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Preface

Traditionally, Reliability theory studies networks whose components subject to
failure (edges and/or nodes) are binary, i.e., have two states—up and down.
Typically, network DOWN state is defined as loss of terminal connectivity or a
break-up into a critical number of components. There are two most often used tools
for investigating network reliability—Monte Carlo simulation and the so-called
D-spectra technique.

The ‘‘standard’’ model in network Monte Carlo [1] assumes that components fail
independently, and node (or edge) i fails with probability qi. The goal of Monte
Carlo simulation is estimation of network static DOWN probability. In our opinion,
the most efficient and accurate Monte Carlo method is the so-called evolution and
merging algorithm originally suggested by M. V. Lomonosov [2, 3]. It has been
shown [4] that this algorithm can be easily adapted to the case of non-reliable nodes.
When all components are statistically independent and identical, i.e., have the same
down probability q, reliability analysis can be considerably simplified by using the
so-called D-spectra or signature technique. D-spectrum is a discrete distribution
f ¼ f1; f2; . . .; fnð Þ, where fi is the probability that system failure takes places at the
instant of the i-th component failure. D-spectrum is system combinatorial invariant.
It depends only on system structure function and has the following surprising
property: the number C xð Þ of system failure sets with exactly x components down,
can be expressed via the D-spectrum by the following simple formula:

C xð Þ ¼ f1 þ � � � þ fxð Þ � n!= x! n� xð Þ!ð Þ

The cumulative D-spectrum FðxÞ ¼ f1 þ � � � þ fx can be easily estimated by
means of Monte Carlo simulation. To calculate P DOWNð Þ we use the formula:

P DOWNð Þ ¼
Xn

j¼1

C jð Þq jpn�j : �ð Þ

D-spectra technique works quite well for networks of small to medium size
with 30–100 components. All D-spectra-based techniques can be easily extended
to the binary networks having more than two states [5]. Moreover, a modification
of D-spectra allows obtaining another system invariant, so-called Importance
Spectrum, by means of which it becomes possible to calculate component
Birnbaum Importance Measure (BIM), widely used in network design [2, 3, 6–8].
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Summing up, network reliability theory successfully handles systems with two
principal limitations:

(i) components fail independently;
(ii) components are binary.

We do not see an easy way to relax assumption (i), except for some ad hoc
situations. Since violation of independence cannot be formalized into a simple
‘‘dependence’’ model, we cannot expect, in our opinion, rapid and decisive
progress in this direction.

What about the second assumption? Almost every practical application of
networks to real-life situations puts a question mark to the binary assumption
regarding the component state. Here are some examples.

If the network describes the road system, link e ¼ a; bð Þ failure means traffic
violation between nodes a and b. This violation almost never means complete
disruption of transport flow. Natural disaster like flood or earthquake, may lead to
only partial damage of the road segment. Therefore, between the perfect state of a
link and its complete failure there should be at least one intermediate state.

Similar is the situation in flow networks. If an edge e ¼ ða; bÞ representing
water supply pipe is in perfect state (up), it can deliver maximal amount of water,
say of 1,000 cube/h. If it is broken (down) no water is delivered from a to b. But
there are also situations when due to some technical reasons (e.g., leaks, main-
tenance works, partial damage) the water flow is reduced by 50 or 30 %. This
means that an adequate description of the link asks for introducing one or several
intermediate states between up and down. Communication networks consist of
communication lines (channels) allowing different rates of information transmis-
sion depending on the technical state of the channel. In the absence of interfer-
ences (up state) the transmission speed is maximal. In case of broken channel
(down) the speed is reduced to zero. It may happen that during peak hours, the
transmission speed gets reduced by 30 %, which represents an intermediate state
‘‘between’’ up and down.

Social networks representing connections between individuals have also several
degrees of ‘‘closeness’’ between two individuals who either maintain an extensive
information exchange, or have no exchange at all, or have a reduced level of
communication.

This book is devoted to the reliability analysis of ternary (or trinary) networks,
i.e., to networks whose components subject to failure have three states: up, down
and an intermediate state which we call mid. It turns out that the D-spectra
technique can be extended to the case of components with three states. The price
for this extension is introducing a more complicated version of D-spectrum, the
ternary D-spectrum.

Ternary D-spectrum is a collection of so-called cumulative r-spectra Fr xð Þ; r ¼
0; 1; . . .; n� 1; x ¼ 1; 2; . . .; n� r: Here FrðxÞ is the probability that the network is
DOWN if r of its components are up, x components are down and the remaining
n� r � xð Þ are in state mid. Formally, instead of a vector f in binary case, we have
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a set of vectors for ternary case. The approximate computation of the ternary
spectrum is carried out by a quite straightforward Monte Carlo procedure.

Ternary spectrum is a network combinatorial invariant, and if it is known in
addition to the fact that all components are statistically independent and identical,
system DOWN probability can be computed by means of a simple formula similar
to (*). The material of this book is organized as follows.

Section 1.1–1.4 of Chap. 1 are devoted to the definition and properties of
the ternary D-spectrum. The knowledge of the ternary D-spectrum Fr xð Þf g allows
counting the network failure sets with given structure. Let C r; xð Þ be the number
of failure sets having r components up, x components down and the remaining
n� r � x components in mid state. Then we prove that

C r; xð Þ ¼ Fr xð Þ � n!

r!x! n� r � xð Þ! � ��ð Þ

If all network components are independent and identical, (**) allows to find
network DOWN probability by means of the following formula:

P DOWNð Þ ¼
X

r;x:0� r þ x� nf g
C r; xð Þpr

2p n�r�xð Þ
1 px

0;

where p2; p1; p0 are components up, mid, and down probability, respectively.
Section 1.5 of Chap. 1 is devoted to a modification of ternary D-spectrum called

ternary importance spectrum which allows to evaluate network component
importance measures. These measures are a modification of Birnbaum Importance
Measures [3, 5–8] adjusted to ternary components.

Section 1.6 describes how to obtain an approximation to the ternary D-spectrum
and to the component importance measures using Monte Carlo simulation
techniques.

Chapter 2 consists of two parts. The first part (Sects. 2.1–2.4) is a numerical
illustration of the theory developed in Chap. 1. In Sect. 2.1 we consider reliability
calculations for an H4 network. The network is a hypercube of order four, it has 16
nodes and 32 edges. Next, we define in it two sets of terminals, T1 and T2. An edge
e ¼ a; bð Þ in state up provides high communication speed between a and b. If this
edge is in state mid, the a$ b communication goes with reduced speed; down
state for an edge means that this edge does not exist. Edge state is chosen randomly
and independently, according to probabilities p2; p1; p0 for up, mid, and down state,
respectively. System UP state is defined as the existence of high-speed commu-
nication between nodes of T1 and the existence of a path of operational edges
between any pair of nodes of T2. We present data on network reliability and on the
ternary D-spectrum.

Section 2.2 considers a stochastic source—terminal problem for a dodecahe-
dron network. In this network, an edge e ¼ ða; bÞ, except for edges going out of
s and into t, is in fact a pair of directed links for a! b and b! a directed flows.
Each link has capacity 6, 3, or 0 for up, mid and down state, respectively.
The network has two DOWN states, DOWN2 and DOWN1, for the flow less than
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L1 or L2, respectively (L2\L1). We present data on network reliability for various
values of edge probability vectors p ¼ p2; p1; p0ð Þ.

Section 2.3 is an example of a rectangular grid network with 100 nodes and 180
edges. Components subject to failure are the nodes. If a node is down all edges
adjacent to it are erased and the node gets isolated. If a node is in mid state, it has
only horizontal or vertical edges, depending on the position of the node. For
this network we calculate the probability that the largest connected node set
(an analogue to a ‘‘giant’’ component) has less than L nodes.

The first part of Chap. 2 is concluded by Sect. 2.4 which presents edge
importance data and their analysis for H4 network. The second part (Sect. 2.5)
deals with networks which have statistically independent and nonidentical com-

ponents. Component i has state distribution pðiÞ ¼ ðpðiÞ2 ; p
ðiÞ
1 ; p

ðiÞ
0 Þ meaning that the

component is in state up, mid, and down with probability pðiÞ2 ; p
ðiÞ
1 and pðiÞ0 ,

respectively. In this situation, different failure sets with the same number of
components in up, mid, down have different probabilistic weights, and this makes
it not possible to use the ternary spectrum technique for finding system DOWN
probability. What remains in this more complex case is to resort to a fast and
accurate Monte Carlo method. Such a method is based on a modification of M. V.
Lomonosov’s evolution algorithm [2, 3]. The algorithm is described in Sects. 2.5.1
and 2.5.2. Its action is illustrated by numerical examples of flow and grid networks.

In reality, networks usually interact with each other and failure in one network
causes failure in another one. For example, functioning of a city road network
strongly depends on the traffic light power supply system: several non-functioning
traffic lights (‘‘nodes’’) may cause traffic jams in large areas. Another example is
power supply network and communication network which strongly interact with
each other.

The simplest form of two interacting networks is sharing the same set of nodes
by two independent networks. For example, the power supply and water supply
networks in the same geographic area share the same set of nodes (houses or
residencies). Section 3.1 presents several simple results concerning the size of the
set of nodes which receive ‘‘full’’ supply, i.e., are adjacent to edges of both types.
Here we use some basic facts from the theory of large random Poisson networks [9].

Section 3.2 considers a system of two or more finite interacting networks. Here
the interaction means that a node va of network A delivers ‘‘infection’’ to a
randomly chosen node vb in B which in turn, bounces back and infects another
randomly chosen node wa in network A, and so on. As a result, a random number Y
of nodes in B gets ‘‘infected’’ and fails. We compute, using D-spectra technique,
the DOWN probability for network B. This model is generalized to the case of
several peripheral networks attacking one ‘‘central’’ binary network B. In this
‘‘attack,’’ some nodes in B will receive more than one hit. The use of DeMoivre
combinatorial formula combined with the D-spectra technique allows us to obtain
in a closed form an expression for network B DOWN probability.

Finally, Sect. 3.3 extends the results of Sect. 3.2 to the case when the ‘‘central’’
network is ternary. In that case, we must take into account that nodes which were
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hit once or more will be in different states. It is assumed that a node hit only once
changes its state from up to mid. When this node receives another hit, it turns into
down and remains in it forever. Network DOWN probability for this case can be
estimated by a Monte Carlo algorithm.

George Box used to cite the aphorism: ‘‘all models are wrong; some models are
useful.’’ We hope that some models presented in this book might be useful to
reliability researchers involved in network study and design, and to reliability
engineers interested in applications of the theory to practical calculations of
network reliability parameters.

Acknowledgments

My work was partially supported by the Australian Research Council under grant
number CE140100049.

March 2014 Ilya Gertsbakh
Yoseph Shpungin
Radislav Vaisman

References

1. Kroese D, Taimre T, Botev ZI (2011) Handbook of Monte Carlo methods, Chap. 16. Wiley,
New York, pp. 549–576

2. Elperin T, Gertsbakh IB, Lomonosov M (1991) Estimation of network reliability using graph
evolution models. IEEE Trans Reliab 40(5):572–581

3. Gertsbakh I, Shpungin Y (2009) Models of network reliability: analysis, combinatorics and
Monte Carlo. CRC Press, Boca Raton

4. Gertsbakh I, Shpungin Y, Vaisman R (2014) Network reliability Monte Carlo with nodes
subject to failure. Int J Perform Eng 10(2) 161–170

5. Gertsbakh I, Shpungin Y (2011) Network reliability and resilience, Springer Briefs in
Electrical and Computer Engineering, Springer. Berlin, Heidelberg

6. Barlow RE, Frank Proschan (1975) Statistical theory of reliability and life testing. Holt,
Rinehart and Winston, Inc., New York

7. Birnbaum ZW (1969) On the importance of different components in multicomponent system.
In: Krishnaiah PR (ed) Multivarite analysis-II. Academic Press, New York, pp 581–592

8. Gertsbakh I, Shpungin Y (2012) Combinatorial approach to computing importance indices of
coherent systems. Probab Eng Inf Sci 26:117–128

9. Newman MEJ (2010) Networks. An introduction. Oxford University Press, Oxford

Preface ix



Contents

1 Networks with Ternary Components: Ternary Spectrum. . . . . . . . 1
1.1 Introduction: Networks with Binary

and Ternary Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Ternary D-Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Dynamic Version of Theorem 1.2.2 . . . . . . . . . . . . . . . . . . . . . 11
1.4 P(UP) and Path Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.1 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Component Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5.2 TIM-Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6 Ternary Spectrum Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . 21
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1 Hypercube Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Flow Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Survival of a Ternary Grid Network . . . . . . . . . . . . . . . . . . . . 31
2.4 Component Importance in Hypercube H4 Network . . . . . . . . . . 34
2.5 Evolution Process for Ternary Network . . . . . . . . . . . . . . . . . . 37

2.5.1 Lomonosov’s Evolution Process with Merging . . . . . . . . 37
2.5.2 Extension of LA to Multistate Components . . . . . . . . . . 41
2.5.3 Flow Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.4 Grid Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Interaction of Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1 Networks With Colored Links. . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Interacting Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.2 Two Interacting Binary Networks . . . . . . . . . . . . . . . . . 52
3.2.3 Cumulative D-spectrum: A Reminder . . . . . . . . . . . . . . 54
3.2.4 Star-Type System of Interacting Binary Networks. . . . . . 56

xi

http://dx.doi.org/10.1007/978-3-319-06440-6_1
http://dx.doi.org/10.1007/978-3-319-06440-6_1
http://dx.doi.org/10.1007/978-3-319-06440-6_1#Sec1
http://dx.doi.org/10.1007/978-3-319-06440-6_1#Sec1
http://dx.doi.org/10.1007/978-3-319-06440-6_1#Sec1
http://dx.doi.org/10.1007/978-3-319-06440-6_1#Sec2
http://dx.doi.org/10.1007/978-3-319-06440-6_1#Sec2
http://dx.doi.org/10.1007/978-3-319-06440-6_1#Sec3
http://dx.doi.org/10.1007/978-3-319-06440-6_1#Sec3
http://dx.doi.org/10.1007/978-3-319-06440-6_1#Sec4
http://dx.doi.org/10.1007/978-3-319-06440-6_1#Sec4
http://dx.doi.org/10.1007/978-3-319-06440-6_1#Sec5
http://dx.doi.org/10.1007/978-3-319-06440-6_1#Sec5
http://dx.doi.org/10.1007/978-3-319-06440-6_1#Sec6
http://dx.doi.org/10.1007/978-3-319-06440-6_1#Sec6
http://dx.doi.org/10.1007/978-3-319-06440-6_1#Sec7
http://dx.doi.org/10.1007/978-3-319-06440-6_1#Sec7
http://dx.doi.org/10.1007/978-3-319-06440-6_1#Sec8
http://dx.doi.org/10.1007/978-3-319-06440-6_1#Sec8
http://dx.doi.org/10.1007/978-3-319-06440-6_1#Sec9
http://dx.doi.org/10.1007/978-3-319-06440-6_1#Sec9
http://dx.doi.org/10.1007/978-3-319-06440-6_1#Bib1
http://dx.doi.org/10.1007/978-3-319-06440-6_2
http://dx.doi.org/10.1007/978-3-319-06440-6_2
http://dx.doi.org/10.1007/978-3-319-06440-6_2#Sec1
http://dx.doi.org/10.1007/978-3-319-06440-6_2#Sec1
http://dx.doi.org/10.1007/978-3-319-06440-6_2#Sec2
http://dx.doi.org/10.1007/978-3-319-06440-6_2#Sec2
http://dx.doi.org/10.1007/978-3-319-06440-6_2#Sec3
http://dx.doi.org/10.1007/978-3-319-06440-6_2#Sec3
http://dx.doi.org/10.1007/978-3-319-06440-6_2#Sec4
http://dx.doi.org/10.1007/978-3-319-06440-6_2#Sec4
http://dx.doi.org/10.1007/978-3-319-06440-6_2#Sec4
http://dx.doi.org/10.1007/978-3-319-06440-6_2#Sec5
http://dx.doi.org/10.1007/978-3-319-06440-6_2#Sec5
http://dx.doi.org/10.1007/978-3-319-06440-6_2#Sec6
http://dx.doi.org/10.1007/978-3-319-06440-6_2#Sec6
http://dx.doi.org/10.1007/978-3-319-06440-6_2#Sec7
http://dx.doi.org/10.1007/978-3-319-06440-6_2#Sec7
http://dx.doi.org/10.1007/978-3-319-06440-6_2#Sec8
http://dx.doi.org/10.1007/978-3-319-06440-6_2#Sec8
http://dx.doi.org/10.1007/978-3-319-06440-6_2#Sec9
http://dx.doi.org/10.1007/978-3-319-06440-6_2#Sec9
http://dx.doi.org/10.1007/978-3-319-06440-6_2#Bib1
http://dx.doi.org/10.1007/978-3-319-06440-6_3
http://dx.doi.org/10.1007/978-3-319-06440-6_3
http://dx.doi.org/10.1007/978-3-319-06440-6_3#Sec1
http://dx.doi.org/10.1007/978-3-319-06440-6_3#Sec1
http://dx.doi.org/10.1007/978-3-319-06440-6_3#Sec2
http://dx.doi.org/10.1007/978-3-319-06440-6_3#Sec2
http://dx.doi.org/10.1007/978-3-319-06440-6_3#Sec3
http://dx.doi.org/10.1007/978-3-319-06440-6_3#Sec3
http://dx.doi.org/10.1007/978-3-319-06440-6_3#Sec4
http://dx.doi.org/10.1007/978-3-319-06440-6_3#Sec4
http://dx.doi.org/10.1007/978-3-319-06440-6_3#Sec5
http://dx.doi.org/10.1007/978-3-319-06440-6_3#Sec5
http://dx.doi.org/10.1007/978-3-319-06440-6_3#Sec6
http://dx.doi.org/10.1007/978-3-319-06440-6_3#Sec6


3.3 Star-Type System With Central Ternary Network . . . . . . . . . . . 58
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xii Contents

http://dx.doi.org/10.1007/978-3-319-06440-6_3#Sec7
http://dx.doi.org/10.1007/978-3-319-06440-6_3#Sec7
http://dx.doi.org/10.1007/978-3-319-06440-6_3#Bib1


Notations

up; down;mid Component states in ternary system
c.d.f. CDF—cumulative distribution

function
s;X; Y ; Z Random variables
vðtÞ Time-continuous random process
X�Exp kð Þ r.v. X is exponentially distributed

with parameter k
CPU time Central process unit computation

time
RE Relative error
UP;DOWN System operational and failure state,

respectively
N ¼ V ;E; Tð Þ Network with node (vertex) set V ,

edge (link) set E and terminal set T
p2; p1; p0 Probability that a component is in

state up, mid (middle) and down,
respectively

y ¼ ðy1; y2; . . .; ynÞ System (network) state vector;
yi ¼ 2, yi ¼ 1, or yi ¼ 0 if
component i is up, mid, or
down, respectively

p ¼ ið2Þ1 ; . . .ið2Þr ; ið1Þrþ1; . . .; ið1Þn

� �
r-type random permutation of
component numbers, in which on the
first r positions the components are
in up, and on the remaining—in mid

FrðxÞ; r ¼ 0; . . .; n� 1; x ¼ 0; . . .; n� rf g Ternary D-spectrum. r is the
number of components in up, x—the
number of components in down
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C r; xð Þ Number of system failure sets
having r components up and x
components down

s�Exp Kð Þ Random variable s is
exponentially distributed with
parameter K
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Chapter 1
Networks with Ternary Components:
Ternary Spectrum

Abstract In this chapter we consider a monotone binary system with ternary com-
ponents. “Ternary” or (“trinary”) means that each component can be in one of three
states: up, middle (mid) and down. It turns out that for this system exists a combi-
natorial invariant by means of which it is possible to count the number C(r; x) of
system failure sets with a given number of r components in up, x components in
down and the remaining components in state mid. This invariant is called ternary
D-spectrum and it is an analogue of signature or D-spectrum for a binary systemwith
binary components. Contrary to D-spectrum, it is not a single set of probabilities, but
a collection of such sets. The r -th member of this collection resembles a D-spectrum
computed for a special case for which r components are permanently turned into
state up. If system (network) components are statistically independent and identi-
cal, and have probabilities p2, p1 and p0, to be in up, mid and down, respectively,
then the ternary D-spectrum allows obtaining a simple formula for calculating sys-
tem DOWN probability. We consider also so-called ternary importance spectrum by
means of which it becomes possible to rank system components by their importance
measures. These importance measures are similar to Birnbaum importance measures
that are well-known in Reliability Theory. The chapter is concluded by a description
of Monte Carlo procedures used for approximating the ternary spectra.

Keywords Ternary components · Ternary network · Signature · Ternary
D-spectrum · Failure sets · Ternary importance measure

1.1 Introduction: Networks with Binary and Ternary
Components

A standard object in Reliability Theory is a binary monotone system [1]. It consists
of n components, and each component is binary, i.e. it can be in two states: up and
down denoted 1 and 0, respectively. The state of system components is described
by a binary vector x = (x1, x2, . . . , xn), where the i-th coordinate xi = 1(0) if
component i is up (down). Typically, it is assumed that the state of the whole system

I. Gertsbakh et al., Ternary Networks, SpringerBriefs in Electrical 1
and Computer Engineering, DOI: 10.1007/978-3-319-06440-6_1,
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is also binary, i.e. the whole system is operational (UP) or nonoperational (DOWN).
The system state is a binary variable ϕ having value 1 if the system is UP and value
0, if the system is DOWN. We assume that system state is completely determined by
the state of its components, i.e

ϕ = ϕ(x).

Traditionally, Reliability Theory deals with so-called monotone systems. These sys-
tems have the following natural properties:

(i) ϕ(0, 0, . . . , 0) = 0; system is DOWN if all its components are down.
(ii) ϕ(1, 1, . . . , 1) = 1; system is UP if all its components are up.

Let x and y be binary state vectors such that xi ≥ yi and there is one index j for
which x j > y j . Then we say that x > y.
(iii) If x > y than ϕ(x) ≥ ϕ(y).

This means that replacement of an up component by a down one either does not
affect the current system state or can lead to the transition from UP to DOWN.

It is desirable to have a visual image of a monotone system. In Reliability,
examples of monotone systems are always networks. For example, a simple network
called bridge is a standard illustrative monotone system example in many reliability
books. From now on, we will deal only with networks.
In simple words, a network is a collection of nodes (vertices) and edges (links)
connecting the nodes. Formally, a network N is described by means of two sets:
N = (V, E), where V is the node (vertex) set, |V | = n, E is the edge (link) set,
|E | = m.

Physically, nodes serve to denote computers, power stations, individuals, infor-
mation sources, etc., and edges are simplified images of communication lines, power
supply lines, connections of individuals, channels of information exchange, and so
on. Traditionally, Reliability Theory considers binary networks, i.e. networks whose
components have two states: up and down. For a node v state down means that all
edges adjacent to v are erased, and v becomes isolated. For an edge e = (a, b) the
down state means that e does not exist, or is erased, and that there is no direct connec-
tion from a to b via this edge. According to the function carried out by the network,
we define several performance levels for performance of the whole network. Let us
first concentrate on the situation with only two levels denoted as UP and DOWN.
Historically, research efforts have been mainly concentrated around the study of net-
work connectivity in case of unreliable nodes or edges. The definition of network
UP and DOWN states involves a special node set T , |T | = r , called terminal set.
Nodes of this set never fail. The network is UP if and only if all nodes in the terminal
set are connected to each other by operational edges.

Often network UP/DOWN states are associated with the size of its largest (con-
nected) component: network is declared as being DOWN if the number of nodes in
the largest component becomes less than some critical value L .

Binary networks are strongly simplified models of real systems. Probably, the
most questionable part of this simplification is the binary assumption regarding the
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state of network components. Indeed, if an edge e = (a, b) represents a water or gas
supply pipeline from a to b, in reality this pipeline can be in more than two states:
fully operational, 50 or 30 % operational, etc. and completely down. An information
channel can provide a high-speed transmission rate, transmissionwith reduced speed,
and so on. As it always happens, using “more adequate” model seems on one hand to
be more realistic, but on the other hand—involves serious computational difficulties.
Take, for example, a simple network—four-node five-edge bridge system. If its edges
are binary, then the there are 25 = 32 different component state vectors. If we assume
that each edge has three states, we will have 35 = 243 state vectors!

Reliability calculations for binary networks of small-to-medium size (100–200
nodes) has been considerably simplified by using so-called D-spectra techniques,
see [4, 5, 8, 9]. Let us describe its main features.

Denote by e1, e2, . . . , en network components which are subject to failure. Con-
sider a random permutation of network component numbers:

π = (ei1 , ei2 , . . . , ein ). (1.1)

Suppose that all components in (1.1) are up, and move along π from left to right,
and turn each component from up to down. Suppose that network state is controlled
after each step.

Definition 1.1.1 The ordinal number in the permutation of the component whose
turning down causes the network to go DOWN is called anchor and denoted δ(π). #

Assume that all permutations are equally probable and each particular permutation
has probability 1/n! Then we can speak about the probability f (x) that δ(π) =
x, x = 1, 2, . . . , n. Formally, this is the fraction of those permutations which have
anchor x . Obviously, the collection { f (x), x = 1, . . . , n} is a proper discrete density.
Definition 1.1.2 The discrete cumulative distribution function F(x) = ∑x

i=1 f (i) is
called the cumulative D-spectrum or simply D-spectrum. (“D” stands for “destruc-
tion” of components). #

The D-spectrum is system combinatorial invariant. It does not depend on the
probabilistic properties of network components. Now suppose that all network
components are stochastically independent and have the same down probability q.
(p = 1 − q is component up probability).

Let us call system binary state vector y a failure set if ϕ(y) = 0.
Denote by C(x) the number of network failure sets which have exactly x compo-

nents down and the remaining n − x components up. The probabilistic weight of all
failure sets of this type is

W (x) = C(x)p(n−x)qx . (1.2)

Then the network is DOWN with probability

P(DOW N ) =
n∑

x=1

C(x)p(n−x)qx . (1.3)
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Fig. 1.1 Information (infec-
tion) transmission by a node in
up (left) and in mid (center)

The following combinatorial property of the D-spectrum plays crucial role in all our
reliability calculations, see [5–7, 9]:

C(x) = F(x)
n!

x !(n − x)! . (1.4)

Let us note here that the D-spectrum is approximated by means of Monte Carlo
simulation. Numerous calculations prove that for a network with node number in
the range 80–120, it is possible to obtain in few minutes of CPU-time a rather
accurate approximation to the D-spectrum which guarantees about 0.5% accuracy
in estimating network reliability, see [4, 5, 7].

So far we described how the spectrum technique works for binary systems, i.e. for
networks with binary components. We mentioned also that “binary world” implies
a considerable simplification of reality and may become an inadequate tool for reli-
ability modeling. In the next section we will describe a new collection of reliability
models in which we allow the network components to be in three states: up, down
and middle (mid), thus introducing so-called ternary (or “trinary”) systems. Let us
consider several typical examples of ternary networks.

Providing strong and weak connectivity. Supposewehave a networkN = (V, E)

with two terminal sets T1 and T2, T1 ⊂ V, T2 ⊆ V . We say that the terminals of
the set T1 are strongly connected if all nodes in T1 are connected to each other by
edges in state up. We say that nodes in T2 are weakly connected if all nodes in T2
are connected to each other by links in state up or in mid. Now define network states
UP and DOWN as follows: network is UP if the set T1 is strongly connected (event
A) and the set T2 is weakly connected (event B). Network is DOWN if the event
D = A ∩ B takes place. In practice, strong connection may correspond to fast or
more reliable information transmission than in case of “weak” connectivity.

Information/current transmission or percolation on a nonhomogeneous grid.
Consider a rectangular two-dimensional grid in which infection is transmitted from
infected node to adjacent nodes along edges. Each node (except the border nodes
and the corners) is adjacent to four edges. A node is considered up if, upon receiving
information, it transmits it in all four directions. The node is considered in state mid
if it transmits information only in horizontal or only in vertical direction. The node
which is down is isolated and cannot receive/transmit any information, see Fig. 1.1.

Flow networks. In describing flows in networks, edges represent transmission
channels, power supply lines, water pipes, etc. In the framework of binary network
we are forced to consider each facility e = (a, b) transmitting from node a to node
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b in two extreme states: operable and nonoperable, i.e. having some maximal flow
capacity c(e) or capacity 0. More adequate is the model in which we introduce for
each edge e = (a, b) three levels of performance, say maximal capacity cmax(e) (up
state), intermediate capacity c0(e) = 0.5 · cmax (mid state), and zero capacity in case
of failure (down state).

The price for consideringmore flexible ternarymodels is the necessity to introduce
more involved combinatorial invariant thanD-spectrum.D-spectrum is in fact a single
discrete distribution, a vector. For dealingwith ternary networks we have to introduce
the so-called ternary spectrum, which is a collection of vectors.

1.2 Ternary D-Spectrum

Networks with ternary components
Consider a network with components numbered 1, 2, . . . , n. Each component can

be in three states: up, mid and down. j-th component statewill be denoted by a ternary
variable yi = 2, 1 or 0 if component j is up, mid or down, respectively. The state of
all system components is described by a ternary vector y = (y1, y2, . . . , yn).

The state of the ternary system is denoted by ϕ and depends on component state
vector y:

ϕ = ϕ(y).

We assume that ternary networks have the same properties (i), (ii) and (iii) postulated
for binary systems.

If y = (y1, y2, . . . , yn) has the property that ϕ(y) = 0, we call it failure vector
or failure set. If a failure set has r components in up (i.e. equal 2), x components in
down (i.e. equal 0), and remaining components in mid, we call it an (r; x)-failure
set.

Types of permutations Our object of main interest will be random permutations of
system component numbers.

First, let us define a random permutation of r -th type, r = 0, 1, . . . , n −1. This is
a random permutation of component numbers in which the components on the first
r positions are turned into state up, and the components on the remaining positions
are initially in state mid. It has the following form:

πr = {(i (2)1 , i (2)2 , . . . , i (2)r ; i (1)r+1, i (1)r+2, . . . , i (1)n }.

Here the upper index at is denotes the state of the component on the s-th position:
2-denotes up, 1-denotes mid, and 0-denotes down. Permutation of 0-type, by the
definition, has all its components in state mid.

Destruction process Destruction process has several stages denoted by 0, 1, . . . ,
n − 1. Stage r of the destruction process consists of generating random permutation
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of r -th type, an initial check of system state and sequential destruction of its mid
components (i.e. turning them from mid to down) by moving from left to right.

The check of initial system state means checking system state when the r first
components in the permutation are up and all remaining components are in state
mid. If for a particular r -permutation the check reveals that the system is already
DOW N , we say that this permutation has the anchor equal zero.

In the process of sequential destruction we are turning components from mid to
down and check the system state after each component destruction. The anchor of a
permutation of r -th type is the number of components which have been turned down
when the system was for the first time discovered in state DOWN. Let us denote the
anchor of r-th type permutation by δ(πr ).

There are two particular types of r -permutations which is convenient to consider
separately.

First type is the following. Each permutation of type j , j = 0, 1, . . . , r0, has the
property that the system always isDOWN before even a single component inmid has
been turned down. All these permutations have the anchor equal zero. For example,
to be in UP state the system must have at least three components up, no matter how
many components are in state mid. Then obviously each permutation of type 0,1 and
2, which has less than than 3 components up and all others in mid imply that the
system is already DOWN. Let us call permutations with the above property A-type
permutations (“A” stands for “abnormal”).

Remark 1.1.1 The maximal r for which A-permutations do exist is denoted by r0. If
there are no permutations of A-type, we put r0 = −1. #

Second type of permutations have the following “survival” property: after turning
down all n − r components which were in mid, the system remains in state UP. Call
them permutations of type B. Suppose that all r- type permutations for r > rmax are
of type B.

Example 1.1.1 Suppose, the system has seven components. Consider a 3-rd type
random permutation

π3 = (2(2), 1(2), 7(2); 6(1), 4(1), 5(1), 3(1)).

In this permutation, the first three positions occupy components 2, 1 and 7 which are
in state 2, i.e. up. The remaining components are in state 1: component 6 is on the
fourth position (from left to right), component 5 is on sixth position, etc. Suppose
that we start turning into down the components in mid by moving from left to right.
Suppose that after doing this to components 6 and 4, the system remained in UP.
When we turned down component 5, the system went DOWN. Then the anchor of
this permutation δ(π3) = 3. #

From now on, we assume that we deal only with “regular” permutations which
are not of type A and not of type B, i.e. we consider only r -permutations for r0 <

r ≤ rmax.
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Assume that on each stage of the destruction process, all r—permutations are
equally probable and each particular permutation appears with probability 1/n!. Let
fr (y) be the probability that the anchor of r -th type permutation equals y, y =
0, 1, 2, . . . , n − r :

fr (y) = P(in πr , the anchor δ(πr ) = y).

Since the total number of permutations on for each r is n!, for y = 0, 1, . . . , n − r

fr (y) = The number of r -permutationswith δ(πr ) = y

n! . (1.5)

Remark 1.2.2 All n! r -permutations are classified during the destruction process into
n − r +2 classes: n − r +1 classes—according to the anchor position, and one extra
class—for r -permutations where the system remainsUP if all n−r mid components
have been turned down, i.e the anchor was not found. Some of these classes may be
empty. #

Definition 1.2.3 Let r0 < r ≤ rmax. Then let

Fr (x) =
x∑

y=0

fr (y), x = 0, 1, 2, . . . , n − r.

is called cumulative r -spectrum. Obviously, Fr (0) = fr (0), and Fr (x) ≤ 1.

Definition 1.2.4 The collection of all r -spectra T sp = {Fr (x)} for r0 < r ≤ rmax,
is called ternary D-spectrum. In words: ternary D-spectrum is the collection of all
cumulative r -spectra. #

Denote by C(r; x) the number of network failure sets with r components up and
x components down (and therefore (n − x − r) components in mid).

Theorem 1.2.1 For r0 < r ≤ rmax and x = 0, 1, 2, . . . , n − r,

C(r; x) = Fr (x) · n!
r !x !(n − x)! . (1.6)

Proof Let us count all r -type permutations having anchor j , 0 ≤ j < x . After the
destruction is completed, there will be n! fr ( j) such permutations. Each of them has
the following form:

(i (2)1 , i (2)2 , . . . , i (2)r ; i (0)r+1, . . . , i (0)r+ j ; i (1)r+ j+1, . . . , i (1)n ) (∗).

Now let us turn down the components which are on the positions r + j + 1, · · · ,

r + j + 2, r + j + x . Then each of permutations (*) takes the form

(i (2)1 , i (2)2 , . . . , i (2)r ; i (0)r+1, . . . , i (0)r+x ; i (1)r+x+1, . . . , i (1)n ), (∗∗)
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i.e. the first r positions occupy components in up, the next x positions—components
in down, and the remaining—in mid. Obviously, all these permutations are (r; x)-
failure sets. Therefore, all r -permutations produce

n![ fr (0) + fr (1) + · · · + fr (x)] = n!Fr (x) (1.7)

(r; x)-failure sets. But each particular failure set will be repeated r !x !(n − r − x)!
times. Therefore, the number of original (r; x)-failure sets produced in the above
process equals

Fr (x) · n!
r !x !(n − r − x)! = C1 (1.8)

and therefore C(r; x) ≥ C1. On the other hand, each (r; x)-failure set has its “rep-
resentatives” in permutations (**). Therefore, C(r; x) = C1. #

Example 1.2.2 Let us consider a parallel system of three identical and independent
components, a, b and c. Each component can be in three states: up, down and mid. In
state up each component has capacity 2, in state mid—capacity 1 and in state down
capacity 0. The total flowprovided by the system ranges therefore from6 to 0. System
state is defined as a function of component capacities, as follows. If the sum of all
component capacities is less or equal 2, the system is DOWN, otherwise, it is UP.
Note that if all components are in mid state, the system is UP. (There are no A-type
permutations). Let us start the destruction process. Set r = 0, i.e. all components
are in mid. After turning down the first component, the system always gets DOWN.
Therefore, f0(1) = 1, f0(2) = f0(3) = 0 and F0(1) = F0(2) = F0(3) = 1. Now,
by the theorem above,

C(r = 0; x = 1) = F0(1) · 3!
0!1!2! = 3,

and the corresponding failure sets are (a = 0, b = 1, c = 1), (a = 1, b = 0, c =
1), (a = 1, b = 1, c = 0). Similarly, C(r = 0, x = 2) = 3, and the corresponding
failure sets are (a = 0, b = 0, c = 1), (a = 0, b = 0, c = 1), (a = 1, b =
0, c = 0). Finally, C(r = 0, x = 3) = 1 which corresponds to the unique failure set
(a = b = c = 0) with all three components down.

Let us consider the next step in the destruction process with r = 1 components
up and two in mid. Such a system fails only after exactly two components from mid
are turned to down. We see therefore that here f1(1) = 0, f1(2) = 1 and therefore
F1(1) = 0, F1(2) = 1. From here we find out that C(r = 1; x = 2) = 3. There
are exactly three DOWN sets with 1 component up and two down: (a = 2, b = c =
0), (a = c = 0, b = 2), (a = b = 0, c = 2). So, we found out all 7+3 = 10 failure
sets of the system. #

Theorem 1.2.1 opens the way to compute system DOWN probability if the system
consists of n identical and statistically independent components, and a component
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is in state up with probability p2, in down—with probability p0 and in mid—with
probability p1 = 1 − p0 − p2.

Obviously, the probabilistic weight of a particular (r; x)-failure set equals

W (C(r; x)) = pr
2 · px

0 · p(n−r−x)
1 . (1.9)

Remember that so far we did not consider failure sets corresponding to permu-
tations of type A and B. Permutations of type B do not produce failure sets. Each
j-type permutation of type A produces n!/( j !(n − j − x)!x !) failure sets with j
components up, (n − j − x) in mid, and x components down. Here x is running
from 0 to n − j . The total probabilistic weight of all failure sets produced by A-type
permutations equals

WA =
r0∑

j=0

n− j∑

x=0

p j
2 p(n− j−x)

1 px
0 · n!

j !x !(n − j − x)! (1.10)

Nownote that the network isDOWN iff it is in one of its failure sets. Put Fr (x) ≡ 1
for r ≤ r0,∀x . Combining all together, we arrive at

Theorem 1.2.2

P(DOWN) =
rmax∑

j=0

n− j∑

x=0

Fj (x) · p j
2 · px

0 · p(n− j−x)
1

n!
j !x !(n − j − x)!# (1.11)

Example 1.2.3 s − t flow in a three component network.
The network has three edges: a = (s, v), b = (v, t) and c = (s, t), see Fig. 1.3. Each
edge has three states: capacity 2 (up), capacity 1 (mid) and capacity 0 (down). The
maximal s − t flow equals 4. Network is DOWN if the s − t flow is 0, 1 or 2. Let
us consider all permutations of type r = 1, i.e. having one (first) component up and
two others in mid. There are 3! = 6 such permutations. Four of them have anchor
zero:

(a = up, b = mid, c = mid), (a = up, c = mid, b = mid),

(b = up, a = mid, c = mid), (b = up, c = mid, a = mid).

Therefore, f1(0) = 4/6 = definition = F1(0). Therefore, by (1.6),

C(1; 0) = 4

6
· 3!
0!1!2! = 2.

Indeed, there are only two failure sets with exactly one component up and two in
mid:

(a = up, b = mid, c = mid), (a = mid, b = up, c = mid).#



10 1 Networks with Ternary Components: Ternary Spectrum

Fig. 1.2 s − t flow
in a triangular network

Fig. 1.3 Bridge network. The
up edges are shown bold,
down edges are dashed. Left
upper figure shows bridge in
UP, three others in DOWN
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Example 1.2.4 Bridge network.
Let us consider a bridge network shown on Fig. 1.3.
Components subject to failure are the edges numbered 1, 2,…, 5. Each edge has

three states: up, mid and down. The network is, by definition, UP iff nodes b and d
are connected by edges in up and all nodes are connected to each other. The ternary
spectrum is presented in Table1.1.

For r = 0, x = 0, all components are in mid, and there is no strong connection
between b and d. Therefore, the bridge is DOWN . This explains the r = 0 row in
Table1.1. All 0-type permutations are A-type permutations.

When r = 1 and x = 0 (one edge is up, all other edges are in mid), the bridge can
be UP only if the up edge is on the place of edge 3, which happens with probability
1/5 = 0.2. This explains the first entry in line 2. Checking all permutations we see that
turning one edge from mid to down (x = 1) does not change the DOWN probability.

Now consider r = 1 and x = 2—one edge up and two—down. It is easy to check
that 1/3 of all permutations providing UP on the previous step (i.e. for x = 1), now
turn into DOWN, and thus P(DOW N ) = 96/120 + 8/120 = 104/120.

Analyzing the remaining r -permutations along similar lines, we findDOWN prob-
abilities for r = 2 and r = 3 rows. When r = 4, i.e. 4 components are up, the bridge
is always UP and P(DOWN) = 0. Therefore, in this example rmax = 3. #
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Table 1.1 Ternary D-spectrum Fr (x) of bridge network

r x = 0 x = 1 x = 2 x = 3 x = 4 x = 5

r = 0 1 1 1 1 1 1
r = 1 0.8 0.8 0.867 = 104/120 1 1 –
r = 2 0.4 0.4 0.6 1 – –
r = 3 0 0 0.2 – – –

1.3 Dynamic Version of Theorem 1.2.2

Formula (1.11) can be rewritten in an equivalent “dynamic” form to include the time
factor. Suppose we have n statistically independent and stochastically identical point
processes {χi (t), t > 0, i = 1, . . . , n}. Each χi (t) is a decreasing, time continuous
process with three states: 2, 1 and 0. State 0 is absorbing. Each trajectory of χi (t)
starts at t = 0 in state 2, jumps into state 1 and later gets absorbed in state 0. At any
time instant t > 0, χi (t) is in one of its three states with probabilities p2(t), p1(t)
and p0(t), respectively. Obviously

p0(t) + p1(t) + p2(t) = 1, t ≥ 0.

Let τ2(i) be the sojourn time of χi (t) in state 2. Then P(τ2 ≤ t) = 1 − p2(t). Let
τ1(i) be the sojourn time of χi (t) in state 1. Then the event {τ2(i)+τ1(i) ≤ t}means
that at time t + 0, χi (t) has already left state 1, and is therefore in state 0, i.e.

P(τ2(i) + τ1(i) ≤ t) = p0(t).

Note that if at time t the system is DOWN, then its failure-free operation time τup

does not exceed t .
Therefore, for any t > 0,

P(τup ≤ t) =
rmax∑

j=0

n− j∑

x=0

Fj (x)
n!

j !x !(n − j − x)! · [p2(t)] j · [p0(t)]x · [1 − p0(t) − p2(t)](n− j−x).

(1.12)

Example 1.3.1 Dynamics of strong and weak connection in a triangular network.
Consider a triangular network shown on Fig. 1.3. It has three nodes s, v, t and three
edges: e1 = (s, v), e2 = (v, t) and e3 = (s, t). Each edge has three states: up, mid
and down, denoted as 2, 1 and 0, respectively. The state of all edges will be denoted
by a three digit ternary number. For example, x = (012) means that edge e1 is down,
edge e2 is mid and edge e3 is up.
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By definition, the network is UP if there is a strong connection of s and t , and all
nodes are connected. Strong connection of s and t means that there is a s − t path
of edges in up only. In our case it means that either e3 is up, or e1 and e2 are up, or
both. DOWN means that either there is no strong s − t connection, or one node is
isolated, or both.

The total number of states is 33 = 27. It is easy to check that there are the following
17 system states for DOWN :

(000), (001), (002), (010), (011), (020), (021), (100), (101), (110), (111),

(120), (121), (200), (201), (210), (211).

It is easy to count directly from this list the numbers C(r; x) of failure sets having r
components up and x down. We have

C(0; 3) = 1, C(0; 2) = 3, C(0; 1) = 3, C(0; 0) = 1, C(1; 2) = 3,

C(1, 1) = 4, C(1; 0) = 2.

For example, states (021), (120), (210) and (201) all are of type C(1; 1).
Now assume that all components are identical and independent, and the behavior

of each one is described by a three state random process χ(t). It spends time τ2 in
state 2, τ2 has Gamma distribution with parameters λ = 1, k2 = 2 and therefore
(see [1]), P(τ2 > t) = exp(−t)(1 + t). From state 2 (up), χ(t) jumps into state 1
(mid) and spends in it some random time τ1, independent on τ2, which has Gamma
distribution with parameters λ = 1, k1 = 3. Then it follows that τ1 + τ2 is Gamma
distributed with parameters λ = 1, k = k1 + k2 = 5.

Obviously, at time t a component is in state 2 if τ2 > t , and is in state 0 if
τ2 + τ1 ≤ t . From here it follows that

p2(t) = e−t (1 + t); p0(t) = 1 − e−t (1 + t + t2/2! + t3/3! + t4/4!);
p1(t) = 1 − p0(t) − p2(t).

Collecting all together we obtain from (1.12) the expression for system DOWN
probability at time t:

P(DOWN; t) = p30(t) + 3p20(t)p1(t) + 3p0(t)p21(t) + p31(t) + 3p2(t)p20(t)

+ 4p2(t)p1(t)p0(t) + 2p2(t)p21(t).

Figure1.4 shows the graph of system reliability R(t) = 1 − P(DOWN; t). #
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Fig. 1.4 Thick curve is R(t) = 1 − P(DOWN; t). Thin curves are the state probabilities
p2(t), p1(t), p0(t)

1.4 P(UP) and Path Sets

A vector of component states y = (y1, y2, . . . , yn) is called a path or a path set if
ϕ(y) = 1. Let y( j;x) be a path vector which has j components up, x components
down, and the remaining (n − x − j) components in mid. Denote by V ( j; x) the
number of path sets of type y( j;x), r0 < j ≤ rmax. For r > rmax, put Fr (x) ≡ 0.
Note that for j ≤ r0, we have set Fj (x) ≡ 1.

Theorem 1.2.3
(i)

P(UP) =
n∑

j=0

n− j∑

x=0

n!
j !x !(n − j − x)! · (1 − Fj (x))p j

2 px
0 p(n− j−x)

1 . (1.13)

(ii)
For 0 ≤ j ≤ n,

V ( j; x) = n!
j !x !(n − j − x)! · (1 − Fj (x)). (1.14)

Proof
(i)

P(UP) = 1 − P(DOWN) = (p2 + p1 + p0)
n − P(DOWN)

=
n∑

j=0

n− j∑

x=0

n!
j !x !(n − j − x)! p j

2 px
1 p(n− j−x)

0
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−
n∑

j=0

n− j∑

x=0

Fj (x)
n!

j !x !(n − j − x)! · p j
2 · px

0 · p(n− j−x)
1 .

Simplifying this expression we obtain (1.13).
(ii) The network is UP iff it is in one of its path sets. Therefore, the coefficients
at p j

2 pn− j−x
1 px

0 should be the number of the path sets with j components up, x
components down and the remaining n − j − x components in mid. This proves
(1.14). #

1.4.1 Remarks

1. The ternary D-spectrum is system combinatorial invariant. It depends only on
its structure and failure definition. No information about component reliability is
needed for calculating the ternary spectrum. Contrary to the D-spectra for binary
systems considered in literature (also known as signature or internal distribution,
see [3–5, 10, 11]), the ternary spectrum is not a single discrete cumulative dis-
tribution function (CDF) but a collection of such CDF’s, some of which are not
proper, i.e. some of the CDF’s are strictly less than 1. The cumulative D-spectrum
of a binary system is a vector of dimension n, while the ternary spectrum is a set
of k vectors, k < n, and all of them, except the first, may have dimension strictly
less than n.

2. The complexity of ternary spectrum vs regular binary spectrum can be explained
by the fact that ternary system is considerably more complex than the similar
binary system with the same number of components. For example, hypercube of
order 4 with ternary edges, which will be considered in the next section, has 32
edges and total number of elementary states 332. This is greater than the number
of states of the same hypercube with binary edges by factor of about 430,000.

3. Signature or D-spectrum of a system with binary components has an important
property first discovered by Samaniego [10]. If component lifetimes Xi are i.i.d.
with CDF F(t), the CDF G(t) of system life-time τ can be expressed as a convex
combination of signature coefficients s1, s2, . . . , sn and respective order statistics:

P(τ > t) = G(t) =
n∑

i=1

si

i−1∑

j=0

[F(t)] j [1 − F(t)](n− j) n!
j !(n − j)! , (∗)

see [11], page 26. Similar property does not exist for ternary systems. A certain
resemblance to it can be seen in formula (1.12).

A very important fact is that the ternary spectrum, similarly to binary spectrum
or signature, allows to count the number of failure sets and path sets in the sys-
tem with given number of up and down components, see Sects. 1.2 and 1.3. For
example, consider a binary monotone system of n components. Let its signature be
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s = (s1, s2, . . . , sn). Denote by S(x) the cumulative signature S(x) = ∑x
i=1 si . It

is identical to cumulative D-spectrum. Let C(x) be the number of systems failure
sets with x components down (and the remaining (n − x) in state up). The following
equality is very useful in reliability calculations:

C(x) = S(x)
n!

x !(n − x)! ,

compare with [11], page 80. One can derive it directly from the above formula (*)
by changing the summation order.

This formula is very similar to our formula (1.6):

C(r; x) = Fr (x)
n!

r !x !(n − r − x)!
4. Let us have another look at the formulas for C(x) and C(r; x). The first can be
rewritten as

S(x) = C(x)

n!
x !(n−x)!

The denominator is the total number of ways to choose randomly and equiprobable
an x-subset from a set of n items. In our situation, this is the number of ways to
“nominate” x down components in a set of n components. Some of these x-subsets
are failure sets, and S(x) is the fraction of these failure sets. A nontrivial fact is that
S(x) = s1 + s2 + · · · + sx .

Similarly, formula (1.6) can be rewritten as

Fr (x) = C(r; x)

n!
r !x !(n−r−x)!

,

which says that the fraction of (r, x)-failure sets among all random and equiprobable
chosen (r, x)-subsets froma set ofn items equals Fr (x) = fr (0)+ fr (1)+· · ·+ fr (x).

1.5 Component Importance

1.5.1 Introduction

In this section we present a very useful reliability characteristic—component im-
portance. We will assume that the system (the network) consists of independent
components. In binary case, when each component has two states up and down, the
most known is the so-called Birnbaum Importance Measure (BIM). For component
m, it is defined (see [1], Chap. 1, and [2]) as
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BIMm = ∂ R(p1, . . . , pn)

∂pm
, (1.15)

where R(p1, . . . , pn) is network reliability, i.e. its UP probability as a function of
component reliabilities pi , i = 1, . . . , n.

Using pivotal decomposition, it is easy to obtain that

BIMm = R(p1, . . . , 1m, . . . , pn) − R(p1, . . . , 0m, , . . . , pn)

= G(p1, . . . , 0m, . . . , pn) − G(p1, . . . , 1m, . . . , pn), (1.16)

where R(p1, . . . , 1m, . . . , pn) is the reliability of the network with the component
m being up, and R(p1, . . . , 0m, . . . , pn) is the reliability of the network with the
component m being down. For convenience we represented R(·) as 1 − G(·) where
G(·) is network DOWN probability.

B I Mm has transparent probabilistic meaning: it is the gain in network reliability
received from replacing a down component m by an absolutely reliable one. B I Mm ,
being partial derivative, gives an approximation to the system reliability increment
δR resulting from reliability increment of component m by δpm . This increment
equals δR(·) ≈ B I Mm · δpm .

In binary situation, increment of component up probability p by 	 means nec-
essarily decrease by 	 of the down probability q = 1 − p. In ternary case there is
a complication: suppose we increase p2 by 	. Then we have to reduce p1 together
with p0 by the same quantity, and this can be done in several ways. For example, we
can reduce p0 by 	 and leave unchanged p1. Or we can decrease p1 by 	 and leave
p0 unchanged, or we can reduce both p1 and p0 by 	/2, and so on.

Before we give the definition of component important measure it is necessary
to adjust network reliability expression to ternary case. For ternary networks, we
assume that all components subject to failure (nodes or edges) are independent and
identical, which means that each component has its state distribution determined by
a three-component vector

pi ≡ p = (p2, p1, p0 = 1 − p2 − p1}, i = 1, . . . , n,

where p2 = P(up), p1 = P(mid), and p0 = P(down), Accordingly, instead of
writing P(U P) = R(p1, p2, . . . , pn) and P(DOW N ) = G(p1, p2, . . . , pn) for
binary network, we will use for ternary network the notation

P(DOWN) = G(p, p, . . . , p).

Let us introduce several importance measures for system components reflecting the
reliability increase rate for down-up and down-mid replacements.

Definition 1.5.1-A
The up–down ternary importance measure (TIM) of component m is defined as

TIMm(up–down) = G(p, . . . , 0m, . . . , p) − G(p, . . . , 2m, . . . , p). (1.17)
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Here the first term in (1.17) is networkDOWN probability given that them-th compo-
nent is turned permanently down, and the second term is network DOWN probability
given that the m-th component is permanently in state up. #

Definition 1.5.1-B
The mid–down ternary importance measure (TIM) of component m is defined as

TIMm(mid–down) = G(p, . . . , 0m, . . . , p) − G(p, . . . , 1m, . . . , p). (1.18)

Here the first term in (1.18) is network DOWN probability given that the m-th
component is turned permanently down, and the second term is network DOWN
probability given that the m-th component is permanently in state mid. #

Definition 1.5.1-C
The up–mid ternary importance measure (TIM) of component m is defined as

TIMm(up–mid) = G(p, . . . , 1m, . . . , p) − G(p, . . . , 2m, . . . , p). (1.19)

Here the first term in (1.18) is network DOWN probability given that the m-
th component is turned permanently mid, and the second term is network DOWN
probability given that the m-th component is permanently in state up.

Obviously,

TIMm(up–mid) = TIMm(up–down) − TIMm(mid–down).#

The problem in calculating the component importance is that usually the reliability
function G(·) is not available in closed analytic form. The TIM-spectrum, which we
will define below allows to evaluate TIM’s by means of Monte Carlo simulation,
will be based on introducing another combinatorial invariant—the so called TIM-
spectrum. Its construction resembles the construction of binary importance spectrum
described in [5, 6].

1.5.2 TIM-Spectrum

Our purpose is to develop a combinatorial measure of component importance in
absence of an analytic expression for system reliability as a function of component
failure probabilities. For this purpose let us remind the notion of the r -permutation
defined in Sect. 1.2, r0 < r ≤ rmax. In the process of component destruction, this
permutation has on its first r positions the numbers of components in state up, on
the next x positions are component numbers which are in state down, and on the
remaining (n − r − x) positions are numbers of components which are in state mid.
Before the destruction starts, there are no components in down.
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Definition 1.5.2-a
(a) Let fr (y|m − down) be the probability that the anchor of r -th type permutation
equals y, given component m is down.
(b) Let fr (y|m −mid) be the the probability that the anchor of r -th type permutation
equals y, given component m is mid.
(c) Let fr (y|m − up) be the probability that the anchor of r -th type permutation
equals y, given component m is up. #

Note that fr (y|m − state) ·n! gives the number of r -permutations with the anchor
δ(πr ) = y, and the component m being in state down, mid, or up, respectively.

Definition 1.5.2-b
Let r0 < r ≤ rmax. Then for x = 0, 1, 2, . . . , n − r; m = 1, 2, . . . , n:

(a) Fr (x |m − down) =
x∑

y=0

fr (y|m − down),

is called the TIM-down-spectrum of the system;

(b) Fr (x |m − up) =
x∑

y=0

fr (y|m − up),

is called the TIM-up-spectrum of the system;

(c) Fr (x |m − mid) =
x∑

y=0

( fr (y|m − mid)) · n − r − y

n − r
,

is called the TIM-mid-spectrum of the system. #
Note that (a) is the probability that if in an r -permutation x components are down

and the component m is also down, then the system is DOWN . Similarly, (b) is the
probability that if in an r -permutation x components are down and the component
m is up, then the system is DOWN .

Let us explain (c), which differs from (a) and (b). When component m is down
(up), then during the destruction process, it remains down (up). But if m is in mid,
then during the destruction process, it turns into the down. Let us consider now an
r -permutation and start the destruction process, i.e. turn the first mid component into
down. Clearly, component m may be on each of n − r places with equal probability
1

n−r . After the first component is turned into down, componentm remains inmid with

probability n−r−1
n−r . When the second mid component is turned to down, m remains

mid with probability n−r−2
n−r , and so on. From this it follows, that Fr (x |m − mid)

expresses the probability that if in an r -permutation x components are down and the
component m is in mid, then the system is DOWN .
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Theorem 1.5.1 Denote by C(r, x; m − up) the number of failure sets with r com-
ponents up and x components down (and therefore n − x − r components in
mid), in which component m is among components in up. In similar way we define
C(r, x; m − down) and C(r, x; m − mid).

Then
(i) C(r, x; m − up) = Fr (x |m − up) · n!

r !x !(n−r−x)!
(ii) C(r, x; m − down) = Fr (x |m − down) · n!

r !x !(n−r−x)!
(iii) C(r, x; m − mid) = Fr (x |m − mid) · n!

r !x !(n−r−x)!
Proof
The meaning of Fr (x |m − up) (or Fr (x |m − down), Fr (x |m − mid)) is similar to
Fr (x) with the only difference that it is given that m is up (or down, mid, respec-
tively). That does not affect the proof of the Theorem 1.2.1. #

Now we can turn to computing the probabilities G(p, . . . , 0m, . . . , p), G(p, . . . ,

1m, . . . , p), and G(p, . . . , 2m, . . . , p) for the TIM’s (1.17–1.19). Note that the prob-
abilistic weight of a particular failure set C(r, x; m − up) given component m is up
equals

W (C(r, x; m − up)) = pr−1
2 · px

0 · pn−r−x
1 .

Similarly,
W (C(r, x; m − down)) = pr

2 · px−1
0 · pn−r−x

1 ,

and
W (C(r, x; m − mid)) = pr

2 · px
0 · pn−r−x−1

1 .

Let us remind that each j-type permutation of type A, with j components up, x
components down and (n − j − x) components in mid produces n!

j !(n− j−x)!x ! failure
sets.

The probabilistic weight of a particular failure set given component m is down,
obviously, is the same as in the common case above.

Then combining all together and setting for r ≤ r0

Fr (x |m − down) ≡ 1, Fr (x |m − up) ≡ 1, , Fr (x |m − mid) ≡ 1

we arrive at

Theorem 1.5.2
(i) G(p, . . . , 0m, . . . , p) = ∑rmax

j=0

∑n− j
x=1

Fj (x |m−down)·n!
j !x !(n− j−x)! p j

2 px−1
0 p(n− j−x)

1 ;

(ii) G(p, . . . , 1m, . . . , p) = ∑rmax
j=0

∑n− j
x=1

Fj (x |m−mid)·n!
j !x !(n− j−x)! p j

2 px
0 p(n− j−x−1)

1 ;

(iii) G(p, . . . , 2m, . . . , p) = ∑rmax
j=0

∑n− j
x=1

Fj (x |m−up)·n!
j !x !(n− j−x)! p j−1

2 px
0 p(n− j−x)

1 . #

Example 1.5.1 Let us consider a small flow network with three edges a, b and c.
Edges a = (s, v) and b = (v, t) are in series, and are parallel to edge c = (s, t),
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see Fig. 1.3. Each edge can be in three states: up, mid and down with respective
flow capacities 2, 1 and 0. System is UP if the maximal s − t flow is at least 2.
Otherwise the system is DOWN. Below is the list of all 13 network DOWN states
(failure vectors):

(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 2, 0), (1, 0, 0), (2, 0, 0), (0, 1, 1), (0, 2, 1),

(1, 0, 1), (2, 0, 1), (1, 1, 0), (1, 2, 0), (2, 1, 0).

(Here on the first position is the state of component a, on the second—the state of
component b, and on the third—of component c.)

Let us calculate the up–down TIMs of all edges using the Definition 1.5.1-A and
the above list of failure vectors.

By symmetry. TIMa = TIMb, and

TIMa = (p20 + 2p0 p1 + p21 + p0 p2 + p1 p2) − (p20 + 2p0 p1)

= p21 + p0 p2 + p1 p2.

TIMc = p22 + 2p0 p1 + 2p0 p2 + p21 + 2p1 p2.

We see that

TIMa = TIMb < TIMc,

which is in accord with our intuition.
Let us now demonstrate the calculation of TIMa using (i) and (ii) of Theorem

1.5.2.
In total, there are the following six permutations of all components:

per1 = (a, b, c), per2 = (a, c, b), per3 = (b, a, c), per4 = (b, c, a),

per5 = (c, a, b), per6 = (c, b, a).

Suppose that a is down. Put r = 0. Let us count the number of r -permutations
Fr (x |a − down) · 3! having x components down and a down. We have F0(1|a −
down)3! = 2—for per1 and per2.

F0(2|a − down)3! = 4—for per1, per2, per3, per5.
F0(3|a − down)3! = 6—for all permutations.

Now let r = 1. F1(1|a −down)3! = 1 - for per1. F1(2|a −down)3! = 2—for per3,
per4. For r = 2 all permutations produce UP.

G(a − down; p) = 2

0!1!2! p21 + 4

0!2!1! p0 p1 + 6

0!3!0! p20 + 1

1!1!1! p2 p1 + 2

1!2! p2 p0.
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Suppose now that a is up. Let us count the number of r -permutations Fr (x |a −
up) · 3! having x components down and a—up. The case r = 0 is not relevant. Let
r = 1. Then

F1(1|a − up)3! = 2—for per1, per2. F1(2|a − up)3! = 2—for per1, per2. For
r = 2, all r -permutations produce UP.

Therefore

G(a − up; p,p) = 2

1!1!1! p0 p1 + 2

1!2! p20 .#

Finally,

TIMa(up–down) = G(a − down; p,p) − G(a − up; p,p) = p21 + p1 p2 + p0 p2.#

For systems havingmore than three components, manual calculations of the TIMs
becomes too involved. There is however an efficient way of numerical estimation
of ternary importance spectrum by means of Monte Carlo simulation. In the next
section we will show how the importance spectrum can be approximated by means
of a small modification of the principal Monte Carlo algorithm for approximating
the ternary spectrum.

1.6 Ternary Spectrum Monte Carlo

Let us remind that there are two particular types of r -permutations. We call them A-
type andB-type permutations.A-type has the followingproperty: for r = 0, 1, . . . , r0
the system always is DOWN before even a single component in mid has been turned
down. In other words, all permutations have the anchor equal zero.

In B-type permutation, after turning all mid components into down, the system
remains in UP state. Suppose that all r -type permutations for r > rmax are of type B.

In some cases, due to the particular topological properties of the network we
can establish the values r0 and rmax. For example, for four-dimensional hypercube
network H4 (see Sect. 2.2), it is easy to establish that for strong connectivity of nodes
in set T1 we need at least six edges in up. Therefore, r0 = 5.

Belowwepresent a sketch of an algorithm for estimating both the ternary andTIM-
spectra, which does not involve preliminary information about network’s topology.
Introduce the following counters:

Mir—the counter for the event “the anchor of r -permutation equals i”;
Mi jr (up)—the counter for the event “the anchor of r -permutation equals i and the
component j is up”;
Mi jr (mid)—the counter for the event “the anchor of r -permutation equals i and the
component j is mid”;
Mi jr (down)—the counter for the event “the anchor of r -permutation equals i and
the component j is down”.

http://dx.doi.org/10.1007/978-3-319-06440-6_2


22 1 Networks with Ternary Components: Ternary Spectrum

Estimating the ternary D-spectrum and TIM spectra
(a) Put initially Mir = 0, Mi jr (up) = 0, Mi jr (mid) = 0, Mi jr (down) = 0.
(b) For each r = 0, 1, 2, . . . , n − 1 DO the following:

(b-1) Simulate a randompermutationπ of network components. Turn into up the first
r components in π , and the remaining (n − r )—into state mid. (This is a simulated
replica of an r -permutation).
(b-2) Find out the anchor i = δ(πr ) of the permutation. (This is carried out by a
sequential destruction of components in mid and system state check after a compo-
nent in mid is turned into down)
(b-3) Put Mir := Mir + 1; For each component j , j = 1, . . . , n do the following:

If j is in up state then put Mi jr (up) := Mi jr (up) + 1.
If j is in mid state then put Mi jr (mid) := Mi jr (mid) + 1.
If j is in down state then put Mi jr (down) := Mi jr (down) + 1.

(c) Repeat steps (b-1)–(b-3) M times.
(d) For each r = 1, . . . , n − 1, i = 0, . . . , n − r , compute f̂r (i) = Mir

M . From this
obtain the estimated values of the ternary D-spectrum:

F̂r (x) =
x∑

j=0

f̂r ( j);

For each r = 1, . . . , n−1, i = 0, . . . , n−r , j = 1, . . . , n, compute the following
fractions:

f̂r (i | j − up) = Mi jr (up)

M
, f̂r (i | j − mid) = Mi jr (mid)

M
,

f̂r (i | j − down) = Mi jr (down)

M
.

From this, obtain the estimated values of TIM-spectra, according to Definitions
1.5.2-b. #

The most CPU time of the above procedure is consumed on checking system
DOWN state after each destruction step. Essential acceleration here can be achieved
by appropriate use of so-calledDSS—disjoint set structures, see [4], page 30.Another
way to accelerate finding the anchor in an r -permutation, is to use the well known
bisection, see [7].

The question of principal interest is the choice of M . It depends essentially on
the number of components n and the desired estimation accuracy. For practical pur-
poses estimation of system DOWN probability with relative error 0.2–0.4 % is quite
satisfactory. We see no other way than carrying out a series of experiments in which
M is varied to achieve the desired level of accuracy.

It is worth noting that having M = 100,000 for estimating each Fr (x) in the H4
network, consumes only about 8 s of CPU time and guarantees the desired accuracy.
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Chapter 2
Applications

Abstract Sections2.1–2.4 present numerical illustrations and applications of the
theory developed in Chap. 1. Section2.1 presents reliability calculations for H4 net-
work. The network has 16 nodes, 32 edges and two sets of terminals, T1 and T2.
An edge e = (a, b) in state up provides high communication speed between a and
b. If this edge is in state mid, the a ≥ b communication goes with reduced speed;
down state for an edge means that this edge is erased. Edge state is chosen randomly
and independently according to probabilities p2, p1, p0 for up, mid and down state,
respectively. System UP state is defined as the existence of high speed communi-
cation between nodes of T1 and existence of a path of operational edges between
any pair of nodes of T2. We present data on network reliability and characterize the
ternary D-spectrum numerically and graphically. Section2.2 considers a stochastic
source-terminal flow network problem for a dodecahedron network. In this network,
an edge e = (e, b) is a pair of directed links for a ⊂ b and b ⊂ a flows. Each link
has capacity 6, 3, or 0 for up, mid and down state, respectively. The network has two
DOWN states, DOWN1 and DOWN2, for the flow less than L1 or L2, respectively
(L1 > L2). We present data on network reliability for various values of edge state
probabilities p = (p2, p1, p0). Section2.3 is an example of a rectangular grid net-
work with 100 nodes and 180 edges. Components subject to failure are the nodes. If
a node is down all edges adjacent to it are erased and the node gets isolated. If a node
is in mid state, it has only horizontal or vertical edges, depending on the position
of the node. For this network we calculate the probability that the largest connected
node set (an analogue to a “giant” component) has less than L nodes. Section2.4
analyzes edges importance data for H4 network. Section2.5 deals with networks
having independent and nonidentical components. Component i is in state up, mid
and down, with probability p(i)

2 , p(i)
1 and p(i)

0 , respectively. In this situation, different
failure sets with the same number of components in up, mid, down have different
probabilistic weights and it is not possible to use the ternary spectrum technique.
For calculating network reliability, we present an efficient and accurate Monte Carlo
method based on a modification of M.V. Lomonosov’s evolution algorithm [3, 4].
Its action is illustrated by examples of a flow network and a grid network.

I. Gertsbakh et al., Ternary Networks, SpringerBriefs in Electrical 25
and Computer Engineering, DOI: 10.1007/978-3-319-06440-6_2,
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2.1 Hypercube Network

We consider fourth order hypercube H4. It has 16 nodes and 32 edges, see Fig. 2.1.
Each edge, independently of other edges, can be in three states: up, mid and down
with respective probabilities p2, p1 and p0, p2 + p1 + p0 = 1. States up and mid
provide high and medium connection speed, respectively. Edge down state means
loss of connection. We say that node set T1 is strongly connected if any pair of nodes
from this set is connected by a path consisting only of edges providing high speed
connection. We say that node set T2 is weakly connected if any pair of nodes in this
set is connected by a path of operational edges. We define UP state of our system
as the presence of strong connection between nodes T1 = {0, 3, 7, 12} and weak
connection between nodes of T2 = {1, 4, 6, 15}, see Fig. 2.1. System DOWN state is
absence of strong connection for T1 or absence of weak connection for T2, or both.

Our main tool for computing P(DOWN) is the ternary D-spectrum. For this pur-
posewe usedMonteCarlo procedure, the algorithmic details ofwhichwere described
in Sect. 1.6. Now let us mention some specific properties of the ternary spectrum in
this example. First, it is easy to check from Fig. 2.1 that the minimal number of edges
providing strong connection for T1 equals 6. Therefore, if we have r ⊆ 5 edges up
and other edges in mid, the system is DOWN. Thus, the ternary spectrum starts with
F6(x), x = 1, 2, ..., 26. In the course of simulation it is revealed that rmax = 28, i.e.
if 29 or more edges are up, the system can not fail. Therefore the ternary spectrum
is the collection F6(x), F7(x), ..., F28(x). Figure2.2 presents a sample of graphs of
{Fi(x)}.

Data on system DOWN probability is presented in Table2.1. We see that for p2 ⊆
0.5 and p1 in the range [0.1, 0.4], the system has low reliability—P(DOWN) ∩ 0.4.
To provide reliability of about 0.85 or higher, p2 should exceed 0.6 and p1 must not
exceed 0.15.

We will often characterize the accuracy of estimating DOWN probability by so-
called relative error (RE). It is calculated as follows.Thewhole simulation experiment
based on M replications for estimating the ternary spectrum and for calculating
P(DOWN) = ϕ is repeated 10 times. Let the result of the i-th experiment be denoted
by ϕi. Denote by S the estimate of the standard deviation computed as

S = [
10∑

i=1

(ϕi − ϕ0)
2/9]0.5, (2.1)

where ϕ0 = ∑10
i=1 ϕi/10. Then the RE is defined as

http://dx.doi.org/10.1007/978-3-319-06440-6_1
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Fig. 2.1 Hypercube of order
four. T1 = {0, 3, 7, 12} ,
T2 = {1, 4, 6, 15}
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RE = S

ϕ0
. (2.2)

Our calculations reveal that forM =100,000 and p2 = 0.6, p1 = 0.3, theRE ≤ 0.01.
It means that the absolute error in estimating theDOWN probability is about±0.002.
For p2 = p1 = 0.3, P(DOWN) is close to 1, and the RE ≤ 0.0003, which means
that the absolute error is about ±0.0003.

2.2 Flow Network

The network in this example is a dodecahedron graph shown on Fig. 2.2. Nodes 1
and 10 are the source and the sink, respectively. The edges incident to the source
s = 1 allow the flow to be directed only outward as (s ∗⊂ 2), (s ∗⊂ 16), (s ∗⊂ 5),
and all edges incident to sink t = 10 allow the flow to go only in the direction of
the sink. All other edges shown on Fig. 2.2, represent a pair of independent links,
allowing the flow to go in opposite directions. For example, there are two directed
edges connecting nodes 2 and 15: (2 ∗⊂ 15) and (15 ∗⊂ 2). There are in total
30 + 24 = 54 edges in this flow network (Fig. 2.3).

The components subject to failure are the edges. All edges can be in three states:
up, mid, and down. An edge in up has maximal flow capacity 6. An edge in mid
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Fig. 2.2 Sample of Fi(x). From top to bottom: F10, F12, F14, F15, F17, F19

Table 2.1 Network DOWN Probability P(DOWN)

p1 p2 = 0.1 p2 = 0.2 p2 = 0.3 p2 = 0.4 p2 = 0.5 p2 = 0.6 p2 = 0.7 p2 = 0.8

0.1 0.9999 0.9976 0.9563 0.7790 0.4661 0.1887 0.0500 0.0073
0.2 0.9999 0.9957 0.9409 0.7412 0.4250 0.1660 0.0437 –
0.3 0.9959 0.9940 0.9312 0.7299 0.4099 0.1586 – –
0.4 0.9928 0.9928 0.9267 0.7161 0.3981 – – –

state has maximal flow capacity 3, and an edge in down state has zero capacity (does
not exist). The “parallel” edges, like (5, 6) and (6, 5) are independent with respect
to their state. So, it may happen that edge (5, 6) will have capacity 6, and edge
(6, 5)—capacity 3.

Obviously, the maximal flow equals 18. We will introduce two threshold values
for the random flow L2 = 4.5 and L1 = 10 and define the following DOWN states
for the network:

DOWN2 : maximal flowMF ⊆ 4.5,

DOWN1 : maximal flowMF ⊆ 10.

Suppose that all edges of the network are up, and therefore the network is in UP state
and the MF = 18. Let edges start to fail in random order. There will be an instant
when the MF will become smaller or equal 10. In that case we say that the network
entered state DOWN1. Suppose the edges continue to fail and the MF becomes⊆4.5.
Then, by our definition, the network will be in state DOWN2. So, the MF ≡ [18, 10)
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Fig. 2.3 The dodecahedron
network. Nodes 1 and 10
are the source and the sink,
respectively. All edges except
incident to 1 and 10, represent
a pair of independent edges
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means the UP state, 4.5 < MF ⊆ 10 means DOWN1 state, and for MF ⊆ 4.5 the
network is in DOWN2 state.

We just described a ternary system which is not binary: it can be in three states.
This extension does not complicate the formal part of our exposition. In this new
situation we have not a single ternary D-spectrum, but two ternary D-spectra: one for
the state DOWN1 and another—for state DOWN2. When calculating one of these
spectra, we can completely ignore the presence of another.

Let us describe details the simulation of the above spectra in details. For each
r we generated N =100,000 permutations. It guarantees quite good accuracy in
computing network DOWN probabilities. For example, the estimate of P(DOWN1)
for p2 = 0.6, p1 = 0.3, p0 = 0.1 is

P(DOWN1) = 0.4407

with relative error (RE) is about 0.002. It corresponds to an absolute error δ ≤
0.0009. We calculated the same probability using crude Monte Carlo (CMC) based
on 1,000,000 replications and the result was

PCMC(DOWN1) = 0.4416.

Table2.2 presents the DOWN1 probabilities for a sample of seven different combi-
nations of p2, p1, p0 probabilities.

We see from this table that even the “most reliable” combination p2 = 0.7, p1 =
0.2, p0 = 0.1 has rather large value of DOWN1 probability:

P(DOWN1) = 0.3243.
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Table 2.2 Flow network
DOWN1 and DOWN2
probabilities

p2 p1 p0 P(DOWN1) P(DOWN2)

0.7 0.2 0.1 0.3243 0.0021
0.6 0.2 0.2 0.7042 0.1481
0.5 0.2 0.3 0.9274 0.4384
0.4 0.2 0.4 0.9908 0.7556
0.6 0.3 0.1 0.4407 0.2691
0.5 0.3 0.2 0.8064 0.1890
0.4 0.3 0.3 0.9654 0.5110

Fig. 2.4 F5(x) for MF ⊆ 4.5
(lower curve) and MF ⊆ 10
(upper curve)
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If we change theDOWN definition toDOWN2meaning thatP(DOWN2) = P(MF ⊆
4.5), the network becomes considerably more reliable, as we see from the right
column of the Table.

The Monte Carlo estimation of ternary D-spectra for MF = 4.5 and MF = 10
(with 100,000 replications) took about 180s of CPU time. It should be noted that
the search of the anchor position in a permutation was made by using bisection
algorithm, see [8].

For MF = 10, r = 0 and r = 1, the network is always DOWN. (This was called
in Sect. 1.2 as existence permutations of type A). We remind that for no components
in up and all components in mid, or only one component in up and remaining in mid,
the network is always DOWN. It is easy to understand it: if all edges are in mid, the
maximal flow can not exceed 9; the same is true if only one of the edges is in up. It
turns out that rmax = 52, i.e. when 53 edges are up, the system is always UP. The
upper curves on Figs. 2.4 and 2.5 show the graphs of F5(x) and F21(x) for MF = 10.

For MF = 4.5 the principal behavior of the Fr(x) curves is similar, see the lower
graphs on Figs. 2.4 and 2.5. Contrary to the previous case, permutations of type A
do not exist here. Permutations of type B appear for r = 52 and r = 53.

http://dx.doi.org/10.1007/978-3-319-06440-6_1
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Fig. 2.5 F21(x) for MF ⊆ 4.5 (lower curve) and MF ⊆ 10 (upper curve)

Fig. 2.6 Rectangular grid
with 100 nodes and 180
edges. Bold nodes are down.
Nodes marked by x are in mid
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2.3 Survival of a Ternary Grid Network

In this section we will consider a 10 × 10 grid network with nodes having three
states:

(i) down—all four edges adjacent to this node are erased.
(ii) mid—erased are two out of four edges adjacent to the node. Node is called even

if the sum of its row and column numbers in the grid are even. Otherwise it is
called odd. At even node in mid, the adjacent horizontal edges are erased; at
odd node—vertical adjacent edges are erased.

(iii) up—all edges incident to this node are initially intact. These edges, however
may be erased if neighboring nodes are in down or in mid.

Figure2.6 shows the rectangular grid with some nodes in down and mid.
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Table 2.3 Fragments of
ternary spectrum Fr(x) for
L1 = 80

r x = 0 x = 5 x = 10 x = 15 x = 20

0 1 1 1 1 1
10 1 1 1 1 1
20 0.9999 0.9999 1 1 1
30 0.9755 0.9910 0.9994 1 1
40 0.7171 0.8218 0.9553 0.9987 1
45 0.4913 0.6403 0.8400 0.9842 1
50 0.2805 0.3798 0.6326 0.9465 1
60 0.0514 0.0839 0.1954 0.6353 1
70 0.0035 0.0074 0.0274 0.2121 1
80 0.0000 0.0001 0.0021 0.0358 1
90 0 0 0 0 0

Definition 2.3.1 Network component.
A subset of nodes V0 is called a component of the network if there is at least one
path from each node v ≡ V0 to each other node in V0 and no other node in V \V0 can
be added to V0 while preserving this property. #

Network proper functioning, e.g. information delivery, power supply etc can be
guaranteed only if its maximal size component is large enough [7, 11]. Accordingly,
we will define network UP state if its maximal component exceeds some critical
level Lmax. We will consider two values for this level: Lmax = L1 = 80 and Lmax =
L2 = 50. Accordingly, we define two versions of network UP state:

UP1 : maximal component size exceeds Lmax = L1 = 80

and
UP2 : maximal component size exceeds Lmax = L2 = 50.

Correspondingly we have network DOWN1 state as the complement to UP1 and
DOWN2 as the complement to UP2.

Let us consider the ternary spectra for the network. Table2.3 shows a fragment
of the spectrum for L1 = 80, for a selection of r values (column 1) and x values.
The ternary spectrum was calculated using Monte Carlo simulation with 100,000
replications for each r value. The total simulation time took 179.5 s of CPU time.

Let us remind that Fr(x) presented in the Table2.3 is the probability that the
network is in DOWN1 if r of its randomly chosen nodes are up and x of its randomly
chosen nodes are in down, and therefore (n − r − x) components are in mid. We see
from the table that for r = 0 and r = 10 we have the situation described in Sect. 1.2
as permutations of type A: when r components are up and all other n−r components
are in mid, the network is in DOWN1.

For r ∩ 90, network is in UP1 for all x values. We see that for x = 20 the network
is in DOWN1 with probability 1, as it should be by the definition of DOWN1. It
is interesting that for r = 70, P(DOWN1) changes from 0.0274 to 1 in a narrow

http://dx.doi.org/10.1007/978-3-319-06440-6_1
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Table 2.4 DOWN1 probability for grid network

p2 p1 p0 P(DOWN1)

0.7 0.2 0.1 0.0920
0.4 0.2 0.4 1
0.6 0.3 0.1 0.2889
0.5 0.3 0.2 0.9557
0.4 0.3 0.3 0.9999

Table 2.5 Fragments of ternary spectrum Fr(x) for L2 = 50

r x = 0 x = 5 x = 10 x = 15 x = 20 x = 30 x = 40 x = 50

0 1 1 1 1 1 1 1 1
10 0.9999 0.9999 1 1 1 1 1 1
20 0.9819 0.9874 0.9956 0.9990 0.9998 1 1 1
30 0.7356 0.8104 0.9049 0.9622 0.9878 0.9996 1 1
40 0.2756 0.3379 0.5020 0.6752 0.8161 0.9719 0.9996 1
45 0.1323 0.1895 0.3279 0.4944 0.8090 0.9792 0.9999 1
50 0.0576 0.0084 0.1679 0.2906 0.4418 0.7848 0.9835 1
60 0.0081 0.0120 0.0293 0.0625 0.1186 0.3688 0.8104 –
70 0.0005 0.0009 0.0026 0.0063 0.0141 0.8734 – –
80 0.0000 0.0000 0.0004 0.0006 0.0006 – – –
85–99 0 0 0 0 0

interval x ≡ [10−20], which reminds the phase transition phenomena in percolation.
Table2.4 presents DOWN1 probabilities for five different combinations of p2, p1, p0.

The results shown in bold were checked by crudeMonte Carlo (CMC) simulation
with 1,000,000 replications. For example, the CMC estimate is 0.09198, i.e. differs
from our result by 0.00004.

Table2.5 presents the ternary spectrum for Lmax = L1 = 50. Similarly to the
previous case, for r = 0, ..., 9, allFr(x) values are equal 1. TheDOWN2 probabilities
are smaller than the corresponding values P(DOWN1), as expected.

For r in the interval 85–99, we have Fr(x) = 0 (permutation of type B) which
means that the network is always UP2. F70(x) has a slow increase of 0.0005– 0.0141
when x changes from 0 to 20 and a very rapid increase to 0.8734 when x approaches
30. It also reminds a phase transition. Table2.6 presents a collection of P(DOWN2)
probabilities for a selection of p2, p1, p0 values.

It is seen that to provideP(DOWN2) < 0.1, the probabilities for a node to be in up
and mid respectively, should be close to (0.7, 0.2). For that case the average number
of up nodes will be near 70, and down nodes—around 10. This is in agreement with
data shown for r = 70 in Table2.5.
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Table 2.6 Grid network
DOWN2 probability
P(DOWN2)

p2 p1 p0 P(DOWN2)

0.7 0.2 0.1 0.0073
0.6 0.2 0.2 0.1738
0.5 0.2 0.3 0.7236
0.4 0.2 0.4 0.9862
0.6 0.3 0.1 0.0520
0.5 0.3 0.2 0.4598
0.4 0.3 0.3 0.9297

2.4 Component Importance in Hypercube H4 Network

Let us remind that networkUP statewas defined as the presenceof strong connectivity
of T1 = {0, 3, 7, 12} and weak connectivity of T2 = {1, 4, 6, 15}, see Fig. 2.1.
Table2.7 presents theup-down edge importance indices computed by formula (1.5.3).
We remind also, that this formula represents the partial derivative of the reliability
function with respect to p2 when edge mid probability p1 remains unchanged (p2
increases on account of p0). This definition copies in fact the Birnbaum Importance
Measure (BIM) used in binary systems, see [1, 2, 6].

Three variants of p were considered: p = (0.6, 0.3, 0.1), p = (0.5, 0.3, 0.2) and
p = (0.4, 0.3, 0.3), see columns 3, 4, 5 in the table.

Figure2.7 presents the data of this table in a form convenient for visual analysis
of component TIM’s.

It is clearly seen that the edges have practically the same ranking for all three
versions of p. The most important edge is 11 which connects nodes of sets T1 and
T2. The second group of edges consists of 14 edges which have one of its ends in the
set T1. These edges are shown by bold in Table2.7. The importance values for this
category are in the range [0.074–0.100]. The third group constitute the remaining
edges with importancemeasures (for p = {0.6, 0.3, 0.1}) in the range [0.013–0.034].

If we think about replacing an edge by a more reliable one, the best candidate
are edge 11 and edges in the second group. If, for example, we replace edge 11
and 15 having p2 = 0.6 by an edge with p2 = 0.7 (and p0 = 0, respectively), we
might expect reliability increase by 0.1 · (0.150 + 0.097) ≤ 0.025, or equivalently,
P(DOWN) decrease by the same quantity. As it is seen from Table2.1, for p2 =
0.6, p0 = 0.3, P(DOWN) = 0.1586. Therefore the above edge replacement will
bring P(DOWN) to ≤ 0.1336, which is a quite significant improvement.

Table2.8 presents the down-mid component importance values (see Definition
1.5.1-B).

First of all, it is seen that the values in this table are significantly smaller than
the corresponding values in the previous table. This is expected, since the up-down
importance reflects the effect from reinforcing a component in up on the account
of reducing p0. It is bigger than the mid-down importance calculated for similar
reinforcement of mid on the account of reducing p0. Second conclusion is that the

http://dx.doi.org/10.1007/978-3-319-06440-6_1
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Table 2.7 Edge up-down TIM’s for H4 by (1.5.3), T1 = (0, 3, 7, 12), T2 = (1, 4, 6, 15)

i Edge p = (0.6, 0.3, 0.1) p = (0.5, 0.3, 0.2) p = (0.4, 0.3, 0.3)

1 (0, 1) 0.084 0.145 0.143
2 (0, 2) 0.076 0.133 0.130
3 (0, 4) 0.091 0.152 0.142
4 (0, 8) 0.083 0.131 0.117
5 (1, 3) 0.092 0.144 0.122
6 (1, 5) 0.025 0.066 0.078
7 (1, 9) 0.032 0.067 0.067
8 (2, 3) 0.089 0.144 0.131
9 (2, 6) 0.028 0.061 0.055
10 (2, 10) 0.018 0.048 0.056
11 (3, 7) 0.150 0.252 0.237
12 (3, 11) 0.074 0.104 0.077
13 (4, 5) 0.024 0.062 0.077
14 (4, 6) 0.033 0.075 0.079
15 (4, 12) 0.097 0.149 0.133
16 (5, 7) 0.075 0.108 0.083
17 (5, 13) 0.025 0.053 0.052
18 (6, 7) 0.088 0.132 0.112
19 (6, 14) 0.035 0.071 0.072
20 (7, 15) 0.082 0.118 0.087
21 (8, 9) 0.029 0.061 0.070
22 (8, 10) 0.034 0.063 0.063
23 (8, 12) 0.091 0.140 0.121
24 (9, 11) 0.019 0.042 0.040
25 (9, 13) 0.025 0.050 0.050
26 (10, 11) 0.013 0.029 0.037
27 (10, 14) 0.022 0.048 0.046
28 (11, 15) 0.024 0.051 0.050
29 (12, 13) 0.082 0.116 0.090
30 (12, 14) 0.076 0.112 0.089
31 (13, 15) 0.027 0.048 0.039
32 (14, 15) 0.030 0.072 0.090

edge ranking remains practically the same for all three sets of up, mid and down
probabilities, see Fig. 2.8.

If we check the edge positions in H4, we will see that the largest values of TIMs
have edges adjacent to the nodes of T2. These edges are most important for providing
connectivity of the nodes in this set (Fig. 2.8).

Remark Suppose we are interested in estimating the increase in system reliability
achieved by replacing edge 5 having p2 = 0.5, p1 = 0.3, p0 = 0.2 by an edge which
has p2 = 0.8, p1 = 0, p0 = 0.2. This is a replacement of type mid-up that leaves p0

http://dx.doi.org/10.1007/978-3-319-06440-6_1
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Fig. 2.7 Up–down TIM’s for edges of H4 multiplied by a factor 1000. Edge numbers are shown
on the x-axis
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Fig. 2.8 Mid–down TIM’s for edges of H4 multiplied by a factor 1000. Edge numbers are on x-axis

unchanged. Following Definition 1.5.1-C, we see that we have to take the difference
between up-down importance in Table2.7 and mid-down importance in Table2.8.
We obtain for edge 5 and p0 = 0.2 (column 4) the value 0.144−0.005 = 0.139. For
the increase of p2 by 0.8− 0.5 = 0.3, we can expect the drop of DOWN probability
by δ ≤ 0.139 · 0.3 = 0.0417.

In general, estimation of the effect of component reinforcement on network relia-
bility for ternary network is quite similar to the procedure described in [5], Chapter 2
for binary networks.
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Table 2.8 Edge down–mid TIM’s for H4 by (1.5.4), T1 = (0, 3, 7, 12), T2 = (1, 4, 6, 15)

i Edge p = (0.6, 0.3, 0.1) p = (0.5, 0.3, 0.2) p = (0.4, 0.3, 0.3)

1 (0, 1) 0.001 0.006 0.009
2 (0, 2) 0.000 0.002 0.004
3 (0, 4) 0.001 0.005 0.009
4 (0, 8) 0.001 0.002 0.005
5 (1, 3) 0.001 0.005 0.010
6 (1, 5) 0.001 0.006 0.010
7 (1, 9) 0.001 0.006 0.010
8 (2, 3) 0.000 0.002 0.006
9 (2, 6) 0.001 0.007 0.010
10 (2, 10) 0.000 0.003 0.007
11 (3, 7) 0.000 0.002 0.004
12 (3, 11) 0.000 0.003 0.007
13 (4, 5) 0.001 0.005 0.010
14 (4, 6) 0.003 0.010 0.014
15 (4, 12) 0.001 0.004 0.008
16 (5, 7) 0.000 0.002 0.005
17 (5, 13) 0.000 0.002 0.006
18 (6, 7) 0.001 0.006 0.010
19 (6, 14) 0.002 0.007 0.010
20 (7, 15) 0.001 0.006 0.012
21 (8, 9) 0.001 0.003 0.007
22 (8, 10)) 0.001 0.002 0.005
23 (8, 12) 0.001 0.002 0.003
24 (9, 11) 0.001 0.003 0.006
25 (9, 13) 0.000 0.003 0.007
26 (10, 11) 0.000 0.002 0.003
27 (10, 14) 0.000 0.003 0.006
28 (11, 15) 0.001 0.007 0.011
29 (12, 13) 0.000 0.002 0.005
30 (12, 14) 0.001 0.002 0.005
31 (13, 15) 0.001 0.006 0.011
32 (14, 15) 0.002 0.008 0.012

2.5 Evolution Process for Ternary Network

2.5.1 Lomonosov’s Evolution Process with Merging

Let us remind that all calculations of network reliability (where the UP state was
defined as the existence of strong and weak connectivity, or the existence of an s − t
flow, or as presence of largest component above critical size) were made under two
important conditions: all components subject to failure are identical and stochasti-
cally independent. Below we will describe an ingenious Monte Carlo algorithm of

http://dx.doi.org/10.1007/978-3-319-06440-6_1
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M.V. Lomonosov for estimating the probability of network connectivity which will
allow to treat networks with independent components which have different failure
probabilities. The first publication of this algorithm is dated 1991 [3], see also its
detailed description in [4], Chap. 9.

Originally, Lomonosov’s algorithms (LA) was designed for binary networks. We
will first describe this version of LA for networks whose components subject to
failures are binary edges. Later, in Sect. 2.5.2 we will describe an extension of the
LA to ternary components.

Suppose that we have a network N = (V, E, T), where V is the node set, E is
the edge set, and T is a subset of V of “special” nodes called terminals. The edges
are binary: edge ei is down with probability qi = 1 − pi and up with probability pi.
Network UP state is defined as presence of terminal connectivity of all nodes v ≡ T .

The first idea of LA is to associate with each edge ei an exponentially distributed
random birth time τi with parameterλi having the following property. For an arbitrary
chosen time value t0

P(τi ⊆ t0) = 1 − e−λi t0 = pi, i = 1, 2, ..., n. (2.3)

Let us assume that edge ei is born at time τi and initially was in state down. At
the instant τi of its birth it becomes up and stays in this state “forever”. Then the
probability that it will be “alive” at time t0 equals P(τi ⊆ t0) = pi. For simplicity
we put t0 = 1 and note that from (2.3) follows

λi = − ln qi. (2.4)

Now comes the following crucial observation: if we take a “snapshot” of the state
of all edges at time instant t0 = 1, we will see the network in the state which is
stochastically equivalent to the static picture in which edge ei is up or down with
probability pi or qi, respectively. In particular, the snapshot will reveal the network
in UP with probability identical to that obtained for the static edge “lottery”.

The second idea of LA is to consider the edge birth times as a process developing
in time. Let us consider an instructive example.

Example 2.5.1 Network with 5 nodes and 7 edges.
Figure2.9 shows a network with 5 nodes and 7 edges. Network is UP if all its nodes
are connected to each other. The birth process starts at t = 0 from state denoted as
σ0: no edges are born. Suppose that edge e5 is born first. Note that the time ξ1 of
its birth ξ1 = min{τ1, τ2, ..., τ7} and it is exponentially distributed with parameter
π1 = ∑7

i=1 λi:
ξ1 ∀ Exp(π1).

The probability that the first birth will be of edge 5 equals λ5/π1.
The next edge born will be one of the remaining edges. Suppose that the next birth

takes place at time instant ξ1 + ξ2. Due to the properties of exponential independent
random variables, see e.g. [12], ξ1 and ξ2 are independent, and

http://dx.doi.org/10.1007/978-3-319-06440-6_
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Fig. 2.9 Evolution trajectory

ξ2 ∀ Exp(π2 =
∑

i ≈=5

λi).

The probability that the second birth will be of edge 3 equals λ3/π2. The network
enters now the state shown on Fig. 2.9 as σ2. Continuing this process we will observe
the third birth at the instant ξ1 + ξ2 + ξ3 where

ξ3 ∀ Exp(π3 =
∑

i ≈=3,5

λi),

and ξ3 is independent of ξ1 and ξ2. The third birth will be of edge 6 with probability
λ6/π3. After the births of edges 5, 3 and 6, the network will be in state σ3—see
Fig. 2.9. Suppose that the next birth will be of edge 1. Suppose it happens at time
instant ξ1 + ξ2 + ξ3 + ξ4. Obviously, all ξi-s are independent,

ξ4 ∀ Exp(π4 =
∑

i ≈=3,5,6

λi),



40 2 Applications

and fourth birthwill be of edge 1with probabilityλ1/π4. The birth of edge 1 signifies
network entrance into the UP state. It is an absorbing state, and for all further births
the system remains in UP.

The sequence of states ω = {σ0 ⇒ σ1 ⇒ σ2 ⇒ σ3 ⇒ UP} leading from the
initial state σ0 to the UP state is called trajectory. The probability that the trajectory
will be as in our example is

λ5

π1
· λ3

π2
· λ6

π3
· λ1

π4
.#

Now let consider how the evolution process is used for computing network reliability.
Denote the set of all trajectories ω by δ. By conditioning over particular trajectory
ω, we can represent the network UP probability in the following form:

P(Network isUP) =
∑

ω≡δ

P(ω)P(ξ1 + ξ2 + · · · + ξr ⊆ t0 = 1|ω). (2.5)

The probability P(ξ1+ξ2 +· · ·+ξr ⊆ t0|ω) can be computed in a closed form using
hypo-exponential distribution, see [10, 12] and [4], Appendix B.

Let π1 > π2 > π3 > · · · > πr , and ξi ∀ Exp(πi) be independent.
Then

P(

r∑

i=1

ξi ⊆ t) = 1 −
r∑

i=1

e−πi t
∏

j ≈=i

πj

πj − πi
. (2.6)

Since the quantity of interest in (2.5) is expressed as mathematical expectation,
it can be estimated without bias as the sample average of computed probabilities
P(ξ1 + ξ2 + · · · + ξr ⊆ t0 = 1|ωj) over a sample of trajectories {ω1,ω2, ..., ωM}:

P̂(UP) =
∑M

j=1 P(ξi1 + ξi2 + · · · + ξrj ⊆ t0 = 1)|ωj)

M
. (2.7)

In the case when the components of the network are edges, the above described
evolution method can be complemented by so-called closure or merging operation.
Let us explainwhatmeans closure byExample 2.5.1.Consider the stateσ2 onFig. 2.9.
Edges 3 and 5 are already born. These edges connect three nodes: b, c and d. On
each stage of the birth process the edges born and their nodes create components,
i.e. connected sets of nodes. So, nodes c, b and d belong to one component. Note
that edge 4 which connects nodes c and d of this component can be merged with the
already born edges without changing the component which already has been born!
More formally, we can conclude that edge 4 = (c, d) is not relevant and can be
excluded from the further evolution process. After adding this edge, the remaining
edges are only 1, 2, 6 and 7. Suppose that the next edge born will be 6, see state
σ3. Now the component has nodes b, c, d, e, and edge 7 = (d, e) joins the nodes
belonging to the already existing component. So, now edge 7 can be added to the
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already born edges. After “merging” edge 7, we are left with only two non born
edges, 1 and 2. The birth of any of them signifies the entrance into the UP state.

So, after each birth of an edge, we look for those edges, whose nodes belong
to the already existing component. These edges are joined to this component and
excluded from further considerations as irrelevant. Thus, after carryingout the closure
operation, the trajectory leading from σ0 to UP state represents a “thick” set, a
“bundle” of trajectories. As the result, the dimension of the set of all trajectories δ

becomes smaller, and the estimate (2.7)—less variable.
Let us note that the estimate P(DOWN) = 1−P(UP) by (2.7) is free of so-called

rare event phenomenon (unlimited increase of variance when P(DOWN) ⊂ 0). In
addition, the relative error of the estimator of P(DOWN) = 1− P(UP) is uniformly
bounded with respect to the λi values. For additional details see [4], Chap. 9.

2.5.2 Extension of LA to Multistate Components

Originally, Lomonosov’s algorithm described in [3] dealt with systems whose com-
ponents subject to failure had only two states: up and down, or exist-erased. Now
suppose that we have a network whose edges can be in three states: up, down and
mid. In practice, edge e = (a, b) in mid may correspond to a connection between a
and b with reduced capacity or reduced speed of information exchange.

Suppose that we have a network whose components subject to failures are edges
e1, e2, ..., en, and these edges are independent but not identical. Edge ei has prob-
abilities p2(ei), p1(ei) and p0(ei) to be in state up, mid or down, respectively. Our
goal is to find network static DOWN probability.

Consider a two-stage edge birth process: on the first stage the edge is born without
specifying its state, mid or up. Afterwards, on the second stage, the born edge is
assigned its “type”—mid or up. Let the probability that edge is born be

P(e born) = pb(e) = p2(e) + p1(e). (2.8)

On the second stage, after the edge e is born, we carry out a random lottery, in which
we assign state up to e with probability

P(edge e is up|e is born) = p2(e)

p1(e) + p2(e)
(2.9)

and state mid with probability

P(edge e ismid|e is born) = p1(e)

p1(e) + p2(e)
. (2.10)

Now let us associate with edge e its birth time τe ∀ Exp(λe), where λe is chosen in
such a way that the probability that at t0 edge e is born equals pb(e):

http://dx.doi.org/10.1007/978-3-319-06440-6_9
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P(τe ⊆ t0) = 1 − e−λet0 = pb(e). (2.11)

A “snapshot” at t0 on all edges (born or not) will reveal a picture which is sto-
chastically equivalent to static independent “lotteries” which determine the edge
states according to the above probabilities p(e) = (p2(e), p1(e), p0(e)). Now we can
implement the evolution process of LA and simulate, similarly to the above described
procedure, the ω trajectories.

Here, however, arises a complication. The principal property of the evolution
process for a binary system was the fact that each trajectory starting from the initial
state with no edges born led eventually to system UP state. This was guaranteed
by the property of monotone systems: if all components are born, then the system
should be UP. But now, we are in a situation where component can be born as mid
or as “up”. And we have no guarantee that even a full trajectory with all edges born
brings the system into UP. Suppose, for example, that network UP state means the
following: (i) all nodes are connected with each other by mid or up edges; (ii) nodes
a, b, c must be “strongly” connected, i.e. connected only by edges in up. Suppose it
happens that a full trajectory has only mid edges, i.e all births produced mid state.
Then the trajectory can not end in the UP state, and it ends, in fact, in DOWN state.

We will adopt the following zero-rule for the evolution process for which
trajectories may end in DOWN state:

If the trajectory ω∗ = {σ0 ⇒ σ1 ⇒ · · ·σr ≡ DOWN} ends in DOWN , put

P(ξ1 + · · · + ξr ⊆ t0|ω∗) := 0. (2.12)

This rule can be justified by the following reasoning. Supply our original network
with a set of “superedges” (or “supercomponents”), such that two properties will be
guaranteed:

(i) these edges have no mid state, and if they are born they always are in up;
(ii) If all superedges are born, network is always UP.

For example, network is UP if nodes s and t are connected only by edges in up
and all other nodes are connected to each other. Then it will be enough to have one
superedge e0 = (s, t). Another example is a flow network which is in UP if s − t
flow exceeds γ. Then add to the network s − t superedge and assign to it capacity
that exceeds the maximal flow L.

Now modify the original problem by adding the superedges (supercomponents)
to the network and giving them negligible small up probability ε.

Let us see what will be the consequences of that. Suppose ε = 10−10 = p2(e0) is
the probability that superedge e0 is born. (Remind that the superedge after its birth
is in state up.) Then the probability that it will be born before t0 = 1 equals

P(τe0 ⊆ 1) = 10−10 = 1 − e−λ.

Therefore λ � 10−10 = ε. This means that τe0 has a huge mean value 1/ε. Therefore
the probabilities of type P(ξ1 + · · · + ξr + · · · + τe0 ⊆ 1|ω) will be very close to
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zero. On the other hand, the presence of very small ε in the expressions of type
λj/(λ1+· · ·+λk +ε)will have no influence on the evolution process and the choice
of the next born edge. Therefore, with probabilities arbitrary close to 1, the modified
birth process will be developing exactly as if the superedges do not exist. After all
“regular” edges will be born and only superedges are left, the evolution trajectories
will continue by including the superedges. This will guarantee that all trajectories
end in UP state. But the contribution to the numerator of (2.7) coming from these
trajectories will be negligible. All this justifies the above “zero-rule” (2.12).

Now we are ready to formulate in general terms the Monte Carlo algorithm for
estimating reliability of a ternary network with statistically independent and non-
identical components.

Modified LA

(I) Using the p2(e), p1(e), p0(e), assign to each component e its birth rate λe and
the type mid or up in case component e is born, according to (2.8)–(2.10).

(II) Generate the evolution trajectory by choosing on each step a component e from
the set of nonborn components with probability λe/πe, where πe is the sum
of λ’s for all nonborn components. If component e is born, remember its birth
time τe ∀ Exp(λe). If closure operation is used, apply it, and merge the closing
components to the existing ones and cross them out from the list of non born
components.
After each birth, check if the trajectory has reached theUP state. If theUP state
is being reached, STOP, and go to (III); otherwise continue the birth process
until all non born components are exhausted. If UP state is not being reached
remember the corresponding trajectory and mark it as “zero” type.

(III) For each trajectory ω of non “zero” type compute P(ξ1 + ξ2 + · · · + ξr ⊆ 1|ω)

by (2.5)–(2.6); put P(ξ1 + ξ2 + · · · + ξr ⊆ 1|ω) = 0 for zero type trajectory.
(IV) Put P(DOWN) := P(DOWN) + P(ξ1 + ξ2 + · · · + ξr ⊆ 1|ω)

(V) Repeat Steps (II–IV) M times. Put P(DOWN) := P(DOWN)/M.

2.5.3 Flow Network

Let us consider the dodecahedronflownetwork studied earlier in Sect. 2.2. In Sect. 2.2
it was assumed that all edges have identical probabilities to be in up, mid or down.
Now we introduce different probabilities for the edges to fail, according to the fol-
lowing rule. Nodes are numbered j = 1, 2, ..., 20. Edge e = (i, j) is declared even
if i + j is even, and odd—otherwise. Assume that even edges have probabilities
p2(a), p1(a), p0(a), and odd—p2(b), p1(b), p0(b). Edge capacities remain the same:
0, 3, and 6 for down,mid and up edge, respectively. Similar to the example in Sect. 2.2.
there are two threshold values for the s − t flow L1 = 10 and L2 = 4.5.

To find network DOWN probability, we applied the modified LA. The closure
operation is not applicable here since the UP criterion is not formulated in terms
of node connectivity. The number of simulated trajectories was M =1,000,000. All
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Table 2.9 P(DOWN) for flow network with two types of edges

i p2(a); p2(b) p1(a); p1(b) p0(a); p0(b) L P(DOWN) RE CPU sec

1 0.6; 0.4 0.3; 0.4 0.1; 0.2 10 0.757 0.1% 123
2 0.6; 0.4 0.3; 0.4 0.1; 0.2 4.5 0.119 0.2% 103

simulation results obtained by the evolution method were checked by CMCwith 106

replications, and numerically the results coincide with the results obtained by the LA
with high accuracy (Table2.9).

Below is a short summary of simulation results using LA:
Line i = 1 presents the DOWN probability for L1 = 10. The first figure for

p2, p1, p2 is for even edges, the second— for odd edges. Line 2 shows similar results
for reduced maximal flow L2 = 4.5. Network DOWN changes considerably with the
reduction of the maximal flow. The RE’s are rather small and the CPU time is quite
satisfactory. Let us note that the zero-type trajectories were observed in about 8% of
replications for L1 = 10 and were not observed for L1 = 4.5.

2.5.4 Grid Network

Here we consider a 10 × 10 grid network shown on Fig.2.5. The network has 100
nodes. Node failure (down state) means erasing all edges adjacent to this node. If
node v is in mid state, and this node is even (row number + column number is
even), then the horizontal edges adjacent to v are erased. If node v is in mid and
its row number + column number is odd, then the vertical edges adjacent to v are
erased.

Node state probabilities are

pup(a) = 0.6, pmid(a) = 0.3, pdown(a) = 0.1 − if node a is even;

and node state probabilities are

pup(b) = 0.65, pmid(b) = 0.15, pdown(b) = 0.2 − if node b is odd.

The DOWN state for the network was defined in two ways:

(i) The maximal component has less than L1 = 81 node;
(ii) The maximal component has less than L2 = 51 node.

The LA can be easily applied to the case when the components subject to failure are
the nodes, see [9]. Formally, a closure operation can be applied for the nodes too, but
its algorithmic implementation is quite complicated. We applied the modified LA
without closure.
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Table 2.10 P(DOWN) for grid network with two types of nodes

i p2(a); p2(b) p1(a); p1(b) p0(a); p0(b) L P(DOWN) RE CPU sec

1 0.6; 0.65 0.3; 0.15 0.1; 0.2 80 0.5349 0.05% 256
2 0.6; 0.65 0.3; 0.15 0.1; 0.2 50 0.0710 0.2% 197

The simulation results using the modified LA are presented in Table2.10.
The number of trajectories in the evolution algorithm was M =1,000,000. Let us

note that the % of evolution trajectories ending in DOWN state was equal 0.1% for
L1 and 1% for L2.
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Chapter 3
Interaction of Networks

Abstract The simplest form of two interacting networks is sharing the same set
of nodes by two independent networks. For example, the power supply and water
supply networks in the same geographic area share the same set of nodes (houses or
residencies). Section3.1 presents several simple results concerning the size of the set
of nodes which receive “full” supply, i.e. are adjacent to edges of both types. Here
we use some basic facts from the theory of large random Erdos-Renyi or Poisson
networks. Section3.2 considers a system of two or more finite interacting networks.
Here the interaction means that a node va of network A delivers “infection” to a
randomly chosen node vB in B which in turn, bounces back and infects another
randomly chosen node wa in network A, and so on. As a result, random number Y
of nodes in B gets “infected” and fails. We compute, using D-spectra technique, the
DOWN probability for network B. This model is generalized to the case of several
peripheral networks attacking one “central” network B. In this “attack”, some of
nodes inBwill receivemore than one hit. The use ofDeMoivre combinatorial formula
together with D-spectra technique allows obtaining an expression for network B
DOWN probability in a close form. Finally, Sect. 3.3 extends the results of Sect. 3.2
to the case when the “central” network is ternary. In that case, we must take into
account different node behavior that are hit once or more. It is assumed that a node
hit only once changes its state from up to mid. When this node receives another hit,
it turns into down and remains in it forever. Network DOWN probability for this case
can be estimated by an efficient Monte Carlo algorithm.

Keywords Networks with colored links · Giant component · Poisson network ·
Network Interaction · Star-type configuration · D-spectra · Network DOWN
probability · Ternary network · DeMoivre formula
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Fig. 3.1 A network with two
types (colors) of edges. Bold
nodes are adjacent to edges of
both types

A

B

3.1 Networks with Colored Links

We assume that the readers of this section are familiar with basic ideas of network
theory and have read, for example, Chaps. 12–16, of Newman’s book “Networks—
An Introduction” [14].

In this section we will consider two networks sharing the same set of nodes. The
first network is N 1 = (V, E1), |V | = n, |E1| = m1, and the second network is
N2 = (V, E2), |E2| = m2.

To make easier the visual perception of these networks we can imagine that the
edges (links) of set E1 are red, and the links of the second network in set E2 are
green. On Fig. 3.1 the green links are shown by dotted lines.

A real-life prototype of the above network with two-colored edges are supply
networks: read edges represent, for example, power supply lines, and green edges,
for example, railway roads.

Let us make the following assumptions:

(i) node set V is large, formally |V | = n ≥ ⊂:
(ii) both networks are random Poisson graphs with average node degrees drd and

dgr , correspondingly.
(iii) both networks are stochastically independent.

A network component whose size grows in proportion to network size n as n ≥ ⊂
is called giant component.

Denote by Grd and Ggr the giant components of the “red” and “green” network,
respectively. In supply network context, only the nodes belonging simultaneously
to Ggr and Grd receive full supply, i.e. receive both “green” and “red” commodities
(e.g., power and transportation). In our notation the full supply goes only to the nodes
of the set

G = Ggr

⋂
Grd .
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Table 3.1 Giant component S as a function of average node degree c

c 1.00 1.25 1.5 1.75 2.0 2.25 2.50 2.75 3.00

S 0 0.371 0.583 0.713 0.797 0.853 0.893 0.920 0.940
c 3.25 3.5 3.75 4.00 4.25 4.5 4.75 5.00 5.25
S 0.955 0.966 0.974 0.980 0.985 0.988 0.991 0.993 0.995
c 5.5 6.0 6.5 7.0 – – – – –
S 0.996 0.997 0.998 0.999 – – – – –

Let us call call the set G of nodes adjacent to edges of both colors rich node set
(RNS). By property (iii)

|G| = |Ggr | · |Grd |. (3.1)

Our first task is to determine the size of G. The following theorem solves the problem.

Theorem 3.1.1 For a Poisson random graph, the size of the giant component S
depends only on the average node degree c via the following equation, see [14],
(12.15):

S = 1 − exp[−c · S]. (3.2)

Proof The proof closely follows [14], Sect. 12.5. First note that in Poisson graph the
edge between any nodes i and j exists with probability p, and the average node degree
equals c = p(n − 1). Denote by u the average fraction of nodes that do not belong
to giant component. Let us consider node i and find out the probability that it is not
connected to giant component. It happens if i is not connected to giant component
via any other node. This means that for any other node j either i is not connected to
j by an edge, or i is connected to j, but j itself is not in giant component. The first
option has probability 1 − p, and the second option has probability p · u. Therefore,
the probability of not belonging to giant component via any other of (n −1) nodes is

u = (1 − p + pu)n−1 =
(
1 − c

n − 1
(1 − u)

)n−1
.

Setting n ≥ ⊂, we obtain from here

u = exp−c(1−u), (3.3)

or replacing u = 1 − S, we obtain the desired formula (3.2). #

For any given c ⊆ (1,⊂), the solution of (3.2) can be easily found by FindRoot
operator of Mathematica [17]. Table3.1 presents a sample of S values for different
average node degrees c.
Let us remind that the average number of edges in a network is m = n · c/2.
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Example 3.1.1 The size of RNS.
Suppose we have a large network with n = 1000 nodes. Suppose that the average
degree for green and red edges is dgr = drd = 2.00. We see from Table3.1 that the
size of a single-colored component is S = 0.797, and the size of RNS is by (3.1)
S(2) = 0.7972 = 0.635. Thus RNS has on the average 635 nodes and only these
nodes receive “full supply”. #

Example 3.1.2 maximal size of RNS built randomly under budget constraint.
Suppose that the cost of a red edge crd is on the average 5 units, and the cost of
the green edge is on the average cgr = 1. Suppose, all our budget for designing
two-colored network is 9,000 units and suppose that our graph has n = 1000 nodes.
Each node has the average green degree dgr and the average red degree drd . Then the
total cost of the whole two-colored network equals

crddrdn

2
+ cgrdgrn

2
= 5 · 1000 · drd

2
+ 1 · 1000 · dgr

2
,

and it should not exceed 9,000. Simplifying, we obtain that:

5drd + dgr ∩ 18. (3.4)

Let us find the maximal size of the RNS which is possible to achieve for “green” and
“red” Poisson graphs, within the budget constraint (3.4). The parameters dgr and drd
must satisfy the constraint:

drd = 18 − dgr

5
.(≤)

The numerical procedure for finding the optimal RNS is as follows.

(i) Take dgr = 1.5, calculate |Ggr | = S from (3.2) using FindRoot operator, setting
c := dgr ; calculate drd from (*) and find |Grd | from (3.2) using FindRoot operator
and setting c := drd .
(ii) Calculate G = |Grd | · |Ggr | and set drd := drd + 0.5. Return to (i)
Stop at the maximal value of G.

The results of this calculations are shown on Fig. 3.2.
We see that the maximal size G≤ ∗ 0.906 is attained at cgr = 4, and crd =

(18 − 4)/5 = 2.8. So, the maximal RNS has, on the average, 906 nodes. #

3.2 Interacting Networks

3.2.1 Introduction

Networks attract overgrowing interest in modern research literature. Since network-
type systems appear presently in every sphere of our life (social networks, com-
munication networks, supply networks, Internet, etc.), their reliability, survivability
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Fig. 3.2 The size of two-colored giant component as a function of cgr

and resilience studies are becoming hot and and important issue. Particular interest
is attracted by the so-called cascading failure phenomenon, i.e. massive network
failures triggered by failure of a small part of the network components, see e.g.
[1, 3, 5, 13].

Majority of the works on network reliability deals with probabilistic failure
description and failure modeling within a single network or studies the influence
of external “bombardment” of network nodes on its connectivity, or on the size of
the giant component, see e.g. [7, 11, 12, 14]. At the same time most modern net-
works do not exist and do not function in isolated mode. As noted in important paper
[3], “…due to technological progress, modern systems are becoming more and more
coupled together. While in the past many networks would provide their functionality
independently, modern systems depend on one another to provide proper function-
ality.” For example, the financial network of banks and related financial institutions
is interconnected with business network of industrial enterprizes. A “failure” of a
bank (e.g. bankruptcy) in one country may cause serious problems financing and/or
maintaining industrial activity of one or many companies in another part of the
world. Similar interdependence exist between power supply network and computer-
communication networks since loss of power supply leads to to failures in information
supply, and vice versa, i.e. disruption of information flow may cause serious failures
in power supply.

There exist a principal difference in reliability studies of very large (formally-
infinite) networks and similar studies in finite size (formally-“small”) networks. In
the studies of very large networks, the main goal is finding the conditions under
which the network with n nodes has so-called giant component, i.e. a component of
size O(n) as n ≥ ⊂, and establishing the threshold value of network parameters
(say, the average node degree) below which the giant component does not exist.
Similarly, in studying the development of a cascading failure, and/or an epidemic
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process, of crucial interest are the conditions which guarantee that the number of
damaged (infected) nodes remains limited (formally, is o(n) as n ≥ ⊂). As a rule,
in the studies of very large networks, the detailed network topology is not introduced
and network properties are formulated only in a form of the distribution {pm} of their
node degrees, where pm is a fraction of nodes having degree m.

Contrary to very large networks, the reliability and resilience studies of finite
networks having 50–200 nodes are carried out under the assumption that we know
the detailed network topology under study and their failure (DOWN) definition.
Similarly, the development of cascading failure and network interaction for finite
networks is studied inmore details that allows to calculate network failure probability
and the probabilistic description of failure development.
In this section we will consider network interaction for binary networks only. The
network components subject to failurewill be always the nodes. Themain assumption
will be that if a node vA of network A fails (gets infected, for example, receives a
“blow”), then this node gets down, and delivers the infection to a randomly chosen
node vb of network B. After that, the node vB gets down. For ternary networks,which
we will consider in the next section, the interaction of nodes is more interesting: if
a node vB of network B, receives a single “blow” from some node vA of network A,
then this node changes its state from up to mid. Upon receiving the second “blow”,
node vB changes its state from mid to down. Subsequent “blows” do not change the
state of a node which is already down.

3.2.2 Two Interacting Binary Networks

The exposition in this section follows in main lines Sect. 13.2 in [11]. We consider a
situation when the cascading failure process is initiated by a single node in one of
the two interacting networks. The failure of a node in one network causes the failure
of another, randomly chosen node in another network, then goes “backwards” to a
randomly chosen node of the first network, and so on, until it exhausts itself by hitting
a node for a second time. Depending on particular properties of both networks, the
process of failure transmission may lead to the failure of one or both interacting
networks. Our goal is to find out the distribution of affected nodes and estimate the
network failure probability.
We consider networks A and B, having n and m nodes, respectively, m ≡ n. Nodes of
networks are numbered 1a, 2a, ..., na and 1b, 2b, ..., mb, correspondingly. In further
exposition it is convenient to use the terminology of an epidemic process. Initially,
at t = 0 node 1a gets infected. It transmits the infection “forward” to a randomly
chosen node 1b. Then 1b “strikes back” randomly chosen node 2a. This will be the
first turnaround of the process. We may assume that it takes one time unit. It may
happen that 1a ∀ 2a and then the process stops, or, equivalently circulates between
1a and 1b. With probability (1 − 1/n) node 1b delivers infection to another node
2a ≈= 1a, and in this case the process goes on in a similar way.
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Fig. 3.3 Infection delivery
between networks A and B

a1

A

B

Example 3.2.1 Epidemic transmission between two small networks.
The networks are shown on Fig. 3.3, na = nb = 4. Let us find out he probability that
the process will develop by following trajectory

τ = 1a ⇒≥ 1b ⇒≥ 2a ⇒≥ 2b ⇒≥ 3a ⇒≥ 3b ⇒≥ 4a.

It is easy to compute P(τ ):

P(τ ) = P(1a ⇒≥ 1b ⇒≥ 2a) · P(2a ⇒≥ 2b ⇒≥ 3a) · P(3a ⇒≥ 3b ⇒≥ 4a) = 3

4
· (3
4

· 2
4
) · (2

4
· 1
4
).

For this example, denote the total number of damaged nodes in A by XA. XA = 1
if the infection from node 1b returns to 1a. Then P(XA = 1) = 1/4. The event
XA = 2 takes place if 1b hits backward not 1a, node 2a delivers infection to any
node except 1b and 2b, and 2b hits one of the already affected nodes in A. This gives
P(XA = 2) = (3/4) · (10/16). In a similar way, one can establish that

P(XA = 3) = (3/4) · (6/16) · (14/16); P(XA = 4) = (3/4) · (6/16) · (2/16).#

Denote by Y the number of damaged (infected) nodes in B. Let us present without
proof the following

Theorem 3.2.1 [11]
(i) For r = 3, 4, ...., n,

P(Y = r) = n − 1

n

r−2∏

i=1

(m − i

m
· n − i − 1

n

)
· m − r + 1

m
·[r/n+(n−r)r/nm]. (3.5)

(ii) For r = 2,

P(Y = 2) = n − 1

n
· m − r + 1

m
· (r/n + (n − r)r/nm). (3.6)

For r = 1, P(Y = 1) = 1/n + (n − 1)/nm. #
Since in this section we deal with binary networks, it is necessary to remind

the reader the main tool for the reliability analysis of binary networks with failed
nodes—the cumulative D-spectrum.
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3.2.3 Cumulative D-spectrum: A Reminder

This material was explained in detail in [6, 8, 10]. Let us make its brief overview. Let
network components subject to failure be numbered as 1, 2, ..., n. The components
may be edges or nodes. In this chapter, we consider only node failures. Node failure
means that all edges adjacent to it are erased and the node becomes isolated. Consider
a random permutation π = (i1, i2, ..., in) of these numbers. Assign to each permu-
tation probability 1/n! Imagine that all components are in up state and start turning
them down moving along π from left to right. After each step of this “destruction”
process we check the state of the network and note the number of components needed
to be turned down to reveal for the first time that the network has failed.
Let

P(the network failed on step j) = fj, j = 1, 2, ..., n.

Obviously {fj} is a proper discrete density. In literature it is known also under the
name signature [15, 16] or Internal Distribution (ID) [4]. We will use the cumu-
lative signature F(x) = ∑x

i=1 fi which we call cumulative D-spectrum or simply
D-spectrum (“D” stands for “destruction”).

The probabilistic meaning of F(x) is the following: F(x) is the probability that the
network is DOWN if x of its randomly chosen nodes are down (while the remaining
n − r nodes are up). D-spectrum is a combinatorial invariant of the network, it is
completely separated from the random mechanism governing network components
failures. For us in this section the following combinatorial formula will be of crucial
importance:

C(x) = F(x) · n!
x!(n − x)! , (3.7)

where C(x) is the number of network failure sets having exactly x components down
and n − x remaining components up.

Using (3.7) we can write the following formula for network DOWN probability
(we remind that the network has stochastically independent and identical compo-
nents):

P(DOWN) =
n∑

x=1

C(x)(1 − p)xp(n−x). (3.8)

Here p = P(component is up).
For our exposition the following formula is of principal importance. Suppose we

know the probability P(Y = x) that the number of damaged nodes in our network
equals x. Then the total probability that the network is DOWN will be

P(DOW N) =
n∑

x=1

P(Y = x) · F(x). (3.9)
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Fig. 3.4 Two interacting networks. Network A initiates the destruction process of B. Nodes 1, 2,
3 are terminals

Table 3.2 P(Y = x) and F(x) for network B

x P(Y = x) F(x) x P(Y = x) F(x)

1 0.0635 0 11 0.0103 0.5620
2 0.1171 0 12 0.0457 0.7393
3 0.1511 0 13 0.0018 0.8752
4 0.1615 0 14 0.0065 0.9576
5 0.1505 0.0007 15 0.0006 0.9926
6 0.1247 0.0078 16 0.0002 1
7 0.0929 0.0338 17 0 1
8 0.0624 0.0977 18 0 1
9 0.0379 0.2125 19 0 1
10 0.0208 0.3754 20 0 1

Let us illustrate the above theory by an example of two interacting networks.

Example 3.2.3 Two interacting networks
Figure3.4 presents two small interacting networks [9].NetworkA initiates the “infec-
tion” process as a result of which some random number of nodes in network B fail.
Network B fails if it breaks up into at least two clusters. A cluster is an isolated con-
nected subnetwork which contains at least one special node called terminal. Network
B has 20 “regular” nodes, 3 terminal nodes and 32 edges.

Table3.2 Presents the distribution of the number of nodes hit in network B
(columns 3,5) and the D-spectrum of network B (third and sixth column).

Using the above data and formula (3.9) we calculate the probability that network
B is DOWN :
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Fig. 3.5 Circled nodes received more than one hit

P(DOW N) = 0.0754.

This probability is rather small because the number of damaged nodes in B is rela-
tively small. #

3.2.4 Star-Type System of Interacting Binary Networks

We consider a collection of “periphery” networksN1,N2, . . . ,Nk and one “central”
network B, see Fig. 3.5. In the language of epidemic process, each of the ni nodes
ofNi with probability pi delivers infection to some randomly chosen node of B. All
periphery networks act independently. Each infected node in B fails. The topologies
of periphery networks are of no importance, the topology of the central network is
known, and its failure state is defined as follows.

To preserve some analogy between the giant component of a very large network
and “small” network B, we assume that the network B is DOWN if its largest compo-
nent is greater than some critical value Lmin = 0.5 · nb. We remind that node failure
means elimination of all edges adjacent to this node. Following [9], we will assume
that the number Xi of nodes in B infected (hit) by periphery Ni, i = 1, ..., k has a
Poisson distribution with parameter ϕi = ni · pi. This is a realistic assumption if pi

are small and ni are large. Since all periphery networks act independently, the total
number of infection deliveries to center B has Poisson distribution with parameter
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Table 3.3 D-spectrum of
5 × 8 grid B

x F(x) x F(x)

1 0 11 0.32229
3 0 12 0.56158
4 0 13 0.83440
5 0.00066 14 1.00000
6 0.00311 15 1.00000
7 0.01106 16 1.00000
8 0.03053 17 1.00000
9 0.07416 18 1.00000
10 0.16402 19-40 1.00000

ϕ =
k∑

i=1

ϕi · pi,

and

P(X = r) = e−ϕ ϕr

r! , r = 0, 1, 2, ...

By our assumption, a node hit by infection that originated in some “periphery”
network gets down. Quite often there will be a situation that a particular node of B
will be hit more than once, even by the same periphery network. Of course, such
node will remain down. To calculate the probability that B is DOWN we need to
know the distribution of nodes which are hit at least once.

This situation reminds the famous model considered in combinatorics and known
as “occupancy” problem [2], p. 242. In this model, r balls are randomly thrown into
m identical boxes. The probability that exactly k boxes will contain at least one ball
is given by the famous DeMoivre formula:

p(k|r) = m!
k!(m − k)!

k∑

t=0

(−1)t k!
t!(k − t)!

(k − t

m

)r
, k = 1, ...,min(m, r). (3.10)

Example 3.5 Failure probability of the central network.
Assume that the periphery networks create a Poissonflowwith total intensityϕ = 20,
i.e. the average number of hits is 20. Network B is a rectangular 5 × 8 grid. Its D-
spectrum is presented in Table3.3.

Now everything is ready to compute DOWN probability of network B. The prob-
ability that B is DOWN given that it has received r hits from periphery is equal

PB(DOW N |r) =
min(m,r)∑

j=1

p(j|r) · F(j). (3.11)
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Then
PB(DOW N) =

∑

r≡1

P(X = r) · PB(DOW N |r). (3.12)

Using the above formulas we find out that

PB(DOW N) = 0.891.#

3.3 Star-Type System with Central Ternary Network

In this section we consider a system of interacting networks consisting of a “central”
network B and a collection of “periphery” networks. This system is similar to the
one considered in the previous section, but with one principal difference: the central
network B is ternary and not binary. The components of B subject to failure are
nodes. They can be in three states: up, intermediate (mid) and down. For example, a
node which is in mid transmits information only to a part of links adjacent to it, i.e.
it is partially isolated. A node which is down is completely isolated.

Each node of periphery networkNi fails with probability pi, as a result of which
some randomly and independently chosen node in B receives a “hit”. Physically, it
may correspond to a disruption of power or information supply, infection delivery,
loss of communication, etc. If a node b in B receives a single “hit”, it changes its
state from up to mid. After the second hit, with no matter of its origin, the node gets
down and remains in this state forever.

As in the previous section, we assume that the total flow of “hits” from periphery
to the center creates Poisson flow with intensity ϕ. It means that the probability that
the network B receives K hits equals

P(K) = e−ϕ ϕK

K ! , K = 0, 1, 2, ...

If B has m nodes, then the situation here reminds the classical occupancy problem:
K balls are randomly and independently thrown into m boxes. There is, however, a
significant difference with respect to the previous model. We are interested not only
in the number of boxes which are nonempty, but we must know also the number D
of boxes containing two or more balls, and the number of boxes S containing exactly
one ball. (Denote by E the number of empty boxes: E = m − S − D).

Our task is to calculate the probability that the central network will be DOWN.
Let us remind the probabilistic meaning of the ternary D-spectrum. Fr(x) is the
probability that the network isDOWN if r randomly chosen nodes are up and x nodes
are down. Suppose thatwe know thatE = r andD = x. ThenFE(D) is the probability
that the network is DOWN. Unfortunately, we don’t have a formula analogous to
DeMoivre’s which would give us the joint distribution of (S, D). Suppose we are
able to find the joint conditional density πK (r, x) = P(E = r, D = x|K). Then the
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formula for system DOWN probability would be the following:

PB(DOW N) =
⊂∑

K=0

e−ϕ ϕK

K !
∑

r≡0,k≡0:r+k∩m

π(r, x|K) · Fr(x). (3.13)

In practical calculations, we will approximate of P(DOW N) by using the following
straightforward Monte Carlo procedure.

Algorithm: Estimation of P(DOWN) for central Ternary Network
(0) It is assumed that the ternary D-spectrum Fr(x) is known. Set Counter
P(Down) := 0;
(i) Generate K—Poisson random variable with parameter ϕ.
(ii) Locate randomly and independently K balls into m boxes, where m is the number
of nodes in the central network;
((iii) Count D—the number of boxes containing two or more balls;
((iv)) Count E—the number of empty boxes; put r := E; x := D;
(v) Set P(Down) := P(Down) + Fr(x);
Repeat steps (i)–(v) M times;
(vi) Estimate P(DOW N) by P̂(DOW N) := P(Down)/M.
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