

Beginning Oracle
Application Express 4

■ ■ ■

Doug Gault
Karen Cannell
Patrick Cimolini
Martin D’Souza
Timothy St. Hilaire

Beginning Oracle Application Express 4

Copyright © 2011 by Doug Gault, Karen Cannell, Patrick Cimolini, Martin D’Souza, Timothy St.
Hilaire

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3147-9

ISBN-13 (electronic): 978-1-4302-3148-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Jonathan Gennick
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan

Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Jeff Olson, Jeffrey Pepper,
Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade,
Tom Welsh

Coordinating Editor: Anita Castro
Copy Editor: Mary Behr
Compositor: MacPS, LLC.
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

To my better half, David, for staying sane throughout all of the insanity and for supporting me no matter

what harebrained scheme I was trying to hatch.

—Doug Gault

To Gary and Kali, who tolerate my brain on APEX.

— Karen Cannell

I would like to dedicate this book to all those who have worked in computer technology and taken the

time to share their experiences and knowledge. Only by teaching each other do we truly grow.

—Tim St. Hilaire

iv

Contents at a Glance

Contents ... v

About the Authors .. xv

Acknowledgments .. xvii�

■Chapter 1: An Introduction to APEX 4 ... 1�

■Chapter 2: A Developer’s Overview ... 7�

■Chapter 3: Identifying the Problem & Designing the Solution 31�

■Chapter 4: SQL Workshop .. 39�

■Chapter 5: Application and Navigation .. 61�

■Chapter 6: Forms and Reports – The Basics ... 99�

■Chapter 7: Forms and Reports – Advanced ... 155�

■Chapter 8: Programmatic Elements .. 207�

■Chapter 9: Security ... 245�

■Chapter 10: Application Deployment ... 273�

■Chapter 11: Understanding Websheets ... 281�

■Chapter 12: A Websheet Example ... 313�

■Chapter 13: Extended Developer Tools .. 333�

■Chapter 14: Managing Workspaces .. 355�

■Chapter 15: Team Development .. 375�

Index ... 405

v

Contents

Contents at a Glance ... iv

About the Authors .. xv

Acknowledgments .. xviI�

■Chapter 1: An Introduction to APEX 4 ... 1�

What is APEX? .. 1�

A Brief History of APEX ... 2�

Ancient History .. 2�

More Recent History .. 2�

APEX 4 and the Future .. 3�

What You Need to Get Started .. 4�

Access to an APEX Instance .. 4�

Web Browser ... 5�

SQL Developer ... 5�

Summary .. 5�

■Chapter 2: A Developer’s Overview ... 7�

The Anatomy of a Workspace .. 7�

APEX Users .. 8�

Applications, Pages, Regions, and Items .. 8�

Workspaces, Applications, and Schemas ... 10�

A Final Word on Workspaces .. 11�

A Tour of the APEX Modules ... 12�

The Home Page ... 13�

Application Builder .. 15�

■ CONTENTS

vi

SQL Workshop ... 17�

Administration and Team Development .. 30�

Summary .. 30�

■Chapter 3: Identifying the Problem & Designing the Solution 31�

Identifying System Requirements .. 31�

Never a Clean Slate ... 31�

A Broken System ... 32�

How Do You Fix Things? .. 32�

System Design with APEX in Mind ... 34�

Table Definition and User Interface Defaults .. 35�

APEX and Primary Keys ... 35�

Business Logic vs. User Interface Logic ... 36�

Placement of Database Objects .. 36�

Translating Theory to Practice ... 37�

Summary .. 38�

■Chapter 4: SQL Workshop .. 39�

Creating Objects with the Object Browser ... 39�

Loading Data with the Data Workshop Utility ... 45�

Creating a Lookup Table .. 50�

Loading and Running SQL Scripts .. 53�

User Interface Defaults .. 56�

Defining UI Defaults for Your Tables ... 56�

Summary .. 59�

■Chapter 5: Application and Navigation .. 61�

The Create Application Wizard ... 61�

Sample Applications ... 62�

Websheet Applications .. 63�

Database Applications from Spreadsheets ... 64�

Database Applications from Scratch ... 65�

■ CONTENTS

vii

Static HTML Regions .. 72�

Public Pages .. 74�

Navigation Bar Entries ... 75�

Page Zero ... 78�

Breadcrumb Region ... 79�

Breadcrumb Entries ... 83�

Lists .. 84�

List Regions ... 88�

Template Positions ... 92�

Lists of Values .. 93�

Static List of Values .. 94�

Dynamic List of Values .. 95�

Summary .. 97�

■Chapter 6: Forms and Reports – The Basics ... 99�

APEX Forms .. 99�

Form on a Table ... 101�

Creating a Form on a Table ... 101�

Modifying a Form on a Table ... 105�

Looking Behind the Scenes ... 109�

Form on a Procedure .. 111�

Creating a Form on a Procedure ... 111�

Modifying a Form on a Procedure ... 113�

Looking Behind the Scenes ... 114�

Master-Detail Report and Form ... 115�

Creating a Master-Detail Report and Form ... 115�

Modify a Master-Detail Report .. 119�

Session State ... 125�

Understanding Session State .. 126�

Sharing Database Connections ... 126�

Setting and Retrieving Session State .. 127�

■ CONTENTS

viii

Viewing Session State ... 127�

APEX Items ... 129�

Page versus Application items .. 129�

The Importance of Bind Variables ... 130�

Built In Items ... 130�

APEX URL Syntax .. 131�

Searchable APEX Reports .. 132�

Creating a Searchable APEX Report .. 132�

Looking Behind the Scenes – APEX Report ... 136�

Looking Behind the Scenes – APEX Master-Detail Forms .. 138�

More on APEX Forms .. 139�

Item Layout ... 140�

Master-Detail Cleanup .. 147�

APEX Help .. 149�

Adding a Help Text Region .. 149�

Seeding Help Text ... 150�

Declarative Blobs ... 151�

Summary .. 154�

■Chapter 7: Forms and Reports – Advanced ... 155�

Tabular Forms .. 155�

Creating a Tabular Form ... 155�

Modifying a Tabular Form ... 158�

Looking Behind the Scenes ... 161�

Interactive Reports ... 162�

Creating an Interactive Report .. 163�

Running an Interactive Report .. 165�

Restricting Functionality by Report ... 167�

Restricting Functionality by Column ... 168�

Using the Column Heading Menu .. 168�

Searching by Column .. 169�

Selecting Columns .. 172�

■ CONTENTS

ix

Filtering ... 172�

Sorting ... 174�

Adding Breaks ... 175�

Highlighting ... 176�

Computing Columns .. 176�

Adding Aggregates .. 177�

Adding Charts .. 178�

Grouping .. 179�

Using Flashback .. 180�

Saving an Interactive Report ... 180�

Resetting an Interactive Report .. 181�

Getting Help .. 181�

Adding a Subscription ... 182�

Downloading ... 183�

Modifying an Interactive Report .. 185�

Looking Behind the Scenes ... 191�

Calendars ... 192�

Understanding Calendar Types ... 192�

Creating a Calendar .. 192�

Looking Behind the Scenes ... 197�

Charts ... 198�

Writing Queries for Charts ... 199�

Creating a Chart .. 199�

Looking Behind the Scenes ... 204�

Summary .. 206�

■Chapter 8: Programmatic Elements .. 207�

Conditions .. 207�

Validations ... 207�

Required Values .. 208�

Item Level Validation ... 209�

Page Level Validation .. 214�

Tabular Form Validation .. 217�

■ CONTENTS

x

Computations ... 220�

Execution .. 220�

Types ... 221�

Creating a Computation .. 221�

Processes ... 225�

Execution Points .. 225�

Process Types ... 226�

Process in the Help Desk Application ... 226�

PL/SQL Regions .. 230�

Dynamic SQL .. 232�

Dynamic Actions .. 238�

Major Parts .. 238�

Dynamic Actions in the Help Desk Application ... 238�

Summary .. 243�

■Chapter 9: Security ... 245�

User Maintenance Navigation .. 245�

User Maintenance Data Entry .. 249�

Authentication .. 254�

Custom Authentication Schemes ... 255�

Conditional Security ... 259�

Access Control and Authorization .. 260�

Read-Only Items ... 265�

Data Security .. 267�

Session State Protection .. 270�

Summary .. 271�

■Chapter 10: Application Deployment ... 273�

Exporting .. 273�

Importing .. 275�

Supporting Objects ... 277�

■ CONTENTS

xi

Summary .. 279�

■Chapter 11: Understanding Websheets ... 281�

Websheet Structure ... 281�

Navigation .. 283�

Content Navigation .. 283�

Structural Navigation .. 285�

Help .. 285�

Markup Syntax ... 287�

User Authentication .. 288�

User Authorization .. 290�

Sections ... 295�

Text Sections .. 295�

Navigation Sections .. 298�

Data Sections .. 299�

Chart Sections ... 311�

Annotations .. 311�

Administration .. 312�

Summary .. 312�

■Chapter 12: A Websheet Example ... 313�

Setup .. 313�

Creating and Configuring a Websheet Application ... 314�

Adding Content to a Websheet ... 317�

Creating Data Grids ... 318�

Adding Players .. 322�

Creating Alternate Default Reports ... 323�

Creating Page Sections ... 324�

SQL Tags ... 330�

Access Controls ... 331�

Summary .. 331�

■ CONTENTS

xii

■Chapter 13: Extended Developer Tools .. 333�

Page Locks ... 333�

APEX Conflicts ... 334�

Locking an APEX Page .. 334�

Unlocking a Page .. 335�

Administering Page Locks ... 336�

Application and Page Groups ... 336�

Application Groups .. 337�

Page Groups .. 338�

APEX Views and the APEX Dictionary ... 338�

The APEX Schema ... 339�

APEX Views ... 339�

APEX Dictionary ... 341�

Searching within APEX ... 342�

APEX Finder ... 342�

Search Application .. 343�

Monitoring your APEX Application .. 344�

Enabling Logging .. 344�

Using the Activity Logs .. 345�

Login Attempts .. 346�

APEX Advisor .. 347�

Build Options .. 348�

Understanding the Need ... 348�

Creating a Build Option ... 349�

Configuring Build Options ... 350�

Prompting for Build Option Status .. 350�

Applying Build Options .. 351�

Reporting on Build Option Utilization .. 352�

Page Specific Utilities .. 352�

APEX and Oracle SQL Developer .. 353�

Integration ... 353�

Refactoring Support .. 354�

■ CONTENTS

xiii

Summary .. 354�

■Chapter 14: Managing Workspaces .. 355�

Learning About Your Environment ... 355�

Viewing Instance Information ... 356�

Checking the APEX Version ... 358�

Managing the Service .. 358�

Workspace Preferences .. 359�

Announcements .. 360�

Managing Meta Data .. 361�

Developer Activity and Click Count Logs ... 361�

Session State .. 362�

Application Cache ... 363�

Websheet Database Objects ... 363�

Application Build Status .. 364�

Application Models .. 364�

File Utilization ... 366�

Interactive Report Settings ... 367�

Managing Users and Groups .. 369�

Creating One User ... 369�

Creating Multiple Users ... 370�

Organizing Users Into Groups .. 372�

Viewing Usage Reports and Dashboards ... 373�

Summary .. 374�

■Chapter 15: Team Development .. 375�

Team Development Overview .. 375�

Team Development Interface ... 377�

APEX Home Page .. 377�

Team Development Home Page .. 378�

Common Design Elements .. 379�

Drilldown Functionality ... 380�

Tagging ... 382�

■ CONTENTS

xiv

Features ... 383�

Features Tab ... 383�

History Tab .. 385�

Progress Log Tab .. 386�

Milestones .. 386�

Milestones Tab .. 387�

Milestone Details Tab .. 388�

Features by Milestone Tab .. 388�

To Do Items .. 389�

Bugs ... 390�

Feedback ... 391�

Configuring Feedback ... 392�

Polishing the Feedback Page .. 394�

Viewing Feedback ... 397�

Responses to Feedback .. 398�

Communication Between Workspaces ... 398�

Team Actions ... 399�

Manage Links .. 399�

Manage News ... 400�

Team Development Settings ... 401�

Release Summary ... 401�

Utilities .. 402�

User Roles for Team Development ... 403�

Summary .. 403�

Index: .. 405�

xv

About the Authors

■ Doug Gault is a Director and Co-Founder at Sumneva™, a world-class Oracle
Application Express (APEX) consulting, training, and solutions firm founded in 2010.
He has been working with Oracle since 1988, starting with version 5.1B, SQL*Forms
2.0, and RPT/RPF. He has focused his career on Oracle's development technologies,
spending the last decade on web-based technologies and the last five years specifically
on APEX.

Prior to co-founding Sumneva, Gault was Vice President of Sumner Technologies,
an Oracle APEX consulting, training, and solutions firm. Prior to that, he served as the
Product Development Director for Hotsos Enterprises, during which time he was the

Lead Architect/Developer and Product Manager for two commercial products written in exclusively in
APEX. His 21 years of Oracle experience have taken him all over the world to participate in some truly
ground-breaking projects.

Gault has presented and participated in roundtable discussions at a number of conferences
including Oracle OpenWorld, UKOUG, and ODTUG's APEXposed. He holds an Associate’s Degree in
Computer Science and an honorary Master's Degree from The School of Hard Knocks, believing there is
no replacement for hard-earned experience.

■ Karen Cannell is president of TH Technology, a small consulting firm providing
Oracle technology services, focusing on Application Express. A Mechanical Engineer
by degree (one of them), she has analyzed, designed, developed, converted,
upgraded, enhanced and otherwise worked on legacy and commercial database
applications for over 25 years, concentrating on Oracle technologies since 1994. She
has worked with Application Express since it's Web DB and HTMLDB beginnings,
and continues to leverage the Oracle suite of tools to build quality web applications
for clients in government, medical, and engineering industries. Karen can be
contacted at kcannell@thtechnology.com�

■ Patrick Cimolini, P.Eng., PMP, is a principal with Patrick International APEX
Consulting, a consultancy that specializes in Project Management and Software
Development services for Oracle Application Express (APEX) projects. His formal
training in engineering, business administration, and project management is
complemented by thirty years of experience that has evolved through mainframe,
client/server, and web platforms. Patrick has enjoyed attending the Oracle
Development Tools User Group (ODTUG) conferences where he has been a regular
presenter. His industrial areas of expertise include mining, consulting, and
government service. His Oracle experience dates back to the early 1990s.

■ ABOUT THE AUTHORS

xvi

■ Martin Giffy D’Souza is a Co-Founder and Chief Technical Officer at ClariFit Inc., a
consulting firm and custom solutions provider that specializes in APEX and PL/SQL
development. Martin’s experience in the technology industry has been focused on
developing database-centric web applications using the Oracle APEX technology
stack.

Prior to co-founding ClariFit Inc., Martin held a range of positions within award
winning companies. Martin is also the author of the highly recognized blog,
www.TalkApex.com, which boasts a multitude of posts on a wide array of APEX-
focused topics. He has also presented at numerous international conferences such as

ODTUG, APEXposed, and COUG.
Martin holds a Computer Engineering degree from Queen’s University in Kingston, Ontario,

Canada.

■ Tim St. Hilaire has been working with Oracle as a developer, integrator, and
architect for over ten years. His most recent focus is on the APEX tool set and
integration opportunities available both internally and externally. Leading a team of
developers, APEX has been integrated as a strategic tool within his current business.
Sharing those experiences with others is both a hobby and a passion.

xvii

Acknowledgments

First, my heart-felt thanks to all of my co-authors. If not for them, this book may never have come to be.
The opportunity to work with such a talented and distinguished group of individuals has been a
pleasure.

I'd also like to thank a few people by name. Kerry Osborne and Gary Goodman for providing me
with an immense amount of mentorship and encouragement over the years, even after I worked for
them. Cary Millsap for helping to solidify in my mind how to think objectively about technology and use
proof to find the truth. And last but not least, my business partner Scott Spendolini for his all-around
support before, during, and after the book. Without these people, I wouldn't be where I am today.

—Doug Gault

Many thanks to Doug Gault and Apress for including me in this project. It has been an uplifting and
enriching experience. A big thank you goes to April Bending, my wife, who supported and encouraged
me to take on the challenge.

—Patrick Cimolini

I would like to thank the other authors of this book: Doug Gault, Karen Cannell, Patrick Cimolini, and
Tim St. Hilaire. It has been a great journey writing this book with you and I truly feel that we have
achieved our goal as a team.

I would like to thank the entire APEX community for all the help and guidance over the past several
years. I’ve learned a lot from all the excellent articles, blogs, and forum posts. I hope that this book will
help other developers who are starting out with APEX.

I'd also like to thank Cameron Mahbubian and Chris Hritzuk for their never-ending support over
the years.

Finally I’d like to thank my family for their constant encouragement: my parents for providing me
with opportunities to succeed, without which I would not be where I am today, and my partner
Stephanie for being understanding and putting up with my many late nights of sitting in front of the
computer.

—Martin Giffy D’Souza

I would like to thank my wife for her support and understanding during this project. I have a newfound
respect for her work as a writer and the challenges posed by the elusive word.

—Tim St. Hilaire

C H A P T E R 1

■ ■ ■

1

An Introduction to APEX 4

Welcome to the wonderful world of Oracle Application Express (APEX). You’re about to learn how to use
a tool that we believe will revolutionize the way you think about and approach writing web-based Oracle
systems. It certainly has for us.

Prior to the advent of APEX, developing fully interactive web based systems over data that resided
within an Oracle database almost always meant learning a new and often complex language like Java,
.NET, or PHP and then figuring out how to integrate your chosen language seamlessly with the data that
resided in your database. Often this also meant trying to incorporate business rules that were already
coded in the form of PL/SQL.

In such situations, it could take months or even years just to become proficient enough with your
chosen language to begin to write a functional system. If you’re like many, you’ll become frustrated with
the fact that you’ve spend an inordinate amount of time to do what seems like a relatively easy task.

Fear not! The days of long-winded and complex web development platforms may just be behind us.

What is APEX?
APEX is a 100% browser-based rapid application development (RAD) tool that helps you to create rich
interactive Oracle-based web applications very quickly and with relatively little programming effort.

There are many RAD development tools and platforms on the market. If you’re dealing with data
that resides in an Oracle database, there are a number of things that makes APEX distinctive and thus
more attractive as a development platform. First and foremost is the fact that APEX is built on and uses
as its core languages, SQL, and PL/SQL. This is a huge advantage for those of you who have already been
working with the Oracle database because it means you can immediately draw on what you know. Even
for those who don’t have an Oracle background, if you are going to be working with an Oracle database,
you’ll need to learn about its particular flavor of SQL and will at some point likely find a need for the
PL/SQL procedural language.

This fact becomes even more beneficial if you are migrating an Oracle-based system to APEX that
already has a significant amount of business logic coded into stored PL/SQL program units. In this
instance, you can almost immediately take advantage of that logic with very little effort or change to the
existing code.

Another great advantage is that APEX is a declarative tool that provides a feature rich core designed
to make your job easier. Because APEX takes care of many of the underlying functions common to all
web-based applications you are able to focus on the logic specific to your application.

A large share of what you need to accomplish can be done by using one of the many built-in wizards
provided as part of the APEX Application Builder. The wizards walk you through the process of defining
what you want your application to do and then stores that information as metadata. Once the wizard is
complete you can edit and enhance the functionality, or even replace it with your own custom SQL and
PL/SQL routines. After you become proficient with APEX you might even find yourself bypassing the
wizards altogether and generating more complex definitions directly.

CHAPTER 1 ■ AN INTRODUCTION TO APEX 4

2

During the course of the book, you will discover that you will likely want a few other tools at your
disposal, but in truth, you could easily develop a very rich application using nothing but your web
browser and what APEX provides for you.

A Brief History of APEX
APEX has been around for quite some time—perhaps even longer than most people know. The first
public release of APEX, or HTML DB as it was called then, came in 2004, but its history reaches back
quite a long way.

Ancient History
APEX has its roots in technology that has been around for quite some time. In fact, parts of the PL/SQL
Web Toolkit, which is used under the covers by APEX to generate the HTML that is sent to the browser,
date back to as early as 1994.

At that point in time, you could actually write web applications in PL/SQL by hand, and
unfortunately we did. This required not only a thorough knowledge of PL/SQL and HTML but also the
patience of a saint and the determination of a headstrong mule. The end result wasn’t very pretty, and it
was definitely not secure by today’s terms, but it was functional, if somewhat limited.

Not long after, Oracle introduced PL/SQL Server Pages (PSPs). This involved first coding the static
HTML and including special Oracle markup to indicate where dynamic data would go. Once you had the
output looking as you wanted, you then ran it through a program called LOADPSP. This would translate
the raw HTML and the special Oracle markup into a PL/SQL procedure that, again, used the PL/SQL
Web Toolkit to emit the HTML including the dynamic data you requested. At the time, this was a huge
leap forward. I worked at a company where we actually built an entire framework around using PSP
technology and deployed it at several clients.

Finally, in 1997, WebDB came on the scene. The true grandfather of what we now call APEX, WebDB
was revolutionary in that it was a 100% web-based tool that allowed developers to design web
applications. It was written entirely in PL/SQL even though Java seemed to be taking over the world.
Developers could point WebDB at their database and generate code that would produce forms, reports,
charts, and calendars. There was no session state management or templates; once the code was
generated, there was no going back through the tool.

WebDB allowed a large number of companies who wanted to jump on the web-based bandwagon to
do so without spending vast amounts of time and effort in retraining their staff. As a tribute to its
success, I know of a number of companies that still have WebDB system running in production
environment.

Unfortunately WebDB’s days were numbered. Because it generated code (and if you didn’t like the
code it generated, then too bad for you), it had already begun to fade from favor by the time it was
absorbed into Oracle’s Portal product. However, creator Mike Hichwa did not forget the glimpse of
greatness that WebDB had seen.

More Recent History
Around 1999, Oracle’s CEO, Larry Ellison presented Mike Hichwa (VP of Software Development) with the
task of creating an internal calendaring and scheduling system for Oracle Corp. The original remit was to
use WebDB to generate the initial code and then hand code all the changes from that point forward.
Mike, however, saw this as an opportunity to completely re-write WebDB into something that could be
far more useful. Thus, with the help of Joel Kallman and Tom Kyte, Oracle Flows was born.

Based on the success of the internal Calendaring and Scheduling system, the team was allowed to
move forward towards making Oracle Flows a product. In 2001, using what then known as Flow Builder,

CHAPTER 1 ■ AN INTRODUCTION TO APEX 4

3

Mike and team begin implementing systems for various customers, including one situation where they
managed to replace a Java development project that was going horribly wrong.

By 2003, the team had proven the tool’s power and they were given permission to release it as a
product. HTMLDB 1.5 was released to the public as a no-cost option of Oracle 10gR1.

Since then, various releases have been introduced; each providing improved features and
functionality. The following is a very brief list of the releases and some of the more notable features:

• HTMLDB 1.6 (2004) introduced themes, master-detail forms, page groups, page
locking, and some multilingual capabilities.

• HTMLDB 2.0 (2005) introduced SQL Workshop, graphical query builder, database
object browser, and session state protection.

• APEX 2.2 (2006) introduced packaged applications, the APEX dictionary views, and
the access control wizard.

• APEX 3.0 (2007) introduced PDF printing with BI Publisher, migration from
Microsoft Access, and page and region caching.

• APEX 3.1 (2008) introduced Interactive Reports, runtime-only installation
capability, and improved security.

• APEX 3.2 (2009) introduced a migration helper for Oracle Forms based systems
and various security enhancements.

APEX 4 and the Future
And so we arrive at the present day with the release of APEX 4.0. In my opinion, this release of APEX

has truly brought the development environment into the realm of “forces to be reckoned with.” The
entire focus of APEX 4 was to make development of rich interactive Web 2.0 applications easier by
making the process as declarative as possible. APEX 4 has introduced so many new features—indeed,
new ways to attack problems—that it will be hard not to choose APEX as the preferred development
platform for Oracle-based applications.

APEX 4.0’s Dynamic Actions provide a way for you to define client side behaviors, such as enabling
or disabling fields or regions declaratively without JavaScript. With some JavaScript knowledge under
your belt, you can create complex dynamic actions that do client side calculations, AJAX, and more.

An improved Charting Engine based on AnyChart 5.1 provides declarative Flash-based charts,
gauges, maps, and Gantt charts. All chart types are interactive and drillable, and several charts can be
combined into a dashboard style interface.

Probably the most exciting new feature is the new plug-in architecture that provides an extensible
framework allowing APEX Community members to build and share their own custom item, region,
process, and dynamic action types. While the ramifications of this might not be immediately apparent,
the possibilities of what can and will be developed using the plug-in architecture are virtually limitless—
and that is very good news for all APEX developers.

As users of the APEX development platform, we no longer have to wait for the APEX Team to
respond to specific feature requests. We can now take the future of APEX into our own hands and code
missing features, actions, and item types ourselves. In fact, I see a future where the APEX Team
themselves use the plug-in architecture to extend APEX in many different directions.

I almost can’t overstate the significance of plugins. While APEX 4 is definitely a giant leap forward
from the architecture of APEX 3, the plug-in architecture blows the doors wide open to change from the
broad and growing community of APEX developers.

APEX now comes with a Team Development feature that eases the management of the development
process by tracking features, to-do lists, bugs, and milestones. A user feedback mechanism is also
included that allows users to provide inline feedback while using the system. The feature automatically

CHAPTER 1 ■ AN INTRODUCTION TO APEX 4

4

captures the user’s session state information so you can see exactly what was going on during their
session. You can then take this information and create a bug or a to-do entry with the simple click of a
button.

Websheets provide a fast and direct way for end users to gather and share information without IT
intervention. Armed with only a web browser and access to the Websheets application, end users can
define page content, data grids, and reports and decide who else in the enterprise has access to that
data. Websheets page content supports standard wiki syntax and pages can be organized hierarchically.
Users can also add annotations to pages and content in the form of files, notes, and tags.

What You Need to Get Started
The goal of this book is to get you started using APEX, to launch you in a way that enables you to

grow towards mastery of the product. To begin, you need three things: access to an APEX instance,
access to a web browser, and a copy of SQL Developer.

Access to an APEX Instance
This is definitely a hands-on book, so to work through the examples and exercises you’ll need access to
an instance of APEX 4. There are a number of different ways you can access APEX; depending on your
level of comfort and expertise with Oracle, some may be better for you than others. Here is a description
of the three most common scenarios:

• By far the easiest is to sign up for an account on Oracle’s hosted version of APEX at
http://apex.oracle.com. It’s free for non-production applications and is a great
place to get started, as you don’t have to worry about installing either the database
or APEX.

• If you already have an Oracle database installed locally, you can download and
install APEX 4 into that instance. Simply go to the Oracle APEX home page at
http://otn.oracle.com/apex and download the latest version of the software.

• If you don’t have an Oracle database already but would like to install one locally,
you can download a free developers license from OTN at . Both Oracle 10g and 11g
will run APEX 4; however, Oracle 11g will allow you to install APEX as an option in
the database install.

While having a locally accessible instance of the Oracle database will give you more direct access to the
data, it’s definitely not necessary to complete the exercises in this book. All code and instructions have
been written so that they can be completed on Oracle’s hosted instance with no special access required.

■ Note Oracle provides very good documentation on the installation process for both the database and APEX, so
it is not covered in detail here. However, if you are planning to install APEX 4 on an environment in your

organization, you will want to coordinate with the database administrator responsible for that instance to ensure

no mishaps occur.

CHAPTER 1 ■ AN INTRODUCTION TO APEX 4

5

Web Browser
The APEX documentation states that to view or develop APEX applications, the web browser must
support cookies, JavaScript, HTML 4.0, and CSS 1.0. However, although you can deploy to any browser
that support these things, the list of supported browsers is fairly narrow. Currently, the following
browsers are supported: Internet Explorer 7+, Firefox 3.5+, Apple’s Safari, and Google Chrome.

I don’t want to get into a religious debate about which web browser is the best on the market, but
my preference for development is Firefox. There are a number of free add-ons and plug-ins (Such as
FireBug and The Web Developer Toolbar) that will help you with APEX development. Note that because
of the difference in the way each browser interprets HTML and JavaScript, you must test your
application in any and all web browsers that your target audience might use.

SQL Developer
As mentioned before, all the exercises and scripts in the book can be loaded and run directly within the
APEX interface. However, if you have chosen to install or have access to a local instance of the Oracle
database, a SQL IDE will definitely make your life easier.

SQL Developer is a free SQL and PL/SQL IDE provided by Oracle. You can download SQL Developer
from the Oracle Technology Network’s home page at http://otn.oracle.com/

Using SQL Developer you can browse database objects, edit row data, develop and test stored
PL/SQL program units, code and test SQL statements, and interactively debug PL/SQL code. SQL
Developer also has many direct integration points with APEX that make monitoring and maintaining
APEX instances and applications easier. We won’t cover those in this book, but it’s definitely worth your
time to look into this tool.

Summary
Oracle Application Express has come a long way from its simple beginnings and we are poised at the
beginning of a new cycle of growth for the APEX community. APEX 4 provides so much possibility and
promise that it’s hard not to be excited about what the future holds. With that spirit, we start you on your
journey to discover how APEX can make development easier and more fun.

C H A P T E R 2

■ ■ ■

7

A Developer’s Overview

You’re probably anxious to get started, but there are a few concepts that you should understand before
you jump into APEX development headfirst. This chapter will introduce the fundamental development
architecture of APEX and then will walk you through the different areas of the developer interface.

You’ll be delving deeper into the details as you go through the book and put the architecture to work
for you, but it will help tremendously to know how things are structured ahead of time. This chapter is
designed to ease you in, but it isn’t a complete guided tour of every nook and cranny. Be patient; you’ll
get there.

The Anatomy of a Workspace
APEX was designed from the beginning to be a multi-tenant architecture where many different
development environments (called workspaces) could exist within a single APEX instance. For instance
apex.oracle.com, Oracle’s free hosted instance, holds over 10,000 active workspaces, each of which is a
completely separate environment unable to see or interact with any of the other workspaces. You can
think of this as Software as a Service (SaaS) or a cloud computing architecture, but basically, it means
that each workspace is distinct and segregated from all others.

In simple terms, each workspace represents a virtual private container in which developers create
and deploy their APEX applications. The development process takes place within the context of a
workspace so it’s important to know how a workspace is structured. Figure 2–1 uses database entity
relationship diagram parlance to help explain the makeup of the objects within a workspace. I’ll explore
the details in the following sections.

Figure 2–1. Logical makeup of a workspace

CHAPTER 2 ■ A DEVELOPER’S OVERVIEW

8

APEX Users
To login to an APEX workspace you must have access to a valid APEX user. There are a number of
different user roles available that dictate what you are able to do when you log in. The roles are as
follows:

Instance Administrators are special users that manage and maintain the
overall APEX instance. They are able to set instance level preferences and
messages, create and manage workspaces, monitor space utilization, and many
other actions related to the overall APEX installation. Instance Administrators
are only able to log into the special INTERNAL workspace, which houses the
APEX Admin Services application.

Workspace Administrators are responsible for managing the details of a
specific workspace and can manage user accounts related to the workspace,
monitor workspace activity, view log files, override developer locks and
settings, etc. Although it is not good practice, the Workspace Administrator can
also act as a developer, creating and modifying applications.

Developers are the users who create and edit the applications within the
workspace. They have access to the underlying tables in the schema(s) assigned
to the workspace and may create and modify database objects and stored
PL/SQL units. Most people writing APEX applications only need this level of
access.

End Users are only able to run applications within a workspace. They do not
have direct access to any of the underlying database objects, nor do they have
access to any of the APEX development modules. End users can’t log directly
into a workspace.

APEX Users are specific and unique to a workspace, meaning that you can have a user of the same
name in multiple workspaces within a single APEX instance, but each of these users is unique. They can
have their own password, settings, and are not linked together in any way.

When you’re developing, you should get in the habit of logging in as a Developer as opposed to a
Workspace Administrator. There are several safeguards available to help keep developers from stepping
on each other within a workspace. If you log in as an administrator, these safeguards will be bypassed
and you may accidently interfere with something someone else is working on. While this won’t be a
problem in a workspace with only one developer, it’s still good to get yourself into that habit.

■ Note In the context of this book, we’ll be using the last three types of user. We’re going to assume that APEX
has been installed, a workspace has been created, and you have been given the Workspace Administrator’s login

credentials. If you’re using the hosted instance at apex.oracle.com, then the username you were given when you
signed up will have the credentials of a Workspace Administrator. If, however, you are using a local instance,

either refer to the APEX documentation or get your Instance Administrator to help you set up a workspace.

Applications, Pages, Regions, and Items
Although a workspace starts off basically empty, you can have many applications that reside within a
workspace. While there is no specific rule, it’s likely that all of the applications within a workspace will

CHAPTER 2 ■ A DEVELOPER’S OVERVIEW

9

share something: they might all use the same underlying database objects, target the same user
community, or use the same method for authenticating users.

As you build an application, you’ll be adding new pages and building out those pages with regions
and items. Figure 2–2 shows the hierarchy between the different types of objects.

Figure 2–2. General application hierarchy

Applications are basically groups of pages that perform a task (or set of tasks) related to a business
function. During the course of this book you’ll be building one application within a single workspace,
but it’s important to know that in a typical development environment, you’ll probably be working on
many applications across several workspaces.

Pages are the basic building blocks of applications and contain both the user interface components
and the programming logic that will process the user’s input. We’ll cover the rendering of the UI versus
the processing of user input later, but for now consider a page roughly equivalent to a screen in desktop
UI lingo.

Regions are UI items that serve as content containers. You can have any number of regions on a
page, and in APEX 4, regions can be nested within other regions. This gives you the opportunity to create
things like dashboards where you might nest a data report region and a graph region within a single
parent HTML region.

Items are the HTML form elements that are used to present the UI to the user. These include things
such as buttons, select lists, text fields, check boxes, radio groups, etc. There are two categories of items;
Page Level Items and Application Level Items; the difference is that the latter is defined at the
application level and is not rendered directly on the page. You can think of these as global variables.
Page Level Items are defined on a specific page and assigned to a region in order to control where and
how they display to the user.

While there is obviously a lot more to an application than these simple building blocks, if you
understand the basic hierarchy between these, you’ll have a jumpstart when it comes to building your
first pages and a solid foundation when it comes to the more intricate tasks.

CHAPTER 2 ■ A DEVELOPER’S OVERVIEW

10

Workspaces, Applications, and Schemas
While the relationship between workspaces and applications is straightforward, it becomes a bit more
complex when you introduce the relationship with database schemas. Figure 2–3 diagrams this
relationship.

Figure 2–3. How schemas relate to workspaces and applications

When a workspace is created, it is linked with at least one, and possibly many, underlying database
schemas. This provides access to database objects such as tables, views, stored PL/SQL program units,
etc.

When an application is created, it is assigned a single “parse as” schema from the list of schemas
associated with the workspace. A “parse as” schema is the Oracle database user in which all SQL queries
and PL/SQL calls run by that application will be executed. So, if your application was defined with a
“parse as” schema of DOUG, a query such as:

select * from emp

would execute in the database as if it were written

select * from DOUG.emp

Because APEX applications are portable and may not necessarily be run in the same schema they
were developed in, it’s not good practice to hard code the schema names into your SQL or PL/SQL.
Instead, APEX provides a replacement variable (one of many that you’ll be introduced to throughout the
course of this book) for the “parse as” schema. The #OWNER# replacement variable will be substituted
with the actual “parse as” schema for the application at run time. So the following statement

select * from #OWNER#.emp

would resolve to

select * from DOUG.emp

In the most common implementations a workspace will be created and associated with a single
underlying database schema. The applications developed in that workspace will have their “parse as”
schema set to the only schema associated with the workspace and will utilize the database objects
belonging to that schema.

Where a workspace has more than one schema assigned to it, things can become a little more
complex. You might be tempted to think that if you associate three schemas with a workspace, any
application in that workspace can automatically access the data in all three schemas. However, you
would be mistaken.

Because an application is assigned one—and only one—“parse as” schema, all SQL statements and
PL/SQL calls will be executed as that schema. It doesn’t matter that the workspace is associated with a
given schema; the application itself is not. If you want to access data within a schema other than the

CHAPTER 2 ■ A DEVELOPER’S OVERVIEW

11

application’s “parse as” schema, you must make sure the correct database level grants are in place, just
as you would when using any other Oracle tool or development environment.

Take the example shown in Figure 2–4 where two tables you wish to join together as part of a SQL
statement are owned by two separate schemas.

Figure 2–4. Tables joined across schemas

If your “parse as” schema is DOUG, then you must be specifically granted privileges on the objects
within the DAVID schema to be able to access it. To do this, you would sign on to the database as DAVID
(or as a DBA) and grant the appropriate database privileges on DAVID.DEPT to DOUG.

In this example, if you needed to join the two tables together in a select statement, granting the
SELECT privilege on DAVID.DEPT to DOUG would suffice. Then you could write your select statement
as follows:

select e.empno,
 e.ename,
 d.dept_name,
 d.location
 from #OWNER#.emp e,
 DAVID.dept d
 where e.dpetno = d.deptno

The #OWNER# substitution variable would be resolved to your “parse as” schema (DOUG) and the
join would work correctly as long as the correct privileges were in place.

■ Note Because the grants that allow the select from the DAVID schema are put in place at the database level, it
is not necessary to associate the DAVID schema to your workspace. You only need to associate a schema to a
workspace if you will be using it as the “parse as” schema for an application within that workspace or need to

access the schema objects directly from within the SQL Workshop.

A Final Word on Workspaces
As you have learned, an APEX instance can have many workspaces. But how many workspaces should
there be? The answer isn’t straightforward.

Unless you are a very small organization with very few apps, you probably shouldn’t have only one
workspace. On the other hand, you probably shouldn’t be creating a new workspace for every new
application that you code, either.

There are a couple schools of thoughts on this but I tend to think in terms of application suites. If
there are a number of applications that are performing similar tasks against the same underlying data

CHAPTER 2 ■ A DEVELOPER’S OVERVIEW

12

sets and are aimed at the same target set of users, then they would probably do well in the same
workspace.

The key here is to use your judgment and try to keep things easy to develop and maintain. There is
nothing worse than logging into a workspace to find you have to page through tens or even hundreds of
apps to find the one you want to work on.

A Tour of the APEX Modules
Now that you have a little background on how things are logically architected, it’s time to get a closer
look at the APEX development environment itself. This section will introduce you to the different
sections of the APEX environment and will give you an overview of how things are laid out.

Figure 2–5 shows a hierarchical layout of the APEX menu structure. Later, you’ll have a look at each
of the main sections and get a glimpse of what’s under the covers; this is just an introductory tour. You’ll
get a much deeper look as we work our way through the development processes.

As you can see, the development environment is broken down into four main sections:

• The Application Builder is where you create and modify applications and pages,
and it’s is where you’ll probably be spending most of your time.

• The SQL Workshop is where you will deal directly with the underlying database
objects and their related data. Think of it as a web-based version of SQL*PLUS
with some GUI goodness thrown in to make things easier.

• Team Development is the section that lets you enter and track information related
to the development of APEX applications.

• Administration is where you can manage the details of your workspace, its
defaults, users, groups, etc. Be aware that a Workspace Administrator will have
more options available to them than a standard developer.

CHAPTER 2 ■ A DEVELOPER’S OVERVIEW

13

Figure 2–5. APEX 4 hierarchical menu structure

The Home Page
Once you login to your workspace, you’ll be presented with the Workspace Home Page, as shown in
Figure 2–6. The Home Page is your gateway to the rest of the development environment and provides
some high level information about what’s going on within the workspace.

CHAPTER 2 ■ A DEVELOPER’S OVERVIEW

14

Figure 2–6. APEX development home screen

Along the very top is the APEX Logo and to the right of that is the Navigation Bar that contains a
welcome message including your username and a logout link enabling you to logout of this workspace
and navigate back to the main APEX login page. Just below the Navigation Bar is the main menu bar that
will be available to you throughout the developer interface. It gives direct access to many of the sections
you’ll need to get to quickly while you’re developing applications. It’s worth noting that each section of
the menu bar is broken down into two pieces. For instance, if you were to click directly on the
Application Builder item, you would immediately be taken to the Application Builder home page.
However, if you were to click on the small downward pointing triangle just to the right, you would be
presented with a more detailed drop-down menu that would allow you to choose your destination a bit
more granularly, as in Figure 2–7.

Figure 2–7. Using the drop-down menus on the menu bar

CHAPTER 2 ■ A DEVELOPER’S OVERVIEW

15

At the far right of the menu bar is a search box that allows you to perform context-sensitive searches.
The context of the search depends on where you are in the application builder. For instance, if you are
on the workspace home page, your search will be across the entire workspace. However, if you are in the
Application Builder or the Administration section, the search will be limited contextually to those
specific areas.

Beneath the main menu bar is the breadcrumb region. This not only gives you a visual clue of where
you are in the hierarchy of the workspace, but each breadcrumb is also a quick link that will take you
back to that specific spot in the hierarchy. You’ll be creating breadcrumbs in your own application that
will perform a very similar job.

Lastly, to the far right of the breadcrumbs is the HELP link. This pops open a new window
containing context-sensitive and searchable help for APEX. In my experience, most of the details that are
in the PDF manuals provided by Oracle are also contained within the context-sensitive help. This is a
great resource for quickly looking things up if you don’t have the manuals or PDFs on hand.

The rest of the page is dedicated to either giving you a quick link to the four main sections or
providing you with information about what’s going on in the workspace. There is a News region, as
shown in Figure 2–8, that allows the developers within a workspace to enter information they want
others within the workspace to see. If there is more than one news item active, this region will scroll
through the news items, wrapping back around to the first item when it has reached the end of the list.

Figure 2–8. Home page News scroller

The three regions at the bottom of the home page show an overview of the activity within the
workspace. The regions, from left to right, show the Top Applications, Top Users, and Team
Development activity within the workspace. In a new workspace, there probably won’t be anything in
these regions, but as you work your way through the book, you’ll see that start to change.

You’ll notice that most of the main pages for each section of the development environment adhere
to this dashboard style home page interface, the notable exception being the Application Builder. Let’s
look at that section first.

Application Builder
The Application Builder is the core of the APEX Application Development Environment. While you’ll use
the SQL Workshop to manipulate the underlying database objects, you’ll use the Application Builder to
do most of the real work when it comes to coding, testing, and debugging your applications.

The Application Builder Home Page
Clicking on the Application Builder menu option takes you to the Application Builder home page. Like
most of the home pages, it’s laid out with the menu bar across the top and regions that hold tasks and
quick links down the right hand side.

The main difference is that Application Builder’s home page does not house any dashboard-style
summaries. Instead, this is where you will see a list of the different applications contained within your
workspace. (Figure 2–9 provides an example). It is possible, depending on your APEX Instance settings,
that you might see some sample applications installed by the workspace administrator, but don’t be
alarmed if you don’t see any applications at all.

CHAPTER 2 ■ A DEVELOPER’S OVERVIEW

16

Figure 2–9. The Application Builder home page

Notice the set of tabs above the application list. This tab set provides a high level filter of which
applications you see from all of those in your workspace.

All Applications shows all application types (Database and Websheet).

Database Applications shows only those applications that are built on top of a
database schema. These are considered standard APEX applications.

Websheet Applications shows only those applications that are Websheet-style
applications. These are new to APEX 4 and We’ll talk more about them in
Chapters ?? and ??.

As you can see, there is one application in my workspace named Demo Application. However, there
isn’t much information about it other than its name and the Application ID (16878) associated with it.
This is where you begin to see the beauty of what APEX can do, not only in the Developer UI, but also in
your applications.

The list of applications you see is actually a style of report called an Interactive Report or IR. IRs
allow you to customize how the report and its contents are displayed. IRs are used throughout the APEX
Development Interface and can also be used when creating your own applications. They’re extremely
powerful tools and you’ll be using them a lot.

On the right side of the page are three regions that show Application Builder related tasks, recently
edited applications, and a link to the Application Migration wizard. You’ll be dealing more with these
later, but for now you want to drill in to see the details of an application.

CHAPTER 2 ■ A DEVELOPER’S OVERVIEW

17

The Application Home Page
Clicking on one of the applications listed will drill into the Application home page, as shown in Figure 2–
10. This page is very similar to the Application Builder home page, but instead shows all the pages within
a specific application. Again, it uses an IR, so you can customize the way you see this data.

Figure 2–10. The application home page

Again, notice the way the page is structured with page related tasks and recently edited pages
presented along the right side of the page. This layout will become a familiar theme as you navigate
through the interface.

From here, you can click on any of the listed pages to edit that page. You can also run, export, and
import the application, edit the supporting objects or shared components, and access the application
related utilities.

We’ll wait until you get into the depths of writing an application to go any further in the application
builder, but this gives you a flavor of what to expect as you move forward.

SQL Workshop
The SQL Workshop is a suite of tools that provide developers the ability to view and manage database
objects in the underlying schema(s) assigned to the workspace. The SQL Workshop home page shown in
Figure 2–11 provides access to each of the underlying tools and some high level information about
recently created objects and commands that that have been run.

CHAPTER 2 ■ A DEVELOPER’S OVERVIEW

18

Figure 2–11. The SQL Workshop home page

Because there may be more than one schema assigned to the workspace, there is a schema selection
dialog on the right of the screen that allows you to select and set the default schema for all of the tools.
You may change the schema you’re working in within each of the tools as well.

Below the Schema Selection dialog is a set of direct links to each of the individual utilities you have
access to. You can also reach these by clicking the utilities icon in the main section of the screen.

Scrolling down on this page reveals quick links to creating new database objects. Again, each of
these can be done from within the Object Browser, but they are provided here as a quick link to the
specific functionality.

Lastly, there is a link to a wizard that will create a PL/SQL API on top of a table or set of tables. This is
a handy utility when you need to introduce logic between the UI and the actual data tables.

Each of the individual tools deserves its own introduction, so let’s spend some time now looking at
what they are and what they can achieve. You’ll be using this area of APEX more heavily when you create
the database object for your application.

The Object Browser
If you’ve been working with databases for any length of time, you’ve probably worked with one of the
more popular GUI tools that allow you to browse and manage database objects within a schema. The
APEX Object Browser is a very similar tool presented to you through your web browser. Figure 2–12
shows the Object Browser being used to examine the table DEMO_PRODUCT_INFO.

CHAPTER 2 ■ A DEVELOPER’S OVERVIEW

19

Figure 2–12. The APEX Object Browser

The name object browser is somewhat of a misnomer as the tool can actually be used not only to
browse the objects in the underlying schema(s), but also to create new objects, browse and edit data,
delete objects, and edit object definitions. While there are some limitations to the types of objects it can
manipulate, it’s powerful enough to do most of the daily tasks that an application developer will need to
tackle.

You chose the object type you want to work with by selecting it from the drop down list in the upper
left hand corner. You can search the selected object type by entering a text string into the search box just
below it and clicking the refresh icon just to the right. Clicking on the name of an object displays its
properties and the links to drill into more details.

While the interface for the Object Browser is pretty intuitive, there are some interesting things to
note. In the upper right hand corner is a drop down list that allows you to set the current schema. The
list contains all schemas currently assigned to the workspace. You can switch between them simply by
choosing a new one from the list.

Also, to the right of the drop down list is a set of quick link icons that takes you directly to the other
tools within the SQL Workshop.

The SQL Commands Interface
The SQL Command Interface allows you to interact with the underlying schema(s) using standard SQL
commands or PL/SQL as you would in any other GUI tool or SQL*Plus. The difference is that you can
save the statements for use at a later time. Figure 2–13 shows a simple SQL statement as executed in the
SQL Command Interface.

CHAPTER 2 ■ A DEVELOPER’S OVERVIEW

20

Figure 2–13. The SQL Command Interface

While its core function is quite straight forward, the SQL Command Interface is more robust that it
first appears. Beyond the ability to save and retrieve SQL and PL/SQL, it also has the ability to run
explain plans on statements and allows you to view your statement history. Therefore, if you ran a script
or statement that was particularly useful, but forgot to save it, you still have the potential to retrieve it
from the history buffer.

The SQL Command Interface also integrates with the Query Builder (described below) allowing you
to load and manipulate saved statements built in the Query Builder.

■ Note By default, all SQL statements executed via the SQL Commands Interface are automatically committed.
To override this setting and enter into transactional mode, uncheck the Autocommit checkbox in the tool bar. Once
this is done, you will can manually commit and rollback your SQL statement.

There is no way to turn off Autocommit permanently so you will need to remember to do this any time you want to

enter transactional mode.

SQL Scripts Interface
The SQL Scripts Interface allows you to manage and run sets of SQL commands saved into script files. A
single script can contain one or more SQL statements or PL/SQL blocks. SQL scripts that are coded
outside of APEX can be loaded into the SQL Scripts Repository and edited or run from there. You may
also create SQL scripts from scratch using the SQL Scripts Interface. Figure 2–14 shows the main SQL
Scripts Interface page.

CHAPTER 2 ■ A DEVELOPER’S OVERVIEW

21

Figure 2–14. The main SQL Scripts Interface page

In this example, there is one script, called CLEAN_SCHEMA, loaded into the script repository. By
clicking on the edit icon, you can edit the contents of the script, as shown in Figure 2–15. APEX 4 now
provides syntax highlighting inside the script editor. The editor also has a Find and Replace function as
well as undo and redo.

You can also download the script to a local file so that you can edit it in your favorite local text
editor. When you’re done, simply cut and paste it back into the editor or upload it as a new script file.

CHAPTER 2 ■ A DEVELOPER’S OVERVIEW

22

Figure 2–15. The SQL Script Editor

■ Note When uploading a script file to the repository, the name of the script must be unique. You can’t overwrite
an existing script file of the same name with a new version without first deleting the script from the script

repository.

Once a script is ready to run, you can click the Run icon in the list (or the Run button in the editor)
and you will be stepped through the Run Script wizard. This allows you to choose whether you want to
run the script immediately or run it in batch mode. If you chose batch mode, your script will be entered
into a queue where it will be executed when it reaches the front of the queue.

Either way you will be taken to the Manage Script Results page of the SQL Script Interface as shown
in Figure 2–16. This screen allows you to see the status and certain high level details of the script’s
execution. In the case of scripts that have been submitted in batch mode, you can also see the status of
the script within the queue.

CHAPTER 2 ■ A DEVELOPER’S OVERVIEW

23

Figure 2–16. The Manage Script Results page

Clicking on the View Results icon will show you the final results of running the script. In Figure 2–17,
you can see that the script had an error, the details of which are displayed within the body of the report.
If the script were successful, no errors would be shown and the statement results at the bottom of the
page would show zero errors.

CHAPTER 2 ■ A DEVELOPER’S OVERVIEW

24

Figure 2–17. An example of an error from the SQL Script Interface

The Query Builder
The Query Builder is a utility that allows you to build SQL Select statements using a more graphical
interface. While it’s not quite drag and drop, it is fairly intuitive.

When you first enter the Query Builder, you’re presented with a screen that lists all of the tables and
views that are available in the currently active schema. Figure 2–18 shows the initial Query Builder screen.

CHAPTER 2 ■ A DEVELOPER’S OVERVIEW

25

Figure 2–18. The initial Query Builder screen

From here you may begin to build your query. To include a table in your select statement, simply
click on it in the list to the left. A representation of the table will be placed in the blank region of the
screen above the Conditions region. You may add as many tables as you like to your query and may even
include the same table more than once simply by clicking on it again. You’ll notice that if you include
more than one instance of the same table, the new instance will be suffixed with a sequence number
differentiating it from the original table.

Figure 2–19 shows an example graphical representation for the DEMO_ORDERS table and outlines
the different interactive features.

CHAPTER 2 ■ A DEVELOPER’S OVERVIEW

26

Figure 2–19. The DEMO_ORDERS table as represented in the Query Builder

Taken from top to bottom as they appear in Figure 2–19, these action areas are:

Table Actions displays a dialog allowing you to do one of several things:

• Check All allows you to quickly select or deselect all columns of the object for
inclusion in the query being built.

• Add Parent allows you to select and add a parent table, as defined by foreign
key relationships, to the query builder.

• Add Child allows you to select and add a child table, as defined by foreign key
relationships, to the query builder.

Show/Hide Columns expands and collapses the object so that the column
definitions are shown or hidden.

Remove deletes the table and any of its related clauses from the select
statement.

Select Column for Join is activated by clicking on the blank square next to a
column name. This will darken the square and put the Query Builder into
“Table Link” mode. Then you can click on another blank square, either within
another table or within the same table, and the Query builder will insert an
EQUALITY where clause between the two columns in the SQL statement.

CHAPTER 2 ■ A DEVELOPER’S OVERVIEW

27

Data Type Indicator indicates the data type of the column, such as number,
character, date, etc.

Column Name indicates the column name as defined in the table description.

Column Selector allows you to individually select or deselect columns to be
included in the SQL Statement for processing. This may also include columns
that you may want to use in the where clause but not display in the output of
the SQL statement. The basic rule is that you need to select all the columns you
want to display, but you do not necessarily have to display all the columns you
select.

As you begin to add and join tables and select columns to operate upon, the region at the bottom of
the screen will begin to change. This region is subdivided into several tabs, as follows:

Conditions Tab shows one row for each column selected in the area above and
allows you to further define its attributes. (More on this feature in just a
moment.)

SQL Tab displays the SQL statement as the wizard builds it. While it’s not
directly editable, you can easily highlight and cut the statement to the clipboard
from here.

Results Tab shows the results of running the SQL statement and allows you to
download the resulting data in CSV format.

Saved SQL Tab allows you to save, recall, and manage statements that have
been built with the Query Builder. There are also filters that allow you to search
and limit which saved queries display.

All but the Conditions Tab are self explanatory, so I’ll go over this one in a little bit more detail.
Figure 2–20 shows an example three table join with five columns selected to operate upon.

Figure 2–20. An example three table join

CHAPTER 2 ■ A DEVELOPER’S OVERVIEW

28

In this example, the following modifications have been applied to the query:

• Changed the alias of the ORDER_TOTAL column to SUM_OF_ORDERS.

• Limited the result set to only those records where ORDER_TOTAL is less than 500.

• Sorted the records returned by CUST_LAST_NAME, CUST_FIRST_NAME
Ascending.

• Performed a SUM function on the ORDER_TOTAL column.

• Grouped the query by USER_NAME, CUSTOMER_ID, CUST_FIRST_NAME,
CUST_LAST_NAME.

Based on the column selections and the restrictions and changes introduced in the Conditions tab,
the SQL statement (as it appears in the SQL Tab) would look like this:

select "DEMO_USERS"."USER_NAME" as "USER_NAME",
 "DEMO_CUSTOMERS_2"."CUSTOMER_ID" as "CUSTOMER_ID",
 "DEMO_CUSTOMERS_2"."CUST_FIRST_NAME" as "CUST_FIRST_NAME",
 "DEMO_CUSTOMERS_2"."CUST_LAST_NAME" as "CUST_LAST_NAME",
 sum(DEMO_ORDERS.ORDER_TOTAL) as "SUM_OF_ORDERS"
 from "DEMO_CUSTOMERS" "DEMO_CUSTOMERS_2",
 "DEMO_USERS" "DEMO_USERS",
 "DEMO_ORDERS" "DEMO_ORDERS"
 where "DEMO_USERS"."USER_ID"="DEMO_ORDERS"."USER_ID"
 and "DEMO_CUSTOMERS_2"."CUSTOMER_ID"="DEMO_ORDERS"."CUSTOMER_ID"
 and "DEMO_ORDERS"."ORDER_TOTAL" <500
group by DEMO_USERS.USER_NAME, DEMO_CUSTOMERS_2.CUSTOMER_ID,�
 DEMO_CUSTOMERS_2.CUST_FIRST_NAME, DEMO_CUSTOMERS_2.CUST_LAST_NAME

While the query builder is very useful and allows you to put together a basic query fairly quickly
using a simple GUI, it does have its limitations. I personally use the Query Builder to get the skeleton of a
query defined. I then take the query to the SQL Commands window or into my favorite SQL IDE and I
fine tune it from there.

As a final note, it’s worth mentioning that the Query Builder is linked to from several places within
APEX, so any time you’re prompted for a SQL statement (for example, as the basis for a report) you will
be able to open the Query Builder in a pop-up window and return the query to the calling form.

Utilities
The SQL Workshop Utilities section gives you access to tools and reports that help you view and manage
information about the underlying database objects and their data. In this section, I’ll introduce each tool
set and its main purpose. However, the majority of these tools are very straightforward, so in most cases
I’ll leave the deep details for you to explore on your own.

The Utilities home page (as shown in Figure 2–21) presents you with a quick icon based menu to
each of the individual utility areas. Clicking on any one of these icons takes you directly to the tools page
for that category.

CHAPTER 2 ■ A DEVELOPER’S OVERVIEW

29

Figure 2–21. The SQL Workship Utilities home page

The Data Workshop provides tools that import and export data in many different formats including
comma or tab separated, XML, or spreadsheet data. These tools also help you manage files that you have
loaded into either the Text or Spreadsheet repository.

The Object Reports provide detailed reporting capabilities on all of the objects within the schemas
tied to the workspace. Reports include information about the tables and objects, their sizes, statistics,
grants and privileges, their status, and exception reports to show possible problem areas.

The Generate DDL wizard allows you to choose a schema associated with the workspace and
generates a script that can be used to recreate some or all of the objects with that schema based on your
selection. The generated script does not include any insert statements for the data that resides within the
database objects, but it’s a good way to easily recreate the underlying objects an application might use.

When an object is dropped, Oracle does not immediately remove the space associated with the
table, but instead renames the table and places it and its associated storage in the Recycle Bin. The
Recycle Bin utility allows you to view and potentially recover objects that have been dropped from the
schemas associated with a workspace. You may also purge the Recycle Bin, allowing the space to be
reclaimed by the Oracle database for use somewhere else.

The Schema Comparison utility allows you to compare the objects within two separate schemas and
create a difference report. You may choose to compare only certain attributes or all attributes of the
objects within the selected schemas. The limitation here is that both schemas must be assigned to the
workspace in order for the comparison to take place.

The last two utilities (Database Monitor and About Database) are special utilities that require the
user running them to have access to a database login that has been granted the DBA role. The Database
Monitor utilities allow the privileged user to view Sessions, Systems Statistics, Top SQL, and Long
Operations reports. The About Database report shows detailed information about the database instance
and the APEX environment.

CHAPTER 2 ■ A DEVELOPER’S OVERVIEW

30

Administration and Team Development
The last two functional areas of the UI, Administration and Team Development, are complex enough to
truly deserve their own chapters. Therefore, I’ll refer you to the chapters that cover these areas in depth.
Chapter ?? covers deploying applications; Chapter ?? is about managing workspaces; Chapter ?? goes
over team development.

You’ll definitely be dipping into administrative tasks throughout this book, so if you want to have a
full understanding of administration before we start, I would suggest that you take a detour and read
these chapters now to get a good foundation. However if you’re prepared to learn on the fly, go to the
next section where you’ll start the real programming.

Summary
The architecture of APEX may seem a bit daunting at first, but once you actually start working with

it, things will begin to fall into place and you’ll understand more and more about how it all fits together.
If you take away only one thing from this chapter, let it be that a workspace is essentially your
development sandbox. Everything you do happens in the context of a workspace. Everything else—from
a development standpoint—is much like any other development environment. Are you building a new
application? Then it needs to be created within a workspace. Do you need access to a schema to build
that app? Then it needs to be assigned to your workspace. You get the picture. Now … on to the fun!

C H A P T E R 3

■ ■ ■

31

Identifying the Problem &

Designing the Solution

Every computer system is (or at least should be) the result of solving some type of problem. While “Hello
World” apps are great, I firmly believe that the best way to learn any technology is to apply it to a real
problem and see how things really work.

We’re going to be adhering to that principle throughout this book. This chapter discusses a very
common problem in most organizations that can be solved technically. You’ll also look at some of the
specific things you need to consider when designing web-based systems in general and APEX
specifically.

Identifying System Requirements
Almost every company, no matter the size, will at some point need to implement some sort of help desk.
Whether it’s an internal one to track employee question and problems or an external one to track client
issues with commercial software or hardware, the basics of a help desk system are fairly standard.

Most help desk systems are driven by the notion of a “Trouble Ticket” or “Ticket.” This term is a
leftover from the days before computers: most problems were reported over the phone, and
troubleshooters used a physical paper ticket to log a call. The information contained on that paper ticket
included a description of the problem, the person having the problem, when the problem was logged,
etc. Then, throughout the process of troubleshooting and, hopefully, solving the problem, the engineers
would write down each step of the process and include any documentation of the problem they
gathered along the way. Today, it would be very surprising to see a help desk system that wasn’t
computerized, even if it’s only a spreadsheet of issues with notes and statuses.

You’re going to attack the help desk system with APEX. Before you dive in, you need to clearly
understand the problems you are trying to solve. If nothing else, you need to review the current system.

Never a Clean Slate
Almost no computer system written today starts from scratch. There is almost always something in
place, even if it’s just some loose guidelines or ideas.

For this example, let’s say that your company has a very basic system in place, but it’s no longer
meeting the needs of your growing user community. Your goal is to create a new system that will make
the logging of issues and their solutions much easier for everyone involved; however, to do that, you
must understand the needs of the users and the functionality of the system that is in place now.

CHAPTER 3 ■ IDENTIFYING THE PROBLEM & DESIGNING THE SOLUTION

32

A Broken System
In general, the users of help desk systems can be categorized into two groups: people who log problems
(end users) and people who help solve the problems (technicians). Depending on which user
community you fall into, it’s likely you will have different needs, but overall, the system should help the
end users and the technicians communicate about the problem or issue.

The first step is to understand how your help desk is being managed today and why it’s not working.
Speaking to both the technicians and the end users can provide a huge amount of information, but the
challenge is that this information usually comes in the form of complaints about the current system.

Quizzing the end users reveals that their main complaint is that they never know the status of the
problems that they’ve logged. They can go days, sometimes weeks, without communication from the
technicians, and in the eyes of the user, no communication means that no one is working on their
problem. Another user complaint is that the help desk technicians often don’t know how to contact
them to ask further questions or communicate progress.

On the other end of the issue, the technicians are overloaded. Originally, the help desk was only one
person, and ticket information was kept in an Excel spreadsheet. Now there are several technicians
working independently. While performing their daily duties, each needs to update the spreadsheet with
information regarding the tickets assigned to him. The increasing number of people accessing a single
spreadsheet causes problems, as only one person is able to open and update the spreadsheet at any
given time. The technicians are also tired of constantly being called by users wanting an update on the
status of their issues.

It’s obvious that the system is broken. Neither the users nor the technicians are happy about the
situation. It’s your job to take the information you’ve gleaned from these conversations and design
something that will address the needs of both user communities.

How Do You Fix Things?
With the information you’ve gathered so far, you can now define some loose requirements and break
them down by user type so you can have a much clearer understanding of what each community needs.
Then, from those requirements, you can begin to think about the database design that you’ll need to
create in support of them.

Defining the Requirements
You can look at requirements from two perspectives. End users will have one set of requirements

and technicians another. Some requirements will overlap between the two groups. Others will be unique
to one group or the other.

End users should be able to:

• Create a new ticket outlining their problem.

• See the status and progress of tickets.

Technicians should be able to:

• Easily identify and view new tickets.

• Easily identify which tickets are directly assigned to them.

• Search existing tickets.

• Create new tickets on behalf of an end user.

CHAPTER 3 ■ IDENTIFYING THE PROBLEM & DESIGNING THE SOLUTION

33

• Assign tickets to other technicians.

• Add details (comments, information, and attachments) to tickets.

• Update the status of a ticket.

Although you could go a lot further, these requirements form the basis of a pretty complete help
desk system. You can always add functionality to it later when you have a better understanding of what
else the users and the company might need.

Extrapolating to a Database Design
Having stated the requirements, you can begin to extrapolate the database objects you’ll need to

create to store the data. If you’re new to database design, here’s a quick trick to help identify the entities
for which you’ll need to build tables: go back through your requirements and look for CONCRETE
NOUNS that represent the highest-level objects you need to track. As you find these nouns, try to
identify if they are actually at the highest level, or if they are merely an attribute of something bigger.

If you follow the described process with your brief requirement specification, the nouns USER and
TICKET jump out as being the two main things that you want to track. It’s tempting to split users down
into two different sets, technicians and end users, but in fact the type of user is merely an attribute of a
the user itself.

An object that is a little harder to identify is that of the TICKET DETAILS. It is completely valid to
think that this would merely be an attribute of a TICKET; however, the clue comes in the fact that you
can’t concretely identify how many DETAIL entries there will be for any given TICKET. The fact that the
number is unknown indicates that you should create a table that is a child of the TICKETS entity called
TICKET DETAILS. This way you can enter as many detail records as you need.

So, you’ve identified three major entities: USERS, TICKETS, and TICKET DETAILS. You now need to
think about the attributes of each of these entities and what type of data they will hold. Searching back
through the statement of requirements, talking to the technicians about what they track today, and
thinking about what types of things you’d want to be able to track during the process of solving a
problem, you can identify a number of attributes about your objects. Tables 3–1 through 3–3 show these
attributes.

Table 3–1. USER Attributes

Attribute Name Type of Data Comment

User ID Text A Unique ID for each user

User Name Text A login id for each user.

Password Text The password used to log into the system.

CHAPTER 3 ■ IDENTIFYING THE PROBLEM & DESIGNING THE SOLUTION

34

Table 3–2. TICKET Attributes

Attribute Name Type of Data Comment

Ticket ID Number A unique way to identify the ticket.

Subject Text A brief one-line statement of the problem.

Description Text A detailed description of the problem.

Status Text The status of the ticket during processing
(OPEN, PENDING, CLOSED, etc).

Created By Text The user who logged the ticket.

Created On Date The date the user created the ticket.

Closed On Date The date the ticket was closed.

Assigned To Text The technician who is assigned to work on the ticket.

Table 3–3. TICKET DETAIL Attributes

Attribute Name Type of Data Comment

Ticket Details ID Number A unique way to identify this detail entry.

Ticket ID Number This tells us which ticket this detail is linked to.

Details Text A text description of any details entered by the technician.

Created By Text The user who logged the ticket.

Created On Date The date the user created the ticket.

While it’s a good to try to be as detailed as possible as early on as you can, we don’t have to be
perfect here. We can always go back and alter or expand the data we wish to capture as we identify other
potential attributes.

System Design with APEX in Mind
Because APEX not only resides within but is built upon the Oracle Database, you would think that
designing database objects for APEX is the same as designing for any other system that uses Oracle as a
data store—and in some aspects you would be right. However, there are definitely some things that need
to be understood when designing for an APEX system that will make your life much easier.

CHAPTER 3 ■ IDENTIFYING THE PROBLEM & DESIGNING THE SOLUTION

35

Most of what you do with APEX is created, at least initially, using a series of wizards. If the database
objects are designed with APEX in mind, the wizards will do far more work for you; therefore, you will be
required to do far less fine tuning manually. In the following sections, I’ll discuss the most important
design considerations and how they affect what the wizards will do for you.

Table Definition and User Interface Defaults
One such area we’ll talk about in more detail later is that of user-interface defaults (UI Defaults). It’s
important to know that when you make use of UI Defaults, certain table attributes will be translated into
default settings used across APEX. Here are some of the more far-reaching things you can do at the table
level to help make UI Defaults more useful:

• Placing comments on a table column will seed that item’s UI Default help text
with the text of the comment.

• Marking a column as NOT NULL at the database level will trigger a Required Flag
to be set within the UI Defaults.

• Date and Timestamp data types will be set up to display as Date Pickers on input
forms.

• The order in which the columns appear in the table will be the default order in
which the UI Defaults will set them to display on a form or report.

• Defining a column as a BLOB sets the Form level UI Defaults to use APEX’s
declarative blob functionality.

You’ll actually set up and modify UI Defaults in a later chapter, so you can see for yourselves how
design decisions affect how UI Defaults are set up.

APEX and Primary Keys
APEX is set up to make best use of sequence-based surrogate primary keys of no more than two
columns. While you can definitely still use APEX on table structures that use multi-column natural keys,
it is far easier and you get much more out of the box if you give AEPX what it likes.

I have worked with many systems over the years that implemented multi-column natural keys, and
I’ve successfully implemented APEX systems on top of these types of data structures. However, I ended
up hand coding the logic that APEX would have provided me for free had the structures used one or two
column surrogate keys.

There may be no way for you to get around hand coding if you’re writing systems on top of legacy
data structures, but when you’re designing new systems or migrating data from legacy systems into
Oracle, implementing surrogate keys can save you hours of work and troubleshooting.

If you take the example of the TICKETS table, the ID for a ticket is an arbitrary piece of data used
only to uniquely identify one ticket from another. Therefore, it easily fits into the realm of a surrogate
primary key. Even if the spreadsheet that the helpdesk technicians currently use has IDs assigned to the
ticket, you can merely load those values and start your sequence counting at a point above the highest
current ticket id. The same would be true for TICKET DETAILS. Even in the USERS table, where you have
a unique single column natural key (the User Name), it behooves you to implement a surrogate key to be
able to take advantage of the built-in APEX code paths.

CHAPTER 3 ■ IDENTIFYING THE PROBLEM & DESIGNING THE SOLUTION

36

Business Logic vs. User Interface Logic
Being written in PL/SQL, APEX takes full advantage of everything that PL/SQL has to offer. The APEX
development team has made thorough use of stored PL/SQL program units for their business logic, and
you can take a very important lesson from them.

Although it’s arguably a valid development method to prototype your business logic by first coding
it as an anonymous PL/SQL block inside of APEX, it is foolish to leave it there long term. By moving it out
into stored program units, you gain in many different ways.

One very important gain is in the realm of performance. Anonymous PL/SQL blocks are stored in
the APEX metadata as uncompiled PL/SQL code. Each time they are required to run they must first be
extracted from the APEX metadata, parsed, compiled, and then run. This caries quite an overhead if the
PL/SQL in question is part of a page that gets thousands or even hundreds of thousands of hits a day. By
moving that code into a stored program unit within the database, the retrieval, parse, and compile steps
are all skipped and the code is run directly.

Another benefit is that of reusability. If the same logic is used in more than one place, it can simply
be called instead of duplicated in two anonymous blocks. Therefore, any change to the business logic
need only happen in one place. Another reusability benefit might occur if multiple systems (some being
non-APEX) need access to the same business logic. When stored in a PL/SQL program unit, it doesn’t
matter whether the calling system is APEX, .NET, Java, or PHP. They can all use the same logic.

Finally, by moving business logic code into stored program units you gain the ability to code, debug,
and test these program units outside of the restrictions of APEX, using your favorite PL/SQL coding tool
instead. However, not all code needs to be moved out into the database. User interface logic that
manages and manipulates items on the page, such as computations, validations, and processes, is often
best kept as part of the page itself. Such logic is often so page specific and so small in footprint that the
gain by moving it out to the database is not worth the extra management overhead. As a general rule of
thumb, logic that controls or manipulates the UI is best placed within APEX and logic that implements
business rules or controls the data is best placed in stored program units within the database.

Placement of Database Objects
The Oracle database is very flexible, allowing data from multiple schemas to be granted to and queried
by other schemas, even across database links. The APEX wizards have been coded to work best when the
database objects reside in a “parse as” schema assigned directly to the workspace.

The APEX wizards make heavy use of database metadata for the objects in its “parse as” schema. If
you are trying to create applications against synonyms from another schema or across a database link to
another database, in many cases the wizards won’t be functional because the metadata for these objects
is unavailable. There are some features that won’t work at all, such as the management of BLOB data
across database links.

In general, reports are much easier to deal with when it comes to disparate data, as you can merely
supply a working query and create a report. Forms, however, become much more difficult as the insert,
update, and delete logic must be coded manually instead of relying on the APEX-supplied automated
DML processes.

While it’s not always possible, the best practice is to create the underlying database objects in the
“parse as” schema for the application. This is how you will be architecting your helpdesk system.

CHAPTER 3 ■ IDENTIFYING THE PROBLEM & DESIGNING THE SOLUTION

37

Translating Theory to Practice
Now that you have a reasonable understanding of the things you need to think about when designing
the database objects for your system, you can translate your text-based tables into a real schema
definition. Although it is very easy to take the previously described objects and attributes straight to SQL
Workshop and start entering their definition, its usually a good idea to go through the steps of creating
an Entity Relationship Diagram (ERD). I often find the action of doing this can bring other design
considerations to light.

There are dozens of ways to draw ERDs—from pen and paper to high-end database design tools.
However, I tend to opt to take the middle grounds and use Oracle’s SQL Developer Data Modeler, a
robust and free tool from Oracle.

Figure 3–1 shows the results of using the Data Modeler to create the entity relationship diagram
from the information in the initial definitions.

Figure 3–1. First draft of database design

The diagram shows each table having a surrogate primary key that will uniquely identify the
records. As discussed in the previous section, this allows the APEX wizards to work more seamlessly and
generate more complete objects.

There is a foreign key in place between TICKETS and USERS to identify the person to whom the
ticket is currently assigned.

There has also been a unique constraint placed on the USER_NAME column of the USER table to
make sure someone doesn’t accidentally create two users with the same USER_NAME.

Although this is not likely to be the final version of the data model, it’s probably complete enough
for a start. Using your ERD tool, you could go ahead and generate the database object creations scripts,
then upload and run them through APEX SQL Workshop’s SQL Script interface. However, since your
data model is so small, in the next chapter you’ll use the Object Browser tool to create the objects from
scratch.

CHAPTER 3 ■ IDENTIFYING THE PROBLEM & DESIGNING THE SOLUTION

38

Summary
Identifying the problems your APEX application is only half the battle. Good database design—and
designing specifically with APEX in mind—is the key to creating a successful APEX application. Taking
the time to make sure you have a solid foundation means you can take full advantage of everything APEX
gives you so that there will be less work to do later.

C H A P T E R 4

■ ■ ■

39

SQL Workshop

Now that you have a graphical representation of what your underlying tables should look like, in the
form of an ERD, it’s time to dig in and start creating the objects. As mentioned before, you could use
your ERD tool to generate the scripts, but to get you used to using the SQL Workshop, you’re going to be
creating these objects from scratch.

■ Note For this and many of the following chapters, you’ll need to have downloaded the code that accompanies
the book. If you have not already done so, download the code .zip file from this book’s home page at

www.apress.com. Once the .zip file is downloaded, unzip it to a directory where you can retrieve the files easily.

Creating Objects with the Object Browser
SQL Workshop’s Object Browser is somewhat misnamed, as it not only allows you to view database
objects, but also allows you to create and edit them as well. For now, you’re going to skip your USERS
table; you’ll come back to it later in the book. Right now, you’re going to focus on your TICKETS and
TICKET DETAILS tables. From this point forward, you’ll be following step-by-step instructions that will
be interspersed with figures and discussions about what you’re trying to achieve and why you’re doing it
the way you are. So let’s get started:

1. Start by logging into your APEX workspace. You’ll be presented with the
workspace’s home page, which, unless you’ve been doing other work in this
workspace, will probably look a little sparse.

2. Once you’re at your workspace home page, use the tabbed navigation bar
across the top of the page and pull down the SQL Workshop sub-menu by
clicking on the arrow on the right side of the tab (see Figure 4–1).

3. Click on the Object Browser option.

CHAPTER 4 ■ SQL WORKSHOP

40

Figure 4–1. Navigate to the Object Browser

4. In the Object Browser, click on the Create button in the upper right hand
corner and select Table from the drop-down menu.

5. The Create Table Wizard will open. The first screen (Figure 4–2) allows you to
name the table and enter the details for each of the columns of the table.

The following wizard will walk you through the steps of creating a table. The first screen allows you
to name the table and enter the name and details for each of the columns of the table.

Using the two arrows under the Move column, you can move the columns to what ever order you
like. This affects the order in which they are defined and stored in the table.

 If you run out of empty rows to enter columns into, you can use the Add Column button to add a
new empty column definition row to the form.

Figure 4–2. Defining the table and its columns

CHAPTER 4 ■ SQL WORKSHOP

41

6. Enter the details for the TICKET table as indicated in the ERD from the end of
Chapter 3 and in Figure 4–2. Then click Next.

The next page (Figure 4–3) lets you choose how you would like the primary key to be populated and
which column to use as the primary key. The four options for primary key are fairly self-explanatory, but
the two in the middle are probably the most common. You’re starting from scratch and therefore don’t
have any existing sequences defined in your database. By selecting “Populate from a new sequence,”
APEX will create a sequence for you and will create a database trigger on the table that will populate the
selected Primary Key column with the next value from the sequence, unless the field already has a value.
You’re given the chance to name the sequence within this step as well. In this instance, you’ll use the
default name given.

Figure 4–3. Defining the table’s primary key

7. Select the Populated from a new sequence radio button and after the screen
changes, select TICKET_ID (NUMBER) for primary key. Click Next.

8. You’re not going to create any foreign keys in this table just yet, so simply leave
the defaults and click Next.

The Constraints screen in Figure 4–4 allows you to add either Unique or Check constraints to the
table definition. Add a constraint by defining the constraint in the Add Constraints region and clicking
the Add button to add it to the list. Below the Add Constraints region are two help regions. Clicking on
the gray arrow to the left of the region title will expand the help and show the columns you defined in the
table and examples of how to code various check constraints.

 Once you’ve clicked the Add button, the definition of the constraint is added to the list of
constraints at the top of the page. You can define as many constraints on a given table as necessary.
Once you’re done, simply continue on with the wizard.

9. You’re not going to create any Unique or Check constraints here, so stick with
the defaults and click Next.

CHAPTER 4 ■ SQL WORKSHOP

42

Figure 4–4. The Constraints definition step

The final step of the Create Table wizard shows you the code that will be executed and allows you to
make any changes. For instance, the Table wizard doesn’t allow you to add column level comments, but
you could easily add them by editing the text displayed in the SQL region. You can see the code for the
USERS table in Figure 4–5.

CHAPTER 4 ■ SQL WORKSHOP

43

Figure 4–5. Review the Create Table wizards SQL

10. Review the text in the SQL region presented by the Create Table Wizard. Click
Create to complete the wizard.

Once you’ve successfully completed the wizard, you’ll be taken back to the Object Browser and the
definition of the TICKETS table will be displayed. Take a moment to examine the definition of the table.
You should see all the columns that you defined listed. If you click on the Constraints tab across the top
of the definition region, you’ll see a number of different constraints including the primary key constraint
on TICKET_ID.

In the upper left hand corner of the object browser, there is a select list that defines the object type
being browsed. Use this select list and choose Sequences. You’ll see that APEX created a sequence called
TICKETS_SEQ that will be used fill the TICKET_ID.

Once again, use the Object Type select list and chose Triggers. You’ll see a trigger named
BI_TICKETS (BI stands for “before insert”). Clicking on the Code tab above the trigger details will show
the code for the trigger that is using the TICKETS_SEQ sequence to fill the TICKET_ID if it’s null. You
should see code similar to the following:

create or replace trigger "BI_TICKETS"
 before insert on "TICKETS"
 for each row
begin
 if :NEW."TICKET_ID" is null then
 select "TICKETS_SEQ".nextval into :NEW."TICKET_ID" from dual;
 end if;
end;

CHAPTER 4 ■ SQL WORKSHOP

44

Now that you have your Tickets table defined, let’s go back and create your TICKET_DETAILS
tables. This time you’ll be creating a foreign key to the TICKETS table. You’ll be creating the foreign key
to the TICKETS table as a CASCADE DELETE. This means that if you delete the ticket, the ticket details
will automatically be deleted as well.

11. Start the Create Table wizard using the Create button.

12. Enter the table name and column definitions based on the ERD and Figure 4–6,
and click Next.

The next set of steps is purposefully a bit more vague than the previous ones. You should be used to
using the Create Table wizard by now, but if you need a refresher, just look at the previous steps.

Figure 4–6. Defining the TICKET_DETAILS table

13. Choose to populate the primary key from a new sequence, select
TICKET_DETAILS_ID(NUMBER) as the primary key, and click Next.

14. Add a foreign key between the TICKET_ID in the TICKET_DETAILS table and
the TICKET_ID in the TICKETS TABLE. Make sure that the Delete action is set
to Cascade Delete. Your screen should look similar to that in Figure 4–7.

CHAPTER 4 ■ SQL WORKSHOP

45

Figure 4–7. Defining Cascade Delete foreign key for the TICKET_ID

Figure 4–8. Foreign keys as defined in the table wizard.

15. Once the foreign key is defined, click Next (see Figure 4–8).

16. No constraints are required for this table. Click Next.

17. Review the SQL and click Create to complete the wizard.

Loading Data with the Data Workshop Utility
Now that you have your two base tables defined, you can begin working to migrate the old data into your
shiny new data structure. SQL Workshop’s Data Workshop utility can be used to load and unload data
from an Oracle schema in a number of ways, as shown in Figure 4–9. The Data Load option allows you to
choose Text Data, XML Data, and Spreadsheet Data.

CHAPTER 4 ■ SQL WORKSHOP

46

Figure 4–9. Data Load and Unload methods provided by the Data Workshop Utility

Although three separate options are presented, the Text Data and Spreadsheet Data options actually
utilize the same Data Load wizard. There is little or no discernable difference in the actions of the wizard
no matter which option you selected.

The third option (XML Data) allows you to load data that has been exported in Oracle’s proprietary
XML Data Transport format. The format looks like this:

<ROWSET>
<ROW>
 <USER_ID>2</USER_ID>
 <USER_NAME>DOUG</USER_NAME>
 <PASSWORD>A69856770A9AB9CBB0479573FCB3E2A5</PASSWORD>
 </ROW>
 <ROW>
 <USER_ID>3</USER_ID>
 <USER_NAME>DAVID</USER_NAME>
 <PASSWORD>E2E89134B8AC6E1FFC14139A6FB2C10B</PASSWORD>
 </ROW>
</ROWSET>

In your imaginary company, your help desk technicians have been using Microsoft Excel to track
tickets, so you’re going to load the data using the Spreadsheet option. A quick glance at the spreadsheet
that your technicians use shows you that they have two separate sheets in the Excel workbook: TICKETS
and TICKET_DETAILS.

Knowing that you’re going to be loading your data into pre-existing tables that already have primary
and foreign keys in place, you need to be careful about how you load the data. TICKET_DETAILS depend
upon the Tickets for their parentage so you need to load the TICKETS data first. Your spreadsheet should
look like Figure 4–10.

CHAPTER 4 ■ SQL WORKSHOP

47

Figure 4–10. Spreadsheet data from the TICKETS tab of your Excel workbook

Now that you have the TICKET data in the clipboard, you can switch back to APEX and use the Data
Load Wizard to insert this data into your TICKETS table. Here are the steps to follow to load your data
from spreadsheet into database:

1. Locate the helpdesk_spreadsheet.xls file where you downloaded the
supporting files for this book and open it with Microsoft Excel. Once it’s open,
navigate to the TICKETS tab. You’ll notice that you have a row for each TICKET
and a header row that contains the column headings for each of the columns.

2. Select all the data, including the column headings, and copy it to the clipboard.

3. Switch back to your web browser and, using the pull-down menu on the SQL
Workshop tab, select Data Workshop.

4. Under the Data Load region, click Spreadsheet Data. You should see the Load
Data dialog in Figure 4–11.

5. In the wizard, select Existing table for Load To and Copy and paste for Load
From and click Next.

Figure 4–11. Preparing to copy and paste the spreadsheet data and load it into the existing USERS table

6. Select your parse as schema from the Schema select list and click Next. This will
be the same schema in which you created your tables in the Object Browser.

7. Enter TICKETS for the Table Name, as shown in Figure 4–12, and click Next.
This is the table into which you’re going to be loading the TICKET data.

CHAPTER 4 ■ SQL WORKSHOP

48

Figure 4–12. Enter the name of the table into which you’re going to load the data.

8. Paste the data that you copied to the clipboard in step 2 into the Data Text area
and ensure that First row contains column names box is checked, as in Figure
4–13, and click Next.

Figure 4–13. Pasting the spreadsheet data into the Data Text box

Once you click Next, APEX will parse the data you’ve pasted in and do its best to match the column
names in the first row of the spreadsheet data to the column names of the table you’re loading the data
into. On the next screen, you’ll be presented with the column-mapping screen so that you can check its
accuracy and, if necessary, make some alterations and corrections.

APEX is very good about matching column names as defined in the spreadsheet with those that have
the same name in the table. However, if the names differ, it won’t try to guess but instead leaves the
mapping to you.

If you scroll to the right, you’ll see that APEX didn’t map the e-mail address or the phone number in
your example to a table column. You’ll need to map these data elements to the correct table columns
manually. You can do that using the drop-downs shown in Figure 4–14.

CHAPTER 4 ■ SQL WORKSHOP

49

Figure 4–14. Manually mapping the data columns to the table

9. Scroll to the right in the Define Column Mapping region and map the third
column to DESCRIPTION using the select list above the column data. Examine
the other mappings to make sure that APEX made the correct selections.

10. When you’re sure all the mappings are correct, click the Load Data button to
load the data into the USERS table.

After the data is loaded, you’ll be presented the Spreadsheet Repository screen in Figure 4–15. That
screen shows you that 20 rows were loaded into the database and zero errors occurred during loading.

Figure 4–15. Data has now been loaded into the users table

If you navigate to the Object Browser, select your TICKETS table, and look at the data in that table,
you can see that the records that were in your spreadsheet have now been loaded into the database. To
finish the job, you’ll need to load the data for the TICKET_DETAILS. Here’s what to do:

18. Navigate to the Data Workshop and click on the Spreadsheet Data link in the
Data Load region and click Next.

11. In the wizard, select Existing Table for Load To and Copy and paste for Load
From and click Next.

12. Select your parse as schema from the Schema select list and click Next. This will
be the same schema in which you created your tables in the Object Browser.

13. Enter TICKET_DETAILS for the table name and click Next.

CHAPTER 4 ■ SQL WORKSHOP

50

14. In Microsoft Excel, navigate to the TICKET_DETAILS tab and copy all the data,
including the column headings, in that spreadsheet to the clipboard.

15. In your browser, paste the data that you copied to the clipboard into the Data
Text area and ensure that First row contains column names is checked and
click Next.

16. Review the mappings made by APEX in the Define Column Mapping region.
This time it should have mapped everything correctly. Click Load Data to
complete the data load. The summary should say that 22 records were loaded
into the TICKET_DETAILS table with zero errors.

You now have both of the main tables created and loaded with the legacy data. This alone is enough
to start developing an application, but you’re not quite ready to begin yet.

Creating a Lookup Table
Have a look at the definitions and data of the tables you just created. They are basically just mirror
images of the spreadsheet tabs the technicians were using before. If you examine the data closely, you’ll
notice that there are still some areas where the data is still not quite normalized the best that it could be.

For instance, in the TICKETS table, you’ll notice that the STATUS column only has three values—
OPEN, CLOSED, and PENDING—which repeat over and over. The data values in this column indicate
that it’s a perfect candidate for creating a lookup table. While it’s tempting to go off and create the table
manually with the Create Table wizard and then manually migrate the data, APEX can actually create
lookup tables—complete with their own sequence, trigger, and foreign key—and modify the original
table so that it points to the new lookup table, all without you writing a line of code. Here’s how:

1. Navigate to the Object Browser and select the TICKETS table in the Object List
on the left hand side of the screen. You should see results similar to those in
Figure 4–16.

2. Make sure that the Table tab is selected.

3. Below the Tab bar is a set of button-like links. Click the Create Lookup Table
button, as shown by the mouse arrow in Figure 4–16; it starts the Create Lookup
Table wizard.

CHAPTER 4 ■ SQL WORKSHOP

51

Figure 4–16. Clicking the Create Lookup Table button startes the Lookup Table wizard

The first page of the Create Lookup Table wizard (Figure 4–17) gives you the option to show only
VARCHAR column types or all column types. It defaults to VARCHAR because it is the most likely to be
the candidate for lookup tables. Looking at the columns that are presented in the wizard, you see that
one of the VARCHAR columns is your STATUS column.

4. Select Status as the column from which you want to create the lookup table and
click Next.

CHAPTER 4 ■ SQL WORKSHOP

52

Figure 4–17. Selecting the Status column as the source of your lookup table

5. On this screen you’re able to name your lookup table and the sequence that will
be related to it. APEX has chosen a reasonable name for your new table and
sequence so take the defaults and click Next.

6. The final screen of the wizard (Figure 4–18) provides you with information
about the choices made and the action that is about to be performed. It’s easy
to miss the SQL Syntax link just below the wizard region. Click on the SQL
Syntax link to show the SQL.

Examining the SQL will show the steps that will be taken to create the new lookup table, associated
sequence, and trigger; insert the data into the table; and update the data in the originating table so that it
references your new lookup table. That’s quite a lot of work saved.

Figure 4–18. Clicking the SQL Syntax link will show the SQL about to be executed.

7. Click Finish to complete the wizard. You’ll be taken back to the Object Browser.
The STATUS_LOOKUP table will be highlighted and its details shown.

Use the Object Browser to examine the objects that were created by the wizard.

CHAPTER 4 ■ SQL WORKSHOP

53

Loading and Running SQL Scripts
The SQL Scripts tool of SQL Workshop allows you to create, upload, manage, and run SQL Scripts. These
scripts are similar to SQL*PLUS scripts in many ways. However, if you use scripts written for SQL*PLUS,
any SQL*PLUS-specific syntax will be ignored by APEX.

Once a script is created or loaded, it is moved into the Script Repository where it will remain until
you decide to remove it. From the script repository, you can decide to edit or run the script. Once you
run a script, APEX stores the results for you to view later. For example, you can come back later to review
it for possible error messages.

You’re going to load and run a script that will modify your underlying data just a bit, and here’s why.
In the real world, the spreadsheet you received from your help desk team would have current dates

and data in it; however, the ticket dates in the spreadsheet that is downloaded with the .zip file
accompanying this book are very likely not current. This would cause you to have to search back in
history for the tickets if you were searching by date. This script will update these dates so that they’re
recent.

Another thing that you need to take into consideration is that you loaded a bunch of data into your
tables that already had IDs assigned to them. Because the IDs were loaded with the data, you didn’t use
your database sequences. Therefore, your sequences are out of synch with your data. You need to drop
and recreate your sequences so that the next sequence number is greater than the largest ID used in the
associated table.

You’re also going to alter the Before Insert trigger that was automatically created on the TICKETS
table so that it automatically fills in the CREATED_ON column.

Lastly, you’re going to create a function that, when passed a status name such as OPEN, will pass
you back the ID for that status. This function will be used in a number of places, as you can’t guarantee
you know the ID value of a given status. Therefore, this function is the only safe way to get the associated
ID for a given status.

When you’re in any of the SQL Workshop tools, there is an icon menu in the upper right corner of
the screen that provides quick links to each of the other tools. In Figure 4–19, the hand-shaped pointer is
pointing to the SQL Scripts icon.

Figure 4–19. The icon based Quick Menu in SQL Workshop

Here’s what to do to create the Lookup function to return status ID codes:

1. Click on the SQL Scripts icon in the SQL Workshop’s Quick Menu. If you’re not
already in the SQL Workshop, use the pull-down menu from the SQL Workshop
tab and chose SQL Scripts.

2. Click the Upload button in the upper right section of the screen.

3. Click on Browse to search for the SQL file to upload.

CHAPTER 4 ■ SQL WORKSHOP

54

4. In the pop-up file finder window, locate and select the
ch4_schema_changes.sql file and click Upload. You do not need to give the
script a name; it will default to the name of the script as it appears at the OS
level.

Once the file has been uploaded, you’ll be presented with the SQL Scripts report showing the script
that you just uploaded. From this point, you can either edit or run the script. If you want to see what the
script contains, feel free to edit it. You are able to run the script from the edit screen as well.

Run the script by clicking either the Run button (if you’re editing the script) or the Run icon (if
you’re still viewing the SQL Script report).

5. As shown in Figure 4–20, you’ll be asked to make a selection between Run in
Batch and Run Now. Select Run Now.

Figure 4–20. Choose whether to Run in Batch or Run Now

The script will be run and you will immediately be taken to the Manage Script Results page. You’ll
most likely see that your script status is COMPLETE.

6. Click on the View Results icon at the very right of the report row to see the
results of the script. Figure 4–21 shows the button to click.

Figure 4–21. Click the View Results icon to view the results of running the script.

The View Results page allows you to see what happened when the script ran. The default view shows
you an overview by displaying the first 50 or so characters of each statement along with some brief
feedback and the number of rows affected by the statement. Figure 4–22 shows the results from your run
of the script.

CHAPTER 4 ■ SQL WORKSHOP

55

Figure 4–22. The Summary view of the script results.

You can, however, get more detailed feedback by changing the report view to Detailed. Doing so will
give you far more insight, especially if you have a script that has errors during execution. Figure 4–23
shows a detailed view.

Figure 4–23. The Detail view of the script results

In either view you can quickly see if the script encountered any errors by scrolling to the bottom of
the page and looking at the report footer where the report will display the total number of statements
processed, the number of those that were successful, and the number that generated errors. Figure 4–24
shows the number of statements process from your run of the script.

Figure 4–24. In the footer of either report is the success summary for the script.

CHAPTER 4 ■ SQL WORKSHOP

56

User Interface Defaults
Before you start to write your application, one last thing you can do that will make your life easier along
the way is to create some User Interface (UI) Defaults. This, in my opinion, is one of the most
underutilized features of APEX.

UI Defaults allow you to customize the default display attributes for tables, views, and their
columns. They can be used to control many properties including alignment, searchability, display
sequence, what type of item is created for a column, default values, and many more.

For instance, when you’re creating a new form or report via a wizard (which is most of the time),
APEX will ask you if you wish to use UI Defaults. If you select yes and defaults are available, APEX will
apply them to the appropriate regions or items based on the tables or columns for which the attributes
are defined. UI Defaults are divided into two categories: Attribute Dictionary and Table Dictionary.

The Attribute Dictionary allows you to create more generic UI Defaults based on attribute names.
Consider this a more macro level definition.

Let’s say you create an Attribute level default for any attribute named PHONE_NUMBER. If a
column named PHONE_NUMBER appeared in a table and didn’t have Table Dictionary default
assigned, the Attribute Dictionary default would take effect.

 Dictionary Attribute definitions can also be assigned synonyms, allowing more than one attribute
name to share the same actual definition. So, for instance, you could create the synonyms PHONE,
TELEPHONE, PHONENUMBER, etc. for the original PHONE_NUMBER definition. If the wizard ran into
a column with any of those names, it would apply the PHONE_NUMBER defaults to the APEX item that
is created.

The Table Dictionary allows you to define defaults for a specific table or column and those defaults
will only be applied to APEX regions or items created for those specific items.

Some things to note about UI Defaults:

• Table Dictionary defaults always override those of Attribute Dictionary defaults.

• When an item is created using UI Defaults, there is no relationship established
with the UI Default. Therefore, if you later change the definition of the UI Default,
the changes will not be propagated to previously created items.

• Items created before UI Defaults have been established will not inherit properties
of the UI Default.

• Developers can choose not to use UI Defaults, and even if they are used, can
override them after the component is created.

Having said that, UI Defaults do help ensure consistency across your application and make your job
much easier as a developer.

Defining UI Defaults for Your Tables
UI Defaults can be managed either from the SQL Workshop’s Object Browser or from SQL Workshop’s
Utilities page. Here’s what to do:

1. Navigate to SQL Workshop’s UI Defaults page by clicking on the arrow on the
SQL Workshop tab and selecting UI Defaults from the drop-down menu.

You’ll be taken to the UI Defaults dashboard where things will likely look pretty sparse. This is
because you haven’t actually created any UI Defaults yet. The first step to creating UI Defaults is to
synchronize the Table Dictionary with the database so it knows what tables are in your schema.

CHAPTER 4 ■ SQL WORKSHOP

57

2. Click the Manage Table Dictionary button and then click the Synchronize
button on the screen that appears.

This will initiate the Synchronization wizard. This wizard shows you the number of tables with
defaults defined, and the number without. In your case, you should have zero tables with defaults and
four tables without.

3. Click the Synchronize Defaults button to begin the synchronization with the
database. This may take a little bit of time.

Once the Table Dictionary is synchronized with the definitions is the database, you’re presented
with the report in Figure 4–25 that shows you each table that now has base UI Defaults.

Figure 4–25. List of tables with UI Defaults defined

You can now go and view or edit the UI Defaults for each of these tables. Start by viewing the UI
Defaults for the TICKETS table.

4. Click on the TICKETS link in the report. You should see the results in Figure 4–26.

On the page in Figure 4–26 you can see an overview of the UI Defaults for the TICKETS table. In the
upper portion of the report you see the Table level definitions, including what the Form and Report
regions based on this table will be called. In the lower portion is a list of the table’s columns, the labels
that will be used, how they will be aligned when used in a report, whether they will be displayed in a
report or form, whether their Required attribute will be set in a form, and whether or not they have any
help text.

CHAPTER 4 ■ SQL WORKSHOP

58

Figure 4–26. The Table and Column UI Defaults overview

Next you’ll edit both the Table level and Column level attributes.

5. Click on the Edit Table Defaults button in the upper portion of the report. This
will allow you to edit how Form and Report regions based on this table will be
named.

6. Enter Manage Tickets for the Form Region Title, leave the Report Region Title
as it is, and click Apply Changes.

Clicking on any of the column names will take you to a page that allows you to set UI Defaults for
that specific column. As you peruse the column UI Defaults, you’ll notice that several things have been
set for you, including the REQUIRED attribute. When APEX synchronized with the database, it saw that
certain fields were marked as NOT NULL at the database level and translated those constraints into UI
Defaults for you.

APEX also makes some decisions based on the column’s data type, such as how to align the column
when it’s displayed in a report. Use the following information to alter the UI Defaults for the indicated
columns:

CHAPTER 4 ■ SQL WORKSHOP

59

Column: SUBJECT

Label: Subject

Help Text: A brief title for the issue.

Column: DESCR

Label: Description

Help Text: Describes the ticket in detail. Please be as complete as you can.

Resizable: YES

Width: 50

Height: 5

Column: STATUS_ID

Label: Status

If you wish, you can go ahead and set the UI Defaults for any of the other columns and/or tables.
Just remember, what you do now will effect what the wizards create for you later, so if something doesn’t
look exactly like what we’re showing in the book, check what you set for UI Defaults.

Summary
While SQL Workshop may not measure up to some of the more popular GUI tools, it certainly has the
power to do most things you’ll need to do with relation to creating and managing tables and data. You’ve
also seen that SQL Workshop has a few built-in but hidden gems like the Lookup Table wizard. Finally,
among the many useful utilities is the UI defaults manager, making your job as a developer just a little
bit easier.

Sure, you haven’t covered SQL Workshop in its entirety, but you’ve definitely gained a fair amount
of insight as to what it’s capable one. You’ll be using SQL Workshop for a number of other things
throughout the book, but don’t wait. Go poke around into some of the dark nooks and crannies and see
what you find!

C H A P T E R 5

■ ■ ■

61

Application and Navigation

With some basic data created, you can now create the shell for your application. APEX provides a wizard
for creating applications. Inside, several options are available to assist with generating a starting
application. Based on how much prior planning has been done, the result of running the initial
application wizard may vary. You will start this chapter by walking through the steps of the wizard,
highlighting the most common features.

For your example application, you are going to create the most basic shell of the application with only
one page. In other scenarios, you could create an initial draft of all of your pages. In order to illustrate the
individual wizards for creating pages, you will cover them with more detail in later chapters.

After the application has been created, you will add shared components to your example
application. Shared components are items and structures that are common across all of the pages in the
application. You will prepare breadcrumbs, lists, and Lists of Values (LOVs) for use; you’ll also learn how
the Page Zero concept works. By the end of the chapter, you will have some basic components for the
application and a starting outline for the remaining pages.

The Create Application Wizard
Applications in APEX are created through application imports, copying an existing application, or
running the Application wizard. The Application wizard is the first step in creating an application from
scratch. We’ll first have a look at the Application wizard and its various options before we actually walk
through the process or creating our Help Desk application

To begin, navigate to the Application Builder in APEX. This can be done from the APEX home
page either by clicking on the Application Builder menu item or the Application Builder icon shown in
Figure 5–1. The Application Builder will show a list of the current applications. At the top of the list of
applications, there is a highlighted button entitled Create, shown in Figure 5–2. Click the button and the
wizard will start. You will be presented with three choices for application type: database, websheet, and
sample application. The Application Builder will quickly become very familiar to you when working with
APEX. Because of this, the shortcut menu in Figure 5–3 is also available to assist with quick navigation
even when in other sections of APEX.

CHAPTER 5 ■ APPLICATION AND NAVIGATION

62

Figure 5–1. The Application Builder icon on the APEX home page

Figure 5–2. The Create button

Figure 5–3. The shortcut to creating an application

Sample Applications
If this is a new workspace, there may or may not be a sample application that was created automatically
when the workspace was provisioned. The automatic installation of sample applications is a feature
setting that is configurable by the APEX administrator. If a sample application is not installed, you can
install one manually by selecting the Sample Applications icon on the first step of the Create Application
wizard, as shown in Figure 5–4. You’ll then see the dialog in Figure 5–5. The dialog lists several sample
applications. Selecting the Install link on the right and following the default prompts for schema
selection will automatically install a sample application and the database objects that support it. If a
sample application is already installed, you’ll see options for removal and re-install (intended for
damage or repair) as shown in Figure 5–6. The sample applications are good learning tools for seeing a
variety of features implemented very quickly.

CHAPTER 5 ■ APPLICATION AND NAVIGATION

63

Figure 5–4. Choosing the type of application

Figure 5–5. List of sample applications

Figure 5–6. Re-install and Remove buttons for an installed sample application

Websheet Applications
You will cover the websheet application features in a separate chapter. The starting point for creating a
websheet application is the same as for a database application. One of the primary differences is the
creation of predefined database objects that support the websheet applications. Another difference is
the segregation in the application builder between database applications and websheet applications in
the form of tabs (seen in Figure 5–7) that quickly display the different types of applications separately.

CHAPTER 5 ■ APPLICATION AND NAVIGATION

64

Figure 5–7. Choosing between database and websheet applications

Database Applications from Spreadsheets
When selecting a database application from the wizard, you are quickly faced with the question: Where
is your data coming from? Figure 5–8 shows the dialog that you’ll see. One option is to use a spreadsheet
of data as the basis for a table. The Create Application wizard will provide steps for loading data from a
single table to create an application at the same time from that data. The application will be very simple,
using a report and form combination such as in Figure 5–9. Creating a database application from a
spreadsheet is a fast and easy way to get from a single page spreadsheet to a working online application
that can be expanded upon with additional tools and functionality.

Figure 5–8. The From Scratch and From Spreadsheet options

Figure 5–9. The application page from a spreadsheet application

CHAPTER 5 ■ APPLICATION AND NAVIGATION

65

Database Applications from Scratch
When you create a database application from scratch, the wizard offers many interesting options. You
can create any number of pages and link pages to different tables of data. Additional steps give advanced
options that, when planned for, are very powerful. Creating an application from scratch is the method
you will be using in your ticketing application exercise.

Naming the Application
After selecting the From Scratch option, you are prompted for an application name and ID, as in

Figure 5–10. The name value is what will be used to identify the application inside the builder and is
used as the title of the application. The application ID, although automatically created, can be manually
selected here. However, there is no need to modify the application ID. Simply accept the ID that is given.
Leave the last setting, the schema setting, alone. This setting exists for workspaces that have been
granted access to more than one database schema. You won’t be granting such access in your example.

As mentioned, you’re creating an application from scratch in your example. Note that Figure 5–10
shows a second option involving creating an application from an existing design model. Use that option
only when you’ve previously saved a series of settings after having created an earlier application. Figure
5–11 shows the prompt for a design model that you’ll get if you ever decide to use the design model
approach.

Figure 5–10. Entering the application name and ID

Figure 5–11. Application design models option

CHAPTER 5 ■ APPLICATION AND NAVIGATION

66

Laying Out Pages
The next step in the wizard is to lay out pages for the application. The wizard requires at least one page to
be created. Figure 5–12 shows that you have the option to create as many pages as desired. Figure 5–12 also
shows that pages have types. Different types of pages call for different types of information. Add a report
page and you’ll be prompted for a table name or query upon which to base the report; see Figure 5–13 for
an example of such a prompt.

Figure 5–12. Multiple pages defined in the Application Creation wizard

Figure 5–13. Report page definition with SQL Query prompts

CHAPTER 5 ■ APPLICATION AND NAVIGATION

67

Choosing an Approach to Tabs
Tabs are a common navigational structure for web applications. They provide an intuitive interface

for switching subjects or general areas in an application. Three options are available:

• No Tabs: This is a basic page style where no tabs will be generated by the wizard,
and no tabs will be displayed by the page template. This is often selected for small
applications or applications where navigation is managed by a different method
such as lists, buttons, or other template constructs.

• One Level Tabs: This is the most common style of tab layout; it’s useful for small
to mid-sized applications where functionality needs to be separated yet easily
accessible. This is also the easiest type of tab style to manage.

• Two Level Tabs: The construction of the two level tab uses a parent tab construct
and breaks the standard tabs into tab sets. It is similar to having a controlling tab

APEX supports up to two level tabs in the display templates provided, and the wizard will build the
shared components for the tab set as part of the wizard. Figure 5–14 shows the page from which you
choose a tabbing approach. If you know your application’s page outline and can lay it out during the
creation of the application, the wizard will do a most of the tab setups. Designing the page at creation
time can be a big time saver if the application design calls for a significant number of tabs. In any case,
you can create and modify the shared component after the initial run of the application creation wizard.

Figure 5–14. Application tab choices

Copying Shared Components
The Application Creation wizard contains a step (shown in Figure 5–15) in the process that allows shared
components that have been set up in other applications to be copied during creation of a new
application. This allows for easy generation of new applications when a standard has been defined.
Copying shared components is not an advanced procedure, but it does lend itself to a controlled and
mature development process. This feature step in the wizard is a convenience as the same objects can be
copied in other ways after the application has been created.

CHAPTER 5 ■ APPLICATION AND NAVIGATION

68

Figure 5–15. Choosing whether to copy shared components

Selecting an Authentication Method
With every application, you need to make a choice about authentication, even if that choice is no
authentication. This topic will be discussed further in Chapter 9. By default, the APEX Application
Creation wizard provides three options for authentication.

• Application Express: Users and passwords are local to the APEX workspace. These
users are managed in the same way the developer accounts are inside the APEX
workspace. These users only work inside the current workspace.

• No Authentication: This is like a public web site. The users will not be prompted
for any type of authentication. This is useful for informational applications where
the question of “Who are you” is not important.

• Database Account: This option uses the Oracle Database schema user names and
passwords for credentials. Some organizations use this type of database driven
authentication to keep track of users. The application still executes as the APEX
schema, not as the individual user in the database.

For simplicity, the default is to use the Application Express authentication scheme. This is the one
setting that will provide login security; by default, the developer writing the application will be able to
log in without any additional work.

■ Note Many organizations will have an existing method of authenticating users. If there is currently an LDAP
server available (such as Oracle Internet directory, Microsoft Active Directory for network domain authentication, or
even an Oracle eBusiness suite), it may be desirable to leverage these systems for APEX authentication. The

number of options and methods are beyond the scope of this book. Simply know that with the Oracle database
technology and the technology of your application server, it’s possible to leverage many of the most common

authentication infrastructures.

CHAPTER 5 ■ APPLICATION AND NAVIGATION

69

The authentication step in the wizard also allows for three additional settings, as seen in Figure 5–16:

• Language: Used for internationalization and translation.

• User Language Preference: For multi-lingual applications, this setting determines
the translation needed.

• Date Format: Defaults how date elements will be formatted. Different regions of
the world have assumptions on how dates are formatted, especially when they are
strictly numeric values. A common format that is used to try to alleviate this issue
is the DD-MON-YYYY format. This style of format makes it clear which portion
represents the day, month, and year clearly (ie. 01-JAN-2010).

The wizard will use these setting as starting values. You can alter them as needed in the shared
components of the application. The language, date format settings, and time zone handling are
classified as globalization settings. One of the settings that can be turned on after the application is
created is automatic time zone detection. Automated time zone detection is especially useful for
applications whose users span different time zones.

Figure 5–16. Authentication scheme selection

Selecting a Theme
APEX themes are the groupings of templates that are used to establish look and feel of pages, reports,
buttons, and other graphical components. Figure 5–17 shows the APEX theme-picker. As APEX evolves
and web standards evolve, so do the pre-made themes of APEX. Version 4.0 offers some new themes.
Although APEX currently comes with twenty themes of varying looks, it is always possible to customize
an existing theme or to create a completely new theme. The APEX administrator also has the ability to
create themes that are specific to their instance of APEX. Choosing a theme as part of the Application
Creation wizard is an easy way to apply a default theme. As you might expect, you can change your mind
later and apply a different theme. Additional themes can be added, modified, and tested as part of the
shared components of APEX.

CHAPTER 5 ■ APPLICATION AND NAVIGATION

70

Figure 5–17. Theme selection

Completing the Application Creation Wizard
The last step of the wizard is a simple confirmation dialog. Clicking the Create button in Figure 5–18 will
commit all of the settings and generate the application. The Previous button can walk backward through
the wizard to make any additional changes before completing.

One additional option is available on the last page, at the very bottom: Save this definition as a
design model for reuse. At the beginning of the wizard there was an option to re-use a design model.
This is the point where those design models get created. They are sepecific to the workspace and can be
very useful when running the wizard to set application defaults quickly.

Figure 5–18. Completing the Application Creation wizard

CHAPTER 5 ■ APPLICATION AND NAVIGATION

71

Now that you have reviewed the steps of the wizard, let’s create the application for the Help Desk.

1. Navigate to the Application Builder. Start the Application Creation wizard by
clicking the Create button.

2. Select Database as the type of application. Click Next.

3. Select From Scratch. Click Next.

4. Enter Help Desk for the name of the application. Everything else can stay
default values. Click Next.

5. Select Blank for the page type. Enter Home for the page name. Click Add Page.

6. Check your result. There should be one page listed, as shown in Figure 5–19.

Figure 5–19. Application page creation

1. Click Next.

2. Select One Level of Tabs. Click Next

3. Select NO for Copy shared components. Click Next.

4. Select Application Express as the authentication scheme.

5. Set the date format to DD-MON-YYYY.

6. Click Next.

7. Select Theme 1. Click Next

8. Click Create to finish.

You will now have a simple application with only two pages, as shown in Figure 5–20. Run that
application, and you should receive the login page shown in Figure 5–21. That login page will take your
normal APEX developer username and password, as shown in Figure 5–22.

Figure 5–20. Resulting pages for the help desk application

Figure 5–21. Login prompt when running application

CHAPTER 5 ■ APPLICATION AND NAVIGATION

72

Figure 5–22. The application after you’ve logged in

Static HTML Regions
The Static HTML region is a very basic type of region. There are three sub types of HTML region, as

shown in Figure 5–23:

• HTML: Any HTML tags will render as their interpreted value; JavaScript will
execute as if part of the page source.

• HTML Text (with shortcuts): Like the HTML region, with the addition of support
for shortcut technology. This technology includes a shared component object that
can be used for managing a type of variable using “SHORTCUT_NAME” syntax.

• HTML Text (escape special characters): This will show HTML code as the source
value. Example:
 will show up exactly as the code
 rather than being
interpreted as a break / return.

Figure 5–23. HTML region sub types

With the HTML region’s simplicity comes a wide variety of uses. An HTML region is a container that can
have its own value, embedded JavaScript or CSS definitions, or it can contain other page items. Any valid
HTML entered in the source will render on an APEX page. Substitution string syntax, such as
&PX_ITEM_NAME., can also be used to display item values in the source text.

Continuing with your help desk application, you will add some content to your first page, like so:

1. From the Application Builder for the help desk application, click on the page
with the house icon with a title of Home.

CHAPTER 5 ■ APPLICATION AND NAVIGATION

73

2. In the Page Rendering section, double click on the Home region as indicated in
Figure 5–24. (Using a right click brings up the Edit Options menu).

If this is the first time you have visited the page edit screen, you will be
presented with a pop-up dialog that introduces you to the functionality
available on this screen. If presented with this dialog, simply press OK to
dismiss it.

Figure 5–24. Home region location on the Page Rendering tree

3. Change the title of the region under identification title to APEX Issue Tracker.

4. Enter the following in the Source - Region Source section:

<h1>Welcome to the APEX Issue Tracking System</h1>

Select an option from the list

5. Click on Apply Changes.

■ Caution A common mistake is to click the RUN PAGE shortcut in the corner BEFORE clicking Apply Changes.

Run the page. You should see the changes you just made indicated by a region with a friendly
welcome message. Your results should be similar to those in Figure 5–25.

CHAPTER 5 ■ APPLICATION AND NAVIGATION

74

Figure 5–25. Results after adding the Static HTML page

Public Pages
As mentioned, it’s possible to allow the entire application to use a no authentication scheme. But what if
you want some of the pages to require authentication, and the rest can be public? How can you make a
page that does not require a login to view?

If any of the pages within an application require authentication, an appropriate authentication
scheme must be applied to the whole application. APEX allows individual pages to be defined as
“public” or “requires authentication” using a defining property of the page. Each page can have different
security requirements (authorization), but only one authentication mechanism can be applied to an
application. Public pages are useful for introductory landing pages, login pages, and information pages.

In your help desk project, you want to have the main page available to all visitors. To accomplish
this, you will modify the first page of your application to allow it to be seen by anyone without requiring
authentication via the following steps:

1. For the help desk application, navigate to the page edit view for page 1.

2. In the Page Rendering section, the title of the page is the top of the tree.
Double-click on the title Home.

3. Scroll to the Security section shown in Figure 5–26. In this section change the
authentication to Page is Public.

4. Click Apply Changes.

Figure 5–26. Change a page’s authentication setting

Now when the page is run, the authentication screen will not show when page 1 is requested. You
will learn more about authentication and authorization in Chapter 9. For now, just know that the change
you’ve made allows users to see the first page of the application without being logged in.

CHAPTER 5 ■ APPLICATION AND NAVIGATION

75

Navigation Bar Entries
Each APEX application has one navigation bar that may contain multiple entries. Examples of links
typically displayed on every page are login, log out, help, and my account. As a developer, you can create
and modify navigation bar entries depending on the application and need. The navigation bar can also
go beyond standard link text; it can be modified to include images. Entries can be based on conditions,
authorization schemes, and build options. Placement of navigation bars is dictated by the page template
substitution variable #NAVIGATION_BAR#. In most applications, the navigation bar is place in either the
upper right or upper left of the page. An example of a navigation bar can be seen in Figure 5–27. The
icons located in the upper right are a navigation bar; they provide quick access to run page, shared
components, and other common utilities.

Figure 5–27. Icons in a navigation bar

For the Help Desk application, you will add entries to support the ability of users to log in and logout.

1. Navigate to the Shared Components section, either from the application page
list or via the gear icon in the builder navigation bar.

2. Under Navigation, click Navigation Bar Entries, as shown in Figure 5–28. You’ll
see that APEX has already created a Logout entry for you, but you need to create
your own Login link.

Figure 5–28. Navigation items in the Shared Components screen

3. Click Create.

4. Select the From Scratch option shown in Figure 5–29 and click Next.

CHAPTER 5 ■ APPLICATION AND NAVIGATION

76

Figure 5–29. Navigation bar creation

5. Select Navigation to URL as shown in Figure 5–30. Then click Next.

Figure 5–30. Navigation bar entry creation

6. Enter Login in the entry label field and Login in the image ALT field, as shown
in Figure 5–31.

7. Click Next.

Figure 5–31. Navigation bar settings

8. Set the target to Page in this Application, as shown in Figure 5–32.

9. For page, enter 101. This will send the user back to the login page after they’ve
logged out.

10. Click Next.

CHAPTER 5 ■ APPLICATION AND NAVIGATION

77

Figure 5–32. Specifying the target page

11. Set the Condition Type to User is the Public User (user has not authenticated),
as shown in Figure 5–33.

12. Click Create.

Figure 5–33. Navigation bar conditions

Run your application now. If you are logged in, you will only see the Logout navigation bar entry. Click
the Logout navigation item. Once you are logged out, you will see the new navigation item as in Figure
5–34. This identifies a small problem: The Logout link can still be seen even though you’ve already
logged out..

CHAPTER 5 ■ APPLICATION AND NAVIGATION

78

Figure 5–34. Logout and Login buttons

Clearly it’s a problem to show the Login and Logout choices at the same time. After all, only one of those
two choices can apply. Let’s tackle that problem.

1. Navigate back to the Shared Components-Navigation Bar Entries and edit the
Logout item.

2. Set the condition to User is Authenticated (not public), as shown in Figure 5–35.

3. Click Apply Changes.

Figure 5–35. Navigation bar condition type

Run the application again. You should see that the Login and Logout navigation items are mutually
exclusive.

When you created the new navigation item, you applied the condition to allow it to be seen only by the
public user. The Logout navigation item was created as part of the application creation wizard. There was
no condition placed on the Logout item by default. You will learn more about conditions in Chapter 8.

Page Zero
Page Zero is a special type of page. Items placed on Page Zero are rendered with every page. Page Zero is
a useful construct when you find the need to copy regions to every page. Simply move a region to Page
Zero, and it will be rendered with every page. A good example of usage would be a breadcrumb region or
a region that contains custom JavaScript code that needs to be available to every page. Region contents
from Page Zero will be included on every page even when a region does not render visibly.

You may notice when looking at the Page Zero in the APEX page editor (Figure 5–36) that there is no
Page Processing section. Page Zero is used during Page Rendering only. Regions that are added to Page
Zero will be included even on the Login page. The different page types in an application need to be
considered when adding content on Page Zero.

■ Note The APEX Builder will allow you to add calculations and processes to Page Zero. These items will not

execute.

CHAPTER 5 ■ APPLICATION AND NAVIGATION

79

Figure 5–36. Page Zero in the APEX page editor

Creating a Page Zero is like creating any other page in an APEX application. Once a Page Zero is created,
it will no longer be available in the Creation Options list. Let’s create a Page Zero for your ticketing
application.

1. From the Application Page List, click the Create Page button.

2. Select Page Zero from the Page Type list. Figure 5–37 shows the Page Zero
option, which should be near the bottom of the list.

Figure 5–37. Choosing to create Page Zero

3. Click Finish.

You should now see Page Zero listed in the pages for the application. Currently there is no content
on Page Zero. You will use Page Zero to contain and display the breadcrumb region.

Breadcrumb Region
Breadcrumbs are a popular navigation structure. They give a quick and intuitive representation of the
current navigation path to the user with optional functionality to navigate back using the structure.
Oracle Application Express uses the structure inside of the builder seen in Figure 5–38.

CHAPTER 5 ■ APPLICATION AND NAVIGATION

80

Figure 5–38. Example of breadcrumbs in Application Builder

In APEX, breadcrumbs are a declarative structure with built-in behavior. They are managed as
shared components and have their own region type and template. When the Application Creation
wizard was run, pages that were created with the wizard automatically included a region to contain the
breadcrumbs. Figure 5–39 shows the Breadcrumbs region in Position 01 of the page.

Figure 5–39. The breadcrumbs position in the page rendering hierarchy

When creating new pages of an application, the Create Page wizard has an option to assist in
creating new breadcrumb entries. When the option is exercised, child pages will receive a copy of the
breadcrumbs region from the parent as well as an automatic entry in the breadcrumb group. When a
breadcrumb region does not exist, nothing will be copied, but the entry in the breadcrumbs shared
component will still be created. An issue with this approach is if any changes to the region need to be
made as far as display or other layout consideration, they will need to be done on every page which
contains a breadcrumb region. Adding the region to Page Zero to make it show up on all pages can be
helpful, as it gives you one point of change instead of many.

Continuing your help desk application, the design is to have a breadcrumb region show up on all
pages. It is not necessary to re-create the region manually. Since the application wizard created the
region for you, you will use the Copy Region feature in APEX to duplicate the region to Page Zero. Here
you go:

1. Navigate to the Page 1 edit screen.

2. Use the right mouse button while on the Breadcrumbs region to show the
context menu, as seen in Figure 5–40.

CHAPTER 5 ■ APPLICATION AND NAVIGATION

81

3. Select the Copy option.

Figure 5–40. Context menu for the breadcrumbs region

4. Change the page number for the new region to 0, as shown in Figure 5–41 and
click Next.

Figure 5–41. Setting the destingation page

Part of the Copy wizard is to allow modification of what is copied in a limited fashion. Options that
do not apply are disabled. In your current example, the region name and sequence can be modified as
well as some display placement options. Leave them with their default values.

5. Confirm settings shown in Figure 5–42. Click the Copy Region to complete the
wizard.

CHAPTER 5 ■ APPLICATION AND NAVIGATION

82

Figure 5–42. Confirming the copy operation

Reviewing the change in the editor, you notice that Page Zero now has the new breadcrumb region.
Running your application, you will see the two breadcrumb regions shown in Figure 5–43. Note that the
Copy feature does not remove the existing breadcrumb region.

Figure 5–43. Redundant breadcrumb regions

To correct this duplication, do the following:

1. Edit Page 1.

2. Double-click on the Breadcrumbs region name.

3. Click on the Delete button at the top of the Region Definition, as shown in
Figure 5–44.

CHAPTER 5 ■ APPLICATION AND NAVIGATION

83

Figure 5–44. Preparing to delete redundant breadcrumb region

4. Click on the Delete Region button to confirm, as shown in Figure 5–45.

Figure 5–45. Confirming deletion

Now, re-test the application. You should just see the Page Zero version of the breadcrumbs region, as
seen in Figure 5–46.

Figure 5–46. Completed migration of breadcrumb region to Page Zero

Effectively you have moved the management of the Breadcrumb region to Page Zero. Any settings
changes to that region done on Page Zero will be seen on all pages of the application without requiring
any additional work.

Breadcrumb Entries
As additional pages are added to the application, the Page Creation wizard will prompt for optional
breadcrumb settings. If they were not set at the time the page was created or they need to be modified
from their existing settings, the data that drives the breadcrumbs can be modified in the Shared
Components section of the application.

It is possible to have several breadcrumbs within one application. A default breadcrumb with the
name of “breadcrumb” is created as part of the APEX Application Creation wizard. This is the name of
the grouping of breadcrumb entries. APEX provides some utilities to see where breadcrumbs are used
and easy methods of editing entries.

CHAPTER 5 ■ APPLICATION AND NAVIGATION

84

To see the breadcrumb groups created, navigate to the Shared Components section and click on the
option for breadcrumbs under the Navigation section. Figure 5–47 shows the main screen for listing the
different breadcrumb groups.

Figure 5–47. Breadcrumb groups available in the application

Clicking on the group name will display the detailed entries inside that group, as seen in Figure 5–48.
The entries can be modified independently here. As an application becomes larger, it may be necessary
to arrange the entries into different breadcrumb groups.

Figure 5–48. Detail of entries within a breadcrumb group

Lists
As the name implies, a list is a structure that APEX uses to keep a collection of data for links. The list
structure allows menus to be displayed consistently across numerous application pages, with easy
maintenance in the Shared Components area of an application. Do not confuse navigation lists with
LOVs. Lists are a navigational structure with built-in templates for displaying the information in different
ways. LOVs are used to support data entry, limiting the options a user can enter.

List templates have a lot of capability. They support hierarchical lists, graphical bullets, dynamic
HTML, and highlighting for current page. Lists can contain data in a parent child relationship. Some list
templates are specifically designed to display parent child data. APEX standard themes contain varying
templates available for lists, but if the behavior you are looking for is not already available, it’s possible
to modify or create your own list template to display and behave as desired.

Your help desk application needs some lists to help with navigating to some key features. You are
going to create some entries in the list for pages that do not exist just yet, but you will be creating them
in the next few chapters.

1. Navigate to the Shared Components for your application.

2. Locate the Lists entry under Navigation.

CHAPTER 5 ■ APPLICATION AND NAVIGATION

85

3. No lists currently exist. Click on the Create Button shown in Figure 5–49.

Figure 5–49. The Lists maintenance screen

4. Enter Home Page List as the name, as shown in Figure 5–50.

5. Specify the list template as Vertical Unordered List with Bullets.

As with some of the other wizards, it is possible to complete the wizard or to continue with some
additional steps. This is all you need to define for your example.

6. Click the Create List button.

Figure 5–50. Selecting a name and template for a list

The wizard can optionally continue if you click the Next button. It will allow you to quickly create
links and regions on pages. As your example application does not have pages created yet, you’ll skip this
step. You will be creating the links manually with additional options that are not available in the wizard.

Under the List Share component you should now see the Home Page List as an entry. In the next
steps, you will add list entry values to support your application design.

1. Begin by navigating to the previously created Home Page List.

2. Click on the tab at the top of the region to view the Entries by List report shown
in Figure 5–51.

CHAPTER 5 ■ APPLICATION AND NAVIGATION

86

Figure 5–51. Entries by List view

3. Click the Create List Entry button.

4. The resulting dialogs will present all of the options available for a list entry. A lot
of functionality is built into the Lists structure. The key items you are interested
in are shown in Table 5–1. Fill out the dialogs shown in Figure 5–52 through 5–
54 using the values from Table 5–1.

Table 5–1. Values To Use For The First List Entry

Section Value Entry

Entry Sequence 10

 List Entry Table Submit a Ticket

Target Page 2

 Clear Cache 2

Current
List Entry

List Entry Current for Pages Type Colon Delimited Page List

 List Entry Current for Condition 2

Figure 5–52. Choosing a parent list entry

CHAPTER 5 ■ APPLICATION AND NAVIGATION

87

Figure 5–53. Target definition

Figure 5–54. Current list entry

5. Once you have finished your entries for the first list item, scroll to the top of the
page and click the Create and Create Another button. This brings you back to
the same page and allows you to add another list entry. Use the information in
Table 5–2 to create the second list entry.

Table 5–2. Values To Use In The Second List Entry

Section Value Entry

Entry Sequence 20

 List Entry Table Contact Us

Target Page 3

 Clear Cache 3

Current List Entry List Entry Current for Pages Type Colon Delimited Page List

 List Entry Current for Condition 3

CHAPTER 5 ■ APPLICATION AND NAVIGATION

88

6. Click Create to save your changes.

You should now have a Shared Component list with two entries in it, as shown in Figure 5–55. The
Entries by List tab shows some important information in a single view. The sequence value identifies the
order in which the items are listed when using an un-ordered list type. Some list types are classified as
ordered, in which case they will sort by name alphabetically. The target value is the construction of a
URL that includes the page to navigate to as well as a clear cache instruction. Several of the declarative
forms will construct a URL based on the inputs provided in the same way as the list entry.

Figure 5–55. List entries at a glance

List Regions
A list as a shared component does not display in an application directly. A list needs a region to be
configured on a page in order to be seen by the user. APEX has a template type defined specifically to
support lists. The list templates contain all the intelligence required for dynamic lists and options for
display. When creating a list region, the template choice can be set, and it can be modified through the
region settings.

Now that you have created your list, you need to include it on your home page, and subsequent
application pages. You will accomplish this by adding a region to your Page Zero, like so:

1. Navigate to the Page Zero edit page.

2. Use the Create button to create a Region on this page as shown in Figure 5–56.

CHAPTER 5 ■ APPLICATION AND NAVIGATION

89

Figure 5–56. Creating a new region

3. Select the LIST region type.

4. In the Display Attributes step of the wizard shown in Figure 5–57, set the
attributes as shown in Table 5–3.

Table 5–3. Display Attributes For The List Region

Attribute Value

Title Actions

Region Template Sidebar Region, Alternative 1

Display Point Page Template Region Position 3

Figure 5–57. Creating region actions for lists

CHAPTER 5 ■ APPLICATION AND NAVIGATION

90

5. Click Next.

6. Select the list you created, Home Page List, as shown in Figure 5–58.

Figure 5–58. Selecting the list to be used in the region

7. Click Next. You will see the dialog in Figure 5–59.

You could stop now, end the wizard, and have your display region. But you really don’t want your
navigation links to display on each and every page. Specifically, you don’t want them to display on the
login page because the links won’t work until after a user is logged in.

In this instance, you will create a Display Condition for the lists region. In your application, the login
screen will be page number 101. The remainder of the public pages which we will create will have page
numbers less than 100. So you setup a PL/SQL condition that evaluates the page number and will return
TRUE when the page ID is less than 100. The page number can be referenced using the substitution
variable :APP_PAGE_ID. The condition enables the display of your list region only on the non-login
pages.

8. Set the condition type to PL/SQL Function Body Returning a Boolean

9. Set Expression 1 to the following code:

IF :APP_PAGE_ID <100 THEN
 RETURN TRUE;
ELSE
 RETURN FALSE;
END IF;

10. Click Create Region.

CHAPTER 5 ■ APPLICATION AND NAVIGATION

91

Figure 5–59. Specifying a conditional display option for a list region

Running your application now should result in the action list you created on the right side of the
screen (Figure 5–60). Clicking on the either link will cause the application to prompt for authentication.
After you log in, clicking on a link will generate an application error. This is expected. You have asked the
application to link to pages that do not exist yet.

Figure 5–60. Application page with an action list

Limiting the display of the region to non-login pages is just a small example of what can be done
with conditions. The full capabilities of the Oracle PL/SQL engine are available for conditional logic on
many of the APEX components. Conditional logic can be very complex and comprehensive using
combinations of functions, packages, and SQL. It is recommended that you spend some time

CHAPTER 5 ■ APPLICATION AND NAVIGATION

92

strategizing an approach to display conditions and security functions when designing a complex
application. If the same condition logic is going to be used in many places, it may be a good idea to setup
a utility package with functions to be called in several places. Thus, maintenance of the logic can be
done in a single place.

Template Positions
In the previous section, you chose Region Position 3 when selecting the location of the region. This
location was based on knowledge of the theme and template you chose at the beginning of the example
application. When working with another theme, it may be desirable to see where the regions are placed.
APEX has a utility that displays approximate region placement and allows quick selection of display
points.

To get a preview of display points in a page template, follow these steps:

1. Navigate to the edit screen of any region.

2. Under the User Interface section, locate the Display Point.

3. Click on the flashlight to the right of the drop-down, as seen in Figure 5–61.

Figure 5–61. Location of the display point flashlight

4. In the resulting pop-up window shown in Figure 5–62, click on the name of a
display position. Be aware that the positions are specific to the page template.
There can be more than one page template per application.

CHAPTER 5 ■ APPLICATION AND NAVIGATION

93

Figure 5–62. Resulting region positions available on the current page template

5. Click the Cancel button to prevent any changes from being saved.

This feature allows visual representation of region positions to better understand where your
content will be displayed and how it will interact with other regions on the page. This feature is also very
useful for understanding how a template may need to be modified in order to support the application.

Lists of Values
One of the fundamental benefits of writing an application on top of database architecture is the ability to
enforce data quality. Lists of Values, or LOVs, are an APEX component that can be mapped to different
item types including select lists, multiple select lists, checkboxes, and radio groups. These types of
structures help assure data collected through transactions is consistent. There are two types of LOVs in
APEX:

• Static: a set list of options within APEX.

• Dynamic: based on SQL against the database.

LOVs can be defined either as a shared component at the application level or at the item level.
Figure 5–63 shows an item-level definition. LOVs used more than once should be written as a shared
component. This allows the maintenance of that LOV to be centrally located with the shared

CHAPTER 5 ■ APPLICATION AND NAVIGATION

94

components. If an LOV was created at the item level, it is easy to convert it to a shared LOV by using a
utility that APEX provides. When viewing a component with an item level LOV, the page will contain a
Tasks menu with the Convert LOV option. This will make the LOV a shared component.

Figure 5–63. An item level LOV with static options

Static List of Values
A static list of values is simply a set of display and return value pairs. This type of list is normally short
and un-changing. When defining a static list of values and item level, there are two types data options:

• STATIC: Entries are automatically alphabetized.

• STATIC2: Entries will render in the order which they are entered.

The syntax for specifying a static LOV is as follows:

TYPE:DISPLAY;RETURN, DISPLAY;RETURN,…

The TYPE may be either STATIC or STATIC2.
If you wish the display and return values for a given entry to be the same, then omit the semicolon

and specify only one value. For example, the second item in the following example is a single value for
both display and return:

TYPE: VALUE,VALUE,VALUE,…

The return value in a LOV is what is saved as the value of the associated form item. In static lists,
using the semi-colon as the value of an entry may cause issues with parsing the list.

The following is an example of a static list. Commas separate the list items. Each list item is
composed of a display and a return value, with a semicolon separating those two values.

STATIC:C;1,A;2,D;3,B;4,

When you display the values in this list, you’ll see only the display values. Because the list of type
STATIC, the values are displayed in alphabetical order:

A
B
C
D

CHAPTER 5 ■ APPLICATION AND NAVIGATION

95

Next is an example of a STATIC2 list. Notice the entries are specified in the same order as before.

STATIC2:C;1,A;2,D;3,B;4,

However, this time the values are displayed in their order of definition. They are not sorted
alphabetically.

C
A
D
B

Shared component static LOVs have more options than item level static LOVs. Due to the shared
nature, conditions per row and build option settings can be configured. These can be edited after the list
has been created. Because the lists are stored differently as shared components, it’s possible to use a
semi-colon in the item value.

Dynamic List of Values
As with Static LOVs, Dynamic LOVs have a display and return value pair requirement. The difference is
that the values are obtained through a SQL query. The SQL query written must have two columns
returned. If the columns are the same, it will be necessary to use aliases to distinguish a display and
return value. An alias will also have to be used if using a concatenated string as a column. Dynamic LOVs
can also leverage session variables or values currently being used in the application. This gives dynamic
LOVs flexibility to dynamically change what is offered during run time.

You will create two LOVs to support the selection of user names. In preparation to build your form
pages, you are going to create a LOV to support the names of the Users and the Technicians in your Help
desk system.

1. Navigate to the shared components of the help desk application, then to the
User Interface section shown in Figure 5–64. Click the List of Values link.

Figure 5–64. User Interface options

2. Click Create to create a new List of Values.

3. Create a LOV from scratch, as shown in Figure 5–65.

CHAPTER 5 ■ APPLICATION AND NAVIGATION

96

Figure 5–65. Creating a LOV from scratch

4. Click Next.

5. Enter TECHS as the LOV name. Select the radio button to make the list Static,
as shown in Figure 5–66.

Figure 5–66. Specifying a list as static

6. Click Next.

7. Enter the values shown in table 5–4 into the form. Add your own name to the
list!

8. Click Create List of Values when finished.

Table 5–4. Display Attributes For The List Region

Display Value Return Value

Scott SCOTT

Doug DOUG

Karen KAREN

Martin MARTIN

Patrick PATRICK

Tim TIM

(Your Name) (YOUR NAME)

CHAPTER 5 ■ APPLICATION AND NAVIGATION

97

Now that you have created a static LOV, let’s include a second one that uses a SQL query to derive the list
of values.

9. Repeat steps 1 through 4.

10. Create a second list named USERS, selecting the Dynamic option. Click Next.

11. Locate the book supplemental file named ch5_lov.txt that includes the SQL
query text. Enter the SQL query for the LOV source.

12. Click Create List of Values

You should now have two LOVs created. Don’t worry if you made a mistake. All of the settings can
be modified. Simply double click on the name of the LOV you want to modify.

Summary
In this chapter, you created the basic shell of your application and several of the supporting objects that
you will use in the upcoming chapters. These items have been created as a result of planning that was
done prior to starting the application. Depending on your situation, the amount of planning you have
done for your own application may vary. The shared components outlined here can be created at any
time as needed during the development process. The next section will start utilizing some of these key
structures outlined here.

C H A P T E R 6

■ ■ ■

99

Forms and Reports – The Basics

Now that you have database objects in place, you can get to the real work of building pages in your
application. Most applications contain a series of forms, reports, charts, and other elements designed to
display, edit, and collect data.

This chapter focuses on basic forms and reports. These are the simplest, most standard types of
forms and reports in APEX. They are most often created by using the APEX Form and Report wizards,
which create all of the elements that comprise a form or report for you.

In the sections that follow, you’ll learn how to use the APEX Form and Report wizards to add pages
to your Ticket application. You will create some basic forms and reports on your Tickets table; you’ll also
take a look at the elements created by the wizards that comprise your working forms and reports.

APEX Forms
Forms are used to display, edit, and collect data, which is then sent back to the database for processing.
Forms can interface with tables, views (via “instead of” triggers), procedures, and web services.

An APEX form is actually a collection of APEX objects acting together as a single, cohesive unit to
perform insert, update, and delete operations on data elements. An APEX form generally consists of a
region, one or more items, one or more buttons, and one or more processes that handle interactions
with the database. The APEX Form wizards create all the objects necessary for a fully-operational form.

■ Note Once a form is generated, the objects in it are not logically associated in any way except that they
collectively make a complete working form. While it is possible to alter or delete individual elements, doing so

may cause the form to not work properly if an error is introduced, thus it’s not recommended.

The APEX Form wizards listed in Figure 6–1 are the fastest, most effective, and most accurate way to
create APEX forms. The wizards guide you through a series of steps, collect the information required for
the form type, and then generate all of the required items, processes, and buttons. Using the wizards
frees you from the tedious and error-prone task of individually creating each component. After a wizard
creates a form, you can, and likely will, make modifications and enhancements to the resulting
components to tailor the form to your specific requirements.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

100

Figure 6–1. APEX Create Page form options

The following are some of the form types that you can create using the wizards listed in Figure 6–1:

• Form on a Procedure: A form based on the arguments of a procedure, typically to
collect values for passing in to a procedure for subsequent processing.

• Form on a Table or View: A form built on the columns of a table or view, having
one item for each table column and processing a single row of data at a time.

• Form on a Table or View with Report: A form built on the columns of a table or
view, having one item for each table column and processing a single row of data at
a time, plus a report on the contents of the table or view, with navigational
elements between the report and form pages.

• Master-Detail Form: A form on a pair of tables having a master-detail
relationship. The APEX Master-Detail Form wizard creates all the data, processing,
and navigational elements required for managing master-detail data.

• Tabular Form: A multi-row, multi-column form (like a spreadsheet) that allows
editing of multiple rows and columns of data at once.

• Form on a SQL Query: A form built on the results of a SQL query. This is a very
powerful form construct due to its flexibility.

• Summary Page: A display-only form showing selected items from an existing
input form page. A summary page is often used in building a confirmation page
for a wizard.

• Form on a Web Service: A form on the arguments of a web service.

• Form and Report on a Web Service: A single-row form on the arguments of a web
service with a corresponding report of all rows of data, including navigational
elements for moving from report to form and back.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

101

If you look at the available APEX Form wizards, you will see that several of them create
accompanying reports (the Form on a Table with Report and Form and Report on a Web Service
wizards). It is a common practice to use a report on a table, view, or web service to locate a particular
row of data and then edit that data in a form on the same table, view, or web service. Some wizards
simply create both the report and the form for you, including all navigation elements and database
transaction processes required to make it all work.

Form on a Table
One of the most common types of Form in APEX is the Form on a Table. The APEX Form on a Table
Wizard will automatically create and map APEX items to database columns, making it trivial to quickly
create forms for database table entry and update. As a developer, you can then modify the different types
of controls for each column. All of the supported HTML widgets (text fields, text areas, select lists, radio
groups, checkboxes, etc.) are available, as well as several APEX-specific ones. The best way to
understand just what the APEX Form on a Table wizard does is use it, so let’s dive in and create a form
on a table.

Creating a Form on a Table
You’ll create page 2 of your Ticket System and add a form to it. This form will allow the user to create a
new ticket by inserting a row to the TICKETS table. You can limit which DML operations a form in APEX
can perform. In this case, you will restrict it to only performing inserts.

The Form on a Table wizard will walk through all the steps required to generate a form on a table:
selecting the parsing schema, selecting the table upon which to base the form, selecting the columns to
include and edit, assign region and form titles, and specify column headings.

1. Run your Help Desk application.

2. Click Create in the Developers Toolbar at the bottom of the screen.

3. Select New Page and click Next.

4. Select Form and click Next.

5. Select Form on a Table or View and click Next.

6. Set the Table/View Owner to your schema and click Next.

7. Enter TICKETS for the Table/View Name, as shown in Figure 6–2 and click Next.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

102

Figure 6–2. Entering the name for a table or a view

8. Enter 2 for Page Number as shown in Figure 6–3. Enter Create a Ticket for both
Page Name and Region Title. Set Breadcrumb to Breadcrumb and when the page
refreshes, click on Home to set it as the Parent Entry as shown in Figure 6–4, and
click Next.

Figure 6–3. Specifying page and region information

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

103

Figure 6–4. Specifying breadcrumb parent entry

9. For Tab Options (Figure 6–5), select Use an existing tab set and reuse an
existing tab within that set. When the page refreshes, set Tab Set to TS1 (Home),
and click Next.

Figure 6–5. Specifying tab options

10. Set Use Tab to T_HOME and click Next.

11. Ensure that the Primary Key is set to TICKET_ID and click Next.

12. Set the Source Type to Existing Trigger and click Next.

13. Select SUBJECT, DESCR, CREATED_BY, and STATUS_ID as shown in Figure 6–
6, and click Next.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

104

Figure 6–6. Selecting the columns to include

14. Enter Create a Ticket for the Create Button Label, as shown in Figure 6–7. Set
Show Save Button and Show Delete Button to No, and click Next.

Figure 6–7. Specifying the buttons to display

15. Set both the After Page Submit and Processing Branch to Page and When
Cancel Button Pressed Branch to this Page to 1 and click Next. See Figure 6–8.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

105

Figure 6–8. Specifying processing for submit and cancel

16. Click Finish to complete the wizard.

17. Run your application.

Congratulations! You’ve just created a fully operational form on the TICKETS table. Your form
should look similar to Figure 6–9.

Figure 6–9. Running the form on the TICKETS table

Notice that the form region is labeled as you specified in step 8, the form contains fields for the four
columns you selected in step 13, and the Create button is labeled as you specified in step 14. Notice that
the four fields are each created as the default element type specified in the User Interface Defaults for
the TICKETS table that you created in the previous chapter. The help text you specified for each column
is there and it pops up in a new window when you click on the item label. The Cancel button brings you
to the home page—page 1, as you specified in step 15. APEX did a lot of work for you!

Modifying a Form on a Table
The APEX wizards do handle most of the work for you. However, it’s rare that you won’t have to make
some minor changes to what the wizard creates. Now that you have your Tickets form on page 2, you’re
going to make a few changes to polish it up a bit.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

106

You’ll change the label templates for P2_SUBJECT and P2_CREATED_BY (the items that correspond
to the SUBJECT and CREATED_BY table columns) to Required Label with Help. Use of the Required
Label with Help label template indicates to the end user that this is a required field on your form. You’ll
also reduce the width of P2_CREATED so that it does not take up as much space.

1. Edit page 2 of your application.

2. Edit the item P2_SUBJECT by double-clicking on its name.

3. In the Label region shown in Figure 6–10, set the template to Required with
Help and click Apply Changes.

Figure 6–10. Modifying the label templates

4. Edit the item P2_CREATED_BY by double-clicking on its name.

5. In the Label region, set the template to Required with Help.

6. In the Displayed region, shown in Figure 6–11, set the width to 20 and click
Apply Changes.

Figure 6–11. Setting the display attributes

Next, you want to hide the P2_STATUS_ID item from the user because you don’t want the user to
change this value. You do, however, want all new tickets to be created with a default value of OPEN.
Since you cannot guarantee which STATUS_ID maps to which STATUS, you can call a simple function
and pass in the STATUS. This function will, in turn, return the corresponding STATUS_ID, which will be
set as the default value for P2_STATUS_ID.

7. Edit the item P2_STATUS_ID by double-clicking on its name.

8. In the Name region, set the Display As to Hidden.

9. In the Default region shown in Figure 6–12, set the Default Value to RETURN
get_status(‘OPEN’); and set the Default Value Type to PL/SQL Function Body,
then click Apply Changes.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

107

Figure 6–12. Specifying a default value

Next, you’ll want to set page 2 to be a public page. You want any user—authenticated or not—to be
able to access this page.

10. Edit the page attributes for page 2 of your application by double clicking on its
name in the Page Rendering tree.

11. Set page 2 to be a public page. Refer back to Chapter 4 for detailed steps.

Finally, you need to make sure that your users enter values for the Subject and Created By fields.
There are two ways to make a field mandatory within APEX. You’ll use one method for each field.

For the Subject field, you’ll create a validation. While a validation takes more steps, it gives you more
control over how and when it is performed.

1. Edit page 2 of your application.

2. Create a new Validation by right-clicking the Validating node on the Page
Processing tree and selecting Create Validation, as shown in Figure 6–13.

Figure 6–13. Choosing to create a new validation

3. Select Item Level Validation and click Next.

4. Select Create a Ticket: 2 P2_SUBJECT (Subject) and click Next.

5. Select Item Not Null and click Next.

6. Set validation name to P2_SUBJECT is NOT NULL, as shown in Figure 6–14, and
click Next.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

108

Figure 6–14. Entering the details for a new validation

7. Under the Error Message Text Area, click the quick link that reads [#LABEL#
must have some value.] and click Next.

8. Take the defaults on the final screen and click Create.

At this point, you’ll see a new validation under the Page Processing region called P2_SUBJECT is NOT
NULL. Next, you’ll use the second method to make the Created By field mandatory. To do this, simply set
an attribute of the input item.

9. Edit P2_CREATED_BY by double-clicking its name.

10. In the Settings section shown in Figure 6–15, set value required to Yes and click
Apply Changes.

Figure 6–15. Making a value required

Once you return to the page edit screen, you’ll see that no new validation has been created. That is
because you used the item-level attribute instead of creating a full validation.

The main difference between the attribute and a full validation is that you can’t conditionally
control when the attribute is applied and you don’t have direct control over the error message that is
emitted.

Go ahead and run your application again. At this point, you will be able to enter new Tickets into the
system, but not see them anywhere outside of SQL Workshop.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

109

Looking Behind the Scenes
Now that you have working form, let’s take a look at just what the APEX Form wizard built in order to
understand a bit more about how your form works. You’ll use the Firefox Web Developer Toolbar Add-in
to display the form details. Figure 6–16 illustrates your Create a Ticket form with the form details
exposed.

Figure 6–16. Form on TICKETS Table with form details exposed

■ Note The Firefox Web Developer Toolbar add-in is a free web development tool that lets you inspect various
aspects of a web page. To learn more about Web Developer and other web development tools, see Add-Ins for

Firefox at https://addons.mozilla.org.

The highlighted input tags display the input identifier and name for each field of the form. Both are
unique for each form field. The input identifier is the column name prepended with the page number.
The input name identifies the element names that APEX uses internally to process data in the form. Note
the columns you did not choose to display in the form, TICKET_ID and STATUS_ID, are still present in
the HTML of the page.

A look behind the scenes tells you more. Click on Edit Page 2 in the Developer’s toolbar to view the
elements that comprise your new form. You should see results similar to those in Figure 6–17.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

110

Figure 6–17. Elements of a form as viewed from Application Builder

The Page Rendering region contains APEX objects required for page rendering. The Page Processing
region contains objects required for page processing, such as validations, processes, and branches. The
Shared Components region contains APEX objects that are shared across pages, such as tabs, list of
values, breadcrumbs, templates, and security schemes.

For your new Tickets form, in the Page Processing section, you see the wizard has created one item
for each of the columns in your TICKETS table, plus two buttons called CANCEL and CREATE, and a
Fetch Row from TICKETS process. This process is an Automated Row Fetch process, which does exactly
what its name says: it fetches a row from the designated table into the current form. The attributes of the
Automated Row Fetch process specify the table owner, the table name, the primary key column(s),
success and failure messages, and a condition.

Notice that the TICKET_ID item is present on the page, but is not rendered on the form. It is visible
in the Display Details view of the form as the first element on the page, with no visible element
associated with it. TICKET_ID is a hidden item. APEX hidden items exist to hold a value, but are not
rendered on the page—they are not visible to the user. In this case, the hidden TICKET_ID column holds
the primary key value for the TICKETS row. As the primary key, TICKET_ID is used by the APEX
processes to pull data from the database, and to process inserts, updates and deletes on a TICKETS row.

In the Page Rendering column, you have a Process row of Tickets process, a reset page process, and
a Go To Page 1 branch. The Process Row of Tickets process does just that, process one row of the
TICKETS table using the values from the items that correspond to the columns of the TICKETS table.
This process fires when the user clicks the CREATE button. The reset page process clears the items on
the page. It fires when the user clicks the CANCEL button.

In the Shared Components region, you need to expand the Parent Tabs tree node to see that this
page uses the Home tab in the TS1 tab set. Expanding the Breadcrumbs region shows the Breadcrumb
object. Under Templates, you see your form uses the default One Level Tabs – Right
Sidebar(optional/table based) page template, the Form Region template, two different Label templates,
and the default Button template.

You will see that the APEX Form wizards all create items, buttons, and processes, but in different
combinations to suit the specific needs of the form type. The other APEX form wizards perform
essentially the same way, with slight differences in process types and navigation objects to

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

111

accommodate the underlying data source: table or view, procedure, query or web service. Next, let’s look
at a form on a procedure.

Form on a Procedure
Another way to create a form in APEX is to create it based on the parameters of a PL/SQL procedure.
Instead of the traditional DML processes, APEX will call the associated procedure and execute whatever
logic is embedded within it. This method is also referred to as “using Table APIs” because this is the
option to use if all access to tables in your workspace schema must be through a Table API.

Creating a Form on a Procedure
The process to create a Form on a Procedure is almost identical to that of a Form on a Table. You’ll
create a new page containing a form on the CONTACT_US stored procedure to enable users to contact
you through the Ticket System application.

1. Run your application.

2. Click Create in the Developer’s Toolbar.

3. Select New Page and click Next.

4. Select Form and click Next.

5. Select Form on a Procedure and click Next.

6. Set the Procedure Owner to your schema and click Next.

7. Enter CONTACT_US for the Stored Procedure Name, as shown in Figure 6–18,
and click Next.

Figure 6–18. Creating a form on a stored procedure

8. Enter 3 for page number, Contact Us for both page name and region name, and
set Breadcrumb to Breadcrumb, as shown in Figure 6–19. Then click on Home
to set it as the parent entry, as shown in Figure 6–20, and click Next.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

112

Figure 6–19. Specifying form page, region, and button names

Figure 6–20. Selecting the breadcrumb parent entry

9. For Tab Options, select Use an existing tab set and reuse an existing tab within
that tab set. When the page refreshes, set Tab Set to TS1 (Home) and click Next.

10. Set Use Tab to T_HOME and click Next.

11. Leave the Invoking Page and Button Label blank and click Next.

12. Enter 1 for both Branch here on Submit and Branch here on Cancel, as shown
in Figure 6–21. Then click Next.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

113

Figure 6–21. Specifying branching options

13. In the Select Procedure Arguments dialog in Figure 6–22, set the label for
P_FROM to From. Set the label for P_BODY to Message. Set the display type for
P_BODY to Textarea and then click Next.

14. Click Finish.

Figure 6–22. Specifying procedure arguments

Modifying a Form on a Procedure
Once again, the wizard has done most of the work, but you have a few minor changes to make before
your Form on a Procedure is complete. You want both the FROM and MESSAGE values to be required,
so you’ll change their label templates and set their Value Required attribute to Yes.

1. Edit page 3 of your application.

2. Edit P3_FROM by double-clicking on its name.

3. In the Label section, change the template to Required with help.

4. In the Settings section, change value required to Yes.

5. Click the > icon at the top of the page (next to the Apply Changes button) to
save your changes and advance to the next item.

6. In the Displayed section, set the width to 80 and the height to 5.

7. In the Label section, change the template to Required with help.

8. In the Settings section, change value required to Yes.

9. Click Apply Changes.

Next, set page 3 to be a public page. You want any user—authenticated or otherwise—to be able to
send you a message through the Contact Us page.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

114

10. Edit page 3 of your application.

11. Set page 3 to be a public page. Refer back to Chapter 4 for detailed steps.

Lastly, you’ll modify the process that was created to include a success message.

12. In the Page Processing tree, edit the process Run Stored Procedure by double-
clicking on its name.

13. In the Messages region, enter the following for the Process Success Message:

 Your message has been sent.

14. Scroll to the top and click Apply Changes.

Run your application and test out the Contact Us form. Each time you submit a record, an e-mail
will be sent info@example.com. If you want to change the destination address for the e-mail, you can use
the SQL Workshop’s Object Browser to edit the CONTACT_US procedure.

Looking Behind the Scenes
From the user perspective, there is no indication that the form you’ve just created was created on a
procedure. Looking in the Application Builder, the objects in the Page Rendering sections are similar to
what you saw in your Form on a Table on page 2, but not exactly. Let’s take a look to see what makes
your Form on a Procedure different from the Form on a Table. Edit page 3 of your application. Your
Application Builder page should look similar to that in Figure 6–23.

Figure 6–23. Elements of a Form on a Procedure as viewed from Application Builder

In the Page Rendering section of the Application Builder, you have two items, P3_FROM and
P3_BODY, corresponding to your two form fields, From and Message. You have two buttons, Cancel and
Submit.

In the Page Rendering section, you have a process and a branch. However, your process is a
different type—a PL/SQL anonymous block. This powerful type of process executes the PL/SQL
procedure specified in the Source element. The PL/SQL procedure can be a stored PL/SQL procedure or
an anonymous PL/SQL block, as long as the code is syntactically correct between a BEGIN and END

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

115

statement. In this case, the process calls the CONTACT_US procedure using the P3_FROM and
P3_BODY item values as input parameters. The body of the CONTACT_US procedure is what creates and
sends and e-mail to the instructor. Thus, the key difference between the Form on a Table and the Form
on a Procedure is in the Page Processing process that gets executed upon click of the Create button. Your
APEX wizard has automatically provided the process type required for the selected form type.

The Shared Components region contains the standard entries for the table, breadcrumb and page,
tab, region, label, and button templates, the same as for your Form on a Table. Again, it was nice of the
Form wizard to create all these elements for you.

Master-Detail Report and Form
One of the most popular features in APEX is the Master-Detail form and report wizard. With a single,
simple wizard, you can quickly create a report and corresponding forms to manage data stored in a
master-detail fashion. You will use this wizard to create a report and forms for the TICKETS and
TICKET_DETAILS tables.

Creating a Master-Detail Report and Form
First, you will create the report and form on application pages 200, 210, and 220. Since you do not yet
have those pages created, the wizard will do that for you.

1. Run any page in your application.

2. Click Create in the Developer’s Toolbar.

3. Select New Page and click Next.

4. Select Form and click Next.

5. Select Master Detail Form and click Next.

6. See Figure 6–24. Set the Table/View Owner to your schema. Set the Table/View
Name to TICKETS. When the page refreshes, add all of the columns by clicking
on the >> icon. Click Next.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

116

Figure 6–24. Creating the master page

7. Select TICKET_DETAILS for the Table/View Name. When the page refreshes,
add the following columns by double-clicking on their name. You should end
up with results like those in Figure 6–25.

• TICKET_DETAILS_ID

• TICKET_ID

• DETAILS

• CREATED_ON

• CREATED_BY

• ATTACHMENT

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

117

Figure 6–25. Defining the detail table

8. Click Next.

9. Set the Primary Key Source to Existing Trigger for the Master table and click
Next.

10. Set the Primary Key Source to Existing Trigger for the Detail table and click
Next. Do NOT click Finish at this point.

11. Set Include master row navigation? to Yes, as shown in Figure 6–26. Set the
Master Row Navigation Order to CREATD_ON and click Next.

Figure 6–26. Defining master row navigation options

12. Set Build Master Detail with: to Edit detail on separate page and click Next.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

118

13. On the next page, set the items to the values shown in Figure 6–27.

Figure 6–27. Specifying page attributes

14. Set the Breadcrumb to Breadcrumb.

15. In the Create Breadcrumb Entry region, set the items to the values shown in
Figure 6–28.

Figure 6–28. Creating a breadcrumb entry

16. Click Next.

17. Set the Tab Options field in Figure 6–29 to Use an existing tab set and create a
new tab within the existing tab set. When the page refreshes, set the Tab Set to
TS1 (Home) and enter Tickets for the New Tab Label and click Next.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

119

Figure 6–29. Setting your tab options

18. Confirm your selections and click Create.

When the wizard completes, you have a working master–detail form on the TICKETS and
TICKET_DETAILS tables, plus a report on the TICKETS table. This is perhaps one report more than you
expected, but APEX knows that in most cases, you need the report to select the master-detail record to
be edited, so that report gets created at the same time for convenience. The Master-Detail Form wizard
created one report and two forms, plus the links and branches for navigation and the processes for
performing database transactions. The Tickets report has a link to the Tickets form, which allows editing
of ticket master data and lists ticket details. The Ticket Details region on the Manage Tickets page has an
edit link to the Ticket Detail form, where the user can add, update, or delete ticket detail information. All
of the items, buttons, processes, and even the column links were created by the Master-Detail Form and
Report wizard.

Again, while you can build a master-detail form and report manually, the wizard is much faster and
certainly more efficient. Now let’s make some adjustments to the report and the forms to suit your
requirements.

Modify a Master-Detail Report
Next, you’ll modify the report to add CSV export capabilities, change the sorting options, and modify the
date format mask. Then you’ll clean up the two edit forms.

1. Edit page 200 of your application.

2. Edit the Report Attributes by right-clicking on the name of the Tickets region
and selecting Edit Report Attributes, as shown in Figure 6–30.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

120

Figure 6–30. Choosing to edit report attributes

3. Enable column sorting for all columns by checking the Sort box for each
column. Hide the DESCR column from the report by un-checking the
corresponding Show checkbox. See Figure 6–31.

Figure 6–31. Editing column attributes

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

121

4. Under Layout & Pagination, set Enable Partial Page Refresh to Yes.

5. Under Report Export, set the following options, which you can also see in
Figure 6–32:

• Enable CSV Output: Yes

• Separator: ,

• Enclosed By: “

• Link Label: Export to Excel

• Filename: tickets.csv

Figure 6–32. Setting report export options

6. Scroll to the top of the page and edit the CREATED_ON column by clicking on
the Edit icon. This will also save the changes you made in steps 2 through 5.

7. In the Column Attributes section for Number/Date Format (Figure 6–33), select
this format mask: Monday, 12 January, 2004. Selecting it will return fmDay,
fmDD fmMonth, YYYY into the Number/Date Format.

Figure 6–33. Selecting a date format mask

Values entered in the Column Attributes region set the format, width, number of rows (for text
areas), the number of columns (for radio groups), and other element attributes for the report column.

8. Enter font-weight;bold for the CSS Style field shown in the Column Formatting
section (Figure 6–34). Click Apply Changes.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

122

Figure 6–34. Choosing your column formatting options

CSS and HTML formatting directives entered in the Column Formatting region are applied to the
report column when the page is rendered.

9. Edit the TICKET_ID column by clicking on its edit icon.

10. In the Column Definition region, set Include in Export to No and click Apply
Changes.

11. Run the page to view your changes.

Note that when you sort an APEX report column by date, the report will sort based on the value of
the actual date, not the displayed value. This is a built-in feature of APEX. Also, when you export to Excel,
the TICKET_ID column is not a part of the resulting CSV file, which is the result of your setting the
Include in Export option to No.

Next, you will remove the STATUS_ID and replace it with the corresponding value, pulled into your
report by a slight adjustment to your query.

1. Edit page 200 in your application.

2. Edit the Report Attributes again by right-clicking on the Tickets region and
selecting Edit Report Attributes.

3. Click the Query Definition sub-tab.

4. Click Add/Remove Columns.

5. See Figure 6–35. Ensure that Table/View Owner is set to your schema name and
that Show Related Tables Only is set to Yes.

6. Set the Table/View Name to STATUS_LOOKUP and wait for the page to reload.

7. Select the STATUS column, and move it to the Columns Selected list by clicking
on the > icon.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

123

Figure 6–35. Selecting report columns

8. From the Columns Selected list, remove the TICKETS.STATUS_ID column by
selecting it and clicking on the < icon.

9. Click Next to verify the Join Conditions. You’ll see the dialog in Figure 6–36.

10. Validate that the Join Conditions are correct and click Apply Changes.

Figure 6–36. Joining the tables

11. Edit the Report Attributes again by right-clicking on the Tickets region and
selected Edit Report Attributes.

12. Enable sorting for the Status column by checking the Sort checkbox and click
Apply.

13. Click the + symbol next to the Report Columns for the Tickets region. Use your
mouse to drag and drop columns within the Column list to reorder them.
Reorder the columns so that STATUS is the second column in the list. Drag-
and-drop changes will automatically be saved.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

124

Run your application to see the changes to your Tickets report. You should see results like those in
Figure 6–37 through 6–39. The Created On and Status values are now more readable, and you can sort by
column by double-clicking on the column heading.

Figure 6–37. The Tickets report

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

125

Figure 6–38. The Manage Tickets form

Figure 6–39. The Ticket Details form

Session State
Next, let’s add a Search field to your report to allow your users to filter for a specific ticket they may be
interested in. Before you do, here’s a brief explanation of session state that will help you understand how
APEX keeps track of the values associated with a user’s session.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

126

Understanding Session State
Session state is what allows APEX to keep track of all the values that belong in a particular user’s APEX
session. Session state is particularly useful for keeping track of values as a user moves from page to page
in the application.

Unlike a stateful database application, where a connection is maintained continuously and all
values retain their value until changed, removed, or the session ends, an APEX application does not
maintain a continuous connection to the database. APEX is a stateless system—the APEX engine
generates HTML pages based on directives stored in the APEX repository. Each page rendering is a
stateless transaction. An APEX session ties the stateless HTML pages together.

An APEX session is logically and physically distinct from the underlying database sessions. A
database session is stateful and an APEX session is stateless. To illustrate the difference, think of a
database session as a phone call on a land line. The parties are connected for the duration of the
conversation. Both parties have to invest resources to carry on a conversation. Even if no one is talking,
the connection—and the link between the two parties—remains, as shown in Figure 6–40.

Figure 6–40. Database session communication

Think of an APEX session as a text message. The parties are not directly connected; they push
information in one direction at a time, even if the communication is an entire conversation via a series
of texts. Figure 6–41 illustrates APEX stateless session communication.

Figure 6–41. APEX session communication

Sharing Database Connections
Multiple APEX users can share the same database connection. There is a one-to-many relationship
between APEX users and database sessions. This is why APEX can scale as well as it does—it doesn’t
need dedicated database sessions, only a database session to use to process a request from a user.

APEX, being stateless, must rely on an external mechanism to manage session state. The APEX
engine has a built-in session state management component. This session-state management is an
integral part of APEX—it can’t be disabled or circumvented.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

127

Each APEX user is assigned a unique session identifier. Session state management functions the
same, regardless of how the user authenticates to the system—APEX authentication, database
authentication, customer authentication, or public user. Yes, even unauthenticated users are assigned a
session identifier. By default, APEX will purge inactive sessions older than 24 hours every eight hours.
APEX session state values are stored in a table in the database. The APEX engine recognizes the user by
his session identifier and retrieves the appropriate set of session state values for the user’s session.

The values of all APEX items, both page items and application items, are tied to this unique session
identifier. This identifier is referred to as the APP_SESSION_ID. You can see the session identifier in the
URL of most pages in an APEX application. It’s highlighted in Figure 6–42.

Figure 6–42. APEX session identifer in an APEX URL

Setting and Retrieving Session State
Session state is set by user input items, computations, processes, and PL/SQL code. In PL/SQL, when
within an APEX process, you can set an item equal to a value, like so:

:P1_ITEM_NAME := 'some value';

In PL/SQL, when in a stored procedure, you can use the apex_util.set_session_state procedure to set
a value in session state, like so:

 apex_util.set_session_state('P1_ITEM_NAME', 'some value');

The syntax to retrieve session state for an item varies according to where you are referencing the
item.

In templates or regions, tabs, menus or lists, use the following substitution string syntax (and do not
forget the trailing dot!):

&P1_ITEM_NAME.

Use the following syntax within SQL statements:

 :P1_ITEM_NAME.

From PL/SQL, use one of the following two options depending upon what type of block or program
unit you are in:

Anonymous PL/SQL block: :P1_ITEM_NAME.
PL/SQL Unit Called from APEX: V('P1_ITEM_NAME')

From within conditions, use this syntax:

P1_ITEM_NAME

Viewing Session State
To view session state, click on the Session link in the Developer’s Toolbar. You should see a page like
that in Figure 6–43. Then use the Page, Find, and Views parameters to view session state for the
application. The drop-down view menu shown in Figure 6–44 allows you to view Page Items, Application
Items, Session State, Collections, and All of the Above.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

128

Figure 6–43. Viewing your session state

Figure 6–44. Choosing to view page items

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

129

APEX Items
There are two types of APEX items: page items, those that are displayed to the user on a page, and
application items, which hold values within an application but are not displayed. When referencing item
values in queries, you’ll want to use bind variables. You may also want to reference some of the built-in
items that are available.

Page versus Application items
APEX page items are the user interface controls used to allow users to view and enter data—Text, Text
Area, Select List, Checkbox, etc. Page items are associated with a specific page and have a user interface
properties associated with them; the item is displayed to the user (or not) according to the user interface
properties. Figure 6–45 shows the available APEX page item types. See the APEX documentation for
more information on page item types and their attributes.

Figure 6–45. APEX page item types

Application items are not associated with a page and have no user interface properties. Application
items hold values within an application that are essential but not necessarily displayed. You can use an
application item much like a global variable.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

130

The Importance of Bind Variables
When referencing APEX item values, particularly in SQL queries within your APEX application, it’s
important to think about SQL security basics, including SQL injection. Consider the example of an
online form that allows a user to sign on with a username and password, which ultimately executes this
query:

SELECT COUNT(*) FROM users
WHERE username = '&username'
 AND password = '&password'

If you enter this password

I_dont_know OR 'x' = 'x

the resulting SQL will be

SELECT COUNT(*) FROM users
WHERE username = 'SCOTT'
 AND password = 'I_dont_know' OR 'x' = 'x'

This SQL statement will erroneously return 1, indicating True, rather than No data found. The user
will be allowed in! Not good. To prevent the injection of unintended SQL, use bind variables in the SQL
query, like so:

SELECT COUNT(*) FROM users
WHERE username = :USERNAME
 AND password = :PASSWORD

Now try entering the following as your password:

I_dont_know OR 'x' = 'x

Unless this entire string is specifically your password, the database will return No data found. Your
attempt to sneak past the login will fail.

We recommend the use of bind variables whenever possible. They prevent SQL injection and
improve SQL performance.

Built In Items
APEX includes several built-in items for referencing key APEX application-wide session state values.
These are automatically set by APEX and available for reference by the developer throughout APEX. The
most common of these are:

• APP_ID: The application identifier of the currently running application.

• APP_ALIAS: The application alias of the currently running application.

• APP_USER: The currently signed-on user.

• APP_SESSION: The session identifier of the currently signed-on user.

• APP_PAGE_ID: The currently running page identifier.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

131

APEX URL Syntax
Every APEX page is a call to the APEX engine. Every APEX URL is really a call to a specific page, passing
various parameters. Figure 6–46 shows the URL syntax. The leading f in the syntax represents the page.
The parameters follow the ?p sequence.

Figure 6–46. APEX URL syntax

f?p is the call to the f PL/SQL procedure passing the argument p. The argument is actually a
concatenation of nine arguments combined into one, delimited by a colon. The nine elements of the p
argument are the same for all APEX page requests. You may omit one or more of the arguments, but you
must include the colon delimiters as placeholders.

The elements that comprise the p argument are:

• APP_ID: The application number or alias.

• APP_PAGE_ID: The page number or alias.

• APP_SESSION: The APEX session identifier.

• REQUEST: The HTML request.

• DEBUG: A Debug flag, set to YES or NO or omitted to use the current value of the
Debug flag.

• Clear Cache: A list of pages for which to clear the cache.

• Item Names: A list of APEX item names, separated by commas.

• Item Values: A list of APEX item values, separated by commas that correspond in
order to the items specified in the Item Names list.

• Printer Friendly: A flag that determines whether the page is rendered in Printer
Friendly mode.

It is easiest to understand the APEX URL syntax by looking at a few examples. Table 6–1 shows
several examples and explains each.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

132

Table 6–1. APEX URL Examples

f?p=&APP_ID.:10:&APP_SESSION.:::10 Calls page 10 of the current application using the
current session and clears the session cache for page
10.

f?p=&APP_ID.:5:&APPSESSION.::NO::P2_ID:1234 Calls page 5 of the current application using the current
session, not in Debug mode, setting the value of P2_ID
to 1234.

f?p=&APP_ID.:5:&APP_SESSION.::YES Calls page 5 of the current application using the current
session in Debug mode.

As you can see, the APEX URL not only supplies directions to the server, it’s also your key to what
page is being requested, with what request, and with what values. So how does this URL syntax tie in to
your work on the help desk application?

APEX applications store all values in an APEX session, which is securely bound to a specific user and
user session. Values stored in this user session can easily be set or read by a developer. Any item—
application or page—can be easily referenced from anywhere within your APEX application. Values can
be referenced and passed to APEX as part of the p parameter to control which APEX page is rendered and
what values are displayed on that page.

As the volume of data in your system grows, you will need a quick way to sort through it and control
what data gets passed to what page. You can add a page item and then use the value of that item to filter
the SQL statement for the report on page 200 of the application. In fact, an item in APEX can be
referenced in a SQL or PL/SQL region, as in the predicate of a query, by using the bind variable syntax
(:P1_ITEM_NAME) and as part of the APEX URL.

Getting back to your wizard-generated TICKETS report, you’ll apply what you just learned about
session state, APEX items, and the APEX URL to add a new item called P200_SEARCH that the user can
use to filter the TICKETS report. After you make these report modifications, you’ll take a closer look at
the components and attributes of an APEX report.

Searchable APEX Reports
Reports with edit links let users scan down a list of rows and choose one to modify. Scanning reports
works well for reports that are short. But when reports get long, especially more than a page or two, it’s
time to add some search functionality to help a user quickly zero in on a record to edit.

Creating a Searchable APEX Report
You have already modified the TICKETS report generated by your Master-Detail Report and Form wizard
to add sorting, CSV Export capability, and a readable Status value. As generated, the report has an edit
link on the first column, which navigates to a Ticket – Ticket Details master-detail form. For the user to
find the correct ticket to edit, you need a Search function. You’ll add a Search item and a Go button to
activate the search, and you’ll modify the report query to filter on the Search value.

1. Edit page 200 of your application.

2. Create a new item in the Tickets region by right-clicking on the region name
and selecting Create Page Item.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

133

3. Select Text Field and click Next.

4. Enter P200_SEARCH for the item name, as shown in Figure 6–47. Make sure
that Tickets (1) 10 is selected as the Region and click Next.

Figure 6–47. Creating a search field

5. No changes are needed for the Item Attributes. Click Next.

6. Set the value of Submit when Enter pressed to Yes. Click Next.

7. Click Create Item.

Although you just set the item attributes so that the page will be submitted when the enter key is
pressed, it’s still a good practice to provide a way to submit the page using the mouse. You’ll create a
new button that when clicked will process the item value, store it in session state, and then reload page
200.

8. Create a new Button item by right-clicking on the Tickets region name and
selecting Create Button. Be careful not to select Create Region Button, as that
will place the button at the top of the region as opposed to alongside your text
box.

9. Enter P200_GO as the Button name, as shown in Figure 6–48. Leave all other
values along and click Create Button.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

134

Figure 6–48. Creating a Go button for the search function

Next, you’ll adjust your report query to apply the P200_SEARCH filter. First, you need to convert
your query from a structured report to a SQL report. A structured report is a result returned from the
Query Builder. A SQL report is more flexible, as it allows you to enter any valid SQL, rather than rely on a
limited set of declarative options. After you convert the report to a SQL query, you’ll add a line to the
query predicate that will use the value stored in P200_SEARCH as a filter.

10. Edit the Tickets region definition by double-clicking on its name.

11. Under Tasks region on the right side of the page, click on Convert to SQL Query.
Click OK when prompted.

12. Edit the Tickets region again by double-clicking on its name.

13. Append the following line to the end of the query and click Apply Changes:

AND UPPER(subject) LIKE '%'||UPPER(:P200_SEARCH)||'%'

14. Run your report. Remember to test both the button and pressing Enter while
editing the Search field. Both should filter the report correctly.

Any time that you add a Search item to a page, it’s a very good idea to also add a Reset Pagination
process. This will prevent the APEX reporting engine from losing its place in a result set.

1. Edit page 200 of your application.

2. In the upper right had section of the page click the Create button and select
Page control on this page.

3. Select Process and click Next.

4. Select Reset Pagination and click Next. You should see the dialog in Figure 6–49.

5. Ensure that the scope is set to Current Page and click Create Process.

6. Run your application.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

135

Figure 6–49. Specifying process options

Your Search function should work when the user clicks the Enter button and when the user clicks
the Go button. But let’s go one more step and alter the Subject column so that the search term is
highlighted in red.

1. Edit page 200 of your application.

2. Edit the Report Attributes again by right-clicking on the Tickets region and
selecting Edit Report Attributes.

3. Edit the Subject column by double-clicking on the Edit icon.

4. In the Column Formatting region, enter &P200_SEARCH in the Highlight Words
element.

5. Click Apply Changes.

6. Run your application and test the search highlight capability.

Now when you enter a Search value, the matching rows are returned with the search term
highlighted in red. In just a few minutes you have created a sortable, searchable report for your Ticket
System. Let’s look at what your report looks like behind the scenes. Figure 6–50 shows the components
as seen from Application Builder.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

136

Figure 6–50. Your searchable report as seen from Application Builder

Looking Behind the Scenes – APEX Report
Let’s take a closer look at the components and attribute of your TICKETS report. Edit page 200 to view
the Page Rendering, Page Processing, and Shared Components regions of the Application Builder. In the
Page Rendering region, you have a single Tickets region that contains report columns, the two items you
just added for Search capability and a Create button. Double-click on the Tickets region name to open
the Region Definition page shown in Figure 6–51.

Figure 6–51. Your Tickets report region source with the search filter

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

137

Here you see that this region type is SQL Query and it is using the Reports Region template. The
source for this region is your SQL query on the TICKETS table with the modified WHERE clause to add
the filter on the P200_SEARCH item, referencing P200_SEARCH as a bind variable.

Moving to the Report Attributes tab, you see a series of attribute regions. There is a list of your table
columns in the Column Attributes region, shown in Figure 6–52.

Figure 6–52. Column attributes for the Tickets report

This region allows you to adjust the heading, column width, column alignment, and heading
alignment; you can also decide if the column is shown, if a sum is required, or if you want to enable
sorting on the column and if so, to define a sort sequence. Arrow keys on the right of this region allow a
developer to reorder columns up and down the list.

Click on the pencil icon to go to the Column Attributes page, where you can view and edit many
more column attributes, organized in a series of regions. These Report and Column attributes will be
described in greater detail later in this chapter.

In the Shared Components region, you see the expected objects for the parent tab, the breadcrumb,
and the page, region, report, label, and button templates. It’s nothing new, but you’re glad the wizard
built these for you.

Next, let’s focus on your Tickets and Tickets Details forms, the other components generated by your
Master-Detail Form and Report wizard.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

138

Looking Behind the Scenes – APEX Master-Detail Forms
Edit page 210 to view the Page Rendering, Page Processing, and Shared Components regions of the
Application Builder. You should see results similar to those in Figure 6–53.

Figure 6–53. Application Builder showing components for the Master-Detail report

In the Page Rendering region, you have two After Header processes, a Ticket HTML region that
contains your form items, and a Ticket Details report region.

The two After Header processes, Fetch Row from TICKETS and Get Next or Previous Primary Key
Value, do exactly what their name implies. The Fetch Row from TICKETS process fetches a row from the
TICKETS table for display in the form when the page passes a TICKETS_ID. The Get Next or Previous
Primary Key Value process gets the next or previous TICKETS_ID value in the series and fires in
conjunction with the Next and Previous buttons on your Master-Detail page.

The Tickets region indeed holds on APEX item for each of the TICKETS columns you selected to
include in your Master-Detail form, as well as buttons for cancel, delete, save, create, next, and previous
operations.

The Ticket Details region is a Report region that displays your ticket details and a Create button that
redirects you to page 220 for creating additional ticket details.

In the Page Processing region, you see two After Submit branches that return you to this same page,
an After Submit P220_TICKET_DETAILS_ID computation, two processes, Process Row of TICKETS and
Reset page, and an After Processing branch to page 200. The After Submit computation gets the next
TICKET_DETAILS_ID upon clicking the Create button in the Ticket Details region. The new
TICKET_DETAILS_ID is passed to page 220, the Ticket Details form. The Process Row of TICKETS
process performs the database DML operations for insert, update, and delete operations on the TICKETS
table. The Reset Page process resets (clears) the elements of the page when the Delete button is clicked.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

139

The After Processing branch to page 200 redirects the user to page 200, your TICKETS list, upon
successful processing.

The Shared Components region includes the by-now familiar APEX elements for your page tabs,
lists of values, breadcrumb, and templates.

Moving to page 220, the Ticket Details form, in the Application Build Page Processing region you see
elements that look similar to those for your TICKETS form on page 210 (see Figure 6–54).

Figure 6–54. Your Application Builder showing components for your Ticket Details form

The Page Rendering region includes an After Header Fetch row from TICKET_DETAILS process, and
HTML region that contains items for each of the TICKET_DETAILS columns you selected to include in
your Master-Detail form, and buttons for processing.

The Page Processing region includes a Process Row of TICKET_DETAILS process for handling
inserts, updates, and delete on the TICKET_DETAILS table, a Reset Page process to clear the rows upon a
Delete transaction, and a Go to Page 210 branch that returns the user to the Tickets page upon
completion of a Ticket Details transaction.

The Shared Components region on your Ticket Details page includes your page tabs, breadcrumbs,
and templates.

Wow! Your Master-Detail wizard created a lot—a fully-functional report with Master-Detail forms,
all with no code on your part. This Master-Detail example underlines the time-saving value of the APEX
wizards in generating APEX components, particularly when creating more complex and multi-page
components of your application.

More on APEX Forms
When creating forms, the APEX wizards will do about 80 percent of what you want them to do. The last
20 percent of fine-tuning is up to you, the developer. You’ll make a number of small changes to your
Tickets and Ticket Details forms, with the overall goal of increasing usability.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

140

Item Layout
APEX provides three ways to adjust item layout: the Drag & Drop Layout tool, adjusting certain item
attributes settings, and dragging items in the tree view. You’ll use all of these methods to adjust your
Tickets and Tickets Details forms.

APEX lays out Form items using standard HTML tables. Think of your APEX page as grid where
items are placed either next to one another or on top of one another. This grid layout seems limiting, but
you can rearrange items using the Drag & Drop Layout tool, dragging them up or down in the tree view
in APEX 4.0, or adjusting item attributes to force items into place.

The APEX Drag & Drop Layout tool is activated by right-clicking on the region and selecting Drag &
Drop Layout. The grid-based interface allows you to rearrange items by dragging and dropping on the
grid. You can even add and name new items using an item panel to choose the desired item type. Not all
layout options can be manipulated with the Drag & Drop tool, but this is a fast method of achieving a
desired form layout or at least getting most of the way there, without the tedious task of manually editing
the attributes of each individual item. You’ll use the Drag & Drop tool to move your Assigned To, Created
On, and Created By items to a single row.

You’ll begin adjusting your Tickets form layout by altering the item P210_CREATED_ON so that it
uses the date format mast that you specified when you create the application. You’ll also set a default
value so that it’s automatically populated with today’s date. Then you’ll set it so that it always displays in
read-only mode, preventing users from making any changes.

1. Edit page 210 of your application.

2. Edit the item P210_CREATED_ON by double-clicking its name.

3. In the Settings region, delete any entry that is in the Format Mask field. This will
force the field to use the Application Data Format Mask you defined when you
created your application.

4. Under the Default Value section in Figure 6–55, enter SYSDATE as the Default
Value and set the Default Value Type to PL/SQL Expression.

Figure 6–55. Specifying a default value for a date

5. Under the Read Only Display Settings section in Figure 6–56, set the Read Only
Condition Type to Always.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

141

Figure 6–56. Setting the read-only condition

6. Scroll to the top of the page and click Apply Changes.

You’re going to set P210_CLOSED_ON to also use the application date format mask. In order to
reduce errors, you’ll use a little known HTML attribute to make the actual input field read-only. The user
will then be forced to use the date picker popup.

7. Edit the item P210_CLOSED_ON by double-clicking on its name.

8. In the Settings region, delete any entry that is in the Format Mask. This will
force the field to use the Application Data Format Mask you defined when you
created your application.

9. In the Displayed region, enter 12 for the width.

10. In the Element region, which you see in Figure 6–57, add the following text
immediately after the existing text in the HTML Form Element Attributes field:
readonly=”readonly”

Figure 6–57. Adding an HTML form element

11. Click Apply Changes.

Now you’ll rearrange the items on the page so that they are not in a single column, but rather
arranged where multiple items are in the same row.

1. Edit page 210 and right-click on the Tickets region name. You’ll see the menu in
Figure 6–58. Select the Drag & Drop Layout option from the context menu.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

142

Figure 6–58. Select the Drag & Drop Layout

2. Rearrange the items so that P210_ASSIGNED_TO, P210_CREATED_ON, and
P210_CREATED_BY are all on the same line, as illustrated in Figure 6–59.

Figure 6–59. Using the Drag & Drop Layout tool

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

143

3. When complete, click Next and Apply Changes.

Next, you’ll tie the LOVs that you created in Chapter 4 to the P210_ASSIGNED_TO and
P210_CREATED_BY items on the form. You’ll tie in the LOVs prior to fine-tuning your layout, so your
layout is based on the select list items.

1. Edit page 210 of your application.

2. Edit the item P210_ASSIGNED_TO by double-clicking on its name.

3. In the Name section, set Display As to Select List.

4. Under the List of Values section (see Figure 6–60), set the Named LOV to
TECHS, set Display Extra Values to No, set Display Null Value to Yes, enter -
Select a Tech - for Null Display Values, and then click Apply Changes.

Figure 6–60. Setting List of Values attributes

5. Edit the item P210_CREATED_BY by double-clicking on its name.

6. In the Name section, set the Display As to Select List. Under the List of Values
section, set the Named LOV to USERS, and then click Apply Changes.

7. Run your application.

You should see results like those in Figure 6–61. Notice how the Description and Subject fields are
pushing out the Created On field.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

144

Figure 6–61. The Tickets form using the new field placement

If you take a look at the page using the Web Developer Firefox add-on and outline the table cells, it
will look like Figure 6–62.

Figure 6–62. The Tickets form with table cells outlined

Notice that there is a lot of white space between Assigned To and Created On. You can resolve this
by changing the number of columns that the Subject & Description fields take up by altering their
ColSpan value. This will allow the Created On field to begin immediately after the Assigned To field.

8. Edit the item P210_SUBJECT by double-clicking on its name. In the Displayed
region, as shown in Figure 6–63, then enter 4 for ColSpan and click Apply
Changes.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

145

Figure 6–63. Altering ColSpan to reduce white space

9. Edit the item P210_DESCR by double-clicking on its name.

10. In the Displayed region, enter 4 for ColSpan and click Apply Changes.

11. Once again, run your application and notice the difference in how the items are
laid out on the page now. You should see results like those in Figure 6–64.

Figure 6–64. Corrected layout for the Tickets form

Notice the triangular icon at the bottom right of the Description region. Click and drag this icon down
and to the right, increasing the size of the Description text area. Observe that the Created On and Created
By fields float to the right as size of the Description text area increases, as illustrated in Figure 6–65.

Figure 6–65. Floating Created On and Created By items in Tickets form

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

146

In this case, because of the resizable text area, the use of ColSpan to align elements is not sufficient.
To prevent the floating columns caused by resizing the text area, you will add a page item of type Stop
and Start Table just after your Description item. The Stop and Start Table page item adds HTML tags to
stop the current HTML table and opens a new one. Doing so resets the table column widths, which
improves your item alignment, as you can see in Figure 6–66.

1. Edit Page 210. Right-click on the Tickets region name and select Create Page
Item.

2. Enter P210_STOP_START_TABLE for the item name, 35 for the sequence (as
shown in Figure 6–66), and click Create Item.

3. Run your application and notice the difference in how the items are now
aligned alongside each other, as shown in Figure 6–67.

Regardless of how the user resizes the Description text area, the Created By and Created On fields
remain aligned.

Figure 6–66. Adding Stop and Start Table item

Figure 6–67. Tickets form with corrected item alignment

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

147

Master-Detail Cleanup
There are a few more minor tweaks that you need to make to your Master-Detail report and form. Let’s
start off by hiding the TICKET_ID column from the detail report and form. At the detail level, TICKET_ID
is the foreign key and should not be an editable item.

1. Edit page 210 of your application.

2. Edit the Ticket Details report attributes by right-clicking on the region name
and selecting Edit Report Attributes.

3. Hide the TICKET_ID column by unchecking the value in the Show column.
You’ll see the form in Figure 6–68.

4. Enable sorting for the DETAILS, CREATED_ON, and CREATED_BY columns by
checking the corresponding checkbox in the Sort column.

Figure 6–68. Specifying Sort columns

5. Click Apply Changes.

Lastly, you’ll make a few small changes to the items on Page 220.

1. Edit Page 200 of your application.

2. Edit the item P220_TICKET_ID.

3. Under the Name region, set Display As to Hidden and click Apply Changes.

4. Edit the item P220_DETAILS.

5. Under the Name region, set Display As to TextArea.

6. Under the Displayed region, set the height to 5 and click Apply Changes.

7. Edit the item P220_CREATED_ON.

8. In the Settings region, delete any entry in the Format Mask field. This will force
the field to use the Application Data Format Mask you defined when you
created your application.

9. Under the Default Value section in Figure 6–69, enter SYSDATE as the Default
Value. Then set the Default Value Type to PL/SQL Expression.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

148

Figure 6–69. Specifying the default date

10. Under the Read Only Display Settings section, set the Read Only Condition
Type to Always (see Figure 6–70).

Figure 6–70. Specifying a read-only condition type

11. Scroll to the top of the page and click Apply Changes.

12. Edit the item P220_CREATED_BY. You’ll see the form in Figure 6–71.

13. Set the Display As to Select List, and under the LOV section, set the Named LOV
to TECHS, set Display Extra Values to No, set Display Null Values to Yes, enter -
Select a Tech - for Null Display Value, and then click Apply Changes.

14. Run the application.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

149

Figure 6–71. Controlling the LOV

Your Master-Detail report and form are now complete. Using the Master-Detail form and report
wizard, you generated a report and Master-Detail form on the TICKETS and TICKET_DETAILS tables.
You modified the report to contain a user-friendly status value, sortable columns, and your preferred
date formats. You modified the Tickets and Ticket Details forms to order items on the page, use text
areas, and select lists. Along the way, you reviewed the APEX components that comprise your report and
forms, as well as the form, report, and column attributes available for customizing your forms and
reports to suit your needs.

APEX Help
Providing help to end users is an often forgotten and typically tedious task. As developers, you just
typically take the easy route and skip it altogether. Or the task gets minimized or cut at the end of a
project. While APEX cannot magically incorporate help into your applications, it does make it a lot easier
for you, as a developer, to do.

Adding a Help Text Region
The APEX Help Text region will automatically display any associated help text for a given page and its
items. It can be placed on any page, including page zero. While you can choose a region template for a
Help Text region, there is no way to change the style of the actual text. You’ll add a Help Text region to
page 210 as a sub region to the Master Edit region.

1. Edit page 210 of your application.

2. Create a new Region by clicking the Create button in the upper right of the page
and selecting Region on this page from the drop-down menu.

3. Select Help Text and click Next. You’ll see the form in Figure 6–72.

4. Enter Help for the title, set the region template to Hide and Show Region, set
the parent region to Tickets(1) 0, and click Next.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

150

Figure 6–72. Creating a Help Text region

5. Click Create Region.

Notice that when you run Page 210, you will see the Help rendered with a “>” next to it at the bottom
of your Tickets region. The newly created Help region was created as a sub-region, therefore it appears
within its parent region. Clicking the “>” will expand the region; thus, the Help text is only displayed
when the user explicitly requests it.

Seeding Help Text
Notice that there is only one item, Description, showing in the Help region. This is due to the fact that
some help text was added to this region when the User Interface Defaults were defined. Help text
defined in the User Interface Defaults is automatically pulled into any form that is built using those UI
defaults. You can manually add help text by editing each item, and you can seed any APEX item that
does not have help text with a single click.

1. In the upper right section of the Application Builder, click on the Application
Utilities icon, as shown in Figure 6–73, to go to the Application Utilities home
page.

Figure 6–73. Locating the Application Utilities icon

2. In the Page Specific Utilities region on the right side of the page, click on Item
Utilities.

3. Click on Grid Edit of all Item Help Text.

4. Click on Seed Item Help Text.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

151

5. Enter NEED HELP TEXT for Default Help Text in the Seed Item Help section, as
shown in Figure 6–74, and click Apply Changes.

Figure 6–74. Seed item help

6. Click Cancel. The help text has been seeded; you just need to go back a page to
see it.

7. Enter 210 for the minimum page number and click Go.

At this point, you will be viewing all of the help text for any item on page 210 or greater in a single
interface. Feel free to change some values for any of the items that reside on page 210 to see them in the
Help region.

Note that if you click on the individual item labels, a pop-up window will appear displaying the help
specific to that item.

The APEX Help region will automatically display the help text for a given page and its associated
items. Display of the Help text is managed by APEX behind the scenes. While not very robust—there is
no way to alter the look and feel of the region with templates or otherwise—there is now no excuse for
not adding Help to your application.

Declarative Blobs
In Oracle, BLOB stands for Binary Large Object and is a data type designed to store files. APEX has
streamlined how you can manage BLOB columns with a new feature called Declarative BLOBs. The
APEX wizards will recognize a BLOB column and automatically alter the according APEX item and report
to interact seamlessly with the column. Why do you care about BLOB columns? Using BLOB columns
allows you to easily upload and download files, such a documents, spreadsheets, and images, into your
applications.

Plan ahead when using the Declarative Blob feature; at design time, include these columns in the
tables that will use the Declarative Blob feature:

• FILENAME: Stores the actual file name that is used when a user downloads the
file.

• MIME_TYPE: Stores the type of the file so that browsers know which application
to launch (Word for .doc, Excel for .xls, etc.)

• LAST_UPDATED: Stores the date the BLOB was last updated.

• CHARACTER_SET: Stores the character set of the BLOB, essential for reading data
out of it.

These columns are essential for reading data out of the BLOB when needed. APEX reads from the
Number/Date format column attribute to map these attributes to the Blob column.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

152

If you add a BLOB column after creating a report or form using a wizard, you will have to manually
enter the Format Mask to enable the Declarative BLOB features. You can enter the bare minimum, save
the item, and then use the BLOB pop-up page shown in Figure 6–75, which will be enabled.

Figure 6–75. Declarative BLOB pop-up

Since you added a BLOB column to the TICKET_DETAILS table when you ran the SQL script, there
are several things you need to do to utilize declarative BLOBs. First, you have to map the FILE_NAME
and MIME_TYPE columns. Let’s address the form on page 220 first.

1. Edit page 220 of your application.

2. Edit the item P220_ATTACHEMENT. In the Settings section, you’ll see the form
in Figure 6–76.

3. In the Settings region, enter MIME_TYPE for the MIME Type Column,
FILE_NAME for the Filename Column, Download for the Download Link Text.

Figure 6–76. Specifying BLOB settings

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

153

4. In the Source region, if there are any colons following the word ATTACHEMNT,
remove them (see Figure 6–77).

Figure 6–77. Setting the column source type and value

5. Click Apply Changes.

Next, you’ll alter the report on page 210.

1. Edit page 210 of your application.

2. Edit the Ticket Details region by double-clicking on its name.

3. Under the Tasks region, click Convert to SQL Query. When prompted, confirm
your action by clicking OK.

4. Edit the Ticket Details region again by double-clicking on its name. You’ll see
the form in Figure 6–78.

5. Locate and open the file ch6_report.txt, which can be found where you
extracted the class files earlier, and copy the contents into the Region Source
region, replacing all text that is currently there.

Figure 6–78. Entering the report query with a BLOB column

6. Click on the Report Attributes tab. This will save all changes made to the Region
definition.

CHAPTER 6 ■ FORMS AND REPORTS – THE BASICS

154

7. Edit the ATTACHMENT column. You’ll see the Column Display Attributes
section in Figure 6–79.

8. Locate and open the file ch6_report_format.txt, which can be found where you
extracted the class files in Chapter 2, and copy its contents into the
Number/Date Format field, which replaces all text that is currently there. Then
click Apply Changes.

Figure 6–79. Modifying the BLOB column attributes

Run your application. Test the file upload and download capabilities by attaching a file to one of the
Ticket Detail records and then downloading it from the report.

This ability to easily upload and download files in APEX is extremely useful in building web
applications where users need to upload and download data for whatever purpose. The declarative
BLOB feature of APEX makes it simple for developers to add upload and download capabilities to an
application.

Summary
You have reviewed most of the APEX Forms and Reports types and walked through building various
forms and reports for your Tickets System using the APEX form and report wizards. Along the way, you
have learned about APEX items, session stage, the APEX URL syntax, adding Help to APEX page, and
incorporating upload and download functionality by leveraging the declarative BLOB feature. That’s a
lot to digest, but the APEX wizards have done most of the work for you.

The common theme is that the APEX form and reports wizards are huge time-savers for developers,
creating all of the objects—items, buttons, branches, processes, etc.—needed for a working form or
report. You were then able to alter the created objects to quickly customize the form or report to suit
your needs.

Still, you have not strayed far from what APEX builds for you, and you have covered only the
simplest types of forms and reports. In the next chapter, you will look at more complex types of APEX
forms and reports, also generated by wizards.

C H A P T E R 7

■ ■ ■

155

Forms and Reports – Advanced

This chapter focuses on more complex types of forms and reports; it also introduces charts and maps.
Although these are more complex types of forms and reports, they are most often created by using the
APEX Forms and Report wizards.

In the sections that follow, you’ll learn how to use the APEX Form and Report wizards to add pages
to your Help Desk application to manage multiple tickets on a single page, allow some interactive
analysis of your ticket data, and visualize your tickets by date and status. To do so, you will create a
tabular form, an interactive report, a calendar, and a pie chart, each demonstrating one of the more
advanced types of APEX forms and reports.

Tabular Forms
Tabular forms allow users to edit both rows and columns of data at once, much like a spreadsheet. The
developer can choose a different element type for each column—text box, text area, select list, check
box, radio group, etc. Users can make changes to multiple data elements and submit them as a single
transaction. APEX tabular forms will handle inserts, updates, and deletes—all with no code!

The APEX wizards create all of the required elements for a fully operational tabular form. Like all
APEX forms, there is no logical relationship between items that make up a tabular form. Once the wizard
creates the items, they are indistinguishable from other APEX page items and can be modified
independent of one another. However, we recommend exercising caution when making modifications
to items generated by an APEX wizard. Doing so can cause the tabular forms to become inoperable.

You can bypass the wizard and create your own tabular forms. As your application gets more
sophisticated, you may find it more efficient to create your forms manually. However, we focus on the
wizard approach in this book.

Creating a Tabular Form
You’ll create a new page that contains a tabular form based on the TICKETS table. The form will allow
multiple tickets to be edited on the same page. You will then alter the display properties of the tabular
form columns.

1. Edit any page in your application.

2. Click on the Create button in the upper right of the page and select New Page
from the menu.

3. Select Form and click Next.

4. Select Tabular Form and click Next.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

156

5. Select your schema for the Table/View Owner, set Allowed Operations to
Update, Insert and Delete, and click Next.

6. Enter TICKETS for the Table/View Name and clock Next.

7. Select all of the columns as shown in Figure 7–1, and click Next.

Figure 7–1. Selecting columns for a tabular form

8. Set Primary Key Column 1 to 1. TICKET_ID (Number) and click Next.

9. Set the Source Type to Existing Trigger and click Next.

10. Select all columns as Updateable Columns, as shown in Figure 7–2, and click
Next.

Figure 7–2. Selecting updateable columns for a tabular form

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

157

11. Enter 230 for the page number and Manage Multiple Tickets for the page name
and page title, as shown in Figure 7–3.

12. Set the Breadcrumb to Breadcrumb.

13. When the page refreshes, set the entry name to Manage Multiple Tickets and
the parent entry to Tickets by clicking on the Tickets link (as shown in Figure 7–
4), and click Next.

Figure 7–3. Identifying page and region attributes for a tabular form

Figure 7–4. Creating a breadcrumb entry for a tabular form

14. For Tab Options, select Use an existing table set and reuse an existing tab
within that tab set; when the page refreshes, set the Tab Set to TS1 (Home,
Tickets, Analysis…) and click Next.

15. Set Use Tab to T_TICKETS and click Next.

16. Change Submit Button Label to Save Changes and Add Row Button Label to
Add tickets, as shown in Figure 7–5, and click Next.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

158

Figure 7–5. Specifying button labels for a tabular form

17. Set the first branch to 230 and the second one to 200, as shown in Figure 7–6,
and click Next.

Figure 7–6. Identifying branching for a tabular form

18. Click Finish.

Modifying a Tabular Form
While your tabular form works, you need to make some cosmetic modifications to it so that you can
better control what data is entered into it. First, you’ll move the Add Tickets button to the top of the
page.

1. Edit page 230 of your application.

2. Edit the Add button by double-clicking on its name.

3. Set the button position to Region Template Position #CHANGE# and click
Apply Changes.

Next, you’ll make some changes to the columns of the report.

4. Edit the Report Attributes of the Manage Multiple Tickets report by right-
clicking on the name of the report and selecting Edit Report Attributes.

5. Uncheck the Show checkbox for TICKET_ID_DISPLAY and then make sure all
the Sort checkboxes for all displayed columns except for [row selector] are
checked, as shown in Figure 7–7.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

159

Figure 7–7. Tabular form of column attributes

6. Edit the SUBJECT column.

7. Under the Column Attributes region, set Display As to Text Area, Element
Width to 20, Number of Rows to 3, and click Apply Changes.

8. Edit the DESCR column.

9. Under the Column Attributes region, set Display As to Text Area, Element
Width to 20, Number of Rows to 3, and click Apply Changes.

10. Edit the ASSIGNED_TO column.

11. Under the Column Attributes region, set Display As field to Select List (Named
LOV).

12. Under the List of Values section, set the Named LOV to TECHS, Display Extra
Values to No, Display Null to Yes, and enter – Select a Tech – for the Null display
value, as shown in Figure 7–8. Then click Apply Changes.

Figure 7–8. Specifying LOV for the ASSIGNED_TO column

13. Edit the CREATED_BY column.

14. Under the Column Attributes region, set the Display As field to Select List
(Named LOV).

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

160

15. Under the List of Values section, set the Named LOV to USERS, Display Extra
Values to No, enter - Select a User – for the Null display value, as shown in
Figure 7–9, and click Apply Changes.

Figure 7–9. Specifying LOV attributes for the USERS column

16. Edit the STATUS_ID column.

17. Under the Column Definition region, set the column heading to Status.

18. Under the Tabular Form Attributes region, set the default type to PL/SQL
Expression or Function, enter get_status (‘OPEN’) for the default, and click
Apply Changes.

Next, you’ll need to create a button on page 200 that links to your new tabular form.

1. Edit page 200 of your application.

2. Create a new button by right-clicking the Region Buttons node and selecting
Create.

3. Enter MANAGE_MULTIPLE_TICKETS for the button name, Manage Multiple
Tickets for the label, select Template Based Button for the button style, Button
for the button template, as shown in Figure 7–10, and then click Next.

Figure 7–10. Specifying button attributes

4. Set the position to Region Template Position #CREATE# and click Next.

5. Set the action to Redirect to Page in this Application, the page to 230, check
reset pagination for this page, as shown in Figure 7–11, and click Create Button.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

161

Figure 7–11. Specifying button action attributes

At this point, you should be able to navigate to your tabular form from page 200 by clicking the
Manage Multiple Tickets button.

Looking Behind the Scenes
Let’s take a look at what the Create Tabular Form wizard has created for you—the contents of your
tabular form. Edit page 230 to view the Application Builder page for your tabular form. The Application
Builder page will look similar to the one shown in Figure 7–12.

Figure 7–12. The Application Builder page for your tabular form

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

162

In the Page Rendering region, you see that APEX has created a Report region. But you created a
form, didn’t you? Despite its name, a tabular form is actually a SQL report with certain column-level
options enabled and some processes added to handle data manipulation.

In the Page Processing region, in the Processing section, you see two processes, ApplyMRU and
ApplyMRD. These special types of processes handle the multiple-row inserts and updates (ApplyMRU)
and deletes (ApplyMRD) on your TICKETS table. These processes handle all DML operations on your
TICKETS table for you.

APEX has also created two validations on the CREATED_ON and STATUS_ID columns, which are
created automatically based on your TICKETS table column types, plus any User Interface Defaults
defined on your TICKETS table.

In the Shared Components region, you see the usual page and tab templates that are the defaults for
your application.

As you can see, the Multi-Row Update and Multi-Row Delete processes make the difference
between your report region being a static report region and a fully-functional tabular form. And it’s so
much easier to let the APEX wizard create all this for you!

Interactive Reports
Your Ticket report is what’s called a classic report. It’s the original style of APEX report and still has
practical application in a variety of situations when the requirement is for a simple list of data with no
interactivity. Most applications, APEX included, now employ the APEX interactive report.

Introduced in APEX 3.1, interactive reports allow APEX to quickly and easily include user-driven ad-
hoc capabilities in your applications. Interactive reports are greatly enhanced in APEX 4.0. The beauty of
APEX interactive reports is that they give the end user powerful ad-hoc query capability with exactly zero
lines of code by the developer. End users can customize the following:

• Searching

• Sort order

• Columns

• Breaking

• Highlighting

• Computations

• Aggregations

• Charts

• Group by

• Flashback time

• Saved reports

• Subscription (E-mail notification)

Interactive reports are technically nothing more than a report type. The Create Report wizard steps
are similar, and you expend the same effort in building an interactive report as for a classic report.

Classic reports can be easily converted to interactive reports. There is no way to revert from an
interactive report to a classic report. (But why would you want to?) The end-user features and overall

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

163

value of interactive reports are best illustrated with an example, so let’s add an interactive report to your
application.

Creating an Interactive Report
Interactive reports require nothing more than a SQL query. APEX handles the rest. You’ll start by
creating a new page, tab, and interactive report all at once on a view of your Ticket System data.

1. Run any page in your application.

2. Click Create in the Developer’s Toolbar.

3. Select New Page and click Next.

4. Select Report and click Next.

5. Select Interactive Report and click Next.

6. Enter 300 for the page number, Analysis for the page name, and set the region
template to Reports Region, as shown in Figure 7–13.

7. Enter Analysis for the region name, set Breadcrumb to Breadcrumb, as shown
in Figure 7–14, and click Next.

Figure 7–13. Specifying page number and name for an interactive report

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

164

Figure 7–14. Specifying a breadcrumb entry for an interactive report

8. Set the Tab Options to Use an existing tab set and create a new tab within the
existing tab set. When the page refreshes, set the Tab Set to TS1 (Home,
Tickets), enter Analysis for the New Tab Label, and click Next (see Figure 7–15).

Figure 7–15. Specifying tab options for an interactive report

9. Enter SELECT * FROM tickets_v for the Enter a SQL SELECT Statement region,
set Uniquely Identify Rows by to Unique Column, enter TICKET_ID for Unique
Column, and click Next (see Figure 7–16).

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

165

Figure 7–16. Entering SQL SELECT statement for an interactive report

10. Click Finish.

Running an Interactive Report
Run your application and navigate to the Analysis tab. The page will look similar to Figure 7–17. At first
glance, the interactive report looks no different than any other APEX report. However, there are a
number of functions that the interactive report can perform that a standard APEX report cannot.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

166

Figure 7–17. Interactive report for Tickets Analysis

The interactive report has a built-in Search Bar, which is command central for the interactive report.
All of the end user features are accessed through the Search Bar. The Search Bar is located on the top of
the interactive report, in the standard location for a report search field. But this is so much more than
just a search field! The Search Bar includes:

• Finder drop down: Represented by the magnifying glass, this feature allows the
user to select which column to filter on.

• Search field: A search field where the user can enter and find text strings.

• Report Select List: A select list of all saved reports. This select list will only be
visible when more than one saved report is available. We’ll talk about saved
reports in a moment.

• Rows Per Page selector: A select list of number of rows options. This function is
turned off by default, as it is also available from within the actions menu.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

167

• Actions menu: A menu of actions enabled for this report—the “interactive”
options of the interactive report.

To use the Search field, type a string or phrase into it and click the Go button. The interactive report
will list only results that match value you entered in the Search field.

To use the Finder drop down, click on the arrow at the bottom-right of the magnifying glass icon on
the left of the Search bar. This action opens a menu of the report column names. Selecting a column
name causes the Search to be on the selected column only.

To use the Report Select List, select one of the Report List options to navigate to the selected report.
To use the Rows Per Page selector, select the desired number of rows per page to display from the Rows
Per Page select list.

To use the Actions menu, click the Actions menu to expand the menu of interactive reports actions,
then select the desired action.

Restricting Functionality by Report
As the developer, you have control over what Actions menu options are available to the end user. You
can also control which of the preceding components are included on the Search Bar. The Include in
Search Bar options, shown in Figure 7–18, allow the developer to include the Search Bar or not, and to
elect which elements of the Search Bar are visible to the user. This controls end user functionality at the
report level.

Figure 7–18. Specifying Search Bar options

The Include in Actions Menu checkboxes, illustrated in Figure 7–19, allow you to specify which
Actions menu options are available to the user. Of these, the Save Public Report and Subscriptions
options are only available to authenticated pages. This is because APEX needs to know information
about the authenticated user to be able to save reports and send subscriptions.

Figure 7–19. Specifying the options for the Actions menu

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

168

The remaining attributes, shown in Figure 7–20, allow you to specify authorization for saving public
reports, a button template, an image for the Finder icon, an alternate image of the Actions menu, the
Search button label, and the maximum rows per page.

Figure 7–20. Specifying Search Bar button, image, and maximum rows attributes

Restricting Functionality by Column
Specific interactive report actions can also be restricted on a column-by-column basis. For example, you
can allow the report to be filtered, but not allow a specific column to be filtered. You can declaratively
enable or disable the sort, filter, highlight, control break, aggregate, computer, chart and group by at the
column level through the individual column report attributes page, the Search Bar region, as shown in
Figure 7–21.

Figure 7–21. Specifying individual column options

You have examined the interactive report settings you can set as a developer at the report level and
at the column level. Now let’s take a look at the interactive report features from the end user perspective.
In the following sections, you’ll examine using the key features of your interactive report as an end user.

Using the Column Heading Menu
The column headings of an interactive report contain functionality all their own and are perhaps the
fastest way to format a single column of your report. Figure 7–22 illustrates the interactive report column

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

169

heading features. Double-clicking on a column heading opens a column-level menu with icon-driven
options for quick sorting, removing the column from the report, adding a break on the column,
searching, and filtering on the selected column. The Search Bar in this menu allows the end user to
search for and filter directly on the values in that column. The Delete Column option allows the user to
quickly remove the column from the report. To restore the column, use the Select Columns option. The
Control Break option will add a break on the column.

Figure 7–22. Using the Column Heading menu

Searching by Column
The magnifying glass icon on the left end of the Search Bar is actually a list of the visible columns in the
report, which is helpful for a quick way of filtering on a specific column or on all columns. The selected
column is the column on which the search text applies.

Entering a value in the search field applies a filter to either all columns (the default) or the selected
column. Once a filter is applied, an option appears in the Control Summary region, as illustrated in
Figure 7–23. The Control Summary region is the area between the Search Bar and your report. This
region only appears when there is an action applied to the interactive report and serves as a key to what
actions are currently applied. The Control Summary region contains one line for each action applied.
Interactive report actions are additive: subsequent actions are applied in addition to the existing actions.
The user can disable an action by unchecking its checkbox. The user can remove the action by clicking
on the Delete icon for that action. Double-clicking on an action in the Control Summary opens that
action control for editing.

The Control Summary panel can toggled open or closed. It can be minimized by clicking on the
close (minus sign) icon.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

170

Figure 7–23. Control summary region when open

The closed Control Summary region, illustrated in Figure 7–24, can be exposed by clicking on the
open (plus sign) icon.

Figure 7–24. Control summary region when closed

The Finder drop-down menu, accessible from the magnifying glass icon to the left of the Search
field, displays a list of all columns in the interactive report, as shown in Figure 7–25. Selecting one of the
columns limits the Search function to that column.

Figure 7–25. Finder drop-down menu

The Actions menu, illustrated in Figure 7–26, exposes an array of column selection, filtering, and
action options. Expanding the menu further under the Format Action option uncovers additional
formatting actions for sorting, break, highlighting, computing new columns, aggregating, charting, and
grouping. The expanded Format Actions menu is illustrated in Figure 7–27.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

171

Figure 7–26. Actions menu

Figure 7–27. Choosing a format option from the Actions menu

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

172

Selecting Columns
The Select Column action, shown in Figure 7–28, lets the user select which columns to display and
allows the user to re-order columns as desired. The shuttle control allows the user to easily add or
remove columns using the center arrows and to order the columns that are displayed by using the up
and down areas on the right of the region.

Figure 7–28. Selecting columns

■ Note The Select Column action of an interactive report always controls what columns are displayed. If, as a
developer, you modify the SQL query to add a column to an interactive report, that new column will not be visible

until the new column is moved from the Do Not Display region to the Display in Report region of the shuttle.

Filtering
The Filter action allows the user to declaratively define filters based on the result of a number of
operators. A user can define multiple filters per report. Multiple filters will be combined with the logical
AND operator. Filters defined through the Search bar are combined with filters defined in the Filter
action.

The Filter action offers a full set of filter operations for selection, as shown in Figure 7–29.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

173

Figure 7–29. Applying a filter to an interactive report

The Filter action supports both column filters and row filters. Column filters are applied to a single
column. The column filter options change interactively, depending on the type of the filter column and
the selected operator. For example, if one selects a date column, like Created On, and selected the
between operation, the Expression element now contains two fields, for the From and To of the between
clause. In this case, the fields each have a date picker for ease in entering the Date From and To values.
The end user can also construct a custom filter using the declarative Filter

Row filters allow the user to build filter conditions that are based on multiple columns in the same
row. A simple row filter for your Analysis report is a filter for all tickets that were closed on the same day
they were opened. The Filter expression may be built declaratively using selections in the Columns and
Function/Operators regions, all illustrated in Figure 7–30, or entered manually. Within the Filter
Expression, selected columns are represented by their letter alias.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

174

Figure 7–30. Building a row filter

Sorting
The Sort interface allows the user to specify sorts on up to six columns in ascending or descending order,
and whether NULLs are sorted first or last. The sort may be on displayed and non-displayed columns
(see Figure 7–31).

Figure 7–31. Adding sorts to an interactive report

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

175

Adding Breaks
The Control Break action allows the user to define break formatting on up to six columns. The user
specifies the break column and whether the break is disabled or enabled. APEX automatically applies the
declared break formats to the report. Note that break columns appear in the Control Summary as
separate entries, allowing the user to enable, disable, or remove break columns individually. Figure 7–32
shows your Tickets analysis report with breaks applied on the Assigned To and Status columns.

Figure 7–32. Interactive report with control breaks applied

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

176

Highlighting
The Highlight action allows the user to find matching data and highlight it by row or column, specifying
the background and text colors for the highlight. The Highlight Action interface is shown in Figure 7–33.

Figure 7–33. Adding highlighting with the Highlight action

The same operators that you saw in the Filters action apply here. The background and text colors
may be specified by HEX notation or by using the color palettes. The Highlight action appears in the
Control Summary region as a highlighted row.

Computing Columns
The Compute action allows the user to define a new column as a computation based on existing
columns and functions using the Compute action interface, shown in Figure 7–34.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

177

Figure 7–34. Computing a new interactive report column using the Compute action

The user may declaratively or manually define the computed value. The declarative interface is
much the same as the Row Filter interface. Columns are specified in the computation as their letter
aliases. This option is quite powerful, as it allows the end user to build essentially any column they
desire.

Adding Aggregates
The Aggregate action performs one of the following aggregation functions on a column:

• Sum

• Average

• Count

• Count Distinct

• Minimum

• Maximum

• Median

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

178

The selected column must be of data type NUMBER. The results are displayed at the end of the
report. Note that aggregate results will only be displayed if the corresponding column is also displayed.

Adding Charts
The Chart action allows the user to display a dynamic Flash chart representation of the data in the
report, as shown in Figure 7–35. The chart representation of the data is displayed instead of the tabular
data representation. The display can be toggled by clicking on the chart display icon, as indicated in
Figure 7–35. Use the Edit Chart link to re-enter the Chart action interface.

Figure 7–35. Interactive report pie chart

The following chart types are supported in an interactive report:

• Horizontal bar

• Vertical bar

• Pie

• Line

The simple chart action interface, shown in Figure 7–36, allows the user to select the chart type,
assign a label column, a value column, a function, and a column to sort by.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

179

Figure 7–36. Adding a chart using the Chart action

The user does not have the full functionality of APEX charts within the Chart action, but the ease of
displaying these most common chart types is quite valuable.

Grouping
The Group By action allows the user to define groups and aggregate functions on those groups, allowing
the user to declaratively define their own summary views of the report data. The options of the Group By
action are shown in Figure 7–37.

Figure 7–37. Grouping using the Group By action

Like the Chart view, the Group By view of the data has a display icon in the center of the Search Bar,
as indicated in Figure 7–37. The user may display the data view, the Group By view, or, if defined, the
Chart view of the data by clicking on the appropriate display icon.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

180

Using Flashback
The Flashback action enables the user to flash back the database by the specified number of minutes to
see what the data looked like at that point in time. The option is built on the Oracle database
FLASHBACK feature. Database FLASHBACK must be enabled. The Flashback action asks for the number
of minutes to flash back, as shown in Figure 7–38.

Figure 7–38. Using the Flashback action

The length of flashback time is configurable. The maximum flashback period is based on the
UNDO_RETENTION parameter in the database, which is set to three hours by default.

Saving an Interactive Report
The Save Report action allows the user to save the current configuration of the interactive report as a
named report. If the end user is also an APEX developer, the user will have the Save As Default Report
Settings option as shown in Figure 7–39.

Figure 7–39. Saving an interactive report using the Save Report action

Developers may save the current report configuration as primary or alternative default report
settings, as shown in Figure 7–40. User may save reports as private reports. When a report is saved, it gets
added to the Reports menu in the Search Bar, as shown in Figure 7–41.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

181

Figure 7–40. Setting an alternate saved report

Figure 7–41. Using the default Report menu

Resetting an Interactive Report
The Reset action, shown in Figure 7–42, restores the current report to the default settings. Any changes
in formation or result set (by filtering) will be lost, unless of course the report is a saved report. It may
then be reinstated simply by selecting the report name from the select list.

Figure 7–42. Resetting an interactive report to its default settings

Getting Help
The Help action opens a window that contains interactive report-specific help, as shown in Figure 7–43.
All of the interactive report options are displayed in this Help window, regardless of whether they are
enabled for the current report or not.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

182

Figure 7–43. The interactive report help page

Adding a Subscription
The Subscription action allows the user to e-mail a report to designated e-mail addresses on a
scheduled basis. The user enters the e-mail address, subject, frequency, and start and end date, as
shown in Figure 7–44. This action is available for authenticated users only. The e-mail received is a
searchable HTML version of your report. Break formatting and highlighting are not preserved.

Figure 7–44. Subscribing to an interactive report

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

183

Report subscriptions are managed by a Workspace Administrator through the Manage Service ➤
Manage Interactive Report Settings ➤ Subscriptions interface, shown in Figure 7–45.

Figure 7–45. Managing subscriptions through the manage subscriptions interface

Downloading
The Download action allows the user to download the current result set of their report in one of the
following formats:

• CSV

• HTML

• E-mail

• XLS (MS Excel)

• PDF

• RTF (MS Word)

The latter three formats require Oracle BI Publisher, which may require a separate license from
Oracle. Figure 7–46 shows the download options without and with BI Publisher. You can specify which
formats are available in the Download attributes region, as shown in Figure 7–47.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

184

Figure 7–46. Choosing download options, without and with BI Publisher

Figure 7–47. Specifying download attributes

Reports downloaded in CSV format are plain comma-delimited data. The content and order of data
in the result set are retained in the CSV file but break formatting and highlighting are not.

Reports downloaded in HTML format are a searchable HTML version of the result set, as illustrated
in Figure 7–48. Again, the result set content is preserved, but the break formatting and highlighting are
not.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

185

Figure 7–48. The searchable HMTL download of an interactive report

The e-mail download is the same output as the HTML download, delivered in an e-mail.
The XLS, PDF, and RTF download formats require integration with Oracle BI Publisher, which may

require a separate license from Oracle. A complete description of the use of Oracle BI Publisher to
produce reports in these formats is beyond the scope of this book. See the Oracle APEX documentation
section “Advanced Printing Options and Configuration” for more details. If these options are not
configured for your installation, they will not appear in the download options list.

Take some time to experiment with the features of the interactive report. If you get lost and need to
start over, simply click the Actions button and select Reset. The interactive report will be reset to its
original state and all modifications that you made to it will be discarded.

Modifying an Interactive Report
While the interactive report offers a tremendous amount of functionality, you may wish to limit which
features are available to your end users. Each feature of the interactive report can be disabled on a
report-by-report basis. In addition, you can set up default options for a specific report, making those
available to all end users.

So let’s take another look at your interactive report. You’ll use a combination of interactive report
end user actions and developer settings to achieve your modifications. First, you’ll remove a column
from the report and add a sort attribute using the Actions menu.

1. Run your application and navigate to the Analysis table.

2. Click on the Actions button to display the Actions menu.

3. Select the Select Columns menu, as shown in Figure 7–49.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

186

Figure 7–49. Selecting the Select Columns menu

4. Move Ticket Id to the Do Not Display section of the shuttle, as shown in Figure
7–50, by double-clicking on its name.

5. Using the up and down arrows, reorder the remaining columns so that Status
appears after Subject and before Description, as shown in the display in Report
section in Figure 7–50, and click Apply.

Figure 7–50. Selecting columns

Notice that the Ticket Id column is no longer displayed in your report and that the Status column
appears immediately after the Subject column.

Next, you’ll set your changes as default options for the interactive report. These options will be
applied for all end users who use the interactive report. The Save As Default Report Settings option is
only available to end users who are APEX developers.

6. Click on the Actions button and select the Save Report item.

7. Set Save to As Default Report Settings, as shown in Figure 7–51.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

187

Figure 7–51. The Save As Default Report setting

8. The region will immediately change, allowing you to save the report as the
primary default or as a named alternative. You’ll make this one the primary
default, as shown in Figure 7–52. Click Apply.

Figure 7–52. Saving a primary interactive report

Now you’ll create a Named Alternative default report that does a control break on the status
column.

9. Click on the Actions button and navigate to Format ➤ Control Break, as shown
in Figure 7–53.

Figure 7–53. Selecting the Control Break action

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

188

10. Select Status in the first select list and make sure that the status is set to
Enabled, as shown in Figure 7–54, and click Apply.

Figure 7–54. Applying a control break to an interactive report

11. Click on the Actions button and select the Save Report option.

12. Set Save to As Default Report Settings, as shown in Figure 7–55.

Figure 7–55. Saving an interactive report as a default setting

13. The region will immediately change. This time you’ll save the report as a
Named Alternative. Select Alternative, enter Tickets by Status for the name as
shown in Figure 7–56, and click Apply.

Figure 7–56. Saving on interactive report as an alternate report

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

189

You’ll see that the tool bar at the top of the report has a new Reports select list that contains both
your default and alternative report, as shown in Figure 7–57.

Figure 7–57. Tickets by Status report

You can selectively enable or disable items from the Actions menu. This will restrict what options
are available to the end user for a specific interactive report.

1. Edit page 300 of your application.

2. Edit the Analysis report’s interactive report properties by right-clicking on its
name and selecting Edit Report Attributes.

3. Scroll down to the Search Bar region. Uncheck Flashback and Save Report from
the Include in Actions Menu list, check Subscription and Save Public Report
and then scroll to the top of the page and click Apply Changes (see Figure 7–58).

Figure 7–58. Selecting Actions menu options

Run your report again and click on the Actions button to expand the actions menu. Notice that the
Flashback item is no longer present and that Save Report has an asterisk next to it. The asterisk denotes
that only a user who is logged in as an APEX developer will be able to save this report’s defaults. End
users will not see this option at all. You should also see a new option for the subscriptions.

In addition to controlling which Actions appear for an interactive report, you can get even more
granular and determine which columns a specific action can be performed on. Figure 7–59 shows the
column-level Actions settings for your interactive report.

1. Edit page 300 of your application.

2. Edit the Analysis report’s Interactive Report properties by right-clicking on its
name and selecting Edit Report Attributes.

3. Edit the DESCRIPTION column.

4. In the Column Definition region, uncheck the Sort and Filter checkboxes in the
Allow User To item and click Apply Changes.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

190

Figure 7–59. Selecting column-level actions for your interactive report

5. Run page 300 of your application.

6. Click on the Actions button and select Format ä Sort. Your Sort action interface
should look similar to Figure 7–60.

7. Notice that Description no longer appears as a column name in the list of
columns.

Figure 7–60. Modified select column list

By default, the interactive report will link to something called Single Row View. This view shows a
read-only region that contains all of the details about a specific row. In your case, you may want to link
back to the form that you created on Page 210. Thus, you can alter the interactive report to use a more
traditional page link instead of the Single Row View. You do this by editing the Link Column attributes,
as shown in Figure 7–61.

8. Edit page 300 of your application.

9. Edit the Analysis report’s interactive report properties by right-clicking on its
name and selecting Edit Report Attributes.

10. In the Link Column region, set the Link Column to Link to Custom Target.

11. Next, set page to 210, enter P210_TICKET_ID for the name of Item 1 and
#TICKET_ID# for the value of Item 1 and then click Apply Changes (see Figure
7–61).

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

191

Figure 7–61. Setting the link column attributes

Run page 300 of your application. You should now be able to drill into the details of any row by
clicking in the column with the Edit link..

Looking Behind the Scenes
Let’s look behind the scenes for your interactive report. You may be surprised to see that there is only a
single interactive report region in the Page Rendering region, as shown in Figure 7–62.

Figure 7–62. The Application Builder view of your interactive report

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

192

The Page Processing column contains no elements, and the Shared Components region contains
only the expected elements for your parent tabs: the breadcrumb and templates.

This is the first case where you can’t easily recreate the interactive report using standard declarative
APEX elements. The additional functionality is from a collection of JavaScript functions, CSS, and HTML
that are all contained within the interactive report region type. While you could build all this from
scratch, the APEX interactive report is a huge timesaver.

Calendars
Sometimes there are trends in data that are not obvious when viewed in the traditional row-column
format. By simply displaying data in a different method, such as a calendar report, trends can become
quite obvious. The APEX calendar report can display data in a daily, weekly, or monthly view and does
not require that you enter any SQL.

Understanding Calendar Types
An APEX calendar is a type of APEX report. Data is rendered on a calendar instead of in a traditional
row/column format. The calendar format simply allows you to view your data in a different way. The
single requirement for an APEX calendar is that the underlying table or view must have at least one
DATE column.

There are two types of APEX calendars:

• Easy/Declarative: Created entirely by using the APEX Easy Calendar wizard.

• SQL Calendar: Created by entering a custom SQL query. The SQL query must
contain a date column.

Data in a calendar can act as a column link, the same as any other report column. This makes it
simple to build a calendar that lets the user click on a date and drill to another page or URL.

Creating a Calendar
To implement an APEX calendar, you’ll create a new page and a calendar region using the Easy Calendar
wizard.

1. Run your application.

2. Click on Create in the Developer’s Toolbar.

3. Select New Page and click Next.

4. Select Calendar and click Next.

5. Select Easy Calendar and click Next.

6. As shown in Figure 7–63, enter 400 for the page number, Ticket Activity
Calendar for both the page name and region name, and set Breadcrumb to
Breadcrumb.

7. When the page reloads, enter Calendar for the entry name, and click Next (see
Figure 7–64).

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

193

Figure 7–63. Creating a ticket activity calendar

Figure 7–64. Specifying the breadcrumb entry for calendar

8. Set the Tab Options to Use an existing tab set and create a new tab within the
existing tab set. When the page refreshes, set Tab Set to TS1 (Home, Tickets
Analysis), enter Calendar for the Tab Label, and click Next (Figure 7–65).

Figure 7–65. Specifying tabs for a calendar

9. Select your schema as the Table/View Owner, as illustrated in Figure 7–66.
When the page reloads, select the TICKETS (table) and click Next.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

194

Figure 7–66. Specifying table owner and table name for a calendar

10. For the Date Column, select CREATED_ON. For the Display Column, select
SUBJECT, as shown in Figure 7–67 and click Next.

Figure 7–67. Setting column selection for a calendar

11. Click Finish.

12. Run page 400.

Upon running the calendar report, you may notice that it’s hard to tell entries from one another and
there’s no delimiter in between them. One of the options of the calendar report is to supplement the
display value with either text or HTML. You’ll add a bullet at the beginning of each entry so that it will be
easy to distinguish multiple entries that fall on the same day.

1. Edit page 400 of your application.

2. Edit the Calendar Attributes by right-clicking on the Calendar Region Name
and selecting Edit Calendar.

3. Under the Calendar Display section, shown in Figure 7–68, set the Calendar
Template to Calendar, Alternative 1; set the Display Type to Custom; and then
enter the following for the Column Format: #SUBJECT#

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

195

Figure 7–68. Setting calendar display template and item attributes

4. Under the Display Attributes section (see Figure 7–69), change the time format
to 12 Hour, set the start time to 7 am, and the end time to 7 pm.

Figure 7–69. Setting calendar display date attributes

5. Under the Column Link section, specify these values as in Figure 7–70 and then
click Apply Changes:

• Page: 210

• Set these items: P210_TICKET_ID

• With these values: #TICKET_ID#

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

196

Figure 7–70. Creating a link in your calendar

While in the Calendar Report Attributes page, notice the Day Link region just below the Column
Link region. These Day Link attributes are for setting a link on the calendar day to an APEX page or a
URL, in the same manner as you just set a link on the SUBJECT column.

Run the page and notice that each entry in a day is much more distinguishable. Your calendar
should look similar to Figure 7–71. You can now click on these entries and see the details.

Figure 7–71. Your ticket activity calendar

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

197

Looking Behind the Scenes
Now that your calendar works, let’s look at what the Easy Calendar wizard built for you. Edit page 400. In
the Page Rendering region, shown in Figure 7–72, you have three items and six buttons:

The three items are:

• P400_CALENDAR_TYPE

• P400_CALENDAR_DATE

• P400_CALENDAR_END_DATE

The six buttons are:

• MONTHLY

• WEEKLY

• DAILY

• PREVIOUS

• TODAY

• NEXT

Figure 7–72. Page rendering region for your calendar

In the Page Processing section, you see a series of six processes, one corresponding to each button,
for adjusting the calendar date display (see Figure 7–73). Viewing each of these processes shows that

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

198

they are each a call to the APEX utility procedure that sets the calendar display to the selected button
name. Figure 7–74 shows the month_calendar process, which is triggered by the MONTHLY button and
sets the display accordingly. There is a branch for each button and process that, in this case, keeps you
on the same page.

Figure 7–73. Page processing region for your calendar

Figure 7–74. The month_calendar process that sets the calendar view to month

Charts
In APEX 4.0, charts got a major facelift with the incorporation of AnyChart 5.1. This release of AnyChart
produces charts that look much more professional than in previous releases. APEX 4.0 includes both the
Gantt and Map chart types, greatly expanding declarative charting options.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

199

Writing Queries for Charts
APEX 4.0 charts are Adobe Flash-based, include click and drill functionality, and generally operate off of
a query of the type:

SELECT
 link,
 label,
 value
FROM
 table
WHERE
 where conditions
GROUP BY
 group by column list
ORDER BY
 Order by column list

where

• link is a link to an APEX page or other URL,

• label is the label for the chart element, and

• value is the value to be charted.

The exact syntax changes slightly to suit the needs of the various chart types, but the general link-
label-value format remains the same. For the correct syntax for each chart type, see the APEX online
documentation.

Creating a Chart
As a simple chart example, let’s build a chart of Tickets by Status in your Help Desk application.

1. Edit any page of your application.

2. Click on the Create button in the upper right of the page and select New Page.

3. Select Chart and click Next.

4. Select Flash Chart and click Next.

5. Select Pie & Doughnut and click Next.

6. Select 3D Pie and click Next.

7. Enter 500 for the page number, Tickets by Status for both the page name and
region name, and set Breadcrumb to Breadcrumb (see Figure 7–75). When the
page reloads, enter Chart for the entry name, as shown in Figure 7–76, and click
Next.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

200

Figure 7–75. Setting page, page name, and region name attributes for a chart

Figure 7–76. Setting breadcrumb attributes for a chart

8. Set Tab Options to Use an existing tab set and create a new tab within the
existing tab set. When the page refreshes, set Tab Set to TS1 (Home, Tickets,
Analysis), enter Chart for Tab Label, and click Next (see Figure 7–77).

Figure 7–77. Setting tab attributes for a chart

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

201

9. Set the chart title to Tickets Statuses, set the chart animation to Scale XY Center,
and click Next.

10. Locate and open the file ch7_query.txt, which can be found where you
extracted the book files. The contents of the file should be the similar to this
query:

SELECT
 'f?p=&APP_ID.:200:' || :APP_SESSION || '::::P200_STATUS_ID:' || sl.status_id link,
 sl.status label,
 count(*) value
FROM
 tickets t,
 status_lookup sl
WHERE
 t.status_id = sl.status_id
GROUP BY
 sl.status_id, sl.status
ORDER BY
 3 DESC

11. Paste the contents of the file ch7_query.txt into the Enter SQL Query or PL/SQL
Function… region, or type the above query into the region, and click Next Click
Finish.

Run the page. Your chart should look similar to the one in Figure 7–78.

Figure 7–78. Your Tickets by Status chart

The link that we included in our SQL statement passes a Status value to the P200_STATUS_ID field
on page 200. However, however you haven’t created that item yet. The next steps will create the item
P200_STATUS_ID on page 200 so that when a slice of the chart is clicked, the report can filter based on
the status.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

202

1. Edit page 200 of your application.

2. Create a new item by right-clicking on the Items node under the Tickets region
and selecting Create Page Item.

3. Select Select List and click Next.

4. Enter P200_STATUS_ID for the item name, set the sequence to 15, and click
Next (see Figure 7–79).

Figure 7–79. Adding a P200_STATUS_ID item

5. Enter Status for the label, set Begin on New Line to No, and click Next (see
Figure 7–80).

Figure 7–80. Setting label attributes for new item P200_STATUS_ID

6. Take the defaults for the next page and click Next.

7. Set the Named LOV to P210_TICKET_STATUS_ID, ensure that Display Null
Values is set to Yes, enter – All Statuses – for the Null Display Value, enter % for
the Null Return Value to set the List of Values attributes, and click Next (see
Figure 7–81).

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

203

Figure 7–81. Setting LOV attributes for new item P200_STATUS_ID

8. In the Default field, enter %, as shown in Figure 7–82, and click Next.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

204

Figure 7–82. Setting the default value for new item P200_STATUS_ID

Finally, you will have to change the query for the Tickets report on page 200 to account for the value
of the item P200_STATUS_ID is set to.

9. Edit the Tickets report by double-clicking on its name.

10. Append the following line to the end of the query and click Apply Changes:

AND tickets.status_id LIKE :P200_STATUS_ID

Now, run your application and navigate to the Chart page. Click on any value in the chart, and that
value should be passed to the Tickets page and passed in to the Status filter. The resulting report should
only display those records that correspond to the status that was click in the chart.

Looking Behind the Scenes
Viewing your Chart page in the Application Builder, you see that the only element generated is your
chart region in the Page Rendering region, as shown in Figure 7–83. The chart region is interesting in
that it has a Series element, which contains your SQL query. The chart region embodies the logic that
passes your query to the AnyChart engine to produce your chart.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

205

Figure 7–83. Page rendering section of the Tickets by Status chart

Double-click on the Tickets by Status chart region to open its region definition. The source region
will look similar to that in Figure 7–84.

Figure 7–84. Chart region source code

In Chart regions, the Source section of the Region Definition contains not the SQL, but the XML that
produces the chart. For your purposes, you will leave this XML alone. While it’s possible to customize a
chart by editing this XML, leave that exercise for advanced users. For more information on customizing a
chart through its XML attributes, see the AnyChart documentation at www.anychart.com.

CHAPTER 7 ■ FORMS AND REPORTS – ADVANCED

206

Summary
You’ve reviewed most of the APEX forms and reports types, and you’ve walked you through building
various forms and reports for your Tickets System using the APEX form and report wizards. You created
an interactive report and made adjustments as a developer and an end user. You have introduced charts
and maps, and added a chart to your application to visualize your ticket status.

The common theme is that the APEX Form and Reports wizards are huge time-savers for
developers, creating all of the objects—items, buttons, branches, processes, etc.—needed for a working
form, report, or chart. You were then able to alter the created objects to quickly customize the generated
form or report to suit your needs.

Still, you have not strayed far from what APEX builds for you.
As your application becomes more complex, there will be places where you wish to add additional

code to enforce business rules or perform more complex processing logic than a simple insert, update,
or delete. To do so, you utilize the various programmatic elements of APEX. You’ll address the topics of
validations, computations, and processes in the next chapter.

C H A P T E R 8

■ ■ ■

207

Programmatic Elements

This chapter covers the programmatic elements that can provide both simple and complex features to
the APEX framework. APEX provides simple declarative features with wizards to guide you. Being
integrated with the database, APEX can also leverage the full power of the PL/SQL engine inside the
Oracle database. Now with the implementation of APEX 4.0, even JavaScript interactivity has been made
declarative and extendable in the framework.

Conditions
Throughout the building of the help desk application, there are times when you will want to take
advantage of the conditional logic available with APEX components. Rather than trying to understand
every type of condition (there are sixty in the list of condition types), you should focus mainly on
grasping the concept of a condition.

The condition feature provides a place where logic can turn on or off the particular piece of APEX
technology. Before action is taken to display or execute a particular APEX component, the condition
applied to that component is evaluated for a TRUE or positive result.

The logic options available to develop a condition are very broad. The condition type defines the
particular mechanics used to evaluate the condition using parameters as appropriate. Simple page item
comparisons are the easiest to explain. For example, a process may only need to be run if a particular
page item has a value. In the case of sending an e-mail, an attempt to send a message should only be
made if an e-mail address is given. From that simple start, conditions can become as complex as you
need them to be. In advanced cases, conditions can also include browser and web server options.

Take time to review the condition types that are available and become familiar with their usage. It is
not as important to understand the technical implementation or syntax of each item as much as what
options make up a single condition. This familiarity will be helpful when you start defining APEX
components and understanding considerations for a flexible and modular application design.

Validations
The purpose of validations are to assist in providing data quality and to assure integrity of data entered
by the user. Mechanically, validations are tests that evaluate to TRUE or FALSE. Validations are
evaluated when a page is processed, or submitted. All of the validations are evaluated; a FALSE return
from any one of them prevents additional page processes from executing and, ideally, will result in
feedback to the user. Validations can also be executed on the client side using JavaScript. Although the
interactive nature of JavaScript can be very attractive in the user interface, it can also be circumvented
easily. Any validations that are executed in JavaScript should also be supported with appropriate
validations during page processing or at the database level.

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

208

■ Note It is a good practice to assume that every transaction is malicious. It is possible to implement validations
strictly for security purposes, but sometimes it is difficult to step away from a process enough to identify where
weak points may exist. For example, in a shopping cart application, what would happen to the total if someone

ordered -1 of a product? Would they automatically get a credit? Take extra time in the development process to
look at your application to identify where security weaknesses may exist and implement features to make it

generally more robust and secure.

There are three types of validations: item level, tabular form validations, and page level. Item level
validations operate against a single APEX item. Page level validations are used when multiple items are
involved in validating the condition. Tabular form validations behave similar to item level validations,
but are only available on tabular form items. You will use an example of each in your help desk
application. First though, let’s look at a special form of item level validation used to mark a value as
required.

Required Values
One of the most basic validations is the value required validation. Requiring a value is a common need,
and APEX 4.0 now supports that very basic validation through what is essentially a not null flag at the
page item level. You don’t need to create a full-blown validation to make an item required. You simply
make a choice on a drop down list.

Continuing your help desk application, you will implement a value required validation on the
subject field.

1. Edit page 210 of your application.

2. Edit the P210_DESCR page item.

3. Under the Settings section, change the Value Required to YES as shown in
Figure 8–1. (Depending on how you set up your UI defaults, the Value Required
may already be set to Yes.)

Figure 8–1. Requiring a value to be present

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

209

4. Click the Apply Changes button.

To test the new validation, start by creating a ticket. Before entering any values, click on the Create
button. Figure 8–2 shows the expected results with both a consolidated page validation message box and
item validation messages. In the application, the Subject element had already been set up with a value
required validation. The error messages for validations are cumulative. You will see all validation
messages when a page is processed.

Figure 8–2. Validation shows required values for two elements both in-line and cosolidated at the page

level

■ Note The message text shown is a default and can be replaced by application specific text as a feature of
globalization in the shared components area. There is only a single default for the entire application per language.

When you need custom messages in a single-language application, I recommend using standard validation types

that allow a different message for each validation that you create.

Item Level Validation
Validations on a single element can have attributes specific to that element and behavior can be
customized as required by that element. The example you’re going to implement here is a validation that
checks its condition only when a specific criteria is true. The requirement is to have an end date entered
whenever the status is closed.

1. Edit page 210 of your application

2. Using the Create button, select Page control on this page as shown in Figure 8–3.

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

210

Figure 8–3. Preparing to create a validation for the page

3. Select Validation as in Figure 8–4 for the control type, then click Next.

Figure 8–4. Choosing to create a validation

4. Select the Item Level Validation, which can be seen as the left most option in
Figure 8–5. Click the Next button to continue.

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

211

Figure 8–5. The three types of validations

5. Select the item to validate, P210_CLOSED_ON from the list of items in Figure 8–
6.

Figure 8–6. Selecting an item to validate

■ Note There is a shortcut for getting to the item validation. Using the right mouse button context menu on the

page element, there is an option to create a validation for the element that you have selected.

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

212

6. Select Item Not NULL from the options in Figure 8–7.

Figure 8–7. Selecting a validation method

7. Now enter a sequence number and a name. The validation sequence and name
are strictly for your reference. In this case, a name is sufficient and the sequence
is not important. Leave the defaults as shown in Figure 8–8 and click the Next
button.

Figure 8–8. Specifying sequence, name, and display location

8. In the validation step of the wizard, leave the validate item as the default
selected earlier and enter a custom error message. The error message in Figure
8–9 uses a substitution variable #LABEL# to include the label of the item in the
message. This way when the label on the form item changes in the future, the
validation error message will automatically reference the new label.

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

213

Figure 8–9. Error Message definition

9. The step in the wizard provides the additional functionality you want to utilize
in this validation. Here you can make the validation only apply when the
current status is one of CLOSED. You accomplished this by applying a
condition type of PL/SQL Function Body Returning a Boolean as shown in
Figure 8–10.

The following is the code to use:

IF :P210_STATUS_ID = get_status('CLOSED') THEN
 RETURN TRUE;
ELSE
 RETURN FALSE;
END IF;

10. Click the Create button to complete the wizard.

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

214

Figure 8–10. Setting the condition that must evaluate to TRUE for the validation to be used

Once the validation has been created, it will show up in rendering and page processing sections on
the APEX page editor screen as illustrated in Figure 8–11. Both references point to the same
implementation and are shown for easy navigation.

Figure 8–11. Validations created will show in two places on the builder page

This validation will now require that a value is entered for the Closed On item when the ticket status
changes to CLOSED. The condition applied to the validation will be evaluated every time the page is
submitted.

Page Level Validation
Page level validations apply to one or more items simultaneously and often can be an entire PL/SQL
block of code that needs to evaluate true in order for the validation to be successful. Your requirement
for the help desk application is to compare the Created On date with the Closed On Date to assure they
occur in chronological order. A ticket that is closed before it is created does not make any sense. This is a
good example of using a validation to assure data quality. Here’s how to create the validation that you
need:

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

215

1. Edit page 210 of your application.

2. Using the Page Create button select Page control on this page.

3. Select Validation and click Next.

4. Select Page Level Validation and click Next.

5. Select PL/SQL method as shown in Figure 8–12 and click Next.

Figure 8–12. Choosing to create a validation involving PL/SQL code

6. Select Function Returning Boolean as shown in Figure 8–13 then click Next.

Figure 8–13. Choosing the form in which you’ll implement the PL/SQL validation code

7. The validation name automatically generated for page level validations is not
very descriptive. It is a good practice to give the validation a descriptive name to
easily identify it. For your help desk application, enter Closed Date must be
After Creation Date for the validation name. Also, change the error display
location to Inline in Notification. Figure 8–14 shows the values expected. Click
Next to continue.

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

216

Figure 8–14. Validation name and display location

8. The validation step in the wizard does the bulk of the work. Here you need to
enter the following code to execute the validation. You also define the error
message that is displayed as a result of validation failure. For your requirement,
enter a message of Closed On Date must be Later than the Created Date. Figure
8–15 shows the completed values. Click Next to continue.

IF TO_DATE(:P210_CREATED_ON,'DD-MON-YYYY') >
 TO_DATE(:P210_CLOSED_ON,'DD-MON-YYYY')
THEN
 RETURN FALSE;
ELSE
 RETURN TRUE;
END IF;

9. You will not need a condition on this validation. Click Create to finish the
wizard.

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

217

Figure 8–15. The code for your PL/SQL validation

In your application you now have a feature that helps assure the quality of the data being entered.
This type of data check assures that any metric that calculates time from start to end will not produce a
negative answer due to dates. This improves the quality of the data and the reliability of the metrics that
are produced in reports.

Tabular Form Validation
Tabular forms in APEX 4 are able to perform validations better than in previous versions. The wizard that
creates a tabular form also adds validations for you. The wizard will create validations automatically
based upon the data model. However, a wizard can only know so much about your business process,
and the data model may have more flexibility than you want in your application. In the case of your help
desk application, you don’t want the subject to be blank when it is edited from the multiple tickets
screen. To implement that restriction, you will apply a validation to the tabular form.

1. Edit page 230 of the application.

2. Using the Page Create button select Page control on this page.

3. Select Validation and click Next.

4. Select Tabular Form Validation and click Next.

5. In the dialog, select Manage Multiple Tickets: 4. SUBJECT option as shown in
Figure 8–16, then click Next.

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

218

Figure 8–16. List of items available from the tabular form

6. Select Column Not Null as shown in Figure 8–17 and click Next.

Figure 8–17. Wizard-driven options for null testing and string comparison

7. Set the validation name to Subject is Not Null and error display location to
Inline in Notification as seen in Figure 8–18. Click Next.

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

219

Figure 8–18. Specifying a validation name

8. For the error message, click on the quick link below the error message box that
shows #COLUMN_HEADER# must have a value. This will automatically
populate the error message using built-in substitution strings. You should see
results like those in Figure 8–19. Click Next.

Figure 8–19. An error message using substitution variables

9. No conditions are required for this validation. Simply click the Create button on
the last step of the wizard.

Running the Multiple Tickets page, the new validation can be tested by either adding new tickets or
removing the subjects of existing ones and attempting to save the changes. In Figure 8–20, each row that
does not meet the validation requirement will show as highlighted and in a list of errors at the top of the
page. In this example, the two rows that don’t have subjects fail the validation and are flagged as needing
attention.

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

220

Figure 8–20. Results that fail validation are highlighted and presented in the message area

The wizard shows the basic string comparison or Not Null options for validations. After the
validation has been created, when edited, there are additional validation options. Note that validation
names that start with the word “Column” operate on the individual rows of the tabular form. The
validation can be modified to work on other discrete items on the page versus the rows of the tabular
form. Validations have options to work against tabular form columns and pages items. Do not consider
tabular form fields as page items because tabular form items are dynamically crated and challenging to
reference as form items.

Computations
The APEX computation is analogous to a PL/SQL function. The intent is to act upon an item in the
application by setting the value using a variety of methods. This allows information to be derived rather
than just stored in the data tables. Computations can be implemented when a page is rendered or after
a page is submitted back to the server, depending on the needs of the application. Computations can act
on any item available within an application. Items that can be set include items on the current page,
items on another page, and even application level items.

There is also a type of computation that can be used at the application level. This is available under
an application’s shared components. This type of computation has additional options for execution
points including a computation point called On New Instance that will execute when a new session (or
instance) is given to a user when they login.

Execution
It is important to understand when a computation is executed relative to when a value is shown on a
page and to when other values are available to the computation. When using values of items in a
computation, the current session state for that item is the value that will be used. A computation sets an
item value in session state, and any processing (computations, validations, or processes) that use that
item after it has been set will see the results of that computation. When a page is rendered, it will show
what is in the session state for that item at the time it is shown on the page. The computation point is the
setting that determines when the computation is executed. On the page definition screen, there are

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

221

several computation points shown in the page tree. The computation point can be adjusted by clicking
and dragging the computation in the tree to a different computation point, or by editing the
computation and changing the values for sequence and computation point directly. The sequence only
orders the computations within a given computation point. In general, the page renders and processes
as shown on the page definition screen, starting at the top and going down the list to the bottom as
shown. There are only minor exceptions such as dynamic actions and AJAX callbacks, which have
variable points of execution.

Types
Computations have much of the same flexibility as other APEX components. They can be complex or
simple with the full capabilities of the Oracle Database to support them. The types of computations are

• Static Assignment: Simple static text value.

• PL/SQL Function Body: Uses PL/SQL function syntax with a RETURN statement.

• SQL Query (return single value): Any SQL statement as long as it returns a single
row and single column.

• SQL Query (Return colon separated value): SQL used for multi-select items.

• SQL Expression: Expression used in the SELECT portion of an SQL statement.

• PL/SQL Expression: Same as SQL Expression.

• Item Value: Name of an another item in the application.

Computations can be conditional in the same manner as many of the other APEX components. The
conditions can be as complex as the business rules require with the ability to utilize the database
features and APEX session items to evaluate the condition. Conditions evaluating to TRUE will result in
the computation being executed.

Creating a Computation
Your help desk application has a requirement to display the number of days a ticket has been open. The
result should be a derived value and change depending on the day and status of the record being
reviewed. You will accomplish this by putting a new item on the page that displays the result of the
computation.

1. Edit page 210.

2. You’ll use the shortcut this time to create your page item. Use the right mouse
button while over the Ticket Items section of the page rendering tree seen in
Figure 8–21 and click Create Page Item.

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

222

Figure 8–21. Using the shortcut menu to create a new page item

3. Select Display Only and click Next.

4. Enter P210_DAYS_OPEN for the item name. The other values can be left as
defaults, as seen in Figure 8–22

Figure 8–22. Entering an item name

5. For item attributes, leave the default values. Click Next.

6. For settings, leave the default values. Click Next.

7. For source, leave the default values. Click Create Item. Now there’s a new item
in the region that you will use as a container for the calculation.

8. Edit the newly created P210_DAYS_OPEN by double clicking on the item.

9. Update the condition of the item so that it shows only that P210_TICKET_ID is
not null. Figure 8–23 shows the condition type as Value of Item in Expression 1
is NOT NULL and the name of the item as P210_TICKET_ID.

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

223

Figure 8–23. Showing an item only when another item contains a value

10. Click Apply Changes to complete the update of the condition.

11. Click Create Computation using the mouse context menu shown in Figure 8–24.

Figure 8–24. Using the right mouse button shortcut to create a computation

12. Select computation type SQL Query (return single value). All other values
should default similar to those shown in Figure 8–25. Click Next when finished.

Figure 8–25. Setting the computation type

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

224

13. Enter the following SQL statement (also shown in Figure 8–26). Then click the
Create button.

SELECT
 DECODE(status, 'CLOSED', closed, open_or_pending) days_open
FROM
 (
 SELECT
 ROUND(sysdate - t.created_on) open_or_pending,
 NVL(ROUND(t.closed_on - t.created_on),0) closed,
 sl.status status
 FROM
 tickets t,
 status_lookup sl
 WHERE
 t.status_id = sl.status_id
 and t.ticket_id = :P210_TICKET_ID)

Figure 8–26. Entering the SQL statement for a computation

14. Optionally, move the Days Open counter next to the subject using the drag and
drop editor, also located on the context menu. This editor is handy for simple
layout changes, requiring only that you click and drag an item to a new
location. Figure 8–25 shows the element in its new position.

Figure 8–27. The drag and drop layout editor

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

225

To see the results of adding the new item, run the application and navigate to the tickets report
(page 200). Click on one of the Edit icons to bring up the single record view (page 210). You should now
see the results of the computation as a number of days. When starting the process of creating a new
ticket, the field will not be seen because the condition will prevent the field from showing.

Processes
If computations are analogous to database functions, then processes are analogous to database
procedures. A process is a container for a unit of logic.

Processes are arguably the most complex part of APEX. Processes are the tool used to deal with data
processing back to the database as well as references to APIs such as those used to send e-mail and
perform any other business logic required in the application. When dealing with data forms, the APEX
wizard will create built-in processes that manage the reading and writing of data from the form. Those
types of built-in processes are called data manipulation processes.

Processes, similar to computations, can occur both during page rendering and page processing. On
the page definitions editor, the processing locations are identified by the yellow gear icons. Processes
support the APEX condition feature, which allows processes to be written as individual logic units with
conditions determining whether the logic is needed.

Execution Points
Process execution points are the same as for computations. The most commonly used execution points
for processes are “On Submit – After Computations and Validations” and “On Demand – Run this
process when requested by AJAX” as these points support button press activities and dynamic actions.
The full list is as follows:

• On New Instance - (new session)

• On Load - Before header

• On Load - After header

• On Load - Before regions

• On Load - After regions

• On Load - Before footer

• On Load - After footer

• On Submit - Before computations and validations

• On Submit - After computations and validations

• On Demand - Run this process when requested by AJAX

Processes can be defined at the individual page level or at the application level as part of the shared
components. Functionally, page processes and application processes behave the same. The difference is
where business logic is contained. For processes that need to run on all pages, an application process
can be defined. Also, just as with regions, Page Zero can be used to define processes that run on every
page, but only for page rendering.

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

226

Process Types
The different process types each have a different use depending on the requirement. The types and their
uses are as follows:

• PL/SQL: General use for utilizing database PL/SQL logic.

• Reset Pagination: Used to reset pagination features in reports.

• Session State: Used to clear session state values; also referred to as cache.

• Data Manipulation: Built processes for reading and writing to the database.

• Web Services: Submits a request to a web service provider.

• Form Pagination: Most often used in master detail forms.

• Send Email: Declarative interface to easily send e-mail.

• Close Popup Window: Used to support pop-up window handling.

• Run On Demand Process: Calls an application level on-demand process.

Process in the Help Desk Application
The details behind processes can be very complex. In order to provide an adequate example, you will
include a simple process in your help desk application: a requirement for the help desk applications to
keep track of the last time a record was modified. You’ll do this by updating a last updated date on the
record every time it is saved. There’s more than one way to accomplish this task. You’ll do it with a
process.

First, you’ll need to add the LAST_UPDATED field to the TICKETS table. To do this you’ll use the
SQL Workshop again.

1. From the SQL Workshop Drop down menu, choose Object Browser as indicated
in Figure 8–28.

Figure 8–28. Navigating to the SQL Workshop Object Browser

2. Select the TICKETS table from the list of objects on the left hand side.

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

227

3. Click on the Add Column button above the table definition as shown in Figure
8–29.

Figure 8–29. Navigating to the SQL Workshop Object Browser

4. Enter LAST_UPDATED for the for the column name and DATE for the type, and
click Next.

5. Click Finish.

6. Now you can add the process to the page. Edit page 210 of the application.

7. Using the right mouse button context menu, click Create while over the
Processes icon in the processing area, as shown in Figure 8–30.

Figure 8–30. Shortcut for creating a process at a specific process execution point

8. Select PL/SQL from the list of process type options shown in Figure 8–31. Click
the icon, or click the Next button.

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

228

Figure 8–31. List of process types available

9. Give the process a name that identifies the purpose. You’ll name the process
Last Updated as seen in Figure 8–32. The default for sequence number will be
sufficient, and the processing point defaults to the popular On Submit – After
Computations and Validations, which fits your need.
Click Next when finished.

Figure 8–32. Name, sequence, and process point definitions

This is the step where you set the contents of your anonymous PL/SQL block. If you are unfamiliar
with a PL/SQL anonymous block, it is PL/SQL code that has a BEGIN and an END that wrap the
contents. It is necessary to follow PL/SQL syntax conventions including ending statements with semi-
colons. It is possible to nest anonymous blocks of code, but is not necessary for this example.

10. Enter the SQL provided into the area provided (see Figure 8–33).

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

229

UPDATE tickets SET last_updated = sysdate
 WHERE ticket_id = :P210_TICKET_ID;

11. Click the Next button when finished, not the Create Process button, as you still
want to apply a condition to this process.

Figure 8–33. Click the Next button

12. Leave the messages empty. These messages will show up at the top of a page as
a feedback to the user after the process worked as expected or had a failure. For
your requirement you don’t need to notify the user the update date was
changed. Click Next, not the Create Process button.

13. For the condition section, change the “when button pressed” value to SAVE
(Apply Changes) as shown in Figure 8–34. Finally, you may click the Create
Process button.

Figure 8–34. Setting the condition of the process to only work when the Save button is pressed

At this point, the process has been created. Currently, you don’t show the last updated date in the
summary report. In order to see the value on the report, it is necessary to add the Last Updated column
to the query the report draws data from.

1. Edit page 200 (Tickets).

2. Edit the Tickets region by double clicking on the region in the tree.

3. Add the Last Updated date to the source query of the report using the change
highlighted below. Click Apply Changes when finished.

SELECT
 "TICKETS"."TICKET_ID" "TICKET_ID",
 "TICKETS"."SUBJECT" "SUBJECT",
 "TICKETS"."DESCR" "DESCR",

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

230

 "TICKETS"."ASSIGNED_TO" "ASSIGNED_TO",
 "TICKETS"."CREATED_ON" "CREATED_ON",
 "TICKETS"."CLOSED_ON" "CLOSED_ON",
 "TICKETS"."CREATED_BY" "CREATED_BY",
 "STATUS_LOOKUP"."STATUS" "STATUS"
 , "TICKETS"."LAST_UPDATED” "LAST_UPDATED”
FROM
 "STATUS_LOOKUP",
 "TICKETS"
WHERE "STATUS_LOOKUP"."STATUS_ID" = "TICKETS"."STATUS_ID"
and upper(subject) like
'%' || upper(:P200_SEARCH) || '%'
and tickets.status_id like :P200_STATUS_ID

To test and review your change, run the application and navigate to the Tickets report. Edit any
ticket and click the Apply Changes button. You should now see a value for Last Updated report
indicating the current day.

This is a quick example of how you used a process to apply some form-based logic. When the form is
used to make changes, a brief piece of PL/SQL makes a record change automatically. Packages,
procedures, and APIs all would be reachable using processes similar to this one.

PL/SQL Regions
The PL/SQL region type is effectively an open container for PL/SQL with the additional option to
generate output. Oracle Web Application Toolkit (OWA) procedures such as htp.p can be used to
generate the output. References to APEX items can be made using bind variable syntax (:P1_ITEM_NAME),
the v function (v('P1_ITEM_NAME')), or the substitution string syntax (&P1_ITEM_NAME.) to support the
logic contained in the region.

PL/SQL regions differ from process regions in that PL/SQL regions are executed only during page
rendering whereas processes can run both on page processing and page rendering. PL/SQL regions have
the advantage of being able to generate content directly on the page. A use case for this type of output is
the need for a complex report format that is beyond the ability of a standard report template. In that
case, a PL/SQL package that generates the needed HTML output can be written and called by a PL/SQL
region.

In your help desk application, you want to make the home page a bit more useful by adding in a
quick summary of the number of tickets an individual has open. This will only really be applicable if
someone is logged in. So if they are not logged in, a simple greeting message will suffice. You will
accomplish the task of adding the summary by adding a PL/SQL region with some logic to output the
appropriate message.

1. Start by editing page 1.

2. Edit the APEX Issue Tracker Region.

3. In the Identification section, change the type to PL/SQL (anonymous block) as
shown in Figure 8–35.

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

231

Figure 8–35. Creating a PL/SQL region

4. Enter the following code into the Region Source:

DECLARE
 l_count NUMBER;
 l_status_id NUMBER := get_status('OPEN');
BEGIN
IF :APP_USER != 'nobody' THEN
 SELECT count(*)
 INTO l_count
 FROM tickets
 WHERE assigned_to = :APP_USER
 AND status_id = l_status_id;

 htp.p('<h1>Welcome to the APEX Issue Tracking System, '
 || :APP_USER || '</h1>'
 || 'You have ' || l_count || ' Open tickets.
'
 || 'Select an option from the list');

ELSE
 htp.p('<h1>Welcome to the APEX Issue Tracking System</h1>'
 || 'Select an option from the list');
END IF;

END;

The code above implements logic that makes a decision based on the user substitution variable
:APP_USER and tailors the htp.p output according to that distinguishing factor. APEX provides
“nobody” as a username when a user is not yet logged in, so the logic keys off of that value.

When the PL/SQL region is generated for a user not yet logged in, a simple welcome message is
produced (see Figure 8–36). When a user who has credentials is logged into the application, a message
similar to that in Figure 8–37 is produced that shows a user-specific greeting and a quick count of the
number of open tickets assigned to that user.

Figure 8–36. Issue Tracker PL/SQL region when user not yet logged in

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

232

Figure 8–37. With authenticated user, PL/SQL region generates greeting and ticket count

In this section, you have created a dynamic PL/SQL region that alters the output based on the
application user. This section’s example, although simple, shows how the content of a region can be as
dynamic as necessary with the use of the PL/SQL in the database.

Dynamic SQL
Dynamic SQL is a term for SQL that is not finalized at design time, but rather is assembled at runtime by
any number of dynamic criteria. Dynamic SQL is used when the exact requirements of a SQL statement
are not known until runtime, or when the SQL needs to change while the application is running.
Dynamic SQL lets you modify column lists, where clauses, joins, and any other portion of an SQL
statement while an application is running.

APEX supports dynamic SQL in reports and can support PL/SQL functions returning SQL
statements as a result. There are some constraints, however. Functions must return a valid SQL
statement. Depending on the implementation, a statement may need to return a set of generic columns
if the number of columns is not known or will vary.

Your application has the requirement to differentiate public tickets from private ones. To
accomplish that goal, you will implement a Public Flag feature. Implementing the flag will require a
quick update to your data model and then an implementation of Dynamic SQL on the Home Page
report. You’ll start by making the data modification.

1. Navigate to the SQL Workshop.

2. Click SQL Commands icon.

3. Enter the following SQL Statement and click the Run button.

This will add the new column called public_flag to your Tickets table.

ALTER TABLE tickets ADD (public_flag VARCHAR2(1))

4. Enter the following SQL Statement and click the Run button.

This updates all of the current tickets to a default value of N.

UPDATE tickets SET public_flag = 'N'

Now that the data model modifications are complete, move on to the application. You will add the
option to see and edit the new value in the ticket edit screen.

5. Click on the Application Builder tab.

6. Select the application by clicking the corresponding icon or link.

7. Edit page 210 the application.

8. Add an item to the tickets region by right-clicking on the region’s name and
selecting Create Page Item as shown in Figure 8–38.

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

233

Figure 8–38. Adding a page item to be your public flag

9. Select Radio Group item type and click Next.

10. Enter P210_PUBLIC_FLAG for the item name as in Figure 8–39, select Tickets
for the region, and click Next.

Figure 8–39. Specifying the item name

11. Set the label name to Public Flag and the label template to Required with Help
as in Figure 8–40. Click the Next button when finished.

Figure 8–40. Specifying display attributes

12. Set the value required field to Yes and set number of radio columns to 2, as in
Figure 8–41. Click Next when finished.

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

234

Figure 8–41. Marking the value as required

13. Set display null value to No, and enter STATIC:Y,N for the List of Values query
shown in Figure 8–42 . Click Next when finished.

Figure 8–42. The LOV for the flag

14. Set the source type to Database Column, ensure that the database column
name is PUBLIC_FLAG, enter N for the default (as seen in Figure 8–43), and
click Create Item button.

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

235

Figure 8–43. Specifying a database column and default value

15. Use the drag and drop tool to move P210_PUBLIC_FLAG so that it is next to
P210_STATUS_ID, similar to Figure 8–44. This is strictly for ease of reading and
usability. Click Next and then Apply Changes to finish the layout modification.

Figure 8–44. Layout modification for easier usability

Now that you have a PUBLIC_FLAG column in your data model and the ability to control it through
the Tickets form, you can create the Dynamic SQL report on Page 1 to display tickets with a public
option for unauthenticated users.

1. Navigate to and edit Page 1 in your application.

2. Create a new region by clicking the Create button and selecting Region on this
page, as indicated in Figure 8–45.

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

236

Figure 8–45. Creating a region for the SQL to generate your report

3. Select Report and click Next.

4. Select SQL Report and click Next.

5. Enter Current Open Issues for the title, as shown in Figure 8–46. Click the Next
button when finished.

Figure 8–46. Region title and display point

6. Enter the following SQL into the region source. Click the Create Region button
when finished to default all of the remaing settings.

DECLARE
 l_sql VARCHAR2(255);
BEGIN

l_sql := l_sql || q'!
 SELECT
 subject,
 created_on,
 assigned_to
 FROM
 tickets t,
 status_lookup sl
 WHERE

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

237

 t.status_id = sl.status_id
 AND sl.status = 'OPEN'
 !';

IF :APP_USER = 'nobody' THEN
 l_sql := l_sql || q'! AND public_flag = 'Y' !';
END IF;

RETURN l_sql;
END;

To see the results of this report fully, you need to have set a few tickts with the new public setting.
Navigate to the tickets summary screen as a logged in user and change a few OPEN tickets to have the
PUBLIC option set to yes. When navigating to the home screen as a logged in user, a full list of open
tickets should be seen as in Figure 8–47. After logging out, you will see only the tickets that have been
identified as PUBLIC.

Figure 8–47. Resulting report generated from dynamic SQL

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

238

■ Note I used a quoting syntax in the SQL statement that you may not be familiar with. Oracle Database 10g
introduced a quoting mechanism for string lterals that allows you to define your own string delimiters, removing
the need for double up single quotes in strings. Any character can be used as a delimiter, including bracket

combinations () {} [] <>. The basic syntax is q'X string X' where X is any single character. The q'X opens
the literal string and the X' closes the literal string. More details on the literal syntax can be found in the Oracle

Database SQL Language Reference.

Dynamic Actions
One of the new features available with APEX 4 is dynamic actions. They provide a way to define complex
client-side behavior declaratively within the APEX framework. APEX will use the information provided to
generate the required JavaScript code which is then implemented at runtime. Dynamic actions are
event-driven just as manually written JavaScript would be. One of the major advantages of using the
declarative configuration is that APEX understands its own objects such as regions and items, allowing
easy reference and manipulation.

Major Parts
A dynamic action has three major parts:

• When: The event on what type of item will cause the dynamic action to be
evaluated. This can be as simple as an item changes when entered by a user. It can
also be a complex trigger on multiple items simultaneously.

• True Actions: A list of actions to take when the event registers as True. There can
be more than one event declared; each event will have its own set of parameters
and instructions.

• False Actions: A list of actions to take when the event registers as False. Often the
opposite of the True actions, but also not required. Some types of actions will
logically not have a corresponding negative.

As with other parts of APEX, dynamic actions support conditions, authorizations, and build option
features. Another advantage of the declarative nature of dynamic actions in APEX is the inclusion of the
actions in the user interface. When a dynamic action is tied to an item event, it shows in the designer as
part of the tree. This exposes the usage of the JavaScript events to be easily seen and recognized.

Dynamic Actions in the Help Desk Application
For an example, let’s walk through adding a dynamic action to the help desk application. When creating
a dynamic action, the first choice is to choose between the two types of standard or advanced. The
standard dynamic action is a simpler wizard that defaults the event trigger to the value of change and
allows the choice of actions: show, hide, enable, and disable. In contrast, the advanced wizard provides
many additional options for events and action choices. Don’t be fooled. Regardless of which wizard
option you choose, after the dynamic action has been created, the ability to edit any of the settings is the
same.

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

239

1. Edit page 3 of your application.

2. Right-click the P3_FROM item and choose Create Dynamic Action from the
context menu. Using the menu shown in Figure 8–48 is the most direct way to
create a dynamic action.

Figure 8–48. Using right mouse shortcut to create a dynamic action

3. Select Standard for the type of dynamic action, as shown in Figure 8–49, and
click the Next button.

Figure 8–49. Selecting the type of dynamic action to create

4. As shown in Figure 8–50, enter Disable E-Mail Body for the name of the
dynamic action. Just as with other components, the more descriptive the name,
the easier it is to identify.

5. Click the Next button.

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

240

Figure 8–50. Specifying a name

6. Set condition to is null, as shown in Figure 8–51, and click the Next button.

Figure 8–51. Setting a dynamic action’s condition for execution

7. Set the Specify the True Action option to Disable, and select the Create
Opposite False Action check box, as seen in Figure 8–52. Click the Next button.

Figure 8–52. Asking to create only the action for when the condition is false

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

241

8. Set the selection type to Item(s) and in the resulting item(s) shuttle, add
P3_BODY to the right region by double-clicking or using the shuttle buttons.
The end result should look like Figure 8–53. Click the Create button when
complete.

Figure 8–53. The end result before confirming the creation

Now, run page 3. Note that that the message item is disabled until you enter something in the From
item and navigate away. Conversely, if you delete all content from the From item, the Message item will
again become disabled. This is OK, but it would be nicer if the Message item became enabled as soon as
you type anything in the From item. Once a standard dynamic action is created, you can edit its
properties and access many more options that were not available in the wizard. Let’s set the triggering
event to be key release instead of the default change event.

1. Edit page 3 of the application.

2. Double-click on the Disable E-Mail Body dynamic action in the page rendering
tree to edit. In Figure 8–54, you’ll see two dynamic actions with the same name.
It’s the same action; it is shown in two places because of the reference to the
item P3_FROM. This makes it convenient to find actions that are specifically
against an item, or a list of all dynamic actions. At the bottom of the tree, all
dynamic actions on the page will be listed even if they do not reference a
specific item.

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

242

Figure 8–54. Dynamic actions in the page rendering tree

3. In the When region shown in Figure 8–55, change the event to Key Release and
click Apply Changes.

Figure 8–55. Specifying key release as the event

To test this change, start by running page 3 again. The page will open looking like Figure 8–56. Start
typing an address into the From item. As soon as any value is entered, the Message item becomes
enabled as in Figure 8–57. Conversely, the moment you delete all content, the Message item becomes
disabled again.

CHAPTER 8 ■ PROGRAMMATIC ELEMENTS

243

Figure 8–56. Before a value in the From field

Figure 8–57. After a value in the From field

Here you used the Standard Dynamic Actions wizard to create an event to disable and enable an APEX
form item. You then proceeded to modify the event to behave differently using additional options
available to the dynamic action. The end result is a form that responds to input from the user allowing
better interactivity with the user.

Summary
As with any programming language or framework, learning the basics is the first step. In this chapter, I
have touched on a lot of points that could be considered “tips of icebergs.” Each section has capabilities
to reach into a vast set of technologies, with the Oracle database being primary among them. The
intention here is demonstrate how the APEX framework works through the example application and to
provide a starting point for additional detail discovery.

C H A P T E R 9

■ ■ ■

245

Security

The subject of security has varying degrees of implementation; it’s never a black and white answer. The
question of how much security is needed is followed up by additional questions regarding the value of
what is being protected and the risks, repercussions, and likelihood of it being sought after. For every
security measure, there will always be someone trying to circumvent it. In this chapter, we will review
the basic security features and an approach to securing the Ticket application. The concepts reviewed
here apply to all APEX applications and are specific to the APEX framework.

User Maintenance Navigation
In your help desk application, you have the requirement to allow users to be maintained inside of the
application through the web interface. You will add a section to maintain the user accounts and modify
the tab structure to navigate to the newly created form. The form needs to be created first as tabs require
a page to reference.

1. From the application editor screen, click the Create Page button.

2. Select the option for Blank Page.

3. Set the page number to 600, then click the Next button.

4. Enter Users for the name field and set the breadcrumb selection to
Breadcrumb. when the page refreshes, ensure the entry name is Users and click
the Next button.

5. Select No for the “Would you like to use tabs for this new page?” option. Click
the Next button.

6. Click Finish to complete the creation of the page. The completed page should
be empty as shown in Figure 9–1.

Figure 9–1. The newly created page is currently empty with a breadcrumb entry.

Now that you have a Users page, you will make a modification to your navigation tabs. The web design
you desire will have links on the right hand side of the top navigation bar in the location of parent tabs
on the page template. APEX supports one and two level tab navigation as part of the Shared
Components. When the application was created, the option chosen was the one level tab navigation. To

CHAPTER 9 ■ SECURITY

246

implement two level tabs navigation, you will modify the default page template for the application and
modify the tab navigation structure.

■ Note Tab maintenance in APEX can be confusing. The easiest change is to go from some level of tabs to no
tabs, or from no tabs to one or two levels. In this exercise, you will walk through the steps involved with the

converting the existing one level tab to a two level tab configuration to demonstrate the complex configuration

change.

Here’s the process to follow to implement two levels of tabbed navigation:

1. Navigate to the Shared Components area of your application.

2. Under User Interface, click on Themes.

3. Change the report to list view by clicking on the corresponding display icon as
shown in Figure 9–2.

Figure 9–2. Select the list view. The navigation point for the name link will take you to the definition of the

theme.

4. Click on the name of the current theme as indicated by the check mark in the Is
Current column.

5. Under component defaults, set Page to Two Level Tabs – Right Sidebar
(optional / table-based) and click Apply Changes.

6. Navigate back to the Shared Components page.

7. Under Navigation, click Tabs.

8. Click on the Manage Tabs sub-tab shown in Figure 9–3.

CHAPTER 9 ■ SECURITY

247

Figure 9–3. The Manage Tabs sub-tab for graphical representation of tabs

9. Add a parent tab by clicking on the Add link in the upper right corner, as
indicated in Figure 9–4.

Figure 9–4. The parent tabs are added using the add button.

10. Enter Issue Tracker for the parent tab label and click Next.

11. Enter 1 for the page and click Next.

12. Click Create Parent Tab.

13. Add another parent tab by clicking on the Add link, just as before.

14. Enter Admin for the parent tab label and click Next.

15. Enter 600 for the page and click Next.

16. Set the sequence to 20 and click Create Parent Tab.

17. Click on the Admin tab and then click on the Add button in the lower-left
corner indicated in Figure 9–5.

CHAPTER 9 ■ SECURITY

248

Figure 9–5. After clicking the Admin tab, the child tabs shown only apply to that parent.

18. Enter Users for the tab label and click Next.

19. Enter 600 for Tab Current for Page and click Next.

20. Leave the sequence value as the default. Click Next.

21. You do not need a condition at this time, so leave the default condition type.
Click Next.

22. Click Create Tab.

23. Edit the Users tab by clicking on the Edit icon next to the tab. The icon is shown
in Figure 9–6.

Figure 9–6. The Edit icon is the small pencil next to the tab name.

24. As shown in Figure 9–7, enter 610 in the Tab Also Current for Pages field.

Figure 9–7. Setting the Tab Also Current for Pages value will show the active tab style when the application

is displaying any of the page numbers listed.

25. Under Parent Tab Set, set the Parent Tab Set to TS1as, as shown in Figure 9–8.

CHAPTER 9 ■ SECURITY

249

Figure 9–8. The Parent Tab Set value

26. Scroll to the top of the page and click Apply Changes.

Running the application now shows the results seen in Figure 9–9 for the Issue Tracker tab and
Figure 9–10 for the Admin tab. The page that is currently active changes the highlight applied to the
different tab elements. The parent tab location is dependent on the template used. In the template
shown below, the parent tabs are located in the upper right. The standard tabs in this template are the
same as they are for the one level tab layout.

Figure 9–9. Issue Tracker parent tab shows the five standard tabs.

Figure 9–10. Selecting the Admin parent tab changes the standard tabs shown.

You now have a navigational framework to allow clear distinction of items needed to do the
administration of the application. This design is extensible. As the application grows with time,
additional features requiring administration could also be added to this navigational structure.

User Maintenance Data Entry
As part of the help desk design, you want to be able to maintain the users from the application. You will
configure a table in the database as well as a form and report to allow this information to be maintained
by any admin. Locate, upload, and run the script ch9_security_objects.sql. Refer to Chapter 4 if you
need step-by-step instructions. You should see 13 rows, all of which complete successfully.

1. Edit Page 600 of your application.

2. Create a new region by clicking on the Create button and selecting Region on
this page.

3. Select Form and click Next.

4. Select Form with Report and click Next.

CHAPTER 9 ■ SECURITY

250

5. Select your schema for the table/view owner and click Next.

6. Enter USERS for the table/view name and click Next.

7. Set the implementation to Classic, enter 600 for the page number, enter Users
for both the page name and region title, and set the region template to Reports
Region. The settings will look like those in Figure 9–11. Click Next when
finished.

Figure 9–11. Report page setup

8. Select USER_ID and USER_NAME and then click Next. Be sure not to select
PASSWORD, as it is not needed in the report.

9. Select any edit link image and click Next.

10. Enter 610 for the page number and Manage Users for the page name and region
title, as shown in Figure 9–12. When finished, click Next.

Figure 9–12. Defining the name on the Manage User form

CHAPTER 9 ■ SECURITY

251

11. Ensure that the primary key is set to USER_ID and click Next.

12. Select Existing Trigger for the primary key source and click Next.

13. Select the USER_NAME and PASSWORD shown in Figure 9–13 and click Next.

Figure 9–13. Select USER_NAME and PASSWORD as fields to be seen in the form

14. Set Insert, Update, and Delete all to Yes and click Next.

15. Click Finish.

At the completion of these steps, the help desk application has some additional objects. There is the
region on page 600 that is the report of the current users. You will also notice a new page that allows
editing of the data values, including all of the processes to do the corresponding database transaction.
However, there are a few things that you still need to do for the tabs to display properly for Page 610.

16. Edit page 610 of the application.

17. Edit the page attributes by double-clicking on the name of the page.

18. In the Display Attributes region, set the standard tab set to T_ADMIN (Users)
and click Apply Changes, as shown in Figure 9–14. This will use the tab set when
rendering the page.

■ Note This is a different setting than the tab setting that identifies page 610 as being current. If a tab set shows

on the page but without a tab highlighted as active, it is because the page is not identified as current in the tab
settings. Conversely, if the page is listed as active in the tab settings, but the page does not render any tabs, no

tabs will be seen.

CHAPTER 9 ■ SECURITY

252

Figure 9–14. Setting the page tab set will use the tab set when rendering the page.

Page 610 does not yet have a breadcrumb entry associated with it. You can quickly add one.

19. Edit Page 600.

20. In the Shared Components region on the page, edit the breadcrumb by
expanding the breadcrumbs node in the tree and double-clicking on
Breadcrumb:(No corresponding region) seen in Figure 9–15.

Figure 9–15. Breadcrumbs are shown as a shared component on the page editor.

21. On the filter applied to the report page, select the breadcrumb named
Breadcrumb (if it has not already been selected), clear any entry from Page, and
click Set. This will show all of the breadcrumbs for the entire application.

22. Click the Create Breadcrumb Entry button.

23. Enter 610 for the page the breadcrumb will associated with. Set the parent name
to Users (Page 600), enter Manage Users for short name, enter 610 for page in
the Target section, and click Create. The settings are indicated in Figure 9–16.

CHAPTER 9 ■ SECURITY

253

Figure 9–16. Breadcrumb settings for page 610 as a child of page 600

When completed, page 610 will have a Shared Components breadcrumb entry just as page 600.
Running the application will show a breadcrumb entry for the Users Report page and the Manage Users
page as shown in Figure 9–17.

Figure 9–17. Clicking on the Create or Edit buttons of a user record will navigate to page 610, showing the

Manage Users breadcrumb.

■ Note The breadcrumb entry label has (No corresponding region) as part of the name because there is no
breadcrumb region on the current page. So why does it show up when the application is run? In Chapter 5, you

moved the breadcrumb region to Page 0 so it shows up on every page rendered.

Finally, you need to change the item type of P610_PASSWORD to Password, so that it will accept a
user’s input but display * characters as the password is typed. This item type is designed not to retrieve
data when a record is edited, despite being bound to a database column. Also, the item type will not save
any value in session state, meaning it will not remember the value entered after the page processing is

CHAPTER 9 ■ SECURITY

254

complete. This is a security feature to prevent data identified as a password from being retrieved
inappropriately.

24. Edit page 610.

25. Edit the item P610_PASSWORD.

26. Set Display As to Password, as shown in Figure 9–18. Click Apply Changes.

Figure 9–18. Setting the P610_PASSWORD element to a password field

As a security measure, when a user account is created, it should require a password to be set.

27. On page 610, right click the P610_PASSWORD element and click Create
Validation.

28. Select Item Not Null and click Next.

29. Set the validation name to P610_PASSWORD is not null and click Next.

30. Enter “A password must be specified” for the error message and click Next.

31. For a condition, set When Button Pressed to CREATE (Create). Click the Create
button when finished.

This completes the navigation and user interface part of the security scheme you will be
implementing. With the navigation and maintenance in place, you can now implement the
authentication scheme that will utilize the information.

Authentication
The key step in making a secure application is to understand who the accessing user is. APEX refers to
this as authentication. Authentication will answer the question of “who are you?” The APEX tool
provides a series of pre-defined authentication mechanisms including a built-in authentication
framework and an extensible custom framework. At design time, it’s easy to switch between
authentication methods by setting the active scheme. There can only be one active authentication
scheme at a time for an application. The following are the major types of authentication schemes:

• APEX Credentials: Users are managed inside the APEX workspace and are
maintained just as workspace developer accounts.

• LDAP: The user is an existing LDAP-compliant server such as Active Directory or
Oracle Internet Directory.

• Oracle Single Sign On: A documented setup to allow authentication to pass
between APEX and an existing Oracle SSO server. Logging into the SSO server once
will pass the same credentials to all APEX applications.

CHAPTER 9 ■ SECURITY

255

• Database Schema Users: Database user names and passwords determine
authentication; not to be confused with data access in an APEX application.

• Custom: Allows logic to be determined by the developer. An example of usage is
for Internet-facing applications where self-registration may be desired. Another
example is when more than one authentication source is used simultaneously
such as using two LDAP servers.

• Open Door: Used to simulate logging in as different individuals by developer
testing. This is not intended to be used as a public authentication scheme.

• None: This option is intended to allow all parts of the application to be reachable
without needing a user to log in.

Each application has its own set of authentication schemes managed as part of the Shared
Components part of the application. Authentication schemes can be copied between applications when
needed. This ability to copy is especially useful when a custom authentication scheme has been
developed and is desired in more than one application. The authentication schemes also utilize the
APEX subscription framework to allow a master copy to be applied to subscribers inside of a single
workspace.

Custom Authentication Schemes
In the previous section, the script that was imported included definitions for tables, triggers, and
functions. You will use those elements as part of your custom authentication scheme. The key
component of the authentication scheme is a function that will compare the given user name and
password to the stored values in the USERS table. If there is a match, then the user will be authenticated.
You can review the database objects and PL/SQL function code from the SQL Workshop for more details
on how this is implemented.

■ Note Although the USERS table contains a field named password, it’s not the actual password value; it’s an

encrypted hash of the password. Passwords should not be stored as plain text.

Here’s the process to follow to create your authentication scheme:

1. Navigate to the Shared Components of your application.

2. In the Security region, click on Authentication Schemes; it’s the first one in the
list shown in Figure 9–19.

CHAPTER 9 ■ SECURITY

256

Figure 9–19. Security settings are part of the shared components of an application.

3. Click the Create button in the upper right of the Authentication Schemes tab.

4. Select From Scratch and click Next.

5. Enter Custom Authentication Scheme for the name and click Next.

6. Leave the Page Sentry function blank and click Next.

7. Leave the Session Verification function blank and click Next.

8. For Invalid Session Target, select the radio button next to Page in This
Application. After the page refreshes, set the page to 101 Login, as shown in
Figure 9–20. Click Next to continue.

Figure 9–20. Set the login page that will be seen by users when they need to authenticate.

9. Leave the Pre-Authentication Process blank and click Next.

10. Set the Credentials Verification Method to Use my custom function to
authenticate. When the page refreshes, enter RETURN authenticate_user into
the Authentication Function region and click Next. Figure 9–21 shows the
settings applied.

CHAPTER 9 ■ SECURITY

257

Figure 9–21. Custom authentication function setting

■ Note There are no parameters used here or any PL/SQL semicolon. This is part of the definition of how APEX
handles custom authentication functions. The authenticat_user function that was imported earlier conforms to
the expected signature: Function returning a BOOLEAN value with two parameters of p_username varcahr(255)

and p_password varchar2(255).

11. Leave the Post-Authentication Process blank and click Next.

12. Leave the cookie name, path, and domain blank and click Next.

13. The logout value utilizes the standard APEX Logout API. The API is used to
invalidate the session cookie and redirect to another APEX page after logout.
Because of the complex syntax, a copy of the needed value is included as part of
the book files under the name ch9_logout.txt. Click Next after setting the
logout URL.

wwv_flow_custom_auth_std.logout?p_this_flow=&APP_ID.&p_next_flow_page_sess=&APP_ID.:1

■ Note The last parameter is the page where the user will be redirected after logout. The given URL will redirect

to page 1.

CHAPTER 9 ■ SECURITY

258

14. Make sure that the settings match those in Figure 9–21 and click Create
Scheme.

Figure 9–22. Authentication scheme settings

Now that you have your custom authentication scheme, you need to activate it, or make it the
current scheme.

15. Click the Change Current sub-tab shown in Figure 9–23.

16. Set the Available Authentication Schemes to CUSTOM AUTHENTICATION
SCHEME and then click Next.

17. Click Make Current.

Figure 9–23. Change current authentication scheme

CHAPTER 9 ■ SECURITY

259

Run your application and if logged in, log out.
Your application is now using the values stored in the USERS table and will no longer accept your

APEX credentials. You can sign on as any of the following users: Scott, Doug, Martin, Karen, Patrick, or
Tim; all passwords are “apress” in lower case.

Conditional Security
Many aspects of APEX are conditional. One pair of conditions are particularly applicable to the
Authentication status: User is the Public User and User is Authenticated. For applications that expose
parts to unauthenticated users, this ability to allow functions to public users is very useful.

By applying security rules to the help desk application, usability can be improved by restricting the
display of tabs that are not available to the public. This avoids confusion and improves the overall user
experience when accessing the application. Let’s walk through the application of this condition.

1. Edit page 1 of the application.

2. In the Shared Components region, edit the Admin tab by expanding the parent
tabs node and double-clicking on Admin. Figure 9–24 shows the location of the
Admin tab in the navigation tree.

Figure 9–24. The tabs are grouped under tab sets

3. In the Conditional Tab Display region, set the Tab Display Condition to User is
Authenticated (not public) and click Apply Changes. Figure 9–25 shows the
expected value of the condition.

Figure 9–25. Display condition will prevent the tab from displaying until the user is logged in.

4. Repeat steps 2 and 3 for the Tickets, Analysis, Calendar, and Chart tabs.

CHAPTER 9 ■ SECURITY

260

Run the application now and click the logout link. The Admin parent tab as well as the remaining
standard tabs should disappear, with the exception of the Home tab. Logging in again should restore the
display of the tabs as they were previously seen.

Access Control and Authorization
APEX includes a built-in feature for creating an access control framework with three roles:
Administration, Edit, and View. The wizard is designed to create data structures to store the roles, pages
to edit the assignments, and authorization schemes to be utilized throughout an application. This
wizard makes the job of creating basic security capability very easy in an application. The summary of
the objects created can be seen in Figure 9–27 as the last step in the wizard.

1. Run the application and click Create in the developer’s toolbar

2. Select New Page and click Next.

3. Select Access Control and click Next.

4. Enter 620 for the administration page number and click Next

5. Select Use an existing tab set and create a new tab within the existing tab set,
allow the page to refresh, and then set the tab set to T_ADMIN (Users), as
shown in Figure 9–26.

Figure 9–26. Assign page 620 to a new tab under the Admin tab set

6. Enter Access Control for the new tab label and click Next.

7. Click Finish as shown in Figure 9–27.

CHAPTER 9 ■ SECURITY

261

Figure 9–27. A summary of objects that will be created as part of the Access Control wizard

With completion of the wizard, all of the objects have been created and are available for use. Before
you enable the security utility, you need to add some users to allow you to use the admin functions.
Running the application now, you may notice that the user name is simply an open text field. You should
create a list of values (LOV) as a shared component that contains all of the users for whom you want to
control access. As the access control page is now part of the application, you can alter it as needed. To
increase the quality of the data entered, you will update the user field to be a select list.

8. Edit page 620.

9. Edit the report attributes for the Access Control List report.

10. Edit the ADMIN_USERNAME column.

11. In the Column Attributes region, set Display As to Select List (query based LOV).

12. In the List of Values region, enter the following SQL Statement in the List of
Values Definition and click Apply Changes.

SELECT user_name d, user_name r
FROM users

Next, you need to associate a privilege with each of your users with the Access Control pages.

13. Run your application.

14. Click the Access Control sub-tab.

15. Click Add User.

16. Select Scott for the username, set the privilege to Administrator and click Add
User.

17. Select Doug for the username, set the privilege to Edit and click Add User.

18. Select Patrick for the username, set the privilege to Edit and click Add User.

CHAPTER 9 ■ SECURITY

262

19. Enter Martin for the username, set the privilege to View and click Apply
Changes.

Your results should look similar to those in Figure 9–28. Every time a new user is added, the listing in
the report will update. You can now use these users to test the application.

Figure 9–28. The Access Control list with user names and privileges

One of the features of the Access Control utility is the ability to enable or disable the enforcement of
the utility itself. Running page 620 will show the header seen in Figure 9–30. By default, the Access
Control utility is set to full access. To enable the Access Control features, you set the mode using the
following steps:

20. Run page 620.

21. Select the third application mode to Public read only… and click the Set
Application Mode button seen in Figure 9–29.

Figure 9–29. The Access Control list enabled as public read only

You now have the editing forms in place and all of the data setup properly, although the application
is not utilizing any of the authorization schemes. The last step in this process is to start locking down
pages using the authorization schemes.

22. Edit page 620.

23. Edit the page attributes by double-clicking on the page name.

24. In the Security region, set the authorization scheme to access control –
administrator, as shown in Figure 9–30. Click Apply Changes when done.

CHAPTER 9 ■ SECURITY

263

Figure 9–30. Setting the authorization scheme at a page level

25. Repeat steps 23 and 24 above for pages 600 and 610.

Now that the new authorization scheme has been implemented, you can test the security behavior.
Only a user setup with the Administrator setting on the Access Control page will be able to use the admin
pages 600 through 620.

Log into the application as the user Scott and you will be able to navigate all of the administration
functions. Logging in as any other user and clicking on the Admin parent tab will result in the message
shown in Figure 9–31.

Figure 9–31. Error message generated when the authorization scheme returns a denied result

The error message in Figure 9–31 is not very friendly. An application should make every effort to
avoid the type of event that would cause a privilege error. In this application, the Admin tab should be
removed from the page when it does not meet the access restrictions. You will accomplish this using the
same authorization scheme applied to the tab itself.

26. Edit page 600 in your application.

27. Expand the Parent Tabs node under the Shared Components region, and
double-click on Admin indicated in Figure 9–32.

Figure 9–32. When editing page 600, the Admin tab will be in the first tab set group.

CHAPTER 9 ■ SECURITY

264

28. Under Authorization, set the authorization scheme to access control –
administrator and click Apply Changes.

Now when running the application, if the user is not privileged with administrator access, the tab
will not display. This avoids the event that would cause the user to see the access denied error message.

You have applied the authorization scheme at the page level and tab level for the administration
pages. Next, you will remove the ability for a view-only user to create new records by associating the Edit
authorization scheme with the button required to create tickets.

29. Edit page 200 of your application.

30. Edit the Create button by double-clicking its name.

31. Under Security, shown in Figure 9–33, set the authorization scheme to access
control – edit and click Apply Changes.

Figure 9–33. Security setting for the buttons

32. Repeat steps 30 and 31 for the Manage Multiple Tickets button.

To test this change, you will log in with the user name Martin. This user has been granted view
privileges, so the buttons on page 200 aren’t shown. Does this mean that Martin can’t create tickets?

Let’s review the steps you applied to the Admin pages. Security was first applied to the page itself,
and then additional security was applied to prevent the access denied error. In the case of the buttons to
create tickets, security to remove the buttons does not prevent the page from being run directly either
from the developer tool or from changing the page number in the URL to page 210 or 230.

■ Important Removing or hiding a button, tab, or other link doesn’t secure the target it was pointing at; it only

helps reduce errors seen by users on components that are already secure.

The design for the help desk application only has the Multiple Tickets page only available to users with
edit privileges, so the entire page will be secured at the edit level. The single record view of a ticket will
continue to be visible to all authenticated users, but without the buttons related to record manipulation.

33. Edit page 210 of your application.

34. Edit the Create button in the Tickets region by double-clicking its name.

35. Under Security, set the authorization scheme to access control – edit and click
Apply Changes.

36. Repeat steps 34 and 35 for the Delete and Save buttons as well as the second
Create button located in the Ticket Details region.

CHAPTER 9 ■ SECURITY

265

37. Edit page 220 of your application.

38. Edit the Create button by double-clicking its name.

39. Under Authorization, set the authorization scheme to access control – edit and
click Apply Changes.

40. Repeat steps 40 and 41 for the Delete and Save buttons.

41. Edit page 230 of your application.

42. Edit the page attributes by double-clicking on the page name.

43. In the Security region, set the authorization scheme to access control – edit and
click Apply Changes.

Review the application now with different users. Notice how the user Martin can still navigate from
the Tickets report to view the details of the ticket, but there are no buttons to modify the records in the
database. Even though the form elements are editable, they are not written back to the database without
the proper form submission.

Read-Only Items
Normally, users can edit the contents of an item in APEX. There are instances where you want to
prohibit them from doing so, but you don’t want to hide the item entirely. At the conclusion of the
previous step, the user Martin does not have the ability to edit the ticket information even though the
form looks like it can be changed. To assist in preventing changes, each item in APEX has a read-only
attribute that you can programmatically set. The approach is similar to how item conditions are
managed. Since the read-only attribute can’t make use of an authorization scheme, you can use the
APEX API APEX_UTIL.PUBLIC_CHECK_AUTHORIZATION to determine whether or not a user has the ability to
edit the data. This API takes a parameter of the authorization scheme name and will run the verification
returning a Boolean result that can be used in PL/SQL logic.

1. Navigate to and edit items indicated in Table 9–1 by double clicking on the
name on the respective page.

2. Under the Read Only section, set the condition type to PL/SQL Function Body
Returning a Boolean, as shown in Figure 9–34. Set the value for Expression 1 to
the following:

RETURN NOT APEX_UTIL.PUBLIC_CHECK_AUTHORIZATION('access control - edit');

CHAPTER 9 ■ SECURITY

266

Table 9–1. Items That Require The Read-Only Attribute

Page Number Page 210 Page 220

Items to Update P210_SUBJECT

P210_DESCR

P210_ASSIGNED_TO

P210_CREATED_BY

P210_CLOSED_ON

P210_STATUS_ID

P210_PUBLIC_FLAG

P220_DETAILS

P220_ATTACHMENT

P220_CREATED_BY

■ Note I recommend that you use the Page Edit Selection button in the following steps for editing the read-only
setting shown in Figure 9–34. The settings for Conditions and Read Only regions are close to each other and
contain similar options. Using the selection buttons at the top of the page editor makes navigation much more

efficient and prevents confusion with the Conditions region. Clicking on the > icon to advance to the next item is a
shortcut for moving between successive items on a page. Your changes will be saved when using the arrows to

switch items. Figure 9–34 shows the location in the upper right corner.

Figure 9–34. Editing the read-only condition to utilize the authorization scheme

When running the application as Martin, information about a ticket on page 210 shows data without
the confusion of form elements. Authenticating as any other user will show the data in form elements
and display the corresponding buttons. Results of the read-only view are shown in Figure 9–35; compare
them to the form in edit mode shown in Figure 9–36.

CHAPTER 9 ■ SECURITY

267

Figure 9–35. Ticket record in read-only mode

Figure 9–36. Ticket record in edit mode

Data Security
At this point, the majority of the application is relatively secure. What you don’t have is data security
applied to segregate the data between application users. Any authenticated user can see and make
changes to any other user’s records. APEX does not provide any built-in construct for securing data.
APEX does support and work well with other Oracle technologies that secure data such as Virtual Private
Database, Oracle Label Security, and Transparent Data Encryption.

While there are a number of ways to deal with data segregation and security, one of the simpler
methods is to use a view to enforce the data available to a user in place of all references to the base table.
This method is effective and works with all versions of the Oracle database. The process works by adding
a securing function to the view that utilizes the current APEX user name filtering out the data from other
users.

To implement the data security, you will run a script that will create a new view named
ticket_SECURE_V and then re-create the other two views, TICKET_ACTIVITY_V and TICKET_V, so that they
point to the secured view rather than the TICKETS table directly. Then you will make modifications to the
other key components of the pages accessing ticket data to also use the new secure views.

1. Locate, upload, and run the script ch9_data_security_script.sql. Refer to
Chapter 4 if step-by-step instructions are needed. You should see three rows, all
of which complete successfully.

CHAPTER 9 ■ SECURITY

268

2. Once the script completes, run your application and navigate to the Analysis
page. You should notice that only tickets or ticket details that are assigned to
the user that you’re logged in as appear.

Next, you’ll make changes to the source of your reports and tabular form.

3. Edit page 200 of your application.

4. Edit the Tickets report by double-clicking on it.

5. Locate and open the file ch9_report_p200.txt and copy its contents into the
Region Source, replacing everything that is there and click Apply Changes.

6. Run page 200 and notice that you can only see the tickets that are assigned to
the current user.

You need to make a similar change on the Manage Multiple Tickets page.

7. Edit page 230 of your application.

8. Edit the Manage Multiple Tickets report by double-clicking on it.

9. Locate and open the file ch9_report_p230.txt and copy its contents into the
Region Source, replacing everything that is there and click Apply Changes when
complete.

10. Run page 230 and notice that you can only see the tickets that are assigned to
the current user.

Next, you’ll modify the Calendar report.

11. Edit page 400 of your application.

12. Right-click the Ticket Activity Calendar and click Edit Calendar.

13. Under the Tasks region on the right side of the page, click Convert to SQL Based
calendar. Figure 9–37 shows the location of the link. Clicking the link will
generate a conformation message and remain on the same page.

Figure 9–37. Tasks region on the right side of the Calendar Attributes tab

CHAPTER 9 ■ SECURITY

269

14. Click the Region Definition tab.

15. Locate and open the file ch9_report_p400.txt and copy its contents into the
Region Source, replacing everything that is there. Click Apply Changes when
complete.

Lastly, you should also apply this rule to the chart, as it is still allowing you to see the status from all
records in the system, which is inaccurate.

16. Edit page 500 of your application.

17. Edit the chart attributes by right-clicking on the chart name and selecting Edit
Chart from the context menu.

18. Edit Series 1 by clicking on the corresponding icon indicated in Figure 9–38.

Figure 9–38. Each chart data series is edited independantly

19. Locate and open the file ch9_report_p500.txt and copy its contents into the
SQL region, replacing everything that is there and click Apply Changes.

20. Run page 500 and notice that the chart only reflects the status of either
unassigned tickets or tickets that are assigned the current user.

This is a huge leap forward in data security, but you’re not quite finished yet. You may have noticed
that if you edit one of your records on page 210, you can use the Next and Previous buttons in the upper
right corner to see records that belong to other users. Thus, you need to plug this security hole as well.

21. Edit page 210 of your application.

22. The location of the process Get Next or Previous Primary Key Value is shown in
Figure 9–39. Edit the process by double clicking the name.

CHAPTER 9 ■ SECURITY

270

Figure 9–39. The location of the Get Next or Previous Primary Key Value process

23. Change the value of table name to TICKETS_SECURE_V as shown in Figure 9–40.
Click Apply Changes when completed.

Figure 9–40. Update the source for fetching next record

Now all of your data is secured based on who is signed on to the system. Or is it?

Session State Protection
One of the most common ways to compromise a web application is through a form of attack known as
URL tampering. You don’t need to be a programmer or hacker to launch this type of attack—all you need
to do is alter the URL in your browser. APEX introduced the session state protection feature in release
2.2. When enabled, it adds a checksum value to the URL. If any portion of the URL is altered, the
resulting checksum will not match what is expected and the page will simply not render. Implementing
session state protection is simple and recommended for any report based on sensitive data.

In the previous exercise, you secured the data from the report pages and a navigation component.
However, you did nothing to protect pages 210 and 220 where the actual changes are made. Thus, if a
user were to tamper with the APEX URL, it would be quite trivial for them to view and edit other user’s
tickets. This is easily visible from the page 200 report. The end of the URL link on the report clearly
shows P210_TICKET_ID:10 where 10 in this case is the ticket number. Changing that number in the URL
directly will cause APEX to fetch the new record ID automatically.

You can prevent this from happening in just a few easy steps, using APEX’s session state protection
functionality.

1. Go to the Shared Components region of your application.

2. In the Security region, click Session State Protection.

3. Click Page.

CHAPTER 9 ■ SECURITY

271

4. Click on the link for page 210 – Manage Tickets.

5. Set Page Access Protection to Arguments Must Have Checksum, set the Display
Item Type to Data Entry Items, set the Item Session State Protection for
P210_TICKET_ID to Checksum Required – Session Level and click Apply
Changes. Figure 9–41 shows the session state protection settings for page 210.

Figure 9–41. Session state protection settings for page 210

Now run the Tickets report on page 200 in your application. Hover your mouse over the Edit icon
and examine the URL. Notice the &cs= portion of the URL. The &cs= parameter is the checksum that was
automatically generated by APEX. Alter the value for P210_TICKET_ID in the URL, or remove &cs= and
everything to the right, and try to run the page. You will receive an error message similar to that shown in
Figure 9–42.

Figure 9–42. Checksum error message as a result of URL tampering

Summary
In this chapter, you have applied new security to the help desk application by utilizing the key features of
APEX. You implemented a new custom authentication scheme to allow control over users who access
the sensitive parts of the application. You also reviewed conditional security with both authenticated
and un-authenticated individuals and added parameters to allow the application to be used by both.

C H A P T E R 10

■ ■ ■

273

Application Deployment

This chapter will cover how to get an application out of the system in a form that can be easily migrated
or stored and how to transfer that application back into the system using the same process. The concept
of application migration and deployment is always something to consider when planning your
application. In the case of APEX, it’s very straightforward.

Exporting
An application export is simple to obtain. The interface includes a process designed to generate scripts
for migrating APEX applications. As APEX is a set of metadata in the APEX workspace, creating a script
that allows that metadata to be transferred is all that is needed. Let’s make an export of the help desk
application.

1. Export capability is located on the Application Builder main page shown in
Figure 10–1 or on the application’s Edit page. Both options navigate to the same
location. You’ll use the one on the Application Builder main page. Click the
Export button.

Figure 10–1. The export and import buttons are located on the main button bar inside an application

2. Select the Application tab or the Database Application link, as indicated in
Figure 10–2. Select the help desk application and click the Set Application
button.

Figure 10–2. Any application in the workspace can be selected for export

CHAPTER 10 ■ APPLICATION DEPLOYMENT

274

3. A number of options will be available for the export of an application. The
default settings shown in Figure 10–3 will work for the purpose of this exercise.
After adjusting the settings, click the Export Application button at the top of the
form.

Figure 10–3. Options for the export application

4. Depending on your browser and OS settings, you will be prompted to download
and save the resulting file. Place the file somewhere easy to retrieve.

The downloaded file contains a large script that defines all of the contents of the application built in
APEX. With the application pages are the shared components, including authentication schemes,
authorization schemes, themes in the application, user interface settings, and reports. This script can, in
turn, be imported into the same workspace, a different workspace, or even a different server.

It is important to realize that the export is the application only. The database objects, database
permissions, static files, images, and cascading style sheets need to be migrated separately. You can
create scripts for the database objects by using the SQL Workshop DDL generator tool.

CHAPTER 10 ■ APPLICATION DEPLOYMENT

275

Importing
APEX applications can be imported by simply providing the application export script. You can import
into a different workspace or into the original workspace. Using the previous export file, you will re-
import the same application into the original workspace.

1. From the Application Builder home page, click on the Import button.

2. When prompted to specify the file, as shown in Figure 10–4, click the Browse
button and locate the application export file. The file type will be identified as
database application. Click the Next button once you’ve specified the file.

Figure 10–4. Import file identified as a database application

The message you receive in Figure 10–5 indicates that the file has been uploaded from your
computer to the server. Remember that the application file is a script. At the moment, it has not been
run; therefore the application is not installed.

3. To install the application, click the Next button.

Figure 10–5. File upload success. Continue to install the application.

CHAPTER 10 ■ APPLICATION DEPLOYMENT

276

4. APEX prompts for a few key pieces of information, as shown in Figure 10–6. The
parsing schema can be any of the database schemas available to the workspace.
The build status allows the application to be set to a runtime mode, which is
useful for production environments; the default allows run and build (or edit)
mode. The final category concerns application ID values; the default option is
to assign a new application ID when installed, which allows the same
application to exist in the workspace multiple times—each time under a
different ID. Click Install to continue.

Figure 10–6. Installing the application into the workspace

5. After a short wait, you should see a screen like Figure 10–7 indicating that the
application has been installed successfully. This completes the wizard.

Figure 10–7. Successful installation of an application

At the end of the wizard, the third option may seem a little silly as the application came from the
same version of APEX that you are currently running. However, the upgrade application option is handy
when importing an application created in a previous version of APEX. In such cases, the upgrade
application option can be a useful tool for quickly identifying areas that may benefit from the new
technology in the current version. Don’t worry if you bypass the upgrade application option; it is
available at any time under the Utilities menu of the application editor.

Your results as seen in the application builder should be similar to those in Figure 10–8. You should
notice two applications with the same title but different application values. The time of update is a good
indication that application 127 is the newer version.

CHAPTER 10 ■ APPLICATION DEPLOYMENT

277

It is a good practice to distinguish applications with the same name within a workspace in some
manner. Approaches include using group assignments, changing the name of the application to reflect
the purpose, or utilizing the application version. The version and other attributes can be seen by
utilizing an interactive report.

Figure 10–8. Two applications with the same name but different ID values

Both applications will operate independently. Keep in mind that any data activity operates against
the database user. Changes to data or database structures are common for both applications. For
example, you can enter a help request from one application and view that same request from the other
application.

■ Note Applications can also be duplicated using the copy application process under the Tasks menu of a

specific application.

Supporting Objects
The method outlined during the export process is simply for exporting the application. It does not take
into account the database objects. APEX does provide additional capability for installing database
objects used by an application. Such objects are referred to as supporting objects. You can make use of a
feature called Supporting Objects Scripting when you require a complete installation process that
includes both application and database objects.

Figure 10–9 shows the main interface for the supporting object script definition. It consists of three
major parts: installation, upgrade, and deinstallation. When an application is exported, there is an
option to include the supporting objects. When the option is set, the export file will include the scripts
and messages of the shared component and allow them to be used during import or removal of the
application.

CHAPTER 10 ■ APPLICATION DEPLOYMENT

278

Figure 10–9. Supporting object options

After an application import, APEX will prompt the user to install the supporting objects, as shown in
Figure 10–10. This is an optional step and can also be executed manually from the supporting objects
screen in the application. When an application requires an upgrade, existing objects need to be
examined to determine of a different set of upgrade scripts are needed.

Figure 10–10. Supporting object installation after application import installation

Depending on the complexity of the application and the value of the existing data, it may be
necessary to develop complex scripts. When an application has successive revisions, it may be necessary

CHAPTER 10 ■ APPLICATION DEPLOYMENT

279

to move or alter data structures for one version differently than from another version. This possibility
needs to be part of the design consideration when developing installation scripts.

Deinstall scripts also require special consideration. When you ask to delete an application, APEX will
also prompt you to deinstall supporting objects. When writing a script that will remove objects, it is a
good practice to articulate the extent of that script, especially if it will result in the loss of data. The
Supporting Objects Scripting feature allows you to construct messages that effectively communicate
with the user.

■ Note If the intent is to design an application that will be distributed, it is important to create table names that
are as unique as possible. For example, in your help desk application, the table USERS may already exist in some

environments, resulting in a name conflict. This type of conflict needs to be considered when doing any object

scripting.

Summary
APEX has built-in migration capability. The export and import capabilities are easy to use and very
functional. The additional capability of constructing installation scripts to manage the database side of
an application goes a long way toward the ability to deploy self-standing applications in one process.

C H A P T E R 11

■ ■ ■

281

Understanding Websheets

Websheets, a new marquee feature of APEX 4.0, deliver end user control over both web content and
structure. In the early days of APEX, when it was still known as Project Marvel and later HTML DB, some
people thought that end users could use APEX to develop their own applications. While this was true for
simple spreadsheet-like applications, most end users were not comfortable building web applications
that needed an underlying normalized database together with snippets of SQL, PL/SQL, and JavaScript.
Websheets now fulfill the early promise of end user development for web content like blogs, wikis, and
very simple business applications. Websheets give the end users this power without forcing them to
learn how to normalize a database and write code. Everything in websheets, except a few optional
advanced features, is declarative.

Websheets have been designed so that they are easy to use. However, like all computer tools, there
is an associated learning curve. That’s the bad news. The good news is that the learning curve is very
shallow. The tool relies heavily on wizards that lead you intuitively through the content creation
processes.

This chapter outlines the underlying structure of websheets, describes the navigation style, and
highlights some of the handy features that will make you productive. This chapter concentrates on what
websheets can do; Chapter 12 concentrates on how websheets are built by leading you through some
step-by-step scenarios. After reading this chapter and working through the next chapter you will be able
to quickly create professional looking web content.

■ Note As you read through this chapter, you may find yourself wondering how to create some of what is
discussed. Not to worry. The examples in the next chapter provide an in-depth look at the major tasks involved in
creating a websheet. This chapter provides the background that will enable you to follow along with and fully

understand the upcoming examples.

Websheet Structure
The fundamental building blocks of a websheet (see Figure 11–1) are simple to envision. A websheet is a
container for web pages. The web pages, in turn, are containers for sections. A section, which is similar
to a region in an APEX database application, contains your content. Annotations are used to enhance the
content and the search functionality.

There are four section types.

Text: Text sections contain text that is easily formatted. Links to other content
and images are embedded within the text by using very simple markup syntax.

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

282

Navigation: Navigation sections help you navigate through your hierarchy of
pages. Creating these sections requires very little thought or effort on your part.
You can also set up navigation within a long page by using section navigation.

Data: Data sections are used to display data in a row and column format that is
similar to a spreadsheet. There are two types of data sections: report and data
grid. A report is used to display read-only data from outside your websheet.
Data grids are spreadsheet-like objects that you build. You are responsible for
defining the columns, adding data entry business rules, providing default
values, etc. If you have used spreadsheets, you will find this work relatively easy
to do.

Chart: Chart sections are used to display graphs. Chart sections get their data
from data sections. You link a chart section to a data section by using a simple
intuitive wizard.

Figure 11–1. Websheet structure

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

283

Navigation
I will speak of websheet navigation in two contexts. First, I will discuss navigating through a websheet's
content. Second, I will discuss navigating through the pages that are used to build a websheet. Be
mindful that, in practice, you will frequently flip back and forth between these two contexts.

In both contexts, there are usually several ways to navigate to a given page or section. The duplicate
navigation choices might cause you a bit of confusion at first. However, after you work with websheets
for a while you will find that the navigation choices are helpful and intuitive. This chapter does not
document every possible navigation path; instead, it shows you where to look for navigation links so that
you can quickly find a comfortable navigation style that works for you.

Content Navigation
Content navigation enables you to quickly go to pages and sections within a page. Page navigation is
mandatory. Section navigation is optional and is useful on long pages that require a lot of vertical
scrolling.

Page navigation is created in two ways. First, the websheet itself automatically creates page
navigation by adding breadcrumbs and right hand side sections that contain links to child and peer
pages (see Figure 11.2). For small websheets, the breadcrumbs and the right side navigation sections
might be all you need.

Figure 11–2. Page navigation created by the websheet

Second, you can add page navigation manually by creating a page navigation section. You can also
embed explicit page links in the page content (see Figure 11–3). The details for adding a page navigation
section is discussed later under the heading "Navigation Sections." Embedded links are discussed in
detail in the "Markup Syntax" section.

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

284

Figure 11–3. Page navigation created by the user

Section navigation is optional. It’s good for content-heavy pages that require a great deal of scrolling to
reach the bottom of the page. Section navigation is almost identical to page navigation (see Figure 11–4).
The main difference between page and section navigation sections is the lack of hierarchy in section
navigation; sections have no children.

Figure 11–4. Section navigation created by the user

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

285

Structural Navigation
Structural navigation is used to access the pages that are used to build and update the structure and
content of websheets. On most websheet pages, there are two areas that enable you to access the
structural pages (see Figure 11–5). The first area contains the drop-down menus at the top of the pages.
These menus do not change from page to page. The second area is located on the right side of every
page. This area contains a set of sections that, in turn, contain links to the various structural pages.
These sections and links vary from page to page and are tailored to the page's context.

In addition to these areas, some structural links are embedded in the content sections. These
embedded links are convenient for getting to the Edit page for the content that is currently being
displayed.

Figure 11–5. Structural navigation

Help
Do not overlook the Help link (see Figure 11–6). The help is clear, concise, and useful. Clicking the Help
link invokes a pop-up page that contains mostly static information that you can read at your leisure. I
strongly recommend that you do so; it will take only a few minutes of your time.

Figure 11–6. Help link

In addition to the static information, there is one tab that contains dynamic information. The
Application Content tab contains complete lists of all the websheet's pages, sections, files, images, data

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

286

grids, and reports (see Figure 11–7). These lists are presented in interactive reports that you can tailor to
suit your needs.

All of the interactive reports contain a column that displays the explicit markup syntax that enables
you to embed links to the listed objects directly in your content. This saves you the effort of having to
remember the details of the markup syntax and typing it manually; you also avoid the aggravation of
debugging typos.

Figure 11–7. Help - Application Content tab

An example of how the markup syntax is used is shown in Figure 11–8. A link to the Results page is
embedded in the content in the Important News text section. Pressing the Edit link in the Important
News text section takes you to the corresponding Edit page (see Figure 11–9) where the underlying
markup syntax for this example is illustrated.

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

287

Figure 11–8. Resulting content of markup syntax

Figure 11–9. Embedded markup syntax

Markup Syntax
The markup syntax that is used to embed links in your web content looks a bit like a computer language.
End users might find the syntax a bit intimidating; however, the syntax structure is simple, forgiving, and
well documented on the Help page.

The markup syntax is simple:

 [[LINK_TYPE: LINK_TARGET | LINK_NAME]]

The opening and closing delimiters are two square brackets that are easy to read. The LINK_TYPE is
a keyword with a trailing colon. The available LINK_TYPEs are described in Table 11–1.

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

288

Table 11–1. LINK-TYPEs and Descriptions

page: Links to a page in the websheet.

section: Links to a section in the websheet

url: and popupurl: Links to a URL

file: Downloads the target file to the user's computer.

image: Displays an image on the page in a text section.

data grid: or datagrid Links to a data grid's Edit page.

report: Links to a read-only report page.

sql: Displays the result of a SQL statement in a grid.

sqlvalue: Displays a single value from a SQL statement.

The LINK_TARGET specifies the object that is displayed when you click on the link. For a page link,
the LINK_TARGET is the page alias. For a file, the LINK_TARGET is the file name or alias. The only
exception to this pattern is the sql: LINK_TYPE. The sql: LINK_TYPE's LINK_TARGET is not a link; it’s a
SQL statement that returns data in rows and columns. The SQL data is automatically displayed when the
page is displayed. The sql: syntax is also referred to as SQL tags and this feature must be turned on by an
administrator in the application properties area. This is covered later in the "Reports - Setup" section.

A vertical bar character separates the LINK_TARGET and the LINK_NAME. The only fussy part of the
syntax is the single spaces that must precede and follow the vertical bar.

The LINK_NAME contains the text that is embedded in the page's content. The user clicks on this
text to follow the link. There are two exceptions to this pattern. First, the image LINK_NAME is optional
and can be replaced by HTML markup. For example, the HTML markup can be used to resize the image.
Second, the sql LINK_TYPE has no LINK_NAME at all. The LINK_NAME is not required because the SQL
data itself is automatically embedded in the page content.

The markup syntax is forgiving. It is case insensitive and the websheet code makes several friendly
assumptions. For example, if you omit the LINK_TYPE, the websheet scans its metadata for the
LINK_TARGET. If an exact match is found, the websheet assumes that this is the target for which you
were looking. In other words, you can be a bit sloppy with the syntax and still get the correct result.

User Authentication
User authentication governs how users log on to a websheet. There are four options.

Application Express Account: The websheet users log on to the websheet by
using the IDs and passwords that have been set up in the APEX workspace that
hosts the websheet.

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

289

Single Sign-On: Oracle's Single Sign-On technology enables users to sign into
their computing environment one time and then access all of their
applications, like websheets, without having to re-enter their user name and
password. This is an advanced feature that is out of scope for a beginning book.

LDAP: Lightweight Directory Access Protocol (LDAP) is used by websheets to
provide single sign-on capability in computer environments that use non-
Oracle authentication schemes. This is an advanced feature that is out of scope
for a beginning book.

Custom: This advanced feature is explicitly explained and illustrated in the
Chapter 12.

You set up user authentication by first navigating to the Websheet Properties page and selecting the
Authentication tab. Here, the current authentication option is displayed in a read-only section that also
contains an Edit Authentication button (see Figure 11–10).

Figure 11–10. Read-only user authentication option displayed in a websheet

When you press the Edit Authentication button, you are redirected to the websheet's Application
Properties page in the Application Builder (see Figure 11–11).

When you are using the Application Express Account authentication option, pressing the Edit
Authentication button takes you out of the websheet and directly into the Application Builder. This
transition may not be obvious to you at first because the page bodies are similar. You need to verify your
context by looking at the top of the page and the menus.

When you use a Single Sign-On, LDAP, or custom authentication option to get into your websheet,
pressing the Edit Authentication button redirects you to the login page for the Application Builder. Here
you must log in as an APEX administrator or developer. After you log in, you are taken directly to the
websheet's Application Properties page where you pick the desired authentication scheme and
configure it. The details of the example shown in Figure 11–11 are discussed in Chapter 12.

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

290

Figure 11–11. User authentication option displayed in the Application Builder

User Authorization
Websheets have three authorization roles.

Reader: This is the read-only role. Figure 11–12 is a websheet home page as
seen by a reader. The page contains content together with navigation objects.
When you drill down into data pages, you see the data but not the buttons that
are used to add, change, and delete data.

Contributor: This role is allowed to add, change, and delete a websheet's
content plus manipulate the structure. Figure 11–13 is the websheet home page
as seen by a contributor. The figure highlights the rich set of functionality that is
added for this role. The top drop-down menus contain links to the structural
pages. The text sections contain an Edit link. The right side sections contain
links to the structural pages. When you drill down into the data pages, you see
the buttons that allow you to add, change, and delete the content.

Administrator: This role creates and deletes websheets. It is responsible for
maintaining a websheet's global properties and maintains the list of users who
can access the websheet. Figure 11–14 is the administrator's view of the
websheet home page. The only addition to the contributor's view is the
Administration drop-down menu at the top of the page.

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

291

Figure 11–12. Websheet home page as seen by a reader

Figure 11–13. Websheet home page as seen by a contributor

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

292

Figure 11–14. Websheet home page as seen by an administrator

The websheet administrator configures the user privileges through the Access Control list, which is
found under the Administration drop-down menu (see Figure 11–15). This task is usually done after you
set up the authentication scheme.

Figure 11–15. Navigating to the Access Control list

The Access Control list is simple to create and maintain (see Figure 11–16). Create a new entry by
pressing the Create Entry button. Change an existing entry by clicking on the pencil icon in the list. In
both cases, you are taken to the Entry Details page that has only two fields: the user name and the
privilege level (see Figure 11–17).

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

293

Figure 11–16. Access Control list

Figure 11–17. Entry Detail page

The Access Control list is somewhat sensitive to the authentication scheme that is used. When you
use Single Sign-On, LDAP, or a custom authentication scheme, the Access Control list is mandatory. In
this context, it’s easy to understand and build. You build the Access Control list as a duplicate of the list
of users in the authentication scheme. The hook between the two lists is the user name. The websheet
user name must match the user ID in the authentication scheme.

When you use the Application Express Account authentication scheme, things get a little bit harder
to understand. In this instance, using the Access Control list is optional. Since the websheet is inside an
Application Express workspace, the websheet can directly use the existing APEX user accounts. The
websheet privileges are inferred from the APEX user account privileges. Table 11–2 illustrates the
translation between the APEX workspace privileges and the websheet privileges. You are able to override
the default translation by adding the APEX users to the Access Control list. For example, you might want
an APEX workspace administrator to have the reader privilege on a given websheet. To do this, you add
the APEX workspace administrator's ID to the Access Control list and set the privilege to reader.

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

294

Table 11–2. Access Control Configuration

Authentication Scheme No Access Control List With an Access Control List

Application Express
Account

APEX Administrator = Websheet Admin
APEX Developer = Websheet Contributor
APEX End User = Websheet Reader

The Access Control list overrides
the inferred APEX websheet
privileges

Single Sign-On NA - Access Control list is mandatory Access Control ID must match SSO
ID

LDAP NA - Access Control list is mandatory Access Control ID must match
LDAP ID

Custom NA - Access Control list is mandatory Access Control ID must match
Custom ID

Websheets can be set up for public access. This means that anyone who invokes the websheet's URL
is allowed to access the websheet with the reader role. Logging in with an ID and password is not
required. You set this up by going to the Application Properties page and pressing the Edit
Authentication button in the Authentication section (see Figure 11–18).

Figure 11–18. Navigating to the Application Properties page

Once you are logged into the Application Builder as a workspace administrator or developer, you
navigate to the Authorization region on the Application Properties page. You then select Yes in the Allow
Public Access drop-down menu and press the Apply Changes button (see Figure 11–19).

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

295

Figure 11–19. Setting up a websheet for public access

Now when you run your websheet application, you are automatically logged in as the user “nobody”
with reader privileges. Administrators and contributors who need to update the websheet's content can
log in by using the Login link than now appears in the upper right of all the websheet's pages (see Figure
11–20).

Figure 11–20. Public websheet

Sections
Sections contain your content. The following chapter sections illustrate useful features in the websheet
structural environment. The features are illustrated by showing you the Edit pages for existing objects.
Step-by-step procedures for creating new websheet objects are covered in Chapter 12.

Text Sections
Text sections contain text, embedded links, and images. Text sections can be used to create wikis and
blogs. To start a wiki, the original author creates a text section and then invites contributors to edit the
text section's content. To start a blog, the original author creates a text section and then invites
contributors to add more text sections in reply to the first section.

To access a text section's Edit page, you click on the Edit link in the upper right corner of the text
section (see Figure 11–21).

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

296

Figure 11–21. Navigating to a text section’s Edit page

The Edit page for a text section is simple and clean when it is invoked. By default, the collapsible
regions are collapsed (see Figure 11–22). The upper right collapsible region link, a small arrow icon,
contains the text formatting controls. The lower left link, Page Sections, contains a list of all the sections
on the page. The lower right link, a small triangle icon, enables you to drag the corner of the text area to
enlarge it. This is a handy feature when you have a large amount of content.

Figure 11–22. Edit page for a text section - collapsed

When you expand the collapsible regions, you can see the considerable scope available for
enhancing your content (see Figure 11–23). The upper right icon expands into a section that contains a
number of formatting icons. I am not going to describe each formatting icon's function in detail. I feel
that you will find them intuitive because they are similar to other tools, like a word processor, that you
probably use regularly.

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

297

Other elements that you’ll see include:

• The list of page sections at the bottom of the page shows you where the current
section fits within the page relative to the other sections.

• The Help section contains direct links to the Help page tabs.

• The Tasks section contains links to processes that automate moving the section to
an existing or a new page.

The Show History link is explained in the "Administration" section later in this chapter.

Figure 11–23. Edit page for a text section - expanded

■ Note Many pages contain collapsible regions at the bottom of the page. Some of the regions contain help text;
others contain lists of things that help give you a sense of place and context which, in turn, helps you to get your

content right. In all cases, the collapsible regions that are found at the bottom of pages are useful.

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

298

Navigation Sections
The most important aspect of adding navigation sections to your web content is the fact that adding
them takes very little effort or thought on your part. Navigation sections are easy to use because they are
declarative and the websheet takes care of virtually all the details like the page links and formatting. The
details of adding navigation sections are discussed in Chapter 12.

A page navigation section is illustrated in Figure 11–24. Pressing the Edit link takes you to the Edit
page (see Figure 11–25). The Edit page has four inputs.

Sequence: Positions the section amongst the other sections on the page.

Title: The title of the section.

Starting Page: The starting page field enables you to start the navigation tree on
pages that are below the home page in the page hierarchy. In this example,
Cameron could add a page navigation section to the top of his personal page
that shows only the pages below his personal page in the hierarchy.

Maximum Levels: The maximum levels field is used to limit the number levels
that are displayed in a page navigation section. In this example, if you set the
maximum levels value to three, you would see only the pages that are illustrated
in Figure 11–24 even if Cameron added child pages under his personal page.

Figure 11–24. Page navigation section

Figure 11–25. Edit page for a page navigation section

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

299

A section navigation section is illustrated in Figure 11–26 together with the Edit page in Figure 11–27.
The only inputs are the sequence and title. In this case, the websheet takes care of all the other details.
You don’t have to do any work.

Figure 11–26. Section navigation section

Figure 11–27. Edit page for a section navigation section

Data Sections
There are two types of data sections: reports and data grids. Reports display read-only data from external
database tables or views that are located outside the websheet. Data grids are spreadsheet-like objects
that you create entirely within a websheet.

Reports - Setup
The Report feature and the related SQL Tags feature require a small amount of setup by the
administrator before the contributors can use them. You start the setup process by navigating to the SQL
section on the administrator's Application Properties page (see Figure 11–28). Pressing the Edit SQL
Access and Suggested Objects button takes you to the Application Builder (see Figure 11–29) where you
do the actual configuration.

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

300

Figure 11–28. Websheet report and SQL Tag setup

In order for your websheet to see all of the database objects in the default schema, you set the Allow
SQL Tags and Reports to Yes. After you do this, you press the Add Object button that takes you to the
page illustrated in Figure 11–30. This page enables you to create a list of suggested objects. The list of
suggested objects is an optional convenience that automatically creates a drop-down list of database
objects together with helpful comments.

Figure 11–29. Application Builder report and SQL Tag setup

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

301

Figure 11–30. Create the list of suggested database objects

■ Note When you set Allow SQL Tags and Reports to Yes, you are giving the contributors access to all of the
database objects in the websheet's default schema. This is a potentially serious security issue. It is imperative that
you chat with your Oracle database administrator (DBA) before you use this feature to make sure that sensitive

data is not accidentally exposed.

Reports - Creation
After you have set up the Allow SQL Tags and Reports feature in the Application Builder, you return to
your websheet. You create a report by navigating to the Data Report page (see Figure 11–31) and
pressing the Create Report button.

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

302

Figure 11–31. Navigate to the Data Reports page

The Create Report page prompts you for one of two report sources (see Figure 11–32). The Table
Report Source creates a report that contains all of the columns in the selected table or view. The SQL
Query Report Source (see Figure 11–33) creates a report based on a SQL statement. Using a SQL
statement gives you a tremendous amount of flexibility in tailoring a report to your needs. In both cases,
you press the Next button, which takes you to a confirmation page so you can check your input before
creating the report.

Figure 11–32. Create a report based on a table or view

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

303

Figure 11–33. Create a report based on a SQL statement

Reports - Accessing the Data
Users will want, of course, to see the report data. Report data is exposed in three ways.

Navigate to a report: Figure 11–34 shows you where to find the list of your
reports under the top drop-down menu. Clicking on the Name link in the list
takes you to the Report Data page. Figure 11–35 illustrates the Salesman report
in this example.

Embed a link to the report in a text section: The list of reports in Figure 11–34
contains an Embed Tag column. This column contains the markup syntax that
you need to add a link to the report inside a text section. You copy and paste the
markup syntax into the text section to add a link that takes you to the Salesman
report that is shown in Figure 11–35.

Create a data section: Creating a data section that is based on a report is easy. A
wizard walks you through the steps. You first navigate to the page that will
contain your report and click on one of the New Section links (see Figure 11–
36). This starts the Create Section wizard. Select the Data icon on the first page
and press the Next button (see Figure 11–37). You now link the data section to
its data source (see Figure 11–38). In this example, you are linking the data
section to the Salesman report. This page allows you to link your data section to
any data grid or report that you have previously created. Press the Next button
to continue. The next page contains a single drop-down list called Saved Report
Settings to Use. This is an advanced feature that is not covered in this book; for
now use the default and press the Next button, which takes you to the
confirmation page. When you press the Create button on the Confirmation
page, you will find yourself back on your Content page and your report is
displayed in the new data section (see Figure 11–39).

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

304

Figure 11–34. Navigate to a report

Figure 11–35. Report Data page

Figure 11–36. New Section link

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

305

Figure 11–37. New Section wizard - choose section type

Figure 11–38. New Section wizard - data source

Figure 11–39. Data section containing a report

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

306

Data Grids
A data grid is the most complex part of a websheet. However, if you have had a bit of experience with a
spreadsheet, you probably won’t have much difficulty in learning how to use a data grid in a websheet.

This section will highlight some of the features of data grids. Chapter 12 walks you through the steps
that are required to create a data grid from scratch.

Data grids are used to organize data in a column and row format. Both the design and data are held
within the websheet environment; no external configuration required.

Data grids are closely related to reports. Like reports, you put them into data sections and you can
embed links to them in text sections. Figure 11–40 illustrates a data grid that is displayed in a data
section. In this context, the data grid is read-only, like a report. The Edit link goes to a page that allows
you to edit the data section, not the data grid itself.

Figure 11–40. Data grid displayed in a data section

You navigate to the context where you maintain the data grid's data by using the Data drop-down
menu (see Figure 11–41). This list of data grids is identical to the list of reports. You navigate to in
individual data grid by clicking on its link in the Name column.

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

307

Figure 11–41. Navigating to a data grid's data entry context

Figure 11–42 shows you this example's Schedule data grid. The search text box, the Go button, the
Reports drop-down list, and the Actions drop-down menu are standard interactive report features that
have been discussed in a previous chapter.

You can change the data directly in the data grid. When you click on a cell, the cell turns white and
you can type data directly into the cell. If you have configured a column as a date, a pop-up calendar
automatically appears to help with accurate date entry. You can also configure a column to have a list of
values; in this case, the cell contains a drop-down list. You can also use the pencil icon on the grid's left
side to link to a Form page that edits an individual row (see Figure 11–43). This is convenient when the
data grid contains many columns and is too wide for your computer screen.

Figure 11–42. Editing data in a data grid

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

308

Figure 11–43. Editing data on a Form page for one row

You manage the structure of a data grid by selecting options from the Manage drop-down menu on
a data grid. Figure 11–44 and Figure 11–45 illustrate all of the data grid configuration options.

Figure 11–44. Data grid management - column options expanded

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

309

Figure 11–45. Data grid management - row options expanded

An interactive edit section is displayed above the data grid when you select one of the Manage menu
options. This is illustrated in Figure 11–46. The edit sections all contain their own Cancel and Apply
buttons. You must press the Apply button to save your change.

Figure 11–46. Data grid management – Data Grid Properties menu option

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

310

The Manage drop-down menus give you a rich set of options that allow you to use a data grid as a
simple and friendly spreadsheet-like application. Most of the options are simple to use; they are
illustrated in more depth in Chapter 12. The Manage menu options are summarized below:

• Properties: Edit the data grid properties.

• Toggle Checkboxes: Toggle the row selection check boxes on and off. The row
selection check boxes are used to perform bulk updates on selected rows. This
feature is highlighted in Figure 11–45.

• Columns:

• Add: Add a new column to the data grid.

• Column Properties: Change the properties of a column after it has been
created.

• List of Values: Create a named list of values. A named list of values can be
used in more than one data grid.

• Column Groups: Create column groups.

• Validation: Add data entry validations. You choose validations from a
defined list of business rules. You can use several validations simultaneously
to achieve a result. For example, to make sure a number is greater than zero,
you use the "Column specified is NOT zero" validation together with the
"Column specified does not contain any of the characters in Expression"
validation where you enter a minus sign character in the Validation
Expression text area. This last point illustrates the fact that all of the
underlying data in a data grid is text—and that sometimes you need to use
more than one validation rule to achieve a single result.

• Delete Columns: Delete one or more columns.

• Rows:

• Add Row: The data entry page is displayed. New data is entered.

• Set Column Values: Data is entered into many rows in a single column. A
value can be set for All Rows, Selected Rows, or Empty Rows.

• Replace: This is a find-and-replace feature that is similar to text editors and
word processors. It can be applied to All Rows or Selected Rows.

• Fill: Fill a column's null cells with the value that is found above them.

• Delete Rows: Rows are deleted from the data grid. This is done for All Rows,
Selected Rows, or Rows with Empty Columns.

• Delete Data Grid: Delete the data grid from the websheet.

• Copy: Make a copy of the data grid.

• History: This is an audit trail for the data.

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

311

Chart Sections
Chart sections are an easy way to add graphics to your content. First, you must create a report or data
grid that contains at least one numeric column. Second, you run the Create Chart wizard. The wizard
links the report or data grid to the chart and sets up the axis labels. The details and visual result of this
simple process are covered Chapter 12.

Annotations
Annotations are used to add additional content to your pages and individual rows in data grids. There
are four types of annotations.

Files: Two types of files can be uploaded into your websheet. Image files are
displayed within your text sections. Other file formats, like PDF, can be
uploaded to a websheet and then downloaded to the end user’s computer. In
both cases you use markup syntax to achieve your result.

Tags: Tags are free-form text words that are attached to your content to
enhance the websheet's Search feature.

Notes: Notes are like a sticky note. When you can add a note to a page, it
appears in a section on the right side of the page.

Links: Links allow the users to navigate to any valid URL. Annotation links are
associated with rows in a data grid; they can’t be associated with a page. To add
a link to a page, you use markup syntax, not an annotation.

Figure 11–47 illustrates the Annotation section that appears on a websheet page. Clicking on the
various links allows you to add, change, and delete your annotations.

Figure 11–47. Annotation section on the lower right side of a page

CHAPTER 11 ■ UNDERSTANDING WEBSHEETS

312

Administration
Websheets, like any blog or wiki, should be reviewed periodically by a moderator who has been given the
administrator role. This allows the moderator to view the Dashboard and Monitor Activity pages (see
Figure 11–48). These pages and the underlying reports give the moderator the tools to see which pages
are the most and least popular, how long it takes to render a page, who is using the websheet, and many
other parameters that help the moderator to make sure that the websheet is working optimally.

As you work through this chapter and Chapter 12, you will notice links that are labeled History. The
History links are placed throughout the websheet's structural navigation areas. They take you to context-
sensitive report pages that contain comprehensive audit trails of websheet changes. The contributors,
when they know that their changes are audited, will make an effort to hold their contributions to a high
standard.

Figure 11–48. Navigating to the Dashboard and Monitor Activity pages

Summary
This chapter has given you a good look at websheets so that you can now use them in innovative and
creative ways. Chapter 12 complements this chapter by working through, on a step-by-step basis, the
construction of a websheet from the ground up.

C H A P T E R 12

■ ■ ■

313

A Websheet Example

The previous chapter covered all the different features in websheets. In this chapter, you will use these
features to build an application from scratch in websheets.

You will build an application that will manage your corporate soccer team. Currently, the player
roster and schedules are maintained in spreadsheets. When the schedule is updated, you e-mail the
spreadsheet to all the players. It has been very frustrating to manage the team this way.

A websheet is a good way to manage the soccer team because websheets can be built with minimal
developer or DBA assistance. All the files, along with a copy of the final application, can be found in the
example download described in the introduction to this book.

Setup
In order to highlight the capability of websheets to interact with objects in your database, you will create
some database objects that will be referenced throughout the chapter. These objects will simulate an
existing users table and login function for your organization. Run the following script, which is included
in the example download, in SQL*Plus or directly in APEX using the SQL workshop:

-- Create Users Table
CREATE TABLE tusers (
 user_id NUMBER (5, 0) PRIMARY KEY,
 user_name VARCHAR2 (10) NOT NULL UNIQUE,
 password VARCHAR2 (10) NOT NULL,
 active_flag VARCHAR2 (1) NOT NULL
);

-- Create sequence for IDs
CREATE SEQUENCE sn_users;

-- Create Users
-- Note: You should not store passwords in clear text.
-- This was done for demonstration purposes.
INSERT INTO tusers (user_id, user_name, password, active_flag)
 VALUES (sn_users.NEXTVAL, 'martin', 'martin', 'Y');

INSERT INTO tusers (user_id, user_name, password, active_flag)
 VALUES (sn_users.NEXTVAL, 'chris', 'chris', 'Y');

INSERT INTO tusers (user_id, user_name, password, active_flag)
 VALUES (sn_users.NEXTVAL, 'cameron', 'cameron', 'Y');

-- Authentication Function

CHAPTER 12 ■ A WEBSHEET EXAMPLE

314

CREATE OR REPLACE FUNCTION f_login (p_username IN VARCHAR2, p_password IN VARCHAR2)
 RETURN BOOLEAN
AS
 v_count PLS_INTEGER;
BEGIN
 SELECT COUNT (user_id)
 INTO v_count
 FROM tusers
 WHERE LOWER (user_name) = LOWER (p_username)
 AND password = password
 AND active_flag = 'Y';

 IF v_count = 1 THEN
 RETURN TRUE;
 END IF;

 RETURN FALSE;
END f_login;
/

COMMIT;

Creating and Configuring a Websheet Application
To create a websheet application you need to have access to the APEX builder. Once you have logged in,
proceed with the following steps to create the websheet application:

1. Click the Application Builder icon.

2. Click the Create button

3. Select Websheet for the application type, as shown in Figure 12–1, and click the
Next button.

Figure 12–1. Create websheet application

4. On the next screen enter Grizzlies Soccer for the application name and use the
default application ID. Leave the Description and Home Page section blank.
Click the Next button.

5. Click the Create button to finish the wizard.

CHAPTER 12 ■ A WEBSHEET EXAMPLE

315

6. You should now see a success page with the options to run the application or
edit properties (see Figure 12–2).

Figure 12–2. Create websheet success

As the Grizzlies are your corporate soccer team, you’d like to be able to have users login using their
current corporate accounts. To use the corporate authentication, you will need to configure the
application and modify the authorization scheme.

Since you have not defined an authentication scheme, you will need access to the APEX builder to
modify the application properties. This will be the last portion of the process to require APEX builder
access. The following steps describe how to modify the application properties:

1. If you are still on the Success page, click on the Edit Properties icon. If you
changed screens, then click on Application Builder. Select the new application
that you created (Grizzlies Soccer), then click the Edit Properties icon.

2. Modify the items in the following sections:

• Application: Enter DD-MON-YYYY for the application date format, as shown
in Figure 12–3.

Figure 12–3. Application date format

CHAPTER 12 ■ A WEBSHEET EXAMPLE

316

• Authentication: Select Custom and enter the single statement return
f_login in the authentication function field, as shown in Figure 12–4. Note
that f_login refers to the function you created in the setup section of this
chapter.

Figure 12–4. Custom authentication

• SQL: Select Yes for Allow SQL Tags and Reports. This will allow you to
reference tables and views in the schema. After selecting Yes, an Add Object
button will appear. Click the Add Object button and enter TUSERS for the
object name, as shown in Figure 12–5. This will allow users to quickly select
the TUSERS table when creating reports. Click the Create button, which will
bring your back to the application properties page.

Figure 12–5. Adding an object

CHAPTER 12 ■ A WEBSHEET EXAMPLE

317

3. Scroll back to the top of the properties page and click the Apply Changes button
to save your changes.

4. Authorization: Before you can use a custom authentication scheme, you’ll need
to define an administrator for the application. To define an application
administrator, edit your websheet application properties again. Scroll down
and click the Edit Access Control List button.

On the new page, click the Create Entry button. In the username field, enter
Martin and select Administrator, as shown in Figure 12–6. Click the Create
button to register Martin as an administrator. You will be brought back to the
Access Control List page. Click the Cancel button to return to the application
properties page. Click the Apply Changes button to save your changes.

Figure 12–6. Access Control list: adding an administrator

Adding Content to a Websheet
In the previous section, you created and configured a websheet application to manage your corporate
soccer team. In this section, you’ll create data grids and add content to the application.

Run the websheet application and login as martin/martin the site administrator. Once logged in, the
page should look like Figure 12–7. You’re now ready to create your first data grid.

CHAPTER 12 ■ A WEBSHEET EXAMPLE

318

Figure 12–7. Initial websheet application

■ Note The URL to run your websheet application is <apex_url>/ws?p=<web_sheet_id>. For example:

http://apex.clarifit.com/apex/ws?p=103 where 103 is the websheet application ID.

Creating Data Grids
The first thing you’ll do is create some custom tables called data grids. There are two ways to create data
grids: by pasting existing data in from a spreadsheet, and from scratch by manually defining each
column. You’ll create data grids from both sources.

You currently keep your game and practice schedule in a spreadsheet. You can import data and
simultaneous create a data grid using copy and paste. Here is the process to follow:

1. Click the Data tab at the top of the application.

2. Click the Create option in the drop-down menu.

3. Select Data Grid and click the Next button.

4. Select Copy and Paste as the input method and click the Next button.

5. Enter Schedule in the name and alias fields.

CHAPTER 12 ■ A WEBSHEET EXAMPLE

319

6. Open Grizzlies_Schedule.csv, which can be found in the sample code for this
chapter, and select all the fields including the header. Copy these values and
paste them into text area. Ensure that the First Row Contains Column Headings
checkbox is checked and click the Upload button.

7. You should now see the data in an interactive report, as shown in Figure 12–8.

Figure 12–8. Data grid result

8. The last column is tagged as “delete”. This is a workaround for a bug in the cut
and paste mechanism within websheets1. To delete this column, click the
Manage button and select Columns ➤ Delete Columns, as shown in Figure 12–9.

1 The bug mentioned does not load data correctly if the last column(s) in the data have multiple null entries. By
appending a dummy column to the end that has a non-null value, APEX will load all of the data correctly. This bug is
present through at least version 4.0.2.0.6.

CHAPTER 12 ■ A WEBSHEET EXAMPLE

320

Figure 12–9. Delete Column option

9. Select the Delete Column option, check Confirm to perform this delete action,
and click the Delete button, as shown in Figure 12–10.

Figure 12–10. Delete column confirmation

CHAPTER 12 ■ A WEBSHEET EXAMPLE

321

You also need to create a data grid to keep track of the number of goals each player scores. You don’t
have any existing data ready to copy and paste from a spreadsheet, so this time it makes sense to create
your data grid manually. Here are the steps to follow:

1. Click the Data tab at the top of the application.

2. Click the Create menu option.

3. Select Data Grid and click the Next button.

4. Select From Scratch as the input method and click the Next button.

5. Fill out the data grid definition as shown in Figure 12–11 and click the Create
button to finish creating the data grid.

Figure 12–11. Create data grid from scratch

Applying Constraints
Now that you have some data grids, you’ll need to add some constraints to them. Since data grids are not
database objects, you must use the websheet interface to apply constraints.

In the Players data grid, you need to ensure that all the fields contain data, and that the default for
the Goals column is 0. To apply these constraints, follow these steps:

1. Click the Data tab.

2. Click the Players data grid icon.

3. Click the Manage button and select Columns ➤ Column Properties, as shown in
Figure 12–12

CHAPTER 12 ■ A WEBSHEET EXAMPLE

322

Figure 12–12. Data grid column properties

4. Select Name in the Column Name select list.

5. Select Yes for value required.

6. You must explicitly save your changes before modifying another column. Click
the Apply button at the bottom.

7. Open the Column Properties section again (repeat the third step).

8. Select Goals in the Column Name select list.

9. Select Yes for value required.

10. In the Default Text field, enter 0.

11. Click the Apply button.

When you create players, both the Name and Goals are required values. Goals will be defaulted to 0.

Adding Players
To add players to the Players data grid, click the Add Row button. For this demo, add the players and
their goals as shown in Figure 12–13.

Figure 12–13. Players data

CHAPTER 12 ■ A WEBSHEET EXAMPLE

323

Creating Alternate Default Reports
Now that you have some data in the data grids, you’ll create some alternate default reports, which you
will reference when creating sections. Data grids allow you to save reports just like interactive reports do.
Alternate default reports are saved data grid reports that can be displayed throughout your websheet
application.

■ Note Some of the reports that you will create are date sensitive. Normally, you’d use SYSDATE as a reference
point. Instead, you’ll use a static date of 10-Jun-2010 to simulate a common SYSDATE. This will ensure that you

see the same data that is shown in this book.

The first alternate report you’ll create will be to highlight the games and practices for the next two
weeks. To create this report, follow these steps:

1. View the Schedule data grid.

2. Click the Actions button ➤ Filter.

3. Select Row as the filter type.

4. Enter Next Two Weeks as the name.

5. Enter the following as the Filter Expression: B >= to_date('10-jun-2010', 'dd-
mon-yyyy') and B < to_date('10-jun-2010', 'dd-mon-yyyy') + 14. Click the
Apply button.

6. Order the Date column as ascending by clicking on the Date column heading
and choosing the Ascending sort icon.

7. Hide the Grizzlies and Opponents columns since you don’t have scores for
future games. To do this, use the Select Columns option from the Actions
menu.

8. Click the Actions button ➤ Save Report.

9. Select Default Report in the Save select list.

10. Select Alternate as the Default Report Type and enter Next Two Weeks as the
name.

11. Click the Apply button. The report should now look like Figure 12–14.

CHAPTER 12 ■ A WEBSHEET EXAMPLE

324

Figure 12–14. The next two weeks

Since you have already learned how to manipulate and created saved interactive reports, create the
following alternate default reports for the Schedule data grid:

Remaining Games: This report lists all the games left in the season.

Remaining Practices: This report lists all the practices left in the season.

Results: This report lists all the games that have been completed along with the
scores.

Creating Page Sections
In this section, you’ll modify existing pages and create new sections. You’ll cover some of the different
types of content that you can add to websheets.

To start, you’ll modify the home page. You’ll create several sections that will help the players get the
most important information right away. Let’s modify the Welcome section to contain important news by
following these steps:

1. Click the Page tab at the top.

2. Select Home Page.

3. Click the Edit link on the right side of the Welcome region.

4. Change the tile from Welcome to Important News.

5. Enter the following in the content section:

Fees: Don't forget to pay your fees before the next game (13-Jun) or else you can't play!
We won our last game and are now 2-1. Check out the [[results | Results]] page.

The special notation involving the square-brackets will create a link to the
Results page that you’ll create later in this chapter.

6. Click the Apply Changes button.

The home page should now look like Figure 12–15.

CHAPTER 12 ■ A WEBSHEET EXAMPLE

325

Figure 12–15. Important news

■ Note You’ll notice that the link to the results page is in red. That’s because you created an invalid link. Once the

Results page is created, the link will turn grey.

Next, you’ll create a new section on the home page to highlight the upcoming games and practices.
This section will reference one of the alternate default saved reports that you created earlier. To create
the section, follow these steps:

1. From the home page, click the New Section link on the right side located in the
Page region.

2. Select Data for the page section type and click the Next button.

3. Select Schedule for the data grid and change the title to Upcoming Games and
Practices. Select a style (use 2 for all sections in this demo) and click the Next
button to continue.

4. In the next section, you can select which saved report to display. Select the Next
Two Weeks alternate report and click the Next button.

5. On the confirmation page, click the Create button.

The new section should look like Figure 12–16.

Figure 12–16. Upcoming games and practices

Each week the coach likes to highlight a player of the week. The coach wants to include a picture
along with some text in this section. This week I’m the lucky recipient of the Player of the Week award.
To create the Player of the Week section, follow these steps:

CHAPTER 12 ■ A WEBSHEET EXAMPLE

326

1. The first thing you’ll do is upload the player’s picture. Under the Annotations
region on the right, click on the Add File link, as shown in Figure 12–17.

Figure 12–17. Add file

2. In the File section, upload martin.jpg and click the Add button. You will be
brought back to the home page.

3. Click the Add New Section link.

4. Select Text as the section type and click the Next button.

5. Enter Player of the Week for the title.

6. Enter the following in the content text area:

Martin scored 2 goals!

[[image: martin.jpg]]

7. Click the Create button

The Player of the Week section should now contain an image, as shown in Figure 12–18. Each week
the coach can easily upload a new picture and modify this section.

Figure 12–18. Player of the Week section

You also need a page to display the list of players and include a graph to view the top scorers on the
team. To create and modify the player’s page, follow these steps:

1. Click the New Page link on the right side.

CHAPTER 12 ■ A WEBSHEET EXAMPLE

327

2. In the name field, enter Players. For the page alias, enter PLAYERS. Select Home
as the parent page. Click the Create Page button.

3. On the new Players page, remove the Welcome section by clicking its Edit link
and clicking Delete button.

4. Add a new section called Players, which is a data grid report referencing the
Players data grid.

5. To add the graph, click on the Add New Section link.

6. Select Chart as the section type and click the Next button.

7. Select Column as the chart type and click the Next button.

8. Select Players for the data grid and enter Goals as the section title. Click the
Next button.

9. On the next page, you should only have the Primary Report option available
since you didn’t create any alternate default reports. Click the Next button to
continue.

10. Modify the chart section as shown in Figure 12–19 and click the Next button.

Figure 12–19. Chart definition

11. On the confirmation screen, click the Create button.

The new chart region should look like Figure 12–20.

CHAPTER 12 ■ A WEBSHEET EXAMPLE

328

Figure 12–20. Goals chart

The last modification you need to make for the players page is to add a navigation section. This will
allow users to quickly go to each section on the page rather than having to scroll down the page. To add
the section navigation section, follow these steps:

1. Click the Add New Section link.

2. Select Navigation as the section type and click the Next button.

3. Select Section Navigation for the navigation type and click the Next button.

4. Enter a title for the section and 1 for the sequence. Setting the sequence to 1 will
make it the first section on the page. Click the Create button.

When someone views the page they’ll be able to quickly navigate to each section via the navigation
section.

You should now be comfortable creating and modify pages. Before creating the final section, create
the following pages, which are child pages of the home page:

Results: This page will display the Results saved report. The Results page should
look like Figure 12–21.

Schedule: This page contains two sections. The first section will display the
Remaining Games saved report and the other section will display the
Remaining Practices saved report which you created earlier. The Schedule page
should look like Figure 12–22.

CHAPTER 12 ■ A WEBSHEET EXAMPLE

329

Figure 12–21. Results page

Figure 12–22. Schedule page

The next section you’ll create will provide a list, along with links, to all the pages. To create this
navigation section, follow these steps:

CHAPTER 12 ■ A WEBSHEET EXAMPLE

330

1. Go to the home page.

2. Click the Add New Section link.

3. Select Navigation as the section type and click the Next button.

4. Select Page Navigation as the navigation type and click the Next button.

5. If you want, modify the title and set the sequence to 1, then click the Create
button.

The new section should look like Figure 12–23.

Figure 12–23. Page navigation

SQL Tags
Websheets allow administrators and contributors to query tables and views in the schema. They can
create reports that are similar to data grids, except they are read-only. They can also include query
results directly in sections that are called SQL Tags.

On the Players page, you’ll add a section to display the number of registered users who have access
to the application. You’ll include a SQL tag in the section. To create the section, follow these steps:

1. Go to Players page.

2. Click the Add New Section link.

3. Select Text as the section type and click the Next button.

4. Set the sequence to 5 and the title to Active Registered Users.

5. Enter the following text in the content section and click the Create button:

We currently have [[sqlvalue: select count(*) from tusers where active_flag = 'Y']] active
registered users. They are: [[sql: select initcap(user_name) "Name" from tusers order by
user_name]]

The new section should look like Figure 12–24. Notice the select count query in the first line of the
preceding code. That query generates the value 3 shown as the number of active users in the figure.
Similarly, the second select statement in the preceding code generates the list of player names.

When using SQL tags, you need to explicitly define if the query will return a single value or multiple
rows and columns. A SQL tag defined as sqlvalue: means that a single value will be returned and be
embedded within a sentence such that the single value appears as a word in the sentence. Using sql:
means that multiple rows and columns will be returned. When a query returns multiple rows, its results
are displayed in the spreadsheet-like format that you see in Figure 12–24.

The Search box that you see in Figure 12–24 is a result of the second query returning multiple rows.
Whenever a query’s results are displayed as a spreadsheet-like grid, that grid is preceded by a search box
that you can use to quickly find specific result rows.

CHAPTER 12 ■ A WEBSHEET EXAMPLE

331

Figure 12–24. Section with SQL tags

Access Controls
The last thing you need to do for your application is give the other players on the team access to it. You
already gave access to Martin when you created the application. You need to give the other players,
Chris and Cameron, access to view the application. To grant access to the application, follow these steps:

1. Click on the Administration tab at the top of the screen.

2. Click the Access Control link.

3. Click the Create Entry button.

4. Enter Chris as the username and select Reader as the privilege. Click the Create
and Create Another button.

5. Enter Cameron as the username and select Reader as the privilege. Click the
Create button.

Now Chris and Cameron can log into the application. They will not be able to modify any of the
sections or data grids. If you need to give someone access to modify the application, you can grant them
the Contributor role in the access control section.

Summary
The last two chapters introduced websheets and what they can do. From here you can go on to make
complex websheet applications without having to know much about databases or SQL. Now that you
have a base knowledge of websheets, installing and analyzing the websheet sample application would be
a good next step to understanding the capabilities of a websheet.

C H A P T E R 13

■ ■ ■

333

Extended Developer Tools

While developing the sample application in the previous chapters you saw many features in the APEX
development tool. This chapter will highlight advanced development features in APEX that were not
covered in the previous chapters. These features—or tools, as I prefer to call them—may help when
developing large applications in a corporate environment.

■ Note This chapter assumes that you are comfortable with APEX and understand the fundamentals. If you are
still not comfortable developing an APEX application, I strongly recommend that you redo the examples from

chapters 1 through 10 in order to become more comfortable with APEX and its development environment.

Page Locks
When developing in larger teams, development conflicts occur. A development conflict is when two
developers are working on the same object at the same time and overwrite the other’s changes.

■ Note For the remainder of this chapter, references to APEX objects imply page items, regions, lists, pages, etc.

Conventional web development tools, such as ASP, PHP, and JSP, contain multiple files that each
represent a page or a set of functions within the web application. When developing with these tools, it’s
common practice to use a source control tool, such as Subversion, to manage all the changes. That’s
because source control tools can easily manage development conflicts between multiple developers as
they are isolated to a single file.

APEX is different than the scripting languages just mentioned because developers do not work with
files. All of the information is stored in tables within the database. Currently, these tables reside in the
APEX_040000 schema. When you create an export of an application you get a single SQL file that
contains many insert statements into these tables. Since APEX stores its content within the database,
you can’t use traditional source control tools to manage conflicts when developing in teams with
multiple developers.

CHAPTER 13 ■ EXTENDED DEVELOPER TOOLS

334

APEX Conflicts
To demonstrate a development conflict in APEX, imagine that you have two developers, Mina and
Natalie, working on the same page within an application. If they are both adding and modifying page
components at the same time, the page may not behave as expected for either of them.

APEX will prevent developers from modifying the same object at the same time by performing
optimistic locking. Table 13–1 shows the sequence of events that will occur as the two developers edit
the same object. You can see at the end how APEX prevents Natalie from overwriting the changes made
by Mina.

Table 13–1. Optimistic Locking Scenario

Step Mina Natalie

1 Edit P1_EMPNO --

2 -- Edit P1_EMPNO

3 Edit help text to: “Mina’s Help” --

4 -- Edit help text to: “Natalie’s Help”

5 Apply Changes --

6 -- Apply Changes

7 -- Receive error message:
ORA-20503: Current version of data in database has changed
since user initiated update process. current checksum =
"9A4B0C15B18DA7A89A3F15A0B982B500" application checksum =
"4A157EAF6B2C7E67DA3BBDD655C4467C"

Optimistic locking only works when developers modify the same object. The problem occurs when
multiple developers are modifying different objects on the same page at the same time. Modifying one
object may affect the process of the entire page, which other developers may not be aware of. Pessimistic
locking helps prevent trouble in that scenario. I’ll discuss how to do pessimistic locking next.

Locking an APEX Page
The easiest way to prevent issues from occurring when developing an application with multiple
developers is to lock a page before working on it. Locking a page will prevent other developers from
modifying the page while you’re working on it. Developers can still view the page and its components
while a page is locked; they just can’t make any modifications to the page.

The following process will lock a page:

1. On the page edit screen, click the lock icon in the top right corner, as shown in
Figure 13–1

CHAPTER 13 ■ EXTENDED DEVELOPER TOOLS

335

Figure 13–1. Lock page

2. You will see a report of page locks with a filter for your current page (Page 1 in
this example). Check the checkbox for the current page and then click the Lock
Checked button.

3. Enter in a page a comment (all page locks require a comment) and click Lock
Page(s).

4. You will be brought back to the Page Locks report where you’ll see your current
page marked as locked.

Entering meaningful page lock comments is important since a history of page locks is maintained. If
you use a case management tool, it’s smart to reference the case number that you are working on when
locking a page.

If another developer views a locked page, they’ll see a notification message and that the lock icon is
locked, signaling that the page cannot be modified. Figure 13–2 shows an example of a locked page. The
page lock comment is displayed above the Page Render region.

Figure 13–2. Locked page

Unlocking a Page
Only APEX administrators and the developer that locked a page can unlock it. If you are the developer
that locked a page, the following process demonstrates how to unlock it:

1. Go to the locked page (Page 1 from the previous example) and click the lock
icon in the top right corner.

2. You will see a report of page locks with a filter for your current page. Check the
checkbox for the current page then click the Unlock Checked button.

3. You will be brought back to the Page Locks report page. You should see a
confirmation message that the page was unlocked.

CHAPTER 13 ■ EXTENDED DEVELOPER TOOLS

336

Administering Page Locks
Developers may want to see all the pages that are locked, or they may want to lock/unlock multiple
pages at the same time. APEX provides tools to handle multiple page lock requests. To view the Page
Locks report go to Utilities ➤ Cross Page Utilities ➤ Page Locks as shown in Figure 13–3.

Figure 13–3. Multiple page locks tool

From the Page Locks report you can view all the pages that are locked and unlocked. You can lock
and unlock multiple pages from the Page Locks report. Workspace administrators can unlock any page,
while developers can only unlock pages that they locked. Developers can also view the lock history for
each page by clicking on the View Lock icon that looks like a magnifying glass.

■ Note Page locks are not maintained to the new version when an application is copied or exported. This means
that any page locks and comment history are only relevant to the specific application in the workspace. If you copy

an application into another workspace, nothing will be locked in that new copy.

Application and Page Groups
Developing large APEX applications may require you to group applications and pages. APEX allows you
to declaratively group applications and pages within applications. Grouping pages and applications can
help avoid the need to have strict application and page naming and numbering schemes.

CHAPTER 13 ■ EXTENDED DEVELOPER TOOLS

337

Application Groups
When you have multiple applications within a workspace, you may want to group associated
applications to help developers visualize which applications are related. For example, suppose you
develop a large CRM system that consists of three modules: Marketing, Service, and Sales. For various
reasons you may want to create each of these modules in their own applications and have a common
Admin module that links the applications together.

If your workspace contains other suites of applications, developers may get confused as to which
suite of applications they are should be working on. To resolve this issue, you can create application
groups. Here is the process to create an application group:

1. Go to Home ➤ Application Builder.

2. Click on Application Groups on the right side under the Tasks region.

3. Click the Create button.

4. Enter a name and description for the group. In this example, you’ll use CRM.
Click the Create button.

The following steps demonstrate how to add individual applications to an application group:

1. In the Application Groups page, click on the Manage Unassigned link on the
right side in the Tasks region.

2. Select the applications and the application group and click the Assigned
Checked button, as shown in Figure 13–4.

Figure 13–4. Assign application groups

3. Go to the Application Builder main page (Home ➤ Application Builder) and
view the applications in a report format. You can view the list of applications
along with their application group, as shown in Figure 13–5.

CHAPTER 13 ■ EXTENDED DEVELOPER TOOLS

338

Figure 13–5. Application report

Page Groups
Page groups are similar to application groups except that they group pages together. They are
application specific, which means that a page group is only valid for a particular application. Page
groups are very useful to help group common pages together within an application.

An alternate approach to using page groups is to use a numbering scheme to group pages together.
The page number approach may not always work as you may run out of numbers. For example, imagine
that you grouped logical pages in sets of 10. What happens when you have 11 pages in a group? Of
course, a workaround is to create large intervals for each logical page group, but even so you may run
into a situation where a page does not conform to your numbering standards.

■ Note You may also leverage page groups for purposes other than the development environment. Suppose you
grouped all of the admin pages into an Admin page group. If you had a Page 0 region that you only wanted to

appear on admin pages, you could put a condition that would check that the current page was associated to the

Admin page group.

To create and manage page groups, go to Utilities ➤ Cross Page Utilities ➤ Page Groups. On the
Page Groups page you can create and assign page groups similar to how you created applications groups
in the previous section.

APEX Views and the APEX Dictionary
In traditional web development tools, if you need to search through all your code you must search
through multiple text files. APEX is different because APEX stores code in the database. Thus, you can
run queries to search through your code.

CHAPTER 13 ■ EXTENDED DEVELOPER TOOLS

339

The APEX Schema
A common misconception about APEX is that it is an extra piece of software that you need to install. In
fact, APEX is a framework that is stored in the APEX_040000 schema within the database. At a very high
level, each time you request a page, APEX queries tables within its schema and executes many
invocations of the HTP.P procedure to produce the HTML that is sent to the browser.

Each time you create an object in APEX, it’s stored in a table within the APEX schema. For example,
when you create a page item, it’s stored in the APEX_040000.WWV_FLOW_STEP_ITEMS table.

■ Note As mentioned in the first chapter, APEX was originally called FLOWS which is why some of the table

names contain “FLOW.”

Storing code within the database has its advantages and disadvantages. An advantage is that you
can query the database to quickly find what you are looking for in an organized fashion. For example,
you can easily search through all your reports for a certain table or column reference. A disadvantage is
that it is harder to search through all the objects within an APEX application at the same time. Searching
through an entire application is easier in file-based web applications since you can do a simple text
search.

APEX Views
There are several ways to access the data from the APEX views. In this section, I’ll discuss how to use
these views to search within the APEX development environment.

To access the APEX views within the development environment go to Utilities ➤ Application Express
Views. If you are new to APEX, I recommend that you change the default view mode to View Report,
which provides a detailed description of each of the reports (see Figure 13–6).

Figure 13–6. APEX views

CHAPTER 13 ■ EXTENDED DEVELOPER TOOLS

340

The following example demonstrates how the APEX views can assist you. Suppose you need to
compare the help text for items which reference PRODUCT_ID. Follow these steps to compare the help
text for these items:

1. Go to Utilities ➤ Application Express Views.

2. Click on the APEX_APPLICATION_PAGE_ITEMS view. You may need to search
for this view in the Interactive Report or paginate to the next page.

3. On the Select Columns screen, add ITEM_NAME and ITEM_HELP_TEXT to the
selected column and click the Filter button, as shown in Figure 13–7.

Figure 13–7. Select columns view

4. On the filter page, select/enter ITEM_NAME – LIKE – '%PRODUCT_ID%' and
click the Results button, as shown in Figure 13–8. It is important to include the
single quote characters around your search value just as you would in a SQL
query.

Figure 13–8. Filter view

CHAPTER 13 ■ EXTENDED DEVELOPER TOOLS

341

5. You should now see the list of all page items within the workspace that have
PRODUCT_ID as part of the item name. Based on these results, you can modify
the items that need to be changed. Since the report shows all applications
within the workspace, you may want to apply an additional filter for a specific
application.

Alternatively, you can view the list of APEX views as a tree by clicking the Tree View tab shown in
Figure 13–9. Once you click on your desired view, you can continue with the process described above to
display the results.

Figure 13–9. Tree view

APEX Dictionary
Since all the data resides in the database, you can reference the APEX views from SQL queries. As you get
more familiar with the APEX views, you may prefer to query them using SQL since you can quickly apply
predicates and you do not need to use a web browser to run your reports.

APEX provides a view that lists all the APEX views called APEX_DICTIONARY. The APEX Dictionary
contains all the information that is available in the developer GUI as well as descriptions for each of the
columns. The following query lists all the APEX views:

SELECT *
 FROM apex_dictionary
 WHERE column_id = 0

There is a slight difference when querying the APEX views in SQL compared to the GUI. When using
the developer GUI, only applications that reside within the workspace will appear in results. When
querying through SQL, only applications whose parsing schema is the same as your connection will
appear in results. If you connect as SYS or SYSTEM, you can view all the applications regardless of the
application’s parsing schema.

In the previous section, the example described how to look at all the help text for items with
PRODUCT_ID in its name. You can view the same set of results by running the following query:

SELECT workspace,
 application_id,
 application_name,

CHAPTER 13 ■ EXTENDED DEVELOPER TOOLS

342

 page_id,
 page_name,
 item_name,
 item_help_text
 FROM apex_application_page_items
 WHERE item_name LIKE '%PRODUCT_ID%'

Searching is not the only use for the APEX views. You may need to leverage the APEX views when
creating plug-ins or adding advanced features to your application.

Searching within APEX
In the previous section, you examined how to use the APEX views to search for items within your
application. In this section, you’ll learn alternative ways to search through your application.

APEX Finder
APEX provides a tool within the application that provides some reports that leverage the APEX views on
common APEX objects. To access the APEX finder, click on the Find icon (which looks like a flashlight
and is located in the top right corner of any page in the Application Builder) as shown in Figure 13–10.

Figure 13–10. Find icon

Clicking on the Find icon will result in a pop-up window that contains interactive reports for the
following object types:

• Application and page items

• Pages

• SQL Queries from report regions

• Database tables in the parsing schema

• PL/SQL packages, functions, and procedures in the parsing schema

• Images, including standard images, workspace images, and application images

• A list of debug log entries

• Application items, page items, and collections in the current session

• A list of errors that have occurred in this application at both region and page level

CHAPTER 13 ■ EXTENDED DEVELOPER TOOLS

343

The APEX finder is helpful since it allows you quickly search for something while you’re in the
application builder and doesn’t require you to leave the page. If you need to do more complex searches
or filters, I recommend querying the APEX views.

Search Application
The APEX views GUI, queries against the APEX views, and the APEX finder are good tools if you know
exactly what you’re searching for within an object type. For example, if you want to see if a particular
table was referenced in a query, then you can search the APEX_APPLICATION_PAGE_REGIONS view for
the table name in the REGION_SOURCE column.

What if you wanted to search an entire application to see whether it references a specific table?
Suppose, for example, that you rename the EMP table to EMPLOYEES. How can you easily search
through your entire application for any reference to EMP? The answer is to use a new feature added in
APEX 4.0 called Search Application. Search Application searches through the entire application.

To search through the entire application, enter your search criteria in the Search Application field
(located in the top right corner—see Figure 13–10). Figure 13–11 shows the detailed results of all
occurrences of EMP within the application. For each result, a link is provided to the exact location of the
result. Using the Search Application feature, you can easily find all references of EMP and replace them
with EMPLOYEE.

Figure 13–11. APEX Search Application results

The problem with the results in Figure 13–1 is that they contain results for all text that contains
EMP. This includes template, employee, empno, etc. Since you only want references to the EMP table
with respect to SQL queries and PL/SQL blocks, you can exclude all occurrences of EMP where its
previous or next character is alphanumeric.

CHAPTER 13 ■ EXTENDED DEVELOPER TOOLS

344

The APEX search application tool supports regular expressions. To use regular expressions the
search criteria must be prefixed with “regexp:”. Figure 13–12 shows the search application results when
a regular expression is used to filter out occurrences of EMP where its previous or next character is
alphanumeric.

Figure 13–12. APEX search results using regular expressions

Monitoring your APEX Application
APEX can log each page access and login attempt. Logging is an excellent feature to enable because it
allows you to monitor your application and provides a way to help reduce errors and improve
performance. This section will show you how to enable logging, some uses for the activity log, and how
to view all login attempts.

Enabling Logging
By default, logging is enabled when you create an application. To verify that logging is enabled for your
application, go to Shared Components and click the Edit Definition link in the Application region on the
right side. Under the properties section there will be a logging option, as shown in Figure 13–13. Ensure
it says Yes and click the Apply Changes button.

CHAPTER 13 ■ EXTENDED DEVELOPER TOOLS

345

Figure 13–13. Enable logging

For applications that have many page hits, you may want to disable logging as it can slow the
application down. Most applications will not have this issue, but it is important to know that the
problem might occur.

■ Note Logs are stored in two separate tables (views join these tables together to make it appear as one table).
Every two weeks one of these log tables is truncated. This means that the log views contain two to four weeks of

data. It is recommended that you set up a nightly job to permanently retain this data in your own schemas. An
example of storing a local, permanent, log history is shown in the following blog post at

www.talkapex.com/2009/05/apex-logs-storing-log-data.html.

Using the Activity Logs
Each time a page is accessed a log entry is stored. It can be referenced from the
APEX_WORKSPACE_ACTIVITY_LOG view. A good example of how to mine the activity log is to search
for errors in your application. No matter how hard you try, unhandled errors occur. Instead of waiting
for users to report these errors (assuming that they even report errors), you can take a proactive
approach. The following query will identify when an error occurs at the page or region level:

SELECT *
 FROM apex_workspace_activity_log
 WHERE error_message IS NOT NULL

Once an application has been running for a while you may notice that some pages are accessed
more often than others and some pages aren’t performing as desired. The following queries identify
these two cases:

-- Find most accessed pages
 SELECT application_id,

CHAPTER 13 ■ EXTENDED DEVELOPER TOOLS

346

 application_name,
 page_id,
 page_name,
 SUM (page_id) page_hit_count
 FROM apex_workspace_activity_log
GROUP BY application_id,
 application_name,
 page_id,
 page_name
ORDER BY SUM (page_id) DESC

-- Find slowest pages
-- Note: This depends on how you calculate slow
 SELECT application_id,
 application_name,
 page_id,
 page_name,
 ROUND (AVG (elapsed_time), 5) avg_elapsed_time,
 SUM (page_id) page_hit_count,
 MEDIAN (elapsed_time) median_elapsed_time
 FROM apex_workspace_activity_log
GROUP BY application_id,
 application_name,
 page_id,
 page_name
ORDER BY 5 DESC

By identifying the top accessed pages, you can focus your attention on trying to speed them up.
Slow pages may require tuning, but if they are accessed infrequently, you may not need to spend a lot of
time on them.

Here are some other examples of uses for the activity log:

• Top browsers: If you build your application to support Firefox and IE and find that
half of your users are using Chrome you may want to invest some time ensuring
that your application supports Chrome.

• The time frame when people are using your application. This will provide you
with an idea for the best time for maintenance and upgrades. You can also derive
the peak usage times.

• Search criteria in interactive reports. If there is a consistent search pattern,
perhaps a better report is required or preset filters.

Login Attempts
The APEX_WORKSPACE_ACCESS_LOG stores all the login attempts to your APEX applications. The
access log can be extremely useful when debugging user authentication issues.

An example of utilizing the access log is to monitor invalid login attempts. When a user attempts to
log in with invalid credentials, it’s not recommended to display the exact reason why their login attempt
failed. You do not want to tell the user the exact reason because it could reveal some valuable
information, such as if the user exists, etc. It may still be important for your operations team to know
why a user was not able to log in, in case they need to resolve the issue. Since all login attempts are
stored in the Access Log you can see the exact reason why a user was not able to log in for failed login
attempts.

CHAPTER 13 ■ EXTENDED DEVELOPER TOOLS

347

■ Note If you create your own authentication process, you should leverage the
APEX_UTIL.SET_AUTHENTICATION_RESULT and APEX_UTIL.SET_CUSTOM_AUTH_STATUS procedures to ensure
that you populate the access log with meaningful messages. For more information on these authentication

procedures, please read the APEX API documentation.

APEX Advisor
The APEX Advisor is a tool that executes pre-defined checks against your application. These validations
can help reduce errors in your application before it is tested or goes into production.

■ Note Prior to APEX 4.0, the APEX Advisor was an open source project developed by Patrick Wolf. During the
development of APEX 4.0, Patrick joined the APEX team and included the Advisor as a built-in tool. The open

source version of the APEX Advisor is available at http://essentials.oracleapex.info/

To use the Advisor, go to Utilities ➤ Advisor. Figure 13–14 shows all the checks that can be
performed. Hovering over each validation will display a brief description of the validation. You have the
option to restrict the pages that the Advisor reviews by defining a comma-delimited list of pages to
search for in the Check Pages region located at the bottom of the page. Once you select the checks to
perform, click the Perform Check button. The results page will provide a list of detailed issues that the
Advisor finds plus links to each of the objects.

CHAPTER 13 ■ EXTENDED DEVELOPER TOOLS

348

Figure 13–14. APEX Advisor options

The Advisor is an excellent tool to help detect issues before your application is deployed to end
users. It is still important to have development standards and a release process to help prevent issues.
You should be aware that the Advisor may produce false positives in response to some of the business
rules within your organization, so you should analyze each suggestion before fixing it.

Build Options
Build options allow you to conditionally render and execute objects in APEX. Build options are either
enabled or disabled for the entire application and can only be changed within the Application Builder.
This means that they are not run-time configuration options.

Understanding the Need
Suppose you are working on a custom authentication scheme and you want to verify that the
appropriate authentication results and custom status messages are populating in the Activity log for
invalid login attempts. Each time you attempt a login you could switch programs and run a query
against APEX_WORKSPACE_ACCESS_LOG. This process may get cumbersome because you have to
toggle between two applications. An alternate solution is to create a report on the Login page to display
the most recent login attempts. After each bad login attempt you’ll return to the Login page and see an
updated report of the Access log report. To build this report on page 101, your Login page, create a
report with the following query:

 SELECT user_name,

CHAPTER 13 ■ EXTENDED DEVELOPER TOOLS

349

 authentication_method,
 access_date,
 authentication_result,
 custom_status_text
 FROM apex_workspace_access_log
 WHERE application_id = :app_id
ORDER BY access_date DESC

The Login page will now look like Figure 13–15. The report allows you to quickly see the
authentication results when testing the login process.

Figure 13–15. Access log

Once you are content that your custom authentication scheme is working, you would normally
delete the extra report region since it is only there for debugging purposes. Deleting the region is
counterproductive, however, since you may need it in the future when you modify the authentication
scheme.

Creating a Build Option
Instead of removing the region, you should tag it as a Development Only object so that it will only be
available while you are developing your application rather than running it in production. Follow these
steps to create a build option to support this requirement:

1. In the Application Builder, go to Shared Components ➤ Build Options and click
the Create button.

2. Fill in each section as shown in Figure 13–16 and click the Create button.

CHAPTER 13 ■ EXTENDED DEVELOPER TOOLS

350

Figure 13–16. Create build option

3. You should now see a Development Only build option, as shown in Figure 13–17.

Figure 13–17. Development Only build option

Configuring Build Options
Before I continue with this example, it’s important to review some of the options in Figure 13–16. The
status values of include or exclude can be misleading. Build options don’t affect what is included in the
application, just what is executed or displayed at run time. A better description of the status options
would be enable/disable or on/off.

The Default on Export option sets the default configuration of the build option when the application
is exported and then imported. For your example, since you’re using the build option to handle
Development Only features, it makes sense to always exclude the build option and require developers to
explicitly include it.

In some cases there’s no clear default option, so the person installing the application must chose
the appropriate build option status. You can configure a required choice as part of the application
installation script.

Prompting for Build Option Status
To configure the application to prompt for a build option status during installation go to Supporting
Objects ➤ Build Options in the Application Builder. Select Development Only (include) under Prompt
for Build Options to prompt for as part of the installation (see Figure 13–18) and click the Apply Changes
button.

CHAPTER 13 ■ EXTENDED DEVELOPER TOOLS

351

Figure 13–18. Build option installation configuration

When installing the application, the user will have the option to include the build option as shown
in Figure 13–19. Again, include is a misguiding term as the build option will be included. If you include
it, it will be enabled.

Figure 13–19. Build option prompt

Applying Build Options
Now that you have created and configured the Development Only build option, you need to apply it to
the region in question—the Access Log region on page 101. The following steps will apply the
Development Only build option to the Access Log region:

1. Edit the Access Log region.

2. Scroll down to the Configuration region.

3. Select Development Only in the Build Option list (see Figure 13–20) and click
the Apply Changes button.

Figure 13–20. Apply build option

CHAPTER 13 ■ EXTENDED DEVELOPER TOOLS

352

■ Note When applying build options you can select the opposite result by selecting the “{Not …}” option. This

helps avoid having to create two build options which will always be the reciprocal of each other.

The Access Log region will now only be run when the Development Only build option status is set to
include. You can apply build options to other APEX objects using the same process.

Reporting on Build Option Utilization
Build options can be applied to most APEX objects including pages, regions, page items, tabs, etc. It can
become difficult to keep track of which objects use which build options in applications. The build option
Utilization report enables you to easily view which objects are using a particular build option. This
report can be very helpful when trying to get an overview of the impact that a build option has on the
application.

To view the build option Utilization report go to Shared Components ➤ Build Options. Click on the
Utilization tab and select the Development Only build option as shown in Figure 13–21. The link in the
description column will bring you to the specific object that is using the build option.

Figure 13–21. Build option utilization report

Page Specific Utilities
Page specific utilities allow developers to do bulk operations on APEX objects within an application. To
access page specific utilities go to Utilities. The Page Specific Utilities region, located on the right,
contains all the page specific utilities available (see Figure 13–22).

CHAPTER 13 ■ EXTENDED DEVELOPER TOOLS

353

Figure 13–22. Page specific utilities

Each of the utilities provides tools associated to the type of object. I won’t cover each utility in this
book, but I encourage you to explore the available features.

APEX and Oracle SQL Developer
Oracle SQL Developer is a free database development GUI. For more information about SQL Developer
go to http://technet.oracle.com/sqldeveloper.

Integration
APEX is integrated with SQL Developer. In SQL Developer, you can see all the APEX applications whose
parsing schema is the same as your connecting schema (see Figure 13–23).

Figure 13–23. APEX in SQL Developer

CHAPTER 13 ■ EXTENDED DEVELOPER TOOLS

354

Within SQL Developer you can view object information and perform basic application level tasks
such as importing and exporting an application, changing the application alias, and renaming an
application.

Refactoring Support
APEX allows for anonymous blocks of PL/SQL. I strongly recommend that such blocks reference
compiled code (packages, functions, and procedures). Storing code in packages helps separate the
business logic from the display layer and may have some performance benefits.

In some cases, you may have written large blocks of code directly in the application. Eventually,
you’ll want to move these large blocks of code into compiled PL/SQL code. SQL Developer provides a
tool that automatically generates a PL/SQL package from the anonymous blocks of PL/SQL in APEX. You
can then replace your large blocks of code with references to this package. To generate the package, right
click on the application in SQL Developer and select Refactor (in bulk), as shown in Figure 13–24.

Figure 13–24. Refactor code

SQL Developer will open a new worksheet with the necessary code to compile. The new worksheet
also provides notes on what sections of your APEX applications to change and the code to replace it with.
Similar to the APEX Advisor, these are recommendations; you should follow your organization’s
development standards, etc.

Summary
There are many tools within APEX that make your life as a developer easier. Take some time to get to
know the tools and utilities presented here and you will undoubtedly speed up your ability to get things
done. And while any PL/SQL GUI will help you edit and manage database objects, it should be clear by
now that Oracle’s SQL-Developer has special hooks to make managing, developing and debugging with
APEX far easier.

C H A P T E R 14

■ ■ ■

355

Managing Workspaces

Once you start developing APEX applications and working in a team environment, you’ll need to spend
some time managing workspaces. This chapter will cover the various tools and resources available to
manage a workspace.

■ Note Administering a workspace covers many different areas. This chapter will not cover all areas in detail;
some have been mentioned in other chapters and others will not be included due to space constraints. This

chapter assumes that the user logging in is a workspace administrator.

Learning About Your Environment
When you log into APEX as a workspace administrator and click on the Administration tab at the top of
the page, you will see icons for each of the major sections (see Figure 14–1). This chapter will cover each
of these sections and their associated subsections. First, though, I’ll show you how to get information
about your APEX environment.

CHAPTER 14 ■ MANAGING WORKSPACES

356

Figure 14–1. Administration home page

Viewing Instance Information
On the Administration home page on the right hand side under the Tasks region, the first a link is called
About Application Express. Clicking on the About Application Express link will bring you to a page that
shows information about your current APEX instance (see Figure 14–2).

CHAPTER 14 ■ MANAGING WORKSPACES

357

Figure 14–2. About Application Express page

The information on this page can be very useful when developing and debugging APEX
applications. In fact, the About page is an excellent location from which to quickly get an overview of
your particular APEX instance. Since APEX is stored in the database, all of the values in the figure can
also be obtained from a query. For example, you can find the database version from the following query:

SELECT *
FROM v$version

CHAPTER 14 ■ MANAGING WORKSPACES

358

The list of CGI variables at the bottom of Figure 14–2 is only available to workspace administrators.
If developers need to see a complete list of CGI variables and their values, they can create a PL/SQL
region and use OWA_UTIL.PRINT_CGI_ENV as the region source.

■ Note You can only obtain CGI variables from a web interface since they are web based variables. If developers
try to query them in SQL*Plus, they won’t get any results. The following article contains more information on CGI

variables: http://en.wikipedia.org/wiki/Common_Gateway_Interface

Checking the APEX Version
The About Application Express page displays the current version of APEX. The version can also be
obtained by the following query:

SELECT *
FROM apex_release

Obtaining the APEX version from a query can be important for DBAs when upgrading an
application. Also, developers sometimes write code that is dependent on the current version of APEX.

Managing the Service
Click the Manage Service icon to change preferences and other settings affecting the operation of your
APEX service. You’ll find the Manage Service icon on the Administration home page shown in Figure 14–1.

Figure 14–3 shows the main Manage Service page.

Figure 14–3. Manage Service page

CHAPTER 14 ■ MANAGING WORKSPACES

359

Workspace Preferences
You can enable and disabled the different modules available to APEX developers. To configure each of
the modules, click on the Set Workspace Preferences icon that looks like a clipboard (see Figure 14–3).
The Set Workspace Preferences page is shown in Figure 14–4.

Figure 14–4. Set Workspace Preferences page

CHAPTER 14 ■ MANAGING WORKSPACES

360

From the Set Workspace Preferences page, you can enable or disable the following APEX modules:

• Application Builder

• SQL Workshop

• Team Development

If you disable any of these modules, they will be disabled for all users regardless of their privilege.
In production instances you may want to restrict access to the SQL Workshop as part of your

corporate policy because the SQL Workshop has access to all the objects in the schema.
The Account Login Control section manages APEX workspace users. Settings in that section do not

affect your APEX applications unless you are using the default APEX authentication scheme that
references workspace users.

Announcements
Announcements allow workspace administrators to display messages to APEX developers.
Announcements will be displayed in key areas throughout the APEX development environment. These
messages will not be displayed in your APEX applications.

To create an announcement, click on the Edit Announcement icon that looks like a speaker (see
Figure 14–3). Enter a message and click the Apply Changes button, as shown in Figure 14–5. The
message will appear in the announcement section, as shown in Figure 14–6.

Figure 14–5. Editing a workspace announcement

Figure 14–6. A workspace announcement

CHAPTER 14 ■ MANAGING WORKSPACES

361

You’ll notice in Figure 14–6 that there is also a News section. The News section is managed as part of
Team Development; I’ll cover that section in the next chapter. News is slightly different from
announcements. Announcements can only be modified by workspace administrators and can only
contain one message. News items can be set by users that have access to Team Development and can
contain multiple messages.

Managing Meta Data
On the right hand side of the Manage Service page is a region called Manage Meta Data (see Figure 14–
7). The following subsections will cover what you can do using the menu choices in the region.

Figure 14–7. Manage Meta Data menu

Developer Activity and Click Count Logs
The Developer Activity and Click Count Logs menu option accesses two types of logs. One logs changes
by developers in the workspace. The other tracks user clicks on links to pages outside your APEX
application.

Developer Activity Logs
The Application Builder logs all changes made by developers. The logs are referenced in various
locations throughout the Application Builder and the Administration section. You can view the logs from
the Monitor Activity section, which you can access by clicking the Monitor Activity icon shown in Figure
14–1. You can also obtain the developer activity logs from the following query:

SELECT *
FROM apex_developer_activity_log

Like the logs mentioned in the previous chapter, the developer activity logs retain up to one month
of data. You can purge developer activity logs by clicking on the Purge Developer Log button shown in
Figure 14–8.

CHAPTER 14 ■ MANAGING WORKSPACES

362

Figure 14–8. Purge Developer Log button

Click Count Logs
When creating a list (Application Builder ➤ Shared Components ➤ Lists), you can chose to track clicks
on external links. These clicks are logged in the APEX_WORKSPACE_CLICKS log. You can also view the
click count log in Monitor Activity section (see the icon for Monitor Activity in Figure 14–1).

Similar to the Developer Activity logs, you can purge the click logs by selecting the Manage Click
Count Log and clicking on the Purge Click Log button shown in Figure 14–9.

Figure 14–9. Purge Click Log button

Session State
Choosing Session State from the menu in Figure 14–5 brings you to a page that lets you manage session
state and preferences. Preferences are slightly different than session state since they are linked to the
user and not the current session. This means that changes to a preference will affect all sessions that a
user is currently in.

Manage Session State
You can view all the session values, clear these values, and end sessions from the various reports
available in the Manage Session State region. A session is automatically created each time a user logs
into APEX. Since the APEX builder is an APEX application, sessions are created for both developers and
end users.

CHAPTER 14 ■ MANAGING WORKSPACES

363

Clearing session state or terminating a session may be useful in development to simulate different
situations. If you are doing this in a production environment with live users, you should be extremely
cautious.

Manage Preferences
The Manage Preferences region contains links to view and manage user preferences. Preferences as used
to permanently store values for each user. Since they are linked to a user, they are session independent.
One of the most common uses for user preferences is to store the sort order for standard reports that
APEX automatically manages.

Similar to session states, you should not purge preferences in a production environment unless you
are certain about what you’re doing.

Application Cache
The Application Cache section provides the tools to purge page and region caches based on different
criteria. In APEX you can cache pages and regions for all users or by each individual user. Caching can
help improve performance since APEX does not need to regenerate the HTML code for a given region.

Websheet Database Objects
The Websheet Database Objects section allows you to create or delete the tables required for websheets
and validate their status. Unlike an APEX application, websheet data is stored in tables that reside in
each schema instead of in tables owned by the APEX_040000 schema.

When you first create a workspace, the websheet objects are not created. To create them, go to the
Websheet Database Objects section and click the Create Websheet Database Objects link shown in
Figure 14–10. Follow the wizard to create the websheet objects. After you have created the websheet
objects, you can create a websheet application.

Figure 14–10. Create Websheet Database Objects page

Once the objects are created, the Websheet Database Objects page will look like Figure 14–11. From
this screen, you can remove the database objects that relate to websheets or ensure that these objects
are valid.

CHAPTER 14 ■ MANAGING WORKSPACES

364

Figure 14–11. Websheet Database Objects page

Application Build Status
From the Application Build Status section, you can quickly manage both the application status and build
status for all the applications within the workspace. An application has two main statuses: application
status and build status. The application status controls the availability of the application. To get a full
explanation of each application status, click the Help link in the top right corner. The build status
determines whether an application can be modified by developers or run only. In production
environments you may want to set the build status to Run Application Only to prevent any changes.

■ Note The application and build statuses can also be set from the application properties page for each

application.

Application Models
The Application Models page provides a report of all the saved application models and allows you to
delete them. Before reviewing the application models section, it’s important to know what application
models are.

In the last step of the create application wizard, you are given the option to save the definition as a
design model (see Figure 14–12). Design models contain all the initial pages that you created as part of
the create application wizard.

CHAPTER 14 ■ MANAGING WORKSPACES

365

Figure 14–12. The option to save the definition as a design model

The next time you create an application from scratch you’ll be given the option to create an
application based on existing application design model, as shown in Figure 14–13.

Figure 14–13. Create an application from existing design model

After selecting the “Based on existing application design model” option and clicking the Next
button, you can select a saved design model, as shown in Figure 14–14.

CHAPTER 14 ■ MANAGING WORKSPACES

366

Figure 14–14. Select an application design model

The Application Models page in the Administration section allows workspace administrators to
delete any design models. Deleting a design model will have no effect on existing applications.

The only way to modify a design model is to create a new application from scratch, base it on an
existing design model, and then save the model at the end of the process.

File Utilization
The File Utilization page provides an overview of all the types of files and their total size in the
workspace, as shown in Figure 14–15. There are various locations where files can be stored as part of an
APEX application. Over time, these files can take up unnecessary space.

Figure 14–15. File utilization information

The export repository tends to consume most of the space compared to other files listed in the File
Utilization page. When you import an application into your workspace, the original file is stored in the
export repository. The name “export repository” can be misleading since the repository contains the
original application files that are imported into the workspace. Once an application has been

CHAPTER 14 ■ MANAGING WORKSPACES

367

successfully imported and installed, you don’t need to retain the file in the repository, so it can be
removed.

The following steps explain how to clean up the export repository:

1. In the administration module, click on the Manage Export Repository link
located in the Tasks region on the right hand side.

2. Select the files that you no longer need and click the Delete Checked button, as
shown in Figure 14–16.

Figure 14–16. Delete Checked button

Interactive Report Settings
The Interactive Reports Settings page allows workspace administrators to manage saved reports and
report subscriptions. Only workspace administrators can delete saved reports and report subscriptions.
The only way to modify a report configuration is to log in as the user.

Saved Reports
The Saved Reports section allows you to delete certain saved interactive reports. Interactive reports have
three different types of saved reports (see Figure 14–17). Primary default is the default report setting and
is accessible to all users. Private interactive reports are custom interactive reports that are only visible to
the users that created them. The final type, alternative default, is new to APEX 4.0. Alternate default
reports are saved by privileged users and are accessible to all users.

On the Saved Reports page, you can delete private (custom) and alternative default reports by
selecting the report(s) and clicking the Delete Checked button. Primary default reports can’t be deleted.

CHAPTER 14 ■ MANAGING WORKSPACES

368

Figure 14–17. Managed Saved Interactive Reports page

Subscriptions
Similar to the Saved Reports section, you can delete interactive report subscriptions from the
Subscriptions section. Subscriptions allow users to receive e-mailed reports on a schedule that they
define. Subscriptions are a new feature in APEX 4.0 and must be explicitly enabled by developers.

On the Manage Subscriptions page, workspace administrators can only delete specific subscriptions
or all subscriptions, as shown in Figure 14–18. Just like saved reports, you can’t modify any of the
subscription attributes.

Figure 14–18. Manage Interactive Report Subscriptions page

CHAPTER 14 ■ MANAGING WORKSPACES

369

Managing Users and Groups
This section will cover most of the features available when you click the Manage Users and Groups icon
located on the Administration home page shown in Figure 14–1. All references assume that you start on
the Manage Users and Groups page shown in Figure 14–19.

Figure 14–19. Manage Users page

The main page contains a list of all the end users, developers, and workspace administrators. You
can modify a user by clicking on the edit link beside their name. End users do not have access to the
development environment and will only have access to applications if the authentication scheme is the
default Application Express.

Creating One User
To create a single user, click on the Create User button in Figure 14–19. If you are only creating
developers, you don’t need to worry about entering some of the non-required fields such as first and last
name because you will usually know the user based on the username. You can also grant access to
specific modules. For example, if you create an account for a project manager, you may only want to give
them access to the Team Development module shown in Figure 14–20.

Figure 14–20. Account privileges

CHAPTER 14 ■ MANAGING WORKSPACES

370

Creating Multiple Users
Creating multiple users one at a time using the Create User page can get frustrating. APEX provides an
interface to create multiple users. Start by clicking on the Create Multiple Users link under the Tasks
region on the Manage Users and Groups main page, as shown in Figure 14–21.

Figure 14–21. Create Multiple Users menu option

On the Create Multiple Users page, you need to provide an e-mail address for each user. The e-mail
addresses can be delimited by commas, semicolons, or new lines. APEX generates the usernames from
the e-mail addresses that you enter. For example, the e-mail address of stephanie@clarifit.com will
yield a username of either “stephanie@clarifit.com” or just plain “stephanie”. You can specify whether
you wish each e-mail address to translate directly into a username, or whether you want the usernames
to exclude the @domain suffixes. Figure 14–22 shows the radio button set for the latter option.

If your usernames do not correspond to your corporate e-mail addresses, you can enter e-mail
addresses with invalid domains and select the option to omit the suffixes. For example, enter the
username “jonathan@example.com” when you just want a user named jonathan. Then select the option
to exclude the @domain portion of the e-mail address.

The password that you enter will be the same for all the users. When they log into the workspace,
they will be required to change it.

CHAPTER 14 ■ MANAGING WORKSPACES

371

Figure 14–22. Create Multiple Users page

After you enter all the information on the Create Multiple Users page, click the Next button to go to
the confirmation page shown in Figure 14–23. If everything is correct, click the Create Valid Users
button.

CHAPTER 14 ■ MANAGING WORKSPACES

372

Figure 14–23. Create Multiple Users confirmation

Organizing Users Into Groups
You can associate an APEX user with multiple groups. These groups can be used in authorization
schemes to grant or deny access to various parts of an application. Since groups are linked with APEX
users, you can only leverage the use of groups when your authentication scheme is set to the default
Application Express scheme.

It is important to note that groups are associated with a single workspace. If you have a traditional
setup with a development, test, and production environment, you will need to create the same groups in
each of the workspaces.

Creating a Group
To create a user group, click on the Manage User Groups link under the Tasks region (shown in
Figure 14–21) and click the Create Group button. Enter a unique group name and description, as shown
in Figure 14–24.

CHAPTER 14 ■ MANAGING WORKSPACES

373

Figure 14–24. Create a user group

Assigning Users to a Group
Assigning users to a group is not very intuitive. Clicking on the User Group Assignments under the
Manage Groups region will only give you a report of all the users and their groups. To assign a user to a
group, you need to edit the user (Users ➤ Edit User) and scroll down to the User Groups region shown in
Figure 14–25.

Figure 14–25. Assign user to group

Viewing Usage Reports and Dashboards
The Monitor Activity and Dashboard sections from Figure 14–1 provide you with many detailed and
summary reports about your APEX workspace. The reports contain information about both developer
activity and end user activity. You are encouraged to explore each of these sections to see all the
available reports.

CHAPTER 14 ■ MANAGING WORKSPACES

374

Summary
APEX provides many tools to help you manage your workspace plus reports to get stats about your
workspace. Some tools can affect end users and should be used cautiously. However, don’t let the need
for caution deter you from using tools that can make your job easier. Learn the tools well. Be confident
in your knowledge. Take a moment to think before you act. These are the keys to success.

C H A P T E R 15

■ ■ ■

375

Team Development

Team Development is an excellent tool for managing APEX 4.0 software development. Team
Development is embedded within the APEX development environment, allowing you to manage your
APEX projects with tools that you and your team use every day like Interactive Reports. This eliminates
the need for an external project management tool. Team Development’s simple, extensible, and flexible
architecture is ideal for managing projects of any size. Its simplicity lends itself to small projects where
you want to minimize your project management overhead. Its extensibility scales well, allowing you to
manage large projects by using its rich set of attributes to construct a sophisticated work breakdown
structure (WBS). Its flexibility allows you to adapt it to your organization’s software development
culture.

APEX and Team Development are both well suited to work with agile software development
methodologies. APEX’s Rapid Application Development (RAD) architecture allows the team to rapidly
deliver regularly scheduled releases to the business testers and end users. Team Development’s
feedback mechanism efficiently channels end user issues back to the development team so that
appropriate changes can be included in the following releases and easily documented. Team
Development makes APEX, which is already an efficient development platform, even more efficient.

The primary purpose of this chapter is to highlight how Team Development works. A secondary
purpose is to illustrate how agile software development practices can be used with Team Development
to deliver quality software while meeting your cost and schedule constraints. By the end of the chapter,
you should have a good understanding of what is in Team Development and some ideas about how you
will integrate it into your team’s development culture.

Team Development was added to APEX in version 4.0. The APEX team itself used Team
Development while it was developing APEX 4.0. This design philosophy of using the tool to build the tool
is a key reason why Team Development and APEX itself are practical and easy to use tools.

Team Development Overview
Team Development consists of features, milestones, to-dos, bugs, and feedback. These modules are
complemented by a small number of utilities called Team Actions that are used to manage the Team
Development environment. The entity relationship diagram (ERD) illustrates the relationships between
the main entities (see Figure 15–1).

The Team Development entities are contained within a single workspace. When you are managing
several applications simultaneously within a workspace, you and your teams can easily filter Team
Development’s data by using the tool’s Interactive Reports. That way, each stakeholder sees only the
work that is of immediate interest for the tasks at hand.

Features describe the big picture. At a high level, they describe and track progress for the major
pieces of functionality that your client has requested. Attributes like owner, start date, due date,
summary description, priority, status etc. are easily tracked. In addition, you can optionally track the
status of individual components like the user interface, testing, documentation, globalization, security,
and accessibility. The self-join that is associated with features allows you to further sub-divide a feature

CHAPTER 15 ■ TEAM DEVELOPMENT

376

into child features as development progresses and the design becomes more refined. The high-level
nature of features makes them an ideal source for management status reports.

Milestones are the high-level scheduling component of Team Development. They can be used to
track major and minor releases of an application. Do not confuse milestones with the due dates that are
associated with features and to-dos. For example, a milestone could be the scheduled date for a product
release, but a feature that is included in the release might be due well in advance of the milestone date. If
you use an agile software development strategy, milestones are well suited to define the “time boxes” or
“sprints.”

Figure 15–1. A simplified entity relationship diagram of Team Development

To-dos are used to assign detailed work to individuals or teams. Due dates, time estimates, etc. are
tracked. Like features, to-dos have a self-join capability that allows you to subdivide them as more
information becomes known during the development process. This is handy when a single to-do
requires effort from more than one team.

When a defect is found, it’s reported as a bug. Bugs have their own lifecycle that includes a rich set
of attributes such as description, resolution, release, assignee, context, and date information. When you
find a bug that turns out to be a design flaw, Team Development allows you to link the bug to multiple
features, milestones, and to-dos as the bug fix might require an extended time that spans a number of
product releases.

Feedback is one of the main sweet spots of Team Development. The feedback mechanism can be
installed in an application in a matter of minutes and gives the entire team an efficient and elegant

CHAPTER 15 ■ TEAM DEVELOPMENT

377

communication channel for comments, suggestions, issues, defect reports, and responses. Once
installed in an application, the feedback mechanism is promoted with the application from the
development environment to the test environment and on to the production environment. Feedback
data and the related responses are copied back and forth between the various environments via the
APEX import/export facility. This keeps the developers, testers, and end users in close touch with each
other. Another key feature of the feedback mechanism is that it automatically records all of the critical
“under the hood” data that end users know nothing about. The application context, environment
variables, and, most importantly, the session state are all captured. This data is invaluable when you are
diagnosing an issue.

At first glance, there seems to be a large number of attributes contained in the Team Development
entities. So, do you have to enter all of these attributes in order to use Team Development? No. To get
the most out of Team Development, you and your team must plan how you are going to use Team
Development with a view to effectively managing the software development process with minimum
effort. You can pick a small subset of Team Development’s attributes that fit your software development
culture and key in only that subset of the data. The Interactive Reports can easily be customized to
display only the data that is important to you.

Team Development Interface
The Team Development interface is consistent with the overall APEX development interface. It makes
extensive use of dashboards to quickly give you an idea of how your teams are progressing. Drilling into
the details to view and update the data is fairly straightforward and intuitive. APEX developers will have
no trouble navigating within the tool or customizing their Interactive Reports. Managers, testers, and
business analysts will also be able to make use of Team Development after a short training session.

APEX Home Page
The APEX home page (see Figure 15–2) clearly indicates how important Team Development is to the
APEX team. The APEX team could have easily put Team Development under a minor link somewhere on
the home page. Instead, they have promoted Team Development into a marquee module that is on an
equal footing with Application Builder, SQL Workshop, and Administration.

CHAPTER 15 ■ TEAM DEVELOPMENT

378

Figure 15–2. APEX home page

The APEX home page highlights the easy and convenient navigation. The News region, which is a
feature of Team Development, contains two links (Add and Edit) that enable quick changes to the region
without having to drill down into sub pages. The Team Development dashboard region also features an
Edit link that controls the Show and Release filters. Look for similar links throughout the Team
Development interface; they are very handy, indeed.

Team Development Home Page
The Team Development home page (see Figure 15–3) serves two purposes. One, it contains links to all of
the detailed entity regions; and two, it shows you a dashboard for each entity. You’ll also see links to
Team Actions, which are discussed near the end of the chapter in a section called “Team Actions.”

CHAPTER 15 ■ TEAM DEVELOPMENT

379

Figure 15–3. Team Development home page

The dashboards can be filtered by assignee, release, and application. These filters make it easy for
users to customize the page to their needs. For example, managers can ask “How are we doing?” while a
developer can ask “What do I need to do for this release?” This high-level filter region is found on the
dashboard pages associated with each Team Development entity. The filter fields are tailored to each
entity. The dashboard regions link to their underlying entities. There is an Add icon in each header;
when you click on the name, feature, or milestone, you are taken directly to that entity’s Edit page.

Common Design Elements
When you drill into the individual Team Development entities, you will find several common design
elements that help you navigate quickly and intuitively between entities. Figure 15–4 highlights these
design elements. In the upper right area is a group of icons that are used to switch between the major
entities. On the upper left is a set of tabs that is tailored to each entity. Some of the tabs are common to
all entities. The Dashboard, Details (feature, milestone, to-do, etc), and Calendar tabs are common to
each entity. Others are unique to an entity. When you are on a tab that has an equivalent in the other
entities, pressing one of the upper right navigation icons will take you to that equivalent page. For
example, when you are looking at the Calendar tab and you press the Milestone icon, you will be taken
directly to the milestone’s Calendar tab. When you are on a tab that has no corresponding equivalent in
the other entities, the upper right navigation icons are not displayed.

CHAPTER 15 ■ TEAM DEVELOPMENT

380

Figure 15–4. GUI designs that are common to all entities

All of the dashboard pages contain a filter region that is tailored to the entity. The filter select lists
contain entries for only the entities that are tracked by Team Development. For example, if there is an
application that doesn’t have any features associated with it, that application will not appear in the
select list.

Many of the individual dashboard regions contain links that take you to the entity’s Detail page and
automatically set the filters on the detail page’s interactive report so that you see only the entity records
that are related to the dashboard item you selected. This navigation strategy, once you get used to it, is
convenient.

Drilldown Functionality
The Calendar tabs (see Figure 15–5) display links to individual entity records based on the entity record’s
due date. Clicking on the Calendar link takes you directly to the Edit page for the selected entity record.
Pressing the Cancel button on the Edit page returns you to the calendar.

CHAPTER 15 ■ TEAM DEVELOPMENT

381

Figure 15–5. Calendar with links to an Edit page

Some of the Entity tabs display their data graphically (see Figure 15–6). Clicking on a graphic pie
slice automatically takes you to the entity’s Detail page and sets the Interactive Report to show only the
data that was selected on the graph.

CHAPTER 15 ■ TEAM DEVELOPMENT

382

Figure 15–6. Graphic data summary

Tagging
A powerful organizational attribute called tags is associated with all of the entities. A tag is a free form
text input that enables you to group records by a key word. This is handy because some record groupings
do not fit into the neat and tidy relational data model. For example, you might want to be able to find all
of the features that contain a shuttle item across all applications. By adding the tag “shuttle” to these
features, you can use the Interactive Report search field to find all records that contain the tag of
“shuttle.” All of the dashboard pages contain a region that displays all of the tag strings that are defined
in their respective entity. This enables you to quickly find and correct typos so that the free form tags can
be kept accurate.

CHAPTER 15 ■ TEAM DEVELOPMENT

383

GETTING PAST THE INITIAL DISCOMFORT

At first, Team Development’s organization, layout, and navigation might appear a bit strange and non-
intuitive. We certainly struggled with it at first. Our initial perception was probably due to our previous
experience with project management tools that utilize pages with a work breakdown structure (WBS) on
the left and a Gantt chart on the right.

Our initial discomfort with Team Development was similar to our first experiences with APEX itself. Like
many experienced developers, we had come from development environments in which screen widgets are
listed on the left and dragged onto a screen, and in which the X-Y coordinates are set together with a
widget’s height and width, all at pixel level precision.

When we first used APEX, most of us took a while to get used to how APEX built pages. After a few tries,
we all have learned to love the product. We believe the same will be true with Team Development. After a
bit of experience, you will find that the Interactive Reports are, in fact, a practical alternative to Gantt
charts, especially in an agile software development environment in which the time boxes are short and the
lists in the Interactive Reports are correspondingly small.

Features
Features describe an application from a high-level perspective. They are used at the beginning of a
development project to define the scope well enough so that budgetary estimates can be made of cost,
schedule, and resource requirements. Once the project is approved and work begins, child features are
added to describe, control, and track progress in more detail. Features are the heart of management
status reports.

The features Detail page contains a number of tabs. The Dashboard, Calendar, Focus areas, and
Owners tabs are not discussed here as they or their equivalents are common to all entities and their
characteristics are mentioned above. The features, history, and progress logs are highlighted below.

Features Tab
The Features tab (see Figure 15–7) contains an Interactive Report that, in turn, links to the Edit page for
individual feature records. Since the data grid is an Interactive Report, each user can tailor it to their
needs. You can choose your columns from approximately fifty attributes, sort to your taste, and even
group related records together. Interactive Reports are discussed in detail in Chapter 6.

The Copy link is useful when you are entering a number of related features. For example, if you are
entering ten or twenty features that belong to a single application, you might expect that many of the
data attributes will be repeated on every record. The Copy link creates a new feature as an exact copy of
the existing one in the Interactive Report. Only the name is changed. Once the new feature is created,
you can then quickly edit it and change the attributes that are unique to that record.

CHAPTER 15 ■ TEAM DEVELOPMENT

384

Figure 15–7. Features interactive report

The Edit link takes you to the features Edit page (see Figure 15–8). You can easily explore the
individual attributes on your own as their definitions are generally self-evident and documented by
clicking an attribute’s label. However, two areas on Figure 15–8 are highlighted. Those deserve more
explanation.

• User interface, testing, documentation, globalization, security, and accessibility
regions: These regions are used to track sub-life cycles that are associated with a
feature. For example, if a separate team is responsible for documentation, their
progress can be tracked separately from the main feature (see Figure 15–9). If the
documentation effort is not being tracked, then the documentation region can be
excluded from the features Edit page by turning it off in the Team Development
settings area.

• Configurable Lists of Values (LOV): Some LOV, like feature status, are controlled
by the APEX team. Others, like the feature owner, are controlled by the
development team. Instead of maintaining the developer configurable LOV in a
separate maintenance area, these lists are maintained in place. For example, to
add a new feature owner, you enter the appropriate name in the New Owner item,
press the Apply Changes button, and that name is added to the LOV.
Unfortunately, currently there is no easy and safe way to edit these configurable
LOV; hopefully this ability will come in a future APEX release.

CHAPTER 15 ■ TEAM DEVELOPMENT

385

Figure 15–8. Feature Edit page

Figure 15–9. Feature documentation region

History Tab
The History tab (see Figure 15–10) presents a detailed audit trail of all changes made to all of the
features. The tab presents an Interactive Report that contains the feature, column name, old value, new
value, the user who made a change, and when the change was made. You can view the report on the
History tab for quality assurance purposes or as a source of evidence if contractual disputes arise.

CHAPTER 15 ■ TEAM DEVELOPMENT

386

Figure 15–10. Features History tab

Progress Log Tab
The progress log in Figure 15–11 is, in effect, a diary. Stakeholders can, on the features Edit page, enter
free form text into the progress log at any time. The progress log acts as a communication channel for
the development team and can be used to record new ideas, reminders, a flash of brilliance, questions,
and anything else that needs to be remembered.

Figure 15–11. Features Progress Log tab

Milestones
Milestones are used to define and track event dates for both scheduled and one-time happenings. On
the surface, this appears to be a simple concept; however, it can be a confusing area because milestone
functionality overlaps with releases and can be confused with the due dates associated with features, to-
dos, and bugs. Fortunately, the confusion can be mitigated with a bit of planning and organization.

One strategy that can be used to organize milestones and releases is to create one of each for the
same release event. The milestone contains the metadata that is associated with the release: the date, a
type, owner, description, and tags. The release is defined as a configurable LOV that is shared by all of
the Team Development entities but it contains no descriptive metadata. Also, releases are one of the

CHAPTER 15 ■ TEAM DEVELOPMENT

387

handy high-level filters associated with features, to-dos, and bugs. The need for both metadata and the
high level filters is the reason that a milestone and a release must be used to describe the same event.
Happily, the overhead in doing this is low.

Another suggestion for workspaces that contain multiple applications is to prefix features,
milestones, releases, to-dos, and feedback with the name or code of their associated application (see
Figure 15–12). In many cases, this is not strictly necessary but it can make some of the dashboards more
readable as they often contain only an entity’s name without any supporting data.

Figure 15–12. Suggested naming pattern

Milestones, of course, are used to define and track other events in the software development
lifecycle. Important meetings, tool software upgrades, and requirement deliveries are just a few
examples.

The milestones interface contains a number of tabs. The Dashboard and Calendar tabs are common
to all entities and are discussed above.

Milestones Tab
The Milestones tab in Figure 15–13 contains an Interactive Report that contains a list of milestones. The
high-level filters let you select all or only future events as well as individual releases. The Edit link in the
Interactive Report takes you to the milestone’s Edit page, which contains intuitive items that are
documented under their labels.

CHAPTER 15 ■ TEAM DEVELOPMENT

388

Figure 15–13. Milestones tab

Milestone Details Tab
The Milestone Details tab (see Figure 15–14) is a dashboard that summarizes the relationships between a
single milestone and the other Team Development entities. Knowing the number and status of the
related features, to-dos, and bugs is a good management tool that is useful for controlling a sprint or
time-box that leads up to a release.

Figure 15–14. Milestone Details tab

Features by Milestone Tab
The Features by Milestone tab (see Figure 15–15) contains an Interactive Report that, in detail, illustrates
the relationship between milestones and the features that are associated with the milestone. This is
mainly a management report.

CHAPTER 15 ■ TEAM DEVELOPMENT

389

Figure 15–15. Features by Milestone tab

To Do Items
To-do items are the workhorses of Team Development. Team Development uses the term to-do as a
noun. A to-do is a specific task that is assigned to an individual or team along with a due date. In simple
terms, a to-do describes the what, who, and when of the task at hand.

To-dos can be subdivided into many child and grandchild tasks. This process of decomposition is
done to the point of diminishing returns. A rule of thumb is that the number of sub-task levels should be
appropriate for effectively controlling the tasks at hand. What is appropriate is, of course, a function of
your team’s culture. Also, in an agile software development shop, the sub-task levels will tend to remain
shallow due to the daily face-to-face communication between team members.

There are four tabs in the to-do module: Dashboard, To-dos, Calendar, and Progress log. You will
find working with these tabs to be easy and intuitive.

There is a handy navigation feature that links the development environment directly to the to-do
module. When a to-do has its context set to both an application and a specific page number within that
application, a count of to-dos appears on the page’s Development screen (see Figure 15–16). In the
upper right corner there are counts of to-dos, bugs, feedback, and comments. When you click on the to-
do count, the link takes you directly to the To-do Report page that has the Interactive Report filters set to
list only the open to-dos that are associated with the development page (see Figure 15–17). The
developer can then quickly select one of the to-dos, see what needs to be done, and then quickly return
to the Development page to complete the to-do task. This efficient navigation strategy also applies to
bugs and feedback.

CHAPTER 15 ■ TEAM DEVELOPMENT

390

Figure 15–16. Development page linked directly to To-do module

Figure 15–17. To-do page filtered by an application’s development count link

Bugs
In the software development world, bugs are a fact of life. We all hope that bugs are found and fixed in
the unit and system testing cycles before a product is released to the end users. Happily, this is generally
true with the caveat that a small number of bugs will slip through into the production environment.
Team Development’s bug module is a practical environment that is used to track easy and hard bugs in
the development, test, and production environments.

Easy bugs are usually caused by a coding error or a programmer’s misunderstanding of a
requirement. The symptoms are obvious, the root cause is simple to find, and the fix is almost trivial; for
example, changing a plus sign to a minus sign or reorganizing an IF statement in the code. Easy bugs are
usually found early in the product’s development cycle and are, in general, caught by the programmers

CHAPTER 15 ■ TEAM DEVELOPMENT

391

or testers. However, easy bugs must be recorded and reported so that improvements can be made to the
coding process; a large number of easy bugs can turn out to be surprisingly expensive.

Hard bugs are, well, hard. They can be caused by design flaws anywhere in the system, subtle
interactions between software systems, subtle interactions between software and hardware, and
awkward interactions between users and the GUI. Hard bugs can have their own lifecycle and the fix
might be spread over several product releases. Team Development’s Bug and To-do modules can be
used together to track a hard bug’s resolution, even when it spans several product releases.

The Bug module highlights how you can take advantage of Team Development’s simplicity,
extensibility, and flexibility. Simplicity makes tracking easy bugs almost trivial. A bug is found and
recorded in Team Development’s Bug module where everything about the bug is recorded including the
what, who, and when data. Easy bugs can stand on their own or you can associate them with a to-do
depending on how you organize your Team Development environment.

Extensibility and flexibility come into play when you deal with hard bugs that may take an extended
time to fix and possibly require effort from several developers or teams. Team Development can handle
this situation by linking a hard bug to a to-do (see Figure 15–18). The linked to-do is then set up as the
parent of several child to-dos that are used to track the tasks that are required for the fix.

Figure 15–18. Linking a hard bug to a parent to-do

Feedback
Team Development’s Feedback module is an APEX “sweet spot.” Even if your team chooses not to use
Team Development for managing its software development efforts, you should at least consider using
the Feedback module. The Feedback module provides a cost-effective channel through which end users,
test team members, and even the developers themselves can send suggestions, comments, and bug
reports directly to business analysts and developers. Responses to the feedback can optionally be
communicated back to the persons who triggered the feedback. And feedback can be taken from all
three typical environments: production, test, and development.

■ Note The reason that the Feedback module is so cost effective is that the cost-to-benefit ratio almost
approaches zero because it takes only a few minutes to set up feedback in an APEX application and it gives you a

huge benefit.

CHAPTER 15 ■ TEAM DEVELOPMENT

392

Configuring Feedback
Configuring the Feedback mechanism is started by creating a new page in your application. When you
press the Create button on your application’s developer tool bar (see Figure 15–19) you are taken to the
Create Page wizard. This wizard contains a Feedback Page option (see Figure 15–20). Select this option
and press the Next button.

Figure 15–19. Application with no feedback

Figure 15–20. Feedback Page option in the Create Page wizard

CHAPTER 15 ■ TEAM DEVELOPMENT

393

The next page in the wizard sets up the details for the Feedback page (see Figure 15–21). You enter
the page number and page name and then select the page template, form region template, and the label
template. You can also declaratively create a Feedback link on the application’s global navigation bar.
The defaults, in most cases, work well.

However, there is one attribute that requires a bit more explanation because its benefit is not
immediately obvious. The extra attributes field allows you to add up to ten custom fields to your
feedback page. These are sometimes called flex fields. These fields can be used to prompt the end users
for additional information when they submit feedback. For example, a public APEX website requires no
login; therefore, the user’s identity can’t be captured automatically. The extra attributes can be used to
capture the user’s name and e-mail so that the feedback response can be sent to them.

Figure 15–21. Feedback page set up in the Create Page wizard

Press the Create button and then run the application. You will now see the Feedback link in the
navigation bar (see Figure 15–22). If you can’t use the default Feedback link in your design, you can
move it to anywhere you like in your application. The link uses the standard APEX “f?p” syntax.

CHAPTER 15 ■ TEAM DEVELOPMENT

394

Figure 15–22. Application with the Feedback link

Polishing the Feedback Page
When you click on the Feedback link, the Feedback Popup page is displayed (see Figure (15–23). As you
can see, the page needs a bit more work to polish it. Since this is a standard APEX page, the polishing can
be completed in one or two minutes by pressing the Edit Page button to get into the page’s design area.

Figure 15–23. Feedback page prior to some polishing

CHAPTER 15 ■ TEAM DEVELOPMENT

395

In this example, Attribute1, Attribute2, and Attribute3 will be changed to Name, Department, and
Email. APEX automatically added these items to the Feedback page (see Figure 15–24) when you selected
three in the extra attribute field in the Create Page wizard.

Figure 15–24. Extra attibutes on the Feedback page

Configuring the extra attributes is a two step process. First, you rename the items so they describe
the data, change the item types from Textarea to an item type that is appropriate for the data, and
rename the label to something that is meaningful to the end users (see Figure 15–25).

CHAPTER 15 ■ TEAM DEVELOPMENT

396

Figure 15–25. Extra attibutes are reconfigured

Second, in the page processing region (see Figure 15–26), you must edit the submit feedback process
so that the API calling parameters match the renamed and relabelled extra attributes (see Figure 15–27).

Figure 15–26. Feeback page processing

CHAPTER 15 ■ TEAM DEVELOPMENT

397

Figure 15–27. Feedback page processing changes in the submit feedback process source

After you complete the changes and you re-run the application, you can see the finished Feedback
page (see Figure 15–28). Enter some feedback into the page. Click the Submit Feedback button. Then go
on to the next section and learn how to review the feedback that you and others have entered.

Figure 15–28. Finished Feedback page with three extra attibutes

Viewing Feedback
You can review all feedback for an application from the Team Development page. Navigate to that page.
Then click the Feedback tab. You should see results similar to those in Figure 15–29.

When you drill into the individual feedback record, you’ll find a wealth of data and information that
will make your life as a developer much easier. The feedback region contains a read-only description of
each feedback record. The disposition region is where you track feedback status, tags, developer
comments, and public response. In addition, there are three buttons: Log as Bug, Log as To Do, and Log
as Feature. These buttons create a new Team Development entity and copy data from the feedback

CHAPTER 15 ■ TEAM DEVELOPMENT

398

record to the new entity, which saves time and ensures accuracy. The follow up region is like a diary; it’s
a list of remarks that are added over time as the feedback is processed. This is handy when several
people must review the feedback before action is taken. The extra attributes that were added to the
Feedback page are displayed in the additional attributes region. The remaining regions display read-
only data that describes the application context, the run-time environment (browser type and version),
and the entire session state. If a bug is being reported, the developer has all of the information required
to reproduce the bug which is a valuable benefit.

Figure 15–29. Feedback entry

Responses to Feedback
The feedback mechanism contains a response table. In principle, responses should be sent to the users
who initiated the feedback. However, there is no easy and declarative mechanism that enables you to
sent responses to your users. If you want to send responses to your users, you first need to address a
number of design issues. For example, do you want to broadcast responses to all your users or send
individual responses to individual users? Do you want to use e-mail or create reports? Do you want to
send responses to a team? Do you want to route the responses based on a feedback classification
scheme? After you design your response strategy, you can then build a tool that fulfills the requirement
by writing some PL/SQL code and accessing the APEX views that expose all of the Team Development
data. The details of building this tool are beyond the scope of this book.

Communication Between Workspaces
Team Development is a property of a workspace. Many professional shops maintain multiple
workspaces for production, testing, and development environments. This means that if an end user
enters a feedback record, that record resides in the production workspace and the developers can’t see
it. This situation is easily remedied by using APEX’s existing export/import functionality. APEX version
4.0 has added feedback to the list of entities that can be imported and exported to and from a workspace.

CHAPTER 15 ■ TEAM DEVELOPMENT

399

This makes it possible to export the production feedback and import it to the testing environment where
the business analysts can evaluate it. If required, the feedback can then be exported from the testing
environment and imported to the development environment where the developers can evaluate and
then log it as a bug, to-do, or feature.

Team Actions
Team Actions (see Figure 15–30) are a miscellaneous set of utilities that help you manage the Team
Development environment. The links to the individual Team Actions are found on the right hand side of
the Team Development home page.

Figure 15–30. Team Actions

Manage Links
The Manage Links feature is a simple list of links to documentation, other systems, and web pages that
you can easily define as any valid URL (see Figure 15.31). The links are displayed in a region near the
bottom of the Team Development home page. The links let developers quickly navigate to a set of links
that have been approved by the Development team. The entire team then shares common
documentation, such as SQL or PL/SQL references, that can help the team to adhere to common
development styles and standards. This, in turn, helps to encourage consistency which greatly improves
the software development process.

CHAPTER 15 ■ TEAM DEVELOPMENT

400

Figure 15–31. Manage Links feature

Manage News
On both the APEX home page and the Team Development home page there is a one-line region called
News. One-line news items can be added (see Figure 15–32) by clicking on the Manage News link or by
clicking on the plus sign icon in the News region itself. When there are no news items, the region is
blank. When there is one news item, it is displayed. When there is more than one news item, they take
turns being displayed; the News region refreshes every five seconds or so.

The News region is handy for broadcasting development news when the team is not co-located; the
successful or failed promotion of a release to the test environment is an example. Teams that are co-
located and that have a daily stand up meeting every morning probably will not use this region.

Figure 15–32. Managing the News section

CHAPTER 15 ■ TEAM DEVELOPMENT

401

Team Development Settings
A small number of defaults that are global to the workspace are configured on the Team Development
Settings page (see Figure 15–33). The Enable Tracking Attributes region is used to turn on/off the feature
regions that track the detailed work related to the user interface, testing, documentation, globalization,
security, and accessibility. When you set these attributes to No, the corresponding region on the feature
detail page is not displayed.

Figure 15–33. Settings page

Release Summary
The Release Summary is a management report: it’s organized by release name and can be filtered by
developer and release name. Figure 15–34 shows a small part of this comprehensive report.

CHAPTER 15 ■ TEAM DEVELOPMENT

402

Figure 15–34. Release summary

Utilities
The Team Development utilities (see Figure 15–35) perform bulk updates to the Team Development
data. When schedules slip, the Push past due features and the Push past due bugs are used to change
the due dates by a fixed number of days. When a developer moves on or is sick, you can reassign some or
all of her work to another developer by using Update Assignees. The Purge Data utility is used to drop
data. The Team Development entities, features, milestones, etc. can be purged separately if desired.
Before doing this, having a clean backup is well advised.

Figure 15–35. Utilities

CHAPTER 15 ■ TEAM DEVELOPMENT

403

User Roles for Team Development
Access to Team Development is useful for stakeholders both inside and outside the development team.
The team lead and senior developers should have access to Team Development. Access by junior
developers depends on the team’s culture and trust level. Interested stakeholders who are outside the
development team could be the Project Manager, test team, and the business analysts.

Access to APEX development environment is controlled in the APEX Administration area under the
Manage Users and Groups menu. This area maintains the list of APEX users enabling them to access the
workspace and by assigning their account privileges (see Figure 15–36). An outside stakeholder is set up
without administrator and developer privileges; however, the Team Development Access field is set to
Yes. When they log in to the APEX development environment, they see only the Team Development area
and nothing else. There is only one problem at this time with this scenario: the outside stakeholders
cannot see the applications in the Application dropdown lists. Hopefully this will be fixed in an
upcoming patch.

Figure 15–36. Account Privileges for a Project Manager, Tester, or Business Analyst

Summary
Team Development is a software development tool that has been tailored to work in the APEX
development environment. The five main entities (features, milestones, to-dos, bugs, and feedback)
work together in a framework that is simple, extensible, and flexible. Teams that embrace agile software
development methodologies will find APEX’s Team Development tool to be a comfortable fit with their
culture.

Index

■ ■ ■

405

■ Special Characters
&P200_SEARCH Highlight Words element, 135
&PX_ITEM_NAME substitution string syntax,

72
#COLUMN_HEADER# must have a value error

message, 219
#LABEL# substitution variable, 212
#NAVIGATION_BAR# substitution variable, 75
#OWNER# replacement variable, 10
(&P1_ITEM_NAME.) substitution string syntax,

230
:APP_PAGE_ID substitution variable, 90
:APP_USER substitution variable, 231

■ A
About Application Express link, 356
About Database report, 29
About Database utility, 29
access control, 260–265
Access Control link option, 331
Access Control list, 262, 292–294
access controls, for websheets, 331
Access field, Team Development, 403
access log, for monitoring applications,

346–347
Access Log region, 351–352
accessibility region, 384
Account Login Control section, 360
Actions drop-down menu, 307
Actions menu, 167, 170–171, 189
Active Registered Users title, 330
activity log, for monitoring applications,

345–346

Add Child option, 26
Add File link option, 326
Add icon, Team Development home page, 379
Add link, APEX home page, 378
Add New Section link option, 326–327, 330
Add Object button, 316
Add option, Manage drop-down menu, 310
Add Parent option, 26
Add/Remove Columns, 122
Add Row option, Manage drop-down menu,

312
Admin page group, 338
Admin tab, 259
administration, 12, 30
Administration area, APEX, 403
Administration drop-down menu, 290, 292
Administration home page, 356
administration module, 367
Administration section, 361
Administration tab, 331, 355
Administrator role, 290
Aggregate action, 177–178
Allow Public Access drop-down menu, 294
Allow SQL Tags and Reports feature, 301
Allow SQL Tags and Reports option, 300–301
ALTER TABLE tickets ADD (publi_Vflag

VARCHAR2(1)) Tickets table, 232
alternate default reports, 323–324
Alternate option, 323
Analysis report's Interactive Report properties,

189
Annotation section, 311
annotations, in websheets, 311

■ INDEX

406

announcements, in Manage Service page,
360–361

AnyChart engine, 204
APEX, 1–5

defined, 1–2
forms, 99–101, 139–149

help, 149–151
item layout, 140–146
Master-Detail cleanup, 147–149

getting started, 4–5
access to instances, 4
SQL Developer, 5
web browsers, 5

history of, 2–4
ancient, 2
future of, 3–4
recent, 2–3

items, 129–130
bind variables, 130
built-in, 130
page versus application, 129

searchable reports, 132–139
and system designs, 34–36

business logic vs. user interface logic, 36
placement of database objects, 36
primary keys, 35
table definition and UI Defaults, 35

URL syntax, 131–132
APEX Advisor, 347–348
APEX API

APEX_UTIL.PUBLIC_CHECK_AUTHO
RIZATION, 265

APEX Application Creation wizard, 83
APEX Credentials authentication scheme, 254
APEX Development Interface, 16
APEX engine, 126
APEX finder, 342–343
APEX home page, in Team Development,

377–378
APEX Instance settings, 15
APEX Issue Tracker, 73, 230
APEX modules, 12–30

Administration and Team Development, 30
Application Builder, 15–17

Application home page, 17
home page, 15–17

Home Page, 13–15
SQL Workshop, 17–29

Object Browser, 18–19

Query Builder, 24–28
SQL Commands Interface, 19–20
SQL Scripts Interface, 20–23
Utilities, 28–29

APEX page item types, 129
APEX schema, 339
APEX session, 126–127
APEX users, 8, 126
APEX version, checking, 358
APEX_040000 schema, 333, 363
APEX_040000.WWV_FLOW_STEP_ITEMS table,

339
APEX_APPLICATION_PAGE_ITEMS view, 340
APEX_APPLICATION_PAGE_REGIONS view,

343
APEX_DICTIONARY view, 341
apex.oracle.com, 8
APEX_UTIL.SET_AUTHENTICATION_RESULT

procedure, 347
APEX_UTIL.SET_CUSTOM_AUTH_STATUS

procedure, 347
apex_util.set_session_state procedure, 127
APEX_WORKSPACE_ACCESS_LOG view, 346,

348
APEX_WORKSPACE_ACTIVITY_LOG view, 345
APEX_WORKSPACE_CLICKS log, 362
API calling parameters, 396
APP_ALIAS built-in item, 130
APP_ID built-in item, 130
APP_ID element, 131
Application Build Status section, 364
Application Builder, 15–17
Application Builder home page, 14, 275
Application button, 273
Application Cache section, 363
Application Content tab, 285
Application Creation wizard, 70
Application Express Account authentication

scheme, 293–294
Application Express Account option, 288
Application Express option, 67
Application Express scheme, 372
Application Express workspace, 293
application groups, 337
Application Groups option, Tasks region, 337
Application Groups page, 337
application items, page items versus, 129
Application Migration wizard, 17
Application Models page, 364–366

■ INDEX

407

Application Properties page, 289, 294, 299
Application region, 344
Application tab, 273
Application Utilities icon, 150
applications, 8–11, 61–97

Application wizard, 61–71
database applications, 64–71
sample applications, 62
websheet applications, 63

public pages, 74
Static HTML regions, 72–73

Apply Changes button, 209, 294, 317, 324, 345,
350–351, 360, 384

ApplyMRD process, 162
ApplyMRU process, 162
APP_PAGE_ID built-in item, 130
APP_PAGE_ID element, 131
APP_SESSION built-in item, 130
APP_SESSION element, 131
APP_SESSION_ID, 127
APP_USER built-in item, 130
Arguments Must Have Checksum setting, 271
As Default Report Settings, 186
Ascending sort icon, 323
Assigned Checked button, 337
Assigned To attribute, 34
Assigned To column, 175
attribute field, Create Page wizard, 395
authentication

custom schemes, 255–259
methods of, 68–69
overview, 254–255

Authentication Schemes option, 255
Authentication section, 294
Authentication tab, Websheet Properties page,

289
authenticat_user function, 257
authorization, 260–265
Authorization region, Application Properties

page, 294
authorization scheme, 263, 266
Autocommit, 20

■ B
Based on existing application design model

option, 365
BI Publisher, Oracle, 183
Binary Large Object (BLOB), 151

bind variables, 130
BLOB (Binary Large Object), 151
breadcrumbs, 79–84, 111, 118, 157, 163
Breadcrumbs region, 80, 82, 252
Break formatting, 182
Browse button, 275
Bug module, Team Development, 390
bugs

defined, 376
easy, 390
hard, 391
in Team Development, 390–391
tracking, 391

Build Option list, 351
Build options, 348–352

applying, 351–352
configuring, 350
creating, 349–350
prompting for status of, 350–351
reasons for, 348–349
reporting on utilization of, 352

business logic, vs. user interface logic, 36

■ C
Calendar link, 380
Calendar Region Name, 194
Calendar tab, 379–380, 389
calendars, 192–198
calling parameters, API, 396
Cancel button, 380
CHARACTER_SET column, 151
Chart action, 178–179
Chart option, 327
Chart page, 204
Chart section type, 282
chart sections, in websheets, 311
charts, 198–206
Check All option, 26
Check Pages region, 347
Checksum error message, 271
Checksum Required - Session Level setting, 271
CLEAN_SCHEMA script, 20
Clear Cache element, 131
click count logs, in Manage Meta Data region,

362
Close Popup Window process type, 226
Closed Date must be After Creation Date

validation name, 215

■ INDEX

408

Closed On attribute, 34
Closed On Date must be Later than the Created

Date message, 216
CLOSED ticket status, 214
ColSpan value, 144, 146
Column Attributes page, 137
Column Display Attributes section, 154
Column Groups option, Manage drop-down

menu, 310
Column Link region, 196
Column Name, 27
Column Not Null option, 218
Column option, 327
Column Properties option, 310, 321
Column Selector, 27
columns

heading menu, 168–169
searching by, 169–171
Select column action, 172

Columns and Function/Operators regions, 173
Columns option, Manage drop-down menu, 310
Columns Selected, 122
comma-delimited data, 184
Commands window, SQL, 28
computations, 220–225

execution, 220–221
types of, 221

Compute action, 176–177
CONCRETE NOUNS, 33
conditional security, 259–260
conditions, 207
Conditions region, 24
Conditions Tab, 27–28
Configuration region, 351
confirmation dialog, 70–71
Confirmation page, 303
CONTACT_US procedure, 111, 114–115
content of websheets, navigating, 283–284
Contributor role, 290, 331
Control Break action, 175
Control Break option, 169
Control Summary panel, 169, 175
Control Summary region, 169–170
Convert to SQL Based calendar option, 268
Convert to SQL Query option, 134, 153
Copy link, 383
Copy option, Manage drop-down menu, 310
Copy Region, 81

Create a Ticket, 2 P2_SUBJECT (Subject), 107
Create a Ticket for the Create Button Label, 104
Create and Create Another button, 87, 331
Create Breadcrumb Entry button, 252
Create button, 40, 44, 62, 303, 337–338,

349–350, 393
Create Computation option, 223
Create Dynamic Action option, 239
Create Entry button, 292, 317, 331
Create Group button, 372
Create List of Values, 96
Create Multiple Users link, 370
Create Multiple Users page, 370–371
Create Opposite False Action check box, 240
Create Page button, 327
Create Page Item option, 132, 146, 221, 232
Create Page wizard, 80, 392
Create Region button, 236
Create Report button, 301
Create Report page, 302
Create Report wizard, 162
Create Section wizard, 303
Create Tabular Form wizard, 161
Create to create a new List of Values option, 95
Create User button, 369
Create Valid Users button, 371
Create Validation option, 107, 254
Create Websheet Database Objects link, 363
Created By attribute, 34
Created By field, 145
Created On attribute, 34
Created On field, 144–145
CREATED_ON column, 53, 121, 162, 194
CSV file, 122, 184
CSV format, 184
Current Open Issues title, 236
Custom authentication scheme, 255, 293–294
Custom Authentication Scheme name, 256
Custom option, 289

■ D
Dashboard page, 312
dashboard region, Team Development, 378
Dashboard section, 373
Dashboard tab, 379, 389
data, 267–270

loading with Data Workshop utility, 45–50
user maintenance, 249–254

■ INDEX

409

Data drop-down menu, 306
data grid, LINK_TYPE, 288
data grids, 318–322

applying constraints, 321–322
in websheets, 306–310

Data Manipulation process type, 226
Data option, 325
Data Report page, 301
Data section type, 282
data sections, in websheets, 299–310
Data Type Indicator, 27
Data Workshop utility, loading data with, 45–50
Database Account option, 68
database administrator (DBA), 301
Database Application link, 273
database applications

custom, 65–71
authentication methods, 68–69
copying shared components, 67
final confirmation dialog, 70–71
laying out pages, 66
naming, 65
tabbing, 67
themes, 69

from spreadsheets, 64
Database Column source type, 234
Database Monitor utility, 29
Database Schema Users authentication

scheme, 255
Database session communication, 126
databases

connections, sharing, 126–127
design of, extrapolating to, 33–34
objects, placement of, 36

datagrid, LINK_TYPE, 288
Date Format setting, 69
DBA (database administrator), 301
DEBUG element, 131
Default Report option, 323
default reports, alternate, 323–324
Define Column Mapping region, 50
Delete Checked button, 367
Delete Column option, 320
Delete Columns option, Manage drop-down

menu, 310
Delete Data Grid option, Manage drop-down

menu, 310
Delete icon, 169

Delete Rows option, Manage drop-down menu,
310

Demo Application, 16
DEMO_ORDERS table, 25–26
deploying applications, 273–279

exporting, 273–274
importing, 275–277
supporting objects for, 277

Description attribute, 34
Detail page, 380–381, 383
Details attribute, 34
Details tab, 379
Developer Activity and Click Count Logs menu

option, 361
developer activity logs, in Manage Meta Data

region, 361
Developer Data Modeler, SQL, 37
development

APEX modules, 12–30
Administration and Team Development,

30
Application Builder, 15–17
Home Page, 13–15
SQL Workshop, 17–29

workspaces, 7–12
APEX users, 8
applications and schemas, 10–11
applications, pages, regions, and items,

8–9
Development Interface, APEX, 16
Development Only build option, 350–352
Development page, To-do module, 389
Development screen, To-do module, 389
dictionary, 341–342
Disable E-Mail Body dynamic action, 239, 241
Display Point, 92
do items in, to Team Development, 389
documentation region, 384
Download action, 183–185
download and save option, 274
Download attributes region, 183
Drag & Drop Layout option, 141
Drag & Drop Layout tool, 140
drilldown functionality, in Team Development,

380–382
dynamic actions, 238–243
dynamic LOVs, 95–97
Dynamic option, 97
Dynamic SQL, 232–238

■ INDEX

410

■ E
easy bugs, 390
Easy Calendar wizard, 197
Easy/Declarative calendar, 192
Edit Access Control List button, 317
Edit Authentication button, 289, 294
Edit Definition link, Application region, 344
Edit detail on separate page, 117
Edit icon, 21, 121
Edit link option, 286, 295, 298, 306, 324, 327, 378
Edit page, 273, 285–286, 295–296, 298, 380,

383–384, 387
Edit Page button, 394
Edit Properties icon, 315
Edit Report Attributes option, 119, 122–123,

135, 147, 158, 189–190
Edit SQL Access and Suggested Objects button,

299
Edit Table Defaults button, 58
Ellison, Larry, 2
Embed Tag column, 303
EMP table, 343
Enable Tracking Attributes region, 401
enabling logging, 344–345
End Users, 8, 32
Entity Relationship Diagram (ERD), 37, 375
Entries by List report, 85
Entry Details page, 292
ERD (Entity Relationship Diagram), 37, 375
execution points

for computations, 220–221
for processes, 225

Existing Table, 47
Existing Trigger, 103, 117, 156, 251
Export Application button, 274
Export button, 273
Export option, 351
exporting applications, 273–274
extrapolating to database designs, 33–34

■ F
False Actions dynamic action, 238
Features by Milestone tab, in Team

Development, 388
features, in Team Development, 383–386

Features tab, 383–385
History tab, 385–386
Progress Log tab, 386

Features tab, in Team Development, 383–385
Feedback link, 393
Feedback module, in Team Development,

391–399
configuring, 392–394
creating feedback page, 394–397
responses to feedback, 398
using between workspaces, 398–399
viewing feedback, 397–398

Feedback page, 393–394
Feedback Page option, Create Page wizard, 392
File Utilization page, 366–367
FILENAME column, 151
FILE_NAME column, 152
Files annotation, 311
Fill option, Manage drop-down menu, 310
Filter action, 172–173
Filter button, 340
filter fields, 379
Filter option, 323
filter page, 340
Filters action, 176
Find icon, 342
Finder drop-down menu, 170
Finder drop down, Search Bar, 166
Firefox Web Developer Toolbar add-in, 109
First row contains column names, 48, 50
Flashback action, 180
Flashback check box, 189
f_login function, 316
Form on a Procedure, 100
Form on a SQL Query, 100
Form on a Table or View, 100
Form on a Table or View with Report, 100
Form on a Web Service, 100
Form page, 307
Form Pagination process type, 226
Format Action option, 170
forms

APEX, 99–101, 139–149
help, 149–151
items, 129–130, 140–146
Master-Detail cleanup, 147–149
searchable reports, 132–139
URL syntax, 131–132

BLOB columns, 151
calendars, 192–198
charts, 198–206

■ INDEX

411

Forms on a Procedure, 111–115
creating, 111–113
modifying, 113–114

Forms on a Table, 101–111
interactive reports, 162–192

Aggregate action, 177–178
Chart action, 178–179
column heading menu, 168–169
Compute action, 176–177
Control Break action, 175
Download action, 183–185
Filter action, 172–173
Flashback action, 180
Group By action, 179
Help action, 181
Highlight action, 176
modifying, 185–191
Reset action, 181
restricting functionality, 167–168
running, 165–167
Save Report action, 180
searching by column, 169–171
Select column action, 172
Sort interface, 174
Subscription action, 182–183

Master-Detail reports and forms, 115–124
creating, 115–119
modifying, 119–124

session state, 125–128
setting and retrieving, 127
sharing database connections, 126–127
viewing, 127–128

tabular, 155–162
From Scratch input method, 321
From Scratch option, 64, 75
From Spreadsheet option, 64
Function Returning Boolean, 215

■ G
Gantt chart, 383
Generate DDL wizard, 29
Get Next or Previous Primary Key Value

process, 269
get_status ('OPEN'), 160
globalization region, 384
Go button, 307
Goals section title, 327
Grid Edit of all Item Help Text option, 150

Grizzlies Soccer application name, 314
Grizzlies_Schedule.csv file, 319
Group By action, 179
groups

assigning users to, 373
creating, 372

GUI designs, 380

■ H
hard bugs, 391
help, 149–151

Help Text, 150–151
for websheets, 285–286

Help action, 181
help desk application

dynamic action in, 238
process in, 226–230

Help link, 15, 285, 364
Help page tabs, 297
Help section, 297
helpdesk_spreadsheet.xls file, 47
HEX notation, 176
Hichwa, Mike, 2
Hide and Show Region, 149
Highlight action, 176
History links, 312
History option, Manage drop-down menu, 310
History tab, in Team Development, 385–386
Home Page List, 85, 90
home pages

APEX modules, 13–15
Application, 17
Application Builder, 15–17

Home parent page, 327
Home region, 73
HTML DB, 281
HTML format, 184
htp.p output, 231
HTP.P procedure, 339
http://apex.oracle.com, 4
http://otn.oracle.com/apex, 4

■ I, J
I_dont_know OR 'x' = 'x password, 130
image, LINK_TYPE, 288
Import button, 275
import/export facility, APEX, 377

■ INDEX

412

Important News text section, 286
Important News title, 324
importing applications, 275–277
Inline in Notification error display location, 215
Install option, 276
Instance Administrators, 8
instance information, viewing, 356–358
Instance settings, APEX, 15
instances, access to, 4
integration, of Oracle SQL Developer, 353–354
interactive edit section, 309
Interactive Report (IR), 16
Interactive Report option, 163, 340
Interactive Reports Settings page

Saved Reports section, 367
Subscriptions section, 368

interface, of Team Development, 377–383
APEX home page, 377–378
common design elements in, 379–380
drilldown functionality of, 380–382
tagging in, 382–383
Team Development home page, 378–379

IR (Interactive Report), 16
is null condition, 240
item layout, 140–146
Item Level Validation option, 107, 210
Item Names element, 131
Item Not NULL option, 212
Item Utilities option, 150
Item Value computation type, 221
Item Values element, 131
ITEM_HELP_TEXT column, 340
ITEM_NAME column, 340
items, 8–9

■ K
Kallman, Joel, 2
Kyte, Tom, 2

■ L
Language setting, 69
Last Updated process, 228
LAST_UPDATED column, 151, 226–227
LDAP authentication scheme, 254, 294
LDAP (Lightweight Directory Access Protocol),

289
LDAP option, 289, 293

Lightweight Directory Access Protocol (LDAP),
289

Link Column attributes, 190
Link to Custom Target, 190
LINK_NAME keyword, 288
Links annotation, 311
LINK_TARGET keyword, 288
LINK_TYPE keyword, 287–288
List of Values Definition, 261
List of Values option, Manage drop-down

menu, 310
lists

overview, 84–88
regions, 88–92

Lists maintenance screen, 85
Lists of Values. See LOVs
Load Data button, 49
loading

data, with Data Workshop utility, 45–50
SQL Scripts, 53–55

LOADPSP program, 1–2
Lock Checked button, 335
Log as Bug button, 397
Log as Feature button, 397
Log as To Do button, 397
logging, enabling, 344–345
logic, business vs. user interface, 36
Login link, 295
Login page, 349–350
Lookup Table, 52
lookup tables, creating, 50–52
LOVs (Lists of Values), 93–97, 261

configurable, 384, 386
dynamic, 95–97
static, 94–95

■ M
Manage button, 319
Manage Click Count Log, 362
Manage drop-down menu, 308, 310
Manage Export Repository link, 367
Manage Groups region, 373
Manage Links feature, in Team Development,

399–400
Manage menu option, 309
Manage Meta Data region, 361–368

Application Build Status section, 364
Application Cache section, 363

■ INDEX

413

Application Models page, 364–366
click count logs in, 362
developer activity logs in, 361
File Utilization page, 366–367
Interactive Reports Settings page

Saved Reports section, 367
Subscriptions section, 368

Session State page
managing preferences, 363
managing session state, 362–363

Websheet Database Objects section, 363
Manage Multiple Tickets button, 264
Manage Multiple Tickets option, 157–158, 217
Manage Multiple Tickets report, 268
Manage News link, in Team Development, 400
Manage Script Results page, 22–23
Manage Service icon, 358
Manage Service page, 358–361

announcements in, 360–361
workspace preferences in, 359–360

Manage Subscriptions page, 368
Manage Table Dictionary button, 57
Manage Tickets form, 125
Manage Unassigned link, Application Groups

page, 337
Manage User Groups link, Tasks region, 372
Manage Users and Groups menu, APEX, 403
Manage Users and Groups page, 369–370
Manage Users page, 369–373

assigning users to group, 373
creating groups, 372
creating multiple users, 370–371
creating single user, 369

markup syntax, for websheets, 287–288
Master-Detail Form, 100, 115, 119, 138–139
Master-Detail reports and forms, 115–124, 138–

139
cleanup, 147–149
creating, 115–119
modifying, 119–124

Maximum Levels input, 298
Milestone Details tab, in Team Development,

388
milestones, in Team Development, 386–388

Features by Milestone tab, 388
Milestone Details tab, 388
Milestones tab, 387–388

Milestones tab, in Team Development, 387–388

MIME_TYPE column, 151–152
MIME_TYPE Settings region, 152
modules, 12–30

Administration and Team Development, 30
Application Builder, 15–17

Application home page, 17
home page, 15–17

Home Page, 13–15
SQL Workshop, 17–29

Object Browser, 18–19
Query Builder, 24–28
SQL Commands Interface, 19–20
SQL Scripts Interface, 20–23
Utilities, 28–29

Monitor Activity icon, 361
Monitor Activity page, 312
Monitor Activity section, 361–362, 373
monitoring applications

access log for, 346–347
activity log for, 345–346
enabling logging, 344–345

month_calendar process, 198

■ N
Name column, 306
naming patterns, 387
navigation

breadcrumb entries, 79–84
list regions, 88–92
lists, 84–88
LOVs, 93–97

configurable, 384, 386
dynamic, 95–97
static, 94–95

navigation bar entries, 75–78
Page Zero, 78–79
template positions, 92–93
user maintenance, 245–249
websheets, 283–285

content, 283–284
structure, 285

navigation bar
conditions, 77
entries, 75–78

Navigation section type, 282, 328, 330
navigation sections, in websheets, 298–299
Navigation to URL option, 76
New Owner item, 384
New Page link, 326

■ INDEX

414

New Section links, 303, 325
News region, 15, 378
News section, 361
Next button, Create Page wizard, 392
No Authentication option, 68
No Tabs option, 67
None authentication scheme, 255
Notes annotation, 312

■ O
Object Browser

creating objects with, 39–45
overview, 18–19

Object Reports, 29
objects

creating with Object Browser, 39–45
database, placement of, 36

One Level Tabs option, 67
Open Door authentication scheme, 255
optimistic locking, 334
Oracle BI Publisher, 183
Oracle PL/SQL engine, 91
Oracle Single Sign On authentication scheme,

254
Oracle SQL Developer

integration of, 353–354
refactoring support in, 354

■ P
(P1_ITEM_NAME) bind variable syntax, 132,

230
P2_CREATED_BY item, 106, 108
P2_STATUS_ID item, 106
P2_SUBJECT is NOT NULL item, 107–108
P2_SUBJECT label template, 106
P3_BODY item, 114–115, 241
P3_FROM item, 113–115, 239
P200_GO Button name, 133
P200_SEARCH filter, 134
P200_SEARCH item, 132–133, 137
P200_STATUS_ID field, 201
P200_STATUS_ID item, 201–202, 204
P210_ASSIGNED_TO item, 142–143
P210_CLOSED_ON item, 141, 211
P210_CREATED_BY item, 142–143
P210_CREATED_ON item, 140, 142
P210_DAYS_OPEN item, 222

P210_DESCR item, 145, 208
P210_PUBLIC_FLAG item, 233
P210_STOP_START_TABLE item, 146
P210_SUBJECT item, 144
P210_TICKET_ID item, 190, 222
P210_TICKET_STATUS_ID, 202
P220_ATTACHEMENT item, 152
P220_CREATED_BY item, 148
P220_CREATED_ON item, 147
P220_DETAILS item, 147
P220_TICKET_DETAILS_ID computation, 138
P220vTICKET_ID item, 147
P610_PASSWORD element, 254
P610_PASSWORD is not null validation name,

254
P610_PASSWORD item type, 253
Page control on this page option, 134, 209, 215
Page Creation wizard, 83
page groups, 338
Page Groups page, 338
Page in this Application target, 76
page items, versus application items, 129
Page Level Validation option, 215
page, LINK_TYPE, 288
page locks, 333–336

administration of, 336
optimistic locking, 334
pessimistic locking, 334–335
unlocking page, 335

Page Locks option, 336
Page Locks report, 336
Page Navigation type, 330
Page Processing column, 192
Page Processing section, 197
Page Render region, 335
Page Rendering region, 191, 197, 204
page sections, 324–330
Page Sections link, 296
page specific utilities, 352–353
Page Specific Utilities region, 354
Page tab, 324
Page Zero option, 78–79
pages

laying out, 66
overview, 8–9
public, 74

Parent Tabs node, 263
parse as schema, 10–11

■ INDEX

415

Password attribute, 33
Perform Check button, 347
pessimistic locking, 334–335
PL/SQL (anonymous block), 230
PL/SQL code, 127
PL/SQL engine, 91
PL/SQL Expression, 140, 147, 160, 221
PL/SQL Function Body, 90, 106, 213, 221, 265
PL/SQL option, 227
PL/SQL procedure, 114
PL/SQL process type, 226
PL/SQL regions, 230–232
PL/SQL Server Pages (PSPs), 2
PL/SQL Web Toolkit, 2
Player of the Week title, 326
Populated from a new sequence radio button,

41
popupurl, LINK_TYPE, 288
p_password varchar2(255) parameter, 257
preferences

for user sessions, in Session State page, 363
workspace, in Manage Service page,

359–360
Primary Key option, 41
primary keys, 35
Printer Friendly element, 131
problem solving, 31–38

identifying system requirements, 31–34
broken systems, 32
extrapolating to database designs, 33–34

system designs and APEX, 34–36
business logic vs. user interface logic, 36
placement of database objects, 36
primary keys, 35
table definition and UI Defaults, 35

translating theory to practice, 37–38
processes, 225–230

execution points, 225
in help desk application, 226–230
types of, 226

programmatic elements, 207–243
computations, 220–225

execution, 220–221
types of, 221

conditions, 207
dynamic actions, 238–243

in help desk application, 238
parts of, 238

Dynamic SQL, 232–238
PL/SQL regions, 230–232
processes, 225–230

execution points, 225
in help desk application, 226–230
types of, 226

validations, 207–220
item level, 209–214
page level, 214–217
required values, 208–209
tabular form, 217–220

Progress Log tab, in Team Development, 386
Project Marvel, 281
Properties option, Manage drop-down menu,

310
PSPs (PL/SQL Server Pages), 2
Public Flag label name, 233
PUBLIC_FLAG column, 234–235
Purge Click Log button, 362
Purge Data utility, 402
Purge Developer Log button, 361
p_username varcahr(255) parameter, 257
Push past due bugs, 402
Push past due features, 402

■ Q
queries, writing for charts, 199
Query Builder, 19, 24–28
Query Definition sub-tab, 122
Quick Menu, 53
q'X string X' basic syntax, 238

■ R
RAD (Rapid Application Development), 1, 375
read-only items, 265–266
Reader role, 290
Recycle Bin utility, 29
Redirect to Page in this Application setting, 160
Refactor option, 354
refactoring support, in Oracle SQL Developer,

354
Region Buttons node, 160
Region Definition, 205
Region on this page option, 149, 235
Region Template Position #CREATE# setting,

158, 160
regions, 8–9
REGION_SOURCE column, 343

■ INDEX

416

Release filter, Team Development dashboard
region, 378

Release summary, in Team Development,
401–402

Remaining Games report, 324
Remaining Practices report, 324
Remove option, 26
Replace option, Manage drop-down menu, 310
Report Attributes tab, 137, 153
Report Data page, 303
Report feature, 299
report, LINK_TYPE, 288
Report Region Title, 58
Report Select List, Search Bar, 166
reporting, on utilization of Build options, 352
reports

alternate default, 323–324
APEX, 99–101, 139–149

help, 149–151
items, 129–130, 140–146
Master-Detail cleanup, 147–149
searchable reports, 132–139
URL syntax, 131–132

BLOB columns, 151
calendars, 192–198
charts, 198–206

creating, 199–204
writing queries for, 199

Forms on a Procedure, 111–115
creating, 111–113
modifying, 113–114

Forms on a Table, 101–111
interactive, 162–192

Aggregate action, 177–178
Chart action, 178–179
column heading menu, 168–169
Compute action, 176–177
Control Break action, 175
Download action, 183–185
Filter action, 172–173
Flashback action, 180
Group By action, 179
Help action, 181
Highlight action, 176
modifying, 185–191
Reset action, 181
restricting functionality, 167–168
running, 165–167

Save Report action, 180
searching by column, 169–171
Select column action, 172
Sort interface, 174
Subscription action, 182–183

Master-Detail reports and forms, 115–124
creating, 115–119
modifying, 119–124

session state, 125–128
setting and retrieving, 127
sharing database connections, 126–127
viewing, 127–128

tabular forms, 155–162
in websheets, 299–303

Reports drop-down list, 307
Reports menu, 180
Reports Region, 163, 250
Reports select list, 189
REQUEST element, 131
Required with Help, 106, 233
Reset action, 181
Reset Pagination type, 134, 226
Results button, 340
Results page, 286, 328–329
Results report, 324
Results Tab, 27
RETURN authenticate_user, 256
return f_login statement, 316
RETURN get_status('OPEN'), 106
Row Filter interface, 177
Rows option, Manage drop-down menu, 310
Rows Per Page selector, Search Bar, 166
Run icon, 22
Run On Demand Process process type, 226
Run Script wizard, 22
Run Stored Procedure, 114
running SQL Scripts, 53–55

■ S
sample applications, 62
Save Public Report check box, 189
Save Report action, 180
Save Report check box, 189
Saved Report Settings drop-down list, 303
Saved Reports section, in Interactive Reports

Settings page, 367
Saved SQL Tab, 27
Scale XY Center chart animation, 201

■ INDEX

417

Schedule option, 325
Schedule page, 328–329
Schema Comparison utility, 29
Schema select list, 47
Schema Selection dialog, 17
schemas, 10–11
Scripts Repository, SQL, 21
Search Application feature, 343–344
Search Application field, 343
Search Bar, 169
Search field, 166, 170, 382
Search function, 170
searching in APEX, 342–344

with APEX finder, 342–343
Search Application feature, 343–344

section, LINK_TYPE, 288
Section Navigation navigation type, 328
sections, in websheets, 295–311

chart sections, 311
data grids, 306–310
data sections, 299–310
navigation sections, 298–299
reports, 299–303
text sections, 295–297

security, 245–271
authentication

custom schemes, 255–259
overview, 254–255

authorization, access control and, 260–265
conditional, 259–260
data, 267–270
read-only items, 265–266
session state protection, 270
user maintenance

data entry, 249–254
navigation, 245–249

security region, 384
Seed Item Help Text option, 150
Select a Tech - Null display value, 159
Select a User - Null display value, 160
Select column action, 172
Select Column for Join option, 26
Select Columns menu, 185
Select Columns option, 323
Select Columns screen, 340
select count query, 330
select * from DOUG.emp, 10
select * from emp, 10

select * from #OWNER#.emp, 10
SELECT * FROM tickets_v, 164
select statement, 330
Send Email process type, 226
Sequence input, 298
Series element, 204
session state, 125–128

protection, 270
setting and retrieving, 127
sharing database connections, 126–127
viewing, 127–128

Session State page
managing preferences, 363
managing session state, 362–363

Session State process type, 226
Session State Protection option, 270
Set Column Values option, Manage drop-down

menu, 310
Set Workspace Preferences icon, 359
Set Workspace Preferences page, 359–360
settings area, Team Development, 384
shared components, copying, 67
Shared Components section, 75, 83–84, 137,

192
Show checkbox option, 120, 158
Show filter, Team Development dashboard

region, 378
Show/Hide Columns option, 26
shuttle tag, 382
Single Row View, 190
Single Sign On authentication scheme, Oracle,

254, 294
Single Sign-On option, 289, 293
Sort box, 120
Sort checkbox, 123
Sort interface, 174
Source - Region Source section, 73
Specify the True Action option, 240
Spreadsheet Data link, 49
Spreadsheet Data option, 47
SQL Calendar, 192
SQL Commands Interface, 19–20
SQL Developer Data Modeler, 37
SQL Developer, Oracle, 353–354

integration of, 353–354
overview, 5
refactoring support in, 354

SQL Expression computation type, 221
sql, LINK_TYPE, 288

■ INDEX

418

SQL Query prompts, 66
SQL Query Report Source, 302
SQL Query (Return colon separated value)

computation type, 221
SQL Query (return single value) computation

type, 221, 223
SQL Scripts icon, 53
SQL Scripts Interface, 20–23
SQL Scripts, loading and running, 53–55
SQL Scripts Repository, 21
SQL statement, 130, 224
SQL Syntax link, 52
SQL Tab, 27
SQL Tags, 330
SQL Workshop, 17–29, 39–59

creating lookup tables, 50–52
creating objects with Object Browser, 39–45
loading and running SQL Scripts, 53–55
loading data with Data Workshop utility,

45–50
Object Browser, 18–19
Query Builder, 24–28
SQL Commands Interface, 19–20
SQL Scripts Interface, 20–23
UI defaults, 56–59
utilities, 28–29

SQL Workshop module, 360
SQL Workshop tab, 47, 53, 56
sqlvalue

LINK_TYPE, 288
SQL tag, 330

Standard Dynamic Actions wizard, 243
Starting Page input, 298
Static Assignment computation type, 221
STATIC data option, 94
Static HTML regions, 72–73
static LOVs, 94–95
STATIC, Y,N List of Values query, 234
STATIC2 data option, 94
Status attribute, 34
Status chart region, 205
STATUS column, 122
Status column, 175, 186
status, of Build options, 350–351
STATUS_ID column, 109, 122, 162
STATUS_ID maps, 106
STATUS_LOOKUP table, 52, 122
Stop Table, 146

structure, of websheets
navigating, 285
overview, 281–282

Subject attribute, 34
Subject column, 186
SUBJECT column, 196
Subject is Not Null validation name, 218
Submit Feedback button, 397
Subscription action, 182–183
Subscription check box, 189
Subscriptions section, in Interactive Reports

Settings page, 368
Summary Page, 100
supporting objects, 277
Supporting Objects Scripting feature, 277
Synchronize< button, 57
SYSDATE reference point, 323
system designs, and APEX, 34–36

business logic vs. user interface logic, 36
placement of database objects, 36
primary keys, 35
table definition and UI Defaults, 35

system requirements, 31–34
broken systems, 32
extrapolating to database designs, 33–34

■ T
tabbing, 67
Table Actions, 26
table definition, 35
Table Dictionary, 56
Table option, 40
Table Report Source, 302
tables

defining UI Defaults for, 56–59
lookup, creating, 50–52

TableView Owner, 156
Tabular Forms, 100, 155–162, 217
T_ADMIN (Users), 251, 260
tagging in Team Development, 382–383
Tags annotation, 311
Tasks region, 297, 337, 356, 372
Team Actions links, 378
Team Actions utilities, in Team Development,

399–402
Manage Links feature, 399–400
Manage News link, 400
Release summary, 401–402

■ INDEX

419

Team Development Settings page, 401
Utilities page, 402

Team Development, 375–403
and administration, 30
bugs in, 390–391
to do items in, 389
features in, 383–386

Features tab, 383–385
History tab, 385–386
Progress Log tab, 386

Feedback module in, 391–399
configuring, 392–394
creating feedback page, 394–397
responses to feedback, 398
using between workspaces, 398–399
viewing feedback, 397–398

interface of, 377–383
APEX home page, 377–378
common design elements in, 379–380
drilldown functionality of, 380–382
tagging in, 382–383
Team Development home page, 378–379

milestones in, 386–388
Features by Milestone tab, 388
Milestone Details tab, 388
Milestones tab, 387–388

overview, 375–377
Team Actions utilities, 399–402

Manage Links feature, 399–400
Manage News link, 400
Release summary, 401–402
Team Development Settings page, 401
Utilities page, 402

user roles for, 403
Team Development Settings page, in Team

Development, 401
technicians, 32
Template Based Button, 160
template positions, 92–93
testing region, 384
Text section type, 281
text sections, in websheets, 295–297
themes, 69
Ticket Details form, 125
Ticket Details ID attribute, 34
Ticket Details region, 153
Ticket Details report attributes, 147
Ticket ID attribute, 34

Ticket Id column, 186
Ticket Items section, 221
TICKET noun, 33
ticket record, 267
TICKET_ACTIVITY_V view, 267
TICKET_DETAILS process, 139
TICKET_DETAILS table, 44, 115, 119, 139, 149,

152
TICKET_DETAILS_ID, 44, 138
TICKET_ID column, 122, 147
TICKET_ID item, 43, 45, 103, 109–110, 147
TICKET_ID (NUMBER) option, 41
TICKET_ID Unique Column, 164
Tickets by Status name, 188
TICKETS columns, 138
TICKETS link, 57
Tickets region, 122–123, 229
Tickets report, 124
TICKETS row, 110
TICKETS tab, 47
TICKETS table, 43, 47, 110, 115, 119, 138, 149,

162, 226, 267
TICKET_SECURE_V view, 267
TICKETS_ID value, 138
TICKETS_SECURE_V table, 270
TICKETS.STATUS_ID column, 123
TICKET_V view, 267
Title input, 298
To-do module, 389
To-do Report page, 389
To-dos tab, 389
Toggle Checkboxes option, Manage drop-down

menu, 310
tool bar, 189
Tracker PL/SQL region, 231
tracking bugs, 391
transactional mode, 20
True Actions dynamic action, 238
TS1 (Home, Tickets, Analysis), 193, 200
TUSERS object, 316
Two Level Tabs option, 67

■ U
UI (User Interface) Defaults, 35, 56–59
#SUBJECT# Column Format,

194
UNDO_RETENTION parameter, 180

■ INDEX

420

Uniform Resource Locator (URL) syntax,
131–132

Unlock Checked button, 335
unlocking page, 335
Upcoming Games and Practices title, 325
Updateable Columns, 156
url, LINK_TYPE, 288
URL (Uniform Resource Locator) syntax,

131–132
Use Tab to T_HOME, 103, 112
Use Tab to T_TICKETS, 157
user authentication of websheets, 288–289
user authorization of websheets, 290–295
User Groups region, 373
User ID attribute, 33
user interface logic, vs. business logic, 36
user interface region, 384
User Interface (UI) Defaults, 35, 56, 59
User is Authenticated (not public) setting, 78,

259
User is the Public User (user has not

authenticated), 77
User Language Preference setting, 69
user maintenance

data entry, 249–254
navigation, 245–249

User Name attribute, 33
USER noun, 33
user roles, for Team Development, 403
USER_ID, 250–251
USER_NAME, 37, 250
users

APEX, 8
assigning to groups, 373
creating multiple, 370–371
creating single, 369

Users and Groups icon, 369
USERS table, 255, 259, 279
Utilities, 28–29
Utilities page, in Team Development, 402
Utilization tab, 352

■ V
Validating node, 107
Validation option, 210, 310
validations, 207–220

item level, 209–214
page level, 214–217

required values, 208–209
tabular form, 217–220

Value of Item in Expression 1 is NOT NULL
condition type, 222

value required validation, 208–209
VARCHAR column types, 51
Vertical Unordered List with Bullets, 85
View Lock icon, 336
View Results icon, 23
views, 339–341
(v('P1_ITEM_NAME')) v function, 230

■ W
WBS (work breakdown structure), 375, 383
web browsers, 5
Web Developer Firefox add-on, 144
Web Services process type, 226
Web Toolkit, PL/SQL, 2
WebDB, 2
Websheet application type, 314
Websheet Applications, 16, 63
Websheet Database Objects section, 363
Websheet Properties page, 289
websheets, 281–331

access controls, 331
adding content to, 317–330

alternate default reports, 323–324
data grids, 318, 321–322
page sections, 324–330
players data, 322
SQL Tags, 330

administrating, 312
annotations in, 311
creating and configuring, 314–317
help for, 285–286
markup syntax for, 287–288
navigating, 283–285

content, 283–284
structure, 285

sections in, 295–311
chart sections, 311
data grids, 306–310
data sections, 299–310
navigation sections, 298–299
reports, 299–303
text sections, 295–297

setup, 313–314
structure of, 281–282

■ INDEX

421

user authentication of, 288–289
user authorization of, 290–295

where clauses, 232
Wolf, Patrick, 347
work breakdown structure (WBS), 375, 383
Workshop Utilities section, SQL, 28
Workspace Administrators, 8
Workspace Home Page, 13
workspaces, 7–12, 355–374

APEX users, 8
applications and schemas, 10–11
applications, pages, regions, and items, 8–9
checking APEX version, 358
Dashboard section, 373
feedback in Team Development between,

398–399
Manage Meta Data region, 361–368

Application Build Status section, 364
Application Cache section, 363
Application Models page, 364–366
click count logs in, 362
developer activity logs in, 361

File Utilization page, 366–367
Interactive Reports Settings page,

367–368
Session State page, 362–363
Websheet Database Objects section, 363

Manage Service page, 358–361
announcements in, 360–361
workspace preferences in, 359–360

Manage Users page, 369–373
assigning users to group, 373
creating groups, 372
creating multiple users, 370–371
creating single user, 369

Monitor Activity section, 373
preferences, in Manage Service page,

359–360
viewing instance information, 356–358

■ X, Y, Z
XML Data, 46
X-Y coordinates, 383

	Title Page

	Copyright Page

	Contents at a Glance
	Table of Contents

	About the Authors
	Acknowledgments
	Chapter 1 An Introduction to APEX 4
	What is APEX?
	A Brief History of APEX
	Ancient History
	More Recent History
	APEX 4 and the Future

	What You Need to Get Started
	Access to an APEX Instance
	Web Browser
	SQL Developer

	Summary

	Chapter 2 A Developer's Overview
	The Anatomy of a Workspace
	APEX Users
	Applications, Pages, Regions, and Items
	Workspaces, Applications, and Schemas
	A Final Word on Workspaces

	A Tour of the APEX Modules
	The Home Page
	Application Builder
	The Application Builder Home Page
	The Application Home Page

	SQL Workshop
	The Object Browser
	The SQL Commands Interface
	SQL Scripts Interface
	The Query Builder
	Utilities

	Administration and Team Development

	Summary

	Chapter 3 Identifying the Problem & Designing the Solution
	Identifying System Requirements
	Never a Clean Slate
	A Broken System
	How Do You Fix Things?
	Defining the Requirements
	Extrapolating to a Database Design

	System Design with APEX in Mind
	Table Definition and User Interface Defaults
	APEX and Primary Keys
	Business logic vs. User Interface logic
	Placement of Database Objects

	Translating Theory to Practice
	Summary

	Chapter 4 SQL Workshop
	Creating Objects with the Object Browser
	Loading Data with the Data Workshop Utility
	Creating a lookup Table
	Loading and Running Sal Scripts
	User Interface Defaults
	Defining UI Defaults for Your Tables

	Summary

	Chapter 5 Application and Navigation
	The Create Application Wizard
	Sample Applications
	Websheet Applications
	Database Applications from Spreadsheets
	Database Applications from Scratch
	Naming the Application
	Laying Out Pages
	Choosing an Approach to Tabs
	Copying Shared Components
	Selecting an Authentication Method
	Selecting a Theme
	Completing the Application Creation Wizard

	Static HTML Regions
	Public Pages
	Navigation Bar Entries
	Page Zero
	Breadcrumb Region
	Breadcrumb Entries
	Lists
	List Regions
	Template Positions
	Lists of Values
	Static List of Values
	Dynamic List of Values

	Summary

	Chapter 6 Forms and Reports - The Basics
	APEX Forms
	Form on a Table
	Creating a Form on a Table
	Modifying a Form on a Table
	Looking Behind the Scenes

	Form on a Procedure
	Creating a Form on a Procedure
	Modifying a Form on a Procedure
	Looking Behind the Scenes

	Master-Detail Report and Form
	Creating a Master-Detail Report and Form
	Modify a Master-Detail Report

	Session State
	Understanding Session State
	Sharing Database Connections
	Setting and Retrieving Session State
	Viewing Session State

	APEX Items
	Page versus Application items
	The Importance of Bind Variables
	Built In Items

	APEX URL Syntax
	Searchable APEX Reports
	Creating a Searchable APEX Report
	Looking Behind the Scenes - APEX Report
	Looking Behind the Scenes - APEX Master-Detail Forms

	More on APEX Forms
	Item Layout
	Master-Detail Cleanup

	APEX Help
	Adding a Help Text Region
	Seeding Help Text

	Declarative Blobs
	Summary

	Chapter 7 Forms and Reports - Advanced
	Tabular Forms
	Creating a Tabular Form
	Modifying a Tabular Form
	Looking Behind the Scenes

	Interactive Reports
	Creating an Interactive Report
	Running an Interactive Report
	Restricting Functionality by Report
	Restricting Functionality by Column
	Using the Column Heading Menu
	Searching by Column
	Selecting Columns
	Filtering
	Sorting
	Adding Breaks
	Highlighting
	Computing Columns
	Adding Aggregates
	Adding Charts
	Grouping
	Using Flashback
	Saving an Interactive Report
	Resetting an Interactive Report
	Getting Help
	Adding a Subscription
	Downloading
	Modifying an Interactive Report
	Looking Behind the Scenes

	Calendars
	Understanding Calendar Types
	Creating a Calendar
	Looking Behind the Scenes

	Charts
	Writing Queries for Charts
	Creating a Chart
	Looking Behind the Scenes

	Summary

	Chapter 8 Programmatic Elements
	Conditions
	Validations
	Required Values
	Item Level Validation
	Page Level Validation
	Tabular Form Validation

	Computations
	Execution
	Types
	Creating a Computation

	Processes
	Execution Points
	Process Types
	Process in the Help Desk Application

	PL/SQL Regions
	Dynamic SQL
	Dynamic Actions
	Major Parts
	Dynamic Actions in the Help Desk Application

	Summary

	Chapter 9 Security
	User Maintenance Navigation
	User Maintenance Data Entry
	Authentication
	Custom Authentication Schemes
	Conditional Security
	Access Control and Authorization
	Read-Only Items
	Data Security
	Session State Protection
	Summary

	Chapter 10 Application Deployment
	Exporting
	Importing
	Supporting Objects
	Summary

	Chapter 11 Understanding Websheets
	Websheet Structure
	Navigation
	Content Navigation
	Structural Navigation

	Help
	Markup Syntax
	User Authentication
	User Authorization
	Sections
	Text Sections
	Navigation Sections
	Data Sections
	Reports - Setup
	Reports - Creation
	Reports - Accessing the Data
	Data Grids

	Chart Sections

	Annotations
	Administration
	Summary

	Chapter 12 A Websheet Example
	Setup
	Creating and Configuring a Websheet Application
	Adding Content to a Websheet
	Creating Data Grids
	Applying Constraints

	Adding Players
	Creating Alternate Default Reports
	Creating Page Sections
	SQL Tags

	Access Controls
	Summary

	Chapter 13 Extended Developer Tools
	Page locks
	APEX Conflicts
	Locking an APEX Page
	Unlocking a Page
	Administering Page Locks

	Application and Page Groups
	Application Groups
	Page Groups

	APEX Views and the APEX Dictionary
	The APEX Schema
	APEX Views
	APEX Dictionary

	Searching within APEX
	APEX Finder
	Search Application

	Monitoring your APEX Application
	Enabling Logging
	Using the Activity Logs
	Login Attempts

	APEX Advisor
	Build Options
	Understanding the Need
	Creating a Build Option
	Configuring Build Options
	Prompting for Build Option Status
	Applying Build Options
	Reporting on Build Option Utilization

	Page Specific Utilities
	APEX and Oracle SQl Developer
	Integration
	Refactoring Support

	Summary

	Chapter 14 Managing Workspaces
	Learning About Your Environment
	Viewing Instance Information
	Checking the APEX Version

	Managing the Service
	Workspace Preferences
	Announcements

	Managing Meta Data
	Developer Activity and Click Count Logs
	Developer Activity Logs
	Click Count Logs

	Session State
	Manage Session State
	Manage Preferences

	Application Cache
	Websheet Database Objects
	Application Build Status
	Application Models
	File Utilization
	Interactive Report Settings
	Saved Reports
	Subscriptions

	Managing Users and Groups
	Creating One User
	Creating Multiple Users
	Organizing Users Into Groups
	Creating a Group
	Assigning Users to a Group

	Viewing Usage Reports and Dashboards
	Summary

	Chapter 15 Team Development
	Team Development Overview
	Team Development Interface
	APEX Home Page
	Team Development Home Page
	Common Design Elements
	Drilldown Functionality
	Tagging

	Features
	Features Tab
	History Tab
	Progress Log Tab

	Milestones
	Milestones Tab
	Milestone Details Tab
	Features by Milestone Tab

	To Do Items
	Bugs
	Feedback
	Configuring Feedback
	Polishing the Feedback Page
	Viewing Feedback
	Responses to Feedback
	Communication Between Workspaces

	Team Actions
	Manage Links
	Manage News
	Team Development Settings
	Release Summary
	Utilities

	User Roles for Team Development.
	Summary

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

