
rejuvenation is to distinguish the optimal time or conditions to trigger it. Rejuve-
nation can be performed in two levels, partial and full. In this paper, a software
system experiencing resource degradation is considered and according to the level
of the degradation, partial or full rejuvenation is triggered. Since software per-
formance degrades in time due to the increasing resource exhaustion it is proposed
to model the degradation time by an increasing failure rate distribution. The sys-
tem is modeled by a Semi-Markov process. The purpose is to examine how avail-
ability and downtime cost are affected by this fact and moreover to decide on the
optimal rejuvenation policy.

1 Introduction

The fact that the performance of computer systems can be affected by malfunc-
tions or outages consisting in either hardware or software failures is common
knowledge. It is equally well known that hardware failures can be severe and
can have undesired consequences not only for computer systems but also for
humans. Today however, hardware is considered reliable to a great extent; more-
over various mechanisms have emerged which ensure high levels of hardware
performance.

On the other hand, software failures are equally or more severe than hardware
failures for a computer system. Nowadays, thanks to the evolution of hardware
fault tolerance, it is highly unlikely for computer systems to fail because of hard-
ware malfunctions. In opposition to hardware-originated problems though, fault
avoidance by appropriate implementation of software engineering practices is
still an issue, especially with complex software systems. Moreover, it is almost
impossible to fully test and verify that software is fault free. Consequently, soft-
ware faults are the principal cause of computer systems’ failures [2], [6], [21].

One of the main reasons of software failures is software aging. As software sys-
tems run continuously, error conditions generated by aging related bugs can be

102 V.P. Koutras

accumulated and lead either to performance degradation which in its turn leads to
the software system’s crash, or hang failure. This phenomenon, reported in the lit-
erature as software aging [10], [15], occurs mainly due to memory leaks, unre-
leased file-locks, data corruption, storage space fragmentation and accumulation
of round-off errors [1], [10], [11].

For counteracting software aging, the concept of preventing error accumulation
should be introduced. In view of the non-deterministic nature of aging related fail-
ures, it is imperative for the aforementioned concept to include an implementation
policy which takes into account that a failure occurrence may be completely sto-
chastic. In [10], Huang et al. were the first to introduce the concept of a proactive
technique counteracting software aging. The technique was called software reju-
venation and can be considered a software preventive and proactive maintenance
technique. In [10]. rejuvenation is defined as “the periodic preemptive rollback of
continuously running applications to prevent software failures in the future”. In
practice, software rejuvenation is the concept of periodically stopping the running
software, cleaning its internal state and restarting it [20]. Cleaning the internal
state of software might involve garbage collection, defragmentation, flushing op-
erating system kernel tables and reinitializing internal data structures [10], [23].
The main advantage of software rejuvenation lies in its proactive nature.

Nevertheless, rejuvenation obviously involves an overhead. This can be consid-
ered as a major disadvantage but, to its defence, one can claim that rejuvenation
involves scheduled downtime as opposed to higher downtime caused by un-
planned outages. Consequently, when software rejuvenation is allowed for in view
of enhancing system availability, reliability and/or reduce downtime cost, the
optimal time (optimal schedule) to perform it has to be determined in advance.

Rejuvenation and the optimal rejuvenation schedule have been extensively stu-
died in the literature. Among the various approaches for software rejuvenation, it
is interesting to focus on a certain category consisting in considering two-level re-
juvenation. The distinction between these levels lies in the actions taken at each
one, in order to release system resources. The first level corresponds to partial and
the second to full rejuvenation [8], [12], [26]. Usually, the choice of the level of
rejuvenation action depends on the level of software degradation. The difference
in rejuvenation levels is also reflected on their effects.

In this paper, a software system experiencing resource degradation is consid-
ered and according to the level of the degradation, partial or full rejuvenation is
triggered. Most of the studies in the area, model resource exhaustion by assuming
that the degradation rate is constant as for example in [10], [18], [19], [24]. Con-
trarily, Xie et al in [26] consider a more general case in which the time to software
degradation follows a general distribution, though in a more realistic case, Tai et
al in [22], model the degradation time by a hypo-exponential distribution to cap-
ture the fact that due to error accumulation and consequently due to aging, the
degradation time should be modelled by an increasing failure rate distribution. In
our approach, since software performance degrades in time due to the increasing

Two-Level Software Rejuvenation Model with Increasing Failure Rate Degradation 103

resource exhaustion, it is proposed to model the degradation time by a Weibull
IFR distribution [1].

Additionally, the proposed model considers the probability that rejuvenation
cannot be accomplished properly. This is the scenario of a failed rejuvenation ac-
tion which indicates an abnormal function during the rejuvenation process. The
latter situation may be extremely rare but it may occur under certain conditions
and circumstances as for instance when garbage collection problems due to too
large applications or applications with severe real time constraints occur [3].
When a failure on the rejuvenation procedure occurs, the software system enters a
failure state and needs to be rebooted in order to return to a robust state. The con-
cept of a failed rejuvenation can be met either when partial or full rejuvenation
actions need to be performed.

The main aim of this paper is to examine how software availability and down-
time cost is affected by the IFR distribution of the degradation procedure and
moreover to decide on the optimal rejuvenation policy in terms of availability and
downtime cost. Since not all of the transition time distributions are exponential, a
semi-Markov process is introduced to model the behaviour of the system under
consideration.

2 Software Rejuvenation Model

A software system which is initially in a robust state is considered. Due to error
condition accumulation and aging phenomena, its performance degrades in time
and enters a medium-efficient software execution phase [26]. Although the system
is not as efficient as in the robust state, it is still available. Since the system is op-
erational and it runs continuously in time, the level of performance degradation
increases leading the system to a low-efficient execution phases [26]. The low-
efficient state is also an available state. Actually, by the aforementioned distinc-
tion of states, the degradation procedure has been divided into two phases. Hence,
from the initial robust state 0, cf. Figure 1, the system enters the medium- efficient
state 1 and since the software performance continues to degrade, the system even-
tually enters the low-efficient state 2.

2.1 Modeling Software Performance Degradation

Software systems running continuously for a long time reveal a degraded per-
formance and an increased failure occurrence rate. This is the so called phenome-
non of software aging. In order to prevent failures due to aging, proactive actions
should take place. In the case that software degradation rate is constant, proactive
action does not affect the probability of a failure. Aging-related bugs, causing
software aging, can cause errors to accumulate over time. These error conditions
do not lead immediately to failures; instead aging phenomena occur and the soft-
ware reveals a degraded performance. Additionally, the total system’s runtime can

104 V.P. Koutras

0 1 2 6

5

3

4

F0(t) F1(t)

F2(t)

F3(t) F4(t)F5(t)

F6(t)
F7(t)

F8(t)

F9(t)

F10(t)

Fig. 1 State transition diagram for the rejuvenation model

affect an aging-related bug’s activation rate [9]. Consequently, the degradation
rate should be model as an increasing failure rate. In this case, usually in engineer-
ing applications, the Weibull distribution is used to model such incidents.

In the present work, it is proposed to model the times to enter a more degraded
state by Weibull distributions with shape parameters greater than 1. In detail, the
time to enter the medium-efficient state 2, from the robust state, is modelled by a
Weibull distribution with shape parameter k1 (k1 > 1) and scale parameter λ1.
Likewise, the time to enter the low-efficient state 3 from the medium-efficient
state is model by the same distribution with parameters k2 (k2 > 1) and λ2.

Moreover, in the case that the system is in the medium-efficient state, as it will
be explained later on, software rejuvenation should be performed in order to avoid
a future software failure. But in the case that software degradation is high, the sys-
tem may fail and hence enter the failure state 6. Since such a transition is caused
due to software gradation, it is also modeled by an IFR Weibull distribution with
parameters k3 (k3 > 1) and λ3.

Consequently, the software system considered experienced software degrada-
tion and failures due to aging phenomena, which are modeled by increasing failure
rate distributions. These IFR Weibull distributions are denoted by F0(t), F1(t) and
F9(t). Distribution F0(t) models the time for the system to enter the low-efficient
state though F1(t) correspond to the time for entering the low-efficient state. Fi-
nally, F9(t) is the distribution of the time to enter the failure state from the
low-efficient state (cf. Figure 1).

2.2 Two-Level Software Rejuvenation Model

When the software system enters the low-efficient state it is failure prone and
software rejuvenation should be triggered in order to prevent a future software
failure. The time to trigger software rejuvenation is actually a fixed duration and
hence it can model by the unit step function: F2(t) = u(t-r) with r denoting the time
to trigger rejuvenation [7], [26]. Modeling the time to rejuvenation by the unit step
function indicates that the rejuvenation interval (i.e. the time to initiate the rejuve-
nation procedure) should be fixed and predefined. This means that before r elapses

Two-Level Software Rejuvenation Model with Increasing Failure Rate Degradation 105

no rejuvenation action is initiated. After time r the system enters is taken out of
service and rejuvenation is initiated.

Software rejuvenation can be offered at two levels depending on the level of
software performance degradation. In this paper, rejuvenation is proposed to be
triggered according to a two-level model. The distinction between these levels,
apart from the level of degradation, lies in the actions taken by each in order to re-
lease system resources avoiding hence a probable software failure. The first level
corresponds to partial and the second to full rejuvenation [8], [12], [26]. Partial
and full rejuvenation ([26]) are defined as follows.

Partial rejuvenation is a service-level rejuvenation. When it is performed, all
necessary data is saved and the following restart of the service resumes the opera-
tion in a more usable state. It can also be considered as a partial restart. The im-
pact of other applications running on the same operating system (OS) is assumed
to be minimal. Partial rejuvenation returns the system to a more usable state but
not in an “as good as new” state.

During full rejuvenation the OS and all the services of the machine which un-
dergoes it have to be stopped. In fact, the full rejuvenation action restarts the OS
to recover all its free memory, therefore it can be also considered as a full restart.
It is a thorough rejuvenation, and it affects all applications on the machine under-
going it. As a consequence, it takes more time to complete it and once it is
completed, the system enters a robust state.

Both in the case of partial or full rejuvenation and under certain circumstances
there is a probability that something can go wrong during the rejuvenation proce-
dure, resulting in a failure on the system’s software. For instance, some problems
may occur during garbage collection, especially when dealing with too large ap-
plications with severe real time constraints. The above concept called failed reju-
venation has been recently introduced in [12], [13] and [14]. The phenomenon of
failed rejuvenation can be considered as a rather rare event but we are interested in
the fact that there is a probability, although it is very low, that rejuvenation may
fail to be completed and cause a software failure.

2.3 Model Description

Given the degradation, failure and rejuvenation procedure description the behav-
iour of the software system presented can be described in detailed. Hence a sort
description of the system is provided which is in accordance with Figure 1.

Initially the system is at the robust state 0 which is a fully operational state.
Due to aging phenomena, the system experiences performance degradation and
enters the medium-efficient state 1with an IFR Weibull distribution F0(t). Since er-
ror conditions accumulate over time the system can a experience a more severe
degradation and hence enter the low-efficient state 2, again according to an IFR
Weibull distribution F1(t). In this state the system is failure prone. Hence, either
rejuvenation is decided and the system enters state 3 with distribution F2(t) or the
system fails with an IFR Weibull distribution F9(t), entering hence state 6.

In the case of rejuvenation, depending on the level of software performance
degradation, the system from state 3 can enter the partial rejuvenation state 4

106 V.P. Koutras

according to an exponential distribution F3(t) with parameter rp or it can enter the
full rejuvenation state 5, also according to an exponential distribution F4(t) with
parameter rf. The system recovers from partial rejuvenation with rate βp, which is
the parameter of the exponential distribution F5(t), and enters the low-efficient
state 1. Recovery from the full rejuvenation state 5 occurs with rate βf which de-
notes the parameters of the exponential distribution F7(t). In this case, the system
returns to the highly robust state 0. Both partial and full rejuvenation can fail to be
accomplished. When partial rejuvenation fails, the system enters the failure state 6
with rate λp while when full rejuvenation fails the corresponding transition rate is
λf. Notice that the time to a failed rejuvenation action is exponentially distributed
for both partial and full rejuvenation (F6(t) and F8(t) correspondingly).

In the case that performance degradation is high enough and a software failure
occurs before rejuvenation interval r elapses, the system enters the failure state 5
with an IFR Weibull distribution F9(t).

From the failure state 6, the system needs to be restarted in order to recover to
the robust state. The time needed to recover from a failure, is assumed to be expo-
nentially distributed (F10(t)) with parameter μ.

In order to avoid any misunderstandings, the distributions of the transition
times as they appear in Figure 1, are provided:

⎪⎩

⎪
⎨
⎧

−=−=<

−=−=≥
=

−=−=−=

−=−=−=

−−

−−

−−−

−−−

tt

tt

ttrt

ttrt

etFetFrt,

etFetFrt,
tF

etFetFetF

etFetFetF

p

k
p

ff
k

fp
k

μλ

λβ

λλ

βλ

1)(1)(0

1)(1)(1
)(

1)(1)(1)(

1)(1)(1)(

106

95
2

841

730

3
3

2
2

1
1

 (1)

3 Semi-markov Analysis

Since not all of the transitions among the states of the studied system obey in ex-
ponential distributions, the evolution of the system has to be studied via a semi-
Markov process. The Semi-Markov analysis is given by the so-called two-stage
method [5], [25]. Based on this method, the kernel matrix Q(t) is needed:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

000000

00000

00000

00000

00000

000000

000000

60

5650

4641

3534

2623

12

01

q

qq

qq

qq

qq

q

q

)t(Q (2)

Two-Level Software Rejuvenation Model with Increasing Failure Rate Degradation 107

where { } E011 ∈=≤== j,i,iY|tT,jYPr)t(qij and E={0, 1, 2, 3, 4, 5, 6} the

state space of the model, (){ }0≥n,T,Y nn the underlying Markov renewal sequence

of random variables [26]. Thus qij is the probability that the SMP has entered state
i, the next transition occurs within time t and the process transits to state j.

Denoting by)t(Fi the cumulative distribution function (cdf) of any transition

from state i∈E and)t(F)t(F ii −=1 its complementary cdf, the elements of the

kernel matrix Q(t) are given as follows:

)t(Fq,)x(dF)x(Fq,)x(dF)x(Fq,)x(dF)x(Fq

,)x(dF)x(Fq,)x(dF)x(Fq,)x(dF)x(Fq

,)x(dF)x(Fq,)x(dF)x(Fq,tFq,tFq

ttt

ttt

tt

1060

0

8756

0

7850

0

6546

0

5641

0

4335

0

3434

0

9226

0

2923112001)()(

====

===

====

∫∫∫

∫∫∫

∫∫

(3)

Recall that the time to trigger rejuvenation is a fixed duration and hence its cdf can
be given as)rt(u)t(F −=2 , where u(t) is the unit step function and r is the time

to trigger rejuvenation [7], [26].
Since such software systems are designed to run continuously we are interested

in their asymptotic behavior. In order to derive the asymptotic probability distribu-
tion of the embedded Markov chain (EMC) the following linear system of
equations

1
E
== ∑∈i iv,vPv

has to be solved, where ()60 v,vv …= is the steady-state probability vector of the

EMC and)t(lim
t

QP
∞→

= is the corresponding probability matrix which can be

computed based on the two-stage method of SMP analysis:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

++

++

++

−

=

−−

0000001

00000

00000

00000

100000

0000100

0000010

3
3

3
3

ff

f

ff

f

pp

p

pp

p

fp

f

fp

p

rr

rr

r

rr

r
ee

kk

λβ
λ

λβ
β

λβ
λ

λβ
β

λλ

P (4)

108 V.P. Koutras

The steady-state probability of state i for the SMP can be computed taking into ac-
count the mean sojourn time hi in state i. The asymptotic probability distribution
of the SMP exists, since the embedded EMC nY is irreducible recurrent [5]. As al-

ready mentioned, the distribution of time spend at states 0, 1 and 2, is assumed to
be a Weibull distribution with shape parameters k1, k2, k3 > 1 correspondingly, in-
dicating that they are IFR distributions. Moreover, the mean sojourn times at state
3, where the system is taken out of service for rejuvenation and the level of reju-
venation has to be decided, is negligible to comparing with the rest of the sojourn
times and hence is assumed to be zero. Let Hi(t) denote the distribution of the so-

journ time in state i. Then the mean sojourn time in state i is ∫
∞

=
0

dt)t(Hh i

_

i .

Hence:

()

,h,dt)t(Fh,dt)t(F)t(Fh

dt)t(F)t(Fh,
k

,r
k

dt)t(F)t(Fh

,
k

dt)t(Fh,
k

dt)t(Fh

ff

pp

k

k

k

0
11

11

1
1

1
1

3
0

106
0

875

0
654

3
31

33

1

0
922

2
2

0
11

1
1

0
00

3

3

3

===
+

==

+
==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅Γ⋅

Γ
==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+Γ⋅==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+Γ⋅==

∫∫

∫∫

∫∫

∞∞

∞∞

∞∞

μλβ

λβ
λ

λ

λλ

 (5)

where Γ(•) Gamma function, while Γ(•,•) is the incomplete Gamma function.

3.1 Asymptotic Availability

The main aim of this study is to examine firstly how the IFR Weibull distributions
of the degradation and failure procedures affect system’s asymptotic availability
and downtime cost and secondly to decide on the optimal rejuvenation schedule r.
The asymptotic availability A=ΣiœUπi has to be derived, with πi denoting the sta-
tionary probability of the SMP for state i. Set U is a subset of the state space
E constrained on the operational states of the system. The complementary subset
of U is subset D, which contains the down states of the system. Analytically,
U = {0, 1, 2}, D = {3, 4, 5, 6}. To compute the asymptotic availability, the sta-
tionary probability distribution of the SMP ∑

∈

=
Ek

kk

ii
hv

hv
iπ is needed. The following

formula provides the asymptotic availability:

665544221100

221100
210A

hvhvhvhvhvhv

hvhvhv

+++++
++=++= πππ (6)

As it can be observed by the probability transition matrix in (4) and the mean
sojourn times in (5), the steady-state probability distribution of the SMP and con-
sequently the asymptotic availability depends on the Weibull parameters k1, λ1, k2,

Two-Level Software Rejuvenation Model with Increasing Failure Rate Degradation 109

λ2, k3, λ3 and on the rejuvenation schedule r. Hence, it is interesting to examine
how the variation of these parameters affects system’s availability.

3.2 Total Expected Downtime Cost

Apart from the asymptotic availability, we are also interested on the cost caused
due to downtime. As it is mentioned, rejuvenation incurs an overhead and conse-
quently it generates a downtime cost since when the system is rejuvenated is a
non-operational mode. On the other hand, letting the system without rejuvenation
can lead to unexpected software failures due to aging phenomena that cause soft-
ware performance degradation. Such unexpected outages due to their unplanned
nature cost much more that the scheduled rejuvenation actions [10]. A downtime
cost occurs when the system enters the states belonging to state subset D.

To compute the downtime cost, a performability indicator is introduced. In the
following, notation Cf stands for the failure cost per unit of time while C1 stands
for the partial rejuvenation cost per unit of time and C2 for the full rejuvenation
cost per unit time. As previously stated it holds that Cf > C1, Cf > C2 and addition-
ally Cf > C1+ C2. According to the definitions of partial and full rejuvenation, the
second rejuvenation action is more cost effective than the first, implying C1< C2.

For defining the performability indicator, notice that: DUE ∪= , ∅=∩DU ,
∅≠U and ∅≠D . Now let

⎩
⎨
⎧

∈
∈

=
U0

D1

i,

i,
di and

{ }⎪
⎪
⎩

⎪
⎪
⎨

⎧

∈
=
=

=

=

6540

5

4

6

2

1

,,/Ei,

i,C

i,C

i,C

C

f

i

defining the reward function ii dC)i(w ⋅= . The cost per unit of downtime is

denoted as:

() { }∑
∈

=⋅=
Ei

i)t(X)i(w)t(Xg 1 (7)

where)t(X denotes the state of the system at time t. Then the expected down-

time cost is given by the following equation ([16]):

()[] ∑∑
∈∈

= =⋅=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅=

EiEi

}i)t(X{)i)t(XPr()i(w)i(wE)t(XgE 1 (8)

System’s performance can be measured by the total expected downtime cost in the
long run, hence the Total Expected Downtime Cost (TEDC) in the steady state in a
time interval of L time units, is given by ([10], [17]):

[]() L)i(wL))t(X(gElim)L(TEDC
Ei

i
t

×⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅=×= ∑

∈
∞→

π (9)

110 V.P. Koutras

which is finally:

() LCCC)L(TEDC f ×⋅+⋅+⋅= 52416 πππ (10)

Since TEDC depends on the stationary probability distribution of the SMP, it also
depends on the Weibull distributions parameters and on the rejuvenation schedule.
Hence, the effects of the above parameters on the total expected downtime cost
can be also examined.

4 Numerical Illustration

To illustrate the theoretical framework, some numerical results are presented. The
data to be used do not come out of a real life system but they are in accordance
with the relative literature. All the data needed are shown in Table 1. Notice that
the Weibull distribution for the degradation and the failure procedures are consid-
ered as IFR. The parameters of the failure time Weibull distribution are fixed.

Contrarily, it is assumed that the degradation time distribution parameters are
identical, i.e. in the following k1 = k2 and λ1 = λ2.

The aim is to examine how the Weibull parameters and the rejuvenation sched-
ule affect system’s asymptotic availability and the total expected downtime cost.
These effects are represented through Figures 2-9.

Table 1 Empirical data

Parameter Values Parameter Values

rp 0.1104 days-1 λp 0.0016 days-1

rf 0.0552 days-1 λf 0.0033 days-1

βp 480 days-1 μ 120 days-1

βf 240 days-1 (k3,λ3) (2,0.8 days-1)

In Figure 2, it is shown that when the shape parameter of the Weibull distribu-

tion increases, the availability decreases. Since the shape parameter is set to be
higher than 2, the time to degradation follows an IFR distribution. This means that
the probability of software degradation increases with time, which is sensible
since error conditions are accumulated increasingly with time. As higher the shape
parameter is as intensely the availability decreases. On the other hand, the scale
parameters depicting the skewness and the kurtosis of the degradation time distri-
bution, when increased causes an increase on the availability. An increase of the
scale parameter means that the probability of transitions to a more degraded state
decreases and hence the probability of entering a non- operational state decreases.
The same effects of the Weibull parameters can be obtained for the total expected
downtime cost, as shown in Figure 3. Higher values for the shape parameter cause
an increase on the downtime cost since the probability of entering a non-
operational state increases with time. Correspondingly, the total expected cost

Two-Level Software Rejuvenation Model with Increasing Failure Rate Degradation 111

decreases for higher values of the shape parameter, since in this case the probabil-
ity of entering a downstate decreases.

Interesting remarks can be obtained by Figures 4 and 5. Notice that the prob-
ability of the system remaining at state 2 decreases for values lower than approxi-
mately 1.2 days and then increases. That is why availability and downtime cost
show a minimum and a maximum correspondingly for rejuvenation interval
around this value. Moreover, it is observed that for rejuvenating the system every
3 days from the time that it enters the low efficiency state, one can manage
to achieve five nines availability and simultaneously achieve an important reduc-
tion of the downtime cost. Consequently, a 3-day rejuvenation interval can be
considered as an optimal schedule.

All of the aforementioned effects hold true, when combining the rejuvenation
schedule and the Weibull parameters, in order to examine how they affect avail-
ability and downtime cost. The corresponding plots are shown in Figures 6-9.

It is worth mentioning that all the observation taken out of the graphs are data
sensible. Nevertheless, the remarks about the role of rejuvenation schedule and
Weibull parameters on the availability and on the downtime cost do not change.
The shape of availability and downtime cost in these figures is highly affected by
the rejuvenation interval. Consequently, availability is convex around rejuvenation
intervals of about 1.2 days and downtime cost is concave correspondingly, in ac-
cordance with Figures 4 and 5, as previously explained.

A
va

ila
b

ili
ty

2

3

4

5

Scale parameter

0.5

1

1.5

2

Shape

0.999992

0.999992

0.999992

0.999992

0.999992

2

3

4Scale parameter

0.999992006

0.999992003

0.999919

Fig. 2 Availability vs. Weibull parameters

2

3

4

5

Scale parameter

0.5

1

1.5

2

Shape p

70.02

70.04

70.06

70.08

2

3

4Scale parameter

T
E

D
C

Fig. 3 TEDC vs. Weibull parameters

112 V.P. Koutras

1 2 3 4 5 6

0.998

0.9985

0.999

0.9995

1

A
va

ila
bi

lit
y

Rejuvenation interval r in days

Fig. 4 Availability vs. Rejuvenation interval

1 2 3 4 5

5000

10000

15000

T
E

D
C

Rejuvenation interval r in days

Fig. 5 TEDC vs. Rejuvenation interval

2

3

4

5
0

2

4

6

0.996

0.998

1

2

3

4

Av
ai

la
bi

lit
y

Fig. 6 Availability for varying shape parameter and rejuvenation interval

2

3

4

5
0

2

4

6

0

10000

20000

30000

40000

2

3

4

TE
D

C

Fig. 7 TEDC for varying shape parameter and rejuvenation interval

Two-Level Software Rejuvenation Model with Increasing Failure Rate Degradation 113

0.5

1

1.5

2
0

2

4

6

0.998

0.9985

0.999

0.9995

1

5

1

1.5
Av

ai
la

bi
lit

y

Fig. 8 Availability for varying scale parameter and rejuvenation interval

0.5

1

1.5

2
0

2

4

6

0

5000

10000

15000

5

1

1.5

TE
DC

Fig. 9 TEDC for varying scale parameter and rejuvenation interval

5 Conclusions

In this paper a software system experiencing performance degradation in time is
considered. To prevent software failures due to degradation software rejuvenation
is adopted in two levels. The innovative aspect of the present study consist in
modelling the degradation time with an increasing failure rate distribution, in or-
der to highlight the fact that the probability of degradation increases with time.
Hence a two-parameter Weibull distribution is considered for the two-levels of
software performance degradation. Along with distinguishing the optimal rejuve-
nation schedule that benefits asymptotic availability and the expected downtime
cost, the effect of the degradation time distribution parameters on these measures
are also examined. Consequently, the theoretical framework, illustrated by a nu-
merical example, of a two-level software rejuvenation model with increasing fail-
ure rate degradation is introduced, extending hence the existing literature on the
area. In the future, it might be interesting to adopt some other distributions to
model the degradation procedure and examine how they affect the dependability
of the two-level rejuvenation model.

114 V.P. Koutras

References

[1] Bae, S.J., Kuo, W., Kvam, P.H.: Degradation models and implied lifetime distribu-
tions. Reliability Engineering and System Safety 92(5), 601–608 (2007)

[2] Bobbio, A., Sereno, M.: Fine grained software rejuvenation models. In: Proceedings
of IEEE International Symposium on Computer Performance and Dependability,
IPDS 1998, pp. 4–12 (1998)

[3] Boehm, H., Weiser, M.: Garbage collection in an uncooperative environment. Soft-
ware-Practice and Experience 18, 807–820 (1988)

[4] Casteli, V., Harper, R.E., Heidelberger, P., Hunter, S.W., Trivedi, K.S., Vaidyanathan,
K., Zeggert, W.P.: Proactive Management of Software Aging. IBM Journal of Re-
search & Development 45(2), 311–332 (2001)

[5] Cinlar, E.: Introduction to Stochastic Processes. Prentice-Hall, New Jersey (1975)
[6] Dohi, T., Goseva-Popstojanova, K., Vaidyanathan, K., Trivedi, K.S., Osaki, S.: Soft-

ware Rejuvenation: Modeling and Applications, Handbook of Reliability Engineering,
ch.14, pp. 245–263. Springer, London (2006)

[7] Dohi, T., Goseva-Popstojanova, K., Trivedi, K.S.: Estimating software rejuvenation
schedules in high-assurance systems. The Computer Journal 44, 473–482 (2001)

[8] Eto, H., Dohi, T.: Determining the Optimal Software Rejuvenation Schedule via
Semi-Markov Decision Process. Journal of Computer Science 2(2), 528–535 (2006)

[9] Grotke, M., Trivedi, K.S.: Fighting Bugs: Remove, Retry, Replicate, and Rejuvenate.
Computer 40(2), 107–109 (2007)

[10] Huang, Y., Kintala, C., Kolettis, N., Fulton, N.D.: Software rejuvenation: analysis,
module and applications. In: Proceedings of 25th International Symposium on Fault
Tolerant Computer Systems, pp. 381–390. IEEE CS Press, Los Alamitos (1995)

[11] Jiang, L., Xu, G.: Modeling and analysis of software aging and software failure, Jour-
nal of Systems and Software, Software Performance, 5th International Workshop on
Software and Performance, vol. 80(4), pp. 590–595 (2007)

[12] Koutras, V.P., Platis, A.N.: Semi-Markov Performance Modeling of a Redundant Sys-
tem with Partial, Full and Failed Rejuvenation. International Journal of Critical Com-
puter Based Systems, pp. 59—85. Inderscience Publishers (2009)

[13] Koutras, V.P., Platis, A.N.: Modeling Perfect and Minimal Rejuvenation for Client
Server Systems with Heterogeneous Load. In: 14th IEEE Pacific Rim International
Symposium on Dependable Computing, pp. 95–103. IEEE Computer Society Press,
Los Alamitos (2008)

[14] Koutras, V.P., Platis, A.N., Limnios, N.: Availability and Reliability Estimation for a
System Undergoing Minimal, Perfect and Failed Rejuvenation. In: IEEE International
Conference on Software Reliability Engineering Workshops, ISSRE (2008),
doi:10.1109/ISSREW.2008.5355519

[15] Parnas, D.L.: Software aging. In: Proceedings of 16th International Conference on
Software Engineering, pp. 279–287. ACM Press, New York (1994)

[16] Platis, A.N.: A generalized formulation for the performability indicator. Computers &
Mathematics with Applications 51(2), 239–246 (2006)

[17] Platis, A.N., Drosakis, E.: Coverage modeling and optimal maintenance frequency
of an automated restoration mechanism. IEEE Transactions on Reliability 58(3),
470–475 (2009)

[18] Rezaei, A., Sharifi, M.: Rejuvenating High Available Virtualized Systems. In: Inter-
national Conference on Availability, Reliability and Security, pp. 289–294 (2010)

Two-Level Software Rejuvenation Model with Increasing Failure Rate Degradation 115

[19] Rinsaka, K., Dohi, T.: A Faster Estimation Algorithm for Periodic Preventive Rejuve-
nation Schedule Maximizing System Availability. In: Malek, M., Reitenspieß, M.,
van Moorsel, A. (eds.) ISAS 2007. LNCS, vol. 4526, pp. 94–109. Springer,
Heidelberg (2007)

[20] Rinsaka, K., Dohi, T.: Behavioral analysis of fault-tolerant software system with reju-
venation. IEICE - Transactions on Information and Systems E88-D(12), 2681–2690
(2005)

[21] Sullivan, M., Chillarege, R.: Software Defects and Their Impact on System Availabil-
ity—A Study of Field Failures in Operating Systems. In: Proceedings of the 21st
IEEE International Symposium on Fault-Tolerant Computing, pp. 2–9 (1991)

[22] Tai, A., Tso, K.S., Sanders, W.H., Chau, S.N.: A performability-oriented software re-
juvenation framework for distributed applications. In: Proceedings of the International
Conference on Dependable Systems and Networks (DSN-2005), pp. 570–579 (2005)

[23] Tai, A.T., Alkalai, L., Chau, C.N.: On board Preventive Maintenance for Long life
Deep space Missions: A model based evaluation. In: Proceedings of 3rd IEEE Interna-
tional Computer Performance and Dependability Symposium, pp. 196–105 (1998)

[24] Thein, T., Chi, S.D., Park, J.S.: Availability Modeling and Analysis on Virtualized
Clustering with Rejuvenation. International Journal of Computer Science and Infor-
mation Security 8(9), 72–80 (2008)

[25] Trivedi, K.S.: Probability and Statistics with Reliability, Queuing, and Computer Sci-
ence Applications, 2nd edn. John Wiley & Sons, Chichester (2001)

[26] Xie, W., Yiguang, H., Trivedi, K.S.: Analysis of a two-level software rejuvenation
policy. Reliability Engineering and System Safety 87(1), 13–22 (2005)

W. Zamojski et al. (Eds.): Dependable Computer Systems, AISC 97, pp. 117–129.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Towards a UML Profile for Maintenance
Process and Reliability Analysis

Marcin Kowalski and Jan Magott

Wrocław University of Technology, Wybrzeze St.Wyspianskiego 27,
50-370 Wrocław, Poland
email: marcin.kowalski@pwr.wroc.pl, jan.magott@pwr.wroc.pl

Abstract. In the field of reliability analysis just few modeling languages became
widely recognized by specialists. Being born out of their simplicity, Fault Trees
continuously held appeal to both scientists and engineers, which brought them
various syntactical extensions as well as analysis software. Although, Fault Trees
have proved their usefulness by nontrivial technical problems, we notice their
weakness in specification of maintenance processes, which are usually composed
of actions taken in accordance with control- and dataflow. For this reason we try
merging UML 2.0 Activity Diagrams with Probabilistic Fault Trees with Time
Dependencies by expressing events as objects. That in fact requires redefinition of
generalization and causal gates of the trees, though lays the foundations for the
new language named Reliability-Enhanced Activity Diagram. By taking advan-
tage of the UML 2.0 infrastructure, we design the language’s profile and validate
the approach against a model of a computer system’s repair scheme.

1 Introduction

By firmly grasping the basic ideas of classical logic, the Fault Tree [6] formal lan-
guage brought something of a novelty into dependability modeling. Doubtless,
capturing the generalization relationship between events using gates resembling
logical operators turned out to be a success story among engineers focusing on
structures of systems being modeled. Therefore, various language extensions, such
as: Repair Fault Trees, Dynamic Fault Trees or Probabilistic Fault Trees with
Time Dependencies were explored to edge the formalism’s way through a particu-
lar aspect of dependability modeling.

Factors that increased applicability of Fault Trees were the following papers:
[5], where dynamic fault trees have been introduced and [3], where repair boxes
have been defined. In the RELEX tool [18], dynamic gates are converted into
Markov models. In [3], elements of Dynamic Fault Trees (DFT) and repair boxes
are translated into such a subclass of colored Petri nets that is called stochastic
well formed nets. The last ones are converted into Markov models. In paper [12],
translation from dynamic fault trees into Bayesian networks has been presented.
Formal tools: Markov models, Petri nets, Bayesian networks are not popular
among engineers. However, descriptive power of the Repair Fault Trees, Dynamic

118 M. Kowalski and J. Magott

Fault Trees when such time dependencies like a sequence of time consuming
activities or time redundancy have to be expressed is strictly limited. Therefore,
Probabilistic Fault Trees with Time Dependencies have been introduced in [1].

The main challenge in the search for prominent extensions is to increase ex-
pressive power of the language in such a skillful manner that its intuition to engi-
neers is left intact.

Up to now, process modeling in Fault Trees was confined to simple cases, e.g.
repairs are represented in Repair Fault Trees [4]. Maintenance processes are much
more complicated. They contain not only repairs, but also such activities as: test-
ing, preventive maintenance, corrective maintenance that are important factors in
maintenance optimization.

In paper [15], original twenty control flow-patterns plus identified twenty three
new patterns relevant to control-flow perspective have been presented and for-
mally expressed in Colored Petri nets. An evaluation obtained from detailed
analysis of the control-flow patterns across fourteen commercial offerings includ-
ing workflow systems, business process modeling languages and business process
execution languages have been given. According to the evaluation UML Activity
Diagrams 2.0 with BPMN and XPDL are in top three products of these fourteens.

Hence an idea presented in this paper to combine the UML Activity Diagrams
(ADs) [13], a highly expressive and practically appreciated language, with prob-
abilistic fault trees with time dependencies [1]. As a result, a wide range of behav-
iors such as: atomic actions, resource allocations, time-consuming activities as
well as sequential and parallel activities with synchronization may be expressed in
dependability models. Moreover, a profile for UML models built in IBM Rational
Software Architect 8 [16] is provided, so that Reliability-Enhanced Activity Dia-
gram (READ) models can be designed and validated. While building our profile,
we incorporate the Modeling and Analysis of Real-Time and Embedded Systems
Profile [17] to specify a timing model. The obtained modeling approach is tested
against a computer system incorporating a repair facility allocation scheme.

A similar idea to combine UML ADs with Fault Trees to evaluate security has been
a foundation of the paper [9]. In this profile, an emphasis is put on attack modeling
while in our present paper we highlight failure/repair process consisting of control and
data-ordered actions redefined in the 2.0 version of UML. In addition, we enhance
ADs with Probabilistic Fault Trees with Time Dependencies whose expressive power
is much greater than standard Fault Trees power. By incorporating the notion of time
within gates and elaborating action semantics we deliver an executable UML profile,
for which a dedicated simulator will be implemented.

READ models can be applied in agile software development process manage-
ment [2]. In this process, testing is crucial activity. Model of this process with de-
fect prediction can be useful in testing and debugging planning.

Structure of the paper is as follows. First, ADs in expressing maintenance proc-
ess are presented. Then, Probabilistic Fault Trees with Time Dependencies
adapted to ADs are outlined. In Section 4, the READ UML profile is shortly pre-
sented. Next, a case study of computer system with CPU, memory with redun-
dancy and disc with redundancy is modeled in the READ UML profile. Finally,
we conclude the research.

Towards a UML Profile for Maintenance Process and Reliability Analysis 119

2 Activity Diagrams with READ Transitions in Maintenance
Processes Modeling

In ADs, control-flow and data-flow can be represented. Sequential and parallel
composition, decision, iteration, hierarchy (actions are nested in activities), differ-
ent types of synchronization, multicasting, multireceiving, can be expressed.
Detailed analysis of modeling power of ADs is given in [14], [15].

Now it will be shown how aspect of failure and repair processes can be de-
scribed by ADs. Let us look at Fig. 1.

Fig. 1 Failure process of objects of a Component class

Hour-glass combined from two triangles is an Accept Time Event Action. It de-
livers time events. Length of time interval between two subsequent events is de-
scribed by Weibull distribution with probability density function F(x). It expresses
failure stream. Each time instant the event occurs, an object of Component class is
located in central buffer. This object is in state “failed”. Semantics of ADs is Petri
net based one. Hence, an object located in central buffer is a token.

Objects of a class can be distinguished by a parameter that is a class attribute.
The parameter can be an identifier. Let CPU be a class of central processing units.
Its instances can be distinguished by their identifiers, e.g., CPU1, CPU2.

In fault trees there are events and gates. In the profile, events of fault trees are
represented by objects that can be put into or drawn from central buffers.

Therefore, object located in central buffer can represent a component in differ-
ent states or event. It is an advantage of generality level of object concept. It is
clear when comparing with paper [8] where except typical fault tree constructs as
events there are states.

Fork and Join nodes are elements of ADs. They usually are used in order to ex-
press a parallel composition. They both are represented graphically in the same way
as a Petri net transition [10]. Additionally, the following constraint is imposed:

The edges coming into and out of a fork node must be either all object flows or
all control flows. ([13], page. 387).

120 M. Kowalski and J. Magott

Therefore, in the READ UML profile, a Petri net transition symbol will be used
in the meaning of the transition, neither Fork nor Join nodes. The ReadTransition
can be used in modeling a repair process.

Let us consider Fig. 2.

Fig. 2 The Component works activity with two central buffers

Length of time interval between start of work till Component failure is ex-
pressed by duration time of work, and it can be expressed by random variable
(RV), constant, pair: minimal, maximal values or can be equal infinity (∞). In
time instant when the Component fails, the token which represents repaired Com-
ponent is removed from central buffer Component [Repaired], and the token
which expresses failed Component is added to central buffer Component [Failed].

Fig. 3 illustrates repair facility allocation and start of repair.

Fig. 3 Repair facility allocation and start of repair

Towards a UML Profile for Maintenance Process and Reliability Analysis 121

The following figure shows end of repair and repair facility de-allocation.

Fig. 4 End of repair and repair facility de-allocation

Since the UML State Machine specification also defines a notion of a Transi-
tion, which is a different construct than the one outlined above, we disambiguate
the two by calling a Petri net based Transition a ReadTransition.

Furthermore, we introduce a concept of an inhibitor edge, which is an edge
connecting an inhibiting central buffer with a ReadTransition element. The Read-
Transtion cannot fire for the object with a parameter value p if there is an object
with this parameter value in the inhibiting central buffer. Inhibitor edges are
drawn as solid lines with an empty circle at their ends.

A collection of objects in particular states existing at the start of analysis is
called Initial Object Set.

3 Probabilistic Fault Trees with Time Dependencies Adapted to
Activity Diagrams

Probabilistic Fault Trees with Time Dependencies (PFTTD) [1] are combined
from events, gates, and connections between them. The gates, similarly as for fault
trees with time dependencies [7], [11], are divided into two categories: generaliza-
tion and causal. Output event of generalization gate is a combination of input
events. Causal gate is characterized by delay times between causes (input events)
and effect (output event). Generalization gates are denoted by the ‘G’ symbol,
whereas causal ones by ‘C’.

Differences and similarities between logical gates of digital circuits and gates
of the profile will be explained. The OR gate will be used as an illustration. Let us
consider Fig. 5.

122 M. Kowalski and J. Magott

Fig. 5 Gates: G1 - the logical OR gate of digital circuits, G2 - the generalization OR gate of
the profile, G3 - the causal OR gate of the profile

The logical OR gate of digital circuits (Fig. 5, G1) is described by the logical
formula: yxz ∨= , where „∨ ” is a symbol of the OR logical operator, x, y – in-

put variables, z – an output variable. It is a formal model; however, in practice
logical gates are also characterized by propagation time of input signals to output.
Input, output signals represent input, output variables respectively.

A generalization OR gate (Fig. 5, G2) is defined in the following manner.

Fig. 6 The generalization OR gate

An object x occurs in a central buffer in time interval expressed by instant
)xs(τ when it has been located into this buffer till instant)xe(τ when it has

been removed from this buffer. In a particular case, an object occurring time in the
buffer can be equal to zero, i.e.,)xe()xs(ττ = .

Let)t(x denote Boolean logical value of variable x in time instant t. Let T (F)

denote logical value True (False).
Object object:class [state] occurs in its central buffer in time instant t iff Boo-

lean variable object:class [state](t)=T.

Towards a UML Profile for Maintenance Process and Reliability Analysis 123

Let)x,...,x(Bz n1= be Boolean function, where z,x,...,x n1 are Boolean

variables.
Generalization gate of B function type is defined as:

T))t(x),...,t(x(BT)t(z n =⇔= 1 .

Let us analyze generalization OR (GOR) gate in Fig. 6:
This gate behaves according to formal model of logical circuits OR gate, i.e.,

without propagation delays.
At some time instant, an object of Class3 in State3 is present in the output cen-

tral buffer if there is either an object of Class1 in State1, or an object of Class2 in
State2 present in at least one of the input central buffers.

In order to explain causal OR gate (COR, Fig. 5, G3), the following abbrevia-
tions are given:

x – an object of Class1 in State1,
y – an object of Class2 in State2,
z – an object of Class3 in State3,
occur(x) – object x has occurred in a central buffer Class1 [State1],
d1 (d2) - random variable (RV) that represents time delay between the instance

when an object either x or y was located in an input central buffer and the in-
stance when the object z was located in the output central buffer,

R(X) - a realization of random variable X, i.e., a value generated according to
the distribution of the X.

A causal OR (COR) gate is given by a following expression:

)))d(R)ys()zs()y(occur())d(R)xs()zs()x(occur(((

)z(occur

21 +=∧∨+=∧
⇒

ττττ

Meaning of the above formulae is as follows: if the object z occurred in output
central buffer then the object x or y had occurred in input central buffer. The ob-
ject z was located in the output central buffer in instant R(d1) or R(d2), respec-
tively, with reference to the instant when the object x or y was located in the input
central buffer.

Let n-occur(x,t) denote the number of objects x of Class in State that are oc-
curring in the central buffer Class [State] in time instant t.

Generalization voting gate G Vote with threshold k with input central buffers
Class1 [State1], Class2 [State2], and output central buffer Class3 [State3] is de-
fined as follows:

k)t,y(occur_n)t,x(occur_n)t,z(occur ≥+⇒

where:

x – an object of Class1 in State1,
y – an object of Class2 in State2,
z – an object of Class3 in State3.

124 M. Kowalski and J. Magott

The meaning of the above formula is as follows: if an object z is occurring in out-
put central buffer at time instant t then at least k objects are occurring in input
central buffers at this instant.

Example of this gate type is G2 in Fig. 10. The threshold of the gate is 2.
Examples of other PFTTD gates are given in [1].

4 The READ UML Profile

Having outlined the new language, we extend UML using IBM Rational Software
Architect 8 producing a new UML profile depicted in Fig. 7. We plug into the host
language through ActivityEdge and ActivityNode constructs, which lay the graph-
wise foundations of an activity diagram. To this end we use the Extension associa-
tions drawn as solid lines with black, filled arrows connecting ReadNode with Ac-
tivityNode and InhibitorEdge with ActivityEdge. The ReadNode abstract
stereotype underlies the profile core, because it is the most general construct spe-
cialized by ReadTransition, CGATE and GGATE. From the two last stereotypes
concrete gates are derived. Currently AND, OR, PAND, CXOR and VOTE in
both generalization and causal forms are supported.

By extending ActivityEdge we advocate for an inhibitor edge, being a special-
ized edge from a central buffer to a transition.

4.1 Timing Model

We recognize the effort to deliver a UML timing model made when designing the
Marte profile. In particular, we take advantage of the PaStep stereotype accompa-
nied by its non-functional properties (NFP) to specify three types of timing
requirements:

duration of an activity
lifetime of an object contained in a CentralBuffer node
delay of an object state change introduced by causal gate.
Hence, in order to define time to failure of a processor we assign the PaStep
stereotype to the ‘CPU running’ action (Fig. 10) and define an NFP_Duration ob-
ject, referenced by the ‘execTime’ stereotype attribute, as follows:

('assm','dist',('exp',1000000),'min')).

According to the Marte specification, the time to failure is assumed (assm) to be a
random variable (dist) with an exponential distribution (exp). The mean time to
failure is 1000000 minutes (min).

Following the above reasoning a timing model may be specified in the case of
CentralBuffer objects. If lifetime is infinite, as for every CentralObject in Fig. 10,
we refrain from applying the PaStep stereotype at all.

In the case of causal gates, different timing model is applied depending on the
input node effectively activating the gate. Thus, instead of annotating the CGATE
with PaStep, we provide a Delay class, whose objects are contained in a particular
causal gate in the respective cardinality.

Towards a UML Profile for Maintenance Process and Reliability Analysis 125

4.2 Elaborating Syntactical Validity

For many READ constructs we define OCL expressions pinpointing syntactical
rules imposed on models. Some of these are shown in Fig 7. For example:

Fig. 7 The READ UML profile

126 M. Kowalski and J. Magott

CNOT and GNOT gates must have only one node at their incoming edges any
InhibitorEdge construct must end with an inhibited ReadTransition element a
number of Delay objects in the case of COR and CXOR gates must be equal to
their number of incoming edges (not shown).

5 Case Study

In this section a computer system consisting of several components and repair fa-
cilities will be investigated by means of READ (Fig. 8). For the system to run
properly, one CPU, one disc and one memory unit must be working properly, i.e.
be in the “Running” state. However, to advocate for reliability, hot spares of disc
and memory units were introduced.

When a component fails, it waits for an ‘Available’ repair facility and subse-
quently undergoes repair. Contrary, a repair facility is ‘Busy’ when servicing an-
other component being in the ‘UnderRepair’ state.

Fig. 8 Classes and enumerations modeling the case study system

All in all, in the case study maintenance process five components and two re-
pair facilities comprise the system (Fig. 9). In the READ method, we consider
UML Object Diagram to be defining the Initial Object Set.

To group actions, gates and objects, the case study model (Fig. 10) has been
divided into three vertical partitions, those being Regular service, Repair and

Fig. 9 Initial Object Set

Towards a UML Profile for Maintenance Process and Reliability Analysis 127

Fig. 10 The case study model

Maintenance process state. Objects flow horizontally between them as system
components fail and repair. Let us analyze the top-most model section: O1, A1,
O2, T1, O4, O3, G5, O5, G6, O6, A6 and T4 which apply to memories. The mid-
dle and bottom section work alike.

Objects from Fig. 9 fill in O1 and O4 central buffers of the top section at the
initial analysis moment causing the A1 action to start two times in parallel (one for
the “mem1” and the other for the “mem2” object). This action models correct
memory operation, therefore its timing model defines a proper random variable.
After A1 has finished for some memory unit (the first failed memory), the action
removes the respective object from O1 and puts it into O2 changing its state to
“Failed”. Next, if a repair facility is available, the T1 transition realizes the

128 M. Kowalski and J. Magott

allocation scheme described in Section 1. As a result, the memory object is moved
to the O3 buffer and its repair is initialized.

If the component is failed, or it is under repair, the G5 GOR gate puts an object
into O5 buffer denoting that the component is out of service. If the second mem-
ory fails, O6 occurs through G6, and the system is failed (O17) on the virtue of the
G4 GOR gate.

The A6 action lasts as long as the component is repaired. Next, the repair facil-
ity is released (T4) and the repaired memory is restored into the “Running” state
(O1). This causes a change in the O5 buffer effectively restoring the whole system
by removing objects from O6 and O17.

6 Conclusions

Out of many system modeling languages, just a few became practically appreci-
ated owing to their intuitiveness and expressive power. In this paper we managed
to combine two of them, those being fault trees and activity diagrams, and eventu-
ally came up with a new modeling language offering object oriented approach
while specifying event composition, event causality and timing dependencies be-
tween events in the system being modeled. Apart from that, we introduced a Petri
net based transition into the language substantially increasing its modeling power
and enabling development of models, whose specification in fault trees was up to
now virtually impossible.

As a proof of concept we presented one of those models, namely specification
of a repair process applied to a computer system. That involved provision of a
UML profile for the IBM Rational Software Architect platform.

We also seized the opportunity of reusing diagrams other than activity in order
to build models. For example, by means of class diagrams we capture system’s
state space, whereas object diagrams allow us to describe the initial system state.

Next, we want to apply the READ technique to a real-life system and build a
simulator to investigate the system’s reliability.

References

[1] Babczyński, T., Łukowicz, M., Magott, J.: Time coordination of distance protections
using probabilistic fault trees with time dependencies. IEEE Transaction on Power
Delivery 25(3), 1402–1409 (2010)

[2] Bessam, A., Kimour, M.T., Melit, A.: Separating users’ views in a development proc-
ess for agile methods. In: Proc. International Conference on Dependability of Com-
puter Systems, DepCoS - RELCOMEX 2009, pp. 61–68 (2009)

[3] Bobbio, A., Codetta, D.: Parametric fault trees with dynamic gates and repair boxes.
In: Proc. Annual Symposium on Reliability and Maintainability, pp. 459–465 (2004)

[4] Codetta, D., Franceschinis, G., Iacono, M., Vittorini, V.: Repairable fault tree for the
automatic evaluation of repair policies. In: Proc. Proceedings of the 2004 International
Conference on Dependable Systems and Networks, DSN 2004 (2004)

Towards a UML Profile for Maintenance Process and Reliability Analysis 129

[5] Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Dynamic fault-tree models for fault-tolerant
computer systems. IEEE Trans. Reliab. 41(3), 363–367 (1992)

[6] Fault Tree Analysis (FTA), International Technical Commission, Publication 1025
(1990)

[7] Górski, J., Magott, J., Wardzinski, A.: Modelling fault trees using Petri nets. In: in
Proc. SAFECOMP 1995, Belgirate, Italy. LNCS. Springer, Heidelberg (1995)

[8] Grunske, L., Kaiser, B., Papadopoulos, Y.: Model-Driven Safety Evaluation with
State-Event-Based Component Failure Annotations. In: Heineman, G.T., Crnković, I.,
Schmidt, H.W., Stafford, J.A., Ren, X.-M., Wallnau, K. (eds.) CBSE 2005. LNCS,
vol. 3489, pp. 33–48. Springer, Heidelberg (2005)

[9] Houmb, S.H., Hansen, K.K.: Towards a UML profile for security assessment. In:
Proc. UML 2003, Workshop on Critical Computer Systems Development with UML,
pp. 815-829 (2003)

[10] ISO/IEC 15909-1, High-level Petri nets: Concepts, definitions and graphical notation
(2004)

[11] Magott, J., Skrobanek, P.: Method of time Petri net analysis for analysis of fault trees
with time dependencies. In: IEE Proceedings - Computers and Digital Techniques,
vol. 149(6), pp. 257–271 (2002)

[12] Montani, S., Portinale, L., Bobbio, A., Codetta-Raiteri, D.: ADYBAN: a tool for reli-
ability analysis of dynamic fault trees through conversion into dynamic Bayesian net-
works. Reliability Engineering and System Safety 93(7), 922–932 (2008)

[13] OMG, Unified Modeling Language (OMG UML), Superstructure Version 2.3 (2010)
[14] Russel, N., van der Aalst, W.M.P., ter Hofstede, A.H.M.: On the suitability of UML

2.0 activity diagrams for business process modeling (2006)
[15] Russel, N., ter Hofstede, A.M.H., van der Aalst, W.M.P., Mulyar, N.: Workflow con-

trol-flow patterns, A revised view (2006)
[16] IBM, Developer Works on IBM Rational Software Architect (2011),

https://www.ibm.com/developerworks/rational/
[17] OMG, The UML Profile for MARTE: Modeling and Analysis of Real-Time and Em-

bedded Systems (2010),
http://www.omg.org/omgmarte/Specification.htm

[18] RELEX, Resources on Fault Trees (2010),
http://www.relex.com/resources/art

W. Zamojski et al. (Eds.): Dependable Computer Systems, AISC 97, pp. 131–143.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Conjoining Fault Trees with Petri Nets to
Model Repair Policies

Marcin Kowalski and Jan Magott

Wrocław University of Technology, Wybrzeze St.Wyspianskiego 27,
50-370 Wrocław, Poland
email: marcin.kowalski@pwr.wroc.pl, jan.magott@pwr.wroc.pl

Abstract. Right from the beginning, the fault tree language gained great accep-
tance in reliability modeling, because it bears a striking resemblance to the opera-
tors found in the classical logic. Therefore, only by using 'AND' as well as 'OR'
gates a number of system failures can be expressed even by engineers not related
to reliability analysis. Doubtless, intuition accompanying fault tree models is their
greatest merit. Therefore each attempt to increase their expressive power by intro-
ducing a set of very specific model extensions strives to retain the intuitiveness.
The most remarkable extensions are dynamic gates and repair boxes. However,
these extensions are strictly limited to expressing time dependencies like a se-
quence of time consuming activities or time redundancy. From this viewpoint,
fault trees and Petri nets complement one another. The latter offer huge modeling
power comparative to Turing machines, but their models turned out to be obscure
to engineers. Hence, this severe limitation hampers widespread popularity of Petri
Nets. By analyzing the constraints of the two languages, we come up with a new
modeling technique blending fault trees with Petri nets. We extend the expressive
power of fault trees by adding Petri net immediate transitions. The obtained fault
graphs with time dependencies are investigated by modeling several repair poli-
cies on some exemplary computer system. Availability calculations of the system
are possible owing to a dedicated tool.

1 Introduction

Standard fault trees [6] have been used in reliability and safety analysis for fifty
years. Right from the beginning, the fault tree language gained great acceptance in
reliability modeling, because it bears a striking resemblance to the operators found
in the classical logic. Therefore, only by using 'AND' as well as 'OR' gates a num-
ber of system failures can be expressed even by engineers not related to reliability
analysis. Doubtless, intuition accompanying fault tree models is their greatest
merit. Therefore each attempt to increase their expressive power by introducing a
set of very specific model extensions strives to retain the intuitiveness.

They do not have great power of expressing the real systems. Factors that in-
creased applicability of Fault Trees were the following papers: [5], where dynamic

132 M. Kowalski and J. Magott

fault trees have been introduced and [3], where repair boxes have been defined. In
tool RELEX [14], dynamic gates are converted into Markov models. In [3], ele-
ments of Dynamic Fault Trees (DFT) and repair boxes are translated into such a
subclass of colored Petri nets that is called stochastic well formed nets. The last
ones are converted into Markov models. In paper [13], translation from dynamic
fault trees into Bayesian networks has been presented. Formal tools: Markov mod-
els, Petri nets [9], Bayesian networks are not popular among engineers. However,
descriptive power of the above extensions when such time dependencies like a se-
quence of time consuming activities or time redundancy have to be expressed is
strictly limited.

From this viewpoint, fault trees and Petri nets complement one another. The
latter offer huge modeling power comparative to Turing machines, but their mod-
els turned out to be obscure to engineers. Hence, this severe limitation hampers
widespread popularity of Petri Nets.

By analyzing the constraints of the two languages, we come up with a new
modeling technique blending fault trees with Petri nets. We extend the expressive
power of fault trees by adding Petri net immediate transitions. The obtained fault
graphs with time dependencies are an extension of probabilistic fault trees with
time dependencies [2]. The fault graphs are investigated by modeling several re-
pair policies on some exemplary computer system. Availability calculations of the
system are possible owing to a dedicated tool.

Structure of the paper is as follows. First, probabilistic fault trees with time de-
pendencies are presented. Next, fault graphs with time dependencies are outlined.
In the third section we evaluate various repair policy models expressed as fault
graphs. We conclude the chapter in the fifth section.

2 Probabilistic Fault Trees with Time Dependencies

Probabilistic fault trees with time dependencies (PFTTD) are combined from
events, gates, and connections between them. The gates, similarly as for fault trees
with time dependencies [7], [8], [11], [12], are divided into two categories: gener-
alization and causal. Output event of generalization gate is a combination of input
events. Causal gate is characterized by delay times between causes (input events)
and effect (output event). Generalization gates are denoted by the ‘G’ symbol,
while causal ones by ‘C’.

Differences and similarities between logical gates of digital circuits and gates
of PFTTDs will be explained. The AND gate will be used as an illustration. Let us
consider Fig. 1.

Any logical AND gate of digital circuits (Fig. 1 a)) is described by logical for-
mula: yxz ∧= , where „∧ ” is a symbol of AND logical operator, x, y – input

variables, z – output variable. It is a formal model. Real-life logical gates are

Conjoining Fault Trees with Petri Nets to Model Repair Policies 133

G C

a) b) c) d)

Fig. 1 Gates: a) logical AND gate of digital circuits, b) generalization AND gate
of PFTTD, c) causal AND gate of PFTTD, d) transition with two input events and one
output event.

characterized by a propagation time stretch of input signal to output. Input, output
signals represent input, output variables respectively.

For the logical AND gate of digital circuits from Fig. 2 a) the formal model of
time characteristics is in Fig. 2 b), while real-life time characteristics is in Fig 2 c).

x y

z

a)

x

z

t

y

b)

y

x

z

t

c)

Fig. 2 a) the logical AND gate of digital circuits, b) its formal model of time
zcharacteristics, c) its real-life time characteristics

A PFTTD event x occurs in a time interval expressed by start instant)xs(τ

and end instant)xe(τ of this event. In a particular case, event duration time is

equal to zero, i.e.:)xe()xs(ττ = .

Let)t(x denote Boolean logical value of a variable x at time instant t. Let T

(F) denote logical value True (False).
Event x occurs at time instant t iff Boolean variable T)t(x = .

Let)x,...,x(Bz n1= be Boolean function, where z,x,...,x n1 are Boolean

variables.

134 M. Kowalski and J. Magott

A generalization gate of B function type is defined as:

T))t(x),...,t(x(BT)t(z n =⇔= 1 .

Hence, for the generalization AND (GAND) gate in Fig. 1 b) the following holds:

)())(),(min()())(),(max(

),()()()(

zeyexezsysxs

yxoverlapyoccurxoccurzoccur

ττττττ =∧=
∧∧∧⇒

where occur(z) is the logical formula with meaning: the output event (effect) z has
occurred.

The meaning of the above formula is the following: the output event occurs only if
both the input events have occurred and overlapped. The output event lasts as long as
the input events co-occur. Therefore, its start is equal to the start of event which has
started later. Its end is an end of the event that has been ended earlier.

Time characteristics of the GAND gate are the same as formal model for the
logical AND gate of digital circuits (Fig. 2 b)).

Let R(X) be a realization of a random variable X, i.e., a value generated accord-
ing to the distribution of X.

Causal AND (CAND) gate (Fig. 1 c)) is given by the expression:

)))d(R)xs()zs()xs()ys((

))d(R)ys()zs()ys()xs((

)y(occur)x(occur(()z(occur

+=⇒≤
∧+=⇒≤

∧∧⇒

ττττ
ττττ

where: occur(z) is the logical formula with meaning: the output event (effect) z
occurred, d - random variable (RV) that represents time delay between the occur-
rence (start) of the later cause x or y and the effect z.

Output event of this gate occurs (starts) at time instant R(d) with respect to
instant when later input event occurs.

Time characteristics of CAND gate are depicted in Fig. 3.

x y

y

x

z’

z”

t

 z

a) b)

C

R(d)

Fig. 3 a) A causal AND gate, b) its time characteristics

Conjoining Fault Trees with Petri Nets to Model Repair Policies 135

Let us analyze an example when the events from Fig. 3 are as follows:
x – gas burner failure, y – opened gas valve, z’ – destroyed building, z” – ex-

plosion. If the gas valve is open and the gas burner does not supply fire, the gas
concentration increases, and an explosion occurs at time instant R(d) with respect
to the instant gas valve became opened. The output event can be also a long-
lasting time event, e.g. the destroyed building.

3 Fault Graphs with Time Dependencies

An event x that is an element of PFTTD is illustrated by a rectangle with its dura-
tion time t (Fig. 4 a)). The duration time can be expressed by a random variable
(RV), constant or can be equal to infinity (∞).

Events that are elements of fault graphs with time dependencies (FGTDs) are of
two types; simple and parametric. Simple ones are described in the same way as in
PFTTD. Apart from its duration time, a parametric event is characterized by a
value Pp∈ , where P is a set of event y parameter values (Fig. 4 b)). The parame-

ter can be, e.g., an event identifier.

x y t, p
a) b)

t

Fig. 4 Events: a) simple, b) parametric

FGTDs contain PFTTD gates that are called simple ones. Additionally, FGTDs
include parametric gates. A parametric gate has the following property: all its in-
put and output events are parametric with equal parameter values sets. Graphical
representation of FGTD parametric gate of a type is the same as of PFTTD gate of
the same type. Output event (effect) has the same parameter value as input events
(causes) parameter value.

Additionally when comparing with PFTTDs, FGTDs contain a delay gate. This
gate is illustrated by an hour-glass symbol with two triangles connected by nodes
as gate G4 in Fig. 8. The time parameter of the gate expresses delay between start
of input event and start of output event. It can be a random variable. For G4, this

delay is described by an exponential RV with the mean value 6102 ⋅ h.
Causal NOT (CNOT) with input event x and output event y, and delay time ex-

pressed by random variable d is defined as follows:

)),y(occur)d(R)xs()(R()x(occur ττττ ¬⇒<+∈∀⇒ + .

The meaning of the above formula is as follows: if input event has occurred then
output event cannot occur after time instant)d(R)xs(+τ .

Delay time for gate G5 in Fig. 8 is 0.
Time characteristics of this gate are in Fig. 5.

136 M. Kowalski and J. Magott

x

y

y

x
t

a) b)

R(d)

C

Fig. 5 a) A causal NOT gate, b) its time characteristics

In comparison with PFTTD, in FGTD there are transitions inspired by Petri
nets. Two types of transitions are: simple and parametric. Simple transitions have
the following property: all their input and output events are simple ones.

Firing of the transition from Fig.1d causes completion of its input events and
occurrence (start) of the output event. Transitions have been introduced in order to
represent repetitive processes.

A simple transition with an inhibitor event v is given in Fig. 6.

wu v

x y

t1 t3

t4 t5

t2

Fig. 6 Simple transition with three input events u, v, w, including inhibitor one v, and two
output events x, y

The arc connecting the transition with the event v has a circle instead of arrow at
its end. The transition can be fired at a time instant when events u, w occur but the in-
hibitor event v does not occur. Inhibitor events have been included in the FGTD lan-
guage in order to increase expressive power, because they enable testing for zero.

Conjoining Fault Trees with Petri Nets to Model Repair Policies 137

A parametric transition has the property: at least one of its input or output
events is the parametric one (see Fig. 7).

 z

 x

 v

 y

t4, p

t1 t2, p

t3

Fig. 7 A parametric transition with simple events x, z and parametric events y, v

When a parametric transition is fired, the following condition has to be satisfied:
all parametric events that participate in firing must have the same parameter value.

Let us consider the following case. In the same time instant, a transition is enabled
to be fired, and all input events of a causal gate with zero delay time occur. Hence,
there is a conflict: what should be the first: transition firing or output event of the
causal gate occurring. In this case, the transition firing will occur as the first one.

Let n_occur(x,t) denote the number of events x that are occurring at time in-
stant t.

Generalization voting gate G Vote with threshold k with input events x, y, and
output event z is defined as follows:

ktyoccurntxoccurntzoccur ≥+⇒),(_),(_),(.

The meaning of the above formula is as follows: if output event is occurring at
time instant t then at least k input events are occurring at this instant.

Example of this gate type is G10 in Fig. 8. The threshold of the gate is 2.
Let the EX symbol denote event. In case of events with identifiers: the EX{a,

b} notation denotes that events EX with identifiers a and b occur. In case of events
without identifiers, the EX{n} notations denotes that event EX occurs n times.

4 Applying Fault Graphs with Time Dependencies to Selected
Repair Policies

In this section a computer system with redundancy undergoing several repair poli-
cies will be investigated. The computer system consists of five components: single
processor, two discs and two memory units, which fail and might be repaired in

138 M. Kowalski and J. Magott

accordance with rates presented in Table 1. In order for the system to run the
processor and at least single memory and disc must be working.

Table 1

Component Failure rate [1/h] Repair rate [1/h]

CPU 5*10-7 10-2

Disks 8*10-5 10-2

Memories 3*10-8 10-2

There is an initialization time (cost) required to start every repair policy. For

some policies there is a fixed number of repair facilities working concurrently to
repair failed components. A single repair facility can repair at maximum a single
component at some time moment.

Following repair policies will be applied to the system:
Global Repair Policy – GRT (T)– a repair policy is started when the systems

fails and lasts a fixed period of time (T) after which all components are restored,
there are no repair facilities.

SRT-F (N) – a repair process is started after the system fails and failed compo-
nents are restored in a random order by a fixed number (N) of repair facilities,
restored components are put into action after a whole repair process has ended.

SRT-I - we emulate infinite number of repair facilities by assigning N to 5 in
SRT-F (since there may be at most 5 failed components).

Synchronized Start, Immediate Restoration Policy – SSIR - a repair process is
started only after a whole system fails, but repaired components are immediately
put into action, there are 5 repair facilities.

Immediate Start, Immediate Restoration – ISIR - a repair process is started im-
mediately after any component has failed, repaired components are immediately
put into action, there are 5 repair facilities.

Various policy configurations were analyzed by means of a generic Fault Graph
simulator. These were: GRT(10), GRT(250), SRT-F(1), SRT-F(2), SRT-I, SSIR
and ISIR. Apart from SSIR and ISIR, availability results can be compared (Table
B) with [4].

For the sake of clarity, numeration of gates, events and transitions is consistent
among models of different policies.

4.1 The GRT Repair Policy

The system is failed at some point in time if the E9 event occurs (Fig. 8). This is
the case when (by virtue of the G13 GOR gate) either: E4 or E7 or E8 occurs,
which rises from the fact that all three component types may cause the system to
break down. Hence, three event columns along with adjacent gates and transitions
comprise the model: E1, E4 as the first, E2, E5, E7 as the second and E3, E6, E8
as the last one. Since they look alike, they will be discussed simultaneously.

Conjoining Fault Trees with Petri Nets to Model Repair Policies 139

The E4 (E7, E8) occurs if all components of the respective type are failed. To
model that, we take advantage of the G10 (G11) voting gate, which acts when a
particular threshold (written after a semicolon in the gate’s label) of events at its
input is reached. Since there is only one processor, there is no need for a dedicated
voting gate and E4 plays a similar role to E7 and E8. Taken that into account, to
specify maintenance state properly, the E4 (E5, E6) event must be started (G4, G6,
G8) and finished (G5, G7, G9) at the policy specified moments.

The E1 {0}, E2 {0,1}, E3 {0,1} belong to the initial event set, so they occur at the
start of analysis. Symbols 0 and 1 denote identifies of CPU, memories, and discs.
Hence, the G4 (G6, G8) time delay is initialized, i.e. E4 (E5, E6) event with respec-
tive identifier will occur at some time instant defined by the random variable denoting
time to failure of a particular component type. Since duration of E1 (E2, E3) is “0.0”,
it stops immediately. When some E4 (E5, E6) occurs, effectively starting the E9
event, a new repair process is started. In this case, a total renewal occurs after a time
stretch defined by the G14 gate. Whereas in Fig. 8 this time is equal to 10 minutes, to
remain consistent with work [4] simulation was also run with a 250 minute delay
(Table 2). Before E0 ends, it may cause E1 (E2, E3) to start by means of G1
(G2, G3) gate. If some component has been broken, it is now renewed. Since the

Fig. 8 The global repair policy model

140 M. Kowalski and J. Magott

component is working, E4 (E5, E6) is stopped by G5 (G6, G7). That in turn causes
E8, E10 and E12 to finish, therefore putting E9 out as well. The system is restored
and new failures have been scheduled by G4, G6 and G8.

Since all failed components are repaired concurrently and there is no challenge
among them, we managed to model the policy without resorting to the transition
extension.

4.2 The SRT-F/SRT-I Repair Policies

In the next model (Fig. 9) the three columns comprise are: E1, E4, E8, E11, E14,
E18 as the first, E2, E5, E9, E12, E15, E19 as the second and E3, E6, E10, E13,
E16, E20 as the last one.

The E1 {0}, E2 {0,1}, E3 {0,1} events along with the E18 {0}, E19 {0,1},
E20 {0,1} belong to the initial event set. At the beginning, we follow the reason-
ing for the GRT policy. The G4 (G6, G8) time delay is initialized, i.e. E4 (E5, E6)
event with respective identifier will occur at some time moment in the future. In
the due time, when the component is broken down, E18 (E19, E20) is stopped by
virtue of the G18 (G19, G20) CNOT gate.

A total number of repair facilities (N) in a particular policy is denoted by E17
{N} belonging to the initial event set. For the SRT-I repair policy, N=5.

When E4 (E5, E6) occurs, G12 (G13, G14) causes waiting for (E8, E9, E10):
repair start (E7) and repair facility (E17). A new repair process is started only after
the whole system breaks down (the E23 event occurs), but it is actually running
when the initialization time (G11, 10 minutes) passes and E7 starts. The E7 event
will remain active as long as there is any component requiring repair. Should a
new component fail while some repair process is already running, its repair is in-
corporated instead of being postponed until the subsequent repair process. There-
fore, the initialization time has to pass once only.

When a repair process is started, repair facilities are allocated (locked and re-
leased) on demand in a following manner. The T1 (T2, T3) transition locks a facil-
ity by ending E17 but starting E11 (E12, E13). At that point, the processor (mem-
ory, disc) can be repaired, which takes time defined by the random variable
attributing the G15 (G16, G17) gate. After the repair has finished, the repair facil-
ity is released to the pool (i.e. E17 is started) by the T4 (T5, T6) transition. The
E18 (E19, E20) event is started anew. All in all, the T1-T3 transitions lock atomi-
cally repair facilities (ending E17), whereas by means of the T4-T6 transition, the
repair facility is released (E17 started).

Notably, repaired components are not put into action immediately after repair.
They can be repaired, though not working (e.g. E4 and E18 occurring at the same
time). The reason for this is the policy stating that a repair process must end before
putting any repaired component into action. It happens by means of the G23 gate
asserting that all 5 components are not failed before triggering renewal (E0). Then,
all the failed components are renewed instantly through the G1, G2, G3 gates
starting E1, E2 and E3, which in turn finish E4, E5 and E6 through CNOT gates,
because the components are no longer failed. Finally, the repair process is stopped
by the G10 gate.

Conjoining Fault Trees with Petri Nets to Model Repair Policies 141

Fig. 9 SRT-F/SRT-I policy family model

142 M. Kowalski and J. Magott

Table 2 Unavailability results under various repair policies

Policy Unavailability from [4]
Unavailability using

Fault Graphs
Error [%]

GRT (T=10) 5,37*10-4 5,37*10-4 0

SRT-I 8,517*10-3 8,517*10-3 0

SRT-F (1 resource) 1,11147*10-2 1,11120*10-2 0,03

SRT-F (> 2 resources) 8,517*10-3 8,517*10-3 0

GRT (T=250) 1,3253*10-2 1,3241*10-2 0,1

5 Final Remarks

Using the FGTD language we managed to capture all the repair policies described
in [4] resorting to neither highly specialized modelling constructs, as was the case
with repairable fault trees using repair boxes, nor an obscure internal language like
Petri nets. Although, to remain consistent with [4] we took a simple computer sys-
tem as a case study, our approach could scale well into systems with sophisticated
timing requirements like the ones discussed in [2] or [10], whose modelling in
standard fault trees is merely out of question. We have therefore filled the gap be-
tween modelling systems and modelling their repair policies, which was the goal
we set ourselves in the first place when failing to apply repairable fault trees to
some transportation system.

As a matter of fact, the repair policy models were effective vehicle of demon-
strating the language’s expressive power, which enabled us to model even more
repair policies than the ones outlined in this chapter. As such, we want to leverage
FGTD usage among domain experts by combining them with Activity Diagrams, a
practically appreciated aspect of UML, while investigating an airplane conserva-
tion problem.

References

[1] Ajmone Marsan, M., Balbo, G., Conte, G.: A class of generalized stochastic Petri nets
for the performance evaluation of multiprocessor systems. ACM Transactions on
Computer Systems 2, 93–122 (1984)

[2] Babczyński, T., Łukowicz, M., Magott, J.: Time coordination of distance protections
using probabilistic fault trees with time dependencies. IEEE Transaction on Power
Delivery 25(3), 1402–1409 (2010)

[3] Bobbio, A., Codetta, D.: Parametric fault trees with dynamic gates and repair boxes.
In: Proc. Annual Symposium on Reliability and Maintainability, pp. 459–465 (2004)

Conjoining Fault Trees with Petri Nets to Model Repair Policies 143

[4] Codetta, D., Franceschinis, G., Iacono, M., Vittorini, V.: Repairable fault tree for the
automatic evaluation of repair policies. In: Proc. Proceedings of the International Con-
ference on Dependable Systems and Networks, DSN 2004(2004)

[5] Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Dynamic fault-tree models for fault-tolerant
computer systems. IEEE Trans. Reliab. 41(3), 363–367 (1992)

[6] International Technical Commission, Fault Tree Analysis (FTA), Publication 1025
(1990)

[7] Górski, J.: Extending Safety Analysis Techniques with Formal Semantics, Technol-
ogy and Assessment of Safety-Critical Systems, pp. 147–163. T. Springer-Verlag,
Heidelberg (1994)

[8] Górski, J., Magott, J., Wardzinski, A.: Modelling fault trees using Petri nets. In: Proc.
SAFECOMP 1995, Belgirate, Italy. LNCS. Springer, Heidelberg (1995)

[9] ISO/IEC 15909-1, High-level Petri nets: Concepts, definitions and graphical notation
(2004)

[10] Kowalski, M., Magott, J.: Fault graphs with time dependencies (in Polish). Problemy
eksploatacji, Maintenance Problems (1), 117–128 (2011)

[11] Magott, J., Skrobanek, P.: A Method of Analysis of Fault Trees with Time Dependen-
cies. In: Koornneef, F., van der Meulen, M.J.P. (eds.) SAFECOMP 2000. LNCS,
vol. 1943, pp. 176–186. Springer, Heidelberg (2000)

[12] Magott, J., Skrobanek, P.: Method of time Petri net analysis for analysis of fault trees
with time dependencies. In: IEE Proceedings - Computers and Digital Techniques,
vol. 149(6), pp. 257–271 (2002)

[13] Montani, S., Portinale, L., Bobbio, A., Codetta-Raiteri, D.: RADYBAN: a tool for re-
liability analysis of dynamic fault trees through conversion into dynamic Bayesian
networks. In: Reliability Engineering and System Safety, vol. 93(7), pp. 922–932
(2008)

[14] RELEX, Resources on Fault Trees (2010),
http://www.relex.com/resources/art

W. Zamojski et al. (Eds.): Dependable Computer Systems, AISC 97, pp. 145–154.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Analysis of Geometric Features of Handwriting to
Discover a Forgery

Henryk Maciejewski and Roman Ptak

Wrocław University of Technology,
ul. Wybrzeże Wyspiańskiego 27,
50-370 Wrocław, Poland
e-mail: {Henryk.Maciejewski,Roman.Ptak}@pwr.wroc.pl

Abstract. This work proposes a method of analysis of geometric features generat-
ed from hand-written text to verify a supposition that a given sample of text of un-
clear authorship (e.g., a signature or initials) and some given reference text of
known authorship have been written by the same author. The method is targeted to
problems where the reference material is relatively large and the sample of unclear
authorship is small, hence the number of feature vectors for the two groups com-
pared is highly unbalanced. This makes the problem computationally challenging
as standard approaches based on statistical hypothesis testing to compare distribu-
tions cannot be used. We propose a method to estimate the likelihood that the set
of features observed in the small sample comes from the distribution generated
from the reference material. This approach can be used to help discover or prove a
forgery in documents.

1 Introduction

Analysis of handwritten text has been an important application area of machine
learning or advanced statistical pattern recognition since early years of these
disciplines. The purpose of analysis has been primarily the recognition of hand-
writing or personal identification of the writer based on hand-writing [4,6]. Vari-
ous approaches to text recognition and writer identification were proposed in
literature, e.g., based on Hidden Markov Models (HMM), Support Vector Ma-
chines with specialized kernels, or based on combining several different classifi-
ers, [1,2,7,8]. Two different approaches to recognition were developed: offline or
online, depending on whether features are derived only from the handwritten text
(offline methods), or maybe also based on the analysis of the very process of
writing (online methods).

The purpose of the method developed in this work is the detection of forged
hand-writing, e.g., forged signatures or initials, etc. We assume that a signature (or
a few signatures) is available, for which the authorship is unclear or questioned.
We denote this hand-written text as the Questioned Material (QM). We also as-
sume that a large reference sample is available for which the authorship is known;
we denote this as the Reference Material (RM). QM and RM are schematically

146 H. Maciejewski and R. Ptak

illustrated in Fig. 1 and 2. The proposed method aims to verify the hypothesis that
the QM and RM were written by the same author. We develop an offline method
based on the analysis of geometric features of handwriting. It should be noted that
in this problem formulation, the number of features derived from the QM is in-
evitably small, while the number of features from the RM is large enough to allow
for estimation of the distribution of features in RM. The method proposed is in-
tended to compare features between such highly unbalanced classes.

In the following section, we define the set of geometric features that can be
computed on the basis of short hand-written texts, such as signatures or initials.
Next we propose a method to verify the hypothesis that feature vectors generated
from QM and RM come from the same distribution. If the hypothesis proves true,
we conclude that QM was not forged, i.e. it was written by the person who wrote
RM, otherwise QM is interpreted as forged. We provide a numerical example to
illustrated this approach.

Fig. 1 The initials model of the questioned material (QM) and measured features (explanation
in text)

Fig. 2 A sample of text in the reference material (RM)

2 Geometric Features Derived from Handwritten Text

When performing a handwriting examination and comparison, many features of
the handwriting are taken into consideration. It is possible to obtain features at the
following document levels: basic, macrostructural and microstructural. The Cata-
logue of Graphic Features of Handwriting distinguishes five groups of features:
synthetic, topographic, motor, measurable and constructional [3,5]. Some of the
features of handwriting are: the overall size of the writing, the width of letters,
words, etc., pen lifts within and between letters, the curvature of pen strokes [4].
Geometric features are parts of topographic features and measurable features on

Analysis of Geometric Features of Handwriting to Discover a Forgery 147

basic document level. Some of these features are used also for examination of long
texts but are also applicable for short texts (such as initials), examples are shown
in Figs. 3 and 4. Other features are specific to examination of initials (e.g., the ra-
dius of rotation of the hand, illustrated in Fig. 1 and explained in the following pa-
ragraph).

Fig. 3 Examples of features measured from long text: the size of handwriting (the high of
middle zone), the high of lower zone, distance of words and distance between strokes in
pixels

Fig. 4 Example of features measured from short text (two initials): the high of middle zone,
the high of upper zone, distance of words and distance between strokes in mm and cm

The proposed method of analysis of short text will be illustrated using the sam-
ple initials shown in Fig. 1. The initials consist of two strokes. The variable a
represents between strokes distance and b represents inner main strokes distance.
Feature h1 is the high of middle zone and h2 is the high of lower zone. The next
three extreme points of the main stroke of initials mark the limits of pen trajectory.
The inscribed circle in the triangle represents the radius of rotation of the hand.

148 H. Maciejewski and R. Ptak

This feature is also dependent on the human anatomy. We also measure the angle
α between final strokes of initials. Proportions between the various features of
handwriting (ratios) are generally considered most informative.

We propose to use the following geometric features to compare the questioned
material with the reference material:

• Feature 1: f1=a/b is the ratio of the outer (a) to inner (b) strokes distance,
• Feature 2: f2=h1/h2 is the ratio of the high of middle zone (h1) to the high of

the lower zone (h2),
• Feature 3: f3=α is the angle of the final strokes,
• Feature 4: f4=w/d is the ratio of the initials width (w) to the diameter (d) of an

inscribed circle of a triangle determined by the extreme points in main stroke of
initials.

In order to illustrate the proposed method we will analyze the set of 120 initials in
the RM class and two initials in the QM class as schematically shown in Figs. 1
and 2. The geometric features were measured for these texts in a semiautomatic
way using the developed software application shown in Fig. 5.

Fig. 5 Measurement window of the software application developed to facilitate examination
of documents

Values of the proposed geometric features calculated from the two initials in
the QM group are summarized in Table 1.

Table 1 Geometric features calculated from the two signatures in QM

Initials A b a/b h1 h2 h1/h2 α w D w/d

QM1 180 260 0.69 503 517 0.972 52.1 1470 574 2.56

QM2 198 266 0.74 594 278 2.136 49.1 1386 584 2.37

Analysis of Geometric Features of Handwriting to Discover a Forgery 149

In Fig. 6 we provide a preliminary comparison of the individual features be-
tween the QM and RM groups. The distribution of a feature in RM is represented
by a boxplot, with the box representing the inter-quartile range (IQR) and the
whiskers spanning the range ±1.5 IRQ around the median. It can be observed that
QM and RM are most differential in terms of the f3 feature which is significantly
larger in QM than in RM (more specifically, the value of f3 for the two samples in
QM lie in the outlier area of the distribution of RM).

In the next section we propose a measure which aggregates the similarities be-
tween QM and RM in terms of individual features into a value of likelihood of
randomly selecting a given QM sample from the distribution of RM samples.

Fig. 6 Values of features from two samples of the questioned material (QM) shown in Ta-
ble 1 compared with distributions of features calculated from the reference material (RM)

3 Verification of the Hypothesis of Common Authorship of QM
and RM

In this section we propose a method to estimate the probability that a given sample
(initials) from the QM group can be observed in the RM group. This measure is
based on the features f1 to f4 of the QM sample compared with the corresponding
distributions in the RM class.

We propose the following procedure.

1. For each of the features fi, i=1,…,4 of the given sample from QM, we es-
timate the probability (denoted pci) that the value fi or a more extreme val-
ue can be observed in the distribution for the RM class:

150 H. Maciejewski and R. Ptak
௜ܿ݌ ൌ ൜ ௜ݍ ௜ݍ ݈ܽ݀ ൏ 0.51 െ ௜ݍ ௜ݍ ݈ܽ݀ ൒ 0.5

where qi= Fi(fi), and Fi denotes the cumulative distribution function of the
feature i estimated for RM. The value of pc calculated for q<0.5 is illu-
strated in Fig. 7 (pc1=0.017, calculated for initials QM1, this value is
represented by left tail shaded in red). The value of pc corresponding to
q>0.5 is illustrated by the right tail in Fig. 8 (pc3=0.12 calculated for in-
itials QM1).

2. We estimate the joint probability that the set of features f1-f4 for the QM

sample can be observed in the RM class: ݌ ൌ ෑ ௜ସܿ݌
௜ୀଵ

This formula resembles the rule used in naïve Bayes classifier, where the
features are assumed as independent. In this example, we observe that the
features f1-f4 are weakly correlated (with the correlation coefficient ranging
from 0.026 to 0.16) and realize very similar eigenvalues of the feature cor-
relation matrix (results not shown) – this indicates weak association
between features.

3. We calculate the number of samples (initials) in the RM class for which

the value p (computed according to the formula in step 2) does not exceed
the value p computed for the given QM sample. This number divided by
the total number of samples in RM can be interpreted as the likelihood that
the sample QM can be observed in the distribution of RM, under the hypo-
thesis that QM comes from the distribution RM. We denote this as pVal: ݈ܸܽ݌ ൌ |ܯܴ|1 ෍ ௥݌ሺܫ ൑ ோெאሻ௥݌

where pr is calculated for a sample r∈RM according to step 2, and p is cal-
culated for the sample QM according to step 2. The function I returns 1 if
the condition is true, and 0 – otherwise.

To illustrate the way to verify the hypothesis that the QM initials have been writ-
ten by the author of RM, we summarize the values qi, p and pVal calculated by the
proposed procedure in Table 2. With the confidence level of 5% we conclude that
the sample QM2 was not written by the author of RM (as pVal<0.05 for QM2,

Table 2 The value of q for the initials in the QM class, and the probability of QM initials
occurring in the RM class

Initials q1 q2 q3 q4 p pVal

QM1 0.017 0.287 0.88 0.18 0.00011 0.0952

QM2 0.029 0.822 0.87 0.07 4.82E-5 0.0397

Analysis of Geometric Featu

Fig. 7 Illustration of the valu
tribution of this feature for R
(marked red)

Fig. 8 Illustration of the val
distribution of this feature fo

hence the hypothesis of co
cannot be formulated for t

The pVal indicates how
in the distribution pertain
– see Fig. 9, where the p
bution for RM.

ures of Handwriting to Discover a Forgery 15

ue pc1 for feature f1 calculated for the initials QM1 from the di
RM. The pc value corresponds to the left tail of the distributio

lue pc3 for feature f3 calculated for the initials QM1 from th
or RM (the pc values)

ommon authorship is rejected). However, this conclusio
the sample QM1 (as pVal > 0.05).
w unlikely the value of p calculated for the QM sample
ning to the RM class. This can be also shown graphicall

for QM (given in log scale) is compared with the distr

51

is-
on

he

on

is
ly
ri-

152 H. Maciejewski and R. Ptak

Fig. 9 The measure p calculated for the QM samples compared with the distribution for the
RM group

The analyses discussed in this section and summarized in Table 2, Figs. 9 and 6
provide numerical and graphical indications about how different the questioned
material seems to be as compared with the reference material. However, this ap-
proach is unable to discover text forgeries which consist in taking an (almost ex-
act) copy of reference initials (using e.g., photocopying techniques). The method
developed in the next section aims to discover this type of forgery by revealing
that the questioned material should be too similar to the reference material.

4 Analysis of Similarity of Feature Vectors

In this section we extend the previous analysis by directly comparing feature vectors
between the classes QM and RM. The purpose of this is to measure the natural va-
riability of features in the RM group, characteristic of the set of initials written by a
human (and not a machine). Then, if some of the QM initials are too similar to some
of the RM samples, this clearly indicates possibly forged handwriting.

This idea motivates the following procedure.

1. For each of the samples ri∈RM from the reference group RM, calculate the
distance dmini to the nearest sample from RM: ݀݉݅݊௜ ൌ min௝ஷ௜ ൛݀݅ݐݏ൫ݎ௜, :௝൯ݎ ௝ݎ א ൟܯܴ

In the following example we use the Euclidean distance dist(ri,rj) between the
feature vectors.

2. For the QM sample qm∈QM calculate the minimum distance dminqm to the
samples from RM, i.e. ݀݉݅݊௤௠ ൌ min௝ ൛݀݅ݐݏ൫݉ݍ௜, :௝൯ݎ ௝ݎ א ൟܯܴ

Analysis of Geometric Featu

3. Estimate the probabi
observed in the dist
probability is small,
samples then expecte
samples. Hence the Q
forged?).
 If pr is not small,
value dminqm or bigg
RM samples. If this
from the RM sample
samples come from t
bly written by a diffe

To illustrate this, in Fig. 1
a boxplot (right part of Fi
RM sample (i.e. dmin≈0)
is below the lower tail of

The left part of Fig. 10
QM1 and QM2 analyzed
3) for these samples equa
the distribution). Thus we
sumably written by a diffe

This result is generally
here the QM1 sample is c
would need significance l

Fig. 10 Distribution of the d
shown for the RM group (r
sample (left boxplot)

ures of Handwriting to Discover a Forgery 15

ility pr= G(dminqm) that the value dminqm or smaller
tribution of dmin calculated from RM samples. If th
the QM sample seems too similar to some of the RM

ed taking into account the natural variability among RM
QM sample is presumably a copy of a RM sample (henc

then calculate the probability pr2=1- G(dminqm) that th
ger is observed in the distribution of dmin calculated fro
probability is small, the QM sample seems too differen

es then expected under the hypothesis that QM and RM
the same distribution. Hence the QM sample is presuma
rent author than RM.

10, the distribution of dmin for the RM class is shown a
g. 10). We conclude that if a QM sample was a copy of
, this would be immediately clear as the value of dmin≈
the distribution.

0 shows the values of dmin calculated for the two sample
in section 3. We clearly see that the value pr2 (see ste

als about 0 (as the values are far above the upper tail o
e conclude that these two questioned samples were pr
erent author than RM.
y consistent with results obtained in section 3 (althoug
classified as different than RM, while the test in section
evel of 0.1 to confirm this).

distance to the nearest neighbor sample in the RM group (dmi
ight boxplot), and distance of QM samples to the nearest RM

53

is
his
M
M
ce

he
m
nt
M
a-

as
f a
≈0

es
ep
of
e-

gh
3

n)
M

154 H. Maciejewski and R. Ptak

5 Conclusions

The methods proposed in this work can be used to provide quantitative and graph-
ical indications whether questioned text (such as initials) was written by the author
of reference material. The analysis is based on the set of four geometric features
calculated from samples of handwriting. The indications are based on probabilistic
analysis of variability of features calculated from the reference material. The ques-
tioned initials are considered significantly different than the reference initials
(which may indicate different authorship) if their features occupy the far right tail
of the distribution characteristic of the reference group. We also propose a method
to discover initials which are too similar to the reference material than expected
taking into consideration natural variability in hand-written text. Such too similar
initials may be deemed suspicious or forged.

However, it should be made clear that all results shown in this work are of
probabilistic nature. As such, they should not be directly translated into a firm
statement about some questioned material being forged. Such conclusions are to
be made only by a trained human evaluator (a forensic expert), for whom the me-
thods elaborated here may provide some decision support data.

References

[1] Bahlmann, C., Haasdonk, B., Burkhardt, H.: Online handwriting recognition with sup-
port vector machines - a kernel approach. In: Proc of the Eighth International Work-
shop on Frontiers in Handwriting Recognition, pp. 49–54 (2002),
doi:10.1109/IWFHR.2002.1030883

[2] Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning – Data
Mining, Inference, and Prediction. Springer, Heidelberg (2001)

[3] Katalog Graficznych Cech Pisma Ręcznego (The Catalogue of Graphic Features of
Handwriting) (in Polish) (2007),
http://prawo.amu.edu.pl/uploads/slownik/aneks.htm (accessed
March 12, 2011)

[4] Koziczak, A.: Metody pomiarowe w badaniach pismoznawczych (Measurement me-
thods in examination of handwriting, in Polish), Instytut Ekspertyz Sądowych, Kraków
(1997)

[5] Morris, R.: Forensic handwriting identification. Fundamental concepts and principles.
Academic Press, New York (2000)

[6] Saferstein, R.: Criminalistic: An Introduction to Forensic Science, 8th edn. Prentice-
Hall, Englewood Cliffs (2004)

[7] Schlapbach, A., Bunke, H.: A writer identification and verification system using HMM
based recognizers. Pattern Analysis & Applications 10(1), 33–43 (2007),
doi:10.1007/s10044-006-0047-5

[8] Xu, L., Krzyzak, A., Suen, C.Y.: Methods of combining multiple classifiers and their
applications to handwriting recognition. IEEE Trans on Systems, Man and Cybernet-
ics 22(3), 418–435 (2002)

Abstract. The aim of conformance testing is to check whether an implementation
conforms to its specification. We are interested to duration systems; we consider a
specification of a duration system that is described by a duration graph. Duration
graphs are an extension of timed automata and are suitable for modeling the ac-
cumulated times spent by computations in duration systems. In this paper, we pro-
pose a framework to generate automatically test cases directly from the specifica-
tion model. In the first, in order to reduce the infinite set of states due to the
continuous time, we use a digitization technique. Test cases are given by consider-
ing a discrete time and represented with a tree. In the second, we demonstrate that
every test cases derived from the test tree corresponds to a digitization test case of
the specification model.

1 Introduction

Testing is an important validation activity. In most cases, it is used to check
whether an implementation, referred to as an Implementation Under Test (IUT),
conforms to its specification.

Duration systems [6][3] are an extension of real-time systems for which in ad-
dition to constraints on delays separating certain events that must be satisfied,
constraints on accumulated times spent by computation must also be satisfied. Du-
ration systems are used in a large number of applications such as real-time sched-
uler systems, communication protocols, distributed systems etc.

Duration systems are characterized by a number of generic features:

• Due to the interaction with their environment, duration systems must ful-
fill strict temporal requirements. The correct behavior of these systems
depends not only on the logical results of the computation but also on the
time at which these results are produced. So, for those systems, a conti-
nuous time is considered.

• In systems where the time progresses continuously, the space of states is
infinite. Many different techniques have been proposed to reduce the in-
finite set of states to a finite set (or at least countable) (e.g., symbolic

A Formal Framework for Testing duration Systems

Lotfi Majdoub

LIP2 Laboratory, Faculté des sciences de Tunis
e-mail: lotfi.majdoub@ensi.rnu.tn

et al. (Eds.): Dependable Computer Systems, AISC 97, pp. 155–168.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011
W. Zamojski

techniques, region graph and its variations, model checking techniques,
etc.) [7][10][9][11]. Due to the accumulation of times in duration sys-
tems, it has been shown [5] that it is not possible to use those techniques
both in verification and in test of duration systems.

Model-based testing [4] is a testing method that consists to describe the behav-
iour of a system with a model and generating test cases from this model. The main
advantage of model-based testing is the facility to derive automatically test cases.

Timed automata constitute a powerful formalism widely adopted for modelling
real-time systems [2]. Duration Variables Timed Graphs with Inputs Outputs
(DVTG-IOs) are an extension of timed automata [3], which are used as a formal-
ism to describe duration systems. DVTG-IOs are supplied with a finite set of con-
tinuous real variables that can be stopped in some locations and resumed in other
locations [6]. These variables are called duration variables. They can model some
temporal behaviours of real-time systems such as the accumulated times spent by
computations at some particular locations.

The contributions of this chapter are twofold. First, we give a framework for
generating automatically test cases directly from the specification model. In order
to reduce the infinite set of states due to the continuous time, we use a digitization
technique. Test cases are given by considering a discrete time and represented
with a tree. Second we demonstrate that every test case derived from the test tree
corresponds to a digitization test case of the specification model.

This chapter is organised as follows: In the next section, we present the dura-
tion variables timed graphs with inputs outputs used to model specification. Sec-
tion 3 shows the digitization technique. The test generation framework is intro-
duced in section 4. Section 5 presents properties of test cases that are derived with
our framework. Concluding remarks are presented n section 6.

In this section, we introduce the formalism that we use for describing duration sys-
tems, called Duration Variables Timed Graph with Inputs Outputs (DVTG-IO for
short). DVTG-IO is an extension of the well known timed automata defined in [2].

We give here the formal definition and the operational semantics of this model.
Then we illustrate with an example.

A DVTG-IO is described by a finite set of locations and a transition relation be-
tween these locations. In addition, the system has a finite set of duration variables
that are constant slope continuous variables, each of them changing continuously

2 Duration Variables Timed Graphs with Inputs Outputs

2.1 Formal Definition

156 L. Majdoub

with a rate in {0, 1} at each location of the system. Transitions between locations
are conditioned by arithmetical constraints on the values of the duration variables.
When a transition is taken, a subset of duration variables should be reset and an
action should be executed. This action can be an input action, an output action or
an unobservable action (known also as quiescent [17]).

We consider X a finite set of duration variables. A guard on X is a Boolean
combination of constraints of the form where
. Let be the set of guards on X,

A DVTG-IO describing duration systems is a tuple
 where is a finite set of locations, q0 is the initial

location, is a finite set of transitions between locations,
 is a finite set of input actions (denoted by ?a) and output actions (denoted

by !a), associates to each transition a guard which should be satisfied
by the duration variables whenever the transition is taken, gives for
each transition the set of duration variables that should be reset when the transition
is taken, gives for each transition the action that should be executed
when the transition is taken, associates with each location q and
each duration variable x the rate at which x changes continuously while the com-
putation is at q.

2.2 Example

We give, in figure 1, a simple example that illustrates Duration Variables Timed
Graph with Inputs Outputs. It is composed of locations {q0, q1, q2, q3, q4} where q0
is the initial location and transitions between locations. In this figure, DVTG-IO is
supplied with a set of input actions {?a, ?c}, output actions {!b, !d, !r}. Duration
variables x and y are clocks used to make constraints on the time execution, z is a
duration variable, it is stopped (in locations q1, q3.

The semantic of DVTG-IO is defined in terms of a state graph over states of the
form where and is a valuation function that assigns a
real value to each duration variable. Let StS be the set of states of S. We notice that
StS is an infinite set due to the value of duration variables taken on . A state

 is called integer state if . We denote by N(StS) the set of integer
states of S.

Given a valuation and a guard , we denote by the fact that the evalua-
tion of under the valuation is true.

2.3 State Graph

A Formal Framework for Testing duration Systems 157

 Fig. 1 Sample DVTG-IO

We define two families of relation between states:
– Discrete transition where , ,

 is true and ,
corresponds to moves between locations using transition in E.

– Timed transition such that and
, corresponds to transitions due to time progress at some loca-

tion q.
The state graph associated with S is (StS,) where denotes the union of all

discrete transitions and timed transitions.

A computation sequence of a DVTG-IO is defined as a finite sequence of configu-
rations. A configuration is a pair where s is a state and τ is a time value. Let
CS be the set of configurations of S. A configuration is called integer confi-
guration if . We denote by N(CS) the set of integer configurations.

Intuitively, a computation sequence is a finite path in the state graph of an ex-
tension of S by an observation clock that records the global elapsed time since the
beginning of the computation. Formally, if we extend each transition relation from
states to configurations, then a computation sequence of S is

, where and for . Let
CS(S) be the set of computation sequences of S.

0=
•

z

0=
•

z

30 ≤≤ x

x=3

y=3

x=5∧ z=2

3>x

5>x

2.4 Basic Definitions

2.4.1 Computation Sequence

158 L. Majdoub

A timed word is a finite sequence of timed actions. A timed action is a pair
where and , meaning that the action a takes place when the obser-
vation clock is equal to . A timed action is called integer timed action if

. A timed word is a sequence where is an action and
is a value of the observation clock. We notice that . Let L(S) be the set of
timed words of S.

We can easily make the link between timed word and computation sequence.
Clearly, there exists a unique timed word corresponding to a computation se-
quence . Let be a computation
sequence, its corresponding timed word is obtained
such that and is the value of the observation clock in the state

 for and . On the other hand, if
 is a timed word then there exists at least one computation sequence

 such that for
 and .

Consequently, a sequence is considered a timed word of
 if and only if there exists a computation sequence

 such that for and .
For simplicity, we may write . We suppose that empty timed
word belongs to .

Let be a timed word and and , such that
 then we denote by the timed word obtained by adding to and

we have .

A restart of a variable x is the change of its rate from 0 to 1. For example, if in a
location q the rate of a variable x is 0 and there exists a transition such that
the rate of x in q’ is 1 then we consider, in location q’, a restart of x.

We define the restart function, as a function that calculates the number of res-
tarts of one duration variable in a computation sequence.

Formally, the restart function is . calculates for each
variable and each computation sequence

 the number of restarts of x from the last reset of x until the loca-
tion qn in .

After a reset of a variable x, if the rate of a variable x in the current location is
1, then the access to this location is considered as a restart of x. For example, if in
the first location x has a rate equal to 1 then the access to the initial state is consi-
dered as restart. That is why, for the clocks, the function β is equal to 1 for each
transition.

2.4.2 Timed Word

2.4.3 The Restart Function

A Formal Framework for Testing duration Systems 159

3 Digitization

We present the notion of digitizations [8], which is suitable for systems in which
we are interested. It is used particularly to reduce the infinite set of states to a
countable set of states.

Let us introduce some definitions and notations. Let , for every
 called digitization quantum, we define the integer:

from this definition, we deduce that

and

Before giving the definition of the digitization of a computation sequence, let

us introduce how we can calculate at each step the valuation of variables. Given a
computation sequence .

Let x be a duration variable of X. The value of x at position k in is:

Where denotes the greatest index such that , and the transition is
of the form with i.e., x is reset by . We take
if such an index does not exist.

According to [8], given a digitization quantum , the digitization of is
the integer computation sequence

Where the valuation of a variable x at position k in is:

The restart function is presented in [16]. Basically, it calculates for each varia-
ble and each transition the maximum of restarts of x from the last reset of x
in each computation sequence of S. In the present chapter, we apply the restart
function in one computation sequence instead of all computation sequences. We
adapt the following result, first introduced in [16], and that makes the link be-
tween the restart function and the valuation function.

Proposition 1

For every computation sequence
 of S, every quantum , and every variable we have:

–
–

160 L. Majdoub

Proof

For every computation sequence of S and every , we have

Where denotes the greatest index j such that , and the transition is
of the form with i.e., x is reset by . We take
if such an index does not exist.

For a given variable x, if then the rate of x is 0 in locations visited
from the last reset of x . So we have

For a given index n, a given transition , and a given variable x, if

 then the computation sequence has a unique decomposition into a
finite number of sets of indices

 where:
– j0 is the first index i where after the last reset of x
– in the following sets:

and in the others sets.
We have by definition of β, because the number of restarts of

x is equal to the number of subsets of indices on which . Then

Where j0 is the first index i where after the last reset of x.
For each , we have:

So we have:

�
Let us extend the definition of the digitization to the timed word. The digitiza-

tion of a timed word

A Formal Framework for Testing duration Systems 161

is

Therefore, it is not difficult to see that:

Moreover, it is easier to relate digitizations of a computation sequence and its
timed word. If is a computation sequence and is its corresponding timed word
then for , is the corresponding timed word of .

We denote by the set of all digitizations of all real timed words of
S. We notice that is countable.

The digitization is a technique used to reduce the infinite set of states to a finite
set of states. A question that one may ask is whether or not.

Example

If the following example, we will see that we can have a DVTG-IO with only one
duration variable for which there exists a real timed word such that all their digiti-
zations are not computation of the system.

Let be a real timed word of the DVTG-IO given in the figure 1
 ?a 1.5 !b 3 ?c 4.5 !d 5

There are two digitizations of :
[]ε = ?a 1 !b 3 ?c 4 !d 5 with
[]ε = ?a 2 !b 3 ?c 5 !d 5 with

It is easier to verify on the DVTG-IO given in figure 1 that is a timed word,
however their two digitzations []ε for and are not
timed words of the considered DVTG-IO.

Here, we introduce our testing method for duration systems. We suggest reducing
the infinite state graph associated to the specification model to a countable state
graph.

First, let us introduce the notion of an observation which is a sequence of con-
trollable (inputs) and observable (outputs) actions that are either executed or pro-
duced by the IUT followed with its occurrence time. Formally, we describe an ob-
servation by a timed word where and for

Our result is based on a reduction of the infinite state graph of the specification

model S to the countable state graph , where the space of states
is reduced to the set of integer states. Transitions between states are either discrete
transitions labeled with action in Act, or timed transitions

 labeled with a constant delay of time equal to 1. Notice that
and .

4 Test Generation Framework

162 L. Majdoub

We use the countable state graph to generate a finite set of test
cases. This set of test cases is represented by a tree called test tree.

The test tree is composed by nodes that are integer configurations and transi-
tions between those nodes. A node in the test tree is an integer configuration
such that and represents the possible current integer configura-
tion of the IUT. The root is the initial configuration of that
is . The transition between one node and its successor is labeled with a
timed action such that and and represents the timed action that
can be executed when the transition is taken. A path from the root to one leaf of
the tree represents a test case that is an integer timed word.

We remember that the digitizations of all timed words Digit(L(S)) are not included
in . We give in this section an algorithm for constructing the
test tree that contains digitizations of all timed words by considering both the
countable state graph and the restart function.

The generating test tree algorithm, that we give below, can generate a test tree
containing all digitizations timed word for every of all timed words of
the specification model.

Before giving the generating test tree algorithm, we introduce some notations
that we use later.

Definition 1: extended guard

For every transition , let its associated guard
Let the restart function such that and
The extended guard is obtained from by transforming each
constraint of the form by the constraint:
– if then
– Otherwise where , and

�

Definition 2: test transition

Let and be two integer configurations of
We define a test transition between C and C’ that we denote with

 if there exists a configuration such that:
– ,
–
– ,
– ,

4.1 The Test Tree

4.2 Algorithm of Generating Test Tree

A Formal Framework for Testing duration Systems 163

– ,
– ,
– , �
1 Algorithm: Generating Test Tree
2 Input: the state graph
3 Output: Test Tree TS

4 the one-node tree
5 For each leaf of TS distinct from pass do
6 Let the computation sequence from the root to C
7 Do randomly {1; 2}
8 Case 1:
9 For every , let
10 For every test transition
11 Append edge to TS

12 Case 2:
13 C=pass
14 End

The generating test tree algorithm operates as follows: initially the test tree

contains one node that is the initial configuration of the countable state
graph . For any leaf of the tree different from pass,
and for each transition the algorithm calculates its extended
guard . Then, the test transition of this form is added to the
tree. The algorithm can stop a path of the tree by appending the node pass in the
leaf.

Example

Figure 2 illustrates the test tree of the specification model given in figure 1. This
test tree is constructed according to the Generating Test Tree algorithm. Each path
of the test tree from the root to one leaf is an integer computation sequence.

Fig. 2 The test tree

164 L. Majdoub

In this section, we make the link between the digitization technique and the test
tree. We demonstrate that a path from the root to one leaf in the test tree corre-
sponds to a digitization of a timed word belonging to the specification model. In
other hand, we demonstrate that given a timed word of the specification model,
then their digitizations correspond to paths in the test tree.

Proposition 2

Let be a timed word and
If then

Proof

A sequence is considered a timed word of L(S) if and only
if there exists a computation sequence

 such that for .
Let be the digitization of for ,

From proposition 1, we have , with

We deduce that
We remember that satisfy the guard of the transition

 is a boolean combination of constraints of the form

We have
Moreover, is an integer value. The previous formula can be written

That corresponds to the extended guard, we have
From the definition of the test tree, is a path from the root to one leaf in TS
So, we have

�

Proposition 3

Let be a timed word and its digitization for
If and such that then we
have

Proof

Let be a timed word and
 its digitization for

We suppose that there exists and such that
 is a timed word of TS.

From the definition of timed words, there exists a computation sequence
 of TS that

5 Properties of the Test Tree

A Formal Framework for Testing duration Systems 165

represents a path from the root to one leaf of TS such that for
 and

Proposition 1 ensures that σ’ is the digitization of one computation sequence σ of
S) with
if we have
We remember that from the digitization valuation definition, we have

 and
which implies:

We remember that we have and

So we obtain
In other terms, we have

From the digitization quantum definition, we have which is
included in the above interval.
We conclude that

�

Proposition 4

Let be a timed word and .
If corresponds to a path from the root to a leaf in TS
Then such that

Proof

We proceed by a recursive proof on the size of .
Let with be the timed word obtained in the level i of
the test tree, we have
For , the proposition is true because and we
have
For we suppose that the proposition is true for i and we try to demonstrate
for i+1

 such that
Given such that we have
From the proposition 3, we have
So

�
Now, we present the theorem that demonstrates that a timed word corresponds
to a path in the test tree from the root to one leaf if and only if there exists a timed
word in the specification model such that the path in the test tree corresponds to its

166 L. Majdoub

digitization. In other terms, for every timed word belonging to the specification
model, their all possible digitizations for belong to the test tree.

Theorem

Let be a timed word and .
 corresponds to a path from the root to a leaf in TS

If and only such that

Proof

The proof of this theorem is a deduction of both proposition 2 and 4.
�

This theorem is important, because the test tree contains all digitizations of all
timed words of the specification model. So, we ca n generate test cases by con-
sidering discrete time.

We presented a formal framework for generating test cases for duration systems.
First, we described the specification of a duration system by a duration variables
timed graphs. We used the digitization technique in order to reduce the infinite set
of states to a countable set of states. The digitization technique associated to every
real value taken by a duration variable an integer value. We demonstrated that the
absolute of the difference between the real value taken by a duration variable and
its digitization is bounded by the number of restarts of the duration variable.
Thanks to this result, we derived directly the test cases from the specification
model by considering discrete time. We presented those test cases with a tree.

Second, we demonstrated that a timed word is path in the test tree if and only
if there exists a timed word in the specification model such that is its digitiza-
tion.

In the future works, we intend to extend our framework to nondeterministic du-
ration systems. Another work consists ton investigate on the coverage criteria.
Also, other models can be considered such as hybrid systems.

References

A Formal Framework for Testing duration Systems 167

[1] Alur, R., Courcoubetis, C., Dill, D.: Model-Checking for Real-Time Systems. In: 5th
Symp. On Logic in Computer Science. IEEE, Los Alamitos (1990)

[2] Alur, R., Dill, D.: A Theory of Timed Automata. Theoretical Computer Science 126,
183–235 (1994)

[3] Bouajjani, A., Echahed, R., Robbana, R.: Verifying Invariance Properties of Timed
Systems with Duration Variables. In: Proc. Formal Techniques in Real-Time and
Fault Tolerant Systems, FTRTFTS 1994 (1994)

Conclusion 6

168 L. Majdoub

[4] Briones, L.B.: Theories for model-based testing: real-time and coverage, thesis. Uni-
versity of Twenty (March 2007)

[5] Cerans, K.: Decidability of Bisimulation Equivalence for Parallel timer Processes. In:
CAV 1992. LNCS, vol. 663. Springer, Heidelberg (1992)

[6] Cassez, F., Larsen, K.G.: The impressive power of stopwatches. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, p. 138. Springer, Heidelberg (2000)

[7] En-Nouaary, A., Dssouli, R., Khendek, F., Elqortobi, A.: Timed Test Cases Genera-
tion Based on State Characterization Technique. In: RTSS 1998. IEEE, Los Alamitos
(1998)

[8] Henzinger, T., Manna, Z., Pnuelli, A.: What good are digital clocks? In: ICALP 1992.
LNCS, vol. 623 (1992)

[9] Hessel, A., Petterson, P.: A Test Case Generation Algorithm for Real-Time Systems.
In: Proc. of the 4th International Conference on Quality software, QSIC 2004,
pp. 268–273 (2004)

[10] Khoumsi, A., Jéron, T., Marchand, H.: Test Cases Generation for Nondeterministic
Real-Time Systems. In: Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS,
vol. 2931, pp. 131–146. Springer, Heidelberg (2004)

[11] Krichen, M., Tripakis, S.: Black-Box Conformance Testing for Real-Time Systems.
In: SPIN 2004 Workshop on Model Checking Software (2004)

[12] Majdoub, L., Robbana, R.: Testing Duration Systems using an Approximation
Method. In: Second International Conference on Dependability of Computer Systems
Depcos-RELCOMEX 2007, Szklarska Poreba, Poland, June 207, pp. 119–126 (2007)

[13] Majdoub, L., Robbana, R.: Testing Duration Systems. Journal Européen des Systèmes
Automatisés, approches formelles pour la validation de systèmes temps-réel 42(9),
1111–1134 (2008)

[14] Majdoub, L., Robbana, R.: Soundness Test cases Generation for Duration Systems.
In: Proc. third International Design and Test Workshop, pp. 57-62, Monastir, Tunisie
(December 2008)

[15] Majdoub, L., Robbana, R.: Test Cases Generation for Nondeterministic Duration Sys-
tems. In: 7th International Workshop on Modeling, Simulation, Verification and Vali-
dation of Enterprise Information Systems- MSVVEIS 2009, Milan, Italy, May 2009,
pp. 14–23 (2009)

[16] Robbana, R.: Verification of Duration Systems using an Approximation Approach.
Journal of computer Science and Technology 18(2), 153–162 (2003)

[17] Tretmans, J.: Testing Concurrent Systems: A Formal Approach. In: Baeten, J.C.M.,
Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 46–65. Springer, Heidelberg
(1999)

W. Zamojski et al. (Eds.): Dependable Computer Systems, AISC 97, pp. 169–178.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Dynamic Model Initialization Using UML

Lila Meziani and Thouraya Bouabana-Tebibel

Ecole Nationale Supérieure d’Informatique, LCSI loratory,
BP 68M Oued-Smar 16309 Algiers Algeria
e-mail: {l_meziani,t_tebibel}@esi.dz

Abstract. UML Formalization is often undertaken by projecting the notation in a
rigorously defined semantic domain. When the target formalism is of state transi-
tion type, the derived models are verified by model checking. The checking is per-
formed on an accessibility graph generated from an initialized dynamic model. We
propose, in this paper, an approach to initialize object Petri nets models at a time t
different from the initial time. Object Petri nets are derived from sate machines.
They are initialized using object diagrams. The approach associates the object
state specified on the object diagram to the one specified on the state machine. A
case study is given to illustrate the approach.

1 Introduction

Notations based on diagrams such as UML [17] are classified as semi-formal.
Many works [5,6,10,11,14,20,21] study the semantics of the UML proposing to
give it more precision. This precision is usually obtained through a denotational
semantics projecting the notation in a rigorously defined semantic domain. The
formal models, derived from the UML diagrams, may afterwards be verified by
model checking. The checking consists in verifying that the derived formal model
satisfies safety and liveness properties. Verification is performed on the reachabil-
ity graph which is generated to propose all execution alternatives starting from an
initial marking.

In UML, data initialization is provided by means of object diagrams specifying
the objects and messages identity, their attributes as well as their state at the time
of initialization. Objects state can be omitted when, by default, all data are given
for the initial state of the system life cycle. However, in software engineering,
some systems need sometimes to be studied beginning from a state that is different
from their initial state. Indeed, when a system already exits, and designers only
project to update, restructure or extend its functionalities, just a part of its life cy-
cle is revised or added. In these cases, some objects of the system are already in
action, and so, are localized on states that are necessarily different from the initial
one. This reduces the accessibility graph which will be truncated of all the states
space preceding the new system starting. Another advantage behind starting a sys-
tem behavior at a time different from the initial one consists in reducing the states
space and consequently allowing the system validation by model checking.

170 L. Meziani and T. Bouabana-Tebibel

Our interest in this work is in the initialization of objects Petri nets (OPNs)
models, derived from state machines, at a time t different from the initial time.
State machines are noted in the following SM. The objects distribution on the
model, at the appropriate time, will be deduced from the object diagram. The latter
is, precisely, introduced to define the objects sate at a given time, and to specify
their identity and attributes value. The object state is written in the object identity
compartment. It will be used, in conjunction with the state machine, to locate the
object on Petri nets.

This paper begins with a brief presentation of the state machines formalization
work, published in [4]. In section 3, the proposed approach is presented and tech-
niques on which it rests are developed. We provide in section 4 the reasons that
motivate our work and show its novelty and relevance by comparison with related
works. Section 5 deals with the approach validation. We conclude with some
observations on the obtained results and recommendations for future research
directions.

2 Related Works

Some studies have already addressed the formalization of UML dynamic diagrams
by translating them into OPNs semantics domain. The most known are those of
Baresi. He begins in [1] by a textual and graphical formalization of dynamic dia-
grams through the OPNs. He afterwards proposes in [2] translation recommenda-
tions. He only achieves the formulation of formal conversion rules for syntactic
models in [3]. The drawback of this proposal is the constraint to write the UML
models in a canonical language called LEMMA. Bokhari and Poehlman offer in
[7] to transform UML state machines in OPNs in order to analyze them. The mod-
el validation resulting from the derivation is performed on the model checker Des-
ignCPN. No details are however given about the initialization of the model that
deals with identified objects.

Similarly, Hsiung et al. presented in [12] an approach for the formalization of
statecharts with colored Petri nets. For this purpose, they use sequence diagrams to
initialize their models and OCL constraints transformed into temporal logic to va-
lidate them. But the model initialization starts from time zero.

Fish and Störrle offer in [9] a number of principles, applicable to visual lan-
guages, characterized by imprecise semantics in order to analyze and discuss their
quality. Based on this approach, they identify many sources of potential errors in
UML diagrams and propose solutions to these deficiencies.

New approaches of the UML formalization techniques are graph transformation
[11] and more recently, grammar graphs [15]. These techniques give more precision
to the UML diagrams semantics without the use of formal languages.

Dynamic Model Initialization Using UML 171

3 Background

We present in this section the main results of the state machine transformation ap-
proach into OPN. We developed this approach in [4].

To illustrate its mechanisms and those proposed in this paper, we take a case
study on a centralized peer to peer system. The main activity of this system is the
information exchange between the peers once identified by the server. Identifica-
tion is established, after a connection request, granted by the server. Once con-
nected, peers interact by exchanging information. Fig. 1 shows the class diagram
for the application, illustrating the system objects and their actions.

wait()
check()

adr : integer

transmittedInfo

*

1

receivedInfo

connection ()
disconnection()

okConnection()
 okDisconnection()

«signal»

Command

dest : integer
info : string

«create» information()
information()
save()

 Information

Server

treat()

*

communicantPeer

*

Peer

1

 1

dest : integer
info : string

connectedPeer

Fig. 1 Peer to peer class diagram

3.1 Transforming State Machines into OPNs

A state diagram [17] formally describes the behavior of objects of a given class,
through states, when they receive or generate events. The generated events appear
either on transitions or at the input or exit of states. They are noted on Fig. 2 by
evt. The received events appear on transitions. They are noted trg.

In the OPN approach, classes are represented by subnets that can be instantiated
as many times as needed to describe, in a nominative manner, the objects dynam-
ics. This instantiation is done using tokens, written in the form of n-tuples, to
model class instances. According to the object-oriented concepts, the subnet en-
capsulates the attributes and class methods. The attributes are expressed as com-
ponents of the n-tuple (token) representing the object. Concerning the methods,
they are specified in a flow of places, transitions and functions describing the

172 L. Meziani and T. Bouabana-Tebibel

object life cycle. Places are categorized into simple places and super places. The
simple places are those defined for ordinary Petri nets [13]. They include single
tokens. The super places generate these tokens. Transitions are also of two types:
simple and super. A simple transition models a single action. The super transition
represents an internal processing described by a set of actions. Transitions can be
guarded.

We proposed in [4] to specify the semantics of state machines by means of
OPNs. The mapping results are represented in Fig. 2. Thus, each diagram SM is
derived into a diagram called OPN, see Fig. 3. All the derived state machines
SMs, related to classes of the system, are then connected by the link place.

SM OPN # SM OPN

1 4

2

5

3 6

5 7 act
actdo : act

/ evt Linktrg /

exit :
t

t

Link

entry:evt

Fig. 2 Transformation of SM constructs into OPN

Link

OPN

OPN
OPN

Fig. 3 OPNs interconnection architecture

Dynamic Model Initialization Using UML 173

3.2 Value-Oriented Specification

Validation of OPNs is established on the basis of their consistency with the system
properties, transcribed in temporal logic. However, the formulation of system proper-
ties in temporal logic can be a hard task for the UML designer, unfamiliar with this
type of formalism. The ideal, in this case, will be to give him the possibility to de-
velop these properties in a familiar language. OCL, Object Constraint Language [18],
seems to be the appropriate formalism. It is an integral part of the UML notation for
expressing constraints on models while conserving their readability.

The expressions of OCL invariants are mostly based on the manipulation of
collections. As these collections correspond to association ends, the movement of
objects that visit them must appear on the dynamic models so that the system
properties can be checked on. This modeling is not usual when constructing dy-
namic models. For example, to model the connection of a peer to the server, the
connection request and confirmation are always specified but the insertion of the
connected station into the association end Connectedpeer is generally not men-
tioned. To overcome this, we require the modeling of object insertions and dele-
tions at the association ends. This movement can be provided by the link actions,
defined by the OMG work on the semantics of the UML actions [16]. These ac-
tions relate to the link creation and the link destruction as well as the destruction
of all links of an association. Fig. 4 shows the state machine of a peer with some
link actions specified on the association ends.

Our work on the integration of the objects movement through the association
ends is presented in [5].

do : check()
exit : «call» save()

entry : «send» connection()

entry : «send» disconnection()

disconnection
«send» okDisconnection()

entry : «create» information()
exit : «send» information()

 CreateLink(transmittedInfo)

connected

connection

reception

transmission

do : wait()

«send» information()
CreateLink(receivedInfo)

Fig. 4 State machine of a peer

174 L. Meziani and T. Bouabana-Tebibel

4 Initialization Approach

The verification of OPNs models, derived from state machines, requires the ini-
tialization of the specification. Most of the research works [8,19,21] undertake this
validation with an initial marking made of anonymous objects. Such marking is
appropriate when one has to evaluate particularly the objects dynamics character-
istic. When the interactivity feature is taken into account, the verification with
anonymous objects proves to be insufficient because it inhibits many aspects of
the communication. Indeed, running the verification by considering a single object
as class representative may remove any meaning to inter-classes communication,
especially when anonymity is on the exchanged messages.

To remedy this, we initialize the marking of OPNs models by considering ob-
jects and messages, identified by names and attribute values. Thus, the object is
identified by the 2-tuple <obj, attrib> where obj is its identity and attrib its attrib-
ute values. The message will be identified by the 3-tuple <assoc, obj, attrib>
where assoc designates the identity of the object to which it is associated. The ini-
tialization is deduced from object and sequence diagrams.

4.1 Syntax and Semantics of Object Diagrams

The object diagram [17], also called instances diagram, shows the structural links
between class instances at a given time. It thus constitutes the system structural
state at a precise moment. It is composed of objects symbolized by rectangles with
two compartments. The first compartment contains the instance name concate-
nated to the one of the class as follows: Class:object. The state of the object may
be specified in brackets. It corresponds to the object state on the state machine at a
given time. Thus, the system state at a given time is provided by the objects state
specified into the first compartment. In the second compartment, the attributes of
the object are initialized with values. The associations between objects show the
links between these objects at a given time. Thus, at time zero of a system life, no
link associates the class instances. Otherwise links exist with names on their ends,
see Fig. 5.

More formally, an object diagram can be specified by the n-tuple OD= <Cl, O,
SDO, Atr, L, R, Inst, Ext, Stat, St, At, Oin, Oass> where:

- Cl = {cl} is a set of instantiated classes on the diagram,
- O = {o} is a set of objects of the diagram,
- SDO = {s} is a set of states of objects on the diagram,
- Atr = {attrib} is a set of the objects attributes,
- L = {l} is a set of links,
- R = {r} is a set of association ends,
- Inst: Cl → P(O) is a function that returns the class instances,
- Ext: Cl → P(R) is a function that returns the association ends,
- Stat: Cl → P(S) is a function that returns the object state in the object dia-

gram,
- St: O → S is a function that returns the state of an object,

Dynamic Model Initialization Using UML 175

- At: O → P(Atr) is a function that returns the object attributes,
- Oin : R → O is a function that returns the object at the association end,
- Oass : R → O is a function that returns for an association end, the object at
 the opposite end.

4.2 Distribution of Objects on the OPNs

The simulation of an OPN model, starting from any state of its lifecycle, requires
an appropriate placement of its objects into the corresponding places. These plac-
es, which derive from the state machine diagram states, also correspond to the
states specified within the object compartments of the object diagram, see Fig. 5.
Thus, each object modeled in the object diagram is positioned on the OPN model-
ing its dynamics, at the place corresponding to its state specified on the object

 pr1 : Peer
[connected]

 adr = 192.168.0.11

 connectedPeer

 m1 : Information

 dest = 192.168.0.12
 info = Hello

pr3 :Peer
[intial stat]

 adr = 192.168.0.13

s : Server
 [wait]

attrib1 92.168.0.1
maxPeer = 10

 pr2 :Peer
[disconnection]

 adr = 192.168.0.12

 connectedPeer

 TransmittedInfo
 receivedInfo

: Disconnection

 m1 : Information

 dest = 192.168.0.11
 info = Hello

 m1 : Information

 dest = 192.168.0.12
 info = Hello

 transmittedInfo

Fig. 5 Object diagram of the system at time t

diagram. In addition to the OPN places, those related to the association ends must
also be initialized. Thus, each place representing an association end receives all
objects of the association end specified on the object diagram. More formally:

176 L. Meziani and T. Bouabana-Tebibel

Function marqObjectt (OD)
- for each class cl ∈ Cl :
 - for each state s ∈ Stat(cl) :
 - for each object obj∈ Inst(cl) such that St (obj) = s:
 - create col = <obj, attrib>, attrib = At (obj)
 - set M 0 (p) = ∑col <obj, attrib>, p = De(s),
- for each association end r ∈ Ext(cl) :
 - for each link l ∈ L such that l = r :
 - create col = <assoc, obj, attrib>, assoc = Oass(r),
 obj = Oin (r), attrib = At (obj),

- set M 0(rol) = ∑col <assoc, obj, attrib>, rol = De(r)

where M0(p) is the marking of place p and assoc is the class to which the object
obj is associated.

To illustrate this concept, we propose the object diagram of Fig. 5 where the
server s is already connected to pr1 and pr2 peers. The peer pr3 is not yet con-
nected. The peer pr1 is in a connected state after it has sent the message m1. The
peer pr2 has received the message m1, answered it by the message m2 and then
placed itself in a disconnected state.

5 Validation of the Approach

To test the proposed approach, we built a tool whose components work as follows.
We first developed a graphic interface to construct the used UML diagrams,
namely state machines and object diagrams. We afterwards, implemented a trans-
lator which derives OPNs from state machines. The derived OPNs were proved to
be well constructed and faithful to the client requirements. This checking was per-
formerd by means of the model checker PROD [22].

Verification by model checking, as treated in PROD, is based on the state space
generation and the verification of safety and liveness system properties on this
space. The properties may be basic, about the correctness of the model construc-
tion or specific, written by the modeler to ensure the faithfulness of the system
modeling. For each of these approaches, given a property, a positive or negative
reply is obtained. If the property is not satisfied, it generates a trace showing a
case where it fails.

The basic properties are verified according to two ways: the on-the-fly tester
approach and the reachability graph inspection approach. The on-the-fly tester ap-
proach detects deadlock, livelock and reject states. As for the reachability inspec-
tion approach, it permits the verification of some other properties such as quasi-
liveness, boundedness or reinitializability. For a more precise validation, specific
properties of the system can be written by the designer in Linear temporal Logic
(LTL) or Computational Tree Logic (CTL) and then, verified by PROD.

Once the OPNs generated and verified, we used the object diagrams to initialize
them. This was performed using the implemented algorithm MarkObject(OD).
The obtained marking reveals to be conform to the object model.

Dynamic Model Initialization Using UML 177

6 Conclusion and Perspective

The Many research results are published on the formalization of the UML but
none so far on the initialization of the derived formal models, starting from object
and sequence diagrams, established at times different from the time zero. This pa-
per proposes an approach to validate models, derived from the state machines, at
any time of the system life cycle. The initialization of these models is obtained
from object diagrams. The OPN model initialization also includes places repre-
senting association ends. This specification allows a better model validation using
OCL constraints.

The proposed solution totally rests on UML diagrams taking advantage of a
construct already available on the object diagrams, namely the object state. How-
ever, it requires from the UML modeler to specify the state of each object mod-
eled in the object diagram.

An interesting perspective to this work is to perform OPNs model initialization
without resorting to the states specified on the object diagrams. The use of the as-
sociation ends, modeled on those diagrams, is a promising research direction.

References

[1] Baresi, L., Pezzé, M.: On Formalizing UML with High-Level Petri Nets. In: Agha, G.,
De Cindio, F., Rozenberg, G. (eds.) APN 2001. LNCS, vol. 2001, pp. 276–304.
Springer, Heidelberg (2001)

[2] Baresi, L.: Some Premilinary Hints on Formalizing UML with Object Petri Nets. In:
Proc: 6th World Conference on Integrated Design & Process Technology, Pasadena,
USA (2002)

[3] Baresi, L., Pezzè, M.: Formal interpreters for diagram notations. ACM Trans. Softw.
Eng. Methodol. 14(1), 42–84 (2005)

[4] Bouabana-Tebibel, T.: Object dynamics formalization using object flows within UML
state machines. Entreprise Modelling and Information Systems Architectures 2(1),
26–39 (2007)

[5] Bouabana-Tebibel, T.: Roles at the basis of UML validation. Journal of Computing
and Information Technology 15(2), 171–183 (2007)

[6] Bouabana-Tebibel, T., Belmesk, M.: An Object-Oriented approach to formally ana-
lyze the UML 2.0 activity partitions. Information and Software Technology 49(9-10),
999–1016 (2007)

[7] Bokhari, A., Poehlman, W.P.S.: Translation of UML Models to Object Coloured Petri
Nets with a view to Analysis. In: SEKE 2006, pp. 568–571 (2006)

[8] Delatour, J., De Lamotte, F.: ArgoPN: A CASE Tool Merging UML and Petri Nets.
In: Proc: 1st International Workshop on Validation and Verification of software for
Enterprise Information Systems, ICEIS, Angers (2003)

[9] Fish, A., Störrle, H.: Visual qualities of the Unified Modeling Language:Deficiencies
and Improvements. In: IEEE Symposium on Visual Languages and Human-Centric
Computing - VL/HCC 2007, pp. 41–49 (2007)

[10] Harel, D., Maoz, S.: Assert and Negate Revisited: Modal Semantics for UML Se-
quence Diagrams. In: Proc. 5th Int. Wsh. Scenarios and State Machines: Models, Al-
gorithms, and Tools - SCESM 2006, pp. 13–20. ACM Press, New York (2006)

178 L. Meziani and T. Bouabana-Tebibel

[11] Holscher, K., Ziemann, P., Gogolla, M.: On translating UML models into graph trans-
formation systems. Journal of Visual Languages and Computing 17, 78–105 (2006)

[12] Hsiung, P.-A., Lin, S.-W., Tseng, C.-H., Lee, T.-Y., Fu, J.-M., See, W.-B.: VERTAF:
an Application Framework for the Design and Verification of Embedded Real-Time
Software. IEEE Transactions on Software Engineering 30(10), 656–674 (2004)

[13] Jensen, K.: An Introduction to the Practical Use of Coloured Petri Nets. In: Reisig,
W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1492, pp. 237–292. Springer, Hei-
delberg (1998)

[14] Knapp, A., Wuttke, J.: Model Checking of UML 2.0 Interactions. In: Auletta, V. (ed.)
MoDELS 2006. LNCS, vol. 4364, pp. 42–51. Springer, Heidelberg (2007)

[15] Kong, J., Zhan, K., Dong, J., Xu, D.: Specifying behavioral semantics of UML dia-
grams through graph transformations. The J. of Syst. and Soft. 82, 292–306 (2009)

[16] Object Management Group, The UML Action Semantics (2001)
[17] Object Management Group, UML 2.0 OCL Specification (2003)
[18] Object Management Group, UML 2.0 Superstructure Specification (2004)
[19] Saldhana, J.A., Shatz, S.M., Hu, Z.: Formalization of Object Behavior and Interac-

tions From UML Models. International Journal of Software Engineering and Knowl-
edge Engineering – IJSEKE 11(6), 643–673 (2001)

[20] Staines, T.S.: Intuitive Mapping of UML 2 Activity Diagrams into Fundamental
Modeling Concept Petri Net Diagrams and Colored Petri Nets. In: 15thIEEE Int. Conf.
and Workshop on the Engineering of Computer Based Systems, pp. 191–200. IEEE
Xplore, Belfast (2008)

[21] Störrle, H., Hausmann, J.H.: semantics of uml 2.0 activities. Software Engineering,
117–128 (2005)

[22] PROD 3.4, An advanced tool for efficient reachability analysis. Laboratory for Theo-
retical Computer Science, Helsinki University of Technology, Espoo, Finland (2004)

W. Zamojski et al. (Eds.): Dependable Computer Systems, AISC 97, pp. 179–192.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Integrated Application of Compositional and
Behavioural Safety Analysis

Septavera Sharvia and Yiannis Papadopoulos

University of Hull,
Cottingham Road, HU6 7RX, Hull, UK
email: {s.sharvia,y.i.papadopoulos}@hull.ac.uk

Abstract. The design complexity of modern safety critical systems presents vari-
ous challenges for its safety assessment process. In recent years, Model-Based
Safety Analysis (MBSA) has been proposed to achieve more-robust and effective
safety assessment techniques through automation of the synthesis and analysis of
predictive models. Two prominent paradigms of MBSA are Compositional Safety
Analysis (CSA) and Behavioural Safety Analysis (BSA). These techniques have
emerged with little integration. In this chapter, we present a technique which sys-
tematically integrates the application of CSA and BSA. The process starts from
CSA and utilizes its analysis results to provide a systematic construction and re-
finement of state machines, which can be subsequently analyzed through BSA. An
example of a car brake-by-wire system is presented to illustrate the application of
the proposed technique.

1 Introduction

Safety critical systems are systems whose operational deviations can potentially
lead to catastrophic consequences or loss of human lives. These systems are wide-
ly employed in various industries, including the automotive, aerospace, weapons
and nuclear industries. Today’s modern safety-critical systems often incorporate
numerous embedded control components, involve various engineering disciplines,
and employ distributed architectures and complex communication structures. In
such systems, achieving design solutions that fulfill safety requirements remains a
challenge. Classical safety analysis techniques such as Fault Tree Analysis (FTA)
and Failure Modes and Effects Analysis (FMEA) are popular techniques em-
ployed to predict the safety of such systems. However, these techniques are
traditionally manual, and in the context of a complex system become difficult, la-
borious, expensive and error-prone.

This limitation results in the FTA and FMEA performed only at the later stage
of lifecycle when the design has been finalized. This late contribution means that
results from the process miss the opportunity to influence system design, which
could incur extra cost and effort in late design modifications. Challenges also arise
in the lack of systematic methods to capture and manage design models and safety
artefacts as in traditional practices, system design models and safety analyses
are often handled separately. With these drawbacks, classical safety analysis

180 S. Sharvia and Y. Papadopoulos

techniques face tremendous challenges and are no longer deemed to be suffi-
ciently effective and robust in managing the rising intricacy of modern complex
design.

Model-Based Safety Analysis (MBSA) has been proposed in the recent years to
address some of these problems. Focus has been placed on developing more-
effective and robust safety assessment techniques through automation of the syn-
thesis and analysis process. MBSA introduces semi-formal and formal models in
the centre of the design and assessment process. Effort is focused on the construc-
tion of the formal specification of the system model. This specification model is
subsequently used as the foundation for various development activities like pro-
typing and simulation, code generation, and testing [9]. To perform a thorough
safety assessment, it is crucial to understand not only how a system behaves in its
normal working condition (represented in the nominal model), but also in the
presence of failure(s). This is done by extending the nominal model with failure
information to construct the failure-augmented model, termed fault model [10] or
error model [13].

Automated analysis of models brings substantial benefits as it simplifies the
process, lightens the burden on designers and analysts, saves time and contributes
to more reliable results. It also enables safety analysis to be incorporated as part of
an iterative design process - as new results can be more easily generated to reflect
changes – and therefore driving the design with safety in mind.

The two most prominent paradigms of MBSA today are Compositional Safety
Analysis (CSA) and Behavioural Safety Analysis (BSA).

CSA techniques are widely used to assist the process of reliability engineering.
It uses predictive models of system failure which can be produced in the form of
well-known safety artefacts like fault trees. System models can be decomposed
into structural hierarchies, and the local failure logic of components in these hier-
archies is provided by analysts. Faults trees or FMEAs are then automatically pro-
duced by establishing how the local effects of component failures combine as they
propagate through the topology of the system. The process is flexible and adapt-
able to different stages of model development. This is particularly valuable as as-
sessment can be started early in the design process when concrete system details
are still minimal. CSA produces safety artefacts (e.g. fault trees) which are famil-
iar to safety engineers, making the process more intuitive. These artefacts identify
potential failures and design weaknesses which can guide possible design modifi-
cations, and help to derive and refine requirements. CSA techniques allow quanti-
tative analysis and in some cases also architectural optimization. Despite these
strengths, CSA techniques provide no support for formal verification. Analyses
with FTA and FMEA are generally static, and do not take into consideration the
changes in system states and are therefore unable to capture dynamic behaviour.
This limitation has been to some extent addressed in HiP-HOPS with a recent ex-
tension that enables assessment of sequences of failures via synthesis of temporal
fault trees and FMEAs [14]. Techniques which are based upon the CSA approach
include Hierarchically Performed Hazards Origin and Propagation Studies (HiP-
HOPS) [1], Component Fault Trees [11], and State-Event Fault trees (SEFT) [7].

Integrated Application of Compositional and Behavioural Safety Analysis 181

BSA, on the other hand, generally aims to facilitate system verification. In
BSA, system-level effects of failures are constructed by injecting faults into the
formal specification of the system. This technique commonly employs model
checking to allow formal verification. Model checking verifies safety properties
which represent safety requirements and enables the assessment of dynamic be-
haviour. Formal models are expressed as state automata (or “finite state ma-
chines”) in the language of the particular technique, while safety properties are
usually expressed in temporal logic. Model checker tool performs exhaustive ex-
ploration to assess whether a safety property holds for the system. The tool pro-
duces a counterexample when a safety property does not hold to show traces of
‘simulation’ on how the breaching condition is reached.

BSA facilitates automated formal verification and captures dynamic behav-
iours. It is also possible to differentiate between transient and permanent failures
and model the temporal ordering of failures. However, its limitation include the
fact that most model checker tools require the system model to be expressed in
that particular model checker input language. Safety artefacts like fault trees pro-
duced from model checker generally have ‘flat’ structure representing disjunction
of all minimal cut sets, which can hamper understanding of the fault trees. The
analysis is also typically qualitative in nature, and not probabilistic. Formal mod-
els (which are required as the input to model checker) are only developed at later
stage where designs are more mature, detailed and stable. Lastly, model-checking-
based approaches are computationally expensive and inductive in nature, which
means that the exhaustive assessment of the effects of combinations of component
failures can potentially be infeasible in larger systems. Examples of techniques
which are based on this approach include Altarica [2] and FSAP/NuSMV [3].

2 Integrated Application of Compositional and Behavioural
Safety Analysis (IACoB)

CSA and BSA emerged with little integration. While the differences in strengths,
limitations, and assessment objectives of both techniques are acknowledged, we
also recognize that the above techniques are complementary and could yield sub-
stantial benefits when applied together. Here we propose a method called Inte-
grated Application of Compositional and Behavioural Safety Analysis (IACoB).
IACoB is a safety-driven method which exploits analysis results from quick itera-
tive CSA techniques to derive a more-robust, safety-driven model prior to the ap-
plication of BSA. The method can be iterated until a satisfactory design that fulfils
safety requirement criteria is reached. HiP-HOPS is selected to facilitate CSA in
IACoB as a representative CSA technique and the NuSMV model checker is
selected to facilitate BSA.

IACoB starts with the construction of a system model, which can be an early
functional model or a more detailed architectural model, depending on the stage of
the system development. At early stages of design, a functional model of the sys-
tem is established, which shows input, processing and output functions and

182 S. Sharvia and Y. Papadopoulos

dependencies among them, e.g. the data exchanged among functions (or material
and energy in the general case). Once the model is constructed, design engineers
examine further this model in order to evaluate the severity of failures of output
functions, i.e. functions provided by the system to users and its environment. Each
function is then annotated with its local failure behaviour in the style of HiP-
HOPS, enabling automated preliminary FTA to be conducted via application of
CSA. This can be done by assigning each component a set of output deviations,
input deviations and hypothesised internal malfunctions that lead to those output
deviations. This allows failure logic to be developed and the propagation of failure
to be established. Automated algorithms such as those in HiP-HOPS can then be
applied to perform the automated construction and analysis of system fault trees
and FMEAs. These analyses will show the effect of hypothesised component fail-
ure modes on system outputs, which in turn allows the results to be checked
against safety requirements. By identifying and studying how a component failure
might lead to a catastrophic system failure, safety measures can be devised, for
example, by enforcing a requirement on the design of the component, modifying
the system structure or introducing safety mechanisms and fault tolerant features.
Focus is placed especially on component failures that may have catastrophic or
critical effects on the system, as they need to be prevented by design - or at least
their impact minimized. In general, FMEAs can be used to show the effects of hy-
pothesised component failures, and then help decide whether failures can be toler-
ated or not. Intolerable failures must become sufficiently unlikely by appropriate
design of the component or external detection and recovery mechanisms must be
put in place. Tolerable failures may be allowed to happen resulting in loss of func-
tionality but always in the context of a graceful transition to degraded-but-safe
modes of operation. In the cases of tolerable failures, FMEA result leads to design
solutions that introduce, or enforce, these new “degraded modes” where compo-
nents have failed but the system maintains its safety related functions.

The results of the FMEA can therefore be used to drive the refinement of the
design of components and system modes. The process of design refinement is sys-
tematic and guided by the results of CSA. In the next step of the process, abstract
state machines are constructed to show how graceful transition to the identified
degraded modes could be achieved. Driven by these results, design iteration take
places to incorporate these new degraded modes in an improved version of the
system model. In general, system states are organized into functional states, where
on each state, the system delivers a different set of functions. Component failures
typically cause functional losses and malfunctions which lead the system from
normal to degraded and ultimately failed modes. Once state machines showing
these transitions have been derived, model checking technology is used to verify
that safety properties hold on these state machines and get assurance that early de-
signs incorporate correct interpretations and specifications of safety requirements.
BSA in the form of model checking can be used to verify both the general dy-
namic behaviour of the system and the particular effect of any fault tolerance
mechanisms that have been introduced following interpretation of CSA results.

Integrated Application of Compositional and Behavioural Safety Analysis 183

As the design of the system is refined, state machines can provide very detailed
representations of behaviour. In the course of the proposed process, CSA and BSA
are usefully being applied together. The results of the CSA help to improve the ar-
chitecture of the system, via introduction of fault detection and fault tolerance
where appropriate, but they also guide the construction of behavioural system
models that can be subjected to rigorous and detailed BSA.

This process can be iterated as the design evolves. At later stages of design,
CSA studies can become much more detailed and quantitative in nature. Failure
annotations of components can be extended to include real failure modes and
probabilistic component failure data. Such failure modes include electrical and
mechanical of hardware caused by wear and environmental conditions or, in the
case of composite systems that also include software, statistically observed func-
tional failures caused by unspecified random or systematic faults. The results can
be used to quantitatively predict the reliability, safety and availability of the sys-
tem. Such prediction forms a necessary and important component of the system
safety assessment process.

3 Example

3.1 Introduction to Brake-by-Wire System

Brake-by-wire systems replace traditional automotive braking components (like
brake boosters, pumps, and master cylinders) with electronic sensors and actua-
tors. Brake-by-wire systems can have hydraulic backup or not. The former, also
known as Electric Hydraulic Brake (EHB) technology is realized through hydrau-
lic pumps and additional electrically controlled valves. If the electronic control
fails, the complete electric hydraulic system will be deactivated and the brake sys-
tem will behave like a pure hydraulic system which delivers only emergency brake
function with reduced brake force. Brake-by-wire without hydraulic backup is
known as Electric Mechanical Brake (EMB) and uses only computer controlled
electro-mechanical actuators. EMB does not possess the fail-safe mechanics
of hydraulic backup, and therefore must be developed with strict fault tolerant
properties.

The example brake-by-wire system used in this chapter is based upon a model
described in [12] but also draws from designs in [8] and [4]. The system consists
of one vehicle-level processing function and four local-level wheel processing
functions. The vehicle-level processing function reads in brake command input
from the driver, communicated through a human-machine interface (for example,
the brake pedal or parking brake interface), and subsequently generates braking
command for each local-level wheel processing functions based on high-level ad-
vanced brake functions such as an Anti-Lock Brake System (ABS). Local-level
wheel processing functions are located physically close to the wheels and control
the provision of braking energy. Upon receiving braking command from the vehi-
cle-level processing function, each local-level processing function calculates
the value of braking pressure, taking into consideration various local-level

184 S. Sharvia and Y. Papadopoulos

information including actuator position and speed. This value of braking pressure
is then fed to an actuator which then applies the actual braking pressure on the
corresponding wheel of the car.

3.2 Analysis of System Functional Models

In accordance with the IACoB method, we start the safety assessment process
from a high-level functional model. For this simplified system, two initial main
functions can be delivered: 1) Function which delivers basic braking 2) Function
which delivers braking with driving assistance anti-lock (ABS). These two func-
tions can arguably be combined into one as they are not physically distinct. In this
early model, however, they are free from architectural detail and are modelled as
two separate logical functions to facilitate the illustration of function delivery.

The Matlab Simulink model illustrated in Fig. 1 represents a high-level abstrac-
tion of the brake-by-wire system. It is simplified to consist of input functions,
braking command processing functions (vehicle-level and local-level), ABS
command processing function, and output functions. As local-level processing
provides identical function for each wheel of the vehicle, we assume it is sufficient
to discuss and analyze one (instead of all four) in this initial model. There are four
input blocks which read the driver demand from the brake pedal (In-
put_brakeDemand), readings for wheel speed (Input_wheelSpeed), external vari-
able readings (Input_external) , and local-level feedback (Input_local). Informa-
tion on brake demand, wheel speed and the external environment is passed to the
vehicle-level processing function (VehicleLevelProcessing) which calculates and
generates the independent brake commands for each local-level processing (Lo-
calLevelProcessing). It also relays the information needed for ABS calculation to
the ABSProcessing function. The wheel local-level processing controls the output
functions which provide braking energy for basic braking or ABS braking. This
early model does not yet incorporate any fault tolerance mechanisms.

Fig. 1 Abstract functional model for brake-by-wire system

Integrated Application of Compositional and Behavioural Safety Analysis 185

3.3 Functional Failure Analysis

Once the model is constructed, we proceed to perform the FFA on the system. The
main aim of this process is to classify and analyse the effects and severity of fail-
ures in the output functions, BasicBraking and ABSBraking. In this case the focus
is placed on the omission and commission failure types, although it is also possi-
ble to perform analysis on value or timing failures. Table 1 presents an extended
FFA which includes identification of detection, potential recovery plan and rec-
ommendation columns for each failure.

From the examination of this FFA table, it can be seen that the severity of an omis-
sion failure of function BasicBraking (O-BasicBraking) is categorized as having a
catastrophic effect, and therefore should be mitigated with fault tolerant design. The
second functional failure related to the provision of braking pressure is commission.
The commission failure in BasicBraking function (C-BasicBraking) is identified as
having critical consequences and therefore should not be allowed to propagate and
wrongly influence other functions. One way to achieve this is by detecting the com-
mission failure, forcing the system to fail silent and then handling the omission accord-
ingly by putting a fault-tolerant mechanism in place. The failure for the ABSBraking
function is categorized as having catastrophic severity in its commission failure and
marginal effects in its omission failure. This is due to the nature of the ABSBraking
function which provides driving assistance rather than those of imperative role in brak-
ing. This suggests that it is more favourable for the function to fail in omission, and
therefore the function should fail-silent when commission failure is detected.

Table 1 Functional failure analysis for brake-by-wire system

Function Failure Type Effects on
System

Severity Detection Recovery
Plan

Design

Recommenda-
tion

BasicBraking Omission No brake
force ; vehi-
cle cannot be
stopped;
driver loses
control.

Catastrophic Using pres-
sure feedback

Not possi-
ble

Redundant
back up me-
chanism
should be in-
troduced

BasicBraking Commission Vehicle
tends to
drift; loss of
stability

Critical Comparing
pedal input
(demand) and
pressure
feedback

Release
Pressure

Commission
failure should
not be allowed
to propagate

ABSBraking Omission Loss of stee-
rability; less
efficient
brake

Marginal Using feed-
back on
wheel speed
and pressure

Not possi-
ble

Situation can
be compen-
sated by driver

ABSBraking Commission No brake
force avail-
able

Catastrophic Comparing
wheel speed
and pressure
feedback

 Switch off
ABS func-
tion

Commission
failure should
not be allowed
to propagate

186 S. Sharvia and Y. Papadopoulos

3.4 FMEA

Functional blocks in the model are then annotated with failure behaviour before
fault trees and FMEA can be generated and analyzed using HiP-HOPS tool. As the
initial design does not include any fault-tolerant strategies, the initial FMEA table
(Table 1) shows how each internal malfunction (recorded in “Failure Mode” col-
umn) in every function can become direct contributors to the omission and
commission failures of the braking and ABS functions.

To implement a more robust design, several advisable design changes can also be
determined from an analysis of the FMEA table. Severity is the effect of functional
failure on the output functions of the system. Based on this effect, the criticality of the
functional failure can be established and a recommendation can be made. One im-
portant (and most obvious) technique to achieve fault-tolerance is the introduction of
redundancy in the ‘module’. Module here refers functions in functional models or
components in more refined architectural models. In common practice, fault tolerant
design for brake-by-wire systems can be implemented through either the inclusion of
a hydraulic system (EHB system) or through replicated electronic components (EMB
system). For this example, we introduce a hybrid system which implements both hy-
draulic as well as redundant electronic modules (with lower numbers of redundant
modules compared to a pure electronic EMB).

Table 2 Initial FMEA results for brake-by-wire system

Function Failure Mode Direct Effect Severity Comments
/Recommendation

Input_brakeDemand BDBE O-BasicBraking Catastrophic Redundancy required

Input_external ESBE O-ABSBraking Marginal

Input_locals LSBE O-BasicBrakingCatastrophic Redundancy required

Input_wheelSpeed WSBE O-ABSBraking Marginal -

VLPBEabs O-ABSBraking Marginal -

VLPBE O-BasicBraking Catastrophic Redundancy required

VehicleLevelProcessing

VLPBEc C-BasicBraking Critical Should fail silent

 VLPBEabsC C-ABSBraking Catastrophic VLPBE should not
propagate and when
detected, ABS should
be deactivated.

LLPBE O-BasicBrakingCatastrophic Redundancy required LocalLevelProcessing

LLPBEc C-BasicBrakingCritical Should fail silent

BrakingEnergy ActBE O-BasicBraking Catastrophic Redundancy required

 ActBEc C-BasicBraking Critical Should fail silent

ABSProcessing ABSBE O-ABSBraking Marginal -

The analysis of FMEA therefore provides an insight that assists us in distin-

guishing critical functional failures that contribute to failures which have catastro-
phic or critical consequences (O-BasicBraking, C-BasicBraking, C-ABSBraking)

Integrated Application of Compositional and Behavioural Safety Analysis 187

from those that contribute to failures with marginal effects (O-ABSBraking). This
knowledge subsequently allows us to establish the appropriate resource manage-
ment priority and design improvement.

For example, Input_brakeDemand function and the Input_locals function are
identified to be the contributing causes to O-BasicBraking which is catastrophic,
and therefore it is necessary to configure these functions to be at least fail-
operational by introducing a redundant module to backup each function. Failure in
Input_external and Input_wheelSpeed only leads to O-ABSBraking and therefore
in this example, will be tolerated. We also identified that there is a need to intro-
duce a redundant function for VehicleLevelProcessing as its failure also leads to
O-BasicBraking. Additionally, LocalLevelProcessing can be connected directly to
the function Input_brakeDemand to read raw braking command. This way, when
VehicleLevelProcessing function fails basic braking command can still be ob-
tained. Similarly, an omission failure in basic braking caused by internal malfunc-
tion in LocalLevelProcessing and BrakingEnergy can be mitigated by introducing
redundant functions to support these critical functions. In addition to this inde-
pendent redundancy for individual modules, we could also include a hydraulic
function which acts as the group backup mechanism to provide emergency brak-
ing in the presence of failures that affect the electrical-based functions. Commis-
sion failures on both braking and ABS functions have been identified as critical
and catastrophic respectively. It is therefore recommended that any function which
leads to commission failure should fail-silent instead. This can be achieved by de-
activating or switching off the function whenever a commission failure is detected.
This, in turn, transforms the commission failure into omission failure, which will
then be treated accordingly. These changes are reflected in the revised model illus-
trated in Fig.2. Shaded areas within each module represent redundancy.

Fig. 2 Revised brake-by-wire system

188 S. Sharvia and Y. Papadopoulos

The inclusion of these new redundant mechanisms results in the introduction of
new failure behaviours, which requires the FTA and FMEA to be updated. The
new fault-tolerant redundant structure means that there are no longer any single-
point failures which directly cause O-BasicBraking.

3.5 Construction of State Machine

FTA and FMEA can be iterated until the design model meets early predefined re-
quirements, for example until a satisfactory level of functional redundancy is
achieved and the system is tolerant to n number of failures. In this example, we
assume that elimination of single point failures for O-BasicBraking is sufficient.
Next, we proceed and model the design dynamic behaviour by constructing an
abstract state machine.

To do this, it is first of all, important to identify the primary elements of state
machine: abstract states (referred to as ‘modes’) and transition events. Modes are
derived based upon provision of system functions, which in this case are the Ba-
sicBraking function and the ABSBraking function. Here we summarize three
modes the system that can be derived by considering the delivery of functions: 1)
Normal (BBW_Normal) mode where both Braking and ABS functions are deliv-
ered. 2) Permanent Degraded (BBW_PD) mode where basic Braking is delivered,
but ABS function can no longer be delivered. 3) Fail (BBW_Fail) mode where no
braking pressure is delivered.

Transitions can be formulated according to the failures that could occur to each
of the functions; in this case, all such failures are of omission type as commission
failures have been transformed into omissions by design. To more closely reflect
the inclusion of different type of pressure source, we could also refine the function
BasicBraking into Electrical and Hydraulic. Subsequently, dynamic behaviour can
now be modelled in the following modes:

1) Normal (BBW_Normal) mode where both basic braking and ABS braking

functions are delivered. Braking function in normal mode is delivered through the
primary source, Electrical module.

2) Permanent Degraded 1 (BBW_PD1) mode where braking function is deliv-
ered by the Electrical module, but the ABS braking function can no longer be de-
livered.

3) Permanent_Degraded2 (BBW_PD2) mode where braking pressure is deliv-
ered by Hydraulic module, ABS function is not delivered.

4) Fail mode where no braking pressure is delivered.
This can be illustrated in Fig. 3. It is also important to note how inclusive the

transition definitions are when modelling dormant functions. For example, the
mode chart in Fig. 3 is appropriate in a situation where the hydraulic back up is
only activated when O-Electrical is detected. However, for ‘hot standby’ where
hydraulic backup is continuously active, the transition definitions need to be up-
dated. This is because it is possible for failure O-Hydraulic to occur when the sys-
tem is operating in BBW_Normal mode.

Integrated Application of Compositional and Behavioural Safety Analysis 189

BBW

O-Hydraulic

O-ABSBraking
BBW_Normal
Functions: {Basic-
Braking (Electric),
ABSBraking}

BBW_PD2
Functions: {Basic-
Braking(Hydraulic)}

BBW_PD1
Functions: {Basic-
Braking(Electric)}

BBW_Fail
Functions: {}
Hazardous

O-Electrical O-Electrical

Fig. 3 Mode chart for brake-by-wire system

To promote a more transparent systematic degradation phase, it can be helpful
to consider failure in hydraulic line during the normal operational mode. One pos-
sible way to better address this is by introducing an additional temporary mode
(BBW_TD1), to model the failures in the Hydraulic function when basic braking
is provided correctly through Electrical system. This degraded BBW_TD1 mode
could serve as a potential warning that the backup function has failed before the
primary function, a state in which potential recovery steps can also be included
and performed. This can be shown in the following mode chart:

O-

Electrical

BBW_PD2
Functions: {BasicBrak-
ing (Hydraulic)}

BBW

O-ABSBrakingBBW_Normal
Functions: {BasicBrak-
ing (Electric), AB-
SBraking}

BBW_PD1
Functions: {Basic-
Braking(Electric)}

BBW_Fail
Functions: {}
Hazardous

O-Hydraulic

BBW_TD1
Functions: {Basic-
Braking (Electric),
ABSBraking}

O-Electrical

O-Hydraulic

O-Hydraulic

O-Electrical

Recovery

Fig. 4 Updated mode chart for brake-by-wire

The accuracy of safety assessment and verification of safety requirements de-
pends on the level of detail provided in the mode chart. For this reason, it can be
useful to refine the abstracted mode chart. This can be done by refinement of
events through minimal cut sets or through compositional annotation. Refinement
through minimal cut sets is performed by replacing failure events with its set of

190 S. Sharvia and Y. Papadopoulos

minimal cut sets, while refinement through compositional annotation is done by
utilizing HiP-HOPS failure annotation to establish connections between failure
events.

3.6 Verification of Safety Requirements

To enable the verification of requirement properties, once the mode chart is con-
structed, it is converted into a NuSMV input model. For this high level NuSMV
model, four modules are constructed to represent the system main module and
each functional module (ABSBraking, Electrical, and Hydraulic). Among the re-
quirement properties, safety requirements are often of primary concern. The proc-
ess here aims to verify that the design goals are achieved, while ensuring that the
model conforms to the safety requirements. Possible safety requirements that can
be verified in this example are: “Driving assistance function(s) shall never hazard-
ously interfere with the system state”, “The system shall be able to withstand the
occurrence of n failures, without entering a hazardous state”, and “Dormant func-
tions shall only be activated when needed”. These requirements first have to be
interpreted in terms of the behaviour specified in the mode chart model. For ex-
ample, translating the first safety properties into: “The presence of the ABSBrak-
ing function shall not lead the system into Fail mode” and “The absence of the
ABSBraking function shall not lead the system into Fail mode”. These can be re-
spectively expressed in CTL as:

! (AG (absB.Output = 1 -> SystemMode = BBW_Fail));
! (AG (absB.Output = 0 -> SystemMode = BBW_Fail));

The safety properties that can be verified are refined according to the refinement
of the state machines. This refinement captures and retains the hierarchical com-
position of the model and allows more detailed verification to be performed. By
examining the relationships between the dynamic behaviour of modules, it is now
possible to verify more safety related requirements, from more straight-forward
ones like “As long as Braking Energy ACT A is functioning, the Braking Energy
function shall be present”, or for a cold-standby system which examines the elec-
trical and hydraulic modules: “Only either Electrical pressure or Hydraulic pres-
sure shall be supplied at one time”, to the effects of this function behaviour on the
system modes, for example: “ System shall not be allowed to enter hazardous
mode when Electrical system is functioning”.

4 Conclusions

There is an increasing need for early safety analysis that can guide system design,
particularly in complex safety-critical systems. In this chapter, we have presented
IACoB, a systematic method that integrates application of state-of-the-art CSA and
BSA techniques from early stages. The method utilizes the synergies between the two
techniques, and assists analysis of topological and behavioural models, verification of
safety requirements, identification of design weakness, and systematic design of

Integrated Application of Compositional and Behavioural Safety Analysis 191

degraded modes and fault tolerant strategies. An example of a brake-by-wire system
was used to illustrate how the approach methodically achieves design improvements.
In the context of this example, we demonstrated that it is possible to exploit the com-
plementary strengths of CSA and BSA and achieve a combined application where the
output of CSA creates useful input for BSA. The degree of automation enabled by the
underpinning techniques allows analysis to be iterated, and contributes to a more-
rigorous safety assessment. Future work includes application of the proposed concept
in context of design using emerging architecture description languages such as
AADL [6] and EAST-ADL [5].

Acknowledgements. This study was partly funded by the FP7 project MAENAD (Grant
260057).

References

[1] Adachi, M., Papadopoulos, Y., Sharvia, S., Parker, D., Tohdo, T.: An approach to op-
timization of fault tolerant architectures using HiP-HOPS. In: Software Practice and
Experience. Wiley Interscience, Hoboken (2011), doi:10.1002/spe.1044; available
online in advance of publication

[2] Arnold, A., Gerald, P., Griffault, A., Rauzy, A.: The Altarica formalism for describing
concurrent systems. Fundamenta Informaticae 34, 109–124 (2000)

[3] Bozzano, M., Villafiorita, A.: The FSAP/NuSMV safety analysis platform. Interna-
tional Journal on Software Tools for Technology Transfer 9, 5–2 (2006),
doi:10.1007/s10009-006-0001-2

[4] Colombo, D.: Brake-by-wire system development: technology and development proc-
ess. Vehicle Systems-Active Control Systems Fiat Group (2007),
http://staff.polito.it/enrico.canuto/Home_page/pdf/Incont
ro18gen2008/DColombo.pdf (accessed February 16, 2011)

[5] Cuenot, P., Chen, D., Gérard, S., Lönn, H., Reiser, M.-O., Servat, D., Kolagari, R.T.,
Törngren, M., Weber, M.: Towards improving dependability of automotive systems
by using the EAST-ADL architecture description language. In: de Lemos, R., Gacek,
C., Romanovsky, A. (eds.) Architecting Dependable Systems IV. LNCS, vol. 4615,
pp. 39–65. Springer, Heidelberg (2007)

[6] Feiler, P.H., Gluch, D.P., Hudak, J.J.: The architecture analysis and design language
(AADL): an introduction (2006), http://www.dtic.mil/cgi-
bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA455842 (ac-
cessed February 16, 2011)

[7] Grunske, L., Kaiser, B., Papadopoulos, Y.: Model-driven safety evaluation with state-
event-based component failure annotations. In: Heineman, G.T., Crnković, I.,
Schmidt, H.W., Stafford, J.A., Ren, X.-M., Wallnau, K. (eds.) CBSE 2005. LNCS,
vol. 3489, pp. 33–48. Springer, Heidelberg (2005)

[8] Hedenetz, B., Belschner, R.: Brake-by-wire without mechanical backup using a TTP-
Communication network. Society of automotive engineering, SAE 981109 (1998),
http://www.vmars.tuwien.ac.at/projects/xbywire/projects/n
ew-BBW.html (accessed February 16, 2011)

192 S. Sharvia and Y. Papadopoulos

[9] Heimdahl, M.P.E.: Formal model-based development in aerospace systems: chal-
lenges to adoption. Lecture notes, Software Engineering Center Critical Systems Re-
search Group. University of Minnesota (2007)

[10] Joshi, A., Whalen, M., Heimdahl, M.P.E.: Model-based safety analysis final report.
University of Minnesota Advanced Technology Centre (2006)

[11] Kaiser, B., Liggesmeyer, P., Mackel, O.: A new component concept for fault trees. In:
Proceedings of the 8th Australian Workshop on Safety Crucial Systems and Software,
vol. 33, pp. 37–46 (2003)

[12] Papadopoulos, Y.: Safety analysis of a distributed brake-by-wire systems for cars.
ESPRIT 23396 (TTA) Deliverable, University of York (1998)

[13] Walker, M., et al.: Review of relevant safety analysis techniques. Traffic Efficiency
and Safety through Software Technology Phase 2 ATESST2 Report, University of
Hull (2008)

[14] Walker, M., Papadopoulos, Y.: PANDORA: The time of priority AND gates. In:
IFAC Symposia on Information Control Problems in Manufacturing, pp. 237–242
(2006)

W. Zamojski et al. (Eds.): Dependable Computer Systems, AISC 97, pp. 193–203.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Reliability Analysis of Electronic Protection
Systems Using Optical Links

Mirosław Siergiejczyk1 and Adam Rosiński2

1 Warsaw University of Technology, Faculty of Transport, Department
Telecommunication in Transport, ul. Koszykowa 75, 00-662 Warsaw, Poland
e-mail: msi@it.pw.edu.pl

2 Warsaw University of Technology, Faculty of Transport, Department
Telecommunication in Transport, ul. Koszykowa 75, 00-662 Warsaw, Poland
e-mail: adro@it.pw.edu.pl

Abstract. Theory of the systems reliability is particularly applicable to electronic
protection systems (alarm systems), which due to their specific character of use,
should be characterised by the high level of reliability. The devices and electronic
units applied in the wide range in those systems, the microprocessor systems in
particular, require a new perspective on the reliability and the safety of the sys-
tems. The paper presents a reliability analysis of the electronic protection systems
using optical links.

1 Introduction

Electronic protection systems realize the service safety assurance while travelling,
which is one of the services that are realized by telematics transport systems [14,15].
This service can be realized by the systems installed at: airport, railway stations, lo-
gistic centres, trans-shipping terminals as well as by the systems installed in the mo-
bile objects (e.g. vehicles). Suitability assurance is the essential condition of their
correct operation.

The group of electronic protection system includes as follows:

- Intruder alarm system,
- Access Control System,
- Closed Circuit TeleVision,
- Fire Alarm System,
- External Terrains Protection System.

Protection resulting from operation of the systems can be provided by the following
features:

- signalisation of health condition and personal danger,
- signalisation of environmental dangers,
- against-theft,
- vehicles location systems.

194 M. Siergiejczyk and A. Rosiński

The intruder alarm system will be introduced in the following part of my paper, but
similar issues can also be found in other electronic safety systems.

The European Standard EN 50131-1:2006 "Alarm Systems – Intrusion and Hold-
up Systems – Part 1: System Requirements", which has also the status of the Polish
Standard PN-EN 50131-1:2009 "Alarm Systems – Intrusion and Hold-up Systems –
System Requirements" contains a list of definitions and abbreviations that are then
used in subsequent chapters of this standard [5]. Among them there are definitions,
such as:

- alarm system – electric installation, responsible for manual or auto-
matic detection of the presence of danger,

- control and indicating equipment – a device for data receiving, proc-
essing, controlling, imaging, and further transmission thereof.

Alarm control panels are specialised devices that are meant to:

- receive information signals (analogue and/or digital) from various de-
vices,

- process in accordance with a pre-programmed settings (of the installer
and/or the manufacturer)

- control by specifying the appropriate output signals,
- provide imaging of events that occur on the respective devices of the

anti-burglary system,
- transmit data to other systems (such as e.g. Alarm Receiving Centre,

abbreviated ARC).

PN-EN 50131-1:2009 „Alarm Systems – Intrusion and Hold-up Systems – Part 1:
System Requirements” defines the class of protection that the intruder alarm systems
should meet. They are as follows:

- grade 1: low risk (it is assumed that the intruder has minimum knowl-
edge about the alarm system and possesses easily accessible tools of
the limited choice),

- grade 2: low-to-medium risk (it is assumed that the intruder has a
minimum knowledge of the alarm system and has a widely available
tools and portable devices such as digital multimeter),

- grade 3: medium-to-high risk (it is assumed that the intruder knows
the alarm system entirely and has a complex set of powerful tools and
portable electronic equipment),

- grade 4: high risk (applicable whenever safety has priority over all
other factors. It is assumed that the intruder has the ability or re-
sources to plan a burglary in detail and has a set of any equipment, in-
cluding measures to replace the key of an electronic alarm system).

Having specified what class of the protection the intruder alarm system has to fulfil,
there are selected devices that meet those requirements. The standard obviously
refers to what units have to be applied. Therefore, there are various solution designs
of the alarm control panel. They can fulfil the requirements of a specific class of pro-
tection, but they also differ among themselves depending on their manufacturer.

Reliability Analysis of Electronic Protection Systems Using Optical Links 195

As it has already been mentioned, the alarm control panel is the „heart” of the in-
truder alarm system. Data is sent about the condition of individual supervisory lines
(e.g. detectors), exit lines (e.g. load outputs) or a specific one introduced by the user
or a maintenance guy (and earlier during the installation of the system). Information
can directly be sent to the plate of the main alarm control panel, depending on the
type of alarm control panel or also to modules, realising definite functions (e.g. ex-
panding input, expanding output, interfaces of printers, etc.). Information between
alarm control panel and individual modules is sent digitally using the transmission
format that is mostly applied at present RS-232 or RS-485 or another one (very often
elaborated by the manufacturer) [6,9]. There are also solutions of the burglary-
signalling systems where transmission bus can combine:

- intra-several alarm control panels (they operate in the so-called annu-
lus),

- control (e.g. the keyboard steering),
- alarm control panels with the supervisory and management centre as

well as the managing of the integrated safety system.

The intruder alarm system can be divided into three principal groups:

- concentrated systems,
- distracted systems,
- mixed systems

Monitored object

Control and
indicating
equipment

Power
supply

SO

SA
Detectors and sensors

Monitoring lines

Manipulators

Monitoring lines

Signalization lines

Fig. 1 Intruder alarm system with concentrated structure, where: SA – audio signalling de-
vice, SO – optical signalling device

196 M. Siergiejczyk and A. Rosiński

The concentrated structures envisage connection of all the monitored lines and
output lines (monitoring and signalising) to the alarm exchange (Fig. 1.).

In the widespread objects requiring a big number of monitoring lines and a big
number of control zones, the systems basing on the microprocessor digital ex-
changes with the concentrated structure are not applicable. Therefore, there sys-
tems with dissipated or mixed structure must be used. A characteristics for the dis-
sipated structure is decentralisation of the alarm exchange, basing on the use of
transmission buses that are connected to the respective modules (input, output,
power) as well as the use of transmission buses to connect the separate concen-
trated exchanges among themselves and thus creating the system with a dissipated
structure. The mixed structure combines characteristics of both described here
structures, and it means that the monitoring lines are connected both to the alarm
exchange and to the expanding modules.

Control and
indicating
equipment

Detector and sensor
Output lines

(signaling and monitoring)

transmission
line Expanding

modules Detector and sensor

Expanding
modules Detector and sensor

Output lines

Expanding
modules Detector and sensor

Expanding
modules Detector and sensor

Output lines

Fig. 2 Intruder alarm system – mixed systems

Figure 2 presents the mixed alarm system with the distracted character where
own (switch boards) entries of the supervisory lines are used. The system where
concentrated systems are connected by the RS-232 or RS-485 lines (or others, but

Reliability Analysis of Electronic Protection Systems Using Optical Links 197

enabling data transmission between respective alarms and controls in the concen-
trated version, thus creating the intruder alarm system in the mixed version) can
also be treated as the mixed alarm system.

The questions of reliability, exploitation and electromagnetic compatibility in
the electronic safety systems are particularly essential, especially if they are they
applied in domain of transport. There is very limited number of publication which

present this issue [3,4,10]. However they do not take into account the reliability
analysis of electronic safety systems in which the optical transmission was ap-
plied. That is why it seems necessary to consider such solutions as well.

2 Analysis of Electronic Protection Systems Using Optical
Links

Electronic protection system has a defined reliability structure: serial, mixed or par-
allel. In general, it is presented in Fig. 3. Such a structure is often applicable in large
and extensive objects. The reliability analysis of this type of structures is presented
in many scientific papers [1,8,11,12,16,17].

Element ,,n"
serial path

Element ,,1"
parallel path

Element ,,2"
parallel path

Element ,,m"
parallel path

Element ,,1"
serial path

Fig. 3 Structural reliability flow chart of electronic protection system

Due to a specific characteristics of the protected objects (e.g. airports, railway sta-
tions, logistic bases), as those buildings are very often located on a large area and
simultaneously they have a huge enough surface, there is a need to design the In-
truder Alarm Systems which shall enable placement of component units in the pro-
tected rooms and adjacent terrains. Using the conventional line solutions in which
transmission lines are applied (e.g. modules, manipulators) to the transmission of
electric signals is not sufficient because of the guaranteed quality of the data trans-
mission in the function of distance among the units of the system. Electromagnetic
disturbances that may occur are the next essential issue. That is why the transmis-
sion measure, namely the optical fibre, started to be applicable.

Data transmission requires conversion of electrical signals into optical (fibre-
optic transmitter) and vice versa (fibre-optic receiver) [6] - Figure 4. Since data

198 M. Siergiejczyk and A. Rosiński

transfer information in the electronic security system busses is normally bi-
directional, so the fibre optic converter system should include both the transmitting
and the receiving system. Therefore, two optical fibres are necessary to ensure data
transmission between the two converters.

Fig. 4 Optical fibre link for signal transmission

The advantages of fibre optic transmission between devices forming the Intruder
Alarm System include inter alia [13]:

- high resistance of communication to interferences,
- no generation of electromagnetic interference,
- lack of sensitivity to the phenomenon of stray currents (this is particu-

larly important in the railway environment where in close proximity to
each other there may be a small capacities of say milliwatts (telecommu-
nication signals) and large capacities of say megawatts (electric locomo-
tives),

- high bandwidth fibre enables the connection of further devices,
- galvanic isolation of devices.

By modelling the single optical bus transmission lines applying the serial struc-
ture, the readiness should be considered of such component units as: amplifiers,
cables, regenerators, etc. (Fig. 5) [7].

Let us assume the following indications of the value of the readiness coefficients:
transponder Kgtrans, regenerator Kgreg, amplifier Kgwzm. Analysing the process of the
exploitation of the optical link, we can distinguish the following states of efficiency:

− s0 – the state of the correct execution of the function of transmis-
sion,

− s1 – the state in which the functions of the broadcast realisation are
not executable.

Fig. 5 Structure of a single optical transmission line

Reliability Analysis of Electronic Protection Systems Using Optical Links 199

The matrix of transitions probabilities between the distinguished states takes the
form of:

 P = ⎥
⎦

⎤
⎢
⎣

⎡
−

−

kk

kk

μμ
λλ

1

1
 (1)

Accepting the solid intensity of damages λ for individual units of the optical link and
the solid intensity of the service μ, we can determine a stationary value of the readi-
ness coefficient of optical amplifier, regenerator, and transponder in the form of:

kk

k
0g wzmg regg trans λμ

μ
PKKK

+
==== (2)

where index k means parameters of time distribution of proper operation and repair
time respectively for optical amplifier, regenerator, and transponder, respectively.

Components such as fibre optic cables also have a significant impact at opera-
tional readiness of the entire optical link. The optical cables readiness can be
counted using the CC Cable Cut parameter, which expresses the average length of
the cable that breaks once during the whole year (8760 [h]). Coefficient CC is ex-
pressed in kilometres, meanwhile the value of the parameter MTBFK (Mean Time
Between Failure) for the cable whose length is L, is defined in hours and has a form
of [2]:

L

CC
LMTBFK

8760
)(

⋅= (3)

The value of the readiness coefficient for the optical cable can be written in the
form of:

KK

K
0gK MTTRMTBF

MTBF
PK

+
== (4)

where: MTTRK - is the optical cable repair time.

3 Analysis of Practical Application Reliability of Electronic
Protection Systems Using Optical Links

Figure 6 shows a diagram of the Intruder Alarm System with mixed structure,
which has been designed and implemented using a microprocessor alarm control
panel INTEGRA.

The hereto presented system belongs to the group of mixed systems, i.e. part of
monitoring lines (e.g. PIR detector, magnetic sensor, alarm box) is connected by ra-
dio channels with a special module of wireless devices. The module is connected to
the mainboard of the alarm control panel via the wired transmission bus. Also, some

200 M. Siergiejczyk and A. Rosiński

Fig. 6 The intruder alarm system of dispersed structure (with applied fibre optic converters)

of the detectors are linked to the mainboard via a conventional monitoring wired-
lines. The entire system is programmable and controllable by a computer (using ap-
propriate software) linked to the mainboard of the alarm control panel via RS-232
interface. The system is also operable through LCD keypads. One of them is directly
connected to the mainboard of the alarm control panel via conventional wired bus
keypads. The second one is also connected to the keypads bus, but using the fibre
optic converters between which data transmission takes place through the transmis-
sion medium, namely the fibre-optic cable. There are neither amplifiers nor regen-
erators used in the hereto applied solution.

Reliability Analysis of Electronic Protection Systems Using Optical Links 201

The following values have been adopted in the analysed system:

- research time – 1 year:

[]h8760t b =

- reliability of fibre-optic converter:

() 99,0R ks =bt

- intensity of repairs of fibre-optic converter (it corresponds to the repair
time equal to 12 [h]):

⎥⎦
⎤

⎢⎣
⎡=

h

1
08333,0μ ks

- repair time of fiber-optic cable:

[]hMTTR 24K =

- fiber-optic cable intersection parameter:

[]kmCC 4=

- length of fibre-optic cable:

[]kmL 2=

Knowing the value of reliability ()btksR , we may estimate the intensity of fibre-

optic converter damages ksλ . The following relationship can be used for the expo-

nential distribution:

() Bkstλ
Bks etR −= for 0≥t

therefore:

()
B

Bks
ks t

tlnR
λ −=

For []h8760t b = and () 99,0R ks =bt we receive:

()
⎥⎦
⎤

⎢⎣
⎡⋅==−=−= −

h

1
10,1472981

8760

0,01

8760

0,99ln

t

tRln
λ 6

B

Bks
ks

Knowing the value of ksλ , the expected operation time between successive dam-

ages is calculable:

202 M. Siergiejczyk and A. Rosiński

() []h871612
λ
1

TE
ks

==

Fibre-optic converter readiness index can be determined from the following
dependence (2):

999986,0
10,14729810,08333

0,08333

λμ
μ

K 6
ksks

ks

g ks
=

⋅+
=

+
= −

The readiness index of the fibre-optic link can be determined from the dependence
(3 and 4):

[]h
L

CC
LMTBFK 17520

2

876048760
)(=⋅=⋅=

998632,0
2417520

17520 =
+

=
+

=
KK

K
gK MTTRMTBF

MTBF
K

The readiness index of the entire single fibre-optic link is:

998604,0999986,0998632,0999986,0 =⋅⋅=⋅⋅= gksgKgksg KKKK

4 Conclusions

Not only the stage of the threat effecting from an object, designed according to the
currently binding standards and recipes, but also a possibility to use modern solu-
tions in the area of safety engineering should be considered when designing an elec-
tronic safety protection system (it has been presented in the Report on Exemplary In-
truder Alarm System). The example is a possibility to utilize optical units as
elements assuring data transmission between the alarm control panel and the mod-
ules. This increases the level of the guaranteed quality of data transmission in the
function of distance between elements of the system, as also it protects the transmit-
ted information against electromagnetic disturbances that may occur.

The paper presents methodology for analysing reliability of those electronic
protection systems where optical links have been applied. This type of the consid-
eration are particularly important in the event when this type of technical solutions
are applied to the protection of objects about the strategic meaning for the country
(e.g. airports, railway stations, atomic power stations) and its defence (e.g. mili-
tary base). The results obtained from the reliability analysis can be used while de-
signing of the system in order to assure the suitable values of the reliability coeffi-
cients. There is also a possibility to use the methodology hereto presented to
analyse the already existing systems in order to qualify the influence that moderni-
sation of the system units has on their reliability.

Reliability Analysis of Electronic Protection Systems Using Optical Links 203

References

[1] Będkowski, L., Dąbrowski, T.: The basis of exploitation, part II: The basis of ex-
ploational reliability. Wojskowa Akademia Techniczna, Warsaw (2006)

[2] Chołda, P., Jajszczyk, A.: Assessment of availability in telecommunication networks.
Telecommunication Review and Telecommunication News. No. 2-3/2003. Publica-
tion by Sigma NOT, Warsaw (2003)

[3] Dyduch, J., Paś, J.: Exploitation of the transport systems of supervision on the exten-
sive railway area. In: VII The National Conference: the Technical Diagnostics of De-
vices and Systems – DIAG 2009, Ustroń (2009)

[4] Dyduch, J., Paś, J.: Electromagnetic environment on the railway and its influence on
the systems of the safety. Transport and Communication (1)2009)

[5] European Standard EN 50131-1:2006. Alarm Systems – Intrusion and Hold-up Sys-
tems – Part 1: System Requirements. Brussels: European Committee for Electrotech-
nical Standardization CENELEC

[6] Haykin, S.: Telecommunication systems, vol. I & II. WKiŁ, Warsaw (2004)
[7] Horowitz, P., Hill, W.: The art of electronics, vol. I & II. WKiŁ, Warsaw (2006)
[8] Jaźwiński, J., Ważyńska-Fiok, K.: System safety. PWN, Warsaw (1993)
[9] Norman, T.: Integrated security systems design. Butterworth Heinemann, Butter-

worths (2007)
[10] Paś, J., Dyduch, J.: Influence of the electromagnetic disturbances on the transport sys-

tems of safety. Measurements Automation Robotics (9,10) (2009)
[11] Rosiński, A.: Reliability analysis of the electronic protection systems with mixed –

three branches reliability structure. In: Proc. International Conference European
Safety and Reliability (ESREL 2009), Prague, Czech Republic, pp. 1637–1641 (2009)

[12] Rosiński, A.: Design of the electronic protection systems with utilization of the
method of analysis of reliability structures. In: Proc. Nineteenth International Confer-
ence On Systems Engineering (ICSEng 2008), Las Vegas, USA, pp. 421–426 (2008)

[13] Siergiejczyk, M., Gago, S.: A Concept of Monitoring and Supervising System in Rail-
way Junction. In: Sixth International Scientific & Technical Conference
LOGITRANS 2009, Szczyrk (2009)

[14] Siergiejczyk, M.: Maintenance Effectiveness of Transport Telematics Systems. Trans-
port Series, vol. (67). Scientific Works of the Warsaw University of Technology,
Warsaw (2009)

[15] Wawrzyński, W., Siergiejczyk, M., et al.: Final Report on Grant KBN 5T12C 066 25.
Methods for Using Telematic Measures to Support Realisation of Transport Tasks,
Supervisor: Associate Professor Ph.D. D.Sc. W. Wawrzyński, Warsaw (2007)

[16] Ważyńska-Fiok, K., Jaźwiński, J.: Reliability of technical systems. PWN, Warsaw
(1990)

[17] Zamojski, W. (ed.): Reliability and Maintenance of Systems. Publisher of Wroclaw
University of Technology, Wroclaw (1981)

W. Zamojski et al. (Eds.): Dependable Computer Systems, AISC 97, pp. 205–217.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Avoiding Probability Saturation during Adjustment of
Markov Models of Ageing Equipment

Jarosław Sugier

Wrocław University of Technology
Institute of Computer Engineering, Control and Robotics
ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
e-mail: jaroslaw.sugier@pwr.wroc.pl

Abstract. Markov models are well established technique used widely for model-
ing equipment deterioration. This work presents an approach where Markov
models represent equipment ageing and also incorporate various maintenance ac-
tivities. Having available some basic model it is possible to adjust its parameters
so that it represents some hypothetical new maintenance policy and then to exam-
ine impact that this new policy has on various reliability characteristics of the
system. The paper deals with a method of model adjustment and specifically in-
vestigates its one particular problem: avoiding probability saturation in a model
which is tuned towards increased repair frequencies. The text describes the ad-
justment method in a general case, identifies specific risk of probability saturation
that may take place during the iterative procedure and proposes a new extension to
the method that overcomes this problem with minimal intervention in the internal
structure of the model, in a specific class of cases.

1 Introduction

Selection of an efficient maintenance strategy plays a very important role in the
management of today’s complex systems. When searching for an optimal strategy,
numerous issues must be taken into account and, among them, reliability and eco-
nomic factors are often equally important. Finding a reasonable balance between
them is the key point in efficient maintenance management and to facilitate find-
ing such a balance some measures should be available that allow quantitative
evaluation of the deterioration process of a system in a case when it is subjected to
various maintenance actions (inspections, repairs, replacements, etc.).

This work deals with development that aims at providing a computer tool for
a person deciding about maintenance activities, which would help in evaluation of
both the risks and the costs associated with selection of various possible mainte-
nance strategies. Rather than searching for a solution to a problem: “what mainte-
nance strategy would lead to the best reliability and dependability parameters of
the system operation”, in this approach different maintenance scenarios can be ex-
amined in the “what-if” type of studies and then, using the tool, their reliability

206 J. Sugier

and economic effects can be automatically estimated so that the person responsi-
ble for the maintenance is assisted in making an informed decision ([5], [7], [11],
[20]).

The proposed application of Markov models in representation of deterioration
and maintenance processes has been presented initially in [4], while in [14] and
[15] the procedure of model adjustment to modified repair frequencies was dis-
cussed. Efficiency of this method with its possibly weak points was further inves-
tigated in [17] and [18]. In this work, we extend the method so that it can properly
deal with a class of cases when so called probability saturation takes place during
adjustment towards increased frequencies of repairs.

2 Adjusting the Deterioration Model

There are three major factors that decide about equipment deterioration: its physi-
cal characteristics, operating practices, and the maintenance policy. Of these three
aspects, especially the last one relates to the events and actions that should be
properly modeled.

2.1 Construction of the Model

The method discussed in this work is based on the model in which the equipment
will deteriorate in time and, if not maintained, will eventually fail. If the deteriora-
tion process is discovered, preventive maintenance is performed which can restore
the condition of the equipment ([1], [10]). Such a maintenance activity will return
the system to a specific state of deterioration, whereas repair after failure will re-
store to “as new” condition. The maintenance components that must be recognized
in the model are: monitoring or inspection (how the equipment state is deter-
mined), the decision process (which determines the outcome of the decision), and
finally, the maintenance actions (or possible decision outcomes). These elements
can be properly incorporated in an suitable state-space (Markov) model ([6], [8],
[9], [12], [13], [19]) which consists of the states the equipment can assume in the
process, and the possible transitions between them. In a Markov model, the rates
associated with the transitions are assumed to be constant in time.

The method described in this work uses specific model developed for the Asset
Maintenance Planner (AMP) ([2], [3]). The AMP model is designed for equipment
exposed to deterioration but undergoing maintenance at prescribed times. It com-
putes the probabilities, frequencies and mean durations of the states of such
equipment. The basic ideas in the AMP model are the probabilistic representation
of the deterioration process through discrete stages, and the provision of a link
between deterioration and maintenance. For structure of a typical AMP model see
Fig. 1.

Avoiding Probability Saturation during Adjustment of Markov Models 207

I1

D1 … DK

D1

M11

…

M12

D1 … DK

…

…

Is

D1 … DK

Ds

Ms1

…

Ms2

D1 … DK

…

IK

D1 … DK

DK

MK1

…

MK2

D1 … DK

…

… F
Deterioration

states

Inspection
states

Repair
states

Returns to
det. states

P10 Ps0 PK0

P11 P12 Ps1 Ps2 PK1 PK2

Fig. 1 The state-transition model representing the deterioration process with inspection and
repair states (an example with two repair types

In this model, the deterioration progress is represented by a chain of deteriora-
tion states D1 … DK which leads to the failure state F. In most situations, it is
sufficient to represent deterioration by three stages: an initial (D1), a minor (D2),
and a major (D3) stage (K = 3). This last is followed, in due time, by equipment
failure (F) which requires extensive repair or replacement.

In order to slow deterioration and thereby extend equipment lifetime, the opera-
tor will carry out maintenance according to some pre-defined policy. In the model
of Fig. 1, regular inspections (Is) are performed which result in decisions to con-
tinue with minor (Ms1) or major (Ms2) maintenance or do nothing (more than two
types of repairs can also be included). The expected result of all maintenance ac-
tivities is a single-step improvement in the deterioration chain; however, allow-
ances are made for cases where no improvement is achieved or even where some
damage is done through human error in carrying out the maintenance, which
results in returning to the stage of more advanced deterioration.

The choice probabilities (at transitions from inspection states) and the prob-
abilities associated with the various possible outcomes are based on user input and
can be estimated, e.g., from historical records or operator expertise.

Mathematically, the model expressed in Fig. 1 can be represented by a semi-
Markov process, and solved by the well-known procedures. The solution will
yield all the state probabilities, frequencies and mean durations. Another tech-
nique, employed for computing the so-called first passage times (FPT) between
states, will provide the average times for first reaching any state from any other
state. If the end-state is F, the FPTs are the mean remaining lifetimes from any of
the initiating states.

2.2 Adjusting the Model to Requested Repair Frequencies

Preparing the Markov model for some specific equipment is not an easy task and
requires expert intervention. The goal is to create the model representing closely
the real-life deterioration process known from the records that usually describe

208 J. Sugier

equipment operation under a regular maintenance policy with some specific
frequencies of inspections and repairs. The model itself permits calculation of the
repair frequencies and compliance of the computed and recorded frequencies is
a very desirable feature that verifies trustworthiness of the model.

In this section, we will summarize the method of model adjustment proposed in
[14] and [15] that aims at reaching such a compliance. It can be used also for
a different task: fully automatic generation of a model for some new maintenance
policy with modified frequencies of repairs. Such a task needs to be done fairly
often during evaluation of various maintenance scenarios.

Let K represents the number of deterioration states and R the number of repairs
in the model under consideration. Also, let Psr = probability of selecting mainte-
nance r in state s (assigned to the decision after state Is) and Ps0 = probability of
returning to state Ds from inspection Is (situation when no maintenance is sched-
uled as a result of the inspection). In Fig. 1 the probabilities are located nearby
respective transitions. Then, for all states s = 1 … K:

0P P 1s sr

r

+ =∑ (1)

Let Fr represent the frequency of repair r acquired through solving the model. The
problem of model tuning can be formulated as follows:

Given an initial Markov model M0, constructed as above and producing
the initial frequencies of repairs []R

0
2
0

1
00 F,...F,F=F , adjust the probabili-

ties Psr so that some goal frequencies FG are achieved.

The vector FG usually represents the observed historical values of the frequencies
of various repairs.

In the proposed solution, a sequence of tuned models M0, M1, … MN is evalu-
ated with each consecutive model approximating desired goal with a better accu-
racy. The procedure consists of the following steps repeated in an iterative loop
with i denoting the iteration counter:

1° For the current model Mi, compute the vector of repair frequencies Fi.

2° Evaluate an error of Mi as a distance between vectors FG and Fi.

3° If the error is within the user-defined limit, consider Mi as the final model
and stop the procedure (N = i); otherwise continue with the next step.

4° Construct a new model Mi+1 through adjusting values of sr
iP and compute

0
1Ps

i+ from equation (1).

5° Proceed to step 1° with the next iteration.

The error computed in step 2° can be expressed in many ways. As the frequencies
of repairs may vary in a broad range within one vector Fi, yet the values of all are
significant in model interpretation, the relative measures work best in practice. The
most restrictive formula evaluates maximum relative error over all frequencies and
this was used in this work:

Avoiding Probability Saturation during Adjustment of Markov Models 209

1F/Fmax GG −=− rr
i

r
iFF

 (2)

2.3 Tuning Repair Probabilities

Of all the steps outlined in the previous point, it is clear that adjusting probabilities
sr
iP in step 4° is the heart of the whole procedure.

In general, the probabilities represent K·R free parameters and their uncon-
trolled modification could lead to serious deformation of the model. To avoid this,
a restrictive assumption is made: if the probability of some particular maintenance
must be modified, it is modified proportionally in all deterioration states, so that at
all times

r1
0P : r2

0P : … : Kr
0P ~ r

i
1P : r

i
2P : … : Kr

iP (3)

for all repairs (r = 1…R).
This assumption also significantly reduces dimensionality of the problem, as

now only R scaling factors Xi+1=[1
1X +i , 2

1X +i , … R
i 1X +] must be found to compute

new probabilities for the model Mi+1:

srr
i

sr
i 011 PXP ⋅= ++ , r = 1…R, s = 1…K (4)

Moreover, although the frequency of a repair r depends on the probabilities of all
repairs (modifying probability of one repair changes, among others, state durations
in the whole model; thus, it changes the frequency of all states), it can be assumed
that, in a situation of a single-step small adjustment, its dependence on repairs
other than r can be considered negligible and r

iF can be considered to be a

function of just one variable:

() ()r
i

r
i

R
iii

r
i

r
i XFX...X,XFF 21 ≈= (5)

With these assumptions, generation of a new model is reduced to the problem of
solving R non-linear equations in the form of () r

G
r
i

r
i FXF = and this task can be

accomplished with one of the standard root-finding algorithms.
One point of the procedure requires additional attention, though: applying

equation (4) with Xi+1 > 1 may violate condition

1P
1

1 ≤∑
=

+

R

r

sr
i

 (6)

in some deterioration state s. This situation needs special tests that would detect
such illegal probability values and reduce them proportionally so that their sum
does not exceed 1: a so called scale-down transformation needs to be applied. As
practical studies show such conditions do occur during model tuning towards re-
pair frequencies that are remarkably higher than r

0F from the initial model M0. In

its simplest form, the scale-down operation consists in dividing each probability
Psr in the offending state s by the sum of all repair probabilities in this state:

210 J. Sugier

∑
=

==
R

r

sr
DsDs

srsr SS
1

P,PP

 (7)

This will also lead to Ps0 = 0 which means that every inspection ends with some
repair and there are no direct returns from Is state to Ds. Moreover, this obligatory
correction mechanism can result in violation of the proportionality rule (3) as an
inevitable side effect.

The following three approximation algorithms were implemented in the task of
solving equation (5): Newton method working on a linear approximation of ()Fr

i
functions (the NOLA method), the secant method and the false position (falsi)
method. For their detailed presentation please refer to [14] and [15].

Generally, the practical tests have shown that although simplifications of the
NOLA solution may seem critical, it is reasonably efficient and stable in real-world
practical cases because it has one advantage over its more sophisticated rivals: since it
does not depend on previous approximations, selection of the starting point is not so
important and the accuracy during the first iterations is often better than in the secant
or falsi methods. Superiority of the latter methods, especially of the falsi algorithm,
manifests itself in the later stages of the approximation when the potential problems
with an initial selection of the starting points have been diminished.

3 Automatic Correction of the Model in the Case of Probability
Saturation

As practical applications of the adjustment method described in the previous
section have shown, the procedure must be carefully applied to the models that rep-
resent real-life deteriorating processes because it is relatively easy to arrive at the
solution that correctly realizes the optimization goal, i.e. produces the requested re-
pair frequencies, but the internal structure of the model is modified to the degree
which harms the relation between the new unit and the original equipment. In this
section we will propose an approach that aims at one specific problem related to
this issue which may arise in practical cases when increasing the repair frequencies
is requested.

Adjusting the model to the repair frequencies that are substantially higher than
the original ones may lead to model saturation – a condition in which repair prob-
abilities reach the limit (6) and there is no room for further increase if the adjust-
ment procedure is limited only to the simple probability scaling expressed by
equation (4). In this situation bringing together the two requirements: tuning the
model towards high repair frequencies and, at the same time, keeping the modifi-
cations of the internal structure within a safe range that does not break proper
relation with the original, is a challenge that needs a new, careful development.

3.1 Application Context

The method of model adjustment that is being considered in this work has been
practically implemented in the Asset Risk Manager (ARM) software system which

Avoiding Probability Saturation during Adjustment of Markov Models 211

uses the concept of a life curve and discounted cost to study the effect of equip-
ment ageing under different hypothetical maintenance strategies ([4], [18]). As
noted in section 2, the method uses semi-Markov models of the Asset Mainte-
nance Planner (AMP) ([2], [3]). For the ARM program to automatically generate
the life curves for different requested maintenance policies (with, among other pa-
rameters, different repairs frequencies), default Markov model for the equipment
has to be built and stored in the computer database. This is done through the prior
running of the AMP program by an expert user. Therefore, both AMP and ARM
programs are closely related, and usually, should be run consecutively.

Implementation details of Markov models, tuning their parameters and all other
internal particulars should not be visible to the non-expert end user who actually
operates the ARM software in order to investigate various potential modifications
of the present (default) maintenance policies associated with the model and evalu-
ates their economic and reliability costs. All final results are visualized either
through an easy to comprehend idea of a life curve or through other well-known
concepts of financial analysis. Still, prior to running the analysis some expert in-
volvement is needed, largely in preparation, importing and adjusting AMP mod-
els. After that the adjustment method should run automatically in the background
and the end user should be presented with results that come from the tuned
models. In this context it is vital that the method can generate correctly adjusted
models reliably and without human intervention.

Discussion included in [17] and [18] investigated main challenges that are
brought by this task. It has shown that, while tuning the model towards decreased
repair frequencies usually succeeds without additional specific requirements, some
special rules in model construction should be respected if the model is to be tuned
towards increased frequencies. The two main factors that were recognized were as
follows: (1) although it may seem that in the initial (minor) deterioration state no
repairs are performed after inspections, still some non-zero probabilities are re-
quired in D1 if purely hypothetical questions like “What if I start some repair
twice as often as previously?” shall be allowed; (2) including an option of not do-
ing any repair after inspection in the later deterioration states, albeit with small
probability, is also desirable because it increases ability of the model to represent
diverse maintenance configurations found in the studies.

3.2 The Problem of Model Saturation

For practical illustration two real-world Markov models were selected that are es-
pecially prone to the problems of probability saturation. Specifically, they do not
follow rule (1) from the previous point: they assume that no repair is performed
after inspections in the first deterioration state, i.e. P1r = 0 and P10 = 1. Such as-
sumption is common for AMP models created according to actual historical
records describing equipment operation.

Both models have the same general structure with K = R = 3, i.e. they include
three deterioration states (D1 ÷ D3) and three repairs: minor (index = 1), medium
(2) and major (3). The main difference between them lies in distributions of repair

212 J. Sugier

probabilities Psr in the deterioration states (or, strictly speaking, in inspection
states I1 ÷ I3 associated with the deterioration states; see Fig. 1). These probabili-
ties are given in Table 1.

Table 1 Repair probabilities in Markov models used as examples A and B

Deterioration state: D1 D2 D3

Probability of repair: P11 P12 P13 P21 P22 P23 P31 P32 P33

Model A: 0.000 0.000 0.000 0.80 0.15 0.05 0.20 0.50 0.30

Model B: 0.000 0.000 0.000 0.64 0.12 0.04 0.18 0.45 0.27

The model A has been created with assumption that although there are no re-

pairs in the first state D1, when the equipment is in subsequent states D2 and D3
every inspection leads to some sort of repair and in these states the totals SD2 =
SD3 = 1 (P20 = P30 = 0). Looking at the probability distribution in each state it can
be seen that in the medium deterioration D2 the minor repair is evidently the most
often chosen one (P21 = 0.80) while in the major deterioration D3 the distribution
is to some extent more balanced with medium repair taking half of the chances
(P32 = 0.50).

The model B is a sibling of A with just one but important difference: repair
probabilities in D2 and D3 are lower by, respectively, 20% and 10% than the val-
ues of model A, which also means that after inspections in these states it is possi-
ble to return to Ds without undertaking any repair (P20 = 0.2 and P30 = 0.1). In
other words, model B, as opposite to model A, has been created according to the
requirement (2) introduced in the previous point.

In the coming analyses series of models will be generated from the initial
model M0 in both cases A and B for a sequence of goal frequencies

[]3
0

2
0

1
0 F,F,F⋅= αGF

 (8)

with factor α increasing from 0.5 (frequency of minor repair reduced by half) to 2.0
(minor repair performed twice as often) in steps of 0.1. Values of α in the figures
and in the following discussion will be expressed as %. Frequency of the minor re-
pair (no. 1) was selected as the varying parameter of FG just as an example with fre-
quencies of other repairs remaining constant, but equivalent results could be demon-
strated with changing frequencies of medium or major repairs. The figures will
include graphs presenting variations of repair probabilities Psr and their sums SDs in
deterioration states of the final adjusted models as functions of the α factor.

The problem of probability saturation is illustrated in Fig. 2 which includes mi-
nor repair probabilities in all states (probability of other repairs are not included to
preserve space) for models A and B tuned with the standard procedure described
in the previous section. Both models can be successfully adjusted only up to the
point of saturation which is reached for α = 100% for model A (i.e. the initial
model is already saturated) and 130% for model B (as it turns out, in this particu-
lar case P20 = 0.2 and P30 = 0.1 leave space enough for 30% increase in frequency

Avoiding Probability Saturation during Adjustment of Markov Models 213

of the minor repair). In both cases for these goals probabilities in states D2 and D3
sum up to unity and cannot be further increased, while in D1 the P11 is zero and
applying the scaling factor as in equation (4) cannot produce any increase. On the
other hand, the procedure has no problems with adjustment towards lower fre-
quencies and in such cases the probabilities are scaled accordingly ([14], [15],
[17]).

 Model A Model B

0.0

0.1
0.2

0.3

0.4

0.5

0.6

0.7

0.8
0.9

50 100 150 200
Repair frequency [%]

P11

P21

P31

0.0

0.1

0.2

0.3

0.4
0.5

0.6

0.7
0.8

0.9

50 100 150 200
Repair frequency [%]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

50 100 150 200
Repair frequency [%]

SumD1

SumD2

SumD3

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

50 100 150 200
Repair frequency [%]

Fig. 2 Unsuccessful adjustment of the models with the standard (unmodified) procedure:
probability of the minor repair in all three states (above) and sum of probabilities per state
(below)

3.3 Challenges of Model Alteration

The above example of unsuccessful tuning can be used also for illustration of the
main idea of the proposed extension to the algorithm: if the model gets saturated
during the adjustment iteration but there is still some state with null repair probabil-
ity, the process can be continued in the same iterative way after some non-zero
probability is added into this state. Such modification, though, goes far beyond the
restrictive assumption expressed by equation (3) and, being a more serious invasion
into the model structure, must be applied in a cautious and thoughtful manner.

In particular, the following two issues must be taken into account: (1) forcing
non-zero probability in some state before it is not absolutely necessary, i.e. prior to
model saturation, instantly changes reaction to the adjustment iterations, hence
may change the final result of the tuning also in cases when the standard proce-
dure would be able to produce the correct result; (2) replacing the null value of Psr,
even if delayed up to the moment of saturation, but with probability which is too

214 J. Sugier

high for the needs of the adjustment also may affect the final result in a way that is
against the general idea of the conservative tuning which tries to preserve the
structure of the original model with minimal possible modifications.

Figure 3 illustrates these two problems using model B as an example. The two
upper graphs show adjustment results when null Psr is replaced with a non-zero
value right from the first iteration only if respective frequency needs to be in-
creased in the goal vector, i.e. without waiting until the model gets saturated. In
this case it means that the model is modified for cases where α > 100% instead of
α > 130%. As the graphs show, forcing P11 > 0 prematurely causes evident insta-
bilities in growths of P21 and P31 and even more significant instabilities in distribu-
tions of sums SD1, SD2 and SD3. In fact the model does not reach saturation in state
D3 even for α = 200%, while the Fig. 2 indicates that this model should saturate
for α = 130%.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

50 100 150 200
Repair frequency [%]

P11

P21

P31

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

50 100 150 200
Repair frequency [%]

SumD1

SumD2

SumD3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

50 100 150 200
Repair frequency [%]

P11

P21

P31

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

50 100 150 200
Repair frequency [%]

SumD1

SumD2

SumD3

Fig. 3 Incorrect modifications generated by the adjustment procedure: non-zero repair
probabilities introduced before model saturation (above) and too high probabilities forced
after model saturation (below)

The two lower graphs in Fig. 3 present the results when the moment of prob-
ability increase is properly delayed until model saturation (α = 130%) but P11 is
assigned with a value which exceeds the needs of tuning. Again, as a result the
growths of P21 and P31 are noticeably disturbed and even more evident instabilities
can be seen in graphs of the sums SDs: the exaggerated intervention applied for α =
130% drives the model out of the saturation state until α = 170%, and only after
this point the procedure continues with the expected linear growth of P11.

Avoiding Probability Saturation during Adjustment of Markov Models 215

3.4 Extension of the Adjustment Procedure

After analyses of case studies like the above two examples, the following modifi-
cation of the adjustment procedure has been found to be the most flexible and effi-
cient solution that gives optimal results in broad range of practical cases. It not
only delays the increase of null probability until the moment of model saturation,
but also scales its value adequately.

Model A Model B

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

50 100 150 200
Repair frequency [%]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

50 100 150 200
Repair frequency [%]

P11

P21

P31

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

50 100 150 200
Repair frequency [%]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

50 100 150 200
Repair frequency [%]

SumD1

SumD2

SumD3

Fig. 4 Tuning the models A (left) and B (right) by the proposed extension of the adjustment
procedure

The modification does not amend the general iterative scheme defined in point 2.2
(steps 1º ÷ 5º); the changes are limited only to internal details of step 4º which com-
putes new probability values for the next model Mi+1. The modified implementation of
this operation detects and deals in a different way with the following two cases:

(a) If the model is not saturated, i.e. there is a state with 0 < SDs < 1, the standard
approach is applied: in all states the values of Psr are multiplied by the scaling
factors Xr (equation (4)) and then, if required, they are scaled down as in equa-
tion (7).

(b) If the model is saturated but there is a state with Psr = 0 (a chance for probabil-
ity increase), this particular null probability is replaced with a predicted
average increase of Psr in other states computed by the normal method as

216 J. Sugier

above; after this the model is no longer saturated and the iterative scaling of
this probability can be continued with the standard algorithm.

It should be noted that in case (b) the new value that replaces the null probability
is computed as an average of predicted actual increases of probabilities for given
repair in other states: these increases will be scaled down with equation (7) be-
cause these states, by virtue of the method, will be saturated. As a result, the ap-
plied value of the increase will be proportional to the needs of particular situation
but, at the same time, it will be additionally constrained.

Figure 4 presents the results obtained after application of such extended proce-
dure to models A and B. In both cases the models can be successfully adjusted in
the full examined range, i.e. up to the doubled frequencies of the minor repair.
Also, as it can be seen, the final results are virtually identical to the outcomes of
the standard (unmodified) procedure in cases when model saturation does not take
place (as compared to Fig. 2), while the growth of the probabilities after the
saturation point follows the expected course without any instabilities.

4 Conclusions

The purpose of the method presented in this paper is to extend the adjustment al-
gorithm which was proposed in [14] and [16]. The main idea is to modify the
model during the iteration by forcing a value greater than zero for a repair prob-
ability in situation when this probability reach the limit in other states, i.e. the
model saturates. This extension allows to evaluate a class of cases that was not
properly handled by the original method.

The proposed approach strives to be as conservative as possible with regard to
the amount of alterations introduced to the existing model. While the original
method constrains the adjustment operations so that the distribution of the repair
probabilities over all deterioration states is not altered, the modification introduced
by this extension is more significant and must be applied in a very cautious man-
ner in order to avoid deformation of the model and corruption of the produced
results.

In this situation there is a growing need for methods that would evaluate trust-
worthiness of the generated results. The future work should include development
of new metrics that would be able to quantitatively assess modification of the
model and to estimate the range of its valid use.

References

[1] Anders, G.J., Endrenyi, J.: Using Life Curves in the Management of Equipment Main-
tenance. In: PMAPS 2004 Conference, Ames, Iowa (2004)

[2] Anders, G.J., Leite da Silva, A.M.: Cost Related Reliability Measures for Power Sys-
tem Equipment. IEEE Transactions On Power Systems 15(2), 654–660 (2000)

[3] Anders, G.J., Maciejewski, H.: Estimation of impact of maintenance policies on
equipment risk of failure. In: Proc. Int. Conf. Dependability of Computer Systems
DepCoS – RELCOMEX 2006. IEEE Comp. Soc. Press, Los Alamitos (2006)

Avoiding Probability Saturation during Adjustment of Markov Models 217

[4] Anders, G.J., Sugier, J.: Risk assessment tool for maintenance selection. In: Proc. Int.
Conf. Dependability of Computer Systems DepCoS – RELCOMEX 2006. IEEE
Comp. Soc. Press, Los Alamitos (2006)

[5] Billinton, R., Allan, R.N.: Reliability Evaluation of Engineering Systems. Plenum
Press, London (1983)

[6] Chan, G.K., Asgarpoor, S.: Preventive Maintenance with Markov Processes. In: Proc.
2001 North American Power Symposium, College Station, TX, October 2001,
pp. 510–515 (2001)

[7] Endrenyi, J.: Reliability Modeling in Electric Power Systems. Wiley, Chichester
(1978)

[8] Endrenyi, J., Anders, G.J., Leite da Silva, A.M.: Probabilistic Evaluation of the Effect
of Maintenance on Reliability - An Application. IEEE Transactions on Power Sys-
tems 13(2), 575–583 (1998)

[9] Hosseini, M.M., Kerr, R.M., Randall, R.B.: An inspection model with minimal and
major maintenance for a system with deterioration and Poisson failures. IEEE Trans.
on Reliability 49(1), 88–98 (2008)

[10] Hughes, D.T., Russell, D.S.: Condition Based Risk Management (CBRM), a Vital
Step in Investment Planning for Asset Replacement. In: IEE-RTDN Conference,
London (2005)

[11] Endrenyi, J.: The Present Status of Maintenance Strategies and the Impact of Mainte-
nance on Reliability. IEEE Trans. Power Systems 16(4), 638–646 (2001)

[12] Limnios, N., Oprisan, G.: Semi-Markov Models and Reliability. Birkhauser, Boston
(2001)

[13] Perman, M., Senegacnik, A., Tuma, M.: Semi-Markov Models with an Application to
Power-Plant Reliability Analysis. IEEE Transactions on Reliability 46(4), 526–532
(1997)

[14] Sugier, J., Anders, G.J.: Modeling changes in maintenance activities through fine-
tuning Markov models of ageing equipment. In: Proc. Int. Conf. Dependability of
Computer Systems DepCoS – RELCOMEX 2007. IEEE Comp. Soc. Press, Los
Alamitos (2007)

[15] Sugier, J., Anders, G.J.: Verification of Markov models of ageing power equipment.
In: Proc. Int. Conf. Probabilistic Methods Applied to Power Systems PMAPS 2008,
Rincon, Puerto Rico (2008)

[16] Sugier, J., Anders, G.J.: Modeling Equipment Deterioration for Dependability Analy-
sis. In: Proc. 4th Int. Conf. on Information Technology ICIT 2009, Amman, Jordan
(2009)

[17] Sugier, J., Anders, G.J.: Modifying Markov models of ageing equipment for modeling
changes in maintenance policies. In: Proc. Int. Conf. Dependability of Computer Sys-
tems DepCoS – RELCOMEX 2009. IEEE Comp. Soc. Press, Los Alamitos (2009)

[18] Sugier, J., Anders, G.J.: Modelling equipment deterioration vs. maintenance policy in
dependability analysis. In: Al-Dahoud, A. (ed.) Computational intelligence and mod-
ern heuristics, In-Teh, Vukovar (2010)

[19] Yin, L., Fricks, R.M., Trivedi, K.S.: Application of Semi-Markov Process and CTMC
to Evaluation of UPS System Availability. In: Proc. 2002 Annual Reliability and
Maintainability Symposium, pp. 584–591 (2002)

[20] Zhang, T., Nakamura, M., Hatazaki, H.: A decision methodology for maintenance in-
terval of equipment by ordering based on element reparation-replacement rate. In:
Power Engineering Society Summer Meeting, vol. 2, pp. 969–974. IEEE, Los Alami-
tos (2002)

Bad Memory Blocks Exclusion in Linux
Operating System

Tomasz Surmacz1 and Bartosz Zawistowski2

1 Institute of Computers, Control and Robotics,
Wroclaw University of Technology
tomasz.surmacz@pwr.wroc.pl

2 MSc student at Wroclaw University of Technology
zawistowski.bartosz@gmail.com

Abstract. Memory failures are quite common in todays technology. When
they occur, the whole memory bank has to be replaced, even if only few bytes
of memory are faulty. With increasing sizes of memory chips the urge not to
waste these ‘not quite properly working’ pieces of equipment becomes bigger
and bigger. Operating systems such as Linux already provide mechanisms
for memory management which could be utilized to avoid allocating bad
memory blocks which have been identified earlier, allowing for a failure-free
software operation despite hardware problems. The paper describes problems
of detecting memory failures and OS mechanisms that can be used for bad
block exclusion. It proposes modifications to Linux kernel allowing a software
solution to hardware failures.

1 Introduction

Soft memory errors may be caused by electromagnetic noise and greatly de-
pend on the working environment and the appropriate shielding of the com-
puter system. Cosmic rays are also an important factor, especially in systems
with large amounts of system memory or working in vulnerable environments.
An estimated error rate of errors caused by cosmic rays is 1 soft error per
month per 256 MB of data at sea level [13] (and increasing with height, as
the shielding provided by the atmosphere decreases).
Hard errors are defects that are persistent even after rebooting the system.

As some studies show [11] not all hardware errors lead to system failures, as
some of them may either get cancelled by further data overwriting, or cause
silent data corruption. These are the most dangerous to data integrity, as
they may remain undetected until a much later time while the system is still
running and further data corruption takes place. Also, errors undetected in
one of the subsystems may lead to failures appearing in another subsystem [6].
As technology advances, the density of IC elements increases, which allows

designing more complex circuits, but also makes harder to produce hardware

W. Zamojski et al. (Eds.): Dependable Computer Systems, AISC 97, pp. 219–231.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

220 T. Surmacz and B. Zawistowski

that is defect-free. Some techniques of dealing with partially defective mem-
ory chips have been described in [1] – these include creating mappings for bad
bits and storing them in error-free and reliable CMOS, or adding some redun-
dant blocks and permanently blocking the faulty ones at the testing stage.
Additional constrains on energy consumption lead to further reduction in
currents and charges needed to store a memory cell state. This increases sus-
ceptibility of memory cells to random bit flipping from thermal or radiation
noise and has to be dealt with at micro- or nanoscale level with appropri-
ate error correction techniques using ECC [1, 10]. These methods however
deal with the problem on a circuit design level, trying to provide a view of
a reliable and error-free memory chip when seen from the outside. Non-ideal
operational environment, overheating or extended exposure to radiation may
still cause memory degradation to such an extent, that these techniques fail
and some errors start being seen outside. If that happens, the faulty memory
chip (or the whole bank) has to be replaced. In Linux, as well as other Unix-
like systems, memory management is done through a paging system with the
help of a Memory Management Unit (MMU). This allows for a fine-grain
exclusion od defective memory regions with a page-size resolution by a Linux
kernel with modifications described in this chapter. A system modified this
way may be safely run with such partially-faulty memory banks by excluding
the faulty regions from system usage.
The rest of this chapter is organized as follows: In sections 2 and 3

we provide short summary of memory errors and testing techniques, in
section 4 we discuss memory management in Linux. Our methods of faulty
memory exclusion are presented and discussed in sections 5 through 7. In
section 8 we summarize the results.

2 Memory Faults and Testing Methods

Memory faults may be combinational or sequential in their nature. Further-
more, these may be either transient or permanent. Combinational faults may
be divided in three main categories: stuck-at-0, stuck-at-1 and bridging of two
or more lines. They do not depend on the sequence of changes, so generating
appropriate set of tests to perform exhaustive testing is easy. In memories,
stuck-at faults may either appear in the cells themselves or in the control-
ling circuitry, e.g. the addressing multiplexers, where they are considered a
separate fault category – address decoder faults. To test memory cells against
the stuck-at errors it is enough to write them with all-ones and all-zeroes
patterns and test the resulting values. Bridging of lines and address decoder
types of errors require various testing patterns of interleaving zeroes and ones
to be written and read from the memory but is still quite straightforward.
Some other faults, such as a broken connection between transistors forming
a gate or a broken connection between the logic gates can also be modelled
and tested as a stuck-at error.

Bad Memory Blocks Exclusion in Linux Operating System 221

Sequential errors are harder to detect as they manifest themselves only
when particular transitions from one state to another take place. As computer
memory contains input and output latches, the general sequential fault model
has to be applied when constructing test sets.
Functional fault models for memories usually classify faults as static (or

simple) [7], where at most one read or write operation is needed to trigger
the fault, and dynamic, where a particular sequence of operations is needed
for the fault to occur. These can be loosely mapped to combinational and
sequential faults, but not as a rule. Furthermore, complex faults may be
divided in linked faults [7], where some fault masking can occur, single-port
or multi-port, and single-cell or multi-cell (coupling faults).
Memory modules without parity checking – known also as non-parity mod-

ules – are still most common in computer usage. For every physical bit there
is exactly one corresponding data bit and no overhead exists. Memory with
parity checking appends one parity-bit to verify correctness of stored data and
non-maskable interrupt may be triggered that instructs processor to hang up
in case of error, so that further data lost can be prevented.
The main disadvantage of parity checking is the lack of error correction

mechanisms. It is only possible to check if a memory module is faulty without
any opportunity to correct the result of the memory operation, so that further
failure-free machine usage could be continued. More sophisticated method is
described as ECC [4] (Error Correction Code). One of the biggest advantages
of ECC is the way the correcting process works – it happens on the fly when
errors are being detected. In addition, its implementation is simple and uses
only logn N + 1 control bits for N -bit data input. The cost of applying ECC
method is bigger for N < 32 and is profitable only for N > 32.
The parity generator is also used in ECC but there are several parity bits

for data bits. The Hamming distance for coding words is 3 for SEC ECC
(Single-bit Error Correction Code) so it makes possible to detect and correct
only 1-bit errors. A more advanced method – SECDED ECC (Single-bit Error
Correction, Double-bit Error Detection) allows to correct 1-bit errors too, but
it can detect 2-bit errors. It this case, the Hamming distance is 4.
ECC method compared to typical parity checking introduces about 2%

speed reduction at average [9].

3 Memory Testing Using Memtest86

Memory faults detection is a complex task, and many testing algorithms
have been described in literature. Memory testing can be done either by
implementing these algorithms (chosen as best fitting for a particular task)
or by using some ready-made software, like Memtest86 [3].
Memtest86 uses moving inversions algorithm [2] with several modifications

to verify memory modules correctness. It is able to detect two types of faults:

222 T. Surmacz and B. Zawistowski

• SAF (stuck-at faults),
• AF (address decoder faults).
Physical or electrical damages falling in stuck-at category can be easily de-
tected by simple testing algorithms. Bridging, in turn, takes much more tests
to be detected, as two or more bits are in the same state independently of
written values. Other failures, like faulty addressing lines or a memory that
is not present in computer system, are usually easy to detect.
Memtest86 must be run as a standalone program with direct access to

memory which may not be obscured by the underlying operating system.
Modern Linux distributions include Memtest86 in their bootloader configu-
ration, so when the computer system is started there is a choice to run either
the Linux OS or the Memtest86 program (instead of the operating system).
When run, the Memtest86 program first builds the memory map by obtaining
information from BIOS and analyzing the data provided by ACPI (to skip
some reserved locations). It then enters a loop executing a predefined set of
tests. If any faulty memory locations are found, they are reported on-screen
in a standardized manner, such as:

32-bit address 32-bit mask
0x03e06e90 0xfffffffc

The address field shows the physical memory address of the beginning
of the damaged area and the mask describes which bits are faulty (values
set to “1” represent faulty bits). The information given is mostly meant for
locating faulty memory chips for the purpose of replacing them. However,
the accuracy of identifying addresses and ranges of the faulty areas allows us
to use it later to lock the faulty memory pages by kernel and exclude them
from the system usage.

4 Memory Management in Linux

Memory in the Linux operating system is organised as follows:

• physical memory is divided in fixed-size pages;
• memory requested by applications is allocated in multiples of page size;
• Linux OS implements a demand-driven memory system [12];
• memory management is supported and supplemented by MMU – if the
requested page is not present, it generates page faults and transfers control
to the CPU to handle this situation,

• virtual memory provided by the system may be continuous, even though
the physical memory does not have to be.

Paging is the default memory management scheme in Linux with typical page
size of 4KB (although Intel processors [8] allow to use 4MB pages in 32-bit

Bad Memory Blocks Exclusion in Linux Operating System 223

mode or 2MB pages in PAE mode). Linux treats pages as the basic unit of
memory management. Despite the fact that the smallest addressable unit in
processors’ word is byte, MMU typically deals with pages. Kernel sources
provide several helpful macros that ease the usage of paging in Linux kernel:

• PAGE SHIFT – determines offset on page (it equals to 12 on x86
machines),

• PAGE SIZE – defines page size (typically 212 bytes, i.e. 4KB),
• PAGE MASK – allows masking some of the offset bits,
• PAGE PER PTE, PTRS PER PMD, PTRS PER PGD – number of
entries in Page Table, Middle-level Page Table and Table Directory.

Linux kernel keeps track of every page in order to know its state: what kind
of data it contains (kernel code, data structures used by kernel or memory
used by user applications) and in how many places it is referenced. The page
descriptor is represented by a structure described as follows:

struct page {
/* atomic flags, updated asynchronously */
page_flags_t flags;
/* usage counter */
atomic_t _count;
/* list of pages, e.g. active_list protected by zone->lru_lock */
struct list_head lru;
/* Other fields */
...

};

There are two fields we should pay attention to:

• _count – the usage counter; 0 means that the page is not used, values
greater than 0 mean that the page is used by some user processes or by
the kernel;

• flags – 32-bit or 64-bit number (depending on the kernel version) that
describes the status of a page.

All descriptors are stored in mem_map table. As the system boots up, all
the memory is initially assigned to kernel and one of its main tasks before
starting the init process and going to multiuser mode is setting up the paging
system. This is handled in the mem_init() function – it clears unnecessary
PG_reserved flag in all the pages that are to be returned to the system
pool and calculates the total number of pages in the system. Next, it sets
appropriate _count values for each memory block. Finally, for every page,
the __free_page() function is called to check if the block is not reserved
and if not – decrement the _count field, so that the page is returned to the
general memory pool and can be used later also by applications running in
user-space.

224 T. Surmacz and B. Zawistowski

5 Marking Bad Blocks by Linux Kernel

Maintaining proper system behaviour in presence of memory errors requires
isolating bad memory blocks and excluding them from further usage. Thanks
to the paging system it can be done with granularity of a single page and
using some of the existing mechanisms.
The software solution can be basically achieved by two different ap-

proaches:

1. A kernel module that detects faulty RAM areas on-the-fly and excludes
them from further usage while the system is running.

2. Detection and processing of faulty RAM areas outside of the operating
system by an independent testing software and passing appropriate pa-
rameters to the operating system.

The first approach requires the whole testing procedure to be known a pri-
ori [5]. There are also other problems related to this method:

• every memory access would have to be tested (or checked before the actual
operation) in order to eliminate write to a possibly corrupted memory
area. This would obviously lead to a significant system slow-down, unless
done in hardware,

• testing procedures have to be coded in assembly language in order to
eliminate false results while accessing kernel procedures,

• Linux kernel uses as much memory as possible (usually the last 1GB
chunk) to provide caching.

The second approach requires stopping the system (i.e. bringing it to a sched-
uled downtime) in order to check memory for failures, but is universal and can
be applied to different computer architectures (testing only relies on other
software used in this procedure). Also, testing performed in this mode can
be exhaustive and may take as much time as needed to fully and thoroughly
test the memory before proceeding with normal system operation.
Availability of Linux kernel source code gives possibility to apply addi-

tional fixes to source code wherever they are needed. As it is an open source
operating system, we are able to download kernel sources and extend the
current memory management subsystem. The modified OS is then able to
run on a partially faulty memory hardware as long as some steps are taken
beforehand. Memory faults have to be identified first (they can span across
several kilobytes of continuous memory address space), but disabling the bro-
ken addresses permits the whole system to run stable and without any data
corruption.
The following steps have to be taken manually in order to exclude bad

blocks from user space usage:

• Save (or write down) all faulty regions from memtest86 output,
• pass them to the Linux kernel during the booting process,

Bad Memory Blocks Exclusion in Linux Operating System 225

Disabling faulty addresses inside a kernel is then performed in two steps:

1. Normalize the given addresses with their masks to get a pool of pages
that should be marked as locked,

2. exclude them from memory pool by marking the pages as used by the
kernel with a special flag, so they will not be reclaimed later.

Parameters passed to grub or LILO are in fact interpreted in the monolithic
part of the kernel that starts as the first part of the booting process, so any
extensions to parameters syntax have to be actually done in kernel sources,
not in grub. If some other bootstrap loader is used (other than grub or LILO),
it may be problematic to pass any parameters to kernel at all. In such case
the only possibility is to recompile the kernel with the predefined code for
exclusion of some predefined memory areas.
Linux kernels (and also the boot loaders such as grub or LILO) impose

limits on the size of the parameters that may be passed through them and
that limit is set to 255 characters. If the memory faults are numerous, but
sparse, some of the information gathered from the memtest86 output has to
be aggregated. In extreme cases, when the faulty block list would still exceed
the parameter limits, this may lead to a need of covering also a range of
properly working memory addresses just in order to fit in the parameters
length limit.
Due to the fact that address/mask pairs describe some memory ranges

(several faulty regions can be described as faulty by this method), every pair
has to be normalised first in order to find addresses of all affected memory
pages. This is done while the kernel boots up. By applying two simple bitwise
operations it is possible to get a page-aligned starting addresses of the faulty
memory block:

mod_mask |= ~PAGE_MASK;
mod_addr &= mod_mask;

After this normalisation we are able to obtain all other addresses belonging
to the faulty range by iterating over all other addresses using the same mask.
If it turns out that addresses do not belong to the same memory page –
the next one has to be taken into account and be marked as bad too. The
modified code executed by the kernel when the memory system initialization
is taking place is shown in fig. 1.
While the kernel is booting up, it calculates the number of pages by ob-

taining the size of memory installed in computer system. When additional
information is passed to kernel it marks pages with particular flags so that
in further initialization they are used in special manner. In order to exclude
faulty blocks from usage, the reference counter cannot be decremented to
0 (as it applies to all pages used by kernel), as the page could be later
reclaimed for some other use. It is possible however to extend the paging
system by adding some custom-defined flags to the ones already defined

226 T. Surmacz and B. Zawistowski

unsigned long a; /* address */
unsigned long m; /* mask */
unsigned long oa = a;
unsigned long r = (a | m) + 1;
if(!r) {
return 0; /* overflow? */

}
r = (r & ~m) | (a & m);
if(r < oa) {
return 0; /* mark the whole area as bad */

}
return r; /* next address found */

Fig. 1 Modified memory initialization in mem init() kernel function

in include/linux/page-flags.h. We have introduced an extra flag called
PG_memlocked, as show in fig. 2.

enum pageflags {
PG_locked,
PG_error,
PG_referenced,
PG_uptodate,
PG_dirty,
...
PG_memlocked /* new page state */
};

Fig. 2 Extra flag defined in include/linux/page-flags.h

This flag is used to mark all faulty pages as the system boots up and
prevents the __free_page() function run at the end of the mem_init() pro-
cedure from returning the page to the general memory pool. As the locked-out
page is not going to be used by any process, it would be a very likely candi-
date for swapping out. But swapping for a locked-out page would effectively
mean that it gets reused and allocated to some other process, while the un-
referenced, but locked-out page is permanently moved to the swap space. So
swapping for locked-out pages has to be prevented and the simplest method
it to keep them as kernel-allocated pages (by setting the PG_locked flag in
addition to PG_memlocked), as kernel pages are never swapped-out.
Address/mask pairs can be passed during booting process from boot

loader like grub or can be compiled into kernel by checking Built-in ker-
nel command line option during kernel configuration for custom build. Both
methods may require increasing the value of COMMAND_LINE_SIZE defined in
include/asm-generic/setup.h file.

Bad Memory Blocks Exclusion in Linux Operating System 227

6 Testing Methodology

Testing the operating system stability during typical system usage is prob-
lematic as several processes are running concurrently to provide different
services needed for normal system operation. The set of running processes
should be minimised to facilitate easier isolation and replication of problems.
There are two basic ways of detecting the system being unstable due to the
memory corruption:

• Kernel crashes while obtaining more memory, e.g. while loading a device
driver,

• Application that allocates memory and writes a predefined pattern does
not get the same data during the read operation.

The first case results in system panic that leaves traces in appropri-
ate log files, which can be checked by executing cat /var/log/messages
/var/log/kern.log | grep panic. The second case cannot be easily de-
tected under normal system operation, but requires some testing software to
be run. We can distinguish two kernel failures:

• Hard panic (“Aieee!”) – only a system reboot is possible to recover from
failure,

• Soft panic (“Oops”) – system can be still used but a particular operation
did not succeed.

Hard panics happen usually in interrupt handling routines of the drivers,
basically because of a null pointer dereference. Later, the device driver can-
not handle incoming interrupts and causes the kernel panic. Soft panics
happen outside of interrupt handling code and allow the operating system
to continue, but without the crashed driver. Hard panics are signalled by
blinking keyboard LEDs and freezed screen output. No input can be han-
dled by the system and only a hard reset is possible. The stack trace is
rarely logged to /var/log/messages file and only the console screen dump
can be useful to get some information about the failure. Soft panics may
provide more useful information, but some effort is required beforehand –
“Kernel Hacking -> Detect Soft Lockups” option has to be enabled a
priori in order to get all debug messages during system crash. Writing crash
info to a file may still not be possible (due to a crashed driver or just because
of inability to “sync”, i.e. commit the memory-buffered write operations to
disk), so it is also beneficial to set-up a serial console. This can be done
by enabling “Device Drivers -> Character devices -> Serial drivers
-> Console on 8250/16550” and appending console=ttyS0,115200 to grub
or LILO. Lastly, to log the stack trace of drivers working in non-interrupt-
driven mode, “early printk” has to be enabled by selecting “Kernel Hacking
-> Early printk” in .config file stored in root of Linux kernel source
directory.

228 T. Surmacz and B. Zawistowski

To test user-space memory for possible corruption within a running sys-
tem we run a test application that allocates as much memory as possible
and performs multiple write/read tests. There is however a limit on the
amount of memory that can be loaded by an application without getting
a SIGKILL signal. The smallest chunk that can be allocated is the page
size defined as PAGE_SIZE constant. For this reason there is no need to
call malloc() with smaller values than 4KB for typical 32-bit architec-
ture. To make the solution universal we call getpagesize() system func-
tion, which returns the page size of the operating system. Similar results
can be achieved by getconf PAGESIZE command in shell command prompt
or sysconf(_SC_PAGESIZE) function. We use the first approach. Figure 3
demonstrates how much memory can be allocated by a program executed in
user-space.

#include <unistd.h>
#include <stdlib.h>

int page_size = getpagesize();

int i = 1 ;
void *p;
for (;;) {
p = malloc(page_size * i);
if (p==NULL)
break ;
free(ptr);
++i;
}
/* (i - 1) now stores the number of pages */
return (i-1);

Fig. 3 Code that calculates the number of pages that can be allocated by a user
process

After calculating the maximum number of pages that can be allocated, each
fixed size chunk has to be tested with write/read patterns to find possible
inconsistencies.
The overall testing process can be described as follows:

1. Check all necessary logging options in kernel configuration before
compiling the kernel.

2. Modify bootolader configuration file to enable serial console.
3. Boot up the system with new kernel in single-user mode.
4. Disable swaping by calling swapoff or by editing /etc/fstab file and
modifying the entry related to swap partition so that it will not be
mounted.

Bad Memory Blocks Exclusion in Linux Operating System 229

5. Calculate the number of pages that can be allocated by a user-space
program.

6. For each test pattern check allocated memory by assert() macro.
7. Load all the drivers as modules and check for hard kernel panics.
8. Check for “panic” entries in syslogd files.

7 Limitations and Further Perspective

Presented solution does not require any additional hardware and is only based
on a software kernel extension. Typical booting process for an x86/i86 archi-
tecture personal computer is a quite clearly described process. At the very
early stage, the processor operates in real mode and only 640KB of memory
can be used. Kernel loading can be divided in two stages:

1. A smaller piece of code that is loaded somewhere below the first 640
kilobytes of memory, which is often called as bootstrap.

2. A bigger part loaded above 1MB of memory where kernel operates in
protected mode.

In addition to that, some kernel modules may be loaded at later time, trig-
gered by configuration options or a hardware-detection code that gets ex-
ecuted during the system startup. The critical part of the booting process
happens however in the mentioned two early stages, as both of them need
to be loaded in memory parts that are not faulty. The kernel code is loaded
unconditionally without a choice of preferred memory addresses to use, and
if some pages happen to be faulty, the results may be unpredictable. High
level initialization takes place in start_kernel() procedure where memory
management is being set up and then faulty regions may be mapped to pages.
Kernel modules pose no problem, as they are loaded after the memory system
is initialized and the faulty pages are already mapped-out.
If the memory chips are damaged in such a way that the early-stage kernel

code is loaded into faulty pages, the only solution may be to change the sys-
tem memory by manually swapping the physical memory banks (i.e. placing
them in different memory slots so thet their physical addresses are arranged
differently) ore use some fault-free banks for the physical addresses used by
the bootloader. In typical systems it is the last gigabyte of physical memory.
Another issue may appear in systems where page size is bigger than typical

4KB. If we consider a 4MB page and huge amount of faulty addresses spread
out on not consecutive areas, then even small and sparse errors may cause
exclusion of large address ranges from further use. Such systems are however
in the experimental stage of deployment, and until they are widely used, we
may investigate other solutions that will access and exclude memory blocks
on a sub-page level.
The current solution has been applied and tested on early versions of 2.6

kernel series. Several data structures have been changed since then – for

230 T. Surmacz and B. Zawistowski

instance, the page_flags_t type has been changed to unsigned long and
some other additional memory features have been added to the latest kernel
versions.
Current versions of the memory testing software do not support dump-

ing the test output to a filesystem installed on a device (i.e. the hard drive
or a USB memory stick), so it may be quite difficult and troublesome to
save all the addresses that are produced on screen by the testing procedure.
Memtest86 operates in real mode so other extensions may not be easy to
implement, it is however one of the concerns for further development, as it
would greatly simplify the automatization of the whole process.
Buffer size for command line parameters is around 256B so it may be

impossible to pass all faulty addresses to Linux kernel during boot. In such
case, the kernel has to be modified to include a mem_init() function extension
with a predefined list of pages to exclude. It can be done by hardcoding a table
of unsigend long address/mask pairs that will be used in addition of the
parameters passed though the bootloader, This approach requires the kernel
to be recompiled every time the pool of faulty regions changes, which may be
tricky on a system that must run with these errors, so it must either be done
by a kernel compilation performed on a different machine, or by a temporary
addition of new faulty memory addresses through the bootloader parameters.
This way that the system may run stable while the kernel is recompiled with
an updated map of faulty memory locations. The preparation of such a system
setup may be a tricky one, even though the proposed solution allows for a
safe and complete exclusion of faulty memory blocks.

8 Conclusions

Linux kernel modifications described in this chapter allow fault-free opera-
tion of the Linux OS on a hardware where memory banks are partially faulty
but the faulty addresses may be identified by some external testing programs.
Faulty memory regions are excluded from system usage with page-size granu-
larity by locking them as unswappable kernel-used memory, without actually
accessing them for any purpose.
The described modifications have been implemented and tested in 2.6 series

of kernels, up to version 2.6.6, and the implementation effort is now directed
to porting them to current versions, for both the 32- and 64-bit systems.

References

[1] Biswas, S., Metodi, T., Chong, F., Kastner, R.: A pageable, defect-
tolerant nanoscale memory system. In: IEEE International Symposium
on Nanoscale Architectures, NANOSARCH 2007, pp. 85–92 (2007),
doi:10.1109/NANOARCH.2007.4400862

[2] De Jonge, J.H., Smeulders, A.J.: Moving Inversions Test Pattern is Thorough,
Yet Speedy. International Computer Design (1976)

Bad Memory Blocks Exclusion in Linux Operating System 231

[3] Demeulemeester, S.: Memtest86, an AdvancedMemory Diagnostic Tool (2010),
http://www.memtest.org

[4] Elkind, S., Siewiorek, D.: Reliability and performance of error-correcting mem-
ory and register arrays. IEEE Transactions on Computers C-29(10), 920–927
(1980), doi:10.1109/TC.1980.1675475

[5] Elm, C., Klein, M., Tavangarian, D.: Automatic On-line Memory Tests in
Workstations. In: Records of the IEEE International Workshop on Memory
Technology, Design and Testing (1994)

[6] Gu, W., Kalbarczyk, Z., Ravishankar, Iyer, K., Yang, Z.: Characterization
of Linux kernel behavior under errors. In: Proceedings of 2003 Interna-
tional Conference on Dependable Systems and Networks, pp. 459–468 (2003),
doi:10.1109/DSN.2003.1209956

[7] Hamdioui, S.: Testing static random access memories: defects, fault models,
and test pattern. Kluwer Academic Publishers, Dordrecht (2004)

[8] Intel Corporation IA-32 Intel Architecture Software Developer’s Manual. In:
System Programming Guide, vol. 3 (2009),
http://www.intel.com/products/processor/manuals/

[9] Kozierok, C.: The PC Guide – Memory Errors, Detection and Correction
(2001)

[10] Maestro, J., Reviriego, P.: Selection of the optimal memory configuration in
a system affected by soft errors. IEEE Transactions on Device and Materials
Reliability 9(3), 403–411 (2009), doi:10.1109/TDMR.2009.2023081

[11] Messer, A., Bernadat, P., Fu, G., Chen, D., Dimitrijevic, Z., Lie, D., Mannaru,
D., Riska, A., Milojicic, D.: Susceptibility of commodity systems and software
to memory soft errors. IEEE Transactions on Computers 53(12), 1557–1568
(2004), doi:10.1109/TC.2004.119

[12] Silberschats, A., Peterson, J.L., Galvin, P.B.: Operating System Concepts.
Addison-Wesley Publishing Company, Inc., Reading (1991)

[13] Swift, W.: Memory errors: roll the dice! IEEE Antennas and Propagation Mag-
azine 38(6), 124–125 (1996), doi:10.1109/MAP.1996.556530

http://www.memtest.org
http://www.intel.com/products/processor/manuals/

W. Zamojski et al. (Eds.): Dependable Computer Systems, AISC 97, pp. 233–242.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Metamodel and UML Profile for Functional
Programming Languages

Marcin Szlenk

Warsaw University of Technology, Institute of Control & Computation Engineering,
Nowowiejska 15/19, 00-665 Warsaw, Poland
e-mail: m.szlenk@ia.pw.edu.pl

Abstract. Functional programming languages are ideally suited for developing
dependable software, but not much work have been done on modeling functional
programs. Although UML is mainly based on concepts which are native to im-
perative object-oriented programming languages, this chapter shows how –
through the profile mechanism – it can be used to model software that is to be
implemented in a functional programming language. In this chapter Haskell was
chosen as one of the most popular modern, pure functional languages. First, a
partial metamodel of Haskell is defined and then the corresponding UML profile
is presented.

1 Introduction

Unified Modeling Language (UML) [11, 14] is intended to be a universal general-
purpose modeling language for software systems. UML contains an extensibility
capability for customizing models for particular domains or platforms, where
UML extensions are organized into profiles. Basic UML – without profiles – re-
flects the imperative and object-oriented paradigm. A system is modeled as a
collection of discrete objects that interact to perform given work. Using UML to
model software that is to be implemented in languages supporting other program-
ming paradigms may seem to be odd at first, however, creating a dedicated UML
profile may give a natural and convenient modeling notation, which at the same
time benefits from the existing tool support for UML. This chapter is an attempt at
defining the UML profile for a programming language built on a functional
programming paradigm.

2 Functional Programming

Functional programming treats computations as the evaluation of functions (or
expressions), avoiding using state and mutable data [1, 4]. Thus, functions are
stated in a declarative way, where in contrast to the imperative programming, a
function definition shows what is to be done, rather than how it is to be done in
terms of state changes. Functions are treated here as any other values, that is, they

234 M. Szlenk

can be passed as arguments to other functions or be returned as a result of a func-
tion. Some functional programming languages, e.g. ML variants like Standard ML
[8], Objective Caml [13] or F# [3], allow to program in both functional and im-
perative (including object-oriented) style, while the others, e.g. Miranda [16]
or Haskell [5, 6], lack imperative programming constructs and remain purely
functional.

As far as UML modeling is concerned, one can distinguish two types of models:
dynamic and static. The dynamic model is used to express the behaviour of a system
over time, whereas the static model shows those aspects that do not change over time.
The dynamism is intuitively understood here as changes in a system state (which is
constituted of the states of its objects), however, in pure functional programs there is
no concept of state or order of execution. It is left up to the runtime system how to
compute the values given the relations to be satisfied between them. In that sense, in a
functional programming language (or at least in its pure subset) only the static struc-
ture of program is explicitly specified, while the dynamic aspects remain hidden.

2.1 Haskell

Haskell is nowadays probably the most popular purely functional programming
language. It has been designed as a vehicle for functional programming teaching,
research, and applications and efforts in improving it are still ongoing. In this
chapter the current Haskell specification [6] is used.

module AStack (Stack, push, pop, top, size) where

data Stack a = Empty | MkStack a (Stack a)

push :: a -> Stack a -> Stack a

push x s = MkStack x s

size :: Stack a -> Int

size s = length (stkToLst s) where

 stkToLst Empty = []

 stkToLst (MkStack x s) = x : stkToLst s

pop :: Stack a -> (a, Stack a)

pop (MkStack x s) = (x, s)

top :: Stack a -> a

top (MkStack x s) = x

Fig. 1 A sample Haskell program

Metamodel and UML Profile for Functional Programming Languages 235

In Fig. 1 a sample program written in Haskell is presented. This is a simplified ex-
ample taken from [6]. The program is organized into one module called ‘AStack’,
which contains a user-defined algebraic data type ‘Stack’ (parameterized with a
type variable ‘a’) and functions ‘push’, ‘size’, ‘pop’, and ‘top’ for typical stack
operations. The type variable ‘a’ can be replaced by concrete types (such as ‘Int’,
‘Float’, and so on) when a given value of type ‘Stack’ is declared or the functions
are applied. This serves as a parametric polymorphism mechanism.1 Both the data
type and the functions are explicitly (they appear on an export list) exported by the
module and are available to anyone importing the module. This sample program will
be used later to explain and present the application of a proposed UML profile, how-
ever, the basic knowledge of functional programming is assumed.

3 Metamodel

Although Haskell contains some unique features, this chapter will stick to a
subset which is common to several other functional programming languages. In
particular, the system of type classes [6] will be omitted. It not only simplifies
further consideration but also allows to easily adapt the proposed profile to other
functional languages.

The strategy of defining the UML profile for Haskell is here similar to the one
used in UML profile specifications provided by Object Management Group
(OMG), e.g. [10]. First, the Haskell metamodel (a model of Haskell expressed in
UML) is defined. The goal of defining this metamodel is to set the scope of Has-
kell language which will be included in the profile and to set the level of abstrac-
tion for the profile elements. The metamodel presented below is intended to
provide sufficient details to create Haskell design and implementation models.2
The assumed level of abstraction allows to partially generate Haskell code (that
will need to be further completed by hand), but does not allow for full code gen-
eration from models. As stated before, it is not a complete metamodel of the Has-
kell language yet it describes a consistent and useful subset of the language. The
UML profile corresponding to this metamodel will be then defined in Sect. 4
Profile.

3.1 Haskell Metamodel

The Haskell metamodel is presented as three class diagrams completed with a
description of the important features of the diagram and additional constraints
expressed in Object Constraint Language (OCL) [7].

1 The other kind of polymorphism called overloading can be defined in Haskell using type

classes.
2 They correspond to Platform Specific Models (PSM) in Model Driven Architecture

(MDA) approach [9].

236 M. Szlenk

Module Contents (Fig. 2). Haskell programs are organized into modules, which
play a similar role to packages in Java or namespaces in C++ language. Two kinds
of basic program elements defined in such a module are functions and user data
types, but it is not obligatory to define them in a certain module, i.e. the ‘module
Name where’ header at the beginning of a file (see Fig. 1) can be omitted.3 Before
the ‘where’ keyword a parenthesized list of functions, types and constructors
exported by a module can be added. The attribute ‘isExported’ in the meta-
model indicates whether the element appears on the export list of a module. Mod-
ules can also import other modules (their exported elements) by adding the ‘im-
port’ declarations at the beginning of the module.4 In fact, the module system in
Haskell allows also for importing chosen elements of modules and hiding others.
Module imports may not form a cycle. Note that no additional constraints in the
metamodel are needed here because this fact results from the semantics of the
aggregation relationship in UML, which is transitive and antisymmetric [11].

Haskell functions take zero or more arguments and must always return a result.
A zero-argument function is called a value. Haskell is a statically and strongly
typed language, but the user does not have to explicitly specify the types of func-
tions as they can be inferred by the system. Functions in Haskell are pure, i.e. they
do not have any side-effects. To examine and modify the current state of the
world, e.g. read and write files, read from a keyboard or print something on a
screen, one has to use IO (input/output) actions. Every IO action returns a value,
but in the type system the returned value is tagged with ‘IO’ type, distinguishing
actions from functions. For example, the type of the function ‘getChar’ is:

getChar :: IO Char,

what means that this function is actually an action and when it is invoked, the
result will have type ‘Char’. IO actions can be passed to functions. The attribute
‘isIO’ in the metamodel indicates whether the type is an ‘IO’ type.

User data types are defined using ‘data’ keyword (see Fig. 1). They are alge-
braic types, i.e. any value of such a type is created using a constructor, which is
just a function, expecting some arguments (of other types) and delivering a value
of the given user type. A constructor may also not take any arguments (may be a
value) and an algebraic type may have many constructors (these are separated with
the ‘|’ character). A constructor cannot be an action and its result type is the user
type whose values it constructs. This constraint can be expressed in OCL as be-
low:

Constructor

resultType = userType and resultType.isIO = False.

Types (Fig. 3). The most frequently used basic types in Haskell are: ‘Bool’,
‘Char’, ‘String’, ‘Int’, ‘Integer’ (infinite-precision integers), ‘Float’, ‘Dou-
ble’, and the unit type ‘()’ (which is used when an IO action returns nothing).

3 In this case, the header is assumed to be ‘module Main (main) where’.
4 In fact, the module system in Haskell allows also for importing chosen elements of mod-

ules and hiding others.

Metamodel and UML Profile for Functional Programming Languages 237

Module

ModuleEntity

+ isExported : Boolean

UserType Function Argument

Constructor HaskellType

+ isIO : Boolean

+ importedModules

*

*

+ entities
*

0..1

+ constructors

1

1..*

+ arguments

1 *
*

1 + type
+ resultType

1

*

{ordered}

Fig. 2 Module contents

More complex types, like e.g. list types, are constructed from other types and are
shown in Fig. 4. Polymorphic types are described in Haskell using type variables.
For example, the type variable ‘a’ in Fig. 1 represents any type. A user-defined
type (an algebraic type) can be parameterized with one or more type variables and
thus become a polymorphic one.5

TypeVariable
HaskellType

+ isIO : Boolean

BasicType ConstructedType UserType

+ parameters*

*

Bool

Char String Int Integer Float Double

()

{ordered}

Fig. 3 Types

5 In fact, Haskell's type system is more sophisticated, but the simplified description pre-

sented here seems adequate to its purpose.

238 M. Szlenk

Constructed types (Fig. 4). Haskell offers also types which are constructed from
other types (which themselves can be basic or constructed). These constructed
types are:

• list types (e.g. ‘[Char]’ is a list of characters),
• tuple types (e.g. ‘(Int, Float)’ is an ordered pair, where the first element is

an integer and the second is a real), and
• function types (e.g. ‘Char -> Bool’ is a function which takes a character and

returns a boolean result).

ConstructedType

HaskellType

+ isIO : Boolean

ListType TupleType FunctionType

*

1

+ type

+ types
{list}

*

1..*

+ argumentTypes
{list}1

**

1..*

+ resultType

Fig. 4 Constructed types

Lists can hold an arbitrary number of elements, but these elements must all be of
the same type. This contrasts with tuples, which hold only a fixed number of ele-
ments, but can be heterogeneous.

4 Profile

UML can be tailored to specific domains or programming environments by defin-
ing its dialect as a profile [14]. A UML profile identifies a subset of UML and
defines stereotypes and constraints that can be applied to the selected UML subset.
This section presents a UML profile for Haskell, but the profile presented can be
also adopted to other functional languages. The profile consists of eight stereo-
types which are a direct mapping of the concepts defined in the Haskell meta-
model presented in the previous section. Table 1 depicts the relation between the
stereotypes from the profile and the Haskell matamodel, as well as UML base
elements for the stereotypes (i.e. elements to which the stereotypes can be
applied).

Metamodel and UML Profile for Functional Programming Languages 239

Table 1 Mapping metamodel concepts to profile elements

Metamodel element Stereotype UML base element

Module «Module» Class

Function «Function» Operation

Function «Value» Attribute

Function «IOAction» Operation

UserType «UserType» Class or Parameterized class

Constructor «Constructor» Operation

Module.entities «Contents» Dependency

Module.importedModules «Import» Dependency

4.1 Stereotypes

In the following, the stereotypes in the profile and their use are briefly described.

Module. This stereotype can be applied to a Class. Classes annotated with this
stereotype represent Haskell modules. Functions defined in a given module can be
then specified on an operation list of a Class or on an attribute list if a function is a
value.

Function. This stereotype is used on Operations to represent pure functions de-
fined in a Haskell program. The default UML syntax for an operation is used:

name (parameter: parameter-type,): return-type ,

where ‘name’ is the name of the given function, ‘parameter’ is the name of the
function argument, ‘parameter-type’ is the name of the type of that argument,
and ‘return-type’ is the name of the type of the function result. Both the names
of arguments, the names of their types and the name of the result type are optional
(their appearance depends on how detailed the function is modeled). The name of
the argument type and the name of the result type can be any Haskell type expres-
sions. The only difference is for parameterized types, where the names of the type
variables should be enclosed in angle brackets (< >), similar to the UML notation
for parameterized classes (template classes) [14]. For example, ‘Stack a’ and
‘Either a b’ should be written as ‘Stack<a>’ and ‘Either<a,b>’, respec-
tively. This is consistent to the way parameterized user-defined types are modeled
(see the description for the UserType stereotype below).

Value. This stereotype should be used to show a zero-argument pure function and
it can be applied to an Attribute. The default UML syntax for an attribute is used:

name: type = value ,

240 M. Szlenk

where ‘name’ is the name of the given value, ‘type’ is the name of the value type
and ‘value’ is the given value. Only the name of the value is obligatory. The
syntax rules for the name of the value type are the same like in the case of the
Function stereotype.

IOAction. This stereotype is used on Operations to represent IO actions. Its use is
the same as of the Function stereotype. Zero-argument action should be also
shown as an operation with IOAction stereotype. The operations annotated with
the Function or IOAction stereotypes and the attributes with the Value stereotype
can be declared only in a class having the Module stereotype.

UserType. User-defined types should be shown as Classes annotated with a User-
Type stereotype. Constructors of such a type can be then specified on an operation
list of a Class. For user-defined types that are parameterized with type variables
the UserType stereotype should be applied to parameterized classes, where the
number and the names of the parameters correspond to the number and the names
of the type variables.

Constructor. This stereotype can be applied to an Operation. Operations annotated
with this stereotype represent constructors of a given user data type. The syntax
for such an operation is the same as in the case of the Function stereotype. The
only difference is that the arguments of the constructor do not have names. The
operations annotated with the Constructor stereotype can be only declared in a
class bearing the UserType stereotype.

Contents. Functions defined in a module are specified on an operation list of a
class representing this module. To show that a given user type is defined in a giv-
en module one should use a UML Dependency relationship with a Contents ste-
reotype applied to it. This relationship should connect a class representing the
module to a class representing the user type. The given user type may be con-
tained in only one module.

Import. This stereotype is to be applied to a Dependency relationship connecting
two classes representing modules where one of these modules imports the other.
This relationship should go from the class representing the importing module to
the class representing the imported module. The information whether a module
exports a function or data type defined in it should be shown as UML visibility
markers [14] placed before the name of a function or data type. The marker ‘+’
(public) denotes that the module element is exported and ‘-’ (private) that it is not
exported.

In Fig. 5 a model of a sample Haskell program from Fig. 1 is presented showing
the application of some of the stereotypes.

Metamodel and UML Profile for Functional Programming Languages 241

Fig. 5 A sample model

4.2 Constraints

A stereotyped UML element may have additional constraints beyond those of the
base element [14]. Some of the additional constraints have been stated above, e.g.
that the user type may be contained in only one module, and some other are omit-
ted here. All such constraints come directly from the Haskell metamodel, what is
an essential advantage of creating the metamodel of the language for which the
UML profile is being defined.

5 Related Work

It seems that, so far, no work has been done on tailoring UML to model functional
programs. In [17], rather than tailor UML to model Haskell programs, the transla-
tion from standard UML elements to Haskell is proposed. As the author himself
admits, it results in some awkwardness in converting from the object-oriented to
the functional paradigm and the Haskell code produced this way looks much more
imperative than functional.

In general, not much work seems to have been done on modeling functional
programs. In [15] a graphical modeling language is proposed, however, it is not
related to UML in any way. Some visual functional programming languages [2,
12] have been also defined, but they focus on graphical representation of algo-
rithms rather than abstract models of programs.

6 Conclusion and Further Work

The main idea behind this chapter is filling the gap in the area of graphical nota-
tions for modeling functional programs. From the practical point of view, it seems
attractive to use a widely known UML notation with its extensive tool support,
rather than define a new notation from scratch. For that reason, the work on defin-
ing a metamodel and a UML profile for the Haskell language has been undertaken.
Some of the initial results of this work have been presented in this chapter. Further
work will focus on broadening the scope of Haskell included in the profile, as
well as on providing metamodel and profile implementations for popular UML
modeling tools.

242 M. Szlenk

References

[1] Backus, J.: Can Programming Be Liberated from the von Neumann Style?A Func-
tional Style and Its Algebra of Programs. Communications of the ACM 21(8),
613–641 (1978)

[2] Cardelli, L.: Two-dimensional syntax for functional languages. In: Proceedings of
ECICS, vol. 82, pp. 139–151 (1983)

[3] Harrop, J.: F# for Scientists. Wiley Interscience, Hoboken (2008)
[4] Hudak, P.: Conception, Evolution, and Application of Functional Programming Lan-

guages. ACM Computing Surveys 21(3), 359–411 (1989)
[5] Hutton, G.: Programming in Haskell. Cambridge University Press, Cambridge (2007)
[6] Jones, S.P.: Haskell 98 Language and Libraries: The Revised Report. Cambridge Uni-

versity Press, Cambridge (2003)
[7] Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modeling With

UML. Addison-Wesley, Reading (1998)
[8] Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML (Re-

vised). MIT Press, Cambridge (1997)
[9] Object Management Group, MDA Guide Version 1.0.1 (omg/03-06-01) (2003)

[10] Object Management Group, Metamodel and UML Profile for Java and EJB Specifica-
tion (formal/04-02-02) (2004)

[11] Object Management Group UML 2.3 Superstructure Specification (formal/2010-05-
05) (2010)

[12] Reekie, H.J .: Realtime Signal Processing: Dataflow, Visual, and Functional Pro-
gramming. PhD thesis, University of Technology at Sydney (1995)

[13] Rémy, D.: Using, Understanding, and Unraveling the OCaml Language. In: Barthe,
G., Dybjer, P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395,
pp. 413–537. Springer, Heidelberg (2002)

[14] Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual, 2nd edn. Addison-Wesley, Reading (2004)

[15] Russell, D.: FAD: A Functional Analysis and Design Methodology. PhD thesis,
University of Kent at Canterbury (2001)

[16] Turner, D.A.: Miranda: A non-strict functional language with polymorphic types. In:
Jouannaud, J.-P. (ed.) FPCA 1985. LNCS, vol. 201, pp. 1–16. Springer, Heidelberg
(1985)

[17] Wakeling, D.: A Design Methodology for Functional Programs. In: Taha, W. (ed.)
SAIG 2001. LNCS, vol. 2196, pp. 146–161. Springer, Heidelberg (2001)

W. Zamojski et al. (Eds.): Dependable Computer Systems, AISC 97, pp. 243–256.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Resource Co-allocation Algorithms for Job Batch
Scheduling in Dependable Distributed Computing

Victor Toporkov1, Dmitry Yemelyanov1, Anna Toporkova2,
and Alexander Bobchenkov1

1 Moscow Power Engineering Institute (Technical University),
ul. Krasnokazarmennaya 14, Moscow, 111250 Russia
e-mail: ToporkovVV@mpei.ru,
{groddenator,yemelyanov.dmitry}@gmail.com

2 Moscow State Institute of Electronics and Mathematics (Technical University),
Bolshoy Trekhsvyatitelsky per. 1-3/12, Moscow, 109028 Russia
e-mail: annastan@mail.ru

Abstract. This work presents slot selection algorithms in economic models for
independent job batch scheduling in distributed computing with non-dedicated re-
sources. Existing approaches towards resource co-allocation and multiprocessor
job scheduling in economic models of distributed computing are based on search
of time-slots in resource occupancy schedules. The sought time-slots must match
requirements of necessary span, computational resource properties, and cost. Usu-
ally such scheduling methods consider only one suited variant of time-slot set.
This work discloses a scheduling scheme that features multi-variant search. Two
algorithms of linear complexity for search of alternative variants are proposed and
compared. Having several optional resource configurations for each job makes an
opportunity to perform an optimization of execution of the whole batch of jobs
and to increase overall efficiency of scheduling.

1 Introduction

Job control is among the most difficult problems in the enterprise of distributed
computing in the case of non-dedicated resources that are shared with their owners.
One must take into account the heterogeneity, changing composition, different
owners of different nodes, and the scale of the computing environment. Economic
models of scheduling are based on the concept of fair resource distribution between
users and owners of computational nodes. They are effectively used in such spheres
of distributed computing as Grid [1], cloud computing [2], and multiagent systems
[3].

Two lasting trends can be distinguished among various approaches to the or-
ganization of computations in distributed environments [4-6]. One of them is
based on the use of available resources when the role of mediator between users
and computation nodes is played by special application agents called brokers
[7, 8]. The other trend is closely related to the creation of virtual organizations
(VO) [4]; it is mainly oriented to grid systems [4-6].

244 V. Toporkov et al.

Both approaches have certain advantages and disadvantages. The resource
management systems based on the first approach are well scalable and can be
adapted to specific features of various applications. Resource brokers usually
implement some economic policy in accordance with the application-level sched-
uling concept [7, 8]. However, the use of various optimization criteria of job
execution by independent users (when jobs may compete with each other) can de-
teriorate such integral characteristics as total execution time of a batch of jobs and
resource utilization. The creation of VO naturally restricts the scalability of job
control systems. Nevertheless the use of certain rules for allocation and consump-
tion of resources makes it possible to improve the efficiency of resource planning
and allocation at the level of job flows [5]. The corresponding functions are
implemented within a hierarchical structure consisting of a metascheduler and
subordinate job schedulers [4-6] that are controlled by the metascheduler and in
turn interact with resource managers (e.g., with batch job processing systems).
The set of specific VO rules allows overall increase in the quality of service (QoS)
for jobs and resource usage efficiency. It is worth noting that both approaches as-
sume that applications are scheduled based on dynamically changing information
about the global environment; both approaches make it possible to implement
various resource management scenarios. Hence, we may speak not only of a
scheduling algorithm but rather of a scheduling strategy, that is, of a combination
of various methods of external and local scheduling, data allocation methods etc.
[9, 10].

The model proposed in [11] is based on the concept of fair resource distribution
between users and owners of computational nodes by means of economic mecha-
nisms in VO. Existing approaches towards resource co-allocation and multiproc-
essor job scheduling in economic models of distributed computing are based on
search of time-slots in resource occupancy schedules. The sought time-slots must
match requirements of necessary span, computational resource properties, and cost
[7, 8, 11]. There is the description of some approaches to forming of different
deadline and budget constrained strategies of scheduling in [7]. Heuristic algo-
rithms for slot selection based on user defined utility functions are introduced in
[8]. Usually economic scheduling techniques consider only one suited variant of
time-slot set.

In this work, a scheduling scheme with multi-variant slot search is proposed.
Having several optional resource configurations for each job makes an opportunity
to perform an optimization of execution of the whole batch of jobs and to increase
overall efficiency of scheduling and QoS. We propose two algorithms for slot se-
lection that feature linear complexity ()mO , where m is the number of available

time-slots.
Existing slot search algorithms, such as backfilling [12], do not support envi-

ronments with inseparable resources, and, moreover, their execution time grows
substantially with increase of the slot number. Assuming that every node has at
least one local job scheduled, the backfill algorithm has quadratic complexity in
the slot number. Although backfilling supports multiprocessor jobs and is able to
find a rectangular window of concurrent slots, this can be done provided that all
available computational nodes have equal performance (processor clock speed),

Resource Co-allocation Algorithms for Job Batch Scheduling 245

and tasks of any job are homogeneous. We take a step further, so proposed
algorithms deal with heterogeneous resources and jobs, and can form
non-rectangular time-slot windows as a result.

This work is organized as follows. Section 2 introduces a main scheduling
scheme. In section 3 two algorithms for search of alternative slot sets are consid-
ered. The example of slot search is presented in section 4. Simulation results
for comparison of proposed algorithms are described in Section 5. Section 6
summarizes the work and describes further research topics.

2 Main Scheduling Scheme

The job scheduling is finding a set of time slots. The resource requirements are ar-
ranged into a resource request containing the usage time t and the characteristics
of computational nodes (clock speed, RAM volume, disk space, operating system
etc.).

Let { }njjJ ,...,1= denote the batch consisting of n jobs. A slot set fits a job

niji ,...,1, = , if it meets the requirements of number and type of resources, cost

ic and the job execution time it . We suppose that for each job ij in the current

scheduling cycle there is at least one suitable set is . Otherwise, the scheduling of

the job is postponed to the next iteration. Every slot set is for the execution of the

i -th job in a batch { }njjJ ,...,1= is defined with a pair of parameters, the cost

()ii sc and the time ()ii st of the resource usage, ()ii sc denotes a total cost of slots

in a set and ()ii st denotes the execution time of the i -th job.

During every cycle of the job batch scheduling two problems have to be solved.

1. Selecting alternative sets of slots (alternatives) that meet the requirements
(resource, time, and cost).

2. Choosing a slot combination that would be the efficient or optimal in terms
of the whole job batch execution in the current cycle of scheduling.

 Slots

1
2
3
4
5
6

Time

 Window with a rough right edge

kt
End Start

(а) (b)

Fig. 1 Slot selection: an ordered list of available slots (a); slot subtraction (b)

246 V. Toporkov et al.

To realize the scheduling scheme described above, first of all, we need to propose
the algorithm of finding a set of alternative slot sets. Slots are arranged by start
time in non-decreasing order (Fig. 1 (a)). In the case of homogeneous nodes, a set
of slots for any job is represented with a rectangle window. In the case of CPUs
with varying performance, that will be a window with a rough right edge, and the
usage time is defined by the execution time kt of the job part (task) that is using

the slowest CPU.
This scheme works iteratively, during the iteration it consequentially searches

for a single alternative for each job of the batch. In case of successful slot selec-
tion for the i -th job, the list of viewed slots for the ()1+i -th job is modified. All

time spans that are involved in the i -th job alternative are excluded from the list

of vacant slots (Fig. 1 (b)). The selection of slots for the ()1+i -th job is

performed on the list modified with the method described above. Suppose, for ex-
ample, that there is a slot K′ among the appropriate window slots. Then its start
time equals to the start time of the window: K′.startTime = window.startTime and
its end time equals to K′.end=K′.start + kt , where kt is the evaluation of a task

runtime on the CPU node, on which the slot is allocated. Slot K′ should be sub-
tracted from the original list of available system slots. First, we need to find slot K
– the slot, part of which is K′ and then cut K′ interval from K. So, in general, we
need to remove slot K′ from the ordered slot list and insert two new slots 1K and

2K . Their start, end times are defined as follows: 1K .startTime = K.startTime,

1K .endTime = K′.startTime, 2K .startTime = K′.endTime, 2K .endTime =

K.endTime. Slots 1K and 2K have to be added to the slot list given that the list is

sorted by non-decreasing start time order (see Fig. 1 (a)). Slot 1K will have the

same position in the list as slot K, since they have the same start time. If slots 1K

and 2K have a zero time span, it is not necessary to add them to the list.

After the last of the jobs is processed, the algorithm starts next iteration from
the beginning of the batch and attempts to find other alternatives on the modified
slot list. Alternatives found do not intersect in processor time, so every job could
be assigned to some set of found slots without the revision of other jobs assign-
ments. The search for alternatives ends when on the current list of slots the
algorithm cannot find any suitable set of slots for any of the batch jobs.

An optimization technique for the second phase of this scheduling scheme was
proposed in [11]. It is implemented by dynamic programming methods using mul-
tiple criteria in accordance with the VO economic policy.

We consider two types of criteria in the context of our model. These are the
execution cost and time measures for the job batch J using the suitable slot set

()nsss ,...,1= . The first criteria group includes the total cost of the job batch exe-

cution () ()∑
=

=
n

i
ii scsC

1
. The VO administration policy and, partially, users’ inter-

ests are represented with the execution time criterion for all jobs of the batch

Resource Co-allocation Algorithms for Job Batch Scheduling 247

() ()∑
=

=
n

i
ii stsT

1
. In order to forbid the monopolization of some resource usage by

users, a limit *B is put on the budget of the VO that is the maximum value for a
total usage cost of resources in the current scheduling cycle. The total slots occu-
pancy time *T represents owners’ urge towards the balance of global (external)
and local (internal) job shares.

Let ()ii sg be the particular function, which determines the efficiency of is slot

set usage for i -th job. In other words, () ()iiii scsg = or () ()iiii stsg = . Let

()ii Zf be the extreme value of the particular criterion using a slot set is for exe-

cution of jobs nii ,...,1, + , having iZ as a total occupancy time or the usage cost

of slots nii sss ,...,, 1+ for jobs nii jjj ,...,, 1+ . Let us define an admissible time value

or a slot occupancy cost as ()ii sz . Then () *ZZsz iii ≤≤ , where *Z is the giv-

en limit. For example, if () ()iiii stsz = , then () *TTst iii ≤≤ , where iT is a total

slots occupancy time for jobs nii ,...,1 , + and *T is the constraint for values iT ,

that is chosen with the consideration of balance between the global job flow (user-
defined) and the local job flow (owner-defined). If, for example, () ()iiii scsz = ,

then () *BCsc iii ≤≤ , where iC is a total cost of the resource usage for the tasks

nii ,...,1 , + , аnd *B is the budget of the VO. In the scheme of backward run

[13], *1 ZZ = , 1=i , ()111 −−− −= iiii szZZ , having ni ≤<1 .

The functional equation for obtaining a conditional (given ()ii sz) extremum of

()()iii szf for the backward run procedure can be written as follows:

() ()(){ }iiiiii
s

ii szZfsgZf
i

−+= +1extr)(, ni ,...,1= , () 011 ≡++ nn Zf . (1)

If we consider the single-criterion optimization of the job batch execution, then
every criterion ()sC or ()sT

must be minimized with given constraints *T or

*B for the interests of the particular party (a user, an owner and the VO adminis-
trator).

For example, a limit put on the total time of slot occupancy by tasks may be
expressed as:

()[]∑ ∑
=

=
n

i s
iii

i

lstT
1

/ * , (2)

where il is the number of admissible slot sets for the i -th job; []⋅ means the

nearest to () iii lst / not greater integer.

The VO budget limit *B may be obtained as the maximal income for resource
owners according to (1) with the given constraint *T defined by (2):

248 V. Toporkov et al.

*B () ()(){ }iiiiii
s

stTfsc
i

−+= +1max

. (3)

In the general case of the model [7], it is necessary to use a vector of criteria, for
example, < ()sС , ()sD , ()sT , ()sI > , where () ()sCBsD −= * , and

() ()sTTsI −= * .

3 Slot Search Algorithms

Let us consider one of the resource requests associated with a job in a batch J .
The resource requests specifies following: N concurrent time-slots providing re-
source performance rate at least P and maximal resource price not higher, than
С , should be reserved for time span t . Here a slot search algorithm for a single
job and resource charge per time unit is described.

It is an Algorithm based on Local Price of slots (ALP) with a restriction to the
cost of individual slots. Source data include available slots list, and slots being
sorted by start time in ascending order (see Fig. 1(a)). The search algorithm re-
quires a sorted list to function and guarantees examination of every slot if this
requirement is fulfilled.

1°. Sort the slots by start time in ascending order - see Fig. 1 (a).
2°. From the resulting slot list the next suited slot ks is extracted and

examined.
Slot ks suits, if following conditions are met:

a) resource performance rate () PsP k ≥ for slot ks ;

b) slot length (time span) is enough (depending on the actual performance of
the slot's resource) () () PsPtsL kk /∗≥ ;

c) resource charge per time-unit () CsC k ≤ .

If conditions a), b), and c) are met, the slot ks is successfully added to the win-

dow list.
3°. We add a time offset kd of current k -th slot in relation to ()1−k -th to the

length of the window.
4°. Slots whose length has expired considering the offset kd are removed from

the list. The expiration means that remaining slot length ()ksL′ , calculated like

shown in step 2°b, is not enough assuming the k -th slot start is equal to the last

added slot start: () ()()() () PsPsTTtsL kklastk /−−<′ , where ()ksT is the slot's

start time, lastT is the last added slot's start time.

5°. Go to step 2°, until the window has N slots.
6°. End of the algorithm.

Resource Co-allocation Algorithms for Job Batch Scheduling 249

We can move only forward through the slot list. If we run out of slots before
having accumulated N slots, this means a failure to find the window for a job and
its scheduling is postponed by the metascheduler until the next scheduling cycle.
Otherwise, the window becomes an alternative slot set for the job. ALP is exe-

cuted cyclically for every job in the batch { }njjJ ,...,1= . Having succeeded in the

search for window for the ij -th job, the slot list is modified with subtraction of

formed window slots (see Fig. 1 (b)). Therefore slots of the already formed slot set
are not considered in processing the next job in the batch.

In the economic model [11] a user's resource request contains the maximal re-
source price requirement, that is a price which a user agrees to pay for resource
usage. But this approach narrows the search space and restrains the algorithm
from construction of a window with more expensive slots. The difference of the
next proposed algorithm is that we replace maximal price C requirement by a
maximal budget of a job.

It is an Algorithm based on Maximal job Price (AMP). The maximal budget is
counted as CtNS = , where t is a time span to reserve and N is the necessary
slot number. Then, as opposed to ALP, the search target is a window, formed by
slots, whose total cost will not exceed the maximal budget S . In all other re-
spects, AMP utilizes the same source data as ALP.

Let us denote additional variables as follows: SN – current number of slots in

the window; NM – total cost of first N slots.

Here we describe AMP approach for a single job.

1°. Find the earliest start window, formed by N slots, using ALP excluding the
condition 2°c (see ALP description above).

2°. Sort window slots by their cost in ascending order.
Calculate total cost of first N slots NM .

If SM N ≤ , go to 4°, so the resulting window is formed by first N slots of the

current window, others are returned to the source slot list. Otherwise, go to 3°.
3°. Add the next suited slot to the list following to conditions 2°a and 2°b of

ALP. Assign the new window start time and check expiration like in the step 4° of
ALP.

If we have NNS < , then repeat the current step. If NNS ≥ , then go to step 2°.

If we ran out of slots in the list, and NNS < , then we have algorithm failure

and no window is found for the job.
4°. End of the algorithm.

We can state three main features that distinguish the proposed algorithms. First,
both algorithms consider resource performance rates. This allows forming time-
slot windows with uneven right edge (we suppose that all concurrent slots for the
job must start simultaneously). Second, both algorithms consider maximum price
constraint which is imposed by a user. Third, both algorithms have linear
complexity ()mO , where m is the number of available time-slots.

250 V. Toporkov et al.

4 AMP Search Example

In this example for the simplicity and ease of demonstration we consider the prob-
lem with a uniform set of resources, so the windows will have a rectangular shape
without the rough right edge. Let us consider the following initial state of the dis-
tributed computing environment. In this case there are six processor nodes cpu1-
cpu6 (Fig. 2 (a)). Each has its own unit cost (cost of it’s usage per time unit),
which is listed in the column to the right of the processor name. In addition there
are seven local tasks p1-p7 already scheduled for the execution in the system un-
der consideration. Available system slots are drawn as rectangles 0...9 - see Fig. 2
(a). Slots are sorted by non-decreasing time of start and the order number of each
slot is indicated on its body. For the clarity, we consider the situation where the
scheduling cycle includes the batch of only three jobs with the following resource
requirements.

(a)

(b)

Fig. 2 AMP: initial state of environment (a); alternatives found after the first iteration (b)

Resource Co-allocation Algorithms for Job Batch Scheduling 251

Job 1 requirements: the number of required processor nodes: 2; runtime: 80;
maximum total “window” cost per time: 10.

Job 2 requirements: the number of required processor nodes: 3; runtime: 30;
maximum total “window” cost per time: 30.

Job 3 requirements: the number of required processor nodes: 2; runtime: 50;
maximum total “window” cost per time: 6.

According to AMP alternatives search, first of all, we should form a list of avail-
able slots and find the earliest alternative (the first suitable window) for the first job
of the batch. We assume that Job 1 has the highest priority, while Job 3 possesses
the lowest priority. The alternative found for Job 1 (see Fig. 2 (b)) has two
rectangles on cpu1 and cpu4 resource lines on a time span [150, 230] and named
W1.

The total cost per time of this window is 10. This is the earliest possible win-
dow satisfying the job’s resource request. Note that other possible windows with
earlier start time are not fit the total cost constraint. Then we need to subtract this
window from the list of available slots and find the earliest suitable set of slots for
the second batch job on the modified list. Further, a similar operation for the third
job is performed (see Fig. 2 (b)). Alternative windows found for each job of the
batch are named W1, W2, and W3 respectively. The earliest suitable window for
the second job (taking into account alternative W1 for the first job) consists of
three slots on the cpu1, cpu2 and cpu4 processor lines with a total cost of 14 per
time unit. The earliest possible alternative for the third job is W3 window on a
time span of [450, 500]. Further, taking into account the previously found alterna-
tives, the algorithm performs the searching of next alternative sets of slots accord-
ing to the job priority. The algorithm works iteratively and makes an attempt to
find alternative windows for each batch job at each iteration. Figure 3 illustrates
the final chart of all alternatives found during search.

Fig. 3 AMP: the final chart of all alternatives found

Note that in ALP approach the restriction to the cost of individual slots would
be equal to 10 for Job 2 (as it has a restriction of total cost equals to 30 for a win-
dow allocated on three processor nodes). So, processor cpu6 with a 12 usage cost

252 V. Toporkov et al.

value is not considered during the alternative search with ALP algorithm.
However it is clear that in the presented AMP approach eight alternatives have
been found. They use the slots allocated on cpu6 line, and thus fit into the limit of
the window total cost.

5 Simulation Studies

The experiment consists in comparison of job batch scheduling results using dif-
ferent sets of suitable slots found with described above AMP and ALP ap-
proaches. The alternatives search is performed on the same set of available vacant
system slots. During the single simulated scheduling cycle the generation of an
ordered list of vacant slots and a job batch is performed. To perform a series of
experiments we found it more convenient to generate an ordered list of available
slots (see Fig. 1 (a)) with preassigned set of features instead of generating the
whole distributed system model and obtain available slots from it. SlotGenerator
and JobGenerator classes are used to form the ordered slot list and the job batch
during the experiment series. Here is the description of the input parameters and
values used during the simulation.

SlotGenerator:

• number of available system slots in the ordered list varies in [120, 150];
• length of the individual slot in [50, 300];
• computational nodes performance range is [1, 3];
• the probability that the nearby slots in the list have the same start time is 0.4;
• the time between neighbor slots in the list is in [0, 10];
• the price of the slot is randomly selected from [0.75p, 1.25p], where p= (1.7) to

the (Node Performance).

JobGenerator:

• number of jobs in the batch [3, 7];
• number of computational nodes to find is in [1, 6];
• length (representing the complexity) of the job [50, 150];
• the minimum required nodes performance [1, 2].

All job batch and slot list options are random variables that have a uniform
distribution inside the identified intervals.

Let us consider the task of a slot allocation during the job batch total execution
time minimization by the formula (1): ()sT

is
min

with the constraint *B in (3).

We assume that in (1): () ∞=ii Cf

given 0=iC .

The number of 25000 simulated scheduling cycles was carried out. Only those
experiments were taken into account when all of the batch jobs had at least one
suitable alternative of execution. When compared to the target optimization

Resource Co-allocation Algorithms for Job Batch Scheduling 253

criterion, AMP algorithm exceeds ALP on 35%. Average batch job total execution
time for alternatives found with ALP was 59.85, and for alternatives found with
AMP: 39.01 (Fig. 4 (a)). It should be noted, that average cost of batch job execu-
tion for ALP method was 313.56, while using AMP algorithm average job execu-
tion cost was 369.69, that is 15% more – see Fig. 4 (b).

(а) (b)

Fig. 4 Job batch execution time minimization: job execution time (a); job execution cost (b)

Scheduling results comparison for the first 300 experiments can be viewed in
Figure 5. It shows an observable gain of AMP method in every single experiment.
The total number of alternatives found with ALP was 258079 or an average of
7.39 for a job. At the same time the modified approach (AMP) found 1160029 al-
ternatives or an average of 34.28 for a single job.

According to the results of the experiment we can conclude that the use of
AMP minimizes the total batch execution time though the cost of the execution
increases. Relatively large number of alternatives found increases the variety of
choosing the efficient slot combination [11] using the AMP algorithm.

Fig. 5 Execution time comparison for ALP and AMP in job batch execution time minimization

254 V. Toporkov et al.

Now let us consider the task of slot allocation during the job batch total
execution cost minimization by the formula (1): ()sC

is
min with the constraint

*T in (2). We assume that in (1): () 0=ii Tf while 0=iT .

The results of 8571 single experiments in which all batch jobs were success-
fully assigned to suitable set of resources using both slot search procedures were
collected. Average batch job total execution cost for ALP algorithm was 313.09,
and for alternatives found with AMP: 343.3.

(а) (b)

Fig. 6 Job batch total execution cost minimization: job execution cost (a); job execution
time (b)

It shows the advantage in the target criterion of only 9% for ALP approach over
AMP (Fig. 6 (a)).

Average batch job total execution time for alternatives found with ALP was
61.04. Using AMP algorithm average job execution time was 51.62, that is 15%
less than using ALP (Fig. 6 (b)).

Average number of slots processed in a single experiment was 135.11. This
number coincides with the average number of slots for all 25000 experiments,
which indicates the absence of decisive influence of available slots number to the
number of successfully scheduled jobs. Average number of batch jobs in a single
scheduling cycle was 4.18. This value is smaller than average over all 25000 ex-
periments. With a large number of jobs in the batch ALP often was not able to
find alternative sets of slots for certain jobs and an experiment was not taken into
account. Average number of alternatives found with ALP is 253855 or an average
of 7.28 per job. AMP algorithm was able to found a number of 115116 alterna-
tives or an average of 34.23 per job. Recall that in previous set of experiments this
numbers were 7.39 and 34.28 alternatives respectively.

According to the experimental results it can be argued that AMP allows to find
at average more rapid alternatives and to perform jobs in a less time. But the total
cost of job execution using AMP is relatively higher.

Resource Co-allocation Algorithms for Job Batch Scheduling 255

6 Conclusions and Future Work

In this work, we address the problem of independent batch jobs scheduling in het-
erogeneous environment with inseparable resources.

The feature of the approach is searching for a number of job alternative execu-
tions and consideration of economic policy in VO and financial user requirements
on the stage of a single alternative search.

For this purpose ALP and AMP approaches for slot search and co-allocation
were proposed and considered. When compared to the target optimization criteria
during the total batch execution time minimization AMP exceeds ALP signifi-
cantly. At the same time during the total execution cost minimization the gain of
ALP method is negligible. It is worth noting, that on the same set of vacant slots
AMP in comparison with ALP finds several time more execution alternatives. In
our further work we will address the problem of slot selection for the whole job
batch at once and not for each job consecutively.

The necessity of guaranteed job execution at the required QoS causes taking in-
to account the distributed environment dynamics, namely, changes in the number
of jobs for servicing, volumes of computations, possible failures of processor
nodes, etc. [10, 14]. As a consequence, in the general case, a set of versions of
scheduling, or a strategy, is required instead of a single version [10, 14].

In future we will refine resource co-allocation algorithms in order to integrate
them with scalable co-scheduling strategies [14].

Acknowledgements. This work was partially supported by the Council on Grants of the
President of the Russian Federation for State Support of Leading Scientific Schools (SS-
7239.2010.9), the Russian Foundation for Basic Research (grant no. 09-01-00095), the
Analytical Department Target Program “The higher school scientific potential develop-
ment” (projects nos. 2.1.2/6718 and 2.1.2/13283), and by the Federal Target Program “Re-
search and scientific-pedagogical cadres of innovative Russia” (State contracts nos. P2227
and 16.740.11.0038).

References

[1] Garg, S.K., Buyya, R., Siegel, H.J.: Scheduling parallel applications on utility Grids:
time and cost trade-off management. In: Proc. of ACSC 2009, pp. 151–159. Welling-
ton, New Zealand (2009)

[2] Ailamaki, A., Dash, D., Kantere, V.: Economic aspects of cloud computing. Flash In-
formatique, Special HPC, 45–47 (October 27, 2009)

[3] Bredin, J., Kotz, D., Rus, D.: Economic markets as a means of open mobile-agent sys-
tems. In: Proc. of MAC 3, Seattle, USA, pp. 43–49 (1999)

[4] Kurowski, K., Nabrzyski, J., Oleksiak, A., et al.: Multicriteria aspects of Grid re-
source management. In: Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.) Grid Resource
Management. State of the art and future trends. Kluwer Academic Publishers, Boston
(2003)

[5] Toporkov, V.: Application-level and job-flow scheduling: An approach for achieving
quality of service in distributed computing. In: Malyshkin, V. (ed.) PaCT 2009.
LNCS, vol. 5698, pp. 350–359. Springer, Heidelberg (2009)

256 V. Toporkov et al.

[6] Toporkov,V.V.: Job and application-level scheduling in distributed computing. Ubiq-
uitous Comput. Commun. J. 4, 559–570 (2009)

[7] Buyya, R., Abramson, D., Giddy, J.: Economic models for resource management and
scheduling in grid computing. J. of Concurrency and Computation: Practice and Ex-
perience 5(14), 1507–1542 (2002)

[8] Ernemann, C., Hamscher, V., Yahyapour, R.: Economic scheduling in grid comput-
ing. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS,
vol. 2537, pp. 128–152. Springer, Heidelberg (2002)

[9] Toporkov, V.V.: Decomposition schemes for synthesis of scheduling strategies in
scalable systems. J. Comput. Syst. Sci. Int. 45, 77–88 (2006)

[10] Toporkov, V.V., Tselishchev, A.S.: Safety scheduling strategies in distributed com-
puting. Int. J. Critical Computer-Based Syst. 1-3, 41–58 (2010)

[11] Toporkova, V.V., Toporkova, A., Tselishchev, A., Yemelyanov, D., Bobchenkov, A.:
Economic models of scheduling in distributed systems. In: Walkowiak, T.,
Mazurkiewicz, J., Sugier, J., Zamojski, W. (eds.) Monographs of System Dependabil-
ity. Dependability of Networks. Oficyna Wydawnicza Politechnki Wroclawskiej,
Wroclaw (2010)

[12] Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user run-
time estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. on Parallel
and Distributed Systems 6(12), 529–543 (2001)

[13] Taha, H.: Operations research: an introduction. Macmillan, New York (1982)
[14] Toporkova, V.V., Toporkova, A., Tselishchev, A., Yemelyanov, D.: Scalable co-

scheduling strategies in distributed computing. In: Proc. of the 2010 ACS/IEEE Int.
Conf. on Computer Systems and Applications. IEEE CS Press, Los Alamitos (2010)

W. Zamojski et al. (Eds.): Dependable Computer Systems, AISC 97, pp. 257–269.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Functional Based Reliability Analysis of Web
Based Information Systems

Tomasz Walkowiak1 and Katarzyna Michalska2

1 Institute of Computer Engineering, Control and Robotics, Wroclaw University of
Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
e-mail: Tomasz.Walkowiak@pwr.wroc.pl

2 Institute of Computer Engineering, Control and Robotics, Wroclaw University of
Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
e-mail: Katarzyna.Michalska@pwr.wroc.pl

Abstract. The chapter presents a method of Web-based information system depend-
ability analysis based on functional and reliability approach. A service availability is
predicted by developed by authors a two level simulator (using Monte-Carlo based es-
timation). Taxonomy of the faults is described. Numerical experiments were per-
formed on a test case scenario that was modeled as a network of interacting tasks and
technical infrastructure required for the service realization.

1 Introduction

In a decade of extraordinary rapid development of internet terms Web-based sys-
tems or service oriented information systems, are used very often and in many
cases in the same content. Some researchers suggest [5], [7] that there are two
types of web-based systems: Web Sites and Web Application. In [5] this diversifi-
cation is based on a complexity and purpose of the Internet systems, since first
group is treated as a traditional information sites, where the other is seen as a more
complex systems (really full-blown information systems, with complex database
interactions, using the Internet as a user interface [5]). However no matter the
classification and its purpose still common property of all these services is grow-
ing threat connected with unexpected and aleatory events (software or hardware
failures) or intentional un-friendly activities (attacks) [1]. These problems are even
more stressed by internet providers, as a need of a scalable and inexpensive tech-
nology that will help to increase safety [1], reliability [1] and dependability [1] of
their systems. Type and number of faults covered by the system is playing a pri-
mary role in determining the dependability level that the system provides [4].
Considering the variety and multiplicity of fault types, calculation of system de-
pendability become a challenging task, that should be supported with a complex
model and powerful tools.

This chapter starts with a presentation of taxonomy of faults. Next, it presents a
formal model (section 3) of a Web-based system that can be used for further
dependability analysis. Proposed solution is based on the simulation – based on

258 T. Walkowiak and K. Michalska

open source simulation framework (section 4.1). The analysis model allows to
performance calculate metrics (described in next sections of 4) that allows to ana-
lyze dependability aspect of an exemplary case study (described in section 5). The
chapter is summarized in section 6.

2 Taxonomy of Faults

There are numerous sources of faults in a complex Web system. These encompass
hardware malfunctions (transient and persistent), software bugs, human mistakes,
exploitation of software vulnerabilities, malware proliferation, drainage type at-
tacks on system and its infrastructure (such as ping flooding, DDOS). We propose
a classification of the faults that is not based on its primary source, but on the
effect it has on the system.

Since our research is strongly based on a Web services we relate the effects to a
possible cause. Since different faults imply different reactions, that is why no
common pattern can be used, but some of the similarities can be specified. Re-
search on this field were done in various works, but since we focus mainly on
Web services we based our observation on article [2], that provide a classification
of the faults as a three major groups: physical, development and interaction faults.

Physical faults are those that can be detect as a failure in the network infrastruc-
ture. Infrastructure of the network i.e. links, host, network medium are one of the
crucial points of service unavailability, since when one link or one web server is
down, than whole service is down. The only why to fix the physical fault is to replace
the element or reconfigure the service, so it would work on a different element.

Next group of faults are the development faults mainly caused by human
developers, development tools and production facilities [4].

Third group are an interaction faults understood as a two categories [4]: content
faults (incorrect service, misunderstood behaviour, response error, Quality of
Service faults, Service Level Agreement faults) and timing faults (time outs,
workflow faults).

Particularly in this chapter, we focus mainly on the physical faults and
interaction faults that affect service response.

3 Web Based Information System Model

3.1 Information System Functional Model

Information systems from reliability and functional point of view are complex
technical systems [5]. Their complexity and a set of relationships between applica-
tions as much links and communication aspect makes analysis of the system a
challenging task. The correct system analysis requires to model a system as
closely reality as possible. However by increasing the system details one risks
uselessness of such analysis due to computational complexity [12]. Considering
this problem, we propose to model an information system from a business point of

Functional Based Reliability Analysis of Web Based Information Systems 259

view – that can be also named service point of view. This abstract view give as an
opportunity to calculate some dependability metrics for the system that will be
focused on service and user requirements.

Clients expect from the system that it will provide some service in infrastruc-
ture that is located on a provider side and with a suitable configuration. User ex-
pects to receive a solution for the task that was send to the system as a request.
Therefore, we can model IS as a 4-tuple [12]:

ConfTInfBSerClientBSIS ,,,. =
 (1)

 Client – finite set of clients,
 BSer – business service, a finite set of service components,
 TInf – technical infrastructure,
 Conf – information system configuration.

The client (Client) consists of set of users where each user is defined by its alloca-
tion (host), number of concurrently ruing users of a given type, set of activities (a
sequence of task calls that are realized between service components) and
inter-activity delay time.

Business service (BSer) is as a kind of business-level abstraction that imple-
ments a meaningful business process or business task, and interfaces with users or
other business services [8]. In other words, it is a set of services based on business
logic that can be used for handling a business process. BS is modeled a set of
business service components which consists of a set of tasks that are the lowest
level entities [12]. It can be seen as a request and response from one system com-
ponent to another. Each task is described by its name and task processing time
parameter (parameter that describes computational complexity the task).

Technical infrastructure (TInf) is considered to be a set of devices (host,
routers, etc.) and computer network. Network infrastructure is considered as a col-
lection of individual networks and inter-network. We have assumed negligible as-
pects of TCP/IP traffic [12]. Therefore, we model the network communication as
a random delay. Service-based system is containing mostly servers. Each of it is
described by a unique name, host performance parameter – the real value which is
a base for calculating the task processing time (described later) and a set of tech-
nical services (i.e. Tomcat, Oracle database, etc.), where as each technical service
is described by a name and a limit of tasks concurrently being executed.

System configuration (Conf) is a function that gives the assignments of each
service components to a technical service that are placed on a given hosts.

More formal description a presented model could be found in [8].

3.2 Service Response Time Model

As it was mentioned in the previous section we model the system from the user
point of view. Therefore, the model and the simulator should allow calculating the
service response time.

260 T. Walkowiak and K. Michalska

Let’s look how user requests are being executed in service based information
systems. The user initiate the communication requesting some tasks on a host, it
could require a request to another host or hosts, after the task execution a host re-
sponds to requesting server, and finally the user receives the respond. Requests
and responds of each task give a sequence of a user task execution – so called cho-
reography. Assume that the choreography for some user ci is given as a sequence
of requests [12]:

())(),...,(),()(

21 nbbbi taskctaskctaskccychoregraph =
,

(2)

where)(
ibtaskc could be a request (⇒) to

ibtask or a response from a given task

(⇐).
Some tasks are executed on a given host a request is returned to a sender. How-

ever, other tasks could require execution of other tasks. Therefore, the task could
be described by a sequence of requests, i.e. list of tasks to be called.

For example, some choreography could be written as:

11312111)(ctasktasktasktasktaskccychoregraph ⇐⇐⇒⇐⇒⇒= . (3)

Therefore, a user request processing time is equal to time of communication be-
tween hosts on which each tasks from the above choreography is placed and the
time of processing each task. Therefore, for a given example of choreography (as-
suming some allocation of tasks) the user request processing time is equal to:

() () () ()
() () () () ()011333112

2211101

,,,,

,,)(

hhdelayhhdelaytaskpthhdelayhhdelay

taskpthhdelaytaskpthhdelaycurpt

++++

++++=
. (4)

where ()ji hhdelay ,

 is the time of transmitting the requests from host hi to hj, and

pt(task) is the time of processing a requests on given host (on the host of which the
task is allocated).

The time of transmitting the requests is modeled a random variable by trun-
cated normal distribution.

A task processing time in Web systems depends on the type of task (its compu-
tational complexity), type of host (its computational performance) and number of
other tasks being executed in parallel. These numbers is changing in time during
system lifetime. Therefore, it is hard to use analytic method to calculate formula
(4). That is way simulation approach was proposed.

4 Dependability Analysis

4.1 Overview of the Approach

The presented system model was developed to facilitate the dependability analysis
of the information systems. More precisely, it is used to determine if the required

Functional Based Reliability Analysis of Web Based Information Systems 261

system resources (hosts performance and reliability parameters) for a given
service choreography and configuration (understood as allocation of each service
component to a technical service that are placed on a given hosts) that ensure
proper operation at a required level of probability.

The dependability analysis is performed using a Monte Carlo [6] simulator,
custom designed for this purpose at Wroclaw University of Technology. It is
based on the publicly available SSF simulation engine that provides all the re-
quired simulation primitives and frameworks, as well as a convenient modeling
language DML (SSF [10]) for inputting all the system model parameters. By re-
peating the simulator runs multiple times using the same model parameters, we
obtain several independent realizations of the same process (the results differ,
since the system model is not deterministic). These are used to build the probabil-
istic distribution of the results, especially the average measures.

The key extension and feature, during simulation process is the calculation of
the task processing time. It has to take into account the consumption of computa-
tional resources (mainly host processing power). The calculation of task process-
ing time is based on simulating the time-division among each tasks executed at the
same time. A detailed description of this approach is outside the scope of this
presentation. It can be found in the papers: [12].

Avizienis, Laprie and Randell introduced the idea of service dependability to
provide a uniform approach to analyzing all aspects of providing a reliable ser-
vice. They described [1] basic set of dependability attributes: availability, reliabil-
ity, safety, confidentiality, integrity and maintainability. This is a base of defining
different dependability metrics used in dependability analysis of computer systems
and networks.

As it was mentioned, we focused on functional based metrics. Therefore, we
consider dependability of an information system as a property of the system to re-
liable process user tasks. In other words the tasks have to perform not only with-
out faults but also with demanded performance parameters.

4.2 Availability Metric

The system availability is usually defined as the probability that the system is op-
erational (provides correct responses) at a specific time. It is shown that availabil-
ity is asymptotically equal to the ratio of total system uptime tup to the operation
time t, i.e.

t

t
A up

t ∞→
= lim . (5)

Assuming a uniform rate of requests, the asymptotic assessment of availability
may be further transformed to average over simulations:

 ⎥⎦
⎤

⎢⎣
⎡=

N

N
EA OK , (6)

where NOK is the number of requests correctly handled by the system exposed to a
stream of N requests.

262 T. Walkowiak and K. Michalska

4.3 Demanded Performance Parameters

The definition (7) raises the question what does it mean not correctly handled re-
quests. There could be different reasons of not correctly handled requests in real
serviced based information system. We will omit here the hardware and software
failures and there results since they will be discussed in the next section. Here we
will focus only on functional aspects.

The performance of any information system has a big influence on the business
service quality. It has been shown [11] that if user will not receive answer from
the system in less than 10 seconds he/she will probably resign from active interac-
tion with the system and will be distracted by other ones. Therefore, all requests
answered outside this limit time are recognize as not correctly answered.

Moreover, there are two more sources of not correct handled requests coming
from the system itself that are presented in our model of information systems:
timeouts and services concurrent task limits. The communication protocols
(HTTP) as well as Web services (for example JSP) have built-in timeouts. If any
request is not finished within a given time limit (in most cases it could be set by
configuration parameters) is assumed to be failed. The other reason of not cor-
rectly handled requests is a limit to a number of tasks handled by a technical ser-
vice (i.e. Tomcat) at the same time. It could be also set by configuration parame-
ters of any technical service. Since most of the user tasks consist of a sequence of
requests (refer to section 3), if one from the sequence fails the whole user task is
assumed to be not correctly handled.

4.4 Reliability Model

Reliability is mostly understood as the ability of a system to perform its required
functions for a specified period of time [2]. It’s is mostly defined as a probability
that a system will perform its function during a given period of time. For stationary
systems one could calculate stationary reliability as the asymptotic value of reliabil-
ity. The typical method for reliability analysis is to define system operational states.
Next, calculate the probability of the system being in a given state, assess the reli-
ability states as operational or failed and calculate the reliability as expected value
of the system being operational. The main problem to use such approach for Web-
based systems is to assign some of operational states to operational or fail status.
Assume, that we have a system with load balancers [13] and one of load balancing
service is not operating, the whole system will still be in operating system; however
its performance will drop. To overcome such problems the availability defined by
(4) is the most commonly used reliability measure of Web based systems, which
could be calculated using proposed here simulation approach.

The previous section introduced not correctly handled requests as a result of sys-
tem functionality, i.e. result of time-outs and maximum number of requests. We
propose to extend it failures to represents information system faults which occur in
a random way. Of course, there are numerous sources of faults in complex informa-
tion systems as presented in section 2. We propose to model all of them from the

Functional Based Reliability Analysis of Web Based Information Systems 263

point of view of a resulting failure. We assume that system failures could be
modeled as a set of two kinds of failures: element failure and downgrade failure.

Each element failure is assigned to one of elements of technical infrastructure:
a host, a technical service or a network connection. If a given element is failed
tasks allocated on a given element (host or technical service) are failed. As a result
user requests that realize a chorography that includes a given “failed” task are not
being correctly answered. In case of connection failures the algorithm is similar. If
a connection between two hosts is failed the choreography that requires this con-
nection is not correctly handled.

Each element failure is modeled as an independent working-failure stochastic
process, i.e.:

 >=< λμ,,eilureelelemntfa , (7)

where

 e – is the system element on which the failure will happen, there could be sev-
eral failures assigned to one element;

μ – is mean value of truncated normal distribution (with standard deviation

equal to 0.1 of the mean value) which models the repair time, i.e. the time
after which the failure will be repaired and the element will come back to
normal operation;

λ - is the intensity of exponential distribution, which models the time between
failures.

The downgrade failure models the situation when the host can operate, but it can-
not provide the full computational resources, causing some services to fail or in-
creasing their response time above the acceptable limits. This kind of failures
could cause the failure of some task requests due to timeout parameter introduced
in the previous section.

In real systems the downgrade failures are caused by the undirected attacks
such as virus or worms proliferation or directed attacks that usually are based on
draining their limited resources, e. g. denial-of-service attacks.

 Each downgrade failure is assigned to a given host (h) and similarly to element
failure is modeled as an independent working-failure stochastic process (described
by μ and λ as it was mentioned above):

 >=< λμ,,, pdhailuredowngradef , (8)

where

pd – is a numerical value from (0,1) range; it downgrades the host performance,
so enlarge the task processing time.

4.5 Two Level Simulations

The reliability model presented above could be a part of simulation algorithm men-
tioned in section 4.1. Failures could be added to a functional simulator. They are

264 T. Walkowiak and K. Michalska

just a new kind of events occurring in a probabilistic way. A usage of Monte-Carlo
approach (i.e. a large number of simulation repetition) the final metric (for example
availability from equation) could be calculated. We have presented such approach
in [9]. However, it has one big drawback a huge computation complexity. The
modeled failures occurs so rare (several times per year for one system element)
compared to a task execution time (a hundredth of second) so to achieve numerical
stable results of Monte-Carlo based estimation of availability metric one has to
simulate almost a trillion (10e+12) user requests (for 100 requests per second).

We propose to overcome this problem by introducing a two level simulation: re-
liability and functional one. The approach is based on the methodology of system
reliability analysis by Markov processes [2], which encompass following stages:

− set of reliability states definition;

− states-transition matrix definition;

− proper system of linear equations construction.

Markov based methodology supports satisfactory results if the system isn’t very
complicated and if one uses exponential distribution for the state transition times.
Both requirements are not fulfilled in the analysed case. Therefore, we have had to
modify it.

First, we define the system operational states. For, example for failures of two
elements it will give 4 states (as presented in Fig. 1.): S0 – both element working,
S1 the first failed, S2 – second failed, S2 – both failed.

Fig. 1 The reliability states for a system with two failures

Next, we calculate the probability of a system being in a given state ()(iSP)

for a stationary state. We use a simulation tool since the normal distribution used
for modeling the repair time is not allowed in Markov approach. A SSF tool [10]
was also used to develop this reliability level simulator.

Functional Based Reliability Analysis of Web Based Information Systems 265

For each operational state the availability parameter ()(iSA) is estimated us-

ing simulator tool mentioned in section 4.1. The simulation is done with existence
of failure or failures in a system.

Finally, the availability could be calculated as an average value of availabilities
for each operational state:

 ∑
=

⋅=
N

i
ii SPSAA

1

)()(. (9)

The main problem is a number of states. For n-independent elements, which could
be failed, it gives 2n states. So for the system described in the next section, that in-
cludes 6 hosts and we modeled 6 element failures and 6 downgrade failures it
gives 4096 states. Simulations of system in each state are very time consuming
tasks. Therefore, we propose to skip the least probable states. It could be done by
sorting all states by its probability starting with the most probable, and then by
selecting N - states that represent more than 99.99% the time:

 ∑
=

<
N

i
iSP

1

)(9999.0 . (10)

5 Experiments and Results

5.1 Testbed

For the case study analysis we propose an exemplar service system illustrated in
Fig. 2. The system is composed of three networks: one is a client network, other
service provider networks (secured by a Firewall). For service realization system
contains of a few servers i.e.: WebServer, Flightdatabase, ReservationServer,
PaymentServerController, BackupWebServer.

Fig. 2 Testbed system

266 T. Walkowiak and K. Michalska

System realized service connected with booking flight ticket (Fig. 3.). First of
all user can select departure. In results flight collection is returned. If user want to
make a reservation for a flight he/she chose, payment order is filled and a flight
collection is updated (availability of the flight table is changed).

Fig. 3 UML diagram of the testbed system

5.2 Reliability Parameters

The timeouts for all technical services where set to 10 s, whereas a limit to a num-
ber of tasks was set to 200. In simulation experiments performed on presented
testbed we consider two types of failures for each host: element failure and down-
grade failure. The first one represents the results of host or system operation fail-
ure. Since, today’s computer devices to not failing very often, the intensity was set
to one year per year. The second types of faults (with 0.98 downgrade parameter)
are modeling any virus or malware occurrence. They are more probable than a
host failure, especially for systems that are exposed to attacks. Web-based systems
are definitely in this group. Therefore, in our study mean intensity of virus occur-
rence is set to 2 per one year. The mean time of host fault repair is equal to 6 hours
whereas for viruses 3 hours. Threats like viruses occupy large number of a central
processor unit (CPU). Therefore, in case of a virus occurrence only 2% of host
CPU is available for user requests executions.

Functional Based Reliability Analysis of Web Based Information Systems 267

5.3 Results

The reliability simulation uses 51 states among 4096 available for a testbed system
w (6 element failures: 5 servers and a firewall; and 6 downgrade failures).

The achieved results, the availability for different number of clients per second
is presented in Fig. 4. It could be noticed that the system has 0.99 availability for
input load equal to 10 and less users per second, for larger number it drops ap-
proaching less than 0.01 for more than 1000 users per second.

Fig. 4 Availability for a testbed system in a function of number of users per second

Fig. 5 Availability for a testbed system with 10 users per second in a function of mean repair
time

268 T. Walkowiak and K. Michalska

The Fig. 5 presents the availability for a testbed system with 10 users per sec-
ond in a function of mean repair time. The downgrade failure mean repair time
was equal to a half of the mean repair time for hosts (element failure) following
idea presented in section 5.2. The results could be a base for setting an agreement
with external service company for response time to achieve needed level of avail-
ability. The mean repair time from our model is equal to a response time plus time
needed for a repair.

6 Conclusion

In this chapter we have presented a functional and reliability analysis of Web-
based information systems based on modelling and analysis approach [3].

Developed simulation software allows to analyze the availability (understood as
the ability of a system to perform its required functions for a specified period of
time) of a given configuration of Web-based information system in a function of
functional (like users number) and reliability (like mean repair time) parameters.
Using the tool Web-based system can be easily verified, what makes the solution a
powerful tool for increasing system dependability and by that increasing user sat-
isfaction. Considering complexity of the Web-based information system, we keep
in mind that the model should cover more and more realistic parameters, to im-
prove the analysis even more precisely. Researches in this area are still in pre-
press, based on workload model and extended faults models.

In the future, we plan to extend our solution with a set of new dependability
metrics, based on work that is currently ongoing. Next, we would like to analyze
system with a load balancing model to incorporate presented here fault model. It
will allow analyzing large Web-based information systems.

Acknowledgment. The presented work was funded by the Polish National Science Centre
under contract no. 4759/B/TO2/2011/40.

References

[1] Avizienis, A., Laprie, J., Randell, B.: Fundamental Concepts of Dependability. In: 3rd
Information Survivability Workshop, pp. 7–12 (2000)

[2] Barlow, R., Proschan, F.: Mathematical Theory of Reliability. Society for Industrial
and Applied Mathematics, Philadelphia (1996)

[3] Birta, L., Arbez, G.: Modelling and Simulation: Exploring Dynamic System Behav-
iour. Springer, London (2007)

[4] Chan, K.S., Bishop, J., Steyn, J., Baresi, L., Guinea, S.: A Fault Taxonomy for Web
Service Composition. In: Di Nitto, E., Ripeanu, M. (eds.) ICSOC 2007. LNCS,
vol. 4907, pp. 363–375. Springer, Heidelberg (2009)

[5] Conallen, J.: Building Web Applications with UML. Addison Wesley Longman Pub-
lishing Co, Amsterdam (2000)

[6] Fishman, G.: Monte Carlo: Concepts, Algorithms, and Applications. Springer,
Heidelberg (1996)

Functional Based Reliability Analysis of Web Based Information Systems 269

[7] Gold, N., Knight, C., Mohan, A., Munro, M.: Understanding service-oriented soft-
ware. IEEE Software 21, 71–77 (2004)

[8] Michalska, K., Walkowiak, T.: Simulation approach to performance analysis informa-
tion systems with load balancer. Information systems architecture and technology: ad-
vances in Web-Age Information Systems, Oficyna Wydawnicza Politechniki Wro-
clawskiej, 269–278 (2009)

[9] Michalska, K., Walkowiak, T.: Fault modelling in service-based oriented information
systems. Information systems architecture and technology: new developments in
Web-Age Information, Oficyna Wydawnicza Politechniki Wroclawskiej, 89–99
(2010)

[10] Nicol, D., Liu, J., Liljenstam, M., Guanhua, Y.: Simulation of large scale networks us-
ing SSF. In: Proceedings of the 2003 Winter Simulation Conference, vol. 1,
pp. 650–657 (2003)

[11] Nielsen, J.: Usability Engineering. Published by Morgan Kaufmann, San Francisco
(1994)

[12] Walkowiak, T.: Information systems performance analysis using task-level simulator.
In: DepCoS - RELCOMEX 2009, pp. 218–225. IEEE Computer Society Press, Los
Alamitos (2009)

[13] Walkowiak, T., Michalska, K.: Performance analysis of service-based information
system with load balancer - simulation approach. Dependability of networks, Oficyna
Wydawnicza Politechniki Wroclawskiej, 155–168 (2010)

W. Zamojski et al. (Eds.): Dependable Computer Systems, AISC 97, pp. 271–283.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Human Resource Influence on Dependability
of Discrete Transportation Systems

Tomasz Walkowiak1 and Jacek Mazurkiewicz2

1 Institute of Computer Engineering, Control and Robotics,
Wroclaw University of Technology, ul. Wybrzeze Wyspianskiego 27,
50-370 Wroclaw, Poland
e-mail: Tomasz.Walkowiak@pwr.wroc.pl

2 Institute of Computer Engineering, Control and Robotics,
Wroclaw University of Technology, ul. Wybrzeze Wyspianskiego 27,
50-370 Wroclaw, Poland
e-mail: Jacek.Mazurkiewicz@pwr.wroc.pl

Abstract. The chapter is focused on the human resource influence on dependabil-
ity of discrete transportation systems (DTS). The human resource means the driver
of the vehicle. We add him/her as a new element of the system description. The
dependability means the combination of the reliability and functional parameters
of the DTS. This way the analysis of the DTS behavior seems to be more sophisti-
cated. The unified containers transported by trucks with the set of time-type as-
sumptions are the essence of the system discussed. The proposed method is based
on modeling and simulating of the system behavior. The income of containers is
modeled by a stochastic process. Each container has a source and destination ad-
dress. The central node is the destination address for all containers generated in
the ordinary nodes. We also propose the heuristic management approach as well
as the functional metric for DTS and we test the example system based on the real
data.

1 Introduction

The transportation systems are characterized by a very complex structure. The per-
formance of the system can be impaired by various types of faults related to the
transport vehicles, communication infrastructure or even by traffic congestion or
human resource [1]. It is hard for an administrator or an owner to understand the
system behaviour. To overcome this problem we propose a functional approach.
The transport system is analysed from the functional point of view, focusing on
business service realized by a system [16]. The analysis is following a classical
[4]: modelling and simulation approach. It allows to calculate different system
measures which could be a base for decisions related to administration of the
transport systems. The metric are calculated using Monte Carlo techniques [7]. No
restriction on the system structure and on a kind of distribution is the main advan-
tage of the method. Such approach allows to forget about the classical reliability
analysis based on Markov or Semi-Markov processes [2] - idealised and hard for

272 T. Walkowiak and J. Mazurkiewicz

reconciliation with practice. The chapter is based on the transportation system of
the Polish Post regional centre of mail distribution (section 2). The developed dis-
crete transport system model is presented in section 3. The main service given by
the post system is the delivery of mails. From the client point of view the quality
of the system could be measured by the time of transporting the mail from the
source to the destination. A driver is a new element of the system description. We
pointed the set of states to characterise the actual driver position including formal
– law–origin aspects: number of hours he or she can work daily for example. We
offer the heuristic approach to system management (section 4). In our opinion it
seems to be the most adequate to the level of detail discussed in the described
work. The quality of the analysed system is measured by the availability defined
as an ability to realize the transportation task at a required time (described in
section 5). Next (section 6), we give an example of using presented model for the
analysis of the Dolny Slask Polish Post regional transportation system.

2 Polish Post Transportation System

The analysed transport system is a simplified case of the Polish Post. The main
aim of the system is to delivery of mail. The system consists of a set of nodes
placed in different geographical locations. Two kinds of nodes could be distin-
guished: central nodes (CN) and ordinary nodes (ON). There are bidirectional
routes between nodes. Mails are distributed among ordinary nodes by trucks,
whereas between central nodes by trucks, railway or by plain. The mail distribu-
tion could be understood by tracing the delivery of some mail from point A to
point B. At first the mail is transported to the nearest to A ordinary node. Different
mails are collected in ordinary nodes, packed in larger units called containers and
then transported by trucks scheduled according to some time-table to the nearest
central node. In the central node containers are repacked and delivered to appro-
priate (according to delivery address of each mail) central node. In the Polish Post
there are 14 central nodes and more than 300 ordinary nodes. There are more than
one million mails going through one central node within 24 hours. It gives a very
large system to be modelled and simulated. Therefore, we have decided to model
only a part of the Polish Post transport system – one central node with a set of or-
dinary nodes. Essential in any system modelling and simulation is to define the
level of details of modelled system. Increasing the details causes the simulation
becoming useless due to the computational complexity and a large number of re-
quired parameter values to be given. On the other hand a high level of modelling
could not allow to record required data for system measure calculation. Therefore,
a crucial think in the definition of the system level details is to know what kind of
measures will be calculated by the simulator. Since the business service given by
the post system is the delivery of mails on time, we have decided to measure to
calculate the time of transporting mails within the system. Since the number of
mails presented in the modelled system is very large and all mails are transported

Human Resource Influence on Dependability of Discrete Transportation Systems 273

in larger amounts containers, we have proposed to use containers as the smallest
observable element of the system. Therefore, the main observable value calculated
by the simulator will be the time of container transporting from the source to the
destination node. The income of mails to the system, or rather containers of mails
as it was discussed above, is modelled by a stochastic process. Each container has
a source and destination address. The central node is the destination address for all
containers generated in the ordinary nodes. Where containers addressed to any
ordinary nodes are generated in the central node. The generation of containers is
described by some random process. In case of central node, there are separate
processes for each ordinary node. Whereas, for ordinary nodes there is one proc-
ess, since commodities are transported from ordinary nodes to the central node or
in the opposite direction. The containers are transported by vehicles. Each vehicle
has a given capacity – maximum number of containers it can haul. Central node is
a base place for all vehicles. They start from the central node and the central node
is the destination of their travel. The vehicle hauling a commodity is always fully
loaded or taking the last part of the commodity if it is less than its capacity. Vehi-
cles operate according to the time-table. The time-table consists of a set of routes
(sequence of nodes starting and ending in the central node, times of leaving each
node in the route and the recommended size of a vehicle). The number of used ve-
hicle and the capacity of vehicles does not depend on temporary situation de-
scribed by number of transportation tasks or by the task amount for example. It
means that it is possible to realize the route by completely empty vehicle or the
vehicle cannot load the available amount of commodity (the vehicle is too small).
Time-table is a fixed element of the system in observable time horizon, but it is
possible to use different time-tables for different seasons or months of the year.
Each day a given time-table is realized, it means that at a time given by the time
table a vehicle, selected from vehicles available in the central node, starts from
central node and is loaded with containers addressed to each ordinary nodes in-
cluded in a given route. This is done in a proportional way. When a vehicle
approaches the ordinary node it is waiting in an input queue if there is any other
vehicle being loaded/unload at the same time. There is only one handling point in
each ordinary node. The time of loading/unloading vehicle is described by a ran-
dom distribution. The containers addressed to given node are unloaded and empty
space in the vehicle is filled by containers addressed to a central node. Next, the
vehicle waits till the time of leaving the node (set in the time-table) is left and
starts its journey to the next node. The operation is repeated in each node on the
route and finally the vehicle is approaching the central node when it is fully
unloaded and after it is available for the next route. The process of vehicle opera-
tion could be stopped at any moment due to a failure (described by a random
process). After the failure, the vehicle waits for a maintenance crew (if there are
no available due to repairing other vehicles), is being repaired (random time) and
after it continues its journey. The vehicle hauling a commodity is always fully
loaded or taking the last part of the commodity if it is less than its capacity.

274 T. Walkowiak and J. Mazurkiewicz

3 DTS Formal Model

3.1 Overview

The described in the previous section regional part of the Polish Post transporta-
tion system with one central node and several ordinary nodes was a base for a
definition of a formal model of a discrete transport system (DTS) [17]. Generally
speaking users of the transport system are generating tasks which are being real-
ized by the system. The task to be realized requires some services presented in the
system. A realization of the system service needs a defined set of technical and
human resources. Moreover, the operating of vehicles transporting mails between
system nodes is done according to some rules – some management system.
Therefore, we can model discrete transport system as a 4-tuple:

MSTIBSCMDTS ,,,=

 (1)

where: CM – client model, BS – business service,
TI – technical and human infrastructure, MS – management system.

3.2 Technical and Human Infrastructure

During modelling of technical infrastructure we have to take into consideration
functional and reliability aspects of the post transport system. Therefore, the
technical infrastructure of DTS could be described by four elements:

DMMMVNoTI ,,,=

 (2)

where: No – set of nodes, V – set of vehicles, MM – maintenance model,
DM – driver model.

Set of nodes (No) consists of single central node (CN), a given number of ordinary
nodes (ONi). The distance between each two nodes is defined by the function:

+→× RNoNodistance : (3)

Each node has one functional parameter the mean (modelled by normal distribu-
tion) time of loading a vehicle:

+→ RNoloading : (4)

Moreover, the central node (CN) has additional functional parameter: number of
service points (in each ordinary node there is only one service point):

+→ NCNntsservicepoi : (5)

Human Resource Influence on Dependability of Discrete Transportation Systems 275

Each vehicle is described by following functional and reliability parameters:

• mean speed of a journey

+→ RVmeanspeed : , (6)

• capacity – number of containers which can be loaded

+→ RVcapacity : , (7)

• mean time to failure

+→ RVMTTF : , (8)

a time when failure occurs is given by exponential distribution with mean
equal to a value of MTTF function,

• mean repair time

+→ RVMRT : . (9)

The traffic is modelled by a random value of vehicle speed and therefore the time
of vehicle (v) going from one node (n1) to the other (n2) is given by a formula

()
() ()()vmeanspeedvmeanspeedNormal

nndistance
nnvtime

⋅
=

1.0,

,
),,(21

21
. (10)

where Normal denotes a random value with the Gaussian distribution.
Maintains model (MM) consists of a set of maintenance crews which are identi-

cal and unrecognized. The crews are not combined to any node, are not combined
to any route, they operate in the whole system and are described only by the num-
ber of them. The time when a vehicle is repaired is equal to the time of waiting for
a free maintains crew (if all crews involved into maintenance procedures) and the
time of a vehicle repair which is a random value with the Gaussian distribution
(() ()()vMRTvMRTNormal ⋅1.0, . The human infrastructure is composed by the

set of drivers. So the description of this part of system infrastructure requires the
analysis of the drivers’ state and the algorithms, which model the rules of their
work. Each driver could be in one of following states (sd):

• rest (not at work),
• unavailable (illness, vacation, etc.),
• available (at work – ready to start driving),
• break (during driving),
• driving.

The number of driver working hours is limited by the labour law. For analysed
Post Transportation System the daily limit for each driver equals to 8 hours and a
single driver operates with one truck. It gives a simple algorithm:

276 T. Walkowiak and J. Mazurkiewicz

• if wh > limit then state = “rest” & wh = 0,
• where wh - working hours

limit = 8 hours

Drivers in Polish Post works in two shifts, morning or afternoon one. So twice a
day a driver state and shift type is analysed:

• at 6am for each driver:
o if shift == morning & sd == rest then sd = available,

• at 1pm for each driver:
o if shift == afternoon & sd == rest then sd = available,

The next problem ought to be modelled is the driver’s illness state. We propose
the following approach:

• for every driver at 4am:
o if sd == rest and rand() < di then during x days (according to a

given distribution) the driver is in sd = unavailable,
where di – driver’s illness parameter.

Moreover we propose to categorise the driver’s illnesses as follows:

• short sick: 1 to 3 days,
• typical illness: 7 to 10 days,
• long-term illness: 10 to 300 days.

We record the daily story of the driver. The algorithm to fix the driver to the vehi-
cle is the last part of the driver model:

• if no driver – the vehicle does not start,
• driver can be chosen if: sd = available

and wh + estimated time of journey < limit * 1.1,
• the driver is chosen randomly or by least value approach:

abs(limit – wh - estimated time of journey).

3.3 Business Service

Business service (BS) is a set of services based on business logic, that can be loaded
and repeatedly used for concrete business handling process. Business service can be
seen as a set of service components and tasks, that are used to provide service in ac-
cordance with business logic for this process. Each service component in DTS con-
sists of a task of delivering a container from a source node to the destination one.

3.4 Client Model

The service realised by the clients of the transport system is sending mails from a
source node to a destination one. Client model consist of a set of clients (C). Each
client is allocated in one of nodes of the transport system:

Human Resource Influence on Dependability of Discrete Transportation Systems 277

NoCallocation →: . (11)

A client allocated in an ordinary node is generating containers (since, we have
decided to monitor containers not separate mails during simulation) according to the
Poisson process with destination address set to ordinary nodes. In the central node,
there is a set of clients, one for each ordinary node. Each client generates containers
by a separate Poisson process and is described by intensity of container generation:

+→ RCintensity : . (12)

The central node is the destination address for all containers generated in ordinary
nodes.

3.5 Management Model

The main goal of management model is to control the movement of trucks. As it
was mentioned in section 2, the Polish Post transportation system is ruled by time-
tables. However, in [19] we proposed a heuristic management approach to replace
the time-table based solution. The substitution is necessary for automatic analysis
of model system metrics in a function of system parameters. Changes in system
parameters like a number of trucks or a number of drivers require tuning of the
time-table. This is hard to be realized in automatic way and is very time consum-
ing. Moreover, we have shown in [21] that heuristic algorithm similar to those
presented here is more effective in a usage of the vehicles (requires less vehicles
then time-table approach to achieve availability of the system on a given level)
and to allows to react for the critical situations which can occur during the normal
system work. The decisions (send a truck to a given destination node) are taken in
moments when a container arrives to the central node. The truck is send to a
trip if:

• the number of containers waiting in for delivery in the central node of the
same destination address as that just arrived is larger than a given
number,

• there is at least one available vehicle,
• the simulated time is between 6 am and 22 pm minus the average time of

going to and returning from the destination node.

The truck is send to a node defined by destination address of just arrived con-
tainer. If there is more than one vehicle available in the central node, the vehicle
with size that a fits the best to the number of available containers is selected, i.e.
the largest vehicle that could be fully loaded. If there are several trucks with the
same capacity available the selection is done randomly. On the other hand we ob-
serve in the same way the vehicles available in the ordinary nodes. The only dif-
ference is the greater level of threshold to initialise the vehicle journey. The

278 T. Walkowiak and J. Mazurkiewicz

restriction for the time of truck scheduling (the last point in the above algorithm)
are set to model the fact that drivers are working on two 8 hours shifts.

4 Availability Metric

Dependability analysis is based on the assessment of some performance measures.
We propose to use on of dependability metric: availability (readiness for correct
service), for DTS analysis. In general, availability is defined as the probability that
the system is operational (provides correct responses to the client requests) at a
specific time. In stationary conditions, most interesting from the practical point of
view, the function is time invariant. Thus, the availability is characterized by a
constant coefficient.

In the previous sections we have stated that the main goal of the system is to
deliver the mail on-time. Therefore, we define the operational state of the DTS, as
a state when there are less than a defined limit delayed containers in the system.
To define the delayed container, let us, introduce the following notation:

• T – a time measured from the moment when the container was introduced
to the system to the moment when the container was transferred to the
destination (random value),

• Tg – a guaranteed time of delivery, if exceeded the container is delayed.

A very often used estimation of the availability, which uses its asymptotic prop-
erty and is based on an assumption of a uniform rate of client requests is the ac-
ceptance ratio. For DTS, we have defined it [16] as the ratio of on-time containers
(containers for which T < Tg) to all containers within a given time of observation
(0, τ). Within the time period a given number of containers are delivered
(Ndelivered(τ)), a part of them or all delivered on time (Nontime(τ)), but at the end of
analysed period time there could be some containers not yet delivered (waiting in
the source node or being transported) (Ninsystem(τ)) and all or part of them being not
late yet (Nontimeinsystem(τ)). Taking into consideration introduced symbols the avail-
ability could be calculated as the expected value (Monte-Carlo approach) of ratio
of on-time containers to all containers:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

=
)()(

)()(

ττ
ττ

τ
insystemdelivered

stemontimeinsyontime

NN

NN
EAR . (13)

5 Case Study Analysis

5.1 Exemplar DTS

We propose for the case study analysis an exemplar DTS based on Polish Post
regional centre in Wroclaw. We have modelled a system consisting of one central

Human Resource Influence on Dependability of Discrete Transportation Systems 279

node (Wroclaw regional centre) and twenty two other nodes - cities where there
are local post distribution points in Dolny Slask Province [18]. We have fixed the
most important reliability and functional parameters of the key elements of the
system. The length of roads were set according to real road distances between
cities used in the analysed case study. The intensity of generation of containers for
all destinations were set to 4.16 per hour in each direction giving in average 4400
containers to be transported each day. The vehicles speed was modelled by Gaus-
sian distribution with 50 km/h of mean value and 5 km/h of standard deviation.
The average loading time was equal to 5 minutes. There was single type of vehicle
with capacity of 10 containers. The MTF of each vehicle was set to 20000. The
average repair time was set to 5h (Gaussian distribution). We also have tried to
model the drivers availability parameters. We have fulfilled this challenge by
using the following probability of a given type of sickness:

• short sick: 0.003,
• typical illness: 0.001,
• long-term illness: 0.00025.

We hope. that the proposed approach can properly model the real problems with a
driver availability at transportation enterprises.

70
75

80
85

90
95

100
105

110

35

40

45

50

55
0

0.2

0.4

0.6

0.8

1

Number of driversNumber of trucks

A
cc

ep
ta

nc
e

ra
tio

Fig. 1 Acceptance ratio in a function of number of trucks and number of drivers for tested
DTS

5.2 Results and Discussion

We have simulated the system for tasks defined above using 70 to 100 drivers and
38 to 54 vehicles. The results, the acceptance ratio, are presented in Fig. 1. We can

280 T. Walkowiak and J. Mazurkiewicz

easily observe the kind of the pareto set: the bordered numbers of drivers and
vehicles which guarantee the acceptance ration of the system at acceptable level. It
is a quite natural that the owner of DTS is looking for the metric equal to almost
one. This way he or she can say that the tasks potentially served by system can be
done with no problems. On the other hand the owner can predict the critical situa-
tions: he or she can perfectly know if – for example – catastrophic failures of the
vehicles start to generate the real problem for the DTS. The same kind of analysis
can be done for a pandemic illness touching the drivers. The results generated for
our exemplar DTS show that we need not less than 85 drivers and not less than 45
vehicles to operate in the effective way. The second test-bed was focused on the
importance of the human-factor. We fixed the number of drivers and we tried to
improve the acceptance ratio only by the number of vehicles. The results (Fig. 2)
show that the small number of drivers cannot be substituted by the larger number
of vehicles. It is easy to notice that 78 drivers is to small number to guarantee the
acceptance ration at the level of 1. One more driver makes the situation better, but
the number of necessary vehicles is rather large. The best solution is given for 82
drivers. The results of this kind of analysis allow to make the strategic decisions –
if the next trucks ought to be introduced to the transportation fleet for example.
The last set of the experiments was related to the probability density function of
acceptance ratio. Since acceptance ratio is an average of a ratio of on-time con-
tainers to all containers (as defined in [13]) one could want to see this ratio distri-
bution. It is presented in Fig. 3 for 46 trucks and four different values of number
of drivers: 75, 78, 79 and 81 respectively.

38 40 42 44 46 48 50 52 54
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of trucks

A
cc

ep
ta

nc
e

ra
tio

78 - drivers

79 - drivers

82 - drivers

Fig. 2 Acceptance ratio in a function of number of trucks for fixed number of drivers

Human Resource Influence on Dependability of Discrete Transportation Systems 281

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

Acceptance ratio

P
ro

ba
bi

lit
y

de
ns

ity

Fig. 3 Probability density function of acceptance ratio for 46 trucks and 75, 78,79 and 81
drivers

6 Conclusion

We have presented a formal model of discrete transport system (DTS). The DTS
model is based on Polish Post regional transport system. The proposed approach
allows to perform dependability analysis of the DTS, for example:

• determine what will cause a ”local” change in the system,
• make experiments in case of increasing number of containers per day in-

coming to system,
• identify weak point of the system by comparing few its configuration,
• better understand how the system behaves,
• foresee changes caused by human resource influence.

Based on the results of simulation it is possible to create different metrics to ana-
lyse the system in case of reliability, functional and economic case. The accep-
tance ratio of the system was introduced - defined in a functional way as an aver-
age of a ratio of on-time containers to all containers.

The metric could be analysed as a function of different essential functional and
reliability parameters of DTS. Also the system could be analyse in case of some
critical situation (like for example a few day tie-up [16]). The chapter includes
some exemplar systems, based on real Polish Post Wroclaw area, and calculated
metric.

The developed DTS simulator [17] makes it a practical tool for defining an
organization of vehicle maintenance and transport system logistics.

78 79

81

75

282 T. Walkowiak and J. Mazurkiewicz

Acknowledgment. Work reported in this paper was sponsored by a grant No. N N509
496238, (years: 2010-2013) from the Polish Ministry of Science and Higher Education.

References

[1] Barcelo, J., Codina, E., Casas, J., Ferrer, J.L., Garcia, D.: Microscopic Traffic Simula-
tion: a Tool for the Design, Analysis And Evaluation Of Intelligent Transport Sys-
tems. Journal of Intelligent and Robotic Systems: Theory and Applications 41,
173–203 (2005)

[2] Barlow, R., Proschan, F.: Mathematical Theory of Reliability. Society for Industrial
and Applied Mathematics, Philadelphia (1996)

[3] Ben-Akiva, M., Cuneo, D., Hasan, M., Jha, M., Yang, Q.: Evaluation of Freeway
Control Using a Microscopic Simulation Laboratory. Transportation Research, Part C
(Emerging Technologies) 11C, 29–50 (2003)

[4] Birta, L., Arbez, G.: Modelling and Simulation: Exploring Dynamic System Behav-
iour. Springer, Heidelberg (2007)

[5] Burt, C.N., Caccetta, L.: Match Factor for Heterogeneous Truck and Loader Fleets.
International Journal of Mining, Reclamation and Environment 21, 262–270 (2007)

[6] Duinkerken, M.B., Dekker, R., Kurstjens, S.T.G.L., Ottjes, J.A., Dellaert, N.P.: Com-
paring Transportation Systems for Inter-Terminal Transport at the Maasvlakte Con-
tainer Terminals. OR Spectrum 28, 469–493 (2006)

[7] Fishman, G.: Monte Carlo: Concepts, Algorithms, and Applications. Springer,
Heidelberg (1996)

[8] Gartner, N., Messer, C.J., Rathi, A.K.: Traffic Flow Theory and Characteristics. In:
Board, T.R. (ed.) University of Texas at Austin, Texas (1998)

[9] Gold, N., Knight, C., Mohan, A., Munro, M.: Understanding service-oriented soft-
ware. IEEE Software 21, 71–77 (2004)

[10] Ioannou, P.A.: Intelligent Freight Transportation. Taylor and Francis Group, Carolina
(2008)

[11] Krzyzanowska, J.: The Impact of Mixed Fleet Hauling on Mining Operations at Vene-
tia Mine. Journal of The South African Institute of Mining and Metallurgy 107,
215–224 (2007)

[12] Liu, H., Chu, L., Recker, W.: Performance Evaluation of ITS Strategies Using Micro-
scopic Simulation. In: Proceedings of the 7th International IEEE Conference on Intel-
ligent Transportation Systems, pp. 255–270 (2004)

[13] Sanso, B., Milot, L.: Performability of a Congested Urban-Transportation Network
when Accident Information is Available. Transportation Science 33(1), 10–21 (1999)

[14] Taylor, M.A.P., Woolley, J.E., Zito, R.: Integration of the Global Positioning System
and Geographical Information Systems for Traffic Congestion Studies. Transportation
Research, Part C (Emerging Technologies) 8C, 257–285 (2000)

[15] Vis, I.F.A.: Survey of Research in the Design and Control of Automated Guided Ve-
hicle Systems. European Journal of Operational Research 170, 677–709 (2006)

[16] Walkowiak, T., Mazurkiewicz, J.: Analysis of Critical Situations in Discrete Trans-
port Systems. In: Proceedings of International Conference on Dependability of
Computer Systems, Brunow, Poland, June 30-July 2, pp. 364–371. IEEE Computer
Society Press, Los Alamitos (2009)

Human Resource Influence on Dependability of Discrete Transportation Systems 283

[17] Walkowiak, T., Mazurkiewicz, J.: Availability of Discrete Transport System Simu-
lated by SSF Tool. In: Proceedings of International Conference on Dependability of
Computer Systems, Szklarska Poreba, Poland, pp. 430–437. IEEE Computer Society
Press, Los Alamitos (2008)

[18] Walkowiak, T., Mazurkiewicz, J.: Functional Availability Analysis of Discrete Trans-
port System Realized by SSF Simulator. In: Bubak, M., van Albada, G.D.,
Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part I. LNCS, vol. 5101, pp. 671–678.
Springer, Heidelberg (2008)

[19] Walkowiak, T., Mazurkiewicz, J.: Algorithmic Approach to Vehicle Dispatching in
Discrete Transport Systems. In: Sugier, J., et al. (eds.) Technical approach to depend-
ability, Wroclaw: Oficyna Wydawnicza Politechniki Wroclawskiej, pp. 173–188
(2010)

[20] Walkowiak, T., Mazurkiewicz, J.: Functional Availability Analysis of Discrete Trans-
port System Simulated by SSF Tool. International Journal of Critical Computer-Based
Systems 1(1-3), 255–266 (2010)

[21] Walkowiak, T., Mazurkiewicz, J.: Soft Computing Approach to Discrete Transport
System Management. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A.,
Zurada, J.M. (eds.) ICAISC 2010. LNCS, vol. 6114, pp. 675–682. Springer, Heidel-
berg (2010)

W. Zamojski et al. (Eds.): Dependable Computer Systems, AISC 97, pp. 285 – 299.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

An Effective Learning Environment

Marek Woda1 and Konrad Kubacki-Gorwecki2

1 Institute of Computer Engineering, Control and Robotics, Wroclaw University of
Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
e-mail: marek.woda@pwr.wroc.pl

2 Institute of Computer Engineering, Control and Robotics, Wroclaw University of
Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
e-mail: k.kubacki.gorwecki@gmail.com

Abstract. This chapter is dedicated to an effective learning environment imple-
mentation, and more precisely the development of algorithms that improve effec-
tiveness of the learning process using the automatic selection of the difficulty of
lessons depending on individual student characteristics and selection of the archi-
tecture to increase the technical efficiency of the process through the use of
appropriate technical means to build e-learning system.

1 Introduction

Quite new domain of science called e-learning, has already shown so far its great
usefulness. However, it is still crippled by: the lack of a unified, coherent vision of
e-education. In most cases, the theory has not been matched with a practice, and
so it is in the case of distance education. In e-learning emphasis is placed on the-
ory of teaching, but from a technological side there neither limitations nor strict
guidelines, which in many cases adversely affect the operation of newly developed
systems. Currently, the most of teachers recognizes the need to standardize and
streamline the process of that kind of education. Increasingly, one talks about
standardization of e-learning systems.

Teaching effectiveness is a function of variety of forms, methods and means of
teaching [12]. Better efficiency of knowledge acquisition in the era of computeri-
zation and surrounding flood of information can only be achieved by the proper
use of technical means combined with classical forms of teaching methods, lead-
ing to the construction of educational structures integrated with modern technolo-
gies and means of formal presentation [14].In the text Authors should use terms
chapter, section or work instead of paper.

Teaching methodology [13] is an interdisciplinary study on the effectiveness of
education, seeking to answer the question of how to teach and learn faster, better
and cheaper in certain circumstances. The interdisciplinary nature of this technol-
ogy lies in the fact that it draws the object of interest and research methods from
other disciplines as computer science, cybernetics, systems theory and the theory
of communication.

286 M. Woda and K. Kubacki-Gorwecki

A large computational complexity of e-education algorithms, as well as a large
number of data subject to analysis, influences the course supervisors with plethora
of task [26], due to insufficient resources required for routine maintenance tasks.
The number of people involved in a control, planning, scheduling classes, and
time to assess the progress of listeners grows in proportion to the number of lis-
teners. In the traditional remote learning all of the processes are carried out by the
"human factor" [5, 11, 13], which can cause (and usually do) issues like a loss of
control over during the learning progress, decreased interest among course partici-
pants (caused by “lecturer fatigue”), and teaching contact incongruity to the ma-
turity / skills of listeners, which equals to the loss of their interest / willingness to
acquire knowledge, etc. However, excluding completely human factor from the
teaching process is unfavorable [10, 19, 20] too, it leads among other things to a
sense of alienation and lack of students control.

A remedy to the disadvantages outlined above, and a way to increase the effi-
ciency and effectiveness of the process of acquiring knowledge may be an intelli-
gent agent based system [1, 3, 4].

In the era of dynamic Internet growth and widely accessible broadband
access, more and more institutions see a potential use of these resources to provide
educational services [61].

Despite the existence of a multitude of both commercial (JoomlaLMS, WE-
BLessons, Blackboard Learn) and open platforms (LAMS, RCampus, Moodle) of
distance learning, most of them work as merely as a knowledge container, and
provide only simple mechanisms for data sharing [6, 7, 23]. A foundation of these
systems constitutes combination of different electronic media [49]. Mainly be-
cause of it, the basic idea of teaching was lost; namely, focus on a student and its
individual characteristics. The fundamental problem in current systems is the lack
of a model student, and individualization of the learning process so that was the
most suited to individual personal characteristics [10].

Teaching theory suggests [15] that the efficiency of the process of acquiring
knowledge is based on an adaptation absorption orchestrated by individual student
characteristics. Based on our own experience we can distinguish, at least a few
factors that determine the effectiveness of learning. These include:

• Complexity of the material
• Quantity and diversity of content
• Duration of lessons
• Time to acquire knowledge

It was noticed [23] that it would be a huge leverage if these aspects could be taken
into account as factors adjusted to the characteristics of individual participant, and
it would result in significantly increased efficiency of the process.

Practical application of distance learning on the Internet requires implementa-
tion of special software called e-learning platforms. There are numerous, such
kind, platforms that support remote learning process [6,7].

All platforms have more or less complex functions associated with managing the
learning process [22, 23, 26]. Current commercial solutions that can be found on a
market - suffer from the childhood imperfections – usually e-learning platform

An Effective Learning Environment 287

evolved from content management systems, which was not developed with the idea
of personalized knowledge delivery. Many new features, from a pedagogical point of
view have been missed - the most troublesome is the lack of student diversification.
Each one is treated the same, unified way, which prevents screening for outstanding
students as well as those who cannot cope alone with the material.

In the most of distance learning systems focus on the technical aspects of teach-
ing, and omitted or treated perfunctorily an extremely important aspect of educa-
tion- entity oriented teaching. Follow worthy idea is to create student models [11],
and based on them implement adaptive systems.

Many papers [17, 18, 19] highlights the lack of comprehensive approach to e-
education, among other things to focus on delivering educational content with ex-
clusion of personal characteristics or individual attention to students. One should
seek opportunities to combine modern techniques with the appropriate modeling
of students with different skills and levels of expertise.

A system, which would combine the adaptation of learning material with level
of expertise of individual student along with controlling the progress of science,
and delivering relevant content, is still missing. Emerging systems should be
based primarily on well-built model of the student and be self-adapted systems to
encompass the needs of individuals.

This work seeks to connect these demands in a single system, which will form the
basis for the modular e-learning system, designed to respond to the shortcomings of
current solutions.

2 System Architecture

In this chapter a novel concept of agent based e-learning system that supports
e-learners supervision in a distance education is presented. The presented system
model implements teaching strategies described in details in [22, 24].

2.1 Basic Terms and Assumptions

This section presents the basic terms and assumptions used in the description of
the agent based system concept.

The supervision of distance learning, in the context of the considered system
concept, is understood as:

• monitoring, track learning progress of the each course participant and reporting
it to the course coordinator

• optimizing student's learning path, based on information about learning style pref-
erences (VAK model [25]); its progress and performance in knowledge acquisi-
tion, in such a way as to maximize average of the grades for all course participants

• preparation an individual learning pace and repetition schedule for all lesson
units of a course for all course participants

• ability to search for additional related educational materials and share them
with other participants

288 M. Woda and K. Kubacki-Gorwecki

E-learning system is an agent based system that consists of the following basic
elements:

• a knowledge base, accumulated in a course, represented by a course knowledge
graph

• competence and self-assessment tests, quizzes
• historical data that show progress of a student education
• initial data collected after course qualification test that discloses student type

(e.g. VAK test [25])
• a set of learning paths.

Domain knowledge in the system is represented by a directed graph, with no re-
currence. The knowledge is divided and contained in lesson units (composed of
knowledge quanta). Learning process of each student is monitored and the knowl-
edge acquired in this process is subject to evaluation by both self-assessment and
final tests. Lesson units in the system are represented by three different levels of
difficulty (basic, intermediate, advanced) and each one with a different style of
course content presentation; the content difficulty levels directly correspond to
student model categories. It is assumed that to complete a part of material repre-
sented by a course, it must exist at least one lesson, which provides this content
for any given level of difficulty, and at least three forms of content presentation. In
principle, each quantum of knowledge has at least 9 lesson units containing it
(3 levels of difficulty, three styles of content presentation.)

Course knowledge graph (Fig. 1) is a directed graph is a hierarchical struc-
ture. The edges of the graph indicate possible directions of movement between the
vertices. Vertices are treated as individual lessons or evaluation points. It is as-
sumed that the graph has a starting point - the preliminary competency test, and
the final element - course ending test of competence.

A learning path is the sub-graph of course knowledge graph that contains de-
fined minimum number of vertices (to pass by a student) required to finalize a
course. The transition between two nodes in the path is always in a fixed direction,
and allowed only after positive assessment of knowledge acquired in the previous
node. It is assumed that completion of a path containing only lesson units at basic
difficulty level is sufficient to obtain a minimum level of knowledge to pass a
course.

Fig. 1 Example of course knowledge graph

An Effective Learning Environment 289

A course content presentation strategy is a method of adapting the presenta-
tion of course content that should strive to match the individual student's learning
style.

A teaching strategy is a method to adapt the course to a level of intellectual
capacity and interests of a student. Any strategy assumes that the student should
realize the highest possible level of lesson difficulty allowing him to gain positive
results during the test. A strategy strives ensuring that the student's level of
knowledge after completing the course will reach the maximum. The strategy is
subject to the evaluation of during learning progress in the real time, and if
necessary - is adjusted for better results.

Student profile represents a vector characterized by psychological and intellectual
profile of a student. It includes information about the preferred student learning style,
the general level of student knowledge, recent results; preliminary results from the
course competence test, and detailed test results that make possible to categorize
student’s type.

2.2 The Concept of Agent Based System

Developed by the authors the concept of remote monitoring system to support
learning activity involves the following agents:

• User Agent (UA)
• Learning Path Agent (LPA) - builds a learning path for students
• Schedule Builder Agent (SBA) - creates a learning schedule
• Learning Style Agent (LSA)
• Computing Agent (CA)
• Search Agent (SA) searches for a content related data during learning progress

Relations between agents in the system are depicted in the diagram (Fig. 2).

Fig. 2 Relations and interactions between agents in the system

290 M. Woda and K. Kubacki-Gorwecki

2.2.1 User Agent

User Agent (UA) is responsible for a direct communication and cooperation with a
user (student / course participant). Its main tasks include the collection of data on
user activity - logon time, how much time one spends online, which course ele-
ments are explored etc. This agent is also responsible for presenting a learning
schedule to the user, imposing learning pace, and processing and storing recent
tests results as well. It acts as a proxy in a communication with other system
agents – acting as a specific type of intermediary (an interpreter) between the
agent based system and a user.

Each student in the system, at the time of signing in, is assigned an individual UA
agent. This agent operates as long as its user is logged in the system. From other
agents in the system point of view, an AU represents (and reflects) a user behavior.

2.2.2 Learning Path Agent

Learning Path Agent (LPA) builds a learning path for students, and is the most
important agent in the system. Its mission is to prepare an optimal learning path
for each student. During learning path creation LPA gets defined in the database
course structure and based on it creates a knowledge course graph. Next having
analyzed the student learning preferences, and his learning performance, it choos-
es appropriate learning path, satisfying two conditions:

1. Select learning path that match the preferred learning style best
2. Select the most advanced track (difficult) that student can pass (based on

historical data if available), and at the same time giving a student an
opportunity for performance incentives to work.

In the system, depending on the number of students enrolled in courses they may
operate one or more LPA agents. Please note that the tasks carried out by LPAs
may need a lot of computation time) and may use too much time, this is propor-
tionate to the complexity of the knowledge graph. Algorithms used for learning
path building have been described in detail in Section 3.

2.2.3 Schedule Builder Agent

Schedule Builder Agent (SBA) creates a learning schedule; it operates based on
results attained by a LPA agent. Its functionality is to create a timetable with a
schedule how the lesson units should be learnt and the knowledge acquired
evaluated – this is being set in the rate imposed by the course developer.

Initially, the schedule is arranged based on the student's educational path
(Fig. 3). In the example below, we can see planed accordingly: Lesson 1, Lesson
2, a control test for Lesson 1 and 2, Quiz 1, Lesson 3, Lesson 4, the control test
after Lesson 3 and 4, and final exam at the end of learning path.

Fig. 3 Initial realization schedule of a learning path

An Effective Learning Environment 291

During the execution of scheduled tasks, after control test [T1, 2] may turn out
that the student has not mastered the material from Lesson 2. The task of the SBA
is to plan repetition of this unit before the student, takes a final quiz covering this
material, whose results affect the final student’s evaluation (Fig. 4).

Fig. 4 Changes in the schedule after first two lessons

On the given above, Figure 4, one can notice that a re-iteration of the material
from Lesson 2 is scheduled directly by the quiz [Q1] and a knowledge consolida-
tion of Lesson 1 and 2 just before the final exam. This schedule could change if
the student still has the same problems with mastery of the content of lessons of 3
or 4, and if he fails to pass quizzes or exams.

The student, himself, is also able to change his schedule - it can either resign from
the planned units or propose to repeat those for which is not sure that yet he mastered.

2.2.4 Learning Style Agent

Learning style agent (LSA) is responsible for correlation a learning content with
student preferred learning style, and also for updating the student profile in terms
of those preferences.

The most important task of LSA is to evaluate the form and deliver adequate
form of presentation of a lesson unit that matches the student's type. This evalua-
tion takes into account three aspects:

1. Preferred student learning style
2. VAK test results
3. Meta data describing the contents of a teaching unit (SCORM object)

Fig. 5 Parameters taken into account during selection of lesson style representation

It is assumed that the ideal situation is when all education objects consist of
information clearly indicating which the student styles (e.g. from VAK model

292 M. Woda and K. Kubacki-Gorwecki

[8, 25]) a particular lesson representation fits best. This information is not given in
advance, so we have to propose a solution based on the information that is already
at hand, allowing discovery the right student style.

The solution is available with each lesson, and is stored in its metadata. Meta-
data contain information about what didactical material lesson units is built of. If
this type of material as presented on Fig. 5, we can define a function that allows us
to match a style with a lesson unit. The rules are fairly simple. Classification relies
on the attribution of specific content types to a student style characterized by VAK
model, and assigning those appropriate values:

1. Visual learners: text, image, video
2. Auditory: video, audio
3. Kinetics: video, audio, interaction

How to precisely address this issue, we are about to demonstrate in section 3.

2.2.5 Calculation Agent

Calculation Agent (CA) is responsible for interaction with external systems. In
this case the agent communicates with the course database. Its tasks include the
data registration received from other agents: UA (login, timeout), LPA (generated
learning path), LSA (student profile), SBA (record of the learning schedule) and
providing the necessary information at their requests.

There can be more than one CA agent in the system. Their number depends on
the number of students, the number of database engines working in the system,
and the maximum number of connections to servers. Too small number of CA
agents becomes quickly usually a bottleneck for the entire agent based system.

So why shall one implement this kind of agent? Its presence in the system al-
lows you to operate on multiple nodes of distributed databases. Thanks to that the
database holding learning objects can be located on a different machine than the da-
tabase with user data. It also makes possible interaction with other instances of the
system in a completely transparent way. For the remaining agents in the system,
there is no access to the database. They can only notify CA about the demand for
data access.

2.2.6 Searching Agent

Searching agent (SA) is a classic element given in the agent systems literature. Its
goal is acquisition and delivery of supporting material related to teaching content
from various sources and systems, without user knowledge, based on defined
search criteria like:

1. Keywords
2. Materials that extend the content of a lesson unit
3. Teaching materials that meet the learning style criterion

Searching agents immediately after the spawn, start browsing the yellow pages
service of JADE environment for all the agents that can provide them with learn-
ing materials for the selected criteria, and go into sleep mode if are no longer in

An Effective Learning Environment 293

use. When a user or an agent (e.g. LSA, LPA) starts looking for related materials,
an SA agent will query known data sources for the materials that meet the criteria,
and submit the results to a user / agent.

3 Adaptation Algorithms

In the previous section we discussed the characteristics of particular agents in the
designed system. Most of them are not sophisticated and do not require complex
logic to run them; They operate based on communication with the environment,
and performing simple tasks - displaying, storing and retrieving data in the data-
base, building queries, or scheduling tasks. Two agents working in the system -
LSA and LPA - implement a way more, complex functionality, details of which
will be presented in the following section.

3.1 Learning Path Building

Strategic stage, from the perspective of presented system concept, is optimal learning
path building that matches each enrolled student. This process consists of two main
stages - building a course knowledge graph, and building learning path for a student,
which is a course knowledge sub-graph. Let us discuss in detail each of these stages.

3.1.1 Stage 1

Course knowledge graph is being re-built every time when its structure changes.
In most cases, when we are dealing with the mature course (tested and used be-
fore), this process must be to done only once, right after the course has been
created (started) - and then its structure is saved.

Fig. 6 Example course structure DB schema

Construction of the graph starts from collection from the database information
about the structure of the course. To this end, LPA agent that builds it, sends a re-
quest “course structure” query to a CA agent, which has access to the database,

294 M. Woda and K. Kubacki-Gorwecki

and it sends back the result (Fig. 6). Based on the feedback received, the LPA
builds a directed graph structure. This process is briefly described at Listing 1.

Listing 1 Course knowledge graph building
public class CourseGraph implements Serializable {
 ...

public CourseGraph () {
 graph = new DirectedGraph<LessonUnit,

LearningArc<LessonUnit>>();
 }

public void bulidGraph(List<LessonUnit> objectsList,
Student student) {

 // add vertices
 for(LessonUnit vertex : objectsList) {
 graph.addNode(vertex); }

 // add branches
 for(LessonUnit w : objectsList) {
 for(LessonUnit nast : w.nextt()) {

 graph.addArc(nast, vertex, new
WeightLessonSelection(student));

 }
 }
 }
}

3.1.2 Stage 2

Before discussing the process of determining the optimal learning path, one have
to answer the question, what is the optimal path of CKW graph? Being aware that
the algorithm that will shape the path will operate on the graph structure, we can
try to transpose the problem of optimality in the well-known problems known
from graph theory. It is easy to see the analogy of the problem, to finding the
shortest path between two vertices in the directed graph.

Therefore lets’ define the optimality of the path in such a way that the weights
of each arc graph - symbolize the transition between the different lesson units of
the course - to express the material adaptation in the next lesson to the student's
current needs (level of expertise, learning style). Transition between each lesson
units is described in Listing 2.

Listing 2 Calculation of arc weights
const lesson_advcacement_weight= 3;

advancement_coeff := lesson_level / (|lesson_level – student.level|
+1);

weight := advancement_coeff * lesson_advcacement_weight +
 lessonAdjustmentForStudent(student, lesson);

An Effective Learning Environment 295

The code quoted above besides the advancement level includes also student’s
preferred learning style. The lesson adjustment (to a student preferred learning
style) process has been described in the next section 3.2.

Fig. 7 Example of course knowledge graph with weights and learning path visualization

As a result of given above operation we get directed graph with no cycles with
positive weights. The perfect algorithm that finds shortest path is Dijkstra’s algo-
rithm. Its computational complexity depends on the number of vertices V and
edges E of the graph. Its complexity varies on priority queues implementation:

1. queue as an array - it gives the complexity of O(V2),
2. queue in the form of the mound - O(ElogV)

The first variant is optimal for dense graphs, the other for the rare graphs. In a typ-
ical knowledge graph it will better solution to apply the first variant, because the
number of edges will be far greater than the number of vertices.

Listing 3 Detremination of optimal learning path
 public GraphPath computeLearningPath(Lesson start, Lesson
ending) {

 GraphPath<Lesson, LearningArc<Lesson>> path = null;
 Dijkstra dij = new
Dijkstra<Lesson,LearningArc<Lesson>>(graf);
 path = dij.execute(start, ending);
return path;}

3.2 Content Presentation Strategies

In the previous two sections, we referred to an algorithm that will determine the
degree of adaptation of the lesson content to a student's preferred learning style.
There are at least two ways to achieve this goal.

The first way, a trivial one, assumes that each object within the e-system will have
metadata that clearly reflects one of the VAK styles. This approach, though simple
(Listing 4), is not devoid of drawbacks. One of them is the necessity of human in-
volvement to the design lesson - as though it seems intuitive, does not always have to

296 M. Woda and K. Kubacki-Gorwecki

be. For example, the question arises to which style one shall assign didactic material
presented in the form of a movie - a combination of animation, experimental video
and a standard lecture. In some extent it matches all VAK styles - and depending on
the assessment may be classified differently. A second drawback of this approach is
revealed when there is no content for a certain learning styles, then one has to cope
with a problem which material to present to the student.

Listing 4 Trivial lesson style determination
 public boolean doesLessonMatchLessonStyle (Student s, Lesson
l) {

 StyleLearning studentStyle = s.styleLearning();
 StyleLearning lessonStyle = l.styleLearning();

 return studentStyle.equals(lessonStyle);}

The second way to achieve the objective is to identify the style of material rep-

resentation in a lesson unit based of metadata, describing its contents. Taking into
account the student profile, we can propose a measure called student style adjust-
ment, which reflects the percentage of how a student's profile is consistent with
the profile of lessons (Fig. 8).

Fig. 8 Input data and result of student style adjustment (congruity level)

This approach allows for a better lesson unit selection, in the absence of pre-
ferred unit (one that matches exactly student's learning style). Tests have proven
that method brings good results if weights for individual components are intro-
duced (see Listing 5).

Listing 5.5 Congruity level evaluation
public float studentStyleAdjustment (Student, Lesson) {

coef_vis = student.levelVisual* enforcePreference(visual) *
(lesson.text + lesson.picture + lesson.video);
coef_aud = student.levelAuditory * enforcePreference(audio) *
(lesson.audio + 0.5 * lesson.video);
coef_kin = student.levelKinestic * enforcePreference(kinest) *
(lekcja.interAction + 0.5 * lekcja.video);
return coef_vis + coef_aud + coef_kin; }

public float enforcePreferredLevel(Style) {
 if(style.equals(student.styleLearning)) return 10f;
 return 1f; }

An Effective Learning Environment 297

3.2.1 Change of Presentation Strategy

It was stressed (21, 24, 25) the fact that the recognition of learning style is a diffi-
cult issue, and the same result is often ambiguous. To ensure the adaptability of
the system, the results of VAK test, are evolving as one works with a user (stu-
dent). The individual components that indicate compliance with one of the VAK
profiles are constantly being modified, as proposed in (Formula 1).

0.8 0.2z z iW W T= ⋅ + ⋅

 (1)

Wz – actual discriminant value of student proficiency
Ti – i-th result of competence test

Student proficiency is determined empirically, a level of intellectual abilities of a
student. On its basis, e-system decides whether the student will be routed on basic,
average, or advanced learning path of the course. This discriminant is modified
during the evaluation tests. Its value depends on the weighted average of its cur-
rent value and the test result.

Having the information about lessons structure and test results, we can modify
these three values proportionally to the test results and the amount of material
characteristic for a particular learning style, contained in the lesson evaluated.

A change of presentation strategy may also occur in a more dynamic way, if the
student’s results are unsatisfactory. Probability of change strategy in time is given
using equations (Formula 2 and 3):

Fig. 9 Example of course knowledge graph with weights and learning path visualization

()
1

strategy change

kk t

result
k t

L e fλ

λ λ

− ⎛ ⎞−⎜ ⎟
⎝ ⎠⎛ ⎞= ⋅ ⋅⎜ ⎟

⎝ ⎠

 (2)

0, result > 75% or trend > 0
()=

1, othercase
resultf

⎧
⎨
⎩

 (3)

t – time, t > 0
λ – scale parameter; (this case: λ=1)
k – shape parameter; (this case: k = 5)

298 M. Woda and K. Kubacki-Gorwecki

4 Conclusions

The concept of agent based e-learning system described in this chapter, is based
on the idea of student's learning style detection and learning material delivery cor-
responding to his preferences and intellectual ability. As a student model, well-
known VAK [8, 25] model was used. It divides the human population into three
groups: visuals, auditoria and kinestics. Correct learning style detection may in-
crease considerably the effectiveness of student’s knowledge acquisition. Tests of
presented e-system, in a simulated learning environment, have proved its useful-
ness. Success ratio of passing final exam increased from 89.9% to 98.7%, and
generally understood the level of student knowledge raised from 7.48 to 10.38
points - the maximum score was 16 points.

The use of software agent to implement this approach makes system modular
allowing for more distributed collaboration. Agents in the environment can work
in a number of containers that can be run on different computers within a network
(in particular Internet). The benefits are: the ability to freely exchange data be-
tween the independent e-learning platforms, which include both teaching content -
which is also often discussed in the literature [5, 16] – and all students as well, in-
cluding historical data related to learning style, ongoing courses, general intellec-
tual profile etc. This is not yet approach that brings many benefits and risks too.

References

[1] Baloian, N., Motelet, O., Pino, J.: Collaborative Authoring, Use and Reuse of Learn-
ing Materi-al in a Computer-integrated Classroom. In: Procs. of the CRIGW 2003,
France (2003)

[2] Bacopo, A.: Shaping Learning Adaptive Technologies for Teachers: a Proposal for an
Adaptive Learning Management System. In: 4th IEEE International Conference on
Advanced Learning Technologies (2004)

[3] Capusano, N., Marsella, M., Salerno, S.: An agent based Intelligent Tutoring System
for distance learning. In: Proc. of the International Workshop on Adaptive and Intelli-
gent Web-Based Education Systems, ITS 2000 (2000)

[4] Dinosereanu, M., Salomie, I.: Mobile Agent Solutions for Student Assessment in Vir-
tual Learning Environments. In: IAWTIC 2003, Austria (2003)

[5] Bitonto, D.I.: Multi-agent Architecture for Retrievieng and Tailor Los in SCORM
Compilant Dis-tance Learning Environment. In: Rosson, M.B. (ed.) Advances in
Learning Processes Book. InTech (January 2010), ISBN 978-953-7619-56-5

[6] EduTools. CMS: Product Comparison System (June 11, 2006)
http://www.edutools.info/compare.jsp?pj=8&i=263,276,299,
358,366,386,387

[7] EduTools. CMS: Product List (June 2, 2006),
http://www.edutools.info/item_list.jsp?pj=8

[8] Vark, F.N.: Questionnaire,
http://www.vark-learn.com/english/
page.asp?p=questionnaire (accessed December 2010)

An Effective Learning Environment 299

[9] Grob, H.L., Bensberg, F., Dewanto, B.L.: Developing, deploying, using and evaluat-
ing an open source learning management systems. In: 26th International Conference,
Information Technology Interfaces (2004)

[10] Jones, D., Behrens, S.: Online assignment management - an evolutionary tale. In: 36th
Annual Inter-national Conference on System Sciences. IEEE, Los Alamitos (2003)

[11] Kavcic, A.: The role of user models in adaptive hypermedia systems. In: Electrotech-
nical Conference MELECON 2000 (2000)

[12] Leja, K. M.: Efektywność i jakość w działalności szkoły wyższej na przykładzie wy-
branych uczelni technicznych. PhD thesis, Department of Management and Economy,
Gdansk University of Technology (2000) (in Polish)

[13] Mortaglia, T.: An automatic evaluation system for technical education at the Univer-
sity level. IEEE Transactions on Education (2002)

[14] Narsingh, D.: Graph theory with applications to engineering and computer science.
Pretince Hall, New Jersey

[15] Koper, R., Tattersall, C.: Learning Design: A handbook on modeling and delivering
networked education and training. Springer, Heidelberg (2005)

[16] Orzechowski, T.: The Use Of Multi-agents’ System. In: Soomro, S. (ed.) E-learning
Platforms E-learning Experiences and Future, Book. InTech (April 2010), ISBN: 978-
953-307-092-6

[17] Osiński Z.: Możliwości, jakie stwarzają platformy e-Learning w edukacji, Materiały z
V Ogólno-polskiego Forum Koordynatorów Technologii Informacyjnej, Mielec, Po-
land (2003) (in Polish)

[18] Rosenberg, M.J.: E-Learning: strategies for delivering knowledge in digital age.
McGraw-Hill, New York (2001)

[19] SCHUTTE J.G.: Virtual Teaching in Higher Education: The New Intellectual Super-
highway or Just another Traffic Jam? (2001),
http://www.csun.edu/sociology/virexp.htm

[20] Tadeusiewicz, R., Chrząszcz A., Gaś, P., Kusiak, J.: Współpraca między uczniem a
nauczycielem w nauczaniu wspomaganym przez Internet.In: Mischke, J.
(red.)Akademia on-line, WSHE Łódź (2005) (in Polish)

[21] Woda, M.: Concept of composing learning content into learning tree to ensure reli-
ability of learning material. In: Proceedings of International Conference on Depend-
ability of Computer Systems, DepCoS - RELCOMEX 2006, pp. 374–381. IEEE
Computer Society, Los Alamitos (2006)

[22] Woda, M.: Introduction of teaching strategies as a method to increase effectiveness of
knowledge acquisition. In: Amman, A.-D.A. (ed.) The 4th International Conference
on Information Technology, ICIT 2009, June 3-5, Al-Zaytoonah University of Jordan,
Amman, Jordan (2009)

[23] Walkowiak, T., Woda, M.: Komunikacja w systemach e-learningowych. In: Bem i
inni, B.J. (red.) Internet 2005, Oficyna Wydaw. PWroc., Wrocław (2005) (in Polish)

[24] Woda, M.: Learning process management in e-learning systems. PhD thesis, Institute of
Computer Engineering, Control and Robotics, Wrocław University of Technology (2007)

[25] Woda, M., Kubacki-Gorwecki, K.: Students Learning Styles Classification For e-
Education. In: The 5th International Conference on Information Technology, ICIT
2011, Amman, Jordan (2011) (accepted)

[26] Woda, M.: System zdalnego nauczania w ujęciu agentowym. In: Konferencja Nowe
media w edukacji. Osiągnięcia pracowników Politechniki Wrocławskiej w zakresie
nauczania z wykorzystaniem nowych mediów. Oficyna Wydaw. PWroc, Wrocław
(2005) (in Polish)

Incremental Composition of Software Components

W.M. Zuberek1,2

1 Department of Computer Science, Memorial University,
St.John’s, NL, Canada A1B 3X5

2 Department of Applied Informatics, University of Life Sciences,
02-787 Warszawa, Poland
email: wlodek@mun.ca

Abstract. In component-based systems, two interacting components are compati-
ble if all sequences of services requested by one components can be provided by
the other component. In the case of several components interacting with a single
provider, as is typically the case in client–server computing, the requests from differ-
ent components can be interleaved and therefore verifying component compatibility
must check all possible interleavings of requests from all interacting components.
Incremental composition of interacting components eliminates this need for exhaus-
tive combinatorial checking of the interleavings by imposing some restrictions on
the interleavings. The paper introduces simple conditions which must be satified
by the interacting components for their composition to be incremental and illus-
trates the concepts using simple examples of interactions.

1 Introduction

Component-base software engineering is one of promising approaches to the de-
velopment of large-scale software systems [2]. The success of this approach relies,
however, on the automated and easily verifiable composition of components and
their services [14]. While manual and ad hoc strategies toward component integra-
tion have met with some success in the past, such techniques do not lend themselves
well to automation. A more formal approach toward the assessment of component
compatibility and interoperability is needed. Such a formal approach would permit
an automated assessment and would also help promote the reuse of existing soft-
ware components. It would also significantly enhance the assessment of component
substitutability when an existing component is replaced by an improved one, and
the replacement is not supposed to affect the functionality of the remaining parts of
the system [4].

Components can be considered as the basic functional units and the fundamen-
tal data types in architectural design [27]. Components represent high-level soft-
ware models; they must be generic enough to work in a variety of contexts and in
cooperation with other components, but they also must be specific enough to provide
easy reuse.

W. Zamojski et al. (Eds.): Dependable Computer Systems, AISC 97, pp. 301–311.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

302 W.M. Zuberek

Primary reasons for component production and deployment are [14]: separability
of components from their contexts, independent component development, testing
and later reuse, upgrade and replacement in running systems. Component compo-
sitionality is often taken for granted. Compositionality, however, is influenced by
a number of factors. Component technologies are not entirely independent of par-
ticular hardware and operating platforms, programming languages or the specific
middleware technology in which they are based. Ideally, the development, quality
control, and deployment of software components should be automated similarly to
other engineering domains, which deal with the construction of large systems com-
posed of well-understood elements with predictable properties and under acceptable
budget and timing constraints [24]. For software engineering, such a situation does
not seem to belong to the forseeable future yet.

In this work, two interacting components are considered compatible if any se-
quence of services requested by one component can be provided by the other.
This concept of compatibility can be easily extended to a set of interacting com-
ponents, then, however, the requests from different components can be interleaved,
so any verification of the behavior of the composed system must check all inter-
leavings which can be created by the interacting components. These interleavings
can be controlled by specific frameworks for component compositions which can
vary from simple syntactic expansions of the GenVoca model [3], to models resem-
bling higher-order programming [5] and dynamic interconnections of distributed
processes [22]. Despite significant research efforts, a comprehensive model of
software composition is still to come [17].

Incremental composition of interacting components introduces a restriction on
the form of interleaving of requests coming from several components, and eliminates
the need for exhausting combinatorial checking of the behavior of the composed
system. In incremental composition, if a requesting and providing components are
compatible, the requesting component can be added to other interacting components
without any adverse effect on the behavior of the system. On the other hand, the
performance of a system composed in such a way may not be fully used.

Several formal models of component behavior have been proposed in the liter-
ature. They include finite automata [9] [10] [28], predicates [29], process calculi
[8] [26] and especially labeled Petri nets [1] [12] [16] [19]. Some approaches are
built on the concept of subtyping derived from object–oriented programming. They
use the interface type to define a subtyping relation between components [7] [21].
Various forms of those types exist, starting with the classical interface type [11] and
adding behavioral descriptions such as automata [9]. Related research shows that
the resulting approach may be too restrictive for practical applications [29].

Petri nets [23] [25] are formal models of systems which exhibit concurrent activ-
ities with constraints on frequency or orderings of these activities. In labeled Petri
nets, labels, which represent services, are associated with elements of nets in order
to identify interacting components. Well-developed mathematical theory of Petri
nets provides a convenient formal foundation for analysis of systems modeled by
Petri nets.

Incremental Composition of Software Components 303

This chapter is a continuation of previous work on component compatibility and
substitutability [12] [13] [30]. Using the same linguistic specification of component
behavior as before [30], the paper introduces icremental component composition
and shows that for such a composition, properties of the composed systems can
be verified without the exhaustive checking of all possible interleavings of compo-
nent languages. Simple criteria for incremental composition of components are also
given and illustrated by a few examples.

Section 2 recalls the concept of component languages as a characterization
of component’s behavior. Component languages are used in Section 3 to define
component compatibility. Incremental composition is described in Section 4 while
Section 5 concludes the chapter.

2 Petri Net Models od Component Behavior

The behavior of a component, at its interface, can be represented by a cyclic labeled
Petri net [12] [30]:

Mi = (Pi,Ti,Ai,Si,mi, �i,Fi),

where Pi and Ti are disjoint sets of places and transitions, respectively, Ai is the set of
directed arcs, Ai ⊆ Pi ×Ti ∪Ti ×Pi, Si is an alphabet representing the set of services
that are associated with transitions by the labeling function �i : Ti → Si ∪{ε} (ε is
the “empty” service; it labels transitions which do not represent services), mi is the
initial marking function mi : Pi →{0,1, ...}, and Fi is the set of final markings (which
are used to capture the cyclic nature of sequences of firings).

Sometimes it is convenient to separate net structure N = (P,T,A) from the initial
marking function m.

In order to represent component interactions, the interfaces are divided into
provider interfaces (or p-interfaces) and requester interfaces (or r-interfaces). In the
context of a provider interface, a labeled transition can be thought of as a service
provided by that component; in the context of a requester interface, a labeled transi-
tion is a request for a corresponding service. For example, the label can represent a
conventional procedure or method invocation. It is assumed that if the p-interface re-
quires parameters from the r-interface, then the appropriate number and types of pa-
rameters are delivered by the r-interface. Similarly, it is assumed that the p-interface
provides an appropriate return value, if such a value is required. The equality of
symbols representing component services (provided and requested) implies that all
such requirements are satisfied.

For unambiguous interactions of requester and provider interfaces, it is required
that in each p-interface there is exactly one labeled transition for each provided
service:

∀ti,t j ∈ T : �(ti) = �(t j) �= ε⇒ ti = t j.

Moreover, to express the reactive nature of provider components, all provider
models are required to be ε–conflict–free, i.e.:

304 W.M. Zuberek

∀t ∈ T ∀p ∈ Inp(t) : Out(p) �= {t}⇒ �(t) �= ε

where Out(p) = {t ∈ T | (p,t) ∈ A}; the condition for ε–conflict–freeness could
be used in a more relaxed form but this is not discussed here for simplicity of
presentation.

Component behavior is determined by the set of all possible sequences of ser-
vices (required or provided by a component) at a particular interface. Such a set of
sequences is called the interface language.

Let F (M) denote the set of firing sequences in M such that the marking created
by each firing sequence belongs to the set of final markings F of M . The interface
language L (M), of a component represented by a labeled Petri net M , is the set
of all labeled firing sequences of M :

L (M) = {�(σ) | σ ∈ F (M)},

where �(ti1ti2 ...tik) = �(ti1)�(ti2)...�(tik).
By using the concept of final markings, interface languages reflect the cyclic

behavior of (requester as well as provider) components.
Interface languages defined by Petri nets include regular languages, some

context–free and even context–sensitive languages [18]. Therefore, they are sig-
nificantly more general than languages defined by finite automata [10], but their
compatibility verification is also more difficult than in the case of regular languages.

3 Component Compatibility

Interface languages of interacting components can be used to define the compat-
ibility of components; a requester component Mr is compatible with a provider
component Mp if and only if all sequences of services requested by Mr can be
provided by Mp, i.e., if and only if:

L (Mr) ⊆ L (Mp).

Checking the inclusion relation between the requester and provider languages de-
fined by Petri nets Mr and Mp can be performed by systematic checking if the
services requested by one of the interacting nets can be provided by the other net at
each stage of the interaction. In the case of bounded nets, the checking procedure
performs a breadth–first traversal of the reachability graph G (Mr) verifying that for
each transition in G (Mr) there is a corresponding transition in G (Mp).

3.1 Bounded Models

The following logical function CheckBounded can be used for compatibility check-
ing if the requester and provider languages are defined by bounded marked Petri nets

Incremental Composition of Software Components 305

(Nr,mr) and (Np,mp), respectively. The function performs exhaustive
analysis of the marking spaces of its two argument marked nets checking, at each
step, if all service that can be requested by the first argument net are available in the
second net. In the pseudocode below, New is a sequence (a queue) of pairs of mark-
ings to be checked, head and tail are operations on sequences that return the first
element and remaining part of the sequence, respectively, append(s,a) appends an
element a to a sequence s, Analyzed is the set of markings that have been analyzed,
Enabled(N ,m) returns the set of labels of transitions enabled in the net N by the
marking m (including ε if the enabled transitions include transitions without labels),
and next(N ,m,a) returns the marking obtained in the net N from the marking m
by firing the transition labeled by x):

proc CheckBounded(Nr,mr,Np,mp);
begin

New := (mr,mp);
Analyzed := {};
while New �= {} do

(m,n) := head(New);
New := tail(New);
if m /∈ Analyzed then

Analyzed := Analyzed ∪{m};
Symbols1 := Enabled(Nr,SkipE ps(Nr,m));
Symbols2 := Enabled(Np,SkipE ps(Np,n));
if Symbols1∩Symbols2 = {} then return FALSE fi;
for each x in Symbols1 do

if x ∈ Symbols2 then
append(New,(next(Nr,m,x),next(Np,n,x))

fi
od

fi
od;
return TRUE

end;

The function SkipEps(m) advances the marking function m through all transitions
labeled by ε:

proc SkipE ps(N ,m);
begin

while ε ∈ Enabled(N ,m) do m := next(N ,m,ε) od;
return m

end;

where the ε parameter of the function next refers to any transition enabled by m that
is labeled by ε .

The function CheckBounded returns TRUE if the language of (Nr,mr) is a subset
of the language defined by (Np,mp); otherwise FALSE is returned.

306 W.M. Zuberek

Example. Fig.1 shows a simple configuration of two (cyclic) requester components
and a single provider of two services named a and b. In both requester components,
the requested services are separated by some “local” operations.

Provide

a

b

ba

a b

Requester−2

Requester−1

Fig. 1 Two requesters and a single provider.

In this case, the languages of all components are the same, and are sequences of
service a followed by service b. They can be described by a regular exapression
(ab)*.

For the Requester-1 and Provider nets shown in Fig.1, the steps performed by the
function CheckBounded can be illustrated in the following table:

m n Symbols1 Symbols2 x next(Nr,m,x) next(Np,n,x)
(1,0,0) (1,0) {a} {a} a (0,1,0) (0,1)
(0,1,0) (0,1) {b} {b} b (1,0,0) (1,0)

Since in each case, the (only) symbol of Symbols1 is also an element of Symbols2,
the returned result of checking is TRUE.

3.2 Unbounbded Models

For the unbounded case, compatibility checking must include checking the un-
boundedness condition (a marked net (N ,m0) is unbounded if there exist markings
m′ and m′′ reachable from m0 such that m′′ is reachable from m′ and m′′ is compo-
nentwise greater or equal to m′). This condition is checked for the requester as well
as for the provider nets by combining these two markings together. More specifi-
cally, for each analyzed pair of markings (m,n), an additional check is performed if
the set Analyzed contains a pair of markings, which is componentwise smaller than
(m,n) and from which (m,n) is reachable; if the set Analyzed contains such a pair,
analysis of (m,n) is discontinued. This additional check is performed by a logical
function Reachable((m,n),Analyzed):

Incremental Composition of Software Components 307

proc CheckUnbounded(Nr,mr,Np,mp);
begin

New := (mr,mp);
Analyzed := {};
while New �= {} do

(m,n) := head(New);
New := tail(New);
if (m,n) /∈ Analyzed then

Analyzed := Analyzed ∪{(m,n)};
Symbols1 := Enabled(Nr,SkipE ps(Nr,m);
Symbols2 := Enabled(Np,SkipE ps(Np,n);
if Symbols1∩Symbols2 = {} then return FALSE fi;
if not Reachable((m,n).Analyzed) then

for each x in Symbols1 do
if x ∈ Symbols2 then

append(New,(next(N1,m,x),next(N2,n,x))
fi

od
fi

fi
od;
return TRUE

end;

Example. Fig.2 shows a modified model of a provider which still requires that each
operation b is preceded by an operation a, but which also allows several operations
a to be performed before any of the corresponding b operations is requested (which
is not allowed in model shown in Fig.1). This provider net is unbounded.

b

ba

a

Provide

Requester−2 b

aRequester−1

Fig. 2 Two requesters with a modified provider.

Checking the compatibility of Requester-1 and Provider in Fig.2, performed by
CheckUnboundedOne, can be illustrated by the following table:

308 W.M. Zuberek

m n Symbols1 Symbols2 x next(Nr,m,x) next(Np,n,x)
(1,0,0) (1,0) {a} {a} a (0,1,0) (1,1)
(0,1,0) (1,1) {b} {a,b} b (1,0,0) (1,0)

Again, since for each case the (single) element of Symbols1 is also an element of
Symbols2, the result of checking is TRUE.

4 Incremental Composition

Incremental composition of interacting components takes advantage of the cyclic
nature of component behavior, and allows the interleaving at the level of cycles.
So, taking this behavioral cyclicity into account, the condition of compatibility of
interacting components can be rewritten as:

L ∗
r ⊆ L ∗

p

where Lr is the single-cycle language of the requester component and Lp is the
single-cycle language of the provider component. These single-cycle languages can
be just sequences of services (requested or provided) but normally they are more
sophisticated and can even be infinite.

The above compatibility condition can be simplified to:

Lr ⊆ Lp.

For the case of k requester components interacting with a single provider, for incre-
mental composition the combined language of requesters becomes:

(Lr1 ∪Lr2 ∪·· ·∪Lrk)∗

and then the simplified compatibility condition is:

Lr1 ∪Lr2 ∪·· ·∪Lrk ⊆ Lp

which is equivalent to

Lr1 ⊆ Lp ∧Lr2 ⊆ Lp ∧·· ·∧Lrk ⊆ Lp

so, instead of checking the compatibility of interleaved requests, it is sufficient
to check if each requester component is compatible with the provider. Conse-
quently, the incremental composition eliminates the need for exhaustive combinato-
rial checking of the behavior of the composed system.

It can be observed that a straightforward criterion for incremental composition is
that the set First(Lr) of leading symbols of the single-cycle languge Lr is disjoint
with the set Follow(Lp) of non-leading symbols of the single-cycle language Lp:

First(Lr)∩Follow(Lp) = {}

Incremental Composition of Software Components 309

where (S is the set of services required and provided by the components):

First(L) = {a ∈ S | ∃x ∈ S∗ : ax ∈ L },
Follow(L) = {a ∈ S | ∃x ∈ S+,y ∈ S∗ : xay ∈ L }.

Example. The languages of Requester-1, Requester-2 and Provider shown in
Fig.1 are (ab)*, their single-cycle languages are (ab), so First(Lr) = {a},
Follow(Lp) = {b}, and First(Lr)∩Follow(Lp) = {}, so the composition is in-
cremental.

For Fig.2, the languages of Requester-1 and Requester-2 are also (ab)*, but the
language of Provider is nonregular. In this case, First(Lr) = {a}, Follow(Lp) =
{a,b}, and First(Lr)∩Follow(Lp) �= {}, so the composition of these models is
not incremental and requires a more detailed verification.

5 Concluding Remarks

Incremental composition eliminates the exhaustive verification of the behavior of
the composed system by restricting the behavior of interacting components. A
simple criterion can be used to check if the interacting components satisfy the
requirement of incremental composition.

A different approach, called component adaptation is proposed in [6]. Its main
idea is to identify mismatches of interacting components and to generate (on the
basis of formal specification of components) component adaptors which eliminate
the identified mismatches. The formal foundation for such an approach is provided
in [28].

A similar approach is proposed in [20].
Different languages, tools, and environments that support some degree of compo-

nent–oriented development, support some kinds of components and component
composition, but no common model exists. Therefore it is difficult to compare dif-
ferent approaches in a unifor way and is difficult to reason about inteoperability
between languages and platforms. More research in this area is expected.

On the other hand, an interesting (and challenging) task that needs to be
addressed is the derivation of Petri net behavioral models of components. The
derivation should be automated using either component formal specifications or
component implementations.

Acknowledgement. The Natural Sciences and Engineering Research Council of Canada
partially supported this research through grant RGPIN-8222. Helpful remarks of three
anonymous reviewers are gratefully acknowledged.

References

1. Aalst van der, W.M.P., Hee van, K.M., Torn van der, R.A.: Component-based software
architecture: a framework based on inheritance of behavior. Science of Computer Pro-
gramming 42(2-3), 129–171 (2002)

310 W.M. Zuberek

2. Attiogbé, J.C., André, P., Ardourel, G.: Checking component composability. In:
Löwe, W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089, pp. 18–33. Springer,
Heidelberg (2006)

3. Batiry, D., Singhal, V., Thosmas, J., Dasari, S., Geract, B., Sirkin, M.: The Gen Voca
model of software system generators. IEEE Software 11(5), 89–94 (1994)

4. Belguidoum, M., Dagnat, F.: Formalization of component substitutability. Electronic
Notes in Theoretical Computer Science 215, 75–92 (2008)

5. Bracha, G., Cook, W.: Mixin-based inheritance. In: Proc. Joint ACM Conf. on Object-
Oriented Pogramming, Systems, Languages and Applications and the u European Conf.
on Object-Oriented Programming, pp. 303–311 (1990)

6. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptations. The
Journal of Systems and Software 74(1), 45–54 (2005)

7. Brada, P., Valenta, L.: Practical verification of component substitutability using sub-
type relation. In: Proc. Int. Conf. on Software Engineering and Advanced Applications
(SEAA 2006), pp. 38–45 (2006)

8. Canal, C., Pimentel, E., Troya, J.M.: Compatibility and inheritance in software architec-
tures. Science of Computer Programming 41(2), 105–138 (2001)

9. Cerna, I., Varekove, P., Zimmerova, B.: Component substitutability via equivalencies of
component-interaction automata. In: Proc. Int. Workshop on Formal Aspects of Compo-
nent Software (FACS 2006), pp. 115–130 (2006)

10. Chaki, S., Clarke, S.M., Groce, A., Jha, S., Veith, H.: Modular verification of software
components in C. IEEE Trans. on Software Engineering 30(6), 388–402 (2004)

11. Costa Seco, J., Caires, L.: A basic model of typed components. In: Proc. 14-th European
Conf. on Object-Oriented Programming, London, UK, pp. 108–128 (2000)

12. Craig, D.C., Zuberek, W.M.: Compatibility of software components – modeling and ver-
ification. In: Proc. Int. Conf. on Dependability of Computer Systems, Szklarska Poreba,
Poland, pp. 11–18 (2006)

13. Craig, D.C., Zuberek, W.M.: Petri nets in modeling component behavior and verifying
component compatibility. In: Proc. Int. Workshop on Petri Nets and Software Engineer-
ing, Siedlce, Poland, pp. 160–174 (2007)

14. Crnkovic, I., Schmidt, H.W., Stafford, J., Wallnau, K.: Automated component-based soft-
ware engineering. The Journal of Systems and Software, vol 74(1), 1–3 (2005)

15. Garlan, D.: Formal modeling and analysis of software architecture: Components, con-
nectors, and events. In: Bernardo, M., Inverardi, P. (eds.) SFM 2003. LNCS, vol. 2804,
pp. 1–24. Springer, Heidelberg (2003)

16. Hameirlain, N.: Flexible behavioral comatibility and substitutability for component pro-
tocols: a formal specification. In: Proc. 5-th Int. Conf. on Software Engineering and
Formal Methods, London, England, pp. 391–400 (2007)

17. Henrio, L., Kammüller, F., Khan, M.U.: A framework for reasoning on component com-
position. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO
2009. LNCS, vol. 6286, pp. 1–20. Springer, Heidelberg (2010)

18. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, languages,
and computations, 2nd edn. Addison-Wesley, Reading (2001)

19. Karlsson, D., Eles, P., Peng, Z.: Formal verification on a component-based reuse method-
ology. In: Proc. 15-th Int. Symp. on System Synthesis, Kyoto, Japan, pp. 156–161 (2002)

20. Leicher, A., Busse, S., Süß, J.G.: Analysis of compositional conflicts in component-
based systems. In: Gschwind, T., Aßmann, U., Wang, J. (eds.) SC 2005. LNCS,
vol. 3628, pp. 67–82. Springer, Heidelberg (2005)

21. Liskov, B., Wing, J.: A behavioral notion of subtyping. ACM Trans. on Programming
Languages and Systems 19(6), 1811–1841 (1994)

Incremental Composition of Software Components 311

22. Magee, J., Dulay, N., Kramer, J.: Specifying distributed software architectures. In:
Botella, P., Schäfer, W. (eds.) ESEC 1995, Sitges, Spain, LNCS, vol. 989, pp. 137–153
(1995)

23. Murata, T.: Petri nets: properties, analysis, and applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

24. Nierstrasz, O., Meijler, T.: Research directions on software composition. ACM Comput-
ing Surveys 27(2), 262–264 (1995)

25. Reisig, W.: Petri nets – an introduction (EATCS Monographs on Theoretical Computer
Science 4). Springer, Heidelberg (1985)

26. Südholt, M.: A model of components with non-regular protocols. In: Gschwind, T.,
Aßmann, U., Wang, J. (eds.) SC 2005. LNCS, vol. 3628, pp. 99–113. Springer, Hei-
delberg (2005)

27. Szyperski, C.: Component software: beyond object-oriented programming, 2nd edn.
Addison–Wesley Professional, London (2002)

28. Ywllin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM Trans.
on Programming Languages and Systems 19(2), 292–333 (1997)

29. Zaremski, A.M., Wang, J.M.: Specification matching of software components. ACM
Trans. on Software Engineering and Methodology 6(4), 333–369 (1997)

30. Zuberek, W.M.: Checking compatibility and substitutability of software components.
In: Models and Methodology of System Dependability, ch.14, pp. 175–186. Oficyna
Wydawnicza Politechniki Wroclawskiej, Wroclaw (2010)

Author Index

Bia�las, Andrzej 1
Bluemke, Ilona 17
Bobchenkov, Alexander 243
Bouabana-Tebibel, Thouraya 169
Bouramoul, Abdelkrim 31

Doan, Bich-Lien 31
Duzhyi, Vyacheslav 87

Ghezzi, Carlo 47

Iwiński, Marcin 63

Jozwiak, Ireneusz 75

Kedziora, Michal 75
Kharchenko, Vyacheslav 87
Kholladi, Mohamed-Khireddine 31
Koutras, Vasilis P. 101
Kowalski, Marcin 117, 131
Kubacki-Gorwecki, Konrad 285
Kulesza, Karol 17

Maciejewski, Henryk 145
Magott, Jan 117, 131
Majdoub, Lotfi 155
Mazurkiewicz, Jacek 271
Melinska, Aleksandra 75

Meziani, Lila 169
Michalska, Katarzyna 257

Papadopoulos, Yiannis 179
Ptak, Roman 145

Rosiński, Adam 193

Sharifloo, Amir Molzam 47
Sharvia, Septavera 179
Siergiejczyk, Miros�law 193
Siora, Olexandr 87
Sosnowski, Janusz 63
Sugier, Jaros�law 205
Surmacz, Tomasz 219
Szlenk, Marcin 233

Toporkova, Anna 243
Toporkov, Victor 243

Volkoviy, Andriy 87

Walkowiak, Tomasz 257, 271
Woda, Marek 285

Yemelyanov, Dmitry 243

Zawistowski, Bartosz 219
Zuberek, W.M. 301

	Title
	Preface
	Contents
	Patterns Improving the Common Criteria Compliant IT Security Development Process
	Introduction
	Project Background
	The Common Criteria IT Security Development Methodology
	Patterns-Based Development
	The CCMODE Project Background and Current Results

	Patterns in the CCMODE Project
	Identification of the Evaluation Evidences Patterns
	Patterns Shape and Contents
	Patterns Validation and Examples
	Patterns Customization

	Conclusions
	References

	A Comparison of Dataflow and Mutation Testing of Java Methods
	Introduction
	Data Flow and Mutation Testing
	Data Flow Testing
	Mutation Testing

	Related Work
	Comparison of Dataflow and Mutation Testing
	Experiment
	Results of Experiments

	Conclusions
	References

	A New Three Levels Context Based Approach for Web Search Engines Evaluation
	Introduction
	How Context Can Be Used in IR
	Definition of Context
	Use of Context in Information Retrieval

	Classic Evaluation of IRS, Principles and Limits
	The TREC and CLEF Evaluation Campaigns
	Limits of Classic Approaches for Evaluating IRS

	Detailed Presentation of the Proposed Approach
	Evaluation of the Search Tool Performance
	Automatic Evaluation of the Results Relevance
	Evaluation of the Relevance by the User's Judgments

	Application of the Proposed Approach to the Evaluation ofSearch Engines
	Managing of Users / Search Engine Interactions Module
	Contextual Evaluation Module

	Results and Discussion
	The Used Protocol
	Performance of Search Engines
	Relevance by the User's Judgments
	Results Relevance according to the Query

	Conclusion
	References

	Quantitative Verification of Non-functional Requirements with Uncertainty
	Introduction
	The U-MarMo Framework
	Sequence Diagrams, Semantics, and Annotation
	Using Property Patterns to Specify Non-functional Requirements
	Target Models and Requirements Specification

	From Sequence Diagrams to Markov Models
	Transforming SDs into DTMCs
	Transforming SDs into CTMCs
	Transforming SDs into Reward DTMCs

	The Framework at Work
	Related Work
	Conclusions and Future Work
	References

	Testing Fault Susceptibility of a Satellite Power Controller
	Introduction
	Satellite Power Controller
	Fault Injection Testbed
	Experimental Results
	Conclusion
	References

	Theoretical and Practical Aspects of Encrypted Containers Detection - Digital Forensics Approach
	Introduction
	Signature Analysis
	Statistical Data Analysis Algorithms
	Entropy Based Detection
	Chi Square Test
	Other Algorithms
	Data Length

	Indirect Methods
	Summary
	References

	Metric-Probabilistic Assessment of Multi-Version Systems: Some Models and Techniques
	Introduction
	Multi-Version Systems and Common Cause Failures:Elements of Taxonomy
	Multi-Version Computing
	Common Event and Common Cause Failures
	Diversity Metrics: β-Factor

	Models of MVSs
	W(n): Simplest MVS
	W(n,m) and W(n,m,l): Multi-Diversion Systems
	General Model of MVS

	Metric-Probabilistic Assessment of MVS Safety
	General Approach to Metric-Probabilistic Assessment
	Assessment of FPGA-Based MVS
	Assessment of Software-Based MVS

	Probabilistic Assessment of MVS Safety
	Reliability Models of MVS
	MVS Reliability Analysis

	Conclusion
	References

	Two-Level Software Rejuvenation Model with Increasing Failure Rate Degradation
	Introduction
	Software Rejuvenation Model
	Modeling Software Performance Degradation
	Two-Level Software Rejuvenation Model
	Model Description

	Semi-markov Analysis
	Asymptotic Availability
	Total Expected Downtime Cost

	Numerical Illustration
	Conclusions
	References

	Towards a UML Profile for Maintenance Process and Reliability Analysis
	Introduction
	Activity Diagrams with READ Transitions in Maintenance Processes Modeling
	Probabilistic Fault Trees with Time Dependencies Adapted to Activity Diagrams
	The READ UML Profile
	Timing Model
	Elaborating Syntactical Validity

	Case Study
	Conclusions
	References

	Conjoining Fault Trees with Petri Nets to Model Repair Policies
	Introduction
	Probabilistic Fault Trees with Time Dependencies
	Fault Graphs with Time Dependencies
	Applying Fault Graphs with Time Dependencies to Selected Repair Policies
	The GRT Repair Policy
	The SRT-F/SRT-I Repair Policies

	Final Remarks
	References

	Analysis of Geometric Features of Handwriting to Discover a Forgery
	Introduction
	Geometric Features Derived from Handwritten Text
	Verification of the Hypothesis of Common Authorship of QMand RM
	Analysis of Similarity of Feature Vectors
	Conclusions
	References

	A Formal Framework for Testing duration Systems
	Introduction
	Duration Variables Timed Graphs with Inputs Outputs
	Formal Definition
	Example
	State Graph
	Basic Definitions

	Digitization
	Test Generation Framework
	The Test Tree
	Algorithm of Generating Test Tree

	Properties of the Test Tree
	Conclusion
	References

	Dynamic Model Initialization Using UML
	Introduction
	Related Works
	Background
	Transforming State Machines into OPNs
	Value-Oriented Specification

	Initialization Approach
	Syntax and Semantics of Object Diagrams
	Distribution of Objects on the OPNs

	Validation of the Approach
	Conclusion and Perspective
	References

	Integrated Application of Compositional and Behavioural Safety Analysis
	Introduction
	Integrated Application of Compositional and Behavioural Safety Analysis (IACoB)
	Example
	Introduction to Brake-by-Wire System
	Analysis of System Functional Models
	Functional Failure Analysis
	FMEA
	Construction of State Machine
	Verification of Safety Requirements

	Conclusions
	References

	Reliability Analysis of Electronic Protection Systems Using Optical Links
	Introduction
	Analysis of Electronic Protection Systems Using Optical Links
	Analysis of Practical Application Reliability of Electronic Protection Systems Using Optical Links
	Conclusions
	References

	Avoiding Probability Saturation during Adjustment of Markov Models of Ageing Equipment
	Introduction
	Adjusting the Deterioration Model
	Construction of the Model
	Adjusting the Model to Requested Repair Frequencies
	Tuning Repair Probabilities

	Automatic Correction of the Model in the Case of Probability Saturation
	Application Context
	The Problem of Model Saturation
	Challenges of Model Alteration
	Extension of the Adjustment Procedure

	Conclusions
	References

	Bad Memory Blocks Exclusion in Linux Operating System
	Introduction
	Memory Faults and Testing Methods
	Memory Testing Using Memtest86
	Memory Management in Linux
	Marking Bad Blocks by Linux Kernel
	Testing Methodology
	Limitations and Further Perspective
	Conclusions
	References

	Metamodel and UML Profile for Functional Programming Languages
	Introduction
	Functional Programming
	Haskell

	Metamodel
	Haskell Metamodel

	Profile
	Stereotypes
	Constraints

	Related Work
	Conclusion and Further Work
	References

	Resource Co-allocation Algorithms for Job Batch Scheduling in Dependable Distributed Computing
	Introduction
	Main Scheduling Scheme
	Slot Search Algorithms
	AMP Search Example
	Simulation Studies
	Conclusions and Future Work
	References

	Functional Based Reliability Analysis of Web Based Information Systems
	Introduction
	Taxonomy of Faults
	Web Based Information System Model
	Information System Functional Model
	Service Response Time Model

	Dependability Analysis
	Overview of the Approach
	Availability Metric
	Demanded Performance Parameters
	Reliability Model
	Two Level Simulations

	Experiments and Results
	Testbed
	Reliability Parameters
	Results

	Conclusion
	References

	Human Resource Influence on Dependability of Discrete Transportation Systems
	Introduction
	Polish Post Transportation System
	DTS Formal Model
	Overview
	Technical and Human Infrastructure
	Business Service
	Client Model
	Management Model

	Availability Metric
	Case Study Analysis
	Exemplar DTS
	Results and Discussion

	Conclusion
	References

	An Effective Learning Environment
	Introduction
	System Architecture
	Basic Terms and Assumptions
	The Concept of Agent Based System

	Adaptation Algorithms
	Learning Path Building
	Content Presentation Strategies

	Conclusions
	References

	Incremental Composition of Software Components
	Introduction
	Petri Net Models od Component Behavior
	Component Compatibility
	Bounded Models
	Unbounbded Models

	Incremental Composition
	Concluding Remarks
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

