

 i

Migrating to
iPhone and iPad

for .NET Developers

■ ■ ■

Mark Mamone

Migrating to iPhone and iPad for .NET Developers

Copyright © 2011 by Mark Mamone

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3858-4

ISBN-13 (electronic): 978-1-4302-3859-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Mark Beckner
Development Editor: Chris Nelson
Technical Reviewer: John Allen
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan

Engel, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Jennifer L. Blackwell
Copy Editors: Marilyn Smith, Tiffany Taylor, and Kim Wimpsett
Compositor: MacPS, LLC
Indexer: BIM Indexing & Proofreading Services
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

Any source code or other supplementary materials referenced by the author in this text is
available to readers at www.apress.com. For detailed information about how to locate your book’s
source code, go to http://www.apress.com/source-code/.

I dedicate this book to my wife, children, and friends
for always believing in me.

iv

Contents at a Glance

Contents .. v
About the Author ... x
About the Technical Reviewer ... xi
Acknowledgments .. xii
Introduction ... xiii
■Chapter 1: Get Set Up: Tools and Development on Apple’s Platforms
 and Technologies .. 1�
■Chapter 2: Jump In: A Crash Course on Development
 Using the iOS SDK ... 27�
■Chapter 3: Understand Your Options: Using Third-Party Solutions
 and MonoTouch ... 57�
■Chapter 4: Going Deeper: .NET, Objective-C, and the iOS SDK 79�
■Chapter 5: Get to Work: Creating Your First Application 113�
■Chapter 6: Build Your Skills: Enhancing Your Application
 with a Dynamic User Interface .. 145�
■Chapter 7: Get the Data: Storing and Retrieving Data
 and Configuring your Applications .. 187�
■Chapter 8: Extend Your Apps: Extending Your iOS Application
 with Libraries .. 207�
■Chapter 9: Get Published: Testing, Deploying
 and Distributing Your Applications .. 223�
■Chapter 10: Extend Your Skills: Advanced Features 261�
■Appendix: Completing the Lunar Lander Application 281�
Index ... 285

v

Contents

Contents at a Glance .. iv�
About the Author ... x�
About the Technical Reviewer ... xi�
Acknowledgments .. xii�
Introduction ... xiii�

■Chapter 1: Get Set Up: Tools and Development on Apple’s Platforms
 and Technologies ... 1�

Registering As an Apple Developer ... 2�
Application Development Considerations ... 4�

Generic Development Principles .. 5�
Third-Party Development Principles .. 5�
Application Approaches ... 6�

Apple Platforms and Technologies ... 7�
Apple Terminology and Concepts .. 7�
Understanding the iOS ... 9�
Application Development Using Apple Components .. 10�

Third-Party Options ... 13�
Mono Family .. 14�
DragonFire SDK .. 16�
Appcelerator’s Titanium Mobile ... 18�
Marmalade SDK ... 19�
Flash Professional Creative Studio 5 ... 21�

Overview of the App Store .. 22�
Selling Apps at the App Store .. 23�
Submitting an App to the Store .. 24�

Summary .. 25�

■Chapter 2: Jump In: A Crash Course on Development
 Using the iOS SDK .. 27�

Getting Started .. 27�
Choosing the Right Machine .. 28�
Choosing the iOS SDK .. 29�

Installing Xcode and the iOS SDK ... 30�

■ CONTENTS

vi

An Objective-C Primer ... 35�
Objective-C Terminology .. 36�
Object Model .. 36�
Square Brackets and Methods ... 37�
Naming Conventions .. 38�
Importing ... 38�
Class Definition and Implementation ... 38�
Nil Objects .. 39�
Exception Handling .. 40�
Memory Management .. 40�

Creating Your First iPhone Application ... 41�
Creating a Project .. 41�
Exploring Your Project and File Structure .. 44�
Initializing Your Application ... 45�
Creating Your User Interface .. 47�

Using Automatic Reference Counting ... 54�
Why Use It? .. 55�
Enabling ARC ... 55�
Migrating to ARC .. 55�
Programming with ARC .. 55�

Summary .. 56�

■Chapter 3: Understand Your Options: Using Third-Party Solutions
 and MonoTouch ... 57�

Understanding the Constraints ... 57�
Developing with Mono and MonoTouch .. 58�

Installing Mono, MonoDevelop, and MonoTouch ... 59�
Creating Hello, World Using MonoTouch .. 66�

Using Appcelerator’s Titanium Mobile .. 69�
Installing Titanium ... 69�
Creating Hello, World Using Titanium .. 70�

Using the Marmalade SDK .. 75�
Installing Marmalade ... 75�
Creating Hello, World Using Marmalade .. 77�

Summary .. 78�

■Chapter 4: Going Deeper: .NET, Objective-C, and the iOS SDK 79�
Comparing iOS Device Capabilities ... 80�
iOS Application Design .. 81�

Design Considerations ... 82�
Design Patterns .. 82�

Looking Under the Hood of an Application .. 83�
The Application Life Cycle .. 85�
Managing Application States ... 86�
Managing an Application’s Behaviors .. 88�

Comparing the .NET Framework with iOS and the iOS SDK ... 90�
User-Interface Services ... 91�
Application Services .. 93�
Runtime Services ... 95�

■ CONTENTS

vii

Objective-C Primer, Part 2 .. 96�
Class Declaration ... 97�
Method Declaration .. 97�
Properties .. 98�
Strings ... 99�
Interfaces and Protocols .. 100�
Delegation .. 103�
Comments .. 104�

Comparing .NET and Xcode Tools ... 105�
XCode 4 Primer ... 106�

The IDE Workspace and Its Editors .. 106�
Inspectors .. 108�
Navigators .. 109�
Views ... 110�
Using Other Xcode Tools .. 111�

Summary .. 112�

■Chapter 5: Get to Work: Creating Your First Application 113�
The App Planning and Design Process ... 114�

Apple iOS Design Resources .. 115�
Other Design Resources .. 115�

Planning and Designing the Lunar Lander Application ... 116�
Requirements Specification ... 116�
Lunar Lander Application Design ... 117�

Building the Lunar Lander Application .. 119�
Creating the Application Project .. 119�
Building the User Interface and Flow Logic ... 121�
Implementing Navigation in Your Application .. 127�

Building the Core Game Engine and Enabling User Interaction .. 128�
Examining the Game View Header ... 128�
Self-Documenting Code ... 137�
Programmatically Initializing an XIB Resource .. 138�
Manually Drawing the User Interface .. 140�
Using Bespoke Methods .. 141�

Using Simulators to Test Your Application .. 141�
Summary .. 143�

■Chapter 6: Build Your Skills: Enhancing Your Application
 with a Dynamic User Interface .. 145�

Understanding Platform and Device Constraints .. 146�
Display Size and Resolution ... 146�
Supporting Device Orientation ... 150�

Application Types and Associated View Controllers ... 154�
Utility-Based Applications .. 154�
Tab Bar–Based Applications .. 155�
Navigation-Based Applications .. 156�

Implementing a Tab Bar–Based Application ... 157�
Overview of iPad-specific Controllers ... 163�

Popover View Controllers ... 163�

■ CONTENTS

viii

Split-View Controllers .. 171�
User Interface Controls ... 174�

Controls .. 174�
Navigation and Information Bars ... 179�
Content Views .. 180�
Other Elements .. 183�

Apple’s User Interface Resources ... 185�
Summary .. 186�

■Chapter 7: Get the Data: Storing and Retrieving Data
 and Configuring your Applications .. 187�

What Are Our Options for Storing Data? ... 188�
Using the Sandbox to Provide Filesystem-Based Storage ... 188�
Managing the Data Within Your Application .. 189�
Using Property Lists As Storage ... 191�
Using the Internet to Store Data .. 192�
Using the iOS-Embedded Database ... 192�
Connecting to Other Databases ... 197�

Creating the High-Score Example ... 197�
Creating a Persistent High-Score Class ... 197�
Testing the High-Score Class ... 201�
Completing the Class ... 203�

Comparing the Serialization Example with .NET ... 204�
Summary .. 204�

■Chapter 8: Extend Your Apps: Extending Your iOS Application
 with Libraries .. 207�

Overview of Libraries .. 207�
What Is a Library? .. 208�
What Types of Libraries Exist? ... 208�
Static Library .. 208�
Dynamic Library ... 208�
Comparing iOS Libraries with .NET Equivalents .. 209�

Creating Your Own Static Libraries ... 210�
Creating a Static Library with Xcode 4 .. 210�
Creating an Assembly in .NET .. 217�

The Apple Developer Agreement .. 218�
Third-Party Libraries ... 219�

Categories of Third-Party Libraries .. 219�
Useful Third-Party Libraries ... 220�
Looking Elsewhere for Libraries .. 221�

Summary .. 221�

■Chapter 9: Get Published: Testing, Deploying
 and Distributing Your Applications .. 223�

Available Test Features ... 223�
Unit Testing .. 224�

Using the Xcode 4 Debugger .. 229�
Other Debugging Options .. 232�

Using NSLog to Capture Diagnostics ... 232�

■ CONTENTS

ix

Profiling Your Application .. 233�
Using the Simulator’s Debug Features ... 237�

Changing the Device .. 238�
Changing the iOS Version .. 238�
Simulating Movement .. 238�
Triggering Low Memory ... 238�
Other Features ... 239�

Testing on Real Devices .. 239�
Deploying Your Application ... 240�

Creating a Certificate to Sign Your Application .. 241�
Registering Your Device ... 243�
Using the Provisioning Portal to Get Started .. 244�
Build and Deploy Your Application ... 250�

Publishing Your Application .. 253�
Publishing via the Adhoc Mechanism .. 253�
Publishing via the App Store .. 254�

Additional Resources .. 259�
Summary .. 260�

■Chapter 10: Extend Your Skills: Advanced Features 261�
Using the Global Positioning System .. 261�

Overview of Location Services ... 262�
Implementing Location-Based Services .. 262�
What’s in a Location? ... 264�

Using the Camera ... 266�
Camera Basics ... 266�

Writing an Example Camera Application ... 267�
Using the Accelerometer .. 271�
Overview of Gesture Detection ... 274�

Detecting Touch Events ... 274�
Detecting Swipes ... 275�

Targeting Multiple Devices with Your Code .. 276�
What’s New and on the Horizon? .. 277�

The iCloud .. 277�
iOS 5 .. 278�

Summary .. 280�

■Appendix: Completing the Lunar Lander Application 281�
Implementing the Game Physics .. 281�

Gravity .. 281�
Thrust ... 282�
Rotation .. 282�

Enabling User Interaction .. 282�
Catching Game Events .. 283�
Handling the Graphics ... 283�
Displaying a High Score .. 284
Resources ... 284�

Index ... 285

x

About the Author

Mark Mamone is Global Head of Professional Services for Local Government &
Commercial at Serco. He has 23 years of IT experience and has been involved
with Microsoft .NET since its beta, Mono since its inception, and Objective-C
and iPhone development since launch. A Certified Enterprise Architect and
experienced chief technology officer, Mark has authored and coauthored
several books on topics that include Linux, .NET, Mono, and databases.

xi

About the Technical Reviewer

John Allen is a Senior Manager and Enterprise Architect with BAE Systems
Detica. He has over 15 years experience in the design and development of
large-scale enterprise systems and is an expert in the field of software
engineering and modern delivery methodologies. John has been involved in a
number of open source projects and IT startups and continues to program for
fun and profit, with his current focus being mobile applications, big data, and
real-time analytics.

xii

Acknowledgments

I would like to thank Rachel for supporting me and Oliver and Harry for reminding me on a daily
basis why I work so hard. I would also like to thank John Allen for agreeing to be the technical
reviewer for this book and for helping me to make this book the best it can be. Finally, I’d like to
thank those at Apress who supported me in the creation of this book, especially Chris—you’re a
star!

xiii

Introduction

Ever since I spotted and started reading my first computer book in 1981, I knew Information
Technology (IT) was going to be an important part of my life. I feel privileged to have been able to
make a career out of something I enjoy, and the fact that it changes on what seems to be a
monthly basis means it never gets boring. It still astounds me that mobile telephones have come
so far in such a short time; and when the iPhone was launched, I knew the role of smartphones
would be pivotal in all that we do—both in our private and our corporate lives. They are not only
useful tools for managing your contacts or calendar, they are now a mechanism for doing all sorts
of things such as buying a cinema ticket, keeping in touch with your friends through social media,
and playing games,

However, why should those who don’t know Objective-C or Xcode not be able to take
advantage of such a wonderful world, especially if you have come to know and love Microsoft’s
.NET and C# but don’t want to be exclusive to Microsoft Mobile–based smartphones? It doesn’t
have to be that way—a plethora of options exist, including using this book to understand the
similarities and differences between C# and Objective-C, Visual Studio and Xcode 4, and the .NET
Framework and the iOS SDK, and also how to exploit third-party options such as Mono and
MonoTouch.

This book has been created to do just that. It provides you with all the information you need
to make that transition, leaving you empowered and capable of using your experience to create
world-class iOS-based applications. I even take you through the process of publishing your
application to Apple’s App Store.

I hope you enjoy this book and the opportunities it may afford you. Thank you for reading it.

 1

 Chapter

Get Set Up: Tools and
Development on Apple’s
Platforms and
Technologies
In 2007, during a keynote speech at Macworld Expo, Steve Jobs (CEO of Apple)
announced both a change of name to the organization (from Apple Computers, Inc., to
just Apple, Inc.) and a change of product emphasis, moving from a focus on personal
computers to an emphasis on mobile electronic devices. During the same
announcement, Steve Jobs introduced two new devices: the iPhone and the Apple TV.
The former has changed the face of the mobile landscape and consumer experience for
mobile devices forever. Apple has gone on to launch its fifth generation iPhone and
repeat its success with the introduction of its second-generation tablet, selling millions
of devices and creating billions of dollars of revenue.

Apple’s success can be attributed to the quality of the devices, the “coolness”
associated with owning them, and the intuitive interface. But much more significantly
than those factors is the introduction of the App Store in 2008, and the subsequent and
growing availability of cheap (often free) fun and productive applications, which has
skyrocketed Apple into a world leader in the mobile marketplace. Apple announced in
July 2011 that the App Store now has almost half a million applications downloaded
billions of times, and more important, anyone can write and submit applications for sale
and distribution. So, you could make the next best-selling mobile application that
everyone is playing, such as Angry Birds!

So, what’s stopping you? Nothing, provided that you’re familiar with development tool
sets such as Apple’s Xcode and its default programming language, Objective-C. For
.NET developers and others, this has sometimes been a barrier for entry. After all, while

1

CHAPTER 1: Get Set Up: Tools and Development on Apple’s Platforms and Technologies 2

everyone likes to learn something new, it doesn’t mean you won’t want to reuse that
experience to get up and running more quickly.

In this book, you will learn how to transfer your skills from .NET to the Apple
development framework, using both the tools provided and the comprehensive iOS SDK
library. You also will learn about some of the third-party tools that leverage .NET and
other non-Apple technology that might be more familiar and thus more comfortable to
use. These third-party tools were introduced into the market to provide alternatives to
the Apple-only tool set. Although using these tools is not the focus of this book, I’ll
introduce some of the key third-party tools, providing you with an overview on how to
get up and running with them.

This chapter provides key information about the Apple development framework, as well
as some of the alternative options. The following topics are covered:

� A description of how to register as an Apple Developer and why you
would want to do that

� An overview of the Application development models

� An introduction to Apple’s mobile operating system (iOS) and
development tools

� A tour of third-party options, including the Mono family, DragonFire
SDK, Titanium Mobile, Marmalade SDK, and Flash Professional CS5

� An introduction to the App Store and how to sell your new application

Registering As an Apple Developer
Before we discuss any of the software development kits (SDKs) or tools, you’ll need to
register as an Apple Developer. This is necessary not only to provide you with useful
access to technical sources and information about developing applications that run on
iOS-based mobile devices (the iPhone, iPad, and iPod touch), but also to download the
tools you need, such as the iOS SDK and Xcode. These downloads are required for the
Chapter 2 examples, so registering as an Apple Developer now is highly recommended.

To sign up, start up a browser session and navigate to
http://developer.apple.com/programs/register, which presents you with a screen
similar to the one shown in Figure 1–1.

CHAPTER 1: Get Set Up: Tools and Development on Apple’s Platforms and Technologies 3

Figure 1–1. Apple Developer registration home page

On this home page, you’ll notice the option to Get Started, and register as an Apple
Developer for free. Choose this link, and then proceed to follow the instructions to either
create a new Apple ID or use an existing Apple ID (which you may already have through
the use of iTunes, for example). Complete the steps required to register as an Apple
Developer.

After successfully registering as an Apple Developer, you’ll be able to gain access to a
number of online resources that will provide you with some of the necessary tools and
support. A couple of these resources are listed in Table 1–1.

Table 1–1. Online Apple Resources

Resource Cost URL Purpose

iOS Dev Center Free http://developer.apple.com/devcenter/ios Provides free technical
resources and tools

iOS Developer $99 http://developer.apple.com/program/ios Membership permits you
to distribute applications
on Apple’s App Store

You should now proceed to the iOS Dev Center and download the free iOS SDK, which
provides the essential tools and libraries for starting to design and develop applications

CHAPTER 1: Get Set Up: Tools and Development on Apple’s Platforms and Technologies 4

for your mobile Apple device. This disk image (with a .dmg extension) includes both the
Xcode and the iOS SDK, so it is quite large, and you might want to make a drink while
you are waiting for it to download. Alternatively, you may choose to download an older
version of Xcode, which is free, although it does have limitations as to which Apple iOS
versions it can target.

At this point, you may be wondering what the difference is between registering for an
Apple ID and downloading the free SDK, and registering as an official iOS Developer, at
a cost of $99, and gaining access to the very latest version of Xcode. Since the release
of Xcode 4, Apple has mandated that you must be registered as an iOS Developer on
the Apple Developer Connection (ADC) web site to gain access to it, which is covered by
the annual $99 fee.

NOTE: If you just want to experiment with Xcode 4 before making a commitment, you can install
Xcode 4 through the Mac App Store at a cost of $4.99—much cheaper. However, the key
difference between the two options is that with the App Store version, you cannot deploy your

software to physical devices for testing, submit your apps to the App Store for publication, or
access certain online resources. So, once you’re comfortable and have plans for your “must-

have” Apple application, you might want to commit to the full version.

But which version do you need? Well, that very much depends on which mechanism
you’re going to use to write your iPhone or iPad applications. We’ll be looking at writing
applications using a number of different methods, but we’ll focus mainly on the
Objective-C language.

My plan for this book is to target the latest Apple mobile devices, and I want to
showcase the latest tooling options. So, the examples here use the latest version of
Xcode available at the time of writing: Xcode 4. This version is improved significantly in
usability, and so productivity. Such improvements result in it comparing more closely to
Microsoft’s own Visual Studio. So, while older versions of Xcode might work and be
free, I recommend that you pursue more recent versions and invest the fee required to
get started.

Application Development Considerations
Whether you are using Apple’s own native tools or a third-party tool, there are certain
principles to keep in mind as you develop. These principles will help to ensure your road
to writing your award-winning application is smooth, or at least smoother. Each of the
options we’ll discuss is developed around some overarching principles, which both
guide and constrain the way they work and how the resulting applications might
execute, especially in the case of the third-party options.

CHAPTER 1: Get Set Up: Tools and Development on Apple’s Platforms and Technologies 5

Generic Development Principles
The following principles are common, irrespective of whether you are using Apple’s own
native resources or a third-party resource:

� Design patterns: Many of the frameworks use well-known design
patterns for implementing your application. For example, the Model-
View-Controller (MVC) design pattern is very common, and so an
understanding of how this pattern works will help you enormously.

� Licensing: It’s also worth understanding how the licensing model
works for the third-party applications, and any limitations or conditions
that may be enforced when you sign up to use the tools these
applications provide. Also be aware of any restrictions that Apple’s
App Store policy might enforce.

� Device compatibility: Writing an application for one device doesn’t
mean it will automatically run or behave the same on another device.
Take some time to understand the constraints and differences, and
design your application for a multi-device scenario, if applicable.
These differences are highlighted in upcoming chapters when relevant.
For example, the iPad has more real estate that an iPhone, and we’ll
explore this in Chapter 6, where we look at enhancing your user
interface.

Third-Party Development Principles
The following principles are generally common to all nonnative mobile application
development solutions, as described later in this chapter:

� API limits: As with many operating system abstraction techniques, the
API exposed by the tool you are using to write your mobile application is
very often incomplete, and so will either implement a subset of the APIs
available to the native iOS SDK or even provide different API calls. Take
the time to understand the API, its constraints, and how it should be
used by following the documentation and guidance provided.

� Prerequisites: It’s important to note that not all of the third-party
products work with the latest versions of Apple’s native tools. Take some
time to understand any prerequisites and ensure you download the
components required by your tool and as indicated in the supporting
documentation. The prerequisites go for hardware, too. Some of the
options run only on the Mac OS X operating system. So, ensure you have
the correct hardware, especially before spending money!

� Cost: Not all of the options are free, and some of the options have
limitations. You may need to buy additional “bundles” as your
application development progresses.

CHAPTER 1: Get Set Up: Tools and Development on Apple’s Platforms and Technologies 6

You need to be aware of these principles and understand not only how they work, but
also the types of applications they output and the application model paradigms they
use.

NOTE: Third-party tools may simplify the development process, but sometimes at the cost of not
supporting native applications or to the detriment of performance. In this chapter, and in the

more detailed coverage in Chapter 3, I will provide information that will help you determine which

options best suit your needs.

Application Approaches
Application development can be classified as one of two application paradigms: a web
application or a native application. Understanding these types will better prepare you for
the development of your application. You’ll want to know the constraints of each and the
implications they have on stages of development, such as debugging and distribution.

Web Applications
The option to develop an application using the web paradigm still remains and is always
an option. In this paradigm, the app is hosted outside the mobile device and uses the
implicit features of Apple’s mobile browser, Safari, to execute the code and provide the
required user interface and functionality. Of course, this constrains the kind of
application you can build, the richness of its features, the functionality possible, and the
way in which the application is accessed and made available.

For example, a browser-based application is available only when you have online
connectivity, but in some cases, this might be quite appropriate. Suppose that you
wanted to target many devices without being as dependent on the functionality provided
by their operating system. In that case, you might consider a web-based application.
Yes, it may require online connectivity, but if your application requires capabilities
typically only provided by a web browser, such as HTML or JavaScript, then a web
application may do just fine. However, Apple prides itself on a rich, intuitive, and
interactive user experience, which is far easier to provide when exploiting the
capabilities of Apple devices and their operating systems. But note that it is fair to say
that, as the browser experience grows and as new technologies are introduced, the gap
between web and native is definitely closing!

Native Applications
The alternative to a web-based application is a native application, and this type is the
thrust of this book. We’ll be looking at applications that are downloaded to and reside
on the mobile device itself, and are written using Apple’s own tools (Xcode and the iOS
SDK) or those from a third-party provider.

CHAPTER 1: Get Set Up: Tools and Development on Apple’s Platforms and Technologies 7

Now that we’ve covered the basic development principles and approaches, we’ll look at
some core concepts surrounding application development using Apple tools, and then
take a look at the third-party options available for application development. We’ll be
discussing these options throughout the book, and I will guide you through creating
applications using the different mechanisms.

Apple Platforms and Technologies
Apple provides a variety of development resources that allow you to target a number of
its devices or platforms. These include the Mac (via the Max OS X operating system), the
Safari browser, and of course, Apple’s mobile devices. This section introduces the
underlying concepts, and then discusses the iOS and Apple tool set in more detail.

Apple Terminology and Concepts
Let’s start with some of the key terms you should recognize before starting your journey,
to provide some context for subsequent details provided in later sections. I want you to
be able to build up a mental picture of the key concepts provided as part of Apple’s core
platforms and technologies before I introduce how, if at all, third-party options interface
to them.

Table 1–2. Key Apple Platform and Technology Concepts

Term Description

iOS iOS is the mobile operating system that powers Apple’s mobile devices. It
was originally developed for the iPhone but more recently extended to
power the iPod touch, iPad, and Apple TV.

iOS SDK The iOS SDK provides the supporting tools (called a toolchain) and
framework necessary to develop mobile applications, including:

■ Cocoa Touch

■ Media

■ Core Services

■ OS X kernel

■ iPhone simulator

Xcode Xcode is Apple’s complete tool set for building Mac OS X and iOS
applications. This package includes the integrated development
environment:

■ Compiler

■ Tools for performance and behavior analysis

■ iOS simulator

CHAPTER 1: Get Set Up: Tools and Development on Apple’s Platforms and Technologies 8

Term Description

Objective-C Objective-C is Apple’s programming language, derived from the C
programming language but with object-oriented and message-based
extensions.

Cocoa\Cocoa Touch Cocoa is one of Apple’s native application programming interfaces. It
provides a prebuilt set of libraries that support you in developing applications.
In the case of Cocoa Touch, this includes extensions to support gesture
recognition and animation on iPhone, iPod touch, and iPad devices.

Apple Developer Registration as an Apple Developer is not only required to download
resources such as the iOS SDK and Xcode, but it also provides you with
access to key resources to support you through the iOS Dev Center.

Third-party tool A third-party tool is a product or package specifically provided to solve a
problem. In this case, the problem is mobile application development
without using the traditional Apple tool set.

Figure 1–2 is a diagram that presents these concepts in a logical order (as they say, “a
picture paints a thousand words”). I will build on this diagram as the chapter progresses,
placing each of the concepts we encounter in relation to one another, and explaining
their purpose and relationship. The diagram represents the “layers” provided, and the
boundaries of the boxes shouldn’t be seen as the only interfaces available to you. As I
introduce each of the core layers, this will become clearer.

Figure 1–2. Apple’s mobile application development framework

CHAPTER 1: Get Set Up: Tools and Development on Apple’s Platforms and Technologies 9

As you can see in Figure 1–2, on top of the iOS sits both the iOS SDK and the Cocoa
API with the Touch extensions. The Bridge technology is another API, which provides
the framework to link these resources to non-Apple and interpreted languages such as
Perl, Python, and Ruby. Finally, the Xcode suite of tools provides graphical user
interfaces (GUIs) to use the program languages, APIs, and libraries supplied through an
integrated development environment (IDE)—all sitting on top of your Apple Mac
computer.

You should now be comfortable with some of the high-level concepts associated with
developing for Apple’s mobile devices, if not the approaches or patterns of development
yet, and have an understanding of some of the relationships among these core
components. You should have also downloaded the iOS SDK, although we won’t use it
until the next chapter.

Both the iOS and the associated SDK are required to build and run mobile applications.
Let’s take a look at them at a high level. This will help you to understand some of the
intricacies of the different mobile devices and also provide further background on how
the operating system’s features are accessed by the APIs and SDKs above them.

Understanding the iOS
Originally developed for the iPhone and derived from Mac OS X, iOS is the operating
system at the heart of Apple’s mobile devices, including the iPhone, iPod touch, and
more recently, iPad devices. As with most operating systems, iOS takes a layered
approach to providing the necessary functionality. Each layer builds upon another and
provides clean lines of abstraction between them. The layers provided within iOS are
shown in Figure 1–3.

Figure 1–3. iOS architecture

Let’s start at the bottom of the stack, dealing with the low-level services first and
working our way up to those elements that we as humans will interact with directly and
use for building iOS applications.

CHAPTER 1: Get Set Up: Tools and Development on Apple’s Platforms and Technologies 10

Core OS: This provides a layer of abstraction from the physical hardware and contains
the low-level features used by the layers above it. Each element of the layer is provided
as a series of frameworks: the Accelerate framework, External Accessory framework,
Security framework, and System framework. A framework in this context is a collection
of associated APIs that provide the framework’s functionality. As we progress through
the book, we’ll explore these frameworks and the APIs they expose in more detail, and
demonstrate examples of how to use them.

Core Services: Building on the Core OS layer, the Core Services layer contains the
fundamental system services for applications. This layer is split into a set of Core
Services, which combine to provide a number of essential high-level features. Some of
the services provided are for programmatic support (language support, data types, and
so on), data management support, and telephony.

Media: This layer, as its name suggests, provides graphic, audio, and video support. It is
tasked with providing the best multimedia support available through the device being
used. This layer includes frameworks that provide core audio, graphics, text, video, and
MIDI support, as well as support for animation, media playing, and much more.

Cocoa Touch: This layer provides support and the key building blocks for building
applications, including multitasking, touch-based input, notifications, and user-interface
support. This layer also provides support for file sharing and printing, as well as peer-to-
peer services for wireless connectivity.

While most of this functionality is packed into special libraries known as frameworks, this
is not the case for all layers and all functionality. For example, some of the specialized
libraries within the Core OS and Core Services layers are provided as dynamic link
libraries (DLLs) with symbolic links used to point the iOS to the latest version on your
device. Such techniques are common for managing code, and we’ll look at them in more
detail when talking about version control in Chapter 2.

NOTE: Here, I will introduce the key concepts within each framework and present working
examples to illustrate their use. More detail on the iOS frameworks and the versions of iOS in

which they are supported can be found in the iOS Developer Library documentation.

Application Development Using Apple Components
You should now have a general appreciation for the operating system, the layers from
which it is constructed, and the functionality it provides. Before we delve into the details
of the iOS SDK, let’s look at some of the history surrounding software development
using Apple components.

When the iPhone was originally launched, you had two options: use the native tools and
languages, such as Objective-C and the Mac OS X, or use web-based applications that
are executed within the mobile Safari browser. The latter is naturally limited to languages
such as HTML, Cascading Style Sheets (CSS), and JavaScript. Now this is still a valid

CHAPTER 1: Get Set Up: Tools and Development on Apple’s Platforms and Technologies 11

development option today, but limiting in the kind of functionality and user experience
possible.

The release of the second-generation iPhone introduced the iOS SDK, the Apple App
Store, and the ability to use Xcode and Objective-C to write native applications. This
provided virtually complete access to the iOS, and thus to the iPhone features, and also
satisfied the mandated native-binaries-only option for distribution through the App
Store.

Using the iOS SDK, and so Xcode and Objective-C, is still possible, and indeed favored
by some individuals as the standard mechanism to use for application development.
However, it is also true that developers may want to create applications that run on
many mobile devices, not just Apple’s. Or indeed, they may favor the Apple mobile
devices but not Mac OS X, or maybe they do not like the development tools and
languages mandated. For these reasons, a number of alternatives have been introduced,
as we’ll discuss in the book. In some cases, the options depend, at least in part, on the
iOS SDK.

So, enough history. Now let’s look at the options available for developing applications
using the Apple-provided tools. Apple provides the following core components for
developing applications:

� Xcode: This is a suite of tools, developed by Apple, for creating
software both for the Mac OS X (as used in iMacs, MacBooks, and so
on) and iOS.

� iOS SDK: This is the SDK released to allow developers to make
applications for Apple’s mobile devices and the Apple TV.

Xcode
At the time of writing, the most recent release of Xcode is Xcode 4, available from the
Mac App Store for $4.99 and from the Apple Developer Connection web site for those
registered as an Apple Developer, but at a cost of $99 for annual membership. Xcode
version 3 is still available, free of charge (although, as you would expect, the versions of
iOS supported are constrained).

Xcode comes with the following:

� IDE: Xcode is the standard IDE from Apple, which allows you to
develop software for both the Mac OS X and iOS operating systems. It
supports many programming languages, and provides many of the
features you expect from a professional IDE, such as syntax
highlighting, autocomplete, debugging, and source-code control. It’s
comparable with other industry-favored IDEs such as Eclipse and
Microsoft’s Visual Studio.

CHAPTER 1: Get Set Up: Tools and Development on Apple’s Platforms and Technologies 12

� Interface Builder: Since the introduction of Xcode 4, Interface Builder
has moved from being a separate application to being completely
integrated into the Xcode IDE, but its purpose remains the same: to
provide a tool to aid the creation of user interfaces. It does this
through a GUI supporting frameworks such as Cocoa and presents a
palette of user interface objects and controls for you to drag and drop
onto your canvas as required. You can even go a step further and
provide the source-code implementation for events from these
controls, such as a button click.

� Compiler: The compiler is an essential component. It takes your
source code and generates the binaries required for execution of your
mobile device and for App Store execution. Apple’s LLVM (from the
LLVM.org project) is a fast, feature-rich compiler that creates
optimized applications for your mobile devices. It supports a number
of languages, including C, C++, and Objective-C.

� Debugger: Another contribution from Apple to the LLVM.org open
source project, the debugger provided as part of Xcode is fast and
efficient. It supplies an integrated debugging interface that includes
the usual features, such as stack tracing and step-by-step debugging,
and also comprehensive multithreading support.

iOS SDK
The iOS SDK is the SDK launched by Apple in 2008 to enable you to develop native
applications for the iOS operating system. The iOS SDK is broken down into sets that
match the layers provided within the iOS framework (see Figure 1–3 earlier in the
chapter). This includes the following:

� Cocoa Touch

� Multitouch events and controls

� Accelerometer support

� View hierarchy

� Localization

� Camera support

� Media

� OpenAL

� Audio mixing and recording

� Video playback

� Image file formats

CHAPTER 1: Get Set Up: Tools and Development on Apple’s Platforms and Technologies 13

� Quartz

� Core animation

� OpenGL ES

� Core Services

� Networking

� Embedded SQLite database

� Core Location

� Concurrency

� Core Motion

� OS X kernel

� TCP/IP

� Sockets

� Power management

� Threads

� Filesystem

� Security

Along with the Xcode toolchain, the SDK contains the iPhone simulator, a program used
to emulate the look and feel of the iPhone on the developer’s desktop. The SDK requires
an Intel Mac running Mac OS X Snow Leopard or later. Other operating systems,
including Microsoft Windows and older versions of Mac OS X, are not supported. More
information can be found on the iOS Dev Center web site.

Third-Party Options
The reliance on Apple-only tooling for application development on Apple’s mobile
devices has long been a sore point for a number of people. This is not a reflection on the
quality or features provided within the Apple options—quite the contrary. They are
extremely powerful and productive tools that enable you to develop for both Apple’s
desktop and laptop devices (iMac, MacBook, and MacBook Pro) and mobile devices
(the iPhone, iPod touch, and iPad) individually or as a team, using its team development
features.

But, humans being humans, we get comfortable with what we know. We like familiarity.
Those who have been brought up on different operating systems, different technologies,
and different tools may be reluctant to change, and might not see the need to do so. For
example, if you’re a Java developer, you may love the Java programming language and
the Eclipse (or similar) IDE you are using. Given you’re a .NET developer, chances are
you’ve been exposed to other languages. While this book focuses on bridging the gap

CHAPTER 1: Get Set Up: Tools and Development on Apple’s Platforms and Technologies 14

between .NET and Apple’s tool set, understanding the third-party options available to
you is likely to provide relevant context. If you’ve been exposed to only Microsoft .NET,
your familiarity with tools such as Visual Studio and the .NET Framework will stand you
in good stead in making the transition.

Whether your experience is Microsoft-based or more mixed, you may also be more
comfortable with the Windows or Linux operating system, and so are hesitant to learn a
new operating system on which to develop your applications. “After all,” I hear many
people argue, “it’s the mobile device and its operating system that are of most
relevance, not how you get there.”

So, how do you best use the experience you have and what exists to make your
transition easier? My guess is you are not afraid to learn something new—after all, it’s
fun— but would rather reuse elements of the development environment that you are
already familiar with—specifically, .NET. This hasn’t gone unnoticed, and open source
initiatives and commercial organizations have attempted to tackle and capitalize on the
problem. There are many options available, and some scenarios may suit you more than
others, such as Mono providing an open source and Apple-friendly implementation of
.NET. Other options, while not .NET-focused, are relevant in helping you make the
transition, even if you choose to ignore them and stick with Apple’s own SDK and tools.
Here, we’ll take a quick look at the following third-party options:

� Mono

� Appcelerator’s Titanium Mobile

� Marmalade SDK

� Flash Professional CS5

Mono Family
Mono is an open source (community-built) implementation of the .NET Framework and
associated components for platforms other than Windows. The Mono environment can
be classified as the Core Mono environment and additional components that offer
enhanced functionality. When looking at the development of applications for Apple’s
mobile devices, you can think of Core Mono as the foundation with additional
components, such as MonoTouch, built on top, completing the family.

The Mono family includes a number of components of significance when developing
applications: the compiler, the framework, and the supporting tools. These components
are called Core Mono (the compiler and runtime), MonoTouch (the .NET implementation
of Cocoa Touch), and MonoDevelop (the IDE).

Core Mono
As a core part of the Mono development environment, Core Mono provides a compiler
that supports a number of programming languages, including C#. It includes an
implementation of the Common Language Runtime, and more important, provides a

CHAPTER 1: Get Set Up: Tools and Development on Apple’s Platforms and Technologies 15

comprehensive set of APIs to implement the .NET Framework. Specifically, Core Mono
includes the .NET Framework Class Library implementation, which is a set of libraries
that provides the Mono implementation of the .NET Framework Class Library.

MonoTouch
MonoTouch provides a .NET-based implementation of Apple’s own Cocoa Touch
library. It allows developers to create C#- and .NET-based applications that run on
Apple’s iPhone, iPad, and iPod touch devices, while taking advantage of the iPhone
APIs and reusing code and libraries built for .NET, as well as existing skills. It seems
obvious now, but the introduction of MonoTouch was a touch of genius. It binds the
Objective-C and C APIs from the Cocoa Touch API provided by Apple to the
C#/Common Intermediate Language (CIL) APIs. In addition to the core base class
libraries that are part of Mono, MonoTouch ships with bindings for various iPhone APIs
to allow developers to create native iPhone applications with Mono. How does
MonoTouch do this?

At the core of MonoTouch is an interoperability (interop) engine, which provides the
bindings for the Cocoa Touch API, including Foundation, Core Foundation, and UIKit.
This also includes graphical APIs such as Core Graphics and OpenGL ES.

Although MonoTouch provides bridges to the Cocoa Touch API, there is also an
implementation of Mono targeted at allowing you to write applications for the Mac OS X
operating system calling MonoMac, which uses the same principles. In fact, at the time
of writing, a new version of Mono allows you to employ the same principles to write
Android operating system applications using MonoDroid (although this is at a much
earlier stage of its development).

MonoDevelop
While it’s perfectly possible to use the command-line tools provided with Core Mono,
and there are those who would argue that hard-core programmers deal only with
command-line tools, I for one am grateful for a little help from enhanced tools.
Nowadays, the IDE in the form of some graphical tool is ubiquitous. Those of you who
have seen or used Microsoft’s development tool, Visual Studio, will know how the whole
experience of writing applications is made easier and faster through the use of such
tools. Thankfully, Mono is no different, and the MonoDevelop tool suits our needs nicely
as a great IDE.

As shown in Figure 1–4, MonoDevelop runs on the Mac OS X operating system. In fact,
it runs on a number of operating systems, including various Linux distributions and
Windows.

CHAPTER 1: Get Set Up: Tools and Development on Apple’s Platforms and Technologies 16

Figure 1–4. A MonoDevelop application running on Mac OS X

In Chapter 3, we’ll look at MonoDevelop, along with the Mono framework and
MonoTouch. You’ll get a tutorial on how to install, use, and develop your own
application for Apple’s mobile devices using these components and the .NET
Framework.

MonoTouch (including Core Mono) can be downloaded from http://www.monotouch.net,
and MonoDevelop is available from http://www.monodevelop.com.

DragonFire SDK
We’ve looked at both Apple’s native development environment and the support Mono
provides for application development using the .NET Framework, but this may still be
limiting for you. For example, what if your programming language of choice is C or C++.
While Objective-C is provided as part of the Mac operating system, syntactically, it’s
quite different, and again, you may not want to be restricted to Mac OS X. The
DragonFire SDK product was created for this very purpose.

DragonFire’s target is Windows developers who wish to write native iPhone applications
using Visual C++, its debugger, and the C/C++ language. It doesn’t require a Mac of any
description nor familiarity with Objective-C. As it says on the web site, “Bring your App
idea to life in standard C/C++ and never leave your Windows platform.”

Figure 1–5 illustrates how the Dragonfire SDK compares with Apple’s existing mobile
application development framework.

CHAPTER 1: Get Set Up: Tools and Development on Apple’s Platforms and Technologies 17

Figure 1–5. DragonFire SDK framework

The goal was to allow 2D games to be written and debugged in Windows, and be fully
compliant for distribution via Apple’s App Store. Although this is great if you’re writing a
game, you may find the API lacking in other areas. For example, as an API, it’s not as
complete as Apple’s own API—for example, it lacks complete support for the Location-
based API—but it is constantly being enhanced. The DragonFire SDK Enterprise Edition
is being launched (at the time of writing, it is suggested that this version will launch
toward the end of 2011), and this version will feature database support, as well as more
drag-and-drop functionality and options for displaying text and graphics.

The unique aspect of DragonFire’s SDK is that once you have written your application
using its API and tested it using the on-screen simulator (all on the Windows operating
system, remember), then you package up your application as instructed and upload this
via the web site for compilation, and if requested, iTunes App Store bundling.

The DragonFire SDK is commercially available from its own web site at
http://www.dragonfiresdk.com/. It’s relatively inexpensive and aimed at “weekend
projects,” according to its authors. I’ll let you decide if you like it, but it certainly removes
some of the complexity of the other options. And it is the only option that allows full
iPhone, iPod touch, and iPad development on the Windows platform.

CHAPTER 1: Get Set Up: Tools and Development on Apple’s Platforms and Technologies 18

NOTE: I won’t be covering the DragonFire SDK in detail in this book. Its construct is similar to
some of the other third-party tools I’ll introduce and demonstrate. I’ll leave playing with the

DragonFire SDK to you to have some fun.

Appcelerator’s Titanium Mobile
Appcelerator’s Titanium Mobile is an open source application development platform. In
the same way as the DragonFire SDK can be used to write native iPhone applications
using C/C++, Appcelerator’s Titanium Mobile product allows you to write iPhone, iPad,
and Android applications using languages other than Objective-C (iPhone and iPad) and
Java (Android).

Titanium Mobile has an approach similar to Mono, in that it takes well-known languages
(in this case, various languages including HTML, CSS, and JavaScript) and provides an
API that binds these languages to native APIs (in this case, the iOS SDK). Figure 1–6
illustrates its architecture in comparison to the other options.

Figure 1–6. Titanium Mobile framework

Titanium Mobile differs from Mono in the process that it takes with your bespoke code in
the language you love. Your original code is processed and eventually converted into
native, executable code through a series of steps that involve preprocessing and
compilation against first its own API into native code, and then native code into a native

CHAPTER 1: Get Set Up: Tools and Development on Apple’s Platforms and Technologies 19

executable. These steps are illustrated in Figure 1–7, which shows the life cycle from
written code to an executable ready for testing and, eventually, distribution via the App
Store.

Figure 1–7. Titanium Mobile processing stages

Appcelerator’s Titanium Mobile is available from its own web site at
http://www.appcelerator.com/. It’s free for individuals using it personally or within small
organizations (fewer than 25 employees), and has editions for corporate users of 25 and
over and 100 and over. It has versions not only for mobile development, but also for
desktop, commerce, analytics, and more.

Chapter 3 provides a tutorial on how to download, install, and use the product to create
an iPhone application. In that chapter, we’ll take a closer look at what the Titanium
Mobile package can do, and discuss its advantages and disadvantages.

Marmalade SDK
As I start to introduce the Marmalade SDK, you’ll see a theme emerging in the way these
application development platforms—whether commercial or open source—are
implemented. Marmalade is similar to the Mono and Titanium Mobile packages in many

CHAPTER 1: Get Set Up: Tools and Development on Apple’s Platforms and Technologies 20

ways, except that it supports only C++. However, it does support development on both
the Windows and Mac OS X operating systems, and allows you to create native mobile
applications for the iOS operating system. In fact, the product lets you compile for other
operating systems, such as Android, Symbian, Windows Mobile 6.x, and game
consoles!

The Marmalade package consists of two major components:

� Marmalade System: The Marmalade System is an operating system
abstraction API, together with the associated runtime libraries and
application build system. It provides the binding between the native
operating system API and the code you write, in the same way as
Mono and Titanium Mobile do.

� Marmalade Studio: This is a suite of tools and runtime components,
focused on high-performance 2D/3D graphics and animation.

The package allows you to use Visual C++ on Windows or Xcode on Mac OS X to write
your application using the API provided. It then supports a two-stage deployment
process. In the first stage, you compile your application for debugging. This creates a
DLL (.dll file), which requires the Marmalade Simulator to execute. Then when you are
happy with your application, you can compile your code into a native executable for
distribution.

Figure 1–8 illustrates the Marmalade architecture in relation to the other packages we’ve
discussed so far.

Figure 1–8. Marmalade SDK framework

CHAPTER 1: Get Set Up: Tools and Development on Apple’s Platforms and Technologies 21

In order to use the SDK, you must register an account on the web site, at which point
you will be supplied with an evaluation license. Any registered user can then download a
fully functional evaluation version of the Marmalade SDK. The evaluation version allows
deployment to all platforms, but does not allow public distribution of applications. You
can purchase the latest version of the Marmalade SDK from
http://www.madewithmarmalade.com.

Flash Professional Creative Studio 5
Last, but definitely not least, is Adobe’s Flash platform, which is arguably the most
complete solution given here, in part due to its maturity in both the market and its work
to support the iPhone back in 2010, when Apple lifted its restriction on its third-party
developer guidelines. It allows you to build stand-alone applications for the iPhone, iPod
touch, and iPad using the updated Packager for iPhone, which is included with Adobe
Flash Professional Creative Studio (CS) 5 and with the AIR SDK on Adobe Labs.

Flash Professional CS5 works in a similar way to the other packages, allowing you to
develop your application using the language you are familiar with (in this case,
ActionScript). You compile this against the included APIs (the AIR and Flash Player APIs)
into native iPhone applications, which are then ready for testing and deployment.

Figure 1–9 shows the Flash Professional CS5 architecture, again relative to the others
we’ve discussed in this chapter.

Figure 1–9. Adobe Creative Suite 5 framework

CHAPTER 1: Get Set Up: Tools and Development on Apple’s Platforms and Technologies 22

This option is by far the most comprehensive solution, but at a cost—both financially, as
Adobe’s Creative Studio is not cheap, and in complexity, as the product and its
extensive API are not trivial to understand. For this reason, this option is not covered in
this book. But after looking at the other options available, you should be well prepared
to try out Flash Professional CS5 should you desire.

Overview of the App Store
The App Store is a digital application distribution platform for iOS devices, developed
and maintained by Apple. Through the iTunes Store, accessed from either the Internet or
the device itself, Apple allows service users to browse and download applications,
paying for them as required. Applications can be downloaded to the device directly or to
a desktop and subsequently transferred, if appropriate.

The App Store is accessible from a number of devices, including the iPhone (shown in
Figure 1–10), iPod touch, and iPad. For Mac laptop and desktop users, the Mac App
Store was launched more recently to cater to nonmobile applications.

Figure 1–10. App Store on the iPhone 4

The App Store has been tremendously successful for both Apple and application
producers, with the billionth application download boundary broken back in 2009. As

CHAPTER 1: Get Set Up: Tools and Development on Apple’s Platforms and Technologies 23

mentioned, the concept has been mimicked by other organizations, most notably the
other major mobile service providers. Figure 1–11 shows the global revenue share
among these platforms. Apple’s dominance is obvious.

Figure 1–11. Global mobile application store revenues

Selling Apps at the App Store
The App Store revenue model is to split the proceeds from any sale: 30% to Apple and
70% to the app publisher (this is subject to change at any time). The model has proven
immensely profitable for both Apple and many application producers. The term app
(short for application) has also been used more broadly, and despite Apple being

CHAPTER 1: Get Set Up: Tools and Development on Apple’s Platforms and Technologies 24

awarded a trademark for the term, it has been used in a similar context by others, such
as Google (Google Apps) and Amazon.

NOTE: All native apps can be legitimately downloaded onto a mobile Apple device only through
the App Store, unless the device has been jailbroken. Jailbreaking a device refers to using the
process that gives access to the device’s root filesystem, allowing modification and installation of
third-party software components. It’s not illegal, although Apple is sensitive to the topic and has

stated that it may “void the warranty” for the device. Jailbreaking doesn’t require any changes to

the hardware and can be easily reversed.

More recently, Apple announced its new subscription-based service that allows
application publishers to set the length and price of a subscription. Previously, this
wasn’t possible, and you were forced to sell each release on a per-release basis. The
new service allows publishers to sell their content through their apps, and users can
receive new content over a specified period of time.

A more significant change is that not only is the traditional model of selling through
iTunes available, but Apple is also allowing app publishers to distribute their
subscriptions directly from their own web sites, where the iTunes revenue model doesn’t
apply and so no revenue is shared with Apple. This obviously has the advantage of
removing the obligation of contributing some of your application earnings to Apple, but it
does mean that you lose the benefits of the App Store, such as audience reach and
accessibility, and must rely on your own marketing campaigns.

Submitting an App to the Store
Here are the steps for submitting an app to the App Store:

1. Complete the development and testing for your app.

2. Create the supporting info.plist file for your app (more on this later).

3. Write a description for your app.

4. Choose a unique numeric SKU for your app.

5. Assemble your screenshots to be displayed on the App Store.

6. Prepare your iTunes artwork.

7. Submit through iTunes Connect.

Any application submitted is subject to approval by Apple, as outlined in the SDK
agreement, for basic reliability testing and other analysis. Apple has a process for
appeals, but it ultimately has the final decision. If your app is rejected, you can still
distribute it ad hoc by manually submitting a request to Apple to license the application
to individual iPhones (although Apple may withdraw the ability for you to do this at a
later date).

CHAPTER 1: Get Set Up: Tools and Development on Apple’s Platforms and Technologies 25

The official App Store Review Guidelines for developers is a good source of material.
We’ll also discuss the details of submitting an application for approval and distribution
rights in Chapter 9.

Summary
This chapter introduced the concepts of developing applications for Apple’s mobile
devices, specifically the iPhone, iPod touch, and iPad. We’ve looked at how to register
as an Apple Developer, and why this is recommended, as well as some of the principles
surrounding mobile application development. We then discussed the iOS operating
system, which powers these mobile devices, and the iOS SDK and Xcode.

Following the introduction of these concepts, we took a look at some of the different
options available to develop applications. These include not only Apple’s own native
languages and tools, but also a number of other third-party options, both open source
and commercial.

We concluded with an introduction to the App Store—its purpose, revenue model, and
support of various devices. You learned the mechanics of submitting a new application
to the App Store for review and if approved, publication.

The next chapter provides a crash course in creating a simple application using Apple’s
native tools, the iOS SDK and Xcode. By the end of that chapter, not only will you have
created your first iPhone application, but you will also have a better appreciation for
some of the fundamental concepts in developing a mobile application, which you can
reuse when you look at some of the other options available.

In Chapter 3, you will learn more about the third-party tools, such as the Mono family.
After that, we’ll focus again on the Apple tools and use these throughout the rest of the
book to demonstrate how to apply your .NET knowledge and experience to creating
compelling apps.

 27

 Chapter

Jump In: A Crash Course
on Development Using the
iOS SDK
The first chapter introduced both Apple’s mobile operating system (iOS) and options for
developing your own mobile applications. In this chapter, we’ll get started with Apple’s
own software development tools: Xcode and the iOS SDK.

This chapter covers the following topics:

� The hardware and software you need to get started

� A guide to installing the relevant components

� An Objective-C primer

� An overview of Xcode and how to start your first project

� How to create your first iPhone application using the iOS SDK

Getting Started
Let’s begin by taking a look at what you’ll require to get started—not just the software
components, but also the hardware you will need.

You’ll also need to sign up to become a registered Apple Developer. Apple requires this
step before you’re allowed to download the iOS SDK. In Chapter 1, we discussed why
you’ll need to do this, the benefits, and how to go about it. As a reminder, you need to
visit http://developer.apple.com/ to sign up.

2

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 28

NOTE: In Chapter 1, I mentioned some of the benefits of becoming a registered Apple Developer.
One of these is a useful list of Getting Started guides that provide short introductions to a number
of topics, such as graphics and animation, data management, and so on. You can find them and

much more in the iOS Developer Library at http://developer.apple.com/library/

ios/navigation/index.html.

Choosing the Right Machine
You will need an Apple Mac to get started. You may already have an old device and are
wondering whether it is still suitable for developing modern mobile applications. The
news is good: some of the older Apple Mac machines will run the required software. The
important bit is the operating system.

To support development for the iPhone, iPod touch, and iPad, you will need Xcode 3.2.6
or higher (this includes iOS SDK 4.3). This version also provides support for packaging
and submission of your apps to the App Store. This version of Xcode\iOS SDK requires
Mac OS X Snow Leopard version 10.6.6 or later and an Intel-based Apple Mac machine.
The important distinction here is the Intel processor.

In 2006, Apple discontinued the use of the PowerPC processor and announced the
move for all future Macs to run on the x86 processor made by Intel. So, Mac devices
made in 2006—specifically, the Mac mini, iMac, MacBook, MacBook Pro, and Mac
Pro—will happily run Mac OS X Snow Leopard, or the more recently released Lion
operating system, and development tools, provided that you have sufficient memory and
hard disk space. The memory and space you need vary depending on the version of the
operating system you are installing.

CAN I USE A PC?

What if you don’t want to use an Apple device? What if you want to use a PC running an operating system
like Windows? Well, this really depends on which tools you are planning to use to develop your mobile
apps.

A number of the third-party options introduced in Chapter 1 are actually designed to run on a Windows-
based PC, using languages other than Objective-C. But what if you want to use native Apple tools such as
Xcode? That is not so straightforward. These tools will run only on Mac OS X Snow Leopard and Lion, and
therefore you will need an Intel-based Mac. However, technically all is not lost! Through the use of
virtualization software, such as commercial products like VMware or freeware such as VirtualBox, you
could run Mac OS X Snow Leopard on an Intel-based PC within a virtual machine.

But wait! While running the operating system on a virtual machine is technically possible, and there are
many examples of people successfully doing this (called Hackintosh) it is not permitted within Apple’s
license agreement for Mac OS X and is therefore illegal.

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 29

Choosing the iOS SDK
So you have a suitable machine, running Mac OS X Snow Leopard or Lion, which will
allow you to download and install the required software. But what software? Chapter 1
introduced Xcode, which includes the iOS SDK and provides a complete tool set for
building iOS applications. If you haven’t already done so, you will need to download it
from http://developer.apple.com/xcode/.

Since the release of Xcode 4, you currently have two options for obtaining and installing
Xcode. As you’ve learned, Xcode 3.2.6 or higher supports development for Apple’s
mobile devices and is available free of charge. However, you may wish to use the most
recent version, Xcode 4, which is available free to members of the iOS or Mac Developer
Program or can be purchased from the App Store.

What’s New in Xcode 4?
If you’re familiar with Visual Studio as a development environment, you’ll find yourself far
more at home with Xcode 4 than with previous versions. So what are these new
features?

� New user interface: The new integrated development environment
(IDE) combines the separate windows from previous versions into a
single window with different navigation panes, making it far easier to
use. This includes the Interface Builder for creating new GUIs for
your applications.

� Assistance: The software provides inline context-sensitive help as
you write your source code—for example, prompting you with code
for the class from which you may be inheriting. It’s similar to
Microsoft’s IntelliSense, best known for its use within the Microsoft
Visual Studio IDE.

� New debugger: This version provides an integrated debugging
interface that allows you to step through your code and associated
variables as you execute your application.

� Instruments: These allow you to gather information about how your
application is performing and what effect it may be having on your
operating system. For example, you can use some of the
instruments provided to understand how your application consumes
memory.

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 30

Apple iOS Dev Center Resources
Chapter 1 also referenced the iOS Dev Center (see http://developer.apple.com/
devcenter/ios/index.action) and a number of other resources. Now is probably a good
time to take a look at some of these. The following are some resources that will support
you through this chapter (and the rest of the book):

� iOS Human Interface Guidelines: Describes the considerations
you should make when designing your interface and provides
guidelines on how to create the best user experience.

� App Design Strategies: This is a particularly useful subsection of
the guidelines, as it helps you to codify your thinking about the idea
you have for your application, such as the features that you might
include.

� Getting Started: A number of short but very useful guides on how
to get started with a number of facilities, including the tools, the iOS
SDK, and the programming language. I recommend the “iOS
Starting Point” section (http://developer.apple.com/library/
ios/#referencelibrary/GettingStarted/GS_iPhoneGeneral/_index.
html) as a good place to get started.

Installing Xcode and the iOS SDK
You should have decided by now which version of Xcode you’ll be using, and therefore
the associated iOS SDK. Given that we’re looking to target the latest Apple mobile
devices in this book, and I want to showcase the latest tooling options, I will use the
latest version of Xcode available at the time of writing: Xcode 4. All of the examples in
this book use Xcode 4, partly because of some of its improvements, and I recommend
that you do the same.

One method for obtaining Xcode 4 is to take a look at the CD or DVD provided within
your Mac. Xcode and the iOS SDK are often provided on separate media, and it’s simply
a matter of finding the CD or DVD, inserting it into the drive, locating the file
devtools.mpkg, and double-clicking it to start the installation.

Another route is to download the app from the App Store, which is the most cost-
effective solution for obtaining the very latest version. Simply open the App Store
application on your desktop and search for Xcode. Finally, you could visit Apple’s iOS
Dev Center to obtain the developer preview of Xcode 4.2 and iOS 5. This is what we’ll
use in our book. Either by navigating to
https://developer.apple.com/devcenter/ios/index.action, or by visiting Xcode
on the App Store, you will see a screen similar to that shown in Figure 2–1.

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 31

Figure 2–1. Xcode available within the App Store

Scroll down and select to download Xcode 4.2. Be warned: the file is large in size, so for
all but the fastest of Internet connections, it will take a while to download. This is a sore
point for many users, but once it’s installed, the benefits you’ll gain outweigh the wait.

After downloading Xcode, start it up to begin the installation. You should be presented
with the screen shown in Figure 2–2.

Figure 2–2. Xcode 4 installation startup screen

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 32

Follow the on-screen instructions and complete the installation of Xcode 4. Once the
installation is complete, you should find the Xcode 4 application icon at the bottom of
your screen. Click this icon to launch the program, as shown in Figure 2–3.

Figure 2–3. Running the Xcode 4 application

It’s also a good idea to store all of your source code in a specific folder or repository of
your choice. This should be somewhere in your own Home area. Set up this folder now,
so it’s ready to receive your first iPhone application. Create the folder in the Finder as
preferred, and name it Projects.

When creating new projects in Xcode, you can direct your project location to this folder
or create a local repository in this location instead, and use the version-control system
to manage the changes you make as you develop your application. For version control,
you have two options. You can use either Git or Subversion—both are installed as part
of the Xcode installation. Subversion is typically server-based, although you could run
the server on your local computer and create a local repository using the command-line
interface, similar to the following:

Svnadmin create <repositoryname>

Once you’ve successfully created the repository in your desired location, you can add
this to your Xcode repository list. To add the new repository, select File � Repositories. On
the screen presented, click the plus (+) symbol to display a pop-up menu, and then
choose the Add Repository option. This will present the screen shown in Figure 2–4.
Complete the fields, pointing at the repository you’ve just created. Click the Next button,
and follow the on-screen instructions to complete the registration of your repository.

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 33

Figure 2–4. Adding a repository

Your empty repository organizer will be displayed, as shown in Figure 2–5. You are now
ready to begin development of your first iPhone application using Xcode 4.

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 34

Figure 2–5. Repository organizer

Xcode’s support for Subversion is built-in, provided that you’re using version 1.5 or later.
However, you must create your Subversion repository and import your project into
Subversion on the command line before managing it in Xcode. For simplicity, our
examples will not use a source code control subsystem. We’re simply going to be using
the filesystem. For detailed instructions on the use of Subversion, see the online book
Version Control with Subversion (http://svnbook.red-bean.com/), which is endorsed by
Subversion’s developers.

NOTE: You don’t typically create the svn repository in the same directory from which you want
to manage the project’s source code. Instead, you can check out the repository “trunk,” and that

becomes a type of special folder on the filesystem (it has dot files that let Subversion know it is
checked out). You can then create project files in that folder, and they can be added to the

repository via Xcode’s user interface.

Whatever you’ve decided to do, you should have now installed Xcode and selected your
repository preference. You are ready to start your project and write code. But before we

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 35

start building an application, let’s take a brief look at the Objective-C language, focusing
on some of the key tenets you will encounter in building your application.

An Objective-C Primer
Apple’s Objective-C is the de facto standard language for app development on the
iPhone, iPod touch, and iPad. Although new languages, such as those provided within
.NET, are supported through the Mono implementation, the reality is that using
Objective-C offers the fastest performing option. This becomes important if you’re
writing a particularly performant app, such as a game or computationally intensive app.

So what’s Objective-C, and how does it compare with .NET languages, and specifically
its closest .NET cousin, the C# language? Providing an exhaustive guide warrants a
book in its own right. To get you started, we’ll take a look at some of the most important
concepts and immediate differences you should be aware of before writing your first
program. As we progress through the book, some of the differences will be pointed out
as we encounter them

The following list represents the key tenets for any Objective-C primer for .NET
developers and those used by the application we’ll create in this chapter. A brief
introduction here will help you to understand some important aspects of your first
application.

� Object model

� Square brackets

� Naming conventions

� Importing

� Class definition and implementation

� Exception handling

� Nil objects

� Memory management

NOTE: This primer provides you with an introduction biased toward your existing .NET
experience, but it cannot do justice to a comprehensive language such as Objective-C. If you’re
looking for further details, I recommend the book Learn Objective-C on the Mac by Scott Knaster

and Mark Dalrymple (Apress, 2009), which can be found at

http://www.apress.com/9781430218159.

Let’s start with a brief introduction to some terminology.

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 36

Objective-C Terminology
Table 2–1 compares some of the NET C# programming language and Objective-C
keywords. As you can see, they are different but still quite similar.

Table 2–1. C# and Objective-C Terminology Comparison

C# Objective-C

#include "library.h" #import "library.h"

This self

private, protected, public @private, @protected, @public

var = new Class(); var = [[Class alloc] init];

try, throw, catch, finally @try, @throw, @catch, @finally

Interface Protocol

Class Interface

Null Nil

True YES

False NO

Object Model
The object model in Objective-C bears a close resemblance to languages such as
Smalltalk and C++. It is an object-oriented language that extends the C language by
providing a strict superset of C. This means it is possible to include any C within your
class, and it will compile quite happily (providing it is syntactically correct and libraries
and other dependencies have been handled).

The object model’s resemblance to Smalltalk will be instantly recognizable to those of
you who are familiar with it (although its relevance goes back many years now).
Essentially, it provides messaging-style syntax that involves passing messages to object
instances, rather than calling methods on objects. It’s a subtle difference but with
implications.

This mechanism achieves the same goal as other object-oriented languages that are not
loosely coupled, such as .NET. The main difference is that the association between the
message being passed and the object is not resolved at compile time by being bound in
code, but at runtime. Therefore, you need to be cautious about how this receiving object

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 37

will handle the message. The object that is being sent the message (the Receiver) is not
guaranteed to respond to the message, especially if it wasn’t expecting it or doesn’t
understand it. In that case, at best the app will raise an exception. At worst, it will
continue silently, making debugging applications a more laborious task. For this reason,
you should also take note of the exception handling and Nil object tips provided later in
this chapter.

Square Brackets and Methods
You will soon discover that square brackets are an important feature of the Objective-C
language. As you’ve learned, the object model is based around the concept that objects
are sent messages in order to invoke a method. Conversely, if you want to query a
property of a method, the recommended route is to ask the object for a property value
by sending a message, rather than by peeking inside it (which is seen as bad practice
anyway). The square brackets indicate that you are sending a message to an object.

NOTE: The examples here reflect the syntax and do not represent complete, compilable source

code. You’ll see the examples in working source code listings as the book progresses.

Calling a Method
So, if we had an object called Engine, we could “start the engine” by using its start
method after first creating an instance of Engine. In Objective-C, the code would look
like this:

// Create reference to an object of type Engine class called diesel.
Engine* diesel;

// Create an instance of the Engine object and point the diesel reference at it
diesel = [[Engine alloc] init];

// Call the start method by passing the Engine object the start message
[diesel start];

The same code in C# (without the comments) would look as follows:

Engine diesel;
diesel = new Engine();
diesel.start();

NOTE: In the C# example here, notice that the new() command both allocates and initializes the

object in a single call.

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 38

Passing and Retrieving
A similar syntax is used to both pass parameters when calling an object’s method and
to retrieve a value that might be returned by a called method. For example, to pass a
flag or value indicating how much gas to apply when starting the engine, we would use
the following syntax:

[diesel start: gas];

Alternatively, if we wanted to return the number of revs the engine is currently
outputting, we could use the following syntax, presuming that we created a getter called
revs to return such a value:

currentRevs = [diesel revs];

Naming Conventions
The naming convention used by Objective-C is much like other languages, using
PascalCase for classes and camelCase for methods and properties. For those of you
not familiar with either of these, PascalCase is concatenating capitalized words, always
starting with a capital letter, as in PascalCase. The camelCase form is similar, with
capitalized words being concatenated, but the first letter may be either uppercase or
lowercase, as in camelCase. PascalCase is also known as UpperCamelCase.

If you were wondering, Microsoft’s C# standard is PascalCase, which may be why the
notation looked familiar.

Importing
With Objective-C, there are two ways of importing, just as with C/C++. The difference is
that the syntax of one will force the compiler’s preprocessor to look for the file in the
system header directory, whereas the syntax using quotes will look in the current
directory if you haven’t specified an alternative location.

To look for your own header file in the current or specific directory, use the following
syntax:

#import "myfile.h”

To look in the system header directory, use the following syntax:

#import <Foundation/foundation.h>

Class Definition and Implementation
As with most object-oriented languages, an object is defined by its class, and many
instances of that object may be created. Every class consists of an interface, which
defines the structure of the class and allows its functionality to be implemented.
Additionally, each class has a corresponding implementation that actually provides the

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 39

functionality. Typically, these implementations are held in separate files, with the
interface code contained in a header file (.h extension) and the implementation held in a
message file (.m extension).

NOTE: A rumor (or fact maybe) I heard was that when the inventor of the Objective-C language
was asked why the .m extension was used, he simply stated because .o and .c were already

taken!

So, using our same Engine example, our source code in the respective files may look
like the following:

Listing 2–1. Engine.h

@interface

- (int) revs;

@end

Listing 2–2. Engine.m

@implementation

- (int) revs (
 return revs;
}

- (void) start {
 // Start the engine at an idle speed of 900 rpm
 // – NOTE This is a comment
 revs=900;
{
@end

As you can see, in both cases, the code is preceded with either @interface or
@implementation as appropriate, and concludes with an @end token. All interfaces and
methods, respectively, must appear between these two statements.

Nil Objects
The way in which the object-oriented features are implemented in Objective-C means
that calls to methods are implemented as messages being passed to objects whose
correct identity is resolved at runtime. As discussed, this means that the type checking
normally done at compile time, which would (usually) throw an error, will not occur.

In the case of a mismatch during runtime, either an exception will be thrown (best-case
scenario) or the object will silently ignore the message (worst-case scenario). So, be
extra careful about both ensuring your message\object interaction is valid and that good
exception handling is added throughout. There is no easy or obvious way of replicating
late binding in .NET.

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 40

Exception Handling
The exception handling syntax for Objective-C will be familiar to those of you who have
used C# or exception handling in other languages.

@try
{
 // Code to execute and for which you wish to catch the exception
}
@catch ()
{
 // Do something after an exception has been caught
}
@finally
{
 // Clean up code here
}

Given the similarity, I won’t replicate the C# equivalent code here. You should
immediately recognize the syntax and be comfortable with its use. However, as noted
earlier, the important thing to remember is that because of the way messages are
passed to objects and resolved at runtime in Objective-C, it is critically important to
ensure a defensive approach to coding is taken. You should anticipate exceptions,
catching and handling them elegantly, as shown in the preceding example.

Memory Management
Just like the Common Language Runtime (CLR) in .NET, the runtime environment
handles memory management for Objective-C applications for you. A reference-
counting system is used by Objective-C. This means that if you keep track of your
references, the runtime will automatically reclaim any memory used by objects once the
reference count returns to zero.

Does this still sound complicated? Well it’s not, providing you follow some simple
principles. When writing applications for mobile devices, even with the larger memory
footprints these devices have nowadays, the importance of memory management can’t
be understated.

If you’ve allocated memory using alloc(), remember to call release, unless you’re using
the autorelease mechanism. You may also wish to explore the use of @property and use
the @synthesize feature, which will automatically create your setters and getters,
although this doesn’t remove the need for you to allocate space for your object.

In iOS 5, the new automatic reference counting (ARC) functionality automates memory
management for Objective-C objects. ARC makes memory management much easier,
greatly reducing the chance for your program to have memory leaks.

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 41

Creating Your First iPhone Application
The first step in starting a new project using Xcode 4 is to create a single Xcode project.
In fact, it’s compulsory to use a project with Xcode, as its under this project that your
files and resources are collected. It is possible to have multiple but related projects, and
we’ll touch on this approach later in the book, but essentially, our book examples don’t
require it. The iOS SDK usefully provides a number of project templates to get you
started, as you’ll see shortly.

The following are the high-level steps for creating your iPhone application using Xcode:

1. Create your project.

2. Design your application.

3. Write code.

4. Build and run your app.

5. Test, measure, and tune your app.

The Xcode suite of tools can support you during all of these steps, from creating your
project and managing the files associated with it to using the instruments provided to
fine-tune your application’s performance.

Creating a Project
Let’s start by using Xcode to create a project using one of the templates provided by the
iOS SDK, which will give us a head start. Providing project templates in this manner is
similar to what you see in Microsoft Visual Studio and other IDEs such as Eclipse. These
templates define, by default, some of the characteristics, files, and resources relevant to
the project type you choose. You can see the similarity between Visual Studio and
Xcode 4 in Figures 2–6 and 2–7.

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 42

Figure 2–6. Visual Studio 2010 project templates

Figure 2–7. Xcode 4 project templates

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 43

There are many templates to choose from, and the “right” template really depends on
the type of application you are building. Templates are not limited to applications either.
Notice from the left pane in Figure 2–7 that Xcode provides a template to create libraries
as well as applications, and the choice for the Mac OS X platform is even wider!

For this example, choose the View-based Application template, which uses a single view
to implement its user interface. (We’ll touch on views a little more when we look at
creating a user interface later in this chapter.) You will be presented with the screen
shown in Figure 2–8, asking that you set some of the options for your application,
including the device family you wish to target. As shown in the figure, name the product
HelloWorld and pick the iPhone as the device family. Then click the Next button.

Figure 2–8. Creating a new project

You can now proceed with the creation of the project and its associated files and
resources. When you’re finished, you will have a new Xcode project, with the project and
its file structure displayed, as shown in Figure 2–9.

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 44

Figure 2–9. Opening the HelloWorld project in Xcode

Take some time to explore a little, looking at the project structure, the files created, and
some of the menus. You will notice that some of the files have source code providing a
default implementation. Don’t worry about understanding everything yet.

Exploring Your Project and File Structure
Once created, your empty project will have a number of default files created for you, as
I’ve mentioned. These files provide the default implementation for an empty view-based
project that targets the device you chose—in this case, the iPhone.

Let’s take a quick look at some of the project files created for you:

� HelloWorldAppDelegate: The application delegate is the controller
that handles application initialization, including displaying the initial
view for your user interface. It is also responsible for handling
application termination when you exit your application. There is
normally only one application delegate of object type
UIApplication. This is called a singleton object.

� MainWindow.xib: This file represents the structure and resources for
your user interface. It’s the Mac OS X Interface Builder file, hence
the .xib extension. In a typical application, mainwindow.xib is really
a container for multiple views that you might have within your
application, so it’s common, and indeed Apple Best Practice, to
have additional view controllers (and so .xib files) associated for
every view. In our example, we have HellowWorldViewController to

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 45

manage this view, and we’ll reserve our main window for navigation
across different views.

� HelloWorldViewController: The view controller class is always
associated with a view, and this is where the logic for the user
interface is implemented. This class completes the model-view-
controller design pattern used by the iOS device to implement its
GUIs. A view controller itself will contain properties that may be
linked to the controls on your interface. For example, you may ask
the user to enter text in a text field and wish to store this information
somewhere using property getters and setters. You’ll see examples
of this in the source code we use throughout the book.

For each category, you will find you might have one or more of the following files, with
some logically grouped. For example, an Implementation file will normally have an
associated header file and vice versa. The key file types are as follows:

� Header (.h): This is the header file that will contain references and
interface definitions but not the actual. One reason for having a
header file is that if your code references objects and their interfaces
for which you don’t have the source code, but you do have their
implementation in a static library, you would simply include the
appropriate header file for the implementation to be resolved at
build time.

� Implementation (.m): This is the implementation file, and essentially
the same as a .c file in the C programming language or the .cs file
in the C# programming language. The implementations for your
interfaces and other items are provided within these files and
referenced at build time.

� UI resource file (.xib): This is a Mac OS X Interface Builder
resource file, represented in XML. It is not a deployable file, but
something used in the build of your application to create your
executable. It profiles the XML representation of your user interface,
and it is loosely coupled to your user-interface logic through the
view controller.

In addition to these files, a number of supporting files complete an application. For
example, you will find in the \Supporting Files folder a number of core files, including
the main module with the starting function main(), which is described in the next
section. Also included are references to the required precompiled headers to speed up
the build stage of the application.

Initializing Your Application
Every mobile application running on an iOS-based device—the iPhone, iPod touch, or
iPod—shares some common characteristics that set an expectation with the user, but
also are strengths of the platform that have helped to make it so successful. For

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 46

example, consider the immediacy of using your device to check your email, view any
Facebook updates, or quickly check your current location on Google Maps. You don’t
need to wait; you simply unlock your device (if required), click the application’s icon, and
pow—it works!

Such an experience isn’t by accident—it’s by design, and your application should
carefully consider this expectation. It should reflect the same sense of immediacy by not
taking too long to launch, having an intuitive and response user interface, and so on.

Let’s consider the structure of an iOS application, which will help you understand the
roles some of the files created within our Xcode project play in implementing the
application.

At the heart of your application is the main event loop, used to interpret events, either as
a result of internal events being raised or user stimuli (such as touching the screen).
These events are queued, and the queue is processed in a first-in/first-out basis, with
each event being dispatched to the most appropriate event handler. In the case of user-
interface controls, this is the window in which the user event occurred. The diagram
from the iOS Developer Library shown in Figure 2–10 illustrates this perfectly.

Figure 2–10. Event processing sequence

The diagram shows that user input is captured by the operating system framework and
passed as a series of events to the application, along with its inherent objects. These
objects then react to the events as required and provide the application’s functionality.

The entry point for your iOS application is the same as that for any other application
based on the C programming language: the main() function. Under the \Supporting
Files folder, you will find the main.m implementation file, which contains the main()
function, with the following implementation:

int main(int argc, char *argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 int retVal = UIApplicationMain(argc, argv, nil, nil);
 [pool release];
 return retVal;
}

Let’s examine the code it has created and its purpose. The first thing to note is that an
object instance called pool is created based on the NSAutoRelease class. This provides
the application’s top-level memory pool from which objects can be associated and
released. Every Cocoa -based application (Cocoa is one of the iOS SDK frameworks)
always has an autorelease pool available. If it didn’t, memory wouldn’t be managed
correctly, and your application would leak memory.

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 47

The next observation is the UIApplicationMain() function, which passes the argument
count (argc) and arguments themselves (argv) to the main() function. The
UIApplicationMain() function is used to create and initialize the application’s key
objects and start the event-processing loop. The application will not return from this
function until the application quits. At that point, the pool instance is released itself, and
the main function exits, returning the return value passed back from the
UIApplicationMain() function.

Creating Your User Interface
In Xcode 3, the Interface Builder capability was implemented as a separate application,
but with the release of Xcode 4, Interface Builder is fully integrated within the Xcode 4
IDE, so there is no need to swap applications. There are a few other improvements,
especially tighter integration between the Interface Builder objects and source-code
generation, which means fewer synchronization issues. This is especially evident in how
the .xib files are now managed, or even more advanced features such as Storyboards.
For more information about the differences between Xcode versions, see the excellent
documentation on the http://developer.apple.com web site, which explain the
details to a good standard. In addition, Chapter 10 of this book covers some of the more
advanced features of Xcode 4 and iOS 5, such as Storyboards, used to manage the
workflow of your application.

Using Interface Builder
Let’s borrow the diagram from Apple’s own web site, as shown in Figure 2–11. This
does an admirable job of showing the different panes within Interface Builder and their
purpose.

Figure 2–11. Interface Builder

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 48

The Interface Builder application is split into the following areas:

� Editor area: This contains the canvas and other elements that
essentially present the graphical view of what your user interface will
look like.

� Inspector pane: This displays the properties of a given object that
is selected within the editor area, in keeping with the inspector
chosen. Numerous inspectors provide a view of different properties.
For example, the size inspector displays size, position, and related
properties.

� Library pane: This provides access to a resource library available
for you to use within your project. You can use the library selector
bar to choose between the different types of resources such as
code, objects, and media files.

You have already created your first iPhone application using the project template
feature, although it’s an empty shell. Some default implementations are provided, but it
doesn’t do anything functionally useful—yet!

Our application is going to be really simple. It will just display the text “Hello, World” in
the middle of the user interface’s canvas. So, building on our empty project and the
default files, let’s construct the rest of our application.

Initializing Your View
Our initial focus is the application delegate, which is responsible for a number of
coordinating tasks, including initializing your user interface when the application has
finished launching. This involves ensuring that you create an instance of the view, which
implements your user interface, adding it to the list of available views within your
application. In our case, we have only one view.

To initialize your view, the application delegate needs to be aware of your view class,
which is accomplished by including the view controller header file, as follows:

#import "HelloWorldViewController.h"

The application delegate also ensures that the view is initialized after your application
has finished launching. This is easily done by using the
didFinishLaunchingWithOptions() method. For our example, our project has the
following code added:

self.window.rootViewController = self.viewController;
[self.window makeKeyAndVisible];

The self.window reference points to the main UIWindow object referenced by the window
property and automatically initialized by MainWindow.xib. When your application starts,
this .xib file is loaded. Then the view controller and window are unarchived and loaded,
mapping the XML key reference to your interface instance variable—in this case,
*viewController.

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 49

The use of a synthesized property ensures that the getters and setters are provided
automatically. We’re telling our application that the main window for our application
should point to the view controller for the view to which we’ll be adding our controls.

This method finishes by passing the makeKeyAndVisible message to the window, making
the view visible. It will be the main window through which to accept user input.

The application will now execute and display a blank window, so we’re getting there. To
complete the picture, we want to display the infamous text “Hello, World,” well known to
application developers across the world as one of the first apps anyone might write!

To display this text, we will place a UILabel object on our canvas and intercept an event
that is called after the application has been loaded and the view initialized. This event
will be used to set the label text to “Hello, World,” which will display it on the screen. (Of
course, we could display the text directly onto the canvas of the window using some
iOS SDK objects and commands, but that would spoil the fun of later chapters.)

We will begin by adding the UILabel to our view. In Xcode, select the
HelloWorldViewController.xib file (our view). This will display a visual representation of
our view. From here, we can access the Controls Library to add our label control, as
shown in Figure 2–12.

Figure 2–12. Interface Builder canvas

NOTE: To match the setup shown in Figure 2–12, make sure that the standard editor view is
shown, along with the Object Library utility and Project Navigator. Both of these can be displayed

by selecting them from the View menu within Xcode.

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 50

You may have noticed that the Library pane can show different library types. You can
expand and collapse the sections using the arrow icons. This allows you to navigate the
many controls available in the library. For this example, we’re using the UILabel control,
which is toward the top.

Figure 2–13 shows the Object Library pane. From here, you can drag the label control to
the view canvas and drop it into the position you wish.

It will show the default text of the label, which is the value we will change to display the
“Hello, World” text.

Figure 2–13. Object Library

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 51

Before we finish, let’s change the label’s name to something we can reference within our
code. Select the Identity tab, and in the Label box, change the label name to lbl, as
shown in Figure 2–14.

Figure 2–14. Changing the label control’s name

In addition to adding this label control to our canvas, we need to be able to reference it
within our code. To do this, we must bind an object to this control object. In the
HellowWorldViewController header file, add a UILabel object reference called label, as
follows:

UILabel *label;

Now let’s create a property of the same name to point at the object. We’ll make this a
synthesized property to ensure that Xcode creates our getters and setters automatically.

@property (nonatomic, retain) IBOutlet UILabel *label;

Note the IBOutlet markup in this property definition. This acts as a marker for Interface
Builder to identify properties, which can be linked to user interface elements, and
Interface Builder will use these elements to display in the Outlets pane. So, our
HellowWorldViewController.h file should now have the following implementation:

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 52

#import <UIKit/UIKit.h>

@interface HelloWorldViewController : UIViewController {

 UILabel *label;
}

@property (nonatomic, retain) IBOutlet UILabel *label;

@end

Of course, this isn’t enough. We’ve simply provided the code for our header and defined
our intent. Now we need to add the actual implementation in the
HelloWorldViewController implementation file. We start by completing our property and
ensuring that it is synthesized with the following line of code after the @implementation
tag:

@synthesize label;

We also need to ensure that when our view controller object is removed from memory,
we deallocate the memory taken up by the label. This is achieved by sending the release
message to the label object. Your dealloc method should look like the following (with
our new line highlighted):

- (void)dealloc
{
 [label release];
 [super dealloc];
}

Finally, we want to set the label’s value to the text “Hello, World.” A convenient event in
which to do this is viewDidLoad, which is fired after the application has been initialized
and the view loaded, but before it’s displayed. We need to add a line of code to set the
label’s value in our viewDidLoad method. After the comments around it are removed,
your code should look as follows (with the new line highlighted):

- (void)viewDidLoad
{
 label.text = @"Hello, World";
 [super viewDidLoad];
}

If you built your application now and ran it, it would work, but the label’s text wouldn’t
change. Why?

We’ve defined our internal UILabel object called label, created a property to reference it
by, and even set this property’s text value to “Hello, World.” But we have not yet
associated the label on our user interface with our classes object. So it works, but it isn’t
pointing to our visible label.

This is easily fixed (in fact, even more easily fixed in Xcode 4 and the new Interface
Builder than previous versions). You simply need to associate the two together
graphically by dragging the outlet for the control to the actual control on the canvas, as
shown in Figure 2–15.

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 53

Figure 2–15. Linking UI elements to your code

This completes our application. We are safe in the knowledge that not only does it
display the required text, but it is also behaving as a “good citizen” by releasing memory
and object references when they are no longer required.

Let’s build and run the application by using the �R hotkey, which will launch the iPhone
simulator to test it. It should compile without any problems, and the iPhone simulator
should start with your new iPhone application running in it, as shown in Figure 2–16.

OK, so it’s not going to make your rich if submitted to the App Store, since it doesn’t do
much. But what it does do is cover the basic principles of writing an iPhone application.
This will provide a great foundation for upcoming chapters in the book, where you’ll
discover more about creating iOS applications with different tools and technologies.

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 54

Figure 2–16. Running your first iPhone application

Using Automatic Reference Counting
The example presented in this chapter has taken the traditional approach to memory
management and has left the onus on the programmer to retain and release (or
autorelease) the objects and the memory they consume. Xcode 4.2 and iOS 5 offer a
new feature called automatic reference counting (ARC), which simplifies memory
management.

Instead of you having to remember when to use retain, release, and autorelease, ARC
evaluates the lifetime requirements of your objects and automatically inserts the
appropriate method calls for you at compile time. The compiler also generates the
appropriate dealloc methods to free up memory that is no longer required. Essentially,
ARC is a precompilation stage that adds the necessary code you previously would have
had to insert manually.

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 55

Why Use It?
If you’re new to Objective-C, you will welcome ARC, because it greatly simplifies
memory management. There is more than enough to learn without worrying about the
complexities of memory management.

However, if you are comfortable with self-memory management, perhaps from
experience in lower-level languages such as C or C++, then you might want to stick with
it. One reason is that libraries that have yet to be converted to using ARC don’t always
play well with ARC-based code. In addition, manually managing memory, providing you
know what you’re doing, can be more performant.

Enabling ARC
To enable ARC, you must either choose it when you first create your project or add the
appropriate compiler flag found by setting the value Objective-C Automatic Reference
Counting in the compiler’s build settings. It is possible to selectively choose which files
use the ARC compiler features through the Compile Sources section under the project’s
Build Phases tab, although I don’t recommend it unless you want to highly tune your
application’s performance.

Migrating to ARC
If you already have projects, or source code, you want to convert to using ARC but don’t
want to trawl through the source code removing all the memory management keyword
references, then thankfully Xcode provides a migration tool to do the conversion for you.
Open your project for conversion, select Edit � Refactor, and then choose the Convert
to Objective-C ARC… option. This will refactor (convert) your code so that it uses ARC
features. Easy!

Programming with ARC
Once you’ve switched on ARC, you must follow certain rules. The rules can get quite
complex, but the Apple documentation does a good job of explaining them. In summary,
either you use ARC or you don’t; you can mix flavors of memory management. For
example, don’t switch on ARC and then start to sporadically retain or dealloc memory.
You can defined whether your property is strongly or weakly typed. strong (the default)
is a reference that is retained for the lifetime of its scope (typically defined as the curly
braces), and weak means it can be released at any time when no longer considered as
used (and set to nil when released).

CHAPTER 2: Jump In: A Crash Course on Development Using the iOS SDK 56

Summary
In this chapter, we began by taking a look at the requirements for running Xcode 4, by
far the easiest method for developing iOS applications. We considered what kind of
hardware you might need, and then proceeded to explore how to obtain and install the
Xcode suite of applications.

Next, the chapter provided an overview of the Xcode suite and a primer in Objective-C,
covering the basic tenets you should know for developing your first iPhone application.
We even looked at some of the more recent features such as Automatic Reference
Counting.

We then built an iPhone application. We used Xcode’s project templates to get a head
start. We also used some of Xcode’s new features to link user interface components to
code objects. Once everything was wired up together, we were able to build the
application and test it within the iPhone simulator.

Phew! Now you’re an iOS application developer using Apple’s native tools such as the
iOS SDK and Xcode 4. In the next chapters, you’ll discover that this isn’t the only
development option. Now that you have a foundation in writing basic applications, we’ll
proceed to develop more functionally rich applications using some of the other options
available.

 57

 Chapter

Understand Your Options:
Using Third-Party
Solutions and MonoTouch
In previous chapters, we’ve looked at the iOS operating system, the SDK and
associated tools, and how you can use Xcode 4 with the iOS SDK to develop your first
iPhone application. But as described in Chapter 1, options other than Apple’s native
tools are available for developing applications. This chapter elaborates on some of the
third-party options introduced in Chapter 1 and describes how to create the Hello, World
application using them.

We won’t cover all of the third-party options available, not least because of space
considerations, but also because it’s a constantly changing environment, with new
options being introduced all the time. In this chapter, we’ll focus on some of the more
common and longer-standing options:

� Using the .NET Framework with MonoTouch

� Using JavaScript with Appcelerator’s Titanium Studio and Mobile SDK

� Using Xcode with the Marmalade SDK

After you’ve become comfortable with developing our Hello, World application using
each of the options covered in this chapter, we can then look at different elements of the
iOS and a more advanced application in more detail in the remainder of the book.

Understanding the Constraints
Before we get started with the third-party options, it’s worth understanding some
principle constraints:

3

CHAPTER 3: Understand Your Options: Using Third-Party Solutions and MonoTouch 58

� Native apps require a Mac: To write and execute native iOS
applications, you will need a Mac.

� SDK completeness: Third-party options such as Mono provide a layer
on top of the existing iOS SDK, but often have not gotten around to
implementing all of its functionality. So if you want to have a complete
implementation of the API, you need to either work around gaps in a
third-party’s implementation or attempt to write your own
implementation.

� Speed: If you want to fully exploit the power of your iOS device, there
is no substitute for writing your application in Objective-C directly on
top of the SDK. While other options work, they introduce layers of
abstraction that will slow down your application.

Having painted a relatively bleak picture of the third-party options, it is important to point
out that some are extremely viable. This is especially true of the Mono implementation,
which offers the most complete implementation of the iOS SDK’s API in a familiar
language. Speed is typically not an issue.

Developing with Mono and MonoTouch
You should know by now that the focus of this book is to support you in developing
applications for Apple’s mobile devices using a variety of methods, but with an
emphasis on reusing your existing .NET knowledge and skills.

The success of the .NET Framework on the Microsoft Windows operating system didn’t
go unnoticed within the open source community. There are many who wished that .NET
was available for not only Windows, but also for other operating systems, such as Linux
and Mac OS X. Thankfully, someone did something about this. Miguel de Icaza took it
upon himself, and then with community support, to bring .NET to these operating
systems, allowing you write .NET applications for a multitude of platforms. And it didn’t
stop there. Soon the SharpDevelop IDE was ported to Mono, and MonoDevelop was
formed, creating a Visual Studio-type IDE that is able to target not only .NET
applications, but also C, C++, Python, and Java.

So, you have the .NET Framework, support for .NET languages such as C#, and a
powerful IDE, and it was only logical for the mobile revolution to be supported! In fact,
they went further. Not only was MonoTouch introduced, providing a mechanism to
create C#- and .NET-based applications for the iPhone, but they also introduced
MonoMac. MonoMac is an interesting development for creating Cocoa applications on
Mac OS X using Mono. (For more information, visit http://www.mono-
project.com/MonoMac.) MonoDroid has also been released, based on the same principles
as MonoTouch but to target the Android operating system.

Enough of MonoMac and MonoDroid; let’s look at MonoTouch. As stated, it allows you
to use Mono to develop applications for the iPhone, iPad, and iPod touch with the API
bindings to the iOS APIs.

CHAPTER 3: Understand Your Options: Using Third-Party Solutions and MonoTouch 59

Given that it’s based on the .NET Framework and supports the C# programming
language, you .NET guys and girls should be right at home! Let’s take a look at
obtaining, installing, and using the necessary components to write our Hello, World
iPhone app using the Mono tools.

Installing Mono, MonoDevelop, and MonoTouch
To get started, you’ll need to download and install the following components. These
components can be accessed from the Mono projects home page (http://www.mono-
project.com/).

� Mono: This is the actual Mono framework. It includes the open source
implementation of the .NET Framework, language support, and
supporting tools. You can download Mono from http://www.go-
mono.com/mono-downloads/download.html.

� MonoDevelop: This is the IDE primarily designed for .NET and its
languages such as C#. We’ll be using this in the same way as we used
Xcode in the previous chapter, or indeed, as you would probably use
Visual Studio to help build your applications. You can download
MonoDevelop from http://monodevelop.com/Download.

� MonoTouch: This is where the magic happens. MonoTouch is an SDK
for developing applications for the iPhone using Mono. Using it, you
will be able to write applications and test them on the iPhone
simulator. You can download the trial version or purchase the full
version from http://monotouch.net/Store.

Installing Mono
First, start by visiting the Mono project download page and downloading the Mono
distribution appropriate for the platform on which you’re developing. We’ll be running
Mono on the Mac OS X platform, as this is a requirement for developing iOS-based
applications, but as you’ll notice, Windows and a number of Linux and Unix distributions
are also supported. Also notice that Mono conveniently separates the download options
into both stable and long-term supported versions. The difference is essentially that the
latest and greatest features are in the latest stable version.

NOTE: At the time of writing, the latest stable version is 2.10.5 and requires either Mac OS X

Leopard (10.5) , Snow Leopard (10.6) and Lion (10.7).

At the Mono downloads page, shown in Figure 3–1, select your platform and choose the
SDK package appropriate for your chipset (for example, Intel or PowerPC) or choose the
Universal option if you’re unsure.

CHAPTER 3: Understand Your Options: Using Third-Party Solutions and MonoTouch 60

Figure 3–1. Selecting a Mono SDK package from the Downloads page

You’ll notice options for both the runtime and the SDK. The runtime is used if you simply
want to execute applications written for Mono, and the SDK is used if you want to
execute applications and also write your own apps using the Mono API. It includes both
the runtime and SDK development platform.

Once downloaded, clicking the icon in your downloads folder will start the installation,
as shown in Figure 3–2.

CHAPTER 3: Understand Your Options: Using Third-Party Solutions and MonoTouch 61

Figure 3–2. Mono framework installation startup screen

Follow the on-screen instructions to complete the installation. The software is not that
large, and the installation should complete pretty quickly. After it’s installed, you won’t
see any obvious desktop or toolbar icons.

Let’s test the installation. We will create a console version of the Hello, World app and
use the command line and a terminal window to do this (on the Mac).

Start by creating a folder to contain your source code and create a single file named
HelloWorld.cs, with the following source code:

using System;

public class HelloWorld
{
 static public void Main ()
 {
 Console.WriteLine("Hello, World");
 }
}

This code’s construct should be immediately obvious to any .NET developer. We are
simply writing a text string out to the control that will display the text.

After this example is written to disk, you can attempt a compilation using the Mono
compiler. While in the same directory as your source code, simply enter the following
command at the command prompt:

gmcs HelloWorld.cs

CHAPTER 3: Understand Your Options: Using Third-Party Solutions and MonoTouch 62

If no errors are present, this will compile your source code silently, leaving
HelloWorld.exe in the directory. Run this compiled executable by sending it to the Mono
runtime (indicated by the mono command prefix):

mono HelloWorld.exe

This should output the text “Hello, World.”

If all of this worked, your Mono installation was successful, and we can move on to
installing the MonoDevelop application. If it didn’t, the mono support or community
pages should help you find a resolution.

Installing MonoDevelop
Now you’re ready to download MonoDevelop. Make sure that the version you’re
downloading matches the version of Mono you’ve installed. For example,
MonoDevelop 2.4.2 requires at least Mono 2.4 to run.

At the home page, shown in Figure 3–3, select the version you require. Again, the
choices usually include the latest stable release and the more recent, but unproven, beta
release. Choose the Mac OS X platform and start the download for whichever
installation mechanism you prefer (I used packages, as they are simple to get going).

Figure 3–3. MonoDevelop home page

CHAPTER 3: Understand Your Options: Using Third-Party Solutions and MonoTouch 63

After you’ve downloaded MonoDevelop, click the disk image. You will be prompted to
complete the installation by dragging MonoDevelop to your Applications folder, as
shown in Figure 3–4. This will complete your installation.

Figure 3–4. MonoDevelop package installation

Clicking the newly installed icon will launch the MonoDevelop application. This launches
the MonoDevelop IDE, as shown in Figure 3–5.

NOTE: The installer may suggest that further MonoDevelop updates exist. If this is the case,

installing them is optional, but if they are marked as stable, I recommend that you do so.

Figure 3–5. Running MonoDevelop

CHAPTER 3: Understand Your Options: Using Third-Party Solutions and MonoTouch 64

I recommend that you explore the application, taking a look at some of the links
available. After you’ve done this, we can quickly create a console application similar to
the one we used to test the Mono installation.

Start by selecting the Start a New Solution link, which will present you with a Project
Template dialog box, in which you’ll notice a C# Console project. Follow the on-screen
instructions to create your project, selecting the location of your project and giving it a
name. You’ll be presented with an empty project and a default main.cs file with an
implementation of Hello, World very similar to ours. Simply choose Build � Run, and a
terminal window will be displayed showing the text “Hello, World.”

Now wasn’t that easier!

Installing MonoTouch
Finally, to complete the “Mono trilogy,” we’ll look at how to obtain and install
MonoTouch. The first thing to note is that MonoTouch is not free. Depending the version
you require, it can cost anything from $99 to $3,999! Consider the chart in Figure 3–6,
taken from the MonoTouch web site, which details the different features and the
associated prices.

Figure 3–6. MonoTouch version feature comparison

The key takeaway point here is that for you to use MonoTouch to create applications
that are distributable via Apple’s App Store, you need the Professional edition, which
costs $399. A Student edition also is available, at a cost of $79. This edition allows
you to create applications, but distribution onto Apple devices is possible only via ad
hoc deployment—not the App Store." We’ll discuss distributing your applications in
Chapter 9.

CHAPTER 3: Understand Your Options: Using Third-Party Solutions and MonoTouch 65

For the moment, let’s start with the trial version, which doesn’t cost anything. Although it
doesn’t allow distribution via the App Store, it does permit you to test your application
on the iPhone/iPad simulator. Visit http://monotouch.net/DownloadTrial, enter your
email address, and click the Download button to obtain the trial version.

Start the installation by clicking the downloaded package. This will launch the installer,
as shown in Figure 3–7. Follow the installation instructions. When installation is
complete, the installer should take you to a web page containing the release notes for
the version of MonoTouch just installed.

Figure 3–7. Running the MonoTouch installer

You can start to use MonoTouch immediately, but this requires that you use the
command-line functions to ensure that the applications you develop are built against the
MonoTouch licenses. If you prefer to use MonoDevelop, that is possible. However, you’ll
notice that within the version of MonoDevelop we installed, there are no such
MonoTouch templates. At the time of writing, you will need to download and install a
special version of MonoDevelop, updated to recognize the MonoTouch SDK. This is
available from http://monodevelop.com/Download/Mac_MonoTouch. After it’s downloaded
and selected for installation, installing it follows a similar process to the installation of the
other version of MonoDevelop you installed previously. You simply need to drag the new
version onto your Applications folder, and after being prompted to replace the version
you have, the new version of MonoDevelop will be installed.

Start MonoDevelop and choose Start a New Solution as before. This time, when you
expand either the C# or VBNet projects, you will notice options for the iPhone and iPad
projects of different types, as shown in Figure 3–8.

CHAPTER 3: Understand Your Options: Using Third-Party Solutions and MonoTouch 66

Figure 3–8. MonoDevelop with MonoTouch project templates added

Creating Hello, World Using MonoTouch
Let’s build our Hello, World application. Just as you did when we used Xcode 4 in the
previous chapter, start by selecting the iPhone Window-based Project and enter the
name and location as you prefer. After you select Forward, a project with the default files
and implementation for an iPhone Windows-based project will be created, as shown in
Figure 3–9.

CHAPTER 3: Understand Your Options: Using Third-Party Solutions and MonoTouch 67

Figure 3–9. Default iPhone Windows-based application in MonoDevelop

A quick inspection will show some similarities to the Xcode project we created in
Chapter 2. Both have a main.cs file with an AppDelegate instance created, making the
default window key and visible. This shouldn’t surprise you. It’s using the Cocoa API,
but with a .NET implementation.

Go ahead and build and run this application. It’s not as fast as Xcode, but then again, it
wouldn’t be given the additional levels of abstraction. Your application will eventually
launch in the iPhone simulator. Although it’s a blank window (at the moment), it’s your
first iPhone app in .NET!

In keeping with our Xcode example, let’s add a specific view and associated view
controller to display our label and allow us to initialize it with the text “Hello, World.” The
key difference is that in this instance, we’ll being working in .NET.

Thankfully, adding a view and view controller to our project is really easy in
MonoDevelop. With the project selected, select the File � New � File menu option to
open the New File dialog. Expand the C# tree, and then select iPad View with Controller,
as shown in Figure 3–10. Then choose New to add these files to your project, again with
a default structure and implementation for you to complete.

CHAPTER 3: Understand Your Options: Using Third-Party Solutions and MonoTouch 68

Figure 3–10. MonoDevelop New File dialog

As you did in the Xcode example, select the HellowWorldView.xib file. This will launch
Interface Builder. Continue to add a label and hook it up as an outlet, as per the Xcode 4
example in the previous chapter.

Now we can set the text value. Once our code is hooked up, we can simply override the
ViewDidLoad() method of the ViewController class, and within this, access the label
user object by name, like so:

public override void ViewDidLoad ()
{
 base.ViewDidLoad();
 lbl.Text = @"Hello, World";
}

If you now run the application, your MonoTouch-based iPhone app will behave exactly
the same as your Xcode 4 iPhone app, and display “Hello, World” on the device.

We’ve taken a look at how to install and create applications—including our now
infamous Hello, World application—running on an iPhone (well, the simulator) using
MonoTouch. But there are many more options available. In the rest of the chapter, we’ll
concentrate on how to create the same test application with a couple of the more stable
and popular options available, using languages other than Objective-C and .NET that
might be familiar to you, and in some cases, even running on a Microsoft Windows-
based PC.

CHAPTER 3: Understand Your Options: Using Third-Party Solutions and MonoTouch 69

Using Appcelerator’s Titanium Mobile
The Appcelerator Titanium Mobile platform was created to support the cross-platform
development of native applications for mobile, tablet, and desktop devices using
languages that are perhaps more common and leveraging the JavaScript-based API.
The Titanium Mobile SDK works with the native SDK toolchains (in Apple’s case, the iOS
SDK) to combine your JavaScript source code, a JavaScript interpreter, and your static
assets into an application executable that can be installed on an emulator or mobile
device.

Note that, due to Apple’s licensing agreement, Titanium Mobile has restrictions on which
platforms can be used to target which mobile devices and operating systems. Table 3–1
summarizes the support options.

Table 3–1. Titanium Mobile Operating System Support Options

Operating System Android Development iOS Development

Mac OS X Yes Yes

Windows Yes No

Linux Ubuntu Yes No

Despite these restrictions, it is worth noting that it’s free to get started, and we’ll be
focusing on the Mac OS X operating system. As with our MonoTouch example, we’ll
install Titanium Mobile and then use it to create our Hello, World iPhone application. The
difference is that this time, we’ll be writing our code in JavaScript.

Installing Titanium
The first step is to download the required software from the Appcelerator’s Titanium
home page at http://www.appcelerator.com/products/download/. After it’s
downloaded, install the application in the traditional Mac manner by dragging the
Titanium Developer icon onto your Applications folder, which will invoke its installation.
Follow the on-screen instructions provided by the installer, as shown in Figure 3–11.

NOTE: Titanium Developer is the overarching GUI, which sits across the various SDKs that exist
and acts as your single reference point. Once Titanium Developer is installed, the different mobile

SDKs are installed within it. The first time it is run, it will automatically attempt to download the

current versions of the Mobile and Desktop SDKs.

CHAPTER 3: Understand Your Options: Using Third-Party Solutions and MonoTouch 70

Figure 3–11. Titanium Developer installer

After you’ve installed Titanium, it is also worth registering as a Titanium developer, as
this will grant you access to online resources to help you when developing your
application.

Creating Hello, World Using Titanium
Start up the Titanium Desktop and allow it to update the Mobile SDK. Then you’ll be
presented with an empty GUI. The iOS SDK was automatically detected by the
installation, so there was no need to install that package (unless you want to use a more
current version). Let’s get cracking.

Start by choosing the New Project option. This will present you with a dialog with some
standard project properties to fill in, as shown in Figure 3–12. When completing the on-
screen form, you may notice that under the Project Type drop-down list, the iPhone
option uses the Mobile project type, whereas there is a specific option for the iPad.
Once you’ve completed the form, choose the Create Project option to create the Mobile
application.

CHAPTER 3: Understand Your Options: Using Third-Party Solutions and MonoTouch 71

Figure 3–12. Titanium Mobile New Project dialog

NOTE: Notice that on my installation, I chose not to install the Android SDK. If you want to give

that a try, the online resources provide you with instructions on how to do so.

The blank HelloWorld project will be shown, with options to visit the Dashboard, Edit, or
Test & Package your application. On the Dashboard, you’ll see a number of online
resources to help you get started, as shown in Figure 3–13.

CHAPTER 3: Understand Your Options: Using Third-Party Solutions and MonoTouch 72

Figure 3–13. Empty project Dashboard in Titanium Mobile

If you jump straight to the Test & Package option tab, you’ll see the screen shown in
Figure 3–14. One of the options is the Launch button, which will build and run your
application within the mobile device simulator matching the project type chosen, which
is the iPhone simulator in our example.

Figure 3–14. Test & Package tab in Titanium Mobile

CHAPTER 3: Understand Your Options: Using Third-Party Solutions and MonoTouch 73

The default application generated by Titanium Mobile provides two tabs with a text label
on each tab. We will modify this to show only one tab with our chosen text (“Hello,
World”) on it.

First, let’s take a look at the folder structure and files created. In addition to the files
created, the following folders were added:

� \build: This folder contains the files imported from the SDK and
automatically generated files that typically are not modified, such as
the main.m file. The binaries and libraries are also located here.

� \resources: This folder contains the resources that support your
application, including source code. Here, you will find the app.js file,
the main JavaScript application file used to start your application. We
will make our modifications in this file.

Take a little time to examine the app.js file. It’s pretty straightforward. As noted, the default
implementation is to create two tabs, each containing a label, and add these to the main
application window, and we’re going to adjust this to display just the one tab and label.

Let’s examine some of the highlights of the code. First, the most obvious thing to note is
that an initial reference is made to the Titanium.UI namespace. This namespace
contains the classes that provide access to the user-interface objects. It uses this
information to initially set the background and also to create a tab group, as follows:

var tabGroup = Titanium.UI.createTabGroup();

The new Tab objects will be added to this group, with each Tab pointing to a window that
will be displayed when chosen (although our code will implement only a single tab to
show the “Hello, World” text). Consider the following code:

//
// create base UI tab and root window
//
var win1 = Titanium.UI.createWindow({
 title:'Tab 1',
 backgroundColor:'#fff'
});
var tab1 = Titanium.UI.createTab({
 icon:'KS_nav_views.png',
 title:'Tab 1',
 window:win1
});

This creates the main window and assigns it the caption of Tab 1, using a Tab object to
which this window is assigned. When selected in the application, this tab will display this
window.

Let’s skip to the code that creates the new label, after creating a new window and
assigning this to the new tab. Consider the following segment:

var label1 = Titanium.UI.createLabel({
 color:'#999',
 text:'Hello, World',
 font:{fontSize:20,fontFamily:'Helvetica Neue'},

CHAPTER 3: Understand Your Options: Using Third-Party Solutions and MonoTouch 74

 textAlign:'center',
 width:'auto'
});

win1.add(label1);

We simply create a label object and assign it the “Hello, World” text. We can then add
this to the main window, referenced by the win1 variable.

Finally, we add our tab to the tab group and open the tab group, displaying the window
and our tabs on the main application.

//
// add tabs
//
tabGroup.addTab(tab1);

// open tab group
tabGroup.open();

In carrying out these actions, the application will also display our “Hello, World” text.
And since it’s built within the Titanium Developer IDE, it will also launch the iPhone
simulator, as shown in our running application in Figure 3–15.

Figure 3–15. Titanium Mobile HelloWorld application

CHAPTER 3: Understand Your Options: Using Third-Party Solutions and MonoTouch 75

As you can see, the Titanium IDE is easy to work with and has a complete API. I’ll leave
further discovery for you to try out with the help of the online reference material and the
Kitchen Sink application, which provides out-of-the-box examples to examine and
modify.

Using the Marmalade SDK
The Marmalade SDK has the same goal as Titanium Mobile, which is to enable you to
build your application against an API that is agnostic of the mobile device and its
operating system. With it, you can develop cross-platform applications in a single hit!

The Marmalade SDK supports single-click deployment to a number of operating
systems, including iOS, Android, Symbian, Windows Mobile, and more. We’ll be using
the Xcode IDE to create our Marmalade-based application.

NOTE: While the Marmalade API supports core features for all types of applications, it has a bias
toward games development. You will find a rich set of APIs that enable you to write compelling

mobile games.

The Marmalade SDK can be thought of as the following two components:

� Marmalade System: This provides the operating system abstraction
API, which when used with the associated libraries, allows you to build
mobile applications for a variety of operating systems. It provides a
suite of tools and the C API called the S3E API.

� Marmalade Studio: This provides a suite of tools and runtime
components to allow a focused development on high-performance 2D
and 3D graphics and animations.

Installing Marmalade
To start, you will need to register at the Marmalade SDK web site
(http://www.madewithmarmalade.com/downloads). Once registration is complete, you will
be sent an activation email message. After you’ve activated your account, you’ll be able
to download an evaluation copy of the software to try out. (Of course, you could
purchase a copy, but I’m assuming you want to try it out first.) The evaluation version
allows you to do everything apart from publicly distribute the applications you have
written.

After you’ve downloaded the package, start the installation by selecting the icon. You
will be presented with the installer, as shown in Figure 3–16.

CHAPTER 3: Understand Your Options: Using Third-Party Solutions and MonoTouch 76

Figure 3–16. Marmalade installer

Follow the on-screen instructions, including entering your Marmalade account
credentials in order to install under the 30-day evaluation license, which you obtained
previously on the web site.

The default installation location is /Developer/Marmalade-SDK/<version>, where
<version> is the version of the SDK you installed. After installation, you won’t see any
new icons, but you will find new files installed in the target location. The following are the
key folders installed:

� \Applications: This folder contains the SDK’s top-level applications.

� \docs: This folder contains documentation, including user manuals.

� \examples: This folder contains example applications.

� \extensions: This folder contains the Extensions Development Kit.

� \Marmalade: This folder contains additional tools used by Marmalade.

� \s3e: This folder contains the Marmalade System header files and
runtime libraries.

� \modules: This folder contains all Marmalade Studio header files and
runtime libraries.

CHAPTER 3: Understand Your Options: Using Third-Party Solutions and MonoTouch 77

Creating Hello, World Using Marmalade
Now that you’ve installed Marmalade, and perhaps had a look around its folders and the
files, let’s create our application.

Start by firing up Xcode (we could, of course, use the command line, but IDEs were
invented to make our lives easier, so let’s use them). We will use one of the examples
provided, as they supply all the configuration necessary for Xcode 4 to deploy to the
Marmalade simulator. This simulator is the tool used to debug native Marmalade
executable files (with an .s3e extension).

The .s3e files are essentially dynamic-link libraries that are platform-agnostic. The
Marmalade SDK allows you to build the same application for a number of different
platforms, simply by reconfiguring the IDE. For the moment, we’ll stick with deploying it
to the Marmalade simulator, as we’re just interested in how you might get started with
such a feature.

Using the Finder application, locate the Hello, World example, which is under
\examples\s3e\s3eHelloWord. In this folder, you will see the s3dHelloWorld.mkb file,
which is essentially the project file. Open it by choosing Open With from the menu and
selecting the Mkb application provided within the Marmalade SDK (in the \Applications
folder), as shown in Figure 3–17.

Figure 3–17. Opening a Marmalade SDK project using Mkb

CHAPTER 3: Understand Your Options: Using Third-Party Solutions and MonoTouch 78

This will launch Xcode, from which can choose the Debug Simulator option scheme
from the top of the window, and then choose Build. Next, choose Run. This executes
the application within the simulator, displaying our “Hello, World” text, as shown in
Figure 3–18. From here, you can use the Marmalade SDK to target different platforms,
including the iOS, to develop your apps.

Figure 3–18. Marmalade simulator running our application

Summary
This chapter built on the knowledge you have gained about using native tools in
previous chapters by looking at the available third-party options. One of the most
popular alternatives is Mono and MonoTouch, providing a .NET implementation of the
Cocoa and Cocoa Touch APIs, but in the .NET language. This option provides you free
and native-feeling access to iPhone and iPad development resources, complete with a
Visual Studio-like IDE in the form of MonoDevelop.

As you learned, MonoTouch is not the only option, provided that you’re happy to use
languages other than .NET, such as JavaScript or C/C++. Other options available to you
include Titanium Mobile and the Marmalade SDK. Each of these options allows you to
write native applications, not only for the iPhone and iPad, but also for other devices. In
fact, these platforms are built specifically to target cross-platform development, allowing
you to develop against a single API but build applications that can target numerous
mobile devices with different operating systems, including Apple, Android, and Symbian.

As useful as these third-party options are, apart from MonoTouch, the lack of support
for the .NET language makes it more difficult to make the transition and reuse your
experience. Clearly, the use of MonoTouch makes this far easier, but you will be
dependent on the support MonoTouch has for the iOS and Cocoa Touch SDKs. If
support is not provided, or features are incomplete, you will not be able to use this
option—unless you write your own implementation!

So, apart from contributing toward the Mono project yourself, the other option is to map
your C# and .NET Framework knowledge onto the iOS SDK and use Objective-C. The
rest of the book will focus on doing just that and bridging the gap in your knowledge.

 79

 Chapter

Going Deeper:
.NET, Objective-C,
and the iOS SDK
Understanding the capabilities of Apple’s mobile devices, the features of the iOS
operating system, and the different options available to you for application development
is only part of the story. Creating the Hello, World application using both native Apple
development tools and numerous third-party options was cool, and the submission of it
to Apple’s App Store is possible, but it’s not going to earn you million of dollars. It is
very unlikely to attract good reviews, or even any downloads!

Now we need to look at how to create a more compelling application—one that will be
the next “must-have” mobile app that will help you make some money. To do this, we
need to explore the runtime frameworks in more detail, and the supporting design-time
frameworks in even more detail. This will help you to create a rich user experience within
your application.

We’ll take the existing knowledge you have in .NET and apply that to Apple’s own native
tooling and SDKs. This will not only allow you to create the applications you desire, but
will also give you a great head start in exploiting Apple’s devices to full effect. The goal
is to make the transition from .NET to Apple’s native development environment much
easier and faster.

4

CHAPTER 4: Going Deeper: .NET, Objective-C, and the iOS SDK 80

In this chapter, we will take a more detailed look at the iOS SDK when compared with
.NET’s capabilities and the different languages supported. Specifically, we’ll cover the
following topics:

� Compare the relative capabilities of Apple’s mobile devices

� Take a look under the hood of an application, reviewing its structure
and life cycle

� Consider how you should approach designing an application and what
Apple has done to help

� Compare the iOS SDK and the .NET Framework, both in approach and
implementation

� Compare the development tools to support application development

� Review an Objective-C and Xcode 4 primer

We will start by building on the introductions given so far, and take a more detailed look
at iOS and the iOS SDK side by side with the .NET Framework and programming model.

Comparing iOS Device Capabilities
We have already touched on the types of Apple devices you are able write applications
for using the iOS SDK, and noted that not all devices are equal. It is important to
consider the device or devices you intend to target, their respective strengths and
weaknesses, and the capabilities exposed through the operating system. Such due
diligence will ensure that the customer has the user experience you intend, and that you
approach your application development in a way that embraces the capabilities the
target device has and ensures you have a robust and dependable application.

The focus of this book is application development for mobile applications (although
some of the tools and techniques can also be used for desktop applications). When
considering the mobile devices available, our targets are the iPhone, the iPod touch, and
the iPad. Table 4–1 lists some of their features based on the latest generation of each
device.

CHAPTER 1: Going Deeper: .NET, Objective-C, and the iOS SDK 81

Table 4–1. Mobile Device Comparison

Feature iPhone iPod touch iPad

Generation Fourth Fourth Second

Operating system iOS 4.x iOS 4.x iOS 4.x

Display 3.5 inches
960 × 640 @ 326 ppi

3.5 inches
960 × 640 @ 326 ppi

9.7 inches
1024 × 768 @ 132 ppi

Storage Up to 32GB Up to 64GB Up to 64GB

CPU 1 GHz ARM A4 1 GHz ARM A4 1 GHz dual-core ARM A5

Memory Up to 512MB Up to 256MB Up to 512MB

Connectivity GSM \ GPRS \ 3G \
Bluetooth \ 802.11n

Bluetooth \ 802.11n
GSM \ GPRS \ 3G \
Bluetooth \ 802.11n

Camera Front and back Front and rear Front and rear

GPS capable Yes No Yes (3G models only)

iOS Application Design
When starting to think about your application’s design, in addition to looking at the
capabilities of the devices you wish to target several other considerations, such as
compatibility and tuning, are important when designing your application. Additionally,
you should have an understanding of certain design patterns when working with the iOS
SDK and Objective-C, as that will give you valuable insight as to why classes and APIs
might be implemented in a given way. Design patterns also provide an excellent method
of ensuring simplicity and elegance in your own applications.

We’ll dig a little further into design considerations and design patterns in the following
sections.

CHAPTER 4: Going Deeper: .NET, Objective-C, and the iOS SDK 82

Design Considerations
In planning and developing your application, following a set of overarching principles not
only helps to ensure that your application is well designed for its purpose, but also
allows you to make the best use of the capabilities available on the device you target. As
you move through this book, be sure to consider the following principles:

� Design your application to be as compatible with the broadest spectrum of
devices as possible. This will maximize your market opportunity.

� Using the advanced capabilities of a device is OK, but if you can, provide
options to automatically and\or manually turn off these features.

� Test on as many devices as you can, and not just using the simulator—test with
real devices, if possible. We will explore the topic of testing in more detail in
Chapter 9.

� Don’t be tempted to leave your application unchanged when moving between
significant form factors, such as iPhone to iPad.

� Tune for performance. Be aware of memory constraints and multithreading
capabilities.

� Remember to consider costs. If your app requires a network connection,
consider periodically scanning for Wi-Fi when using 3G.

As you build your applications, you should always be cognizant of these basic
considerations. Now let’s move to on to some design specifics in the form of iOS design
patterns.

Design Patterns
The first thing to note when designing and implementing applications using the iOS SDK
and Objective-C is Apple’s use of design patterns. Design patterns are not a new
concept, but not all operating systems or SDKs faithfully implement them. For example,
the way that .NET’s Windows Forms addresses user-interface design doesn’t define or
prescribe any kind of design pattern. This is left to the individual designing and
implementing the application, if that developer chooses to do so.

A design pattern describes an approach to a common problem for which an elegant
solution design has been created. The design is expressed in written form, often with
diagrams depicting objects, their relationships, and their behavior.

A good example of a design pattern is the Singleton pattern. This restricts the
instantiation of a class to a single object. The first time it is called, an object is created,
but subsequent calls return a reference to the existing object. Its typical usage is for an
Application object, where only one instance of the class can exist per application.

The use of design patterns by Apple is fundamental in helping to provide a framework
around which your applications are written, and in doing so, helping to reinforce the user

CHAPTER 1: Going Deeper: .NET, Objective-C, and the iOS SDK 83

experience Apple is so protective of. Additionally, the use of patterns is good practice. It
makes the implementation of applications easier, as some of the decisions around how
to approach designing your application are already made for you.

The practice of using design patterns isn’t implicit within the .NET Framework. It
provides a Class Library with a set of APIs, but the architectural structure of your
application and the implementation of design patterns are left to you—well, almost! As
you can imagine, the .NET community is always happy to offer support, whether this is
Microsoft itself through the Microsoft Developer Network (MSDN) at
http://msdn.microsoft.com or third-party sites such as the dofactory at
http://www.dofactory.com/Framework/Framework.aspx.

Table 4–2 describes some important iOS design patterns that you will use with your
applications.

Table 4–2. Significant iOS Design Patterns

Pattern Name Description

Model-View-Controller
(MVC)

Divides your code into three distinct layers of encapsulated functionality,
separating the user interface (the view) from the application’s data and
logic (the model), and bridge between the two (the controller).

Block objects Allows you to encapsulate your code and local variables into a block,
which can then be passed around as a value or called as a reference.

Delegation Provides an alternative to subclassing, where the difference in behavior
for an object is encapsulated within a delegate.

Target-action Manages user interactions with desired actions in a controlled fashion,
sending messages in response to user input to an object that implements
the behavior associated with that action.

Managed memory
model

Provides a reference-counting mechanism for managing the lifetime of an
object, with an object having a usage count. When the count reaches
zero, the runtime calls are invoked to reclaim the memory used. This
pattern is a good example of one whose granularity is more specific and
detailed than the others,

Now that you have had an overview of basic design considerations and design patterns,
we’ll delve into an application’s structure and life cycle when running on iOS.

Looking Under the Hood of an Application
So, you’ve chosen which device or devices you wish to target and have an overview of
their capabilities. Now let’s take a look at how applications are structured on the iOS
operating system, what to consider when designing them, and the fundamentals of how
they are built.

CHAPTER 4: Going Deeper: .NET, Objective-C, and the iOS SDK 84

Once you’ve designed your application, you can start to look at how to implement it. At
this stage, it is important to understand how an iOS application is structured and runs
internally. Consider the core application life cycle shown in Figure 4–1.

Figure 4–1. iOS application life cycle

As you can see in the diagram, the MVC pattern is at the heart of an iOS application,
which is no surprise, given a user interface is displayed and human interaction is
required.

Once your application has launched, the UIKit framework is responsible for managing
the behavior of your application. It receives events from the operating system, and your
application must respond to these events, which may be system-generated or user-
generated. The behavior is similar to the Microsoft Windows messaging pattern, with a
message queue from which events are retrieved and processed.

You don’t need to physically process every message. A default implementation is
provided for many messages, and the framework will therefore just process them. But
when you require alternative behavior, or you want to change the default behavior in
some way, then you can provide your own implementation for these events.

Next, let’s take a look at the sequence of events that happen as part of the application’s
life cycle.

CHAPTER 1: Going Deeper: .NET, Objective-C, and the iOS SDK 85

The Application Life Cycle
Once you have started your application, usually by tapping the icon on the screen, a
sequence of events is started that should display your application on the mobile device
(you can see this in the application lifecycle diagram in Figure 4–1. This is known as the
application’s life cycle.

We touched on some of the key functions involved in this life cycle when writing our
Hello, World application in Chapter 2. After the main() function has been invoked,
UIApplicationMain() is executed, and it won’t return until your application exits. This
class creates the application object and ensures the application delegate is instantiated,
and then it looks to load the main .nib file that defines the application’s main window.

The application knows which main .nib file to load by looking in the information property
list file, Info.plist. This file contains a number of key\value pairs held in an XML file,
each used to denote a configurable parameter. If you were to open Info.plist using
Xcode, you would see something like the screen shown in Figure 4–2.

Figure 4–2. Info.plist values

You can clearly see that the “Main nib file base name” entry is defined as MainWindow.
So, if we look in our directory, we will see a file called MainWindow.xib, which is the main
window resource file loaded by default. You could change this, but there is rarely a need
to do so.

Loading the resource file will create classes for any objects that are contained within it
and assign their associated properties by deserializing their values held in the resource
file. The .xib file is essentially a serialized (saved-to-disk) version of your main window,
user interfaces, and objects, which can be reconstituted (deserialized) at any time (much
like adding water to dried noodles).

CHAPTER 4: Going Deeper: .NET, Objective-C, and the iOS SDK 86

NOTE: You can use the Info.plist file to store your own application configuration values. Just

add your values, either through the user-friendly Xcode editor or some other file editor.

After your main application is running, it is looked after by the application delegate,
which uses delegation to overcome some of the complexities introduced by
subclassing. This typically involves creating a new class that inherits from a parent class,
and then maybe overriding methods provided within its parent. Our application delegate
implements the UIApplicationDelegate protocol, which in C# terms, is the same as
implementing an interface. Instead of a hierarchy of objects with inherited methods and
overridden methods, we simply implement the methods specifically identified in the
interfaces.

The final stage of the application launch process will see it entering the active state—
one of many states the application will take on. This is indicated by the
applicationDidBecomeActive method.

The application life cycle has a series of states that are defined by the iOS SDK, and you
can manage your application’s behavior based on its state. Let’s take a look at the
different application states that exist and how you should manage them.

Managing Application States
A key job of the application delegate is to manage the different state transitions the
application goes through while it is running. Two new application states were introduced
in iOS 4.0: the application can be running in the background or suspended.

Any state transitions require a response from your application as confirmation it is
behaving correctly. For example, if the application state were set to the background by
starting a new application, then it would make sense to stop updating its user interface.

When the application state changes, you respond accordingly using the method called
within the application delegate. It is also worth noting that an application may be
launched not as a direct result of the user asking it to, but through an indirect request.
For example, your application might be invoked to deal with a push notification.

In all of these cases, the didFinishLaunchingWithOptions method is called with options
providing a reason why it was invoked, and in some cases, such as due to a push
notification, the payload of data relating to it.

All the states supported in iOS 4.0 and above are shown in Table 4–3.

CHAPTER 1: Going Deeper: .NET, Objective-C, and the iOS SDK 87

Table 4–3. Application States

State Description

Not Running The application was running but has been terminated by the system, or it has
not been launched.

Inactive The application is running in the foreground but not receiving events. This is a
state that is typically held only briefly, unless the device is locked or waiting for
user input. This is similar to .NET’s Form.Deactive event.

Active The application is running in the foreground and is receiving events. The
applicationDidBecomeActive method is called when entering this state. This is
similar to .NET’s Form.Shown event.

Background The application is in the background and executing code. This is typically a
brief state, as it normally precedes the application being suspended. The
applicationDidEnterBackground method is called when entering this state.

Suspended The application is in the background and not executing code. Note that the
application may be removed by the system if resources are scarce, such as
low memory.

An application doesn’t just move from one state to another without sometimes going
through transitory states. For example, if an application is interrupted because of an
incoming phone call, the application will be told it’s about to become inactive by calling
the applicationWillResignActive method. This is your opportunity to prepare your
application for being sent to the background. If you answered the phone call, the
application would be sent to the background with the applicationDidEnterBackground
method called. However, if you decided to ignore the call, the application would resume
foreground focus and fire the applicationDidBecomeActive method again for you to
handle accordingly. The same is true of an application that was previously running in the
background and is sent to the foreground. In that case, the
applicationWillEnterForeground method is called prior to moving to the foreground,
and the applicationDidBecomeActive method is called when the application enters the
foreground. These states are shown in Figure 4–3.

CHAPTER 4: Going Deeper: .NET, Objective-C, and the iOS SDK 88

Figure 4–3. Application state diagram

Managing an Application’s Behaviors
As you’ve seen, an application will typically spend time moving between different states,
especially given typical usage. For example, it is common for a user to move between
applications, checking email one minute, taking a telephone call the next, and surfing
the Web after that. We’ve looked at handing state changes and the way the iOS SDK
cleverly uses the Objective-C technique of delegation to have a method called, enabling
you to provide your own implementation.

Clearly, how your application reacts to these state changes very much depends on your
application, as each is different. But there are some application tasks that are the same
for all applications. In this section, we’ll take a brief look at these tasks, which will allow
you to get started.

Dealing with Orientation Changes
Apple’s mobile devices have mercury switches that understand the orientation of the
device and so your application. Most iOS applications launch in portrait mode initially,
and then will rotate your application to match the device’s orientation; some will start in
landscape mode if it makes sense for them to do so. It might not be appropriate for your
application to work in different orientations, and it is up to you to manage this. For
example, watching movies might suit only landscape orientation.

Before you start panicking and wondering how on earth you’re going write all that
inevitably complex code to rotate your application, stop! Thankfully autorotation, as it’s
called, is conveniently handled through a combination of the iOS and the UIKit
framework—assuming you want your application to rotate. The iOS SDK supports
autorotation through a method, which defines if the device has been rotated and
whether your application should support it, and also through the Interface Builder, where
you can define how the view manages the orientation of your user interface. We’ll look
further into this subject later in the book.

CHAPTER 1: Going Deeper: .NET, Objective-C, and the iOS SDK 89

Files Within Your Application and the Application Sandbox
As with most operating systems, the filesystem is usually accessible by the application,
although with some restrictions to ensure the security of your device. The iOS provides
your application with access to an area of the filesystem that is accessible only by that
application. It does this through the use of an application sandbox, which is
implemented through the iOS as a security mechanism. The sandbox provides fine-
grained control, limiting areas that it thinks could present a security problem if exploited,
such as the filesystem and access to network resources.

The sandbox for an application is implemented when the application is first installed.
The path to the Simulator’s home directory is in the form
<//ApplicationRoot>/Applications/ApplicationID, where <Root> is the following
directory from the users home directory /Library/Application Support/iPhone
Simulator/<iOS Version>/ is an area on the filesystem where the applications are
installed. The ApplicationID uniquely identifies the specific application. When
combined, this is called the application home directory.

A number of important application subdirectories are created, allowing your application
to write data and its preferences within the constraints provided by the iOS security
system. These subdirectores are installed from the application’s home directory. For
example, <Root>/Applications /ApplicationID/Documents is where application data
and documents are stored. The /tmp directory is for files that do not need to persist
between application launches.

NOTE: For more details about the sandbox, see the section “The File System” in the iOS

Application Programming Guide.

Multitasking
We won’t cover multitasking in this book, but this brief introduction of the capabilities
made available in the iOS 4.0 may help you explore further using the online resources
available.

The use of multitasking has long been supported in the .NET Framework, although for
the iOS, it wasn’t until version 4.0 that multitasking support was properly introduced to
application developers.

Note that not all devices support multitasking. You can query the
multitaskingSupported property of UIDevice to see whether the device on which the
application is running supports it.

An application may process certain tasks in the background, although these are
carefully controlled. The following types of background behavior are supported:

� Tracking a user’s location, either continuously or periodically
monitoring for updates. This is useful for location-based applications.

CHAPTER 4: Going Deeper: .NET, Objective-C, and the iOS SDK 90

� Playing background audio. This is common for fitness-type
applications.

� Completing finite-length background tasks. An example is saving data
to disk to avoid corruption.

� Timed local notifications. This is used in alarm clock-type applications,
for example.

Comparing the .NET Framework with iOS and the iOS
SDK
Let’s start with a comparison of the two environments and their frameworks, positioning
the runtime and design-time aspects of each relative to one another. This context will be
useful when understanding the architecture of your application and how the APIs are
used. Take a moment to consider the diagram in Figure 4–4.

Figure 4–4. .NET and iOS framework comparison

If we consider the generic layers and which elements are covered by both the .NET
Framework and the iOS operating system and SDK, you’ll notice the following
similarities:

� User-interface services: These are the services responsible for
delivering the user interface and looking after user interactions, such
as device input. The iOS SDK uses the Cocoa Touch extensions as
well as aspects of other layers such as the Media Layer to accomplish
this, especially the multitouch input. The .NET Framework includes
both Windows Presentation Foundation (WPF) and Windows Forms to
achieve this.

CHAPTER 1: Going Deeper: .NET, Objective-C, and the iOS SDK 91

� Application services: This category consolidates a number of
component parts in both .NET and Apple’s frameworks, such as the
iOS SDK. In iOS, the Cocoa API, Cocoa Touch, and Media layer are
included, whereas for .NET, elements such as Foundation Services,
Data Services, and communications and workflow would be included.
Any API aspects that deal with the user interface and user input have
deliberately been separated out into user-interface services.

� Runtime services: This is functionality that is provided to an
application at runtime, and is typically contained within the operating
system or runtime environments that run on top of the operating
system. The .NET or Java runtime environments are good examples of
runtime services sitting on top of an operating system. Runtime
services include memory management, disk access, graphic card
APIs, and so on.

� Hardware: This remains a constant in all our architectures, although
the specification of it will change depending on the device, as will its
capabilities. The software-based layers above the hardware enable an
abstracted way of using it.

These similarities shouldn’t be surprising. Over many years of device, operating system,
and application evolution, best practices have surfaced leading to such similarities. So
at a high level, it’s easy to draw the comparison. But the devil is in the details. If we drop
down a level, we’ll start to see the nuances of each framework’s implementation. We’ll
see features included in one framework but completely excluded from the other, or in
other cases, implemented through different mechanisms.

Starting at the top of the stack, let’s look at the different layers, comparing the
frameworks and libraries within them. This will help you to understand the terms and
structure in .NET and how its counterparts work in Apple’s world.

We won’t delve into the specifics of classes and methods within classes, which you can
find in Apple’s online iOS reference. By highlighting through comparison the equivalent
capabilities in the iOS SDK, the usage of these should be straightforward. This will lay
the foundation for upcoming chapters, where we will walk through some working
examples.

User-Interface Services
The explosion of Web 2.0-based applications has significantly raised user expectations
of how applications will perform. The gap between native applications and the
capabilities of web-based applications has narrowed significantly. The same is true of
mobile applications. The user experience associated with early mobile applications,
including new protocols at the time, such as the Wireless Access Protocol (WAP), is
vastly different from the intuitive, interactive, high-definition capabilities exposed by
some of today’s mobile devices, blending native functionality with Internet-based web or
even cloud-based services.

CHAPTER 4: Going Deeper: .NET, Objective-C, and the iOS SDK 92

This is possible in no small part due to the improved capabilities of the physical
hardware, which now has faster processors, more memory, and higher-resolution
screens that support touch-based input. However, software is at the heart of such
functionality, and how this is organized and used is where key differences appear.

.NET makes provisions for user-interface design and implementation by providing the
following runtime services through which functionality is exposed:

� WPF: This provides a complete API to creating highly visual user
interfaces. It was introduced some time after Windows Forms to
provide support for additional areas such as 2D and 3D graphics and
video and audio.

� Windows Forms: This is the name given to the API that encapsulates
Microsoft Window’s native Windows API. Other APIs are required to
deal with more advanced aspects, such as 2D and 3D graphics.

� ASP.NET: This includes ASP.NET, ASP.NET MVC, ASP.NET, and
Ajax. It is Microsoft’s Active Server Pages (ASP) technology that allows
you to develop web sites using server-side programming.

We’ll exclude ASP.NET from our comparison, as this is Microsoft’s ASP technology
used to deliver web-based applications, and our focus is on native applications. So, we
are left with WPF and Windows Forms. Given that WPF effectively supersedes Windows
Forms, we could easily exclude Windows Forms also, but given its popularity and the
relatively recent introduction of WPF, we’ll cover both in our comparison.

WPF exists as a subset of .NET Framework types that are for the most part located in
the System.Windows namespace, just as Windows Forms does. But you’ll notice that to
accomplish more advanced graphical applications in Windows Forms, you need to step
outside this API into things like the Windows Media Player and the Graphics Display
Interface (GDI+).

Based on the assumption that WPF at least in part can be seen as a container for
Windows Forms, the closest comparison for WPF, and Windows Forms for that matter,
is Cocoa and Cocoa Touch. We’ll start with Cocoa Touch, which includes the following
frameworks:

� UIKit (UIKit.framework): Provides the capabilities necessary to
implement graphical, event-driven applications.

� Message UI (MessageUI.framework): Provides support for composing
and queuing email messages. In iOS 4.0, this extends to include Short
Message Service (SMS) support.

� Map Kit (MapKit.framework): Provides support for a scrollable map
interface that can be integrated into your application.

� iAd (iAd.framework): Provides support for banner-based
advertisements within your application.

CHAPTER 1: Going Deeper: .NET, Objective-C, and the iOS SDK 93

� Game Kit (GameKit.framework): Provides support for peer-to-peer
networking capabilities. It allows you to create complex multiplayer
networking games.

� Event Kit (EventKitUI.framework): Provides support for viewing and
editing calendar-based events.

� Address Book UI (AddressBookUI.framework): Provides support for
viewing, editing, and creating new contacts.

Application Services
The applications of today not only require a more intuitive and interactive user interface,
but are generally more demanding in the features and functionality they provide. The day
has long gone where an application ran on the device, isolated from the rest of the
world, or where the application’s interactive features were based on text and simplistic
graphics.

Today’s applications demand video, music, high-definition graphics, parallel processing
in the form of multitasking, and a speed and responsiveness that was unheard of only a
few years ago—and this is on a mobile device! Such functionality is exposed, in part,
through the application services provided within the iOS, which include the following
features:

� Multimedia capabilities

� Storage and management of data

� Network and communication access

� Workflow and communication

� Access to device-specific features such as the GPS

Such features are provided for within .NET through the .NET Framework Class Library.
These include some of the class libraries we’ve already mentioned in the discussion of
.NET’s user-interface capabilities. The following features support application services:

� Windows Communication Foundation (WCF): Provides functionality
to support service-oriented applications, which collaborate over a
network connection.

� ActiveX Data Objects for .NET (ADO.NET): Provides support for
accessing data and data services, such as native database libraries, or
abstracted drivers, such as ODBC.

� Windows Forms and WPF: in the context of application services,
WPF provides similar user-interface capabilities to those in the iOS
UIKit framework, as well as multimedia and audio capabilities, along
with 3D and animation support.

CHAPTER 4: Going Deeper: .NET, Objective-C, and the iOS SDK 94

� Language Integrated Query (LINQ): New to .NET Framework 3.5,
LINQ provides native data-querying capabilities.

In the iOS SDK, such services (and others) are encapsulated within the Media and Core
Services layers. Let’s take a look at the key frameworks provided within these layers to
map onto the capabilities we’ve touched upon in the .NET Framework Class Library.

Media Layer
The Media layer contains the graphics, audio, and video technologies that support you
in building applications that look and sound great. It contains the following frameworks:

� AV Foundation (AVFoundation.framework): A comprehensive set of
APIs that support playing, recording, and managing audio content in
iOS. In iOS 4.0, this includes movie-editing support and precision
controls for playback.

� Core Graphics (CoreGraphics.framework): Supplies support for 2D
graphics by providing a vector-based drawing engine.

� Core Text (CoreText.framework): Provides a comprehensive and
performant set of APIs for laying out text and using fonts.

� Image I/O (ImageIO.framework): Supports importing and exporting
image data and its associated metadata.

� Media Player (MediaPlayer.framework): Allows you to embed support
to play audio and video content from within your application. This
includes support for accessing the iTunes library and for coping with
resizable video.

� OpenAL and OpenGL ES (OpenAL.framework and
OpenGLES.framework): Cross-platform frameworks included within iOS
to provide close-to-hardware, high-performance audio and video
functionality.

Core Services
Core Services provides fundamental system services that all applications use, either
directly or through other frameworks. Its key frameworks are as follows:

� AddressBook (AddressBook.framework): Provides an API that allows
programmatic access to the contacts stored in the mobile device.

� CFNetwork (CFNetwork.framework): Provides high-performance and
low-level access to the network protocols available to the device.

CHAPTER 1: Going Deeper: .NET, Objective-C, and the iOS SDK 95

� Core Data (CoreData.framework): Provides functionality along with
Xcode to manage your application data using a schema that is visually
defined in Xcode and a support API to manage the data. This is ideally
suited to the MVC pattern and can significantly reduce the amount of
code required.

� Core Telephony (CoreTelephony.framework): Provides functionality for
interacting with the telephony features of a compatible mobile device.

� Event Kit (EventKit.framework): Provides support for accessing
calendar events on your device.

� Foundation (Foundation.framework): Provides an Objective-C–based
API around support for core data types and functions.

� Store Kit (StoreKit.framework): Provides support for purchasing
content and services from within your application, such as additional
content.

� Systems Configuration (SystemsConfiguration.framework): Provides
access to network configuration details of your device such as Wi-Fi or
cellular connection capabilities.

Runtime Services
The frameworks and class libraries we’ve discussed so far can’t exist without the
support of a core platform on which they run. In the case of the .NET Framework, low-
level runtime services are provided through a combination of the CLR, low-level Core
Services, and the operating system. In the iOS SDK, such capabilities are provided by
the iOS and the Core OS layer that exposes the same kind of low-level functionality
supported in the low-level runtime services and the CLR.

Here, we start to see some of the key differences. For example, the .NET Framework
creates applications that run in a managed environment provided by the CLR. They are
not native applications, but interpreted applications. Using the iOS SDK, this creates
native applications that are not interpreted by any kind of runtime, but instead rely on
the operating system- and SDK-provided services directly to support the application’s
execution.

The following are examples of the capabilities provided within the CLR:

� Memory management: Provides the automatic allocation and
reclaiming of memory used by applications. This kind of memory
management goes a step further than the reference counting provided
within the iOS, where you programmatically free up resources no
longer required.

� Type management: Ensures the runtime type safety of core data
types and is an essential ingredient in cross-platform, multilanguage
capabilities.

CHAPTER 4: Going Deeper: .NET, Objective-C, and the iOS SDK 96

� Security: Provides security features, such as the signing of code and
access-control features.

� Multitasking: Supports multithreaded applications where multiple
tasks can appear to run simultaneously and be scheduled across
multiple processors.

� Exception handling: Provides support for exception trapping and
handing.

� Delegation: Improves on the existing inheritance and interface
capabilities to provide delegation enabling you to implement pointers
to functions for runtime execution.

Similar capabilities to those just listed are provided for within the iOS SDK, but they do
not completely match. This is partly due to the fact that we are dealing with native
applications that run directly on top of the operating system rather than a
container/runtime like the CLR—unless you’re using Mono and MonoTouch!

Let’s take a look at some of the key frameworks within the iOS SDK:

� System: Provides the lowest level capabilities above the operating
system and exposes the kernel environment, drivers, and the UNIX
interfaces of the operating system. This includes memory allocation,
threading, filesystem access, math computations, locale information,
and more.

� Security (Security.framework): Enhances the built-in features of the
device to provide programmatic and application security features,
such as signing applications for authenticity, cryptographic key
management, and support for keychain sharing.

� External Accessory (ExternalAccessory.framework): Supports
communicating with external hardware connected to your device.

� Accelerate Framework (Accelerate.framework): Provides support for
computationally intensive applications by providing interfaces for
complex math, big number calculations, and so on.

Objective-C Primer, Part 2
Chapter 2 provided a short introduction to some of the essentials required to start
developing your mobile application. Before we start to really put the iOS SDK to work
and focus on the specific aspects of mobile applications, you’ll need to understand a
few more essentials of the Objective-C language. Learning about some of these slightly
more advanced features will better prepare you to not only write your own applications,
but also to understand how the iOS SDK itself is constructed.

CHAPTER 1: Going Deeper: .NET, Objective-C, and the iOS SDK 97

In the following sections, in order to assist your transition from .NET, I’ll introduce each
by its .NET language term, rather than the Objective-C term, and make comparisons
between the languages.

Class Declaration
Both .NET and Objective-C are object-oriented languages, and so the definition of a
class is a key construct for the language. Consider the following Objective-C and .NET
C# examples, shown together.

.NET C# Class AClass : Object
{
 int aValue;

 void doNothing();
 String returnString();
}

Objective-C @interface AClass : NSObject
{
 int aValue;
}
- (void)doNothing();
+ (NSString)returnString();
@end

Both of these code segments declare a new class object that inherits from an object
class. It has a default integer member variable called aValue, and two methods. One
method is called doNothing() and returns nothing and takes no parameters. The other
method is returnString(), which returns a string but also takes no parameters.

You may also notice that different characters precede the method declarations. This is
significant, as you’ll learn in the next section.

Method Declaration
An obvious companion to the class is the methods that provide the necessary
functionality for the class. Methods may be defined as instance methods or class
methods, as indicated by the character that precedes their declaration, as follows:

� A class method is indicated by a plus (+) character. It is the same as a
C# static method. Only a single implementation exists, and it is
associated with the class type.

� An instance method is indicated by a minus (-) character. Here, the
method is associated with an instance object associated with the
class.

The following are .NET C# and Objective-C examples.

CHAPTER 4: Going Deeper: .NET, Objective-C, and the iOS SDK 98

.NET C# public static void aClassMethod();
public void anInstanceMethod();

Objective-C + (void) aClassMethod;
- (void) anInstanceMethod;

Now let’s look at how to pass parameters to the method. Consider the following
examples.

.NET C# String addStrings(String a, String b);

Objective-C - (NSString) addStrings (NSString *) a secondParm2:(NSString *) b;

This syntax creates a method called addStrings, which concatenates strings given as
two parameters and returns a string value. The way you invoke the method is important,
too. The parameters are order-sensitive, and so the following call is invalid because the
second parameter, indicated by the name secondParm, must be the second value
passed.

// This is invalid

[addStrings secondParm:s1, s2)];

However, the following example demonstrates the correct invocation syntax.

// Correct invocation
[addStrings s1, secondParm:s2];

Because you’re working with a reflective message-driven programming language, the
sequence and type of parameters passed are important.

Properties
The use of properties has long been the mainstay for accessing class objects, and in
doing so, managing how they are accessed and what they return. Such class members
are known as instance variables, as the property manages access to the actual value
associated when an instance of the class is created. They can also be used to control
scope and to hide any complexities associated with returning the property value.

Objective-C can also help by synthesizing (automatically creating behind the scenes) the
accessor methods (the getter and setter) and creating the instance variable required. It
also ensures that the memory management surrounding instance variables is handled
appropriately. Consider the following examples.

CHAPTER 1: Going Deeper: .NET, Objective-C, and the iOS SDK 99

.NET C# // Definition of your instance variable either within the class, or as
a minimum, in the scope of the class
string _name;

// Definition of your property accessor methods are within the class
public string name
{
 get { return _name; }
 set { _name = value; }
}

Objective-C // Definition of your property within your class header file (.h)
@property (nonatomic, retain) NSString *name;

// Synthesis of your property in the implementation file (.m)
@synthesize name = _name;

You’ll notice in the C# example that C# has no equivalent to the synthesis model for
accessing an instance variable. You must write accessor methods manually. This is
reminiscent of the Objective-C found in Xcode 3.x, which is still valid for Xcode 4 but not
the best practice. I recommend writing accessor methods in Xcode 4 only when
necessary, usually in cases where more complex processing is required when returning
property values.

Strings
Because Objective-C is based on the C programming language, you are free to use and
manipulate strings in the C way, through the use of pointers and strings essentially being
character arrays. There is no C# comparison, as C# doesn’t support pointers, so we’ll
use strings, string constants, and more advanced features, such as string localization as
comparisons.

Consider the following examples for representing a string constant, which is a static
string value that cannot be changed.

.NET C# // Define a constant string using the following syntax.
const string example="This is a constant string"

// Using this syntax to set a string attribute
window.title = example;

Objective-C // Define a constant string using the following syntax.
// @"This is a constant string"

// Using this syntax to set a string attribute
window.title = @"Main Window Title";

The following examples show the definition of a string using the respective string class
provided within the language. Note that using the class with the @ symbol creates an
immutable string—that is, a string that cannot be changed.

CHAPTER 4: Going Deeper: .NET, Objective-C, and the iOS SDK 100

.NET C# String string1 = @"This is an immutable string";

// Both of these statements are the same
String string2 = "This is a mutable string";
String string3 = new string("This is a mutable string");

Objective-C NSString *string1 = @"This is an immutable string";
NSString *string2 = "This is a mutable string";

In Xcode 4, you can also create a Localizable.string file that contains the string
resources, assigned both a name and value, which then are referenced at runtime in
your code. This allows your string values to be configured for the locale in which you’re
deploying your application. Store the values in your Localizable.string file in the
following format:

"LOCAL_MAIN_MENU_TITLE" = Main Menu";

And then reference the string in your code using the following syntax:

NSLocalizedString(@"LOCAL_MAIN_MENU_TITLE", @"");

Interfaces and Protocols
An Objective-C interface is actually a C# class, and an Objective-C protocol is actually a
C# interface—confusing, eh? Let’s put these into context with some examples, and in
doing so, remove the confusion.

We’ll start with a C# and the definition of a class, with member variables and methods.
C# uses the class keyword and syntax to define a class; Objective-C uses the
@interface compiler directive. We looked at this earlier within the class declaration
section.

If we focus on what C# calls an interface, which Objective-C refers to as a protocol, this
uses a different syntax. In Objective-C, a protocol declares methods that can be
implemented by any class, or indeed, be used as a variable.

Consider the following example. It defines an interface, which is then implemented by a
class. You use angled brackets within the interface declaration to declare your class
implements the named type for implementation or specialization.

CHAPTER 1: Going Deeper: .NET, Objective-C, and the iOS SDK 101

.NET C# // Definition of your interface template
interface IEquatable<T>
{
 bool Equals(T obj);

}

// Implementation of your class
// which realizes the interface
// defined above
public class MyClass : IEquatable<MyClass>
{
 // Implementation of IEquatable<T> interface
 public bool Equals(MyClass c)
 {
 // implementation here
 }

}

Objective-C // Definition of your interface template
@protocol IEquatable
- (bool) Equals : (NSObject*) a ;
@end

@interface MyClass : NSObject <IEquatable>
{
 // Some methods here

}
@end

// Implementation of your class
// which realizes the interface
// defined above
@implementation MyClass

// Implementation of IEquatable<T> interface
- (bool) Equals : (NSObject*) a
{
 // implementation here

}

@end

A class definition can declare an implementation of more than one interface simply by
separating the interfaces by a comma, like so:

Public class MyClass : NSObject <IEquatable, AnotherProtocol>

As you can see, it’s quite similar. One key difference is where Objective-C uses
protocols as variables or as an argument to a method, which is often the case when an
interface’s implementation is used as a callback function. Consider the example in
Listing 4–1, which defines a protocol that in turn defines a method that will indicate via a
Boolean value whether success was achieved.

Listing 4–1. Protocol Declaration Code

CHAPTER 4: Going Deeper: .NET, Objective-C, and the iOS SDK 102

#import <Foundation/Foundation.h>

// Define our protocol, with a single method
@protocol ProcessDataDelegate <NSObject>
@required
- (void) processSuccessful: (BOOL)success;
@end

// Create an Interface using the Protocol, and notice the use of the ID type that points
// to a generic type that will be unknown at compile time and resolved at run-time
@interface ClassWithProtocol : NSObject
{
 id <ProcessDataDelegate> delegate;
}

@property (retain) id delegate;

-(void)startSomeProcess;

@end

The implementation section for the interface defined in Listing 4–1 synthesizes the
delegate instance variable and then calls the method defined in the protocol as needed.
Its implementation is shown in Listing 4–2.

Listing 4–2. Using a Protocol Declaration in the Class Example

#import "ClassWithProtocol.h"

@implementation ClassWithProtocol

@synthesize delegate;

- (void)processComplete
{
 [[self delegate] processSuccessful:YES];
}

-(void)startSomeProcess
{
 // Create a time which uses the processComplete interface to signal when complete
 [NSTimer scheduledTimerWithTimeInterval:5.0 target:self
 selector:@selector(processComplete) userInfo:nil repeats:YES];
}

@end

For the sake of brevity, assume you have a class that is performing some kind of action.
Further, assume this class is called from another class to begin the processing. At some
point, the caller will want to be notified that the class processing the data is finished,
and the protocol is used for this very purpose, as shown in Listing 4–3.

Listing 4–3. Using the Class in the Example

@interface MyDelegate : NSObject <UIApplicationDelegate, ProcessDataDelegate>
{
 ClassWithProtocol *test;

CHAPTER 1: Going Deeper: .NET, Objective-C, and the iOS SDK 103

}
@end

@implementation MyDelegate
-(void) processSuccessful:(BOOL)success
{
 NSLog(@"Finished");
}
@end

Delegation
The use of delegation in the iOS SDK is common, predominately because it is
introduced as an elegant solution to the problem of complex subclassing. Instead of
having complex object hierarchies, where you need to create many more classes whose
behavior may change only slightly from one another, you can pass delegates to an
object to perform the modified behavior on your behalf. Modern best practice in today’s
programming languages is to avoid deeply nested class hierarchies, and Objective-C
helps with this through delegation.

The general rule is that delegation is an alternative to subclassing, good practice is to
use it, as it creates far cleaner code. Let’s start by defining our protocol in Objective-C,
as in the following examples.

.NET C# // Defining the delegate in C# is different
public delegate void jobComplete();

Objective-C // Definition of your interface template
@protocol jobComplete
 (void)jobFinished;

@end

We next define an object variable within our class pointing to the protocol defined for
our delegate and name it. We’ll also expose a property of the same name that we can
call to reference our protocol, as follows.

.NET C# public class MyClass
{
// Create our delegate
 jobComplete jc = new jobComplete(jobFinished);

}

Objective-C @interface MyClass : NSObject {
 id <jobComplete> delegate;

}
@property (nonatomic, retain) id <jobComplete> delegate;
@end

Our class would then invoke the delegate as a suitable point, using the following syntax,
and must @synthesize the delegate property as part of its implementation.

CHAPTER 4: Going Deeper: .NET, Objective-C, and the iOS SDK 104

.NET C# public void SomeMethod()
{
 // Invoke our job complete delegate
 jc();

}

Objective-C -(void) SomeMethod
{
 // Signal that the job is complete by calling the delegate
 [delegate JobComplete];

}

The only thing left to do in our class is implement the delegate’s jobFinished method, as
in the following, which will be called as shown previously.

.NET C# public void jobFinished()
{
 // do something to signal the job has finished

}

Objective-C -(void) jobFinished
{
 // do something to signal the job has finished

}

I encourage you to play around with some sample code to test your understanding of
delegates.

NOTE: On the Apple Developer Program web site, you will find some more information about how
to use delegates and delegation. If you’re interested, take a look at

http://developer.apple.com/library/mac/#documentation/General/Conceptual

/DevPedia-CocoaCore/Delegation.html.

Comments
Last, but definitely not least, is the syntax used to embed comments within your code.

The use of naming conventions like camelCase helps, but there really is no substitute for
good comments within your code. The syntax needs to conform to the form described
here, but it’s also important that the comments themselves describe the intent and
approach taken by the developer, and not just a verbatim narrative of the syntax (the
code and its naming should do that).

For single-line comment, you can use the following structure.

CHAPTER 1: Going Deeper: .NET, Objective-C, and the iOS SDK 105

.NET C# // this is a comment

or

/* this is a comment */

Objective-C // this is a comment

or

/* this is a comment */

For multiple lines, in Objective-C, you can use the /* (open comment) and */ (close
comment) structure, but not in C#, as follows.

.NET C# // this is the starting line
// this is a second comment line
// this is a terminating third comment line

Objective-C /* this is the starting line
** this is a second comment line
*/ this is a terminating third comment line

Comparing .NET and Xcode Tools
So far, we’ve compared the Apple devices, the application life cycle, and the respective
class libraries in both .NET and the iOS SDK. But as we’ve covered in previous chapters,
tooling is equally important, and Xcode is a worthy equivalent to Visual Studio, as is
MonoDevelop if you decide to pursue the MonoTouch path. But there are other tools to
consider as you start your development journey, as listed in Table 4–4.

Table 4–4. Tool Comparison

Domain Microsoft .NET Apple

IDE Visual Studio Xcode or MonoDevelop

Device simulator Windows Phone 7 emulator iOS simulator

File Comparison Visual Studio (not Express) Version editor

Debugger Visual Studio Xcode using LLM debugging engine

Static code analysis Visual Studio Xcode 4

Unit testing NUnit Xcode 4

Source code control Team Foundation Server includes
Visual SourceSafe

Subversion or Git

IntelliSense Visual Studio (not Express) Xcode 4

CHAPTER 4: Going Deeper: .NET, Objective-C, and the iOS SDK 106

The tools listed in Table 4–4 are provided out of the box. Visual Studio and Xcode can
be extended with additional tools, both commercial and open source.

XCode 4 Primer
We’ve already taken a very simplistic look at the new Xcode 4 editor in Chapter 2 when
creating our Hello, World application. If you were familiar with previous versions of
Xcode, you’ll have noticed a big difference: Xcode 4 now works within a single window
and is far more integrated. If you’re familiar with Visual Studio, you’ll be far less
impressed, and may need to take some of Xcode’s features in stride.

In this section, as in the Objective-C primer, we’ll dig a little deeper into Xcode 4’s
features, so that you are better prepared to start coding in earnest in future chapters.

We’ve already looked at the general structure of the Xcode interface, with its various
functional panes, and we’ve created a new project, which highlights both the project
templates available and the project explorer tree, which is the name given to Xcode 4’s
project structure view.

As noted, the IDE shipped with Xcode 4 is a substantial improvement on previous
versions, and a real comparison to Microsoft’s Visual Studio IDE. It includes a number of
new features. One is the way in which you navigate around the application. The multiple
windows of Xcode version 3.x are replaced with a single window that has different
workspaces and other areas. The following sections describe the key aspects of the IDE.

The IDE Workspace and Its Editors
In Xcode, every window within the IDE is a workspace, and as such, provides an elegant
solution to supporting multiple projects. Each workspace has tabs, which represent a
given context and, when selected, adjust the windows that appear below it, showing
what you need to see.

In supporting workspaces, Xcode has also introduced a number of editors, including
ones for source code, property list files, rich text files, and NIB files, among others.
(Editor refers to the dialog box that allows you to edit the values given against certain
parameters.) To open or display any of these editors, select a file of that type in the
project navigator (see the upcoming “Navigators” section). The editor opens
automatically in the editor area of the workspace window. Table 4–5 shows how to
access the different editors.

CHAPTER 1: Going Deeper: .NET, Objective-C, and the iOS SDK 107

Table 4–5. Ways to Access the Xcode Editors

Editor Toolbar Shortcut

Standard editor

��

Assistant editor

���

Version editor

����

Code Completion and Support
Those of you familiar with Visual Studio will be right at home here, because the code-
completion capabilities in Xcode 4 have been enhanced. The IDE prompts you to not
only complete the statement you are typing, but if options exist, it already provides you
with the options available—complete with Quick Help documentation to support any
highlighted option, should you have the Quick Help Inspector open.

A useful shortcut is control-spacebar, which toggles the code-completion feature on and
off. Press the escape key to cancel any operation.

If you’re using the LLVM compiler to build your code, the Fix-It feature will also be
enabled. As you are typing, the Fix-It feature will look for errors in your code. If it finds
something that seems like an error, it will highlight the problem using a red underbar and
an error symbol in the gutter bar, in the left pane of your IDE. It will also provide some
suggestions on how to fix the problem, offering to repair it for you.

Schemes and Scheme Editors
A useful addition to Xcode 4 is the concept of a scheme, which can be used to define a
collection of targets to build, a configuration to use when building, and a collection of
tests to execute. Each scheme is associated with a debug or release build, and changed
using the scheme popup window. From this same menu, you can manage the schemes
you have—editing an existing scheme or creating a new scheme.

Essentially, the creation of a scheme allows you to associate a set of configuration items
to the scheme name and select it at the click of a button. The scheme editor then allows
you to configure the schemes and their settings.

You can have as many schemes as you want, but only one can be active at a time. The
schemes you create can be stored in a project and be available in every workspace that
includes that project. Alternatively, schemes can be stored in the workspace and be
available only in that workspace.

CHAPTER 4: Going Deeper: .NET, Objective-C, and the iOS SDK 108

Schemes are a powerful feature. I recommend that you spend a little time playing with
different scheme configurations using the scheme editor.

Project Editor
The project editor window allows you to adjust core configuration information about the
project itself, under the Summary tab. You can also adjust the build settings, phases,
and rules.

In most instances, the values such as those found in the summary information will not
need to be changed from the default settings provided with the template. But if you do
need to make any changes, you can do it here.

As noted in the previous section, you can set the target, build configuration, and
executable settings using schemes. In Xcode 4, selecting a scheme will automatically
provide default settings for all three areas.

Inspectors
In Xcode, inspectors are panes in the utility area that you can use to read or enter data
about files and Interface Builder objects. These inspectors are listed in Table 4–6 along
with their shortcut keys.

Table 4–6. Inspectors and Their Keyboard Shortcuts

Inspector Shortcut

File Inspector � �1

Quick Help � �2

Identity Inspector � �3

Attribute Inspector � �4

Size Inspector � �5

Connections Inspector � �6

These inspectors also are available under the Utilities menu item within Xcode. Note that
the menu is context-sensitive, and all of the inspectors are relevant only when you’re
viewing user interfaces provided in an XIB file. When viewing code, fewer inspectors are
available.

CHAPTER 1: Going Deeper: .NET, Objective-C, and the iOS SDK 109

Navigators
The Xcode IDE introduces a number of navigators, which display different workspaces
within the main window and allow you to jump to different areas of your project with
ease. Navigators are a useful tool for navigating the Xcode interface, and understanding
how to use them will make developing applications within Xcode far easier.

Seven navigators are available to help you navigate to various aspects of your project:

� Project navigator: This navigator provides a standard view of your files and
groups. It shows your classes, frameworks, resources, products, and so on.
Xcode 4 offers some nice improvements over the previous version. At the
bottom is a filter bar with three preset filters for recently changed files, unsaved
files, and files with an SCM status. It also includes a search field that you can
use to filter files across all projects in the workspace.

� Symbol navigator: As its name suggests, this navigator allows you to view and
navigate the various symbols created within your application. It lets you view the
symbol in a hierarchical format (parents and children) or a flat format, displaying
classes, methods, attributes, and so on.

� Search: This navigator provides a workspace-wide find-and-replace feature.
The navigator itself is a standard find-and-replace panel. It also provides a
feature for doing mass replacements, through the Preview button. Using this
feature slides down a sheet that gives you the differences for every change and
lets you select which changes to put into effect.

� Issue: As its name suggests, this navigator shows you issues that the compiler
or syntax checker has detected and allows you to view the complete issue text.

� Debug: This navigator displays your program-execution information, including
the stack, when you stop in the debugger. You can view multiple threads at
once and have Xcode filter out threads that are not relevant. It also has a stack-
compression feature, provided by a slider at the bottom of the debug navigator.
When you slide it from right to left, Xcode takes out stack frames that may not
be relevant, so you can adjust the slider to show information to the level of detail
you want.

� Breakpoint: This navigator displays all breakpoints set within your application,
both active and inactive. If you have set a breakpoint and it is inactive, you will
see the symbol, allowing you to switch it on in the code. This doesn’t do any
harm, since it’s not affecting your code. However, if you want to remove the fact
that the debug breakpoint ever existed, delete it from the navigator list.

� Log: This navigator displays the history surrounding the project’s run and debug
sessions. It can be used to view output sent to the debug console using the
NSLog method.

Figure 4–5 shows the Navigator toolbar.

CHAPTER 4: Going Deeper: .NET, Objective-C, and the iOS SDK 110

Figure 4–5. The Navigator toolbar, with (from the left) Project, Symbol, Search, Issue, Debug, Breakpoint, and Log
buttons

Each time you choose a navigator, the navigation window will appear on the left side of
the window, along with the relevant inspector on the right side of the window, with the
details displayed for the object selected (if any) in the navigation tree. The navigation
tree and the inspector window are only displayed if you have already switched off the
Navigator view (�0 to toggle). You also can choose a navigator with the shortcut keys
shown in Table 4–7.

Table 4–7. Navigator Keyboard Shortcuts

Navigator Shortcut

Project �1

Symbol �2

Search �3

Issue �4

Debug �5

Breakpoint �6

Log �7

Hide navigator �0

Views
In addition to the different navigators, you can manage the different views that are
displayed:

� Navigator view: Provides access to navigators that let you navigate
your project structure, or object hierarchy.

� Debug area view: Allows you access to breakpoints and object
watchpoints as part of Xcode 4’s debug functionality.

� Utilities view: Provides access to things like the help pages and
object inspectors.

You can switch these views on and off, in order to free up screen space.

Table 4–8 shows ways for accessing the three views.

CHAPTER 1: Going Deeper: .NET, Objective-C, and the iOS SDK 111

Table 4–8. Tools for Toggling Between Views

View Toolbar Shortcut

Navigator

�0

Debug area

��Y

Utilities

��0

Using Other Xcode Tools
Xcode provides a number of other tools to assist in the development of your code. Here,
we’ll look at two: one that enables static analysis of your code and another that enables
you to drag and drop code snippets.

Static Analysis
Static analysis can help you to reduce bugs and inefficiencies within your code. The
Xcode 4 IDE allows you to perform the analysis, examine your code, and take corrective
actions as necessary—all within the same workspace window. Once the project you
wish to analyze is selected, simply choose Product � Analyze to start the analysis.

Once complete, Xcode opens the issues analyzer window to highlight the results of the
analysis. Any problems are labeled in blue and marked. When you click one of these,
Xcode will highlight the faulty code for your analysis and correction.

Code Snippets
A useful feature, and one that has been extended, is the ability to drag code snippets
into your project, thus providing a default implementation for common code features
such as implementing a protocol.

This Interface Builder feature can be used to select the library of items, including code
snippets. Then you can highlight and drag an item onto your source file. For example, in
the case of a protocol code snippet, this will implement the default code in your editor
for you to complete.

CHAPTER 4: Going Deeper: .NET, Objective-C, and the iOS SDK 112

Summary
In this chapter, we began by considering the relative features of Apple’s mobile devices.
You’ll notice that the iPhone and iPod touch are very similar, whereas the iPad starts to
introduce some key differences, mainly due to its tablet form factor.

We next took a look at design patterns that are used as approaches to application
development, including how the code is structured. We considered an iOS application’s
life cycle, mapping this on the MVC pattern, and you should have started to notice some
similarities with the Microsoft Windows method of running GUI-based applications.

Then we compared the class frameworks, which again are similar in features if not in
structure, and compared the Objective-C language and the Xcode tools with their .NET
counterparts. Objective-C is similar to C# in many respects. However, one of the key
differences stems from the fact that iOS apps are not managed applications. Because
the language is based on C, you see memory management, pointers, and non-same-
typing being the norm within the language.

You should now be more familiar with the Xcode 4 environment, Objective-C as a
language, and the similarities with Microsoft .NET in code, framework, and tools—at
least in the key areas. We didn’t go through a step-by-step comparison of everything—
the breadth of the language and the class frameworks is far too large—but it isn’t
necessary. Using a combination of the Xcode development environment, online
resources, and the following chapters, we’ll start to dig into the details. You’ll see more
specific examples of how to use both the language and the SDK’s features, making the
comparison with .NET’s classes clearer. In doing so, the transition to Objective-C and
the iOS SDK will become easier and more apparent.

 113

 Chapter

Get to Work: Creating
Your First Application
In the chapters so far, we’ve covered a multitude of topics, including an introduction to
the iOS, the iOS SDK, the different devices available, and how to use development tools
such as Xcode and MonoDevelop to create your initial application. But it’s going to take
more than a Hello, World application to satisfy your users.

Now we will begin to build on the knowledge you’ve gained so far and create a
compelling application that is more feature-rich and functional. We will delve into the
details of objects contained within the frameworks you’ve read about in previous
chapters and how to use those objects. You’ll also learn how to structure your
application within Xcode to better support the build, debug, and deploy phases of your
project, along with a more detailed look at the simulator for predeployment testing.

To demonstrate all of these features and capabilities, we will create a copy of the simple
Lunar Lander app, using a similar style of graphics and physics that made it famous in the
1980s. We’ll start the app in this chapter and continue to enhance it throughout this book.

To get started, we will cover the following topics in this chapter:

� Designing your application, considering the key issues to address before you
start to build it

� Setting up your project and its structure in Xcode, including the settings that are
most relevant in building and debugging your application

� Understanding the options for presenting the user interface to the user,
including how to render simple graphics with collision detection

� Exploring the different methods for navigating the features of your application,
such as difficulty level and high scores

� Interacting with the outside world, both through the Internet and through
interactions from the user

� Exploring the iPhone simulator to test your application

5

CHAPTER 5: Get to Work: Creating Your First Application 114

As we work through the construction of the application, I’ll continue to highlight the
features found in the .NET Framework for comparison. I’ll also point out common
“gotchas” and how to avoid them.

The App Planning and Design Process
In the previous chapters, we looked at a few factors to consider before designing your
application. For example, we compared the features of each device, which you need to
consider when deciding which is best suited to your application. You need to
understand some of the key differences that will need to be accommodated in your
application. Such considerations are important, but there are also many more aspects
you should think about before you start to write code.

In most professional organizations, the process of building an application usually starts
with the requirements capture stage. This involves collecting the requirements of the
users, or in the case of an undetermined audience, the features of your application.
These are then prioritized, enabling you to drop those features you consider to be less
important if time runs out.

The nonfunctional requirements are equally important as the functional requirements. An
example of a nonfunctional requirement is how fast certain actions are expected to
perform, or how much data you want your application to be able to handle. The actual
devices you wish to target are also noted at this point, along with the features of the
devices you wish to use.

Once you’ve captured and documented the requirements, the next phase is to start the
design process. This involves defining how the core structure of your application will
look—which aspects you will write in your own bespoke code, and which frameworks
you will integrate together to achieve the desired functionality. This is known as the
application’s architecture.

The application’s architecture is like the foundation and frame of your house. It provides
the necessary structure, and from there, you can create your rooms and install the
wiring, water, and heating. An application is no different.

You then build up the architecture with detailed implementation of your application’s
functionality using code. The end result is a working application that realizes the
requirements you defined—much like your house, built with the features you expected.

Capturing the requirements for your application and designing the structure of your
application will provide valuable guidance for when you write code, and will ensure that
your application is more flexible and robust. You won’t need to keep bolting bits of code
on to accommodate features you had not considered earlier. So, while it’s not
mandatory, following a pragmatic version of the planning and design process, as
described here, is considered good practice.

CHAPTER 5: Get to Work: Creating Your First Application 115

Apple iOS Design Resources
The process of designing your application relies heavily on your own imagination and
brainpower—that’s part of the fun. However, if you’re confused when it comes to
understanding how to best design your user interface or use the frameworks provided in
the way in which they were intended, you are not alone!

The iOS operating system exposes the core features of the devices on which it runs.
Therefore, understanding the characteristics of the device and knowing how Apple
intended it to be used are important. Apple has also spent a lot of time creating and
tailoring user-interface elements to particular tasks, exploiting the touch and gesture
user interface.

For example, date and time entry are achieved by using the Date and Time Picker
control, for which a more generic Picker control is available. This allows you to spin the
wheel (or wheels) of the picker until the value you want is displayed. In the case of the
date, the day, then the month, then the year appear. This is a good example of a control
that has been specifically developed to suit the touch and swipe gestures of the device.

This really isn’t that different to the principles adopted by Microsoft when it created the
Windows SDK, and the existence of different user-interface controls as part of the .NET
framework. Initially, these controls were suited to the mouse and keyboard as input, and
then extended to cope with the introduction of tablet devices, such as the electronic-ink
(e-ink) concept. And with the introduction of Windows Mobile 7, the process continues.

Apple provides a number of helpful guides at http://developer.apple.com. For user
interface design, the main resource is the iOS Human Interface Guidelines. Its guidance
includes the following:

� User-Interface guidelines: For example, a focus on building
applications where the emphasis is on user experience and user
collaboration

� Usage guidelines on iOS user-interface controls: A breakdown of
the different user-interface controls, in which scenarios they are best
used, and how to use them.

iOS Human Interface Guidelines does cover many more topics. I recommend you
familiarize yourself with this guide. Also, take the time to browse the site and its
associated content.

Other Design Resources
Many resources on the Internet provide example applications—some simple and some
very complex. A particular favorite of mine is the source code and narrative of the
journey taken to port the Doom game to the iPhone, available at
http://www.idsoftware.com/doom-classic/. (Using something as complex as that as

CHAPTER 5: Get to Work: Creating Your First Application 116

our example application would be fun, but unfortunately, impossible. I hope Lunar
Lander is the next best thing.)

The following are some other useful resources you may wish to reference:

� Objective-C for Absolute Beginners (ISBN 978-1-4302-2832-5) is a
great book that takes you through the details of Objective-C. It serves
as a useful reference as you familiarize yourself with the language.

� Pttrns.com (http://pttrns.com/) is a useful resource for
demonstrating user-interface patterns—not in a programmatic sense,
but in a visual sense. It’s a useful resource for giving you visualization
ideas.

� Pro Objective-C Design Patterns for iOS (ISBN 978-14302-3330-5)
provides design patterns to help you implement some of the more
complex designs that you may want to use in your applications (it’s
more on the advanced side).

� Many resource management tools are available, some of them open
source. If you’re dealing with a large number of requirements for your
application, you may find these tools useful. An example is available at
http://sourceforge.net/projects/osrmt/.

Planning and Designing the Lunar Lander
Application
So, let’s practice what we preach. We will follow the phases of the design process
described in the previous section. First, we’ll capture and document the requirements,
and then we’ll design the application.

Requirements Specification
The requirements specification defines the scope of the application and provides the
details on which the design is based. It is also usual to classify your requirements in
terms of priority, allowing you to make the hard decisions should you run out of time. A
common mechanism for doing this is to use what is known as the MOSCOW notation,
for those requirements you Must have, Should have, Could have, and Would like to
have. This is a simple but effective approach.

Table 5–1 shows a summary of requirements specification for our Lunar Lander game.

CHAPTER 5: Get to Work: Creating Your First Application 117

Table 5–1. Requirements Specification for Lunar Lander

ID Description Priority

01 The game will replicate the same graphical style as that adopted by the original
Lunar Lander game.

M

02 There will be three difficulty levels: Easy, Medium, and Hard. Each will use a
combination of space available for landing, the target angle, and the terrain to
achieve different difficulty settings.

M

03 The top-five high scores will be stored locally. M

04 The top-five high scores will be stored on the Internet for pan-Internet competition. C

05 The keyboard will be used to provide user input. M

06 The iPhone’s accelerometer may also be used for user input. C

07 When the lander strikes terrain, or attempts to land with a speed greater than the
specified tolerance, it will explode.

M

08 The game will support five different terrains. M

09 The game will start with a tank full of fuel, which will decrease by the number of
seconds the engine is held in thrust mode (used to counteract gravity).

M

10 When the fuel supply runs out, the game will stop responding to user input. M

11 The screen will show the score (fuel remaining added for every successful landing),
the fuel remaining, the altitude, and the horizontal and vertical speed

M

Clearly, the requirements could be elaborated to provide further details, but for brevity,
I’ve reduced the specification to the key requirements and associated data. This is
enough information to allow us to create the game, which is the focus of this chapter.

Lunar Lander Application Design
Once you’ve decided the type of application you’re developing, and what attributes
make the most sense, you are ready consider some of the details. For example, a
productivity tool (such as a calculator), a game (graphical), and a messaging (textual)
app will all need a different look and feel.

CHAPTER 5: Get to Work: Creating Your First Application 118

User Interfaces
The application will present two distinct user interfaces:

� Main menu: This will be the default screen when the application is
launched, and will provide a menu from which settings such as
difficulty can be chosen. Also, the game can be started through this
menu system. It will show the high scores in the middle of the screen
and present a graphical picture of the lunar lander cabinet as a
backdrop.

� Game view: This is the main view for the game, supported by its own
controller. On this screen, the terrain will be drawn and the lander will
be displayed, along with the game, statistics such as score and fuel
remaining, and so on.

Game States
The game can be in one of the following five states, each of which responds to user
input as relevant to its state:

� Menu: At the main menu, waiting for the user to quit, select a difficulty
level, or start a new game.

� Running: The game has started and is responding to any user input.

� Paused: The game has either been paused or suspended and is
waiting for the user to signal a restart.

� Crashed: The game has been running but the user has crashed. A
new game can be started from this menu.

� Won: The game has been running and the user has successfully
landed the lander. The next level is ready to commence when the user
presses a key.

Other Game Design Elements
Other elements included in the game design are as follows:

� The game will use a simple timer to manage the on-screen graphic
updates. However, this could be changed later to use multiple threads,
which would provide for smoother game play.

� The Lunar Lander graphic will have three core states: flying with no
thrust, flying with thrust, and crashed. The rotation is managed by
using the iOS’s graphic API.

� The terrain is predefined as a series of points, drawn at runtime using
simple line graphics.

CHAPTER 5: Get to Work: Creating Your First Application 119

� On-screen toolbar buttons will initially be used as user input. The left
and right arrow keys rotate the lunar lander ship, and the up arrow key
signals thrust. This could be changed to use the touch and gesture
interface, topics that are explored in Chapter 10.

Building the Lunar Lander Application
With the requirements and design phases complete, we’re ready to dive in and build the
Lunar Lander game.

The Lunar Lander application will be written initially as an iOS application that targets
the iPhone device. We’ll talk about how you would change this to suit other devices
using the iOS orientation features in Chapter 7.

We’ll use the iOS View-based Application project template, allowing it to create the
initial view and view controller for the main menu. We’ll then create a separate view and
associated view controller to manage the game’s view. This will provide a head start and
also build on the earlier examples we’ve already covered.

We’ll also include other resources within the project, such as graphical images for the
lunar lander image. So, let’s get started.

Creating the Application Project
You know the drill: Choose a location on your disk for the project and fire up Xcode.
Create a project using the View-based Application project template. I named the project
LunarLander. Create the following files:

� LunarLanderAppDelegate (.h and .m files)

� LunarLanderViewController (.h, .m, and .xib files)

� MainWindow.xib (which will use the LundarLanderViewController.xib
view)

These will provide our single application delegate, which will launch the view controller
that will use the LunarLanderViewController.xib as the view for the game’s main menu.
Your project structure should look like that shown in Figure 5–1.

CHAPTER 5: Get to Work: Creating Your First Application 120

Figure 5–1. Initial LunarLander project files

Before we go any further, let’s add the main game view—again, a view controller and a
view. To do this, choose File � New (or use the �N shortcut), and from the Cocoa Touch
iOS templates, choose a UIViewController subclass. On the next few screens
presented, ensure it subclasses the UIViewController class and is given the name
GameViewController. Also remember to check the “With XIB for user interface” option.
We’ll use a NIB file to handle the game’s main user interface—at least the view canvas
and static items. After doing this, your folder structure should resemble that shown in
Figure 5–2.

Figure 5–2. LunarLander project with GameView class

These files will provide a sufficient foundation to start the core mechanics of our Lunar
Lander application. Before we add any more files, let’s work with these initial files to
start our game’s implementation. We’ll begin with the main menu view and some
elements of our foundation architecture. Other resources will be added to the project as

CHAPTER 5: Get to Work: Creating Your First Application 121

required, and we’ll extend the application’s logic as specific topics are introduced later
in the book.

Building the User Interface and Flow Logic
The user interface uses the initial window, with a simple button that starts the game. We
could also use this screen to display the high score and decorate it with pretty graphics.
The main Lunar Lander view controller and XIB file will be used to manage this view.
When the Start Game button is selected, it will load and display modally the game view
with its own controller. This initial game screen is shown in Figure 5–3, with the Start
Game button already added.

Figure 5–3. Initial Start Game screen

Our application delegate will be used to load this screen. As shown in Listing 5–1, in the
header file, we declare two properties (highlighted in bold): one of type Window and the
other a pointer to the LunarLanderViewController class instance. We’ll use these in the
application delegate code to display the window.

CHAPTER 5: Get to Work: Creating Your First Application 122

Listing 5–1. LunarLanderAppDelegate.h

#import <UIKit/UIKit.h>

@class LunarLanderViewController;

@interface LunarLanderAppDelegate : NSObject <UIApplicationDelegate> {

}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet LunarLanderViewController *viewController;

@end

And then we provide a supporting implementation file, in the form of
LunarLanderAppDelegate.m, as shown in Listing 5–2 (relevant code in bold). Here, you’ll
notice we synthesize the properties, and in the dealloc() method, we free the member
these resources are occupying.

Listing 5–2. LunarLanderAppDelegate.m

#import "LunarLanderAppDelegate.h"

#import "LunarLanderViewController.h"

@implementation LunarLanderAppDelegate

@synthesize window=_window;
@synthesize viewController=_viewController;

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:�
(NSDictionary *)launchOptions
{
 // Override point for customization after application launch.
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

….. default implementation code goes here and is unmodified

- (void)dealloc
{
 [_window release];
 [_viewController release];
 [super dealloc];
}

@end

The interesting part is in the didFinishLaunchingWithOptions() method, where we set
the rootViewController instance variable of the main window to be that of our Start
Game view controller (that is, the LunarLanderViewController class), and this is then
made visible as per the default implementation.

CHAPTER 5: Get to Work: Creating Your First Application 123

Although we start with this initial screen, it is the game view that will be used to manage
the actual game playing. This very simple flow is shown in the diagram in Figure 5–4.

Figure 5–4. Game state flow

So, the LunarLanderViewController.xib file that we created earlier will have a simple
user interface like that shown in Figure 5–3. This screen has nothing other than a view
(of type UIView) and a button (of type UIButton), with the text of the button saying “Start
Game.” In .NET, this would be exactly the same as creating a form using Windows.Forms
and placing a button on the screen.

We will also need to attach an action for the button click to display and start the game.
This is no different from how we started our simple actions in the previous chapters.

Let’s now look at hooking up the Start Game button to an action that is meaningful—
that is, loading our main game view so that you can provide a location for the actual
game mechanics. First, take a look at Listing 5–3, which is the header file for the view
controller that handles the start game interaction.

Listing 5–3. LunarLanderViewController.h

#import <UIKit/UIKit.h>

// Inform the compiler that our GameViewController reference is to a class
@class GameViewController;

// Define the main class, or interface as it’s known in Objective-C, inheriting from�
 UIViewController
@interface LunarLanderViewController : UIViewController {

 @private GameViewController *pgameViewController;
}

// Property we'll use to refer to our ViewController
@property (nonatomic, retain) GameViewController *gameViewController;

// Event we'll use to attach to the Start Game button for the user to commence game play
-(IBAction)startGame:(id)sender;

@end

The implementation is held in LunarLanderViewController.m, as shown in Listing 5–4.

CHAPTER 5: Get to Work: Creating Your First Application 124

Listing 5–4. LunarLanderViewController.m

#import "LunarLanderViewController.h"
#import "GameView.h"
#import "LunarLanderAppDelegate.h"

@implementation LunarLanderViewController

// Synthesize our GameViewController pointer to the internally held variable
@synthesize gameViewController = pgameViewController;

- (void)dealloc
{
 // Release the custom controller
 [self.gameViewController release];

 // Call inherited
 [super dealloc];
}

- (void)didReceiveMemoryWarning
{
 // Release the view if it doesn't have a superview.
 [super didReceiveMemoryWarning];

 // Release any cached data, images, etc. that aren't in use.
}

#pragma mark - View lifecycle

// Implement viewDidLoad to do additional setup after loading the view, typically from�
 a nib.
- (void)viewDidLoad
{
 [super viewDidLoad];
}

- (void)viewDidUnload
{
 [super viewDidUnload];
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
}

- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)�
interfaceOrientation
{
 // Return YES for supported orientations
 return (interfaceOrientation == UIInterfaceOrientationPortrait);
}
-(void)startGame:(id)sender{
 // Do Something

 self.gameViewController = [[GameViewController alloc] initWithNibName:@"GameView"�
 bundle:nil];
 [self presentModalViewController:self.gameViewController animated:YES];

}
@end

CHAPTER 5: Get to Work: Creating Your First Application 125

In summary, we will have achieved the following parts of our game’s functionality:

� Created a GameViewController property and managed its memory

� Wrote an event handler for the Start Game button click that loads and
displays modally the game view interface

These essentially allow the main game screen to be displayed. To that screen, we’ll
attach the menu and display the high score. We will react to the Start Game button click
by displaying and starting the game.

So, creating the property uses the same method as described in previous chapters.
However, here we are specific about assigning the property to the class member
variable, allowing us to use different names for each.

Let’s start at the beginning, in the header file:

@class GameViewController;

This tells the compiler that GameViewController is a class, and it means we don’t need to
include the full class declaration at this point. We just need to inform the compiler that it
is a class. The semantics of the messages and attributes it supports will be provided at
runtime by the iOS framework.

Next, we define our internal class member variables with the following line:

 @private GameViewController *pgameViewController;

Most of this is similar to previous examples, but notice the @private declaration. This is
a visibility modifier, and it defines the visibility (or scope) of the member variable. A
number of options are available for specifying the visibility of the variables, which you
place after the declaration. Also available are @public and @protected, which behave the
same as the .NET equivalents with the same names and syntax (preceding the variable),
but without the @ symbol.

Having a property allows us to control elements of that variable, such as its ability to be
retained in memory until we decide it’s no longer required. But we do need to remember
to release it. In the dealloc() method, we release our gameViewController variable and
its associated memory by sending it the release message. Also note that we call the
inherited dealloc() method with the [super dealloc] call. This is known as passing the
call along the chain, and using it is called being a good citizen. This behavior is provided
for within the default implementation of methods created by Xcode. You can see all of
this happening in the following code:

- (void)dealloc
{
 // Release the custom controller
 [self.gameViewController release];

 // Call inherited
 [super dealloc];
}

We need to react to the Start Button being pressed. So, if you have not already added
the Start Game button, do that now.

CHAPTER 5: Get to Work: Creating Your First Application 126

Within the XIB file, you need to ensure the Start Game button’s Start Touch Down event
is hooked up to the startGame event property we created in code. You can do this using
the drag-and-drop feature within the Connections Inspector. With the
LunarLanderViewController.xib file open and the view visible (you’ll see the Start Game
button), you need to show the Connections Inspector to see the outlets available. From
there, simply drag the StartGame IBAction (rember our definition in code) onto the Start
Game button. This will wire it to the button’s Start Touch Down event, which will fire
when we first click the button.

The definition for the IBAction required to be visible on the Outlets page within the
Interface Builder is as follows:

-(IBAction)startGame:(id)sender;

The (IBAction) declaration is key to telling Xcode 4’s Interface Builder it’s an action
available for wiring up to an event.

Finally, we need to provide an implementation for the event, which, in our case, will load
and display the GameView interface and its associated controller. This will manage the
game-play mechanics for our Lunar Lander game. Here is the code:

-(void)startGame:(id)sender{
 // Set up our gameViewController pointer to our loaded GameView class
 self.gameViewController = [[GameViewController alloc] initWithNibName:@"GameView"�
 bundle:nil];
 // and display it modally.
 [self presentModalViewController:self.gameViewController animated:YES];
}

Our first line allocates the memory for our GameViewController class
[GameViewController alloc], and then we embed this within a message call to the
initWithNibName method, passing the name of our XIB file. Finally, we display the
window by sending the message presentModalViewController with a pointer to the view
controller—in this case, gameViewController.

The syntax of this code will be more familiar to C++ developers than to .NET developers;
the allocation of the GameView class is the same as calling new in C#. Indeed, the
following syntax is also valid in Objective-C: [GameViewController new]. Once the class
has been created, invoke the ShowDialog() method in .NET, using code similar to the
following—this is the equivalent to the preceding objective-c code:

// C# Form creation and display using Windows Forms
Form MyForm = new MyForm;
MyForm.ShowDialog();

After implementing the event, go ahead and build the executable and start your
application. It will display the main window with the Start Game button. If you select this
button, a blank game window will be displayed. To help me make sure it was being
displayed properly, I added a simple label to the game window user interface.

CHAPTER 5: Get to Work: Creating Your First Application 127

Implementing Navigation in Your Application
So we’ve built our application to display two simple forms, with a button click linking the
two. But the game isn’t much use if once you’ve completed it, you cannot get back to
the main menu to start again or exit. So, we need to continue building our game screen
implementation to provide a mechanism for returning to the main menu or the parent
window.

We’ll start by building on our existing game interface screen. We’ll add a toolbar to
conveniently allow us to place buttons on it. We’ll also add some on-screen labels,
which we’ll use to display status information.

Go ahead and add the Toolbar, Button, and Label controls to create the interface shown
in Figure 5–5. Use the standard features of Xcode 4’s Interface Builder, as you’ve done
in previous examples. Any code surrounding these items is automatically generated.

Figure 5–5. Game interface screen

CHAPTER 5: Get to Work: Creating Your First Application 128

We will improve this screen, but for the moment. It serves its purpose: to provide a Quit
button that will return us to the main menu. To do this, we’ll use techniques similar to
those we’ve employed previously.

We need an IBAction property, which is used to provide the event property that is fired
when selected. Also, we need to hook up the action on the Connections Inspector tab
as before and provide the following event implementation code:

-(void)quitGame:(id)sender
{
 // No longer require the game window, go back to parent
 [self dismissModalViewControllerAnimated:YES];
}

This code will do the reverse of what the code that initially displayed the GameView view
as a dialog box did. It will send the dismissModalViewControllerAnimated message to
the view. This will cause the window to be unloaded and focus returned to the parent
view from which it was launched—in our case, LunarLanderViewController. In .NET, this
would be the same as calling the Close() method on the form, although no animation
would be performed on the closing window, as is the case with the iOS SDK.

We won’t do anything with the other buttons yet. (They will be used to test our game’s
physics before we look at more advanced user-interaction mechanisms in later
chapters.) The labels are placeholders for the moment, and while we won’t update their
values yet, they start to make the game take shape.

Building the Core Game Engine and Enabling User
Interaction
So far, we’ve displayed our initial game screen with the button that will start our game.
Now we need to create the main game’s mechanics. Next, we’ll add to our application’s
functionality by starting to implement the core game engine. We will build on the
GameView class, and explore some further iOS and Objective-C concepts in the process.

Examining the Game View Header
The GameView XIB files and the associated GameViewController class provide the
implementation of our core game engine. First, consider the GameView.h file shown in
Listing 5–5. I’ll highlight the key segments of the code before we look at the code (a
complete explanation follows the listing). In the header file, we do the following:

� Define our class with an NSTimer class member to provide a timer.

� Declare a number of methods that we will use to respond to on-screen
button presses, namely Quit, Rotate Left, Rotate Right, and Thrust.

� Declare a method that our timer will execute at the desired frequency.

CHAPTER 5: Get to Work: Creating Your First Application 129

� Define a number of enumerated types to hold state, and a number of
constants, which will be used within the game’s physics.

� Declare our GameView that will hold three images to map onto the state
of our thruster: Thrust, No-Thrust, and Crashed.

� Declare instance variables that represent state or instance variables,
for which we will use our already defined enumerated types and
constants.

� Declare a property to hold our lunar lander image and IBActions for
each of the buttons so that we can wire them up to the methods that
provide the implementation.

Phew. Now take a look at the code and see if you can spot all of these features in
Listing 5–5.

Listing 5–5. GameView.h

#import <UIKit/UIKit.h>

// GameView class manages the game’s view controller
//
@interface GameViewController : UIViewController {

 NSTimer *gameLoop; // Core game timer
}

// Declare class events for our view controller
- (void)timerLoop:(NSTimer *)timeObj; // Timer event loop
-(IBAction)quitGame:(id)sender;
-(IBAction)rotateLeft:(id)sender;
-(IBAction)rotateRight:(id)sender;
-(IBAction)thrust:(id)sender;

@end

// Declaration of some enumerated types to avoid lots of messy constant definitions
typedef enum { NOTREADY, READY, RUNNING, WON, LOST, PAUSED } GameState;
typedef enum { EASY, MEDIUM, HARD } GameDifficulty;
typedef enum { THRUSTERS_ON, THRUSTERS_OFF } ThrusterState;

// Declaration of other constants used to manage the physics
static const int FUEL_INITIAL = 200;
static const int FUEL_MAX = 200;
static const int FUEL_BURN = 10;
static const int MAX_INIT = 30;
static const int MAX_SPEED = 120;
static const int ACCELERATION_DOWN = 35;
static const int ACCELERATION_UP = 80;
static const double GRAVITY = 9.8;

// GameView class manages the main game
//
@interface GameView : UIView {

CHAPTER 5: Get to Work: Creating Your First Application 130

 // Images to hold the lander state
 @private UIImage *plander_thrust;
 @private UIImage *plander_nothrust;
 @private UIImage *plander_crashed;

 // Other game member variables
 @private GameState gstate;
 @private GameDifficulty level;
 @private ThrusterState thrusters;
 @private int fuel;
 @private int speed_x;
 @private int speed_y;
 @private double rotation;

 // Define our lander’s X and Y on-screen coordinates
 @private int loc_x;
 @private int loc_y;
}

// Declare our member properties
@property (nonatomic, retain) UIImage *lander_nothrust;

// Declare our class methods
- (void) newGame;
- (void) updateLander;
- (void) rotateLeft:(id)sender;
- (void) rotateRight:(id)sender;
- (void) thrustEngine:(id)sender;

@end

Did you spot them all? If not, don’t worry. We’ll walk through the important parts of the
implementation.

The game will support a number of states. These will be used to invoke functionality that
is appropriate for its state. For example, when the game is running, we’ll update the
screen with the on-screen graphics. However, if the game has yet to start or a recent
game has just finished, there will be no need to constantly update the screen. We will
also use a timer to drive the core game, update the game physics, and invoke the code
necessary to update the on-screen graphics and detect user interactions.

A more detailed view of the game’s engine flow is shown in Figure 5–6.

CHAPTER 5: Get to Work: Creating Your First Application 131

Figure 5–6. Following the core game engine flow

You can see from the flow that once the GameView is initialized, we will initialize the game
settings, such as loading graphics and setting default values. Then we proceed to detect
user input, update the game’s physics, and check collision detection, which may
indicate a successful landing or a crash.

At this point, we’ll force the screen to be repainted. But this screen painting actually
happens automatically by linking such updates to a timer, which will fire every one-
quarter second. If the game isn’t in the correct state—it’s yet to start or you have
crashed and it’s waiting for you to reset the game—then the screen will not be updated.

As with most designs, we could improve on this application, and we’ll do this as the
book progresses. For now, our current design is sufficient to introduce some key topics.

Examining the Game View Implementation
Before we start to discuss some of the header code’s implementation, let’s look at the
main source code file, which defines the header’s implementation, as shown in Listing
5–6. As before, I’ll introduce the key tenets of the code’s implementation, and then
provide a more detailed explanation following it. In the GameView implementation, we
achieve the following through bespoke code:

� Provide an implementation for our timer, which will update the lander’s
position using the UpdateLander() method and set the screen to be
dirty to force it to be redrawn.

CHAPTER 5: Get to Work: Creating Your First Application 132

� Provide a QuitGame() implementation that dismisses the modal dialog
box, taking us back to the Start Game screen that presented it.

� Provide implementations for RotateLeft(), RotateRight(), and
Thrust() button clicks, which simply call methods of the same name
within the core game engine.

� Provide code for the initialization of the class—in our case, display the
lander after having first loaded the image.

� Provide a default implementation for NewGame(), which resets our game
variables.

� Provide a placeholder for the UpdateLander() method, which is where
we would apply the games physics in response to the time spent firing
and keys being pressed.

� Provide empty methods for the RotateLeft(), RotateRight(), and
Thrust() methods, which will implement the game mechanics.

Again, see if you can spot all of these features in Listing 5–6.

Listing 5–6. GameView.m

#import "GameView.h"

@implementation GameViewController

- (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil
{
 self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil];
 if (self) {
 // Custom initialization
 }

 return self;
}

- (void)dealloc
{
 [super dealloc];
}

- (void)didReceiveMemoryWarning
{
 // Release the view if it doesn't have a superview.
 [super didReceiveMemoryWarning];

 // Release any cached data, images, etc. that aren't in use.
}

#pragma mark - View lifecycle

- (void)viewDidLoad
{
 // Create an instance of the timer every (0.025) 1/4 of a second, to fire the�

CHAPTER 5: Get to Work: Creating Your First Application 133

 'timerLoop' function
 gameLoop = [NSTimer scheduledTimerWithTimeInterval: 0.025 target:self selector:�
@selector(timerLoop:) userInfo:nil repeats:YES];

 [super viewDidLoad];
 // Do any additional setup after loading the view from its nib.
}

- (void)viewDidUnload
{
 [super viewDidUnload];
 // Release any retained subviews of the main view.
 // e.g., self.myOutlet = nil;
}

- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)�
interfaceOrientation
{
 // Return YES for supported orientations
 return (interfaceOrientation == UIInterfaceOrientationPortrait);
}

// timerLoop - main Timer event function
-(void)timerLoop:(NSTimer *)timerObj
{
 // Update the lander’s position
 [(GameView *)self.view updateLander];

 // Redisplay the whole view
 [self.view setNeedsDisplay];

}

// User has indicated that want to fire the thruster engines; pass this onto the game
//
-(void)quitGame:(id)sender
{
 // No longer require the game window, go back to parent
 [self dismissModalViewControllerAnimated:YES];
}

// User has indicated that want to fire the thruster engines; pass this onto the game
//
-(void)rotateLeft:(id)sender
{
 [(GameView *)self.view rotateLeft:sender];
}

// User has indicated that want to fire the thruster engines; pass this onto the game
//
-(void)rotateRight:(id)sender
{
 [(GameView *)self.view rotateRight:sender];
}

// User has indicated that want to fire the thruster engines; pass this onto the game
//

CHAPTER 5: Get to Work: Creating Your First Application 134

-(void)thrust:(id)sender
{
 [(GameView *)self.view thrustEngine:sender];
}

@end

@implementation GameView

@synthesize lander_nothrust = plander_nothrust;

// initWithCode - called when we programmatically initialize our XIB resource
//
- (id) initWithCoder:(NSCoder *)aDecoder
{
 if (self == [super initWithCoder:aDecoder]) {

 // Initialize the sprites
 //
 NSString *imagePath = [[NSBundle mainBundle] pathForResource:@"lander"�
 ofType:@"tiff"];
 self.lander_nothrust = [UIImage new];
 self.lander_nothrust = [UIImage imageWithContentsOfFile:imagePath];

 // Set initial game state
 [self newGame];

 }
 return self;
}

-(void)dealloc
{
// [self.lander_nothrust release];
 [super dealloc];
}

// newGame - Initializes a new game
//
-(void) newGame
{
 gstate = READY;
 level = EASY;
 thrusters = THRUSTERS_OFF;
 fuel = FUEL_INITIAL;
 loc_x = self.frame.size.width / 2;
 loc_y = self.frame.size.height / 2;

 // Set the game as RUNNING
 gstate = RUNNING;
}

// updateLander - Updates the lander position\state based on gravity and any user input
- (void) updateLander
{
 // *TODO

CHAPTER 5: Get to Work: Creating Your First Application 135

}

// drawRect - Redraw the screen
-(void)drawRect:(CGRect)rect
{
 // Only draw when we're ready to draw
 if (gstate != RUNNING)
 return;

 [self.lander_nothrust drawAtPoint:CGPointMake(loc_x, loc_y)];
 self.backgroundColor = [UIColor redColor];
}

// rotateLeft - rotate the lander left
- (void)rotateLeft:(id)sender
{
 // Do Something
}

// rotateRight - rotate the lander right
- (void)rotateRight:(id)sender
{
 // Do Something
}

// thrustEngine - fire the thruster on the engine
- (void)thrustEngine:(id)sender
{
 // Do Something
}

@end

Using a Timer to Invoke Key Core Events
The first thing to notice in Listing 5–6 is that as part of the ViewController class, we
defined a timer that will implement our game’s core loop. Our timer uses the iOS
NSTimer class, which is similar in functionality to the System.Threading.Timer class in
the .NET Framework. The full definition is as follows:

NSTimer *gameLoop; // Core game timer

In the GameView class, we won’t need the time initialized until the view is loaded.
Remember that our GameView class encapsulates the essence of the game. While we
could initialize it in other places, the viewDidLoad event is as good as any other. as it’s
executed after the view successfully loads (as its name suggests). Our implementation
of this is as follows:

- (void)viewDidLoad
{
 // Create an instance of the timer every (0.025) 1/4 of a second, to fire the�
 'timerLoop' function
 gameLoop = [NSTimer scheduledTimerWithTimeInterval: 0.025 target:self selector:�
@selector(timerLoop:) userInfo:nil repeats:YES];

 [super viewDidLoad];

CHAPTER 5: Get to Work: Creating Your First Application 136

 // Do any additional setup after loading the view from its nib.
}

Examining the code further, you can see that we use the
scheduledTimerWithTimeInterval method. We pass it the interval at which the timer is
fired (in seconds, and you can use fractions), the target for the callback, and the
callback method we’ll use to host the bespoke code we’ll execute every time the event
is fired. The remaining parameters allow bespoke information to be passed in the form of
userInfo and specify whether the timer event repeats or is a one-off. In our case, we
won’t pass custom information and the time is repeating.

You’ll notice that for the callback method, we use the selector parameter and the
@selector notation, passing the name of our method. It returns an object type of SEL,
expected by the method for the callback. In .NET, delegates are used to provide type-
safe function pointers, equivalent to our functionality here.

The end result after being successfully initialized is that the gameLoop member variable
now points to an instance of an NSTimer, which when fired at the prescribed interval, will
call our timerLoop class method in the ViewController class. Let’s take a quick look at
the implementation of this method, which is pretty straightforward.

// timerLoop - main Timer event function
-(void)timerLoop:(NSTimer *)timerObj
{
 // Update the lander’s position
 [(GameView *)self.view updateLander];

 // Redisplay the whole view
 [self.view setNeedsDisplay];

}

In our game engine’s main loop, whose implementation is encapsulated within the
timerLoop method, we do a number of things. First, we call a method that handles the
game’s physics and recognizes user interaction detected by further events being called.
This method will simulate the effects of gravity, fire the engines if you’re telling it to, and
rotate the craft as you dictate. It will also decrease the fuel being used and look for
either a collision or a successful landing.

You’ll notice that the method to handle all of this magic is called updateLander, but
because self in this instance points to a UIView (look at your XIB file), we’re going to
cast it into the GameView class of which we know it’s an instance. In order for the cast to
work, with the GameView view open in Xcode’s Interface Builder, ensure that in the
Identity Inspector, the Custom Class class name is set to GameView. We can then do the
cast, because the UIView class is used in the Interface Builder to define the view. In our
code, we extend the functionality of this class and call it GameView. If you reexamine
GameView.h, you’ll see code like the following, so we know it’s safe for us to perform
such a type cast:

@interface GameView : UIView {
// Implementation goes here
}
@end

CHAPTER 5: Get to Work: Creating Your First Application 137

The notation in .NET depends on the language. But using C# as a comparator, the
syntax is similar, using the colon and then the parent class to denote class inheritance.
So, use a cast (GameView *) to type cast the view property of our view controller, this
then allows us to refer to the defined updateLander() method.

The final point to note, and not really related to timers per se, is that once we’ve updated
the game’s physics, we will need to update the display to reflect the change in the
lander’s position or state. To do this, we use the setNeedsDisplay method and pass this
message to the view object—in this case, our GameView object. This will force a refresh
of the display (the whole display), during which we will do updates such as redrawing
the lander.

Self-Documenting Code
Before we continue with the GameView class’s implementation, I want to touch on the
concept of self-documenting code. The principle behind this term is that your code
should be self-explanatory through its implementation. A good example is the use of
well-named variables and methods, employing the camelCase convention we discussed
earlier in the book. Another concept is that while you can hard-code values into your
code, they won’t necessarily mean anything to the person who picks up the code for
debugging or to extend it. To improve readability, where possible, avoid the use of hard-
coded literal values by replacing them with a constant or an enumerated type.

Using Constants
An example is the best way to demonstrate the use of constants. Imagine we’re setting
our initial fuel tank value to its full capacity, which is actually 200 liters. We could do this
by assigning the literal value of 200 to our variable, like this:

int fuel = 200;

Or, we could define a constant, like this:

static const int FUEL_INITIAL = 200;

And then use this constant to assign a value to our variable, like so:

int fuel = FUEL_INITIAL;

Notice that while it takes an extra line to define the constant, it makes our code more
readable without the use of comments. Also, if we need to reset the value to use this
same value within the same context, we can simple use the constant again. The syntax
for C# is exactly the same.

CHAPTER 5: Get to Work: Creating Your First Application 138

Using Enumerated Types
Another coding method, similar but subtly different from using a constant, is to use an
enumerated type. This not only provides predefined literal values with a more meaningful
name, but it also supplies an object type that can only be a value in the set of values
defined. This ensures your code is more reliable and robust by keeping it type-safe.

Again, let’s use an example. Consider the requirement that our game can be in six
different states: Not Ready, Ready, Running, Won, Lost, and Paused. We could use
literal values, or even define six different constants. But, highlighting the value of type
safety, if we used numbers stored in an int, as is the case with constants, nothing
would stop us from setting it to a value that was an invalid state, thus causing an error.
So, rather than that, we’ll use an enumerated type:

typedef enum { NOTREADY, READY, RUNNING, WON, LOST, PAUSED } GameState;

When placed in the header file (not within a class definition), this will define a new type
(hence the typedef command) of enumerated values (hence the enum syntax) with valid
values of NOTREADY, READY, RUNNING, WON, LOST, and PAUSED. The incremental order of the
set values means that NOTREADY will automatically be assigned a value of 0 (zero), with
PAUSED holding a value of 5. This is then given a tag name of GameState, meaning we can
use this to refer to the type.

So, after defining our enumerated type, we can create objects of that type that can only
hold values defined in the set we’ve defined—that is, valid states. Here’s an example:

GameState state = NOTREADY;

You’ll notice that within our application, we use both constants and enumerated types to
help create more readable code—self-documenting code. We do so not just for the
GameState, but also the game’s difficulty level (as GameDifficulty) and the lunar lander
thruster’s state (as ThrusterState).

The C# equivalent of enumerated types is very similar and uses almost exactly the same
syntax. The following code line shows this, with a small difference in the exclusion of the
typedef specified and the tag name in a different place:

enum GameState { NOTREADY, READY, RUNNING, WON, LOST, PAUSED }

Programmatically Initializing an XIB Resource
You know that the GameView user interface, contained within our GameView.xib file, is
displayed as a result of starting the game. In our case, we want finer-grained control
over this process, and so we used the initWithNibName command to load the
GameView.xib programmatically. This has the effect of calling the initWithCoder method,
kind of like a constructor, which we’ll use to not only load the XIB file, but to also do
some application initialization. Consider the following implementation of this method:

- (id) initWithCoder:(NSCoder *)aDecoder
{
 if (self == [super initWithCoder:aDecoder]) {

CHAPTER 5: Get to Work: Creating Your First Application 139

 //// Initialize the sprites
 //
 NSString *imagePath = [[NSBundle mainBundle] pathForResource:@"lander"�
 ofType:@"tiff"];
 self.lander_nothrust = [UIImage new];
 self.lander_nothrust = [UIImage imageWithContentsOfFile:imagePath];

 // Set initial game state
 [self newGame];

 }
 return self;
}

Our implementation is pretty simple. Although it’s incomplete at this stage, it’s starting
to take shape.

First, we call the parent method using the [super initWithCoder:aDecoder] command,
which will ensure the inherited foundation object is created first and assigned to the
calling class, referenced by self. If this works, and is not nil, then we move into our
bespoke code and finally return the newly created object. This is typical object
initialization code, and you’ll see it repeated with many other objects that use inheritance
to provide their own implementation.

Our initialization code does two things. First, we initialize a property of type UIImage,
which will hold one of the many thruster states. In this case, it’s the image of the lunar
lander with no thruster being fired, hence the property called lander_nothrust.
Remember in Listing 5–5 we defined our property as follows:

// Declare our member properties
@property (nonatomic, retain) UIImage *lander_nothrust;

And remember to synthesize it in our implementation, as we did in Listing 5–6:

@synthesize lander_nothrust = plander_nothrust;

However, this is an empty property and needs initializing. Once the image has been
initialized, we’ll also call one of our own bespoke methods called newGame, which as its
name suggests, initializes the application to start a new game. This is achieved with the
[self newGame] command.

Let’s take a closer look at the image initialization code. At this point, we’re using three
separate UIImage objects to hold the different states of our lunar lander craft: with the
engine thrusting, without the engine thrusting, and crashed. We could use an array of
images or one of the bespoke iOS classes to achieve this, but at this point, we’re
keeping it simple.

So, after we’ve added our Lander.tiff image to the project (go ahead and do this), we
can reference this resource using the pathForResource method, passing the file name,
including its extension. The following command achieves this, returning a string to our
image resource:

NSString *imagePath = [[NSBundle mainBundle] pathForResource:@"lander" ofType:@"tiff"];

CHAPTER 5: Get to Work: Creating Your First Application 140

We can then create an instance of our UIImage using the slightly different notation of
new, as follows:

self.lander_nothrust = [UIImage new];

You’ll notice that this syntax is similar to C#, in that were using the new keyword to
instantiate a new object. We can then use the imageWithContentsOfFile method to load
our image using the fully qualified path to the resource. Here’s the full line:

self.lander_nothrust = [UIImage imageWithContentsOfFile:imagePath];

If you examine the newGame method’s implementation, you’ll see that it’s straightforward,
It simply starts to initialize some of the class member variables to their default values for
a new game.

Manually Drawing the User Interface
In most cases, you won’t need to worry about drawing your user interface, because it’s
typically handled automatically by the iOS framework as part of the control’s
functionality. However, in some instances, you might want fine-grained control over your
user interface. This is especially the case if your application is a game, because the
controls provided as part of the iOS framework provide only some of the functionality
required.

In such circumstances, you can override the method called whenever your application’s
window requires a refresh. This method is called drawRect and passes the region that
requires redrawing as a CGRect structure. This structure contains the starting point and
size of the rectangular area that requires redrawing. This area is known as dirty if it
requires redrawing. Redrawing is necessary when something has changed, such as an
area previously being obscured by a window or a control updating the way it looks.
Consider the following method and its implementation:

// drawRect - Redraw the screen
-(void)drawRect:(CGRect)rect
{
 // Only draw when we're ready to draw
 if (gstate != RUNNING)
 return;

 [self.lander_nothrust drawAtPoint:CGPointMake(loc_x, loc_y)];

}

You’ll notice that we query the state of the application first—if it’s not running, there is
no need to update the screen. Assuming that it is running, at this stage, we simply draw
our lunar lander image at the x and y location defined during game initialization and
using the lander_nothrust image. At this stage, that’s all we’re doing. However, as the
game’s physics are reflected and the user interactions are taken into account, we’ll
update the location of the lunar lander, check for collisions, and so on—all within this
method—and draw the visuals that make sense. This will mean the lander will fall if no
thrust is applied, climb if thrust is applied, and so on. So, it’s pretty straightforward, but
effective!

CHAPTER 5: Get to Work: Creating Your First Application 141

Using Bespoke Methods
As with most programming languages, the structure of your application typically uses
subroutines, or class methods in an object-oriented world to define bespoke
functionality. When called in the correct order, this functionality implements your
application—in our case, the Lunar Lander game. The structure and naming of these
routines are part of your application’s architecture.

Our game provides placeholders as follows:

� newGame: Initializes the game. This method is called after the user interface has
been initialized.

� rotateLeft: Rotates the lunar lander craft to the left. This is in response to the
user indicating he wants to rotate left. In the first instance, this is achieved by a
toolbar button. Discussed in Chapter 7, and Later on, we’ll look at swipes and
gestures, discussed in Chapter 10.

� rotateRight: Rotates the lunar lander craft to the right. This is in response to the
user indicating he wants to rotate right. Again, here we’re using a toolbar button;
later, we’ll look at swipes and gestures.

� thrustEngine: Fires the lunar lander’s thruster engine, which in turn will slow
down the rate of ascent, and even increase altitude if held down for long
enough. It will also indicate a change in the engine’s state, allowing our drawing
method to reflect this in what the user sees.

� quitGame: Quits the game by dismissing the modal GameView displayed. This
method and newGame are the only ones we’ll implement in this chapter.

Using Simulators to Test Your Application
Given that we are now starting to develop our application in earnest, we’ll be using the
simulator much more. We could start looking at deployment and testing on a real
device, but we’ll leave that complication for the moment, partly because it’s not yet
necessary.

Targeting the simulator during the early stages of application development can save you
a great deal of time. You don’t need to wait for applications to be installed on your
physical device before seeing the effects of changes in your code. It also is not
necessary to buy and install a developer certificate to run code in the simulator.

Don’t get me wrong—using the simulator is not perfect and has its own challenges. For
example, it can’t display OpenGL graphics, simulate multitouch events, or provide
readings from some of the iPhone sensors such as the GPS. That said, for most apps, it
has enough features to be a valuable part of your development process.

One gotcha to be aware of is that you can’t guarantee that your simulated app
performance will resemble your real application performance. The simulator tends to run

CHAPTER 5: Get to Work: Creating Your First Application 142

silky smooth, helped by the power of your Mac on which it runs. Real applications will
almost certainly have more limited resources, affecting the user experience. Be sure to
test your app on all the physical devices it targets, so that you know your expectations
are in line with reality.

The following are some of the simulator’s features:

� User input: The mouse can be used to simulate a fingertip. Holding down the
option key (�) will display two circles, which then can be used to simulate
multitouch events.

� Rotation: This can be achieved using the hardware menu.

� iOS versions: You can choose different iOS versions to test your application.

� Low memory: This can be simulated, so you can send this status to your
application to see how it behaves.

� Hardware keyboard: The simulator allows you to use your Mac’s keyboard to
provide keyboard input.

So, after all that hard work, what does your game look like running? In Figure 5–7, you
can see the game running within the simulator, with the two circles representing the
touch gestures in the simulator.

Figure 5–7. Game running within the simulator

CHAPTER 5: Get to Work: Creating Your First Application 143

Summary
In this chapter, we’ve taken the foundation provided by previous chapters and started to
develop a real application—something closer to fulfilling the rich user experience
expected by most iPhone and iPad users. OK, so our Lunar Lander game won’t suit
everyone, and yes, I’m still hankering after my youth, but mobile game applications
should be fun. It also gives you a chance to build on some of the lessons you’ve learned
so far and elaborate on them.

We covered some recommendations on how to begin application development, starting
with the basics, such as capturing the requirements and thinking about application
design. We then started to build on the visual and programmatic aspects of our
application.

While building the application, you were introduced to the use of more than one view in
presenting user interfaces, including the programmatic display of our game application.
We added some navigation controls and tapped into the events these controls provide.
We also looked at using utility type classes, such as the NSTimer class and the UImage
class, to start to implement our functionality.

We also looked at how to write more readable, self-documenting code, as well as how
to use our own bespoke methods to implement a meaningful architecture whose
structure should be easily understood by most developers. Finally, we considered the
simulator as a good test resource.

In the next chapters, we’ll build on this application, fleshing out its functionality. In doing
so, we’ll explore other aspects of the iOS, such as more advanced user interfaces and
data persistence.

 145

 Chapter

Build Your Skills:
Enhancing Your
Application with a
Dynamic User Interface
Apple has always placed an important emphasis on the experience a user has when
using an Apple iOS-based device, especially because it was one of the first companies
to implement an operating system that used a graphical user interface (GUI) as its focus
for user interaction. The Macintosh wasn’t the first personal computer to use a GUI but
was the first to provide such comprehensive support to the developer community. This
included Interface Guidelines, which you’ve already discovered exist in the OS X of
today through some of the Apple Developer resources provided. Apple’s take on user
experience isn’t just the graphical user interface, of course. It also includes things like
the physical characteristics of the device and touch-based user input. However, the
design of your application’s user interface is pivotal in providing the engaging user
interface Apple expects and which works harmoniously with the other attributes that
make iOS devices some of the world’s leading mobile devices.

So with your iOS device in hand, and limited only by your imagination, the only hurdle is
unlocking the magic held in your device and converting your ideas to reality through the
application. This chapter focuses on how the iOS SDK helps you do just that.
Specifically, you look at the following:

� The capabilities of your device and how to embrace them, such as
autosizing

� Different application types, and view controllers available to support
them

6

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 146

� The user-interface elements provided by the iOS SDK to help you build
your user interface

� Working examples of how to use the iOS SDK to implement typical UI
Element application features

� Apple resources provided to support you, and some tips of how to get
the best from them

You start by exploring some of the key features of the iOS devices and typical
applications.

Understanding Platform and Device Constraints
The user experience starts with the device being used, and therefore the devices you
target and the physical characteristics of each device your application is written to
exploit. Note that I deliberately use the words target and exploit because certain features
such as device orientation and the ability of your application to rotate its user-interface
are not automatically adopted by your application—you need to specifically write your
application to be aware of them. You cover this later in the book.

Let’s take a look at some relevant platform characteristics.

Display Size and Resolution
The screen resolution of the different iOS devices is very relevant when designing your
application. There is an important distinction between a unit of measure used to
describe the size of a device’s screen (a pixel) and the measure used to describe the
area that is drawn onscreen (a point). Table 6–1 details the screen resolutions available
for the different iOS devices in pixels.

Table 6–1. iOS Device Screen Sizes

Device Portrait Landscape

iPhone 4 640 � 960 960 � 640

iPad 768 � 1024 1024 � 768

Other iPhone and iPod Touch devices 320 � 480 480 � 320

Note: All measurements are in pixels.

At this point, it’s worth noting that when you look at the graphical system frameworks
provided as part of iOS SDK, they require you to use a logical coordinate system that
uses points, not pixels. You look at why, but the conversion between pixel and point
depends on your display type. A standard display has is a 1:1 ratio; but on the Retina
display, a 1:2 ratio is used.

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 147

Example Applications That Take Full Advantage of the Device’s
Form Factor
Good examples exist of applications that take advantage of the different device sizes
and format. Some example applications change the display orientation to one that
makes more sense for its usage. For example, in Figure 6–1, the YouTube application on
the iPhone uses portrait to display its lists because landscape mode adds little value.

Figure 6–1. YouTube video list represented in portrait orientation

But when you play a particular video, the landscape orientation is better suited. You see
the application switch to playing the video in landscape mode, as shown in Figure 6–2. It
still has the option for portrait, but that mode is less effective.

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 148

Figure 6–2. YouTube defaulting to landscape mode to play a video

The iPad in particular gives you even more opportunity to take advantage of its
dimensions. The Financial Times iPad app uses the device’s form factor to present the
look and feel of the newspaper that it’s digitally emulating, as you can see in Figure 6–3.

Figure 6–3. The Financial Times iPad application in all its portrait glory

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 149

An alternative is the BBC’s iPad application, which takes full advantage of landscape
mode to display news and corresponding video side by side using a Split View controller
(something you build an example of later in the chapter). You can see the application in
Figure 6–4.

Figure 6–4. BBC’s News iPad application taking advantage of Landscape mode

Points Compared to Pixels
The point measurement unit is used to describe the area that is drawn onscreen,
whereas pixels describe the size of a screen or the size of an image such as an icon.
Why bother? Apple provides you with support to enable your application to be
consistently presented regardless of the device on which it is running. It does this
through the use of points and a logical coordinate system that, when also used by the
iOS system frameworks to interpret a physical device location, ensures the content you
draw appears the same size regardless of device. Microsoft employs a similar logical
coordinate system as part of its GDI+ framework. You’ll soon find it’s as easy to deal
with points as pixels, and the logical equivalence across devices often means it’s easier�

Other Considerations
There are some obvious considerations when looking at screen size. An iPad clearly has
a much larger screen than an iPhone, so your application can make use of this and your
artwork quality can also reflect that the size difference. For example, don’t just use the

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 150

same size graphical content and scale it up unless you are happy to sacrifice the quality
of your artwork.

Also keep in mind that the Apple Human Interface Guidelines suggest that certain user
interface elements remain the same despite the size of the screen. For example, the
guidelines suggest that tappable elements in your user interface are most comfortable
for users at a size of 44 � 44 points.

NOTE: Typically, the pixel density on a mobile device is higher where it is designed to be viewed
up close. This is true of an iPhone 4, which has a pixel density of 326 pixels per inch (PPI), vs. an

iPad 2, which has 132 PPI.

Supporting Device Orientation
The iOS provides support for rotating your application based on the device’s orientation.
Whether your application chooses to support this is of course a design consideration. In
some cases it makes no sense for your application to rotate into a certain orientation
because the user experience would be sacrificed. For example, a game with some kind
of scrolling landscape would look squashed and compromised if rotated to portrait
mode.

Handling Device Orientation
As you may have come to expect, the iOS SDK fires an event to notify your code of a
device orientation change. Take a look at the event’s signature:

(void) didRotateFromInterfaceOrientation(UIInterfaceOrientation)fromInterfaceOrientation

When this event is fired and your application catches the event by implementing this
method signature in your code, it is passed the orientation from which the device has
been rotated. So you just have to implement the event, right? Wrong—in addition to
providing an implementation for the rotation method, you also need to tell your
application to support different orientations and fire the event in the first place. If you
examine the code created when you build your view controllers, you notice the following
code commented out:

/*
// Override to allow orientations other than the default portrait orientation.
- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)�
interfaceOrientation {
 // Return YES for supported orientations
 return (interfaceOrientation == UIInterfaceOrientationPortrait);
}
*/

You need to both uncomment this code, indicating to the application that it now
supports different orientations, and ensure that you return the value YES if the
orientation fired (in the example, portrait) is supported or an unconditional YES if all

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 151

orientations are supported. You also need to implement the rotation event discussed
earlier.

If you want to know whether the device has been rotated into portrait orientation, you
look to see if it has moved from landscape orientation and reflect the change by using a
view controller that is oriented to that orientation:

if((fromInterfaceOrientation == UIInterfaceOrientationLandscapeLeft) ||
 (fromInterfaceOrientation == UIInterfaceOrientationLandscapeRight))
 {
 // Load the view controller oriented to the Portrait mode
 }

You can also test for UIInterfaceOrientationPortrait and
UIInterfaceOrientationPortraitUpsideDown, in all cases returning YES or NO
depending on whether your application has been written to support a particular rotation.

Let’s test it. If you leave your code commented out or return a flat NO, your application
supports only portrait and not landscape orientation. So, if you run the application in the
simulator and use either the rotate left (��) or rotate right (��) command from the
Hardware menu, the device rotates. Rotate it to the left, and you should see a screen
similar to the one in Figure 6–5.

Figure 6–5. Device rotated left

This clearly doesn’t look right, and it’s no surprise because you’ve indicated that your
application doesn’t support any orientation other than portrait. Just to illustrate the
point, let’s uncomment the code and return YES as the value regardless of the
orientation. After you change the code, re-run the application, and follow the same left
orientation, you should see a screen similar to the one in Figure 6–6.

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 152

Figure 6–6. Device rotated with landscape support

Better, but not right. As you can see, the button isn’t centered on the screen as it was in
portrait mode. No matter: this is easily fixed because Xcode and the iOS SDK support
autosizing using control attributes. Open your project and
LunarLanderViewController.xib to display the start screen. Select button using Size
Inspector (��5), and you’re presented with the Size Inspector shown in Figure 6–7.

Figure 6–7. Size Inspector

First, don’t be baffled by the display; it’s pretty straightforward. Let’s focus on the
Autosizing pane. The box on the left is where you modify the attribute’s values; the box
on the right is an example animation depicting the effect of your change—a really useful
visual tool to confirm you’re making the right changes.

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 153

Looking more closely, notice two things:

� A set of red arrows in the inner square that represent horizontal and
vertical space inside the selected object

� A set of I shapes outside the inner box that represent the distance
between the object selected and the outside of the view that contains it

In both cases, a dashed line means the space is flexible: that is, it adjusts based on
the orientation of the screen. A solid line means the space is fixed. So, if you want
your button to be flexible along the horizontal axis and center itself, you need to
ensure that the left I shape is dashed, not solid, as it is by default. This change is
shown in Figure 6–7, and the animation shows the button moving to be centered on the
landscape screen when rotated—exactly what you want. Make the change and run the
application, and you should see a screen similar to that in Figure 6–8. Much better!

Figure 6–8. The screen rotated left with autosizing adjusted

Autosizing isn’t the only option available to you. The iOS SDK provides a method that
gives you precise control over the control’s look and feel through code by adjusting its
properties just before the rotation has completed. The method signature to change is as
follows:

(void)willAnimateRotationToInterfaceOrientation:(UIInterfaceOrientation)

The final option available gives you exact control over what your screen looks like in a
given orientation but without the effort of doing it programmatically. To achieve this, you
have a view for each orientation you want to support, and in the same method just
described you adjust the view using the self.view property. This means your view can
define the look and feel of your user interface at design time for a given orientation,
without you having to programmatically adjust the user-interface controls in code.
Simple!

Enough of rotation and orientation. Although they’re important, they aren’t the main
focus of this chapter. Let’s look beyond the attributes of the device and consider the

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 154

type of application you may be building and the SDK support provided to give the user a
familiar but rich experience.

Application Types and Associated View Controllers
So far, this book has introduced the concepts of views and view controllers, and even
suggested how an application might have multiple views that are programmatically
displayed as a result of the user interface. I make distinctions between application types:
that is, applications that exhibit certain behaviors and so use view controllers in a certain
way. Consider the following application types:

� Utility applications

� Tab bar applications

� Navigation applications

In this context, I class the Lunar Lander as a utility application. The game is played
predominately from a single view, and it also shows a configuration\startup screen.
However, this is the simplest of user interfaces. It also displays the view controller
modally, because the design of the application displays the main game screen as the
only screen available while the game is being played or is terminated. Displaying a view
modally is typically implemented to stop the flow of your application and force it to
return before flow continues. Another typical example is to obtain key information
required before you can continue. The alternative is that flow doesn’t stop, and views
are coordinated through controls such as tab bars.

As you can see, there are many innovative and often complex ways for users to interact
with your application, typically controlled through gestures. To take you through working
examples for all the different application types and their associated view controllers isn’t
possible in the constraints of this book. You can explore a number of options
independently via the Apple guide, such as
http://developer.apple.com/library/ios/#featuredarticles/ViewControllerPGforiPh
oneOS or comprehensive iOS development books. Here you focus on some specific,
useful alternatives that have .NET parallels, and learn how to use them.

Let’s take a look at the different application types and their associated view controllers
before you delve into the tab bar example.

Utility-Based Applications
In a utility-based application, the user’s interaction revolves around a single view. Other
views may exist, but they are typically limited to supporting the configuration of the
application. A great example is the Stocks application, shown in Figure 6–9, which when
invoked displays the stocks you have chosen (or that it defaults to) and their
performance. The Compass is another great example, as is the Calculator application.

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 155

Figure 6–9. The Stocks iPhone application is an example of a utility-based application.

There isn’t a specific view-controller class to manage this kind of application; instead,
you present views modally in a programmatic fashion. This is exactly what you have
done with the Lunar Lander application. In .NET, a utility application might be a console-
based application or a Windows Form application with a single window that uses modal
dialog boxes to retrieve key information.

Tab Bar–Based Applications
A tab bar application is an application supporting multiple views, whose context is
chosen based on the user’s interactions and typically shown as tabs. A good example is
the Clock application, shown in Figure 6–10, which has many views, accessed through a
tab bar at the bottom of the screen. Choosing a tab typically changes the active view
controller; a new corresponding view becomes active, thus displaying the new screen.

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 156

Figure 6–10. The Clock iPhone application is a multiview tab bar application.

It’s worth highlighting a common cause of confusion. A toolbar looks very much the
same as a tab bar, in that the horizontal bar is used to display icons that can be tapped.
The key difference is that the toolbar can contain buttons and other controls, but their
selection isn’t mutually exclusive. The user can tap more than one, and they don’t act as
binary switches—instead they simply fire an event for you to capture and process.
Conversely, because the tab bar selection determines the view, the tabs are mutually
exclusive.

A tab bar application is typically implemented using the tab bar view controller, provided
by the UITabBarController class. This class is used directly and not subclassed; you
use this as the focus for a more detailed example. In .NET, the tab bar is one of the few
view-controller type controls that has a comparable direct.NET control in the form of a
TabControl in Windows Forms (in the System.Windows.Forms.TabControl namespace).

It’s also worth mentioning that the tab bar is usually combined with a tabular type view,
which the table view controller, implemented through the UITableViewController class,
is designed for. It provides support for behavior that you expect when implementing a
table, such as editing rows of data and or managing the selection of cells, rows, and
columns.

Navigation-Based Applications
A navigation-based application is typically used to present a series of views that have
a natural hierarchy. For example, if you consider the Mail application, shown in Figure
6–11, each user interaction builds on the previous one and allows you to drill down
into your Mail Account, then your Inbox, then your e-mail messages, and then a

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 157

specific e-mail. Each step is represented by a view, and you can reverse your way out
of the hierarchy by choosing the back button.

Figure 6–11. The Mail application is a hierarchical, multiview navigation-based application.

The navigation controller functionality is contained in the UINavigationController
interface. This is very similar to the UITabBarController interface touched on earlier,
with the key difference being that the navigation controller works by implementing a
stack of views. For example, think of taking a pile of books and placing them on top of
each other—you build a stack of books, and when it’s complete, the easiest book to
take off the stack is the last one you put on. You can then uncover the stack of books,
finishing with the first one you put down. This is known as last-in-first-out (LIFO).

Implementing a Tab Bar–Based Application
If you cast your mind back to previous chapters, you saw the feature that Xcode
provided for project templates, something you’ll find very familiar if you’ve used Visual
Studio. Usefully, Xcode provides just such a template for tab bar–based applications, so
let’s deviate from the Lunar Lander application for the moment and use this template to
create another sample application to illustrate the features of a tab bar view controller.
Begin by starting Xcode, and follow the procedure to create a new template, this time
selecting the Tab Bar template as shown in Figure 6–12.

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 158

Figure 6–12. New tab bar application

Click Next, and provide your application with a name. I’ve used TabBarExample—not
very imaginative, I know! In order for you to understand what Xcode has constructed,
let’s look at the application when it’s running in the simulator straight out of the box. It’s
also worth reiterating at this point that the .NET platform doesn’t have a concept of a
view controller or, specifically, a tab bar view controller; but it does have the individual
controls that, when combined with your own MVC Pattern implementation, can easily be
used to replicate the same functionality. You compare the controls provided in the user
interface libraries of the iOS SDK and .NET a little later in the chapter.

First, consider the screens captured from the simulator, in Figure 6–13, showing the two
views displayed when you select the tabs provided in the default project
implementation.

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 159

Figure 6–13. Default tab bar application running

Let’s look at the implementation that results from having created the default application
complete with its view/controller switching functionality. Use the project navigator (�1)
to view the project’s structure; you see something similar to Figure 6–14 when each of
the three folders (TabBarExample, Frameworks, and Products) is expanded.

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 160

Figure 6–14. Tab bar default project structure

Let’s start with the easy bits. Products is a single application binary called
TabBarExample.app, which uses the UIKit, Foundation, and CoreGraphics frameworks. In
Microsoft .NET, as explained in Chapter 4, these are equivalent to libraries of
functionality that provide objects and their attributes and methods, all in their
representative namespaces.

Working down the list, let’s look at the Application Delegate implementation. If you look
in both the header and implementation files, they’re very similar to those you’ve seen
before but with a few key differences. Consider the TabBarExampleAppDelegate.h file in
Listing 6–1.

Listing 6–1. TabBarExampleAppDelegate.h

#import <UIKit/UIKit.h>

@interface TabBarExampleAppDelegate : NSObject <UIApplicationDelegate,�
 UITabBarControllerDelegate> {

}

@property (nonatomic, retain) IBOutlet UIWindow *window;

@property (nonatomic, retain) IBOutlet UITabBarController *tabBarController;

@end

The key things to notice are that it inherits from NSObject like previous examples, but it
implements not only the UIApplicationDelegate protocol but also the
UITabControllerDelegate protocol. Among the options available with this protocol’s

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 161

methods, for example, is the capability to perform post-tab selection actions. You see
that it also creates a property pointing to a UITabBarController class, which is the
instance reference to your tab controller object that is used by the application.
Remember that the UITabController class isn’t subclassed; you use the class as it is.

I won’t go into the details of the TabBarExampleAppDelegate.m file, but it is worth noticing
that the rootViewController for the window is set to the tabBarController property as
the main view controller to use. This is shown in the following code:

self.window.rootViewController = self.tabBarController

So far, so good. If you turn your attention to the MainWindow.xib file and double-tap it, it
loads in the Interface Builder. Choose the Tab Bar controller view, and you see a screen
like the one shown in Figure 6–15 in Interface-Builder.

Figure 6–15. The Tab Bar MainWindow view open in Interface Builder

In this case, I’ve clicked the Second button on the tab bar, and you can see that
Interface Builder is indicating that SecondView is loaded. If you click the first tab bar
button, it predictably says that FirstView is loaded. This control is indicated in the tab
bar properties, which you can display using the Attributes Inspector (��4), something
like that shown in Figure 6–16.

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 162

Figure 6–16. Attributes Inspector for a tab bar control

Notice the correlation between the tab bar button and the view it selects. This is
indicated by the NIB Name property, which points to the NIB file that contains the view
to load—in this instance, the first tab bar button displays the view from the
FirstView.xib file. If you locate this file in the project and select it, you see a familiar
view, shown in Figure 6–17.

Figure 6–17. FirstView associated with the first tab bar button

Each of the views associated with each tab creates a class and its associated files, both
the header and implementation files. Each view (FirstView and SecondView) provides
you with the opportunity to complete custom view-controller code; you can build on the
default behavior and implementation, which are pretty vanilla, doing very little other than
the typical method implementations you’ve seen. For example, they return YES or NO
depending on whether the orientation is supported (in this case by default only if it’s
portrait).

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 163

However, this demonstrates the ability to have different tab bar items associated with
different views and view controllers, and exercise flexibility about how the tab bar items
look and behave. For example, you can modify tab bar items by removing the text and
adding a logo to the project and to the tab bar item. Figure 6–18 shows an example
using the Attribute Inspector for the tab bar item selected.

Figure 6–18. Adding a logo using the tab bar item Attribute Inspector

If you were to apply this to your game, you could use this mechanism to have a tab for
the main game view displaying the actual game, along with a tab for the view used to
display the high score. You won’t pursue this for your Lunar Lander game because it
typically uses modal views until each game session is finished—but you could. You
should also now see the correlation between views and their associated view
controllers, allowing you to customize these or add additional ones as suits your
application’s design.

Another useful technique is to use one tab to provide a means of displaying different
perspectives of the same data. So your application may present a list of audio files on
your device, with tabs relating to views from different perspectives: a tab for albums, a
tab for genres, a tab for track names, and so on.

Overview of iPad-specific Controllers
Before you move on from view controllers, let’s highlight some view controllers that are
provided as part of the iOS SDK but are specific to the iPad device. The iPad form factor
differs from the iPhone’s in that it’s larger and behaves slightly differently when the
orientation is changed. For this reason, some specialized view controllers have been
created to take advantage of the iPad’s form factor; but this book’s examples are
focused on the iPhone only, so playing with the view controllers is left to those of you
with iPad devices.

Popover View Controllers
Although the Popover controller is not strictly speaking a view controller, it does provide
a useful mechanism for displaying additional content in your application’s window. If

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 164

you’re looking for similar functionality in .NET, I’m afraid you’ll be disappointed. Nothing
exists currently, but it’s possible for you to create your own equivalent using .NET code,
or maybe Ajax-based source code. You can see an example in the iPad simulator shown
in Figure 6–19. You build this later; let’s look at the component parts first.

Figure 6–19. iPad popover example

To implement a popover, you need to use the UIPopoverController class and have a
good idea what condition needs to be met for your popover to be displayed. After all, it’s
essentially a wrapper for an existing view controller that then displays your floating view
over your application. For example, you may have a selection of items the user can
choose from, and you wish to use a popover to display the description when a particular
option is chosen. It also usefully displays an arrow connecting the popover window with
the item to which it relates—in the case of a toolbar button, the button itself. Having
made these basic decisions, you’re ready to implement your popover.

Let’s create a simple popover example to demonstrate these concepts. First, create a
view-based application using Xcode 4 for an iPad device. Once created, you notice as

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 165

before that a view controller is created for the main view. To this view, add a toolbar with
a single item, which is the trigger for your popover: do this by editing the associated XIB
in Interface Builder and adding the Toolbar object. Your screen in Xcode should look
similar to that shown in Figure 6–20.

Figure 6–20. Your example iPad view controller with single toolbar item

If you were to execute this, you’d have a pretty bland application with the single
toolbar item at the bottom. It’s blank because in the real world you’re more likely to
have multiple toolbar items, and it has no functionality behind it yet. Let’s create your
popover. A popover needs a view controller to manage how the data is displayed; in
this case, you provide the opportunity to display data in a tabular format, which is
pretty typical for popovers. Add a file to your project (I called it PopoverSelection),
ensuring that it’s compatible with an iPad and that an XIB is created for it. Critically, it
must also inherit from the view controller required to display your data. In this case,
the popover displays tabular data, so you use UITableViewController as the subclass.
See Figure 6–21.

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 166

Figure 6–21. Creating your popover view controller class using the table view base class

This creates three files in your project: PopOverSelection.h (the header file),
PopOverSelection.m (its implementation), and PopOverSelection.xib (the view). If you
open the associated XIB file in Interface Builder, it should look like the one in Figure 6–22.

Figure 6–22. Your tabular popover view controller

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 167

You need to wire this class into your code, so you must define the relevant properties
and actions to allow you to both wire up the popover controller action and present the
popover. You do this in your main view controller, called
PopOverExampleViewController. See Listing 6–2.

Listing 6–2. PopOverExampleViewController.h

#import <UIKit/UIKit.h>
#include "PopOverSelection.h"

@interface PopoverExampleViewController : UIViewController {
 UIPopoverController *popCtrl;
 PopOverSelection *selection;
 IBOutlet UIBarButtonItem *bbitem;
}

@property (nonatomic, retain) UIBarButtonItem *bbitem;
@property (nonatomic, retain) UIPopoverController *popCtrl;
@property (nonatomic, retain) PopOverSelection *selection;

- (IBAction)togglePopOverController;

@end

If you break this down, the first thing you need is a pointer to your toolbar button item.
You do this by defining an IBOutlet property in your class whose name matches the
toolbar button on your item. I changed it to bbitem using the Identity inspector:

IBOutlet UIBarButtonItem *bbitem;

You need a corresponding @property statement, shown next, and of course the
@synthesize statement in the implementation file (you see these soon):

@property (nonatomic, retain) UIBarButtonItem *bbitem;

With your toolbar button exposed via properties, you also need to define an action that
your button can be connected to through the Interface Builder—this serves to toggle the
popover between being visible or not. This is a simple IBAction like those you’ve used in
previous chapters, the definition for which you can see here:

-(IBAction)togglePopOverController;

Finally, you need both a property that points to the popover view controller and the
UIPopOverController singleton class that provides the required SDK code to implement
popover functionality. The following lines define these member variables. Notice that you
have to include your PopOverSelection.h file to bring in the popover view controller:

UIPopoverController *popCtrl;
PopOverSelection *selection;

And of course you follow these with the appropriate @property and @synthesize
statements.

You are now in a good position to connect your action to the toolbar button to invoke
the popover selection, and you have the other necessary properties to implement the
displaying\hiding of your popover. First you connect the action, as you’ve done in

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 168

previous chapters. Using Interface Builder, and with your main view controller open and
displaying the toolbar button, open the Connections Inspector for the main file owner.
Now drag your togglePopOverController action to the toolbar button and your bbitem
IBOUTLET to the same button item. This allows you to reference the button and trap the
action when it’s clicked. You can see these connections in Figure 6–23.

Figure 6–23. Connecting the toolbar button item to your actions in code

The only thing remaining is to provide the implementation for the popover functionality.
The code in Listing 6–3 shows the core implementation code, and then you walk
through it.

Listing 6–3. Popover’s Core Implementation Code

#import "PopoverExampleViewController.h"

@implementation PopoverExampleViewController

@synthesize popCtrl;
@synthesize selection;
@synthesize bbitem;

- (void)dealloc
{
 [super dealloc];
}

- (void)didReceiveMemoryWarning
{
 // Releases the view if it doesn't have a superview.

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 169

 [super didReceiveMemoryWarning];

 // Release any cached data, images, etc that aren't in use.
}

#pragma mark - View lifecycle

// Implement viewDidLoad to do additional setup after loading the view, typically from�
 a nib.
- (void)viewDidLoad
{

 selection = [[PopOverSelection alloc] init];
 popCtrl = [[UIPopoverController alloc] initWithContentViewController:selection];
 popCtrl.popoverContentSize = CGSizeMake(250, 300);

 [super viewDidLoad];
}

- (void)viewDidUnload
{
 [super viewDidUnload];

 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 [selection release];
 [popCtrl release];

}

- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)�
interfaceOrientation
{
 // Return YES for supported orientations
 return YES;
}

-(IBAction)togglePopOverController
{
 if ([popCtrl isPopoverVisible]) {

 [popCtrl dismissPopoverAnimated:YES];

 } else {

 [popCtrl presentPopoverFromBarButtonItem:bbitem permittedArrowDirections:�
UIPopoverArrowDirectionAny animated:YES];

 }

}

@end

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 170

Now let’s take a look at the various parts of Listing 6–3. First, you need to synthesize
your properties with the following code:

@synthesize popCtrl;
@synthesize selection;
@synthesize bbitem;

You also need to ensure that the view controller for your selection popover window (in
this case, the view controller class called PopOverSelection with the property selection)
and the UIPopoverController class are allocated and initialized. You do this in the
viewDidLoad event as shown here:

// Implement viewDidLoad to do additional setup after loading the view, typically from�
 a nib.
- (void)viewDidLoad
{

 selection = [[PopOverSelection alloc] init];
 popCtrl = [[UIPopoverController alloc] initWithContentViewController:selection];
 popCtrl.popoverContentSize = CGSizeMake(250, 300);

 [super viewDidLoad];
}

First your window’s view controller is initialized. Then the UIPopoverController class
instance is initialized with your custom view controller object (selection), and you set the
default size to 250 � 300 points. The initialization is complete, so let’s not forget to
release your resources; this is done in the viewDidUnload method, tidying up after
yourself:

[selection release];
[popCtrl release];

Finally, you come to the meat on the bones, as they say. The code associated with the
button-click action toggles the popover between being visible or not, depending on its
status. If it’s visible, you can simply pass the dismissPopoverAnimated message; if not,
you use the presentPopoverFromBarButtonItem message, passing the button both its
popover and any constraints on the arrow being shown. Simple:

if ([popCtrl isPopoverVisible]) {
 [popCtrl dismissPopoverAnimated:YES];

} else {

[popCtrl presentPopoverFromBarButtonItem:bbitem permittedArrowDirections:�
UIPopoverArrowDirectionAny animated:YES];

}

If you build and execute this code, your main window is shown with the toolbar at the
bottom. Clicking the toolbar button displays and then hides the popover. This popover is
now ready to use and present the data you require. The presentation depends on what
you’ve used for the view controller. In this case, it’s a table view using
UITableViewController, which itself is an extensive control. Although the book doesn’t
cover this in detail, the Apple Developer Program does extensively in the “Table View

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 171

Programming Guide for iOS” found in the iOS Developer Library
(http://developer.apple.com/library/ios). If you build and run the application, the
popover is visible, as shown in Figure 6–24.

Figure 6–24. iPad simulator running the application with the popover visible

Split-View Controllers
The UISplitView controller allows for two panes: the left pane (here called the index
pane) is fixed, and the right pane (the detail pane) is resizable. In portrait mode, the
detail pane is the only pane visible, with the index pane replaced by a toolbar button that
displays as a popover. In landscape mode you have more space, so the index and detail
panes are shown alongside each other. You can see them side by side in Figure 6–25.

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 172

Figure 6–25. Split-view controller managing orientation on an iPad

The UISplitViewController class is used to manage both views in a single view
controller, but it must be the root of any interface you create. There is a split view–based
application template in Xcode that is a good starting point, and I recommend that you
use it as you start to explore. You can see it running in Figure 6–26 in landscape mode,
with the two panes clearly visible.

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 173

Figure 6–26. The iPad split-view controller template

Looking under the hood of the default implementation, when the application has finished
launching, you assign the rootViewController to the instance of your
UISplitViewController, much the same as any view controller:

self.window.rootViewController = self.splitViewController;

Now you can use the split-view controller object in Xcode and assign it the view
controllers and associated NIB files all in Interface builder, or you can do it
programmatically. If you examine the split-view example using the Xcode template, you
can see Interface Builder was used to do the hard work—creating a left pane as a table
view controller (given the list of data it presents) and the detail view as a standard view
controller.

If you were to do this programmatically, you could simply create the two view controllers
of your preference and add them to the viewControllers array property of the
UISplitViewController class; the first element is the index, and the second is the detail.
So, code similar to this should do the trick:

// Create your two view controllers as required, giving them the name firstVC and�
 secondVC accordingly.
// firstVC and secondVC would be created here

// Create your SplitViewController instance

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 174

UISplitViewController* splitVC = [[UISplitViewController alloc] init];
// Add the view controllers you’ve created to the viewControllers property as an array�
 of the two controllers.
splitVC.viewControllers = [NSArray arrayWithObjects:firstVC, secondVC, nil];
 // Add to the rootViewController and make visible.
self.window.rootViewController = splitVC;
[window makeKeyAndVisible];

In Microsoft .NET, there are a number of ways you can implement functionality similar to
but not exactly the same as a split view, starting with the splitter controls introduced in
early implementations of the .NET framework and more recently the SplitContainer
class (see http://msdn.microsoft.com/en-
you/library/system.windows.forms.splitcontainer.aspx), the replacement for
which in WPF is called GridSplitter.

Enough iPad-specific fun. Let’s look at what other fun you can have in your user
interface.

User Interface Controls
You’ve covered views and view controllers at length but only touched on some of the
elements available to build the user interface for your application. The UIKit framework,
provided as part of the iOS SDK, provides an extensive set of UI elements for you to use
when designing your application. The same is true of the .NET framework. You likely are
familiar with the user interface controls, as they are typically called, that are provided for
you to drag and drop onto your Windows Forms, or for you to use as part of other
Microsoft technologies such as ASP.NET and the Windows Presentation Foundation.
This section introduces the Apple UI elements and also refers to their Microsoft
counterparts where available.

Controls
An interface element that a user can interact with, or that presents information back to
the user, is called a control. As in the .NET framework, the iOS toolset provides a large
number of controls available for use in your application. For each control, this section
provides a brief overview of its purpose and, as space permits, a quick introduction to
when to best use it. You also cover similar controls in the .NET framework. Let’s start
with controls that are used a little less often, followed by those that have a direct .NET
counterpart.

Activity and Progress Indicators
These controls are used to indicate to the user that a particular task is progressing. They
provide visual feedback that the task is working by showing a spinning gear icon or a
progress bar.

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 175

For the activity indicator, you use the UIActivityIndicatorView class and call the
startAnimating method when you being your task and stopAnimating when it’s
completed. The control looks similar to that in Figure 6–27.

Figure 6–27. Activity indicator

The iOS toolset also provides a progress indicator, which is similar to its .NET
counterpart the Windows Forms ProgressBar class. The iOS version is shown in Figure
6–28.

Figure 6–28. Progress bar

It is implemented through the UIProgressView class, and as you’d expect, as progress is
made, the bar starts to fill. This control is typically used when the task has a
predetermined scope: for example, downloading 50 e-mails. If you cannot measure the
progress, you should use the activity indicator instead.

Date, Time, and General Pickers
The date and time picker control, implemented by the UIDatePicker class, provides a
touch-friendly way of choosing a particular date and/or time by using sliding wheels
representing each element of the date or time. You can see this on the control shown in
Figure 6–29.

Figure 6–29. Date and time picker

You could of course present the date and time in a control that allows you to type in the
values, or choose from drop-down boxes, which is the way the .NET framework expects
you to enter a date/time. However, on the iPhone, to take full advantage of the touch-
based interface, this presents a far more intuitive method. On the iPad, this control is
normally presented as a popover.

There is no .NET equivalent that behaves in the same way, although the DateTimePicker
class in .NET does provide a good alternative; it presents the date in a calendar-type
format, typically with the month displayed and each element as a drop-down box and/or

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 176

direct input. The iOS Picker class uses a similar approach but presents the user with a
custom list in a single wheel that the user can then select from.

Detail Disclosure Button
A detail disclosure button, implemented by
UITableViewCellAccessoryDetailDisclosureButton, allows you to indicate an item of
interest on your screen. An arrow in a blue circle indicates that more information is
available. When tapped, it displays the additional information as if it were a hyperlink.
This control may be familiar from its use as a map annotation on your iPhone or iPad
Maps application, as shown in Figure 6–30.

Figure 6–30. Detail disclosure button

There is no equivalent in the .NET framework, but as usual, nothing is stopping you from
writing your own (although doing so isn’t trivial).

Info Button
The info button is used to provide access to a configuration screen for your application.
It’s implemented using a UIBUtton class and the buttonType property to indicate it’s an
info button, which thus provides the right image as shown in Figure 6–31.

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 177

Figure 6–31. Info button

Again, there is no equivalent in the .NET framework, but you could implement similar
functionality using the Button class and a suitable image.

Page Indicator
The page indicator, implemented by the UIPageControl class, provides a useful visual
indicator of which view is currently open within the bounds of the totals views available,
as shown in Figure 6–32.

Figure 6–32. Page indicator

As you open a view, a dot is added to represent the active or displayed view’s place in
the sequence. After 20 dots, the control clips any more dots so they aren’t displayed. (I
would argue that if you’re displaying this many dots, you should rethink your user
interface design.)

There is no .NET equivalent.

Search Bar
The search bar control, implemented through the UISearchBar class, allows the user to
enter a text string and choose to execute a search by tapping the magnifying glass. It
also lets you present common information using the bookmark icon. See Figure 6–33.

Figure 6–33. Search bar control

There is no direct .NET equivalent control.

Switch
The switch control, implemented through the UISwitch class, allows the user to choose
between options that are mutually exclusive, such as ON or OFF. See Figure 6–34.

Figure 6–34. Switch control

There is no equivalent control in .NET, at least not in look and feel, although a Checkbox
performs the same function: it can be checked (ON) or unchecked (OFF).

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 178

Segmented Control
A segmented control, implemented through the UISegmentedControl class, provides a
method for displaying a set of segments, each of which behaves like a button and can
display a corresponding view. An example is shown in Figure 6–35.

Figure 6–35. Segmented control

The segmented control provides a convenient way to group related buttons and can
display either text or an image as the face of each button. The buttons are mutually
exclusive, and you can have as many segments as you wish, differentiating it from the
switch control.

Again, there is no .NET equivalent control, although the use of mutually exclusive radio
buttons in .NET offers similar functionality.

Common Controls
A number of common controls are available in the iOS UIKit framework for which a
direct .NET equivalent is available. Their usage and behavior are almost identical to their
.NET counterparts, so for brevity I don’t describe them in detail. These controls are
shown in Table 6–2.

Table 6–2. Common iOS Controls with Corresponding .NET Classes

iOS Control Image .NET Equivalent Class

Label (UILabel)

Label

Round rect button (UIButton)

Button

Text field (UITextField)

TextBox

Slider (UISlider)
Slider

Let’s take a look at other user interface elements included in the UIKit. Don’t forget that
you can use the Apple Developer resources to explore the vast array of user interface
controls in the UIKit framework of the SDK; and making the correlation (where one
exists) to .NET controls is pretty straightforward, as you’ve seen from the examples in
this section.

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 179

Navigation and Information Bars
There are a number of user interface elements that are not typically used to define your
application but either provide information to the user or manage how you navigate your
way around your application. These elements are called bars, and they include status
bars, toolbars, navigation bars, and tab bars—the latter of which you saw earlier in the
chapter.

Status Bar
The status bar is used to display important information to the user and always appears
in the upper edge of your device screen, regardless of the orientation of your device.
Additionally, although on the iPhone you have some control over the color of your
status bar, on the iPad the color is fixed as black. You can see the iPhone status bar
in Figure 6–36.

Figure 6–36. Status Bar

You implement the status bar by setting the UIStatusBarStyle for your UIApplication or
using an Info.plist value (UIStatusBarHidden) to hide it. The Apple Developer usage
guidelines are quite specific: if your application is a game or full-screen, then the status
bar typically may be hidden; otherwise the recommendation is that it be displayed,
especially given the small amount of space it takes.

The StatusBar class in the .NET framework offers similar functionality.

Toolbar
A toolbar, implemented by the UIToolbar class, is pretty well understood in most
graphical user interfaces, and the behavior for iOS devices is no different. It’s used to
provide graphical images that, when tapped, perform actions in your application. You
typically place common actions on the toolbar for ease of use. You can see a toolbar in
Figure 6–37.

Figure 6–37. Toolbar

The toolbar is located on the bottom edge of the screen for iPhone applications and at
either edge for iPad applications, depending on the orientation and which edge you
snap the control to. The items on the toolbar are context sensitive, which means they
reflect actions that are typically performed against the associated view and for that
reason may change between views.

The Toolbar class in the .NET framework provides equivalent functionality.

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 180

Navigation Bar
The navigation bar, implemented by the UINavigationBar class, is used to manage
navigation through a hierarchy of views and is usually associated with the navigation
controller. It’s shown in Figure 6–38.

Figure 6–38. Navigation bar

Navigation bars are common in iOS applications when you’re dealing with different
views or a tab bar isn’t appropriate. However, although their use is relatively
straightforward, it’s beyond this chapter, and the iOS Developer web site does a good
job of describing it. So, the implementation of the navigation bar and associated
controller is left to you, armed with the iOS developer web site:
http://developer.apple.com/library/ios/#featuredarticles/ViewControllerPGforiPh
oneOS/NavigationControllers/.

There is no equivalent to the navigation bar in the .NET framework.

Content Views
The iOS SDK provides a number of user interface elements intended to present custom
content back to the user from your application. You’ve seen two iPad-specific views, the
split view and the popover, but a number exist for the iPhone too.

You walk through these in turn; they are commonly used in iPhone applications because
of the useful capabilities they provide.

Table View
The table view element, implemented through the UITableView class, is used as its name
suggests, to present data in tabular format (rows and columns of information). An
example is shown in Figure 6–39.

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 181

Figure 6–39. Table view

The table view control is highly configurable and used extensively in many iPhone
applications. For example, the Contacts List is a table view implementation, as is the
Language selection screen when choosing your device’s international settings. Such
diverse examples show the flexibility of the control. Remember the table view, because
you’ll use it to display your Lunar Lander game’s High Score table.

The DataView control, when bound to a data source, provides similar functionality in the
.NET framework. In the Windows Presentation Foundation, the DataView control has
been replaced with a table view capability that offers similar functionality to the iOS table
view element.

Text View
The text view control, implemented by the UITextView class, is used to present and
allow the input of several lines of text in your application. An example is shown in
Figure 6–40.

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 182

Figure 6–40. Text view

The equivalent in the .NET framework is the TextBox control.

Web View
The web view control, implemented by the UIWebView class, allows your application to
display rich HTML content. It isn’t recommended that you create an iOS application that
behaves like a web page—that’s what the Safari browser is for—but if you need to wrap
a web page of any description in your iOS application, this is the control to use. An
example loading the www.bbc.co.uk home page is shown in Figure 6–41.

This example can be easily created using a view-based template in Xcode 4 and adding
a web view control along with an associated property. You then simply add the code
snippet in Listing 6–4 to the viewDidLoad event for the view that loads the home page
using the loadRequest WebView message. As you can see, the web view control is
acting as a wrapper to the existing web-based content, in this case the BBC’s home
page.

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 183

Figure 6–41. A web view example showing the BBC home page

Listing 6–4. Web View Example

// Load the WWW.BBC.CO.UK homepage within the WebView
NSString *urlString = @"http://www.bbc.co.uk";
[wvBrowser loadRequest:[NSURLRequest requestWithURL:[NSURL URLWithString:urlString]]];

The equivalent in the .NET framework is the WebBrowser class, using the Navigate()
method as an equivalent loadRequest message.

Other Elements
Although the last few pages have introduced quite a few UI elements, there are still more
left for you to discover. However, I didn’t want to leave a few other useful UI elements
untouched, specifically alerts and action sheets.

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 184

Alerts
Alerts are designed to provide important information to the user of your application.
When invoked, the alert presents a pop-up window over your existing views, and you
cannot continue with your application until it is closed.

In .NET it is very similar to a MessageBox, invoked by a method of the same name. In
iOS, you use the UIAlertView class to implement an alert and to display the short
alerting text along with one or two buttons.

An alert is typically used to inform the user that something of significance has happened
and may not be associated with their most recent actions. For example, if you kicked off
a background task as part of your application and then moved on to do something else,
you could use an alert to signify its completion. An example is shown in Figure 6–42.

Figure 6–42. Alert view example

You can easily create this alert view example using the code snippet in Listing 6–5. The
parameters are pretty self-explanatory.

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 185

Listing 6–5. Alert View Example

UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle: @"Important Fact"
 message: @"Something important has happened"
 delegate: nil
 cancelButtonTitle :@"OK"
 otherButtonTitles: nil];
[alert show];
[alert release];

Action Sheets
The final UI element introduced here is the action sheet, implemented by the
UIActionSheet class and providing a mechanism for presenting a set of choices in
relation to a particular user action. For example, the Safari browser provides an action
button that, when chosen, presents a number of choices based on the web page
being displayed—for example, you can add it as a bookmark, make it your home
screen, and so on. This window with multiple choices is called an alert sheet and is
shown in Figure 6–43.

Figure 6–43. Alert sheet example

On the iPhone, the alert sheet appears from the bottom of the screen, and on the iPad it
appears as a popover. There is no direct equivalent in .NET, although you could argue
that a ContextMenu provides similar functionality.

Apple’s User Interface Resources
Apple provides a number of resources that are essential reading when designing your
own user interface. Some of these are listed here:

� iOS Human Interface Guidelines: Provides guidelines and describes principles
for designing that superlative user experience.
http://developer.apple.com/library/ios/#documentation/userexperience/con
ceptual/mobilehig/Introduction/Introduction.html.

� View Controller Programming Guide for iOS: Provides guidance about
structuring and managing your application’s user interface.
http://developer.apple.com/library/ios/#featuredarticles/ViewContr

ollerPGforiPhoneOS/Introduction/Introduction.html.

CHAPTER 6: Build Your Skills: Enhancing Your Application with a Dynamic User Interface 186

� View Programming Guide for iOS: Provides guidance for presenting
and animating your user interface.
http://developer.apple.com/library/ios/#documentation/WindowsVi
ews/Conceptual/ViewPG_iPhoneOS/Introduction/Introduction.html.

� Drawing and Printing Guide for iOS: Provides guidance on drawing custom
content and printing information.
http://developer.apple.com/library/ios/#documentation/iPhone/Conceptual/
iPhoneOSProgrammingGuide/Introduction/Introduction.html.

Summary
This chapter started by taking a look at the different device types and their capabilities
from a user interface perspective. You should always be cognizant of the device or
devices to which you are targeting your application when designing its user interface.

You then examined the different application types, and specifically the view controller
and view combinations possible. You already looked at presenting single views,
including one modal-based view, using the Lunar Lander example, but many other
options exist. There are too many options to cover in a single chapter, so you looked at
a tab bar example (which might be appropriate for your game) and then some of the
other view controller types.

After you saw the different view controllers and the mechanisms for managing the
presentation of different views, you looked at the user interface elements available with
which you can design your actual view. In the Lunar Lander game, you are painting a
number of graphics in real time. But if you have developed .NET applications using
Window Forms, or even ASP.NET, the use of UI controls to design your user interface
will be familiar—and some of the iOS controls should be well-known to you. The chapter
provided examples of how you might use some of the controls that are slightly more
unusual.

You should now be armed with enough knowledge to navigate view controllers, views,
and user interface controls, and map your .NET knowledge onto the iOS equivalents
where they exist. This chapter has reiterated a number of times the importance of the
user experience when building an iOS mobile device application, and it’s no surprise
that Apple provides numerous resources you can use to support the knowledge you’ve
built so far, to help understand the examples in this chapter, and to provide a reference
for your own exploration. Enjoy!

 187

 Chapter

Get the Data: Storing and
Retrieving Data and
Configuring your
Applications
So far, we’ve covered a number of topics, all designed to introduce how to create iOS-
based mobile applications running on iOS-based mobile devices, using the iOS SDK
and supporting languages and tools. However, while we have walked through how to
build an application, one key thing has been missing: the application’s ability to hold
what is known as state.

State can be thought of as the equivalent to a human’s memory. If we didn’t have a
memory, doing the simplest of tasks would require us to discover how to do it every
time. Since we do have a memory and can remember how to perform a particular action,
doing it again is far easier, faster, and arguably enjoyable—skiing is a good example.

Computers have memory in the form of volatile memory (RAM), which is lost when you
switch off the computer, and a mobile device is no different. But if you want to persist
state between application instances—that is, you want the application to remember
where it left off—you’re going to need to store state somewhere else, like a hard disk.

In this chapter, we’ll look at how you can store information as data either on your mobile
device or other sources, and how you can use this data to configure your application.
Specifically we’ll take a look at the following:

� An overview of the options for storing data

� Guidance on how to store information

� Guidance on how to retrieve information

� How to use data to configure your application between instances

7

CHAPTER 7: Get the Data: Storing and Retrieving Data and Configuring your Applications 188

What Are Our Options for Storing Data?
You may want to store various types of data, such as dynamic data that is entered by
the application user, or parameterized data that the user does not influence but may
want some flexibility in configuring (kind of like the Registry in Microsoft Windows). The
following options are available for storing data:

� Filesystem storage

� Property lists

� Internet storage

� Database storage

Let’s look at each of these options in turn.

Using the Sandbox to Provide Filesystem-Based Storage
In Chapter 4, we touched on the concept of the application’s sandbox. Recall that one
of its primary purposes is to provide security mechanisms for both your application and
your device. Let’s revisit the sandbox briefly, focusing on how it can help you store data.

When your application is installed on a mobile device, by default, it establishes a number
of folders that have constraints on how they are used. The Apple developer
documentation provides some guidance on these folders, and it is important to
understand the guidelines before you proceed to use any of these folders. The folders,
their typical purpose, and relevant notes are listed in Table 7–1.

Table 7–1. Default Application Folders

Folder Purpose Notes

/tmp Used to write temporary files
that are not required between
different instances of your
application

The system may purge files in this
directory if it requires space.

/Library Top-level directory used for
files that are not user files

You should not use this folder for user
files.

/Library/Preferences Used to contain application-
specific files

The contents of this directory are backed
up by iTunes.

/Library/Caches Used to contain application-
specific support files that are
required to persist between
application instances

The contents of this directory are not
backed up by iTunes. Note that the
NSCachesDirectory constant points to this
path.

CHAPTER 7: Get the Data: Storing and Retrieving Data and Configuring your Applications 189

Folder Purpose Notes

/Documents Use this directory to store
user-specific documents and
application data files

The contents of this directory are backed
up by iTunes. Note that the
NSDocumentDirectory constant points to
this path.

Even when using the simulator you can see these folders. Using Finder, you can
navigate to this folder, as it exists on the simulator, by going to \Library\Application
Support\iPhone Simulator\4.3.2 (or whatever version of the simulator you are using)
and look in the Applications folder. You will see folders with the application IDs we
touched on in Chapter 4, with the structure shown in Table 7–1.

NOTE: The folder names may change depending on what your application has specified it will

use. Also, different SDKs will have their own folder roots.

You can use the folders listed in Table 7–1 to store persistent data (or state) for your
application, although you will need to take into account the constraints highlighted.
Given it is a filesystem, you will need to store the data in one or more files, and your
application must be able to interpret them.

Although adding a simple file to act as your data store may seem like the easiest
approach, the job of storing and retrieving the data you want from it may actually make
your application’s data-handling code more complex than it needs to be. Therefore, it’s
worth checking out the other options before you decide to use a simple file for all your
application’s data storage needs. For example, you may want to investigate using the
embedded database approach discussed later in this chapter if your data storage and
retrieval needs are not that simple and require more than one file.

Managing the Data Within Your Application
The first hurdle is that you need to store the data in the application itself. You could use
a lot of individual variables, but that wouldn’t be particularly elegant, and the result
would be very messy code when it comes to reading and writing the data to storage.
Fortunately, the iOS SDK, much like the .NET Framework, makes provisions for
simplifying this task. After all, working with data in your application is commonplace, and
therefore expected in most modern programming languages and frameworks. Several
mechanisms are available for storing data within your application.

Chapter 4 introduced the concepts of serialization and deserialization. The iOS SDK—
and the .NET Framework, for that matter—provides the ability for objects to be
serializable. This means that the object’s structure and the data, or state information, it
holds within it can be persisted (or written) to a storage medium that will survive the
application being terminated and the mobile device being switched off. When the
application is restarted, you can deserialize this data from your storage medium back

CHAPTER 7: Get the Data: Storing and Retrieving Data and Configuring your Applications 190

into an object instance that has exactly the same structure and data as it did when it
was serialized, therefore persisting state.

In Objective-C, it is possible to serialize any object, converting it into a series of bytes
that can be written to storage. However, Objective-C also provides what are called
collection classes, which enable you to store multiple objects and then serialize the
whole collection—and in doing so, serializing all the data within it.

In .NET—specifically, C#—you mark an object as [serializable], which means it can
be converted into binary, Simple Object Access Protocol (SOAP), or XML within .NET.
The .NET Framework separates the representation of the data from mechanisms for
transporting it, such as by tagging your class in .NET with the [serializable()]
attribute and ensuring your class derives from the ISerializable class. You can then
use the appropriate method for writing your class to the destination. This may be a file
using the System.IO namespace, or you may be using formatters such as
System.Runtime.Serialization.Formatters.Binary to write to a binary stream.

The default serializable objects in Objective-C are shown in Table 7–2 with commentary.

Table 7–1. Serializable Objective-C Objects

Objective-C .NET Commentary

NSArray Use an object[] for nontype-specific objects, or use type-specific arrays. For
example, use string[] for an array of strings. This is also very similar to a
variety of classes in System.Collections, including ArrayList.

NSDictionary This is similar to the System.Collections.Generic.Dictionary class.

NSData This provides support for a byte stream, which in .NET could use a byte[] array
or one the more specific classes, such as MemoryStream.

NSNumber This provides the equivalent of boxing in C#, where any number can be
contained within NSNumber and referenced. In C#, you can assign the number to
an Object class instance, such as:

int I = 50;
Object o = i;

NSString This is similar to the System.String class.

NSDate This is similar to the System.Date class.

To bring this to life, let’s look at a working example that allows us to use one of these
types to create an array of values that we can use to hold our data, and then we’ll
serialize this array as a property list.

First, let’s set up a dynamic array using the NSMutableMutable class:

NSMutableArray *highscores = [[NSMutableArray alloc] init];
// High score 1
[highscores addObject:@"Mark"];

CHAPTER 7: Get the Data: Storing and Retrieving Data and Configuring your Applications 191

[highscores addObject:@"200"];
// High score 2
[highscores addObject:@"Rachel"];
[highscores addObject:@"300"];
// .. others could be added

At this point. we can write this to the persistent storage of our choice (as we’ll do next),
and then finally release the array with the following command:

 [highscores release];

Using Property Lists As Storage
Earlier in the book we touched on property lists within iOS and their existence in the
filesystem as files with the .plist extension, known as plist files. Property lists offer a
way to persist application data. Within Objective-C, the NSArray and NSDictionary
collection classes provide a method that serializes their content to plist files. These
collection classes also provide an easy mechanism to store and retrieve values from
plist files.

Using the NSMutableArray we just set up (or indeed, any serializable collection), we can
then use the writeToFile method to serialize this string to a plist file for later reading
and interpretation. Simply execute the method with the destination of your file, as in this
example:

[myArray writeToFile:@”/some/file/location/output.plist” atomically:YES];

If you execute an application with this snippet of code in place and then examine the file
produced, you’ll find it looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"httpfhighscor://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<array>
 <string>Mark</string>
 <string>200</string>
 <string>Rachel</string>
 <string>300</string>
</array>
</plist>

Notice that it is serialized as an XML file, against the property list schema and using
strings.

This file can then be read back into an array for manipulation or use using the
initWithContentsOfFile method. The following deserializes the file we just created into
a new NSMutableArray with the same values:

NSMutableArray *highscores = [[NSMutableArray alloc] initWithContentsOfFile:�
 @"/some/file/location/output.plist"];

CHAPTER 7: Get the Data: Storing and Retrieving Data and Configuring your Applications 192

Using the Internet to Store Data
For persisting data, we’ve looked at property lists and using methods available as part
of some of the serializable Objective-C types. However, what if you want to use the
Internet in some form to serialize your data? What if you want to store this information in
some kind of central location, rather than locally on the device?

The first and most obvious solution is to still use the property list method, except that
the path to the file is the fully qualified URL of a file that exists on some internal-based
storage—one of the many digital-storage platforms, such as Dropbox and Digital Vault.

But there is an alternative. The serializable collections such as NSMutableArray have a
method called writeToURL, which instead of taking an NSString argument takes an NSUrl
argument. However, if when writing to a file your argument is a file:// reference, then
there is no real difference to the behavior of these methods. Therefore the following:

[myArray writeToURL: @"file://www.mamone.org/highscore.plist" atomically:YES];

is exactly the same as this:

NSURL *url = [NSURL URLWithString:@"http://www.mamone.org/highscore.plist"];
[myArray writeToURL:url atomically:YES];

Using the iOS-Embedded Database
Our previous examples, while perfectly adequate, have been restricted to creating data
using objects that are serializable to either locally held or Internet-based filesystems.
You may want to persist data using a more comprehensive mechanism, especially if you
want to manipulate the data without needing to resort to complex file or object
manipulation in code, which would be a by-product of storing data using a simple
filesystem-based storage mechanism. In these cases, you can use the iPhone’s
embedded database, which is called SQLite.

SQLite is an embedded relational database management system (RDBMS), which is
similar in many ways to the more traditional server-based database servers you may be
familiar with, such as Oracle and Microsoft SQL Server, in that you can use the
Structured Query Language (SQL) to access and manipulate the data held within the
database. However, there is no application you need to run. You simply use the API
code provided within your application to invoke the SQLite functionality provided as part
of the iOS.

Let’s take a look at how you might use the SQLite capability within your mobile iOS
device to access database functionality.

NOTE: If you’re not familiar with the SQL language, many resources are available on this topic.

For example, see Beginning SQL Server 2008 for Developers and other titles from Apress.

CHAPTER 7: Get the Data: Storing and Retrieving Data and Configuring your Applications 193

Before we get started, you need to add support to your application for SQLite by
referencing the library with the supporting library code, and then including the relevant
header file. So, first add the library called libsqlite3.dylib to your project using the
Build Phases tab of your project summary and choosing the + button. The dialog box
should look similar to that shown in Figure 7–1.

Figure 7–1. Adding the SQLite library to the build phase of a project

Then you’ll need to include a reference to the supporting header file with the following
#import directive in the source code file containing your SQLite code:

#import "/usr/include/sqlite3.h"

What are the iOS SDK Options?
Using the SQLite API isn’t the only option for accessing the iOS device database. Core
Data is a framework that is confusingly described as a “Schema-driven object graph
management and persistence framework.” This essentially means that not only does the
Core Data API manage where data is stored, how it is stored, and how management of
that data for performance reasons is handled, but it also allows developers to create and
use a relational database under SQL-less conditions. It allows you to interact with

CHAPTER 7: Get the Data: Storing and Retrieving Data and Configuring your Applications 194

SQLite in Objective-C and not need to worry about connections or managing the
database schema. Most of these features will be familiar to ADO.NET developers as a
.NET Framework that abstracts access to the database.

However, we won’t cover both SQLite and Core Data in this chapter. My goal is to take
you through the principles with a working example using the SQLite API. This will
provide a good foundation for you to apply this knowledge to whichever approach you
take: SQLite or Core Data.

I recommend that you explore Core Data using the online resources available,
specifically the Core Data Programming Guide at
http://developer.apple.com/library/mac/#documentation/
Cocoa/Conceptual/CoreData/cdProgrammingGuide.html.

Creating or Opening Your Database
SQLite is written in portable C, not Objective-C. Therefore, we’ll need to write in the C
language and use conversion between types where necessary.

Let’s start by opening the database using the sqlite_open() method, and using the
provided constants to look for success (SQLITE_OK) and log an error if it fails. The
following code achieves this:

 sqlite3 *db;
 int result = sqlite3_open("/documents/file", &db);
 if (result == SQLITE_OK)
 {

 } else NSLog(@"Failed to open database");

In this example, if the database exists, it will be opened. If it doesn’t exist, it will be
created.

NOTE: The sqlite_open() method expects a UTF-* string as an argument—that is, an 8-bit
encoded string. This isn’t the same as an NSString, but you can use the UTF8String method

to convert from an NSString to a UTF-8 string.

Note that at some point when trying to open a database—especially when it’s not
located locally on your machine—you will almost certainly encounter the problem of
your database connection timing out. This is usually because of the delay (or latency)
involved in accessing a resource that is not local, especially when you are connecting
over the Internet. Therefore you should always intercept any error messages and deal
with them as appropriate. For example, you might want to retry if the request has timed
out.

CHAPTER 7: Get the Data: Storing and Retrieving Data and Configuring your Applications 195

Creating a Table in the Database
With our database open and ready for use, the next step is to create a table in which we
will store our data. The SQL command CREATE TABLE can be used with the optional
condition to create the table only it if doesn’t already exist. The following code executes
the CREATE TABLE command and creates a table with two columns called NAME and
SCORE, both of type text.

 char *errMsg;
 const char *sql = "CREATE TABLE IF NOT EXISTS HIGHSCORE (NAME TEXT, SCORE TEXT)";
 if (sqlite3_exec(db, sql, NULL, NULL, &errMsg) == SQLITE_OK)
 {
 // code to write here
 } else NSLog(@"Failed to create table");

Now the table will be created (if it didn’t already exist), and we can begin to populate it
with data from our array.

Writing Data to the Database
To write data to the database, you have two options:

� Construct an INSERT SQL statement from your string and traverse the
array you have created.

� Bind your variables to your SQL statement, which has each of the
parameters replaced with a ? symbol. This approach has the added
advantage of ensuring that the data you insert matches the format of
the data expected in the table.

So, first we need to loop through our array extracting the values held within it. This is
simply done in our example by using a loop and an integer-based index, which starts at
0 (the first element) and continues while it is less than the count of all items in the array,
determined by the count attribute.

int count = [highscore count];
int idx = 0;
while (idx < count)
{
 // loop through the array, increasing idx
}

Extending this to cycle through the array, accessing its elements and using the SQL
binding feature to replace the ? parameter indicators with values from the array and then
finalizing the statement, has the effect of writing the row to the database. Here is the
extended code:

sqlite3 *db;
int result = sqlite3_open("/documents/file", &db);
if (result == SQLITE_OK)
{
 int count=[highscore count];
 int idx = 0;

CHAPTER 7: Get the Data: Storing and Retrieving Data and Configuring your Applications 196

 char *insert_sql = "INSERT INTO HIGHSCORE VALUES(?, ?);";
 sqlite3_stmt *stmt;
 while (idx < count)
 {
 // Prepare our statement for binding
 if (sqlite3_prepare_v2(db, insert_sql, -1, &stmt, nil) == SQLITE_OK) {
 // Bind the name
 sqlite3_bind_text(stmt, 1, [[highscore objectAtIndex: idx++] UTF8String],�
 -1, NULL); // NAME
 // Bind the score
 sqlite3_bind_text(stmt, 2, [[highscore objectAtIndex: idx++] UTF8String],�
 -1, NULL); // SCORE
 // Step and finalize the write
 sqlite3_step(stmt);
 sqlite3_finalize(stmt);
 }
 }
} else NSLog(@"Failed to open database");

In this example, we prepare the SQL statement with the parameters using the
sqlite3_prepare() statement. Then while within the loop, we use the
sqlite3_bind_text() method to mind a variable’s value—in this instance, the array
index to the parameter in the SQL statement referenced by its index position, starting at
0.

After each pair of array entries completes, we finalize the statement, which writes the
row to the database. We continue until all array entries have been covered.

Reading Data from the Database
To check that our code works, we can now use a simple SQL SELECT statement to read
back the rows we’ve just written to our database. For simplicity, we will use the NSLog()
method to write the data to the debug output view within Xcode.

Just as in the previous example, we need to prepare a SQL statement and execute it,
using the sqlite3_step() method to cycle through the rows until no more are found,
and using the NSLog() method to output each row’s data. This is shown in the following
example:

// READ FROM TABLE
sqlite3_stmt *readstmt;
const char *readSQL = "SELECT NAME, SCORE FROM HIGHSCORE";
sqlite3_prepare_v2(db, readSQL, -1, &readstmt, NULL);
while (sqlite3_step(readstmt) == SQLITE_ROW)
{
 NSString *name = [[NSString alloc] initWithUTF8String:(const char�
 *)sqlite3_column_text(readstmt,0)];
 NSString *score = [[NSString alloc] initWithUTF8String:(const char�
 *)sqlite3_column_text(readstmt,1)];
 NSLog (@"NAME: %@ SCORE: %@", name, score);
}

CHAPTER 7: Get the Data: Storing and Retrieving Data and Configuring your Applications 197

If you execute the complete set of code and examine the output in the debug window of
your Xcode application, it should resemble something similar to the following (excluding
all of the other debug output associated with the running application):

2011-08-15 22:19:05.251 DataStorage[953:207] NAME: Mark SCORE: 200
2011-08-15 22:19:05.253 DataStorage[953:207] NAME: Rachel SCORE: 300

This example should have given you some insight into using the embedded database as
a more comprehensive way of persisting data to a database represented as a local file.

Connecting to Other Databases
We’ve explored the use of the embedded database found in the iOS, SQLite, but what if
you have a different database and it’s held remotely? For example, what if you want to
access a remote MySQL or Microsoft SQL Server database from your device? You have
several options:

� You can use a third-party client for your database. For example,
Flipper (found at http://www.driventree.com/flipper) is a MySQL
client for the iPhone that allows you to connect to MySQL databases.

� If you have a Microsoft SQL Server database, you might want to
access it by using a database-agnostic API, such as an Open
Database Connectivity (ODBC) driver.

� You can access the database by sourcing a similar local client API, or
exposing a services layer from SQL Server and using an XML-based
API over HTTP, like SOAP.

Creating the High-Score Example
So far, we’ve looked at persisting our application’s data using a number of different
techniques. Now let’s explore how we can put this to use in our example application, the
Lunar Lander game we started in Chapter 5. The one thing that jumps out in a game like
ours is the need to persist our scores in a high score table, providing the players with
another competitive dimension to the game. So, we’ll apply our data persistence
knowledge and look at creating an internal high-score structure that is available to be
displayed on the start screen and persists between application instances.

Creating a Persistent High-Score Class
Our high-score feature is pretty straightforward. It will hold five entries, each with the
name of the person who attained the high score and the score itself. We could carry on
as in the previous example, and use standard Objective-C object types like NSString.
This would have the advantage of being written to a plist file, but would incur complexity
in how we interpret the file. Instead, we’ll use a custom object that inherits from
NSObject to store the actual high-score entries.

CHAPTER 7: Get the Data: Storing and Retrieving Data and Configuring your Applications 198

To build on our Objective-C foundation, let’s create a class that holds an individual high-
score entry with properties that reference its values. This will then be contained within
an NSMutableArray, which we will use to write the storage of our local high score to the
local device using SQL Server. However, this does present a problem when trying to
serialize the object to a plist file, as the writeToFile method doesn’t support serializing
custom objects. In our example, we’ll look at how to solve this problem.

First, let’s create our high-score entry class, called HighScoreEntry. Listing 7–1 shows
the code for the header file.

Listing 7–1. HighScoreEntry Class Header

// HighScoreEntry class
//
@interface HighScoreEntry : NSObject {
 NSString * name;
 int score;
}
-(id)initWithParameters:(NSString*)aName:(int)Score;
@property (readwrite, retain) NSString* name;
@property (readwrite) int score;

@end

NOTE: Remember that the readwrite attribute of a property means you can both access the
property’s value and set the property’s value. Additionally, retain ensures that a strong

reference is created, meaning as a resource, it will not be released until you explicitly release it.

This is pretty straightforward, and with the material we’ve covered, it should be familiar.
The code simply implements a class that contains a string and an integer using the class
member names of name and score, respectively. We have two properties of the same
name that will reference these class member variables, and we’ve implemented an
initialization method that takes two parameters of type NSString and int, which are used
to initialize the class. Listing 7–2 shows the source code for its implementation.

Listing 7–2. HighScoreEntry Class Implementation

// HighScoreEntry class
//
@implementation HighScoreEntry

-(id)initWithParameters:(NSString*)aName:(int)aScore
{
 self = [super init];
 if (self)
 {
 name = [aName copy];
 score = aScore;
 }
 return self;
}

@synthesize name;

CHAPTER 7: Get the Data: Storing and Retrieving Data and Configuring your Applications 199

@synthesize score;

@end

Again, this is pretty straightforward. Our implementation provides the
initWithParameters method to initialize the class member variables with values passed,
and, of course, we synthesize our two properties.

Now let’s take a look at the actual collection. We’ll call this our HighScore class. Again,
we’ll start with the source code for the header file, as shown in Listing 7–3.

Listing 7–3. HighScore Class Header

// HighScore class
//
@interface HighScore : NSObject {
 NSMutableArray *scores;
}
-(void)addHighScoreEntry:(HighScoreEntry *)score;
-(void)persist;
@end

This contains a single member variable for our scores, held in a member variable of the
same name and using the NSMutableArray type to allow flexibility. We also declare two
class methods: one that will add a high-score entry to the list called addHighScoreEntry,
and the other to persist the high score to storage—in our case, a local database. The
implementation for the class is a little more complex, as shown in Listing 7–4.

Listing 7–4. HighScore Class Implementation

// HighScore class
//
@implementation HighScore
-(void)addHighScoreEntry:(HighScoreEntry *)score
{
 if (scores == nil)
 scores = [[NSMutableArray alloc] init];

 [scores addObject:(score)];
}

-(void)persist
{
 // Open our database
 sqlite3 *db;
 int result = sqlite3_open("mydb.sqlite3", &db);
 if (result == SQLITE_OK)
 {
 // CREATE TABLE
 char *errMsg;
 const char *sql = "CREATE TABLE IF NOT EXISTS HIGHSCORE (NAME TEXT, SCORE�
 INTEGER)";
 if (sqlite3_exec(db, sql, NULL, NULL, &errMsg) == SQLITE_OK)
 {
 // WRITE ARRAY TO TABLE
 int idx = 0;
 char *insert_sql = "INSERT INTO HIGHSCORE VALUES(?, ?);";
 sqlite3_stmt *stmt;

CHAPTER 7: Get the Data: Storing and Retrieving Data and Configuring your Applications 200

 while (idx < [scores count])
 {
 // Prepare our statement for binding
 if (sqlite3_prepare_v2(db, insert_sql, -1, &stmt, nil) == SQLITE_OK) {
 // Get entry
 HighScoreEntry *hse = [scores objectAtIndex:(idx)];

 // Bind the name
 sqlite3_bind_text(stmt, 1, [hse.name UTF8String], -1, NULL); //�
 NAME
 // Bind the score
 sqlite3_bind_int(stmt, 2, hse.score); // SCORE
 // Step and finalize the write
 sqlite3_step(stmt);
 sqlite3_finalize(stmt);
 // Next item
 idx++;
 }
 }
 // READ FROM TABLE
 sqlite3_stmt *readstmt;
 const char *readSQL = "SELECT NAME, SCORE FROM HIGHSCORE ORDER BY SCORE";
 sqlite3_prepare_v2(db, readSQL, -1, &readstmt, NULL);
 while (sqlite3_step(readstmt) == SQLITE_ROW)
 {
 NSString *name = [[NSString alloc] initWithUTF8String:(const char�
 *)sqlite3_column_text(readstmt,0)];
 NSString *score = [[NSString alloc] initWithUTF8String:(const char�
 *)sqlite3_column_text(readstmt,1)];
 NSLog (@"NAME: %@ SCORE: %@", name, score);

 }
 } else NSLog(@"Failed to create table");

 } else NSLog(@"Failed to open database");
}
@end

First, let’s consider the addHighScoreEntry method, which should be pretty self-
explanatory. If the scores array is null, we create it. We then add the object passed to
the array using its addObject method.

The persist method, although lengthy, should again be familiar. We walked through the
code earlier. However, I will point out some of the key differences:

� Using an integer for the score: In our table, we now use an integer type rather
than a string to store the actual score value.

� Counting array count: When looping around the array, we use the count
attribute of NSMutableArray to return how many objects are in the array, and
when we reach the maximum, we exit the loop.

� Extracting an object: We extract the high-score entry object from the class
using its index, and we can then use this to reference the object’s values
through the properties provided—specifically, name and score.

CHAPTER 7: Get the Data: Storing and Retrieving Data and Configuring your Applications 201

� Binding: We bind the name as text and the score as an integer to the
parameters in our SQL statement. This is virtually identical to our previous
example, except we are using the sqlite3_bind_int method for our integer.

� Moving along the array: As we are looping through the array’s members, we
must remember to increase the index that not only selects the next object in the
list, but is also used when determining whether to exit the loop.

Also notice that the same code exists to reread the data and output it to the log file,
which, in the case of Xcode 4, is the debug window. This obviously isn’t required for the
actual implementation and is left in only for testing purposes. For clarity, here’s the code
that does this:

// READ FROM TABLE
sqlite3_stmt *readstmt;
const char *readSQL = "SELECT NAME, SCORE FROM HIGHSCORE";
sqlite3_prepare_v2(db, readSQL, -1, &readstmt, NULL);
while (sqlite3_step(readstmt) == SQLITE_ROW)
{
 NSString *name = [[NSString alloc] initWithUTF8String:(const char�
 *)sqlite3_column_text(readstmt,0)];
 NSString *score = [[NSString alloc] initWithUTF8String:(const char�
 *)sqlite3_column_text(readstmt,1)];
 NSLog (@"NAME: %@ SCORE: %@", name, score);
}

Testing the High-Score Class
Doesn’t our class look lovely? Well, at least it’s better than holding a sequence of strings
that you then need to interpret. Now let’s see if it works.

The code in Listing 7–5 represents a test harness to execute our high-score code and
see if it works. Where you place it in your project is pretty much up to you, but you
would see something like this in the initialization of your game—for example, to preload
the default high scores if none exist in a table.

Listing 7–5. Test Harness for the High-Score Code

// Initialize our high score
HighScore *hs = [[HighScore alloc]init];
// Create 5 default entries
HighScoreEntry *e1 = [[HighScoreEntry alloc]initWithParameters:@"Mark":900];
 [hs addHighScoreEntry:(e1)];

HighScoreEntry *e2 = [[HighScoreEntry alloc]initWithParameters:@"Rachel":700];
 [hs addHighScoreEntry:(e2)];

HighScoreEntry *e3 = [[HighScoreEntry alloc]initWithParameters:@"Oliver":500];
 [hs addHighScoreEntry:(e3)];

HighScoreEntry *e4 = [[HighScoreEntry alloc]initWithParameters:@"Harry":300];
 [hs addHighScoreEntry:(e4)];

HighScoreEntry *e5 = [[HighScoreEntry alloc]initWithParameters:@"Tanya":100];

CHAPTER 7: Get the Data: Storing and Retrieving Data and Configuring your Applications 202

 [hs addHighScoreEntry:(e5)];

// Persist our initial high score to the database
[hs persist];

If you execute the code in Listing 7–5 with the debug code that rereads the data after
persisting it, you should see debug output similar to the following:

2011-08-17 19:59:37.237 DataStorage[676:207] NAME: Mark SCORE: 900
2011-08-17 19:59:37.237 DataStorage[676:207] NAME: Rachel SCORE: 700
2011-08-17 19:59:37.238 DataStorage[676:207] NAME: Oliver SCORE: 500
2011-08-17 19:59:37.238 DataStorage[676:207] NAME: Harry SCORE: 300
2011-08-17 19:59:37.239 DataStorage[676:207] NAME: Tanya SCORE: 100

In your game, you would hold the instance variable for the high scores with a class that
has suitable visibility, and you would initialize it with the default values only if the table
didn’t exist. You would also want to release the high-score class variable at a suitable
point when your application terminates.

But what about reading the high-score data if your application isn’t being run for the first
time? This requires a few changes. First, when persisting the data, we need to clear the
table’s contents so the table is ready to receive the new data. This is easily done by
adding the following code between the table being created (if it needs to be created) and
before we start writing any content:

// DELETE from the table
const char *sqldelete = "DELETE FROM HIGHSCORE";
sqlite3_exec(db, sqldelete, NULL, NULL, &errMsg);

We can also use the code we wrote to read the table and dump it to the log file to help
us implement a method that reads the data from the table to initialize the high score.
We’ll call this method readHighScores, and its implementation is shown in Listing 7–6.

Listing 7–6. Reading the High-Score Data from the Table

#import "MainViewController.h"
#import "HighScore.h"

// readHighScores method
-(void)readHighScores
{
 // Open our database
 sqlite3 *db;
 int result = sqlite3_open("mydb.sqlite3", &db);
 if (result == SQLITE_OK)
 {
 // We've opened the database, so let's clear our array
 [scores removeAllObjects];

 // READ FROM TABLE
 sqlite3_stmt *readstmt;
 const char *readSQL = "SELECT NAME, SCORE FROM HIGHSCORE";
 sqlite3_prepare_v2(db, readSQL, -1, &readstmt, NULL);
 while (sqlite3_step(readstmt) == SQLITE_ROW)
 {
 NSString *name = [[NSString alloc] initWithUTF8String:(const char�

CHAPTER 7: Get the Data: Storing and Retrieving Data and Configuring your Applications 203

 *)sqlite3_column_text(readstmt,0)];
 int score = (const int)sqlite3_column_int(readstmt,1);
 HighScoreEntry *e = [[HighScoreEntry alloc]initWithParameters:name:score];
 [self addHighScoreEntry:(e)];
 [e release];
 }
 } else NSLog(@"Failed to open database");
}

This should be pretty easy to follow, as it uses a lot of the code we’ve used previously.
We use a SELECT statement to read the data from the table and cycle through the data
while rows of data still exist. In doing so, we then extract the data—in this case, the
name as text (converting to UTF-8 to comply with the NSString class) and the score as
an integer. We then use these as parameters in creating a HighScoreEntry class
instance, which is added to our high-scores array and then released.

Completing the Class
Almost complete, our class can now be initialized with a default high-score table. We
can persist this to a local database on our iOS mobile device using SQLite, and we can
reread this data back into our high-score display. The presentation of this high score is
left to you, but you might consider using a Table view, something we’ll touch on in
Chapter 10, as we’ll be looking at impressive user interface transformations there.

At the moment, there is nothing to limit your number of high-score entries. This is by
design, as you can decide what a suitable limit is and use the knowledge gained so far
to create a method that implements that constraint when it adds a high-score entry.
Also, you will want to sort your high scores, typically in order of score, with the highest
first, assuming a bigger score is better.

As this chapter’s focus is on persistence, not sorting arrays, we won’t go over the
complete implementation. But to help you get started, I will provide some pointers on
how to approach sorting.

First, to sort an NSMutableArray that contains custom objects (that is, a class that
inherits from NSObject), you use the sortArrayUsingSelector method, which performs
the sort, but asks that you provide as a parameter the method to use as the comparator,
called the selector.

Next, you to need to implement your own comparator that can make sense of the
objects in your array. In our case, we would compare the score member variable and
sort with the highest first. The beginning of such a method is shown here for you to
experiment with and complete.

(NSComparisonResult)compare(HighScoreEntry* otherObject
{
 return (// DO YOUR COMPARISON HERE between self and otherObject)
}

CHAPTER 7: Get the Data: Storing and Retrieving Data and Configuring your Applications 204

Comparing the Serialization Example with .NET
In this chapter, we’ve taken a look at the options for basic data persistence using
Objective-C and the iOS SDK, and even looked at some of the persistency properties of
.NET. But how would this example compare with a .NET implementation?

Well, the use of a custom class to hold the high-score names and scores would still be
valid in .NET. We would use a very similar mechanism, with the exception of syntax
differences, and hold the name as a String and the score as an int. We could even
have the same method names and approach.

NSMutableArray could be implemented in .NET as an ArrayList, allowing you to
Insert() or Remove() items using methods. It also has a Sort() method, similar to our
sortArrayUsingSelector method, which takes a comparator as an argument.

Finally, serializing could be done using a similar method to our example, cycling through
the entries and writing to some persistency storage, such as a database using an ODBC
driver or a similar database API. Alternatively, you could use the XMLSerializer class to
serialize the class using a StreamWriter if you wanted to write to a file. Consider the C#
example in Listing 7–7, which assumes we have a HighScoreClass that behaves as in
our example, but also defines the [Serializable()] attribute surrounding those
members we want to serialize.

Listing 7–7. Serializing a Class in C#

// Create our High Score class (note that this won’t compile, as we’ve excluded
// the definition of this for brevity)
HighScoreClass hs = new HighScoreClass()
// Create a new XmlSerializer instance with the type of our high score class
XmlSerializer so = ��� XmlSerializer(�����	(HighScoreClass));

// Create a new file stream to write the serialized object to
TextWriter WriteFileStream = ��� StreamWriter(@"C:\output.xml");
so.Serialize(WriteFileStream, hs);

// Clean up
WriteFileStream.Close();

The example in Listing 7–7 is very similar to our earlier plist example using Objective-C,
in that it serializes a class’s content to an XML file. This is the most common method
within the .NET Framework for serializing a class. The use of embedded SQL statements
executed against the database is also very similar in .NET.

Summary
In this chapter, we’ve taken a tour of the options for persisting data to storage other
than the mobile device’s memory, which is volatile; that is, when the device is switched
off or the application is closed, the memory and any data associated with it is lost.

CHAPTER 7: Get the Data: Storing and Retrieving Data and Configuring your Applications 205

We’ve looked at the techniques for persisting data to a file, to a database, and to the
Internet. We’ve also explored the features provided by the iOS to help with this, such as
the application’s sandbox. We then took a look at the language and SDK support for
storing data and writing it to different storage types, including to a plist file and to the
embedded database.

We concluded by implementing a couple of simple classes to test the theory, providing
support for a table of high scores that could be persisted to storage for our Lunar
Lander game. Now between application instances, we can retain a list of the highest
scores, thus increasing the competitive enjoyment of our game.

 207

 Chapter

Extend Your Apps:
Extending Your iOS
Application with Libraries
The ability to extend your application’s functionality beyond that provided through the
iOS itself and the iOS SDK is fairly typical of most operating systems. The Microsoft
Windows operating system was built with the ability to extend its functionality through
the provision of both static and dynamically linked libraries. And this isn’t limited to the
Windows operating system. Unix, Linux, and many other operating systems offer the
same abilities, and Apple’s iOS is no different.

Building on some of the examples of using other options discussed in Chapter 3, this
chapter provides some guidance on how to build your own libraries and how to use
other libraries that complement the iOS operating system. Specifically, we’ll look at the
following:

� An overview of how libraries work and the different types of libraries

� How libraries are used by the iOS

� How you can use libraries within your applications

� Third-party libraries and their benefits

Overview of Libraries
We’ll start by providing some context around the different types of libraries, their
purpose, and how they work within the context of the iOS. We’ll discuss what a library
is, what types exist, and why you may use one rather than the other–or both!

8

CHAPTER 8: Extend Your Apps: Extending Your iOS Application with Libraries 208

What Is a Library?
A library is a set of routines and variables that may exist locally, or remotely, to realize a
prescribed set of functionality—at least in the computer-science sense (just in case you
were thinking of a place to go to read books!). These routines and variables are realized
in code, irrespective of the programming language used. The way you reference them
and the way they are used may differ, and this is what identifies the different types of
libraries.

What Types of Libraries Exist?
The types of libraries can essentially be categorized as follows, regardless of whether
they are local or remote.

� Static library

� Dynamic library

Let’s look at these in turn.

Static Library
A static library is a collection of routines and variables that are held in a single file and
are referenced within your code. An associated header file provides the method
signatures and sometimes variables. At compile time, your library is referenced, which
enables the code that implements the required functionality to be included in your
executable. This is usually handled by a program called the linker, which is why they are
sometimes called statically linked libraries.

On iOS devices, static libraries have an extension of .a. On Windows, the extension is
typically .lib.

Dynamic Library
A dynamic library, as its name suggests, is dynamic in the way it works. The library is
still referenced through the use of a header file, but it isn’t included into the executable
during compilation; it is referenced at runtime. This means that the library is loaded on
first use, or before, to resolve the call and execute the referenced functionality.

On iOS, dynamic libraries have an extension of .dynlib. On Windows, they have an
extension of .dll.

Use of dynamic libraries has the added advantages of making your executables smaller
and allowing common functionality to be more efficiently shared. However, it does
introduce some penalties, some of which caused big problems in the early days for
Microsoft Windows. These problems were related to version control of different libraries
with the same methods but whose implementation was different. In Windows, this was
called DLL hell.

CHAPTER 8: Extend Your Apps: Extending Your iOS Application with Libraries 209

While the iPhone and the iPad are quite capable of producing and using dynamic
libraries, the Apple Developer Agreement specifically prohibits the use of dynamic
libraries other than those provided by the system or official SDKs. This is why the
embedded SQLite library is supported. However, if you try to create your own and
submit your application to the App Store, it will be rejected.

Why has Apple done this? This has been the source of much debate for many years.
Indeed, the Developer Agreement was only recently updated to list some of the
restrictions around interpreted code, but it is still quite rigid, and I highly recommend you
read it carefully. We’ll talk more about the Apple Developer Agreement later in the chapter.
For now, either use system-provided dynamic libraries or stick to static libraries, especially
if you want your application to be approved upon submission to the App Store.

Comparing iOS Libraries with .NET Equivalents
Before we move on to creating your own libraries and taking advantage of third-party
options, let’s take a look at some of the more common iOS libraries. Not surprisingly,
the iOS SDK, like most SDKs, provides a set of libraries as part of its installation. I won’t
list all the iOS libraries, as you’ll quickly find that iOS frameworks are a suite of libraries,
with associated header files and supporting documentation. Instead, I’ll note several
particularly useful libraries available as part of the iOS SDK but not published as iOS
frameworks. Table 8–1 lists those libraries, along with brief descriptions and comments
about how they compare with .NET.

Table 8–1. Comparing iOS and .NET Libraries

iOS Library Description and .NET Commentary

Sqlite3

(libsqlite3.dylib)

Provides access to the embedded iOS database, which we covered in
more detail within Chapter 7. In .NET the framework provides for a
number of data providers, including SQL Server, ODBC, and Oracle.
The nearest comparison for the iOS SQLite in .NET is SQL Server
Compact edition and ADO.NET (Active Data Object for .NET).

Archiving

(libarchive.dylib)

Provides the ability to compress and uncompress files, including
support for a number of different compression formats. The .NET
equivalent is the System.io.compression namespace, or either
Libarchive on SourceForge
(http://gnuwin32.sourceforge.net/packages/libarchive.htm), or the
DotNetZip library (http://dotnetzip.codeplex.com/).

XML

(libxml2.dylib)

XSLT

(libxslt.dylib)

Provides access to functionality for managing eXtended Markup
Language (XML) files and performing transformations using Extensible
Stylesheet Language Transformations. The .NET equivalent is the
System.XML namespace, which provides functionality for both

CHAPTER 8: Extend Your Apps: Extending Your iOS Application with Libraries 210

Many more libraries than those listed in Table 8–1 are available, but with the iOS
frameworks and those listed, you should have most of the capability required. Then you
always have the option of using third-party libraries or your own custom libraries to
extend your application’s capability further.

Creating Your Own Static Libraries
You can create your own static libraries for iOS. In this section, we’ll cover how to create
one using Xcode 4, and then we’ll look at creating a comparable library, or assembly, in
.NET.

Creating a Static Library with Xcode 4
Xcode 4 makes it easy to create your own static libraries. Start by choosing the Cocoa
Touch Static Library template from the Framework & Library iOS category, as shown in
Figure 8–1, and then click Next.

Figure 8–1. Selecting a static library template

On the following screen, choose the product name for your project, as shown in Figure 8–2.
At this point, you may want to introduce a version number in your file name to help
manage different versions of the same library, or you could be really clever and start to
use the snapshot feature and source code control within Xcode (see http://developer.
apple.com/library/mac/#documentation/ToolsLanguages/Conceptual/Xcode4UserGuide/
SCM/SCM.html). Once you’ve decided on the file name, hit the Next button again.

CHAPTER 8: Extend Your Apps: Extending Your iOS Application with Libraries 211

Figure 8–2. Choosing your static library’s product name

Finally, choose the location for your project (see Figure 8–3), and then click Create.

Figure 8–3. Choosing your project location

CHAPTER 8: Extend Your Apps: Extending Your iOS Application with Libraries 212

This will create your project structure in a manner similar to the other projects we’ve
built, except the number of predefined files created is reduced. This is because the
functionality is for you to define. This framework will simply create an empty static library
under the name defined in your Products structure—MyStaticLibrary.a in this example.

Now we need to add some functionality to our library. You could go ahead and create
classes and constants for your library. But to keep things simple for our example, let’s
just add the files we created to support our high-score functionality in Chapter 7 to
create our static library.

In Xcode, choose File � Add Files and navigate to where you stored your high-score
source code. In our example, the header code is in a file called HighScore.h, and the
implementation is in HighScore.m.

Highlight the two files and select the “Copy items into destination group’s folder (if
needed)” checkbox, as shown in Figure 8–4. Then click the Add button.

Figure 8–4. Adding files to the static library project

This will add the files to your static library and create a static library with this
functionality contained within it. To locate the library produced, assuming you have not
changed the default target destination, you can select the library under the Products
folder and choose File � Show in Finder. The Xcode default is to place it in the

CHAPTER 8: Extend Your Apps: Extending Your iOS Application with Libraries 213

/Library/Developer/Xcode/DerivedData folder, and then in subfolders beneath that per
project, as shown in Figure 8–5.

Figure 8–5. Locating your static library

NOTE: In our example, you’ll notice the folder name is Debug-iphoneos. This is deliberate to
highlight the fact that when building a static library, it defaults to the iPhone operating system,
which has an ARM-based CPU. You will need to ensure you change your build settings to compile

for the iPhone simulator theme; otherwise, it won’t compile, as the simulator runs on the i386
CPU. You can tell if you have it right because the director will change to Debug-

iphonesimulator, and it is from here that you should reference your static library.

Let’s test the library by creating a very simple application. For my test, I created a utility
application. Once you’ve created a test application, select the top-level project entry in
the Build Phases tab, as shown in Figure 8–6.

CHAPTER 8: Extend Your Apps: Extending Your iOS Application with Libraries 214

Figure 8–6. Configuring the build phases of your project

Under the expanded Link Binary with Libraries selection, you will notice that three
libraries are already referenced by default: UIKit.framework, Foundation.framework, and
CoreGraphic.framework. Choosing the + icon will display a dialog box allowing you to
choose another library. As shown in Figure 8–7, you can select from the default iOS SDK
list or click Add Other.

CHAPTER 8: Extend Your Apps: Extending Your iOS Application with Libraries 215

Figure 8–7. Adding a library to your build phase

Choose Add Other, and you’ll see a dialog box that allows you to navigate to the
location of the library you wish to include. As shown in Figure 8–8, navigate to the library
built by the previous static library project.

CHAPTER 8: Extend Your Apps: Extending Your iOS Application with Libraries 216

Figure 8–8. Choosing the library to add

Select the library and choose Open. This will add the library to the list of libraries linked
with the build of your application, as shown in Figure 8–9.

Figure 8–9. List of libraries to be linked to your project build

Now we can complete the project in order to test our library. First, add the HighScore.h
header file to your project. Next, we can add some test harness code. For this, copy the
code we used in the previous example and place it in the viewDidLoad event method of
our main view controller (in MainViewController.m). This means when the application is
started and the view loaded, our test harness code will execute. You’ll need to
uncomment the event code and ensure it looks similar to that shown in Listing 8–1.

Listing 8–1. Test Harness Code

// Implement viewDidLoad to do additional setup after loading the view, typically from�
 a nib.
- (void)viewDidLoad
{
 [super viewDidLoad];
 HighScore *hs = [[HighScore alloc]init];

 HighScoreEntry *e1 = [[HighScoreEntry alloc]initWithParameters:@"Mark":900];

CHAPTER 8: Extend Your Apps: Extending Your iOS Application with Libraries 217

 [hs addHighScoreEntry:(e1)];

 HighScoreEntry *e2 = [[HighScoreEntry alloc]initWithParameters:@"Rachel":700];
 [hs addHighScoreEntry:(e2)];

 HighScoreEntry *e3 = [[HighScoreEntry alloc]initWithParameters:@"Oliver":500];
 [hs addHighScoreEntry:(e3)];

 HighScoreEntry *e4 = [[HighScoreEntry alloc]initWithParameters:@"Harry":300];
 [hs addHighScoreEntry:(e4)];

 HighScoreEntry *e5 = [[HighScoreEntry alloc]initWithParameters:@"Tanya":];
 [hs addHighScoreEntry:(e5)];

 [hs persist];

 [hs readHighScores];

 [hs release];

}

Don’t forget to also add a reference to the libsqlite3.dylib for our database support,
and then build and execute your application. You should see the same output in the
debug window as before, because we didn’t remove this test code. It should look similar
to the following:

2011-08–18 21:29:39.639 StaticLibraryHarness[1034:207] NAME: Mark SCORE: 900
2011-08–18 21:29:39.641 StaticLibraryHarness[1034:207] NAME: Rachel SCORE: 700
2011-08–18 21:29:39.641 StaticLibraryHarness[1034:207] NAME: Oliver SCORE: 500
2011-08–18 21:29:39.642 StaticLibraryHarness[1034:207] NAME: Harry SCORE: 300

You have now created your first static library and referenced it from another application.
If your static library contained some “must-have” functionality, simply distributing this
library and the header file is all that would be required for another person to use it. It’s
this mechanism that third-party library makers use to share and deploy their libraries,
usually in a provisioning profile.

Creating an Assembly in .NET
Creating an assembly in .NET is straightforward and similar to the method shown for
Xcode 4. You can simply start by creating a blank Visual Studio C# solution and adding
your library code that defines a class and its functionality within a given namespace, as
follows:

Using System;
Using System.Text;
Using System.Windows.Forms;
Namespace TestLibrary
{
 public static class Test
{
 public static void TestMethod()
 {
 MessageBox.Show("You are in my library");

CHAPTER 8: Extend Your Apps: Extending Your iOS Application with Libraries 218

 }
}
}

Building this simple example will result in a .dll file, which is a dynamic library that you
can reference in another project, and then call the TestMethod() from a class instance of
Test. Make sure you reference the library in your project references.

Note that this is a private assembly and is linked to your application, a bit like a static
library. If you wanted this to be shared among many programs (stored in the Global
Assembly Cache of your .NET environment), then you would need to do a little more
work and make it a strong-named assembly. This allows it to be versioned and
authenticated. We won’t go into the details here, but here’s a hint: look at the
command-line utility called sn.exe.

The Apple Developer Agreement
When registering and paying for your subscription to be part of the Apple Developer
Program, you will be provided with a copy of the Apple Developer Agreement, a
document that describes what is permissible by Apple when using their tools and
technologies. The document is protected by a nondisclosure agreement (NDA), which
means you are not allowed to know what’s in it before you join. And when you have
joined, you’re not allowed to share its content! However, copies have been leaked to the
Internet through Freedom of Information Act requests.

Around the use of libraries more broadly, the Agreement in its more relaxed form (which
was put into effect in 2010), defines certain conditions under paragraph 3.3 (Program
Requirements for Applications), which describes some restrictions to consider when
writing your application. These conditions are as follows:

� Applications made with the iOS SDK can be distributed only through
the App Store, essentially meaning that black-market application
distribution networks such as Cydia are in breach of the agreement.

� Reverse-engineering is not permitted. Also, enabling others to do
reverse-engineering is not permitted.

� Apple may revoke your application’s membership from the App Store
at any time, even after it has already been approved.

� You may use only document APIs and in the manner prescribed. You
must not call any private APIs.

NOTE: It wasn’t until much later in 2010 that the requirements summarized here went into

effect. Previously, Apple was specific about the languages supported, which meant third-party

frameworks such as MonoTouch were in danger of being noncompliant.

CHAPTER 8: Extend Your Apps: Extending Your iOS Application with Libraries 219

If you don’t follow these restrictions, you’ll be in breach of the Agreement, and Apple
may choose to reject any application submitted to Apple’s App Store. But as long as the
resulting application does not download any code and conforms to API usage, it should
be permissible.

We’ll talk more about the Apple Developer Agreement in Chapter 9, which covers
deployment.

Third-Party Libraries
We’ve established that Apple finally saw sense and lifted previous restrictions, which
means that third-party libraries are more broadly supported. We’ve also established
which kinds of libraries exist and how you can use them under the Apple Developer
Agreement.

In Chapter 3, we looked at third-party solutions for writing applications. These third-
party frameworks come with a suite of libraries that provide the required functionality, so
they are always an option. But what if you want a smaller, more specific library to
provide functionality that will extend your application? Well, you’ll be pleased to hear
that they exist. Indeed, using the information you garnered about writing libraries, you
could even publish and make money from your own third-party libraries.

First, we’ll look at the two categories of third-party libraries, and then we’ll review some
of the more useful libraries currently available.

Categories of Third-Party Libraries
Third-party libraries fall into two general categories: commercial and open source.

As its name suggests, a commercial library is one that is owned by an organization that
places restrictions on its use and typically charges a fee for obtaining it, using it, or both.
For example, in the .NET world, it is common for developers to buy extensions to the
.NET library in the form of assemblies that do things like draw fancy graphics or
compress files. The same is true of Apple, and many commercial organizations sell
libraries for use on the iOS platform. But be sure to check the license agreements
associated with any libraries and their use of such licenses.

An open source library is a library whose use is restricted to a degree, for example,
under the GNU General Public License (GPL), but it is free to use.

Apple does, however, have its Developer Agreement, and your library must be
conformant. It also still reserves the right to refuse or to revoke any application in the
App Store. Again, this hasn’t won any favors in the community, but as you can see from
the App Store, it certainly has not put off people from writing applications with libraries,
free or otherwise.

CHAPTER 8: Extend Your Apps: Extending Your iOS Application with Libraries 220

Useful Third-Party Libraries
So we’ve touched on writing your own library, and consider the different types of
libraries you might find on the Internet. Let’s take a look at some example third party
libraries that exist and provide both a brief synopsis and an Internet URL for you to
access them.

NOTE: I do not recommend or imply any warranty on the use of these libraries. If you choose to
use them, this is your choice, and I cannot guarantee their functionality, performance, or that

they will be accepted by Apple for the App Store.

� ZBar–Barcode Reader: This can be found at
http://zbar.sourceforge.net/iphone/index.html and is both a
Library and Example Application (available from the App Store) that
enables you to write software to read a variety of different bar codes
using the iPhone’s camera and even link them to stores such as
Amazon or search engines such as Google.

� GData - Google Data: This can be found at
http://code.google.com/p/gdata-objectivec-client/ and provides
an API as an Objective-C based static library that allows access to a
variety of Google-based services and for you to read and write data.
For example, Google Analytics, Google Books, Blogger, and Google
Docs are all supported.

� Three20 – Facebook API: This can be found at
http://three20.info/, and while known as the Facebook API, this
isn’t strictly accurate. However, it is used by the Facebook Application
and many others to provide powerful view controllers, a photo
browser, and an Internet-aware table.

� iPhone Analyzer: This can be found at
http://sourceforge.net/projects/iphoneanalyzer/ and allows you to
analyze the contents of your iPhone device in great detail, including
plists, databases, and the internal file structure of your device.
However, at present iOS 4 is not supported.

� Leaves: This can be found at https://github.com/brow/leaves and is
a library for both the iPhone and iPad that provides page-turning
functionality like iBooks.

� Core-plot: This can be found at http://code.google.com/p/core-
plot/ and provides a plotting framework for the 2D visualization of
data on both the iOS and Max OSX.

CHAPTER 8: Extend Your Apps: Extending Your iOS Application with Libraries 221

Looking Elsewhere for Libraries
While I’ve highlighted some third-party libraries, many more exist in common
repositories for not just iPhone- or iPad-based libraries and source code, but also to
support other platforms, such as Mac OS X, Windows, and Linux. Here are two popular
sites:

� SourceForge: This is a library for sharing free open source software. It
supports many different platforms, including mobile iOS devices like
the iPhone and iPad. It can be found at http://sourceforge.net/.

� Github: Using the Git repository, GitHub is the home of many libraries,
including a lot of useful mobile iOS-based libraries. It can be found at
https://github.com/.

Summary
In this chapter, we’ve explored the concept of libraries, including iOS-provided libraries,
third-party libraries, and your own creations. We looked at the different types of libraries
and similarities to the .NET Framework and how to create your own static library, either
for use within your application or for distribution.

The different types of third-party libraries were then introduced, and we’ve provided
some examples of both the libraries, as well as popular repositories for libraries and
source code for iOS-based devices. Now we clearly didn’t list every library available.
There are far too many to list, and the number is growing by the day. However, this
introduction should help you to explore and discover libraries that suit your needs.

If you wish to write your own libraries, you can share these with others across the
Internet. However, as per the Apple Developer Agreement, please do be cognizant of the
restrictions applied to any application you write for a mobile device, and be conscious of
the powers that Apple has when submitting your application to the App Store.

 223

 Chapter

Get Published: Testing,
Deploying and
Distributing Your
Applications
The chapters thus far have taken you through everything from introducing the devices,
the software development kits, the language, and the tools to a series of chapters on
how to write your first iOS mobile device-based application. This knowledge culminates
with you having an application, or even a library, that you will want to test, deploy, and
publish—typically in that order. In this chapter you’ll use the features of Xcode 4 and the
iOS Simulator to thoroughly test your application. You’ll also test it on a real device
before you learn how to deploy and publish your application through the App Store.
Specifically, you’ll be looking at the following:

� Introduction to the testing features available to you.

� Overview of Xcode 4 and the iOS Simulator’s testing capabilities.

� How to deploy your application.

� Preparing to publish your application.

� Publishing via the App Store.

Available Test Features
There are a number of tools and techniques available to you for testing your application,
some with very advanced features. At a high level, you typically use a combination of
discrete unit based tests plus broader system-wide testing on both virtual (the simulator)

9

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 224

and physical (a real one) devices to ensure that your applications work. You’ll look at
these in turn.

Unit Testing
While creating your example projects and source code files, you may have noticed a
checkbox titled “Include Unit Tests.” An example is shown in Figure 9–1 when creating a
simple utility-based application called Calculator.

Figure 9–1. Creating a project with unit tests

After your project has been created, you’ll notice a folder (in addition to those that are
typically created) with the format of <project name>Tests. In this case, that folder is
called CalculatorTests; exploring this folder will display a header and implementation file
of the same name, which is provided for you to implement your unit tests.

Defining Your Testing Approach
As you’re already a seasoned .NET professional, the concept of unit testing will be
familiar to you. However, how Xcode embraces this will not, and perhaps other testing
concepts such as integration testing or even Test Driven Development may be new to
you also. Let’s take a brief tour through these terms before you look at Xcode’s support.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 225

Unit Testing
To ensure a baseline of understanding, let’s briefly recap the term unit test. A unit test is
code written specifically to test a particular part of your application’s code. In the world
of testing you’ll have a series of test cases that assert that the module you are running is
behaving as expected. For example, if a method was written to add two numbers, you
may have test cases that check if the addition is performed correctly and that if you
pass invalid parameters it handles such a circumstance elegantly.

This is no different in any other language, certainly not when writing .NET based
applications. In the days before Visual Studio supported unit testing or before it even
existed, it was common practice to use tools such as NUnit to implement unit tests
(Java uses JUnit). Thankfully, Visual Studio has caught up and has a plethora of testing
capability including a Unit Test framework with unit tests much like Xcode 4 (but I would
argue even more advanced).

Integration Testing
Unit testing is, of course, only the start of your testing journey. It helps to test discrete
units of code, but when your application starts to link these together, you’re into the
realm of integration testing. The key distinction between integration and unit testing is
that unit testing usually supposes the quite simplistic stand-alone testing of single
“units” and does not require more complex test environments or tools. Xcode doesn’t
make any specific provision for integration testing, other than writing your own unit tests
that integrate other unit tests, but other options are available to you. For example, iCuke
allows you to write integration tests without any changes to your application. iCuke uses
Cucumber, a behavior-driven test environment (see more in the “Test Driven
Development” section) to implement its functionality. Both are fairly complex products
and not the core scope of this book, but I recommend you take a look at them. You can
find more information on iCuke at https://github.com/unboxed/icuke, and Cucumber at
http://cukes.info/.

Test Driven Development

You’ve now looked at tools that support concepts such as integration testing but rather
than focus on testing the code’s implementation, an alternative is to look at the
functionality or behavior expected. In this example, you start by writing the test case in
the first instance, articulating its behavior. Specialist products such as iCuke and
Cucumber do this, but you can achieve a more limited Test Driven Development
approach using Xcode.

Again, Test Driven Development (TDD) involves writing test cases before any production
code. In Xcode, you’d achieve this by generating your class with unit testing support
included, but focus on writing your unit tests in the first instance by calling your empty
class implementations. These tests will fail initially, but as you implement your class,
these should pass if they demonstrate the required behavior.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 226

Given the importance of using unit tests as building blocks for a number of test
strategies, let’s take a look at how to implement them using Xcode.

Writing and Running Your Unit Tests
So, having created your project with unit tests, you need to perform a series of steps to
implement your tests. If you examine the example implementation file provided, you’ll
notice two methods for processing code before the test begins (setup) and then after the
test has concluded (teardown). It also provides an example method for you to change as
its default implementation— the method STFail(), indicating that tests have yet to be
implemented.

At this point, rather than creating unit tests for the Lunary Lander game, let’s focus on a
much simpler example to convey the methods and tools. For this simple example, you
create a very simple Calculator class with a Header and Implementation file and a single
method called add() that returns the addition of the two numbers passed. First you’ll
define your class declaration as shown in Listing 9–1.

Listing 9–1. Calc.h

#import <Foundation/Foundation.h>

@interface Calc : NSObject {
}
- (int) add:(int)num1 to:(int)num2;

@end

Next you’ll add your implementation of the class, as shown in Listing 9–2.

Listing 9–2. Calc.m

#import "Calc.h"

@implementation Calc

- (int) Add:(int)num1:(int)num2
{
 return (num1+num2);
}

@end

You then implement your unit tests by providing an implementation for the test cases,
changing the testExample() method to test the add() method. You can see the example
implementation in Listing 9–3.

Listing 9–3. UnitTest Implementation

#import "CalculatorTests.h"

@implementation CalculatorTests

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 227

- (void)setUp
{

 [super setUp];

 // Set-up code here.
}

- (void)tearDown
{
 // Tear-down code here.

 [super tearDown];
}

- (void)testExample
{
 Calc *calculator = [[Calc alloc] init];
 int v = [calculator add:5 to:5];
 if (v != 10)
 NSLog(@"add is not working");
 else
 NSLog(@"add is working");
 [calculator release];
}

So, ensuring that you’re building against the iOS Simulator, you can now choose to test
your product by choosing “Build for Testing” from the Product menu or using the
shortcut key combination (��U). This will build your application and include the
necessary debug information, which when executed for testing using the Test option or
shortcut combination of (�U) will execute your application and the unit test cases
selected (more on this in a minute), outputting a whole bunch of diagnostic information
to your debug log from the unit test code. In the example, using the Log navigator (�7),
you can jump to the log file for your executed tests. The log should display something
similar to the following output. Your testExample method’s specific output is in bold.

Test Suite 'All tests' started at 2011-08-20 11:06:32 +0000
Test Suite '/Developer/Platforms/iPhoneSimulator.platform/Developer/SDKs/�
iPhoneSimulator4.3.sdk/Developer/Library/Frameworks/SenTestingKit.framework(Tests)'�
 started at 2011-08-20 11:06:32 +0000
Test Suite 'SenInterfaceTestCase' started at 2011-08-20 11:06:32 +0000
Test Suite 'SenInterfaceTestCase' finished at 2011-08-20 11:06:32 +0000.
Executed 0 tests, with 0 failures (0 unexpected) in 0.000 (0.000) seconds

Test Suite '/Developer/Platforms/iPhoneSimulator.platform/Developer/SDKs/�
iPhoneSimulator4.3.sdk/Developer/Library/Frameworks/SenTestingKit.framework(Tests)'�
 finished at 2011-08-20 11:06:32 +0000.
Executed 0 tests, with 0 failures (0 unexpected) in 0.000 (0.001) seconds

Test Suite '/Users/mamonem/Library/Developer/Xcode/DerivedData/�
Calculator-ecegbkyjngnxqjgpddxmtkxtvkzp/Build/Products/Debug-iphonesimulator/�
CalculatorTests.octest(Tests)' started at 2011-08-20 11:06:32 +0000
Test Suite 'CalculatorTests' started at 2011-08-20 11:06:32 +0000
Test Case '-[CalculatorTests testExample]' started.
2011-08-20 12:06:32.581 Calculator[791:207] Add is working

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 228

Test Case '-[CalculatorTests testExample]' passed (0.001 seconds).
Test Suite 'CalculatorTests' finished at 2011-08-20 11:06:32 +0000.
Executed 1 test, with 0 failures (0 unexpected) in 0.001 (0.001) seconds

Test Suite '/Users/mamonem/Library/Developer/Xcode/DerivedData/�
Calculator-ecegbkyjngnxqjgpddxmtkxtvkzp/Build/Products/Debug-iphonesimulator/�
CalculatorTests.octest(Tests)' finished at 2011-08-20 11:06:32 +0000.
Executed 1 test, with 0 failures (0 unexpected) in 0.001 (0.003) seconds

Test Suite 'All tests' finished at 2011-08-20 11:06:32 +0000.
Executed 1 test, with 0 failures (0 unexpected) in 0.001 (0.006) seconds

You can see from the diagnostic information there are many performance-related
timings, allowing you to see how performant your methods are. Additionally, you can
implement many test cases within your code and are not limited to the single
testExample() method. Just go ahead add more methods, each representing a
particular test case.

But what if you don’t want to execute ALL the test cases every time you test your
application? What if you want to test only one or two? This is expected and easily
provided for within Xcode. Simply edit your project scheme using the Scheme editor
(�<), which will display the dialog box that allows you to manage a number of aspects
of your application, including the tests performed. Choose the test item in the left-hand
panel, and you’ll see the tests you can choose from (see Figure 9–2).

Figure 9–2. Choosing which tests to execute from the Scheme editor

Using this dialogue box, you can choose which of the unit tests are executed when you
test your application. Select those that you wish to run using the checkbox provided
against each test. When you’ve selected those tests you wish to take place, select the

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 229

OK button; this will save your scheme, meaning that when executing your application,
these unit tests will be executed. You can then use the Log navigator to examine the
output and the test results.

Using the Xcode 4 Debugger
So now you know some of the debugging capabilities of Xcode 4 through the generation
and use of unit tests. However, it can do much, much more. The really advanced
features such as profiling will be covered a little further into the chapter, so let’s take a
look at some other slightly less advanced features that are incredibly useful when testing
your application.

Xcode 4 features a debugger with very similar capabilities to that of Visual Studio or
other integrated development environments. It allows you to place breakpoints in your
code—specific points at which execution stops for you to examine your application’s
state. Breakpoints allow you to walk through your code line by line and examine all
aspects of your application’s execution including variables, their values, etc. This works
when running your application or testing it.

NOTE: When debugging your application, you must compile it for debug output. This lets the
compiler add additional information to your code that allows you to perform the debugging

features. It also adds a considerable size to your compiled code, so remember to switch it off by

compiling your application for Release when you deploy your application.

So, let’s use the previous example and ensure that you are building for debug. In the
CalculatorTest.m implementation file, let’s add a breakpoint. This can be done by
simply clicking in the gutter to the left of your source code window. Doing so will place a
dark blue breakpoint indicator in the gutter, indicating that your code will stop here when
debugging. In Figure 9–3 you can see a breakpoint in the gutter; you can also see other
breakpoints that were previously been added but are switched off and inactive. These
are indicated by a lighter blue breakpoint indicator and can be re-activated simply by
clicking them.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 230

Figure 9–3. Breakpoints, both active and inactive, in the code window gutter

Once breakpoints have been added, you can build your application for testing (��U) as
before and then test your application (�U). Your application will launch in the simulator
as before. Your unit tests will start to output debug text to the log file, but your
application will stop at the breakpoint. When it does this, it will also display the Debug
window automatically at the bottom of your screen. This is shown in Figure 9–4.

Figure 9–4. Application stopping at a breakpoint and showing the Debug window

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 231

The left-most pane shows the navigator windows, which when debugging default to the
Thread pane, showing threads (that is parallel units of code execution) of your
application and their call stack, with the Debug window below the code pane. The
Debug window shows the local variables in the Local pane, which can be explored
simply by navigating through them. The application’s output is sent to the Console
window, stored in a log file, but shown in the Output pane, which can be unfiltered (All
Output), of filtered by Debugger output or the Target output.

The header bar for the debug window allows you control how you navigate through your
code. Having hit the breakpoint, the icons have the meanings defined in Table 9–1.

Table 9–1. Debug Shortcut Icons

Minimize debug window

Continue program execution

Step over the breakpoint

Step into the code at the breakpoint

Step out of the code at the breakpoint

You can also use the search box to look for/filter the variables you may wish to examine.

Using the debugger, defining strategic breakpoints, and examining variable values, you
can quickly decide whether the path of execution your application takes is as expected;
more importantly, you can also look how variables are being initialized and whether this
is as you intended.

Finally, if you wish to remove all breakpoints, active or inactive, use the Breakpoint
Navigator (�6) to see all breakpoints defined in one place and remove them or activate
them. This can be seen in Figure 9–5.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 232

Figure 9–5. Breakpoint Navigator

Other Debugging Options
There are other options available to you when debugging your application—not just
traditional techniques such as using the console to output debug text, but advanced
features such as Profiling. Let’s look at them next.

Using NSLog to Capture Diagnostics
Using the Xcode 4 tool to debug your application is easy and feature rich—much the
same as using tools in the .NET environment, such as in Visual Studio. Before such tools
were available, you were far more limited, but some of the older tools can still be useful.
For example, you may still find it convenient to add some debug code to your
application that simply outputs some diagnostic information to the Debug window. This
might be appropriate if you don’t want to go to the extent of creating unit tests and
simply want some detail diagnostics in real time.

In Objective-C, you can use the NSLog command to send diagnostic text to the Debug
window (also known as the Console window) and include variable values through
parameter substitution.

NSLog works like sprintf() works in C/C++ languages, or like Debug.WriteLine in .NET
within the System.Diagnostics namespace. This method takes a string, within which
“specifiers” are defined and substituted by the parameters you pass to the method
following the string declaration. Substitution of the specifiers occurs in the order you
pass them. The specifiers are show in Table 9–2.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 233

Table 9–2. NSLog Specifiers

%@ Object

%d, %i Signed int

%u Unsigned int

%f Float/double

%x, %X Hexadecimal int

%o Octal int

%zu Size_t

%p Pointer

%e Float/double (in scientific notation)

%g Float/double (as %f or %e, depending on value)

%s C string (bytes)

%S C string (unichar)

%.*s Pascal string (requires two arguments, pass pstr[0] as the first, pstr+1 as the second)

%c Character

%C Unichar

%lld Long long

%llu Unsigned long long

%Lf Long double

Profiling Your Application
Profiling goes beyond simple testing and allows you to use the advanced features of
Xcode 4 to find detailed code errors such as memory leaks or why a particular piece of
code may be running slowly. A full explanation of the Profiler is beyond the scope of this
chapter as it’s a complex topic and feature-rich tool. However, it’s worth considering it

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 234

at a high level. You can refer to a more advanced reference guide or the iOS Developer
Library if you choose to implement profiling in your applications.

Your application should be built for profiling (��I) beforehand to ensure that all the
necessary instrumentation is available. To launch the profile, you can choose Profile
from the Product menu or use the �I shortcut with the application open in Xcode. Once
launched, the Profiler will look like that shown in Figure 9–6.

Figure 9–6. Profiling with all its options visible

The tool provides a number of templates that are tailored to understanding your
application in a specific manner, whether looking for memory leaks, timing the execution
of your code, or looking at how memory is allocated. The amount of data it collects and
makes available is immense—comparable with the many .NET-based profiling tools on
the market—and it’s free in Xcode 4.

Let’s take a quick look at one profile template as an example; the most obvious would
be the Leaks profile, a common one to use. Select this template for a simple project
(see Figure 9–6), such as the Calculator application, and select Profile (the screen in
Figure 9–7). The application is running in the Profiler and all allocations are displayed.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 235

NOTE: While profiling provides a number of useful templated instruments such as Memory
Leaks, if you’re using Automatic Reference Counting (ARC), memory leaks will be a thing of the

past.

Figure 9–7. Profiler with All Allocations displayed

If you switch to the Leaks view, you will be presented with a specific view of where
memory leaks have been detected. In Figure 9–8, you’ll see that the default Calculator
application has no leaks, as a good program shouldn’t.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 236

Figure 9–8. Leaks view within the Profiler with no leaks

Not much of a test, so let’s be naughty! Let’s declare a simple UIImage member variable,
allocate memory, and initialize the object with this line:

UIImage *img = [[UIImage alloc] init];

But don’t add the corresponding release statement. Now rebuild your application for
profiling and view the Profiler. It should present a screen similar to that in Figure 9–9
when you select the same Leaks view.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 237

Figure 9–9. Profiler displaying memory leaks

You can clearly see that memory leaks have been detected, as expected; it highlights
what type of object is leaking, how much is being leaked, and which library and which
view is leaking it. All of this information is invaluable in tracing the fault.

The Profiler and its other templates provide similar detailed information allowing you to
fine tune or just understand how your application is executing in minute detail.

Play around some more. This is a great tool for learning the inners of your code, the iOS,
and its SDK.

NOTE: You may find profiling useful if you choose to complete your Lunar Lander application.

See Appendix A for a discussion on how to complete the game.

Using the Simulator’s Debug Features
So, you can do quite a lot with Xcode 4 around debugging, but there are some things
that are not possible, especially if they are specific to the device. For example, how do
you test how your application behaves to a change in orientation, or how your
application scopes with lack of memory? The features of Xcode 4 don’t help you with

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 238

simulating such things. Thankfully, however, the simulator itself has a number of
debugging features of its own.

When the simulator is open, the debugging features are located under the Hardware
menu. Let’s go through them one by one.

Changing the Device
An obvious but useful feature is the ability to change the actual device type. Under the
Device menu are options to simulate the iPad and the iPhone, including iPhone 4 Retina
versions and other iOS versions provided as part of the iOS SDK, although excluding the
iPod Touch. Simply choose the device type you want and the simulator will respond by
displaying the relevant device and simulating it.

Changing the iOS Version
The next useful feature is to simulate different versions of the iOS. The SDK comes with
the different supported versions of the iOS up to the point the SDK was released, so
SDK 4.3 includes all versions of the iOS from 3.2 to 4.3. This is useful for backward
compatibility testing against the device and iOS combinations your application targets.

Simulating Movement
Clearly, if you had the physical device, then you could test rotating it and shaking it. This
is not so easy with a simulated device. You can rotate your Mac and shake it all you
want—it won’t help. However, the simulator provides menu options to both rotate the
device to the left and right, and to simulate a shake gesture, all so that you can cope
with such events in your application and test them in the simulator.

Triggering Low Memory
Your mobile device has a finite amount of memory, and every time you open an
application, it will consume some of that memory. Unless you specifically choose to
close the application down using the double-click of the Home button, that memory will
remain used if you’re using iOS 4.0 or above. On the older versions of the iOS, the
applications did not retain memory as multitasking wasn't supported. So at some point
your application might hit low memory, and it knows this because the iOS sends a low
memory event (the didReceivedMemoryWarning event) to your application for it to
handle. On receiving this event, you may choose to cope with it by releasing resources
you no longer need or can afford to reload, for example.

To trigger such an event in the simulator, you can select the Simulate Memory Warning
menu item to fire the event into your application so you can test its response.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 239

Other Features
There are some additional features that aren’t really related to debugging your
application but act as shortcuts or assistants to the whole testing process. For this
reason, I’ll mention them for completeness.

� Home simulates pressing the home button.

� Lock simulates locking your device.

� Toggle In-Call Status Bar switches on the in-call status bar, thus
reducing the user interface space.

� Simulate Hardware Keyboard switches your Mac keyboard to the
keyboard for your iPhone device. It’s good for entering text into your
application.

� TV Out sends the output to the TV Out port of your Mac using the
resolution chosen under this option.

Testing on Real Devices
The iOS Simulator is an amazingly useful tool, especially for quickly testing your
applications on a number of different devices and iOS versions. But it’s important to
understand that testing on the simulator alone is insufficient. For example, if you want to
test the real-world performance of a device with multiple applications running and
varying external conditions such as poor signal strength (whether it be Wi-Fi, GPRS, 3G
or GSM), then there really is no substitute for testing on a real device.

So, while I encourage you to use the simulator, be sure to test your applications on all
devices you intend to target and under a variety of real-world scenarios. You can do this
by following the instructions that follow on application deployment, but this does require
you to be a signed up and paid member of the Apple Developer Program.

Some of the real-world considerations you might consider when testing your application
are as follows:

� Signal Strength: I’ve touched on this but your wireless network
connection (Wi-Fi) or your mobile signal, whatever you might be using,
will not always be at full strength, and if your application relies on this
kind of network connectivity, you should test different signal-strength
scenarios.

� User Interface: Consider what your application’s user interface looks
and feels like, especially when using gestures, and consider the
different characteristics of the human tester. For example, get different
people to use it (sometimes called usability testing).

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 240

� Speed: Try your application out, not just running on its own, but with
other applications running. You can trigger low memory within the
simulator, but you can proactively restrict device memory above this.
Real-world performance testing is important for this very reason.

Also consider testing your application beyond your own individual testing. For example,
it’s not unusual to offer a beta program where you offer a limited distribution of your
application to beta testers who get the application for free but provide you with
feedback.

Deploying Your Application
To deploy your application to a device, any device, you need to sign it; that is, you need
to add a digital certificate to your application that proves its authenticity. The iOS on
your device will check all applications’ authenticity before they are executed. This is a
security measure to make sure that no applications make their way onto your device
that might cause harm.

So, you need to sign your application, but it’s not quite as straightforward as that. As
explained earlier in the book, Apple requires that you are a registered and paid-up
member of its iOS Developer Program in order for you to sign and submit your
application. Thus, in order for you to deploy your application to your iOS device and
submit it to Apple’s App Store, you will need to join the program at a cost of $99. This
will allow you to test your applications directly on the iPhone device and also enables
support for ad hoc distribution and for you to publish to Apple’s App Store.

NOTE: You will probably know that you can jailbreak your iPhone device; this removes such
restrictions and allows you to install applications directly onto your device using a variety of
different tools. However, since Apple frowns on such activity, we are not going to promote it in
this book. We will leave this for you to investigate if it’s something you are interested in. Be

warned: requiring a jailbroken iOS device will limit your distribution options.

Let’s go ahead and complete some of the remaining tasks in order to allow you to
provision applications to both your mobile device and the App Store. Most of this can be
done from the Provisioning page, which you access by selecting the iOS Provisioning
Portal in the Member Center, shown in Figure 9–10.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 241

Figure 9–10. Apple Member Center

The Member Center also provides a number of useful resources, including technical
support.

Creating a Certificate to Sign Your Application
The provisioning page allows you to upload a certificate request from your computer for
it to authorize. You can subsequently use this certificate to sign your applications. To
create this request, open the Keychain application from the Utilities folder within your
Applications. Once launched, select the “Request a Certificate from a Certificate
Authority” option from the menu, as shown in Figure 9–11.

Follow the on-screen instructions and enter your name and e-mail address, choosing to
save the request to disk. You’ll need this file for the Provisioning page.

Once saved, go back to the Certificates section of the Provisioning Portal. Under the
Development tab, you’ll notice instructions on how to complete the process and an
option to upload your request complete with a Choose File button. Select this, and then
point it at the file you just saved from the Keychain request. This will upload the request
to Apple for processing. Initially it will show as Pending, but in a relatively short space of
time, it will be processed and its status changed to Issued, as shown in Figure 9–12.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 242

Figure 9–11. Requesting a certificate using Keychain

Figure 9–12. Issued Certificate on the provisioning page

You can now download this certificate and install it within your Keychain by simply
double-clicking it and following the on-screen instructions.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 243

Registering Your Device
Next, you will need to register your mobile device for development. Again, this can be
done through the Provisioning Portal. First, you’ll need the Unique ID of your device. You
can use the Devices section in Xcode 4’s Organizer to retrieve this ID. With your device
connected to your computer, launch Xcode 4 and it will automatically take you to this
page, showing the Unique ID that you need. You can see this in Figure 9–13.

Figure 9–13. Using Xcode’s Organizer to retrieve your device’s Unique ID

Make a note of this device ID, and then go back to the Provisioning Portal and the
Devices page. Here you can choose the Add Devices button, shown in Figure 9–14, and
enter a name for the device (which can be whatever you want) and the Unique ID, taken
from the Xcode screen. Complete this screen and your device will be registered within
the Provisioning Portal.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 244

Figure 9–14. Registering a device

You may have noticed the Use for Development button on the Xcode Organizer screen,
suggesting it will allow you to use the device for development. Xcode has the ability to
create, download, and install on your behalf a Developer Certificate, Distribution
Certificate, and a basic Developer Provisioning Profile (known as the Team Provisioning
Profile), all with the click of a button.

So, go back to the Organizer screen and choose this option by selecting this button and
following the simple on-screen instructions, which simply prompt you for passwords at
certain stages. Once complete, your device will be registered under Xcode for
development.

Using the Provisioning Portal to Get Started
The Provisioning Portal also provides a Launch Assistant to help you to install the
necessary certificates and create the required provisioning profiles, allowing you to start
to build applications. It’s pretty straightforward and accessed from the Provisioning
Portals home page, but I’ll take you through it for completeness and to explain some
points. First, select Home on the Provisioning Portal and choose the Development
Provisioning Assistant. You’ll be presented with the screen shown in Figure 9–15 where
you will create an App ID.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 245

Figure 9–15. Creating an App ID

The first step is to create an App ID, a unique ID associated with your application. You
can choose to create an App ID here manually or select the wildcard option from the list
that automatically chooses an App ID for any app you deploy. Unless you specifically
want to associate a single App ID with multiple apps, I suggest you choose this option.

Pressing Continue will take you to the next stage, shown in Figure 9–16.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 246

Figure 9–16. Choosing an Apple Device

This stage involves choosing the device you wish to use. Because I’ve already registered
mine, it appears in the Use an existing Apple device list. If it’s your only registered
device, it is automatically selected. So leave it as is and move on using the Continue
button.

The Development Certificate screen in Figure 9–17 opens.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 247

Figure 9–17. Choosing a Development Certificate

This step involves choosing your iOS Development Certificate, which again should
already exist from the previous steps. Leave this screen with your existing Development
Certificate selected and again move on using the Continue button. The Provisioning
Profile page will be displayed next, seen in Figure 9–18.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 248

Figure 9–18. Provisioning Profile page

A Provisioning Profile is a collection of data collected under a named profile and
required for you to install applications on your device. On this screen, give your profile a
name and the rest is auto-populated. Then choose the Generate button, which will
generate the profile. When complete, you’ll see a screen similar to that in Figure 9–19.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 249

Figure 9–19. Provisioning Profile generated

You can then continue. You’ll be presented with instructions on how to install the
Provisioning Profile, shown in Figure 9–20.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 250

Figure 9–20. Installing your Provisioning Profile

Follow these instructions and your Provisioning Profile will be installed. Finally, check
that the installation has completed by looking in Xcode’s Organizer to see that the profile
is present. It should be from the work Xcode has already done anyway.

Build and Deploy Your Application
So you’ve done all the preparatory work. Now let’s build an application and deploy it on
your device. Open up an application you wish to deploy in Xcode. I started with the
initial Hello World program, but in your case it will be the application you wish to deploy.
In Xcode, the main thing you need to do is to sign the application. Remember all the
steps you went through to create the certificates and Provisioning Profile?

So, open up your application and select Build Settings in the main pane (see Figure 9–21).
In the Code Signing section, choose an appropriate profile; given I’m still developing, I
chose my development profile but if you were targeting the App Store or Adhoc
provisioning (more on these later), then you would choose profiles that reflect this.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 251

Figure 9–21. Signing your application in Xcode

At this point, before you build your application, check that your application identifier is
correct under Summary. This identifies the application on your device. In Figure 9–22
you can see I’ve added one that includes my domain and the application’s title.

Figure 9–22. Adding your Application’s Identifier

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 252

Now go ahead and build your application, ensuring that your target scheme in Xcode is
for your target device and not left on the simulator. Also check that your application icon
is included as an icon.png file and the filename is included within your info.plist file by
using the Icon file setting under the Info tab. When you start to build your application,
you will be prompted to accept its request to sign the application using your Keychain
certificate. Accept this request, and allow the build to complete and the signing of your
application to happen. You now have an application built and ready for deployment.

To deploy your application on your device, open up the Xcode Organizer and select your
device in the left hand pane; you’ll notice that an Applications option exists. You can see
this and the installed application in Figure 9–23.

Figure 9–23. Xcode’s Organizer with Device and Applications

At the bottom of the Applications pane you will notice two options, Add and Delete.
These allow you to add or delete an application from your device. Choose Add. At the
dialogue that requests you locate application to add, point it at the Hello World
application binary that you just built in Xcode. Alternatively, you can drag the executable
onto this page. In either case, this will install the application to your device. Take a look
at your mobile device when complete and you should see your application there, ready
to test!

You have now built and deployed your first Apple mobile device application. You can
use this to do some real-world testing and when happy with it, move to the next stage,
which is deployment to either the App Store or via another mechanism called Adhoc
deployment.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 253

Publishing Your Application
Once you’ve tested your application on your local device, you are ready to publish it to
other devices. Here you have two options: Adhoc deployment or deployment via the
App Store. The first thing to note is you’ll need Provisioning Profiles for each, and these
are easily set up through the Provisioning Profile page, as shown in Figure 9–24.

Figure 9–24. Distribution profiles on the Provisioning Profile page

As you can see, I’ve created one distribution profile for both Adhoc and App Store
deployment. I’ll use these later in Xcode.

Publishing via the Adhoc Mechanism
The Adhoc mechanism allows you to distribute your application to up to 100 other iPad,
iPhone, or iPod Touch users using e-mail or the Internet as a distribution mechanism.
From there the user can download and install the application.

The first thing to note is that your application must be built against a profile that is
configured for Adhoc deployment. You do this through the Provisioning Profile page. In
the Build configuration for your application under Code Signing, choose the Adhoc
profile for your build and build the application as before.

Once built, you will need to distribute both the application (usually archived) and the
Adhoc Distribution profile (.mobileprovision file) to allow the other users to install it.

The installing user drags these onto The Library � Applications folder in iTunes. If the
application has been archived, they will need to unarchive the file to leave the .app
binary, and drag this across.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 254

The application can then be synced as normal with the device using the iTunes sync
feature. The application should be then ready to run on the device.

Publishing via the App Store
To publish your application to the App Store, you have to follow a similar routine in that
your application must be built and signed against an App Store Provisioning Profile. To
do this, you follow the same instructions and change your build settings in Xcode to sign
your application on compilation but in this instance, choose the App Store Provisioning
Profile.

Once built, you’re ready to submit your application to the App Store. To do this, go to
the Member Center from the Apple Developer page. On the home page, just beneath the
Provisioning Portal link, you will see a link to iTunes Connect. If you wish to jump
straight there, navigate to https://itunesconnect.apple.com in your favorite browser.

But wait!

Preparing for Your App Store Submission
Just before you submit your application, to ensure the best possible chances of a
successful acceptance, I recommend you review the App Store Review Guidelines for
iOS just one last time. It’s not a small resource, but Apple reserves the right to refuse
any application that doesn’t comply. You can find a copy at
https://developer.apple.com/appstore/resources/approval/guidelines.html or via
the Member Center. In fact, there is a very good resource center that provides all
manner of information to help you submit your application to the App Store, which can
found at https://developer.apple.com/appstore/.

In addition to your application binary, you will need to complete information for a
number of attributes that accompany your application. You might as well get these
ready, because you’re going to need them. They are

� Application name

� Application description

� Primary and secondary
category

� Subcategories

� Copyright

� App rating

� Keywords

� SKU number

� Application URL

� Screenshots

� Support URL

� Support e-mail address

� End user license agreement

� Pricing, available date, territories

� OS binaries: Includes 57px and an
optional 114px hi-res icon for iPhone and
iPod touch or a 50px and 72px icon for
iPad using iTunes Connect

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 255

iTunes Connect is a suite of web-based tools created for you to submit and manage
apps via the App Store. In iTunes Connect you will be able to check the status of your
contracts, manage iTunes Connect and test users, obtain sales and finance reports,
view app crash logs, request promotional codes, and much more.

It’s a pretty comprehensive suite so I’m not going to cover the whole suite in fine detail.
There is a very good developer guide that does that for you at
https://itunesconnect.apple.com/docs/iTunesConnect_DeveloperGuide.pdf.

However, I will take you through the basics of submitting an application to the App
Store, assuming that you’ve already completed all of the preparatory work mentioned
earlier.

So, once again, visit https://itunesconnect.apple.com and log in. Once you’ve done this,
you will be presented with the iTunes Connect Home Page, as shown in Figure 9–25.

Figure 9–25. iTunes Connect home page

Once you’re at the home page, choose the Manage Your Applications link. This allows
you to manage your applications within the App Store and add new applications. The
first time you enter this page, the list will be empty. That’s because you haven’t
uploaded any apps yet. You can see this in Figure 9–26.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 256

Figure 9–26. Empty Application list

Choose the Add New App button. This will prompt you to enter information relating to
your application. Be warned; they require a lot of information, hence my
recommendation for you to get it ready before you commence your upload.

I’m not going to list all the fields and their meanings. There are many, and as mentioned,
the iTunes Connect Developer Guide does a great job of describing this information and
its purpose.

Once you’ve entered the information required, you will be asked to upload some
binaries. These include the various images to accompany your application, including
icons for the application and screenshots. Once all of this information is entered and the
image resources are uploaded, you will be taken to the App Summary page. On this
page are additional buttons to the right of the page that allow you to manage further
information about your app, such as localization and pricing.

Uploading Your Application Binary
On the Version Details page, click the Ready to Upload Binary button. You’ll have to
answer some final questions about Export Compliance. Then, depending on whether
you are adding a new application or updating one already uploaded, you’ll be taken to
the Application Loader Instruction page or the Version Release Control page
accordingly.

If you are using iOS SDK 3.2 or later, you already have Application Loader stored on
your computer in your Utilities folder at
/Developer/Applications/Utilities/Application Loader.app.

You also have the option of delivering from Xcode, which also happens to utilize the
same Application Loader technology. See the Using Application Loader section in the
developer guide to learn more about how to deliver your binary using this mechanism.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 257

Once the Application Loader has been started, you be presented with a screen like the
one in Figure 9–27.

Figure 9–27. Application Loader start screen

Once you hit Next, you’ll be asked to enter your login details, and then the application
will provide you with a list of applications it is expecting an upload for. If you didn’t
successfully complete the process of adding your application via the iTunes Connect
page, you’ll see a screen similar to that in Figure 9–28.

Figure 9–28. No eligible applications were found.

This indicates that you’ve not added your application through iTunes Connect, or if you
thought you had, it failed. If you did upload the list correctly, you will be prompted to
choose an application from the drop-down list, which contains all the applications you’ve
uploaded. Choose the appropriate application from the list, as shown in Figure 9–29.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 258

Figure 9–29. Choosing your App Store application binary to upload

Once you’ve chosen the application you’re adding to the App Store and click Next,
you’ll be asked to complete a series of questions. These include confirmation that
you’ve tested and qualified the binary on iOS, and then you will be asked to choose
the binary for the application to upload. Using the Choose button, select your
application package (this is your application compressed into a single .zip file), as
shown in Figure 9–30.

Figure 9–30. Choosing your application package to upload

Once chosen, you will be presented with the summary screen shown in Figure 9–31.
You’ll have the option to submit the application by selecting the Send button or cancel
the whole process. Select the Send button.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 259

Figure 9–31. Summary Application submission screen\

This will then submit your application to the App Store, showing a screen similar to that
in Figure 9–32.

Figure 9–32. Submitting your application to the App Store

Once uploaded successfully, you will see a screen confirming this and reminding you
that you will receive an e-mail confirming the upload and at any point, you can use
iTunes Connect to track its process through the Apple approval process.

Additional Resources
The process of submitting your application is now complete. You have tested your
application using Xcode features such as unit testing, the iOS Simulator, and real-world
device testing. You have also submitted your application to the App Store. However, the
themes of testing and iPhone marketing\submission are significant topics, so I’ve
highlighted some additional reading material that explores these topics in much more
detail.

CHAPTER 9: Get Published: Testing, Deploying and Distributing Your Applications 260

� Design Driven Testing: Test Smarter, Not harder (ISBN13: 978-1-4302-
2943-8) brings sanity back to software development by restoring the
concept of using testing to verify a design instead of pretending that
unit tests are a replacement for design.

� The Business of iPhone and iPad App Development: Making and
Marketing Apps that Succeed (ISBN13: 978-1-4302-3300-8) shows
you how to incorporate marketing and business savvy into every
aspect of your iPhone and iPad apps design and development
process.

These resources are in addition to those included as part of the Apple Developer
Program and iOS Development Centre (see http://developer.apple.com).

Summary
In this chapter you learned how to test your application using features found in both
Xcode and the Simulator. You also learned how to get your machine, including your
Xcode installation, ready for provisioning applications to your own device as well as
provisioning using the two mechanisms recognized by Apple: Adhoc and the App Store.

You looked at how to set up local certificates and Provisioning Profiles to make this
possible and how to use both the Provisioning Portal and iTunes Connect on the home
page of the Member Center. After successfully deploying to your local device, you briefly
looked at how to provision using the Adhoc method and then you looked in detail at
using iTunes Connect to provision an application to the App Store.

You are now ready to make millions of dollars (hopefully!) using the guidance provided in
this book to both create your iOS-based application and submit it to the App Store for
others to purchase.

 261

 Chapter

Extend Your Skills:
Advanced Features
In this chapter you take a look at some of the more advanced features available through
the SDK and as part of the associated Apple tools. These features build on the
experience you’ve gained so far but look at capabilities specific to certain devices and,
in some cases, how you can target more than one iOS-based device with a single code
base. You also consider the future for iOS development technologies.

Specifically in this chapter you look at the following:

� Using your device’s Global Positioning System (GPS)

� Exploiting your device’s camera

� Using the accelerometer

� Detecting gestures

� Writing multidevice-compatible code

� What’s on the horizon for iOS development

Using the Global Positioning System
Your iOS device, when fitted with a Global Positioning System (GPS), has the ability to
determine its location anywhere in the world. There are other methods available for
determining your location, but GPS is by far the most accurate. The iOS SDK exposes a
variety of location-based services and determines which mechanisms to use under the
hood. This means you don’t have to concern yourself with the different technologies;
you simply state some characteristics such as desired accuracy, and the device does its
best.

10

CHAPTER 10: Extend Your Skills: Advanced Features 262

Overview of Location Services
The SDK provides a class called the LocationManager, which through a simple API
exposes location-based services while hiding which technologies it uses. However, you
should still carefully consider the way you use these services. For example, you should
not allow your application to constantly poll for your location, because this affects not
only application performance but also battery performance. Your application’s
implementation should therefore poll for location updates as required; but if you do not
need continuous updates, you can simply wait for the location update event to be fired
and then stop updates until you are ready to start and determine the location again.

As you may have guess by now, you can control whether the location manager sends
updates about location changes. You do so by calling startUpdatingLocation when you
want updates to start and stopUpdatingLocation when you want the event updates to
stop.

Once you’ve created an instance of the class and started the location-event polling, one
of two events is fired: either didUpdateToLocation or, if an error is encountered,
didFailWithError.

When a new location event is fired, it passes two variables, each of type CLLocation—
one for the old position and one for the new position. This provides you with the current
location and has the added benefit of giving you the ability to calculate the distance
travelled by using the old position.

Each CLLocation parameter contains the location coordinates, the altitude, and the
speed of travel. It also provides the methods necessary to calculate distance.

Let’s look at how to use this class.

Implementing Location-Based Services
Start by creating an instance of the LocationManager class. This class encapsulates
some of the location-based services provided by the SDK. The syntax is shown here:

CLLocationManager *lm = [[CLLocationManager alloc]init];

To provide a hook for notification events, you also need to provide a delegate to receive
key location-based events, such as a location change. You essentially use the delegate
to host callback methods to receive the event and process it. In order for this to work,
you use CLLocationManagerDelegate, ensuring that it conforms to the protocol signature
that defines two optional methods (more on these later). So, the easiest mechanism is to
create a container class for this purpose, as shown in Listing 10–1 (the header file) and
Listing 10–2 (implementation).

CHAPTER 1: Extend Your Skills: Advanced Features 263

Listing 10–1. LocationManager.h

#import <Foundation/Foundation.h>
#import <CoreLocation/CoreLocation.h>

@interface LocationManager : NSObject <CLLocationManagerDelegate> {
 CLLocationManager* lm;
 CLLocation* l;
}

@property (nonatomic, retain) CLLocationManager* lm;
@property (nonatomic, retain) CLLocation* l;

@end

Listing 10–2. LocationManager.m

#import "LocationManager.h"

@implementation LocationManager
@synthesize lm,l;

// Default Constructor which allocates the CLLocationManager instance
// assigns the delegate to itself and sets maximum accuracy
//
- (id)init
{
 self = [super init];
 if (self != nil) {
 self.lm = [[[CLLocationManager alloc] init] autorelease];
 self.lm.delegate = self;
 self.lm.desiredAccuracy = kCLLocationAccuracyBest;
 }
 return self;
}

// Event : didUpdateToLocation
//
- (void)locationManager:(CLLocationManager*)manager
didUpdateToLocation:(CLLocation*)newLocation
fromLocation:(CLLocation*)oldLocation
{
 // Handle your events as required here
}

// Event: didFailWithError
// TODO: This is left for you to implement in this example

@end

You can therefore change your class instantiation to use this class instead of
CLLocationManager, as follows:

LocationManager* lm = [[LocationManager init] alloc];

In your constructor you not only set up the delegate to point to itself but also set the
accuracy for the services by using the desiredAccuracy property with one of the
predefined constants that indicates the level of accuracy you desire. Setting this to a

CHAPTER 10: Extend Your Skills: Advanced Features 264

value of kCLLocationAccuracyBest gives you the best location within 10 meters;
additional settings are available to an accuracy of 100 meters, 1 kilometer, and 3
kilometers. Although you have the option of setting a desired accuracy, the accuracy is
not guaranteed; and the higher the accuracy setting, the more battery power and device
performance are impacted.

What’s in a Location?
The location-update event is fired with the new and old locations passed as instances of
the CLLocation class. This class contains a number of properties of interest. Suppose
that, in your application, you declare an instance of the LocationManager class called lm,
and then at a suitable point you create an instance of the object and start updating the
location as shown:

LocationManager* lm =[[LocationManager alloc] init];
[lm.lm startUpdatingLocation];

You can then provide an implementation for this event in your code. For example, let’s
output the location to the log file using the following example code:

// Handle your events as required here
NSLog(@"Long %f Lat %f",newLocation.coordinate.longitude,
 newLocation.coordinate.latitude);

If you execute your application in the simulator, after a short delay you should see
output like this:

2011-08-24 15:50:51.133 locationExample[607:207]

Long 115.848930 Lat -31.952769

It updates every time your location changes. My simulator isn’t fitted with a GPS, but if
you have access to a network, then the simulator determines the location where you are.
I used Google Maps to test this functionality, entering the latitude and longitude as a
search string as follows:

-31.952769, 115.848930

This correctly returned my current location in Australia, as shown in Figure 10–1.

CHAPTER 1: Extend Your Skills: Advanced Features 265

Figure 10–1. Using Google Maps to test the simulated GPS

You can do other things when the event is fired, using the CLLocation class. For
example, you can calculate speed:

double gpsSpeed = newLocation.speed;

You can also look up the timestamp at which the coordinate was taken, or view the
altitude in meters above (positive) or below (negative) sea level.

The .NET framework provides for similar capabilities as part of its
System.Device.Location namespace, although as you’d expect, its implementation
differs slightly. For example, you use the GeoCoordinateWatcher object to acquire data
from the .NET location service, similar to your delegate class. The CLLocation class is
replicated by the GeoCoordinate class in .NET, providing similar properties relating to
location. Finally, the GeoPositionAccuracy property in .NET controls accuracy with the
same effect on device performance, but it has two options: default (optimized for
accuracy and device performance) and high accuracy.

As you can see, both SDKs have comparable features, and converting the code
semantics from one to the other is relatively straightforward. You can find the .NET
documentation at http://msdn.microsoft.com/en-
you/library/system.device.location.aspx.

The iOS SDK’s equivalent is at
http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual
/LocationAwarenessPG/Introduction/Introduction.html.

These are SDK-based capabilities, but other options always exist. If you are developing
a web-based application, you can also consider HTML 5’s GeoLocation capabilities.

CHAPTER 10: Extend Your Skills: Advanced Features 266

Using the Camera
Another much-used capability in the iPhone and iPad is the device camera. In the case
of more recent devices, there are two cameras—one front facing and one rear facing to
support videoconferencing. Thankfully, as with the location-based services you’ve seen,
the SDK provides methods for accessing these features. It is very easy to create an
application to take advantage of the camera; the SDK provides a class called
UIImagePickerController that provides access to the camera and the ability to take a
photo and preview the results.

Let’s take a look at the basics of implementing the camera and then walk through an
example application.

Camera Basics
Create a simple project that employs a view controller, and then, in the didLoad method,
enter the following code:

if (([UIImagePickerController isSourceTypeAvailable:
 UIImagePickerControllerSourceTypeCamera] == YES))
{
 UIImagePickerController *cameraUI = [[UIImagePickerController alloc] init];
 cameraUI.delegate = self;
 cameraUI.sourceType = UIImagePickerControllerSourceTypeCamera;
 cameraUI.allowsEditing = NO;

 [self presentModalViewController: cameraUI animated: YES];

} else NSLog(@"Camera not available");

This presents the camera, assuming one is available, and allows you to use the dialog to
take photos—or video, if you switch to video using the picker. The mediatypes property
controls which options the picker presents to you, and this can be set to kUTTypeMovie
for movies, kUTTypeImage for camera, or as follows for a choice of both (where
supported):

cameraUI.mediaTypes = [UIImagePickerController
 availableMediaTypesForSourceType:
UIImagePickerControllerSourceTypeCamera];

NOTE: On the iPad 2, you can also use a popover as the view controller.

The controller provides you with basic editing features such as scaling and cropping.
Also, you can pass back to the delegate an image the user takes or selects from the
library. It is then the responsibility of the delegate to dismiss the controller and process
the image.

CHAPTER 1: Extend Your Skills: Advanced Features 267

The following example provides a delegate method that retrieves the original image as
passed back from the picker:

- (void)imagePickerController:(UIImagePickerController *)
 didFinishPickingImage:(UIImage *)image
editingInfo:(NSDictionary *)editingInfo
{
 // Your processing code goes here
 // processing code

 // Dismiss the picker
 [p dismissModalViewControllerAnimated:YES];
}

You manage the same functionality on a camera-enabled Windows Mobile device in a
similar way using the Microsoft.Devices.PhotoCamera class, along with a MediaLibrary
object to hold the video/images captured from the camera. It’s more complex than it is
on the iPhone because a single class isn’t provided, but you can argue that it gives you
more flexibility.

Writing an Example Camera Application
You can easily piece together the example code fragments for a camera application.
Start by creating a new project that uses the view-based template. This creates a
project with the standard view controller and interface as you’ve done before many
times in this book.

You need to add the appropriate framework to use your camera, so again as you’ve
done before, go to the project’s Build Phases tab (accessed from the root project
settings) and add MobileCoreServices.framework to the Link Binary with Libraries
setting. This provides access to the library that contains your camera code. Before you
create your user interface, include the UTCoreTypes.h file in your header, ensure that two
delegates are implemented for your image picker and navigation, and add the IBActions
and IBOutlets for your Image property and the Camera and Roll buttons. Your code
should resemble Listing 10–3, all of which should be familiar to you.

Listing 10–3. Camera Example ViewController.h File

#import <UIKit/UIKit.h>
#import <MobileCoreServices/UTCoreTypes.h>

@interface CameraExampleViewController : UIViewController
 <UIImagePickerControllerDelegate, UINavigationControllerDelegate>
{

 UIImageView *imageView;
 BOOL newMediaAvailable;
}
@property (nonatomic, retain) IBOutlet UIImageView *imageView;
- (IBAction)useCamera;
- (IBAction)useCameraRoll;
@end

CHAPTER 10: Extend Your Skills: Advanced Features 268

Open the view controller’s Interface Builder file, and add your UIImageView control along
with a toolbar that has two items: Camera and Roll. After you open the Connections
Inspector in Xcode and connect the image and the Camera and Roll buttons, it should
resemble the screen shown in Figure 10.2.

Figure 10–2. The camera example user interface with connections made

You can now implement the code against both your Camera and Roll buttons, but don’t
forget to @synthesize your newMediaAvailable in your implementation. Let’s start with
the Camera button, using the code in Listing 10–4.

Listing 10–4. Implementing the useCamera Method Attached to the Camera Button

- (void) useCamera
{
 if ([UIImagePickerController isSourceTypeAvailable:
 UIImagePickerControllerSourceTypeCamera])
 {
 UIImagePickerController *imagePicker = [[UIImagePickerController alloc] init];
 imagePicker.delegate = self;
 imagePicker.sourceType = UIImagePickerControllerSourceTypeCamera;
 imagePicker.mediaTypes = [NSArray arrayWithObjects:

(NSString *)kUTTypeImage, nil];
 imagePicker.allowsEditing = NO;
 [self presentModalViewController:imagePicker animated:YES];
 [imagePicker release];
 newMediaAvailable = YES;
 }
}

Its implementation is pretty straightforward. The useCamera method checks that the
device on which the application is running has a camera. On the simulator this isn’t the
case, so you need to run this application on a real device to test it thoroughly. It creates

CHAPTER 1: Extend Your Skills: Advanced Features 269

a UIImagePickerController instance, assigns the cameraViewController as the delegate
for the object, and defines the media source as the camera. The property that specifies
supported media types is set to images only. Finally, the camera interface is displayed and
the UIImagePickerController object is released. You set the newMediaAvailable flag to
YES to indicate that the image is new; this is used to differentiate a dirty camera roll.

You next need to provide an implementation for the camera roll functionality, accessed
from the Roll button. See Listing 10–5.

Listing 10–5. Implementing the Camera Roll Code Attached to the Roll Button

- (void) useCameraRoll
{
 if ([UIImagePickerController isSourceTypeAvailable:
 UIImagePickerControllerSourceTypeSavedPhotosAlbum])
 {
 UIImagePickerController *imagePicker = [[UIImagePickerController alloc] init];
 imagePicker.delegate = self;
 imagePicker.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;
 imagePicker.mediaTypes =

[NSArray arrayWithObjects:(NSString *) kUTTypeImage,nil];
 imagePicker.allowsEditing = NO;
 [self presentModalViewController:imagePicker animated:YES];
 [imagePicker release];
 newMediaAvailable = NO;
 }
}

Again the functionality is pretty straightforward and very similar to the userCamera
method, with the exceptions that the source of the image is declared to be
UIImagePickerControllerSourceTypePhotoLibrary and the newMediaAvailable flag is set
to NO, because it has already been saved.

You now need to implement a couple of important delegates. The first is the
didFinishPickingMediaWithInfo method that is called when the user has finished
selecting images. Its implementation is shown in Listing 10–6.

Listing 10–6. Saving an Image with a Delegate

-(void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 NSString *mediaType = [info objectForKey:UIImagePickerControllerMediaType];

 [self dismissModalViewControllerAnimated:YES];

 if ([mediaType isEqualToString:(NSString *)kUTTypeImage])
 {
 UIImage *image = [info objectForKey:UIImagePickerControllerOriginalImage];
 imageView.image = image;

 if (newMediaAvailable)
 UIImageWriteToSavedPhotosAlbum(image, self,
@selector(image:finishedSavingWithError:contextInfo:), nil);
 }
}

CHAPTER 10: Extend Your Skills: Advanced Features 270

Extract the mediaType, dismiss any open image-picker dialog boxes, and check that you
are dealing with images (as opposed to video). Then, save the image to the image roll,
providing it’s a new image. When the save operation is complete, you call another
method that displays an error if the save fails. This method is shown in Listing 10–7,
along with the image-picker-cancel delegate that dismisses the open dialog box.

Listing 10–7. Trapping Errors and Dismissing the Picker Window

-(void)image:(UIImage *)image
finishedSavingWithError:(NSError *)error contextInfo:(void *)contextInfo
{
 if (error) {
 UIAlertView *alert = [

[UIAlertView alloc]
initWithTitle: @"Image save failed"
message: @"Failed to save image"

 delegate: nil
cancelButtonTitle:@"OK" otherButtonTitles:nil];

 [alert show];
 [alert release];
 }
}
-(void)imagePickerControllerDidCancel:(UIImagePickerController *)picker
{
 [self dismissModalViewControllerAnimated:YES];
}

Finally, you need to tidy up. When you initialize the form, you set your image to nil; and
when you deallocate memory, you release any memory the image may be taking up.
These actions are achieved with the methods in Listing 10–8.

Listing 10–8. Tidying Up

- (void)dealloc
{
 [imageView release];
 [super dealloc];
}
// Implement viewDidLoad to do additional setup after loading
// the view, typically from a nib.
- (void)viewDidLoad
{
 [super viewDidLoad];
 self.imageView = nil;
}

If you try debugging the application using the simulator, then as mentioned, nothing
happens, because the camera isn’t supported. The camera roll is supported but in this
case is empty; so if you choose this option the screen in Figure 10–3 is shown and the
Cancel button should dismiss the dialog box as expected.

CHAPTER 1: Extend Your Skills: Advanced Features 271

Figure 10–3. Viewing the camera roll in the iOS simulator

Using the Accelerometer
The iPhone and the iPad are capable of measuring both gravity and device acceleration
by detecting the inertial force on a device in a given direction. In layman’s terms, this
means you can tell the orientation of the device, the speed of change, and whether the
force of change is greater on one axis than the other, and therefore direction.

This three-axis detection capability means the device can detect these movements in all
directions. Thus if you have your device facing you, moving it left/right is the x axis,
moving it up and down is the y axis, and tipping it forward or backward is the z axis. You
can see how this affects the x, y, and z axis values in Figure 10–4. (Note that the arrow
points to the top of the device.) Zero represents no movement, and a positive or
negative value represents force in a given direction. The trouble with diagrams is that
representing z is a little difficult, so I describe it as the amount of acceleration your
device is exhibiting. At a standstill, it represents gravity; and when you’re lifting the
device up or down, it’s a positive or negative value proportionate to the acceleration.

CHAPTER 10: Extend Your Skills: Advanced Features 272

Figure 10–4. Axis values with rotation

The SDK provides access to the accelerometer feature using the Quartz 2D framework,
although you have the option of using the OpenGL ES API that provides a finer level of
control. The simulator doesn’t support accelerometer functionality, so rather than take
you through an example, I leave you to explore its capabilities using the example code
provided and a real device.

With the default SDK implementation, you can implement a UIAccelerometer class
instance as a singleton (only one instance). To retrieve this class, you use code like this:

UIAccelerometer *accelerometer = [UIAccelerometer sharedAccelerometer];

To then receive events that reflect a change in orientation, you use a pattern similar to
that for the GPS. You set the delegate for the class to point to a class that conforms to
the UIAccelerometerDelegate protocol. A difference, however, is that you have the
ability to control the frequency of the updates by using the updateInterval property,
which defines how many times per second the device is polled and so fires events,
although it’s not precise and isn’t guaranteed. This lack of precision is a byproduct of
the hardware engineering and the device’s ability to raise events with a sufficient latency
for you to capture and interpret. But in most circumstances, including complex GPS-
based applications such as road navigation, it’s perfectly appropriate. There is a
solution, but it’s not simple and involves capturing the events and using algorithmic
functions to sample the data and predict the location with higher fidelity. You can find
more information about such filters at http://en.wikipedia.org/wiki/Low-
pass_filter#Algorithmic_implementation.

CHAPTER 1: Extend Your Skills: Advanced Features 273

Let’s look at this in code, first you implement the class that uses the required protocol;
this could be your viewController. It looks like this:

@interface MainViewController : UIViewController <UIAccelerometerDelegate>
{
 // Header declaration here
}

You then provide its implementation, specifically the didAccelerate method to capture
the events, as follows:

- (void)accelerometer:(UIAccelerometer *)accelerometer
didAccelerate:(UIAcceleration *)acceleration
{
 // Implementation to deal with the events goes here
 NSLog(@"%@%f", @"X: ", acceleration.x);
 NSLog(@"%@%f", @"Y: ", acceleration.y);
 NSLog(@"%@%f", @"Z: ", acceleration.z);
}

You’ve looked at instantiating your accelerometer class and seen how to define the
delegate to capture the events, but you need to enable the accelerometer to do so.
Choose a suitable location within your code to initialize the delegate and the update
frequency—for example, in the application’s view controller’s DidLoad event. When you
have a reference to the singleton class as shown earlier, you can use the following code
to set the delegate and the update interval:

accelerometer.delegate = self; // imps. UIAccelerometerDelegate
accelerometer.updateInterval = 1.0f/60.0f; // every 60 seconds

There’s not much more too it, other than to interpret the data as required in your code.
Clearly, trying to bridge this code against a .NET counterpart is going to be difficult for
two reasons: it is device dependent, and therefore the SDK will change. However,
Windows Mobile devices have joined the iPhone and iPad in offering capabilities that let
developers do everything from determining how often someone drops their phone to
allowing users to control applications and games. If you were using an HTC-based
device and managed code such as C#, you might access the API in the appropriate
dynamic link library directly, which isn’t nice; or if you were using Windows Mobile 7,
you could use Microsoft.Devices.Sensors and the Accelerometer class, which is much
better. Its implementation is very similar to that in iOS and is exposed through the
Microsoft.Devices.Sensors namespace. As with the iOS accelerometer framework, the
.NET implementation uses the Accelerometer class, which provides to its internal
compass and gyroscope sensors through the Compass and Gyroscope properties,
respectively. The Motion class is then used to capture data from the sensors, with
different structures holding the data for the accelerometer, compass, gyroscope, and
motion.

CHAPTER 10: Extend Your Skills: Advanced Features 274

Overview of Gesture Detection
One of the most innovative features of the iPod Touch, iPhone, and iPad is the user
interface’s ability to detect gestures. This has given the device appeal to users of all
ages and has brought one step closer the virtual-reality interface seen in movies. Cocoa
Touch provides the UIKit framework that allows you to take advantage of this capability
through features such as the UIGestureRecognizer class and the events it enables. Let’s
take a look.

Detecting Touch Events
The starting point is to capture the touch events sent by the user interface as you touch
the screen. Using a standard view controller (UIViewController) or view (UIView), start
by implementing the touchesBegan method:

-(void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
UITouch *touch = [touches anyObject];
NSUInteger notouches = [tounches count];
gestureStartPoint = [touch locationInView:self.view];
}

All of the touch-related methods, including this one, are passed an NSSet instance called
touches and an instance of UIEvent. The number of fingers currently pressed against the
screen can be determined by getting a count of the objects in touches. Every object in
touches is a UITouch event that represents one finger touching the screen.

The touch-event mechanism chains the touch events from different controls: this means
you may receive a set of touches among which not all belong to your view. In this
instance, you can retrieve a subset of touches that are relevant to your view by using a
command similar to the following:

NSSet* touches = [event touchesForView:self.view];

When the fingers are removed from the screen, the reverse event is fired:
touchesEnded:withEvent. Or if an event occurs that distracts the gesture, such as the phone
ringing, then the touchesCancelled:withEvent is fired. The following code traps these touch
events and writes some text to the debug console to suggest which one has taken place:

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 NSLog(@"Touches Began");
}

- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event
{
 NSLog(@"Touches Cancelled");
}

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{

CHAPTER 1: Extend Your Skills: Advanced Features 275

 NSLog(@"Touches Ended");
}

When I first touch the screen, I see the following:

2011-08-25 21:47:23.044 Gestures[350:207] Touches Began

Then, when I let go, I see this event:

2011-08-25 21:47:23.116 Gestures[350:207] Touches Ended

Detecting Swipes
Detecting swipes is very similar to detecting touches. For a start, the code required is
again included in the UIViewController or UIView class. In your view, implement the two
events matched to swipes:

-(void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 // Event processing to go here
}

-(void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{
 // Event processing to go here
}

Once you have trapped the starting event, you can revert to the iOS SDK to capture the
existing positions and then perform some calculations to determine the direction of the
swipe. For example:

UITouch *touch = [touches anyObject];
CGPoint currentPosition = [touch locationInView:self.view];

CGFloat deltaX = fabsf(gestureStartPoint.x - currentPosition.x);
CGFloat deltaY = fabsf(gestureStartPoint.y - currentPosition.y);

if (deltaX >= kMinimumGestureLength && deltaY <= kMaximumVariance)
{
 NSLOG(@"Horizontal swipe detected");
}
else if (deltaY >= kMinimumGestureLength &&

 deltaX <= kMaximumVariance)
{

label.text = @"Vertical swipe detected";
 NSLOG(@"Vertical swipe detected");
}

Upon execution, you can use this information to detect direction and react to it as you
would any other application event. Give it a try!

CHAPTER 10: Extend Your Skills: Advanced Features 276

Targeting Multiple Devices with Your Code
If you want to write a single application that targets both the iPhone and the iPad, it’s
certainly possible—especially given that they both use iOS and the SDK framework. You
need to detect the device and adapt your application dynamically to some obvious
differences such as screen size; otherwise, your application will look very strange. You
can also target more specific capabilities such as the iPad’s ability to use popover view
controllers, but again you need to detect this in code in order for your application to
adapt.

There are a number of options to achieve this. You can of course use iOS SDK to target
multiple iOS devices such as the iPhone and iPad. Additionally, if you want to target
non–iOS-based devices, you can use one of the multiplatform third-party solutions
discussed in Chapter 3—these even target non-Apple devices, but, as discussed, have
their limitations. Another option is to write a web application, which is delivered to the
device through the browser; but this limits the functionality available to you and doesn’t
work if you don’t have connectivity to the web server hosting the application, unless you
use some of the more advanced offline features of HTML 5.

Throughout the book, you’ve touched on a variety of mechanisms used for targeting
different devices. Let’s recap them:

� Orientation: Typically, all iPad applications support different
orientations, and you should cater to this in your code. However, on
the iPhone, it’s not essential but advisable for your application to
support different orientations.

� Layout: The large screen of the iPad provides more real estate for your
application to use, and it should.

� Split views: An iPad-specific view controller allows you to split your
application into two views, each of which is configurable.

� Popovers: In the same vein as split views, a popover is a unique way
of presenting data on the iPad.

� Device features: Both devices have different hardware characteristics,
and you should remember these when designing your application.

Here is a summary of considerations and techniques to keep in mind when you’re
writing code that is universal for both the iPhone and the iPad:

� Device: The iPad is the odd one out compared to other iOS devices, at
least at the moment, because its screen is much larger than the iPhone or
iPod Touch. Always consider how best to use this real estate.

� User interface: To create a user interface in your code that can target both
devices, it’s often easier to create an Interface Builder file (.nib) for each
device type and dynamically load the appropriate file for each device.

CHAPTER 1: Extend Your Skills: Advanced Features 277

� Classes: You should check to see whether a particular class exists for
the device you are targeting before going ahead and using it. You can
use the NSClassFromString() method to see if a class exists in your
device’s library. It returns nil if the class doesn’t exist.

� API capabilities: In some cases, classes exist on both devices but their
capabilities differ. For example, UIGraphics on an iPad has support for
Portable Document Format (PDF), whereas the iPhone does not.

� Publishing multidevice-capable apps: It’s important to highlight to your
customer base that your application is multidevice capable. You can
do this when you submit your application. A plus sign (+) is shown in
the App Store next to such applications.

� Images: The iPhone 4, the latest iPod Touch, and future iOS
generations have the Retina display built in, which has increased
resolution. This means apps look much sharper. iOS does everything it
can to use the higher resolution; for example, text is automatically
upscaled properly, as are all built-in UI components (buttons, sliders,
navigation bars, toolbars, and so on). But it can’t upscale images and
graphics that you provide without help. Either use specific graphics for
both devices and add the @2x suffix to graphics for Retina displays (for
example, MyGraphic.png for non-Retina and MyGraphic@2x.png for
Retina), or in your code use manual upscaling based on points.

What’s New and on the Horizon?
So what’s next? It’s a million-dollar question, and Apple fans are always keen to find
out. Even if Steve Jobs has decided to step down as CEO, you can bet that as
Chairman he will still be involved in the future direction of the company.

This section considers what might be on the horizon for Apple and for general
development on both the iPhone and iPad. There are no guarantees, of course, but I
hope you find it an interesting insight into what may come next. Other sources for such
information include Apple’s World Wide Developer Conference (WWDC) 2011 and the
industry press.

The iCloud
As is the case in most of the industry, the cloud is playing far more of a part in Apple
solutions today. No longer are the capabilities of the device the only thing your
application can use—if you’re connected to a network of some description, including the
Internet, then you can consume and use capabilities provided via the network on your
device. For example, this might be storage, or a network-based service that streams
video content. Your application can use the cloud to extend its reach beyond the local
device’s capabilities to embrace such technologies and, for example, bring a catalogue
of thousands of films onto your device.

CHAPTER 10: Extend Your Skills: Advanced Features 278

Apple’s iCloud contains a suite of applications that represents Apple’s functionality in
the cloud. iTunes in the cloud is one such application, allowing you to stream content. It
can store all your content and push it to all your devices, all from the cloud.

One way of using the iCloud is to enable your code to take advantage of the user’s
iCloud account (they need to be logged in) to synchronize data from the local device to
the storage provided by iCloud, allowing your application to carry state between
devices. For example, the Safari Reader stores articles you’ve saved for offline reading
in the iCloud, making them available to both the iPhone and iPad you may be lucky
enough to own.

iOS 5
It’s not like iOS 4 is a slouch—it’s still a very good mobile operating system. However,
as is true for the entire industry, there is always somebody trying to do better. In the
case of mobile devices, that is Microsoft and Google—especially Microsoft, with the
release of its new Windows Phone 7 platform. Apple hasn’t sat back and relaxed; it’s
been working on iOS 5, which despite an increase in features can still run on all the
same devices as iOS 4.3.

A major change is in the space of notifications, which instead of interrupting the flow of
your application are now captured centrally on the device’s Notification Center. Here
you can view all your notifications at your convenience with a downward swipe of the
screen, clearing them when you’re finished.

Another cool feature is the Newsstand, an application that is very similar to iBook but
allows you to manage digital publications such as magazines and newspapers.

Social networking is certainly nothing new, but native integration into iOS 5 of features
such as Twitter has been introduced. A single application supports all the features you’d
expect, such as uploading photos and videos, tweeting, and so on, and integrates them
into other iOS applications such as your contacts. Yes, Twitter existed as an app on
previous versions of iOS, but not with such tight integration.

Other applications have been upgraded to better compete with Apple’s competitors and
to allow better use of the device’s capabilities. The Camera app is one such example,
with more editing features, and the Mail application has been enhanced.

Some of the other device-wide features introduced include an OS-wide dictionary,
wireless syncing with iTunes, and split keyboards for ease of use.

Let’s take a look at some of the new additions to the iOS family in a little more detail.

Notification Center
Both a unique feature and an irritation for many is the fact your iOS device raises
notifications for all kinds of events and against all kinds of applications. Whether it’s a
new e-mail, an SMS message, or a Facebook update, notifications are the way of the
world on your iOS device. The Notification Center doesn’t remove this functionality—far

CHAPTER 1: Extend Your Skills: Advanced Features 279

from it. It simply allows you to keep track of your notifications in one convenient
location. You can still configure which ones you are interested in, but they present
themselves subtly on your screen, much like the iAds in applications of today; and they
fade if you do nothing with them—or you can swipe to interact with them.

iMessage
This new messaging service, built into the existing Messaging App, lets you hold single
or group-based conversations and exchange text, photos, and video as part of those
conversations. You can see when someone is typing at the other end of your
conversation, recover delivery and read receipts, and even hold conversations that span
devices—for example, starting on an iPhone and picking up on an iPad.

Newsstand
The use of the iPhone, and especially the iPad, for reading magazines and newspapers
has grown significantly, and it’s no surprise that Apple has released an app that helps
you manage these different subscriptions. Your subscriptions are updated automatically
in the background, so the Newsstand looks just like a shelf in a magazine store with
each subscription showing the cover of the latest issue. Very neat!

Reminders
This simple little app enables you to manage your to-do list, allowing you to set
reminders and due dates. It even works with iCloud and Outlook, meaning you can
ensure that updates are reflected on any other devices you may have.

Twitter
The growth of social media has taken many by surprise, and Twitter’s popularity has
been recognized by Apple via its inclusion in iOS 5. It’s no longer just an app, but an
integrated capability. Once you’ve logged on, you can tweet from many of the default
iOS apps including Safari, Photos, the Camera, and more.

Other Updated Features
The updates just mentioned are a taster of the features introduced in iOS 5. Many other
improvements are included, such as the following:

� Camera: This is now available from the Lock Screen, allowing you to
capture moments you might previously have missed while unlocking
the device. You can also synchronize your photos with the iCloud if
you have Photo Stream enabled; it’s a cloud-based photo storage
capability in iCloud.

CHAPTER 10: Extend Your Skills: Advanced Features 280

� Photos: You can now frame, crop, and rotate your photos, allowing
you greater on-device control of the photos you’ve taken. A red-eye
reduction feature has been included as well, as well as integration with
iCloud, so you can synchronize your photos in the iCloud.

� Safari: The browser has been upgraded with features that allow you to
focus on web surfing and not be distracted. Safari Reader lets you read
articles offline and even keep them in the iCloud for storage, so you
can access this information from any of your devices that have access.

Summary
In this chapter, you looked at some of the more advanced features found in iOS and the
SDK. You took a tour of how to use the GPS on your device to create location-aware
applications. You saw how to use the accelerometer to detect movement and
orientation of the device. You also looked at the camera and what support has been
included in the SDK for you to embrace its capabilities for taking photos and video.

The ability to target multiple devices without writing two different applications may be
important to you, and you looked at the ways you can do this and the considerations
involved when undertaking this task. Finally, you examined what Apple may have in
store in the future.

At the beginning of the book, I took you from understanding the capabilities of iOS-
based devices such as the iPhone and iPad to the features available through Apple’s
own native toolset, such as the iOS SDK and Xcode. You also looked at third-party tool
options and even built simple “Hello World” apps with some of them. You then stepped
through an Objective-C primer, drawing parallels with the .NET C# language; and over a
series of chapters, you walked through numerous iOS SDK frameworks that implement
functionality similar to that found in the .NET Framework. Examples in the chapters got
you started building a Lunar Lander example application, and you looked at means of
extending that application’s features through libraries. You finished with overviews of
testing, deploying, and publishing iOS applications, and considered several advanced
features in this chapter.

Now that you’ve completed the main body of the book, please take a look at Appendix
A for suggestions for completing the Lunar Lander example app on your own. I look
forward to seeing the App Store full of Lunar Lander variants built on the back of this
book. Good luck!

 281

 Appendix

Completing the Lunar
Lander Application
As you’ve gone through the book, I’ve slowly been contributing toward your Lunar
Lander game where it has made sense. I haven’t completed it, though, and this is
deliberate. Where would be the fun in providing you with the finished game?! The
knowledge you’ve gained through the book in iOS, its SDK, and Xcode will allow you to
complete the game and publish it—or you may want to start a completely different
game.

However, it wouldn’t be fair to leave you hanging, so in this appendix I discuss some of
the elements you may want to consider adding to the game. The source code
associated with the book includes code fragments that complement this chapter to help
you complete your game.

Implementing the Game Physics
To ensure that your lander observes the laws of physics, you need to implement a
simple physics engine for it. You can find a reference describing the physics required at
www.physicsclassroom.com/class/newtlaws/u2l4a.cfm. Don’t worry; I take you through
the basics next.

Gravity
This simulation is quite simple. First the forces of gravity are applied:

Y = Y + Gravity * TotaleSecondsOfThrust;

Here the Y value that controls the lander’s height is adjusted by multiplying the Gravity
figure (a double value of 9.8) by the number of seconds that thrust is applied, calculated
by detecting the timestamp when the thrust key is held down, and the seconds elapsed
from when it is released. You can use the NSTimeInterval() method to achieve this.

APPENDIX: Completing the Lunar Lander Application 282

Thrust
You then need to apply the force of the thrust according to thrust and rotation. You
need to use the Math.h include for this, but you have to implement your own angle-
normalization macro, because the equivalent of NormalizeAngle() in .NET doesn’t exist
in Objective-C. No matter, it’s easily done. First define this macro:

#define NormalizeAngle(x) ((return x % 360)+(x < 0 ? 360 : 0))

Then adjust your x and x axis according to the force of thrust:

Y = Y – Math.sin(NormalizeAngle(rotation + M_PI / 2)) * totalseconds * thrustspeed;
X = X – Math.cos(NormalizeAngle(rotation + M_PI / 2)) * totalseconds * thrustspeed;

The variable rotation obviously represents the angle of rotation for the lander, as
affected by the user pressing the left and right keys and the totalseconds values (the
number of seconds the thrust key is held down). The thrustspeed value is a constant
value of 20 indicating how powerful the thrust is.

Finally, don’t forget to reduce your fuel figure as the engine is thrusting.

Rotation
You won’t cover rotating both left and right because they mirror each other. Let’s look at
what you need to do to rotate left. This method does of course assume the existence of
a fuel tank, initialized with an initial value (here the value 1000) and that you pass the
total number of seconds the rotation key was held down. Your method looks as follows:

// rotateLeft - rotate the lander left
- (void)rotateLeft:(float) totalseconds
{
 // You can't thrust if you've no fuel
 if (fuel <0)
 return;

 // Rotate left
 rotationMomentum -= M_PI / 2.0f * totalseconds;

 // Burn fuel
 fuel -= 0.5 // fuel burn evey time you thrust
}

The obvious difference for rotating right is that you increase the rototationMomentum
value rather than decrease it.

Enabling User Interaction
The user is obviously required to interact with the game, although how you do this is up
to you. Some options are to detect keypresses, or use onscreen images to detect a tap,
or even use the accelerometer to detect the device being tipped left or right. In any
case, you need to interpret the actions, and the following keys are used to interact with

APPENDIX: Completing the Lunar Lander Application 283

the lander. Doing nothing simply lets the lander drop to the ground as gravity is applied.
For your lander, you do the following.

� If the up arrow is pressed, onscreen or on the keyboard, the thruster is
being fired.

� If the left arrow is pressed, onscreen or on the keyboard, the lander is
rotating left.

� If the right arrow is pressed, onscreen or on the keyboard, the lander is
rotating right.

Catching Game Events
You need to monitor some additional game events: for example, detecting when you hit
the ground and the speed at which you hit. This is fairly straightforward using a
combination of lunar lander y position and ground height and using the speed of the
lander as an indicator of whether you’re moving too fast.

The method only works when the ground is flat. If you decide to implement a Moon
surface that has different gradients, you need to detect this in your game—maybe
looking at the pixel values surrounding the lander.

Handling the Graphics
Your Lunar Lander implementation has already made provision to draw the graphics for
the game by implementing the drawRect method, although the default implementation
simply draws the same graphic (the nonthrusting lander) at the x and y location.

You need to adjust this code to be representative of the other states, including when the
game is running, looking for when it should be thrusting or just dropping, and drawing at
the angle appropriate for the lander. The angle is obviously in relation to the rotate-left or
-right keypresses.

To rotate your image, you could use the rotateAt() method in Microsoft .NET, but such
a method doesn’t exist in Objective-C. Instead, you can use a simple macro to convert
between degrees and radians, the measure used by the UImage rotate equivalent called
transform. First define a macro something like the following:

#define degreesToRadians(x) (M_PI * (x) / 180.0)

Then add the following line, assuming the deg variable represents the degrees you wish
to rotate by:

myView.transform = CGAffineTransformMakeRotation(degreesToRadians(deg));

If you’re interested in knowing more, the post at
www.platinumball.net/blog/2010/01/31/iphone-uiimage-rotation-and-scaling/ has a
lot of detail about how to do image rotation and scaling.

APPENDIX: Completing the Lunar Lander Application 284

Displaying a High Score
This should be straightforward because you covered how to create high-score code in
Chapter 8, and you also looked at different mechanisms for displaying a dynamic user
interface in Chapter 6. Combining these with the high-score mechanics of your game
allows you to create a high-score chart that can be displayed when the game is at the
main menu.

Resources
In addition to the information provided in this appendix to help you complete the Lunar
Lander game, and the additional code supplied with the book, the following resources
may help you complete and/or customize your game:

� PhET Lunar Lander: A number of resources including an online version
of the game, provided as part of a teaching aid.
http://phet.colorado.edu/en/simulation/lunar-lander.

� LunarView.java: A Java-based implementation of the Lunar Lander
game for the Android mobile device.
http://developer.android.com/resources/samples/LunarLander/src/
com/example/android/lunarlander/LunarView.html.

� Code Project: A .NET-based implementation of the Lunar Lander
game, written in C#.
http://www.codeproject.com/KB/game/lunarlander.aspx.

� History of Lunar Lander: Wikipedia’s history of the Lunar Lander game.
http://en.wikipedia.org/wiki/Lunar_Lander_(video_game).

 285

Index

■ A
Accelerate Framework

(Accelerate.framework), 96
Accelerometer class, 273
accelerometers, 271–273
action sheets, 185
Active Server Pages (ASP), 92
activity indicator, and progress

indicator, 174–175
ADC (Apple Developer Connection), 4,

11
add() method, 226
Add Repository option, 32
addHighScoreEntry, 199–203
addObject method, 190–191, 199–200
Address Book UI

(AddressBookUI.framework), 93
AddressBook

(AddressBook.framework), 94
Adhoc mechanism, publishing via,

253–254
Adhoc method, 260
Adobe Flash Professional Creative

Studio 5 platform, 21–22
alert sheet, 185
alerts, 184–185
alloc() method, 36–37, 40, 46
API limits, 5
App Design Strategies, 30
App Store

platform, 22–25
selling apps at, 23–24
submitting apps to, 24–25

publishing via, 254–259
preparing for submission,

254–256

uploading application binary,
256–259

Appcelerator Titanium Mobile platform,
18–19, 69–75

Hello, World application using,
70–75

installing, 69–70
Apple

components, application
development using, 10–13

platforms and technologies, 7–13
application development using

Apple components, 10–13
iOS, 9–10
terminology and concepts used

by, 7–9
Apple Developer Agreement, 209,

218–219, 221
Apple Developer Connection (ADC), 4,

11
Apple Developers, registering as, 2–4
Apple Operating System. See iOS
Apple resources, on UIs, 185–186
application home directory, 89
Application Loader, 256–257
Application object, 82
application sandbox, 89
application types, and associated view

controllers, 154–157
navigation-based applications,

156–157
tab bar-based applications, 155–156
utility-based applications, 154–155

applicationDidBecomeActive method,
86–87

Index 286

applicationDidEnterBackground
method, 87

ApplicationID, 89
applications, 81–83, 223–260

.NET Framework comparison, 93–94
behaviors in, 88–89

and application sandbox, 89
multitasking, 89
orientation changes, 88

debugging
capturing diagnostics with NSLog

command, 232
profiling applications, 233–237
with simulator, 237–239
Xcode 4 debugger, 229–231

deploying, 240–252
creating certificate to sign

application, 241–242
Provisioning Portal feature,

244–250
registering device, 243–244

design considerations, 82
design patterns, 82–83
developing, resources on, 259–260
development of

native applications, 6–7
using Apple components, 10–13
web applications, 6

initializing, 45–47
life cycle of, 85–86
managing data within, 189–191
navigation-based, and associated

view controllers, 156–157
profiling, 233–237
publishing, 253–259

resources on, 259–260
via Adhoc mechanism, 253–254
via App Store, 254–259

selling at App Store platform, 23–24
states of, 86–87
submitting to App Store platform,

24–25
tab bar-based

and associated view controllers,
155–156

implementing, 157–163

testing, 223–229
on devices, 239–240
resources on, 259–260
unit, 224–229

uploading binary, 256–259
utility-based, and associated view

controllers, 154–155
Applications folder, 63, 65, 69, 77
applicationWillEnterForeground

method, 87
applicationWillResignActive method, 87
ARC (automatic reference counting), 40,

54–56
ASP (Active Server Pages), 92
assemblies, in .NET framework,

217–218
Attribute Inspector, 108
automatic reference counting (ARC), 40,

54–56
AV Foundation

(AVFoundation.framework), 94

■ B
bbitem IBOUTLET, 168
behaviors, 88–89

and application sandbox, 89
multitasking, 89
orientation changes, 88

bespoke methods, 139, 141, 143
binary, applications, 256–259
Block objects, 83
build folder, 73
Build Phases tab, 193
Builder file, 44, 268, 276
Button class, 177

■ C
C# class, 100
C# interface, 100
Calculator class, 226
CalculatorTest.m file, 229
cameras, 266–267

basics of, 266–267
example application for, 267–271

Index 287

updated features in iOS 5, 279–280
cameraViewController, 269
Cascading Style Sheets (CSS), 10
certificates, creating to sign application,

241–242
CFNetwork (CFNetwork.framework), 94
CGRect, 135, 140
CIL (Common Intermediate Language),

15
Class class, 136
class keyword, 100
classes, in Objective-C, 38–39, 97
CLLocation class, 262–265
CLLocation parameter, 262
CLLocationManagerDelegate, 262–263
Close() method, 128
CLR (Common Language Runtime), 40
Cocoa Touch, 7–8, 10, 12, 14–15
code completion, in IDE workspace,

107
code snippets, in XCode 4, 111
collection classes, 190–191
comments, in Objective-C, 104
common controls, 178
Common Intermediate Language (CIL), 15
Common Language Runtime (CLR), 40
Connections Inspector, 108
constants, self-documenting code, 137
constraints, for third-party tools, 57–58
content views, 180–183

table, 180–181
text, 181–182
web, 182–183

controllers, specific to iPad, 163–174
Popover view, 163–171
split-view, 171–174

controls, 174–185
action sheets, 185
activity and progress indicators,

174–175
alerts, 184–185
common, 178
content views, 180–183

table, 180–181
text, 181–182
web, 182–183

date and time and general pickers,
175–176

detail disclosure button, 176
info button, 176–177
navigation and information bars,

179–180
navigation, 180
status, 179
toolbar, 179

page indicator, 177
search bar, 177
segmented, 178
switch, 177

Core Data (CoreData.framework), 95
Core Graphics

(CoreGraphics.framework), 94
Core Mono component, 14–15
Core OS, 10
Core Services, 7, 10, 13, 94
Core Telephony

(CoreTelephony.framework), 95
Core Text (CoreText.framework), 94
CoreData.framework (Core Data), 95
CoreGraphic.framework, 94, 214
CoreTelephony.framework (Core

Telephony), 95
CoreText.framework (Core Text), 94
createTabGroup() method, 73
CS (Creative Studio), 21–22
CSS (Cascading Style Sheets), 10

■ D
databases

connecting to, 197
iOS-embedded, 192–197

creating or opening database,
194

creating table in database, 195
reading data from database,

196–197
SDK options for, 193–194
writing data to database,

195–196
DataView control, 181

Index 288

date and time picker, and general
pickers, 175–176

DateTimePicker class, 175
dealloc() method, 52, 54–55, 122, 125
deallocate memory, 270
Debug area view, 110
Debug-iphoneos folder, 213
Debug-iphonesimulator, 213
debugging

capturing diagnostics with NSLog
command, 232

profiling applications, 233–237
with simulator, 237–239

changing device, 238
changing iOS version, 238
Home feature, 239
Lock feature, 239
Simulate Hardware Keyboard

feature, 239
simulating movement, 238
Toggle In-Call Status Bar feature,

239
triggering low memory, 238
TV Out feature, 239

Xcode 4 debugger, 229–231
Debug.WriteLine, 232
Declare class, 129
delegation, 83, 96, 103–104
deploying, 240–252

creating certificate to sign
application, 241–242

Provisioning Portal feature, 244–250
registering device, 243–244

design, application
considerations, 82
patterns, 5, 82–83

desiredAccuracy property, 263
detail disclosure button, 176
developing, resources on, 259–260
device compatibility, 5
devices

changing in simulator, 238
form factor, example applications

using, 147–149
orientation of, supporting, 150–154

platforms and, constraints for,
146–154

registering, 243–244
targeting multiple with code,

276–277
testing on, 239–240

diagnostics, capturing with NSLog
command, 232

didAccelerate method, 273
didFailWithError, 262–263
didFinishLaunchingWithOptions()

method, 48, 86, 122
didFinishPickingMediaWithInfo method,

269
DidLoad event, 273
didLoad method, 266
didReceivedMemoryWarning event, 238
didRotateFromInterfaceOrientation, 150
didUpdateToLocation, 262–263
dismissModalViewControllerAnimated,

128, 133
dismissPopoverAnimated, 169–170
displays, size and resolution of,

146–150
example applications using device

form factor, 147–149
points vs. pixels, 149
screen size, 149–150

DragonFire SDK, 2, 16–18
drawRect method, 135, 140, 283
dynamic libraries, 208–209

■ E
Editor area, 48
enabling, ARC, 55
Engine class, 37
Engine example, 39
Engine object, 37
enumerated types, self-documenting

code, 138
Event Kit (EventKit.framework), 95
exception handling, 39–40, 96
External Accessory

(ExternalAccessory.framework),
96

Index 289

■ F
File Inspector, 108
file structure, of projects, 44–45
file system-based storage, using

sandbox, 188–189
FirstView, 161–162
form factor, of devices, example

applications using, 147–149
Foundation.framework, 95, 214
Frameworks, 159
fromInterfaceOrientation, 150–151

■ G
game events, catching, 283
Game interface, 127
Game Kit (GameKit.framework), 93
game states, for Lunar Lander

application, 118
GameDifficulty, 129–130, 138
GameKit.framework (Game Kit), 93
games, implementing physics in,

281–282
gravity, 281
rotation, 282
thrust, 282

GameState, 129–130, 138
GameView class, 120, 126, 128–129,

135–137
GameView header, for Lunar Lander

application, 128–137
GameView interface, 126
GameView object, 137
GameViewController class, 120,

123–126, 128–129, 132
GameViewController property, 125
GameView.h file, 128
GameView.xib file, 138
GDI (Graphics Display Interface), 92
General Public License (GPL), 219
GeoCoordinate class, 265
GeoCoordinateWatcher object, 265
GeoPositionAccuracy property, 265
gesture detection, 274–275

swipes, 275

touch events, 274–275
getter method, 98
Github library, 221
Global Positioning System. See GPS
GPL (General Public License), 219
GPS (Global Positioning System),

261–265
location-based services

implementing, 262–264
overview, 262

uses for, 264–265
graphical user interface (GUI), 145
Graphics Display Interface (GDI), 92
graphics, handling, 283
gravity, 281
GUI (graphical user interface), 145

■ H
hardware requirements, for iOS SDK, 28
header file, 38–39, 45, 48, 51
Hello, World application

using Appcelerator Titanium Mobile
platform, 70–75

using Marmalade SDK, 77–78
using MonoTouch component,

66–68
HelloWorldAppDelegate, 44
HelloWorld.cs file, 61
HelloWorld.exe, 62
HelloWorldViewController, 45, 48–49,

51–52
HellowWorldView.xib file, 68
high-score class, persistent, 197–201

initializing, 203
testing, 201–203

high-score example, 197–203
vs. .NET implementation, 204–205
persistent high-score class, 197–201

initializing, 203
testing, 201–203

high scores, displaying, 284
HighScore class, 199
HighScoreEntry class, 198–201, 203
HighScore.h file, 212, 216
Home feature, of simulator, 239

Index 290

■ I
iAd (iAd.framework), 92
IBAction property, 123, 126, 128–129,

167, 169
IBOutlet property, 51–52, 167
iCloud applications, 277–278
Icon file, 252
icon.png file, 252
ID type, 102
IDE (integrated development

environment), 7, 9, 29
IDE workspace, 106–108

code completion in, 107
project editor, 108
schemes, 107–108

Identity Inspector, 108
Image file, 12
Image I/O (ImageIO.framework), 94
Image property, 267
ImageIO.framework (Image I/O), 94
iMessage service, iOS 5, 279
Implementation file, 45, 226
info button, 176–177
Info.plist file, 85–86, 179
information bars, navigation bars and,

179–180
initializing

application, 45–47
views, 48–53

initWithParameters method, 198–199,
201, 203

Insert() method, 204
Inspector pane, 48
inspectors, in XCode 4, 108
installing, iOS SDK, 30–35
integrated development environment

(IDE), 7, 9, 29
integration testing, 225
Interface Builder, 12, 47–48
interface controls, 153, 174, 178, 186
interfaces, 82, 84, 88, 91–92, 96–97,

100–103
Internet-aware table, 220
Internet, using to store data, 192
iOS (Apple Operating System), 9–10,

278–280

changing version in simulator, 238
iMessage service, 279
integrated Twitter service capability,

279
libraries, vs. .NET framework

libraries, 209–210
Newsstand application, 279
Notification Center feature, 278–279
Reminders application, 279
SDK, 12–13
updated features, 279–280

iOS Dev Center, 3, 8
iOS Developer, 3–4, 10
iOS-embedded databases

creating or opening, 194
creating table in, 195
reading data from, 196–197
SDK options for, 193–194
writing data to, 195–196

iOS Human Interface Guidelines, 30,
115

iOS SDK, 27–56
ARC, 54–56

enabling, 55
migrating to, 55
overview, 55
programming with, 55

creating user interface, 47–53
initializing view, 48–53
using Interface Builder, 47–48

hardware requirements for, 28
initializing application, 45–47
installing, 30–35
Objective-C, 35–40

classes in, 38–39
exception handling, 39–40
importing, 38
memory management, 40
naming conventions, 38
object model, 36–37
square brackets, 37–38
terminology for, 36

projects in
creating, 41–44
file structure of, 44–45

resources for, 30

Index 291

Xcode, new features for, 29
iOS user-interface controls, 115
iPad

controllers specific to, 163–174
Popover view, 163–171
split-view, 171–174

targeting multiple devices with code,
276–277

iPhone, targeting multiple devices with
code, 276–277

ISerializable class, 190
iTunes Connect, 254–257, 259–260

■ J
jailbreaking, 24

■ K
kCLLocationAccuracyBest, 263–264
kUTTypeImage, 266, 268–269
kUTTypeMovie, 266

■ L
Label (UILabel), 178
lander_nothrust property, 130, 134–135,

139–140
Lander.tiff, 139
last-in-first-out (LIFO), 157
libraries, 207–221

Apple Developer Agreement,
218–219

definition of, 208
dynamic, 208–209
iOS vs. .NET framework, 209–210
static, 208–218

assemblies in .NET framework,
217–218

with Xcode 4 tool, 210–217
third-party, 219–221

categories of, 219
Github library, 221
list of useful, 220
SourceForge library, 221

types of, 208

Library pane, 48, 50
libsqlite3.dylib library, 193, 209, 217
licensing, 5
life cycle, of applications, 85–86
LIFO (last-in-first-out), 157
linker, 208
LLVM compiler, 107
loadRequest, 182–183
Localizable.string file, 100
location-based services, implementing,

262–264
LocationManager class, 262–264
Lock feature, of simulator, 239
low memory, triggering in simulator, 238
Lunar Lander application, 113–143,

281–284
catching game events, 283
creating project, 119–121
displaying high score, 284
enabling user interaction, 282–283
GameView header, 128–137
handling graphics, 283
implementing game physics,

281–282
gravity, 281
rotation, 282
thrust, 282

implementing navigation, 127–128
initializing XIB resource, 138–140
manually drawing user interface, 140
planning for, 114–118

design resources, 115–116
game states, 118
requirements specification,

116–117
user interfaces, 118

resources for, 284
self-documenting code, 137–138

using constants, 137
using enumerated types, 138

testing, 141–143
user interface, 121–126
using bespoke methods, 141

Lunar Lander graphic, 118
LunarLanderAppDelegate, 119, 122,

124

Index 292

LunarLanderViewController class, 119,
121–124, 126, 128

LunarLanderViewController.xib file, 123,
126

Lunary Lander game, 226

■ M
.m extension, 39
main() method, 45–47
main .nib file, 85
MainViewController.m file, 216
MainWindow.xib file, 44, 48, 85, 119,

161
makeKeyAndVisible, 48–49
Managed memory model, 83
Map Kit (MapKit.framework), 92
Marmalade SDK (Software

Development Kit), 19–21, 75–78
Hello, World application using,

77–78
installing, 75–76

Marmalade Studio, 20, 75–76
Marmalade System, 20, 75–76
Media layer, 10, 94
Media Player (MediaPlayer.framework),

94
MediaLibrary object, 267
MediaPlayer.framework (Media Player),

94
mediaType, 269–270
mediatypes property, 266
memory, low, 238
memory management, 40, 95
message file, 39
Message UI (MessageUI.framework), 92
methods

calling with square brackets, 37
in Objective-C, declaring, 97–98

Microsoft Developer Network (MSDN),
83

Microsoft.Devices.PhotoCamera class,
267

Microsoft.Devices.Sensors namespace,
273

migrating, to ARC, 55

mobile device, 85, 93–95
MobileCoreServices.framework, 267
.mobileprovision file, 253
Model-View-Controller (MVC), 5, 83
Mono environment, 14–16

Core Mono component, 14–15
installing, 59–62
MonoDevelop component, 15–16
MonoTouch component, 15
and MonoTouch component, 58–68

Hello, World application using,
66–68

installing, 59–66
MonoDevelop component

installing, 62–64
overview, 15–16

MonoDroid, 58
MonoMac, 58
MonoTouch component, 15

installing, 64–66
Mono environment and, 58–68

Hello, World application using
MonoTouch component, 66–68

installing, 59–66
Motion class, 273
movement, simulating, 238
MSDN (Microsoft Developer Network),

83
multidevice capable, 277
multitasking, 89, 96
multitaskingSupported property, 89
MVC (Model-View-Controller), 5, 83
MyStaticLibrary, 212

■ N
Name property, 162
naming conventions, for Objective-C,

38
native applications, development of,

6–7
Navigate() method, 183
navigation bars, and information bars,

179–180
navigation, 180
status, 179

Index 293

toolbar, 179
navigation-based applications, and

associated view controllers,
156–157

navigation, for Lunar Lander
application, 127–128

Navigator view, 110
navigators, in XCode 4, 109–110
NDA (nondisclosure agreement), 218
NET control, 156, 178, 265
.NET Framework, 90–96

application services, 93–94
assemblies in, 217–218
libraries, iOS libraries vs., 209–210
runtime services, 95–96
tools for, vs. Xcode tools, 105–106
user-interface services, 91–92

.NET implementation, vs. high-score
example, 204–205

NewGame() method, 130, 132, 134,
139–141

newMediaAvailable, 267–269
Newsstand application, iOS 5, 279
NIB file, 106, 120, 162, 173
Nil object, 35, 37
nondisclosure agreement (NDA), 218
NormalizeAngle() method, 282
Notification Center feature, iOS 5,

278–279
NSArray, 190–191
NSAutoRelease class, 46
NSCachesDirectory, 188
NSClassFromString() method, 277
NSData, 190
NSDate, 190
NSDictionary, 190–191
NSLog command, capturing

diagnostics with, 232
NSLog() method, 109, 196
NSMutableArray, 190–192, 198–200,

203–204
NSMutableMutable class, 190
NSNumber, 190
NSObject, 160
NSSet, 274–275

NSString class, 190, 192, 194, 196–198,
200–203

NSTimeInterval() method, 281
NSTimer class, 128, 135, 143

■ O
Object class, 190
object model, for Objective-C, 36–37
Objective-C, 35–40, 96–104

classes in
declaring, 97
overview, 38–39

comments, 104
delegation, 103–104
exception handling, 39–40
importing, 38
interfaces and protocols, 100–103
memory management, 40
methods in, declaring, 97–98
naming conventions, 38
object model, 36–37
properties, 98–99
square brackets, 37–38

calling methods, 37
passing and retrieving with, 38

strings, 99–100
terminology for, 36

ODBC (Open Database Connectivity),
197, 204

OpenAL and OpenGL ES
(OpenAL.framework), 94

OpenGLES.framework, 94
orientation changes, 88
orientation, of devices, supporting,

150–154

■ P
page indicator, 177
passing the call along the chain, 125
passing, with square brackets, 38
pathForResource method, 134, 139
PDF (Portable Document Format), 277
persistent high-score class, 197–201

initializing, 203

Index 294

testing, 201–203
photos, updated features in iOS 5,

279–280
physics, implementing in games,

281–282
gravity, 281
rotation, 282
thrust, 282

Picker class, 176
Picker control, 115
pickers, date and time and general,

175–176
pixels per inch (PPI), 150
pixels, points vs., 149
planning

for Lunar Lander application,
114–118

design resources, 115–116
game states, 118
requirements specification,

116–117
user interfaces, 118

platforms
and devices, constraints for,

146–154
and technologies, Apple, 7–13

points, vs. pixels, 149
Popover view controllers, 163–171
PopOverExampleViewController, 167
PopoverSelection, 165
PopOverSelection class, 166–167,

169–170
PopOverSelection.h file, 166–167
PopOverSelection.m file, 166
PopOverSelection.xib file, 166
Portable Document Format (PDF), 277
PPI (pixels per inch), 150
presentPopoverFromBarButtonItem,

169–170
profiling applications, 233–237
programming, with ARC, 55
progress indicator, activity indicator

and, 174–175
ProgressBar class, 175
project editor, IDE workspace, 108
project navigator, 109

projects
creating, 41–44
file structure of, 44–45

properties, in Objective-C, 98–99
property lists, using as storage, 191
protocols, in Objective-C, 100–103
Provisioning Portal feature, 244–250
Public class, 101
publishing, 253–259

resources on, 259–260
via Adhoc mechanism, 253–254
via App Store, 254–259

preparing for submission,
254–256

uploading application binary,
256–259

■ Q
Quick Help, 108
quitGame, 128–129, 133, 141
QuitGame() method, 132

■ R
RDBMS (relational database

management system), 192
readHighScores method, 202
registering, device, 243–244
relational database management

system (RDBMS), 192
Reminders application, iOS 5, 279
Remove() method, 204
requirements capture stage, 114
resolution, size and, of displays,

146–150
resources folder, 73
resources, for iOS SDK, 30
retain method, 51–52, 54–55
retrieving, with square brackets, 38
rootViewController, 161, 173–174
rotateAt() method, 283
RotateLeft() method, 129–130,

132–133, 135, 141
RotateRight() method, 129–130,

132–133, 135, 141

Index 295

rotation, 282
Round rect button (UIButton), 178
runtime services, 91, 95–96

■ S
s3dHelloWorld.mkb file, 77
.s3e files, 77
Safari Browser, updated features in iOS

5, 279–280
sandboxes, file system-based storage

using, 188–189
scheduledTimerWithTimeInterval

method, 133, 135–136
Schema-driven object, 193
schemes, IDE workspace, 107–108
Score class, 204
Score table, 181
screens, size of, 149–150
SDKs (Software tools Kits)

completeness, 58
DragonFire, 16–18
iOS, 12–13
Marmalade, 19–21
options for iOS-embedded

databases, 193–194
search bars, 177
SecondView, 161–162
security, 96
Security (Security.framework), 96
segmented controls, 178
SELECT statement, 196, 203
selector parameter, 133, 135–136
self-documenting code, 137–138

using constants, 137
using enumerated types, 138

self.view property, 153
Server database, 197
setNeedsDisplay method, 133, 136–137
setter method, 98
Short Message Service (SMS), 92
ShowDialog() method, 126
signal strength, 239
Simple Object Access Protocol (SOAP),

190

Simulate Hardware Keyboard feature, of
simulator, 239

simulators, debugging with, 237–239
changing device, 238
changing iOS version, 238
Home feature, 239
Lock feature, 239
Simulate Hardware Keyboard

feature, 239
simulating movement, 238
Toggle In-Call Status Bar feature,

239
triggering low memory, 238
TV Out feature, 239

Size Inspector, 108
Slider (UISlider), 178
SMS (Short Message Service), 92
SOAP (Simple Object Access Protocol),

190
Software Development Kit. See SDK
Sort() method, 204
sortArrayUsingSelector method,

203–204
SourceForge library, 221
split-view controllers, 171–174
SplitContainer class, 174
sprintf() method, 232
SQL command, 195
SQL statement, 195–196, 201, 204
SQL (Structured Query Language), 192
SQLite database, 13
sqlite3_bind_text() method, 196
sqlite3_prepare() method, 196,

200–202
sqlite3_step() method, 196
sqlite_open() method, 194
square brackets, 37–38

calling methods, 37
passing and retrieving with, 38

Start Game button, 121, 123, 125–126
Start Touch Down event, 126
startAnimating method, 175
startUpdatingLocation, 262, 264
states, of applications, 86–87
static analysis, in XCode 4, 111

Index 296

static libraries, 208–218
assemblies in .NET framework,

217–218
with Xcode 4 tool, 210–217

statically linked libraries, 208
status bar, 179
StatusBar class, 179
STFail() method, 226
stopUpdatingLocation, 262
storage, 187–205

high-score example, 197–203
vs. .NET implementation,

204–205
persistent high-score class,

197–201
options for data, 188–197

databases, 192–197
file system-based storage using

sandbox, 188–189
Internet, 192
managing within application,

189–191
property lists, 191

Store Kit (StoreKit.framework), 95
strings, in Objective-C, 99–100
Structured Query Language (SQL), 192
Such class, 98
super initWithCoder:aDecoder

command, 139
swipes, detecting, 275
switch control, 177
symbol navigator, 109
synthesizing, 98
System.Collections.Generic.Dictionary

class, 190
System.Date class, 190
System.Device.Location namespace,

265
System.Diagnostics namespace, 232
System.Runtime.Serialization.Formatter

s.Binary, 190
Systems Configuration

(SystemsConfiguration.framework),
95

System.String class, 190
System.Threading.Timer class, 135

■ T
tab bar-based applications

and associated view controllers,
155–156

implementing, 157–163
Tab object, 73
tabBarController property, 160–161
TabBarExample, 158–160
TabBarExampleAppDelegate.h file, 160
TabBarExampleAppDelegate.m file, 161
TabControl, 156
TABLE command, 195
table view, 180–181
tables, creating in database, 195
Target-action, 83
TDD (Test Driven Development),

224–226
technologies, platforms and, 7–13
terminology, for Objective-C, 36
Test & Package option tab, 72
Test Driven Development (TDD),

224–226
testExample() method, 226–228
testing, 223–229

on devices, 239–240
integration, 225
Lunar Lander application, 141–143
persistent high-score class, 201–203
resources on, 259–260
unit, 224–229

defining approach to, 224–226
writing and running, 226–229

TestMethod() method, 217–218
Text field (UITextField), 178
text view, 181–182
third-party libraries, 219–221

categories of, 219
Github library, 221
list of useful, 220
SourceForge library, 221

third-party tools, 5–6, 13–22, 57–78
Adobe Flash Professional Creative

Studio 5 platform, 21–22
Appcelerator Titanium Mobile

platform, 18–19, 69–75

Index 297

Hello, World application using,
70–75

installing, 69–70
constraints, 57–58
DragonFire SDK, 16–18
Marmalade SDK, 19–21, 75–78

Hello, World application using,
77–78

installing, 75–76
Mono environment, 14–16

Core Mono component, 14–15
MonoDevelop component, 15–16
MonoTouch component, 15

Mono environment and MonoTouch
component, 58–68

Hello, World application using,
66–68

installing, 59–66
thrust, 282
Thrust() method, 128–129, 132
thrustEngine, 130, 134–135, 141
ThrusterState, 129–130, 138
thrustspeed value, 282
Titanium Developer icon, 69
Titanium.UI namespace, 73
Toggle In-Call Status Bar feature, of

simulator, 239
togglePopOverController, 167–169
toolbar, 179
Toolbar class, 165, 179
tools

for .NET Framework, vs. Xcode
tools, 105–106

accelerometer, 271–273
App Store platform, 22–25

selling apps at, 23–24
submitting apps to, 24–25

Apple platforms and technologies,
7–13

application development using
Apple components, 10–13

iOS, 9–10
terminology and concepts used

by, 7–9
application development

native, 6–7

web, 6
camera

basics of, 266–267
example application for, 267–271

development principles, 5–6
future directions in, 277–280

iCloud applications, 277–278
iOS 5, 278–280

gesture detection
swipes, 275
touch events, 274–275

GPS, 261–265
location-based services, 262
uses for, 264–265

registering as Apple Developer, 2–4
targeting multiple devices with code,

276–277
third-party options, 13–22

Adobe Flash Professional
Creative Studio 5 platform,
21–22

Appcelerator Titanium Mobile
platform, 18–19

DragonFire SDK, 16–18
Marmalade SDK, 19–21
Mono environment, 14–16

totalseconds value, 282
touch events, detecting, 274–275
touchesBegan method, 274–275
touchesCancelled:withEvent, 274
touchesEnded:withEvent, 274
transform, 283
TV Out feature, of simulator, 239
Twitter service, integrated capability in

iOS 5, 279
type management, 95

■ U
UIAccelerometer class, 272
UIAccelerometerDelegate protocol,

272–273
UIActionSheet class, 185
UIActivityIndicatorView class, 175
UIAlertView class, 184
UIApplication, 179

Index 298

UIApplicationDelegate protocol, 86, 160
UIApplicationMain() function, 46–47, 85
UIButton class, 123, 176
UIButton (Round rect button), 178
UIDatePicker class, 175
UIDevice, 89
UIEvent, 274–275
UIGestureRecognizer class, 274
UIImage variable, 130, 134, 139–140,

236
UIImagePickerController class, 266–270
UIImagePickerController object, 269
UIImagePickerControllerSourceTypePh

otoLibrary, 269
UIImageView control, 268
UIInterfaceOrientation, 150, 153, 169
UIKit (UIKit.framework), 92, 214
UILabel control, 50
UILabel object, 49, 51–52
UImage class, 143
UINavigationBar class, 180
UINavigationController interface, 157
UIPageControl class, 177
UIPopoverController class, 164, 167,

170
UIProgressView class, 175
UIs (User Interfaces), 145–186

Apple resources on, 185–186
application types and associated

view controllers, 154–157
navigation-based applications,

156–157
tab bar-based applications,

155–156
utility-based applications,

154–155
controls, 174–185

action sheets, 185
activity and progress indicators,

174–175
alerts, 184–185
common, 178
content views, 180–183
date and time and general

pickers, 175–176
detail disclosure button, 176

info button, 176–177
navigation and information bars,

179–180
page indicator, 177
search bar, 177
segmented, 178
switch, 177

creating, 47–53
initializing view, 48–53
using Interface Builder, 47–48

implementing tab bar-based
application, 157–163

iPad-specific controllers, 163–174
Popover view, 163–171
split-view, 171–174

for Lunar Lander application,
118–121, 126

manually drawing, 140
platform and device constraints,

146–154
display size and resolution,

146–150
supporting device orientation,

150–154
UISearchBar class, 177
UISegmentedControl class, 178
UISlider (Slider), 178
UISplitViewController class, 172–173
UIStatusBarHidden, 179
UIStatusBarStyle, 179
UISwitch class, 177
UITabBarController class, 156, 161
UITabBarController interface, 157
UITabController class, 161
UITabControllerDelegate protocol, 160
UITableView class, 180
UITableViewController class, 156, 165,

170
UITextField (Text field), 178
UITextView class, 181
UIToolbar class, 179
UITouch, 274–275
UIView class, 136, 274–275
UIViewController class, 120, 123, 129,

267, 273–275
UIWebView class, 182

Index 299

UIWindow object, 48
unit testing, 224–229

defining approach to, 224–226
integration testing, 225
TDD, 225–226

writing and running, 226–229
updateInterval property, 272–273
UpdateLander() method, 131–132, 137
useCamera method, 267–268
user interaction, enabling, 282–283
user-Interface guidelines, 115
user-interface services, .NET

Framework comparison, 91–92
User Interfaces. See UIs
UTCoreTypes.h file, 267
UTF8String method, 194, 196, 200
Utilities view, 110
utility-based applications, and

associated view controllers,
154–155

■ V
view controllers, associated with

application types, 154–157
navigation-based, 156–157
tab bar-based, 155–156
utility-based, 154–155

ViewController class, 68, 135–136
viewControllers array, 48, 173–174, 273
viewDidLoad event, 124, 132–133, 135,

169–170, 182
ViewDidLoad() method, 52, 68
viewDidUnload method, 169–170
views

initializing, 48–53
in XCode 4, 110

visibility modifier, 125

■ W
WAP (Wireless Access Protocol), 91
web applications, development of, 6

web view, 182–183
WebBrowser class, 183
Windows Forms, 82, 90, 92–93
Windows method, 112
Windows Presentation Foundation

(WPF), 90
Wireless Access Protocol (WAP), 91
World Wide Developer Conference

(WWDC), 277
WPF (Windows Presentation

Foundation), 90
writeToFile method, 191, 198
writeToURL method, 192
WWDC (World Wide Developer

Conference), 277

■ X, Y, Z
XCode 4, 106–112

code snippets, 111
debugger, 229–231
IDE workspace, 106–108

code completion in, 107
project editor, 108
schemes, 107–108

inspectors, 108
navigators, 109–110
static analysis, 111
static libraries with, 210–217
views in, 110

Xcode interface, 106, 109
Xcode tools

new features for, 29
overview, 11–12
vs. tools for .NET Framework,

105–106
XIB file, 108, 121, 126, 128, 136, 138,

166
XIB resource, initializing, 138–140
XML file, 85, 191, 204
XMLSerializer class, 204

	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1 Get Set Up: Tools and Development on Apple’s Platforms and Technologies
	Registering As an Apple Developer
	Application Development Considerations
	Generic Development Principles
	Third-Party Development Principles

	Application Approaches
	Web Applications
	Native Applications

	Apple Platforms and Technologies
	Apple Terminology and Concepts
	Understanding the iOS
	Application Development Using Apple Components
	iOS SDK

	Third-Party Options
	Mono Family
	Core Mono
	MonoTouch
	MonoDevelop
	DragonFire SDK
	Appcelerator’s Titanium Mobile
	Marmalade SDK
	Flash Professional Creative Studio 5

	Overview of the App Store
	Selling Apps at the App Store
	Submitting an App to the Store

	Summary

	Chapter 2 Jump In: A Crash Course on Development Using the iOS SDK
	Getting Started
	Choosing the Right Machine
	Choosing the iOS SDK
	What’s New in Xcode 4?
	Apple iOS Dev Center Resources

	Installing Xcode and the iOS SDK
	An Objective-C Primer
	Objective-C Terminology
	Object Model
	Square Brackets and Methods
	Calling a Method
	Passing and Retrieving

	Naming Conventions
	Importing

	Class Definition and Implementation
	Nil Objects
	Exception Handling
	Memory Management

	Creating Your First iPhone Application
	Creating a Project
	Exploring Your Project and File Structure
	Initializing Your Application
	Creating Your User Interface
	Using Interface Builder
	Initializing Your View

	Using Automatic Reference Counting
	Why Use It?
	Enabling ARC
	Migrating to ARC
	Programming with ARC

	Summary

	Chapter 3 Understand Your Options: Using Third-Party Solutions and MonoTouch
	Understanding the Constraints
	Developing with Mono and MonoTouch
	Installing Mono, MonoDevelop, and MonoTouch
	Installing Mono
	Installing MonoDevelop
	Installing MonoTouch

	Creating Hello, World Using MonoTouch

	Using Appcelerator’s Titanium Mobile
	Installing Titanium
	Creating Hello, World Using Titanium

	Using the Marmalade SDK
	Installing Marmalade
	Creating Hello, World Using Marmalade

	Summary

	Chapter 4 Going Deeper: .NET, Objective-C, and the iOS SDK
	Comparing iOS Device Capabilities
	iOS Application Design
	Design Considerations
	Design Patterns

	Looking Under the Hood of an Application
	The Application Life Cycle
	Managing Application States
	Managing an Application’s Behaviors
	Dealing with Orientation Changes
	Files Within Your Application and the Application Sandbox
	Multitasking

	Comparing the .NET Framework with iOS and the iOS SDK
	User-Interface Services
	Application Services
	Media Layer
	Core Services

	Runtime Services

	Objective-C Primer, Part 2
	Class Declaration
	Method Declaration
	Properties
	Strings
	Interfaces and Protocols
	Delegation
	Comments

	Comparing .NET and Xcode Tools
	XCode 4 Primer
	The IDE Workspace and Its Editors
	Code Completion and Support
	Schemes and Scheme Editors
	Project Editor

	Inspectors
	Navigators
	Views
	Using Other Xcode Tools
	Static Analysis
	Code Snippets

	Summary

	Chapter 5 Get to Work: Creating Your First Application
	The App Planning and Design Process
	Apple iOS Design Resources
	Other Design Resources

	Planning and Designing the Lunar Lander Application
	Requirements Specification
	Lunar Lander Application Design
	User Interfaces
	Game States
	Other Game Design Elements

	Building the Lunar Lander Application
	Creating the Application Project
	Building the User Interface and Flow Logic
	Implementing Navigation in Your Application

	Building the Core Game Engine and Enabling User Interaction
	Examining the Game View Header
	Examining the Game View Implementation
	Using a Timer to Invoke Key Core Events

	Self-Documenting Code
	Using Constants
	Using Enumerated Types

	Programmatically Initializing an XIB Resource
	Manually Drawing the User Interface
	Using Bespoke Methods

	Using Simulators to Test Your Application
	Summary

	Chapter 6 Build Your Skills: Enhancing Your Application with a Dynamic User Interface
	Understanding Platform and Device Constraints
	Display Size and Resolution
	Example Applications That Take Full Advantage of the Device’s Form Factor
	Points Compared to Pixels
	Other Considerations

	Supporting Device Orientation
	Handling Device Orientation

	Application Types and Associated View Controllers
	Utility-Based Applications
	Tab Bar–Based Applications
	Navigation-Based Applications

	Implementing a Tab Bar–Based Application
	Overview of iPad-specific Controllers
	Popover View Controllers
	Split-View Controllers

	User Interface Controls
	Controls
	Activity and Progress Indicators
	Date, Time, and General Pickers
	Detail Disclosure Button
	Info Button
	Page Indicator
	Search Bar
	Switch
	Segmented Control
	Common Controls

	Navigation and Information Bars
	Status Bar
	Toolbar
	Navigation Bar

	Content Views
	Table View
	Text View
	Web View

	Other Elements
	Alerts
	Action Sheets

	Apple’s User Interface Resources
	Summary

	Chapter 7 Get the Data: Storing and Retrieving Data and Configuring your Applications
	What Are Our Options for Storing Data?
	Using the Sandbox to Provide Filesystem-Based Storage
	Managing the Data Within Your Application
	Using Property Lists As Storage
	Using the Internet to Store Data
	Using the iOS-Embedded Database
	What are the iOS SDK Options?
	Creating or Opening Your Database
	Creating a Table in the Database
	Writing Data to the Database
	Reading Data from the Database

	Connecting to Other Databases

	Creating the High-Score Example
	Creating a Persistent High-Score Class
	Testing the High-Score Class
	Completing the Class

	Comparing the Serialization Example with .NET
	Summary

	Chapter 8 Extend Your Apps: Extending Your iOS Application with Libraries
	Overview of Libraries
	What Is a Library?
	What Types of Libraries Exist?
	Static Library
	Dynamic Library
	Comparing iOS Libraries with .NET Equivalents

	Creating Your Own Static Libraries
	Creating a Static Library with Xcode 4
	Creating an Assembly in .NET

	The Apple Developer Agreement
	Third-Party Libraries
	Categories of Third-Party Libraries
	Useful Third-Party Libraries
	Looking Elsewhere for Libraries

	Summary

	Chapter 9 Get Published: Testing, Deploying and Distributing Your Applications
	Available Test Features
	Unit Testing
	Defining Your Testing Approach
	Unit Testing
	Integration Testing
	Test Driven Development

	Writing and Running Your Unit Tests

	Using the Xcode 4 Debugger
	Other Debugging Options
	Using NSLog to Capture Diagnostics
	Profiling Your Application

	Using the Simulator’s Debug Features
	Changing the Device
	Changing the iOS Version
	Simulating Movement
	Triggering Low Memory
	Other Features

	Testing on Real Devices
	Deploying Your Application
	Creating a Certificate to Sign Your Application
	Registering Your Device
	Using the Provisioning Portal to Get Started
	Build and Deploy Your Application

	Publishing Your Application
	Publishing via the Adhoc Mechanism
	Publishing via the App Store
	Preparing for Your App Store Submission
	Uploading Your Application Binary

	Additional Resources
	Summary

	Chapter 10 Extend Your Skills: Advanced Features
	Using the Global Positioning System
	Overview of Location Services
	Implementing Location-Based Services
	What’s in a Location?

	Using the Camera
	Camera Basics

	Writing an Example Camera Application
	Using the Accelerometer
	Overview of Gesture Detection
	Detecting Touch Events
	Detecting Swipes

	Targeting Multiple Devices with Your Code
	What’s New and on the Horizon?
	The iCloud
	iOS 5
	Notification Center
	iMessage
	Newsstand
	Reminders
	Twitter
	Other Updated Features

	Summary

	Appendix Completing the Lunar Lander Application
	Implementing the Game Physics
	Gravity
	Thrust
	Rotation

	Enabling User Interaction
	Catching Game Events
	Handling the Graphics
	Displaying a High Score
	Resources

	Index

