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Preface 

This book – a continuation of the previous publications 
Flows and chemical reactions [PRU 12], Flows and chemical 
reactions in homogeneous mixtures [PRU 13] and Flows and 
chemical reactions in heterogeneous mixtures [PRU 14a] – is 
devoted to Flows and chemical reactions in an 
electromagnetic field.1 

Part One, entitled Introduction, is made up of four 
chapters. Chapter 1 gives an introduction to the equations of 
electromagnetism in the Minkowski timespace. This mode of 
presentation is extended to the balance equations, first in 
non-polarized homogeneous mixtures in Chapter 2, and then 
in a polarized homogeneous fluid medium in Chapter 3.  
 
 

                         
1 Remember that the volume Flows and chemical reactions comprised 
three parts: 1. Fluid media with a single component, 2. Reactive mixtures, 
and 3. Interfaces and lines, that the volume Flows and Chemical Reactions 
in Homogeneous Mixtures comprised: 1. Pipe flows, 2. Chemical reactors, 
and 3. Laminar and turbulent flames, and that the volume Flows and 
Chemical Reactions in Heterogeneous Mixtures comprised: 1. Generation of 
multi-phase flows, 2. Problems at the scale of a particle, 3. Simplified 
model of a non-reactive flow with particles, 4. Simplified model of a 
reactive flow with particles, and 5. Radiative phenomena. 
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Chapter 4 is given over to heterogeneous media in the 
presence of an electromagnetic field. In that chapter, the 
balance equations at the interfaces are established. 

Part Two of this volume is entitled Introduction. It too 
has four chapters. Chapter 5 presents a study of the 
influence of diverse fields on flames; Chapter 6 discusses a 
classic application of the Peltier effect; Chapter 7 is devoted 
to metal/plasma interaction, and more specifically to the 
Langmuir probe, and finally Chapter 8 discusses space 
propulsion by the Hall effect. 

The Appendix gives supplementary information about the 
balance laws with an electromagnetic field, before going on 
to describe the methodology used to establish one-
dimensional equations for a flow with active walls, as is the 
case with certain Hall effect thrusters. 

Acknowledgements 

I am deeply grateful to all those who have attentively 
read over the various chapters of the French edition of this 
book, published by Hermès–Lavoisier and thus helped to 
improve it: Pierre Sagaut and Paul Kuentzmann for the first 
volume, Patrick Da Costa and Nicolas Bertier for the second, 
Mickael Bourgoin, Michel Dudeck, Guillaume Legros and 
Christophe Morel for the third and for this volume. My 
thanks also go to my colleagues, who have made valuable 
contributions with regard to the various topics touched on by 
this series of books, in informal academic discussions, and 
the authors who have agreed to send their figures or 
authorized their use. Thanks to Michel Dudeck for agreeing 
to my widespread use of our shared work during the period 
1976-1981 regarding fluid flows in the presence of an 
electromagnetic field. Thanks also to Jean-Luc Achard for his  
 
 



Preface     xi 

invaluable help in updating the scientific content of the book; 
to the ISTE production team for their sterling work, and to 
Ben Engel for his excellent translation of the original French 
into English. 

 

Roger PRUD’HOMME 
September 2014



 
 



 

List of Main Symbols  

Latin characters 

  chemical affinity; or monatomic species  

  diatomic species 

  vectorial potential 

  Arrhenius coefficients 

B   magnetic field  

   speed of sound; or speed of light in a vacuum in the  
  absence of a field 

  total number of moles per unit volume 

  molar concentration per unit volume 

  specific heat at constant pressure or constant volume  

               respectively ( ,p vc c  per unit mass) 

  distance; or differential 

  diffusion coefficient; or diameter 

;iDα   diffusion coefficient of speciesα  at quantum level i 

D   electric displacement 

D   strain rate tensor 

A

2A

A

BA,

c

C

jC

vp CC ,

d

D



xiv     Flows and Chemical Reactions in an Electromagnetic Field 

4 D   four-matrix of the Lorentz special transformation 

   free electron; charge on the electron; or internal energy  
     per unit mass 

,ve α   vibrational energy of diatomic speciesα  

ee   mass internal energy of free electrons  

  orthonormal basis vector 

  internal energy ( e per unit mass) 

E    electrical field 

  activation energy 

     parameter; reduced chemical production rate; or Blasius  
function 

  Reynolds, Favre fluctuation, respectively 

f   force acting on each unit mass 

jf   force acting on the unitary mass of species j  

   Helmholtz free energy ( f for the unit of mass); 
 generalized force; or any extensive value ( f for the unit of   
   mass);  

F   force of , ,x y zF F F
 
components; or electromagnetic force 

F    source of momentum due to molecular collisions 

F4 , * 4F  four-tensors of the electromagnetic field 

  Gibbs free enthalpy ( g per unit mass) 

g   acceleration due to gravity (of modulus g ) 

  chemical potential per unit mass of species j in a  

          mixture 

kg   electrochemical potential per unit mass of species k in  
          a mixture k kg z φ+  

  enthalpy ( h per unit mass) 

e

ie

E

aE

f

",' ff

F

G

jg

H



List of Main Symbols     xv 

H   magnetic displacement 

4H  four-tensor of electromagnetic displacement 

1    unit tensor 

i    intensity of the diffusion current 

i   total current of conduction (or diffusion)  

I    intensity of the electrical current equal to I  

I    conventional electric current ρ v ; or total current ρ +v i  
I4   four-vector current  

  chemical species 

 J   total flux relative to a motionless reference frame 

J    flux relative to the barycentric velocity in a composite fluid 

kDJ   diffusion flux of species k  equal to ( )k kρ −v v  

kDJ~   diffusion current of species k equal to ( )k kρ −v v  

  Boltzmann’s constant; wave number; or kinetic energy 2 2v  
2 2v   

  specific reaction rate 

ek   kinetic energy of the free electrons 

  kinetic energy ( k per unit mass); heat exchange coefficient;  
or wave number 

  length; or mean free path 

  transfer length; or integral scale of turbulence 

  diffusion thickness of a non premixed flame 

  respective thicknesses of preheating, of reaction of a  

 premixed flame  

K   Kolmogorov length scales 

  length; molar latent heat; or phenomenological coefficient 

kj,

k

( )Tk

K

l

D

δ,f

L



xvi     Flows and Chemical Reactions in an Electromagnetic Field 

  Lewis number 

 phenomenological coefficients 

L   matrix of phenomenological coefficients of chemical 

reactions  
   total mass; or mass of a material point 0m α  

0m   mass of a material point in the Minkowski space;  

  molecular mass; diluent; Mach number; or material point 

M   molar mass 

M   magnetic polarization ( ρ=m M : per unit mass) 

4M   four-vector corresponding to a material point 

M4   four-tensor equal to 4 4−F H
 

  mass of species  

  molar mass of species j  

   unit mass flow rate; mass flow rate; or mass flow rate of a 
nozzle 

  total number of moles  

 number of moles of species j  

N  number of species; number of molecules per unit volume; 
coordinate normal to an interface; or number of elements in 
a statistical calculus 

N   Avogadro’s number 

,n N   unitary normal to an interface; or to a surface  

4N    four-normal to a surface in Minkowski timespace 

  thermodynamic pressure  

ep   partial pressure of the free electrons  

p    momentum vector with coordinates , ,x y zp p p
 

P          electric polarization ( :ρ=p P  per unit mass)  

Le

iiij lL ,

m

M

jm j

jM

m

n

jn

p



List of Main Symbols     xvii 

P   Poynting vector equal to c ×E B  

   pressure tensor 

P4   four-tensor of impulsion-energy  
fldP4    four-tensor of impulsion-energy due to the 

electromagnetic field (or electromagnetic flux 4-tensor) 

( )mP4   four-tensor of impulsion-energy due to mass 

  Prandtl number  

   parameter; or heat flux  
  volume flow rate 

q   heat flux vector 

  partition function; or quantity of heat  

  lateral heat flux in a nozzle  

 molar enthalpy of formation of species j   

( ( )0
f j

q per unit mass)  

  perfect gas constant per unit mass; or radius 

  molar universal gas constant; radius; or electrical 
resistance 

ℜ   reference frame 

  Reynolds number 

  entropy ( s per unit mass); area; or area of the cross 
section of a nozzle;  

s  curvilinear abscissa 

 combustion velocity respectively laminar, standard, and  

       turbulent 

  surface  

   symmetrical part of the velocity gradient tensor 

   Schmidt number 

P

Pr

q

q

Q

Q

( ) ( ) jjf HQ 0
0

0 =

r

R

Re

S

tLL sss ,, 0

S,S

S

cS



xviii     Flows and Chemical Reactions in an Electromagnetic Field 

Sh  Sherwood number  

t  time 

  absolute temperature  

fT   flame temperature  

 activation temperature, adiabatic temperature of a  

     reaction respectively 

  velocity v  components in Cartesian coordinates ( zvvv ,,r θ  
          in cylindrical coordinates) 

,U v  velocity vector; velocity vector (components , , x y zv v v  or u, 

v, w in Cartesian coordinates and modulus v  ) of a 
material point; or barycentric velocity vector in a 
composite fluid  

 velocity, turbulence intensity respectively 

kv   velocity vector of species k  

V  velocity; or volume in the phase space 

,V V    vector; velocity vector; or velocity vector in the  

  phase space ( ),x ζ ; local velocity vector of a discontinuity 

  volume; control volume  

kV  diffusion velocity vector of species k −v v  

w  velocity of a surface (normal component w ); or d dtζ in 
the phase space 

W  local velocity vector of a discontinuity 

 rate of production of the quantity F  

 rate of production of species  

tEW  rate of production of total energy  

  rate of production of energy for the internal degrees of 

freedom of species α  

T

ada TT ,

wv,u,

',vv

V

FW

αW α

int,αEW



List of Main Symbols     xix 

,vW α  rate of production of vibrational energy of species α  

;iWα   rate of production of species α  at quantic level i 

tE aW  rate of production of total energy per unit area and unit 

time at interface 

 Cartesian coordinates; x  along a nozzle axis 

  position vector 

,j jX Y   molar and mass fraction of species j respectively 

;iYα   mass fraction of species α  at quantic level i 

z   charge per unit mass k k
k

z Y∑  of the mixture 

kz   charge of species k per unit mass  

Greek symbols 

  chemical species; or quantity 2 21 v c−   

  Dirac distribution 

  difference; Laplacian; HΔ : heat of a reaction  

  small dimensionless parameter; or electric permittivity 

ε    dielectric tensor 

  velocity potential; ( ), tϕ x : weight function 

ϕ   scalar potential  

4Φ  four-vector force  

  isentropic coefficient p vc c   

4Γ   four-acceleration 

  bulk viscosity; shear viscosity; or reduced coordinate 

,η π   thermo-electric coefficients 

zy,x,

x

α

( )xδ
Δ

ε

φ

γ

η



xx     Flows and Chemical Reactions in an Electromagnetic Field 

    heat diffusivity ; mean curvature of a surface 

    heat transfer coefficient 

  coefficient of shear viscosity; Gibbs free energy per mole; 
or absorption coefficient per unit of wave length  

  molar chemical potential of a species j in a mixture 

  kinematic viscosity μ ρ ; or light wavenumber 

  algebraic stoichiometric coefficient " 'j j jν ν ν= −  

' jν , " jν   stoichiometric coefficient of the direct reaction, or its  

      inverse respectively 

Π   viscous pressure tensor 

iΠ   dimensionless group 

θ   temperature; or angular coordinate 

ρ   density (volumic mass) 

jρ   partial density of species j  

;iαρ   partial density of species α  at quantic level i 

ρ   classical electric charge per unit volume 0ρ α  

0ρ   electric charge in the Minkowski timespace 

kρ   electric charge of species k  per unit volume  

ρ    surface tension 

Σ   surface; area of a surface; ( )xΣ  area of the cross section 

of a nozzle 

Σ   stress tensor 

,k εσ σ   Prandtl numbers of the k ε−  method  

ϑ   volume per unit mass (inverse of the density) 

τ   characteristic time; dimensionless energy of reaction 
1pH c Tτ Δ= ; or proper time of a material point in the 

Minkowski timespace equal to tα  

κ pcρλ

Λ

μ

jμ

ν

jν



List of Main Symbols     xxi 

ω    speed of rotation; or pulsation of an oscillating wave 

,ω Ω   rotation vector 

Ω   speed of rotation; or solid angle 

ξ   progress variable per unit mass; reduced coordinate; or 
correlation length  

ψ   stream function; probability in the phase space 

ζ   probability in the phase space; or reduced variable 

ζ   rate of production of a chemical reaction 

ζ   vector of the phase space 

Subscripts, superscripts, and other symbols  

a   of activation; relative to the quantities per unit area of 
the interface 

ad   adiabatic 

b   burned gases 

chem   chemical  

vCO Eβ−   coupling CO molecule - vibrational energy 

D    direct; of dissociation; diffusive 

e    equilibrium flow 

eff   effective 

f   frozen composition; fresh gases; or flame 
fld  field 

G , 
g

  gas  

, , ,i jα β   of species 



xxii     Flows and Chemical Reactions in an Electromagnetic Field 

i    internal; relative to imaginary part; or irreversible 

int    internal degrees of freedom of a molecule 
l
   liquid  

L    line; liquid; laminar 

m    mixture; mass  

mec   mechanical  

p    at constant pressure 

r    chemical reaction; reference 

R    reverse; or recombination 
s    steady state; surface; isentropic; or specific  

S    surface; relative to the specific or intensive interfacial 
quantities 

st    stoichiometric; or steady 

t    for translational energy mode of a molecule; or 
turbulent 

T    temperature; turbulent; or at constant temperature  

T    transpose of a tensor 

°   deviator of a tensor  

th   thermal  

u   unburned gases 

,orv ϑ   at constant volume 

V    vapor  

/ /    parallel to a surface  

⊥
   normal to a surface  



List of Main Symbols     xxiii 

0
   standard reference value 

•
   pure simple substance 

⋅
   per unit time; or for a rate of production 
−
 average quantity; or Reynolds average 
′
    Reynolds disturbance in relation to an average value 

"
    Favre disturbance in relation to an average value 

( )S    symmetrical part of a matrix or a tensor 

~
    transpose of tensor; transpose of matrix; or Favre 

average 

  turbulent average 

( )0T    standard thermodynamic function 

×     vector product 

⊗    tensor product 

⋅     scalar product (singly-contracted tensor product) 

:     dyadic product (doubly-contracted tensor product) 

∧     exterior product 

*     sonic conditions; or reference state; or virtual 

∇     nabla (gradient operator) 

[ ]+−    jump of a quantity across an interface 

d dt    material derivative equal to t∂ ∂ + ⋅∇v  

t∂ ∂    partial time derivative 

d dtW    material derivative associated with the velocity W  

equal to t∂ ∂ + ⋅∇W  

 for a reversible chemical reaction  



 



Part 1 

Introduction 

In this first part of this volume, Chapters 1-3 recap the 
fundamental equations for homogeneous media, mainly in 
the case of mixtures of conductive fluids in which chemical 
reactions do take place. 

In Chapter 1, we look at the general principles which 
govern the establishment of the equations of 
electromagnetism in the case of a simple medium. These 
equations are expressed in the Minkowski space and then 
transferred into the usual three-dimensional space.1 The 
quantities used in the four-dimensional space are the tensors 
of the electromagnetic field and the current 4-vector, the 
momentum-energy tensor. These quantities will also  
be presented in Chapter 4, where we shall establish the  
 
 
 

                                                 
1 This way of working is not the only way. It is perfectly possible to study 
electromagnetism without operating in timespace in the domain of non-
relativistic velocities (on this subject, see the remark made by Groot and 
Mazur [GRO 63, p. 376]; also see [CAB 70, ERI 90]). The method used here 
to establish the basic equations is, however, fairly conventional (for 
instance, see [LAN 69, LAN 82, GRO 69b, SAN 68]). In addition, it will 
enable us to seamlessly introduce interfacial heterogeneities in Chapter 3. 
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interfacial equations. First, we shall consider non-polarized 
media, followed by polarized media. 

Reactive mixtures involved additional quantities such as 
the velocity 4-vectors associated with the chemical species 
and the force 4-vectors. The balance equations for conductive 
reactive fluid mixtures are first established in Chapter 2 in 
the absence of polarization. 

Chapter 3 is dedicated to the case of conductive reactive 
fluid mixtures in the presence of electrical and magnetic 
polarization. 

Additional information about the homogeneous  
balances with electromagnetic fields is presented in the 
Appendix. The primary objective is to establish the 
constitutive relations of these conductive homogeneous 
media, which we can only do if we specify the type of medium 
in which we are interested: metal, and then homogeneous 
plasma. We will need these constitutive equations in 
Chapter 4, when we look at interfaces, because on both sides 
of these interfaces, we have homogeneous media. 

The balance equations of the electromagnetic field give us 
the two groups of Maxwell equations. The mass balances are 
established for the species and the mixture; that of the 
energy-momentum leads us to the equations of conservation 
of momentum and energy. 

The case of non-polarized media is studied first followed 
by that of polarized media for which the constitutive 
equations are deduced from linearized TIP.2 Attention is 
 
 
 
 

                                                 
2 TIP: thermodynamics of irreversible processes. 
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drawn to the ambiguity of the definition of certain quantities 
in a polarized medium. This difficulty of definition arises 
particularly when we wish to separate the true 
electromagnetic effects from the mass effects.3 

                                                 
3 The simplest tensorial or matricial notations are used. Where there is no 
ambiguity, bold letters are used for all non-scalar quantities. However, if 
the same symbol is used for a 1st- or  2nd-order tensor, this is specified by a 
single arrow or bar below the symbol for a 1st-order tensor, and a double 
arrow or double bar below the symbol for a 2nd-order tensor. Thus, 
electrical polarization is represented by a vector P  or a column matrix P , 
whereas the pressure tensor, which is a 2nd-order tensor, corresponds to 
the tensorial notation  or matricial notation P . P



 



1 

Relativistic Considerations 

To begin with, here, we shall present the basic principles 
and the expressions of the classic quantities, such as the 
proper time and the universal velocity in the Minkowski 
timespace. The law of dynamics of the material point is then 
stated.  

The expressions involved in continua, such as the 
electromagnetic field tensors and that of the electromagnetic 
momentum-energy, are presented in the case of media with a 
single component. The Maxwell equations are written, as are 
the balances of the electrical charge and the electrical 
momentum-energy in a polarized or non-polarized medium. 

1.1. Recap of electromagnetics and mechanics in 
special relativity 

We first recap the equations of electromagnetism, 
considering them to be deduced from the balance of  
various tensorial quantities in timespace [EIN 05, LAN 82]. 
Thus, the formulation is relativistic, but we believe this 
simplifies the reasoning process. The drawback is that the 
conventional balance equations in Aerothermochemistry are 
not relativistic. Hence, at first glance, this presentation 
seems non-homogeneous. In reality, though, it is not so at 
all: here, the homogeneity stems from a unique presentation 
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of the balance equation, relativistic or otherwise [GRO 69a, 
GRO 69b]. However, we shall limit ourselves to the relativity 
restricted to Galilean systems.1 

Let us recap some of the basic principles of our 
developments. 

PRINCIPLE OF RELATIVITY.– All of the laws of nature are 
identical in all Galilean frames of reference; it follows that 
the equation of a law retains its form in time and space when 
we change the inertial frame of reference. The rate of 
propagation of the interactions is the same in all inertial 
frames of reference. 

GALILEO’S PRINCIPLE OF RELATIVITY.– The rate of 
propagation of the interactions is infinite. 

EINSTEIN’S PRINCIPLE OF RELATIVITY.– The rate of 
propagation of the interactions is constant and equal to the 
celerity of light .  

This principle leads us to work in timespace.2 

1.1.1. Minkowski timespace 

A point  of spacetime is represented by a complex 
vector , with the associated column matrix: 

 

[1.1] 

                              
1 The theory is called “special” because it applies the principle of relativity 
solely to the special case of inertial frames of reference. 
2 In timespace, the elementary interval between events is defined by: 

2 2 2 2ds c dt dl= − , where dl  is the elementary distance such that: 
2 2 2 2dl dx dy dz= + + . 

c

M
4M

4

x
y
z
ict

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

M
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where  is the celerity of light in a vacuum in the absence of 
a field. Here, the coordinates are indicated in a Galilean 
frame of reference. 

If we wish to express these coordinates in another 

Galilean frame of reference of relative velocity  in 

relation to the first frame of reference, then we write: 

 

[1.2] 

and the relation dictating the change of frame of reference is 
found by way of the special Lorentz transformation – a linear 
transformation3:  

 
[1.3] 

with the following  matrix: 

 

[1.4] 

 

                              
3 The Lorentz transformation preserves the intervals (whereas in 
conventional mechanics, the changes in the inertial reference frameworks 
preserve the distances). This transformation is, in fact, a rotation in the 
timespace. In our discussion below, we shall use the classic notations to 
denote tensors and matrices. In our calculations, we shall not use the 
“covariant/contravariant” notations which are often used in relativity. 

c

0
0
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

V
V

4

'
'

'
'

'

x
y
z
ict

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

M

4 4 4' =M D M

4D

4

1 0 0 0
0 1 0 0
0 0 1
0 0 1

iV c
iV c
α α

α α

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

D
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where:  

 
[1.5] 

In the three-dimensional space, the velocity  of a 
material point can be defined at any given time. In order to 
define the velocity as an intrinsic quantity (i.e. one which is 
independent of the framework chosen to measure it with) in 
timespace, it is necessary to define a proper time (Figure 1.1). 

At time , the material point  has the velocity  in 
the frame of reference .  

Now consider the Galilean frame of reference  moving at 
a constant velocity  such that, at time , we have . 
The time  measured in relation to such a framework (one 
exists at all times) linked to the material point is called the 
proper time of that material point. 

Suppose that the coordinates of  remain null; in the new 
frame of reference, we will have: 

, 

so:

  

From this, we deduce the expression of the proper time of 
the material point: 

 
[1.6] 

Note that here,  and  whilst they are variables, need 
to be considered to be constant when dealing with the 

2 21 V cα = −

v

t M ( )tv

ℜ

'ℜ
V t =V v

τ

M

4

0 0
0 0
0 z
i c i c tτ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

D

0
1

z v t
vc z c t
c

τ
α

= −⎧
⎪
⎨ ⎛ ⎞= − +⎜ ⎟⎪ ⎝ ⎠⎩

2

21t v t
c

τ α
α
⎛ ⎞

= − =⎜ ⎟⎜ ⎟
⎝ ⎠

v ,α
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Galilean frame of reference which coincides with  and has 
the same velocity as at time .  

The above relation is therefore, in fact, a differential 
relation linking the proper time to the time in the frame of 
reference , and should, strictly speaking, be written: 

 [1.7] 

 

Figure 1.1. Galilean frames of reference. The frame of reference ℜ is that 
in which we observe the events. At the point M moving at the instantaneous 
velocity v, we associate with time t the frame of reference ℜ' moving at 
constant velocity V = v 

The universe velocity vector, or 4-velocity vector, of the 
material point  is defined as  where, in 
matricial notation: 

 
[1.8] 

NOTE 1.1.– We can verify that is indeed a 4-vector in the 
Minkowski space. If this is the case, then in relation to a new 

Galilean frame of reference , of velocity , constant 

M
M t

ℜ

d dtτ α=

M 4 4d dτ=V M

4
4

d
dτ

= MV

4V

1ℜ 1

1

0
0
V

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

V
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in relation to the frame of reference  (Figure 1.2), we must 
have: This relation is written thus: 

 

[1.9] 

 

Figure 1.2. Change of the Galilean frame of reference.  
The new Galilean frame of reference  has the velocity  

of translation  in the frame of reference  

We deduce from this that: 

2
1 1

1 1

1 /' 1and
' '

v v vv cv
α α α α α α

− −= =  

which has the consequence:  

  

and:  

 

ℜ
4 4 41' .=V D V

1 1 1

1 1 1

1 0 0 00 0
0 1 0 00 0
0 0 1' '

' 0 0 1
iv cv v

ic iv c ic
α αα α

α α α α

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

1ℜ
1V ℜ

1
2

1
'

1
v v

v
v v c
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This conclusion is valid if is indeed a 4-vector, which 
we shall verify by writing the expression:  

 

in view of the fact that  

We obtain: 

 

and therefore: 

 

and finally:  

 

which does indeed correspond to the result found above.  

We have:  

  

with that value of  

4V

4
4

''
'

d
d τ

= MV

4 4 41' .=M D M

( ) 1
1 2

1 1
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v

z z v t t t z
cα α
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1 1
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2 2
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1

1
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'
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c
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−

4
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'

'
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NOTE 1.2.– zyx vvv and,  being the coordinates of the velocity  

in the three-dimensional space, the components of  form 
the column matrix: 

 

[1.10] 

and the following relation is always valid: 

 
[1.11] 

1.1.2. Law of dynamics for a material point 

We define the mass  of the material point as being a 

scalar in the Minkowski space. The mass  is therefore 

invariable when we change the Galilean frame of reference. 

The universe momentum vector or 4-momentum is 
defined by: 

 
[1.12] 

being a 4-vector,  is, of course, a 4-vector as well. 

NOTE 1.3.– The first three coordinates of  are the 
components  of the classic momentum  and, for 

the mass of the material point moving at velocity , we 
have: 

 
[1.13] 
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z
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Hence, the 4-vector  is written in matricial form:   

 

[1.14] 

We also define the force 4-vector  of matrix: 

 

[1.15] 

on the basis of the coordinates  of the classic force 

vector . The universe acceleration  is also introduced: 

 [1.16] 

We observe that:  

 
[1.17] 

In the Minkowski space, the formulas of the dynamics of 
the material point are condensed into one formula: 

 
[1.18] 

This relation is also written as:  

 
[1.19] 
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It leads to the equations of mechanics in special relativity: 

 
[1.20] 

from which we can deduce the classic formula:  
where  is the work. 

1.2. Electromagnetic quantities in a non-polarized 
medium 

The equations of relativistic mechanics cannot easily be 
extended to continuous media (also known as continua). 
Indeed, in this case, we need to switch from looking at the 
material particle – a molecule, an electron or an ion, to 
looking at the ensemble formed by a very large number of 
particles, upon which we need to perform statistical 
calculations. Necessarily, therefore, we need to find the 
definition of a coherent relativistic thermodynamics if we 
wish to correctly describe the motion of the continuum. 
These problems are highly complex. 

On the other hand, unlike the study of sets of particles, 
the study of an electromagnetic field is much easier, 
particularly when we are dealing with non-polarized media. 
Thus, we shall begin by looking at fields in the absence of 
polarization. 

In a medium – be it polarized or otherwise – it is possible 
to define a current 4-vector. In order to do so, we introduce a 
scalar , which is the electrical charge per unit volume. 

Then, by definition, the current 4-vector  is: 

 
[1.21] 

( ) ( )2

,
d mcd m

dt dt
= ⋅ =

v
F F v

( )2W m cΔ=

W

0ρ
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4
4 0 c

ρ= V
I



Relativistic Considerations   15 

with  being the 4-velocity of the material point in 
question. Thus, we have:  

 

[1.22] 

when we introduce the classic charge  per unit volume:  

 
[1.23] 

and the classic current density vector : 

 
[1.24] 

The conservation of electricity expresses the fact that  
the integral of the charge flux  over an enclosed  
surface  is null:  

 
[1.25] 

With the divergence theorem, because of the conditions of 
continuity of the quantities, we can deduce that:  

 
[1.26] 

If no discontinuity surface exists in the 4-volume in 
question, we have: 

 
[1.27] 

Immediately, we can deduce from this the classic relation: 

0
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=⋅∇+
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∂ I
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[1.28] 
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In a non-polarized medium, the electromagnetic field is 
defined by two matrices  and , depending on the six 

quantities , such that in a given frame of 

reference: 

 

[1.29] 

 

[1.30] 

As with the other quantities (scalars  and ,  

vectors ), the components of these tensors in 
relation to a new frame of reference satisfy the classic base-
change relations, with the base-change matrix being that of 
the special Lorentz transformation. 

This matrix is such that: , so, in the new base, 

we have: 

 
[1.31] 

The electromagnetic balance equations are expressed in 
the Minkowski space by: 

 
[1.32] 

 [1.33] 
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By applying the divergence theorem, we obtain: 

 [1.34] 

 [1.35] 

These two relations lead to the two groups of Maxwell 
equations: 

 [1.36] 

 [1.37] 

where  and  have the respective components  

and . 

1.3. Momentum-energy tensor in a non-polarized 
medium 

We have expressed the fundamental law of dynamics for a 
material point, which has led us to the equations of 
mechanics for that material point. The momentum-energy  of 
the electromagnetic field can also be defined. For a 
continuum characterized by the quantities introduced above, 
the electromagnetic momentum-energy flux is defined by the 
tensor fldP4  (the exponent “fld” denoting the field), with 

matrix: 

2 24

2

fld

fld
i

E Bi

⎡ ⎤×
⎢ ⎥= ⎢ ⎥+× −⎢ ⎥⎣ ⎦

P E B

E B
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where:  

2 2

2
fld +

= − ⊗ − ⊗
E B

P 1 E E B B  [1.39] 

is the Maxwell pressure tensor. 

Let us calculate the integral of the momentum-energy flux 
on an enclosed surface ( ) delimiting a volume ( ):  

4 4
4 4 4 4

fld dS d
∂

⋅ = − ⋅∫ ∫NP F I
V V

V  [1.40] 

The right-hand side of this equation is obtained from the 
left-hand side, using only the Maxwell equations. It 
represents the resultant force exerted on the volume (4V) by 
the action of the electromagnetic field on the medium. 

By applying the divergence theorem to the left-hand side, 
we obtain: 

4 4 4 4
fld∇ ⋅ = − ⋅*P F I  [1.41] 

or indeed: 

1 1fld

c t c
ρ∂ × ⎛ ⎞+ ∇ ⋅ = − + ×⎜ ⎟∂ ⎝ ⎠

E B P E I B  [1.42] 

 [1.43] 

The first equation expresses the electromagnetic 

momentum balance , whose flux density is fldP , the 

Maxwell pressure tensor, and whose production rate per unit 
volume is equal to the opposite of the Lorentz force  

( ) acting on the unit volume of the fluid. The 

second equation expresses the electromagnetic energy 

4∂ V 4V
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balance , whose flux density is the Poynting vector 

(c E × B); the scalar product  represents the power of 
the field. 

1.4. Electromagnetic quantities in a polarized medium 

The non-polarized medium is a special case. In general, 
polarization does take place, and the electromagnetic field is 
defined by two tensors 4 4and *H F , each dependent on six 
quantities which are the components of the vectors: 

–  H: magnetic displacement vector4 (or magnetic 
induction, or indeed magnetic excitation – see Figure 1.3(a)); 

–  D: electrical displacement vector (or electrical  
induction – see Figure 1.3(b)); 

–  B: magnetic field; 

–  E: electrical field 

We have: 

 

[1.44] 

 is given by the law [1.30]. 

                              
4 When a substance is introduced into a magnetic field created by 
electrical currents, the magnetic field changes. The substance becomes 
magnetized and creates its own magnetic field which, along with  
the primary magnetic field, forms the resultant field. Thus, we obtain the 
magnetic induction vector = −H B M  where M  corresponds to the 
magnetization. That magnetization is caused by the preferential 
orientation of the individual magnetic moments of each molecule. 

2 2
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or indeed: 

 
[1.49] 

 
[1.50] 

For non-polarized media, we have:  

 
[1.51] 

Generally, though, we define the electrical5 and magnetic 
polarizations:  

 
[1.52] 

and the tensor: 

 
[1.53] 

The four vectors are linked, two by two, and 
we can write the following formulas, for a medium at rest: 

 [1.54] 

 [1.55] 

                              
5 The electrical polarization is not specific to conductive media. It plays a 
part, notably, in dielectric materials (or electrical insulators): these 
materials do not conduct electrical current, but they contain microscopic 
dipoles which are likely to move by small distances, or vibrate under the 
influence of an electrical field. The dipoles form in the atoms and  
the molecules, subject to electrical fields, when the barycenter of the 
negative charges (the electrons) shifts slightly in relation to that of the 
positive charges (the nuclei) (see Figure 2.3(b)). 
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ε being the dielectric tensor and μ the magnetic permeability 
tensor. In the case of isotropic media, ε and μ are reduced to 
scalars: ε the dielectric constant, and µ the magnetic 
permeability. 

It must be noted here that, if the Maxwell relations are 
independent of the chosen Galilean frame of reference, the 
above relations are valid for a given fluid, and are written as 
follows, tracking the motion of that fluid: 

 
[1.56] 

 
[1.57] 

 are expressed, in the framework with the 
same velocity as the fluid , thanks to the formulas of 
changing of the axes relating to the tensors 4 4 *H Fand : 

* *
4 4 4 4 44 4 4' ,T T= =D D D DH H F F  

[1.58] 

From these relations, when , we deduce the 
following approximate formulas: 

 

[1.59] 

 

=D' ε E'

−= 1H' μ B'

, , ,D' H' E' B'
v

2 2 1v c <<

1 1,

1 1,

c c

c c

⎧ = + × = + ×⎪⎪
⎨
⎪ = + × = + ×
⎪⎩

D' D v H E' E v B

H' H v D B' B v E
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Balance Laws for Non-polarized 
Reactive Mixtures 

In this chapter, we shall first introduce the various 
quantities characterizing an electric medium with multiple 
components. These components are neutral or ionized 
chemical species and free electrons. Then, we shall recap on 
what is meant by a balance equation in three-dimensional 
space and in the Minkowski timespace. 

We shall then move on to the balance equations for non-
polarized composite media and describe a phenomenon 
typical of these media regarding electrical conduction. 

2.1. Quantities characterizing a multi-component 
medium 

If the medium is made up of multiple chemical species, 
then for each of those species, we define a charge per unit 
volume kρ , a specific mass kρ , and a velocity kv . If kz
denotes the charge per unit mass (constant for a given 
species), we have: k kzρ ρ= . The mass flux of species k in 
relation to a fixed frame of reference is: 

k k kρ=J v  [2.1] 
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and the flux of charge of species k , in relation to the same 
frame of reference, is: 

k k kρ=J v  [2.2] 

For the mixture, we introduce average values.  

The charge per unit volume is defined by:  

k
k

ρ ρ=∑  [2.3] 

The density is:  

k
k

ρ ρ=∑  [2.4] 

and the total mass flux can be used to define the barycentric 
velocity of the fluid: 

k k k
k k

ρ ρ= = =∑ ∑MJ J v v  [2.5] 

Thus, we have:  

k
k k k

k k
Yρ

ρ
= =∑ ∑v v v  [2.6] 

where kY  denotes the mass fraction of the species. 

The fluxes in relation to the barycentric motion are then 
defined, such as the diffusion flux (see Chapter 2 of  
[PRU 12]): 

( )Dk k kρ= −v vJ  [2.7] 
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involving the diffusion rate: 

k k= −V v v  [2.8] 

Of course, by definition, we have: 

Dk
k

=∑ 0J  [2.9] 

The diffusion current of species k :  

( )Dk k kρ= −v vJ  [2.10] 

but this time we have Dk
k

≠∑ 0J , and we introduce the total 

conduction current :i   

( )Dk k k
k k

ρ= = −∑ ∑i v vJ  [2.11] 

Given that the total current is equal to:  

k k k
k k

ρ= =∑ ∑I J v  [2.12] 

and the convection current is equal to ρ v , we write:  

ρ= +I v i  [2.13] 

From a thermodynamic point of view, the state of each 
chemical species is characterized by the same variables as in 
non-conductive media (see Chapter 2 of [PRU 12]). For 
example, species k  is present at a concentration kY   
(mass fraction), a chemical potential kg  per unit mass.  
The non-polarized conductive medium, with internal energy  
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ε, entropy s  and volume ϑ  per unit mass, satisfies the 
relation: 

k k
k

de T ds p d g dYϑ= − +∑  [2.14] 

This result is no longer valid for polarized systems, as we 
shall see in Chapter 3. In a non-polarized medium, the Gibbs 
equation given above can be written as a function of other 
variables. Indeed, the Maxwell equations shown earlier 
enable us to write that the fields B  and E  depend on the 
scalar potential ϕ  and the vector potential A  such that:  

1
c t

ϕ ∂= −∇ −
∂
AE  [2.15] 

= ∇ ×B A  [2.16] 

This potential ϕ  can be used to define the electrochemical 
potential: 

k k kg g z ϕ= +  [2.17] 

and the internal energy:  

e e zϕ= +  [2.18] 

where: 

k k
k

z z Y=∑  [2.19] 

Thus, we obtain: 

k k
k

de T ds p d g Y z dϑ ϕ= − + +∑  [2.20] 
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If chemical reactions are present, we use the notation kW to 
denote the mass of species k  produced by those reactions in 
the unit volume and per unit time. As the chemical reactions 
have algebraic stoichiometric coefficients kν , we have:

k k kr r
r

W ν ζ= ∑M , where kM  is the molar mass of the species 

in question, and rζ  is the production rate in moles for the 
reaction r. 

2.2. General balance equation 

Remember that the balance of a certain quantity F  
characteristic of a fluid with a single chemical component 
[PRU 12] expresses the fact that in a given volume (V ) 
delimited by a surface ( ∂V ), any variation in F over time is 
the result of exchanges across ( ∂V ) and production 
phenomena in (V ). 

If we consider a fixed domain, we have: 

F Ff d dS W d
t

ρ
∂

∂ + ⋅ =
∂ ∫ ∫ ∫J n

V V V
V V  [2.21] 

where f is equal to the mass value of F , FJ  is the total flux 

of the quantity F and FW  is the production rate. From the 
above balance, in general, we can deduce the following 
balance equation for a homogeneous fluid: 

( )
F F

f
W

t
ρ∂

+ ∇ ⋅ =
∂

J  [2.22] 

Another form of the balance equation is derived from the 
above equation, using the conservation of mass equation: 

( ) 0
t
ρ ρ∂ + ∇ ⋅ =

∂
v  [2.23] 
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by introducing the relative flux FJ  such that: 

F Ffρ= +J v J  [2.24] 

 

We deduce: 

. F F
df W
dt

ρ + ∇ =J  [2.25] 

where: 

d
dt t

∂= + ⋅∇
∂

v  [2.26] 

for the time-derivative, following the barycentric motion. 

For a composite system, we shall make an effort, in all 
cases, to obtain a balance equation with one of the forms 
shown above. When 0FW =  we say that we are dealing with a 
conservation equation. 

From a relativistic point of view, the balance is expressed 
by means of the flux in the Minkowski space. A quantity F  
which has the flux 4 FJ  and the production rate 4 FW  will be 
such that: 

4 4

4 44F FdS W d
∂

⋅ =∫ ∫J N
V V

V  [2.27] 

This equation is valid in any given frame of reference. 
When no discontinuity surface is present in the control 
volume ( 4V ), we can write: 

4 4 4F FW∇ ⋅ =J  [2.28] 
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If we set: 

4

4 4 4

4

J
1 1J , J ,

J

Fx

FFy F F F

Fz

i f W W
c cτ ρ

⎡ ⎤
⎢ ⎥ = = =⎢ ⎥
⎢ ⎥⎣ ⎦

J  [2.29] 

then we find ourselves with the balance equation: 

( )
. F F

f
W

t
ρ∂

+ ∇ =
∂

J  [2.30] 

From this equation, at least for scalar values, we can 
derive a correspondence between the relativistic balance and 
the classic balance. 

2.3. Mass balance and electrical charge balance 

The mass flux density 4-vector is: 

4 40M ρ=J V  [2.31] 

where 4V is the 4-velocity. 

For each species k, there will be a flux 4 40k k kρ=J V , and 
the balance is written as: 

( )4 4 40k k kWρ∇⋅ =V  [2.32] 

In the “laboratory system”, this equation gives us: 

( )k
k k kW

t
ρ ρ∂ + ∇ ⋅ =
∂

v  [2.33] 
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with the mass production rate in relation to  
chemical reactions kW . Summation in relation to the index k 
gives us:  

( ) 0
t
ρ ρ∂ + ∇ ⋅ =

∂
v  [2.34] 

or, in the Minkowski space: 

( )4 40 0ρ∇⋅ =V  [2.35] 

in view of the conservation of overall mass, which is 
expressed chemically by: 

0k
k

W =∑  [2.36] 

or indeed: 

4 0k
k

W =∑  [2.37] 

By introducing the material derivative: 

d dt t= ∂ ∂ + ⋅∇v  [2.38] 

for a non-relativistic fluid, we obtain: 

0d dtρ ρ+ ∇ ⋅ =v  [2.39] 

for the overall mass and, by combining this with the balance 
equations in the above form: 

k Dk kdY dt Wρ + ∇ ⋅ =J  [2.40] 

As the electrical current is linked to the mass of the 
species and their charge, the charge balance equations will 
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be deduced from the mass balance equations. For the charge 
of species ,k  we need merely multiply by the charge kz  of the 
species per unit mass and divide by the celerity of light  
c . We obtain: 

4 4 4
1

k k kz W
c

∇ ⋅ =J  [2.41] 

where: 

4 4
1

k kx

k ky
k k k

k kz

k

v c
v c

z
c v c

i

ρ
ρ
ρ
ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥= = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

J J  [2.42] 

for the total current, we have: 

k
k

=∑J J  [2.43] 

so that: 

4 4 4
1

k k
k

z W
c

∇ ⋅ = ∑J  [2.44] 

or indeed: 

0k k
k

t z Wρ∂ ∂ + ∇ ⋅ = =∑I  [2.45] 

because overall, there is conservation of the electrical charge; 
i.e. if, in the medium in question, a charged particle is 
produced, the particle of opposite charge is produced 
simultaneously. The right-hand side of this equation, which 
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only includes reactions involving charged particles, 
therefore, is null. We have:  

k k k k kr r r kr k k
k k r r k

z W z zν ζ ζ ν⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑ ∑M M  [2.46] 

The product k kz M  represents the charge of species 
k  produced in the reaction r with the stoichiometric 
coefficient krν . If species k is produced in this way, species 

',k  with the opposite charge, is simultaneously produced, so 
that: 

' ' ',k k k k k r krz z ν ν= − =M M  [2.47] 

It follows from this that in the sum kr k k
k

zν∑ M , there are 

only couples of terms such as: ' ' 'kr k k k r k kz zν ν+M M , which are, 
of course, equal to zero. 

Given the definition of the conduction current i , we also 
have: 

0dz dtρ + ∇ ⋅ =i  [2.48] 

2.4. Momentum and energy balances 

We have expressed the energy-momentum tensor1 due to 
the electromagnetic field for a simple system. The expression 
holds true in the case of a composite system. However, in  
 
 

                              
1 This four-tensor is sometimes called “stress-energy tensor” or “stress-
energy-momentum tensor”. It describes the density and flux of energy and 
momentum in spacetime, generalizing the stress tensor in Newtonian 
mechanics. 
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order to write the momentum-energy balance, we must be 
able to express the momentum-energy tensor due to the 
mass of the particles making up the fluid. 

Steering clear of relativistic thermodynamics, as we 
decided to at the outset of this study, we shall content 
ourselves with using classic expressions. These expressions 
give us a pressure-energy 4-tensor2 with the matrix: 

( ) ( )
4

m
i c

i e k e k
c

ρ ρ

ρ ρ

⎡ ⎤⊗ +
⎢ ⎥= ⎢ ⎥⎡ ⎤+ ⋅ + + − +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

v v P v

q P v v
P  [2.49] 

NOTE 2.1.– If we were dealing with a relativistic fluid, the 
tensor 4

mP could still be expressed in the form: 

4 4 4 4
m ρ= ⊗ +V VP Π  [2.50] 

where 4Π is the relativistic generalization of the pressure 

tensor P .  

If forces other than those of the electromagnetic field are 
exerted on the species, we shall denote them by kf for the 
unit mass. Thus, we shall have the generalized forces: 

4

k k

k
k k k

i
c

ρ

ρ

⎡ ⎤
⎢ ⎥=
⎢ ⎥⋅
⎢ ⎥⎣ ⎦

v

f

f
Φ and: 4 4 k

k

=∑Φ Φ  [2.51] 

                              
2 Remember here that stresses and pressures have equal modulus but 
opposite signs. In fluid mechanics we generally use pressures instead of 
stresses. Therefore we have a pressure-energy tensor instead of a stress-
energy tensor, and these four-tensors, written in bold, have opposite signs. 
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The energy-momentum balance equation is thus written 
as follows, in the 4D space:  

( )4 4 4 4
ch m∇ ⋅ + = ΦP P  [2.52] 

This equation gives us two relations in the 3D space: 

2 21

2 k k
k

c
t

ρ
ρ ρ

⎛ ⎞ ⎛ ⎞∂ + × +⎜ ⎟ ⎜ ⎟⊗ + +⎝ ⎠ + ∇ ⋅ =⎜ ⎟∂ ⎜ ⎟− ⊗ − ⊗⎝ ⎠

∑
v E B E B

v v P

1 E E B B
f  [2.53] 

( )
( )( )

2 2

2

k k k
k

e k

e k c
t

ρ
ρ

ρ

⎛ ⎞+
⎜ ⎟∂ + +
⎜ ⎟
⎝ ⎠ + ∇ ⋅ + ⋅ + + + ×

∂
= ⋅∑

E B

q P v v E B

vf

  [2.54] 

We also deduce: 

4 4 4 4 4
m∇ ⋅ = ⋅ + ΦP IF  [2.55] 

Hence, in addition to the electromagnetic momentum-
energy equation, and the total energy balance equation, we 
can write the following momentum-energy balance equations 
applicable in the 3D space: 

( ) 1
k k

kt c
ρ ρ ρ ρ∂ + ∇ ⋅ ⊗ + = + × +
∂ ∑v v v P E I B f  [2.56] 

( ) ( )( ) k k k
k

e k
e k

t
ρ

ρ ρ
∂ +

+ ∇ ⋅ + ⋅ + + = ⋅ + ⋅
∂ ∑q P v v I E vf  [2.57] 
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With scalar multiplication by v of both sides of the first of 
these relations, we obtain the kinetic energy balance 
equation: 

( ) ( ) ( )1: k k
k

k
k

t c
ρ

ρ ρ ρ
∂

+ ∇ ⋅ + ⋅ = ∇ ⊗ + ⋅ + ⋅ × + ⋅
∂ ∑v P v P v v E v I B v f  [2.58] 

The second of these relations, when combined with the 
kinetic energy balance equation, gives us the internal energy 
balance equation: 

( ) ( ) 1: Dk k
k

e
e

t c
ρ

ρ
∂ ⎛ ⎞+ ∇ ⋅ + = − ∇ ⊗ + ⋅ + × + ⋅⎜ ⎟∂ ⎝ ⎠

∑q v P v i E v B vJ  [2.59] 

or indeed, in relation to the barycentric motion: 

1: Dk k
k

de
dt c

ρ ⎛ ⎞+ ∇⋅ = − ∇ ⊗ + ⋅ + × + ⋅⎜ ⎟
⎝ ⎠

∑q P v i E v B J f  [2.60] 

If we follow the particles in their motion, the momentum 
equation also becomes:3 

1
k k

k

d
dt c

ρ ρ ρ+ ∇ ⋅ = + × +∑v P E I B f  [2.61] 

NOTE 2.2.– In cases where the non-electromagnetic forces kf  
derive from potentials kψ , we write: k kψ= ∇f , and we can 
consider an average potential such that k k

k
ρψ ρ ψ=∑ . This 

enables us to consider a total energy ( )e k ψ+ + instead  

                              
3 The thermodynamics of non-polarized media does not involve 
electromagnetic variables, so there is no need, here, to write the 
electromagnetic balance equations following the motion of the fluid 
particles. However, it is possible to change the frame of reference, but as 
we can clearly see, this does not alter either the Maxwell equations or the 
law of dynamics. Hence, the expressions remain the same in variables 'E
and 'B  as in variables E and B . 
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of ( )e k+ , as we did with equation [2.54]. Furthermore, we 
establish the following balance equation for the potential 
[GRO 69a, DUD 82]: 

k Dk k k k
k k

d
dt
ψρ ψ ρ⎛ ⎞= −∇ ⋅ − ⋅⎜ ⎟

⎝ ⎠
∑ ∑ vJ f  

2.5. Entropy flux and entropy production 

The entropy flux is identical to the neutral gas flux, so we 
have: 

1
S k Dk

k
g

T
⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑qJ J  [2.62] 

Also, the Gibbs law can be written thus, following the 
barycentric motion defined by d/dt: 

k
k

k

dYds de dT p g
dt dt dt dt

ϑ= + +∑  [2.63] 

The expressions for de dt and kdY dt are given in the above 
discussion; d dtϑ  is deduced from the mass balance because 

1ϑ ρ= : 

d dtρ ϑ = ∇ ⋅ v  [2.64] 

We now deduce the expression of the entropy production 
rate SW involved in the entropy balance equation: 

2

1 1 1 1

1 1

k
S Dk

k

Dk k k k
k k

g
W T

T T T cT

g W
T T

⎛ ⎞ ⎛ ⎞= − ⋅∇ − ⋅∇ − ∇ ⊗ + ⋅ + ×⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

+ ⋅ −

∑

∑ ∑

q Π : v i E v BJ

J f
 [2.65] 
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Maxwell equations 

1 1,
c c t

ρ ∂∇ ⋅ = ∇ × = +
∂
EE B I , 

1 , 0
c t

∂∇ × + = ∇ ⋅ =
∂
BE 0 B  

Chemical species 
balance 

k
D k k

Y W
dt

ρ + ∇ ⋅ =J  

Continuity equation 0d
dt
ρ ρ+ ∇ ⋅ =v  

Electrical charge 
balance 

0dz dtρ + ∇ ⋅ =i
 

Momentum 
equation 

1
k k

k

d
dt c

ρ ρ ρ+ ∇ ⋅ = + × +∑v P E I B f  

Internal energy 
balance 

1: Dk k
k

de
dt c

ρ ⎛ ⎞+ ∇ ⋅ = − ∇ ⊗ + ⋅ + × + ⋅⎜ ⎟
⎝ ⎠

∑q P v i E v B J f  

Entropy equation k Dk S
k

ds g T W
dt

ρ
⎡ ⎤⎛ ⎞+ ∇ ⋅ − =⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∑q J  

Entropy production 
rate 

2

1 1

1 1 1 1

k
S Dk

k

Dk k k k
k k

gW T
T T T

g W
T c T T

⎛ ⎞= − ⋅∇ − ⋅∇ − ∇ ⊗⎜ ⎟
⎝ ⎠

⎛ ⎞+ ⋅ + × + ⋅ −⎜ ⎟
⎝ ⎠

∑

∑ ∑

q Π : v

i E v B

J

J f
 

Table 2.1. Balance equations of a non-polarized fluid mixture. B  
magnetic field, E  electrical field, D kJ  diffusion flux, q heat flux, i diffusion 
current, P pressure tensor,  Π viscous pressure tensor, kW  chemical 
production rate, kf remote forces other than those due to the electromagnetic 
field 

This production rate is equal to: 

S S
dsW
dt

ρ= + ∇ ⋅ J  [2.66] 
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As for the tensor ,Π it is equal to: 

p= −Π P 1  [2.67] 

where p is the thermodynamic pressure, which is a 
common value between the pressure p as it appears in the 
Gibbs relation and the hydrodynamic pressure p. 

The balance equations for a non-polarized medium are 
summarized in Table 2.1. 

2.6. Electrical resistance 

The entropy production rate is equal to a sum of products 
of generalized forces by generalized fluxes. The laws of 
thermodynamics of irreversible processes enable us to 
express these fluxes as functions of these forces. When we do 
not stray too far from the state of equilibrium, where the 
fluxes and forces are null, linear relations appear between 
these terms. The coefficients of these linear laws are the 
Onsager phenomenological coefficients: they are combinations 
of the coefficients of diffusion, viscosity, heat conduction, etc. 
In conductive media, the electrical resistance also appears as 
an Onsager coefficient. 

In order to demonstrate this fact, we envisage an 
isothermal conductor made up solely of ions and electrons. 
This is illustrated well by a metal conductor, with the 
ensemble of ions (fixed) plus electrons (mobile) behaving like 
a fluid. No chemical reaction takes place, there are no forces 

kf at work, no viscosity, etc. Only an electrical current is 
liable to circulate. 

In light of the above, we have: 

1
S Dk k

k
T W g

c
⎛ ⎞= − ⋅∇ + ⋅ + ×⎜ ⎟
⎝ ⎠

∑ i E v BJ  [2.68] 
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However, we have: 0,i e eρ ρ= =v v v , which, for the 
diffusion fluxes, gives us: 

1 e
De Di

e

Y
z
−

= − = IJ J  

Because neutrality is assured, the total charge z  is zero, 
and we have:  

e e e ez zρ ρ= = =i I v v  

Additionally, in the absence of a temperature and 
pressure gradient, the Gibbs–Duhem equation gives us: 

e e i iY g Y g∇ + ∇ = 0  [2.69] 

where: 1i eY Y= − . From these equations, it results that: 

e
S

e

gT W
z

⎡ ⎤⎛ ⎞
= ⋅ − ∇⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
I E  [2.70] 

On the right-hand side of this equation, the generalized 
flux is the first factor of the product, and the generalized 
force is the second. We can write the following linear 
relation: 

e

e

g
z

⎛ ⎞
− ∇ = ⋅⎜ ⎟

⎝ ⎠
E R I  [2.71] 

This is Ohm’s law: the tensor R  is the electrical 
resistance tensor, which may not necessarily be isotropic. 

If ( )e eg z∇ << E and R=R 1 , we have ∝E I , and we find 

the familiar relation: E R I= .



 



 3 

Balance Laws for Polarized  
Reactive Mixtures 

In this chapter, we shall begin by presenting the 
thermodynamic quantities which characterize a polarized 
medium. The relations between the various thermodynamic 
quantities will be written, and the laws of state established 
with reference to particular scenarios. We shall then 
establish the balance equations, as we did in regard to non-
polarized media, and finally give two examples of non-
equilibrium phenomena typical of polarized systems: 
dielectric relaxation and magnetic relaxation. 

3.1. Thermodynamic relations in the presence of 
polarization  

In order to characterize the polarization of the medium, 
we have previously introduced the electric and magnetic 
polarization vectors1: 

= −P D E
G

 [3.1] 

                              

1 The arrow over the polarization symbol P
G

is there, as previously noted, 
to clearly mark that it is a vector rather than a second-order tensor 

(remember that the pressure tensor is denoted P
GG

). 
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= −M B H  [3.2] 

The mass volume of the medium being 1ϑ ρ= , we also 
introduce the vectors of polarization per unit mass: 

ϑ=p P
G

 [3.3] 

ϑ=m M  [3.4] 

If the medium is moving, we can overlook the terms  
in 2 2v c  to find: 

1
c

= − ×P' P v M
G G

 [3.5] 

1
c

= + ×M' M v P
G

 [3.6] 

Similarly, with the same approximations, we have:  

1
c

= − ×p' p v m  [3.7] 

1
c

= + ×m' m v p  [3.8] 

In the discussion which follows, we shall suppose that the 
frame of reference is linked to the fluid, but omit the prime 
for simplicity’s sake. In any case, this makes no difference if 
we suppose that the transformations are reversible (and 
therefore slow) in the laboratory system. 

A wide array of formulations exist in relation to the 
thermodynamics of equilibrium states. 
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3.1.1. Formulation advanced by de Groot and Mazur 

S.R. de Groot and P. Mazur [GRO 69a] (formulas 70, 
p. 390) agree that the state of a composite system depends on 
N + 4 variables: 1, , , , NT Y Yϑ p,m … , and therefore write that 
the mass-free energy f  is a function of those variables:  

( )1, , , , Nf f T , Y Yϑ= p m …  [3.9] 

We can just as well describe the system using the entropy 
or the internal energy instead of looking at the free energy. 
For example, with the mass internal energy e , we obtain:  

( )1, , , , Ne e s Y Yϑ= p,m …  [3.10] 

and the Gibbs relation is written as: 

eq eq k k
k

de T ds p d d d g dYϑ= − + + +∑E . p B . m  [3.11] 

eqE  and eqB  are therefore thermodynamic vectorial 

quantities defined by: 

, , , k

eq
s Y

e

ϑ

⎛ ⎞∂= ⎜ ⎟∂⎝ ⎠ m

E
p

 [3.12] 

, , , k

eq
s Y

e

ϑ

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠ m

B
m

 [3.13] 

in the same way as we define the thermodynamic pressure:  

, ks Y

ep
ϑ

∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠ p,m,

 [3.14] 
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If we move from one equilibrium state to another slightly 
different equilibrium state, the polarizations p  and m  
respectively become d+p p  and d+m m . The corresponding 
variations eqd E  and eqdB  can easily be deduced, using 

relations [1.54] and [1.55] which, here, give us: 

eq ρ −= ⋅1E κ p  [3.15] 

( )eq ρ −= + ⋅ ⋅1B χ 1 χ m  [3.16] 

where: 

= −κ ε 1  [3.17] 

= −χ μ 1  [3.18] 

A polarized fluid medium is such that at equilibrium, 
isotropy is ensured, so that ε  and μ  are reduced to scalars, 
as are κ  and χ . Thus, as a function of the electric and 
magnetic susceptibilities2 κ  and μ , we have: 

( )eq ρ κ=E p  [3.19] 

( )1eq χρ χ= +B m  [3.20] 

Non-equilibrium states, for their part, are characterized 
by the classic thermodynamic variables, in addition to which 

we need to consider the pressure tensor P
GG

 including a 

                              
2 Diamagnetic materials (alcohol, bismuth, carbon, copper, water, lead, 
mercury, silver) have a negative magnetic susceptibility, whereas the 
magnetic susceptibility of paramagnetic materials (air, tungsten, cesium, 
aluminum, lithium, magnesium, oxygen, sodium) is positive. When the 
magnetic permeability is much greater than one, we are dealing with a 
ferromagnetic material (cobalt, iron, nickel). It is null in a vacuum. 
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viscous part in the case of a fluid, the electrical field E  and 
the magnetic field B , which may differ from eqE

 
and eqB . 

The differences eq−E E  and eq−B B  induce the phenomena of 

dielectric and magnetic relaxation.  

For example, dielectric relaxation (see section 3.5), in the 
simplest case (that of an isotropic system, with no magnetic 
field), gives us the expression of the production rate per unit 
volume (see equation [3.74] for the expression of the entropy 
production rate3): 

( )P eq
LW
T t

∂= − ⋅ −
∂
P E E
G

�  [3.21] 

which, for a system at rest ( 0)=v  gives us the Debye 
equation:  

( ) ( )éq
L L

t T T
κ

κ
∂ = − − = − −
∂
P E E P E
G G

 [3.22] 

3.1.2. Kluitenberg formulation 

Another formulation, advanced by C.A. Kluitenberg 
[KLU 73], presents the polarized system as the meeting of 
two polarized subsystems which may be in a state of mutual 
disequilibrium. This presentation is similar to that given by 
L.G. Napolitano [NAP 71] for the disequilibrium of the 
internal levels of vibration and translational motion in a gas, 
and for other systems with multiple levels of disequilibrium. 
For our purposes, we shall adopt the presentation given by 
Napolitano. 

                              
3 The entropy production rate used here, ( ) ( )S éqW T d dtρ= − ⋅E E p� , is 

slightly different to that given by equation [3.74], which is based on the 
Kluitenberg formulation. 
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Suppose, for simplicity’s sake, that we are dealing with a 
fluid with only one chemical component. The unit of mass of 
each subsystem is characterized by the relations: 

( )1 1 1 1 1

1 1

, ,e e s T s p g
de T ds p d d d

ϑ ϑ
ϑ

⎧ = = − + ⋅ + ⋅ +⎪
⎨

= − + ⋅ + ⋅⎪⎩

1 1 1 1 1 1

1 1 1 1

p ,m E p B m
E p B m

 [3.23] 

( )2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

,e e s T s g
de T ds d d
⎧ = = + ⋅ + ⋅ +⎪
⎨

= + ⋅ + ⋅⎪⎩

p ,m E p B m
E p B m

 [3.24] 

If we accept: 

1 2 1 2 1 2, , , ,e e e s s s g g g= + = + = + + + = +1 2 1 2p p p m m m  [3.25] 

then, for the total system, we obtain: 

( )2 2, , , , ,e e s ϑ= p m p m  [3.26] 

( ) ( )2 2 2 2e T s p gϑ= − + ⋅ + ⋅ − − ⋅ − − ⋅ +E p B m E E p B B m  [3.27] 

( ) ( )2 2 2 2de T ds p d d d d dϑ= − + ⋅ + ⋅ − − ⋅ − − ⋅E p B m E E p B B m  [3.28] 

Let us illustrate these results with a concrete example: 
that of dielectric disequilibrium, mentioned above. In Debye’s 
theory, the electrical polarization has two parts: 

def dip= +p p p  [3.29] 

dipp  is due to the orientation of the permanent dipoles in the 
molecules; defp is due to the deformation of the molecules. 

We can consider dipp  as an internal degree of freedom 2p  
liable to be in a state of disequilibrium with the rest of the 
fluid. 



Balance Laws for Polarized Reactive Mixtures     47 

Thus, we have: 

( )dip dipde T ds p d d dϑ= − + ⋅ − − ⋅E p E E p  [3.30] 

At equilibrium, for given values of ,s  ϑ  and ,p  we have:  

dip− =E E 0  [3.31] 

NOTE 3.1.– In his article, Kluitenberg [KLU 73] directly 
introduces the formula: 

int int int intde T ds p d d d d dϑ= − + ⋅ + ⋅ − ⋅ − ⋅E p B M E p B m  [3.32] 

We feel it is more logical to employ formula [3.28]. 
Correspondence between these two formulas is obtained by 
setting: 

int int int
2 2 2 int 2, , ,= = = − = −p p m m E E E B B B  [3.33] 

Our formulation has the advantage of more clearly 
distinguishing exactly what is attributable to each 
subsystem. Indeed, in formula [3.32] it seems that ( )int−E  is 

the field of the subsystem (int), whereas in reality, the field 
of this subsystem is ( )int−E E , as is shown by equation [3.33]. 

As we know the thermodynamic relations (equations 
[3.27] and [3.28]), we now need to determine the laws of 
state, or indeed the fundamental energy law [3.26]. 

Kluitenberg [KLU 73] defines the fundamental energy law 
based on the free energy: 

( )2 2, ,f e Ts f T , , ,ϑ= − = p m p m  [3.34] 
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which he deconstructs into two parts for an isotropic 
medium: 

( ) ( ) ( ) ( )1 2
2 2, , , , ,f f T fϑ ϑ= + p m p m  [3.35] 

the part ( )1f  corresponding to the non-polarized fluid, and 

the part ( )2f  having the form: 

( ) ( )2 2 2 2 2
00 01 2 11 2 00 01 2 11 20.5 2 2f a a a b b bρ= − ⋅ + + − ⋅ +p p p p m m m m  [3.36] 

where the ija  and ijb  are constant coefficients. 

It is sufficient to know the law [3.34] to determine, at 
equilibrium, the dielectric constant ε  and the magnetic 
permeability μ  of the fluid, or indeed the electrical and 
magnetic susceptibilities κ  and χ ; we have, successively: 

( )00 01 2f a aρ= ∂ ∂ = −E p p p  [3.37] 

( )00 01 2f b bρ= ∂ ∂ = −B m m m  [3.38] 

( )2 2 11 2 01f a aρ− = ∂ ∂ = −E E p p p  [3.39] 

( )2 2 11 2 01f b bρ− = ∂ ∂ = −B B m m m  [3.40] 

At equilibrium:  

2 2,− = − =E E 0 B B 0  [3.41] 

From this, we deduce that at equilibrium:  

01 01
2 2

11 11

,a b
a b

= =p p m m  [3.42] 



Balance Laws for Polarized Reactive Mixtures     49 

and therefore that:  

( )2
00 01 11a a aρ= −E p  [3.43] 

( )2
00 01 11b b bρ= −B m  [3.44] 

By comparing formulas [3.43] and [3.44] with relations 
[3.19] and [3.20], we deduce that: 

2
01

00
11

1 1
1

a
a

aκ ε
= = −

−
 [3.45] 

2
01

00
11

1
1

b
b

b
χ μ

χ μ
+ = = −

−
 [3.46] 

The fundamental energy law given by equations [3.35] 
and [3.36] lends itself well to the study of dielectric 
relaxation, as shown by Kluitenberg. 

Other energy laws can be envisaged; thus, de Groot and 
Mazur [GRO 69a, p. 386] propose, for fluids, linear laws 
linking E  to p  and B  to m , with the electrical and magnetic 
susceptibilities κ  and χ  depending solely on s  and ϑ , or 
indeed [GRO 69a, p. 390], for a composite fluid, 
susceptibilities κ  and χ  depending only on ,T ϑ  and kY . 

The thermodynamics of polarized media can also be 
described for elastic solids (see [GRO 69a, KLU 73]); the 
results are not hugely different in terms of the electrical and 
magnetic polarization vectors. 

3.2. Momentum equation 

The definition of the forces – and thus of the pressure 
tensor – poses a problem in a polarized medium. This stems, 
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in particular, from the mathematical nature of quantities 
such as the electrical and magnetic displacements (or 
inductions) (for example, see Jouguet [JOU 52, JOU 62], de 
Groot [GRO 69b], de Groot and Mazur [GRO 69a], de Groot 
and Suttorp [GRO 67a, GRO 67b, GRO 68a, GRO 68b,  
GRO 68c, GRO 68d, GRO 68e], or Fer [FER 71]). Let us take 
the example of electrical induction :D  this value is indeed 
equal to the sum +E P

G
, and does indeed satisfy the classic 

relation:  

ρ∇ ⋅ =D �  [3.47] 

The electrical induction D  corresponds, in fact, to a very 
particular measurement of the electrical field: D  is actually 
the electrical field measured in a flattened cylindrical cavity, 
whose axis runs in the same direction as the electrical 
polarization vector P

G
. 

This result stems, firstly, from the impossibility of directly 
defining the electrical field at a point in the polarized 
medium, and secondly from the fact that the field measured 
in the aforementioned cavity satisfies the classic Maxwell 
equations. 

3.2.1. Impossibility of directly defining the electrical 
field in a polarized medium 

The impossibility of making an absolute measurement of 
the field is apparent because of the expression of the 
potential, which involves the fictitious charges of volume 'ρ�  
and of surface 'Sρ� : 

' , 'Sρ ρ= −∇⋅ = − ⋅P P n
G G

� �  [3.48] 

where n  is the normal to the surface. 
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If a cavity is dug into a dielectric medium, the potential at 
a point M  in that cavity is the sum of three integrals: 

( ) ' '' S S SV M d dS dS
r r r

ρ ρ ρρ ρ ++= + +∫ ∫ ∫
� � �� �

V S S'
V  [3.49] 

In this expression, ρ�  and Sρ�  denote the real volume and 
surface charges, 'ρ�  and 'Sρ�  the corresponding fictitious 
charges, r the distance from the point M  where the 
measurement is taken, (V ) denotes the outer volume of the 
cavity and ( S ) the surfaces situated in the same domain, and 
( 'S ) is the surface delimiting the cavity. As the dimensions of 
the cavity tend toward zero, the potential tends toward a 
very clearly defined finite limit. However, the same is not 
true for the electrostatic field ( V∇ ) because of the last 
integral, which depends on the form of the cavity as its 
dimensions tend toward zero. 

Thus, for a small, highly-elongated cylinder whose axis is 
parallel to ,P

G
 we obtain the electrical field E ; for the 

flattened cylinder described earlier on, we obtain the field 
+E P
G

; and for a sphere, the field becomes: 1
3+E P
G

. 

The ambiguity relating to the measuring of the electrical 
field (and of the magnetic field) in a polarized medium of 
course arises once more when we wish to define the forces 
acting on the particle of fluid, and when we need to define 

the pressure tensor P
GG

 of the fluid. The same issue presents 
itself with regard to the definition of the equilibrium 
hydrostatic pressure – i.e. the thermodynamic pressure. 

We can show, for instance, that if ,F P
GG

 and p  are, 
respectively, the electromagnetic force, the pressure tensor  
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and the thermodynamic pressure, the following quantities 
are just as acceptable: 

2 2 21 1 1* , * , *
2 2 2

p pα α α= + ∇ = + = +F F P P P P 1 P
G GG G G G G

 [3.50] 

they correspond to an effective electrical field: * α= +E E P
G

. 

We can see that, depending on the value of α  (0, 1 or 1/3), 
we are dealing with the case of a measurement in a 
cylindrical cavity elongated in the direction of polarization 

;P
G

 with a flattened cylinder; or with a spherical cavity 
[GRO 69a, pp. 388–396]. 

3.2.2. Momentum as defined by de Groot and Mazur 

Having clarified these details, we can now introduce the 
momentum as defined by de Groot and Mazur as being equal 
to: 

1 fld
vc

ρ ρ+ × = +v E H v Q  [3.51] 

We then establish that: 

( ) ( )fld
k k

k

c
t

ρ
ρ ρ

∂ + ×
+ ∇ ⋅ ⊗ + − =

∂ ∑
v E H

v v P P
G GG G

f  [3.52] 

where: 

( )
2 2

2
fld

c

⎛ ⎞+
⎜ ⎟= − ⋅ − ⊗ − ⊗ − ⊗ × − ×
⎜ ⎟
⎝ ⎠

E B vP M B 1 D E B H P B M E
GG G

 [3.53] 
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Equation [3.52] is the total momentum equation. For the 

electromagnetic momentum 
1
c

×E H , we have: 

1 fld

c t
∂ × + ∇ ⋅ = −

∂
E H P F

GG
 [3.54] 

and for the momentum :ρ v  

( ) k k
kt

ρ ρ ρ∂ + ∇ ⋅ + ⊗ = +
∂ ∑v P v v F

GG
f  [3.55] 

where F  is the force acting on the unit volume of the 
polarized medium: 

( ) ( ) ( )1 d
c c dt

ρρ= + × + ∇× ⋅ + ∇× ⋅ + × − ×F E I B E P B M p B m E
G

�  [3.56] 

Also, if we follow the motion, we have: 

k k
k

d
dt

ρ ρ+ ∇ ⋅ = +∑v P F
GG

f  [3.57] 

It is evident, as noted above, that only the difference 

∇⋅ −P F
GG

 is perfectly defined once the forces kf  are known, as 
we can control that fact using equation [3.50] in the case  
of the electrical field. Equation [3.57] was written in relation 
to the barycentric motion. Equation [3.54] can also be 
transformed to reveal the material derivative. We obtain: 

( )fldd
dt c c

ϑρ ⎛ ⎞ ⎛ ⎞× + ∇ ⋅ − ⊗ × = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

vE H P E H F
GG

 [3.58] 
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Similarly, equation [3.52] for the total momentum becomes: 

( ) fld
k k

k

d
dt c c

ϑρ ρ ρ⎛ ⎞ ⎛ ⎞+ × + ∇ ⋅ ⊗ − × ⊗ + + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑vv E H v v E H P P
G GG G

f  [3.59] 

In these equations, the tensor: 

( )fld

c
− × ⊗ vP E H

GG
 [3.60] 

appears as the Maxwell pressure tensor in relation to the 
barycentric motion in the non-relativistic approximation (we 
discount the terms in 2 2v c ). 

In reality, the Maxwell pressure tensor in relation to the 
Galilean frame of reference which, at time t  and at the point 
in question, has the velocity v  of the fluid, is expressed not 
by equation [3.60], but rather: 

( ) ( )' fld fld

c c
= + × ⊗ + ⊗ ×v vP P E H D B

G GG G
 [3.61] 

However, if we use this tensor ' fldP
GG

, we also need to 
consider expressions of the momentum and of the 
electromagnetic force having been modified by that change of 
the frame of reference. We shall not go into detail about this 
issue, which is the problem of how to measure the Maxwell 
pressures in a shifting frame of reference. 

3.3. Energy equation 

By scalar multiplication by v of both sides of equation 
[3.57], we obtain the kinetic energy balance equation: 

( ) : k k
k

k k
t

ρ ρ ρ∂ + ∇ ⋅ ⋅ + = ∇ ⊗ + ⋅ + ⋅
∂ ∑P v v P v F v v

G GG G
f  [3.62] 
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if we accept the hypothesis that the pressure tensor P
GG

 is 
symmetrical. 

By expressing the scalar product ⋅F v  as a function of the 
fields and the polarizations, the electromagnetic energy is 
introduced as:  

( )
2 2

2
fldE

c
+

= − × − ⋅ × − ×
E B vM B P B M E

G
 [3.63] 

if we discount the terms in 2 2v c . The electromagnetic 
energy flux becomes: 

( ) ( )fld
E c= × − ⋅ + ⋅J E H P E M B v

G
 [3.64] 

The balance equation for the sum of the kinetic energy 
and the electromagnetic energy is thus written as: 

( ) ( ) ': ' '

''

fld
fld
E

k k
k

k E dk
t dt

d
dt

ρ
ρ ρ

ρ ρ

∂ +
+ ∇ ⋅ ⋅ + + = ∇ ⊗ − ⋅ − ⋅ −

∂

⋅ + ⋅∑

pP v v J P v i E E

mB v

G GG G

f

 [3.65] 

The quantities on the right-hand side bearing the 
exponent (') are local quantities obtained by following  
the fluid’s motion. The expressions of these quantities are, in 
the non-relativistic approximation: 

1 1 1 1' , ' ,
c c c c

= + × = − × = − × = + ×E E v B p' p v m , B B v E m' m v p  [3.66] 

We know that the total energy is conserved, so we have: 

E k k k
k

E
t

ρ∂ + ∇ ⋅ = ⋅
∂ ∑J v f  [3.67] 
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where the right-hand side of the equation represents the 
power of the non-electromagnetic external forces. In this 
relation:  

( ) ( ),fld fld
E EE k e E e kρ ρ= + + = ⋅ + + + +J P v J q v

GG
 [3.68] 

where e  is the mass internal energy and q  is the heat flux. 
Equations [3.65] and [3.67] give us the internal energy 
balance equation: 

' '' ' ' Dk k
k

de d d
dt dt dt

ρ ρ ρ+ ∇ ⋅ = − ∇ ⊗ + ⋅ + ⋅ + ⋅ + ⋅∑p mq P : v i E E B
GG

J f  [3.69] 

3.4. Entropy flux and entropy production 

Here we shall use the thermodynamic relations from 
section 3.1, considering the local thermodynamic quantities 
when we follow the motion of the unit mass of fluid. Thus, in 
light of equation [3.28], with the chemical terms added, the 
Gibbs equation is written as: 

( )
( )

2 2

2 2

' ' ' ' ' ' '

' ' ' k k
k

de T ds p d .d .d d

d g dY

ϑ= − + + − − ⋅ −

− ⋅ +∑
E p B m E E p

B B m  [3.70] 

The entropy flux is always taken as equal to: 

1
S k Dk

k

g
T
⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑qJ J  [3.71] 

and the entropy balance equation is of the form: 

S S
ds W
dt

ρ + ∇ ⋅ = �J  [3.72] 
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Maxwell 
equations 

1 1,
c c t

ρ ∂∇ ⋅ = ∇ × = +
∂
DD H I� ,

1 , 0
c t

∂∇ × + = ∇ ⋅ =
∂
BE 0 B  

Chemical 
species 
balance 

k
D k k

Y W
dt

ρ + ∇ ⋅ =
G G �J  

Continuity 
equation 

0d
dt
ρ ρ+ ∇ ⋅ =v

G G  

Electrical 
charge 
balance 

0dz dtρ + ∇ ⋅ =i  

Momentum  
equation 

( )

( )
2 2

,

2

fld
k k

k

fld

d
dt c c

E B
c

ϑρ ρ ρ⎛ ⎞ ⎛ ⎞+ × + ∇ ⋅ ⊗ − × ⊗ + + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞+= − ⋅ − ⊗ − ⊗ − ⊗ × − ×⎜ ⎟
⎝ ⎠

∑vv E H v v E H P P

vP M B 1 D E B H P B M E

G GG G

GG G

f

 

Internal 
energy 
balance 

' '' ' ' Dk k
k

de d d
dt dt dt

ρ ρ ρ+ ∇ ⋅ = − ∇ ⊗ + ⋅ + ⋅ + ⋅ + ⋅∑p mq P : v i E E B
GG

J f  

Entropy 
equation k Dk S

k

ds g T W
dt

ρ
⎡ ⎤⎛ ⎞+ ∇ ⋅ − =⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∑q
G �J  

Entropy 
production 

rate ( ) ( )

2

2 2
2 2

1 1 1'

' ' 1' '

k
S Dk k k

k

k k
k

gW T T z
T T T T

d d g W
T dt T dt T
ρ ρ

⎡ ⎤⎛ ⎞= − ⋅∇ − ⋅ ∇ − − − ∇ ⊗⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

+ − ⋅ + − ⋅ −

∑

∑

q E Π : v

p mE' E B' B

�

�

J f
 

Table  3.1. Balance equations for a polarized reactive fluid medium. H  
magnetic displacement vector, D electrical displacement vector, B magnetic 
field, E electrical field, 

G
P = D-E E electrical polarization (p per unit mass),  

M = B-H magnetic polarization (m per unit mass), (') following the motion, 
(2) relative to the dipoles (section 3.1), JDk diffusion flux, q heat flux, i 
diffusion current, 

GG
P pressure tensor, pi viscous pressure tensor, kW�  chemical 

production rate, fk distant forces other than those due to the electromagnetic 
field 
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By eliminating the material derivatives of the different 
variables and using the Gibbs relation, we find the following 
expression of the entropy production rate: 

( ) ( )

2

2 2
2 2

1 1 1'

' ' 1' '

k
S Dk k k

k

k k
k

g
W T T z

T T T T
d d g W

T dt T dt T
ρ ρ

⎡ ⎤⎛ ⎞= − ⋅ ∇ − ⋅ ∇ − − − ∇ ⊗⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

+ − ⋅ + − ⋅ −

∑

∑

q E Π : v

p mE' E B' B

�

�

J f
 [3.73] 

Table 3.1 summarizes the balance equations for a flow of 
a non-relativistic conductive fluid mixture with electric and 
magnetic polarizations. 

3.5. Dielectric and magnetic relaxations 

We shall only discuss dielectric relaxation, as magnetic 
relaxation is dealt with in identical fashion if we merely 
replace 'E  with B'  and p'  with 'm . Suppose that we can 
neglect the heat transfer, diffusion, viscosity, magnetic 
relaxation and chemical reactions. 

The entropy production rate is therefore reduced to: 

( ) 2
2 'S

dW
T dt
ρ= − ⋅ pE' E�  [3.74] 

Thus, we can introduce a phenomenological coefficient pL  

and express that there is a linear relation which  

exists between the polarization production rate 2'd
dt

ρ p
  

and the affinity of the electrical polarization ( )2
1 ' '
T

−E E ; we 

find a relation identical to relation [3.21], which is now 
written as: 
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( )2
2

' ' 'pLd
dt T

ρ = −p E E  [3.75] 

As the entropy production is positive, we deduce from 
relations [3.71] and [3.75] that the coefficient pL  is positive. 

Now envisage that we are dealing with a medium at rest, 
and express the law of state in the form [3.19] or [3.43].  

Considering Debye’s theory, we write: 

( ) ( )
dip

p pdip dipL L
t T T

ρ κ
κ

∂ = − − = − −
∂
p E E P E

G
 [3.76] 

where the internal degree of freedom 2
dip =p p  is due to the 

permanent dipoles in the molecules. As the medium is 
supposed to be incompressible, we can write: 

( ) 0
dip

dipL
t T

κ
κ

∂ + − =
∂
P P E
G G

 [3.77] 

This is the Debye equation for dielectric relaxation. 



 



4 

Interfacial Balances for  
Conductive Media 

In this chapter, we look at the interface in media in the 
presence of an electromagnetic field. We use the macroscopic 
method, as we have done for most of other volumes in this 
series of books in the absence of an electromagnetic field 
[PRU 12, PRU 13, PRU 14]. We base our discussion on the 
knowledge of the simple media and homogeneous mixtures in 
the presence of a field, which were introduced in Chapters 2 
and 3 of this volume. 

The interface gradient operator S∇ , which we have 
previously used in three-dimensional space, is generalized to 
apply to the Minkowski timespace. The general form of the 
interfacial balance is then established, using the surface 
operator 4 S∇ .  

In order to establish the interface balances, we shall 
proceed in the same way as we did with the homogeneous 
phase in Chapter 2, by analogy with the case of non-
conductive media, drawing inspiration from the work of de 
Groot and Mazur, but in four-dimensional space. 
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The balances obtained in the timespace relate to tensorial 
quantities, and are similar in form to: 

[ ]4 4 4 4JS Fa F FaW+
⊥ −

∇ ⋅ + =v vJ  [4.1] 

where the respective terms represent: 

1) the surface four-divergence of the flux of the property F 
internal to the 4-surface; 

2) the jump in normal volume flux on crossing that 
surface; 

3) on the right-hand side of the equation, the production 
rate.  

These balances are then converted into the Euclidean 
space (see section 4.2.1). 

They apply to the electromagnetic field1, electrical 
current, total mass, mass of species k  and the momentum-
energy in the case of non-polarized media. The entropy 
production rate is also calculated. 

With regard to polarized media2, the Maxwell equations 
are used again; the other balance equations are then written 
in the simpler case of planar interfaces. 

Here, we shall operate in the case of an interface with no 
thickness, with or without internal (or surfacic) properties, 
which moves and is deformed over the course of time. In 
terms of its shape, such an interface is perfectly comparable  
to a surface whose equation is time-dependent, so that we 
can very well describe the motion of the interface using an 
                              
1 The advantage to this method is that it enables us to consider the 
quantities of the electromagnetic field (fields and momentum-energy) in 
simple tensorial form in the Minkowski space, whereas they are not in 
such a simple form when examined in the Euclidean space. 
2 This is the term we employ for conductive media where the fields – 
electric and magnetic – differ from the displacements. 
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equation in the Minkowski timespace. The interface thus 
constituted is made to support material; it is comparable to a 
curved 2-dimensional medium, either isotropic or otherwise, 
separating two 3-dimensional material domains. To move 
from one of these domains to the other, a particle must 
inevitably cross the interface, and a priori, there is no reason 
for the properties to vary continuously when that crossing is 
made, at least at the macroscopic scale with which we are 
concerned here. Thus, the very notion of an interface 
immediately introduced three material media whose 
properties are distinct, as continuity between those media 
can only be one very specific case. The 2-dimensional 
medium, therefore, is a material surface of discontinuity. 

The analysis facilitated with such hypotheses depends, of 
course, on a scale factor. For example, the separation 
between a metallic solid and the liquid it forms when melted 
is discontinuous only if we do not look more closely at it. In 
reality, we are dealing with perfectly continuous changes, 
and the molecules, which are relatively free in the liquid, 
progressively rearrange to form the crystalline structure of 
the solid metal. Thus, when we accept that the separation 
between solid metal and liquid metal is a discontinuity, it 
simply means that the length scale on which we have chosen 
to operate is sufficiently large so that the continuous 
transition between the two phases is impossible to detect. At 
the mesoscopic scale, the same is absolutely not true, but it 
is important to note that at the molecular scale, the 
continuity is once again broken. However, it is often possible 
to justify the chosen macroscopic models using microscopic, 
or even molecular, arguments. 

Under the auspices of this type of interfaces, we can cite 
the classic theory of shockwaves, surfacic chemical reactions, 
interfacial tension phenomena, etc. 

Of course, there are cases where the above hypotheses are 
imperfectly, or simply are not, verified, where there is no 
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possible correspondence between so heavily simplified a 
theory and the facts observed experimentally. This is the 
risk we run when we envisage applying these concepts to 
polarized conductive media. Some authors refuse to do so 
(e.g. [FER 71]) and they are certainly right to refuse, in 
terms of the rigorousness of their demonstrations. Our 
approach will be to go as far as possible with material 
surfaces of discontinuity, whilst acknowledging that the 
correctness of our theories can only be confirmed or 
disproven by experimental verification. 

Unlike the approach taken by many authors, for our  
2-dimensional material medium, we introduce as many 
quantities as there are 3-dimensional media in contact with 
the surface in question. Thus, we will be dealing with 
internal surface energy, a given amount of entropy, a mass 
quantity (even if it is a very small one), chemical potentials, 
but also with electrical and magnetic polarizations. How are 
we to interpret quantities such as the electrical polarization 
of the interfacial material medium? Accepting the presence 
of electrical dipoles on a surface is not difficult to imagine, 
but measuring any polarization vector arising in the vicinity 
of a surface is no easy task, and might even be said to be 
rather unrealistic [FER 71]. In terms of accepting the 
existence of a polarization vector characterizing a  
2-dimensional material medium, we do not yet have any 
satisfactory theoretical justification, or experimental 
measurements, to offer. Our only arguments are that, on the 
one hand, the material surfaces of discontinuity satisfactorily 
account for many phenomena; and on the other, there are 
still things that remain unexplained, or not explained to a 
sufficient degree of satisfaction in conductive media, and we 
need to make certain hypotheses to begin with, even if we 
later abandon them if they prove false or lead us to 
impossible or inaccurate results. After introducing the 
interface as a two-dimensional medium, we shall establish 
the balance equations in the absence of polarization, and 
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then later in the presence of electrical and magnetic 
polarization. 

4.1. The shifting interface in the Minkowski space 

Geometrically speaking, the material medium which we 
are about to describe is a deformable surface, which we shall 
now define in mathematical terms. The physical quantities 
used to describe the state of the material medium will then 
be introduced and, when we are dealing with tensorial 
quantities (pressure tensor, electrical and magnetic fields, 
momentum), compatibility conditions will need to be 
satisfied. 

4.1.1. Mathematical definition relative to the shifting 
interface 

A wide variety of definitions can be put forward to 
describe a surface (on this subject, see [GAT 01] and 
[PRU 12]). The parametric definition has the advantage of 
being applicable at a single point. The coordinates of any 
given point M  are, at a given time, determined by taking the 
values of two parameters u  and v . This lends itself very 
well to a material point on the surface. However, in order to 
define the surface as a geometric object, it is not necessary to 
resort to a single-point definition. 

We shall use the notation 1 2 3 4, , ,x x x x  to represent the 
coordinates of a point 4M in the Minkowski space. By 
definition3, in matricial form, we have: 

                              
3 Where no ambiguity exists, simple symbols in bold text are used for all 
non-scalar quantities. However, where the same symbol is used for a 1st- 
or 2nd-order tensor, this is specified by the use of a single or double arrow. 

Such is the case of the electrical polarization P  and pressure tensor P . 
See Chapter 3. 
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1

2
4

3

4

x x
x y
x z

ictx

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

M  [4.2] 

or in the transposed, more compact form: 
[ ] [ ]4 1 2 3 4

T x x x x x y z ict= =M .

 

 

The equation for a surface ( 4Σ ) in that four-dimensional 
space is: 

( ) ( )41 2 3 4, , , 0f x x x x f= =M  [4.3] 

This definition of a surface in the Minkowski space is, it 
should be pointed out, absolutely identical to that of a 
moving deformable surface in the three-dimensional space 
which is defined by the equation: 

( ), , , 0g x y z t =  [4.4] 

and we simply have the correspondence: 

( ) ( ), , , , , ,g x y z t f x y z i ct≡  [4.5] 

Let us follow the motion of a fictitious material point M . 
If that fictitious material point remains on the 4-surface  
( 4Σ ), we shall have: 

4 4df f d= ∇ ⋅ M  [4.6] 

Now we introduce the proper time τ  of that moving point, 
so we have: 

4 4
df f
dτ

= ∇ ⋅ V  [4.7] 
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where 4V  is the universe velocity of the point in question. 

The coordinates of 4
TV , the row matrix transposed from 

the column matrix 4V , are given by: 

4
T yx zvv v ic

α α α α
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

V , 
2

21
c

α = −
V

 [4.8] 

with the vector V  in the 3-dimensional space itself being 

defined by its coordinates: , ,dx dy dz
dt dt dt

. 

By expanding equation [4.7], we obtain the equivalent 
formula expressed in three dimensions: 

0gg
t

∂⋅∇ + =
∂

V   [4.9] 

where, in light of equation [4.5]: 

4

, g fg f i c
t x

∂ ∂∇ = ∇ =
∂ ∂

  [4.10] 

We shall indifferently write either equation [4.9] or the 
following: 

0ff
t

∂⋅∇ + =
∂

V   [4.11] 

In equation [4.7], we can see that 4V  does not play its role 
entirely alone, but rather intervenes by its projection onto 

the 4-gradient of ;f  additionally, we can see that 
df
dτ

 

depends on the proper time, and therefore on the choice of 
the fictitious particle, moving with and on the surface. 
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In reality, the interfacial motion must not depend on the 
choice of a fictitious material point, but only on the point of 
the interface under consideration. Thus, there seems to be a 
problem, which we shall resolve as follows. 

Let us introduce the unitary normal 4N  into ( 4Σ ); we 
have: 

4 4 4f f= ∇ ∇N   [4.12] 

Equation [4.7] becomes: 

4 4 0=⋅V N   [4.13] 

We shall therefore say that the surface has a motion such 
that any point which moves with the proper time τ , 
remaining on the surface with a 4-velocity whose projection, 
onto the normal 4N  to the surface, is null. The problem of 
choosing the fictitious material point 4M  on the 4-surface  
( 4Σ ) is therefore resolved. 

Let us now look again at the vector 4N defining the 
normal to the interface. We have: 

( )

1 1

2 2
4 4

3 3

4 4

2
2

4 2

,

1 1

1

f f
x xx x

f f
x xy y

f
f f

x xz z
ff

ic t ic tx x

ff f
c t

∂ ∂∂ ∂⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂∂ ∂⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∂ ∂∂ ∂⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂∂ ∂⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥∇ = = ∇ = =
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂∂ ∂
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂∂ ∂⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂∂ ∂
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂∂ ∂⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎛ ⎞∂∇ = ∇ − ⎜ ⎟∂⎝ ⎠⎣

1
2⎤

⎢ ⎥
⎢ ⎥⎦

 [4.14] 
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For a point on the surface, we have: 0f dx f t dt∇ ⋅ + ∂ ∂ = , 
so: 

0f f t∇ ⋅ + ∂ ∂ =V  

From this, it follows that: 

( ) ( )
1

22 2
4 2

1f f f
c

⎡ ⎤∇ = ∇ − ⋅∇⎢ ⎥⎣ ⎦
V  

We can see that, in the non-relativistic case, where we can 
discount any influence of the terms in 2 2V c , we can write: 

4 f f∇ ≅ ∇   [4.15] 

Let us now set: 

4f f= ∇ ∇N   [4.16] 

This definition enables us to write 4
TN in the form: 

4 4, 1, 1T
x y z

iN N N
c

⎡ ⎤= ⋅ = ≠⎢ ⎥⎣ ⎦
N V N N N   [4.17] 

Equation [4.13] is identically verified when we take care to 
write the components of the vector 4N  in this way. With the 
non-relativistic approximation, equation [4.13] is the classic 
moving interface equation [PRU 71, GAT 01, PRU 12]. 

The operator 4∇  will, for discussions relating to the 
moving interface, generally be replaced by: 

( )4 4 4 4 4S∇ = − ⊗ ⋅ ∇1 N N   [4.18] 
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where 41  is the identity tensor in the timespace, in the same 
way as, in the three-dimensional space, we saw the 
intervention of: 

( )S∇ = − ⊗ ⋅∇1 N N   [4.19] 

The properties of 4 S∇  are similar to those of S∇ . 
Remember that ∇ ⋅ N  represents the absolute value of the 

average normal curvature of the surface:
 1 2

1 1
R R

+  (in 

particular, see Chapter 3 of Volume 1 [PRU 12]). 

If we calculate 4 4∇ ⋅ N , we obtain: 

( )
4 4 2

1
c t

∂ ⋅
∇ ⋅ = ∇ ⋅ +

∂
V N

N N   [4.20] 

We can see that in addition to the average surface 
curvature, the expression of the 4-divergence of the normal 
vector 4N  also contains a term representing interfacial 
acceleration. When c⋅ <<V N , i.e. in non-relativistic cases, 
we find: 

4 4∇ ⋅ ≅ ∇ ⋅N N   [4.21] 

Expressed as a function of S∇ , the operator 4 S∇  becomes 
the following, where V⊥ = ⋅V N : 

4 2

1
1

S

S
S

VV
t t

c V VVic t
ic t t

⊥
⊥

⊥ ⊥ ⊥
⊥

⎡ ⎤∂∂⎛ ⎞∇ +⎡ ⎤ ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎢ ⎥ ⎢ ⎥∇ = −∂⎛ ⎞⎢ ⎥ ⎢ ⎥+ ⋅∇ ∂∂⎛ ⎞⎜ ⎟⎢ ⎥ +∂⎝ ⎠ ⎢ ⎥⎣ ⎦ ⎜ ⎟∂ ∂⎝ ⎠⎣ ⎦

N

V
  [4.22] 

In the non-relativistic approximation, only the first part of 
the right-hand side of the equation remains, so we have: 
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4 , 11
S

S
Si c t ⊥

∇⎡ ⎤
⎢ ⎥∇ ≅ ≅∂⎛ ⎞⎢ ⎥+ ⋅∇⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦

N
V

  [4.23] 

As is introduced with equation [4.3] or equation [4.4], note 
that the surface is defined with the sole exception of a 
certain amount of slip (with strain) over itself. 

4.1.2. Physical and thermodynamic quantities at the 
interface 

In this chapter, the assumption will be made that the 
material interface is in a state which can be characterized, 
locally, by physical and thermodynamic quantities, as can 
the media in contact with that interface. Thus, in the absence 
of fields, we had, for the internal surface energy

( ),1 , j
S S S a Se e s Yρ=  per unit mass (see Chapter 3 of 

[PRU 12]): 

1

1

1

(1 )

0  (1 )

N
j j

S S S a S S
j

N
j j

S S S a S S
j

N
j j

S S a S S
j

e T s g Y

de T ds d g dY

s dT d Y dg

σ ρ

σ ρ

ρ σ

=

=

=

⎧
= + +⎪

⎪
⎪⎪ = + +⎨
⎪
⎪
⎪ = + +
⎪⎩

∑

∑

∑

  [4.24] 

where: ,
N N

a a SN N
dN f f dNρ ρ ρ ρ

+ +

− −
= =∫ ∫ . 

These equations remain valid for non-polarized conductive 
media. In the case of polarized conductors, we propose 
thermodynamic laws of the following type (in Chapter 3,  
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see the discussion of the Kluitenberg presentation and 
equations [3.26] and [3.28])4: 

( )

( ) ( )

2 2

2 2 2 2
1

,1 , , , , ,

(1 )

j
S S S a S S S S S

S S S a a S a S
N

j j
a a S a a S S S

j

e e s Y

de T ds d d d

d d g dY

ρ

σ ρ

=

⎧ =
⎪
⎪
⎪
⎨ = + + ⋅ + ⋅
⎪
⎪+ − ⋅ + − ⋅ +⎪⎩

∑

p m p m

E p B m

E E p B B m

 [4.25] 

For the moment, we shall not go into great detail about the 
compatibility conditions which the vectorial quantities must 
satisfy. In the above equations, the interface is considered to 
be a two-dimensional fluid medium. This consideration is by 
no means obligatory, though. We could also envisage 
interfaces with the behavior of an elastic surface, for example. 
This exploits the product (1 )adσ ρ , which is transformed into 
a product of the pressure tensor by the strain rate tensor (see 
Chapter 3 of [PRU 12]). We retain the option of bringing these 
tensors into play in applications when it becomes necessary to 
do so. However, in the demonstrations given below, so as not 
to complicate the discussion, we shall suppose that the 
interface behaves like a fluid. 

The motion of the material at the interface is 
characterized by physical quantities: particularly the fields, 
the momentum and the energy. These quantities will be 
characterized by 0, 1st- or 2nd-order tensors. However, most of 
the time, in addition to these physical quantities, we need to 
take account of the fluxes of those quantities across the 
surfaces in the 3-dimensional space. In the Minkowski space, 
these notions of quantities and fluxes associated therewith 
are replaced by a simpler concept: that of the flux across a  
                              
4 The electric and magnetic polarizations per unit mass and p m are 
defined by equations [3.3] and [3.4]. Here, we see the appearance of the 
corresponding interfacial quantities andS Sp m . 



Interfacial Balances for Conductive Media     73 

4-surface in the Minkowski timespace. We can see this in 
Chapters 2 and 3 with regard to the balance equations 
written in this timespace. 

For the surface electromagnetic field, we introduce a  
4-tensor 4 aF  and the corresponding tensor 4 aF * . In matricial 
notation, we have: 

4

0

0

0

0

a z a y a x

a z a x a y

a y a x a z

a x a y a z

B B i E

B B i E

B B i E

i E i E i E

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥= ⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

a
F  [4.26] 

4

0

0

0

0

a z a y a x

a z a x a y

S y ax a z

a x a y a z

i E i E B

iE i E B

i E i E B

B B B

−⎡ ⎤
⎢ ⎥−⎢ ⎥= ⎢ ⎥−⎢ ⎥
⎢ ⎥− − −⎣ ⎦

a
F *  [4.27] 

In the case of polarized media, the following tensor is also 
involved: 

4

0

0

0

0

a z a y a x

a z a x a y

a y a x a z

a x a y a z

H H i D

H H i D

H H i D

i D i D i D

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥= ⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

a
H  [4.28] 

The interfacial material velocity 4-vector has the same 
definition as in the case of any given continuum (Chapter 1): 

4

S x S

S y S S S
S

SS z S

S

v

v
icv

ic

α
α α

αα
α

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

v
V  [4.29] 
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and the current 4-vector is written as: 

4

a S x a x

a S y a y

a
a S z a z

a a

v c I c

v c I c

v c I c

i i

ρ
ρ
ρ
ρ ρ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

I  [4.30] 

and involves the surface charge per unit area a S azρ ρ=  
where Sz  is the surface charge per unit mass and aρ  the 
surface mass, aI  is the surface current. The current 4-vector 
represents the unitary flux density of electrical charge. 

The momentum-energy flux is characterized by the 
pressure 4-tensor5: 

4 4 4
ch m

a a a= +P P P   [4.31] 

The tensors 4
fld

aP  and 4
m

aP , respectively representing the 
effects of the field and of the mass, are constructed on the 
basis of the interface quantities. In the case of a non-
polarized medium, the tensors 4

fld
aP  and 4

m
aP  can easily be 

expressed with the non-relativistic approximation. In 
polarized media, the ambiguity relating to the forces and 
pressures renders the development more complex (see the 
note in section 3.1.3.5 on this subject). 

4.1.3. Conditions relating to the tensorial quantities at 
the interface 

By definition, the tensors representing the fluxes of 
interfacial quantities must be such that their components 
along the normal 4N to the 4-surface ( 4Σ ) are zero. 
                              
5 The term “pressure” is sometimes introduced to avoid a possible 
confusion with the stress–momentum-energy tensor; we then speak of the 
pressure-momentum-energy tensor. 
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This stems from the very definition of the fluxes. The total 
flux is deconstructed into interface flux and flux across the 
interface, or in other words, tangential and normal flux. Of 
course, this separation between two types of flux is linked to 
the type of interface which we are envisaging: the notion of 
material surface of discontinuity. 

Thus, 4 FaJ  characterizes the tangential flux of the 

quantity F , whilst [ ] ( )4 4 4 4F F F
+ + −

⊥ −
= − ⋅ NJ J J  characterizes 

the normal flux, with 4 F
+J  and 4 F

−J  denoting the flux vectors 
of  into the two volumes in contact with the interface. The 
separation therefore implies that, using the notation SV  for 
the surface velocity (which was written as V  in section 
4.1.1), we have:  

4 4 40,Fa
S

i
c

⎡ ⎤
⎢ ⎥⋅ = =
⎢ ⎥⋅
⎢ ⎥⎣ ⎦

N
N N

V N
J   [4.32] 

Applied to the mass, this condition gives us:  

4 40 0a Sρ ⋅ =V N   [4.33] 

or indeed: 

0S S⋅ − ⋅ =v N V N   [4.34] 

which indicates that the normal projection of the particle 
velocity in the 3-dimensional space is equal to the normal 
velocity of the interface ( Σ ) (corresponding to the surface  
( 4Σ ) in the 4-dimensional space). 

By applying the condition to the electrical charge, we find:  

a a Sρ⋅ = ⋅I N V N   [4.35] 

F
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This result indicates that the current normal to the 
interface is the result of a normal displacement of the 
charges contained in the interface, which is logical. 

We also have: 

4 4a ⋅ =N 0F   [4.36] 

4 4*a ⋅ =N 0F   [4.37] 

and in the case of polarized media: 

4 4a ⋅ =N 0H   [4.38] 

It follows from this that in the case of non-polarized 
media: 

, 0S
a a ac

⋅× + = ⋅ =V NN B E 0 E N   [4.39] 

, 0S
a a ac

⋅× − = ⋅ =V NN E B 0 B N   [4.40] 

In the case of polarized media, equation [4.40] is valid, but 
equation [4.39] is replaced by: 

, 0a a ac
⋅× + = ⋅ =V NN H D 0 D N   [4.41] 

Relations [4.39] and [4.40] show that, in the case of a non-
polarized medium: 

,a a= =E 0 B 0   [4.42] 

Hence, when polarization is absent, it is impossible to 
introduce interfacial variables characterizing the fields in 
addition to the quantities that these fields have on either 
side of the interface. 
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In the case of a polarized interface, on the other hand, we 
have the relations:  

, 0,

, 0

S
a a a

S
a a a

c

c

⋅⎧ × + = ⋅ =⎪⎪
⎨ ⋅⎪ × − = ⋅ =
⎪⎩

V NN H D 0 D N

V NN E B 0 B N
  [4.43] 

From this, we conclude that aD  and aB  are situated in 
the plane tangential to the interface, that aH  is normal to 

aD , and that aE  is normal to aB . 

In the case of a non-polarized medium, the momentum-
energy tensor due to the field is null. It follows from this that 
the only compatibility (or coherence) relations are given by:  

4 4
m

a ⋅ =N 0P   [4.44] 

From this vectorial relation, we deduce:  

, 0a a⋅ = ⋅ =P N 0 q N   [4.45] 

These relations are well known, and mean that the 
surface tensions are exerted, for a fluid, in the plane 
tangential to the interface6, and that the interfacial heat flux 
introduced here is tangential. 

In the case of a polarized medium, we can write: 

( ) ( )
4

1m fld
S S a a a S a a

a
m fld fld

a a S a S S S Ea a S S a

ic
c

i e k e k E
c

ρ ρ

ρ ρ

⎡ ⎤⎛ ⎞⊗ + + + ×⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥=
⎢ ⎥⎡ ⎤ ⎡ ⎤+ ⋅ + + + − + +⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦⎣ ⎦

v v P P v E H

q P v v J

a

P  [4.46] 

                              
6 We applied these compatibility relations previously, in Chapter 3 
(section 3.2) of [PRU 12], to the surface tension tensor and the moment 
densities. 
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with: 

( )
( )

( )

2 2

2 2

2

,

,

2

fld a a
a a a a a a a

S
a a a a

fld
Ea a a a a a a S

fld a a S
a a a a a a a

E B

c
c

E BE
c

⎧ ⎛ ⎞+= − ⋅ − ⊗ − ⊗ −⎪ ⎜ ⎟
⎝ ⎠⎪

⎪
⎪ ⊗ ⊗ − ⊗
⎨
⎪ = × − ⋅ + ⋅⎪
⎪ +⎪ = − ⋅ − ⊗ × − ×
⎩

P M B 1 D E B H

v P B M E

J E H P E M B v

vM B P B M E

  [4.47] 

where the internal energy due to the field is denoted by fld
aE . 

The equation:  

4 4 0m
a ⋅ =NP   [4.48] 

which is valid in the absence of external surface forces other 
than the electromagnetic forces, gives us: 

( )
,

0

m fld S
a a a a

m fld fld
a a S Ea S a

c

E

⋅⎧ ⋅ + ⋅ − × =⎪⎪
⎨
⎪ + ⋅ ⋅ + ⋅ − ⋅ =⎪⎩

V NP N P N E H 0

q P v N J N V N
  [4.49] 

4.2. Equations for non-polarized media at the non-
polarized interface 

4.2.1. General balance equation 

In the Minkowski space, the balance of a quantity F  at 
the interface expresses the fact that the flux of F  at the 
borders of a four-dimensional spatial domain constituted by 
the surface ( Σ ) delimited by a closed two-dimensional 
manifold, is equal to the production of that quantity F  
within that domain. 
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With the interfacial flux being denoted by 4 FaVJ  at its 

edges and by 4 F
+

VJ  and 4 F
−

VJ  on its upper and lower faces (a 

direction from (–) to (+) has been set arbitrarily7 to orientate 
the normal 4N ), and the production rate being FaW , we have: 

4 4 0Fa ⋅ =vJ N   [4.50] 

4 4 4 4Fa F Fad d W d
Σ Σ Σ

Σ Σ Σ
+

⊥ −
⎡ ⎤∇ ⋅ + =⎣ ⎦∫ ∫ ∫V VJ J   [4.51] 

The first integral in equation [4.51] represents the flux on 
the edge of ( Σ ), the second the flux on the faces of ( Σ ), and 
finally the third is the production of the quantity F within  
( Σ ). 

Equation [4.50] corresponds to equation [4.32], and 
expresses the compatibility condition according to our 
hypotheses. The operator 4 S∇ , which represents the 
interfacial gradient, is defined by equation [4.18]. In the 
absence of discontinuities on ( Σ ), the balance equation for 
F  becomes valid locally at every point, and is written as: 

[ ]4 4 4 4JS Fa F FaW+
⊥ −

∇ ⋅ + =v vJ   [4.52] 

where: 4 4 4J F F⊥ = ⋅v vJ N . 

 

                              
7 The normal −N  is orientated toward the volume in contact with the side 
(-), and the normal +N  is orientated toward the volume in contact with the 
side (+). Thus, we have F FJ − −

⊥ = ⋅J N  and F FJ + +
⊥ = ⋅J N . If we choose to set 

+=N N , we find − = −N N . The unitary flux of F exiting through the faces 

of ( Σ ) is therefore ( ) [ ]F F F F F F FJ J J +− − + + + − + −
⊥ ⊥ ⊥ −

⋅ + ⋅ = − ⋅ = − =J N J N J J N . 

The important thing is to orientate N  away from  (–) and towards (+), 
chosen arbitrarily. 
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By setting: 

4 4

11
, FaF

F Fa

a s

cc
i fi f ρρ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

vv
v v

JJ
J J   [4.53] 

we obtain the balance equation expressed in the three-
dimensional space (see equation [3.5], and the section 3.2.2 
of [PRU 12] for the velocity fields in the interfacial layer):  

( ) [ ]JS a S
a S S S S Fa F Fa

d f
f W

dt
ρ

ρ +
⊥ −

+ ∇ ⋅ + ∇ ⋅ + =V VV J   [4.54] 

where the material derivative S
S

d
dt t

∂= + ⋅∇
∂

v  plays a part, as 

do the fluxes: 

( )J , ,
N

F F F F Fa FN
f dNρ

+

−
⊥ = ⋅ = + − = ∫V V V V VJ N J v V J JJ   [4.55] 

4.2.2. Maxwell equations at the interface 

4.2.2.1. General relations without polarization 

Given that in conductive media in the absence of 
polarization, it is impossible to introduce electrical and 
magnetic fields at the interface aE  and aB  which are non-
null, it follows that the tensors 4 aF  and 4 *aF  are identically 
null and that the Maxwell equations at the interface are 
obtained by way of two relations: 

[ ]4 4 4 a
+

−
⋅ =N IF   [4.56a] 

[ ]4 4* +

−
⋅ =N 0F   [4.56b] 
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Thus, we note that in the absence of polarization, the 
interface causes no discontinuities in the electrical or 
magnetic fields unless it carries a charge or a non-zero 
current. We shall see later on that even in the absence of 
charge and current, the polarized immobile interface induces 
such discontinuities. 

In the absence of polarization, the discontinuities of the 
electrical and magnetic fields are given by: 

( ) [ ] ( ) [ ]
2 2

2 2 2

11 , 1a a acc c c
ρ+ +

− −

⎛ ⎞ ⎛ ⎞⋅ ⋅⋅⎜ ⎟ ⎜ ⎟− = − − = ×
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

V N V NV NE N I B I N   [4.58] 

In the non-relativistic approximation, we therefore obtain: 

[ ] [ ]2

1,a a ac c
ρ+ +

− −

⋅= − = ×V NE N I B I N   [4.59] 

4.2.3. Conservation of electricity. Conservation of mass 

Let us apply the balance equation [4.52] to the vectors:  

0 0,aM a S Mρ ρ= =V VJ J   [4.60] 

or indeed the balance equation [4.54] to the  
quantities: 1,S aF Ff f= = = = 0J J . We obtain the classic global 
mass balance equation at the interface: 

( ) 0S a
a S S

d
dt
ρ ρ ρ +

−
+ ∇ ⋅ + ⎡ − ⎤ ⋅ =⎣ ⎦V v V N   [4.61] 

This equation can be deduced from the mass balances of 
the different chemical species which become: 

( ) ( )S a kS
a kS S S S ka Dk k ka

d Y
Y Y W

dt
ρ

ρ ρ +

−
+ ∇ ⋅ + ∇ ⋅ + + − ⋅ =⎡ ⎤⎣ ⎦VV J v V NJ  [4.62] 
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with summation on the index k , and in view of the fact that: 

1, , 0k kS Dka Dk ka
k k k k k

Y Y W= = = = =∑ ∑ ∑ ∑ ∑0J J   [4.63] 

Let us multiply both sides of equation [4.61] by Sf  and 
subtract the equation thus obtained, term by term, from 
equation [4.54]. We find: 

( )( )S S
a S Fa F S Fa

d f f f W
dt

ρ ρ +

−
+ ∇ ⋅ + ⎡ + − − ⎤ ⋅ =⎣ ⎦v V NJ J   [4.64] 

Equation [4.64] is a general balance equation; it is simpler 
in form than is equation [4.54]. 

The charge of species k  involves the 4-fluxes: 

4 40
k

k kk k
k

z
i c
ρ

ρ
ρ

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦

v
J J   [4.65] 

4 40ka k kS kazρ=J J   [4.66] 

and, for the total charge: 

4 4 4 4,k a ka
k k

= =∑ ∑J J J J   [4.67] 

We obtain the equation: 

4 4 4 4 0a k ka
k

z W+
⋅

−
∇ + ⋅ = =⎡ ⎤⎣ ⎦ ∑NJ J   [4.68] 

Using the rate of production kW  of the species: 

( )( ) 0S S
a a S

d z z z
dt

ρ ρ +

−
+ ∇ ⋅ + ⎡ + − − ⎤ ⋅ =⎣ ⎦i i v V N   [4.69] 

This is the charge conservation equation. Indeed, we have: 

0ka k ka k kr r
k k r

z W z wν= =∑ ∑ ∑M   [4.70] 

because any production of charge is compensated by the 
production of an opposite charge. 
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4.2.4. Momentum and energy 

At the interface, the pressure-momentum-energy tensor is 
reduced to its mass part m

aP . Thus, we have the equation: 

4 4 4 4 4 4
m m fld

S a a

+
⋅

−
⎡ ⎤∇ + + ⋅ =⎣ ⎦ NP P P Φ  [4.71] 

where 4 aΦ  represents the 4-vector corresponding to the non-
electromagnetic external forces. 

Let us recap the expressions of the different terms in this 
relation: 

( )4 4,1
S

S i
i c t c

∇⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∇ = =∂⎛ ⎞⎢ ⎥ ⎢ ⎥+ ⋅ ⋅∇ ⋅⎜ ⎟⎢ ⎥ ⎢ ⎥∂ ⎣ ⎦⎝ ⎠⎣ ⎦

N
N

V N N V N
  [4.72] 

( ) ( )
a S S a a Sm

a
a a S a S S S a S S

i c
i e k e k
c

ρ ρ

ρ ρ

⎡ ⎤⊗ +
⎢ ⎥= ⎢ ⎥⎡ ⎤+ ⋅ + + − +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

v v P v

q P v v
P   [4.73] 

( ) ( )

1m fld

fld fld
a E S S

i c
c

i e k e k e
c

ρ ρ

ρ ρ

⎡ ⎤⎛ ⎞⊗ + + + ×⎜ ⎟⎢ ⎥
⎝ ⎠⎢ ⎥=

⎢ ⎥⎡ ⎤ ⎡ ⎤+ ⋅ + + + − + +⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦⎣ ⎦

v v P P v E B

q P v v J
P   [4.74] 

2 2 2 2

, ,
2 2

fld fld fld
E

E B E Be c+ += = × = − ⊗ − ⊗E B P 1 E E B BJ   [4.75] 

By expansion, relation [4.71] gives us the momentum 
balance equation and energy balance equation: 

( ) ( )

( )1

fldS S
a S a S

ak ak
k

d
dt

c

ρ ρ

ρ
+

−

⎡+ ∇ ⋅ + + − ⊗ − +⎢⎣

⎤− × ⊗ ⋅ =⎥⎦
∑

v P P v v v V P

E B V N f
  [4.76] 
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( ) ( )
( )( )

S S S
a S a a S

fld fld
S S E

ak ak Sk
k

d e k
dt

e k e k e

ρ

ρ

ρ

+

−

+
+ ∇ ⋅ + ⋅

⎡ ⎤+ + ⋅ + + − − − + + ⋅⎢ ⎥⎣ ⎦
= ⋅∑

q P v

q P v v V J V N

vf

  [4.77] 

The kinetic energy equation can be deduced from 
equation [4.76], both sides of which we multiply by Sv  in 
scalar fashion – we then have: 

( ) ( )( )

( ) ( ) ( )2

:

1
2

S
a S S a S

a S ak S k
k

fld
S S Ka

d k k k
dt

W

ρ ρ

ρ

ρ

+

−

+

−

⎡ ⎤+ ∇ ⋅ ⋅ + ⋅ + − − ⋅⎢ ⎥⎣ ⎦

= ∇ ⊗ + ⋅

⎡ ⎤+ − ⋅ + − − ⋅ +⎢ ⎥⎣ ⎦

∑

v P v P v V N

P v v

v v P v v v V N

f   [4.78] 

where fld
KaW  is the production of kinetic energy due to the 

fields: 

( )1fld fld
Ka SW

c

+

−

⎡ ⎤= − ⋅ − × ⊗ ⋅⎢ ⎥⎣ ⎦
v P E B V N   [4.79] 

To simplify this expression, let us set: 

2 , 2+ − + −+ = + =E E B BE B   [4.80] 

and take account of the relations: 

[ ] [ ]2

1,a a ac c
ρ+ +

− −

⋅= − = ×V NE N I B I N   [4.81] 
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Then, by omitting the terms in 2 2v c , we obtain: 

1fld
Ka S a aW

c
ρ⎛ ⎞= ⋅ + ×⎜ ⎟
⎝ ⎠

v IE B   [4.82] 

Let us also give the expression of the field term appearing 
in the momentum expression: 

( )1 1fld
a ac c

ρ
+

−

⎡ ⎤− × ⊗ ⋅ = + ×⎢ ⎥⎣ ⎦
P E B V N IE B   [4.83] 

The internal energy equation becomes: 

( )( )

( ) ( ) ( )21
2

S S
a S a S a S S

fld
Dka ak S S Ea

k

d e e e
dt

W

ρ ρ +

−

+

−

+ ∇ ⋅ + ⎡ + − − ⎤ ⋅ = − ∇ ⊗⎣ ⎦

⎡ ⎤+ ⋅ − − ⋅ + − − ⋅ +⎢ ⎥⎣ ⎦
∑

q q v V N P : v

v v P v v v V NJ f
 [4.84] 

The expression of fld
EaW : 

( )1fld fld fld fld
Ea E SW e

c

+

−

⎡ ⎤⎛ ⎞= − + + ⋅ − × ⊗ ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
J V v P E B V N   [4.85] 

with the exception of the terms in 2 2v c , becomes: 

1fld
Ea a SW

c
⎛ ⎞= ⋅ + ×⎜ ⎟
⎝ ⎠

i vE B   [4.86] 

In order to obtain these results, we have used the 
relations: 

( ) ( ), ,
, or: 0

a a a S S S

a a a

ρ
ρ

⎧ = + = ⋅ + × ×⎪
⎨

⋅ = ⋅ ⋅ =⎪⎩

I i v v V N N N v N
I N V N i N

  [4.87] 
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4.2.5. Entropy production rate 

The equations of thermodynamics at the interface can be 
used to find the entropy balance equation on the basis of the 
other balance equations. The process is identical to that used 
in the absence of fields. The equation is written thus: 

( )( )S k
a S Sa Dk S Sa

k

ds g
s s W

dt T T
ρ ρ

+

−

⎡ ⎤+ ∇ ⋅ + − + − − ⋅ =⎢ ⎥
⎣ ⎦

∑qJ v V NJ   [4.88] 

The entropy production rate SaW  is written: 

( )

( ) ( ) ( ) ( )2

1 1 1

1 1 1

1
2

kS
Sa a S Dka S S ka a S S

kS S S S

kS k kS
ka Dka S

k kS S S

fld
S kS k k S Sa

k

gW T
T T T T

g g gW
T T T T T T

T T s g g Y W
T
ρ

+

−

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⋅∇ − ⋅ ∇ − − ∇ ⊗⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎡⎛ ⎞ ⎛ ⎞
− + − − − − − ⋅⎢⎜ ⎟ ⎜ ⎟

⎢⎝ ⎠ ⎝ ⎠⎣

⎤⎛ ⎞+ − + − − − − ⋅ +⎥⎜ ⎟
⎝ ⎠ ⎦

∑

∑ ∑

∑

q Π : v

q v v Π

v v v V N

J f

J   [4.89] 

The term fld
SaW , attributable to the fields, is equal to: 

1fld fld
Sa EaW W

T
=   [4.90] 

By replacing fld
EaW  with its expression, we therefore 

obtain: 

1 1fld
Sa a S

S

W
T c

⎛ ⎞= ⋅ + ×⎜ ⎟
⎝ ⎠

i vE B   [4.91] 

with the exception of the terms in 2 2v c . 

We can see that this quantity disappears in the absence of 
a surface current. 
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4.3. Interface with polarization 

All of the interfacial equations in a polarized medium are 
given in Table 4.1. Thereafter, we give the explanations to 
aid the understanding of how this table has been compiled. 
However, as we shall see, it has only been possible to follow 
through the calculations to their conclusion for the particular 
case of the flat, immobile interface [PRU 78a, PRU 78b]. 

Maxwell 
equations 

( )( ) ( )

( )( ) ( )

[ ] [ ]

1 1 1 1 ,

1 1 1 ,

,

a
S a a a

a
S a a

S a a S a

c t c c c

c t c c

ρ

+

−

+

−

+ +

− −

∂ ⎡ ⎤∇ × − − ⋅ ⋅∇ + × + ⋅ =⎢ ⎥∂ ⎣ ⎦

∂ ⎡ ⎤∇ × − + ⋅ ⋅∇ + × − ⋅ =⎢ ⎥∂ ⎣ ⎦

∇ × + ⋅ = ∇ × + ⋅ =

DH V N N D N B V N E I

BE V N N B N E V N B 0

D E N B B N 0

 

Chemical 
species 
balance 

( ) ( )S a kS
S S kaa kS S k kaDk

d Y
Y Y W

dt
ρ

ρ ρ +

−
⎡ ⎤+ ∇ ⋅ + ∇ ⋅ + + − ⋅ =⎣ ⎦VV J v V NJ  

Continuity 
equation ( ) 0S a

a S S
d

dt
ρ ρ ρ +

−
+ ∇ ⋅ + ⎡ − ⎤ ⋅ =⎣ ⎦V v V N  

Electrical 
charge 
balance 

( )( ) 0S S
a a S

d z z z
dt

ρ ρ +

−
+ ∇ ⋅ + ⎡ + − − ⎤ ⋅ =⎣ ⎦i i v V N  

Momentum 
equation 

( ) ( )1fldS S
a S a S

d
dt c

ρ ρ
+

−

⎡ ⎤+ ∇ ⋅ + + − + − × ⊗ ⋅⎢ ⎥⎣ ⎦

v P P v v P E B V N

ak ka
k

ρ=∑ f  

Internal 
energy 
balance 

( )( )

( ) ( ) ( )2

:

1
2

S S
a S a S a S S

fld
Dka ka S S Ea

k

d e e e
dt

W

ρ ρ +

−

+

−

+ ∇ ⋅ + ⎡ + − − ⎤ ⋅ = − ∇ ⊗⎣ ⎦

⎡ ⎤+ ⋅ − − ⋅ + − − ⋅ +⎢ ⎥⎣ ⎦
∑

q q v V N P v

v v P v v v V NJ f
 

Entropy 
production 

rate  

due to the mass: equation [4.123] 
due to the field: equation [4.124] 

Table 4.1. Interfacial balance equations in a polarized reactive fluid 
medium. Interfacial quantities: H: magnetic displacement vector;  
D: electric displacement vector; Ba: magnetic field; Ea: electric field;  
Pa = Da  – Ea :     electrical polarization ( Sp  per unit mass); M = B – H: 
magnetic polarization (ms per unit mass) 
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4.3.1. Maxwell equations 

Let us apply the general balance equation [4.51] to the 
electromagnetic tensors *aF  and aH . We obtain [PRU 76, 
PRU 79]: 

[ ]4 4 4 4 4S a a
+

−
∇ ⋅ + ⋅ =NH H J   [4.92] 

[ ]4 4 4 4* *S a
+

−
∇ ⋅ + ⋅ =N 0F F   [4.93] 

With the classic variables of time and space, these 
equations give us the Maxwell equations at the interface: 

( )( ) ( )

[ ]

1 1 1

1

a
S a a

a

S a a

c t c c

c
ρ

+

−

+

−

⎧ ∂ ⎡ ⎤∇ × − − ⋅ ⋅∇ + × + ⋅⎪ ⎢ ⎥∂ ⎣ ⎦⎪
⎪⎪=⎨
⎪
⎪∇ × + ⋅ =
⎪
⎪⎩

DH V N N D N B V N E

I

D E N

  [4.94] 

( ) ( ) ( )

[ ]

1 1 1a
S a a

S a

c t c c

+

−

+

−

⎧ ∂ ⎡ ⎤∇ × − + ⋅ ⋅∇ + × − ⋅ =⎪ ⎢ ⎥∂ ⎣ ⎦⎨
⎪∇ × + ⋅ =⎩

B
E V N N B N E V N B 0

B B N 0
  [4.95] 

Also remember that we have (system [4.43]): 

0, 0

0, 0

S
a a a

S
a a a

c

c

⋅⎧ × + = ⋅ =⎪⎪
⎨ ⋅⎪ × − = ⋅ =
⎪⎩

V NN H D D N

V NN E B B N
  [4.96] 
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4.3.2. Conservation of electricity; conservation of mass 

There is no change in relation to the case without 
polarization discussed in section 4.2.3. 

4.3.3. Momentum and energy 

The media in contact with the interface are also supposed 
to be polarized, as the interface production of potential is 
non-null. 

The development shown in section 4.1.2 is slightly 
modified by the polarization of the bulk and by the presence 
of a potential production term Wψ  which (see [PRU 79]) 

verifies: 

a S
S ja jS jS Dj j a

j j

W
t ψ

ρ ψ ρ ψ ψ ρ ψ
+

−

⎡ ⎤∂ + ∇ ⋅ + + ⋅ =⎢ ⎥∂ ⎣ ⎦
∑ ∑v v NJ   [4.97] 

In our discussion below, we shall limit ourselves to the 
case of a flat, motionless  interface.  

The tensorial momentum-energy equation is always 
written as: 

4 4 4 4 4 4
m m ch

S a a

+
⋅

−
⎡ ⎤∇ + + ⋅ =⎣ ⎦ NP P P Φ   [4.98] 

and gives us the following two equations: 

( )1 fld
a S a a S a S S a a

fld

t c
ρ ρ

ρ
+

−

∂ ⎛ ⎞+ × + ∇ ⋅ ⊗ + +⎜ ⎟∂ ⎝ ⎠

⎡ ⎤+ + ⊗ + + ⋅ =⎢ ⎥⎣ ⎦

v E H v v P P

P v v P P N 0
  [4.99] 
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( )
( )( )

( )

fld
a S S a fld

S a S a a S S S Ea

fld
E a

e k E
e k

t

e k Wψ

ρ
ρ

ρ
+

−

⎡ ⎤∂ + +⎣ ⎦ + ∇ ⋅ + ⋅ + + +
∂

⎡ ⎤+ + ⋅ + + + ⋅ = −⎢ ⎥⎣ ⎦

q v P v J

q v P v J N
 [4.100] 

By introducing the external force aF , equation [4.99] can 
be decomposed into two parts: one part due to the mass:  

( )S S
a S a S a

d
dt

ρ ρ
+

−

⎡ ⎤+ ∇ ⋅ + + − ⊗ ⋅ =⎢ ⎥⎣ ⎦
v P P v v v N F   [4.101] 

and another part due to the field: 

( )1 a a fld fld
S a ac t

+

−

∂ × ⎡ ⎤+ ∇ ⋅ + ⋅ = −⎢ ⎥⎣ ⎦∂
E H

P P N F   [4.102] 

Similarly, equation [4.100] can also be deconstructed into 
two parts, by introducing the production aW : 

( ) ( )
( )

S S S
a S a S a

a a a

d e k
dt

e k e k W

ρ

ρ +

−

+ ⎡+ ∇ ⋅ + ⋅ + + ⋅ +⎢⎣

+ − − ⎤ ⋅ =⎦

q v P q v P

v N
  [4.103] 

fld
fld flda

S Ea E a a
E W W

t ψ
+

−

∂ ⎡ ⎤+ ∇ ⋅ + ⋅ = − −⎣ ⎦∂
J J N   [4.104] 

The kinetic energy balance equation is obtained by scalar 
multiplication of equation [4.101] by Sv  – in this case, we 
have: 

( ) ( )S S
a S S a a Ka

d k k k W
dt

ρ ρ
+

−

⎡ ⎤+ ∇ ⋅ ⋅ + ⋅ + − ⋅ =⎢ ⎥⎣ ⎦
v P v P v N   [4.105] 

( ) ( )21
2Ka a S a S S S SW ρ

+

−

⎤⎡= ⋅ + ∇ ⊗ + − ⋅ + − ⋅⎥⎢⎣ ⎦
F v P : v v v P v v v N   [4.106] 



92     Flows and Chemical Reactions in an Electromagnetic Field 

By subtraction of equations [4.103] and [4.105], we find 
the internal energy equation: 

[ ( ) m fldS S
a S a S Ea Ea Ea

d e
e e W W W

dt
ρ ρ

+

−
⎤+ ∇ ⋅ + + − ⋅ = = +⎦q q v N   [4.107] 

the internal energy production rate being equal to: 

( )

( )21
2

Ea a Ka a S S S

fld
S Ea

W W W

Wρ
+

−

⎡= − = − ∇ ⊗ − − ⋅⎢⎣

⎤+ − ⋅ +⎥⎦

P : v v v P

v v v N
  [4.108] 

The entropy production rate directly due to the field is 
written as: 

fld
fld fld flda

Ea S Ea E a S
EW W

tψ
+

−

∂ ⎡ ⎤= − − + ∇ ⋅ − ⋅ − ⋅⎣ ⎦∂
J J N F v  [4.109] 

or indeed (see [PRU 79, p. 60] and [DUD 82, p. 148]): 

fld
afld fld fld

Ea a S Ea E

fld fld
S a

EW W
tψ

+

−

+

−

∂ ⎡ ⎤= − − + ∇ ⋅ − ⋅⎣ ⎦∂
⎛ ⎞⎡ ⎤+ ⋅ ∇ ⋅ + ⋅⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

J J N

v P P N
  [4.110] 

The Maxwell equations form the following systems, 
respectively, for the volume: 

[ ]1 1

1 0

c c t

c t

ρ+

−

∂⎧∇ × = + ∇ ⋅ + ⋅ =⎪⎪ ∂
⎨ ∂⎪∇ × + = ∇ ⋅ =
⎪ ∂⎩

DH I D D N

BE 0 B
 [4.111] 

and for the interface, supposing the configuration to be flat 
as shown in Figure 4.1: 
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[ ]

[ ]

[ ]

,2 1, 2 1

,1 2, 1 2

1,1 2,2 3

1 1

1 1

a a t a

a a t a

a a a

H D H I
c c

H D H I
c c

D D D ρ

+

−

+

−

+

−

⎧ − − =⎪
⎪
⎪− − + =⎨
⎪
⎪ + + =
⎪⎩

 [4.112] 

(and from this, we deduce that [ ], 3 0t S S Iρ +

−
+ ∇ ⋅ + =I ) and: 

[ ]

[ ]

[ ]

,2 1, 2

,1 2, 1

1,1 2,2 3

1 0

1 0

0

a a t

a a t

a a

E B E
c

E B E
c

B B B

+

−

+

−

+

−

⎧ + − =⎪
⎪
⎪− + + =⎨
⎪
⎪ + + =
⎪⎩

 [4.113] 

The electromagnetic interfacial vectors are such that: 

1 1

2 2

1 1

2 2

0
0 , , , ,
1 0 0

,

a a

a aa a a a a

a a

a a a Sa a

a a

D B
D B E H

D B
D B

E H

⎧ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎪ ⎢ ⎥ ⎢ ⎥⎢ ⎥= = = = =⎪ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎪ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎪ ⎣ ⎦ ⎣ ⎦
⎨

⎡ ⎤ ⎡ ⎤⎪
⎢ ⎥ ⎢ ⎥⎪ = − = =⎢ ⎥ ⎢ ⎥⎪
⎢ ⎥ ⎢ ⎥− −⎪ ⎣ ⎦ ⎣ ⎦⎩

N D B E N H N

P D E M

[4.114] 

The tensor fld
SP  is given by the matrix [PRU 79]: 

{ {

( ) ( )

2 2

2 2

1 1 2 2

2 2
1 2

1 2 2 1 1 2 2 1

0 0
2

0 0
2

2

a a

a a
fld

a

a a a a a a

S S a a
a a a a a a a a

E B

E B

E D HB E D HB

v v E BD B D B D B D B
c c

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥= ⎢ ⎥
− + − +⎢ ⎥
⎢ ⎥

−⎫ ⎫⎢ ⎥+ − + −⎬ ⎬⎢ ⎥⎭ ⎭⎣ ⎦

P  [4.115] 
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and fld
a∇ ⋅ P  by: 

( )

( )

2 2

1

2 2

2

1
1 1 1 2 2 1

1

2
2 2 1 2 2 1

2

2 ,

2 ,

,

,

S S

a a

fld
a

S
a a a a a a a a

S
S S S S S S S

E B

E B

vE D H B D B D B
c

vE D HB D B D B
c

⎡ ⎤⎛ ⎞−
⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞−⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠∇ ⋅ = ⎢ ⎥

⎧⎡ ⎤⎢ ⎥− + + −⎨⎢ ⎥⎢ ⎥⎣ ⎦⎩⎢ ⎥
⎢ ⎥⎫⎡ ⎤+ + + −⎢ ⎥⎬⎢ ⎥⎢ ⎥⎣ ⎦ ⎭⎣ ⎦

P  [4.116] 

Additionally, we have: 

[ ]
[ ]

1 3 1 3

2 3 2 3

2 2

3 3 3 32

fld

E D H B

E D H B

E B E D H B

+

−
+ +

−−
+

−

⎡ ⎤
⎢ ⎥− +⎢ ⎥
⎢ ⎥⎡ ⎤ = − +⎢ ⎥⎣ ⎦
⎢ ⎥
⎡ ⎤−⎢ ⎥− ⋅ − −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

P N

M B

 [4.117] 

The force aF  is then deduced from equation [4.102], as 
follows: 

[ ]

[ ]

( )

( )

2 2

1 3 1 3
,1

2 2

2 3 2 3
,2

1
1 1 1 2 2 1

,1

2
2 2 1 2 2 1

,2

2 2

3 3 3 3

2

2

2

a a

a a

S
a a a a a a a a a

S
a a a a a a a a

E B E D H B

E B E D H B

vE D H B D B D B
c

vE D H B D B D B
c

E B E D H B

+

−

+

−

+

−

⎡ ⎤⎛ ⎞−− + +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥

⎢ ⎥
⎛ ⎞−⎢ ⎥− + +⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥

⎢ ⎥⎡ ⎤= + + − +⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤⎢ ⎥+ + − −⎢ ⎥⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎡ ⎤− − ⋅ − −⎢ ⎥⎢ ⎥
⎢⎣ ⎦⎣ ⎦

F

M B
⎥

 [4.118] 
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From this, we can deduce the scalar product a S⋅F v : 

[ ]

[ ]

2 2

1 3 1 3 1
,1

2 2

2 3 2 3 2
,2

2

2

S S
a S S

S S
S

E B E D H B v

E B E D H B v

+

−

+

−

⎡ ⎤⎛ ⎞−⋅ = − + + +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞−
− + +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

F v

 [4.119] 

From equation [4.104], we deduce aW : 

( ) [ ]

( ) [ ] ( )

2 2
3

2 2
33

2

S S
a a a a a a a

S a a a

d dW E B v
dt dt

E B c v Wψ

ρ ρ ρ +

−

++

− −

⎛ ⎞= ⋅ + ⋅ + −⎜ ⎟
⎝ ⎠

− ⋅∇ − − × + ⎡ ⋅ + ⋅ ⎤ −⎣ ⎦

p mE B

v E H P E M B
[4.120] 

Finally, we obtain: 

( ) [ ] [ ]
[ ] ( )

[ ] ( )

2 2
3 1 3 1 3 1

2 2
2 3 2 3 2

33

2

fld S S
Ea a a S a a a

a a a S

S S a a

a

d dW W
dt dt

E B v E D H B v

E D H B v E B

c v Wψ

ρ

ρ ρ + +

− −

+

−

++

− −

⎛ ⎞= − ⋅ = ⋅ + ⋅ +⎜ ⎟
⎝ ⎠

− − + −

+ − ⋅∇ − −

× + ⎡ ⋅ + ⋅ ⎤ −⎣ ⎦

p mF v E B

v

E H P E M B

  [4.121] 

4.3.4. Entropy production rate 

By proceeding in the same way as we did in section 4.1.2, 
we can deduce the entropy production rate, which also 
verifies equation [4.88]. 

Thus, we obtain: 

m fld
Sa Sa SaW W W= +  [4.122] 
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( )

( ) ( ) ( )

3 3

2
3

1 1

1 1 1

1
2

m kS
Sa a S S a S S

S S S

kS k kS
ka Dk S

k kS S S

S kS k k S
k

g
W

T T T

g g g
W q

T T T T T T

T T s g g Y v v v
T
ρ

+

−

⎛ ⎞ ⎛ ⎞
= ⋅∇ − ∇ − ∇ ⊗⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎡⎛ ⎞ ⎛ ⎞

− + − − − − − ⋅⎢⎜ ⎟ ⎜ ⎟
⎢⎝ ⎠ ⎝ ⎠⎣

⎤⎛ ⎞+ − + − − − ⎥⎜ ⎟
⎝ ⎠ ⎦

∑ ∑

∑

q Π : v

v v ΠJ   [4.123] 

[ ] ( ) ( )

( ) ( )

( ) ( )

( ) ( )

3 , ,

3

, ,

3 33

1 ' ' ' ' ' '

1 ' ' ' ' ' '

' '' ' ' '

1

fld
Sa a a eq S a a eq S

S

eq eq
S

a S S
a a eq a a eq

S

S
a

S S

W v
T

v
T

d d
T dt dt

c D B W
T c T ψ

ρ

ρ

ρ

+

−

+

−

+

−

⎡ ⎤= − − ⋅ + − ⋅ +⎣ ⎦

⎡ ⎤⎡ ⎤− ⋅ + − ⋅ +⎣ ⎦⎣ ⎦

⎡ ⎤− ⋅ + − ⋅ −⎢ ⎥⎣ ⎦

⎡ ⎤× + ⋅ + −⎢ ⎥⎣ ⎦

E E p B B m

E E p B B m

p mE E B B

vE H E H

 [4.124] 

where the “primes” mean that we are following the motion. 

These results are obtained in the non-relativistic 
approximation, for which we can easily verify that: 

' ' ' ',
' '' 'd d d d

dt dt dt dt

⋅ + ⋅ = ⋅ + ⋅⎧
⎪
⎨ ⋅ + ⋅ = ⋅ + ⋅⎪⎩

E p B m E p B m
p m p mE B E B

 [4.125] 

4.3.5. Remark about the momentum-energy tensor  

The most general 4-dimensional balance equation is, for a 
property F  of flux density 4 FJ  and production 4 FW  (see 
equation [2.28]): 

4 4 4F FW∇⋅ =J   [4.126] 
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with 1st- or 2nd-order tensors for 4 FJ  and 0- or 1st-order 

tensors for 4 FW , in the Minkowski space.  

The corresponding interfacial equation is [4.52]: 

[ ]4 4 4 4JS Fa F FaW+
⊥ −

∇ ⋅ + =v vJ   

and the condition necessary for this formalism to be coherent 
is given by equation [4.50]: 

4 4 0Fa ⋅ =vJ N   [4.127] 

By separately applying this coherence condition to the 
parts 4

fld
aP  and 4

m
aP  of the pressure-momentum-energy 

tensor [4.31], we obtain: 

( )
( ) ( ) 0

0

a S S a S a S

a S a a a a S a a a S

fld
a a a

fld fld
Ea S a

V

e k e k V

V
c
V E

ρ ρ

ρ ρ

⊥

+

⊥
−

⊥

⎧ ⊗ + ⋅ − =⎪
⎪
⎡ ⎤⎪ + ⋅ + + ⋅ − + =⎪⎢ ⎥⎣ ⎦⎨

⎪
⋅ − × =⎪

⎪
⎪ ⋅ − =⎩

v v P N v 0

q v P v N

P N E H 0

J N

  [4.128] 

The equations in system [4.128] give us: 

2 2

,

0, 0

fld
a

a a a

⎧ ⋅ = ⋅ =⎪
⎨

⋅ = − =⎪⎩

P N 0 P N 0

q N E B
  [4.129] 

in light of the Maxwell equations at the interface and the 
condition of coherence relative to the mass flux [4.34]: 

S S SV ⊥⋅ = ⋅ =v N V N   [4.130] 
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Equation [4.115] also shows that a zero value of 2 2
a a−E B  

is a sufficient condition for fld
a ⋅ =P N 0  to be automatically 

verified in the scenario which is of interest to us here. 

We shall not make such hypotheses, although they do  
lead to classic interfacial behaviors (surface tension  

tensor a= −σ P  and heat flux aq  tangential to the  
interface), but we shall, of course, suppose that the overall 
condition 4 4 0Fa ⋅ =vJ N  is verified. Thus, this leads us to: 

( )
2 2

,

0
2

fld
a a

a a
a V

⎧ + ⋅ =⎪⎪
⎨ −⎪ ⋅ + =⎪⎩

P P N 0

E B
q N

  [4.131] 

which, in the case of a flat, motionless interface, gives us: 

2 2

13 23 33 30, 0, 0
2

a a
a a a aP P P q

−
+ = + = =

E B
  [4.132] 

It should also be noted that the tensor fld
aP  is not 

symmetrical, and that there remains a certain amount of 
uncertainty regarding its very definition. This uncertainty is 

added to that regarding fldP , which has been noted, in 
particular, by de Groot [GRO 69b] and de Groot and Suttorp 
[GRO 67a, GRO 67b, GRO 68a, GRO 68b, GRO 68c, 
GRO 68d, GRO 68e] (see section 3.2). 

 



Part 2 

Introduction 

This second part is devoted to the applications of the 
equations established in Part 1. The concrete applications 
discussed here often require the equations to be 
reformulated, and sometimes need a specific model to be 
used. 

Chapter 5, which discusses the influence of fields on 
flames, is primarily an application of the equations 
established for homogeneous media. 

Chapter 6, entitled Applications to the Peltier Effect, 
relates to the thermoelectrical effects observed with the 
formalism of linear thermodynamics of irreversible 
processes, or TIP, also known as classic irreversible 
thermodynamics (CIT – see [PRU 12]), in the bulk (the 
phenomenological relations for a metal are recapped in the 
Appendix), and then considering the junction as an interface. 

Then, in Chapter 7, we present a macroscopic approach to 
the interaction between a metal and a plasma at low 
pressure and high temperature, where simplified hypotheses 
have been employed [PRU 81a, PRU 81b]. This application 
relates to Langmuir probes. 
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Chapter 8 relates to the modeling of Hall-effect plasma 
thrusters: more specifically, small innovative thrusters 
(referred to as PPIs, as an acronym for their name in 
French). 

In this part, we shall not deal with deformable and 
reactive interfaces in the presence of electromagnetic fields, 
although, in principle, we have the means to do so with the 
balance equations established in Chapter 4. However, we 
have made the choice to limit ourselves to a few simpler 
applications. Let us simply cite two examples which seem, to 
us, to be of interest. The first relates to gravitational waves 
in a liquid with a film on the surface in the presence of an 
electrical field [DUD 80, DUD 82]. The second relates to a 
deformable interface between two immiscible fluids which 
can be influenced electromagnetically [VAN 10]. We have 
also chosen not to look at shockwaves in 
magnetohydrodynamics [JAU 71]. 

 



5 

Influence of Fields on Flames 

In the wake of Chapters 2 and 3, which were  
devoted to electro-hydrodynamics [JAN 63] and magneto-
hydrodynamics [CAB 70, MOL 07], in this chapter we give 
some examples of the influence of electrical and magnetic 
fields on flames.  

In parallel, we shall also discuss the influence of other 
fields such as gravity and acceleration fields. What these 
fields have in common with electromagnetic fields is that 
they are exerted on every microscopic particle of the medium 
in question.  

Certain acceleration fields are used to compensate for the 
earth’s gravity. Note that the gradients of magnetic fields are 
also used for levitation [LOR 08a, LOR 08b], e.g. of 
evaporating droplets, by playing on their paramagnetic or 
diamagnetic properties [WUN 00, PIC 09, PIC 10]. It is more 
difficult to sustain flames in this way, because the chemical 
components of which they are composed have differing 
magnetic properties. Chechulin, noting that magnetic fields 
deform the molecules, thus modifies their probabilities of 
collision, which affects the reaction rates where they occur 
[CHE 09]. 
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5.1. Diffusion flames 

Non-premixed flames can be generated in a variety of 
ways, as detailed in [PRU 13]. Here, we examine the influence 
of an acceleration field, followed by that of an electrical field, 
on a candle flame. Finally, we look at the effect of a magnetic 
field on a diffusion flame from a burner formed of two coaxial 
cylindrical tubes, with the central tube providing the fuel and 
the outer tube the oxidant. 

5.1.1. Influence of an acceleration field on a candle 
flame 

Candle flames are created by the combustion of  
mixtures of paraffin with other solid fuels. The heat from the 
flame liquefies the solid fuel, and the combustible liquid 
soaks into a wick and evaporates. The flame is non-
premixed.  

This is a simple diffusion flame in the absence of an 
acceleration field (i.e. at 0 g – see Figure 5.2 (c)).  

In the presence of an acceleration field, the exchanges  
are activated by convection. Gravity, for example (see  
Figure 5.2(a)), causes the elongation of the flame, following 
the acceleration linked to the forces of floatability. 

In addition, the liquid phase, which accumulates in the 
hollow space left in the top end of the candle’s cylindrical 
body, is animated by Bénard–Marangoni convection. The 
behavior of the candle flame thus results from multiple 
interactions, and merits a systematic study in order to 
characterize it [FAR 601, TAK 09, SUN 11]. 

                              
1 See the Websites: http://www.fordham.edu/halsall/mod/1860Faraday-
candle.asp and https://archive.org/details/chemicalhistoryo00faraiala. 
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Let us briefly describe a few experiments conducted in 
parabolic flight and in a centrifuge [PRU 91], which 
demonstrate these phenomena. 

An acceleration field γ  – g if it is due to the earth’s 
gravity, which the pilot of an airplane can attenuate in a 
parabolic flight, or which we can accentuate in a centrifuge 
up to several hundred g – acts on the flame of a candle. 

In microgravity, the flame takes the form of a spherical 
cap (see Figure 5.2(c)); in the presence of gravity the rising of 
the hot gases by the effect of the buoyancy  forces tends to 
elongate the flame, which therefore assumes its best-known 
form, as shown in Figure 2.5(a). This stretching effect 
continues up to around 2 g; it is observed during parabolic 
flight (see Figure 5.2(b)). 

In a centrifuge [PRU 91], the height of the flame decreases 
thereafter with the increase in acceleration. Beginning with 
a cylindrical-bodied candle divided by a horizontal plane, the 
candle becomes very greatly hollowed out, and the wick 
vanishes from the field of the camera. The flame becomes 
very bright at increasing γ  values, and is extinguished at 
around 7-8 g (see Figure 5.1).2 

The acceleration field is also the cause of external vortices 
stemming from the Kelvin–Helmholtz instability. In certain 
cases, these eddies are likely to cause flickering at the apex 
of the flame. 

                              
2 These observations probably ought to be taken with a pinch of salt, 
because they are specific to the experimental conditions adopted. Indeed, 
as is indicated in Appendix A6 of [PRU 12], in this experiment, the 
combustion took place in a confined atmosphere. The behavior of the 
candle flame and its extinguishing are perhaps due (or at least partially) 
to the gradual elimination of oxygen in its environment, which is 
concomitant with the increase in rotation speed of the centrifuge, in which 
case, convection only brings in a moderate amount of oxygen. Therefore, 
once again, the flame has to depend on diffusion. 
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5.1.2. Influence of an electric field on a candle flame 

The influence of an electric field on a candle flame was 
studied experimentally in parabolic flight by Carleton and 
Weinberg in the 1980s [CAR 89]. Figure 5.2 shows a 
comparison of the influences of the field of gravity, 
acceleration fields and an electrical field on a candle flame. 
The main electrically-charged species are the electrons e−  
and the 3H O+  ions. Equilibrium (Saha’s law) is not achieved, 
and the ions reach a maximum velocity v k E= , where k  is 
the mobility taken to be constant. The force exerted per unit 
volume is F ne E= , where ne  is the charge per unit volume. 

The general expression is ( )F n n e E+ −= − , if E is large and 

opposing charges coexist in the thin zone of chemical 
ionization. 

The local density of current is j nek E= , so that F j k= , 
and an “ionic wind” is created [CHA 99]. 

For a sufficient mean free path in cold air, we see the 
production of negative ions. The field becomes more 
unidirectional if the positive electrode is moved closer to the 
flame. The motion then is very intense [LAW 68]. 

Figure 5.2 shows the results of the exploratory experiment 
conducted by Carleton and Weinberg [CAR 89]. As mentioned 
above, in the absence of an electrical field, we see stretching of 
the flame at 2 g (Figure 5.2(b)), in comparison to its form at 1 
g (Figure 5.2(a))3 and at 0 g (Figure 5.2(c)). The influence of an 
increasing electrical field has been studied in an atmosphere 
of 0 g. The case of deviation and stretching of the flame 

                              
3 Note that in the Plexiglass tube used in this experiment, a chimney 
effect is indeed observed, with a traction current J AN k gρ= , where A  is 
the cross-section of the straight part of the tube and N is the number of g  
units of the acceleration field. 
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observed for the maximum strength of the electrical field is 
shown by Figure 5.2(d). 

5.1.3. Influence of a magnetic field on a diffusion flame 

The influence of magnetic fields on flames has also been 
studied experimentally. A variety of authors have taken an 
interest in the subject [FUJ 98, GIL 07, DEL 06, CHE 97, 
CHA 12, KAS 12] – particularly in relation to the problems 
of efficiency of the combustion. 

Legros et al. [LEG 11] recently experimented with 
methane diffusion flames and a co-stream mixture of 
nitrogen and oxygen in a magnetic field. The burner used 
was a coaxial burner, the level of gradient of the magnetic 
field and the concentration of oxygen in the flow of oxidizing 
agent were adjustable at will, within certain limits. The 
magnetic field gradient directly influences the paramagnetic 
oxygen, so it is possible to conduct a parametric study. 
According to Shinoda et al. [SHI 05], the force exerted per 
unit mass is: 

( )2 2

02
O

m B
χ
μ

= ∇f   [5.1] 

where B = B , the magnetic permeability in a vacuum being 

0μ  and the magnetic susceptibility of oxygen per unit mass 
being 

2Oχ . This force plays a role in the momentum equation, 

written here in a steady-state flow with constant density: 

( ) ( )
2O mp Yρ μ ρ ρ∇ ⋅ ⊗ = −∇ + ∇ ⋅ ∇ ⊗ + +v v v f g   [5.2] 

and is added to the force of gravity.  
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The experiments show the influence of the parameters on 
the occurrence of flickering4, and also on the length of the 
flame (see the short film on this subject at: dalembert.upmc.fr/ 
home/legros/index.php?option=com_content&task=view&id=7&Item
id=1). 

The authors then establish a plot (see Figure 5.3) in the 
plane (ReT, Gr), where Gr is the Grashof number and ReT is 
the total Reynolds number, equal to the sum of the viscous 
Reynolds number and a magnetic Reynolds number. Hence, 
we have the following definitions: 

( )
2 2

2

2 2

0

, Re

Re , Re Re Re
2

fl ox ox F F F

O O F
m T F m

ox

Gr g T L T V d

Y B d
V

Δ ν ν

χ
μ ν Δ

⎧ = =
⎪⎪
⎨ ∇

= = +⎪
⎪⎩

  [5.3] 

with ,ad ox ox FT T T V V VΔ Δ= − = − , where the subscript ox 
refers to the fresh oxidizing mixture, and ad denotes the 
adiabatic post-combustion temperature. 

The subscript F refers to fuel, VF the fuel injection rate, 
and dF is its injection diameter. flL  is the average height of 

the flame above which the influence of flotation is felt, ν  is 
the kinematic viscosity, and YO2 is the mass fraction of 
oxygen in the outer jet. 

Gilard et al. [GIL 07] experimentally studied the “lift” 
behavior of a flame during the combustion of the air/methane 
mixture subjected to a magnetic field gradient. Based on  
 

                              
4 The term “flicker” describes relatively periodic oscillations of the summit 
of the flame. These oscillations stem from the differences in velocity 
between the external jet of fresh oxidant and the hotter external jet 
containing burned gases, which gives rise to shear instability similar to 
the Kelvin–Helmholtz instability and to vortex streets. The same 
phenomenon occurs under the influence of gravity alone [BUC 86]. 
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experimental results obtained using non-intrusive optical 
techniques, they show that the reduction in lift of the flame is 
closely linked to the influence of the strong magnetic gradient, 
which induces a force acting on the paramagnetic molecules. 

5.2. Premixed flames  

Premixed flames are waves of combustion (for example, 
see [PRU 13]), whose reference velocity (that of the adiabatic 
planar flame) can quite easily be calculated on the basis of 
the thermodynamic characteristics of the constituent parts, 
as long as we are dealing with flames with high activation 
energy. Here, we shall limit ourselves to the study of the 
effects of gravity and of a centrifugal acceleration field on 
such flames, and primarily on their resulting frequency of 
oscillation. 

Premixed flames, just like diffusion flames, often 
experience flickering in the presence of gravity. This is what 
we observe, for example, with the premixed flame of methane 
and air.5 The frequency of these quasi-periodic flickerings 
depends on the acceleration field, and they disappear if that 

                              
5 The same phenomenon occurs in the case of a premixed flame of propane 
and air. In this case, other instabilities, known as cellular instabilities, 
may arise, such as that shown in Figure A3.9 in [PRU 13]. These cells only 
appear spontaneously for mixtures rich in heavy hydrocarbons (propane) 
or which have only a small fraction of light fuels (hydrogen) – i.e. when the 
species, by which the reaction is limited, is lighter. The thresholds of 
instability and the number of cells depend not only on the equivalence 
ratio of the mixture, but also on the pressure [MAR 51], the circumference 
of the burner and the velocity of the gases ejected from it [BUC 84]. The 
experimental observations [DUR 87] seem to show that there is a relation 
which exists between the number of cells of the flame in polyhedral form 
and the thickness of reaction-diffusion of the premixed propane–air flame, 
with this thickness being a decreasing function of the pressure. Here, we 
shall not discuss the influence of fields on these instabilities. 
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field uniformly vanishes, as is shown by the experiments 
carried out during parabolic flight [DUR 89, DUR 90]. 

 

Figure 5.3. a) Flame stability plot, obtained for Vox rates between 5 and  
10 cm s-1. The neutral line corresponds to 3 0.478.19 10 ReTGr = × . b)  
Evolution – for XO2 = 0.55 – of a flame subjected to a magnetic field for two 
values of the gradient of B2 over time, stable on the left, with periodic 
oscillations of the apex on the right – low, medium and high positions – (top 
redrawn and bottom taken from the article by Legros et al. [LEG 11] with the 
authors’ kind permission. Data also extracted from that article). For a color 
version of this figure, see www.iste.co.uk/prudhomme/flows.zip  
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A highly simplified dimensional analysis enables  
us to show characteristic frequencies [PRU 92]. If we 
discount the forces of viscosity, the momentum equation is 
written thus: 

d dtρ Δ ρ=v g   [5.4] 

where Δ ρ  is the difference between the average density 
within the jet issuing from the burner containing the flame 
and the density of the outside air. 

In the absence of a flame, the jet is quasi-cylindrical, and 
expands slightly with increasing altitude, which would tend 
to suggest that, at least in the particular domain under 
study here, the forces of viscosity do not cause 
destabilization. 

In the presence of a flame, the average density of the jet 
in a horizontal plane varies with altitude. The dimensional 
formulation in equation [5.4], if cL  is a characteristic  
length, gives us: 2

c cL T g Δρ ρ= , or indeed, with  
1c cF T= , cT  being the characteristic time, and Δρ ρ  an 

average value of the relative difference in density: 

c cF g LΔρ ρ=   [5.5] 

This result indicates that the characteristic frequency cF  
will be proportional to the square root of the acceleration, 
with all other values remaining equal. 

However, if we take account solely of the viscous forces, 
equation [5.4] is replaced by: 

d dtρ μ Δ=v v  [5.6] 
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which, by the same reasoning process as before, with  
the introduction of a characteristic frequency of viscous 
diffusion (although the phenomenon is not oscillating), gives 
us: 

2
v cF Lν=  [5.7] 

The combination of the viscous effects can give us, 
depending on the relative strengths of the phenomena of 
flotation and viscosity, for example: 

( ) ( )
( ) ( )

1 2 3 43 3 4 1 4 1 2

1 2 1 4 1 4 5 4 1 2

'

"

c c c

c c c

F F F g L

F F F g L

ν

ν

Δρ ρ ν

Δρ ρ ν

−

−

⎧ = =⎪
⎨
⎪ = =⎩

  [5.8] 

We see the dependency on 3 4g  of diffusion flames 
[ELL 90], and on 1 2ν −  and a distance to the power 1 4 .  

In addition, a dependency on 1 4g  is obtained, with a 
thermoconvective eddy model, but the influence of the other 
values is then not the same. 

These arguments drawn from simple dimensional analysis  
need to be validated by both theory and experimentation. 

A physical observation is also that the accelerated jet 
exiting the burner must undoubtedly create shear instability 
by contact with the external atmosphere at rest. Thus, we 
would have a Kelvin–Helmholtz configuration between two 
flows, one of which has a velocity which increases with 
altitude. 

The situation is also comparable to that of two superposed 
fluids, where the hotter of the two (and therefore the less  
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dense, represented by the burned gases) is under the colder 
one. The pulsation of the Rayleigh–Taylor instability thus 
created is: 

( ) ( )2 1 1 2g kω ρ ρ ρ ρ= − +   

where the wavenumber k is the inverse of a characteristic 
length. Here, we can see a similarity with equation [5.5]. 

 



6 

Applications to the Peltier Effect 

The application discussed in this chapter relates to the 
thermoelectrical effects observed with the formalism of linear 
thermodynamics of irreversible processes, or TIP, also 
known as classic irreversible thermodynamics (CIT – see 
[PRU 12]), in volume (the phenomenological relations for a 
metal are recapped in Appendix A1.2), and then considering 
the junction as an interface. 

The Peltier effect is well known. It is encountered at the 
joint between two metals. It is generally spoken of at the 
same time as the Thomson effect, because these two effects 
both cross-link between the thermal gradient and intensity 
of the current. 

6.1. Introduction 

De Groot and Mazur introduce the Peltier effect using  
the following reasoning: the conductor is composed of two 
pure materials, A and B, and the joint between the  
two is composed of an alloy of A and B. In this joint, of 
volume V , lying between two sections AΩ  and BΩ , the 
thermodynamic values vary continuously. The temperature  
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within the joint is supposed to be uniform (temperature T – 
see Figure 6.1). 

The phenomenological relations enable us to write the 
entropy variation in the form: 

( )
21s RT

t T T T
ρ πλ∂ ⎛ ⎞= ∇ ⋅ ∇ + − ∇ ⋅⎜ ⎟∂ ⎝ ⎠

I v  [6.1] 

On the right-hand side of this equation, we recognize: 

the heat conduction term ( )1 T
T

λ∇ ⋅ ∇ ; 

the Joule effect term 
2R

T
I

; 

the final term shows the influence of the electrical current 
and of an inhomogeneity on the local variation of entropy. 

By integration over a control volume V  (Figure 6.1), we 
obtain: 

2

.

A B

A A B B
sT d d R d

t

d d ST sd T
dt dt

Ω Ω

ρ π π

ρ

∂ = ⋅ + ⋅ +
∂

= =

∫ ∫ ∫ ∫

∫

I dΩ I Ω I
V V

V

V  V

V   

 

If the volume tends toward zero, we see the influence of a 
discontinuity appear: 

0
AB

d ST d
dt Ω

π
→

⎛ ⎞ = ⋅⎜ ⎟
⎝ ⎠ ∫ I Ω

V

 [6.2] 
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where ABπ  is the Peltier heat of the joint ( AB A Bπ π π= − ). 

Pure metal A

Pure metal B

Joint

IAΩ

BΩ

A+B

V

 

Figure 6.1. Diagram of a junction. Definition of the volume V  

Therefore, in conditions nearing thermodynamic 
equilibrium, the passage of the electrical current through the 
joint leads to the production of entropy proportional to the 
intensity of the current. 

Landau and Lifchitz [LAN 69] present the Peltier effect 
on the basis of an energy balance. Let us first determine the 
entropy flux SJ in order to later be able to evaluate the energy 
flux EJ .  

We have: S S sρ= +J vJ . The entropy balance enabled us to 
find the expression of the entropy flux in the barycentric 
motion, so that: 

1 1

N N

S k Dk k k
k k

T g e p g Yρ ρ
= =

⎛ ⎞= − + + −⎜ ⎟
⎝ ⎠

∑ ∑q vJ J  

We know the expression of the heat flux q as a function of 
the energy flux. In view of the hypothesis where we neglect  
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the influence of the magnetic field, we obtain (see relation 
[A1.10]): 

1 1

N N

S E k Dk k k
k k

T g e p g Yϕ ρ ρ
= =

⎛ ⎞= − ⋅ − − + + −⎜ ⎟
⎝ ⎠

∑ ∑J J P v I vJ  

Ignoring the effect of viscosity and the kinetic energy 
term, the above relation is written as: ( )S E e eT g zϕ= − +J J I . 

It has already been mentioned that the expression of the 
dissipation function which appears in equation [A1.10] is 
still valid when we neglect the magnetic field in the Lorentz 
force. Hence, we have: 

11 12
e e

E
e e

g gT L T T L T
z z

ϕ λ π
⎛ ⎞⎛ ⎞ ⎛ ⎞

− + = − ∇ + = − ∇ + − ∇⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
J I I E  [6.3] 

Landau and Lifchitz consider that the left-hand side of 
this equation represents the total energy flux minus the 
energy transported by the electrons. This first term therefore 
no longer depends on the potential, and near thermodynamic 
equilibrium, it is a linear function of the field ( )e eg z− ∇E
and of the temperature gradient, so: 

e e
E

e e

g gT T T
z z

ϕ χ α γ β
⎛ ⎞⎛ ⎞ ⎛ ⎞

− + = − ∇ + = − ∇ + − ∇⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
J I I E  [6.4] 

Relations [6.3] and [6.4] are therefore equivalent, if we 
set: 

21 22 11 12, , ,T L L L T L Tλ χ α π γ β= = = = =  
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The divergence Q of the total energy flux is the quantity 
of heat released into the conductor: 

( ) ( )e EQ t T Tρ λ α= ∂ ∂ = −∇ ⋅ = ∇ ⋅ ∇ + ⋅ − ⋅∇J I E I  [6.5] 

This formula reveals the thermoelectric effects by way of 
terms similar to those in equation [6.1], showing the entropy 
balance. 

Let us represent the joint by a surface of discontinuity ( S ) 
between the two pure materials A and B (Figure 6.2). N
represents the unitary normal to that surface, directed from 
metal A to metal B. 

Metal A Metal B

N

 

Figure 6.2. Interfacial representation of a junction 

The energy balance upon crossing that interface is written 
as [ ] 0B

E A
⋅ =J N , but: ( )E e eg z T Tϕ α λ= + + − ∇J I . We therefore 

obtain: 

( )
B

A B
A

T I T
N

λ α α∂⎡ ⎤ = − −⎢ ⎥∂⎣ ⎦
 [6.6] 

supposing that the potential e eg zϕ + is continuous as the 
joint is crossed. 
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The left-hand term corresponds to the heat evacuated by 
conduction from the interface toward metals A and B. The 
right-hand term is the heat released at the joint. 

The Peltier coefficient is: ( ) ,A B ABT α α π− = so it is identical 
to that introduced by de Groot and Mazur. 

We can also use an energy balance involving the 
electromagnetic energy flux (equation [A1.5]). We obtain: 

S E e eT k g zρ= − − −J J v IP  

If we neglect the kinetic energy, the energy balance 
becomes: 

[ ] [ ] [ ] [ ] 0
B

B B B Be
E A A A A

e A

gT
z

λ π
⎡ ⎤

⋅ = − ∇ ⋅ − ⋅ − ⋅ + ⋅ =⎢ ⎥
⎣ ⎦

J N N N I N I NP  

Using the electrical current conservation equation, we 
obtain: 

[ ]
BB

B e
A

A e A

gT I
N z

λ π
⎡ ⎤∂⎡ ⎤ = + +⎢ ⎥⎢ ⎥∂⎣ ⎦ ⎣ ⎦

P  

where P  and I  represent the respective projections of P and
I on the unit vector N . 

If the potential eg is continuous, the relation becomes: 

[ ] [ ]
B

B B

A A
A

T I
N

λ π∂⎡ ⎤ = +⎢ ⎥∂⎣ ⎦
P  

We shall show in section 6.2.3 that when the surface 
current passing through the joint is zero, the quantity P is  
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conserved upon crossing the interface: [ ] 0B

A
=P , and 

therefore: ( ) .
B

A B AB
A

T I I
N

λ π π π∂⎡ ⎤ = − =⎢ ⎥∂⎣ ⎦
 

The relation obtained is then identical to that which  
is obtained in equation [6.6].  

The introduction to the Peltier effect given by Haase 
[HAA 69] is made on the basis of the energy balance 
equation presented in the form [A1.11] – i.e.: 

( )

, ,'p f p f

Dk k k
k

T pc c T T T p
t t t

h

ϑρ ρ ρ ρ∂ ∂ ∂⎛ ⎞= −∇ ⋅ − ⋅∇ − ∇ ⊗ + + ⋅ ∇⎜ ⎟∂ ∂ ∂⎝ ⎠
+ ⋅ − ∇∑

q v Π : v v

FJ
 

Haase [HAA 69] proposes the following hypotheses: 

– viscous phenomena neglected; 

– 0;p t∂ ∂ =  

– 0p∇ = . 

The energy balance becomes: 

( ), ,'p f p f Dk k k
k

Tc c T h
t

ρ ρ∂ = −∇ ⋅ − ⋅∇ + ⋅ − ∇
∂ ∑q v FJ  [6.7] 

The hypothesis of a zero pressure gradient, associated 
with that of mechanical equilibrium, enables us to transform 
this latter term, so: 

, ,'p f p f Dk k
k

Tc c T h
t

ρ ρ ϕ∂ = −∇ ⋅ − ⋅∇ − ⋅∇ − ⋅∇
∂ ∑q v IJ  
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with: e e ez z ϕ= = − ∇F E . Using the equality: 

( ) ( ), , , ,p f e k p k k Dk k p k k k k k p T
k k k

c z p c c T hρ ρ ρ ρ⋅∇ + ⋅ = ⋅∇ + ⋅ ∇∑ ∑ ∑v v v vJ  

where: ( )
( )

, , j j k
p k k p Y

c h T
≠

= ∂ ∂ and ( ) , 0,k k p T
k

hρ ∇ =∑
 

the energy 

balance equation becomes: 

( ), , ,
'p f p e e p T

e

Tc c T h
t z

ρ ϕ∂ ⎡ ⎤= −∇ ⋅ − ∇ + ∇ − ⋅∇⎣ ⎦∂
Iq I  [6.8] 

Near to thermodynamic equilibrium, we can replace the 
fluxes I  and q'  by their expression as a function of the 
generalized forces (gradients of temperature and of 
potential): 

( )*
ee

e eT

K QgK T
z z T

ϕ
⎡ ⎤⎛ ⎞

= − ∇ + ∇ − ∇⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

I  [6.9a] 

( )*

' e e

e e T

K Q g T
z z

ϕ λ
⎡ ⎤⎛ ⎞

= − ∇ + ∇ − ∇⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

q  [6.9b] 

where ( )*
eQ is the transfer heat of the electrons. 

The correspondence between the proportionality 
coefficients and the coefficients introduced by de Groot and 
Mazur is presented in the Appendix in section A1.4. 

Equation [6.8] becomes: 

( ) ( )
2

*
,p f e T

e

Tc T T s T
t K z

ρ λ τ∞
∂ = −∇ ⋅ ∇ − − ∇ − ⋅∇
∂

I I I  [6.10] 
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where:

( ) ( ) ( ) ( )2* * *
*

0 ,2

1, , ,e e e
e e e e e p e

e e

K Q Q Q
s s T s h g c

z T T T z
λ λ τ∞

⎛ ⎞
⎜ ⎟= − = + = − = −
⎜ ⎟
⎝ ⎠

 

An inhomogeneity in the conductor results in a variation 
of the quantity ( )*

es . The value characteristic of this 

phenomenon is therefore: ( )*
e eT s z . A discontinuity between 

two materials A and B will therefore introduce the 

coefficient: * .
B

e A
e

T s
z
⎡ ⎤⎣ ⎦ This coefficient is identical to that found 

previously, and we can easily verify that we have:

( ) ( )* * .AB e eB A
e

T s s
z

π ⎡ ⎤= −⎣ ⎦  

This presentation is less general than that of de Groot and 
Mazur, which involves the magnetic field. In Haase’s  
study, the hypothesis of mechanical equilibrium 
( d dt =v 0 ) comes into play in the form of a zero pressure 
gradient, which is equivalent if we neglect the influence of 
the magnetic field in the Lorentz force and if electrical 
neutrality is verified. 

6.2. Introduction of the Peltier effect by the general 
interfacial balance equations 

6.2.1. Entropy production 

Consider a flat interface, without internal properties, 
separating two pure metals. The entropy production at the 
interface per unit area and time is written as: 

( )
B

k
Dk Sa

k A

g s W
T T

ρ⎡ ⎤− + − ⋅ =⎢ ⎥
⎣ ⎦

∑q v V NJ  [6.11] 
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where V  is the interfacial velocity. We shall choose a frame 
of reference wherein the interfacial velocity is zero. 

We have: [ ] .B
Sa S A

W = ⋅J N
 
If we use the phenomenological 

relation: S T
T T
λ π= − ∇ +J I , the entropy production becomes: 

B

Sa
A

W T
T T
λ π⎡ ⎤= − ∇ + ⋅⎢ ⎥⎣ ⎦

I N  [6.12] 

This formulation enables us to directly obtain the entropy 
production at the interface without performing a passage to 
the boundary on an elementary volume surrounding the 
interface.  

6.2.2. Influence of the magnetic field 

Relations [A1.13] are written as follows, if we set
1−= −Z L NM N

 
and 1−= −S N M : 

S T= − ⋅∇ − ⋅J Z S I  [6.13a] 

e

e

g T
z

⎛ ⎞
− ∇ = ⋅∇ − ⋅⎜ ⎟

⎝ ⎠
E W R I  [6.13b] 

Z  can be deconstructed into a symmetrical tensor SZ  and 
a antisymmetrical tensor AZ : S A= +Z Z Z . The tensor AZ  is 
associated with the axial vector Z . The Onsager symmetry 
relations are written thus, in the presence of a magnetic field:

( ) ( )ij jiZ Z= −H H . From this, we can deduce that ( )Z H  and

( )SZ H are, respectively, an odd-numbered and even-
numbered function of the field H .  
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For weak magnetic fields, a Taylor expansion can be 
written: 

( ) ( )3 0 4, S H
i ik k ij ij ijlm l mZ H O H Z Z H H O Hα β== + = + +  

If the medium is isotropic, these relations can be 
simplified and, if we ignore all terms whose order is greater 
than 1, they become: , .S Z= =Z H Z 1Z  

Relations [6.13] are then written as: 

( ) ( )S Z T S T= − ∇ − − × ∇ − ×J I H H IZ S  [6.14a] 

( ) ( ) ( )e eg z W T R T− ∇ = − ∇ − − × ∇ − ×E I H H IW R  [6.14b] 

The entropy production at the interface becomes: 

( ) ( )
B

B B
Sa A A

A

W T T
T T
λ π⎡ ⎤= − ∇ + ⋅ − × ∇ ⋅ − × ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

I N H N H I NZ S  [6.15] 

The influence of the magnetic field on the Peltier effect is 

characterized by the term ( ) B

A
⎡ × ⎤ ⋅⎣ ⎦H I NS . This is known as 

the Ettingshausen effect. The coefficient R is the Hall 
coefficient. 

6.2.3. Expression of heat flux 

We shall now determine the expression of the 
discontinuity of the heat flux in the Peltier effect depending 
on the strength of the current passing through the junction 
and the discontinuity of the heat gradient. In order to do so, 
let us express the heat flux as a function of the entropy flux:

.S k Dk
k

T g sTρ− = − +∑J q vJ
 
We can evaluate the right-hand 

side of this equation as a function of the current I , noting 
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that the velocity of the ions in the metallic network is zero:
e e i i e e ezρ ρ ρ ρ= + = =v v v v I  and: 

( ) ( )e i
e De i Di e e i e i

e

g g g g g g
z

ρ ρ
ρ

+ = − ≅ −IvJ J  

because we have: 1.e

i

ρ
ρ

<<  

Relation [A1.14] enables us to evaluate SJ  as a function of 
the current I and of the temperature gradient, which gives 

us: ( ) .e i
e e

T g g sT
z z

λ π= − ∇ + + − −I Iq I  

In the steady-state regime, the conservation of mass  
on passing through the joint imposes the condition: 

[ ] 0B

A
ρ ⋅ =v N . Hence: [ ] [ ] 0B B

A A
I⋅ = =I N , and therefore, the 

discontinuity of the heat flux is: 

[ ] [ ]
B

B B
e e iA A

eA

T I z g g sT
N z

λ π⎡ ⎤∂⋅ = − + + − −⎢ ⎥∂⎣ ⎦
q N  

However, the energy balance at the joint imposes: 

[ ]
B

B

A
A

T I
N

λ π⎡ ⎤∂− =⎢ ⎥∂⎣ ⎦
 

so that: [ ] [ ]B B
e iA A

e

I g g sT
z

⋅ = − −q N . 

The discontinuity of the heat flux is therefore proportional 
to the intensity of the electrical current passing through the 
junction. 
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6.3. Introduction of an average electrical field for a 
flat interface 

We shall now introduce an average surface 
electromagnetic field on the basis of the momentum balance 
equation in the simple case of a flat, immobile interface.  
The general case was discussed in section 4.1.  

In equation [3.104] of [PRU 12], the quantity k k
k

ρ∑ f

appears as a source of momentum. It is possible to transform 
this equation to reveal an electromagnetic momentum: 

( )1
t c

ρ ρ∂ ⎛ ⎞+ × = −∇ ⋅ ⊗ + −⎜ ⎟∂ ⎝ ⎠
v E B v v P T  [6.16] 

We shall neglect the electrical and magnetic polarizations. 

The quantity 
1
c

×E B
 

is the electromagnetic momentum 

density and T is the Maxwell electromagnetic stress tensor: 

( )2 21
2

= ⊗ + ⊗ − +T E E B B E B 1 . 

Now consider a flat, fixed interface with no polarization 
(see Figure 6.3). All the phenomena are considered to be 
steady. 

N

 

Figure 6.3. Configuration of the interface (flat, fixed  
and with no polarization) 
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The momentum balance upon crossing the interface is 
written: 

ρ
+

−

⎡ ⎤⊗ + − ⋅ =⎢ ⎥⎣ ⎦
v v P T N 0  [6.17] 

so: 

[ ] [ ] [ ] ( )2 21
2

v E Bρ
++

+ + +
⊥ ⊥ ⊥− − −

− −

⎡ ⎤⎡ ⎤+ ⋅ − − + + =⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
v P N E B E B N 0  

where: , ,v B E⊥ ⊥ ⊥= ⋅ = ⋅ = ⋅v N B N E N . 

In this interfacial balance, we have neglected the source of 
momentum created by the forces exerted on charges and a 
surface current (the surface fields are null when there is no 
polarization). We have not taken account of the momentum 
associated with the displacement of the surface charges. 

The mass balance across the interface is written as:
.m v vρ ρ− − + +

⊥ ⊥= =  

By introducing the viscous stress tensor, we obtain: 

[ ] [ ] [ ] [ ] [ ] ( )2 21
2

m p E B
+

+ + + + +
⊥ ⊥− − − − −

−

⎡ ⎤+ ⋅ + ⋅ − − + + =⎢ ⎥⎣ ⎦
v N Π N E B E B N 0  

In a projection on the normal, this relation becomes: 

[ ] [ ] [ ] ( )2 22 2 1 0
2

m v p E B
+

+ ++ + +
⊥ ⊥ ⊥− − − − −

−

⎡ ⎤⎡ ⎤ ⎡ ⎤+ + ⋅ ⋅ − − + + =⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦
Π N N E B  

so: 

[ ] [ ] [ ] 2 22 2
/ / / /

1 1 0
2 2

m v p E B
+ ++ + +

⊥ ⊥ ⊥− − − − −
⎡ ⎤ ⎡ ⎤+ + ⋅ ⋅ − − − − =⎣ ⎦ ⎣ ⎦Π N N E B  [6.18] 
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where / /E and / /B  are the vectorial components of E and B in 
the plane of the interface. We now neglect the viscosity term. 
The projection in the plane of the interface is written: 

[ ] [ ] [ ]/ / / / / /m E B+ + +
⊥ ⊥− − −

− − =v E B 0  [6.19] 

Equations [6.18] and [6.19] can be modified in order to 
reveal the charge and the surface current. For this, we shall 
use the Maxwell equations, so that: 

[ ] [ ] [ ] [ ]/ / / /
1, , ,a S az
c

ρ+ + + +
⊥ ⊥− − − −

= = = − × =E 0 E B N I B 0  

where a Szρ is the surface charge and aI the surface current. 
We then obtain the relations: 

( ) ( ) ( ) ( ) ( )2 2 2 2

/ /
22 ,a SE E z B B
c

ρ+ − + −
⊥ ⊥ ⊥ ⊥ ⊥− = − = − ⋅ ×N IBE  

with E being the average electrical field: ( )1
2

+ −= +E EE and  

B  the average magnetic field ( )1
2

+ −= +B BB . 

With these notations, equations [6.18] and [6.19] become: 

[ ] [ ] ( )

[ ] ( )

/ /

/ / / /

1 ,

1

a S a

a S a

m v p z
c

m z
c

ρ

ρ

+ +
⊥ ⊥− −

+
⊥−

+ = + ⋅ ×

= + ⋅ ×

N I

v N I

B

E

E

B
 [6.20] 

In particular, if [ ]/ /
+

−
v

 
is null, the final equation shows  

that the surface current is normal to the average electrical 
field. The source of momentum upon crossing the interface is 
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given by the quantity:
1

a S az
c

ρ + ×IE B , of a form equivalent to 

the source in a homogeneous medium whereE andB play the 
role of fictitious surface fields. 

The momentum balance can still be presented in the 
following vectorial form: 

[ ] [ ] 1
a S am p z

c
ρ+ +

− −
+ = + ×v N IE B  

In this simplified interface model, the discontinuity [ ]/ /
+

−
v

is attached to that of the Poynting vector; indeed:

( ) ( )+ + + − −
−

⋅ = × ⋅ − × ⋅⎡ ⎤⎣ ⎦ N E B N E B NP , which becomes, using 

the Maxwell relations:[ ] / /
1
c

+

−
⋅ = ⋅N E IP . However, if the 

discontinuity of the tangential velocity is null, the electrical 
field is normal to the surface current and the flux of the 
Poynting vector is continuous on crossing the interface:

[ ]/ /
+

−
=v 0 leads to: 0

+

−
⋅ =⎡ ⎤⎣ ⎦ NP , and [ ]/ /

+

−
≠v 0 gives us: 

[ ]( )/ /
/ /m

B
+ +

−−
⊥

⋅ = − ⋅ ×⎡ ⎤⎣ ⎦
EN v NP  

The flux of the Poynting vector will thus be continuous 
when the discontinuity is collinear to the tangential field / /E . 

These different approaches to the Peltier effect have 
numerous points in common. In particular, the effects of 
viscosity are neglected; we are still operating near to 
thermodynamic equilibrium (in order to write the linear 
relations between the fluxes and the forces associated  
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therewith) and we suppose that the hypothesis of mechanical 
equilibrium is verified. 

We have verified that the Peltier coefficient is identical in 
the different presentations. 

We have shown that the entropy production at the 
interface, considered as a discontinuity, is easily obtained 
from the general formulation of the balance equations on 
crossing of an interface. 
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Interaction between Metal and  
Plasma with an Electrical Field 

(Langmuir Probe) 

This section presents a macroscopic approach to the 
interaction between a solid and a plasma at low pressure and 
high temperature. The objective is to better understand what 
happens, for example, during the re-entry of a high-velocity 
body into the earth’s atmosphere. In more modest terms, the 
aim is to be able to interpret the signal of a Langmuir probe1 
(see Figure 7.1(a)) placed in a reactive gaseous mixture in 
thermal disequilibrium at low pressure  (Figure 7.1(b) 
[DUD 82, DUD 87]). 

In the conditions studied here, a sheath of potential is 
created in the plasma surrounding an electrically-polarized 
metal object, which we shall attempt to characterize using 
the laws of TIP, thus bypassing the typical linear framework 
[PRU 81a, PRU 81b]. 

                              
1 Langmuir probes are commonly used in plasma physics, mainly in the 
non-collisional case, to determine the electronic properties (plasma density, 
electronic temperature, energy distribution function). The continuous case 
presented here is more complex, because it involves kinetics in the volume 
and on the surface. 
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The macroscopic description of a homogenous plasma in a 
state of thermal disequilibrium experiencing steady one-
dimensional evolution is presented in section A1.5 in the 
Appendix and, in the case of active walls in Appendix A2 and 
in Chapter 8. 

In this section we present that which relates more 
specifically to the presence of interfaces. 

7.1. Structure of the medium studied here 

Let us specify the hypotheses used in the problem for the 
different zones indicated in Figure 7.1(c). The interface is the 
surface of the Langmuir probe – or more specifically the 
extremity of the tungsten wire in Figure 7.1(b) – which is 
locally comparable to a plane. 

The metal phase (see section A1.2) with uniform 
temperature T and electron concentration eC  (number of 
moles per unit volume), is characterized by a classic Ohm law 
(resistivity R).  

At the interface, the surface concentration atC , in terms of 
active sites, expressed in number of moles per unit area, is 
supposed to be constant. By writing the laws of classic 
chemical kinetics for reactions (I), (II) and (III)2, we obtain 
the expression of the surface concentration of the electrons 
and an initial expression of the intensity I  of the electrical 
current: 

III I III II
des ads e ads des e

at I II III
ads e des des

k k C k k C CI eC
k C k C k

−
+

+

−
=

+ +
N   [7.1] 

                              
2 This is a choice. However, other reactive schemas are possible within the 
sheath (see section 7.4). 
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The plasma is supposed to be at collisional chemical 
equilibrium, and such that the Debye length (equation [7.3]) 
is much larger than the mean free path of the charged 
species: DL l>> , which justifies a collisional approach to the 
potential sheath.4 It is the site of diffusion phenomena which 
can, in this case, be characterized by a single 
phenomenological coefficient eR , similar to a resistivity 
value. We suppose that electrical neutrality is only assured 
for ;x →∞  everywhere else, the Maxwell equation giving the 
electrical charge of the gas and the diffusion law enable us to 
write the difference in concentrations between the charged 
species. We suppose, in addition, that the temperature of the 
heavy species is uniform and equal to T  (the temperature of 
the metal); that of the electrons eT  is also uniform, but 
different to ;T  and the energy exchanges are frozen between 
the heavy species and the electrons.  

7.2. Concentration field 

If we suppose a constant pressure p  and a low degree of 
ionization, the resolution of the system leads to the 
differential equation giving the molar fraction of the 
electrons as a function of the abscissa value [PRU 81b,  
DUD 82]: 

2ln 1
eT T

e e
e e e

e e e

pd X XT Te X X X
dx RT T X T

ε ∞
∞ ∞

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎢ ⎥= − + −⎨ ⎬⎜ ⎟
⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

N   [7.2] 

where  1 for e eX Xε ∞= − <  and 1 for e eX Xε ∞= + < . From this, 
we derive the expression for the electrical current in the 
plasma. 
                              
4 The case of 1D non-collisional sheaths is simpler because of the strong 
electrical field created by the difference between the surface potential and 
the plasma potential. 
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Considerations of dimensional analysis demonstrate the 
order of magnitude of the Debye length characterizing the 
sheath of potential: 

1 e
D

e

RTL
e C ∞

=
N

  [7.3] 

This sheath corresponds to the domain where the 
concentrations and the electrical charge vary noticeably, and 
where electrical neutrality is no longer respected. 

7.3. Characteristic curve of the potential as a function 
of the intensity 

From the Maxwell equation relating to the surface charge, 
we can derive a second expression for the electrical current: 

( )1 1

1

e

e

T T

e

I III
ads e ads e

T TI II III III
ads e des e ads e ads

TI X X
T

k C X k C
k C X k C X k C k

βε
α

α

−

−
∞

− −
∞ ∞

= − − + −

++
+ + +

  [7.4] 

where: 0

2
, ,ee

e e
t t

pXR R X X X
NeC NeC

α β ∞
∞

−
= = = . 

We suppose that the specific rates of reactions II and III 
do not depend on , eT T , or on the potentials, unlike the 
specific rate of the adsorption reaction I. Thus, we obtain two 
expressions giving the intensity as a function of X  and V : 

( )

( )

( )
( )

( )

1

1

1

1

_1

1 1

e

e e

e e
e

e e

T T

T T T T

T T T T
T T

T T T T
e

aeI
ae b cX

T ae XI X X
T ae b cX

γ

α εβ

+

+

+
−

+

⎧
=⎪

+ +⎪
⎨

+⎪ = − − + − +⎪ + +⎩

V

V

V

V

  [7.5] 
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where: 

, , 1 , 1II III II III III
des e des des e ads e des ta k C k b k C k C c b a N ek Cγ−

∞ ∞= = = + =  

The reduced potential V  has the expression: 

( )1 2 p
e V V RI V

RT
Δ= − − −N

V   [7.6] 

where R  is the total resistance of the system: 1 2 eR L R L R= +  
and where pVΔ  is a constant, calculable on the basis of the 

standard molar thermodynamic potentials of the electrons 
[PRU 81a, PRU 81b, DUD 82]:  

( )0

2

1 ln
e

e e
p T ee

pT XV RT
T

Δ μ μ − ∞⎡ ⎤⎛ ⎞= − − + ⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦N e

  [7.7] 

The parametric equations giving I  and V  as a function of 
the parameter X  are finally deduced from the system [7.5]: 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( )

1 1 1

1

1 1

1 ln

e e e

e

e

T T T T T T
e

T T

T T

e

a X X T T X a b cX
I X a

a b b a X

a b cX I XTX
T I X

εβ

α α γ

γ

γ

−

− − −

−

⎧ + − − + − + +⎪ =⎪ + − +⎪
⎨

⎛ ⎞⎪ + +⎛ ⎞ ⎜ ⎟= +⎪ ⎜ ⎟ ⎜ ⎟−⎪ ⎝ ⎠ ⎝ ⎠⎩
V

  [7.8] 

By solving system [7.8], we are able to plot the 
characteristic curves of current/voltage ( )I V , compare  
their shapes to those of the curves obtained  
experimentally with Langmuir probes. This system  
enables us to evaluate the influence of the parameters 

, , , ,a b α β γ  on the signal, and the influence of the thermal 
disequilibrium. 

Figure 7.2 gives some examples of resolution, and shows 
the effect of thermal disequilibrium. Figure 7.3 shows the 
characteristic curves obtained in the first two cases from 
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Figure 7.2 [PRU 81a]. We can see that the high number of 
parameters involved in ( )I V  makes it difficult to determine 

the electronic parameters ( ),e eT n  of the plasma. 

 

Figure 7.2. The curves F = I and F = v as a function of 0 /e eX X X X ∞= =
for different values of the temperature ratio eT T  in the case studied by 
Dudeck: a = b, = 1, a = 2, β = 0.25, γ = 1  [PRU 81a, PRU 81b, DUD 82] 

 

Figure 7.3. The characteristic curves ( )I V  for the values  
1 (solid-line curve) and 2 (dotted-line curve) of the temperature  

ratio eT T  in the case studied by Dudeck: a = b, = 1, a = 2, β = 0.25, γ = 1  
[PRU 81a, PRU 81b, DUD 82] 
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7.4. Reactive schemas on contact between metal and 
plasma 

The reactive schema chosen in section 7.1 is not unique.  
If we again accept the adsorption-desorption metal- 
interface reaction: e- + S eS  and the reaction:  
A A e+ −+  in the gaseous phase, we can also consider in the 
sheath of potential the other reactive schemas 2) to 4) in 
Table 7.1, to which, in each case, we need to add the reaction 
of adsorption of the electrons e S eS− + →  [PRU 81a] (see 
Figure 7.4). 

Remember that the thickness of the sheath of potential is 
approximately the same as the Debye length of the particles 
in question, as we can demonstrate by studying the evolution 
of the concentrations in the one-dimensional flow of the 
plasma. 

In addition, we can introduce a pre-sheath which forms 
the junction between the plasma and the sheath, where the 
disequilibrium is slight. 

 

 Figure 7.4. Structure and reactive processes of the  
medium studied here 
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Schema 1) :

SASeSASASA +→+→+ +++ ,Schema 2) :

Schema 3) :

SAeSA +→++

Schema 4) :

eSA ++ SA+

SAASASeSA +→→++ ,

Schema 5) : SAeSSASASA 2, +→+→+ +++

 

Table 7.1. Reactive schemas envisaged by M. Dudeck in [PRU 81a]. To 
each schema, we need to add the reaction of adsorption of the electrons 

e S eS− + → . It is Schema 1) which was adopted in section 7.1 

Finally, it ought to be mentioned that this approach can 
also be used with an insulative medium instead of the  
metal, with the surface potential then being the  
so-called “floating” potential corresponding to a total amount 
of zero current collected. 
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Hall-Effect Space Thruster 

As an example of the interaction between surface and 
plasma in the presence of electrical and magnetic fields, we 
have chosen to look at Hall-effect thrusters (HETs), the 
recently-released miniaturized version of them and ways of 
modeling them.1 

After giving a brief history of the discipline, we shall 
recap on some of the fundamental concepts: the Hall effect, 
the Debye length and the specific impulse of a rocket engine. 
Then we shall briefly describe how these engines work, 
before applying the balance equations for conductive media 
to plasma and examining the boundary conditions. We shall 
also touch on numerical modeling, looking at the CRATER 
code created by the IPPLM2 in Warsaw. 

We have made the choice here to use the microscopic 
notations employed by specialists in these domains, but we 
have shown the correspondence (see section 8.3.1) with the 
macroscopic notations used in previous chapters. 

                              
1 The author would like to thank Michel Dudeck for his invaluable help in 
the writing of this chapter.  
2 Institute of Plasma Physics and Laser Microfusion, 23, ul.Hery, Warsaw, 
Poland. 
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8.1. History 

8.1.1. Hall-effect propulsion 

The mode of propulsion in which we are interested here  
is Hall-effect propulsion – electrostatic for the acceleration  
of the ions and electromagnetic to concentrate the  
electrons and create ions. This mode of propulsion was 
devised in the USSR in 1960 by Alexander Morozov. The 
weather satellite Meteor was the first (launched in 1971, and 
brought into operation in 1972) to use a Hall-effect engine. In 
such engines, the magnetic field is generated by an electro-
magnet.  

8.1.2. CubeSats 

In recent years, we have seen the increasing use of  
micro- and nano-satellites3 driven by the space agencies and 
the sectors of research and higher education. The concept of 
a CubeSat (Figure 8.1) was born in the 1990s at the 
University of California (in the mind of Professor Bob Twiggs), 
based on the idea that it was possible to put small objects into 
orbit (cubes with a side of 10 cm – 1 U – or parallelepipeds 
measuring 10 × 10 × 30 cm – 3 U), no heavier than 1 kg for 
the 1 U format, which costed little and had a wide variety of 
uses: to serve as a pedagogical tool, for the purposes of 
preliminary experiments for space travel, as a means of testing 
new technologies, or for small scale scientific experiments. Six 
were launched in 2003, sent into orbit by the VEGA launcher 
and, after a short break for observation in 2004, the number 
reached 14 in 2012. 

CubeSats currently have an average lifespan of 3 years 
before they disintegrate in low atmospheric orbit. The thrust 

                              
3 The majority of these examples, unless otherwise specified, are drawn 
from a report by A. Mestre L3/University of Paris 11 [MES 13]. 
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forces needed to change their orbit are not very great, so the 
thrusters attached to these satellites are electrical, 
electrostatic or electromagnetic rather than chemical, and 
must respect stringent constraints in terms of their size, 
weight, and available power.  

 

Figure 8.1. Examples: a) the Robusta-1 nano-satellite launched by the 
space technology center SOLARIUM; b) Smart-1 from the  ESA , which is not 
a  CubeSat, but with a  PPS1350-G made by  SNECMA (images taken from 
[GUY 12]); c) EntrySat from the ISAE, designed to study the behavior of 
orbiting debris (see the ISAE Website) 

8.1.3. Miniaturization of plasma thrusters 

In order to miniaturize this type of engine, make savings 
in terms of weight and cumbersomeness and adapt it to the 
constraints to which CubeSats are subject, Marcel Guyot 
(GEMaC4-CNRS/Université de Versailles Saint-Quentin) had 
the idea, in 2003 [GUY 08], of replacing the coils 
(characteristic size 3 cm) creating the magnetic field with 
permanent magnets (size 3 mm). A new generation of 

                              
4 GEMaC: Groupe d’étude de la matière condensée (Condensed Matter 
Study Group). 

a)

c)

b)
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thrusters was born: PPIs5 (small innovative thrusters), of 
which there is also a miniature version in the µ-PPI  
[GUY 12]. Besides the advantages in terms of weight and 
cumbersomeness mentioned above, these smaller satellites 
also have lower electrical consumption and a lesser cost. 

One of the major problems which arise with SPTs 
(Stationary Plasma Thrusters) is that of the instabilities and 
oscillations [CHA 61] to which the various parameters are 
vulnerable, and which affect the thrust and the 
performances of this type of thruster. The oscillations 
observed, which are often specific to each frequency band, 
have been studied experimentally by Choueiri [CHO 01] 
between 1 kHz and 60 MHz. The discussion relates to low-
frequency waves of around ten kHz, transient oscillations 
propagating in an axial direction, azimuthal electronic drift 
waves, unstable ionization waves, and the emission of waves 
specific to slightly-ionized plasmas passing through electrical 
and magnetic fields. In order to design high-quality 
thrusters, it has proved necessary to make a significant 
effort in terms of analysis and modeling [BOE 98, BAR 03, 
BAR 09] and numerous problems still need to be resolved if 
we wish to monitor their operation [BAR 11] and employ 
predictive codes. 

The configuration of these plasma thrusters is rather 
complex, so meticulous theoretical and numerical modeling 
is needed. One of the major benefits in terms of progression 
is the acquisition of a good knowledge of the interactions 
between the plasma and various surfaces present in the 
engine [BAR 03, TIA 13], whose nature (insulating or 
conductive) and surrounding area (sheath of potential) come 
into play and alter the performances. 

                              
5 PPI (Petits Propulseurs Innovants – small innovative thrusters) – a new 
design for a Hall-effect thruster, built around permanent magnets.  Patent 
FR 0705658 France, Dispositif d’éjection d’ions à effet Hall [Text] / M. 
Guyot, P. Renaudin, V. Cagan, C. Boniface. – 2007. 
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8.2. Recap of the fundamental concepts 

8.2.1. The Hall effect 

A magnetic field acts on the moving charges. The current 
passing through the conductive medium is produced by 
charges (the free electrons) whose velocity of motion shall be 
represented by the symbol v . 

These electrons are therefore subject to a force 

m e= − ×F v B  (Lorentz force), where ( )e−  corresponds to  
the charge on an electron. This causes the displacement of 
the electrons and a concentration of negative charges on one 
side of the material, and a deficit of negative charges on the 
other side. This distribution of charge gives rise to the Hall 
voltage HallV , and to an electrical field HE . 

This electrical field is responsible for an electrical  
force which is exerted on the electrons: e He= −F E   
(Coulomb force). Equilibrium is reached when the sum of the 
two forces is zero (Newton’s second law). Therefore, we can 
write6: 

( )e H een p+ × + ∇ =E v B 0   [8.1] 

and the resulting flux of electrons is: 

2 2
e

e e
e

pen
en

⎛ ⎞∇ ××
⎜ ⎟≅ − +
⎜ ⎟
⎝ ⎠

BE BJ
B B

, where the first term between the 

parentheses is the drift and the second the diamagnetic drift. 
The term in ×E B  corresponds to the Hall current. 

                              
6 http://en.wikipedia.org/wiki/Hall_Effect gives the simplified formula: 

H = − ×E v B .  
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8.2.2. Debye length 

The concept of the Debye length has already been touched 
upon in the chapter on metal/plasma interactions (Langmuir 
probe). 

In a plasma containing neutral particles, electrons at a 
density en  of charge eq e= −  and positive ions with the charge 

j
j

q j e=∑  at molar density ijC , the Debye length – or Debye 

radius [ART 75] – has the expression: 

0
2

,

1
D

e e ij i
i j

RL
e C T j C T

ε=
+∑N  

  [8.2] 

This length becomes 2
j j

j
k T n q∑  at an equilibrium 

temperature i eT T T= = . The quantity 0ε  is the permittivity of 
a vacuum, R k= N  the universal perfect gas constant, k  the 
Boltzmann constant and N  Avogadro’s number, eT   
the temperature of the electrons and iT  the temperature of 
the ions. This characteristic length was introduced in the 
previous chapter, by equation [7.3], where the role of the ions 
was discounted. 

The physical meaning is as follows: in a plasma, an  
ion attracts electrons, which form a cloud around it and 
thereby act as a screen, decreasing its potential.  
The resulting electron sphere is the Debye sphere, and its 
radius is DL . 

At an observation scale smaller than DL , there may be a 
separation of charge; at a scale larger than DL , the plasma  
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regains its electrical neutrality in the absence of a 
sufficiently strong electrical field to separate the charges.  

This is what happens in the vicinity of a wall, where a 
sheath of potential is formed, with thickness DL  (zone with 
electrical field, often non-collisional because DL  is much 
smaller than the mean free path), within which the plasma 
is no longer neutral (see the Chapter 7 on the interaction 
between plasma and metal). 

8.2.3. Larmor radius 

The Larmor radius [ART 75] describes the trajectory of a 
particle with mass iM , charge iq  and initial velocity 0v  in a 
uniform magnetic field of intensity B: 

0L j jr M v q B=   [8.3] 

This value needs to be compared with the characteristic 
dimensions of the channel confining the plasma discharge in 
the thruster.  

8.2.4. Specific impulse of a rocket 

The mass flow rate of the engine being m S , and with m  
being the unit mass flow rate of propellant and S  the cross-
sectional surface area of the engine outlet, the thrust of the 
rocket is given by the momentum balance: Sm S=T V , with 
the ejection velocity SV  of the propellant in relation to the 
body of the rocket. The specific impulse is equal to the thrust 
provided per unit weight of propellant consumed (and 
therefore ejected): 

0 0SIsp T m S g V g= =   [8.4] 
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Konstantin Tsiolkovski7 showed that the mass MΔ  of 
propellant consumed by a rocket of initial mass 0M  was 
equal to:  

( )0 1 exp SM M V VΔ Δ= ⎡ − − ⎤⎣ ⎦   [8.5] 

where VΔ  is the resulting variation in velocity. For a given 
rate of consumption, the increase in velocity is therefore 
proportional to the ejection rate of the propellant. It is also 
worth noting that, with an equal amount of mass consumed, 
the higher the gas ejection rate, the greater the velocity 
achieved by the rocket. Conversely, for a given operation, i.e. 
for a set value of ,VΔ  the consumption is lower when the 
ejection rate is higher. 

One of the characteristics of the plasma thrusters 
presented hereinafter is that they achieved very high 
ejection rates by acceleration of the electrical charges, and 
therefore high specific impulse values, but with a low mass 
flow rate; hence, the variation in velocity takes a longer time 
than with chemical propulsion. The choice between 
“chemical” and “electrical” therefore depends on the intended 
purpose. 

8.3. Hall-effect thruster 

8.3.1. Classic Hall-effect thruster 

The cross-sectional and volume diagrams given in  
Figure 8.2 show an HET. The cylindrical engine comprises a 
ring-shaped discharge channel and coils to create an 
external magnetic field B  (essentially radial), an external 
cathode, an anode and a gas injector (xenon gas, for example, 
                              
7 Konstantin Tsiolkovski formulated his equation around the end of the 
19th Century. He is considered to be the father of modern astronautics 
[MES 13]. 
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collisions) and serve to ionize the gas (essentially creating 
Xe+ ions). The remaining electrons serve to electrically 
neutralize the plasma jet. This prevents the satellite from 
becoming positively charged, which would result in the 
divergence of the jet under the influence of the mutual 
repulsion of the ions with the same charge. 

An electrical field E  is created by the difference in 
potential between the cathode and the anode, and facilitates 
the acceleration of the ions. The local value of this electrical 
field is not set, but results from different interactions.9 It is 
strongest in the vicinity of the outlet vent. 

This configuration creates a strong azimuthal Hall 
current (measuring several dozen amperes). The majority of 
the electrical field is encountered in the vicinity of the outlet 
plane, where the magnetic field is strongest. In a manner of 
speaking, the conservation of the electrical current I  (we 
have ,n nI E B v Bα∝ =  with the mobility of the electrons α  
tending toward zero) results in a compensation of the 
electrical field by the plasma. We see the creation of a self-
consistent electrical field without the need to generate one 
using electrically-polarized grids, as happens with other 
thrusters such as GITs (Gridded Ion Thrusters). 

8.3.2. PPIs and µ-PPIs 

In the case of a PPI, the coil is replaced by small 
permanent magnets placed on both sides of the thruster. The 
insulating walls are made of alumina or BNSiO2. The 
nominal version can generate a thrust force of between 1 and 
15 mN. The gas used is a rare gas (xenon or krypton). In the 

                              
9 Logically, in light of the Maxwell equations, the same should be true of 
the magnetic field ;B  however, this latter field is often considered, 
hypothetically, to be a given, provided by the arrangement of the coils or 
the magnets. 
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case of a µ-PPI (micro-Hall Effect Thruster), the estimated 
thrust is nearer to 0.1 mN. In addition to atmospheric  
re-entry of CubeSats placed in high Earth orbit, it can be 
used to keep them in orbit, to perform link-ups, for distant 
positions or for long-distance missions. 

8.4. Modeling of Hall-effect thrusters 

The balance equations for homogeneous conductive media 
were summarized in Tables 2.1 and 3.1. Those for 
homogeneous plasmas at two kinetic temperatures are given 
in section A1.5.4. The interfacial balance equations in a 
conductive medium are shown in Table 4.1, and the 
metal/plasma interactions in the presence of an electrical 
field were discussed in Chapter 7. 

We shall now go into greater detail with these equations 
in order to render them appropriate for a more in-depth 
study of Hall-effect thrusters. 

8.4.1. Microscopic and macroscopic values. Reminders 
and definitions 

Although plasma physicists generally use different 
notations to those used by combustion specialists, it is 
because they are often dealing directly with properties at the 
microscopic scale. However, it is possible to easily convert 
from one system to the other. 

8.4.1.1. Mass and density of the particles 

The particles encountered in the cold plasmas studied 
here (as opposed to the hot plasmas encountered in nuclear 
fusion) are neutral particles (atoms or molecules), ions and 
electrons. The ratio between the mass of a molecule-gram or 
mole and the mass of a molecule is equal to Avogadro’s 
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number10 N . If M  is the molecular mass and M  the molar 
mass, we write: M=M N . This ratio is also valid between an 
electron-gram and an electron, and between an ion-gram and 
an ion. 

The fact of considering particle-grams is linked to the 
macroscopic reality of the quantities of matter involved in 
the experiments. 

With particles instead of particle-grams, the density to be 
considered will be k kn C= N , where kC  is the number of 
particle-grams of species k per unit volume used in 
macroscopic fluid mechanics. 

8.4.1.2. Electrons, photons and universal constants 

Here, let us recap some of the fundamental constants that 
need to be known. Their values are listed in the following 
footnote.11 

The energy unit commonly used in plasma physics is the 
electronvolt. This represents the amount of energy acquired 
by an electron beginning in the resting state by a difference 
of electrical potential of 1 volt.  

The mass of the electron is Me and its charge is in 
Coulombs (–e).  

The photon is a particle (a boson) with a theoretical mass 
of 0, and in reality, less than 10-54 kg, measured 
 
                              
10 Remember that 23 16.02214129 10 mole−= ×N . 

11 Electronvolt: 1eV = 1.602176487 × 10-19 J; mass of the electron: Me = 9.109 
× 10-31 kg; charge on the electron in Coulombs e = 1.602 × 10-19 C; Planck’s 
constant: h= 6.62606957 × 10-34 J.s; Boltzmann constant: k = 1.381 × 10-23 J.K-1; 

universal gas constant: 1 18.3144621 J.mole .KR k − −= =N ; Faraday constant:
4 19.648534 10 . moleF e C −= = ×N . 
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experimentally. A photon is in perpetual motion at the speed 
of light. The duality between waves and corpuscles 
(corpuscles only manifest themselves during interactions) 
gives the energy carried by the photon as being equal to the 
product hν  of Planck’s constant h by the frequency of the 
wave packet. 

Boltzmann’s constant is k. It was introduced by 
Boltzmann in 1873, based on the entropy of a system at 
macroscopic equilibrium, but free to evolve microscopically 
between Ω  different micro-states. This system has the  
entropy lnS k Ω= . Boltzmann’s constant also plays a role in 
the thermal energy of each degree of freedom of a molecule, 
by way of: 1 2E k T= . The universal gas constant R is equal 
to the product of Boltzmann’s constant by Avogadro’s 
number. 

Faraday’s constant F is the product of the elementary 
charge e by Avogadro’s number. 

8.4.2. Unsteady mono-dimensional model for Hall-effect 
thrusters 

Hall-effect thrusters exhibit a geometric configuration 
facilitating the use of a quasi-one-dimensional model, 
somewhat like the nozzles in chemical propulsion (often, we 
can even adopt the one-dimensional model with a constant 
straight section; on this subject, see Appendix A2).  

However, in view of the interactions at the walls and  
the presence of the magnetic field inducing an azimuthal 
motion of the electrons, we need to integrate these 
interactions into the balance equations as a function of time t 
and abscissa value x. This is what we usually do in a  
one-dimensional flow with heat-exchange at the walls  
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(for example, see [PRU 81a] for a plasma and section 6.2.3 of 
this book for a metal).  

However, there are a few differences here with regard to 
the interaction between the plasma and the wall. Indeed, in 
Chapter 7, the metal/plasma interface and the sheath of 
thickness LD exhibit a prevailing direction perpendicular to 
the axis, whereas here, the surfaces of electromagnetic 
interaction are generally parallel to it. 

A number of authors have established balance equations 
for these flows, using simplifying hypotheses. For examples, 
see Barral et al. [BAR 03] and Gascon, Dudeck and Barral 
[GAS 03] in the steady-state case, or Bœuf and Garrigues 
[BOE 98] for an initial approach to the low-frequency 
oscillations in plasma thrusters and, more recently, Barral 
and Miedzik [BAR 11] for a more elaborate model of these 
phenomena in the context of a closed-loop study of Hall-effect 
accelerators. Also see Dabiri et al. [DAB 13]. 

We refer readers to the aforecited articles, and also to 
Barral and Ahedo [BAR 09], which goes into greater detail to 
present the system of balance equations appropriate to deal, 
in particular, with low-frequency oscillations12 (~10 kHz, 
breathing mode). The species injected in this case is xenon. 

8.4.2.1. Equations of the charged species 

We shall suppose that the ions have straight-line 
trajectories parallel to the axis of the thruster. The velocity 
of the electrons has an axial component and an azimuthal 
component. The charge on the ion is equal to that of the 
electron, but of the opposite sign. The condition of neutrality 

e in n=  is respected outside of the sheath of potential. 

                              
12 On this subject, see the articles by Choueiri [CHO 01] and Bœuf and 
Garrigues [BOE 98] for reviews concerning the low-frequency oscillating 
regimes of plasma thrusters. 



Hall-Effect Space Thruster     155 

The system of balance equations adopted for the charged 
species is given in Table 8.1. In this table, the electrons have 
an axial velocity ,e xv  and an azimuthal velocity ,ev θ ; the 

electrical field has an axial component xE  and an azimuthal 
component Eθ  (but has only the axial component E  in 
[BAR 09], because this article does not take account of Eθ , 
which is possibly generated by a non-steady-state magnetic 
field, owing to the axisymmetrical relation E x B tθ∂ ∂ = −∂ ∂
given in [BAR 11]); the quantities marked with a w relate to 
the walls. 

Neutral 
species, 

electrons 
and ions 

( )

( )

,

,
,

,

n n
n e i w e

e e xe
n e i w e

e ie
n e i w e

n nV n n n
t x

n vn n n n
t x

n vn n n n
t x

β ν

β ν
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∂ ∂
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∂ ∂
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⎧ ∂ ∂⎡ ⎤ ⎡ ⎤+ + +⎪ ⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦⎨
⎪= − − − −⎩

(7)  

Table 8.1. Mono-dimensional balance equations for the  
charged species, as given by [BAR 11]. The meanings  

of the various terms are explained in the text 
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If we adopt a simplified model13 [BAR 03, AHE 03], the 
frequencies of interaction between the ions and the wall and 
between the electrons and the walls are written with the 
notations given in Figure 8.2(a): 

( )

, 2 1

, ,

for

0 for

1

e i
c

i w c c

c

e w i w

kT M
a x

R R
x

ν

ν ν σ

⎧
≤⎪= −⎨

⎪ >⎩
= −

  [8.6]  

In these expressions, c  is the length of the channel, ,i wv  
is the Bohm velocity (acoustic velocity of the ions), σ  is the 
rate of secondary electron emission at the wall, and we take 
account of a wall with floating potential. The coefficient a is 
equal to 2 according to Dudeck and 4/3 according to Barral 
and Ahedo [BAR 09].14 

The loss of energy of the electrons at the wall and the 
radial potential of the sheath are, respectively [BAR 09]:  

( )

( )

22 1 2 1

ln 1
2

w e e e w

e i
w

e

kT M v e

kT M
e M

ε σ φ

φ σ
π

⎧ = + + −
⎪⎪
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= −⎢ ⎥⎪

⎢ ⎥⎪ ⎣ ⎦⎩

  [8.7] 

                              
13 We discount the electrostatic lens effect occurring in the acceleration 
zone of the thruster channel, causing the divergence of the jet. The 
ionization reaction is: Xe e Xe e e++ → + + . The energy of the electrons 
creates few doubly-charged ions. 
14 The second term on the right-hand side of equation (2) in Table 8.1 is 

equal to: 
( )

( )
,1 2

, ,2 2
2 11 2

22 e e wc c
e e w e e w

c cc c

n vR R
n v n

R RR R
π

ν
π

+
− = =

−−
, according to Dudeck 

(December 2013), which gives us 2a = . We also need to take into account 
the electron emission rate σ , which gives system [8.6]. In the calculation 
performed by Barral and Ahedo, account is taken of the radial form of the 
flux between the inner and outer walls [BAR 03, AHE 02a, AHE 02b], 
which gives us the value 4 3a = .  
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The ionization rate is written as: 

1 4
13 3 1

0 0
2exp , 1.8 10 ,i

i

m sεβ β β
ε
ε

ε
− −⎛ ⎞ ⎛ ⎞= − = ×⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
  

2 2 2 2
, ,

3 1 ,
2 2

  e e e e e x eT M v v v v θε = + = +where :  
[8.8] 

The total electron transfer rate is equal to: 

( )
,

m
e n B ce e wnν β α ω ν= + +   [8.9] 

where ( )mβ  corresponds to the collisions between electrons 
and neutral species, Bα  is Bohm’s electron diffusion 
coefficient15 and ce eeB Mω =  is the cyclotronic frequency 
associated with the local magnetic field B. With regards to 
the magnetic field, it is assumed to have a Gaussian profile: 

( )
2

max exp c

B

xB x B
⎡ ⎤⎛ ⎞−
⎢ ⎥= −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (where B = 1.25 cm and maxB =  

22 mT in the article [BAR 09], but maxB  fluctuates over time 
in [BAR 11]).  

The boundary conditions at x = 0 and  x =   are as follows: 

,0
0

,

5 , , .
3

e e x Bx
i e ex x x

i e n i w x

k T v
v v T Const

M nθ
ω

ν β ν
=

= = =
=

= − = =
+ −

  [8.10] 

The first is the Bohm condition, affecting the radial 
velocity of the ions, at the sheath of the anode; the second 
                              
15 The diffusion of plasmas in a magnetic field is assumed to obey a  
Bohm law [BOH 49]. This is characterized by a diffusion  
coefficient: ( )1 16BD k T e B= , with the coefficient ( )1 16  being modified 

later on. 
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condition results from an approximation where the inertial 
terms are discounted. 

For simplicity’s sake, we choose a simple advection model 
for the neutral species where .V Const= , which gives us 
equation (1) from Table 8.1. The boundary condition needing 
to be respected is at the inlet anode: 

0 0

1
n e ix x

i

Mn n v
V AM= =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
  [8.11] 

where M  is the mass flow rate of the propellant injected and 
A  the area of the straight section of the channel. 

We could replace the condition of constant current I with 
that of constant potential U at the boundaries of the system. 
The boundary conditions are unchanged, and we can solve 
the system by taking an arbitrary distribution ( ),nn t x . The 
low-frequency solution will then be determined in terms of 

and nIν . 

8.4.3. Results and conclusions 

The model defined above has given rise to a theoretical 
analysis [BAR 09] and numerical simulations. This has 
proved effective in terms of closed-loop control of Hall-effect 
accelerators [BAR 11].  

8.4.3.1. Modeling of  “breathing-mode oscillations” 

A valid model of a Hall-effect thruster must involve the 
phenomena observed during normal operation and  
the influences of the different parameters. Many authors 
have attempted to construct such a model. 
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We adopt a simplified form of the system of equations. By 
subtracting equations (2) and (3), term by term, we obtain: 

( ), .e i e xI e An v v Const= − =   [8.12] 

The straight cross-sectional area A of the channel is taken 
to be constant. Relation [8.12] is equivalent to the relation 

.eI m z Const= =  mentioned above. This confirms the 
coherence of the system of equations given in Table 8.1. 

In addition, we eliminate the electrical field E  between 
equations (4) and (6). 

By introducing the quantities hj, j = 1,… 5 defined in 
[BAR 09], as not being functions of the electron density en , 
and integrating Ohm’s law (5), we find a new form of the 
system of balance equations. 

Finally, a form of the charged species balance equations, 

steady but only with the new variables: 
1 and n e

I
ndIv

I dt I
= = , 

will give us a system which is easier to solve numerically and 
analyze: 

( ) ( ) ( )

( ) ( )

( )

2

, 1 2

3 2
, , 3 2

3 , , 4

50 0

n nn
n , n n , n n ,

n n
n n , n n ,

n1
n

i i ei
i e x I i i I

e x e e
e I e x I e

e

x x

d M v Td v
e A v v I h h M v

d x dx

d v v d T
h v v h T

dx dx
d T

U E dx h dx
e dx

θ
θ

ν ν

ν ν

= =

⎧ +
⎪ − = = − = −
⎪
⎪
⎪ = − = +⎨
⎪
⎪ ⎡ ⎤

= = − +⎪ ⎢ ⎥
⎪ ⎣ ⎦
⎩

∫ ∫

 [8.13] 

With an asymptotic approach based on the parameter 
0 0e nn nε = , we obtain a general representation of the small 

disturbance breathing mode. In particular, we can show that 
the density of the plasma is a steady-state wave, whereas the 
transfer of the neutral particles involves both a steady-state 
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Magnetic PID requires only a low amount of power, but is 
underpinned by complex physical phenomena. 

Voltage PID functions very well, and presents the 
advantage of having a simple theoretical basis. 

8.4.3.3. Other considerations 

In other articles, consideration is taken of the existence of 
several neutral species. In addition, the complexity of the 
motions of the electrons has led authors to consider two 
temperatures: / /eT , along the magnetic field, and eT ⊥ , 
perpendicularly to the magnetic field [BAR 03].  

After integration of kinetic equations, and accepting a bi-
Maxwellian distribution with an agitation rate in the plane 
( ),x θ , this leads us to write two independent steady-state 
equations of the energy for the electrons: 

( )

( )

, / /
/ /

,
,

1 2

2

e e x e
e

e e x d e
e e x e

d n v T
Q

dx
d n v kT

n v eE Q
dx

ε ⊥
⊥

⎧ ⎡ ⎤⎣ ⎦⎪ =
⎪
⎨

⎡ ⎤+⎪ ⎣ ⎦ = − +⎪⎩

  [8.14] 

where / /eQ  and eQ ⊥  are defined in the article by Barral, 
Makowski, Peradzyski, Gascon and Dudeck [BAR 03]. 

Note that another very important problem, in addition to 
the plasma/surface interactions and the oscillations, is that 
of the electron transport, in a direction transversal to the 
magnetic field lines. 

Finally, it should be mentioned that electrical fields can 
be used to influence fluid flows beyond the realm of 
combustion. Such is the case with the control of air flows by  
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“plasma actuators” [SOS 07, LOM 11], which is the subject of 
study of the research group “Contrôle des décollements”16 
(separation control): for example, we could use a high-voltage 
electrical field to reattach wall boundary layers.  

 

                              
16 Research group bringing together 30 or so teams from the CNRS, 
various universities in France and ONERA. See the Website at: 
http://www.univ-orleans.fr/GDR2502/GDR2502.html. 
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Appendix 1 

Additional Points About  
Balance Laws in the Presence  

of an Electromagnetic Field 

To begin with in this appendix, we shall give an overview 
of the case of the simplest possible fluid mixture – i.e. one 
which is non-reactive and non-polarized. Then we shall 
discuss the case of metal. Next, we shall revisit the energy 
equation and the phenomenological relations. Finally, we 
shall present the case of homogenous plasmas. 

A1.1. Recap on energy and entropy production 

For the purposes of our discussion here, we suppose that 
the medium under examination, composed of different 
chemical species, is isotropic, in a state of local 
thermodynamic equilibrium with no polarization or chemical 
reaction [PRU 76]. The flow velocity is much slower than the 
speed of light, so the relativistic phenomena can be 
discounted: 2 2 1cR U c= << , where U  is the velocity 
characterizing the medium, and c the celerity of light. 

The state of the system is therefore defined locally by the 
electromagnetic variables of state E and B  (the electrical  
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and magnetic fields) and by neutral variables of state such 
as the temperature, the density of the component ingredients 
and the pressure. 

A1.1.1. Balance equations 

The system conforms to the balance laws affecting mass, 
momentum and energy, the Maxwell equations (which can 
also be expressed on the basis of a balance) and finally, the 
Gibbs equation. 

A1.1.1.1. Conservation of mass of species k 

Let DkJ  represent the diffusion flux of species k in the 

barycentric motion ( )Dk k kρ= −v vJ . The mass balance in the 
absence of a chemical reaction is written thus: 

k
Dk

dY
dt

ρ = −∇ ⋅ J  [A1.1] 

A1.1.1.2. Conservation of overall mass 

By adding together the mass balance equations 
corresponding to each component, we obtain the overall 
balance: 

d
dt
ϑρ = −∇ ⋅ v , or: ( )

t
ρ ρ∂ = −∇ ⋅

∂
v  [A1.2] 

A1.1.1.3. Conservation of charge 

If we multiply equation [A1.1] by kz , which is the charge 
per unit mass of species k , then after summation we obtain: 

dz dtρ = −∇ ⋅ i , or: 
( )z

t
ρ∂

= −∇ ⋅
∂

I  [A1.3] 
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with z being the total charge per unitmass ( k k
k

z zρ ρ=∑ ) and 

i the conduction current ( k Dk
k

z=∑i J ). 

A1.1.1.4. Conservation of momentum 

The momentum balance in a non-polarized medium is 
written as: 

( ) ( ) 1z
t c

ρ
ρ ρ

∂ ⎛ ⎞= −∇ ⋅ ⊗ + + + ×⎜ ⎟∂ ⎝ ⎠

v
v v P E I B  [A1.4] 

Or indeed:
1d z

dt c
ρ ρ ⎛ ⎞+ ∇ ⋅ = + ×⎜ ⎟

⎝ ⎠

v P E I B , where P  is the 

pressure tensor and I the total current: k k k
k

zρ=∑I v . 

We neglect the influence of the radiative pressure in the 
momentum balance. 

A1.1.1.5. Conservation of energy 

Let: ( )2 221 1
2 2tote e vρ ρ ⎛ ⎞= + + +⎜ ⎟

⎝ ⎠
E B

 
be the total energy 

per unit mass. 

The energy balance equation is: 

( ) 21
2

tote
e v

t
ρ

ρ
∂ ⎡ ⎤⎛ ⎞= −∇ ⋅ + + + ⋅ +⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦

q v P v P  [A1.5] 

with e being the internal energy per unit mass, q  the heat 
flux and c= ×E BP the Poynting vector. 
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A1.1.1.6. Entropy balance 

If we employ the hypothesis of local equilibrium, it is 
possible to write the Gibbs equation: 

k
k

k

dYds de dT p g
dt dt dt dt

ϑ= + +∑  

This relation, combined with the balance equations, leads 
us to express the entropy balance in the form: 

1
2

1 1 1 1

N

k Dk
k k

Dk k
k

g
gd s T T z

dt T T T T c T
ρ =

⎛ ⎞−⎜ ⎟ ⎡ ⎤⎛ ⎞⎜ ⎟= −∇ ⋅ − ⋅∇ − ⋅ ∇ − + × − ∇ ⊗⎜ ⎟⎢ ⎥⎜ ⎟ ⎝ ⎠⎣ ⎦
⎜ ⎟
⎝ ⎠

∑
∑

q
q E v B Π : v

J
J  

which gives us the terms of flux 
1

N

S k Dk
k

g T
=

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑qJ J and 

entropy production: 

2

1 1 1 1k
S Dk k

k

gW T T z
T T T c T

⎡ ⎤⎛ ⎞= − ⋅∇ − ⋅ ∇ − + × − ∇ ⊗⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑q E v B Π : vJ

 

The entropy production can be expressed as a function of 
the entropy flux SJ instead of the heat flux, as follows: 

1 1 1k
S S Dk k

k

gW T T z
T T T c

⎡ ⎤⎛ ⎞= − ⋅∇ − ⋅ ∇ − + ×⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ E v BJ J  [A1.6] 

with the viscous effects being discounted. 

Let us use the dissipation function introduced by Haase 
[HAA 69], i.e. STWψ = . This value characterizes all of the 
dissipative phenomena, and generalizes that proposed by  
 
 



Appendix 1     169 

Rayleigh. The Rayleigh dissipation function represents only 
the effect of viscosity on the entropy production: 

( )22
S S

vψ η η⎛ ⎞ ⎛ ⎞= ∇ ⊗ ∇ ⊗ + ∇ ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

v : v v  

whereη and vη are, respectively, the shear viscosity and the 

volume viscosity, and ⎛ ⎞∇ ⊗⎜ ⎟
⎝ ⎠

v is the velocity gradient tensor 

deviator ( )∇ ⊗ v . It can be deconstructed into a symmetrical 
part and an antisymmetrical part – i.e.: 

S A
⎛ ⎞ ⎛ ⎞ ⎛ ⎞∇ ⊗ = ∇ ⊗ + ∇ ⊗⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

v v v  

A1.1.2. Mechanical equilibrium 

Mechanical equilibrium is defined by a zero barycentric 

acceleration:
1

1N

k k k
k

d p z
dt c

ρ ρ
=

⎛ ⎞= −∇ + + × =⎜ ⎟
⎝ ⎠

∑v E v B 0 . From the 

Gibbs relation, we can take the expression of s Tρ ∇  – i.e.

k k
k

s T g pρ ρ∇ = − ∇ + ∇∑ . On the right-hand side of this 

equation, we can substitute in the expression of the pressure 
gradient obtained by mechanical equilibrium, so:

1 .k k k k
k

s T g z
c

ρ ρ ⎡ ⎤⎛ ⎞⋅∇ = − ⋅ ∇ − + ×⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑v v E v B

 
This relation 

enables us to modify the expression of the entropy 
production, by revealing the flux values SJ and kJ : 

1
S S k k k k

k

T W T g z
c

⎡ ⎤⎛ ⎞= − ⋅∇ − ⋅ ∇ − + ×⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑J J E v B  [A1.7] 
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where: S S sρ= +J vJ . 

A new form of the dissipation function can be obtained by 
introducing diffusion fluxes a

kJ  in relation to an arbitrary 

velocity av : ( )a a
k k kρ= −v vJ . Hence, we find: 

( ) 1a a a a
S S k k k

k
T W s T g z

c
ρ ⎡ ⎤⎛ ⎞⎡ ⎤= − + − ⋅∇ − ⋅ ∇ − + ×⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

∑v v E v BJ J  [A1.8] 

If av  corresponds to the velocity of a particular species  
in the system, the fluxes a

kJ are called Hittorf fluxes.  
If av represents the average velocity of some of the species, 
the fluxes are known as Washburn fluxes. 

A1.1.3. Different formulations of the energy balance 

The electromagnetic energy balance equation is written 
as: 

( )
2 2

2
c

t

⎛ ⎞+∂ ⎜ ⎟ = −∇ ⋅ × + ⋅
⎜ ⎟∂ ⎝ ⎠

E B
E B I E  [A1.9] 

where 
2 2

2
+E B

 
is the electromagnetic energy density, 

c ×E B is the energy flux and finally ⋅I E is the energy 
production per unit volume. This balance enables us to write 
the total energy balance in local form: ( )tot Ee tρ∂ ∂ = −∇ ⋅ J . 

Let us rewrite this relation to introduce the scalar potential 
ϕ  and the vector potential A , from which the electrical 
field and the magnetic field are, respectively, derived: 

( ) ( )2 12e v z e k z
t t c t

ϕρ ϕ ϕ ρ ρ∂ ∂ ∂⎡ ⎤⎡ ⎤+ + = −∇ ⋅ + ⋅ + + + + − ⋅⎣ ⎦ ⎢ ⎥⎣ ⎦∂ ∂ ∂
Aq P v I v v  
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By neglecting the variations of the scalar and vector 
potentials over time, we obtain the energy balance equation 
used by de Groot [GRO 69a], where the density and the 
energy flux are, respectively: ( )2 2tote e v zρ ρ ϕ= + + and 

( )E e kϕ ρ= + ⋅ + + +J q P v I v . 

This result can be obtained directly by considering that 
the flow takes place in a field of external force k kz ϕ= − ∇F  
deriving from a steady-state potential ϕ : 

( ) ( )2 2e v z e k
t

ρ ϕ ϕ ρ∂ ⎡ ⎤⎡ ⎤+ + = −∇ ⋅ + ⋅ + + +⎣ ⎦ ⎢ ⎥⎣ ⎦∂
q P v I v  [A1.10] 

This formulation will enable us to explain the 
presentation of the Peltier effect (see Chapter 6) given by 
Landau and Lipchitz [LAN 71]. It is often interesting to 
bring the temperature into play in the energy balance 
equation. The internal energy balance is: 

( ) ( ) 1
k k k

k

e
e p p z

t c
ρ

ρ ρ
∂ ⎛ ⎞= −∇ ⋅ + + + ⋅∇ − ∇ ⊗ + + ×⎜ ⎟∂ ⎝ ⎠

∑v v q v Π : v E v B  

Into this relation, let us introduce the heat flux, defined 
by the relation: ' ,k k

k
h= −∑q q J where kh  is the mass enthalpy 

of the species k , and define the average enthalpy h such that:
.k k

k
h hρ ρ=∑  

Thus, by revealing the diffusion flux DkJ on the right-hand 
side of this equation, we obtain: 

( ) ( )' k k k k k k Dk k
k k k

e
h h p

t
ρ

ρ ρ
∂

= −∇ ⋅ − ∇ ⋅ − ⋅∇ + ⋅∇ − ∇ ⊗ + ⋅
∂ ∑ ∑ ∑q v v v Π : v J f  
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By expressing the left-hand side as a function of the mass 
enthalpy values, the above equation becomes: 

( )'k
k Dk k k k k

k k k

h
h p h

t
ρ ρ∂

= −∇ ⋅ + ⋅ − ∇ + ⋅∇ − ∇ ⊗ − ⋅∇
∂∑ ∑ ∑q v Π : v vJ f  

which can then by expressed in the following form (see 
section A1.3 later on): 

( )

, ,'p f p f

k k k
k

T pc c T T T p
t t t

h

ϑρ ρ ρ ρ∂ ∂ ∂⎛ ⎞= −∇ ⋅ + ⋅ ∇ − ∇ ⊗ + + ⋅ ∇⎜ ⎟∂ ∂ ∂⎝ ⎠
+ ⋅ − ∇∑

q v Π : v v

J f
 [A1.11] 

with ( ), , k
p f p Yc h T= ∂ ∂ being the specific heat of the mixture at 

constant pressure and frozen concentrations. In order to 
establish the energy balance in the form [A1.11], the medium 
must be isotropic with no polarization. 

A1.2. Phenomenological relations in a metal 

A1.2.1. Dissipation function 

Schematically speaking, the metal is formed of a cloud of 
moving electrons and the positive ions of the metal structure, 
whose velocity is taken to be the reference velocity. In 
practical terms, this velocity iv is supposed to be zero. With 
these hypotheses, the dissipation function becomes: 

e
S S

e

gTW T
z

ψ
⎡ ⎤⎛ ⎞

= = − ⋅∇ − ⋅ ∇ −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

J I E  [A1.12] 

Note that when we discount the influence of the magnetic 
field in the Lorentz force, we obtain an expression similar to 
equation [A1.12] for the dissipation function. 
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The dissipation function in the form [A1.12] serves as a 
starting point for the study of thermo-electrical phenomena. 

To begin with, it should be remembered that for a metal 
at a uniform temperature, relation [A1.12] enables us to 
easily introduce the electrical resistance tensor and the Hall 

effect. Indeed, in this case, ψ becomes: e

e

g
z

ψ
⎡ ⎤⎛ ⎞

= − ⋅ ∇ −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

I E .  

Thermodynamic equilibrium is characterized by a zero 
flux ( =I 0 ) and by a null force associated therewith:

.e

e

g
z

⎛ ⎞
∇ − =⎜ ⎟
⎝ ⎠

E 0  Near to this state of equilibrium, there is a 

linear relation which exists between these quantities:

e

e

g
z

⎛ ⎞
− ∇ = − ⋅⎜ ⎟

⎝ ⎠
E R I where R is the electrical resistance tensor. 

The relations of symmetry of the coupling tensor 
(Onsager’s theory of microscopic fluctuations [ONS 31]) 
enable us to characterize the tensor R and thus explain the 
Hall effect1 (see section 3.4.1.1; also see [GRO 63, GRO 69a, 
DUD 93]). These properties, established for a metal, are still 
valid for a solution where the reference velocity is that of the 
neutral solvent. 

A1.2.2. General points about thermo-electrical effects 

The Peltier effect is a thermo-electrical phenomenon 
caused by the passage of electrical current into a non-
homogeneous material. The Thomson effect, on the other 

                         
1 An electrical current along one axis creates an electrical field along the 
other two axes. Similarly, a field in one direction produces a current in the 
other two directions. The Onsager symmetry relations give us:

, ,xy yx yz zy zx xzR R R R R R= = = . 
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hand, occurs in a homogeneous material which is subject to a 
temperature gradient. These two effects are dependent on 
the direction and the modulus of the electrical current, 
unlike the Joule effect. 

The phenomenological relations can be written in their 
matricial form: 

S
e

e

T

g
z

∇⎡ ⎤
⎡ ⎤⎡ ⎤ ⎢ ⎥= − ⎛ ⎞⎢ ⎥⎢ ⎥ ⎢ ⎥∇ −⎜ ⎟⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎝ ⎠⎣ ⎦

L NJ
EN MI

 [A1.13] 

When the medium is isotropic, the tensorial coefficients 
, and L M N are reduced to scalars; the above relations 

become: 

S

e

e

TT Tg
Rz

λ π

η

⎡ ⎤
⎡ ⎤− ∇⎡ ⎤⎢ ⎥ = − ⋅⎢ ⎥⎛ ⎞ ⎢ ⎥⎢ ⎥− ∇⎜ ⎟ ⎢ ⎥ ⎣ ⎦−⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦

J

E I
 [A1.14] 

New coefficients appear: ( , , and Rλ π η ); they are 
generally introduced by experience. 

A detailed study of the Peltier effect is presented in 
Chapter 6. In section 6.1, we find a classical presentation, 
whilst section 6.2 shows a direct application of the interfacial 
balance equations established in sections 4.1 and 4.2. 

A1.2.3. One-dimensional description of a metal in the 
presence of heat transfer and electrical conduction 

The metal envisaged here is considered as a system of 
fixed ions within which the electrons are in motion, 
constituting a Fermi gas. 
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The chemical potential of such a gas is as follows, per unit 
electrical charge [GUG 49]: 

2 2 2*
12 *

e

e

g E k T
z e e E

π= − +  [A1.15] 

where
2 32 3*

2 4
eNhE

m π
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 is the Fermi level of the electron, m

the mass of the electron, h  Planck’s constant and eN  the 
number of electrons per unit volume. 

If we discount the second term in the development, we 
accept the hypothesis that e eg z is constant. Further,  
we suppose that there is mechanical equilibrium, and that 
the mass of the electrons is negligible in comparison to that 
of the ions. 

In the case of the 1D approximation, this gives us the 
following relations for the mass fluxes, the electrical 
currents, the momentum equation, the Maxwell equations, 
and the energy equation: 

( )
( )

( )

0, ,
,

1 ,
1 ,

i i i e e e e

Di De e e i e

i e i

x

ex
e

J v J v v I z m Cte
J J v v Y I z

i I z v z z Y I
dv dpv z E
dx dx c

d I h q I v Q
dx z

ρ ρ ρ
ρ

ρ

ρ ρ

= = = = = = =
− = = − =

= − = −

+ = × +

⎛ ⎞
+ + =⎜ ⎟

⎝ ⎠

I B

 [A1.16] 

where account is taken of a heat injection exQ  from the 
outside at temperature exT .  
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The entropy flux and the entropy production rate are, 
respectively: 

( )1 ,

1

S e
e

e e
S S ex

ex

IJ q h g
T z

d g z dT TT W I E J Q
dx dx T

⎧ ⎡ ⎤
= + −⎪ ⎢ ⎥

⎪ ⎣ ⎦
⎨

⎛ ⎞⎛ ⎞⎪ = − − + −⎜ ⎟⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎩

 [A1.17] 

From this, we can generally deduce the linearized 
phenomenological relations: 

13

23

31 32 33 1

S

e e

ex
ex

J T T dT dx
d g zE R I

dx
T TQ

λ π Λ
η Λ

Λ Λ Λ

⎡ ⎤ −⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥− = −⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦

⎣ ⎦

 [A1.18] 

In the isothermal case: 33Λ is infinite, .exT T Const= =  and 
because e eg z is constant, E dV dx R I− = = . 

In the adiabatic case: 3 30, , 0ex ex i iQ T T Λ Λ= ≠ = = , and it is 
necessary to determine the thermal profile [PRU 79]. 

A1.3. Recap of the energy balance equation 

The energy balance equation is: 

( )'k
k Dk k k k k

k k k

h h h
t

pp
t

ρ ρ∂ = −∇ ⋅ + ⋅ − ∇ − ⋅ ∇
∂

∂+ ⋅∇ − ∇ ⊗ +
∂

∑ ∑ ∑q F v

v Π : v

J
 [A1.19] 
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A1.3.1. General expression k k
k

dhρ∑  

The mass enthalpy, h , is, by definition: k k
k

h hρ=∑ , and is 

a function of the quantities , kT Y and iL  (the iL values being 

the coefficients of work, i i
k

dW L dl=∑ ): ( ), ,k ih h T Y L= . 

By differentiating these two expressions of h , we obtain 
the relation: 

,
, ,j k

p f i k k
ki T L Y

hc dT d L dh
L

ρ ρ ρ
⎛ ⎞∂+ =⎜ ⎟∂⎝ ⎠

∑ , where: 

,
,i k

p f
L Y

hc
T

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
 

If we consider an isotropic region with no electrical or 
magnetic polarization, the only work variable is the 
pressure, so: 

,
, k

p f k k
kT Y

hc dT dp dh
p

ρ ρ ρ⎛ ⎞∂+ =⎜ ⎟∂⎝ ⎠
∑  [A1.20] 

A1.3.2. Expression of 
, kT Y

h
p

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠  We suppose that the Gibbs relation is satisfied: 

1 1

n N

i i k k
i k

de T ds L dl g dY
= =

= + +∑ ∑  

i.e.: 
1 1

n N

i i k k
i k

dg s dT l dL g dY
= =

= − − +∑ ∑ , where g  is the Gibbs 

function per unit mass. 
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In particular, the Schwartz equality gives us the relation: 

,, , i kj k

i

i L YT L Y

ls
L T

⎛ ⎞ ∂∂ ⎛ ⎞=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
 

This relation, in combination with the Gibbs relation, 
enables us to express the quantity we are looking for: 

, kT Y

h
p

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

, so that: 

( )
, ,

11

k kT Y p Y

h T
p T

ρ
ρ

⎛ ∂ ⎞⎛ ⎞∂ = − ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 [A1.21] 

A1.3.3. New expression for the energy balance 

From the above equations, we can deduce the expression 
of k k

k

dhρ∑ : 

( )
,

1 ,

1
1

k

N

k k p f
k p Y

dh c dT T dp
T
ρ

ρ ρ ρ
=

⎡ ⎤⎛ ∂ ⎞
⎢ ⎥= + − ⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦

∑  

Thus, when we look at the time-related partial 
derivatives: 

( )
,

1 ,

1
1

k

N
k

k p f
k p Y

h T pc T
t t T t

ρ
ρ ρ ρ

=

⎡ ⎤⎛ ∂ ⎞∂ ∂ ∂⎢ ⎥= + − ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
∑  

and if we then look at the gradient: 

( )
,

1 ,

1
1

k

N

k k p f
k p Y

h c T T p
T
ρ

ρ ρ ρ
=

⎡ ⎤⎛ ∂ ⎞
⎢ ⎥∇ = ∇ + − ∇⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦

∑  
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Using these last two relations, the energy balance 
equation becomes: 

( )

, ,'p f p f

Dk k k
k

T pc c T T p
t t

h

ρ ρ ρ∂ ∂⎛ ⎞= −∇ ⋅ − ⋅∇ + + ⋅∇⎜ ⎟∂ ∂⎝ ⎠
− ∇ ⊗ + ⋅ − ∇∑

q v v

Π : v FJ
 [A1.22] 

For a perfect gas 
( )

,

1
1

kp Y

T
T
ρ

ρ
⎛ ∂ ⎞

=⎜ ⎟∂⎝ ⎠
. 

A1.4. Comparisons of phenomenological relations 

Let us express the phenomenological coefficients employed 
by de Groot and Mazur as a function of those introduced by 
Haase [HAA 69].  

The total entropy flux SJ is written as a function of the 
heat flux q , thus: 

1

1 1' '
N

e
S S k Dk

k e

ss s s
T T z

ρ ρ
=

= + = + + = +∑J v q v q IJ J  

We also need to transform the gradient of the chemical 
potential of the electrons: 

( ) ( )e e e e
e e e eT T

g g g hg T T T g T g s T
T T T T

⎛ ⎞∇ = ∇ + ∇ = ∇ + ∇ − ∇ = ∇ − ∇⎜ ⎟
⎝ ⎠

 

from which we derive the expression of the heat flux by 
substituting back into equation [A1.14]: 

2

2

2 1' e e e e

e e e e T

s T s s T gT
R R z z R z z

ππηλ π ϕ
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= − − − + ∇ − − ∇ + ∇⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

q  
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We also obtain: 

1 1e e

e e T

s gT
R z R z

η ϕ
⎡ ⎤⎛ ⎞ ⎛ ⎞

= + ∇ − ∇ + ∇⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

I  

By comparison with equations [6.9a] and [6.9b], we find: 

( )
2

*
0 2

12 , ,e e e
e e e e

e e e

s T s sK Q z T T z s
R R z R z R z

π η πλ λ π η
⎛ ⎞

= − − + = = − = − +⎜ ⎟
⎝ ⎠

 

and therefore: 

( )2*

0 2
e

e

K Q
z T

λ λ= −  [A1.23] 

Hence, there is equality between the coefficient λ and the 
coefficient λ∞  from equation [6.10], which is to say that
λ λ∞= . 

We also find the relations: 

( )
( )

*

,
1

e e

p e e
e

s z

c s
z

η

τ η

⎧ = −
⎪
⎨

= + +⎪
⎩

 [A1.24] 

A1.5. Plasmas 

The balance equations for an electrically-conductive fluid 
have been established in the foregoing sections. Such 
equations apply to homogeneous plasmas. A one-dimensional 
case was discussed in [PRU 79]. The one-dimensional 
approximation, applied to another 1-dimensional case which 
is more complex because it exhibits instances of 
heterogeneity, will be presented in Chapter 8. 



Appendix 1     181 

The plasmas with which we are dealing here are gases at 
high temperature [DEL 59], which are partially ionized.2 The 
groundwork laid down in this section will be useful for the 
discussion to come – particularly for Chapter 7. 

These results are supplemented here by the inclusion in 
the discussion of a well-known characteristic: the fact that 
the one-dimensional flow of a plasma placed in an electrical 
field takes place at constant intensity, eI m z= . This result 
still holds true in our case-study here, and is unaffected by 
the presence of a metal on contact with the plasma, 
regardless of the behavior of the metal/plasma interface, 
whether or not a surface reaction occurs [PRU 81b]. In 
addition, we shall take account of the possibility of heat 
exchanges with the surrounding medium, as we did in 
section A1.2, with regard to the evolution in a metal 
conductor. 

A1.5.1. Balance equations for a homogeneous plasma 
at two temperatures 

The balance equations [APP 64] enable us to establish the 
entropy production rate, from which we deduce the form of 
the phenomenological relations by way of linearized TIP. 
Note that with regard to the chemical reactions, there is no 
need to linearize the system, because the literature generally 
gives us nonlinear chemical kinetic laws with known 
coefficients (the specific reaction rates). In addition, the 
balance laws give us the system of equations to be solved in 
order to determine the fields of variables characterizing the 
evolution of the plasma in space and time, by means of  
the knowledge of the physical coefficients. Here, we shall 
assume steady-state one-dimensional evolution. 

                         
2 This is unlike what happens with gaseous mixtures at high temperature 
(between 4500 and 8500K), which we examined in Chapter 1 of [PRU 13], 
without taking ionization into account. 
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A1.5.2. Energy balance for a homogeneous plasma 

Let us write the energy balance for species i ,  following 
an elementary volume moving with the barycentric motion of 
the flow. We obtain [PRU 79]: 

2 2

.

2 2
bi i

i i i i i i

e n ei
i i i Ei Ei

v vY e vY e p v q
t x

dPg E v W W
dx

ρ ρ

ρ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂+ + + + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

 [A1.25] 

e
EiW  and .n e

EiW  respectively represent the energy 
production of species i caused by elastic and non-elastic 
shocks, .e n e e

Ei Ei EiW W W+ = . 

The total energy in an elementary volume is ( )2 2 ,i ie vρ +

where ie  represents the internal energy of species i  per unit 
mass of that species. Because our frame of reference moves 
with the fluid particle in its barycentric motion,  
the pressure which comes into play in the above balance 
equation is linked to the partial pressure that plays a role in 
the momentum equation for species i 3: 

b
i i i Dip p v= + J  [A1.26] 

                         

3 This equation: 
( ) ( )2

. .i i ii i e n ei
i i i i

v pv dPz E
t x dx

ρρ
ρ

∂ +∂ ⎛ ⎞+ = + + +⎜ ⎟∂ ∂ ⎝ ⎠
f f , is given by 

Appelton and Bray in [APP 64]; e
if  and . .n e

if  are the creations of 
momentum resulting respectively from the elastic and non-elastic shocks; 

iP is the electrical polarization. The other balance equations relate to the 

total mass, the chemical species , ,A e A− + : 
( )i ii

i i i

v
W

t x
ρρ ν ζ

∂∂ + = =
∂ ∂

M , with 

1, 1, 1A e A
ν ν ν += − = = , and the electrical charge. 
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By revealing the mass enthalpy of species i of electrical 
polarization iP , for a steady-state flow, we obtain: 

( )
2

.

2
i

i i i i i Di

e n ei
i i i Ei Ei

vd dvY h q v v v
dx dx

dPz E v W W
dx

ρ ρ

ρ

⎛ ⎞
+ + +⎜ ⎟

⎝ ⎠
⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

J
 [A1.27] 

From the momentum balance, we can see that: 

( ) ( )2 22
2 2 33 1

2 2 2
i i i ii i

i i Di i i

d v d Y Vd v dv dpv v v v v v v v s
dx dx dx dx dx

ρ
ρ ρ ρ⎛ ⎞ ⎛ ⎞+ = + − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
J  

If we accept that the barycentric acceleration is slight (i.e. 
the hypothesis of mechanical equilibrium), that the square of 
the diffusion velocity ( )22

i iV v v= − , is negligible, and finally 
that the flow is at a low velocity such that we can ignore the 
term involving the cube of the velocity, we obtain the 
following equation: 

( )
2

.

2
e n ei i

i i i i i i Ei Ei
v dPd dvY h q v I E E v W W

dx dx dx
ρ ρ

⎛ ⎞
+ + = + + +⎜ ⎟

⎝ ⎠
 [A1.28] 

Hence, for the various species of the medium under study 
here, we have: 

( ) ( )

( ) ( )

( ) ( )

2 .

2 .

2

.

e n eA
A A A A A A EA EA

e n ee
e e e e e e e Ee Ee

e
E

n e
E

dPd dvY h q v v E v W W
dx dx dx

dPd dvY h q v v I E E v W W
dx dx dx

dPd dvY h q v v I E E v W
dx dx dx
W

ρ ρ

ρ ρ

ρ ρ +
+ + + + + + + +

+

⎧ + + = + +⎪
⎪
⎪ + + = + + +⎪
⎨
⎪

+ + = + +⎪
⎪
⎪+⎩

 [A1.29] 
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A1.5.3. Phenomenological relations for a homogeneous 
plasma 

If we take into account the relation eI m z=  and the lateral 
heat exchanges jextQ , the entropy production rate for the 

homogeneous plasma in one-dimensional evolution reveals 
the following five generalized fluxes [PRU 81a]: 

( )

( )

1 2

3 4 5

1 1, ,

1 1, ,

e e
j j j

j e

e e e ext
e e

d g zJ q g J J E
T T dx

dAJ q g J J J Q
T T dx

⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

= − = − =

∑

N

 [A1.30] 

and the corresponding generalized forces: 

1

1 2 3 4 5
1 1, , , ,e

ext

dT dF F I F T F I F
dx dx T T

θ −
+= = = = = −  [A1.31] 

and the matrix Λ
 
of the phenomenological coefficients klΛ  

introduced by TIP such that k kl l
l

J FΛ=∑ . By definition, we 

have: 
1 1 1,j j j j

e

q q vY h
T T

ρ
θ

= + = − . Furthermore, we have:

1

N

ext jext
i

Q Q
=

=∑ . We know the expressions for four of the 

coefficients klΛ : 11 12 21 22, , ,e eT T T R TΛ λ Λ π Λ η Λ= − = = − = . 

Note that we cannot linearize the term stemming from the 
chemical kinetics. 

A1.5.4. Chemical equilibrium in conditions of thermal 
disequilibrium 

The “internal disequlibrium” part of the entropy 
production rate is written as: 
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( )
2

int 12 212

1 1
S e

A K A AW W E C C
T T T

Λ
θ θ θ

⎛ ⎞= − + = + + + ⎜ ⎟
⎝ ⎠

, and we 

note that it does not vanish at chemical equilibrium 
(chemical affinity 0A = ). Only if 0K ≅  also does it become 
negligible. 

At chemical equilibrium, the relation 0e AA μ μ μ+= + − = , 
in conditions of thermal disequilibrium, gives us: 

( ),eT T
e A C eC C C K T T+ =  [A1.32] 

where: ( ) ( ) ( ) ( )0 0 0ln , ln
eC e T T T ee A

RT K T T RT RTμ μ μ
+

− = + − − . 

 



 

 



Appendix 2 

One-Dimensional Approximation  
for a Hall-Effect Thruster 

The purpose of this appendix is to give a detailed 
discussion of the establishment of the local balance 
equations presented in Chapter 8, i.e. a one-dimensional flow 
of plasma with active walls.1 

In a simplified one-dimensional (1D) model (see 
Figure A2.1), we consider an elementary volume of the 
thruster channel located between the neighboring  
positive abscissa values x and x + dx, which enables us to 
introduce the wall conditions (internal and external surfaces 
of the channel).  

The integral balance: 

F Ff d dS W d
t ∂

∂ = − ⋅ +
∂ ∫ ∫ ∫J n

V V V
V V  

where f is the value F per unit volume, F ⋅J n  the flux vector 
of F projected onto the fixed boundary ∂V  of the volume  
V under consideration, and FW the production rate (source) 

                         
1 This appendix was written with the help of M. Dudeck [DUD 13]. 
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per unit volume and time, needs to be expressed in local 
form. 

 

Figure A2.1. Diagrammatic representation for a 1D model.  
For further detail, see the diagram of a Hall-effect thruster  

given by Choueiri CHO 01], and also Figure 8.10 of this book 

In this chapter, we apply the integral general balance 
equation to the following properties: number of electrons, 
number of ions, momentum of the species, of the electrons in 
the axial and azimuthal directions, and energy of the free 
electrons. We shall do so in the control volume with straight 
section S and thickness dx of the channel with axial 
symmetry, shown in Figure A2.1. 

This method is comparable to that used for nozzles, with 
the simplification of a constant area of the cross section, but 
with peculiarities stemming, firstly, from the presence of 
active surfaces, and secondly, from the azimuthal drift of the 
electrons (coming from the cathode) under the influence of 
the magnetic field (mainly radial) and the axial electrical 
field. The type of flow studied here is described in detail in 
Choueiri’s article [CHO 01]. 
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A2.1. Balances of species 

A2.1.1. Electron balance 

The electron balance for this volume of plasma, with the 
length dx being the length of the channel (see Figure A2.1) 
is:  

e e en d dS W d
t ∂

∂ = − ⋅ +
∂ ∫ ∫ ∫J n

V V V
V V  [A2.1] 

When writing the electron balance, we need to take 
account of: 

– the electron velocity ,e wv  normal to the lateral surfaces 
of the thruster channel – a velocity which is taken to be the 
same on both the internal surface (at r = Ri) and the external 
surface (at r = Re), and that of the electrons re-emitted by 
secondary electron collisions with the walls, at a rate written 
as σ ; 

– the electrons created in the volume by ionization and by 
the process Xe e Xe e e++ → + + of formation of singly-charged 
xenon ions with a reaction rate ( )eTβ , there are only 10% 
doubly-charged ions, and this production depends on the 
electrical potential of the discharge. Successively, we write: 

( ) ( ) ( )

( ) ( ) ( )
( ) ( )

, ,

,

2 2
,

2 2

,
2 ,

2

e e e e e i e e w e e e wx x dx

n e

e e e i e e e w n e

e e e i e e i e e w n e

n t S dx n v S n v S R n v dx R n v dx

n n Sdx
n t S dx n v x R R n v dx n n Sdx

n t n v x R R R R n v n n

π π
β

π β

π π β

+
∂ ∂ = − − −

+

∂ ∂ = − ∂ ∂ − + +

⎡ ⎤∂ ∂ = −∂ ∂ − + − +⎣ ⎦

 

The local form of the free electron balance equation is 
therefore as follows: 
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( ) ( ) ,2 1 e we ee
n e e

e i

vn vn n n n
t x R R

σ
β

−∂∂
+ = −

∂ ∂ −
 [A2.2] 

with account taken of the electrons re-emitted by secondary 
collisions. 

In a Hall-effect thruster, the wall of the discharge channel 
is made of insulating ceramic, and its electrical potential is 
therefore the floating potential obtained when we have 
equality (in modulus) of the wall currents of electrons and 
ions, which gives us the equality ( ) , ,1 e e w i i wn ev n evσ− = . The 
expression of the electron velocity is therefore 

,
, 1 1

i w e i
e w

v kT
v

σ σ
= =

− −
M

, using the Bohm velocity for the ions 

and the symbol σ to represent the rate of secondary electron 
emission by electron bombardment. The velocity of the ions 
at the boundary of the sheath of potential is the ionic 
acoustic velocity, whose expression is given by Bohm’s 
relation (condition of sheath stability stated by Bohm) 

, .i w e iv k T= M  Although the ion velocity is a directed velocity 
due to the electrostatic lens, this Bohm velocity is a function 
of the electron temperature Te. The electron balance [A2.2] 
becomes: 

( ) 2e ee e
n e e

e i i

n vn kTn n n
t x R R

β
∂∂

+ = −
∂ ∂ − M

 [A2.3] 

The term 
2 e

e i i

kT
R R− M

 corresponds to the inverse of a  

time – it is the frequency of electron collisions with the 
channel walls, and is written as ewν . Hence: 

( )
,

e ee
n e e w e

n vn n n n
t x

β ν
∂∂ + = −

∂ ∂
 [A2.4] 
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A2.1.2. Ion balance 

The singly-charged xenon ion balance is: 

( )
,

2i ii e
n e e n e i w i

e i i

n vn kTn n n n n n
t x R R

β β ν
∂∂

+ = − = −
∂ ∂ − M

[A2.5] 

where iv  is the axial velocity of the ions along the x axis. 

The frequency of collision between the ions and the walls 

is 
2 e

e i i

kT
R R− M

and, if we introduce the condition of 

electroneutrality ni= ne (in volume), the above balance 
relation [A2.5] becomes: 

( )
,

e ie
n e i w e

n vn n n n
t x

β ν
∂∂ + = −

∂ ∂
 [A2.6] 

A2.1.3. Equation verified by the discharge current I in 
a cross-section 

By writing the difference between equations [A2.6] and 
[A2.4], we obtain: 

( ) ( ), , 0e i e i w e w en v v x nν ν∂ ⎡ − ⎤ ∂ = − + =⎣ ⎦  

The total current reaching one surface of the channel is 
zero (an insulating surface); the total current passing 
through a cross-section of the channel is conserved as a 
function of the abscissa value x: 

( ) .e i eI eS n v v Const= − =  [A2.7] 



192     Flows and Chemical Reactions in an Electromagnetic Field 

A2.2. Momentum balances 

In this section, we establish the momentum balances for 
the species, with a particular case study focusing on the 
electrons, which are animated with a motion with two 
components: axial and azimuthal. 

A2.2.1. Momentum balance for species j 

A2.2.1.1. Integral form 

The momentum balance j jm v for species j for the domain 

in question with surface S and axial length dx is: 

( )
, ,j j j j

j j j j j j j j j

m wall j j m chemistry
wall
channel

n M d dS n M dS
t

W dS n d d

∂ ∂

∂ = − ⋅ − ⋅
∂
− + +

∫ ∫ ∫

∫ ∫ ∫v v

v P n v v n

Wf

V V V

V V

V

V V
 [A2.8] 

A2.2.1.2. First term 

The first term in equation [A2.8] can be transformed into: 

j j j j
j j j j j

n n
n M d M d M S dx

t t t
∂ ∂∂ = ≅

∂ ∂ ∂∫ ∫
v v

v
V V

V V  

A2.2.1.3. Pressure term 

The pressure term on the right-hand side of equation 
[A2.8] becomes: ex 

( ) ( )
( ) ( )

j j j j x

j j x j x

dS p dS p x S p x dx S e

p x p x dx S p x S dx
∂ ∂

⎡ ⎤− ⋅ = − = − − + +⎣ ⎦

⎡ ⎤= − − + + ≅ −∂ ∂⎣ ⎦

∫ ∫P n n

e e
V V  
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A2.2.1.4. Flow rate term 

The momentum flow rate term is written as: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

, ,

, , 2

2

j j j j j j j j x j x x j jS

j x j x x j j j j r e

j j j j r i

n M dS n x M v x v x Se n x dx M

v x dx v x dx Se n x M R dx

n x M R dx

π

π

⎡ ⎤− ⋅ = − − − +⎣ ⎦

⎡ ⎤+ − + − ⋅⎣ ⎦

− ⋅

∫ v v n

v v e

v v e

 
On the right-hand side, the first two terms correspond to 

the momentum flow rates passing through the cross-section 
of the channel, and the latter two to the momentum flow 
rates over the lateral surfaces of axial length dx of the 
control volume examined here. Thus: 

( ) ( ) ( ) ( )
( ) ( )

2 2
, ,

, ,2 2
j j j x x j j j x x

j j j j r e j j j i r i

n x M v x S n x dx M v x dx S

n x M v R dx n x M v R dxπ π

= − + +

+ −

e e

v v
 

If we suppose that the radial velocities at the surfaces are 
equal (i.e. that the jet is symmetrical), the above expression 
can be simplified to give: 

( ) ( ) ( )
2
,

, 2j j x
j x j j j r j e i

n v
M S dx n x v M R R dx

x
π

∂
= − − −

∂
e v  

A2.2.2. Electron momentum balance 

A2.2.2.1. Momentum in direction of x axis 

The electron pressure tensor is isotropic, with e ep=P 1  (no 
electron viscosity). By projection along the x axis, the 
momentum balance becomes: 

( ) ( ) ( )

( ) ( ) ( ) ( )

,

2 2
, , ,

e e e x
e e

e e e x e e e x e e chemistry

n M v
p x S p x dx S

t
n M v x dx n M v x S dx n e E S dx W S dx

∂
= − +

∂
⎡ ⎤− + − − +⎣ ⎦
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The force on the electrons due to the field r rB=B e
(supposed to be radial) is: 

, , ,

, , ,

, ,

0
0

0 0

e x e x r e

e e r e x

re r e r

F v B v
F v B v

BF v

θ

θ θ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= × =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 

The production of electron momentum along the x axis, 
per unit time and volume, is ( )( ),e n e e e xn n n M vβ . We write: 

( ) ( ) ( )
( )( )

2
,,

,

,

e e e e xe e e x
e e r

e n e e e x

p n M vn M v
S dx S dx n e E v B S dx

t x
n n n M v S dx

θ

β

∂ +∂
= − − +

∂ ∂
+

 

and from this, deduce: 

( ) ( ) ( ) ( )( )
2
,,

, ,
e e e e xe e e x

e e r e n e e e x

p n M vn M v
n e E v B n n n M v

t x θ β
∂ +∂

= − − + +
∂ ∂

 

If we neglect the terms introducing the mass Me of the 
electrons, it follows that: 

,
e

e e e r
pn e E n e v B
x θ

∂= − −
∂

 

The local momentum balance equation for the electrons is 
therefore reduced to: 

( )
,

1 e e
e r

e

n k T
e E e v B

n x θ
∂

= − −
∂

 [A2.9] 

A2.2.2.2. Momentum in the azimuthal direction θ  

The frequency ceω  of cyclotronic resonance of the 
electrons is introduced with the relation: r ee B Mceω = , 

giving us the form: 
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( )
,

1 e e
ce e e

e

n k T
e E M v

n x θω
∂

= − −
∂

 [A2.10] 

A2.3. Energy balance for the free electrons 

A2.3.1. Integral form for the total energy 

The energy balance equation is written solely for the free 
electrons at temperature Te. In its integral form, the total 
energy balance (internal + kinetic) is written as: 

( ) ( )
, ,

e e e e e e

E K wall e e e E K chemistry
wall
channel

n E K d dS
t

W dS n d W d

∂

+ +

∂ + = − + ⋅ ⋅
∂
− + ⋅ +

∫ ∫

∫ ∫ ∫

q P v n

v f

V V

V V

V

V V
 [A2.11] 

The internal energy per unit volume is ,e e tn E
 
where en  is 

the number of electrons per unit volume and ,e e tE E=
 
is the 

internal energy of an electron, which can be reduced to the 
energy of translational motion , 3 2e t eE kT= . 

A2.3.2. Internal energy 

A2.3.2.1. Time derivative of the internal energy 

For the control volume S dx , the internal energy is 
3
2 e en k T d∫V V , and its variation per unit time is: 

3 3
2 2e e e en k T d n k T d

t t
∂ ∂⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠∫ ∫V V

V V  

so: 

( ) 3 3
2 2e e e e e en E d n k T d n k T S dx

t t t
∂ ∂ ∂⎛ ⎞ ⎛ ⎞= ≅⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠∫ ∫V V

V V  [A2.12] 
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A2.3.2.2. Internal energy flux 

The internal energy flux is e e eV
n E dS

∂
− ⋅∫ v n , where the 

surface contains the cross sections at x and x + dx and the 
lateral surfaces of length dx. 

If, for the time being, we consider only the two cross 
sections at x and x + dx: 

( ) ( ) ( ) ( ) ( )e e e
e e e x e e e x x

n E v
n E x v x S n E x dx v x dx S S dx

x
∂

− + + = −
∂

e e e

 

Hence: 

3
2e e e eE dS n k T S dx

x∂

∂ ⎛ ⎞⋅ ≅ − ⎜ ⎟∂ ⎝ ⎠∫ v neV
n  [A2.13] 

A2.3.3. Kinetic energy 

The kinetic energy of an electron is 21 2 e eM v  if eM is its 
mass.  

A2.3.3.1. Temporal derivative of the kinetic energy 

For the control volume, the kinetic energy of the free 
electrons is: 

21 2e e en M v d∫V V  

and its variation per unit time is: 

2 21 1 3
2 2 2e e e e e e e en M v d n M v d n k T S dx

t t t
∂ ∂ ∂⎛ ⎞ ⎛ ⎞= ≅⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠∫ ∫V V

V V  
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and therefore, because the kinetic theory of gases (e.g. see 
section 2.4.3 in [PRU 12]) tells us that for monatomic 
particles, the average kinetic energy of the molecules is such 

that: 21 3
2 2

M c kT= , and here the average agitation speed c is 

replaced by the velocity ev 2: 

( ) 21 3
2 2e e e e e e eV V

n K dS n M v dS n k T S d x
t t t∂ ∂

∂ ∂ ∂⎛ ⎞ ⎛ ⎞= ≅ −⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠∫ ∫  [A2.14] 

A2.3.3.2. Kinetic energy flux 

The kinetic energy flux, similarly to the internal energy, 
is: 

21
2 e e eM n v S dx

x
∂ ⎛ ⎞− ⎜ ⎟∂ ⎝ ⎠

 [A2.15] 

A2.3.3.3. Pressure term 

The pressure term in the energy balance is ( )e e−∇ ⋅ ⋅P v

and, in the absence of any effect of electron viscosity:
( ) ( ) ( )e e e e x e ep p v p v x−∇ ⋅ ⋅ = −∇ ⋅ = −∂ ∂1 v e , so:

( ) ( ) ( )e e e e e
e e

p v n k T v
d S dx S dx

x x
∂ ∂

− ∇ ⋅ ⋅ = − = −
∂ ∂∫ P v

V
V , and 

therefore: 

                         
2 For any given species in the mixture, we can more rigorously write the 
following (see [JAN 63]), if ( ), ,j jf r tv  is the velocity distribution function 

for the particles of species j  and if we accept the hypothesis that the 
species has its own temperature jT : 

( ) ( )2 21 1 1, , , ,
2 2 2j j j j j j j j j j j j j j j j j j j jn f r t d n f d n k T f M d f M d= = = − ≅∫ ∫ ∫ ∫v v v v v v v v v v if 

the square of the agitation velocity of the species 2
jv  is much greater than 

the square 2
jv of the macroscopic velocity, which is true for the free 

electrons at high temperature. 



198     Flows and Chemical Reactions in an Electromagnetic Field 

( ) ( )e e e
e e

n k T v
d S dx

x
∂

− ∇ ⋅ ⋅ = −
∂∫ P v

V
V  [A2.16] 

We combine this result with the previous ones, which, for 
the term showing the total energy flux of the electrons, gives 
us: 

( ) ( ) ( )

( )5 2

e e e e e e
e e e

e e e

n E v n k T v
d S d x S d x

x x
n k T v

S d x
x

∂ ∂
∇ ⋅ + ⋅ = +

∂ ∂
∂

+
∂

∫ q P v
V

V
 [A2.17] 

The left-hand side of the total electron energy equation 
can therefore be reformulated, with the unsteady term and 
the convection term, to give: 

2 2

, ,
3 5
2 2 2 2

e e
e e e e e e e x e e e x

v vn kT n M n kT v n M v
t x
⎛ ⎞ ⎛ ⎞∂ ∂+ + +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 

A2.3.4. Terms of total energy production of the 
electrons 

A2.3.4.1. Term of work due to the external force 

The term of work due to the external force is, per unit 
volume, ,e e e e e e e xn n e n e E v⋅ = − ⋅ = −v E vf , and therefore for the 
elementary volume S dx: 

,e e e e e xn d n e E v S dx⋅ = −∫ vf
V

V  [A2.18] 

A2.3.4.2. Loss of electron energy at the wall 

The loss of electron energy at the wall is , ,e e wn e wν ε− , with 

,e wν  being the frequency of collisions between the electrons 

and the surface and ,e wε the energy deposited (i.e. lost) 
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which can be deconstructed into two contributions – that 
containing the incident energy per electron: 

( ) 2
, 1

3 1
2 2e w e e ekT Mε = + v  [A2.19] 

and that involving the secondary electron emission rate: 

( ) ( ), 2
1e w weσ Φε = −  [A2.20] 

And with equation [A2.12], we already have some of the 
terms needed for equation (7) in Table 8.1: 

2 2

, , ,
3 5
2 2 2 2

e e
e e e e e e e x e e e x e e x

v v
n kT n M n kT v n M v n e Ev

t x
⎛ ⎞ ⎛ ⎞∂ ∂+ + + = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 

Let us now examine the other energy sources. 

A2.3.4.3. Other sources of electron energy 

Chemical effect 

The production of electrons per unit volume is n en nβ , and 
the energy of the first ionization reaction is written as iε  
(12.12eV). This initial ionization is described by 

1 1 2Xe e Xe e e++ → + + . The electron e1 loses energy to the Xe 
atom, thereby ionizing the latter. The electron e2 created by 
that ionization reaction has low energy, and the energy loss 
in the electron balance is written in the following form per 
unit volume: 

n e i in nβ γ ε−  [A2.21] 

where iγ  is a parameter representing the energy loss in 
comparison to the ideal loss n e in nβ ε−  (energy effect of the 
electron e2 created, influence of the metastable states Xe* of 
xenon in the ionization process). 
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Electromagnetic field 

The electromagnetic force exerted on an electron can have 
an axial component and an azimuthal component: 

,

,

0

x e r

e e x r

E v B
e v B

θ+⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎣ ⎦

f  

The power associated with that force is, per unit volume: 

( ), , , ,e e e e x e r e x e e x r en n e E v B v n e v B vθ θ⋅ = − + +vf  

so: 

,e e e e x e xn n e E v⋅ = −vf  [A2.22] 

Walls of the channel 

The interaction of electrons with the walls of the channel 
in the thruster involves several processes: 

– an energy value per electron (internal and kinetic) in 
the plasma (at the edge of the sheath of potential):

23 2 1 2e e ekT M+ v ; 

– a sheath of potential between the plasma potential and 
the surface potential; 

– a wall of the channel at the floating electrical potential 
fΦ  (to give a null sum of the electronic and ionic currents); 

– secondary electron emission at the wall. 

The sheath potential a long the radius r is: 

( )ln 1
2

e i
w

e

kT M
e M

φ σ
π

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
(a); that is:

( )exp 1
2

w i

e e

e M
k T M

φ
σ

π
⎛ ⎞

= −⎜ ⎟
⎝ ⎠
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– In the absence of secondary electron emission at the wall, 
the total electrical current collected for a negative surface 
polarization is: 

exp 0
2 2

we i
e i

e e i

ekT kTn e n e
M k T M

φ
π π

⎛ ⎞
− =⎜ ⎟

⎝ ⎠
 

Hence, taking account of the condition of 

electroneutrality, we have exp w i e

e e i

e T M
k T T M

φ⎛ ⎞
=⎜ ⎟

⎝ ⎠
 and therefore: 

lne i e
w

e i

kT T M
e T M

φ
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (b) 

which differs from (a) because of the Maxwellian expression 
of the ionic current with the kinetic temperature Ti at the 
edge of the sheath. 

– With a Bohm ion velocity at the wall, the condition of 
zero total current is written as follows, still without 
secondary electron emission: 

exp 0
2

we e
e i

e e i

ekT kTn e n e
M k T M

φ
π

⎛ ⎞
− =⎜ ⎟

⎝ ⎠
(c) 

which gives us: 

2
lne e

w
i

k T M
e M

πφ
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (d) 

– With a Bohm ion velocity [BOH 49] and a secondary 
electron emission rate at the wall σ , we have: 

( )1 exp 0
2

we e
e i

e e i

ekT kTn e n e
M k T M

φ
σ

π
⎛ ⎞

− − =⎜ ⎟
⎝ ⎠
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which leads to: 

2 1ln
1

e e
w

i

k T M
e M

πφ
σ

⎡ ⎤
= ⎢ ⎥−⎢ ⎥⎣ ⎦

 (e)  

which, in turn, can be expressed by equation [8.7] (i.e. the 
formula given in Appendix A of [BAR 09]), with the exception 
of the sign. 

– The electron energy deposition on the surface 
(internal + external) of the channel is: 

, ,e w e e wn eν where 2
,

3 1
2 2e w e e e w we kT M e eΦ σ Φ= + + −v  (f) 

A2.3.5. Final form for the total energy of the electrons 

The electron energy balance  is therefore: 

2 2

, ,

3 1 5 1( ) ( )
2 2 2 2e e e e e e ex e e ex e e

n e i i e w e w e e x

n kT n M n v kT n V M
t x

n n n n v e Eβ γ ε ν ε

∂ ∂+ + +
∂ ∂
= − − −

v v
 [A2.23] 

This is equation (7) from Table 8.1, for: , 0xE E Eθ= = , 
which corresponds to the hypotheses adopted by Barral and 
Ahedo [BAR 09]. 

A2.3.6. Another form of the electron energy equation 

Barral and Ahedo [BAR 09]  manage to write, after a 
series of algebraic computations, the balance equations in a 
form which yields the system of equations [8.13]. 

In order to do so, they rearrange the energy balance 
equation for the free electrons, placing it in the form: 

( ) ( )3 2 3 2

, 4
e e e e

e x e

T n T n
v h n

t x

∂ ∂
+ =

∂ ∂
 [A2.24] 
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This result is obtained by eliminating the electrical field 
using Ohm’s law (equation [6] in Table 8.1) and  
setting , 0xE E Eθ= = . They also express the kinetic energy 
carried by the electrons in the same way as in 

equation [A2.14], in the term: 21 3
2 2e e e e en M v n kT= .  The 

quantity h4  is not a function of the electron density ne. 
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