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Preface

Most engineering systems suffer some deterioration with time from wear, fa-
tigue, and damage, and ultimately fail when their strength exceeds a critical
level. Failure mechanisms by which the causes of failures are brought about
are physical processes. The types of failure causes, how to proceed to failure by
which causes, and the consequences of failures have been physically studied.
This has been developed in fracture mechanics and mechanics of materials
and has applied to such components and systems. On the other hand, failure
mechanisms are in probabilistic and stochastic motions. Such behaviors are
mathematically observed and analyzed in the study of stochastic processes.

My purpose in writing this book is to build a bridge between theory and
practice and to introduce the reliability engineer to some damage models.
Failures of units are generally classified into two failure modes: Catastrophic
failure in which units fail suddenly and degradation failure in which units
deteriorate gradually with time. The former failures often occur in electric
parts. The latter failures mainly occur in machinery. Such reliability models
are called shock or damage models and can be analyzed, using the techniques
of stochastic processes.

There exist a large number of damage models that form reliability models
mechanically and stochastically in the real world. Reliability quantities of
these models have been theoretically obtained. However, there is not any
special book written on these fields except the book [2]. Their case studies for
reliability are very fews because the analysis might be too difficult theoretically
to apply them to practical models. When and how maintenance policies for
damage models are made are important.

I have just published the monograph Maintenance Theory of Reliability [1]
that summarizes maintenance policies for system reliability models. However,
it does not deal with any damage model. This book is based mainly on the
research results studied by the author and my colleagues from classical ones to
new topics. It deals primarily with shock and damage models, their reliability
properties, and maintenance policies. The reliability measures of such mod-
els can be calculated by using renewal and cumulative processes. Optimum
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maintenance policies are theoretically discussed by using the results of [1].
Furthermore, these models can be applied to actual models practically, using
these results.

This book is composed of ten chapters. Chapter 1 gives some examples
of damage models and is devoted to explaining elementary stochastic pro-
cesses and shock processes needed for understanding their models. Chapter 2
is mainly devoted to cumulative damage models that fail subject to shocks.
Standard models in which a unit fails when its total damage exceeds a failure
level are explained, and their modified models are proposed. Some reliabil-
ity quantities of such models are analytically derived, using the techniques
of stochastic processes. Chapter 3 summarizes replacement policies and some
modified policies. Chapter 4 is devoted to a parallel system whose units fail
subject to shocks and a two-unit system whose units fail by interaction with in-
duced failure and shock damage. Chapters 5 and 6 are devoted to replacement
and preventive maintenance policies in which the total damage is investigated
only at periodic times. Chapter 7 considers imperfect preventive maintenance
policies in which the preventive maintenance is done at sequential times and
reduces the total damage. In Chapters 4–7, optimum policies that minimize
the expected cost are analytically discussed. Chapters 8 and 9 take up the
garbage collection of a computer system and the backup scheme of a database
system as typical practical examples of damage models. Chapter 10 is devoted
to reviewing briefly similar related models presented in other fields such as
shot noise, insurance, and stochastic duels.

This book gives a detailed introduction to damage models and their main-
tenance policies, and provides the current status and further studies in these
fields. It will be helpful for mechanical engineers and managers engaged in re-
liability work. Furthermore, sufficient references leading to further studies are
cited at the end of the book. This book will serve as a textbook and reference
book for graduate students and researchers in reliability and mechanics.

I wish to thank Professor Shunji Osaki for Chapter 2, Dr. Kodo Ito for
Chapters 1 and 3, Professor Masaaki Kijima for Chapters 4 and 7, Professor
Kazumi Yasui for Chapter 6, Dr. Takashi Satow for Chapter 8, and Profes-
sors Cun Hua Qian and Shouji Nakamura who are co-workers of our research
papers for Chapter 9. I wish to express my special thanks to Professor Fumio
Ohi for his careful reviews of this book, and to Dr. Satoshi Mizutani and my
daughter Yorika for their support in writing and typing this book. Finally,
I would like to express my sincere appreciation to Professor Hoang Pham,
Rutgers University, and editor, Anthony Doyle, Springer-Verlag, London, for
providing the opportunity for me to write this book.

Toyota, Japan Toshio Nakagawa
June 2006
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1

Introduction

The number of aged fossil-fired power plants is increasing in Japan. For ex-
ample, about one-third of such plants are currently operating at from 150
thousand to 200 thousand hours (from 17 to 23 years), and about a quarter
of them are above 200 thousand hours. Furthermore, public infrastructures
in advanced nations will become obsolete in the near future [3]. A deliber-
ate maintenance plan is indispensable to operate power and chemical plants
without serious trouble.

The importance of maintenance for aged plants is much higher than that
for new ones because the probability of the occurrence of severe events in-
creases and new failure phenomena might appear according to the degrada-
tion of plants. Actual lifetimes of plant components such as steam and gas
turbines, boilers, pipes, and valves, are almost different from predicted ones
because they are affected by various factors such as material quality and oper-
ating conditions [4,5]. Therefore, maintenance plans have to be reestablished
at appropriate times during the operating lives of these components.

The simplest damage model is the stress-strength model where a compo-
nent fails when its strength has been below a critical stress level [6]. If the
fatigue subject to varying stress can be estimated, Miner’s rate can be ap-
plied directly, using an S–N curve [7,8]. This is utilized widely for predicting
lifetimes of various kinds of mechanical productions by modifying Miner’s
rule [9].

The progress of physical damage to assess the life of components precisely
would be made previously and accurately. For example, the progress of low
alloy steel that is used for high temperature and pressure components of a
thermal power plant, is observed with a microscope as follows: During the first
half of the life, changes in its microstructure appear in the welded heat-affected
area. During the latter half, the number of voids that are small cavities at
boundaries between crystalline grains increases, and their coalescence results
in the growth of a crack. Recently, such damage assessment and life estimation
are actively performed by utilizing a digital microscope, a computer image
processor, and software [10].
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Failures of units or systems such as parts, equipment, components, devices,
materials, structures, and machines are generally classified into two failure
modes: Catastrophic failure in which units fail by some sudden shock and
degradation failure in which units fail by physical deterioration suffered from
some damage. In the latter case, units fail when the total damage due to
shocks has exceeded a critical failure level. This is called a cumulative damage
model or shock model with additive damage and can be described theoretically
by a cumulative process [11] in stochastic processes.

We can apply such damage models to actual units that are working in
industry, service, information, and computers, and show typical examples that
are familiar.

(1) A vehicle axle fails when the depth of a crack has exceeded a critical
level. In actual situations, a train axle is replaced at the distance traveled
or the number of revolutions [12]. A tire on an automobile is a similar
example [2, 13].

(2) A battery supplies electric power that was stored by chemical change. It is
weakened by use and becomes useless at the end of chemical change [14].
This corresponds to the damage model by replacing shock with use and
damage with oxidation or deoxidation.

(3) The strength of a fibrous carbon composite is essentially determined by
the strength of fibers. When a composite specimen is placed under tensile
stress, the fibers themselves may break within the material. Such materials
are broken based on cumulative damage [15, 16].

(4) Garbage collection in a database system is a simple method to reclaim
the location of active data because updating procedures reduce storage
areas and worsen processing efficiency. To use storage areas effectively and
to improve processing efficiently, garbage collections are done at suitable
times. Such a garbage collection model corresponds to the damage model
by replacing shock with update and damage with garbage. Some garbage
collection models will be discussed analytically in Chapter 8.

(5) The data in a computer system are frequently updated by adding or delet-
ing them, and are stored in secondary media. However, data files are some-
times broken by several errors due to noises, human errors, and hardware
faults. The most dependable method to ensure the safety of data takes
their backup copies at appropriate times. This corresponds to the damage
model by replacing shock with update and damage with dumped files, and
will be discussed analytically in Chapter 9.

Furthermore, damage models were applied to crack growth models [2,17–
20] and to welded joints [21], floating structures [22], reinforced concrete struc-
tures [23], and plastic automotive components [24]. Such stochastic models of
fatigue damage of materials were described in detail [25, 26]. Failure mecha-
nisms of damage models in engineering systems were summarized [27].

We consider a typical cumulative damage model in which shocks occur in
random times and the damage incurred such as fatigue, wear, crack growth,
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creep, and dielectric breakdown is additive. The general concept of such pro-
cesses was theoretically based on [28, 29]. Several contributions to stochastic
damage models or compound Poisson processes were made at the beginning
by several authors: The first model, where shocks occur in a Poisson pro-
cess and the amount of damage due to each shock has a gamma distribution,
was considered in detail [30]. Much of the earlier research were reviewed [11].
Furthermore, the various properties of failure distributions when shocks oc-
cur in a Poisson process were extensively investigated [31–33]. On the other
hand, cumulative wear increases continuously with time and is represented as
a specified function of a stochastic process [34–39]. This was formulated and
analyzed by using the idea of a finite Markov chain [2]. This is also called a
wear process.

We have to pay attention only to the essential laws governing objective
models of reliability study, and grasp damage processes, and try to formulate
them simply, avoiding small points. In other words, it would be necessary to
form stochastic models of causing and making up damage that outline the
observational and theoretical features of complex phenomena.

Most of the contents of this book are based on the original work of our
research group and some new results are added. Stochastic and shock processes
needed for learning damage models are summarized briefly in Chapter 1. These
results are introduced without detailed explanations and proofs.

Chapter 2 summarizes only the known results of cumulative damage mod-
els and their modified models based on [11, 33, 40], that could be applied
to maintenance policies discussed in the following chapters. Next, we survey
briefly the damage model whose total amount increases with time [37,39,41].

Suppose that a unit subject to shocks is replaced with a new one at failure
or undergoes corrective maintenance after failure. However, such maintenance
after failure may be done at great cost and take a long time. The most im-
portant problem of maintenance policies is to determine in advance when and
how to do better maintenances before failure. From these points of view, a
wide variety of uses for maintenance policies are effectively summarized and
their optimum policies are fully discussed [1].

The optimum policies for a cumulative damage model where a unit is re-
placed before failure at a threshold level of damage [42–45] or at a planned
time [46–50] were derived. In Chapter 3, we consider three replacement poli-
cies for a cumulative damage model in which a unit is replaced before failure
at a planned time, at a shock number, or at a managerial damage level [51].
Optimum replacement policies that minimize the expected cost rates are dis-
cussed analytically. Furthermore, extended replacement models in which a
unit is replaced at the first shock over a planned time and shock number are
proposed.

Most systems are composed of multicomponent systems. However, in gen-
eral, it would be very difficult to analyze the damage models of such systems
theoretically. We consider a system with n different units each of which re-
ceives damage due to shock and derive the failure distribution of the system
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in (4) of Section 2.5. Furthermore, in Chapter 4, we take up a parallel sys-
tem in a random environment [52, 53] and consider two models of a two-unit
system with failure interactions [54]. Optimum number of units for a parallel
system and the number of failures for an interaction model that minimize the
expected cost rates are derived.

We should do only some minimal maintenance at each failure in large and
complex systems. This is called periodic replacement with minimal repair at
failures in Chapter 4 of [1]. In Chapter 5, a unit fails with a certain probability
for the total damage due to shocks and undergoes minimal repair. Then, a
unit is replaced at a planned time, at a shock number, or at a managerial
damage level. In this case, optimum replacement policies that minimize the
expected cost rates are discussed analytically [55].

Most operating units are repaired when they have failed. However, it may
require much time and high cost to repair a failed unit. The respective main-
tenance after failure and before failure is called corrective maintenance (CM)
and preventive maintenance (PM). This becomes the same as the replacement
model theoretically by taking CM and PM as the replacement after failure
and before failure, respectively, and the repair time as the time required for
replacement.

In Chapter 6, we take up the PM policy in which the test to investigate
some characteristics of a unit is planned at periodic times and the PM is done
at a planned time when the total damage or shock number has exceeded a
managerial level or number [56]. Several modified models are considered and
their expected cost rates are derived. Furthermore, in Chapter 7, we apply
the imperfect PM model to a cumulative damage model in which the total
damage decreases at each PM. An optimum sequential PM policy in which a
unit has to be operating over a finite interval and is replaced at a specified
PM number is computed numerically [57].

In Chapters 8 and 9, we apply the cumulative damage model to the garbage
collection policy [58] and the backup policy for a computer system [59] as
typical examples, respectively. Optimum policies that the garbage collection is
done at a planned time or at an update number are derived. Three schemes as
recovery techniques are introduced, and optimum backup times are discussed
analytically and compared numerically.

Such phenomena have been observed frequently in probability fields. Fi-
nally, we present compactly in Chapter 10 that the damage model can be
applied to related fields such as other reliability models, insurance, shot noise,
and stochastic duels. Several quantities of such models are similarly derived,
using the techniques of shock and damage models.

1.1 Renewal Processes

In this section, we briefly introduce some basic properties of renewal processes
for reliability systems based on the books [11,60,61]. For more detailed results
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Fig. 1.1. Total number of failed units over time axis

and applications of stochastic processes, we refer readers to the books [62,
63]. Consider a one-unit system with repair or replacement whose time is
negligible, i.e., a new unit starts to operate at time 0 and is repaired or
replaced when it fails, where the time for repair or replacement is negligible.
When the repair or replacement is completed, the unit begins to operate again.
If the unit is like new after repair or replacement, then the system forms a
renewal process. This arises from the study of self-renewing aggregates [11]
and plays an important role in the analysis of probability models with sums
of independent nonnegative random variables. Figure 1.1 is a sample graph
that presents the total number N(t) of failed units during a time interval
[0, t]. Some plots of number of failures versus time for repairable systems were
illustrated [64]. In that case, the counting process {N(t); t ≥ 0} is called a
renewal process. In particular, when the unit fails exponentially, i.e., the times
between failures are independent and identically distributed exponentially, a
renewal process becomes a Poisson process. A Poisson process is dealt with
frequently as a special case of a renewal process. On the other hand, if the unit
after repair has the same age as that before repair, then the counting process
{N(t); t ≥ 0} is called a nonhomogeneous Poisson process. This corresponds
to the unit that undergoes minimal repair at each failure.

(1) Renewal Process

Consider a sequence of independent and nonnegative random variables {X1,
X2, · · · }, in which Pr{Xj = 0} < 1 for all j because of avoiding the triviality.
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Suppose that Xj (j = 1, 2, · · · ) have an identical distribution F (t) with finite
mean µ1 and F (0) ≡ 0.

Letting Sn ≡ ∑n
j=1 Xj (n = 1, 2, · · · ) and S0 ≡ 0, we define N(t) ≡

maxn {Sn ≤ t} that represents the number of renewals in [0, t]. Renewal theory
is mainly devoted to the investigation into the probabilistic properties of a
discrete random variable N(t).

Denote

F (0)(t) ≡
{

1 for t ≥ 0
0 for t < 0

F (n)(t) ≡
∫ t

0

F (n−1)(t−u) dF (u) (n = 1, 2, · · · ),

i.e., F (n)(t) represents the distribution of
∑n

j=1 Xj . Evidently,

Pr {N(t) = n} = Pr {Sn ≤ t and Sn+1 > t}
= F (n)(t) − F (n+1)(t) (n = 0, 1, 2, · · · ). (1.1)

We define the expected number of renewals in [0, t] as M(t) ≡ E {N(t)},
that is called a renewal function, and m(t) ≡ dM(t)/dt, that is called a renewal
density. From (1.1),

M(t) =
∞∑

n=1

n Pr{N(t) = n} =
∞∑

n=1

F (n)(t). (1.2)

It is fairly easy to show that M(t) is finite for all t ≥ 0 because Pr {Xj = 0} <
1. Furthermore, from the notation of convolution,

M(t) = F (t) +
∞∑

n=1

∫ t

0

F (n)(t − u) dF (u)

=
∫ t

0

[1 + M(t − u)] dF (u), (1.3)

that is called a renewal equation. When F (t) has a density function f(t) and
f (n)(t) ≡ dF (n)(t)/dt (n = 1, 2, . . . ), m(t) =

∑∞
n=1 f (n)(t) and differentiation

of (1.3) with respect to t implies

m(t) = f(t) +
∫ t

0

m(t − u)f(u) du. (1.4)

The renewal-type equation such as (1.3) and (1.4) appears frequently in the
analysis of stochastic reliability models because most systems are renewed
after maintenance. The Laplace–Stieltjes (LS) transform of M(t) is given by

M∗(s) ≡
∫ ∞

0

e−st dM(t) =
F ∗(s)

1 − F ∗(s)
, (1.5)
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where, in general, ϕ∗(s) is the LS transform of ϕ(t), i.e., ϕ∗(s) ≡ ∫∞
0

e−stdϕ(t)
for s > 0 and

∫∞
0 e−stdF (n)(t) = [F ∗(s)]n (n = 0, 1, 2, . . . ). Thus, M(t) and

F (t) determine one another because the LS transform also determines the
function uniquely.

The second moment of N(t) is [61, p. 89], because n2 = 2
∑n

i=1 i − n,

E
{
N(t)2
}

=
∞∑

n=1

n2 Pr {N(t) = n}

= 2
∞∑

n=1

n Pr {N(t) ≥ n} − M(t)

= 2
∞∑

n=1

n Pr {Sn ≤ t} − M(t)

= 2
∞∑

n=1

nF (n)(t) − M(t). (1.6)

Forming the LS transforms on both sides above,∫ ∞

0

e−st dE
{
N(t)2
}

= 2
∞∑

n=1

n[F ∗(s)]n − M∗(s)

= 2
[

F ∗(s)
1 − F ∗(s)

]2
+

F ∗(s)
1 − F ∗(s)

= 2[M∗(s)]2 + M∗(s). (1.7)

Inverting (1.7),

E
{
N(t)2
}

= 2M(t) ∗ M(t) + M(t), (1.8)

and hence,

V {N(t)} = 2M(t) ∗ M(t) + M(t) − [M(t)]2, (1.9)

where the asterisk denotes the pairwise Stieltjes convolution, i.e., a(t)∗ b(t) ≡∫ t

0
b(t − u)da(u).
We summarize some important limiting theorems and results of renewal

theory for future reference [11, 60, 61].

Theorem 1.1.

(i)
M(t)

t
−→ 1

µ1
, as t → ∞. (1.10)

(ii)
V {N(t)}

t
−→ σ2

µ3
1

, as t → ∞. (1.11)
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Theorem 1.2. If µ2 ≡ ∫∞
0

t2dF (t) < ∞ and σ2 ≡ µ2 − µ2
1,

M(t) =
t

µ1
+
(

σ2

2µ2
1

− 1
2

)
+ o(1), ast → ∞, (1.12)

and if µ3 ≡ ∫∞
0

t3dF (t) < ∞,

V {N(t)} =
σ2t

µ3
1

+
(

5σ4

4µ4
1

+
2σ2

µ2
1

+
3
4
− 2µ3

3µ3
1

)
+ o(1), as t → ∞, (1.13)

where the function f(h) is said to be o(h) if limh→0 f(h)/h = 0.
This is proved as follows: Expanding F ∗(s) with respect to s,

F ∗(s) = 1 − µ1s +
1
2
(σ2 + µ2

1)s
2 − 1

3!
µ3s

3 + o(s3). (1.14)

Substituting (1.14) in (1.5) and arranging them,

M∗(s) =
1

sµ1
+
(

σ2 − µ2
1

2µ2
1

)
+ o (1) , (1.15)

[M∗(s)]2 =
1

s2µ2
1

+
1
s

(
σ2 − µ2

1

µ3
1

)
+
(

3σ4

4µ4
1

+
σ2

2µ2
1

+
3
4
− µ3

3µ3
1

)
+ o (1) .

(1.16)

Inverting (1.15), and substituting (1.16) in (1.7) and inverting it, we have the
results of Theorem 1.2 from (1.9).

From this theorem, M(t) and m(t) are approximately given by

M(t) ≈ t

µ1
+

σ2

2µ2
1

− 1
2
, m(t) ≈ 1

µ1
, (1.17)

and

V {N(t)} ≈ σ2t

µ3
1

+
5σ4

4µ4
1

+
2σ2

µ2
1

+
3
4
− 2µ3

3µ3
1

(1.18)

for large t. Furthermore, if σ � µ1, then

M(t) ≈ t

µ1
− 1

2
. (1.19)

When F (t) has a density function f(t), the failure or hazard rate is defined
as h(t) ≡ f(t)/F (t), where F (t) ≡ 1−F (t). If the failure rate h(t) is increasing,
then F is IFR, that means increasing failure rate.

Theorem 1.3. When F is IFR [65],

t

µ1
− 1 ≤ t∫ t

0
F (u) du

− 1 ≤ M(t) ≤ tF (t)∫ t

0
F (u) du

≤ t

µ1
. (1.20)
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Using the asymptotic properties in (1.17) and (1.18) and applying them
to the usual central limit theorem, we have the central limit theorem for a
renewal process.

Theorem 1.4.

lim
t→∞Pr

{
N(t) − t/µ1√

σ2t/µ3
1

≤ x

}
=

1√
2π

∫ x

−∞
e−u2/2 du, (1.21)

i.e., N(t) is asymptotically normally distributed with mean t/µ1 and variance
σ2t/µ3

1 for large t.

(2) Poisson Process

When F (t) = Pr {Xj ≤ t} = 1 − e−λt (j = 1, 2, · · · ) for λ > 0, the counting
process {N(t); t ≥ 0} is called a Poisson process with rate λ. In this case,

F (n)(t) = Pr{Sn ≤ t} =
∞∑

j=n

(λt)j

j!
e−λt (n = 0, 1, 2, · · · ), (1.22)

f (n)(t) ≡ dF (n)(t)
dt

=
λ(λt)n−1

(n − 1)!
e−λt (n = 1, 2, · · · ), (1.23)

that is a gamma or Erlang distribution with rate λ. From (1.1), (1.2), (1.9),
and (1.22), we easily have the following results:

Pr {N(t) = n} =
(λt)n

n!
e−λt (n = 0, 1, 2, · · · ), (1.24)

i.e., N(t) is distributed according to a Poisson distribution with rate λ, and

M(t) = V {N(t)} =
tF (t)∫ t

0 F (u) du
=

tF (t)∫∞
t F (u) du

= λt. (1.25)

A Poisson process has stationary independent increments. Eliminating the
stationarity, we can generalize a Poisson process with a parameter that is a
function of time t as follows:

F (n)(t) =
∞∑

j=n

[H(t)]j

j!
e−H(t) (n = 0, 1, 2, · · · ), (1.26)

Pr {N(t + u) − N(u) = n} =
[H(t + u) − H(u)]n

n!
e−[H(t+u)−H(u)], (1.27)

M(t + u) − M(u) = V {N(t + u) − N(u)} = H(t + u) − H(u) (1.28)
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for all u ≥ 0. The counting process {N(t), t ≥ 0} is called a nonhomogeneous
Poisson process with a mean value function H(t) and h(t) ≡ dH(t)/dt is
called an intensity function. In addition, from [1, p. 97, 66],

E {Xn} =
∫ ∞

0

[H(t)]n−1

(n − 1)!
e−H(t) dt (n = 1, 2, · · · ), (1.29)

and if h(t) is increasing, then E {Xn} is decreasing in n to 1/h(∞).
Next, suppose that {Wj} are independent and identically distributed ran-

dom variables associated with Xj , and Wj has an identical distribution G(x)
with finite mean E {W} and is independent of Xi (i 
= j), where W0 ≡ 0.
When {N(t); t ≥ 0} is a Poisson process, we consider a new random variable
at time t defined by

Z(t) ≡
N(t)∑
j=0

Wj (N(t) = 0, 1, 2, · · · ). (1.30)

Then, the stochastic process {Z(t), t ≥ 0} under two processes is called a com-
pound Poisson process [60,63,67]. In addition, the LS transform of the distri-
bution of Wj is denoted by G∗(s) ≡ ∫∞

0
e−sxd Pr {Wj ≤ x} =

∫∞
0

e−sxdG(x)
for s > 0. Then, because

Pr {Z(t) ≤ x} =
∞∑

n=0

Pr {W1 + W2 + · · · + Wn ≤ x|N(t) = n}Pr {N(t) = n}

=
∞∑

n=0

Pr {W1 + W2 + · · · + Wn ≤ x} (λt)n

n!
e−λt,

its LS transform is∫ ∞

0

e−sx d Pr{Z(t) ≤ x} =
∞∑

n=0

[G∗(s)]n
(λt)n

n!
e−λt

= exp {−λt[1 − G∗(s)]} . (1.31)

Thus, it easily follows that

E {Z(t)} = λtE {W} , (1.32)

V {Z(t)} = λtE
{
W 2
}

. (1.33)

The stochastic process {Z(t); t ≥ 0} for {N(t); t ≥ 0} is called a cumulative
process [11] and some interesting results will be derived in Chapter 2.

(3) Renewal Reward Process

The stochastic process {Z(t), t ≥ 0}, defined in (1.30) when {N(t), t ≥ 0} is a
renewal process, is also called a renewal reward process [60]. Using Theorem
1.1,
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lim
t→∞

E {Z(t)}
t

=
E {W}
E {X} , (1.34)

where E {W} ≡ E {Wj} < ∞ and E {X} ≡ E {Xj} < ∞ for all j ≥ 1. This
property is applied to the analysis of optimum policies for many maintenance
models in reliability theory over an infinite time span [1].

1.2 Shock Processes

Consider a unit subject to damage, wear, and fatigue produced by a series of
shocks, jolts, blows, or stresses. When shocks occur in a Poisson process, a
renewal process, or in more general stochastic processes, and more simply, at
a constant time, the stochastic process {Z(t)} defined in (1.30) represents the
total cumulative damage at time t.

When shocks occur in a Poisson process, the times between successive
shocks are distributed exponentially and has a memoryless property. In other
words, shocks are generated randomly and uniformly in time, and the time
from any time t to the next shock is independent of time t and has the same
exponential distribution as that from time 0. If the unit fails when the total
number of shocks has exceeded a specified number n, then the failure time
has a gamma distribution given in (1.23).

When shocks occur in a nonhomogeneous Poisson process with an intensity
function h(t), the probability that some shock occurs in a small interval (t, t+
dt] is given approximately by h(t)dt for any t ≥ 0. This corresponds to the
shock model in which the mean times between shocks decrease with time. For
example, consider a two-unit system with failure interaction as described in
Section 4.2, in which unit 1 suffers some damage due to the failure of unit 2.
If unit 2 undergoes only minimal repair at failures [1, pp. 95–116], then the
failure times of unit 2, i.e., shock times of unit 1, are generated according to
a nonhomogeneous Poisson process.

Finally, shocks occur in a renewal process, i.e., the sequence of times {Xj}
between shocks is independent and identically distributed with a general dis-
tribution F (t). However, the time γ(t) from time t to the next shock, that is
called the excess time in a stochastic process or residual lifetime in reliability
theory at time t [61,65], depends on t, and is given by a renewal-type equation

Pr{γ(t) ≤ x} = F (t + x) −
∫ t

0

[1 − F (t + x − u)] dM(u), (1.35)

lim
t→∞Pr {γ(t) ≤ x} =

1
E {X}

∫ x

0

[1 − F (u)] du, (1.36)

where E {X} ≡ E {Xj} and M(t) is given in (1.2). This corresponds to the
shock model in which a shock will be generated by depending only on the
lapse time from the previous shock, regardless of the lapse time of the previous
shock.
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Furthermore, shocks have been assumed to occur in more generalized
stochastic processes such as the birth process [68,69], the Lévy process [70,71],
and the general counting process [72, 73]. Such studies have given many in-
teresting results theoretically in reliability theory. However, these would not
be useful practically for actual reliability models because the contents are too
mathematical.

Example 1.1. Suppose that a unit suffers some damage due to each shock
with probability p (0 < p ≤ 1) and no damage with probability q ≡ 1− p. We
can interpret another example that is the damage of a target hit by a weapon.
The probability of hitting a target when a weapon fires at a passive target
is p and the probability of missing a target is q. This is called a stochastic
duel [74, 75] and will be dealt with Section 10 as one of related cumulative
damage models.

When shocks occur in a renewal process, the distribution of time where
the unit suffers some damage for the first time until time t is

F1(t) ≡ [1 + qF (t) + qF (t) ∗ qF (t) + · · · ] ∗ pF (t).

Taking the LS transforms on both sides yields

F ∗
1 (s) =

pF ∗(s)
1 − qF ∗(s)

,

and hence, the mean time to the first damage due to some shock is∫ ∞

0

t dF1(t) =
E {X}

p
.

Thus, by replacing F (t) with F1(t) in (1), we can get the results in the case
where shocks are imperfect. In particular, when F (t) = 1 − e−λt, F1(t) =
1 − e−pλt,

∫∞
0 tdF1(t) = 1/(pλ), and

Pr {N(t) = n} =
(pλt)n

n!
e−pλt (n = 0, 1, 2, · · · ).

Similarly, when shocks occur in a nonhomogeneous Poisson process with
a mean value function H(t),

Pr {N(t) = n} =
[pH(t)]n

n!
e−pH(t) (n = 0, 1, 2, · · · ),

and E {N(t)} = V {N(t)} = pH(t).

Example 1.2. Consider a parallel redundant system with n identical units,
each of which fails at shocks with probability p (0 < p ≤ 1), where q ≡ 1 − p,
and shocks occur in a renewal process with mean interval µ1. Let Wj be the
total number of units that fail at the jth (j = 1, 2, · · · ) shock. Then, because
the probability that one unit fails until the jth shock is



1.2 Shock Processes 13

j∑
i=1

pqi−1 = 1 − qj ,

the mean time to system failure is [76]

∞∑
j=1

jµ1 Pr {W1 + W2 + · · · + Wj−1 ≤ n − 1 and W1 + W2 + · · · + Wj = n}

=
∞∑

j=1

jµ1[(1 − qj)n − (1 − qj−1)n]

= µ1

∞∑
j=0

[1 − (1 − qj)n]

= µ1

n∑
i=1

(
n

i

)
(−1)i+1 1

1 − qi
,

that is strictly increasing in q from µ1 to ∞. The replacement problem of this
model will be taken up in Section 4.1.1.

More general redundant systems with common-cause failures in which one
or more units fail simultaneously at shocks were analyzed [77–80].



2

Damage Models

Consider a standard cumulative damage model [11] for an operating unit:
A unit is subjected to shocks and suffers some damage due to shocks. Let
random variables Xj (j = 1, 2, . . . ) denote a sequence of interarrival times
between successive shocks, and random variables Wj (j = 1, 2, . . . ) denote
the damage produced by the jth shock, where W0 ≡ 0. It is assumed that the
sequence of {Wj} is nonnegative, independently, and identically distributed,
and furthermore, Wj is independent of Xi (i 
= j). This is called a jump
process [81] or doubly stochastic process [82].

Let N(t) denote the random variable that is the total number of shocks
up to time t (t ≥ 0). Then, define a random variable

Z(t) ≡
N(t)∑
j=0

Wj (N(t) = 0, 1, 2, . . . ), (2.1)

where Z(t) represents the total damage at time t. It is assumed that the
unit fails when the total damage has exceeded a prespecified level K (0 <
K < ∞) for the first time (see Figure 2.1). Usually, a failure level K is
statistically estimated and is already known. Of interest is a random variable
Y ≡ min{t; Z(t) > K}, i.e., Pr{Y ≤ t} represents the distribution of the
failure time of the unit.

In this chapter, we consider two damage models: (1) the cumulative dam-
age model where the total damage is additive, and (2) the independent dam-
age model where the total damage is not additive, i.e., it is independent of
the previous damage level. For each model, we are interested in the following
reliability quantities:

(i) Pr{Z(t) ≤ x}; the distribution of the total damage at time t.
(ii) E{Z(t)}; the total expected damage at time t.
(iii) Pr{Y ≤ t}; the first-passage time distribution to failure.
(iv) E{Y }; the mean time to failure (MTTF).
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K

Z(t)

0 t

Shock point Failure time

X1 X2 X3 X4 X5

W1

W2

W3

W4

W5

Fig. 2.1. Process for a standard cumulative damage model

(v) Failure rate or hazard rate r(t); r(t)dt = Pr{t < Y ≤ t + dt|Y > t} is the
probability that the unit surviving at time t will fail in (t, t + dt].

(vi) Probability function pj ; pj is the probability that the unit fails at the jth
shock.

Some reliability quantities have already been obtained [11, 33, 40]. This
chapter summarizes only the known results that can be applied to mainte-
nance policies discussed in later chapters and be useful in practical fields. A
continuous wear process in which the total damage increases with time t is
briefly introduced. Finally, five modified damage models are proposed. Several
examples are presented. Some examples might appear to be theoretical and
contrived, however, these would be useful for understanding the results easily.

2.1 Cumulative Damage Model

Consider a standard cumulative damage model: Successive shocks occur at
time intervals Xj (j = 1, 2, . . . ) and each shock causes some damage to a unit
in the amount Wj . The total damage due to shocks is additive.

It is assumed that 1/λ ≡ E{Xj} < ∞, 1/µ ≡ E{Wj} < ∞, and F (t) ≡
Pr{Xj ≤ t}, G(x) ≡ Pr{Wj ≤ x} for t, x ≥ 0. Then, from (1.1) in Chapter 1,
the probability that shocks occur exactly j times in [0, t] is [11]
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Pr{N(t) = j} = F (j)(t) − F (j+1)(t) (j = 0, 1, 2, . . . ).

Thus,

Pr

⎧⎨⎩
N(t)∑
i=0

Wi ≤ x, N(t) = j

⎫⎬⎭ = Pr

⎧⎨⎩
N(t)∑
i=0

Wi ≤ x

∣∣∣∣∣∣N(t) = j

⎫⎬⎭Pr{N(t) = j}

= G(j)(x)[F (j)(t) − F (j+1)(t)] (j = 0, 1, 2, . . . ), (2.2)

where ϕ(j)(t) denotes the j-fold Stieltjes convolution of any function ϕ(t) with
itself, and ϕ(0)(t) ≡ 1 for t ≥ 0.

Therefore, the distribution of Z(t) defined in (2.1) is

Pr{Z(t) ≤ x} = Pr

⎧⎨⎩
N(t)∑
i=0

Wi ≤ x

⎫⎬⎭
=

∞∑
j=0

Pr

⎧⎨⎩
N(t)∑
i=0

Wi ≤ x

∣∣∣∣∣∣N(t) = j

⎫⎬⎭Pr{N(t) = j}

=
∞∑

j=0

G(j)(x)[F (j)(t) − F (j+1)(t)], (2.3)

and the survival probability is

Pr{Z(t) > x} =
∞∑

j=0

[G(j)(x) − G(j+1)(x)]F (j+1)(t). (2.4)

The total expected damage at time t is

E{Z(t)} =
∫ ∞

0

xdPr{Z(t) ≤ x}

=
1
µ

∞∑
j=1

F (j)(t) =
MF (t)

µ
, (2.5)

where MF (t) ≡∑∞
j=1 F (j)(t) is called a renewal function of distribution F (t)

and represents the expected number of shocks in [0, t]. It can be intuitively
known that E{Z(t)} is given by the product of the average amount of damage
suffered from shocks and the expected number of shocks in time t. This is
useful for estimating the total expected damage at time t.

Furthermore, from Theorem 1.2, for the distribution F with finite rth
moment µr and variance σ2,

M(t) ≡ E{N(t)} =
t

µ1
+
(

σ2

2µ2
1

− 1
2

)
+ o(1),

V {N(t)} =
σ2t

µ3
1

+
(

5σ4

4µ4
1

+
2σ2

µ2
1

+
3
4
− 2µ3

3µ3
1

)
+ o(1).
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Thus, when F (G) has finite mean 1/λ (1/µ) and variance σ2
F (σ2

G), approxi-
mately, for large t,

E{Z(t)} = E

⎧⎨⎩E

⎧⎨⎩
N(t)∑
j=1

Wj

∣∣∣∣∣N(t)

⎫⎬⎭
⎫⎬⎭ = E{N(t)}E{Wj}

≈ 1
µ

(
λt +

λ2σ2
F − 1
2

)
, (2.6)

V {Z(t)} = E{Z2(t)} − [E{Z(t)}]2

= E

⎧⎨⎩
⎧⎨⎩

N(t)∑
j=1

Wj

N(t)∑
i=1

Wi

∣∣∣∣∣N(t)

⎫⎬⎭
⎫⎬⎭− [E{Z(t)}]2

= V {N(t)}[E{Wj}]2 + E{N(t)}V {Wj}

≈ 1
µ

[
λt

µ
(λ2σ2

F + µ2σ2
G) +

1
µ

(
5λ4σ4

F

4
+ 2λ2σ2

F +
3
4
− 2λ3µ3

3

)]
+

σ2
G

2
(λ2σ2

F − 1). (2.7)

Moreover, because

lim
t→∞

E{Z(t)}
t

=
λ

µ
, lim

t→∞
V {Z(t)}

t
=

λ

µ2
(λ2σ2

F + µ2σ2
G),

by applying Takács theorem [83] (see Example 2.6 in [1]) to this model,

lim
t→∞ Pr

{
Z(t) − λt/µ√

λ3t(σ2
F /µ2 + σ2

G/λ2)
≤ x

}
=

1√
2π

∫ x

−∞
e−u2/2 du. (2.8)

This was proved in [29] and generalized in [84–86].

Example 2.1. We wish to estimate the total damage when the probability
that it is more than z in t = 30 days of operation is given by 0.90. The
distributions of shock times and the amount of damage are unknown, but from
sample data, the following estimations of means and variances are made:

1/λ = 2 days, σ2
F = 5 (days)2,

1/µ = 1, σ2
G = 0.5.

In this case, from (2.6), E{Z(30)} ≈ 15.125. Then, from (2.8), when t = 30,

Z(t) − λt/µ√
λ3t(σ2

F /µ2 + σ2
G/λ2)

=
Z(30) − 15

5.12

is approximately normally distributed with mean 0 and variance 1. Hence,
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Pr{Z(t) > z} = Pr
{

Z(30) − 15
5.12

>
z − 15
5.12

}
≈ 1√

2π

∫ ∞

(z−15)/5.12

e−u2/2 du = 0.90.

Because u0 = −1.28 such that (1/
√

2π)
∫∞

u0
e−u2/2 du = 0.90, z = 15− 5.12×

1.28 ≈ 8.45. Thus, the total damage is more than 8.45 in 30 days with prob-
ability 0.90.

Next, when a failure level is known as K = 10,

Pr{Z(t) > 10} = Pr
{

Z(30)− 10
5.12

>
10 − 15

5.12

}
≈ 1√

2π

∫ ∞

−0.98

e−u2/2 du ≈ 0.84.

Thus, the probability that the unit with a failure level K = 10 fails in 30 days
is about 0.84.

The first-passage time distribution to failure when the failure level is con-
stant K, because the events of {Y ≤ t} and {Z(t) > K} are equivalent, is,
from (2.4),

Φ(t) ≡ Pr{Y ≤ t} = Pr{Z(t) > K}

=
∞∑

j=0

[G(j)(K) − G(j+1)(K)]F (j+1)(t), (2.9)

and its Laplace–Stieltjes (LS) transform is

Φ∗(s) ≡
∫ ∞

0

e−st dΦ(t) =
∞∑

j=0

[G(j)(K) − G(j+1)(K)][F ∗(s)]j+1, (2.10)

where ϕ∗(s) denotes the LS transform of any function ϕ(t), i.e., ϕ∗(s) ≡∫∞
0

e−stdϕ(t) for s > 0. Thus, the mean time to failure is

E{Y } =
∫ ∞

0

t dPr{Y ≤ t} = −dΦ∗(s)
ds

∣∣∣∣
s=0

=
1
λ

∞∑
j=0

G(j)(K) =
1
λ

[1 + MG(K)], (2.11)

where MG(K) ≡ ∑∞
j=1 G(j)(K) represents the expected number of shocks

before the total damage exceeds a failure level K.
Similarly, when G has finite mean 1/µ and variance σ2

G, approximately,

E{Y } ≈ 1
λ

(
µK +

µ2σ2
G + 1
2

)
. (2.12)
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In addition, when the distribution G has an IFR property, it has been shown
that µx − 1 < MG(x) ≤ µx from (1.20). Thus,

µK

λ
< E{Y } ≤ µK + 1

λ
. (2.13)

In Example 2.1, E{Y } is approximately 21.5 days and 20 < E{Y } ≤ 22.
Finally, the failure rate is

r(t) dt =
Pr{t < Y ≤ t + dt}

Pr{Y > t}

=

∑∞
j=0[G

(j)(K) − G(j+1)(K)]f (j+1)(t) dt∑∞
j=0 G(j)(K)[F (j)(t) − F (j+1)(t)]

, (2.14)

where f(t) is a density function of F (t). Furthermore, because the probability
that the unit fails at the (j + 1)th shock is pj+1 ≡ G(j)(K) − G(j+1)(K)
(j = 0, 1, 2, . . . ), its survival distribution is

P j ≡
∞∑

i=j

pi+1 = G(j)(K) (j = 0, 1, 2, . . . ),

where P 0 ≡ 1, i.e., P j represents the probability of surviving the first j shocks.
Thus, the expected number of shocks until failure, including the shock at which
the unit has failed, is

∞∑
j=1

jpj =
∞∑

j=0

G(j)(K) = 1 + MG(K).

E{Y } in (2.11) is given by the product of the mean time between successive
shocks and the expected number of shocks until the total damage has exceeded
K. It is also approximately

∞∑
j=1

jpj ≈ µK +
µ2σ2

G + 1
2

.

The discrete failure rate for a probability function {pj}∞j=1 is

rj+1 ≡ pj+1

P j

=
G(j)(K) − G(j+1)(K)

G(j)(K)
(j = 0, 1, 2, . . . ), (2.15)

i.e., rj+1 represents the probability that the unit surviving at the jth shock
will fail at the (j + 1)th shock and is less than or equal to 1.

Next, suppose that shocks occur in a nonhomogeneous Poisson process
with an intensity function h(t) and a mean value function H(t), i.e., H(t) ≡∫ t

0
h(u)du in (2) of Section 1.1. Then, from (1.1) and (1.26),
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Pr{N(t) = j} =
[H(t)]j

j!
e−H(t) (j = 0, 1, 2, . . . ). (2.16)

Thus, by replacing F (j)(t) with
∑∞

i=j{[H(t)]i/i!}e−H(t) formally, we can
rewrite all reliability quantities. For example,

Pr{Z(t) ≤ x} =
∞∑

j=0

G(j)(x)
[H(t)]j

j!
e−H(t), (2.17)

E{Z(t)} =
H(t)

µ
, (2.18)

E{Y } =
∞∑

j=0

G(j)(K)
∫ ∞

0

[H(t)]j

j!
e−H(t) dt. (2.19)

If shocks occur at a constant time t0 (0 < t0 < ∞), i.e., F (t) is the
degenerate distribution placing unit mass at time t0, and F (t) ≡ 0 for t < t0,
and 1 for t ≥ t0, then

Pr{Y ≤ t} = 1 − G([t/t0])(K),

E{Y } =
∫ ∞

0

G([t/t0])(K) dt,

where [t/t0] denotes the greatest integer less than or equal to t/t0.
Finally, when G(x) ≡ 0 for x < 1 and 1 for x ≥ 1, and K = n,

Pr{Y ≤ t} = F (n+1)(t), E{Y } =
n + 1

λ
,

that is, the unit fails certainly at the (n + 1)th shock.

2.2 Independent Damage Model

Consider the independent damage model for an operating unit where the total
damage is not additive, i.e., any shock does no damage unless its amount has
not exceeded a failure level K. If the damage due to some shock has exceeded
for the first time a failure level K, then the unit fails (see Figure 2.2). The
same assumptions as those of the previous model are made except that the
total damage is additive. A typical example of this model is the fracture
of brittle materials such as glasses [33], and semiconductor parts that have
failed by some overcurrent or fault voltage. The generalized model with three
types of shocks where shocks with a small level of damage are no damage
to the unit, shocks with a large level of damage result in failure, and shocks
with an intermediate level result in failure only with some probability, was
considered [87].
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Fig. 2.2. Process for an independent damage model

In this case, the probability that the unit fails exactly at the (j + 1)th
shock (j = 0, 1, 2, . . . ) is pj+1 = [G(K)]j − [G(K)]j+1. Thus, the distribution
of time to failure is

Pr{Y ≤ t} =
∞∑

j=0

{[G(K)]j − [G(K)]j+1}F (j+1)(t), (2.20)

its LS transform is∫ ∞

0

e−st dPr{Y ≤ t} =
[1 − G(K)]F ∗(s)
1 − G(K)F ∗(s)

, (2.21)

and the mean time to failure is

E{Y } =
1

λ[1 − G(K)]
. (2.22)

Furthermore, the failure rates are

r(t) =

∑∞
j=0{[G(K)]j − [G(K)]j+1}f (j+1)(t)∑∞

j=0[G(K)]j [F (j)(t) − F (j+1)(t)]
, (2.23)

rj+1 = p1 = 1 − G(K) (j = 0, 1, 2, . . . ), (2.24)

that is constant for any j.
If shocks occur in a nonhomogeneous Poisson process with a mean value

function H(t), then,

Pr{Y ≤ t} =
∞∑

j=0

{
1 − [G(K)]j

} [H(t)]j

j!
e−H(t) = 1 − e−[1−G(K)]H(t), (2.25)

and its mean time is
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E{Y } =
∫ ∞

0

e−[1−G(K)]H(t) dt. (2.26)

The failure rate is
r(t) = [1 − G(K)]h(t), (2.27)

that has the same property as that of an intensity function h(t).
If shocks occur at a constant time t0,

Pr{Y ≤ t} = 1 − [G(K)][t/t0],

E{Y } =
∫ ∞

0

[G(K)][t/t0] dt.

Example 2.2. Suppose that F (t) = 1 − e−λt and G(x) = 1 − e−µx, i.e.,
shocks occur in a Poisson process with rate λ and each damage due to shocks
is exponential with mean 1/µ. In this case, both a nonhomogeneous Poisson
and renewal processes form the same Poisson process, i.e.,

F (j)(t) =
∞∑
i=j

[H(t)]i

i!
e−H(t) =

∞∑
i=j

(λt)i

i!
e−λt (j = 0, 1, 2, . . . ).

In the cumulative damage model of Section 2.1, from (1.31),∫ ∞

0

e−sx dPr{Z(t) ≤ x} = e−λ[s/(s+µ)t].

By inversion [65, p. 80],

Pr{Z(t) ≤ x} = e−λt

[
1 +
√

λµt

∫ x

0

e−µuu−1/2I1

(
2
√

λµtu
)

du

]
,

where Ii(x) is the Bessel function of order i for the imaginary argument defined
by

Ii(x) ≡
∞∑

j=0

(x
2

)2j+i 1
j!(j + i)!

.

Thus, from (2.9), the distribution of time to failure is

Pr{Y ≤ t} = 1 − e−λt

[
1 +
√

λµt

∫ K

0

e−µuu−1/2I1

(
2
√

λµtu
)

du

]
.

Furthermore, from (2.5), (2.11), or (2.18), (2.19), and (2.7),

E{Z(t)} =
λt

µ
, V {Z(t)} =

2λt

µ2
,

E{Y } =
1
λ

∞∑
j=1

jpj =
µK + 1

λ
,
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where note that E{Z(t)} increases linearly with time t. Thus, we have the
interesting result

E{Z(t)}
K + 1/µ

=
t

E{Y } ,

that represents that the ratio of the total expected damage at time t to a
failure level plus one mean amount of damage is equal to that of the time t
to the mean time to failure. If the mean time between shock times and their
mean damage due to shocks are roughly estimated, the mean damage level
and the mean time to failure are also estimated easily from these relations.

The failure rates are, from (2.14) and (2.15), respectively,

r(t) =
λe−λt−µKI0

(
2
√

λµtK
)

1 +
√

λµt
∫K

0
e−µuu−1/2I1

(
2
√

λµtu
)
du

,

rj+1 =
(µK)j/j!∑∞

i=j [(µK)i/i!]
(j = 0, 1, 2, . . . ),

that is strictly increasing in j from e−µK to 1, because

rj+1 − rj =
(µK)j/j!∑∞

i=j [(µK)i/i!]
− (µK)j−1/(j − 1)!∑∞

i=j−1[(µK)i/i!]

=

∑∞
i=j [(µK)i+j−1/(i!j!)](i − j)∑∞

i=j [(µK)i/i!]
∑∞

i=j−1[(µK)i/i!]
> 0.

In the independent damage model of Section 2.2, from (2.20) or (2.25),

Pr{Y ≤ t} = 1 − exp(−λte−µK),

and from (2.22) or (2.26),

E{Y } =
1

r(t)
=

1
λ

eµK ,

that is, the first-passage time Y to failure has an exponential distribution with
mean eµK/λ and the failure rate is constant.

2.3 Failure Rate

Investigate the reliability properties of the survival distribution Φ(t) ≡ 1 −
Φ(t) = Pr{Y > t} that the unit does not fail in [0, t]. Let P j denote the
probability of surviving the first j shocks (j = 0, 1, 2, . . . ), where P0 ≡ 0, and
Fj(t) be the probability that j shocks occur in time t, where F0(t) ≡ 1. Then,
the survival distribution is written in the following general form:
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Φ(t) =
∞∑

j=0

P j Pr{N(t) = j} =
∞∑

j=0

P j [Fj(t) − Fj+1(t)]. (2.28)

In particular, when shocks occur in a Poisson process with rate λ > 0, i.e.,
F (t) = 1 − e−λt in Section 2.1,

Φ(t) =
∞∑

j=0

P j
(λt)j

j!
e−λt. (2.29)

The probabilistic properties of Φ(t) were extensively investigated [34,88]. We
refer briefly only to these results that will be needed in the following chapters:
The failure rate is, from (2.14),

r(t) = λ

{
1 −
∑∞

j=0 P j+1[(λt)j/j!]∑∞
j=0 P j [(λt)j/j!]

}
≤ λ. (2.30)

When P j = qj , i.e., the total damage is not additive in Section 2.2, Φ(t) =
e−λ(1−q)t and r(t) = λ(1 − q) is constant.

Any distribution F (t) is said to have the property of IFR (increasing failure
rate) or IHR (increasing hazard rate) if and only if [F (t + x) − F (t)]/F (t) is
increasing in t for x > 0 and F (t) < 1 [65], where F (t) ≡ 1−F (t). Furthermore,
it has been proved that F (t) is IFR if and only if r(t) ≡ f(t)/F (t) is increasing
in t. In this model, the following properties (i) and (ii) were proved [33]:

(i) The failure rate r(t) in (2.30) is increasing if (P j −P j+1)/P j is increasing
in j.

In addition, when the total damage is additive and shocks times are exponen-
tial, from (2.29),

Φ(t) =
∞∑

j=0

G(j)(K)
(λt)j

j!
e−λt. (2.31)

(ii) The failure rate average
∫ t

0
r(u)du/t is increasing in t because [G(j)(x)]1/j

is decreasing in j. Note that if r(t) is increasing, then
∫ t

0
r(u)du/t is also

increasing.

In particular, when P j = G(j)(K) =
∑∞

i=j [(µK)i/i!]e−µK , P j+1/P j is strictly
decreasing from Example 2.2, so that the failure rate r(t) in (2.30) is strictly
increasing from λe−µK to λ.

When shocks occur in a nonhomogeneous Poisson process with an intensity
function h(t) and a mean value function H(t) [89], from (2.28),

Φ(t) =
∞∑

j=0

P j
[H(t)]j

j!
e−H(t). (2.32)
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(iii) The failure rate r(t) is increasing if h(t) is increasing and (P j −P j+1)/P j

is increasing.
(iv) The failure rate average

∫ t

0 r(u)du/t is increasing if both H(t)/t and (P j−
P j+1)/P j are increasing.

When the total damage is additive, (2.32) is

Φ(t) =
∞∑

j=0

G(j)(K)
[H(t)]j

j!
e−H(t). (2.33)

Then, properties (iii) and (iv) are rewritten as:

(v) The failure rate r(t) is increasing if h(t) is increasing and rj+1 in (2.15)
is increasing.

(vi) The failure rate average
∫ t

0 r(u)du/t is increasing if both H(t)/t and rj+1

are increasing.

Such results were compactly summarized [90]. Moreover, when shocks oc-
cur in the birth process [68], in the counting process [72], and in the Lévy
process [70], similar results were obtained.

After that, damage or shock models of this kind have been generalized
and analyzed by many authors [91–107]. A general shock model, where the
amount of damage due to shocks is correlated with their intervals, was ana-
lyzed [108–114]. Furthermore, bivariate and multivariate distributions derived
from cumulative damage models were studied [115–123]. The failure rate was
investigated for point, alternating, and diffused stresses [124].

2.4 Continuous Wear Processes

Let Y be the failure time of an operating unit. It is assumed that there exists
a nonnegative function h(t) such that

Pr{t < Y ≤ t + ∆t} = h(t)∆t + o(∆t) (2.34)

for ∆t > 0 and t ≥ 0. Then, the probability of the unit surviving at time t is

R(t) = Pr{Y > t} = exp
[
−
∫ t

0

h(u) du

]
= e−H(t), (2.35)

that represents the reliability of the unit at time t and is given in (1.1) of [1].
In this case, the function h(t) is called an instantaneous wear and H(t) ≡∫ t

0
h(u) du is called an accumulated wear at time t [37]. In particular, when

H(t) = at/K for a > 0, R(t) = e−at/K and E{Y } = K/a. Furthermore,
when H(t) = λtm (m > 0), R(t) becomes a Weibull distribution and R(t) =
exp(−λtm).



2.4 Continuous Wear Processes 27

On the other hand, assume that h(t) is the realization of the stochastic
process {W (t), t ≥ 0} with independent increments [35]. Then,

R(t) = E

{
exp
[
−
∫ t

0

W (u) du

]}
. (2.36)

If Z(t) is simply the accumulated wear in a stochastic process with indepen-
dent increments, then [34]

R(t) = E{e−Z(t)}. (2.37)

The reliability function R(t) was given by a gamma distribution [125] and
some reliability functions were derived in more general assumptions [126].

The accumulated wear function Z(t) usually increases with time t from 0,
and the unit fails when Z(t) has exceeded a failure level K. Next, suppose
that Z(t) = Att + Bt for At ≥ 0. Then, the reliability at time t is

R(t) = Pr{Z(t) ≤ K} = Pr{Att + Bt ≤ K}. (2.38)

(1) When At ≡ a (constant), K ≡ k (constant), and Bt is distributed nor-
mally with mean 0 and variance σ2t,

R(t) = Pr{Bt ≤ k − at} = Φ

(
k − at

σ
√

t

)
, (2.39)

where Φ(x) is the standard normal distribution with mean 0 and variance
1, i.e., Φ(x) = (1/

√
2π)
∫ x

−∞ e−u2/2du.
(2) When Bt ≡ 0, K ≡ k, and At is distributed normally with mean a and

variance σ2/t,

R(t) = Pr{At ≤ k/t} = Φ

(
k − at

σ
√

t

)
, (2.40)

that becomes equal to (2.39).
(3) When At ≡ a, Bt ≡ 0, and K is distributed normally with mean k and

variance σ2,

R(t) = Pr{at ≤ K} = Φ

(
k − at

σ

)
. (2.41)

When K is distributed normally with mean k and variance σ2t, R(t) is
equal to (2.39) and (2.40).

Replacing α ≡ σ/
√

ak and β ≡ k/a in (2.39) or (2.40),

R(t) = Φ

[
1
α

(√
β

t
−
√

t

β

)]
, (2.42)

that is called the Birnbaum–Saunders distribution [36, 127]. This is widely
applied to fatigue failure for material strength subject to stresses [128–130].
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When Z(t) = µt + σBt with positive drift µ and variance σ2 where Bt

is a standard Brownian motion, Z(t) forms the Wiener process or Brownian
motion process [62]. However, this has not been applied to actual damage
models. When Z(t) = Att+Bt, if At, Bt and K are deterministic, i.e., At ≡ a,
Bt ≡ b, and K ≡ k, then the unit fails at time t = (k − b)/a. By fitting
appropriate distributions to At, Bt, and K and estimating their parameters
for practical systems, the function Z(t) can be used as a continuous wear
function in cumulative damage models. When Z(t) = at and K is a random
variable, the optimum policy where the unit is replaced at a planned time will
be discussed in Section 5.2.

2.5 Modified Damage Models

Let us consider the following five damage models mainly based on our own
work: (1) damage model with imperfect shock where some shock may produce
no damage to a unit [40], (2) a failure level is a random variable with a general
distribution L(x) [131], (3) the total damage decreases exponentially with
time [132], (4) the damage model of a system with n different units [133], and
(5) the total damage increases with time [14, 134, 135]. Such damage models
would be realistic in reliability models and be useful in practice. We derive
the reliability quantities of each model and show simple examples when shock
times are exponential.

(1) Imperfect Shock

It has been assumed that the damage due to a shock occurs and its amount
is distributed with G(x). However, it may be considered that some shocks do
not produce any damage to a unit.

Suppose that the damage due to shocks occurs with probability p (0 <
p ≤ 1) and does not occur with probability q ≡ 1 − p. Other notations are
the same as those of Sections 2.1 and 2.2. Then, substituting F1(t) in Exam-
ple 1.1 in F (t) in (2.3), (2.5), (2.9), (2.11), and (2.14), Pr{Z(t) ≤ x}, E{Z(t)},
Pr{Y ≤ t}, E{Y }, and r(t) are given. In particular, from (2.10) and (2.11),
respectively,∫ ∞

0

e−st dPr{Y ≤ t} =
∞∑

j=0

[G(j)(K) − G(j+1)(K)]
[

pF ∗(s)
1 − qF ∗(s)

]j+1

, (2.43)

E{Y } =
1
pλ

∞∑
j=0

G(j)(K) =
1
pλ

[1 + MG(K)]. (2.44)

The corresponding results for the independent damage model are, from
(2.21) and (2.22), respectively,
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0

e−st dPr{Y ≤ t} =
p[1 − G(K)]F ∗(s)

1 − [q + pG(K)]F ∗(s)
, (2.45)

E{Y } =
1

pλ[1 − G(K)]
. (2.46)

(2) Random Failure Level and Time-Dependent Failure Level

Most units have individual variations in their ability to withstand shocks and
are operating in a different environment. In such cases, a failure level K is not
constant and would be random. Consider the case where a failure level K is
a random variable with a general distribution L(x) such that L(0) = 0 [33].
Then, for the cumulative damage model, the distribution of time to failure is

Pr{Y ≤ t} =
∞∑

j=0

F (j+1)(t)
∫ ∞

0

[G(j)(x) − G(j+1)(x)] dL(x), (2.47)

and its mean time is

E{Y } =
1
λ

∞∑
j=0

∫ ∞

0

G(j)(x) dL(x). (2.48)

The failure rates are

r(t) =

∑∞
j=0 f (j+1)(t)

∫∞
0 [G(j)(x) − G(j+1)(x)] dL(x)∑∞

j=0[F (j)(t) − F (j+1)(t)]
∫∞
0 G(j)(x) dL(x)

, (2.49)

rj+1 =

∫∞
0 [G(j)(x) − G(j+1)(x)] dL(x)∫∞

0
G(j)(x) dL(x)

. (2.50)

For the independent damage model,

Pr{Y ≤ t} =
∞∑

j=0

F (j+1)(t)
∫ ∞

0

{[G(x)]j − [G(x)]j+1} dL(x), (2.51)

E{Y } =
1
λ

∞∑
j=0

∫ ∞

0

[G(x)]j dL(x). (2.52)

For the cumulative model with imperfect shock,∫ ∞

0

e−st dPr{Y ≤ t} =
∞∑

j=0

[
pF ∗(s)

1 − qF ∗(s)

]j+1∫ ∞

0

[G(j)(x) − G(j+1)(x)] dL(x).

(2.53)

Example 2.3. Suppose that all random variables are exponential, i.e., F (t) =
1− e−λt and G(x) = 1− e−µx. Then, we obtain the explicit formulas for each
model.
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For imperfect shock, F ∗
1 (s) = pλ/(s + pλ), i.e., F1(t) = 1 − e−pλt by

inversion. Thus, substituting λ in pλ in Example 2.2, we can obtain the cor-
responding results.

When a failure level L(x) has also an exponential distribution (1− e−θx),∫ ∞

0

[G(j)(x) − G(j+1)(x)] dL(x) =
θµj

(µ + θ)j+1
.

Thus, from (2.47),∫ ∞

0

e−st dPr{Y ≤ t} =
∞∑

j=0

(
λ

s + λ

)j+1
θµj

(µ + θ)j+1
=

λθ

s(µ + θ) + λθ
.

By inversion,

Pr{Y ≤ t} = 1 − exp
(
− λθt

µ + θ

)
,

E{Y } =
1

r(t)
=

1
λ

∞∑
j=1

jpj =
1
λ

(µ
θ

+ 1
)

,

rj+1 =
θ

µ + θ
=

r(t)
λ

.

It is of great interest that both failure rates are constant, and rj corresponds to
the ratio of (mean damage of one shock)/(mean failure level + mean damage
of one shock).

For the independent damage model,

Pr{Y > t} =
∫ ∞

0

exp(−λte−µx)θe−θx dx =
∞∑

j=0

(−λt)j

j!

∫ ∞

0

θe−(θ+jµ)x dx

=
∞∑

j=0

(−λt)j

j!
θ

θ + jµ
,

E{Y } =
1

r(t)
=

1
λ

∞∑
j=1

jpj

=
1
λ

∫ ∞

0

eµxθe−θx dx =

⎧⎨⎩
θ

λ(θ − µ)
(θ > µ),

∞ (θ ≤ µ).

Finally, suppose that the total damage due to shocks is investigated and
is known statistically at the beginning. Then, if the unit with damage z0 (0 ≤
z0 < K) begins to operate at time 0, we can obtain all reliability quantities
by replacing K with K − z0 [136].
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Fig. 2.3. Process for a cumulative damage model with annealing

(3) Damage with Annealing

The total damage in the usual reliability models is additive and does not
decrease. In some materials, annealing, i.e., lessening the damage, can take
place such as rubber, fiber reinforced plastics, and polyurethane. We show
two examples, using the results of [83].

Takács considered the following damage model: If a unit suffers damage
W due to shock then its damage after time duration t is reduced to W e−αt

(0 < α < ∞). Define

Z(t) ≡
N(t)∑
j=1

Wj exp[−α(t − Sj)], (2.54)

where Sj ≡∑j
i=1 Xi (j = 1, 2, . . . ) (Figure 2.3). This also corresponds to the

shot noise model in (2) of Section 10.1.
Suppose that shocks occur in a Poisson process with rate λ. Then, Φ(t, x) ≡

Pr{Z(t) ≤ x} forms the following renewal equation [83, p. 105]:

∂Φ(t, x)
∂t

= −λ

{
Φ(t, x) −

∫ x

0

G[(x − y)e−αt] dyΦ(t, y)
}

, (2.55)

and its LS transform is

∂Φ∗(t, s)
∂t

= −λ[1 − G∗(se−αt)]Φ∗(t, s), (2.56)
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where Φ∗(t, s) ≡ ∫∞
0

e−sxdΦ(t, x) and G∗(s) ≡ ∫∞
0

e−sx dG(x). Solving this
differential equation,

Φ∗(t, s) = exp
{
−λ

∫ t

0

[1 − G∗(se−αu)] du

}
, (2.57)

E{Z(t)} = −∂Φ∗(t, s)
∂s

∣∣∣∣
s=0

=
λ(1 − e−αt)

αµ
. (2.58)

In addition, if 1/µ = E{Wj} < ∞, then limt→∞ Pr{Z(t) ≤ x} exists and its
LS transform is

Φ∗(∞, s) = exp
[
−λ

α

∫ 1

0

1 − G∗(su)
u

du

]
. (2.59)

Example 2.4.
(i) When G(x) = 1 − e−µx,

Φ∗(t, s) =
(

s + µeαt

s + µ

)ν

e−λt,

where ν ≡ λ/α. Thus, by inversion,

Pr{Z(t) ≤ x} = e−λt
∞∑

j=0

(
ν + j − 1

j

)
(1 − e−αt)j

∞∑
i=j

(µxeαt)i

i!
exp(−µxeαt).

In a similar way,

Φ∗(∞, s) =
(

µ

s + µ

)ν

,

lim
t→∞Pr{Z(t) ≤ x} =

∫ x

0

µ(µu)ν−1

Γ (ν)
e−µu du,

that is a gamma distribution with mean ν/µ.
(ii) When G(x) ≡ 0 for x < 1/µ and 1 for x ≥ 1/µ, i.e., the damage due to
each shock is constant and its amount is 1/µ. From the results [83, p. 129],

Φ∗(∞, s) =
(

µ

sγ

)ν

exp

(
−ν

∫ ∞

1/µ

e−su

u
du

)
,

where γ ≡ ec = 1.781072 · · · and C ≡ 0.577215 · · · that is Euler’s constant.
By inversion,

lim
t→∞Pr{Z(t) ≤ x} =

xν +
∑∞

j=1[(−1)jνj/j!]
∫ x

j/µ(x − u)νI(j)(u) du

(γ/µ)νΓ (1 + ν)
,

where I(y) is uniform over [0, 1/µ].
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(4) n Different Units

Consider a system with n different units that are independent of each other.
Successive shocks occur at time interval Xj with distribution F (t) ≡ Pr{Xj ≤
t} (j = 1, 2, . . . ). Each shock causes some damage to unit i (i = 1, 2, . . . , n)
in the amount Wi;j with distribution Gi(x) ≡ Pr{Wi;j ≤ x} for all j ≥ 1,
where Wi;j might be zero. Each unit fails when its total damage has exceeded
its failure level Ki (i = 1, 2, . . . , n). A series system with n units subject to
shocks was considered [137].

One typical example of this model would be the damage to railroad tracks,
ties and pantographs. Such damage is mainly due to the number and sizes of
running trains and depends on the weight and the speed of trains. In the
case of n = 3, Xj is the time interval of trains, and Wi;j (i = 1, 2, 3) are the
amounts of damage to the railroad tracks, ties, and pantographs, respectively,
produced by one running train.

Letting Zi(t) denote the total damage to unit i (i = 1, 2, . . . , n) at time t,
the joint distribution of Zi(t) is

Pr{Zi(t) ≤ xi (i = 1, 2, . . . , n)}

=
∞∑

j=0

Pr{Zi(t) ≤ xi (i = 1, 2, . . . , n)|N(t) = j}Pr{N(t) = j}. (2.60)

From the assumption that each amount of damage occurs independently,

Pr{Zi(t) ≤ xi (i = 1, 2, . . . , n)|N(t) = j} =
n∏

i=1

G
(j)
i (xi).

Thus, the joint distribution is

Pr{Zi(t) ≤ xi (i = 1, 2, . . . , n)} =
∞∑

j=0

[
n∏

i=1

G
(j)
i (xi)

]
[F (j)(t) − F (j+1)(t)].

(2.61)
Suppose that a system fails when at least one of n units exceeds a failure

level Ki, i.e., the system is a n-unit series system. Then, the first-passage time
distribution to system failure is

Pr{Y ≤ t} = 1 − Pr{Zi(t) ≤ Ki (i = 1, 2, . . . , n)}

=
∞∑

j=0

[
1 −

n∏
i=1

G
(j)
i (Ki)

]
[F (j)(t) − F (j+1)(t)], (2.62)

and its mean time is

E{Y } =
1
λ

∞∑
j=0

[
n∏

i=1

G
(j)
i (Ki)

]
. (2.63)
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Next, when a system fails if all of n units exceed a failure level Ki, i.e.,
the system is an n-unit parallel system, the first-passage time distribution to
system failure is

Pr{Y ≤ t} =
∞∑

j=0

{
n∏

i=1

[1 − G
(j)
i (Ki)]

}
[F (j)(t) − F (j+1)(t)], (2.64)

and its mean time is

E{Y } =
1
λ

∞∑
j=0

{
1 −

n∏
i=1

[1 − G
(j)
i (Ki)]

}
. (2.65)

When shocks occur in a nonhomogeneous Poisson process with a mean
value function H(t), the first-passage time distributions and their mean times
are derived by replacing F (j)(t)−F (j+1)(t) with {[H(t)]j/j!}e−H(t) formally.

Furthermore, suppose that a shock does no damage to unit i with prob-
ability qi ≡ 1 − pi, and otherwise, does some positive damage Wi;j with
distribution Gi(x). In this case,

Pr{Zi(t) ≤ xi (i = 1, 2, . . . , n)|N(t) = j}=
n∏

i=1

[
j∑

m=0

(
j

m

)
qm
i pj−m

i G
(j−m)
i (xi)

]
,

(2.66)
and hence, we can get the first-passage time distributions and their mean
times from (2.62)–(2.65).

Example 2.5. Suppose that any amount of damage to unit i incurred from
shocks is constant 1/µi, i.e., Gi(x) = 0 for x < 1/µi and 1 for x ≥ 1/µi. Let
Km ≡ min{µ1K1, µ2K2, . . . , µnKn} and KM ≡ max{µ1K1, µ2K2, . . . , µnKn}.
The first-passage time distribution and its mean time for a series system are,
from (2.62) and (2.63),

Pr{Y ≤ t} = F ([Km]+1)(t), E{Y } =
1
λ

([Km] + 1),

and for a parallel system are, from (2.64) and (2.65),

Pr{Y ≤ t} = F ([KM ]+1)(t), E{Y } =
1
λ

([KM ] + 1),

where [x] denotes the greatest integer contained in x.
Moreover, when F (t) = 1 − e−λt and Km ≥ 1, the failure rate is, for a

series system,

r(t) =
λ(λt)[Km]/[Km]!∑[Km]

j=0 (λt)j/j!
,

and for a parallel system,
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Fig. 2.4. Process for a cumulative damage model with two kinds of damages

r(t) =
λ(λt)[KM ]/[KM ]!∑[KM ]

j=0 (λt)j/j!
,

both of which are r(0) = 0, and increase monotonically and become r(∞) = λ
that is the constant failure rate of an exponential distribution (1 − e−λt). If
KM < 1, then r(t) = λ for all t ≥ 0.

(5) Increasing Damage with Time

Consider the cumulative damage model with two kinds of damage (see Fig-
ure 2.4). One of them is caused by shock and is additive, and the other in-
creases proportionately with time, that is, the total damage is accumulated
subject to shocks and time at the rate of constant α (α > 0), independent of
shocks. A unit fails whether the total damage is exceeded with time or has
exceeded a failure level K at some shock, and its failure is detected only at the
time of shocks. Such a model would be the life of dry and storage batteries. A
battery supplies electric power that is stored by chemical change according to
its need. However, oxidation and deoxidation always occur irrespective of its
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use, that is, a battery always discharges a small quantity of electricity with
time, and finally, it cannot be used.

Suppose that Sj ≡ X1 + X2 + · · · + Xj, Zj ≡ W1 + W2 + · · · + Wj (j =
1, 2, . . . ), and S0 ≡ Z0 ≡ 0. Because Pr{Sj ≤ t} = F (j)(t) where Pr{Zj ≤
x} = G(j)(x) (j = 0, 1, 2, . . . ), the distribution of time to detect a failure at
some shock is

Pr{Y ≤ t} =
∞∑

j=0

Pr{Zj + αSj < K ≤ Zj+1 + αSj+1, Sj+1 ≤ t}

=
∞∑

j=0

∫ t

0

{∫ t−u

0

[G(j)(K − αu) − G(j+1)(K − α(u + x))] dF (x)
}

dF (j)(u),

(2.67)

where note that G(j)(x) ≡ 0 for x < 0. Thus, the mean time to detect a failure
at some shock is

E{Y } =
∞∑

j=0

∫ ∞

0

{∫ ∞

0

(t + x)[G(j)(K − αt) − G(j+1)(K − α(t + x))] dF (x)
}

dF (j)(t)

=
1
λ

∞∑
j=0

∫ K/α

0

G(j)(K − αt) dF (j)(t). (2.68)

Similarly, the probability that the failure is detected at the (j + 1)th shock is

pj+1 =
∫ ∞

0

{∫ ∞

0

[G(j)(K − αt) − G(j+1)(K − α(t + x))] dF (x)
}

dF (j)(t)

=
∫ K/α

0

G(j)(K − αt) dF (j)(t) −
∫ K/α

0

G(j+1)(K − αt) dF (j+1)(t)

(j = 0, 1, 2, . . . ), (2.69)

and the failure rate is

rj+1 =

∫K/α

0 G(j)(K − αt) dF (j)(t) − ∫K/α

0 G(j+1)(K − αt) dF (j+1)(t)∫K/α

0 G(j)(K − αt) dF (j)(t)

(j = 0, 1, 2, . . . ). (2.70)

This corresponds to the model where a failure level K(t) at time t decreases
with time t, i.e., K(t) = K − αt.

Example 2.6. It is intuitively estimated from (2.11) that because the average
damage per unit of time is α+λ/µ, the mean time until the total damage has
exceeded a failure level K is approximately
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Table 2.1. Mean time to failure for two kinds of damage when 1/λ = 1

µK = 1 µK = 5 µK = 10
αµ

λl λE{Y } λl λE{Y } λl λE{Y }
0.0 2.0 2.000 6.0 6.000 11.0 11.000
0.2 1.8 1.705 5.2 5.078 9.3 9.294
0.4 1.7 1.521 4.6 4.392 8.1 7.989
0.6 1.6 1.410 4.1 3.907 7.3 7.049
0.8 1.6 1.334 3.8 3.543 6.6 6.333
1.0 1.5 1.286 3.5 3.260 6.0 5.770
2.0 1.3 1.162 2.7 2.450 4.3 4.121
4.0 1.2 1.086 2.0 1.843 3.0 2.845

l =
1
λ

(
K

α/λ + 1/µ
+ 1
)

.

Table 2.1 presents λE{Y } and λl for αµ and µK when F (t) = 1 − e−λt,
G(x) = 1− e−µx, and 1/λ = 1. When α = 0, this corresponds to the standard
cumulative model given in Example 2.2. This table indicates that l shows a
good upper bound for the mean time to failure. In actual models, l would be
easily computed, and it would be used practically as one estimation of their
mean failure times.

Finally, if the total damage increases exponentially, i.e.,

Z(t) =
N(t)∑
j=1

Wj exp [α(t − Sj)] , (2.71)

then by arguments similar to those of (3), when F (t) = 1 − e−λt,

Φ∗(t, s) = exp
{
−λ

∫ t

0

[1 − G∗(seαu)] du

}
, (2.72)

E{Z(t)} =
λ(eαt − 1)

αµ
, (2.73)

Φ∗(∞, s) = exp
[
−λ

α

∫ ∞

1

1 − G∗(su)
u

du

]
. (2.74)

This corresponds to the model where the total damage due to shocks is addi-
tive and also increases exponentially with time.
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Basic Replacement Policies

Consider a unit that should operate over an infinite time span. It is assumed
that shocks occur in random times and each shock causes a random amount
of damage to a unit. These damages are additive, and a unit fails when the
total damage has exceeded a failure level K. When the failure during actual
operation is costly or dangerous, it is of great importance to avoid such terrible
situations. It would be wise to exchange a unit at a lower cost before its failure.
The replacement after failure and before failure is called corrective replacement
and preventive replacement, respectively. We may consider damage as cost
incurred from shocks. In this case, this corresponds to the maintenance model
where a unit is replaced when the total cost incurred for some maintenance
has exceeded a threshold level K.

This is the maintenance model for a single unit, where its failure is very
serious, and sometimes may incur a heavy loss. If we have no information
on the condition of a unit, its maintenance should be done at planned times.
On the other hand, if we could get the number of shocks up to now and the
amount of damage at shock times or at inspection times, its maintenance
should be done at a prespecified number of shocks or at a damage level before
failure, respectively.

Suppose that a unit is replaced with a new one at failure. It may be wise to
do some maintenance at a lower cost before failure. The optimum control-limit
policies where a unit is replaced at a threshold level was derived, when it fails
with a known probability that is a function of the total damage [42–45]. More
discussions on such replacement policies were carried out [138–146]. Such re-
placements were summarized [147, 148]. On the other hand, the replacement
models where a unit is replaced at a planned time T were proposed [46–50].
Furthermore, the cumulative damage model where the total damage is decreas-
ing at a known restoration rate was proposed [149–152]. Recently, a variety
of replacement models subject to shocks were studied [153–160]. Replacement
policies for multistate degraded systems subject to random shocks were dis-
cussed [161–165]. A δ-shock model, where the second shock will cause the
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failure if the time interval between two successive shocks is less than δ, was
proposed [166,167].

This chapter is written based on [51, 168] and adds some new results by
combining the theories of cumulative processes [11] and maintenance [1]. In
Section 3.1, a unit is replaced before failure at a planned time T , at a shock
number N , or at a damage level Z, whichever occurs first. Introducing the
respective replacement costs for T , N , and Z, we obtain the expected cost
rates. In Section 3.2, we derive analytically optimum policies that minimize
the expected cost rates for the three policies. Some optimum policies are
compared with other values in numerical examples. In Section 3.3, we propose
five modified replacement models that would be useful in practical fields and
give more interesting research topics for further study.

3.1 Three Replacement Policies

Suppose that a unit begins to operate at time 0 and its damage level is 0. Let
N(t) be the number of shocks in time t. It is assumed that the probability
that j shocks occur in [0, t] is Fj(t) (j = 1, 2, · · · ), where F0(t) ≡ 1, i.e., the
probability that j shocks occur exactly in [0, t] is

Pr{N(t) = j} = Fj(t) − Fj+1(t) (j = 0, 1, 2, · · · ).
An amount Wj of damage due to the jth shock has an identical distribution

G(x) ≡ Pr{Wj ≤ x} with finite mean 1/µ, where G(x) ≡ 1 − G(x) and
1/µ ≡ ∫∞0 G(x)dx < ∞. Furthermore, the total damage is additive, and its
level is investigated and is known only at shock times. The unit fails when
the total damage has exceeded a failure level K at some shock, its failure is
immediately detected, and it is replaced with a new one.

As the preventive replacement policy, the unit is replaced before failure
at a planned time T (0 < T ≤ ∞), at a shock number N (N = 1, 2, · · · ),
or at a damage level Z (0 ≤ Z ≤ K), whichever occurs first. In addition, it
is assumed that the unit is replaced at K or Z without replacing it at N ,
respectively, when the total damage has exceeded K or Z at shock N .

The probability that the unit is replaced at time T is

PT =
N−1∑
j=0

[Fj(T ) − Fj+1(T )]G(j)(Z), (3.1)

the probability that it is replaced at shock N is

PN = FN (T )G(N)(Z), (3.2)

the probability that it is replaced at damage Z is

PZ =
N−1∑
j=0

Fj+1(T )
∫ Z

0

[G(K − x) − G(Z − x)] dG(j)(x), (3.3)
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and the probability that it is replaced at failure level K, i.e., corrective re-
placement is done, is

PK =
N−1∑
j=0

Fj+1(T )
∫ Z

0

G(K − x) dG(j)(x), (3.4)

where ϕ(j)(x) (j = 1, 2, · · · ) denotes the j-fold Stieltjes convolution of any
distribution ϕ(x) with itself and ϕ(0)(x) ≡ 1 for x ≥ 0. It is clearly shown
that PT + PN + PZ + PK = 1. Similarly, the mean time to replacement is

T

N−1∑
j=0

[Fj(T ) − Fj+1(T )]G(j)(Z) + G(N)(Z)
∫ T

0

t dFN (t)

+
N−1∑
j=0

∫ T

0

t dFj+1(t)
∫ Z

0

[G(K − x) − G(Z − x)] dG(j)(x)

+
N−1∑
j=0

∫ T

0

t dFj+1(t)
∫ Z

0

G(K − x) dG(j)(x)

=
N−1∑
j=0

G(j)(Z)
∫ T

0

[Fj(t) − Fj+1(t)] dt. (3.5)

For the above replacement model, we introduce the following replacement
costs: Cost cT is incurred for replacement at time T , and cN , cZ , and cK are
the respective replacement cost at shock N , damage Z, and failure level K,
where cost cK is higher than the three costs cT , cN , and cZ . Then, the total
expected cost until replacement, given that the unit began to operate at time
0, is

Ĉ(T, N, Z) = cT PT + cNPN + cZPZ + cKPK

= cK − (cK − cT )
N−1∑
j=0

[Fj(T ) − Fj+1(T )]G(j)(Z)

− (cK − cN )FN (T )G(N)(Z)

− (cK − cZ)
N−1∑
j=0

Fj+1(T )
∫ Z

0

[G(K − x) − G(Z − x)] dG(j)(x).

(3.6)

We call the time interval from one replacement to the next replacement
one cycle. Then, the pairs of time and cost in each cycle are independently
and identically distributed, and both have finite means. Thus, from (1.34) in
a renewal reward process, the expected cost per unit of time for an infinite
interval is
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C(T, N, Z) =
Expected cost of one cycle

Mean time of one cycle
, (3.7)

that is called the expected cost rate. Thus, dividing (3.6) by (3.5),

C(T, N, Z) =

cK − (cK−cT )
∑N−1

j=0 [Fj(T ) − Fj+1(T )]G(j)(Z)

−(cK−cN)FN (T )G(N)(Z)

−(cK−cZ)
∑N−1

j=0 Fj+1(T )
∫ Z

0 [G(K−x) − G(Z−x)] dG(j)(x)∑N−1
j=0 G(j)(Z)

∫ T

0
[Fj(t) − Fj+1(t)] dt

.

(3.8)
When the unit is replaced only after failure, the expected cost rate is

C ≡ lim
T→∞
N→∞
Z→K

C(T, N, Z)

=
cK∑∞

j=0 G(j)(K)
∫∞
0 [Fj(t) − Fj+1(t)] dt

. (3.9)

Furthermore, denoting ck as the mean time for replacement at k (k =
T, N, Z, K), the availability A(T, N, Z) ((2.24) of [1]) is

A(T, N, Z) ≡ Mean time to replacement
Mean time to replacement + Mean time for replacement

= 1
/{

1 +
cT PT + cNPN + cZPZ + cKPK∑N−1

j=0 G(j)(Z)
∫ T

0 [Fj(t) − Fj+1(t)] dt

}
. (3.10)

Thus, the policy maximizing A(T, N, Z) is theoretically the same as minimiz-
ing the expected cost rate C(T, N, Z) in (3.8).

3.2 Optimum Policies

We discuss analytically an optimum planned time T ∗, shock number N∗,
and damage level Z∗ that minimize the expected cost rates when Fj(t) ≡
F (j)(t) (j = 1, 2, · · · ), i.e., shocks occur in a renewal process with a general
distribution F (t) and its finite mean 1/λ.

(1) Optimum T ∗

Suppose that a unit is replaced at time T (0 < T ≤ ∞) or at failure, whichever
occurs first. Then, the expected cost rate is, from (3.8),

C1(T ) ≡ lim
N→∞
Z→K

C(T, N, Z)

=
cK − (cK − cT )

∑∞
j=0[F

(j)(T ) − F (j+1)(T )]G(j)(K)∑∞
j=0 G(j)(K)

∫ T

0
[F (j)(t) − F (j+1)(t)] dt

. (3.11)
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It can be easily seen that limT→0 C1(T ) = ∞, and from (3.9),

C1 ≡ lim
T→∞

C1(T ) =
cK

[1 + MG(K)]/λ
, (3.12)

where MG(K) ≡∑∞
j=1 G(j)(K), and note that the denominator of the right-

hand side represents the mean time to failure given in (2.11). Thus, there
exists a positive T ∗ (0 < T ∗ ≤ ∞) that minimizes C1(T ).

We seek an optimum time T ∗ that minimizes C1(T ) in (3.11) for cK > cT .
Let f(t) be a density function of F (t), f (j)(t) (j = 1, 2, · · · ) be the j-fold
Stieltjes convolution of f(t) with itself, and f (0)(t) ≡ 0 for t ≥ 0. Then,
differentiating C1(T ) with respect to T and setting it equal to zero,

Q(T )
∞∑

j=0

G(j)(K)
∫ T

0

[F (j)(t) − F (j+1)(t)] dt

−
∞∑

j=0

F (j+1)(T )[G(j)(K) − G(j+1)(K)] =
cT

cK − cT
, (3.13)

where

Q(T ) ≡
∑∞

j=0 f (j+1)(T )[G(j)(K) − G(j+1)(K)]∑∞
j=0[F (j)(T ) − F (j+1)(T )]G(j)(K)

.

It can be clearly seen that if Q(T ) is strictly increasing in T , then the left-hand
side of (3.13) is also strictly increasing from 0 to Q(∞)(1/λ)[1 + MG(K)]− 1,
where Q(∞) ≡ limT→∞ Q(T ). Thus, if Q(∞)[1 + MG(K)] > λcK/(cK − cT ),
then there exists a finite and unique T ∗ that satisfies (3.13), and the resulting
cost rate is

C1(T ∗) = (cK − cT )Q(T ∗). (3.14)

Conversely, if Q(∞)[1 + MG(K)] ≤ λcK/(cK − cT ), then T ∗ = ∞, i.e., the
unit is replaced only at failure, and the expected cost rate is given in (3.12).

If a failure level K is distributed according to a general distribution L(x)
as shown in (2) of Section 2.5, the expected cost rate becomes

C1(T ) =
cK − (cK − cT )

∑∞
j=0[Fj(T ) − Fj+1(T )]

∫∞
0 G(j)(x) dL(x)∑∞

j=0

∫ T

0
[Fj(t) − Fj+1(t)] dt

∫∞
0

G(j)(x) dL(x)
. (3.15)

In particular, suppose that shocks occur in a nonhomogeneous Poisson process
and a failure level K is distributed exponentially, i.e., Fj(t) =

∑∞
i=j{[H(t)]j/j!}

× e−H(t) (j = 0, 1, 2, · · · ) and L(x) = 1 − e−θx. Then, the expected cost rate
is rewritten as

C1(T ) =
cK − (cK − cT )e−[1−G∗(θ)]H(T )∫ T

0 e−[1−G∗(θ)]H(t) dt
, (3.16)

where G∗(θ) denotes the Laplace–Stieltjes transform of G(x), i.e., G∗(θ) ≡∫∞
0

e−θxdG(x) for θ > 0.
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We seek an optimum time T ∗ that minimizes C1(T ) in (3.16). First, it is
easily noted that the problem of minimizing C1(T ) is the same standard age
replacement problem with a failure distribution (1− exp{−[1−G∗(θ)]H(t)})
in Chapter 3 of [1]. Let h(t) be an intensity function of a nonhomogeneous
Poisson process, i.e., h(t) ≡ dH(t)/dt and H(t) =

∫ t

0
h(u)du. Then, differen-

tiating C1(T ) with respect to T and setting it equal to zero,

[1 − G∗(θ)]h(T )
∫ T

0

e−[1−G∗(θ)]H(t) dt + e−[1−G∗(θ)]H(T ) =
cK

cK − cT
. (3.17)

Letting Q1(T ) denote the left-hand side of (3.17), it can be easily seen that if
h(t) is strictly increasing, then Q1(T ) is also strictly increasing from 1 to

Q1(∞) ≡ lim
T→∞

Q1(T ) = [1 − G∗(θ)]h(∞)
∫ ∞

0

e−[1−G∗(θ)]H(t) dt.

Therefore, we have the following optimum policy:

(i) If h(t) is strictly increasing and Q1(∞) > cK/(cK−cT ), then there exists a
finite and unique T ∗ (0 < T ∗ < ∞) that satisfies (3.17), and the resulting
cost rate is

C1(T ∗) = (cK − cT )[1 − G∗(θ)]h(T ∗). (3.18)

(ii) If h(t) is strictly increasing and Q1(∞) ≤ cK/(cK − cT ) or h(t) is nonin-
creasing, then T ∗ = ∞, and the expected cost rate is

C1(∞) ≡ lim
T→∞

C1(T ) =
cK∫∞

0
e−[1−G∗(θ)]H(t) dt

. (3.19)

In the case of (ii), it is of interest that there does not exist any finite time T ∗

to minimize C1(T ) when shocks occur in a Poisson process, i.e., h(t) = λ.

(2) Optimum N∗

Suppose that a unit is replaced at shock N (N = 1, 2, · · · ) or at failure,
whichever occurs first. Then, the expected cost rate is, from (3.8),

C2(N) ≡ lim
T→∞
Z→K

C(T, N, Z)

=
cK − (cK − cN )G(N)(K)

(1/λ)
∑N−1

j=0 G(j)(K)
(N = 1, 2, · · · ). (3.20)

In particular, when N = 1, i.e., the unit is always replaced at the first shock,
the expected cost rate is

C2(1) = λ[cK − (cK − cN )G(K)]. (3.21)
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Forming the inequality C2(N+1)−C2(N) ≥ 0 to seek an optimum number
N∗ that minimizes C2(N) for cK > cN ,

Q2(N+1)
N−1∑
j=0

G(j)(K)−[1−G(N)(K)] ≥ cN

cK − cN
(N = 1, 2, · · · ), (3.22)

where

Q2(N) ≡ G(N−1)(K) − G(N)(K)
G(N−1)(K)

(N = 1, 2, · · · ).

If Q2(N) is strictly increasing in N , i.e., G(j+1)(x)/G(j)(x) is strictly de-
creasing in j, then the left-hand side of (3.22) is also strictly increasing in
N to Q2(∞)[1 + MG(K)] − 1, where Q2(∞) ≡ limN→∞ Q2(N) ≤ 1. Thus,
if Q2(∞)[1 + MG(K)] > cK/(cK − cN ), then there exists a finite and unique
minimum number N∗ (1 ≤ N∗ < ∞) that satisfies (3.22), and the expected
cost rate is

λ(cK − cN )Q2(N∗) < C2(N∗) ≤ λ(cK − cN )Q2(N∗ + 1). (3.23)

Conversely, if Q2(∞)[1 + MG(K)] ≤ cK/(cK − cN ), then N∗ = ∞. Note
that Q2(N) corresponds to the discrete failure rate rN given in (2.15), and
Q2(N +1) represents the probability that the unit surviving at the Nth shock
will fail at the (N +1)th shock. In general, Q2(N) would increase to 1. In this
case, if MG(K) > cN/(cK − cN ), i.e., the expected number of shocks before
failure is greater than cN/(cK − cN ), then a finite N∗ exists uniquely.

(3) Optimum Z∗

Suppose that a unit is replaced at damage Z (0 ≤ Z ≤ K) or at failure,
whichever occurs first. Then, the expected cost rate is, from (3.8),

C3(Z) ≡ lim
T→∞
N→∞

C(T, N, Z)

=
cK − (cK − cZ)[G(K) − ∫ Z

0
G(K − x) dMG(x)]

[1 + MG(Z)]/λ
. (3.24)

When Z = 0, C3(0) agrees with C2(1) in (3.21) when cZ = cN .
We seek an optimum level Z∗ that minimizes C3(Z) in (3.24) for cK > cZ .

Differentiating C3(Z) with respect to Z and setting it equal to zero,∫ K

K−Z

[1 + MG(K − x)] dG(x) =
cZ

cK − cZ
. (3.25)

The left-hand side of (3.25) is strictly increasing from 0 to MG(K). Thus, if
MG(K) > cZ/(cK−cZ), then there exists a finite and unique Z∗ (0 < Z∗ < K)
that satisfies (3.25), and its resulting cost rate is
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C3(Z∗) = λ(cK − cZ)G(K − Z∗). (3.26)

Conversely, if MG(K) ≤ cZ/(cK − cZ), then Z∗ = K, i.e., the unit should be
replaced only at failure, and the expected cost rate is given in (3.12).

If G(x) has an IFR property, then from (1.20), µK ≥ MG(K) ≥ µK − 1,
where 1/µ ≡ E {Wj}. Thus, if µK > cK/(cK − cZ), then an optimum Z∗

(0 < Z∗ < K) exists uniquely, and if µK ≤ cZ/(cK − cZ), then Z∗ = K. In
addition, if the solutions Z1 and Z2 to satisfy∫ K

K−Z

[1 + µ(K − x)] dG(x) =
cZ

cK − cZ
, (3.27)

and ∫ K

K−Z

µ(K − x) dG(x) =
cZ

cK − cZ
(3.28)

exist, respectively, then Z1 ≤ Z∗ ≤ Z2.

Example 3.1. Consider the replacement of car tires where the damage to
the tire is a function of the running distance. If the running distance exceeds
K = 30, 000 km, the tire is regarded as failed and is not suitable for running.
The distance traveled in one time unit is assumed to obey an exponential
distribution with mean 1/µ, i.e., G(x) = 1 − e−µx and MG(x) = µx. Then,
cost cZ represents the usual replacement cost of the tire and is 11,000 yen
(about $100). Cost cK includes all costs resulting from the failure of tires in
service, and will be higher than cZ because there is a risk of accidents. From
the above results, if µK > cZ/(cK − cZ), then there exists a finite and unique
Z∗ that satisfies

µZe−µ(K−Z) =
cZ

cK − cZ
.

Thus, we may replace the tire when the total running exceeds Z∗ km before
failure. In this case, the expected cost rate is C3(Z∗)/(λcZ) = 1/(µZ∗). On the
other hand, if the tire is replaced only when the total distance has exceeded
30,000 km, then the expected cost is C3(K)/(λcZ) = (cK/cZ)/(1 + µK).
Furthermore, from (3.28), Z2 is given by the unique solutions of the following
equations:

e−µK
[
1 − (1 − µZ)eµZ

]
=

cZ

cK − cZ
,

and Z∗ = Z1 ≤ Z2.
Another simple method of replacement is to balance the ratio of replace-

ment costs before and after failures against that of a damage level and a failure
level, i.e.,

Z̃

K + 1/µ
=

cZ

cK
.

It is clearly seen that Z∗ > Z̃ because eµ(K−Z) > 1 + µ(K − Z) for K > Z.
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Table 3.1. Comparison of optimum damage level Z∗ and approximate values Z2

and eZ for cK/cZ and 1/µ when K = 30, 000 km

cK/cZ = 2 cK/cZ = 5 cK/cZ = 10
1/µ

Z∗ Z2
eZ Z∗ Z2

eZ Z∗ Z2
eZ

100 29431 29431 15050 29293 29293 6020 29212 29212 3010
200 29004 29006 15100 28729 28730 6040 28568 28569 3020
300 28632 28635 15150 28220 28224 6060 27980 27983 3030
400 28296 28302 15200 27749 27755 6080 27429 27435 3040
500 27987 27996 15250 27306 27315 6100 26908 26917 3050
600 27700 27713 15300 26886 26900 6120 26410 26424 3060
700 27432 27449 15350 26486 26504 6140 25933 25952 3070
800 27179 27202 15400 26102 26127 6160 25473 25498 3080
900 26940 26970 15450 25734 25765 6180 25029 25061 3090
1000 26714 26751 15500 25379 25418 6200 24600 24639 3100

Table 3.1 presents the optimum value Z∗, upper value Z2, and approximate
value Z̃ for 1/µ and cK/cZ, that decrease with both 1/µ and cK/cZ . This
indicates that Z̃ < Z∗ ≤ Z2 shows a good approximation, however, Z̃ is too
small to compare with Z∗, so that the upper bound given in (3.28) would
be very useful practically to compute an optimum policy when G(x) and its
mean 1/µ are statistically estimated.

Until now, it has been assumed that shocks occur in random times and
their amount of damage is statistically estimated. Next, the amount of damage
is investigated only through inspections that are made at periodic times, that
is, the amount of damage is generated during ((j − 1)t0, jt0] according to an
identical distribution G(x) for all j (j = 1, 2, · · · ), and its total damage is
known only at jt0, i.e., at the end of each period. This corresponds to the
damage model where shocks occur at a constant time t0. Replacing 1/λ with t0
in (3.24), we can obtain the expected cost rate and make a discussion similar
to deriving an optimum policy.

3.3 Modified Replacement Models

This section considers some extended models of Section 3.1 in more general
replacement forms and discusses optimum policies. Furthermore, we propose
the combined preventive replacement models of planned time, shock number
and damage level. These models would be more realistic than the basic ones,
and moreover, offer interesting topics to reliability theoreticians.
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(1) Modified Cost

The replacement costs may depend on the damage level at its replacement
time. It is assumed that c0(x) (0 ≤ x ≤ K) is an additional replacement cost
that is variable for the total damage x with c(0) = 0, that is, cost ck + c0(x)
(k = T, N, Z) is incurred for the replacement of the unit with damage x at
time T , shock N , and damage Z, respectively, and cost cK +c0(K) is incurred
for the replacement at failure.

The expected cost when the unit is replaced at time T is
N−1∑
j=0

[Fj(T ) − Fj+1(T )]
∫ Z

0

[cT + c0(x)] dG(j)(x), (3.29)

the expected cost when it is replaced at shock N is

FN (T )
∫ Z

0

[cN + c0(x)] dG(N)(x), (3.30)

and the expected cost when it is replaced at damage Z is
N−1∑
j=0

Fj+1(T )
∫ Z

0

∫ K−x

Z−x

[cZ + c0(x + y)] dG(y) dG(j)(x). (3.31)

Thus, summing up (3.29)–(3.31), adding them to the replacement cost [cK +
c0(K)]PK , and dividing by (3.5), the expected cost rate is, from (3.7),

C(T, N, Z) =

cK − (cK− cT )
∑N−1

j=0 [Fj(T ) − Fj+1(T )]G(j)(Z)

− (cK− cN )FN (T )G(N)(Z)

− (cK− cZ)
∑N−1

j=0 Fj+1(T )
∫ Z

0
[G(K−x)− G(Z−x)] dG(j)(x)

+
∑N−1

j=0 Fj+1(T )
∫ Z

0
[
∫K

x
G(y − x) dc0(y)] dG(j)(x)∑N−1

j=0 G(j)(Z)
∫ T

0 [Fj(t) − Fj+1(t)] dt
.

(3.32)
It is difficult to discuss optimum policies analytically. In particular, it is

assumed that shocks occur in a Poisson process with rate λ, the amount of
damage due to each shock has an exponential distribution with mean 1/µ, and
c0(x) is proportional to the total damage x, i.e., Fj(t) =

∑∞
i=j [(λt)i/i!]e−λt,

G(j)(x) =
∑∞

i=j [(µx)i/i!]e−µx, and c0(x) = c0x.
The expected cost rate for the replacement at time T under the above

conditions is
C1(T )

λ
≡ lim

N→∞
Z→K

C(T, N, Z)
λ

=
cK − c0/µ − (cK − cT − c0/µ)

∑∞
j=0[Fj(T ) − Fj+1(T )]G(j)(K)∑∞

j=0 Fj+1(T )G(j)(K)

+
c0

µ
. (3.33)
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Differentiating C1(T ) with respect to T and setting it equal to zero, for cK >
cT + c0/µ,

Q(T )
∞∑

j=0

Fj+1(T )G(j)(K) −
∞∑

j=0

(λT )j

j!
e−λT [1 − G(j)(K)] =

cT

cK − cT − c0/µ
,

(3.34)
where

Q(T ) ≡
∑∞

j=0[(λT )j/j!]e−λT [G(j)(K) − G(j+1)(K)]∑∞
j=0[(λT )j/j!]e−λT G(j)(K)

.

First, note that [G(j)(K)−G(j+1)(K)]/G(j)(K) = [(µK)j/j!]/
∑∞

i=j [(µK)i/i!]
is strictly increasing from e−µK to 1 from Example 2.2. Next, when [G(j)(x)−
G(j+1)(x)]/G(j)(x) is strictly increasing in j for any distribution G(x), we can
prove [131] that

Q(T ) =

∑∞
j=0[(λT )j/j!][G(j)(x) − G(j+1)(x)]∑∞

j=0[(λT )j/j!]G(j)(x)

is also strictly increasing in T for any x > 0 as follows: Differentiating Q(T )
with respect to T ,

λ

[
∑∞

j=0[(λT )j/j!]G(j)(x)]2

⎡⎣ ∞∑
j=0

(λT )j

j!
G(j+1)(x)

∞∑
i=0

(λT )i

i!
G(i+1)(x)

−
∞∑

j=0

(λT )j

j!
G(j)(x)

∞∑
i=0

(λT )i

i!
G(i+2)(x)

⎤⎦.
The numerator is rewritten as

∞∑
j=0

(λT )j

j!

∞∑
i=0

(λT )i

i!
G(j)(x)G(i+1)(x)

[
G(j+1)(x)
G(j)(x)

− G(i+2)(x)
G(i+1)(x)

]

=
∞∑

j=1

(λT )j

j!

j−1∑
i=0

(λT )i

i!
G(j)(x)G(i+1)(x)

[
G(j+1)(x)
G(j)(x)

− G(i+2)(x)
G(i+1)(x)

]

+
∞∑

j=0

(λT )j

j!

∞∑
i=j

(λT )i

i!
G(j)(x)G(i+1)(x)

[
G(j+1)(x)
G(j)(x)

− G(i+2)(x)
G(i+1)(x)

]
. (3.35)

It can be easily seen that the second term on the right-hand side of (3.35) is
positive because G(j+1)(x)/G(j)(x) is strictly decreasing. Changing the sum-
mation of i and j, the first term on the right-hand side is

∞∑
i=0

(λT )i

i!

∞∑
j=i+1

(λT )j

j!
G(j)(x)G(i+1)(x)

[
G(j+1)(x)
G(j)(x)

− G(i+2)(x)
G(i+1)(x)

]
.
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Changing i into j with each other, the above equation is

∞∑
j=0

(λT )j

j!

∞∑
i=j+1

(λT )i

i!
G(i)(x)G(j+1)(x)

[
G(i+1)(x)
G(i)(x)

− G(j+2)(x)
G(j+1)(x)

]

=
∞∑

j=1

(λT )j−1

(j − 1)!

∞∑
i=j

(λT )i+1

(i + 1)!
G(i+1)(x)G(j)(x)

[
G(i+2)(x)
G(i+1)(x)

− G(j+1)(x)
G(j)(x)

]
.

Consequently, (3.35) is

∞∑
j=0

(λT )j

j!

∞∑
i=j

(λT )i

(i+1)!
G(j)(x)G(i+1)(x)

[
G(j+1)(x)
G(j)(x)

− G(i+2)(x)
G(i+1)(x)

]
(i + 1 − j) > 0,

that completes the proof of that Q(T ) is strictly increasing.
From the above results, Q(T ) is strictly increasing from e−µK to 1 when

G(x) = 1 − e−µx. Thus, the left-hand side of (3.34) is also strictly increasing
from 0 to µK. Therefore, if cK > cT [1 + (1/µK)] + c0/µ, then there exists a
finite and unique T ∗ that satisfies (3.34), and the resulting cost rate is

C1(T ∗)
λ

=
(

cK − cT − c0

µ

)
Q1(T ∗) +

c0

µ
. (3.36)

Conversely, if cK ≤ cT [1 + (1/µK)] + c0/µ, then T ∗ = ∞.
The expected cost rate for the replacement at shock N is, from (3.32),

C2(N)
λ

≡ lim
T→∞
Z→∞

C(T, N, Z)
λ

=
cK − c0/µ − (cK − cN − c0/µ)G(N)(K)∑N−1

j=0 G(j)(K)
+

c0

µ

(N = 1, 2, . . . ), (3.37)

that agrees with (3.20) in the exponential case by replacing cK with cK−c0/µ.
Because Q2(N) is strictly increasing to 1, if cK > cN [1 + (1/µK)]+ c0µ, then
there exists a finite and unique minimum N∗ that minimizes C2(N).

Finally, the expected cost rate for the replacement at damage Z is, from
(3.32),

C3(Z)
λ

≡ lim
T→∞
N→∞

C(T, N, Z)
λ

=
cK − c0/µ − (cK − cZ − c0/µ)(1 − e−µ(K−Z))

1 + µZ
+

c0

µ
. (3.38)

Differentiating C3(Z) with respect to Z and setting it equal to zero, for cK >
cZ + c0/µ,
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µZe−µ(K−Z) =
cZ

cK − cZ − c0/µ
. (3.39)

The left-hand side of (3.39) is strictly increasing from 0 to µK. Thus, if cK >
cZ [1+ (1/µK)]+ c0/µ, then there exists a finite and unique Z∗ (0 < Z∗ < K)
that satisfies (3.39), and the resulting cost rate is

C3(Z∗)
λ

=
1
µ

(
cZ

Z∗ + c0

)
. (3.40)

It is of great interest that the condition that a finite optimum value exists
is given by the same form as cK > ck[1 + (1/µK)] + c0/µ (k = T, N, Z). In
general, µK would be greater than ck/(cK −ck−c0/µ) because µK represents
the expected number of shocks before failure.

Example 3.2. We compute the optimum T ∗, N∗, and Z∗ numerically. Ta-
ble 3.2 presents the optimum λT ∗, the expected cost rate C1(T ∗)/(λcT ), and
T ∗/E {Y } = λT ∗/(1+µK) (see Example 2.2) for µK = 10, 20 and cK/cT = 2,
5, 10, 20 when c0 = 0. If cost c0 takes some positive value, then cK may be
replaced with cK − c0/µ. Furthermore, the ratio of cK to cT becomes one in-
dicator of replacement time. We compute T̃ that satisfies cT /cK = T/E {Y },
i.e., λT̃ = (cT /cK)(1 + µK). This indicates that when cK/cT = 2, the unit
should be replaced before failure at time λT ∗ = 9.02 and 82.0% of the mean
failure time. However, the approximate values T̃ are too small to compare T ∗,
and hence, it would be useless practically.

Table 3.3 presents the optimum N∗, the expected cost rate C2(N∗)/(λcN ),
and N∗/[1 + MG(K)] = N∗/(1 + µK) for µK = 10, 20 and cN/cT = 2, 5,
10, 20. In addition, we compute a minimum Ñ that satisfies cKG

(N)
(K) ≥

cNG(N)(K). If the unit fails until the Nth shock, then it costs cK , and other-
wise, it costs cN . The approximate values Ñ show good upper bounds of N∗

when µK = 10.
Table 3.4 presents the optimum µZ∗, the expected cost rate C3(Z∗)/(λcZ),

and Z∗/(K +1/µ) for µK = 10, 20 and cZ/cK = 2, 5, 10, 20. Furthermore, we
compute µZ̃ that satisfies cZ/cK = Z/(K +1/µ), i.e., µZ̃ = (cZ/cK)(1+µK)
that agrees with λT̃ when cZ = cT , and Z∗ > Z̃. The expected costs C3(Z∗)
are the smallest among three policies, as one expected. If costs cK/ck (k = T ,
N , Z) are the same ones, the replacement policy where the unit is replaced
at damage Z is the best among the three policies.

If the replacement cost is cK + c0(x) (x ≥ K) when the total damage is
x and the unit is replaced at failure, then the expected cost rate in (3.32) is
easily rewritten as
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Table 3.2. Optimum time λT ∗, expected cost rate C1(T
∗)/(λcT ), T ∗/E{Y }, and

approximate value λ eT for cK/cT and µK

µK = 10
cK/cT

λT ∗ C1(T
∗)/(λcT ) λT ∗/(1+µK) λ eT

2 9.02 0.142 0.820 5.5
5 5.56 0.243 0.505 2.2
10 4.34 0.327 0.394 1.1
20 3.45 0.417 0.313 0.55

µK = 20
cK/cT

λT ∗ C1(T
∗)/(λcT ) λT ∗/(1+µK) λ eT

2 15.74 0.066 0.749 10.5
5 11.30 0.089 0.538 4.2
10 9.59 0.106 0.457 2.1
20 8.33 0.122 0.400 1.05

Table 3.3. Optimum number N∗, expected cost rate C2(N
∗)/(λcN), N∗/(1+µK),

and approximate value eN for cK/cN and µK

µK = 10
cK/cN

N∗ C2(N
∗)/(λcN ) N∗/(1+µK) eN

2 9 0.156 0.818 10
5 6 0.213 0.545 8
10 5 0.253 0.455 7
20 4 0.300 0.364 6

µK = 20
cK/cN

N∗ C2(N
∗)/(λcN ) N∗/(1+µK) eN

2 16 0.073 0.762 19
5 13 0.089 0.610 17
10 12 0.100 0.571 15
20 10 0.110 0.476 14

C(T, N, Z) =

cK − (cK− cT )
∑N−1

j=0 [Fj(T ) − Fj+1(T )]G(j)(Z)

− (cK− cN)FN (T )G(N)(Z)

− (cK− cZ)
∑N−1

j=0 Fj+1(T )
∫ Z

0 [G(K−x) − G(Z−x)] dG(j)(x)

+
∑N−1

j=0 Fj+1(T )
∫ Z

0 [
∫∞

x G(y − x) dc0(y)] dG(j)(x)∑N−1
j=0 G(j)(Z)

∫ T

0
[Fj(t) − Fj+1(t)] dt

.

(3.41)
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Table 3.4. Optimum damage level µZ∗, expected cost rate C3(Z
∗)/(λcZ), µZ∗/(1+

µK), and approximate value eZ for cK/cZ and µK

µK = 10
cK/cZ

µZ∗ C3(Z
∗)/(λcZ) µZ∗/(1+µK) µ eZ

2 7.93 0.126 0.721 5.5
5 6.71 0.149 0.610 2.2
10 6.01 0.166 0.546 1.1
20 5.37 0.186 0.489 0.55

µK = 20
cK/cZ

µZ∗ C3(Z
∗)/(λcZ) µZ∗/(1+µK) µ eZ

2 17.16 0.058 0.817 10.5
5 15.85 0.063 0.755 4.2
10 15.09 0.066 0.719 2.1
20 14.39 0.069 0.685 1.05

(2) Replacement at Time T or Damage Z

A unit is replaced before failure at time T or at damage Z, whichever occurs
first. Then, the expected cost rate when cT = cZ is, from (3.8),

C(T, Z) =
cT + (cK − cT )

∑∞
j=0 Fj+1(T )

∫ Z

0
G(K − x) dG(j)(x)∑∞

j=0 G(j)(Z)
∫ T

0 [Fj(t) − Fj+1(t)] dt
. (3.42)

Let fj(t) and g(j)(x) be the density functions of Fj(t) and G(j)(x), re-
spectively. Differentiating C(T, Z) with respect to T and setting it equal to
zero,

Q1(T, Z)
∞∑

j=0

G(j)(Z)
∫ T

0

[Fj(t) − Fj+1(t)] dt

−
∞∑

j=0

Fj+1(T )
∫ Z

0

G(K − x) dG(j)(x) =
cT

cK − cT
, (3.43)

where

Q1(T, Z) ≡
∑∞

j=0 fj+1(T )
∫ Z

0 G(K − x) dG(j)(x)∑∞
j=0 G(j)(Z)[Fj(T ) − Fj+1(T )]

.

Furthermore, differentiating C(T, Z) with respect to Z and setting it equal to
zero,
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Q2(T, Z)G(K − Z)
∞∑

j=0

G(j)(Z)
∫ T

0

[Fj(t) − Fj+1(t)] dt

−
∞∑

j=0

Fj+1(T )
∫ Z

0

G(K − x) dG(j)(x) =
cT

cK − cT
, (3.44)

where

Q2(T, Z) ≡
∑∞

j=1 g(j)(Z)Fj+1(T )∑∞
j=1 g(j)(Z)

∫ T

0
[Fj(t) − Fj+1(t)] dt

.

In particular, when shocks occur in a Poisson process with rate λ, i.e.,
Fj(t) =

∑∞
i=j [(λt)i/i!]e−λt, (3.43) and (3.44) are simplified, respectively, as

follows:

Q3(T, Z)
∞∑

j=0

Fj+1(T )G(j)(Z)

−
∞∑

j=0

Fj+1(T )
∫ Z

0

G(K − x) dG(j)(x) =
cT

cK − cT
, (3.45)

where

Q3(T, Z) ≡
∑∞

j=0[Fj(T ) − Fj+1(T )]
∫ Z

0 G(K − x) dG(j)(x)∑∞
j=0[Fj(T ) − Fj+1(T )]G(j)(Z)

,

and

G(K − Z)
∞∑

j=0

Fj+1(T )G(j)(Z)

−
∞∑

j=0

Fj+1(T )
∫ Z

0

G(K − x) dG(j)(x) =
cT

cK − cT
. (3.46)

Hence, there does not exist both T ∗ (0 < T ∗ < ∞) and Z∗ (0 < Z∗ < K) that
satisfy (3.45) and (3.46) simultaneously, because Q3(T, Z) < G(K − Z) for
T > 0, so that we may determine optimum T ∗ and Z∗ independently under
these conditions as shown in Section 3.2, and adopt the policy with a lower
cost.

(3) Replacement at the Next Shock over Time T

It may be wasteful to replace an operating unit at planned times even if it
is working. For example, when a unit is functioning for jobs with a variable
working cycle and processing time, it would be better to do some maintenance
after it has completed the work and process. The modified replacement model
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where a unit is replaced at the next failure after time T was considered [169],
and the random maintenance model where it is replaced at random times was
proposed in Section 9.3 of [1].

We consider the following modified replacement model: A unit is replaced
before time T when the total damage has exceeded a failure level K, and
after T , it is replaced at the next shock. Then, the probability that the unit
is replaced before failure is

PT =
∞∑

j=0

[Fj(T ) − Fj+1(T )]G(j+1)(K), (3.47)

and the probability that it is replaced at failure is

PK =
∞∑

j=0

Fj(T )[G(j)(K) − G(j+1)(K)], (3.48)

where note that (3.47) + (3.48) = 1. The mean time to replacement is, from
(3.47) and (3.48),

∞∑
j=0

G(j+1)(K)
∫ T

0

[∫ ∞

T−u

(t + u) dF (t)
]

dFj(u)

+
∞∑

j=0

[G(j)(K) − G(j+1)(K)]
{∫ T

0

[∫ ∞

T−u

(t + u) dF (t)
]

dFj(u) +
∫ T

0

t dFj+1(t)
}

=
1
λ

∞∑
j=0

G(j)(K)Fj(T ). (3.49)

Therefore, the expected cost rate is

C̃1(T )
λ

=
cT PT + cKPK∑∞

j=0 G(j)(K)Fj(T )

=
cK − (cK − cT )

∑∞
j=0[Fj(T ) − Fj+1(T )]G(j+1)(K)∑∞

j=0 Fj(T )G(j)(K)
. (3.50)

When T = 0, C̃1(0) agrees with C2(1) in (3.21).
We derive an optimum time T ∗ that minimizes C̃1(T ) when F (t) = 1 −

e−λt and G(x) = 1 − e−µx, i.e., Fj(t) =
∑∞

i=j [(λt)i/i!]e−λt and G(j)(x) =∑∞
i=j [(µx)i/i!]e−µx. Then, differentiating C̃1(T ) in (3.50) with respect to T

and setting it equal to zero,

Q̃(T )
∞∑

j=0

Fj(T )G(j)(K)−
∞∑

j=0

(λT )j

j!
e−λT [1 − G(j+1)(K)] =

cT

cK − cT
, (3.51)



56 3 Basic Replacement Policies

where

Q̃(T ) ≡
∑∞

j=0[(λT )j/j!]e−λT [(µK)j+1/(j + 1)!]e−µK∑∞
j=0[(λT )j/j!]e−λT G(j+1)(K)

.

Because Q̃(T ) is strictly increasing in T from µK/(eµK −1) to 1, the left-hand
side of (3.51) is also strictly increasing from

D ≡ µK − 1 + e−µK

eµK − 1
≤ µK

2

to µK.
Therefore, we have the following optimum policy:

(i) If D ≥ cT /(cK − cT ), then T ∗ = 0, i.e., the unit is replaced at the first
shock, and the expected cost rate is given in (3.21).

(ii) If D < cT /(cK − cT ) < µK, then there exists a finite and unique T ∗ that
satisfies (3.51), and the resulting cost rate is

C̃1(T ∗) = λ(cK − cT )Q̃(T ∗). (3.52)

(iii) If µK ≤ cT /(cK − cT ), then T ∗ = ∞, i.e., the unit is replaced only at
failure, and the expected cost rate is given in (3.12).

(4) Replacement at the Next Shock over Damage Z

A unit is checked at each shock and the total damage is investigated only
through inspection. If needed, it is replaced, as shown in (3) of Section 3.2. In
addition, it may be better to replace a unit at the next shock time for prepare
parts, workers, maintenance plans, and so on.

A unit is replaced when the total damage has exceeded a failure level K,
and is also replaced at the next shock when the damage is between Z and K.
Then, the probability that the unit is replaced between Z and K is

PZ =
∞∑

j=0

∫ Z

0

[∫ K−x

Z−x

G(K − x − y) dG(y)
]

dG(j)(x), (3.53)

and the probability that it is replaced when the total damage has exceeded
K is

PK =
∞∑

j=0

∫ Z

0

[∫ K−x

Z−x

G(K − x − y) dG(y) + G(K − x)
]

dG(j)(x), (3.54)

where (3.53) + (3.54) = 1. Furthermore, the mean time to replacement is,
from (3.53) and (3.54),
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1
λ

∞∑
j=0

{
(j + 2)

∫ Z

0

[∫ K−x

Z−x

G(K − x − y) dG(y)
]

dG(j)(x)

+
∫ Z

0

[
(j + 2)

∫ K−x

Z−x

G(K − x − y) dG(y) + (j + 1)G(K − x)
]

dG(j)(x)

}

=
1
λ

[
1 + G(K) +

∫ Z

0

G(K − x) dMG(x)

]
. (3.55)

Therefore, the expected cost rate is

C̃3(Z)
λ

=
cZPZ + cKPK

1 + G(K) +
∫ Z

0
G(K − x) dMG(x)

=

cK − (cK − cZ)
{∫K

Z
G(K − x) dG(x)

+
∫ Z

0 [
∫K−x

Z−x G(K − x − y) dG(y)] dMG(x)
}

1 + G(K) +
∫ Z

0
G(K − x) dMG(x)

. (3.56)

In particular, when G(x) = 1 − e−µx,

C̃3(Z)
λ

=
cK − (cK − cZ){1 − [1 + µ(K − Z)]e−µ(K−Z)}

1 + µZ + 1 − e−µ(K−Z)
. (3.57)

Differentiating C̃3(Z) with respect to Z and setting it equal to zero,

e−µ(K−Z)

[
(1 + µZ)µ(K − Z)

1 − e−µ(K−Z)
− 1
]

=
cZ

cK − cZ
. (3.58)

The left-hand side of (3.58) is strictly increasing in Z from D to µK. Therefore,
we have the following optimum policy:

(i) If D ≥ cZ/(cK − cZ), then Z∗ = 0, and the expected cost rate is

C̃3(0)
λ

=
cK − (cK − cZ)[1 − (1 + µK)e−µK ]

2 − e−µK
. (3.59)

(ii) If D < cZ/(cK − cZ) < µK, then there exists a finite and unique Z∗

(0 < Z∗ < K) that satisfies (3.58), and the expected cost rate is

C̃3(Z∗)
λ

=
(cK − cZ)µ(K − Z∗)e−µ(K−Z∗)

1 − e−µ(K−Z∗)
. (3.60)

(iii) If µK ≤ cZ/(cK − cZ), then Z∗ = K, and the expected cost rate is given
in (3.12).
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It is of great interest that the condition for an optimum Z∗ to exist is the
same as that of (3). Furthermore, compared (3.58) with (3.39), because

(1 + µZ)µ(K − Z)
1 − e−µ(K−Z)

> 1 + µZ,

the optimum Z∗ to satisfy (3.58) is smaller than that to satisfy (3.39), as one
expected.

(5) Replacement at n Damage Levels

A unit is replaced before failure at damage Zi (i = 1, 2, . . . , n), where
Zn+1 ≡ K, and its replacement cost is ci. Then, the probability that the
unit is replaced at damage Zi is

Pi =
∞∑

j=0

∫ Z1

0

[G(Zi+1 − x) − G(Zi − x)] dG(j)(x)

= G(Zi+1) − G(Zi) +
∫ Z1

0

[G(Zi+1 − x) − G(Zi − x)] dMG(x)

(i = 1, 2, . . . , n), (3.61)

and the probability that it is replaced at failure is

PK = G(K) +
∫ Z1

0

G(K − x) dMG(x), (3.62)

where note that
∑n

i=1 Pi + PK = 1. Because the mean time to replacement is
given by the denominator of (3.24), the expected cost rate is

C(Z1, Z2, · · · , Zn)
λ

=
cKPK +

∑n
i=1 ciPi

1 + MG(Z1)

=
cK−∑n

i=1(cK−ci)
{
G(Zi+1)−G(Zi)+

∫ Z1

0 [G(Zi+1−x)−G(Zi−x)]dMG(x)
}

1 + MG(Z1)
,

(3.63)

that agrees with (3.24) for n = 1 when Z1 = Z.
Next, a unit fails when the total damage has exceeded a failure level Ki,

where Ki < Ki+1 and K∞ ≡ ∞ (i = 1, 2, . . . ), and its required cost is ci

with ci ≤ ci+1. If the unit is replaced before at damage Z (Z ≤ K1), then its
probability is

PZ =
∞∑

j=0

∫ Z

0

[G(K1 − x) − G(Z − x)] dG(j)(x), (3.64)

and the probability that it is replaced at failure level Ki is
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Pi =
∞∑

j=0

∫ Z

0

[G(Ki+1 − x) − G(Ki − x)] dG(j)(x) (i = 1, 2, . . . ), (3.65)

where PZ +
∑∞

i=1 Pi = 1. Thus, the expected cost rate is

C(Z)
λ

=
cZPZ +

∑∞
i=1 ciPi

1 + MG(Z)

=

cZ +
∑∞

i=1(ci − cZ)
{
G(Ki+1) − G(Ki)

+
∫ Z

0 [G(Ki+1 − x) − G(Ki − x)] dMG(x)
}

1 + MG(Z)
. (3.66)

Differentiating C(Z) with respect to Z and setting it equal to zero,

∞∑
i=1

(ci − ci−1)
∫ Ki

Ki−Z

[1 + MG(Ki − x)] dG(x) = cZ , (3.67)

where c0 ≡ cZ < c1. Thus, if MG(K1) > cZ/(c1 − cZ), then there exists a
finite and unique Z∗ (0 < Z∗ < K1) that satisfies (3.67), and it is smaller
than that to satisfy (3.25).

(6) Random Replacement Interval

Suppose that a unit is also replaced at random time R with a general distri-
bution γ(t) for the same policy in Section 3.1. This corresponds to the model
where a unit is replaced at the same random times as its working times (see
Section 9.3 in [1]).

By a method similar to obtaining (3.1)–(3.4), the probability that the unit
is replaced at time T is

PT =
N−1∑
j=0

γ(T )[Fj(T ) − Fj+1(T )]G(j)(Z), (3.68)

the probability that it is replaced at shock N is

PN =
∫ T

0

γ(t) dFN (t)G(N)(Z), (3.69)

the probability that it is replaced at damage Z is

PZ =
N−1∑
j=0

∫ T

0

γ(t) dFj+1(t)
∫ Z

0

[G(K − x) − G(Z − x)] dG(j)(x), (3.70)

the probability that it is replaced at damage K is



60 3 Basic Replacement Policies

PK =
N−1∑
j=0

∫ T

0

γ(t) dFj+1(t)
∫ Z

0

G(K − x) dG(j)(x), (3.71)

and the probability that it is replaced at random time R is

PR =
N−1∑
j=0

∫ T

0

[Fj(t) − Fj+1(t)] dγ(t)G(j)(Z), (3.72)

where γ(t) ≡ 1− γ(t) and PT + PN + PZ + PK + PR = 1. Similarly, the mean
time to replacement is

T

N−1∑
j=0

γ(T )[Fj(T ) − Fj+1(T )]G(j)(Z) +
∫ T

0

t γ(t) dFN (t)G(N)(Z)

+
N−1∑
j=0

∫ T

0

t γ(t) dFj+1(t)
∫ Z

0

[G(K − x) − G(Z − x)] dG(j)(x)

+
N−1∑
j=0

∫ T

0

t γ(t) dFj+1(t)
∫ Z

0

G(K − x) dG(j)(x)

+
N−1∑
j=0

∫ T

0

t [Fj(t) − Fj+1(t)] dγ(t)G(j)(Z)

=
N−1∑
j=0

G(j)(Z)
∫ T

0

γ(t)[Fj(t) − Fj+1(t)] dt. (3.73)

Let cR be the replacement cost at random time R and cT , cN , cZ , and cK

be the same costs given in (3.6). Then, the expected cost rate is

C(T, N, Z, R) =
cT PT + cNPN + cZPZ + cKPK + cRPR∑N−1

j=0 G(j)(Z)
∫ T

0
γ(t)[Fj(t) − Fj+1(t)] dt

, (3.74)

that agrees with (3.8) when γ(t) ≡ 1.
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Replacement of Multiunit Systems

In general, a system consists of a variety of units. In (4) of Section 2.4, we have
considered a system with n different units and derived the first-passage time
distributions to system failure. If a system consists of a series system, then we
may consider a maintenance policy before the first failure of units. If a sys-
tem consists of a parallel system, then we may consider a maintenance policy
before the last failure of units. But, in general, it would be difficult to discuss
analytically optimum maintenance policies for shock and damage models of
multiunit systems. A conditioned-based maintenance of a two-unit series sys-
tem whose deterioration is monitored at periodic times was considered, and
its optimum policy was discussed, using dynamic programming [170].

In Section 4.1, we take up a parallel system with n identical units that are
situated in a random environment, as shown in Example 1.2. Each unit fails
successively from shocks in a random environment, and finally, the system
fails when all units have failed at some shock. For such units, we consider the
two cases where the probability of unit failure is constant at any shock and its
probability depends on the number of shocks. As the preventive replacement,
the system is replaced before system failure when the total number of failed
units is N+1, N+2, · · · , n−1 at some shock. Introducing replacement costs, we
obtain the expected cost rates for the two cases and derive optimum numbers
N∗ that minimize them. Furthermore, we apply the replacement model to
a damage model where each unit fails when the damage due to shocks has
exceeded a failure level K. On the other hand, we consider the replacement
model of a k-out-of-n system that is replaced at a shock number N and obtain
the expected cost rate.

In multiunit redundant systems, the failure of some units may affect one
or more of the remaining units. This is called failure interaction. Two types
of induced failure and shock damage are defined [171]. In Section 4.2, we
consider a two-unit system with unit 1 and unit 2, where unit 2 fails with
some probability at the jth time of unit 1 failure (induced failure), and it
causes an amount of damage to unit 2 (shock damage). As the replacement
policy, the system is replaced at the Nth failure of unit 1 or at the failure of
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unit 2, whichever occurs first. We obtain the expected cost rates for the two
types of failure interaction and derive optimum numbers N∗ that minimize
them. Furthermore, we propose two extended models where the system is
replaced at a planned time T or (1) at the Nth failure of unit 1 and (2) at a
damage level Z of unit 2.

4.1 Parallel System in a Random Environment

Consider a standard parallel redundant system that consists of n identical
units and fails when all units have failed. The system is situated in a random
environment that generates shocks according to a general distribution F (t)
with finite mean 1/λ. Each unit fails from shocks, independently of the other
units. The failure distribution and the mean time to system failure have been
derived in Example 1.2.

We consider the following three cases: The probability that each unit fails
is constant p at all shocks, the probability that it fails at the jth shock is
p(j) that depends on the number of shocks, and the probability that it fails
until the jth shock is 1−G(j)(K). Then, the system is replaced before system
failure when the total number of failed units is N + 1, N + 2, · · · , n − 1, and
it is replaced when all units have failed, otherwise, it is left alone. For such
replacement models, we introduce the replacement costs: Cost cn is incurred
when the failed system is replaced, and cost cN (cN < cn) is incurred when
the system with m (m = N + 1, N + 2, · · · , n − 1) failed units is replaced
before system failure. Furthermore, we consider an additional replacement
cost that is a linear function of failed units. Under these assumptions, we
derive optimum numbers N∗ that minimize the expected cost rates for the
three models.

4.1.1 Replacement Model

Consider a parallel system with n (≥ 2) identical units, each of which fails at
shocks with probability p (0 < p ≤ 1), where q ≡ 1 − p [52]. Shocks occur in
a renewal process with mean interval time 1/λ. Let Wj be the total number
of units that fail at the jth (j = 1, 2, · · · ) shock, where W0 ≡ 0. Then, the
probability that the system is replaced after failure is
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Pn ≡ Pr{W1 = n} +
∞∑

j=2

N∑
r=0

Pr{W1 + W2 + · · · + Wj−1 = r

and W1 + W2 + · · · + Wj = n}

= pn + pn
∞∑

j=2

N∑
r=0

∑
i1+i2+···+ij−1=r

(
n

i1

)
qn−i1

(
n − i1

i2

)
qn−i1−i2

. . .

(
n − i1 − i2 − · · · − ij−2

ij−1

)
qn−i1−i2−···−ij−1

= pn + pn
∞∑

j=2

N∑
r=0

(
n

r

)
(qj)n−r(1 + q + · · · + qj−1)r

=
N∑

r=0

(
n

r

)
pn−r

r∑
i=0

(
r

i

)
(−1)i

∞∑
j=0

(qn−r+i)j

=
N∑

r=0

(
n

r

)
(−1)rpn−r

r∑
i=0

(
r

i

)
(−1)i 1

1 − qn−i
. (4.1)

Similarly, the probability that the system is replaced before failure is

PN ≡ Pr{N + 1 ≤ W1 ≤ n − 1}

+
∞∑

j=2

N∑
r=0

Pr{W1 + W2 + · · · + Wj−1 = r

and N + 1 ≤ W1 + W2 + · · · + Wj ≤ n − 1}

=
n−1∑

r=N+1

(
n

r

)
(−1)rpn−r

r∑
i=0

(
r

i

)
(−1)i 1

1 − qn−i
, (4.2)

where Pn + PN = 1. For the derivations of (4.1) and (4.2), refer to the next
sections.

Furthermore, the mean time to replacement, i.e., the mean time that the
total number of failed units has exceeded N + 1 for the first time at some
shock is

lN+1 =
∞∑

j=1

j

λ

N∑
r=0

Pr{W1 + W2 + · · · + Wj−1 = r

and W1 + W2 + · · · + Wj ≥ N + 1}

=
1
λ

N∑
r=0

(
n

r

)
(−1)r

N−r∑
i=0

(
n − r

i

)
1

1 − qn−i
(N = 0, 1, 2, . . . , n − 1).

(4.3)

It is also equal to the mean time to failure of an (N +1)-out-of-n system that
fails if and only if at least N +1 of n units fail. In particular, when N = n−1,
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(4.3) is simplified as

ln =
1
λ

n∑
i=1

(
n

i

)
(−1)i+1

1 − qi
, (4.4)

that is the mean time to failure of an n-unit parallel system in Example 1.2.
Therefore, the expected cost rate is

C1(N)
λ

=
cnPn + cNPN

λlN+1

=
cN + (cn − cN )

∑N
r=0

(
n
r

)
(−1)rpn−r

∑r
i=0

(
r
i

)
(−1)i[1/(1 − qn−i)]∑N

r=0

(
n
r

)
(−1)r

∑N−r
i=0

(
n−r

i

)
[1/(1 − qn−i)]

(N = 0, 1, 2, · · · , n − 1). (4.5)

It is evident that

C1(n − 1)
λ

=
cn∑n

i=1

(
n
i

)
(−1)i+1[1/(1 − qi)]

, (4.6)

C1(0)
λ

= cnpn + cN (1 − pn − qn). (4.7)

Thus, when the number n of units is given, we can determine an optimum
number N∗ that minimizes C1(N) by comparing it for N = 0, 1, · · · , n − 1.
For example, when n = 2,

C1(0)
λ

= cnp2 + 2cNpq,

C1(1)
λ

=
cn(1 − q2)

1 + 2q
.

Hence, if q/(1 + 2q) > cN/cn, then N∗ = 0, i.e., the system is replaced when
only one unit has failed. If q/(1+2q) ≤ cN/cn, then N∗ = 1, i.e., it is replaced
when two units have failed. In addition, because q/(1+2q) ≤ 1/3, if cn ≤ 3cN ,
then N∗ = 1.

Example 4.1. Table 4.1 presents the optimum number N∗ for n = 2, 4, 8,
15, 20 and p = 0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50 when cN/cn = 0.1. It
is natural that the optimum N∗ is decreasing in p and increasing in n. For
example, if the total number of failed units is 6 or 7 at some shock when n = 8
and p = 0.10, then the system should be replaced before failure. In particular,
when n = 2, if p < 0.875, then N∗ = 0.

4.1.2 Extended Replacement Models

It is assumed in the same model, as that of Section 4.1.1, that the probability
that an operating unit fails at the jth shock is p(j) (j = 1, 2, · · · ), depending
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Table 4.1. Optimum number N∗ of a parallel system with n units when cN/cn = 0.1

n
p

2 4 8 15 20

0.01 0 2 6 13 18
0.05 0 2 6 13 18
0.10 0 2 5 12 17
0.20 0 2 5 12 17
0.30 0 1 5 11 16
0.40 0 1 4 11 16
0.50 0 1 4 10 15

on the number of shocks [53]. This assumption is more reasonable because the
damage due to shocks would be additive and the failure rate would increase
with time. In addition, cost nc0 + cn is incurred when a failed system is
replaced, where costs c0 and cn include all costs resulting from the failure
and replacement of one unit and the system, respectively. Cost mc0 + cN is
incurred when m (m = N + 1, N + 2, · · · , n − 1) units have failed and the
system is replaced before its failure. Let P (j) ≡ ∑j

i=1 p(i) (j = 1, 2, · · · ) be
the probability that each unit fails until the jth shock, where P (0) ≡ 0. First,
by a method similar to obtaining (4.3), the mean time to system failure is

ln =
∞∑

j=1

j

λ

n−1∑
r=0

Pr{W1 + W2 + · · · + Wj−1 = r

and W1 + W2 + · · · + Wj = n}

=
∞∑

j=1

j

λ

n−1∑
r=0

(
n

r

)
[p(j)]n−r[P (j − 1)]r

=
1
λ

∞∑
j=0

{1 − [P (j)]n}

=
1
λ

n∑
i=1

(
n

i

)
(−1)i+1

∞∑
j=0

[P (j)]i, (4.8)

where P (j) ≡ 1 − P (j). For example, when P (j) = (q)jα

(α > 0), i.e., each
unit fails according to a discrete Weibull distribution (see Section 1.2 of [1]),

ln =
1
λ

n∑
i=1

(
n

i

)
(−1)i+1

∞∑
j=0

[(q)jα

]i. (4.9)

In the particular case of α = 1, ln is equal to (4.4).
We obtain the expected cost rate. Let Pm be the probability that the total

number of units failed at some shock becomes m (m = N + 1, N + 2, · · · , n)
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and hence, the system is replaced. Then,

Pm =
∞∑

j=1

N∑
r=0

Pr{W1 + W2 + · · · + Wj−1 = r

and W1 + W2 + · · · + Wj = m}

=
∞∑

j=1

(
n

m

)
[P (j)]n−m

N∑
r=0

(
m

r

)
[p(j)]m−r[P (j − 1)]r

(m = N + 1, N + 2, . . . , n), (4.10)

where
∑n

m=N+1 Pm = 1. Furthermore, in a similar way of obtaining (4.8), the
mean time to replacement, i.e., the mean time that the total number of failed
units exceeds N + 1 for the first time is

lN+1 =
∞∑

j=1

j

λ

n∑
m=N+1

N∑
r=0

Pr{W1 + W2 + · · · + Wj−1 = r

and W1 + W2 + · · · + Wj = m}

=
∞∑

j=1

j

λ

n∑
m=N+1

(
n

m

)
[P (j)]n−m

N∑
r=0

(
m

r

)
[p(j)]m−r[P (j − 1)]r

=
1
λ

∞∑
j=0

N∑
m=0

(
n

m

)
[P (j)]n−m[P (j)]m. (4.11)

Thus, the expected cost rate is

C2(N) =
(c0n + cn)Pn +

∑n−1
m=N+1(c0m + cN )Pm

mean time to replacement

=
cN + (cn − cN )Pn + c0

∑n
m=N+1 mPm

lN+1
.

Therefore, from (4.10) and (4.11),

C2(N)
λ

=

cN + (cn − cN )
∑∞

j=1

∑N
r=0

(
n
r

)
[p(j)]n−r[P (j − 1)]r

+ c0n
∑∞

j=1

∑n
m=N+1

(
n−1
m−1

)
[P (j)]n−m

∑N
r=0

(
m
r

)
[p(j)]m−r[P (j−1)]r∑∞

j=0

∑N
m=0

(
n
m

)
[P (j)]n−m[P (j)]m

(N = 0, 1, 2, · · · , n − 1). (4.12)

It is clearly seen that

C2(n − 1)
λ

=
c0n + cn∑∞

j=0 {1 − [P (j)]n} , (4.13)

C2(0)
λ

=
cN + (cn − cN )

∑∞
j=1[p(j)]n + c0n

∑∞
j=1 p(j)[P (j − 1)]n−1∑∞

j=0[P (j)]n
,

(4.14)



4.1 Parallel System in a Random Environment 67

Table 4.2. Optimum number N∗ of a parallel system with n units when c0/cn =
0.05 and cN/cn = 0.1

n
p

2 4 8 15 20

0.01 0 2 7 14 19
0.05 0 2 6 14 19
0.10 0 2 6 14 19
0.20 0 2 6 13 19
0.30 0 1 5 13 18
0.40 0 1 5 12 18
0.50 0 1 5 12 17

that represents the expected cost for an n-unit parallel system and an n-unit
series system when cn = cN , respectively.

If n and p(j) are given, we can determine an optimum number N∗ that
minimizes the expected cost C2(N) in (4.12) by comparing N = 0, 1, 2, · · · , n−
1. If p(j) is a geometric distribution, i.e., p(j) = pqj−1 and P (j) = 1 − qj

(p ≡ 1 − q > 0), then

C2(N)
λ

=

cN + (cn − cN )
∑N

r=0

(
n
r

)
(−1)rpn−r

∑r
i=0

(
r
i

)
(−1)i[1/(1 − qn−i)]

+ c0np
∑N

r=0

(
n−1

r

)
(−1)r

∑N−r
i=0

(
n−1−r

i

)
[1/(1 − qn−i)]∑N

r=0

(
n
r

)
(−1)r

∑N−r
i=0

(
n−r

i

)
[1/(1 − qn−i)]

(N = 0, 1, 2, · · ·n − 1). (4.15)

In this case, if c0 = 0, then the above result agrees with (4.5).

Example 4.2. Suppose that the failure distribution is a negative binomial
distribution with a shape parameter 2, i.e., p(j) = jp2qj−1 (j = 1, 2, · · · )
where q ≡ 1 − p. Table 4.2 presents the optimum number N∗ that minimizes
the expected cost C2(N) for several n and p when c0/cn = 0.05 and cN/cn =
0.1. This indicates that the values of N∗ are not less than those of Table 4.1
for the same p and n.

Next, we apply the previous replacement model to a damage model. Sup-
pose that the total damage is not additive and each unit fails when the damage
due to some shock has exceeded a failure level K. We consider an independent
damage model discussed in Section 2.2: Shocks occur in a renewal process with
finite mean 1/λ. The damage Wj due to each shock has an identical distribu-
tion G(x) ≡ Pr {Wj ≤ x} and the total damage is not additive, i.e., each unit
fails with probability [G(K)]j−1 − [G(K)]j at shock j (j = 1, 2, · · · ). Then,
replacing p = G(K) formally in (4.5), the expected cost rate for a parallel
system is
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C1(N)
λ

=

cN + (cn − cN )
∑N

r=0

(
n
r

)
(−1)r[G(K)]n−r

×∑r
i=0

(
r
i

)
(−1)i
[
1/{1 − [G(K)]n−i}]∑N

r=0

(
n
r

)
(−1)r

∑N−r
i=0

(
n−r

i

)[
1/ {1 − [G(K)]n−i}]

(N = 0, 1, 2, · · · , n − 1). (4.16)

On the other hand, the total damage is additive, i.e., each unit fails with
probability G(j−1)(K) − G(j)(K) at shock j (j = 1, 2, · · · ). Then, replacing
p(j) = G(j−1)(K) − G(j)(K) and P (j) = 1 − G(j)(K) formally in (4.12), the
expected cost rate is

C2(N)
λ

=

cN + (cn − cN )
∑∞

j=1

∑N
r=0

(
n
r

)
[G(j−1)(K) − G(j)(K)]n−r

× [1 − G(j−1)(K)]r + c0n
∑∞

j=1

∑∞
m=N+1

(
n−1
m−1

)
[G(j)(K)]n−m

×∑N
r=0

(
m
r

)
[G(j−1)(K) − G(j)(K)]m−r[1 − G(j−1)(K)]r∑∞
j=0

∑N
r=0

(
n
r

)
[G(j)(K)]n−r[1 − G(j)(K)]r

(N = 0, 1, 2, · · · , n − 1). (4.17)

4.1.3 Replacement at Shock Number

Suppose in the same model as that of Section 4.1.2 that the system is replaced
at a shock number N (N = 1, 2, · · · ) or at a system failure, whichever occurs
first. Then, the probability that the system is replaced at failure until shock
N is

N∑
j=1

n−1∑
r=0

Pr {W1 + W2 + · · · + Wj−1 = r and W1 + W2 + · · · + Wj = n}

=
N∑

j=1

n−1∑
r=0

(
n

r

)
[p(j)]n−r[P (j − 1)]r = [P (N)]n, (4.18)

and the probability that it is replaced before failure at shock N is

n−1∑
r=0

Pr {W1 + W2 + · · · + WN = r} =
n−1∑
r=0

(
n

r

)
[P (N)]n−r[P (N)]r

= 1 − [P (N)]n. (4.19)

Similarly, the mean time to replacement is

N∑
j=1

j

λ

n−1∑
r=0

(
n

r

)
[p(j)]n−r[P (j − 1)]r + N {1 − [P (N)]n}

=
1
λ

N−1∑
j=0

{1 − [P (j)]n} , (4.20)
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and the expected number of failed units until replacement is

n∑
r=0

r

(
n

r

)
[P (N)]n−r[P (N)]r = nP (N).

Therefore, the expected cost rate is

C̃2(N)
λ

=
cN + (cn − cN )[P (N)]n + c0nP (N)∑N−1

j=0 {1 − [P (j)]n} (N = 1, 2, · · · ). (4.21)

Next, consider a k-out-of-n system that fails when the total number of
failed units is more than k at some shock. Then, in a way similar to obtaining
(4.21), the probability that the system is replaced at failure is

N∑
j=1

n∑
m=k+1

k∑
r=0

Pr{W1 + W2 + · · · + Wj−1 = r

and W1 + W2 + · · · + Wj = m}

=
N∑

j=1

n∑
m=k+1

(
n

m

)[
P (j)
]n−m

k∑
r=0

(
m

r

)
[P (j − 1)]r [p(j)]m−r

=
N∑

j=1

n∑
m=k+1

(
n

m

){
[P (j)]n−m[P (j)]m − [P (j − 1)]n−m[P (j − 1)m]

}
=

n∑
m=k+1

(
n

m

)
[P (N)]n−m[P (N)]m, (4.22)

and the probability that it is replaced at shock N is

k∑
m=0

k∑
r=0

Pr {W1 + W2 + · · · + WN−1 = r and W1 + W2 + · · · + WN = m}

=
k∑

m=0

(
n

m

)
[P (N)]n−m[P (N)]m, (4.23)

so that the mean time to replacement is

N∑
j=1

j

λ

n∑
m=k+1

(
n

m

){
[P (j)]n−m[P (j)]m − [P (j − 1)]n−m[P (j − 1)m]

}
+

N

λ

k∑
m=0

(
n

m

)
[P (N)]n−m[P (N)]m

=
1
λ

N−1∑
j=0

k∑
m=0

(
n

m

)
[P (j)]n−m[P (j)]m, (4.24)
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and the expected number of failed units until replacement is

N∑
j=1

n∑
m=k+1

m
k∑

r=0

Pr{W1 + W2 + · · · + Wj−1 = r

and W1 + W2 + · · · + Wj = m}

+
k∑

m=0

m
k∑

r=0

Pr{W1 + W2 + · · · + WN−1 = r

and W1 + W2 + · · · + WN = m}

=
N∑

j=1

[
n∑

m=k+1

m

(
n

m

){
[P (j)]n−m[P (j)]m − [P (j − 1)]n−m[P (j − 1)]m

}

− np(j)
n−1∑

m=k+1

(
n − 1

m

)
[P (j − 1)]n−1−m[P (j − 1)]m

]

+
k∑

m=0

m

(
n

m

)
[P (N)]n−m[P (N)]m

= n
N−1∑
j=0

p(j + 1)
k∑

m=0

(
n − 1

m

)
[P (j)]n−1−m[P (j)]m. (4.25)

Therefore, the expected cost rate is, from (4.22), (4.24), and (4.25),

C̃2(N |k)
λ

=

cN + (cn − cN )
∑n

m=k+1

(
n
m

)
[P (N)]n−m[P (N)]m

+c0n
∑N−1

j=0 p(j + 1)
∑k

m=0

(
n−1
m

)
[P (j)]n−1−m[P (j)]m∑N−1

j=0

∑k
m=0

(
n
m

)
[P (j)]n−m[P (j)]m

(N = 1, 2, . . . ). (4.26)

In particular, when k = n−1, C̃2(N |n−1) is equal to (4.21). Furthermore,
when k = 0, i.e., the system consists of a series system, the expected cost rate
is

C̃2(N |0)
λ

=
cn − (cn − cN )[P (N)]n + c0n

∑N−1
j=0 p(j + 1)[P (j)]n−1∑N−1

j=0 [P (j)]n
. (4.27)

Some modified replacement models for k-out-of-n systems [172–174] and
consecutive k-out-of-n systems [175,176] subject to shocks were proposed.

4.2 Two-unit System with Failure Interactions

In a multiunit system, the failure times of different units may be often sta-
tistically correlated [177]. In other instances, the failure of units can affect
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one or more of the remaining units. Such types of interactions between units
have been termed failure interaction [171]. Two types of failure interactions
such as induced failure and shock damage were defined, and the preventive
maintenance of a two-unit system with shock damage interaction was consid-
ered [178].

This section considers a system with unit 1 and unit 2. If unit 1 fails then
it undergoes only minimal repair, and hence, unit 1 failures occur in a non-
homogeneous Poisson process with a mean value function H(t) ≡ ∫ t

0 h(u)du,
where an intensity function h(t) is increasing in t (see Section 4.1 of [1]).

Further, when unit 1 fails, we indicate the following two failure interactions
between two units [54]:

(1) Induced failure: Unit 2 fails with probability αj at the jth time of unit 1
failure.

(2) Shock damage: Unit 1 failure causes an amount of damage with distribu-
tion G(x) to unit 2.

Suppose that the system is replaced at the failure of unit 2 or the Nth
failure of unit 1, whichever occurs first. The expected cost rates of two mod-
els are obtained, and optimum replacement numbers N∗ that minimize them
are discussed analytically. Finally, we introduce an extended model of Model
2 where the system is also replaced at time T . The replacement policy for a
system with induced failure was extended to multiunit systems [179,180]. Fur-
thermore, this policy was extended and applied to age and block replacement
policies [181–183] and an inspection policy [184].

The above two models characterize some real systems [54]: The following
example is the illustrative from the chemical industry. The system consists
of a metal container (unit 2) in which chemical reactions take place and the
temperature of the container is controlled by cold water pumped through a
pneumatic pump (unit 1). Consider the case where the pump fails, and as a
result, the pressure inside can build up and lead to an explosion if the quantity
of reacting fluid is high. This situation is modeled by Model 1 with αj = α for
all j and α is the probability that the volume of fluid in the container is high.
A different scenario is as follows: Whenever the pump fails, the temperature
of the tank rises and the container surface is corroded. As a consequence, the
thickness of the container decreases. The damage is the reduction in the wall
thickness and it is additive. The container fails when the total reduction in the
wall thickness has exceeded some specified limit. This situation is modeled by
Model 2. Note that without unit 1 failure, there is no damage to unit 2, and
hence, it does not fail. If the container is preventively maintained at time T
before failure and is like new, the system corresponds to an extended model.
The example of a brake pad and disc rotor of an automobile was given [185].
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4.2.1 Model 1: Induced Failure

Whenever unit 1 fails, it acts as a shock to induce an instantaneous failure
of unit 2 with a certain probability. Let αj denote the probability that unit 2
fails at the jth failure of unit 1. It is assumed that 0 ≡ α0 < α1 ≤ α2 ≤ · · · ≤
αj ≤ · · · < 1. The system is replaced at the failure of unit 2 or at the Nth
(N = 1, 2, · · · ) failure of unit 1, whichever occurs first. The system is assumed
to be replaced at unit 2 failure, when it fails at the Nth failure of unit 1. The
probability that the system is replaced at the Nth failure of unit 1 is

(1 − α1)(1 − α2) · · · (1 − αN ), (4.28)

and the probability that it is replaced at the failure of unit 2 is

N∑
j=1

(1 − α1)(1 − α2) · · · (1 − αj−1)αj . (4.29)

Note that (4.28) + (4.29) = 1.
Because the probability that j failures of unit 1 occur exactly in [0, t] is

given by pj(t) ≡
{
[H(t)]j/j!

}
e−H(t) (j = 0, 1, 2, · · · ) and∫ ∞

0

t pj−1(t)h(t) dt =
∫ ∞

0

t e−H(t) d
{

[H(t)]j

j!

}
=
∫ ∞

0

t pj(t)h(t) dt −
∫ ∞

0

pj(t) dt,

the mean time to replacement is

(1 − α1) · · · (1 − αN )
∫ ∞

0

t pN−1(t)h(t) dt

+
N∑

j=1

(1 − α1) · · · (1 − αj−1)αj

∫ ∞

0

t pj−1(t)h(t) dt

=
N−1∑
j=0

(1 − α0)(1 − α1) · · · (1 − αj)
∫ ∞

0

pj(t) dt. (4.30)

The expected number of unit 1 failures before replacement is

(N − 1)(1 − α1) · · · (1 − αN ) +
N∑

j=1

(j − 1)(1 − α1) · · · (1 − αj−1)αj

=
N−1∑
j=1

(1 − α1) · · · (1 − αj), (4.31)

where
∑0

1 ≡ 0. Note that we do not include the number of the jth failure in
(4.31) when the system is replaced at the jth failure of unit 1.
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Let c1 be the cost of unit 1 failure, c2 be the replacement cost at the Nth
failure of unit 1, and c3 be the replacement cost at the failure of unit 2 with
c3 > c2 > c1. Then, the expected cost rate is, from (4.28)–(4.31),

C1(N) =
c1

∑N−1
j=1 Aj + c3 − (c3 − c2)AN∑N−1

j=0 Aj

∫∞
0

pj(t) dt
(N = 1, 2, · · · ), (4.32)

where Aj ≡ (1 − α0)(1 − α1) · · · (1 − αj) (j = 0, 1, 2, · · · ).
We seek an optimum number N∗ that minimizes C1(N) in (4.32). From

the inequality C1(N + 1) ≥ C1(N),

c1

⎡⎣∑N−1
j=0 Aj

∫∞
0

pj(t) dt∫∞
0

pN (t) dt
−

N−1∑
j=1

Aj

⎤⎦
+ (c3 − c2)

⎡⎣ AN − AN+1

AN

∫∞
0

pN (t) dt

N−1∑
j=0

Aj

∫ ∞

0

pj(t) dt + AN

⎤⎦≥ c3

(N = 1, 2, . . . ). (4.33)

Denoting the left-hand side of (4.33) by Q1(N),

Q1(N +1)− Q1(N) =
N∑

j=0

Aj

∫ ∞

0

pj(t) dt

{
c1

[
1∫∞

0
pN+1(t) dt

− 1∫∞
0

pN (t) dt

]

+ (c3−c2)

[
AN+1 − AN+2

AN+1

∫∞
0

pN+1(t) dt
− AN − AN+1

AN

∫∞
0

pN (t) dt

]}
.

Suppose that either of αj or h(t) is strictly increasing. Then, from (1.29),
if h(t) is strictly increasing, then

∫∞
0

pj(t)dt is strictly decreasing in j to
1/h(∞), where h(∞) ≡ limt→∞ h(t), and if αj is strictly increasing, then
(AN −AN+1)/AN is also strictly increasing. Thus, Q1(N) is strictly increasing
in N , and hence, an optimum number N∗ is given by a unique minimum such
that Q1(N) ≥ c3.

Example 4.3. Suppose that αj is constant, i.e., αj ≡ α (0 < α < 1) and
Aj ≡ (1 − α)j (j = 0, 1, 2, · · · ). Then, (4.33) is rewritten as∑N−1

j=0 α(1 − α)j
∫∞
0

pj(t) dt∫∞
0

pN (t) dt
+ (1 − α)N ≥ c1 + α(c3 − c1)

c1 + α(c3 − c2)
(N = 1, 2, · · · ).

(4.34)

If h(t) is strictly increasing, then the left-hand side Q1(N) of (4.34) is also
strictly increasing, and

lim
N→∞

Q1(N) = αh(∞)
∫ ∞

0

e−αH(t) dt.
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Table 4.3. Optimum number N∗ to minimize C1(N) when α = 0.1

c2/c1(c3 − c2)/c1
2 3 5 10 20 50

1 1 2 4 10 24 95
2 1 2 4 9 21 83
5 1 2 3 7 16 58
10 1 1 3 5 12 38
20 1 1 2 4 7 22
50 1 1 1 2 4 10

Thus, if

αh(∞)
∫ ∞

0

e−αH(t) dt >
c1 + α(c3 − c1)
c1 + α(c3 − c2)

, (4.35)

then a finite N∗ is given by a unique minimum number that satisfies (4.34).
When h(t) = 2t, i.e., pj(t) = [(t2)j/j!]e−t2 , h(t) is strictly increasing to

∞. Thus, there exists a unique minimum N∗ that satisfies (4.34). Table 4.3
presents the optimum number N∗ for (c3 − c2)/c1 = 1, 2, 5, 10, 20, 50 and
c2/c1 = 2, 3, 5, 10, 20, 50 when α = 0.1. In this case, because

∫∞
0

p0(t)dt =√
π/2 and

∫∞
0

p1(t)dt =
√

π/4, if 0.1[(c3− c2)/c1] ≥ (c2/c1)−2, then N∗ = 1.

Example 4.4. Suppose that h(t) = λ, i.e., unit 1 failures occur in a Poisson
process with rate λ. Then, (4.33) is

αN+1

N−1∑
j=0

Aj + AN ≥ c3 − c1

c3 − c2
(N = 1, 2, · · · ). (4.36)

If αj is strictly increasing in j, where α∞ ≡ limj→∞ αj that might be 1, then
the left-hand side of (4.36) is also strictly increasing, and

Q1(∞) ≡ lim
N→∞

Q1(N) = α∞
∞∑

j=0

Aj .

Thus, if Q1(∞) > (c3 − c1)/(c3 − c2), then a finite N∗ is a unique minimum
that satisfies (4.36). In addition, it is easily proved that

αN+1

N−1∑
j=0

Aj + AN > αN+1 + A1 (N = 2, 3, · · · ),

because
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Table 4.4. Optimum number N∗ to minimize C1(N) when αj = 1 − (0.9)j

c2/c1(c3 − c2)/c1
2 3 5 10 20 50

1 6 13 ∞ ∞ ∞ ∞
2 4 6 13 ∞ ∞ ∞
5 2 3 5 11 ∞ ∞
10 2 2 3 6 12 ∞
20 1 2 2 4 6 20
50 1 1 1 2 3 6

αN+1

N−1∑
j=1

Aj − (A1 − AN ) =
N−1∑
j=1

(αN+1Aj + Aj+1 − Aj)

=
N−1∑
j=1

Aj(αN+1 − αj+1) > 0.

Therefore, if α∞ + 1 − α1 ≥ (c3 − c1)/(c3 − c2), then a finite N∗ exists.
When αj ≡ 1 − αj , if a finite N∗ exists, then it is given by a unique

minimum that satisfies

(1 − αN+1)
N−1∑
j=0

αj(j+1)/2 + αN(N+1)/2 ≥ c3 − c1

c3 − c2
(N = 1, 2, · · · ).

Table 4.4 presents the optimum number N∗ for (c3 − c2)/c1 = 1, 2, 5, 10,
20, 50 and c2/c1 = 2, 3, 5, 10, 20, 50 when α = 0.9. The optimum N∗ increases
with c2/c1 and decreases with (c3−c2)/c1. Because

∑∞
j=0(0.9)j(j+1)/2 < 3.92,

if (c3 − c1)/(c3 − c2) ≥ 3.92, i.e., c2/c1 ≥ 1+2.92[(c3− c2)/c1], then N∗ = ∞.
If 0.09[(c3 − c2)/c1] ≥ (c2/c1) − 1, then N∗ = 1.

4.2.2 Model 2: Shock Damage

Whenever unit 1 fails, it acts as some shock to unit 2 and causes an amount
of damage with distribution G(x) to unit 2. The total damage is additive and
unit 2 fails whenever it has exceeded a failure level K. The system is replaced
at the failure of unit 2 or at the Nth failure of unit 1, whichever occurs first.

The probability that the system is replaced at the Nth failure of unit 1
is G(N)(K), where G(j)(x) (j = 1, 2, · · · ) is the j-fold Stieltjes convolution
of G(x) with itself and G(0)(x) ≡ 1 for x ≥ 0. Thus, the mean time to
replacement is, from (3.5),

N−1∑
j=0

G(j)(K)
∫ ∞

0

pj(t) dt, (4.37)
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and the expected number of unit 1 failures before replacement is

(N − 1)G(N)(K) +
N−1∑
j=1

(j − 1)[G(j−1)(K) − G(j)(K)] =
N−1∑
j=1

G(j)(K). (4.38)

Therefore, the expected cost rate is, from (4.37) and (4.38),

C2(N) =
c1

∑N−1
j=1 G(j)(K) + c3 − (c3 − c2)G(N)(K)∑N−1

j=0 G(j)(K)
∫∞
0 pj(t) dt

(N = 1, 2, · · · ),
(4.39)

where ck (k = 1, 2, 3) are the same costs as those for Model 1. In particular,
when K goes to infinity,

C2(N) =
c1(N − 1) + c2∑N−1
j=0

∫∞
0

pj(t) dt
, (4.40)

that agrees with (4.25) of [1], and it is the expected cost rate of the replacement
at the Nth failure.

We seek an optimum number N∗ that minimizes C2(N) in (4.39). From
the inequality C2(N + 1) ≥ C2(N),

c1

⎡⎣ 1∫∞
0

pN(t) dt

N−1∑
j=0

G(j)(K)
∫ ∞

0

pj(t) dt −
N−1∑
j=1

G(j)(K)

⎤⎦
+ (c3 − c2)

⎡⎣G(N)(K) − G(N+1)(K)
G(N)(K)

∫∞
0

pN (t) dt

N−1∑
j=0

G(j)(K)
∫ ∞

0

pj(t) dt + G(N)(K)

⎤⎦
≥ c3 (N = 1, 2, . . . ). (4.41)

Denoting the left-hand side of (4.41) by Q2(N),

Q2(N + 1) − Q2(N)

=
N∑

j=0

G(j)(K)
∫ ∞

0

pj(t) dt

{
c1

[
1∫∞

0 pN+1(t) dt
− 1∫∞

0 pN (t) dt

]

+ (c3 − c2)

[
G(N+1)(K) − G(N+2)(K)
G(N+1)(K)

∫∞
0 pN+1(t) dt

− G(N)(K) − G(N+1)(K)
G(N)(K)

∫∞
0 pN(t) dt

]}
.

Suppose that either of [G(N)(K)−G(N+1)(K)]/G(N)(K) or h(t) is strictly in-
creasing. Then, Q2(N) is also strictly increasing in N , and hence, an optimum
number N∗ is given by a unique minimum that satisfies (4.41).

Example 4.5. Suppose that G(x)=1−e−µx and G(j)(K)=
∑∞

i=j[(µK)i/i!]e−µK .
Then, from Example 2.2 of Chapter 2,
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G(N+1)(K)
G(N)(K)

=

∑∞
j=N+1[(µK)j/j!]∑∞

j=N [(µK)j/j!]

is decreasing in N from 1 − e−µK to 0. Furthermore,

lim
N→∞

Q2(N) = (c3 − c2 + c1)h(∞)
∞∑

j=0

G(j)(K)
∫ ∞

0

pj(t) dt − c1µK.

Thus, if

h(∞)
∞∑

j=0

G(j)(K)
∫ ∞

0

pj(t) dt >
c3 + c1µK

c3 − c2 + c1
,

then a finite N∗ is given by a unique minimum number that satisfies (4.41). In
addition, when h(t) = λ, h(∞)

∫∞
0 pj(t)dt = 1 and

∑∞
j=0 G(j)(K) = 1 + µK,

and hence, if µK > (c2 − c1)/(c3 − c2), then a finite N∗ exists uniquely.

4.2.3 Modified Models

(1) Case of Renewal Process

If unit 1 fails, then it is replaced with a new one, that is, unit 1 failures occur
in a renewal process with mean interval 1/λ. Then, the expected cost rate of
Model 1 is, from (4.32),

C1(N)
λ

=
c1

∑N−1
j=1 Aj + c3 − (c3 − c2)AN∑N−1

j=0 Aj

(N = 1, 2, · · · ). (4.42)

Thus, the optimum number N∗ that minimizes C1(N) has been derived in
Example 4.4

Similarly, the expected cost rate of Model 2 is, from (4.39),

C2(N)
λ

=
c1

∑N−1
j=1 G(j)(K) + c3 − (c3 − c2)G(N)(K)∑N−1

j=0 G(j)(K)
(N = 1, 2, · · · ).

(4.43)
Thus, the optimum number N∗ that minimizes C2(N) is derived in (2) of
Section 3.2, by replacing cK = c3 − c1 and cN = c2 − c1.

(2) Replacement at Time T and Shock N for Model 2

Consider an extended replacement policy for Model 2 where the system is
replaced at time T , at the failure of unit 2, or at the Nth failure of unit 1,
whichever occurs first.

The probability that the system is replaced at time T is



78 4 Replacement of Multiunit Systems

N−1∑
j=0

pj(T )G(j)(K), (4.44)

the probability that it is replaced at the Nth failure of unit 1 is
∞∑

j=N

pj(T )G(N)(K), (4.45)

and the probability that it is replaced at the failure of unit 2 is

N−1∑
j=0

pj(T )[1 − G(j)(K)] +
∞∑

j=N

pj(T )[1 − G(N)(K)]

=
N∑

j=1

[G(j−1)(K) − G(j)(K)]
∞∑

i=j

pi(T ). (4.46)

It is clearly seen that (4.44) + (4.45) + (4.46) = 1. The mean time to replace-
ment is

T
N−1∑
j=0

pj(T )G(j)(K) + G(N)(K)
∫ T

0

t pN−1(t)h(t) dt

+
N∑

j=1

[G(j−1)(K) − G(j)(K)]
∫ T

0

t pj−1(t)h(t) dt

=
N−1∑
j=0

G(j)(K)
∫ T

0

pj(t) dt, (4.47)

and the expected number of unit 1 failures before replacement is

N−1∑
j=0

jpj(T )G(j)(K) + (N − 1)
∞∑

j=N

pj(T )G(N)(K)

+
N∑

j=1

(j − 1)[G(j−1)(K) − G(j)(K)]
∞∑
i=j

pi(T )

=
N−1∑
j=1

G(j)(K)
∞∑

i=j

pi(T ). (4.48)

Therefore, the expected cost rate is, from (4.44)–(4.48),

C(T, N) =

c1

∑N−1
j=1 G(j)(K)

∑∞
i=j pi(T ) + c2G

(N)(K)
∑∞

j=N pj(T )

+ c3

∑N−1
j=1 [G(j−1)(K) − G(j)(K)]

∑∞
i=j pi(T )

+ c4

∑N−1
j=0 G(j)(K)pj(T )∑N−1

j=0 G(j)(K)
∫ T

0 pj(t) dt
, (4.49)
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where c1 = cost of one unit failure, c2 =replacement cost at the Nth failure
of unit 1, c3 = replacement cost at the failure of unit 2, and c4 = replacement
cost at time T . In particular, when T goes to infinity, C(T, N) agrees with
C2(N) in (4.39)

On the other hand, when N goes to infinity and unit 1 failures occur in a
Poisson process with rate λ, i.e., pj(t) = [(λt)j/j!]e−λt (j = 0, 1, 2, · · · ), the
expected cost rate is simplified as

C(T ) ≡ lim
N→∞

C(T, N)

=
c3 − c1 − (c3 − c1 − c4)

∑∞
j=0 G(j)(K)pj(T )

(1/λ)
∑∞

j=0 G(j)(K)
∑∞

i=j+1 pi(T )
+ λc1. (4.50)

Thus, the optimum problem of minimizing C(T ) corresponds to that of min-
imizing C1(T ) in (3.11) when pj(t) = F (j)(t) − F (j+1)(t).

(3) Replacement at Time T and Damage Z

Consider the replacement model where the system is replaced before failure of
unit 2 when its total damage has exceeded a threshold level Z (0 ≤ Z ≤ K)
without replacing at the Nth failure of unit 1 in (2). It is supposed that
the system is replaced at time T , at the failure of unit 2, or at damage Z,
whichever occurs first [185].

The probability that the system is replaced at time T is
∞∑

j=0

G(j)(Z)pj(T ), (4.51)

the probability that it is replaced at damage Z, i.e., when the total damage
has exceeded Z and is less than K, is

∞∑
j=0

∫ Z

0

[G(K − x) − G(Z − x)] dG(j)(x)
∞∑

i=j+1

pi(T ), (4.52)

and the probability that it is replaced at the failure of unit 2, i.e., when the
total damage has exceeded a failure level K, is

∞∑
j=0

∫ Z

0

[1 − G(K − x)] dG(j)(x)
∞∑

i=j+1

pi(T ). (4.53)

Note that (4.51) + (4.52) + (4.53) = 1. The mean time to replacement is

T

∞∑
j=0

G(j)(Z)pj(T ) +
∞∑

j=0

∫ Z

0

[1 − G(Z − x)] dG(j)(x)
∫ T

0

t pj(t)h(t) dt

=
∞∑

j=0

G(j)(Z)
∫ T

0

pj(t) dt, (4.54)
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and the expected number of unit 1 failures before replacement is

∞∑
j=0

jG(j)(Z)pj(T ) +
∞∑

j=0

j

∫ Z

0

[1 − G(Z − x)] dG(j)(x)
∞∑

i=j+1

pi(T )

=
∞∑

j=1

G(j)(Z)
∞∑

i=j

pi(T ). (4.55)

Denoting that c2 is the replacement cost at damage Z and the other costs
are the same ones as those of (4.49), the expected cost rate is, from (4.51)–
(4.55),

C(T, Z) =

c1

∑∞
j=1 G(j)(Z)

∑∞
i=j pi(T )

+ c2

∑∞
j=0

∫ Z

0
[G(K − x) − G(Z − x)] dG(j)(x)

∑∞
i=j+1 pi(T )

+ c3

∑∞
j=0

∫ Z

0 [1 − G(K − x)] dG(j)(x)
∑∞

i=j+1 pi(T )

+ c4

∑∞
j=0 G(j)(Z)pj(T )∑∞

j=0 G(j)(Z)
∫ T

0 pj(t) dt
.

(4.56)
It is clearly seen that C(T, Z), as Z → K, is equal to C(T, N) in (4.49), as
N → ∞. There do not exist both T ∗ (0 < T ∗ < ∞) and Z∗ (0 < Z∗ < K)
that minimize the expected cost rate C(T, Z) as shown in (2) of Section 3.3.

Suppose that the system is replaced before failure only at damage Z and
pj(t) = [(λt)j/j!]e−λt (j = 0, 1, 2, · · · ). Then, the expected cost rate is

C(Z) ≡ lim
T→∞

C(T, Z)

=
(c3−c2+c1)MG(Z)+c3−(c3−c2)[G(K)+

∫ Z

0 G(K − x) dMG(x)]
[1 + MG(Z)]/λ

,

(4.57)

where MG(x) ≡∑∞
j=1 G(j)(x). When c1 = 0, this corresponds to the expected

cost rate in (3.24).
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Periodic Replacement Policies

When we consider large and complex systems that consist of many differ-
ent kinds of units, we should make the planned replacement or preventive
maintenance at periodic times, and make some minimal repair at failures be-
tween replacements. This policy is called periodic replacement with minimal
repair at failures [66], where minimal repair means that the failure rate re-
mains undisturbed by any repair of failures. A unit is inspected and replaced
periodically at planned times nT (n = 1, 2, · · · ). This replacement policy is
commonly used with complex systems such as computers, airplanes, and large
production systems. Their theoretical results were extensively summarized [1].

This chapter applies the periodic replacement to a cumulative damage
model where shocks occur in a renewal process and the total damage due to
shocks is additive. This periodic replacement was considered, and optimum
policies that minimize the expected costs under suitable conditions were dis-
cussed [186–189].

We have already derived the failure distribution Φ(t) in (2.9) of a unit
with cumulative damage. Substituting Φ(t) in standard replacements such as
age replacement, block replacement, and periodic inspection, it is shown in
Section 5.1 that these replacement policies can be applied to a cumulative
damage model. In Section 5.2, the amount of total damage is checked only
at periodic times nT , and a unit is replaced before failure at a planned time
NT . The expected cost rate is obtained and an optimum N∗ that minimizes
it is derived [190]. It has been assumed in all models until now that a unit is
always replaced at failures. Section 5.3 considers the cumulative damage model
where a unit suffers some damage caused by both shock and inspection [191].
In Section 5.4, we apply the periodic replacement with minimal repair at
failures to a cumulative damage model [55]. It is assumed that a unit fails
with probability p(x) when that total damage becomes x at shocks and the
total damage is not unchanged by any minimal repair at failures. The expected
cost rate is obtained, and an optimum planned time T ∗, shock number N∗

and damage level Z∗ that minimize it are discussed analytically. Furthermore,
in Section 5.5, we consider modified models where a unit is replaced at the
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next shock, when the total operating time has exceeded a planned time T
and the total damage has exceeded a damage level Z. Numerical examples to
understand these models and methods easily are given in some sections.

5.1 Basic Replacement Models

Suppose that the failure distribution Φ(t) of a unit with a failure level K
is given in (2.9), where Φ ≡ 1 − Φ. Then, using the theory of replacement
policies [1], we have the following expected cost rates: A unit is replaced with
a new one at a planned time T (0 < T ≤ ∞) or at failure, i.e., when the total
damage has exceeded a failure level K, whichever occurs first. This is called
an age replacement policy and its expected cost rate is, from (3.4) of [1],

C1(T ) =
(cK − cT )Φ(T ) + cT∫ T

0
Φ(t) dt

, (5.1)

where cost cK is incurred for the replacement of a failed unit and cost cT

(< cK) is incurred for the replacement of a nonfailed unit at time T .
A unit is replaced with a new one at periodic times nT (n = 1, 2, · · · ) and

is also replaced at each failure between periodic replacements. This is called
a block replacement and its expected cost rate is, from (5.1) of [1],

C2(T ) =
1
T

[cKMΦ(T ) + cT ] , (5.2)

where cK is the cost of replacement at each failure, cT is the cost of the
planned replacement, MΦ(t) ≡∑∞

n=1 Φ(n)(t) is a renewal function of a failure
distribution Φ(t), and Φ(n)(t) is the n-fold Stieltjes convolution of Φ(t) and
Φ(0)(t) ≡ 1 for t ≥ 0.

Furthermore, when a unit fails between periodic replacements, it remains
in a failed state and is replaced only at a planned time T . Then, the expected
cost rate is, from (5.10) of [1],

C3(T ) =
1
T

[
cD

∫ T

0

Φ(t) dt + cT

]
, (5.3)

where cD is the downtime cost per unit of time for the time elapsed between
a failure and its replacement. Optimum policies that minimize Ck(T ) (k =
1, 2, 3) were discussed analytically for a general failure distribution [1].

Finally, any failure is detected only through inspection. A unit is checked
at periodic times nT (n = 1, 2, · · · ), its failure is always detected at the
next checking time, and it is replaced. This is called an inspection policy with
replacement, and the total expected cost until replacement is, from (8.1) of [1],

C4(T ) =
∞∑

n=0

∫ (n+1)T

nT

{cT (n + 1) + cD [(n + 1)T − t]} dΦ(t) + cK , (5.4)
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where cT is the cost of one check at time nT , cD is the loss cost per unit of
time for the time elapsed between a failure and its detection, and cK is the
replacement cost of a failed unit.

Example 5.1. Suppose that shocks occur in a Poisson process, each damage
due to shocks and a failure level K are exponential, i.e., F (t) = 1 − e−λt,
G(x) = 1 − e−µx, and L(x) = 1 − e−θx. Then, from Example 2.3,

Φ(t) = 1 − exp
(
− λθt

µ + θ

)
.

The total expected cost of an inspection policy is, from (5.4),

C4(T ) =
cT + cDT

1 − e−λθT/(µ+θ)
− cD (µ + θ)

λθ
+ cK .

Thus, an optimum checking time T ∗ to minimize C4(T ) is given by a unique
solution that satisfies

eλθT/(µ+θ) −
(

1 +
λθT

µ + θ

)
=

cT λθ

cD(µ + θ)

and it is approximately

T̃ =

√
2cT (µ + θ)

cDλθ
,

and T ∗ < T̃ .
Next, suppose that Φ(t) is an exponential distribution with mean K/a

(a > 0) from Section 2.4, i.e., when Y is the time to failure, aE{Y } = K and
Φ(t) = 1 − e−at/K . Then, the total expected cost is

C4(T ) =
cT + cDT

1 − e−aT/K
− cDK

a
+ cK .

An optimum T ∗ satisfies

eaT/K −
(

1 +
aT

K

)
=

cT a

cDK
,

and it is approximately

T̃ =
√

2cT K

cDa
,

and T ∗ < T̃ . It is clearly seen that T ∗ decreases, as parameter a increases. This
represents the continuous wear model in which the failure time is distributed
exponentially and its mean time is E{Y } = K/a.
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When shocks occur in a Poisson distribution with mean 1/λ and a unit
fails at shock n, Φ(t) has a gamma distribution in (1.23), i.e., Φ(t) =∑∞

i=n[(λt)i/i!]e−λt (n = 1, 2, . . . ). In this case, the total expected cost is

C4(T ) = (cT + cDT )
∞∑

j=0

n−1∑
i=0

(λjT )i

i!
e−λjT − ncD

λ
+ cK .

Similar replacement policies when Φ(t) is a gamma distribution were con-
sidered [192, 193]. This is called a continuous wear process under discrete
monitoring by inspection, that is one of conditioned maintenance policies as
shown in Section 6.1. Multicritical levels of preventive maintenances for a fail-
ure level K were proposed, and the optimum policies for several systems were
discussed [194–196].

5.2 Discrete Replacement Models

Each amount Wn (n = 1, 2, · · · ) of damage to a unit is measured only at
planned times nT (n = 1, 2, · · · ) for a given T (0 < T < ∞) and has an
identical distribution G(x) ≡ Pr {Wn ≤ x} between periodic times. The unit
fails only at time nT , and is replaced at time NT or at failure, whichever
occurs first. Because the mean time to replacement is

N−1∑
n=0

[(n + 1)T ][G(n)(K) − G(n+1)(K)] + (NT )G(N)(K) = T

N−1∑
n=0

G(n)(K),

the expected cost rate is

C1(N) =
cK − (cK − cN )G(N)(K)

T
∑N−1

n=0 G(n)(K)
(N = 1, 2, · · · ), (5.5)

where cK is the replacement cost at failure and cN (< cK) is the replacement
cost at time NT . Thus, this corresponds to the same replacement model with
a shock number N in (2) of Section 3.2, by replacing 1/λ with T . The re-
placement policy where the unit is replaced before failure at damage Z has
been already taken up in (3) of Section 3.2.

Next, suppose that shocks occur continuously and the total damage is
proportional to an operating time, i.e., Z(t) = at (a > 0). In this case, if
a failure level K is a random variable with a continuous distribution L(x)
defined in (2) of Section 2.5, the probability that the unit fails at time nT is
Pr{naT ≥ K} = L(naT ). Thus, the probability that the unit fails until time
NT is

N∑
n=1

L(naT )
n−1∏
i=0

L(iaT ), (5.6)



5.2 Discrete Replacement Models 85

and the probability that it does not fail until time NT is

N∏
n=1

L(naT ), (5.7)

where L(x) ≡ 1 − L(x). Note that (5.6) + (5.7) = 1. The mean time to
replacement is

N∑
n=1

(nT )L(naT )
n−1∏
i=0

L(iaT ) + (NT )
N∏

n=1

L(naT ) = T

N−1∑
n=0

[
n∏

i=0

L(iaT )

]
,

(5.8)

and hence, the mean time E{Y } to failure is

E{Y } = T

∞∑
n=0

[
n∏

i=0

L(iaT )

]
.

Therefore, the expected cost rate is, from (5.7) and (5.8),

C2(N) =
cK − (cK − cN )

∏N
n=1 L(naT )

T
∑N−1

n=0

[∏n
i=0 L(iaT )

] (N = 1, 2, · · · ). (5.9)

We seek an optimum number N∗ that minimizes C2(N). From the inequality
C2(N + 1) − C2(N) ≥ 0,

L ((N + 1)aT )
N−1∑
n=0

[
n∏

i=0

L(iaT )

]
+

N∏
n=1

L(naT ) ≥ cK

cK − cN
(N = 1, 2, · · · ).

(5.10)

Letting Q(N) be the left-hand side of (5.10),

Q(∞) ≡ lim
N→∞

Q(N) =
∞∑

n=0

[
n∏

i≡0

L(iaT )

]
=

E{Y }
T

,

Q(N + 1) − Q(N) = [L((N + 2)aT ) − L((N + 1)aT )]
N∑

n=0

[
n∏

i≡0

L(iaT )

]
> 0.

Thus, Q(N) is strictly increasing to E{Y }/T that represents the expected
number of periodic times to failure, and hence, we have the optimum replace-
ment policy:

(i) If E{Y }/T > cK/(cK−cN), then there exists a finite and unique minimum
N∗ (1 ≤ N∗ < ∞) that satisfies (5.10), and its resulting cost rate is

L(N∗aT )
T (cK − cN )

< C2(N∗) ≤ L((N∗ + 1)aT )
T (cK − cN)

. (5.11)
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(ii) If E{Y }/T ≤ cK/(cK − cN ), then N∗ = ∞, i.e., the unit should be
replaced only at failure, and

C2(∞) ≡ lim
N→∞

C2(N)

=
cK

T
∑∞

n=0

[∏n
i=0 L(iaT )

] =
cK

E{Y } . (5.12)

In particular, when L(x) = 1 − e−θx, (5.10) is

[1 − e−aθT (N+1)]
N−1∑
n=0

e−aθT [n(n+1)/2] + e−aθT [N(N+1)/2] ≥ cK

cK− cN
,

(5.13)

and

Q(∞) =
∞∑

n=0

e−aθT [n(n+1)/2]. (5.14)

Example 5.2. Suppose that a failure level K is normally distributed
with mean k and standard deviation σ, and furthermore, aT = 1, i.e.,
L(naT ) = [1/(

√
2πσ)]
∫∞

n
exp
[−(x − k)2/(2σ2)

]
dx (n = 0, 1, 2, · · · ). Then,

Table 5.1 presents the optimum replacement number N∗ and the mean time
E{Y } to failure for k = 10, 20, 50 and σ = 1, 2, 5, 10 when cK/cN = 5.

Another single method of such replacements is to balance the cost of re-
placement at failure against that at nonfailure, i.e., cK × (5.6) ≥ cN × (5.7).
In this case,

N∏
n=1

L(naT ) ≤ cK

cK + cN
,

and a minimum Ñ to satisfy it is also presented in Table 5.1. This indicates
that the values of N∗, Ñ , and E{Y } decrease with σ because the variance of
a failure level becomes larger. Furthermore, when σ = 1, the unit should be
replaced before failure at 68.2%, 83.9%, 93.5% of the mean failure time for
k = 10, 20, 50, respectively, and N∗ = k − 3σ for all k. When σ is small,
the approximate Ñ gives a good upper bound of N∗. It is of interest that
k > E{Y }/T > Ñ > N∗ for σ ≥ 2.

5.3 Deteriorated Inspection Model

We introduce the replacement policy for the cumulative damage model where a
unit is checked at periodic times nT (n = 1, 2, . . . ) [197]. It has been generally
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Table 5.1. Comparison of optimum number N∗, approximate value eN , and mean
time E{Y }/T to failure when aT = 1 and cK/cN = 5

k = 10 k = 20 k = 50
σ

N∗
eN E{Y }/T N∗

eN E{Y }/T N∗
eN E{Y }/T

1 7 9 10.27 17 19 20.27 47 49 50.27
2 5 8 9.51 15 18 19.51 44 48 49.51
5 2 4 6.40 8 13 15.99 36 43 45.99
10 1 1 3.91 3 5 9.55 23 33 38.38

assumed that any inspection does not degrade a unit [1]. On the other hand,
the inspection policy for a storage system that is degraded with time and at
each inspection was proposed [198]. This could be applied to the periodic test
of electric equipment in storage [199].

This section considers the cumulative damage model where a unit suffers
some damage and deterioration caused by both shocks and inspections and
fails when the total damage has exceeded a failure level K (Figure 5.1). A
unit is checked to detect a failure at periodic times nT (n = 1, 2, . . . ), where
T is previously given, i.e., the failure is detected only through inspection. In
addition, to prevent failures, a unit is replaced before failure with a new one
at a planned time NT .

5.3.1 Expected Cost

Suppose that the number of shocks in [0, t] is N(t), and the probability that
j shocks occur in [0, t] is Fj(t) ≡ Pr{N(t) ≥ j} defined in Section 3.1. An
amount Wj of damage due to the jth shock has an identical distribution
G(x) ≡ Pr{Wj ≤ x}, G(j)(x) is the j-fold Stieltjes convolution of G(x) with
itself, and G(0)(x) ≡ 1 for x ≥ 0. Furthermore, the unit is checked at periodic
times nT (n = 1, 2, . . . ), where the inspection time is negligible, and each
inspection causes a constant and nonnegative amount w of damage to the
unit. Let N denote the upper number of inspections until the unit fails, i.e.,
N ≡ [K/w], where [x] denotes the greatest integer contained in x and N = ∞
whenever w = 0.

From the assumption that the unit fails when the total damage has ex-
ceeded K, the reliability function Φ(t) that it does not fail in time t for
nT < t ≤ (n + 1)T (n = 0, 1, 2, . . . , N) is given by

Φ(t) ≡ Pr

⎧⎨⎩
N(t)∑
j=0

Wj + nw ≤ K

⎫⎬⎭ =
∞∑

j=0

G(j)(K−nw)[Fj(t)−Fj+1(t)]. (5.15)

A unit is always replaced at the first inspection when the total damage
has exceeded K. To prevent a failure, the unit is also replaced before failure
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Z(t)

0
t

Shock point Inspection time

w

T

w

2T

w

3T

Fig. 5.1. Process for periodic inspection with deteriorated factor w

at the Nth inspection (N = 1, 2, . . . , N). Let us introduce three costs given
in (5.4). Costs cK and cT are incurred for each replacement and inspection,
respectively, and cD is incurred for the time elapsed between a failure and its
detection per unit of time. Then, the expected cost until replacement is, from
8.1 of [1] and (5.4),

N−1∑
n=0

∫ (n+1)T

nT

{cT (n + 1) + cD[(n + 1)T − t]} dΦ(t) + cT NΦ(NT ) + cK

= (cT + cDT )
N−1∑
n=0

Φ(nT ) − cD

N−1∑
n=0

∫ (n+1)T

nT

Φ(t) dt + cK , (5.16)

and the mean time to replacement is
N−1∑
n=0

[(n + 1)T ]
∫ (n+1)T

nT

dΦ(t) + (NT )Φ(NT ) = T
N−1∑
n=0

Φ(nT ), (5.17)

where Φ(t) ≡ 1 − Φ(t).
Therefore, the expected cost rate is, from (5.16) and (5.17),

C(N) =
(cT + cDT )

∑N−1
n=0 Φ(nT ) − cD

∑N−1
n=0

∫ (n+1)T

nT Φ(t) dt + cK

T
∑N−1

n=0 Φ(nT )

(N = 1, 2, . . . , N). (5.18)
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5.3.2 Optimum Policy

We find an optimum planned number N∗ that minimizes the expected cost
rate C(N) in (5.18). Forming the inequality C(N + 1) ≥ C(N),

N−1∑
n=0

∫ (n+1)T

nT

Φ(t) dt −
∑N−1

n=0 Φ(nT )
Φ(NT )

∫ (N+1)T

NT

Φ(t) dt ≥ cK

cD

(N = 1, 2, . . .N). (5.19)

Denoting the left-hand side of (5.19) by Q(N),

Q(N+1)−Q(N) =
N∑

n=0

Φ(nT )

⎡⎣∫ (N+1)T

NT
Φ(t) dt

Φ(NT )
−
∫ (N+2)T

(N+1)T
Φ(t) dt

Φ((N + 1)T )

⎤⎦ . (5.20)

First, prove that if the failure rate of Φ(t) is strictly increasing, then (5.20)
is positive, i.e., Q(N) is strictly increasing in N . From the definition of the
failure rate, if the failure rate of Φ(t) is increasing, then Φ(t + x)/Φ(t) is
decreasing in t for any x > 0 [1, p. 7]. Thus, because∫ (N+1)T

NT
Φ(t) dt

Φ(NT )
=

∫ T

0
Φ(t + NT ) dt

Φ(NT )
,

we can prove that if the failure rate of Φ(t) is increasing, then Φ(t +
NT )/Φ(NT ) is decreasing in NT for any 0 < t < T , i.e.,

∫ (N+1)T

NT Φ(t) dt/Φ(NT )
is decreasing in N , and hence, Q(N + 1) − Q(N) ≥ 0.

Therefore, we have the following optimum policy when the failure rate of
Φ(t) is strictly increasing:

(i) If Q(N) > cK/cD, then there exists a unique minimum N∗ that satisfies
(5.19).

(ii) If Q(N) ≤ cK/cD, then N∗ = N +1, i.e., the unit is always replaced after
failure.

Example 5.3. Suppose that shocks occur in a Poisson process with rate λ
and the amount of damage due to each shock has an exponential distribution
(1 − e−µx), that is,

Fj(t) =
∞∑

i=j

(λt)i

i!
e−λt, G(j)(x) =

∞∑
i=j

(µx)i

i!
e−µx (j = 0, 1, 2, . . . ),

and Φ(t) in (5.15) is, for nT < t ≤ (n + 1)T (n = 0, 1, 2, . . . , N),

Φ(t) =
∞∑

j=0

(λt)j

j!
e−λt

∞∑
i=j

[µ(K − nw)]i

i!
e−µ(K−nw).
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Table 5.2. Optimum number N∗ and expected cost rate C(N∗) for µw and λcK/cD

when λT = 5, λ = 1, cD = 1, cT = 1, and µK = 100

N∗ C(N∗)
µw N λcK/cD λcK/cD

1 5 10 1 5 10

0 ∞ 15 17 19 0.214 0.264 0.323
1 100 13 15 16 0.216 0.274 0.340
2 50 11 13 14 0.218 0.284 0.359
3 33 10 11 12 0.220 0.295 0.379
4 25 9 10 11 0.222 0.304 0.398
5 20 8 9 10 0.225 0.314 0.416
6 16 8 9 9 0.226 0.323 0.435
7 14 7 8 9 0.229 0.332 0.454
8 12 7 8 8 0.230 0.343 0.480
9 11 6 7 8 0.233 0.350 0.490
10 10 6 7 7 0.234 0.360 0.505

The failure rate of Φ(t) is

r(t) ≡ Φ′(t)
Φ(t)

=
λ
∑∞

j=0[(λt)j/j!][G(j)(x) − G(j+1)(x)]∑∞
j=0[(λt)j/j!]G(j)(x)

,

where x ≡ K − nw. Note from Section 2.3 that r(t) is strictly increasing.
Table 5.2 presents the optimum number N∗ and N = [100/µw] for µw = 0,

1, . . . , 10 and λcK/cD = 1, 5, 10 when λT = 5, cT = 1, µK = 100, and the
resulting cost rate C(N∗) when λ = 1 and cD = 1. For example, when λT = 5,
µw = 5, and λcK/cD = 1, N∗ = 8, that is , when shocks occur 5 times a week
and the unit fails at about K/(5/µ + w) = 10 weeks, on the average, it
should be replaced at 8 weeks. The optimum N∗ decreases to 1 with µw. The
reason would be that the mean time to replacement greatly decreases with
µw. Conversely, C(N∗) slowly increases with µw, because the decrease of the
total cost would influence less C(N∗) than the time to failure. It is of interest
that N∗+µw decreases first, is constant for a while, and increases slowly with
µw.

5.4 Replacement with Minimal Repair

It has been assumed in all models that a unit is always replaced at failure.
We apply the periodic replacement with minimal repair at failure (Chapter 4
of [1]) to a cumulative damage model.

Consider a cumulative damage model as shown in Section 2.1: Shocks occur
in a renewal process with a general distribution F (t) having finite mean 1/λ,
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and an amount of damage due to each shock has an identical distribution
G(x). In this case, the distribution of the total damage Z(t) at time t is given
in (2.3). In addition, a unit fails with probability p(x), that is increasing in
x from 0 to 1, when the total damage becomes x at shocks, and undergoes
only minimal repair at failures, where the total damage remains undisturbed
by any minimal repair. To prevent failures, a unit is replaced at a planned
time T , at a shock number N , or at a damage level Z, whichever occurs
first. Strictly speaking, the policy where a unit is replaced at N or Z is not
periodic. However, denoting one cycle from the beginning of operation to the
replacement at N or Z, the policy forms a renewal process and the time of
each cycle is nearly periodic.

5.4.1 Expected Cost

A unit fails with probability p(x) when the total damage becomes x at each
shock in the cumulative damage model and undergoes only minimal repair at
failures, i.e., its damage remains undisturbed by minimal repair and its time
for minimal repair is negligible. It is assumed that a unit is replaced at time
T , at shock N , or at damage Z, whichever occurs first. The probability that
the unit is replaced at time T is, from (3.1),

PT =
N−1∑
j=0

[
F (j)(T ) − F (j+1)(T )

]
G(j)(Z), (5.21)

the probability that it is replaced at shock N is, from (3.2),

PN = F (N)(T )G(N)(Z), (5.22)

and the probability that it is replaced at damage Z is, from (3.3),

PZ =
N−1∑
j=0

F (j+1)(T )
[
G(j)(Z) − G(j+1)(Z)

]
, (5.23)

that includes the probability that the total damage has exceeded Z at shock
N . It is clearly seen that PT + PN + PZ = 1.

Furthermore, the mean time to replacement is

T

N−1∑
j=0

[
F (j)(T ) − F (j+1)(T )

]
G(j)(Z) + G(N)(Z)

∫ T

0

t dF (N)(t)

+
N−1∑
j=0

[
G(j)(Z) − G(j+1)(Z)

] ∫ T

0

t dF (j+1)(t)

=
N−1∑
j=0

G(j)(Z)
∫ T

0

[
F (j)(t) − F (j+1)(t)

]
dt, (5.24)
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that is equal to (3.5) by replacing Fj(t) with F (j)(t). Similarly, the expected
number of failures before replacement is

N−1∑
j=1

[
F (j)(T ) − F (j+1)(T )

] j∑
i=1

∫ Z

0

p(x) dG(i)(x) + F (N)(T )
N−1∑
j=1

∫ Z

0

p(x) dG(j)(x)

=
N−1∑
j=1

F (j)(T )
∫ Z

0

p(x) dG(j)(x). (5.25)

Let cM be the cost of minimal repair, and ck (k = T, N, Z) be the replace-
ment cost at k. Then, the expected cost rate is, summing up cT PT + cNPN +
cZPZ + cM × (5.25) and dividing by (5.24),

C(T, N, Z) =

cZ − (cZ − cT )
∑N−1

j=0

[
F (j)(T ) − F (j+1)(T )

]
G(j)(Z)

−(cZ − cN )F (N)(T )G(N)(Z)

+cM

∑N−1
j=1 F (j)(T )

∫ Z

0
p(x) dG(j)(x)∑N−1

j=0 G(j)(Z)
∫ T

0

[
F (j)(t) − F (j+1)(t)

]
dt

. (5.26)

5.4.2 Optimum Policies

We discuss analytically optimum T ∗, N∗, and Z∗ that minimize the expected
cost rates when p(x) = 1 − e−θx (0 < 1/θ < ∞). In this case, the probability
that the unit fails at shock j is∫ ∞

0

p(x) dG(j)(x) =
∫ ∞

0

(1 − e−θx) dG(j)(x) = 1 − [G∗(θ)]j ,

where G∗(θ) denotes the Laplace–Stieltjes transform of G(x), i.e., G∗(θ) ≡∫∞
0

e−θxdG(x) < 1 for θ > 0.

(1) Optimum T ∗

A unit is replaced only at time T (Figure 5.2). Then, from (5.26),

C1(T ) ≡ lim
N→∞
Z→∞

C(T, N, Z) =
1
T

⎡⎣cM

∞∑
j=1

F (j)(T )
{
1 − [G∗(θ)]j

}
+ cT

⎤⎦ ,

(5.27)

that agrees with (5.2) of block replacement by replacing Φ(t) with F (t) when
G∗(θ) ≡ 0. We seek an optimum time T ∗ that minimizes C1(T ) when G∗(θ) >
0. Differentiating C1(T ) with respect to T and setting it equal to zero,

∞∑
j=1

[
Tf (j)(T ) − F (j)(T )

]{
1 − [G∗(θ)]j

}
=

cT

cM
, (5.28)
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Planned replacement Shock point Minimal repair at failure

(j − 1)T jT (j + 1)T

Fig. 5.2. Process for periodic replacement at time T

where f(t) is a density function of F (t) and f (j)(t) is the j-fold convolution
of f(t) with itself.

In particular, shocks occur in a Poisson process with rate λ, i.e., F (j)(t) =∑∞
i=j [(λt)i/i!]e−λt (j = 0, 1, 2, · · · ). Then, (5.28) is rewritten as

1 − {1 + λT [1 − G∗(θ)]} e−λT [1−G∗(θ)] =
1 − G∗(θ)

G∗(θ)
cT

cM
. (5.29)

The left-hand side of (5.29) is a gamma distribution of order 2 that increases
from 0 to 1. Thus, we have the optimum policy:

(i) If G∗(θ)/[1−G∗(θ)] > cT /cM , then there exist a finite and unique T ∗ that
satisfies (5.29), and the resulting cost rate is

C1(T ∗) = λcM

{
1 − G∗(θ)e−λT∗[1−G∗(θ)]

}
. (5.30)

(ii) If G∗(θ)/[1 − G∗(θ)] ≤ cT /cM , then T ∗ = ∞, i.e., the unit is not be
replaced, and C1(∞) = λcM .

It is of interest that
∞∑

j=1

∫ ∞

0

e−θx dG(j)(x) =
∫ ∞

0

e−θx dMG(x) =
G∗(θ)

1 − G∗(θ)

represents the expected number of nonfailures for an infinite interval, where
MG(x) ≡ ∑∞

j=1 G(j)(x). In general, the expected number for actual models
would be greater than the ratio cT /cM of two costs. Furthermore, from (5.29),
T ∗ is given approximately by

T̃ =
1
λ

√
1

G∗(θ)[1 − G∗(θ)]
cT

cM
,

and T ∗ > T̃ .

(2) Optimum N∗

A unit is replaced only at shock N (Figure 5.3). Then, from (5.26),
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Planned replacement Shock point Minimal repair at failure

N 1 2 3 N 1 2 N

Fig. 5.3. Process for replacement at shock N

C2(N) ≡ lim
T→∞
Z→∞

C(T, N, Z)

=
λ

N

⎡⎣cM

N−1∑
j=0

{
1 − [G∗(θ)]j

}
+ cN

⎤⎦ (N = 1, 2, · · · ). (5.31)

Forming the inequality C2(N + 1) − C2(N) ≥ 0,

1 − [G∗(θ)]N

1 − G∗(θ)
− N [G∗(θ)]N ≥ cN

cM
(N = 1, 2, · · · ). (5.32)

The left-hand side of (5.32) is strictly increasing to 1/[1 − G∗(θ)]. Thus, we
have the optimum policy:

(i) If 1/[1−G∗(θ)] > cN/cM , then there exists a finite and unique minimum
number N∗ (1 ≤ N∗ < ∞) that satisfies (5.32), and its resulting cost rate
is

λcM

{
1 − [G∗(θ)]N

∗−1
}

< C2(N∗) ≤ λcM

{
1 − [G∗(θ)]N

∗}
. (5.33)

(ii) If 1/[1 − G∗(θ)] ≤ cN/cM , then N∗ = ∞ and C2(∞) = C1(∞).

It is clearly seen that if 1 − G∗(θ) ≥ cN/cM , then N∗ = 1.
It has been assumed until now that shocks occur in a renewal process. If

shocks occur in a nonhomogeneous Poisson process with an intensity function
h(t) and a mean value function H(t), as shown in (2.16), the mean time to
the Nth shock is, from (1.29),

N−1∑
j=0

∫ ∞

0

[H(t)]j

j!
e−H(t) dt,

and hence, the expected cost rate is

C̃2(N) =
cM

∑N−1
j=0

{
1 − [G∗(θ)]j

}
+ cN∑N−1

j=0

∫∞
0

pj(t) dt
(N = 1, 2, · · · ), (5.34)

where pj(t) ≡ {[H(t)]j/j!
}

e−H(t) (j = 0, 1, 2, . . . ). When G∗(θ) ≡ 0, C̃2(N)
agrees with (4.40).
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We also seek an optimum N∗ that minimizes C̃2(N) in (5.34). Forming
the inequality C̃2(N + 1) − C̃2(N) ≥ 0,

{
1 − [G∗(θ)]N

} ∑N−1
j=0

∫∞
0

pj(t) dt∫∞
0

pN (t) dt
−

N−1∑
j=0

{
1 − [G∗(θ)]j

} ≥ cN

cM

(N = 1, 2, . . . ). (5.35)

It is assumed that the intensity function h(t) is increasing . Then, letting
Q(N) be the left-hand side of (5.35), it can be proved that

Q(N + 1) − Q(N) =
N∑

j=0

∫ ∞

0

pj(t) dt

{
1 − [G∗(θ)]N+1∫∞

0
pN+1(t) dt

− 1 − [G∗(θ)]N∫∞
0

pN(t) dt

}
> 0,

because
∫∞
0 pN (t)dt is deceasing in N to 1/h(∞) from (1.29). Thus, we have

the optimum policy when h(t) is increasing:

(i) If Q(∞) > cN/cM , then there exists a finite and unique minimum number
N∗ (1 ≤ N∗ < ∞) that satisfies (5.35), and its resulting cost rate is

cM [1 − G∗(θ)]N
∗−1∫∞

0
pN∗−1(t) dt

< C̃2(N∗) ≤ cM [1 − G∗(θ)]N
∗∫∞

0
pN∗(t) dt

. (5.36)

(ii) If Q(∞) ≤ cN/cM , then N∗ = ∞ and C̃2(∞) = cMh(∞).

Furthermore, we have the inequality

Q(N) ≥
{
1 − [G∗(θ)]N

}
λ
∫∞
0 pN (t) dt

,

where 1/λ ≡ ∫∞
0

e−H(t)dt, because
∫∞
0

pN (t)dt is deceasing in N . Therefore,
if

lim
N→∞

{
1 − [G∗(θ)]N

}
λ
∫∞
0

pN (t) dt
=

h(∞)
λ

>
cN

cM
,

then a finite solution to (5.35) exists uniquely. Clearly, if h(t) goes to ∞, as
t → ∞, then a finite N∗ always exists.

(3) Optimum Z∗

A unit is replaced only at damage Z (Figure 5.4). Then, from (5.26),

C3(Z) ≡ lim
T→∞
N→∞

C(T, N, Z)

=
cM

∫ Z

0 p(x) dMG(x) + cZ

[1 + MG(Z)]/λ
. (5.37)
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Z

Z(t)

0
t

Planned replacement Shock point Minimal repair at failure

1 2 3 4 5

Fig. 5.4. Process for replacement at damage Z

Differentiating C3(Z) with respect to Z and setting it equal to zero,∫ Z

0

[1 + MG(x)] dp(x) =
cZ

cM
, (5.38)

that is strictly increasing in Z. Thus, if
∫∞
0

[1 + MG(x)]dp(x) > cZ/cM , then
there exists a finite and unique Z∗ (0 < Z∗ < ∞) that satisfies (5.38).

In particular, when p(x) = 1 − e−θx,∫ ∞

0

[1 + MG(x)] dp(x) =
1

1 − G∗(θ)
. (5.39)

Therefore, we have the optimum policy:

(i) If 1/[1 − G∗(θ)] > cZ/cM , then there exists a finite and unique Z∗ that
satisfies (5.38), and its resulting cost rate is

C3(Z∗) = λcMp(Z∗). (5.40)

(ii) If 1/[1 − G∗(θ)] ≤ cZ/cM , then Z∗ = ∞, and C3(∞) = C1(∞).

Example 5.4. Table 5.3 presents the optimum time T ∗ satisfying (5.29) and
expected cost rate C1(T ∗) in (5.30), and the optimum number N∗ satisfying
(5.32) and expected cost rate C2(N∗) in (5.31) for ck (k = T, N) = 5 – 20
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Table 5.3. Optimum time T ∗, expected cost rate C1(T
∗)/cM , and optimum shock

number N∗, expected cost rate C2(N
∗)/cM when cM = 5, λ = 1 and G∗(θ) = 0.9

ck T ∗ C1(T
∗)/cM N∗ C2(N

∗)/cM

5 5.67 0.489 5 0.381
6 6.34 0.523 6 0.419
7 7.00 0.553 6 0.452
8 7.62 0.580 7 0.483
9 8.25 0.606 7 0.512
10 8.86 0.629 8 0.538
11 9.46 0.651 8 0.563
12 10.07 0.671 9 0.586
13 10.67 0.690 9 0.608
14 11.28 0.709 10 0.629
15 11.89 0.726 10 0.649
16 12.51 0.742 11 0.667
17 13.13 0.758 11 0.685
18 13.77 0.773 12 0.702
19 14.41 0.787 13 0.719
20 15.07 0.801 13 0.734

when cM = 5, λ = 1, and G∗(θ) = 0.9. In this case, finite T ∗ and N∗ exist
uniquely for cT < 45 and cN < 50, and the expected number of nonfailures is
G∗(θ)/[1 − G∗(θ)] = 9.

If cN ≤ cT , then the replacement with shock N is better than that with
time T , and if cN ≥ cT + cM , then the replacement with time T is better than
that with shock N . In the case of cT < cN < cT + cM , for example, when
cT = 10 and cN = 14, both replacement policies are almost the same.

5.5 Modified Replacement Models

(1) Replacement with Threshold Level

Consider the periodic replacement policy in which a unit is replaced at time
nT (n = 1, 2, . . . ). If the total damage Z(T ) has exceeded a threshold level K
between planned replacements, the total cost would be higher than anticipated
[197]. The other assumptions are the same as those in Section 5.3 except
minimal repair at failures. Let c0(x) be an additional replacement cost for the
total damage x defined in (1) of Section 3.3. Then, the expected cost rate is,
from (3.29),
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C(T ) =
1
T

[ ∞∑
j=0

[F (j)(T ) − F (j+1)(T )]
{∫ K

0

[cT + c0(x)] dG(j)(x)

+
∫ ∞

K

[cK + c0(x)] dG(j)(x)
}]

, (5.41)

where cT and cK are the replacement cost at time nT when Z(T ) ≤ K and
Z(T ) > K, respectively.

(2) Replacement at the Next Shock over Time T

A unit is not replaced at time T . After T , it is replaced at the next shock and
undergoes minimal repair at failures between replacements (see (3) of Section
(3.3)). Because the mean time to replacement is, from (5.40) of [1],

∞∑
j=0

∫ T

0

[∫ ∞

T−t

(t + u) dF (u)
]

dF (j)(t)

= T +
∫ ∞

T

F (t) dt +
∫ T

0

[∫ ∞

T−t

F (u) du

]
dMF (t),

the expected cost rate is, from (5.27),

C̃1(T ) =
cM

∑∞
j=1 F (j)(T )

{
1 − [G∗(θ)]j

}
+ cT

T +
∫∞

T F (t) dt +
∫ T

0 [
∫∞

T−t F (u) du] dMF (t)
. (5.42)

In particular, when F (t) = 1 − e−λt,

C̃1(T )
λ

=
cM

{
λT − [G∗(θ)/(1 − G∗(θ))][1 − e−λT [1−G∗(θ)]]

}
+ cT

λT + 1
. (5.43)

When T = 0, i.e., the unit is always replaced at the first shock, the expected
cost rate is C̃1(0) = λcT , and when the unit is replaced never, it is C̃1(∞) =
λcM .

We seek an optimum time T ∗ (0 ≤ T ∗ ≤ ∞) that minimizes C̃1(T ) in
(5.43). Differentiating C̃1(T ) with respect to T and setting it equal to zero,

1 − (1 + λT )G∗(θ)e−λT [1−G∗(θ)] +
G∗(θ)

1 − G∗(θ)

{
1 − e−λT [1−G∗(θ)]

}
=

cT

cM
.

(5.44)

The left-hand side of (5.44) is strictly increasing from 1−G∗(θ) to 1/[1−G∗(θ)].
Thus, we have the optimum policy:

(i) If 1 − G∗(θ) ≥ cT /cM , then T ∗ = 0.
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(ii) If 1−G∗(θ) < cT /cM < 1/[1−G∗(θ)], then there exists a finite and unique
T ∗(0 < T ∗ < ∞) that satisfies (5.44), and the resulting cost rate is

C̃1(T ∗) = λcM

{
1 − G∗(θ)e−λT∗[1−G∗(θ)]

}
. (5.45)

(iii) If 1/[1 − G∗(θ)] ≤ cT /cM , then T ∗ = ∞.

For example, when G∗(θ) = 0.9, T ∗ = 0 for cT /cM ≤ 0.1, 0 < T ∗ < ∞ for
0.1 < cT /cM < 10, and T ∗ = ∞ for cT /cM ≥ 10. It is clearly seen that T ∗ to
satisfy (5.44) is smaller than that to satisfy (5.29).

(3) Replacement at the Next Shock over Damage Z

A unit is replaced at the next shock when the total damage has exceeded a
threshold level Z. Then, the expected number of failures before replacement
is

∞∑
j=0

{∫ Z

0

p(x) dG(j)(x) +
∫ Z

0

[∫ ∞

Z−x

p(x + y) dG(y)
]

dG(j)(x)

}

=
∫ ∞

0

p(x) dG(x) +
∫ Z

0

[∫ ∞

0

p(x + y) dG(y)
]

dMG(x).

Furthermore, the mean time to replacement increases by the mean shock time
1/λ in the denominator of (5.37). Thus, the expected cost rate is

C̃3(Z)
λ

=
cM

{∫∞
0

p(x) dG(x) +
∫ Z

0

[∫∞
0

p(x + y) dG(y)
]

dMG(x)
}

+ cZ

2 + MG(Z)
.

(5.46)
Differentiating C̃3(Z) with respect to Z and setting it equal to zero,

[2 + MG(Z)]
∫ ∞

0

p(Z + x) dG(x) −
∫ Z

0

[∫ ∞

0

p(x + y) dG(y)
]

dMG(x)

−
∫ ∞

0

p(x) dG(x) =
cZ

cM
. (5.47)

Letting Q(Z) be the left-hand side of (5.47), we easily see that Q(Z) is strictly
increasing from

∫∞
0

p(x)dG(x) to Q(∞). Thus, we have the optimum policy:

(i) If
∫∞
0 p(x)dG(x) ≥ cZ/cM , then Z∗ = 0, and

C̃3(0)
λ

=
cM

∫∞
0

p(x) dx + cZ

2
.

(ii) If
∫∞
0

p(x)dG(x) < cZ/cM < Q(∞), then there exists a finite and unique
Z∗ (0 < Z∗ < ∞) that satisfies (5.47), and the resulting cost rate is

C̃3(Z∗) = λcM

∫ ∞

0

p(Z∗ + x) dG(x). (5.48)
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(iii) If Q(∞) ≤ cZ/cM , then Z∗ = ∞.

It is clearly seen that

Q(Z) ≥ 2
∫ ∞

0

p(Z + x) dG(x) −
∫ ∞

0

p(x) dG(x),

because p(x) is increasing in x. Therefore, if 2− ∫∞
0

p(x)dG(x) > cZ/cM , i.e.,∫∞
0

[1 − p(x)]dG(x) > (cZ − cM )/cM then a finite Z∗ exists.

Example 5.5. Suppose that G(x) = 1 − e−µx and p(x) = 1 − e−θx. Then,
we compare the expected cost rates C3(Z) in (5.37) and C̃3(Z) in (5.46) nu-
merically. Under such assumptions, the expected cost rate C3(Z) is rewritten
as

C3(Z)
λ

=
cM [µZ − (µ/θ)(1 − e−θZ)] + cZ

1 + µZ
,

and if (µ+θ)/θ > cZ/cM , then there exists a finite and unique Z∗
1 that satisfies(

1 +
µ

θ

) (
1 − e−θZ

)− µZe−θZ =
cZ

cM
.

The expected cost rate C̃3(Z) is

C̃3(Z)
λ

=
cM [θ/(µ + θ)] + µ

{
Z − [µ/(θ(µ + θ))](1 − e−θZ)

}
+ cZ

2 + µZ
,

and if (µ + θ)/θ > cZ/cM > θ/(µ + θ), then there exists a finite and unique
Z∗

2 that satisfies

1 − µ

µ + θ
(1 + µZ)e−θZ +

µ

θ
(1 − e−θZ) =

cZ

cM
.

Because

1 − µ

µ + θ
(1 + µZ)e−θZ +

µ

θ
(1 − e−θZ) >

(
1 +

µ

θ

) (
1 − e−θZ

)− µZe−θZ,

Z∗
1 > Z∗

2 .
Table 5.4 presents the optimum values of Z∗

1 and Z∗
2 that minimize C3(Z)

and C̃3(Z), respectively, and their resulting cost rates C3(Z∗
1 )/λ and C̃3(Z∗

2 )/λ
for cZ = 5– 20 when cM = 5 and G∗(θ) = 0.9, i.e., µ/θ = 9. In this case,
both finite and positive Z∗

1 and Z∗
2 exist uniquely for 0.5 < cZ < 50, and

C3(Z∗
1 ) < C̃3(Z∗

2 ) and θZ∗
1 < θ/µ + θZ∗

2 . However, their differences between
two expected costs become smaller, as cZ becomes larger. If the replacement
cost cZ is less than that of (3) in Section 5.4.2, this policy might be more
useful than the policy of (3).
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Table 5.4. Optimum damage level Z∗
1 , expected cost rate C3(Z

∗
1 ), and damage level

Z∗
2 , expected cost rate eC3(Z

∗
2 ) when cM = 5 and µ/θ = 9

cZ θZ∗
1 C3(Z

∗
1 )/λ θZ∗

2
eC3(Z

∗
2 )/λ

5 0.437 1.770 0.342 1.804
6 0.498 1.963 0.402 1.991
7 0.557 2.136 0.461 2.161
8 0.615 2.296 0.517 2.317
9 0.670 2.443 0.573 2.462
10 0.726 2.581 0.627 2.597
11 0.781 2.709 0.682 2.724
12 0.835 2.830 0.735 2.843
13 0.889 2.944 0.789 2.956
14 0.943 3.053 0.843 3.063
15 0.997 3.155 0.897 3.165
16 1.052 3.253 0.951 3.262
17 1.107 3.347 1.006 3.354
18 1.162 3.435 1.061 3.443
19 1.218 3.521 1.117 3.528
20 1.275 3.603 1.174 3.609



6

Preventive Maintenance Policies

Most operating units are repaired or replaced when they have failed. If a failed
unit undergoes repair, it begins to operate again after the repair completion.
However, it may require much time and high cost to repair a failed unit. It
may sometimes be necessary to maintain a unit to prevent failures. Some
maintenance after failure and before failure is called corrective maintenance
(CM) and preventive maintenance (PM), respectively. Optimum PM policies
for some units were summarized [1,200–202]. The modified PM policy that is
planned only at periodic times was proposed in Section 6.3 of [1].

PM actions are generally grouped into time maintenance that is based on
the planned time, age, or usage time of a unit, and monitored maintenance
or condition-based maintenance that is based on the condition of a unit [203].
The first maintenance corresponds to the replacement policies discussed in
Chapters 3–5 in [1] and the maintenance that is done at a planned time T or
number N in Chapters 3–5. The latter maintenance is done by monitoring one
or more variables charactering the wear, fatigue, and damage of an operating
unit and corresponds to the maintenance that is done at a damage level Z or
at a shock number N in Chapters 3–5.

This chapter takes up the modified PM policy [56] and applies it to a
condition-based PM of a cumulative damage model, where the CM is done
immediately when the total damage due to shocks has exceeded a failure level
K. The test to investigate some characteristics of an operating unit is planned
at periodic times nT (n = 1, 2, · · · ). We can know the characteristics such as
the damage and the shock number only through tests, and if necessary, we do
some appropriate maintenance.

In Section 6.1, if the total damage has exceeded a threshold level Z
(0 ≤ Z ≤ K), the PM is done at the first planned time, when shocks occur
in a nonhomogeneous Poisson process. The expected cost rate is obtained,
and an optimum Z∗ that minimizes it is discussed analytically. Furthermore,
in Section 6.2, the modified PM models, where (1) the failure is detected
only through tests, (2) the PM is done when the total number of shocks has
exceeded a threshold number N , and (3) the PM is done at time NT , are pro-
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posed. The expected cost rates of each model are obtained, and a numerical
example to compare them is given.

6.1 Condition-based Preventive Maintenance

We consider a condition-based PM policy where the condition of an operating
unit is monitored at inspection times. If the condition is normal, the opera-
tion is continued. However, if the condition reaches a previously determined
threshold level of resistance to failure, the PM is done before failure. Such PM
policies have been actually in use for engines, mainflames, control systems of
aircraft [204], and plants in the chemical and machine industries.

Condition-based maintenance models for a deteriorating system are gen-
erally classified into continuous wear processes [192,193] and Markovian dete-
rioration processes [205–208]. In the former case, the preventive replacement
level of a one-unit system whose condition is monitored at inspection times
was considered, and optimum levels to minimize the expected cost and the
availability were derived [194–196,209–211]. This was extended to a two-unit
series system [196].

This section adopts the condition-based PM policy for a cumulative dam-
age model: A unit suffers damage due to shocks, and fails when the total
amount of additive damage has exceeded a failure level K. Then, the CM is
done immediately. The test is planned at periodic times nT (n = 1, 2, · · · )
to prevent failures, where T (> 0) means a week, a month, or a year. It is
assumed that we can know the total damage to a unit only through tests. If
the total damage has exceeded a threshold level Z (0 ≤ Z ≤ K) at time nT ,
the PM or overhaul is done before failure. Otherwise, no PM should be done.

Suppose that shocks occur in a nonhomogeneous Poisson process. Then,
using the theory of a Poisson process and the results of Section 6.3 of [1], we
obtain the expected cost rate and determine an optimum damage level Z∗

that minimizes it. In particular, when shocks occur in a Poisson process, an
optimum Z∗ is given by a unique solution of the equation.

6.1.1 Expected Cost Rate

Consider a unit that should operate over an infinite time interval: Shocks oc-
cur in a nonhomogeneous Poisson process with an intensity function h(t) and
a mean value function H(t), i.e., H(t) ≡ ∫ t

0
h(u)du represents the expected

number of shocks in [0, t], and pj [H(t)] ≡ {[H(t)]j/j!
}

e−H(t) (j = 0, 1, 2, · · · )
is the probability that j shocks occur exactly in [0, t]. In addition, random vari-
ables {Wj} (j = 1, 2, · · · ) denote an amount of damage due to the jth shock
and are nonnegative, independent, and identically distributed. Each Wj is
statistically estimated and has an identical distribution G(x) ≡ Pr {Wj ≤ x}
(j = 1, 2, · · · ). Each amount of damage is additive, and G(j)(x) denotes the
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j-fold Stieltjes convolution of G(x) with itself (j = 1, 2, · · · ) and G(0)(x) ≡ 1
for x ≥ 0. A unit fails only when the total damage has exceeded a failure level
K, and then the CM is done.

Under the above assumptions, the test is planned at periodic times nT
(n = 1, 2, · · · ) to investigate the total damage, where a positive T is given.
If the total damage has exceeded a threshold level Z (0 ≤ Z ≤ K) during
(nT, (n+1)T ] (n = 0, 1, 2, · · · ), then its damage can be known through the test
at time (n + 1)T , and the PM is done immediately (Figure 6.1). Otherwise,
the unit is left as it is. The unit becomes as good as a new one at each PM
or CM, i.e., the PM is perfect. The imperfect PM policy for a cumulative
damage model will be discussed in Chapter 7. The times required for any test
and maintenance are negligible, i.e., the time considered here is measured only
by the total operating time.

We obtain the expected cost rate by a method similar to Section 6.3 of [1]
and [56]. The probability that j shocks occur during [0, nT ] and the total
damage is less than Z, and i shocks occur during (nT, (n+1)T ] and the total
damage has exceeded K, is

pj [H(nT )] pi[H((n + 1)T )− H(nT )]

× Pr {W1 + · · · + Wj ≤ Z and W1 + · · · + Wj + · · · + Wj+i > K}

= pj [H(nT )]pi[H((n + 1)T )− H(nT )]
∫ Z

0

[1 − G(i)(K − x)] dG(j)(x).

Thus, the probability that the unit fails and the CM is done immediately is
∞∑

n=0

∞∑
j=0

pj [H(nT )]
∞∑

i=0

pi[H((n + 1)T ) − H(nT )]

×
∫ Z

0

[1 − G(i)(K − x)] dG(j)(x). (6.1)

Conversely, the probability that the PM is done at time (n + 1)T (n =
0, 1, 2, · · · ) when the total damage is between Z and K during (nT, (n + 1)T ]
is

∞∑
n=0

∞∑
j=0

pj [H(nT )]
∞∑

i=0

pi[H((n + 1)T )− H(nT )]

× Pr {W1 + · · · + Wj ≤ Z and Z < W1 + · · · + Wj + · · · + Wj+i ≤ K}

=
∞∑

n=0

∞∑
j=0

pj [H(nT )]
∞∑

i=0

pi[H((n + 1)T )− H(nT )]

×
∫ Z

0

[G(i)(K − x) − G(i)(Z − x)] dG(j)(x). (6.2)

It is proved that (6.1)+ (6.2) = 1, because, from the reproductive property of
a Poisson distribution,
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Z

K

Z(t)

0
t

Shock point Planned time PM time

T 2T 3T 4T

Fig. 6.1. Process for PM at damage Z

∞∑
n=0

∞∑
j=0

pj [H(nT )]
∞∑

i=0

pi[H((n + 1)T )− H(nT )][G(j)(Z) − G(i+j)(Z)]

=
∞∑

n=0

⎧⎨⎩
∞∑

j=0

pj[H(nT )]G(j)(Z)

−
∞∑

i=0

G(i)(Z)
i∑

j=0

pj [H(nT )]pi−j [H((n + 1)T ) − H(nT )]

⎫⎬⎭
=

∞∑
n=0

⎧⎨⎩
∞∑

j=0

pj[H(nT )]G(j)(Z) −
∞∑

i=0

pi[H((n + 1)T )]G(i)(Z)

⎫⎬⎭ = 1.

The mean time to either PM or CM is
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∞∑
n=0

[(n + 1)T ]
∞∑

j=0

pj [H(nT )]
∞∑

i=0

pi[H((n + 1)T )− H(nT )]

×
∫ Z

0

[G(i)(K − x) − G(i)(Z − x)] dG(j)(x)

+
∞∑

n=0

∞∑
j=0

pj [H(nT )]
∞∑

i=0

∫ (n+1)T

nT

tpi[H(t) − H(nT )]h(t) dt

×
∫ Z

0

[G(i)(K − x) − G(i+1)(K − x)] dG(j)(x)

=
∞∑

n=0

∞∑
j=0

pj [H(nT )]
∞∑

i=0

∫ Z

0

G(i)(K − x) dG(j)(x)

×
∫ (n+1)T

nT

pi[H(t) − H(nT )] dt. (6.3)

Let cZ be the PM cost before failure and cK be the CM cost after failure
with cK > cZ . Then, the expected cost rate is, summing up cK × (6.1)+ cZ ×
(6.2) and dividing by (6.3),

C1(Z) =

cZ + (cK − cZ)
∑∞

n=0

∑∞
j=0 pj [H(nT )]

×∑∞
i=0 pi[H((n+1)T )− H(nT )]

∫ Z

0 [1 − G(i)(K−x)] dG(j)(x)∑∞
n=0

∑∞
j=0 pj [H(nT )]

∑∞
i=0

∫ Z

0 G(i)(K − x) dG(j)(x)

× ∫ (n+1)T

nT
pi[H(t) − H(nT )] dt

.

(6.4)
Each amount of damage during (nT, (n+1)T ] is investigated only through

tests and has an identical distribution G(x) for all n (n = 0, 1, 2, · · · ). This
corresponds to a cumulative damage model where shocks occur at every con-
stant time T and the total damage is known at the end of each period. In this
case, the expected cost rate is obtained by replacing 1/λ with T in (3.24), and
the optimum policy has been derived in (3) of Section 3.2.

Next, a failure level K is statistically distributed, i.e., K is a random
variable and has a general distribution L(x) ≡ Pr{K ≤ x}. Then, the expected
cost rate in (6.4) is rewritten as

C1(Z) =

cZ +(cK−cZ)
∑∞

n=0

∑∞
j=0 pj[H(nT )]

∑∞
i=0pi[H((n+1)T )−H(nT )]

× ∫ Z

0

{∫∞
0

[L(x + y) − L(x)] dG(i)(y)
}

dG(j)(x)∑∞
n=0

∑∞
j=0pj [H(nT )]

∑∞
i=0

∫ Z

0
{∫∞

0
[1−L(x+y)] dG(i)(y)} dG(j)(x)

× ∫ (n+1)T

nT
pi[H(t) − H(nT )] dt

.

(6.5)
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6.1.2 Optimum Policy

We seek an optimum threshold level Z∗ that minimizes the expected cost
rate C1(Z) in (6.4) when shocks occur in a Poisson process, i.e., pj [H(nT )] =
[(nλT )j/j!]e−nλT ≡ pj(nλT ) (j = 0, 1, 2, · · · ). Differentiating C1(Z) with
respect to Z and setting it equal to zero,

Q1(Z)
∞∑

n=0

∞∑
j=0

pj(nλT )
∞∑

i=0

∫ T

0

pi(λt) dt

∫ Z

0

G(i)(K − x) dG(j)(x)

−
∞∑

n=0

∞∑
j=0

pj(nλT )
∞∑

i=0

pi(λT )
∫ Z

0

[1 − G(i)(K − x)] dG(j)(x) =
cZ

cK − cZ
,

(6.6)

where

Q1(Z) ≡
∑∞

i=0 pi(λT )[1 − G(i)(K − Z)]∑∞
i=0

∫ T

0
pi(λt) dt G(i)(K − Z)

.

It can be easily seen that Q1(Z) is increasing in Z from Q1(0) to λ. Denoting
the left-hand side of (6.6) by Q2(Z), Q2(0) = 0,

Q2(K) =
∞∑

n=0

∞∑
i=0

G(i)(K)
∫ (n+1)T

nT

λpi(λt) dt − 1 =
∞∑

i=1

G(i)(K),

dQ2(Z)
dZ

=
dQ1(Z)

dZ

∞∑
n=0

∞∑
j=0

pj(nλT )
∞∑

i=0

∫ T

0

pi(λt) dt

∫ Z

0

G(i)(K − x) dG(j)(x).

It is assumed that the distribution G(x) of each amount of damage due
to shocks is continuous and strictly increasing. Then, Q2(Z) is also strictly
increasing from 0 to MG(K) ≡ ∑∞

j=1 G(j)(K) that represents the expected
number of shocks before the failure. Therefore, we have the following optimum
policy:

(i) If MG(K) > cZ/(cK − cZ), then there exists a unique Z∗ (0 < Z∗ < K)
that satisfies (6.6), and the resulting cost rate is

C1(Z∗) = (cK − cZ)Q1(Z∗). (6.7)

(ii) If MG(K) ≤ cZ/(cK−cZ), then Z∗ = K, and the CM is done after failure.
In this case, the expected cost rate is

C1(K)
λ

=
cK

1 + MG(K)
, (6.8)

that agrees with (3.12).

This policy will be applied to a garbage collection model in Section 8.3, and
an optimum level Z∗ is computed numerically in Example 8.3.
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6.2 Modified Models

We show the following modified models: (1) any failures are detected only
through tests, (2) the PM is done when the total number of shocks has ex-
ceeded a threshold number N , and (3) the PM is done at time NT . The
expected cost rates of each model are obtained.

(1) PM only at Test

Suppose that any failures are detected only through tests. When the unit fails
during (nT, (n + 1)T ], it is not detected immediately, but is detected only at
time (n + 1)T and the CM is done. Then, the mean time to either PM or CM
is

∞∑
n=0

[(n + 1)T ]
∞∑

j=0

pj [H(nT )]
∞∑

i=0

pi[H((n + 1)T )− H(nT )]

×
{∫ Z

0

[1 − G(i)(K − x)] dG(j)(x)

+
∫ Z

0

[G(i)(K − x) − G(i)(Z − x)] dG(j)(x)

}

= T

∞∑
n=0

∞∑
j=0

pj [H(nT )]G(j)(Z). (6.9)

Furthermore, the mean time from a failure to its detection is, from (6.3),

∞∑
n=0

∞∑
j=0

pj [H(nT )]
∞∑

i=0

∫ (n+1)T

nT

[(n + 1)T − t]pi[H(t) − H(nT )]h(t) dt

×
∫ Z

0

[G(i)(K − x) − G(i+1)(K − x)] dG(j)(x)

=
∞∑

n=0

∞∑
j=0

pj [H(nT )]
∞∑

i=0

∫ Z

0

[1 − G(i)(K − x)] dG(j)(x)

×
∫ (n+1)T

nT

pi[H(t) − H(nT )] dt, (6.10)

where note that (6.3) + (6.10) = (6.9). From this relation,

T

∞∑
n=0

∞∑
j=0

pj [H(nT )]G(j)(K) ≥
∞∑

j=0

G(j)(K)
∫ ∞

0

pj [H(t)] dt, (6.11)

that is the mean time to failure given in (2.19).
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Let cD be the loss cost per unit of time elapsed between a failure and its
detection. Then, the expected cost rate is, from (6.4),

C̃1(Z) =

cZ + (cK − cZ)
∑∞

n=0

∑∞
j=0 pj [H(nT )]

×∑∞
i=0 pi[H((n + 1)T )− H(nT )]

∫ Z

0
[1 − G(i)(K − x)] dG(j)(x)

− cD

∑∞
n=0

∑∞
j=0 pj[H(nT )]

∑∞
i=0

∫ Z

0 G(i)(K − x) dG(j)(x)

× ∫ (n+1)T

nT pi[H(t) − H(nT )] dt

T
∑∞

n=0

∑∞
j=0 pj [H(nT )]G(j)(Z)

+ cD. (6.12)

Compared with the expected cost rate C1(Z) in (6.4), C̃1(Z) is smaller than
C1(Z) when cD = 0, and is larger as cD increases. Thus, if the PM and CM
costs are the same, C̃1(Z) would be larger than C1(Z) when cD is greater
than some fixed cost.

When shocks occur in a Poisson process with rate λ, the expected cost
rate C̃1(Z) is rewritten as

C̃1(Z) =

cZ + (cK − cZ)
∑∞

n=0

∑∞
j=0 pj(nλT )

∑∞
i=0 pi(λT )

× ∫ Z

0
[1 − G(i)(K − x)] dG(j)(x)

−cD

∑∞
n=0

∑∞
j=0 pj(nλT )

∑∞
i=0

∫ T

0
pi(λt) dt

× ∫ Z

0
G(i)(K − x) dG(j)(x)

T
∑∞

n=0

∑∞
j=0 pj(nλT )G(j)(Z)

+ cD. (6.13)

To find an optimum Z∗ that minimizes C̃1(Z), differentiating C̃1(Z) with
respect to Z and setting it equal to zero,

∞∑
n=0

∞∑
j=0

pj(nλT )
∞∑

i=0

[
pi(λT ) +

cD

cK − cZ

∫ T

0

pi(λt) dt

]

×
∫ K

K−Z

G(j)(K − x) dG(i)(x) =
cZ

cK − cZ
. (6.14)

Denoting the left-hand side of (6.14) by Q̃(Z), we easily find that Q̃(Z) is
strictly increasing from 0 to

Q̃(K) =
∞∑

n=0

∞∑
j=0

pj(nλT )G(j)(K) +
cD/λ

cK − cZ

∞∑
j=0

G(j)(K) − 1.

Therefore, we have the following optimum policy:

(i) If Q̃(K) > cZ/(cK − cZ), then there exists a unique Z∗ (0 < Z∗ < K)
that satisfies (6.14), and the resulting cost rate is

C̃1(Z∗) =
1
T

∞∑
i=0

[
1 − G(i)(K − Z∗)

][
(cK − cZ)pi(λT ) + cD

∫ T

0

pi(λt) dt

]
.

(6.15)
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(ii) If Q̃(K) ≤ cZ/(cK − cZ), then Z∗ = K, and the expected cost rate is

C̃1(K) =
cK − (cD/λ)

∑∞
j=0 G(j)(K)

T
∑∞

n=0

∑∞
j=0 pj(nλT )G(j)(K)

+ cD. (6.16)

From (6.11), because we have the inequality

Q̃(K) ≥
(

1
λT

+
cD/λ

cK − cZ

)
[1 + MG(K)] − 1,

if
1 + MG(K)

λT
>

cK

cK − cZ + TcD
,

then a unique Z∗ to satisfy (6.14) exists.

(2) PM at Shock Number

Suppose that the number of shocks is known only through tests. When the
total number of shocks has exceeded a prespecified number N before failure
during (nT, (n + 1)T ], the PM is done at time (n + 1)T . Then, by a method
similar to (6.1) and (6.2), the probability that the CM is done after failure is

∞∑
n=0

N−1∑
j=0

pj [H(nT )]
∞∑

i=0

pi[H((n+1)T )−H(nT )][G(j)(K)−G(i+j)(K)], (6.17)

and the probability that the PM is done before failure is

∞∑
n=0

N−1∑
j=0

pj [H(nT )]
∞∑

i=N−j

pi[H((n + 1)T )− H(nT )]G(i+j)(K), (6.18)

where note that (6.17) + (6.18) = 1. The mean time to either PM or CM is

∞∑
n=0

[(n + 1)T ]
N−1∑
j=0

pj[H(nT )]
∞∑

i=N−j

pi[H((n + 1)T )− H(nT )]G(i+j)(K)

+
∞∑

n=0

N−1∑
j=0

pj [H(nT )]
∞∑

i=0

[G(i+j)(K) − G(i+j+1)(K)]

×
∫ (n+1)T

nT

t pi[H(t) − H(nT )]h(t) dt

=
∞∑

n=0

N−1∑
j=0

pj [H(nT )]
∞∑

i=0

G(i+j)(K)
∫ (n+1)T

nT

pi[H(t) − H(nT )] dt. (6.19)

Therefore, the expected cost rate is, summing up cK × (6.17)+ cN × (6.18)
and dividing by (6.19),
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C2(N) =

cN + (cK − cN )
∑∞

n=0

∑N−1
j=0 pj [H(nT )]

×∑∞
i=0 pi[H((n + 1)T )− H(nT )][G(j)(K) − G(i+j)(K)]∑∞

n=0

∑N−1
j=0 pj [H(nT )]

∑∞
i=0 G(i+j)(K)

× ∫ (n+1)T

nT pi[H(t) − H(nT )] dt

(N = 1, 2, · · · ), (6.20)

where cN is the PM cost at shock N .
If the failure is detected only through tests in the same way as (1), then

the mean time to either PM or CM is

∞∑
n=0

[(n + 1)T ]
N−1∑
j=0

pj[H(nT )]

×
{ ∞∑

i=0

pi[H((n + 1)T )− H(nT )][G(j)(K) − G(i+j)(K)]

+
∞∑

i=N−j

pi[H((n + 1)T )− H(nT )]G(i+j)(K)

}

= T

∞∑
n=0

N−1∑
j=0

pj[H(nT )]G(j)(K), (6.21)

and the mean time from a failure to its detection is

∞∑
n=0

N−1∑
j=0

pj [H(nT )]
∞∑

i=0

[G(i+j)(K) − G(i+j+1)(K)]

×
∫ (n+1)T

nT

[(n + 1)T − t]pi[H(t) − H(nT )]h(t) dt

=
∞∑

n=0

N−1∑
j=0

pj [H(nT )]
∞∑

i=0

[G(j)(K) − G(i+j)(K)]
∫ (n+1)T

nT

pi[H(t) − H(nT )] dt,

(6.22)

where (6.19) + (6.22) = (6.21). In this case, the expected cost rate is

C̃2(N) =

cN + (cK − cN )
∑∞

n=0

∑N−1
j=0 pj [H(nT )]

×∑∞
i=0 pi[H((n + 1)T )− H(nT )][G(j)(K) − G(i+j)(K)]

−cD

∑∞
n=0

∑N−1
j=0 pj[H(nT )]

∑∞
i=0 G(i+j)(K)

× ∫ (n+1)T

nT
pi[H(t) − H(nT )] dt

T
∑∞

n=0

∑N−1
j=0 pj [H(nT )]G(j)(K)

+ cD (N = 1, 2, · · · ). (6.23)
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It would be troublesome to analyze optimum policies analytically that
minimize C2(N) and C̃2(N). In particular, we derive an optimum shock
number N∗ that minimizes C̃2(N) in (6.23) when cD = 0 and pj [H(t)] =
[(λt)j/j!]e−λt = pj(λt) (j = 0, 1, 2, · · · ). In this case, from the inequality
C̃2(N + 1) − C̃2(N) ≥ 0,[

1 −
∑∞

i=0 pi(λT )G(N+i)(K)
G(N)(K)

] ∞∑
n=0

N−1∑
j=0

pj(nλT )G(j)(K)

−
∞∑

n=0

N−1∑
j=0

pj(nλT )
∞∑

i=0

pi(λT )[G(j)(K) − G(i+j)(K)] ≥ cN

cK − cN

(N = 1, 2, · · · ). (6.24)

Denoting the left-hand side of (6.24) by Q(N),

Q(N + 1) − Q(N) =
[∑∞

i=0 pi(λT )G(N+i)(K)
G(N)(K)

−
∑∞

i=0 pi(λT )G(N+1+i)(K)
G(N+1)(K)

]
×

∞∑
n=0

N∑
j=0

pj(nλT )G(j)(K).

Thus, if
∑∞

i=0 pi(λT )G(N+i)(K)/G(N)(K) is strictly decreasing in N and
Q(∞) > cN/(cK − cN ), there exists a unique minimum number N∗ (1 ≤
N∗ < ∞) that satisfies (6.24).

For example, suppose that G(x) = 1−e−µx, i.e., G(j)(x) ≡∑∞
i=j [(µx)i/i!]

× e−µx (j = 0, 1, 2, · · · ). Then,
∞∑

i=0

pi(λT )[G(N+i)(K)G(N+1)(K) − G(N+i+1)(K)G(N)(K)]

=
∞∑

i=0

pi(λT )e−2µK
∞∑

j=0

(µK)N+i+j

[
1

(N +i)!(N +1)!
− 1

N !(N +i+1)!

]
> 0.

Thus,
∑∞

i=0 pi(λT )G(N+i)(K)/G(N)(K) is strictly decreasing to 0, and

Q(∞) ≡ lim
N→∞

Q(N) =
∞∑

n=1

∞∑
j=0

pj(nλT )G(j)(K).

Therefore, if
∑∞

n=1

∑∞
j=0 pj(nλT )G(j)(K) > cN/(cK − cN), then an optimum

N∗ exists uniquely. Furthermore, from (6.11), if (1 + µK)/(λT ) > cK/(cK −
cN ), then a finite N∗ exists.

(3) PM at Time NT

Suppose that we cannot know any damage level and shock number. The PM
is done at time NT or the CM is done after failure, whichever occurs first,



114 6 Preventive Maintenance Policies

that is the same policy as that of Section 5.2. Then, the probability that the
CM is done after failure is

N−1∑
n=0

∞∑
j=0

pj [H(nT )]
∞∑

i=0

pi[H((n + 1)T ) − H(nT )][G(j)(K) − G(i+j)(K)]

=
N−1∑
n=0

∞∑
j=0

{pj [H(nT )]− pj [H((n + 1)T )]}G(j)(K)

= 1 −
∞∑

j=0

pj[H(NT )]G(j)(K), (6.25)

and the probability that the PM is done at time NT is

∞∑
j=0

pj [H(NT )]G(j)(K). (6.26)

The mean time to either PM or CM is

N−1∑
n=0

∞∑
j=0

pj[H(nT )]
∞∑

i=0

[G(i+j)(K) − G(i+j+1)(K)]

×
∫ (n+1)T

nT

t pi[H(t) − H(nT )]h(t) dt + (NT )
∞∑

j=0

pj [H(NT )]G(j)(K)

=
N−1∑
n=0

∞∑
j=0

pj[H(nT )]
∞∑

i=0

G(i+j)(K)
∫ (n+1)T

nT

pi[H(t) − H(nT )] dt

=
∞∑

j=0

G(j)(K)
∫ NT

0

pj [H(t)] dt. (6.27)

Therefore, the expected cost rate is

C3(N) =
cK − (cK − cN )

∑∞
j=0 pj [H(NT )]G(j)(K)∑∞

j=0 G(j)(K)
∫ NT

0
pj[H(t)] dt

(N = 1, 2, · · · ), (6.28)

where cN is the PM cost at time NT . The expected cost rate C3(N) agrees
with C1(T ) in (3.11) by replacing T with NT and F (j)(t) − F (j+1)(t) with
pj [H(t)].

Furthermore, when a failure level K is statistically distributed according
to a general distribution L(x), the expected cost rate is

C3(N) =
cK − (cK − cN )

∑∞
j=0 pj [H(NT )]

∫∞
0 G(j)(x) dL(x)∑∞

j=0

∫ NT

0
pj [H(t)] dt

∫∞
0

G(j)(x) dL(x)

(N = 1, 2, · · · ). (6.29)
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Table 6.1. Optimum number N∗ and expected cost rate C3(N
∗)/cN when 1/λ =

103, 104, and G∗(θ) = 0.9

1/λ = 103 1/λ = 104

T
N∗ C3(N

∗)/cN N∗ C3(N
∗)/cN

8 13 0.0479 41 0.0151
48 2 0.0466 7 0.0153

192 1 0.0557 2 0.0159
2304 1 0.0564 1 0.0178

In particular, when L(x) = 1 − e−θx, the expected cost rate is simplified as

C3(N) =
cK − (cK − cN )e−[1−G∗(θ)]H(NT )∫ NT

0 e−[1−G∗(θ)]H(t) dt
(N = 1, 2, · · · ), (6.30)

that agrees with (9.1) of [1] by replacing F (t) with e−[1−G∗(θ)]H(t). Thus, when
the failure rate h(t) is strictly increasing, the optimum policy is as follows:

(i) If h(∞)[1−G∗(θ)]
∫∞
0

e−[1−G∗(θ)]H(t)dt > cK/(cK −cN), then there exists
a finite and unique minimum number N∗ that satisfies

e−[1−G∗(θ)]H(NT ) − e−[1−G∗(θ)]H((N+1)T )∫ (N+1)T

NT
e−[1−G∗(θ)]H(t) dt

∫ NT

0

e−[1−G∗(θ)]H(t) dt

− e−[1−G∗(θ)]H(NT ) ≥ cK

cK − cN
. (6.31)

(ii) If h(∞)[1 − G∗(θ)]
∫∞
0

e−[1−G∗(θ)]H(t)dt ≤ cK/(cK − cN ), then N∗ = ∞,
i.e., the unit is replaced only at failure and

C3(∞) =
cK∫∞

0
e−[1−G∗(θ)]H(t) dt

.

Example 6.1. Suppose that H(t) = λt2, i.e., h(t) = 2λt that is strictly
increasing to ∞. Thus, there exists a finite and unique minimum N∗ that
satisfies (6.31). Table 6.1 presents the optimum N∗ and the resulting cost
rate C3(N∗)/cN for T = 8, 48, 192, 2304 when cK/cN = 5, 1/λ = 103 , 104,
and G∗(θ) = 0.9. For example, when 1/λ = 104 and T = 48, i.e., the unit is
operating 8 hours per day and is inspected once a week, the PM is done every
7 weeks. Clearly, optimum values of N∗ decrease with T and increase with
1/λ.
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If the failure is detected only at time nT (n = 1, 2, · · · ), the mean time to
either PM or CM is

N−1∑
n=0

[(n+1)T ]
∞∑

j=0

pj [H(nt)]
∞∑

i=0

pi[H((n+1)T )− H(nT )][G(j)(K) − G(i+j)(K)]

+ (NT )
∞∑

j=0

pj[H(NT )]G(j)(K)

= T
N−1∑
n=0

∞∑
j=0

pj [H(nT )]G(j)(K), (6.32)

and the mean time from a failure to its detection is

N−1∑
n=0

∞∑
j=0

pj[H(nt)]
∞∑

i=0

[G(i+j)(K) − G(i+j+1)(K)]

×
∫ (n+1)T

nT

[(n + 1)T − t]pi[H(t) − H(nT )]h(t) dt

=
N−1∑
n=0

∞∑
j=0

pj [H(nT )]
∞∑

i=0

[G(j)(K) − G(i+j)(K)]
∫ (n+1)T

nT

pi[H(t) − H(nT )] dt.

(6.33)

Thus, the expected cost rate is

C̃3(N) =

cK − (cK − cN )
∑∞

j=0 pj[H(NT )]G(j)(K)

− cD

∑∞
j=0 G(j)(K)

∫ NT

0
pj [H(t)] dt

T
∑N−1

n=0

∑∞
j=0 pj [H(nT )]G(j)(K)

+ cD (N = 1, 2, · · · ),

(6.34)

where cD is given in (6.12).
In addition, when a failure level K is distributed according to an exponen-

tial distribution L(x) = 1 − e−θx, the expected cost rate is

C̃3(N) =
cK − (cK − cN )e−[1−G∗(θ)]H(NT ) − cD

∫ NT

0
e−[1−G∗(θ)]H(t) dt

T
∑N−1

n=0 e−[1−G∗(θ)]H(nT )
+ cD

(N = 1, 2, . . . ). (6.35)
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Imperfect Preventive Maintenance Policies

The usual preventive maintenance (PM) of an operating unit is based on its
age or operating time. Most models have assumed that the unit after PM
becomes as good as new. Actually, this assumption might not be true. The
unit after PM usually might be only younger, and its improvement would
depend on the resources spent for PM. In such imperfect PM models where
the unit after PM has the same failure rate as before PM, the age or failure rate
after PM reduces in proportion to that before PM [212–214]. Some chapters
[1,215–217] of recently published books summarized many results of imperfect
maintenance.

The PM of large complex systems such as computers, radars, airplanes,
and plants should be done frequently as the units age. A sequential PM policy
where the PM is done at fixed intervals Tn (n = 1, 2, · · · , N) has been proposed
[218,219]. In some practical situations, however, the PM seems only imperfect
in the sense that it does not make the unit like new [220].

In this chapter, we apply a sequential PM policy to a cumulative damage
model where each PM is imperfect [57]: The unit is subject to shocks that
occur randomly in time, and upon the occurrence of shocks, it suffers a random
damage that is additive. Each shock causes unit failure with probability p(x)
when the total damage is x. If the unit fails between PMs, it undergoes only
minimal repair using the same assumption as that of Section 5.4. We introduce
only an improvement factor in damage to describe imperfect PM actions: The
amount of damage after the nth PM becomes anZn when it was Zn before
PM, i.e., the nth PM reduces the total damage Zn to anZn. This would be
applied to related PM models in Chapter 6.

In Section 7.1, we obtain the expected cost rate when shocks occur in a
Poisson process and p(x) is exponential. In Section 7.2, we discuss three types
of optimum policies that minimize the expected cost rate when the PM is
done at periodic times and the improvement factor is constant, i.e., Tn = T
and an = a. Optimum number N∗(T ), optimum interval T ∗(N), and opti-
mum (N∗, T ∗) are derived analytically. Numerical examples are presented to
demonstrate potential usefulness of the results. Next, suppose in Section 7.4
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Fig. 7.1. Process for Imperfect PM

that a unit has to be operating over a finite interval (0, S]. Then, setting∑N
n=1 Tn = S, we compute numerically an optimum number N∗ and opti-

mum times T ∗
n (n = 1, 2, . . . , N∗ − 1) that minimize the expected cost until

replacement. It is of great interest that the last PM time interval is the largest
and the first PM one is the second, and they are first increasing, and then are
decreasing.

7.1 Model and Expected Cost

Consider a sequential PM policy that is done at fixed intervals Tn (n =
1, 2, · · · , N) and the replacement or the perfect PM is done at time TN , i.e.,
a unit is as good as new at time TN . We call an interval from the (n − 1)th
PM to the nth PM period n (Figure 7.1).

Suppose that shocks occur in a Poisson process with rate λ. Random vari-
ables Nn (n = 1, 2, · · · , N) denote the number of shocks in period n, i.e.,
Pr{Nn = j} = [(λTn)j/j!] exp(−λTn) ≡ pj(Tn) (j = 0, 1, 2, · · · ). In addition,
we denote by Wnj the amount of damage caused by the jth shock in period
n, where Wn0 ≡ 0. It is assumed that random variable Wnj is nonnegative,
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independent, and identically distributed, and has an identical distribution
Pr{Wnj ≤ x} ≡ G(x) for all n and j. The total damage is additive, and
G(j)(x) (j = 1, 2, · · · ) is the j-fold Stieltjes convolution of G(x) with itself
and G(0)(x) ≡ 1 for all x ≥ 0. Then, it follows that

Pr{Wn1 + Wn2 + · · · + Wnj ≤ x} = G(j)(x) (j = 0, 1, 2, · · · ). (7.1)

When the total damage becomes x at shocks, the unit fails with proba-
bility p(x), that is increasing in x from 0 to 1. If the unit fails between PMs,
it undergoes only minimal repair, and hence, the total damage remains un-
changed by any minimal repair. It is assumed that the times required for any
PM and minimal repair are negligible.

Next, we introduce an improvement factor in PM: Suppose that the nth
PM reduces 100(1 − an)% (0 ≤ an ≤ 1) of the total damage. Letting Zn be
the total damage at the end of period n, i.e., just before the nth PM, the nth
PM reduces it to anZn. During period n the total damage is additive and is
not removed because the failed unit undergoes only minimal repair. Thus, we
have the relation

Zn = an−1Zn−1 +
Nn∑
j=1

Wnj (n = 1, 2, · · · , N), (7.2)

where Z0 ≡ 0 and
∑0

j=1 ≡ 0.
Let cT be the cost of each PM, cN be the cost of replacement at the Nth

PM with cN > cT , and cM be the cost of minimal repair. Then, because the
unit fails with probability p(·) only at shocks, the total cost in period n is

C̃(n) = cT + cM

Nn∑
j=1

p(an−1Zn−1 + Wn1 + Wn2 + · · · + Wnj)

(n = 1, 2, · · · , N − 1). (7.3)

Similarly, the total cost in period N is

C̃(N) = cN + cM

NN∑
j=1

p(aN−1ZN−1 + WN1 + WN2 + · · · + WNj). (7.4)

To obtain the expectations of (7.3) and (7.4), we assume that p(x) is
exponential, i.e., p(x) = 1 − e−θx for some constant θ > 0. Letting G∗(θ) be
the Laplace–Stieltjes transform of G(x), i.e., G∗(θ) ≡ ∫∞

0
e−θxdG(x),

E {exp[−θ(Wn1 + Wn2 + · · · + Wnj)]} =
∫ ∞

0

e−θx dG(j)(x) = [G∗(θ)]j .

(7.5)
The probability that the unit fails at the first shock is
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0

p(x) dG(x) =
∫ ∞

0

(1 − e−θx) dG(x) = 1 − G∗(θ).

Using the law of total probability in (7.3), the expected cost in period n is

E
{
C̃(n)
}

= cT + cME

⎧⎨⎩
Nn∑
j=1

p(an−1Zn−1 + Wn1 + Wn2 + · · · + Wnj)

⎫⎬⎭
= cT + cM

∞∑
i=1

Pr{Nn = i}

×
i∑

j=1

E {1 − exp[−θ(an−1Zn−1 + Wn1 + Wn2 + · · · + Wnj)]} .

Let B∗
n(θ) ≡ E {exp(−θZn)}. Then, because Zn−1 and Wnj are indepen-

dent of each other, from (7.5),

E {1 − exp[−θ(an−1Zn−1 + Wn1 + Wn2 + · · · + Wnj)]}
= 1 − B∗

n−1(θan−1)[G∗(θ)]j .

Thus, from the assumption that Nn has a Poisson distribution with rate λ,

E
{

C̃(n)
}

= cT + cM

∞∑
k=1

(λTn)k

k!
e−λTn

k∑
j=1

{
1 − B∗

n−1(θan−1)[G∗(θ)]j
}

= cT + cM

[
λTn − G∗(θ)

1 − G∗(θ)
B∗

n−1(θan−1)
{

1 − e−λTn[1−G∗(θ)]
}]

(n = 1, 2, · · · , N − 1). (7.6)

Similarly, the expected cost in period N is

E
{
C̃(N)
}

= cN + cM

[
λTN − G∗(θ)

1 − G∗(θ)
B∗

N−1(θaN−1)
{

1−e−λTN [1−G∗(θ)]
}]

.

(7.7)
It remains to determine B∗

n−1(θan−1). Let An
j ≡ ∏n

i=j ai for j ≤ n and
≡ 1 for j > n. Then, from (7.2),

an−1Zn−1 = an−1an−2Zn−2 + an−1

Nn−1∑
i=1

Wn−1i

=
n−1∑
j=1

⎛⎝An−1
j

Nj∑
i=1

Wji

⎞⎠ ,

so that,
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Bn−1(θan−1) = E
{
e−θan−1Zn−1

}
= E

⎧⎨⎩exp

⎡⎣−θ
n−1∑
j=1

⎛⎝An−1
j

Nj∑
i=1

Wji

⎞⎠⎤⎦⎫⎬⎭ .

Recalling that Wji are independent and have an identical distribution G(x),

E

{
exp

(
−θAn−1

j

Nj∑
i=1

Wji

)}
=

∞∑
k=0

Pr{Nj = k}E

{
exp

(
−θAn−1

j

k∑
i=1

Wji

)}

=
∞∑

k=0

(λTj)k

k!
e−λTj [G∗(θAn−1

j )]k

= exp
{−λTj [1 − G∗(θAn−1

j )]
}

,

and consequently,

B∗
n−1(θan−1) = exp

{
−

n−1∑
j=1

λTj [1 − G∗(θAn−1
j )]
}

. (7.8)

Substituting (7.8) in (7.6) and (7.7), respectively, the expected costs in
period n are

E
{
C̃(n)
}

= cT + cM

[
λTn − G∗(θ)

1 − G∗(θ)
exp

{
−

n−1∑
j=1

λTj [1 − G∗(θAn−1
j )]

}

×
{
1 − e−λTn[1−G∗(θ)]

}]
(n = 1, 2, · · · , N − 1), (7.9)

and

E
{
C̃(N)
}

= cN + cM

[
λTN − G∗(θ)

1 − G∗(θ)
exp

{
−

N−1∑
j=1

λTj [1 − G∗(θAN−1
j )]

}

×
{
1 − e−λTN [1−G∗(θ)]

}]
. (7.10)

Therefore, the expected cost rate until replacement is, from (7.9) and
(7.10),

C1(T1, T2, · · · , TN ) =
∑N−1

n=1 E
{
C̃(n)
}

+ E
{
C̃(N)
}∑N

n=1 Tn

=

(N − 1)cT + cN + cM

[∑N
n=1 λTn − G∗(θ)/[1 − G∗(θ)]

×∑N
n=1 exp

{
−∑n−1

j=1 λTj [1 − G∗(θAn−1
j )]
}

×{1 − e−λTn[1−G∗(θ)]
}]
∑N

n=1 Tn

(N = 1, 2, · · · ). (7.11)
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In the particular case of N = 1, C1(T1) agrees with (5.27) by replacing cT

with cN and F (T ) = 1 − e−λT .

7.2 Optimum Policies

The expected cost rate C1(T1, T2, · · · , TN) in (7.11) is very complicated, and
we cannot analyze optimum policies. Suppose that Tn ≡ T and an ≡ a (0 ≤
a < 1), i.e., the PM is done at periodic times nT (n = 1, 2, · · · , N) and the
improvement factor an is constant. Then, the expected cost rate is simplified
as

C1(N, T ) = λcM +
(N − 1)cT + cN − cM {G∗(θ)/[1 − G∗(θ)]}BN (T )

NT
,

(7.12)
where

BN (T ) ≡
{

1 − e−λ[1−G∗(θ)]T
} N∑

n=1

e−λξnT (N = 1, 2, · · · ),

ξ1 ≡ 0, ξn ≡
n−1∑
j=1

[1 − G∗(θaj)] (n = 2, 3, · · · ).

When a = 0, i.e., the PM is perfect, ξn = 0 and the expected cost rate is

C1(N, T ) = λcM

+
(N − 1)cT + cN − NcM {G∗(θ)/[1 − G∗(θ)]}{1 − e−λ[1−G∗(θ)]T

}
NT

. (7.13)

The expected cost rate C1(N, T ) in (7.13) is decreasing in N because cN > cT ,
and hence, N∗ = ∞. Thus, an optimum interval T ∗ is easily derived by
differentiating C1(∞, T ) and setting it equal to zero.

Before deriving optimum policies, we define a function that plays an im-
portant role in discussing them. Let

Qn(T ) ≡ c(n) − cM
G∗(θ)

1 − G∗(θ)

{
1 − e−λ[1−G∗(θ)]T

}
e−λξnT (n = 1, 2, · · · ),

(7.14)
where c(1) = cN and c(n)= cT (n = 2, 3, · · · , N). Then, (7.12) is rewritten as

C1(N, T ) = λcM +
1

NT

N∑
n=1

Qn(T ). (7.15)
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(1) Optimum Number N∗(T )

We seek an optimum number N∗(T ) that minimizes C1(N, T ) in (7.15) for a
fixed T > 0 and 0 < a < 1. From the inequality C1(N + 1, T ) ≥ C1(N, T ),

L(N |T ) ≥ cN − cT

cN − Q1(T )
(N = 1, 2, · · · ), (7.16)

where

L(N |T ) ≡
N∑

n=1

(e−λξnT − e−λξN+1T ) (N = 1, 2, · · · ),

Q1(T ) = cN − cM
G∗(θ)

1 − G∗(θ)

{
1 − e−λ[1−G∗(θ)]T

}
< cN .

Clearly,

L(N |T ) − L(N − 1|T ) = N(e−λξN T − e−λξN+1T ) > 0,

because ξn is strictly increasing in n. Thus, L(N |T ) is also strictly increasing
in N .

Therefore, if L(∞|T ) ≡ limN→∞ L(N |T ) > (cN − cT )/[cN − Q1(T )], then
there exists a finite and unique minimum N∗(T ) that satisfies (7.16).

Example 7.1. Suppose that the amount of damage at each shock has an
exponential distribution G(x) = 1 − e−µx and G∗(θ) = µ/(θ + µ). Then,
ξ1 = 0,

ξn =
n−1∑
j=1

ajθ

ajθ + µ
(n = 2, 3, · · · ).

It is assumed that the total damage is reduced in proportion to the PM
cost cT , i.e., cT /cN = 1 − a. Table 7.1 presents the optimum number N∗(T )
and the resulting cost rate C1(N∗, T )/(λcM ) for a = 0.1 – 0.9 and cN/cM = 3,
5, 10 when λT = 7 and G∗(θ) = 0.9, i.e., µ/θ = 9. This indicates that N∗(T )
is not monotonically increasing with respect to a contrary to our expectation.
However, this can be explained because L(N |T ) depends on a through cT /cN .
For example, suppose that T = 7 days, i.e., the PM is planned only on the
weekend and shocks occur, on average, once a day. In this case, if a = 0.5
and cN/cM = 5, i.e., both the costs of PM and minimal repair are half the
replacement cost and the total damage is reduced to the half by PM, the unit
should be replaced at three weeks. When a is small, several N∗(T ) become
infinite. These cases show that the total damage is removed greatly by PM
and the unit should undergo only PM rather than replacement.
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Table 7.1. Optimum number N∗(T ) and expected cost rate C1(N
∗, T )/(λcM ) when

G∗(θ) = 0.9, λT = 7, and cT /cN = 1 − a

cN/cM = 3 cN/cM = 5 cN/cM = 10
a

N∗(T ) C1(N
∗, T )/(λcM ) N∗(T ) C1(N

∗, T )/(λcM ) N∗(T ) C1(N
∗, T )/(λcM )

0.9 2 0.7408 3 0.8917 7 1.1203
0.8 2 0.7508 3 0.9192 6 1.2084
0.7 2 0.7597 3 0.9443 6 1.2869
0.6 2 0.7674 3 0.9671 9 1.3569
0.5 2 0.7739 3 0.9876 ∞∗ 1.4086
0.4 2 0.7790 3 1.0062 ∞ 1.4656
0.3 1 0.7813 3 1.0229 ∞ 1.5324
0.2 1 0.7813 ∞∗ 1.0367 ∞ 1.6081
0.1 1 0.7813 ∞ 1.0487 ∞ 1.6915

∞∗ indicates that N∗(T ) may not be infinite, but is very large.

(2) Optimum Number T ∗(N)

We seek an optimum interval T ∗(N) that minimizes C1(N, T ) in (7.15) for a
fixed N . Differentiating C1(N, T ) with respect to T and setting it equal to
zero,

T

N∑
n=1

Q′
n(T ) =

N∑
n=1

Qn(T ),

i.e.,

N∑
n=1

[
1 + λTξn − {1 + λT [1 − G∗(θ) + ξn]} − e−λ[1−G∗(θ)]T

]
e−λξnT

=
(N − 1)cT + cN

cM

1 − G∗(θ)
G∗(θ)

. (7.17)

When n = 1, ξ1 = 0 and the term with n = 1 in the left-hand side of (7.17)
is a gamma distribution of order 2, so that it increases from 0 to 1. The other
terms with n (n = 2, 3, · · · , N) are unimodal that is a unique solution of

e−λ[1−G∗(θ)]T =
(

ξn

1 − G∗(θ) + ξn

)2

. (7.18)

Thus, the left-hand side of (7.17) increases from 0 first, and then, oscillates
and finally decreases to coverage to 1, as T increases. Therefore, there may be
at most (2N − 1) solutions that satisfy (7.17). An important T ∗(N) is either
one of these solutions or T ∗(N) = ∞. If there is no solution, then T ∗(N) = ∞.
In particular, when N = 1, there exists a unique solution that satisfies (7.17)
if G∗(θ)/[1 − G∗(θ)] > cN/cM .
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Table 7.2. Optimum time T ∗(N) and expected cost rate C1(N, T ∗)/(λcM ) when
G∗(θ) = 0.9, cN/cM , and a = cT /cN = 0.5

N T ∗(N) C1(N, T ∗)/(λcM )

1 18.627 0.8603
2 13.358 0.9095
3 11.665 0.9429
4 10.816 0.9654
5 10.293 0.9811
6 9.933 0.9924
7 ∞ 1.0000

Example 7.2. We compute T ∗(N) for N = 1, 2, · · · , 7 when G∗(θ) = 0.9,
cN/cM = 5, and a = cT /cN = 0.5. Table 7.2 presents the values of T ∗(N) and
C1(N, T )/(λcM ) when N varies. In this case, the optimum interval becomes
infinity for N ≥ 7.

(3) Optimum Pair (N∗, T ∗)

We seek both optimum T ∗ and N∗ that minimize C1(N, T ) in (7.15). From
(7.12), we can see that C1(N,∞) = λcM for all N ≥ 1. Thus, optimum
(N∗, T ∗) must satisfy C1(N∗, T ∗) ≤ λcM . It follows from (7.12) that a nec-
essary condition for (N∗, T ∗) is that Qn(T ∗) < 0 for at least one n ≤ N∗

because otherwise no contribution to the second term in (7.12) occurs.
Now, consider the inequality Qn(T ) ≤ 0. This is equivalent to considering

hn(T ) ≥ c(n)
cM

G∗(θ)
1 − G∗(θ)

, (7.19)

where

hn(T ) ≡
{
1 − e−λ[1−G∗(θ)]T

}
e−λξnT (n = 1, 2, · · · , N).

It is easy to see that dhn(T )/dT = 0 has a unique solution mn that satisfies

[1 − G∗(θ) + ξn]e−λ[1−G∗(θ)]T = ξn. (7.20)

Thus, hn(T ) is unimodal with mm, and hence,

hn(T ) ≤ hn(mn)

=
[
1 − ξn

1 − G∗(θ) + ξn

][
ξn

1 − G∗(θ) + ξn

]ξn/[1−G∗(θ)]

< 1.

It is proved that both mn and hn(mn) are decreasing in n, so that both m∞
and h∞(m∞) exist. Thus, it follows that
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N∗ < n∗ = min
n≥2

{
hn(mn) ≤ cT

cM

1 − G∗(θ)
G∗(θ)

}
. (7.21)

Here, if h∞(m∞) > (cT /cM )[1 − G∗(θ)]/G∗(θ), then we set N∗ = ∞. It can
be seen that T ∗ ≥ mn∗−1 because mn is decreasing in n. On the other hand,
T ∗ ≤ max {T ∗(1), m2}. To this end, suppose that T satisfies (7.17), and recall
that Q′

n(T ) < 0 for T < mn, Q′
n ≥ 0 for T ≥ mn, and mn is decreasing in

n. Then, if T ∗(1) > m2, either T ∗ = T ∗(1) with N∗ = 1 or T ∗ < T ∗(1). If
T ∗(1) < m2, T ∗ > m2 never happens because

∑N
n=1 Q′

n(T ∗)/N > Q′
1(T

∗(1)).
Thus, T ∗ ≤ max {T ∗(1), m2}, as desired.

From the above analysis, we have the following optimum policy: Suppose
that n∗ < ∞ that is given in (7.20). Then, the optimum pair (N∗, T ∗) is
confined, as N∗ < n∗ and mn∗−1 ≤ T ∗ ≤ max {T ∗(1), m2}, where mn is a
unique solution of (7.20). Therefore, the optimum pair is given by

T ∗(N∗) = min
1≤N≤n∗

T ∗(N) = min
mn∗−1≤T≤max{T∗(1),m2}

N∗(T ). (7.22)

Example 7.3. Consider the model in Example 7.2 and compute an optimum
pair (N∗, T ∗) that minimizes C1(N, T ). In this example, h4(m4) ≈ 0.2621 <
0.27, and hence, N∗ ≤ 3. In fact, Table 7.2 indicates that N∗ = 1 and T ∗ =
18.627.

7.3 Optimum Policies for a Finite Interval

Suppose that a unit has to be operating over a finite interval (0, S] and be
replaced at time S (Section 9.2 of [1]). When an ≡ a and G(x) = 1 − e−µx,
C1(T1, T2, . . . , TN) is, from (7.11),

C2(T1, T2, . . . , TN−1) = cM − C1(T1, T2, . . . , TN )
λ

=

cM (µ/θ)
∑N

n=1exp
[
−∑n−1

j=1 λAn−j(θ)Tj

]
× [1 − e−λA0(θ)Tn

]− (N − 1)cT − cN

λ
∑N

n=1 Tn

(N = 1, 2, . . . ), (7.23)

where T1 + T2 + · · · + TN = S and

Aj(θ) ≡ θaj

θaj + µ
(j = 0, 1, 2, . . . ).

It is noted that Aj(θ) > Aj+1(θ) (j = 0, 1, 2, . . . ) for 0 < a < 1. In this case,
we consider the optimum policy that maximizes the expected cost
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C̃2(T1, T2, . . . , TN−1) =
µcM

θ

N∑
n=1

exp

⎡⎣−n−1∑
j=1

λAn−j(θ)Tj

⎤⎦[1 − e−λA0(θ)Tn

]
− (N − 1)cT − cN (N = 1, 2, . . . ). (7.24)

For example, when N = 1, i.e., no PM is done,

C̃2 =
µcM

θ

[
1 − e−λA0(θ)S

]
− cN , (7.25)

that is constant.
When N = 2,

C̃2(T1) =
µcM

θ

{
1 − e−λA0(θ)T1 + e−λA1(θ)T1

[
1 − e−λA0(θ)(S−T1)

]}
− cT − cN . (7.26)

Differentiating C̃2(T1) with respect to T1 and setting it equal to zero,

A0(θ)
{

e−λ[A0(θ)−A1(θ)]T1 − e−λA0(θ)(S−T1)
}
−A1(θ)

[
1 − e−λA0(θ)(S−T1)

]
= 0.

(7.27)
Letting Q(T1) be the left-hand side of (7.27),

Q(0) = [A0(θ) − A1(θ)]
[
1 − e−λA0(θ)S

]
> 0,

Q(S) = −A0(θ)
{

1 − e−λ[A0(θ)−A1(θ)]S
}

< 0,

Q′(T1) = −A0(θ) [A0(θ) − A1(θ)]
{
e−λ[A0(θ)−A1(θ)]T1 + e−λA0(θ)(S−T1)

}
< 0.

Thus, there exists an optimum time T ∗
1 (0 < T ∗

1 < S) that satisfies (7.27).
When N = 3,

C̃2(T1, T2) =
µcM

θ

{
1 − e−λA0(θ)T1 + e−λA1(θ)T1

[
1 − e−λA0(θ)T2

]
+e−λA2(θ)T1−λA1(θ)T2

[
1 − e−λA0(θ)(S−T1−T2)

]}
− 2cT − cN . (7.28)

Differentiating C̃2(T1, T2) with respect to T1 and T2 and setting them equal
to zero, respectively,

A0(θ)
[
e−λA0(θ)T1 − e−λA2(θ)T1−λA1(θ)T2−λA0(θ)(S−T1−T2)

]
− A1(θ)e−λA1(θ)T1

[
1 − e−λA0(θ)T2

]
− A2(θ)e−λA2(θ)T1−λA1(θ)T2

[
1 − e−λA0(θ)(S−T1−T2)

]
= 0, (7.29)
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Table 7.3. PM times λTn and expected cost eC2(T1, T2, . . . , TN−1)/cM for N =
1, 2, . . . , 10 when a = 0.5, µ/θ = 10, cN/cM = 5, cT /cM = 1.0, and λS = 40

N =1 N =2 N =3 N =4 N =5 N =6 N =7 N =8 N =9 N =10

λT1 40.00 13.17 12.41 11.37 10.32 9.36 8.52 7.80 7.17 6.63
λT2 26.83 5.60 5.27 4.82 4.38 3.99 3.66 3.37 3.11
λT3 21.99 5.23 4.87 4.45 4.06 3.72 3.42 3.17
λT4 18.14 4.78 4.45 4.07 3.73 3.44 3.18
λT5 15.22 4.35 4.06 3.73 3.44 3.18
λT6 13.01 3.97 3.71 3.44 3.18
λT7 11.33 3.64 3.42 3.18
λT8 10.01 3.35 3.16
λT9 8.96 3.10
λT10 8.10

eC2(·)
cM

4.74 5.86 6.87 7.70 8.34 8.78 9.05 9.17 9.16 9.03

A0(θ)
[
e−λA1(θ)T1−λA0(θ)T2 − e−λA2(θ)T1−λA1(θ)T2−λA0(θ)(S−T1−T2)

]
− A1(θ)e−λA2(θ)T1−λA1(θ)T2

[
1 − e−λA0(θ)(S−T1−T2)

]
= 0. (7.30)

In general, differentiating C̃2(T1, T2, . . . , TN−1) with respect to Tn (n =
1, 2, . . . , N − 1) (N ≥ 2) and setting them equal to zero,

A0(θ)

⎧⎨⎩exp

⎡⎣− n∑
j=1

λAn−j(θ)Tj

⎤⎦− exp

⎡⎣− N∑
j=1

λAN−j(θ)Tj

⎤⎦⎫⎬⎭
−

N∑
i=n+1

Ai−n(θ)

⎧⎨⎩exp

⎡⎣− i−1∑
j=1

λAi−j(θ)Tj

⎤⎦− exp

⎡⎣− i∑
j=1

λAi−j(θ)Tj

⎤⎦⎫⎬⎭ = 0

(n = 1, 2, . . . , N − 1), (7.31)

where note that TN = S − T1 − T2 − · · · − TN−1.
Therefore, we may solve the simultaneous equations (7.31) and obtain the

expected cost C̃2(T1, T2, . . . , TN−1) in (7.24). Next, compared C̃2(T1, T2, . . . ,
TN−1) for all N ≥ 1, we can get the optimum number N∗ and times T ∗

n

(n = 1, 2, . . . , N∗ − 1) for a specified S.

Example 7.4. Table 7.3 presents λTn (n = 1, 2, . . . , N) and C̃2(T1, T2, . . . ,
TN−1)/cM when a = 0.5, µ/θ = 10, cN/cM = 5, cT /cM = 1.0, and λS =
λ
∑N

n=1 Tn = 40 for N = 1, 2, . . . , 10. Compared C̃2(T1, T2, . . . , TN−1) for
N = 1, 2, . . . , 10, the expected cost C̃2(·) is maximum, i.e., C2(·) in (7.23) is
minimum at N∗ = 8. In this case, the optimum PM number is N∗ = 8 and
optimum PM times are 7.80, 11.46, 15.18, 18.91, 22.64, 26.35, 29.99, 40. This
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indicates the interesting result that the last PM time interval is the largest and
the first one is the second, and they are first increasing, remain in constant
for some number, and then decreasing for large N , that is, PM time intervals
draw a upside-down bathtub curve [221] for 2 ≤ n ≤ N −1. PM interval times
Tn (n = 1, 2, . . . , 10), draws roughly a standard bathtub curve. It would be
necessary to inquire into why the PM time intervals describe the two bathtub
curves.
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Garbage Collection Policies

A database for a computer system is in optimum storage according to the
scheme defined in the data structures. However, after some operations, storage
areas are not in good order due to additions and deletions of data. Such
updating procedures reduce the size of continuous and available memory areas,
and make processing efficiency worse. To use storage areas effectively and to
improve processing efficiently, garbage collections (GCs) have to be done at
suitable times. Many GCs to reclaim the storage and rearrange a database
are used in most large list processing systems [222, 223]. Some algorithms
for performing the GC of linked data structures were reviewed [224]. Several
authors have studied real time GCs to avoid suspension of the application
program in its execution [225–227]. Most problems have been concerned with
ways to introduce GC methods.

When a database is updated from several online terminals, it is necessary
to set up a desired response time. If response times become comparatively
long, the processing efficiency becomes worse, and finally, it would be im-
possible to update data. Such response times may depend on the amount of
garbage in a database.

This chapter proposes when to make the GC for a database with an upper
limit level K of the total garbage. An amount of garbage with a general
distribution G(x) arises from each update and is additive. A cost and time
for the GC are higher if the total garbage is greater than K. In Section 8.1,
to prevent such the event, the GC is done at periodic time T or at the Nth
update, whichever occurs first [58]. It is assumed in Section 8.2 that if there
exist data that are not erased, they remain in the storage area as garbage.
In Section 8.3, a database is checked at periodic times to investigate the
amount of garbage. If the total garbage exceeds a managerial level Z, the
GC is done. Using the results of Section 6.1, the optimum policy is derived.
Each GC restores computer resources such as response time, storage area,
and throughput to an initial state. This corresponds to one modification of
maintenance policies for cumulative damage models, replacing update with
shock and garbage with damage. Using the results of Chapters 3, 5, and 6, the
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expected cost rates or the availabilities are derived, and optimum policies that
minimize them are discussed analytically. Numerical examples are given when
a database is updated in a Poisson process and an amount of garbage due to
updates is exponential. It is theoretically noted that the policy maximizing
the availability corresponds essentially to the policy minimizing the expected
cost rate.

8.1 Standard Garbage Collection Model

Suppose that a database is updated in a nonhomogeneous Poisson pro-
cess with an intensity function h(t) and a mean value function H(t), i.e.,
H(t) ≡ ∫ t

0 h(u)du. Then, the probability of j updates in [0, t] is pj(t) ≡{
[H(t)]j/j!

}
e−H(t) (j = 0, 1, 2, · · · ). Furthermore, an amount Wj of garbage

arises from the jth update and has a probability distribution G(x) ≡ Pr {Wj ≤ x},
independent of the number of updates, and these amount of garbage are addi-
tive. Then, the total garbage

∑j
i=1 Wi up to the jth update has Pr{∑j

i=1 Wi ≤
x} = G(j)(x) (j = 1, 2, · · · ), where G(j)(x) is the j-fold Stieltjes convolution
of G(x) with itself and G(0)(x) ≡ 1 for x ≥ 0. When the total garbage has
exceeded an upper limit level K, the database becomes useless for lack of
storage area or due to a long response time.

To prevent the database becoming useless, the GC is done at a planned
time T or at an update number N , whichever occurs first. For the above
model, we introduce the following costs: cT and cN are the fixed costs for the
respective GCs at time T and update N , and cK is the fixed cost for the GC
when the total garbage has exceeded a level K with cK > cT and cK > cN . In
addition, c0(x) is a variable cost for the collection of an amount x (0 ≤ x ≤ K)
of garbage.

Using a method similar to (1) of Section 3.3, the expected cost when the
GC is done at time T or at update N is

N−1∑
j=0

pj(T )
∫ K

0

[cT + c0(x)] dG(j)(x)

+
∫ T

0

pN−1(t)h(t) dt

∫ K

0

[cN + c0(x)] dG(N)(x), (8.1)

and the expected cost when the total garbage has exceeded a level K is

[cK + c0(K)]
N−1∑
j=0

[G(j)(K) − G(j+1)(K)]
∫ T

0

pj(t)h(t) dt. (8.2)

The mean time to GC is
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T

N−1∑
j=0

pj(T )G(j)(K) + G(N)(K)
∫ T

0

t pN−1(t)h(t) dt

+
N−1∑
j=0

[G(j)(K) − G(j+1)(K)]
∫ T

0

t pj(t)h(t) dt =
N−1∑
j=0

G(j)(K)
∫ T

0

pj(t) dt.

(8.3)

Therefore, the expected cost rate is, summing up (8.1) and (8.2), and
dividing by (8.3),

C(T, N) =

∑N−1
j=0 pj(T )

∫K

0
[cT + c0(x)] dG(j)(x)

+
∫ T

0
pN−1(t)h(t) dt

∫ K

0
[cN + c0(x)] dG(N)(x)

+ [cK + c0(K)]
∑N−1

j=0 [G(j)(K) − G(j+1)(K)]
∫ T

0
pj(t)h(t) dt∑N−1

j=0 G(j)(K)
∫ T

0 pj(t) dt
,

(8.4)
and

C(∞) ≡ lim
T→∞
N→∞

C(T, N)

=
cK + c0(K)∑∞

j=0 G(j)(K)
∫∞
0

pj(t) dt
, (8.5)

(1) Optimum T ∗

Suppose that the GC is done only at time T . Then, from (8.4), the expected
cost rate is given by

C1(T ) ≡ lim
N→∞

C(T, N)

=

∑∞
j=0 pj(T )

∫K

0
[cT + c0(x)] dG(j)(x)

+ [cK + c0(K)]
∑∞

j=0[G
(j)(K) − G(j+1)(K)]

∫ T

0 pj(t)h(t) dt∑∞
j=0 G(j)(K)

∫ T

0
pj(t) dt

.

(8.6)

We seek an optimum time T ∗ that minimizes C1(T ) in (8.6) when c0(x) =
c0x. Differentiating C1(T ) with respect to T and setting it equal to zero,

(cK − cT )

⎧⎨⎩h(T )Q1(T )
∞∑

j=0

G(j)(K)
∫ T

0

pj(t) dt −
∞∑

j=0

pj(T )[1 − G(j)(K)]

⎫⎬⎭
+ c0

⎧⎨⎩h(T )Q2(T )
∞∑

j=0

G(j)(K)
∫ T

0

pj(t) dt −
∞∑

j=0

pj(T )
∫ K

0

[1 − G(j)(x)] dx

⎫⎬⎭
= cT , (8.7)
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where

Q1(T ) =

∑∞
j=0 pj(T )[G(j)(K) − G(j+1)(K)]∑∞

j=0 pj(T )G(j)(K)
,

Q2(T ) =

∑∞
j=0 pj(T )

∫K

0
[G(j)(x) − G(j+1)(x)] dx∑∞

j=0 pj(T )G(j)(K)
.

In the particular case of c0 = 0, (8.7) becomes

h(T )Q1(T )
∞∑

j=0

G(j)(K)
∫ T

0

pj(t) dt −
∞∑

j=0

pj(T )[1 − G(j)(K)] =
cT

cK− cT
.

(8.8)

If h(T )Q1(T ) is strictly increasing, then the left-hand side of (8.8) is also
strictly increasing in T from 0 to h(∞)Q1(∞)

∑∞
j=0 G(j)(K)

∫∞
0 pj(t)dt − 1,

where h(∞) ≡ limt→∞ h(t) and Q1(∞) ≡ limt→∞ Q1(t). Thus, if

h(∞)Q1(∞)
∞∑

j=0

G(j)(K)
∫ ∞

0

pj(t) dt >
cK

cK − cT
,

then there exists a finite and unique T ∗ that satisfies (8.8).
In addition, when pj(t) = [(λt)j/j!]e−λt and G(j)(x) =

∑∞
i=j [(µx)i/i!]e−µx

(j = 0, 1, 2, · · · ), (8.7) is simplified as

Q1(T )
∞∑

j=0

G(j)(K)
∞∑

i=j+1

pi(T ) −
∞∑

j=0

[1 − G(j)(K)]pj(T ) =
cT

cK − cT − c0/µ
,

(8.9)
that agrees with (3.34). Thus, if cK > cT [1+(1/µK)]+c0/µ, then there exists
a finite and unique T ∗ that satisfies (8.9), and the resulting cost rate is given
in (3.36). Conversely, if cK ≤ cT [1 + (1/µK)] + c0/µ, then T ∗ = ∞, and the
resulting cost rate is given in (8.5).

(2) Optimum N∗

The expected cost rate when the GC is done only at update N is, from (8.4),

C2(N) ≡ lim
T→∞

C(T, N)

=
[cK + c0(K)][1 − G(N)(K)] +

∫K

0
[cN + c0(x)] dG(N)(x)∑N−1

j=0 G(j)(K)
∫∞
0

pj(t) dt

(N = 1, 2, . . . ). (8.10)

Forming the inequality C2(N + 1) − C2(N) ≥ 0 to seek an optimum number
N∗ that minimizes C2(N) in (8.10) when c0(x) = c0x,
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(cK−cN)

⎧⎨⎩G(N)(K) − G(N+1)(K)
G(N)(K)

∫∞
0 pN (t) dt

N−1∑
j=0

G(j)(K)
∫ ∞

0

pj(t) dt − [1 − G(N)(K)]

⎫⎬⎭
+ c0

⎧⎨⎩
∫K

0 [G(N)(x) − G(N+1)(x)] dx

G(N)(K)
∫∞
0 pN (t) dt

N−1∑
j=0

G(j)(K)
∫ ∞

0

pj(t) dt

−
∫ K

0

[1 − G(N)(x)] dx

}
≥ cN (N = 1, 2, . . . ). (8.11)

When c0 = 0 and pj(t) = [(λt)j/j!]e−λt, (8.11) is

Q3(N)
N−1∑
j=0

G(j)(K) − [1 − G(N)(K)] ≥ cN

cK − cN
(N = 1, 2, · · · ), (8.12)

that agrees with (3.22) where Q3(N) ≡ [G(N)(K) − G(N+1)(K)]/G(N)(K)
and represents the discrete failure rate defined in (2.15). Thus, if Q3(N) is
strictly increasing and Q3(∞)[1+MG(K)] > cK/(cK − cN ), where MG(K) ≡∑∞

j=1 G(j)(K), then there exists a finite and unique minimum N∗ (1 ≤ N∗ <

∞) that satisfies (8.12). In addition, when G(j)(x) =
∑∞

i=j [(µx)i/i!]e−µx,
Q3(N) is strictly increasing from e−µK to 1 from Example 2.2 of Chapter 2.
Thus, if µK > cN/(cK − cN ), then there exists a finite and unique minimum
N∗ that satisfies (8.12).

Example 8.1. We compute optimum T ∗ and N∗ when c0(x) = c0x, h(t) = λ
and G(x) = 1− e−µx. Under such assumptions, (8.9) and (8.11) are rewritten
as, respectively,∑∞

j=0[(λT )j/j!][(µK)j/j!]∑∞
j=0[(λT )j/j!]

∑∞
i=j [(µK)i/i!]

×
∞∑

j=0

{ ∞∑
i=j+1

[(λT )i/i!]e−λT

}{ ∞∑
i=j

[(µK)i/i!]e−µK

}

−
∞∑

j=1

(λT )j

j!
e−λT

j−1∑
i=0

(µK)i

i!
e−µK =

cT

cK − cT − c0/µ
, (8.13)

and

[(µK)N/N !]∑∞
j=N [(µK)j/j!]

N−1∑
j=0

∞∑
i=j

(µK)i

i!
e−µK −

N−1∑
j=0

(µK)j

j!
e−µK ≥ cN

cK − cN − c0/µ
.

(8.14)
If cK > ck[1+ (1/µK)]+ c0/µ (k = T, N), then there exist both finite T ∗ and
N∗ that satisfies (8.13) and (8.14), respectively.
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Table 8.1. Optimum time λT ∗ and expected cost rate C1(T
∗)/(λcT ) when

c0K/cT = 1

µK = 150 µK = 300
cK/cT

λT ∗ C1(T
∗)/(λcT ) × 102 λT ∗ C1(T

∗)/(λcT ) × 103

100 98.1 1.715 221.5 7.904
200 95.3 1.734 217.5 8.026
500 92.0 1.790 212.5 8.115
1000 89.6 1.808 209.0 8.223

µK = 500 µK = 700
cK/cT

λT ∗ C1(T
∗)/(λcT ) × 103 λT ∗ C1(T

∗)/(λcT ) × 103

100 394.5 4.576 572.1 3.191
200 389.2 4.614 565.8 3.213
500 382.6 4.643 558.0 3.244
1000 377.9 4.663 552.4 3.259

Table 8.2. Optimum number N∗ and expected cost rate C2(N
∗)/(λcN ) when

c0K/cN = 1

µK = 150 µK = 300
cK/cN

N∗ C2(N
∗)/(λcN ) × 102 N∗ C2(N

∗)/(λcN ) × 103

100 110 1.600 241 7.562
200 108 1.617 238 7.613
500 105 1.640 234 7.678
1000 103 1.657 231 7.725

µK = 500 µK = 700
cK/cN

N∗ C2(N
∗)/(λcN ) × 103 N∗ C2(N

∗)/(λcN ) × 103

100 421 4.406 605 3.100
200 417 4.428 600 3.112
500 412 4.455 594 3.127
1000 409 4.475 590 3.139

Table 8.1 presents the optimum T ∗ for µK = 150, 300, 500, 700 and
cK/cT = 100, 200, 500, 1000 when c0K/cT = 1, i.e., c0/µ = cT /(µK). In this
case, if cK/cT > 1+(2/µK), then a finite T ∗ exists. For example, when λ = 5,
cK/cT = 100, and µK = 700, the optimum time is λT ∗ = 572.1. This indicates
that when the database is updated 5 times an hour and becomes useless after
700 updates, on average, the GC should be done at 572.1/5 = 114.42 hour,
i.e., at about 114.42/24 ≈ 4.8 days. Taking another viewpoint, when the total
garbage has exceeded (572.1/700) × 100 ≈ 81.7% of an upper limit µK, the
GC should be done.
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Similarly, Table 8.2 presents the optimum number N∗ for µK = 150, 300,
500, 700 and cK/cN = 100, 200, 500, 1000 when c0K/cN = 1. For example,
when cK/cN = 100 and µK = 700, the optimum number is N∗ = 605, that
is, the GC is done at (600/700)× 100 ≈ 86.4% of an upper limit µK, whose
values are greater than those, and the resulting cost rates are smaller than
those in Table 8.1 when cT = cN . In this case, the GC policy at update N
is more economical than that at time T , however, they have almost the same
values. Furthermore, it is of interest that both T ∗ and N∗ depend a little on
costs cK/cT and cK/cN , and are determined approximately by µK.

8.2 Periodic Garbage Collection Model

A database is updated and garbage due to update accumulates in the storage
area that is the same model as that of Section 8.1. However, the information
for the number of updates and the total garbage is collected only at periodic
planned times. In this section, the GC is done at periodic times to recover
computer resources such as operating time, storage area, and throughput.

It is assumed that a database is updated in a nonhomogeneous Poisson
process with an intensity function h(t) that is increasing in t and a mean
value function H(t). Introducing the mean times of GC that depend on the
number of updates and amount of garbage, the availabilities are obtained, and
optimum times T ∗ that minimize them are discussed analytically.

(1) Model 1 with Number of Updates

Suppose that an amount of garbage arises from the jth (j = 1, 2, · · · ) update
with constant probability α (0 < α ≤ 1) and the mean time required for the
collection of this garbage is c0(j) that depends only on the number of updates,
where c0(0) ≡ 0. The mean time for GC at time T is cT when the total number
of updates is less than a prespecified N and is cN when it is equal to N or
has exceeded N until time T . It is assumed that c0(j) is increasing in j and
cT ≤ cN . Under these conditions, the mean time for GC at time T is

N−1∑
j=0

pj(T )

[
cT +

j∑
i=0

αc0(i)

]
+

∞∑
j=N

pj(T )

[
cN +

j∑
i=0

αc0(i)

]

= cN − (cN − cT )
N−1∑
j=0

pj(T ) +
∞∑

j=0

pj(T )
j∑

i=0

αc0(i), (8.15)

where pj(t) ≡ {[H(t)]j/j!}e−H(t) (j = 0, 1, 2, · · · ).
Suppose that a database can be updated at every time T , although process-

ing efficiency may be worse when the total number of updates has exceeded
N . Then, the availability is, from (3.10),
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A1(T ) =
T

T + cN − (cN − cT )
∑N−1

j=0 pj(T ) +
∑∞

j=0 pj(T )
∑j

i=0 αc0(i)
.

(8.16)
We seek an optimum GC time T ∗

1 that maximizes A1(T ) in (8.16). Differ-
entiating A1(T ) with respect to T and setting it equal to zero,

(cN − cT )

⎡⎣Th(T )pN−1(T ) +
N−1∑
j=0

pj(T )

⎤⎦
+ Th(T )

∞∑
j=0

pj(T )αc0(j + 1) −
∞∑

j=0

pj(T )
j∑

i=0

αc0(i) = cN . (8.17)

First, consider the particular case of cN = cT . Then, (8.17) is

Th(T )
∞∑

j=0

pj(T )αc0(j + 1) −
∞∑

j=0

pj(T )
j∑

i=0

αc0(i) = cN . (8.18)

It is assumed that either h(t) or c0(j) is strictly increasing. Letting Q(T ) be
the left-hand side of (8.18), Q(0) = 0 and

dQ(T )
dT

= T

⎧⎨⎩ dh(T )
dT

∞∑
j=0

pj(T )αc0(j + 1)

+ [h(T )]2
∞∑

j=0

pj(T )α[c0(j + 2) − c0(j + 1)]

⎫⎬⎭ > 0.

Thus, if Q(∞) ≡ limT→∞ Q(T ) > cN , then there exists a finite and unique
T ∗

0 that satisfies (8.18). If h(t) is strictly increasing, we easily find that, for
any T > T0,

Q(T ) > h(T )T0

∞∑
j=0

pj(T0)αc0(j + 1) −
∞∑

j=0

pj(T0)
j∑

i=0

αc0(i).

Hence, if h(t) is strictly increasing to infinity, then a finite T ∗
0 exists uniquely.

When c0(j) is constant, i.e., c0(j) ≡ c0, (8.18) is

Th(T )− H(T ) =
cN

αc0
, (8.19)

that agrees with (4.18) of [1] in the periodic replacement with minimal repair
at failure. Thus, if a solution T ∗

1 to (8.19) exists, then it is unique.
Furthermore, when a database is updated in a Poisson process, i.e., h(t) =

λ and pj(t) = [(λt)j/j!]e−λt, the left-hand side of (8.18) is
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λT
∞∑

j=0

αc0(j + 1)pj(T ) −
∞∑

j=0

αc0(j + 1)
∫ T

0

λpj(t) dt

= λ

∞∑
j=0

α[c0(j + 2) − c0(j + 1)]
∫ T

0

(λt)pj(t) dt. (8.20)

Thus, if c0(j) is strictly increasing in j, then (8.20) is also strictly increasing
in T from 0 to α

∑∞
j=1[c0(∞) − c0(j)], where c0(∞) ≡ limj→∞ c0(j). Hence,

if α
∑∞

j=1[c0(∞) − c0(j)] > cN , a finite T ∗
0 exists uniquely.

Therefore, because the left-hand side of (8.17) is greater than Q(T ) for
cN > cT , if either h(t) or c0(j) is strictly increasing and Q(∞) > cN , then
T ∗

0 ≥ T ∗
1 .

Next, suppose that a database becomes impossible for any updates and
the GC is done immediately when the total number of updates has exceeded
N before time T . Then, the mean time to GC is

T
N−1∑
j=0

pj(T ) +
∫ T

0

t h(t)pN−1(t) dt =
N−1∑
j=0

∫ T

0

pj(t) dt,

and by a similar method for obtaining (8.15), the mean time for GC is

N−1∑
j=0

pj(T )

[
cT +

j∑
i=0

αc0(i)

]
+

∞∑
j=N

pj(T )

[
cN +

N∑
i=0

αc0(i)

]

= cN − (cN − cT )
N−1∑
j=0

pj(T ) +
N∑

i=1

αc0(i)
∞∑
j=i

pj(T ). (8.21)

In this case, the availability is

Ã1(T ) =

∑N−1
j=0

∫ T

0 pj(t) dt∑N−1
j=0

∫ T

0
pj(t) dt + cN − (cN − cT )

∑N−1
j=0 pj(T )

+
∑N

i=1 αc0(i)
∑∞

j=i pj(T )

. (8.22)

In particular, by setting that p0(t) = F (t) when N = 1,

Ã1(T ) =

∫ T

0 F (t) dt∫ T

0
F (t) dt + cT + [cN − cT + αc0(1)]F (T )

, (8.23)

that agrees with (6.13) of [1] when α = 0. That is, the policy maximizing
Ã1(T ) corresponds to the policy maximizing the availability of a one-unit
system with repair and preventive maintenance.
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(2) Model 2 with Amount of Garbage

Suppose that an amount of garbage arises from each update according to
a probability distribution G(x) and the total garbage is additive. The dis-
tribution of the total garbage at the jth update is G(j)(x), where G(j)(x)
(j = 1, 2, · · · ) is the j-fold convolution of G(x) and G(0)(x) ≡ 1 for x ≥ 0.
Furthermore, the mean time required for the collection of this garbage is c0(x)
that depends only on its amount and increases from c0(0) = 0. The mean time
for GC at time T is cT when the total garbage is less than an upper limit
level K and is cK with cK ≥ cT when it has exceeded K. Under this policy,
the mean time for GC at time T is

∞∑
j=0

pj(T )
∫ K

0

[cT + c0(x)] dG(j)(x) +
∞∑

j=0

pj(T )
∫ ∞

K

[cK + c0(x)] dG(j)(x)

= cK − (cK − cT )
∞∑

j=0

pj(T )G(j)(K) +
∞∑

j=0

pj(T )
∫ ∞

0

c0(x) dG(j)(x). (8.24)

Therefore, the availability is

A2(T ) =
T

T + cK − (cK − cT )
∑∞

j=0 pj(T )G(j)(K)

+
∑∞

j=0 pj(T )
∫∞
0 c0(x)dG(j)(x)

. (8.25)

Differentiating A2(T ) with respect to T and setting it equal to zero,

(cK − cT )

⎧⎨⎩Th(T )
∞∑

j=0

pj(T )[G(j)(K) − G(j+1)(K)] +
∞∑

j=0

pj(T )G(j)(K)

⎫⎬⎭
+ Th(T )

∞∑
j=0

pj(T )
∫ ∞

0

c0(x) d[G(j+1)(x) − G(j)(x)]

−
∞∑

j=0

pj(T )
∫ ∞

0

c0(x) dG(j)(x) = cK . (8.26)

We can make discussions similar to those of the case (1).
Suppose that a database becomes impossible for any updates and the GC

is done immediately, when the total garbage has exceeded K before time T .
Then, the mean time to GC is

T

∞∑
j=0

G(j)(K)pj(T ) +
∞∑

j=0

[G(j)(K) − G(j+1)(K)]
∫ T

0

t pj(t)h(t) dt

=
∞∑

j=0

G(j)(K)
∫ T

0

pj(t) dt, (8.27)
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and the mean time for GC is
∞∑

j=0

pj(T )
∫ K

0

[cT + c0(x)] dG(j)(x)

+
∞∑

j=0

∫ T

0

pj(t)h(t) dt

∫ K

0

{∫ ∞

K−y

[cK + c0(x + y)] dG(x)
}

dG(j)(y). (8.28)

Therefore, the availability is

Ã2(T ) =

∑∞
j=0 G(j)(K)

∫ T

0
pj(t) dt∑∞

j=0 G(j)(K)
∫ T

0 pj(t) dt + cK − (cK − cT )
∑∞

j=0 pj(T )G(j)(K)

+
∑∞

j=0 pj(T )
∫K

0 c0(x) dG(j)(x)

+
∑∞

j=0

∫ T

0
pj(t)h(t) dt

∫ K

0
[
∫∞

K−y
c0(x + y) dG(x)] dG(j)(y)

.

(8.29)

Example 8.2. We compute optimum times T ∗
i numerically that maximize

Ai(T ) (i = 1, 2) in (8.16) and (8.25), respectively, when h(t) = λ, G(x) =
1 − e−µx, and c0(x) = c0x, i.e., the mean time to collect garbage increases
in proportion to the number of updates or the total garbage and pj(t) =
[(λt)j/j!]e−λt. Then, from (8.17), an optimum T ∗

1 satisfies

(cN − cT )

⎡⎣λTpN−1(T ) +
N−1∑
j=0

pj(T )

⎤⎦+ c0α
(λT )2

2
= cN .

When N goes to infinity, an optimum time is given by

T̃1 =
1
λ

√
2cT

αc0
.

From (8.26), an optimum T ∗
2 satisfies

λT
∞∑

j=0

pj(T )
(µK)j

j!
e−µK −

∞∑
j=1

pj(T )
j−1∑
i=0

(µK)i

i!
e−µK =

cT

cK − cT
.

Tables 8.3 and 8.4 present T ∗
1 and T ∗

2 for N = µK = 300, 500, 700,
ck/cT = 2, 5, 10 (k = N, K), and cT /c0 = 3, 5, 10, 20 when α = 10−4 and
λ = 10, and T̃1 when N = ∞. Optimum T ∗

1 are strictly increasing in N to T̃1.
From the assumption of N = µK, optimum times are almost the same ones.
From this example, when N = µK = 500, ck/cT = 2, and cT /c0 = 20, T ∗

1

and T ∗
2 are about 44, that is, when a database is updated 10 times an hour

and exceeds a limit level at 50 hours, on average, the GC should be done at
44 hours, i.e., at about 5.5 days when it is used for 8 hours a day. This also
indicates that T̃1 when N = ∞ is approximately good when N is large and
cT /c0 is small.
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Table 8.3. Optimum time T ∗
1 when α = 10−4, λ = 10, and eT1 when N = ∞

cN/cTN cT /c0
2 5 10

3 24.3 24.1 23.9
5 25.9 25.2 24.8

300
10 26.4 25.5 25.1
20 26.6 25.7 25.2

3 24.5 24.5 24.5
5 31.6 31.6 31.6

500
10 43.3 42.7 42.3
20 44.8 43.8 43.3

3 24.5 24.5 24.5
5 31.6 31.6 31.6

700
10 44.7 44.7 44.7
20 61.7 61.0 60.6

3 24.5
5 31.6∞
10 44.7
20 63.2

Next, when h(t) = λ and c0(j) = c0 for Model 1, a finite T ∗
1 does not exist.

However, there exists a finite and unique T̃ ∗
1 to maximize Ã1(T ) in (8.22) for

cN > cT that satisfies

λpN−1(T )
∑N−1

j=0

∫ T

0
pj(t) dt∑N−1

j=0 pj(T )
+

N−1∑
j=0

pj(T ) =
cN

cN − cT
.

Table 8.5 indicates the optimum time T̃ ∗
1 for N = 300, 500, 700 and cN/cT =

2, 5, 10. These optimum values are T̃ ∗
1 > T ∗

1 , however, almost the same as
those in Table 8.3 when cT /c0 = 20.

If a database is updated in a Poisson process and the mean time to collect
garbage is constant, then the latter modified model of Model 1 would be more
practical than the first one. Moreover, by modifying these models, we would
consider some models where the GC should be done at the number of updates,
the amount of garbage, or the memory areas.

We have assumed until now that ck (k = T, N, K) represents as the time
for the GC at k. If ck is denoted as the cost for the GC at k, the availabili-
ties derived in the section can be easily converted to the expected cost rates
as follows: The expected cost rates of Model 1 are, from (8.16) and (8.22),
respectively,

C1(T ) =
1
T

⎡⎣cN− (cN − cT )
N−1∑
j=0

pj(T ) +
∞∑

j=0

pj(T )
j∑

i=0

αc0(i)

⎤⎦ , (8.30)
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Table 8.4. Optimum time T ∗
2 when λ = 10

cK/cTµK
2 5 10

300 26.2 24.5 23.8
500 44.3 42.5 41.6
700 62.9 60.8 59.7

Table 8.5. Optimum time eT ∗
1 when λ = 10

cN/cTN
2 5 10

300 26.7 25.8 25.3
500 45.5 44.3 43.7
700 64.4 63.0 62.3

and

C̃1(T ) =
cN − (cN − cT )

∑N−1
j=0 pj(T ) +

∑N
i=1 αc0(i)

∑∞
j=i pj(T )∑N−1

j=0

∫ T

0
pj(t) dt

. (8.31)

The expected cost rates of Model 2 are, from (8.25) and (8.29), respectively,

C2(T ) =
1
T

⎡⎣cK− (cK − cT )
∞∑

j=0

pj(T )G(j)(K)+
∞∑

j=0

pj(T )
∫ ∞

0

c0(x) dG(j)(x)

⎤⎦,
(8.32)

and

C̃2(T ) =

cK − (cK − cT )
∑∞

j=0 pj(T )G(j)(K)

+
∑∞

j=0 pj(T )
∫K

0 c0(x) dG(j)(x)]

+
∑∞

j=0

∫ T

0 pj(t)h(t) dt
∫ K

0 [
∫∞

K−yc0(x + y) dG(x)] dG(j)(y)∑∞
j=0 G(j)(K)

∫ T

0 pj(t) dt
. (8.33)

8.3 Modified Periodic Garbage Collection Model

We apply the condition-based preventive maintenance in Section 6.1 to the
GC model with an upper limit level K of the total garbage: A database is up-
dated in a nonhomogeneous Poisson process with a mean value function H(t).
An amount Wj of garbage arises from the jth update and has a probability
distribution G(x) ≡ Pr {Wj ≤ x} (j = 1, 2, · · · ), and the garbage is additive.
The total garbage is checked at periodic times nT (n = 1, 2, · · · ), i.e., it is
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investigated only through checking of space areas and storage conditions in
the database. Any maintenance is not done if the total garbage is less than a
managerial level Z (0 ≤ Z ≤ K). On the other hand, if the total garbage has
exceeded Z during (nT, (n + 1)T ], the GC is done at time (n + 1)T and the
database is restored to its original state.

Let cK be a loss cost for a useless database when the total garbage is equal
to K, and cZ be a loss cost for the GC where cZ < cK when the total garbage
has exceeded Z. Then, from (6.4), the expected cost rate for the GC policy is

C(Z) =

cZ + (cK − cZ)
∑∞

n=0

∑∞
j=0 pj[H(nT )]

×∑∞
i=0 pi[H((n + 1)T ) − H(nT )]

∫ Z

0
[1 − G(i)(K − x)] dG(j)(x)∑∞

n=0

∑∞
j=0 pj [H(nT )]

∑∞
i=0

∫ Z

0
G(i)(K − x)] dG(j)(x)

× ∫ (n+1)T

nT
pi[H(t) − H(nT )] dt

.

(8.34)
In particular, when a database is updated in a Poisson process, i.e., H(t) =

λt, the expected cost rate is rewritten as

C(Z) =

cZ + (cK − cZ)
∑∞

n=0

∑∞
j=0 pj(nλT )

×∑∞
i=0 pi(λT )

∫ Z

0 [1 − G(i)(K − x)] dG(j)(x)∑∞
n=0

∑∞
j=0 pj(nλT )

∑∞
i=0

∫ Z

0
G(i)(K − x)] dG(j)(x)

∫ T

0
pi(λt) dt

,

(8.35)
where pj(t) ≡ [(λt)j/j!]e−λt (j = 0, 1, 2, · · · ). The optimum GC policy from
Section 6.1.2 is given as follows:

(i) If MG(K) > cZ/(cK − cZ), then there exists a unique Z∗ (0 < Z∗ < K)
that satisfies

Q(Z)
∞∑

n=0

∞∑
j=0

pj(nλT )
∞∑

i=0

∫ T

0

pi(λt) dt

∫ Z

0

G(i)(K − x)] dG(j)(x)

−
∞∑

n=0

∞∑
j=0

pj(nλT )
∞∑

i=0

pi(λT )
∫ Z

0

[1 − G(i)(K − x)] dG(j)(x) =
cZ

cK − cZ
,

(8.36)

where MG(K) ≡∑∞
j=1 G(j)(K) and

Q(Z) ≡
∑∞

i=0 pi(λT )[1 − G(i)(K − Z)]∑∞
i=0

∫ T

0
pi(λt) dtG(i)(K − Z)

(0 ≤ Z ≤ K).

In this case, the expected cost rate is

C(Z∗) = (cK − cZ)Q(Z∗). (8.37)

(ii) If MG(K) ≤ cZ/(cK − cZ), then Z∗ = K, i.e., the GC is done after the
total garbage becomes K, and the resulting cost rate is given in (3.12).
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Table 8.6. Optimum garbage rate Z∗/K to minimize C(Z)

cK/cZλT µK
100 200 500 1000

300 0.708 0.696 0.683 0.673
500 0.825 0.818 0.810 0.804

60
700 0.875 0.870 0.864 0.860
1000 0.912 0.909 0.905 0.902

300 0.963 0.923 0.802 0.702
500 0.978 0.954 0.881 0.821

120
700 0.984 0.976 0.915 0.872
1000 0.989 0.977 0.941 0.911

Example 8.3. We compute the optimum policy numerically when G(x) =
1 − e−µx and p̃(x) = [(µx)j/j!]e−µx (j = 0, 1, 2, . . . ). In this case, (8.36) is

Q(Z)
∞∑

n=0

∞∑
j=0

pj(nλT )
∞∑

i=0

∫ T

0

pi(λt) dt

×
[
1 −

j−1∑
k=0

p̃k(µZ) −
i−1∑
k=0

k∑
l=0

p̃k−l(µ(K − Z))p̃l+j(µZ)

]

−
∞∑

n=0

∞∑
j=0

pj(nλT )
∞∑

i=0

pi(λT )
i−1∑
k=0

k∑
l=0

p̃k−l(µ(K − Z))p̃l+j(µZ)

=
cZ

cK − cZ
, (8.38)

where
∑−1

0 ≡ 0. From optimum policy (i), if µK > cZ/(cK − cZ), then a
finite Z∗ to satisfy (8.38) exists uniquely.

Suppose that a database is updated in a Poisson process and the expected
number of updates during any interval (nT, (n+1)T ] is H((n+1)T )−H(nT ) =
λT = 60, 120. An upper limit level of the total garbage is µK = 300, 500,
700, 1000. For example, when µK = 700, the database becomes useless at 700
updates, on average. In addition, when λT = 120 and λ = 5, the expected
number of updates is 120 times a day, and hence, the database becomes useless
at 700/120 ≈ 5.8 days.

Under the above conditions, Table 8.6 presents the optimum garbage rate
Z∗/K for an upper limit level when cK/cZ = 100, 200, 500, 1000. This ex-
ample indicates that the optimum value Z∗ to minimize the expected cost
rate increases with K and decreases with cost rate cK/cZ . For example,
when λT = 120, µK = 700, and cK/cZ = 1000, the optimum value is
Z∗/K = 0.872. If the total garbage has exceeded 87.2% of an upper limit
level K, then the GC is done. In this case, the expected number of updates is
about 700×0.872 ≈ 610 times. Hence, if λ = 5, then it is the most economical
that the GC is done at the interval 610/120 ≈ 5 days.
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Backup Policies for a Database System

In recent years, a database in computers systems has become of great im-
portance in modern society with high information. In particular, a reliable
database is the most indispensable instrument in on-line transaction process-
ing systems such as real-time systems used for bank accounts. For instance,
some errors in the on-line system of a bank might cause social confusion even
for a short time, and occasionally, a bank might lose valuable public confidence
with oneself.

The data in a computer system are frequently updated by adding or delet-
ing them, and are stored in secondary media. However, data files in secondary
media are sometimes broken by several errors due to noise, human errors, and
hardware faults. In this case, we have to reconstruct the same files from the
beginning. The most simple and dependable method to ensure the safety of
data would be always to score the backup copies of all files in other places,
and to take them out if some files in the original secondary media are broken.
This is called a total backup. But, this method would take hours and be costly
when files become very large. To make the backup copies efficiently, we might
dump only files that have changed since the last backup. This would reduce
significantly both the duration time and the backup size [228]. This is called
an export backup.

The total backup is a physical backup scheme that copies all files from
the original secondary media into other places. On the other hand, the export
backup is a logical backup scheme that copies the data and the definition of
a database, where they are stored in the operating system of binary notation.
This is generally classified into three schemes: incremental backup, cumulative
backup, and full backup or complete backup [229].

The full backup exports all files, and a database system returns to its initial
state by this backup. When the full backup copies are repeated frequently, all
images of a database can be secured, however, its operating cost and time are
remarkably increased. Thus, the scheme of incremental or cumulative backup
is usually adopted, and is suitably executed between the operations of full
backups in most database systems. The incremental backup exports only files
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Full backup

Recovery

Fig. 9.1. Incremental backup scheme

that have changed since the last incremental or full backup and imports files
of all incremental and the last full backup when some errors have occurred
in storage media (Figure 9.1). Similarly, the cumulative backup exports only
files that have changed since the last full backup and imports files of the
last cumulative and full backups when some errors have occurred. The full
backup with large overhead is done at long intervals and the incremental or
cumulative backup with small overhead is done at short intervals (Figure 9.2).
This could reduce significantly both the duration and cost of backups.

An important problem in actual backup schemes is when to create the full
backup. We want to lessen the number of full backups with large overhead.
However, both overheads of cumulative backup and recovery of incremental
backup increase adaptively with the amount of newly updated trucks. From
this point of view, we have to decide the full backup interval by comparing
two overheads of backup and recovery.

Some recovery techniques for database failures were taken up [230, 231].
Optimum checkpoint intervals of such models that minimize the total overhead
were studied [232–235].
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Full backup . . .

Full backup
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Fig. 9.2. Cumulative backup scheme

In this chapter, we apply the cumulative damage model to the backup of
files for database media failures by transforming shock into update and damage
into dumped files [59, 236, 237].

9.1 Incremental Backup Policy

First, this section considers a modified cumulative damage model with min-
imal maintenance at shocks in Section 5.4: Suppose that shocks occur in a
nonhomogeneous Poisson process and the total damage due to shocks is addi-
tive. However, when the total damage has exceeded a threshold level K, it is
not additive, and hence, its level is constant at K and minimal maintenance
is done at each shock. The damage level remains unchanged by any minimal
maintenance. To lessen the maintenance costs after the total damage has ex-
ceeded K, the preventive maintenance (PM) is done at a planned time T . The
expected cost rate is obtained, and an optimum PM time T ∗ that minimizes
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K

Z(t)

0
t

Minimal maintenance Minimal repair PM Time

T

Fig. 9.3. Process for PM at time T

it is discussed analytically in the special case where the times between shocks
have an exponential distribution.

Secondly, this model is applied to the backup policy for a database sys-
tem with secondary storage files when the incremental backup is adopted.
Optimum full backup times are computed numerically for several cases.

9.1.1 Cumulative Damage Model with Minimal Maintenance

Consider the cumulative damage model where successive shocks occur at time
interval Xj and each shock causes some damage in the amount Wj (j =
1, 2, · · · ). It is assumed that F (t) ≡ Pr {Xj ≤ t} with finite mean 1/λ ≡∫∞
0 [1 − F (t)]dt, and Gj(x) ≡ Pr {Wj ≤ x} with finite mean 1/µj ≡ ∫∞0 [1 −

Gj(x)]dx (j = 1, 2, · · · ).
Suppose that the total damage due to shocks is additive when it has not

exceeded a threshold level K, and conversely, it is not additive at any shock
after it has exceeded K (Figure 9.3). In this case, the minimal maintenance
is done at each shock and the damage level remains in K. Then, the total
damage Zj ≡ ∑j

i=1 Wi to the jth shock, where Z0 ≡ 0, has a probability
distribution

G(j)(x) ≡ Pr {Zj ≤ x} =

{
1 (j = 0),
G1(x) ∗ G2(x) ∗ · · · ∗ Gj(x) (j = 1, 2, · · · ),

(9.1)
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where the asterisk mark represents the Stieltjes convolution, i.e., a(t) ∗ b(t) ≡∫ t

0
b(t − u)da(u) for any function a(t) and b(t).
The distribution of the total damage Z(t) defined in (2.1) is, from (2.3),

Pr {Z(t) ≤ x} =

{∑∞
j=0 G(j)(x)[F (j)(t) − F (j+1)(t)] (x ≤ K),

1 (x > K),
(9.2)

and the survival probability is

Pr {Z(t) > x} =

{∑∞
j=0[G

(j)(x) − G(j+1)(x)]F (j+1)(t) (x ≤ K),
0 (x > K),

(9.3)

where F (j)(t) (j = 1, 2, · · · ) is the j-fold Stieltjes convolution of F (t) and
F (0)(t) ≡ 1 for t ≥ 0. Thus, the total expected damage at time t is given by

E {Z(t)} =
∞∑

j=1

[F (j)(t) − F (j+1)(t)]
∫ K

0

[1 − G(j)(x)] dx. (9.4)

Suppose that the minimal maintenance for the above model is done at each
shock and the damage level remains unchanged by any minimal maintenance.
To lesson the maintenance costs after the total damage has exceeded K, the
PM is done at a planned time T (0 < T ≤ ∞). The expected number of
minimal maintenance, i.e., the expected number of shocks in [0, T ] before the
total damage has exceeded K is

∞∑
j=1

j[F (j)(T ) − F (j+1)(T )]G(j)(K). (9.5)

Furthermore, the expected number of minimal maintenance actions in
[0, T ] in the case where the total damage remains in K when it has reached
K is

∞∑
j=0

[G(j)(K) − G(j+1)(K)]

×
∞∑

i=0

(i + 1)
∫ T

0

[F (i)(T − t) − F (i+1)(T − t)] dF (j+1)(t)

=
∞∑

j=1

F (j)(T )[1 − G(j)(K)], (9.6)

and the expected number of minimal maintenance actions in [0, T ] in the case
where the total damage is less than K when it has reached K is

∞∑
j=1

jF (j+1)(T )[G(j)(K) − G(j+1)(K)]. (9.7)



152 9 Backup Policies for a Database System

Thus, the total expected number of minimal maintenance actions in [0, T ] in
the case where the total damage is less than K is the sum of (9.5) and (9.7)
and is given by

∞∑
j=1

F (j)(T )G(j)(K). (9.8)

It is evident that (9.6) + (9.8) =
∑∞

j=1 F (j)(T ) ≡ MF (T ) that represents the
expected number of shocks in [0, T ].

(1) Expected Cost

We introduce the following costs: The PM cost at time T is cK + c0(K) when
the total damage has reached a threshold level K, and cK + c0(x) when the
total damage is x (0 ≤ x ≤ K). Then, from (9.3), the PM cost when the total
damage is K is

[cK + c0(K)]
∞∑

j=0

F (j+1)(T )[G(j)(K) − G(j+1)(K)], (9.9)

and from (9.2), the PM cost when the total damage is less than K is

∞∑
j=0

[F (j)(T ) − F (j+1)(T )]
∫ K

0

[cK + c0(x)] dG(j)(x). (9.10)

Let cm and cM (cm < cM ) be the respective costs of minimal maintenance
at each shock when the total damage is less than K and is K. Then, the
expected cost rate is, from (9.6), (9.8), (9.9), and (9.10),

C(T ) =
1
T

{
[cK + c0(K)]

∞∑
j=0

F (j+1)(T )[G(j)(K) − G(j+1)(K)]

+
∞∑

j=0

[F (j)(T ) − F (j+1)(T )]
∫ K

0

[cK + c0(x)] dG(j)(x)

+ cM

∞∑
j=1

F (j)(T )[1 − G(j)(K)] + cm

∞∑
j=1

F (j)(T )G(j)(K)

}
. (9.11)

If shocks occur in a nonhomogeneous Poisson process with a mean value
function H(t), the expected cost rate in (9.11) is rewritten as, replacing
F (j)(t) − F (j+1)(t) with pj(t) ≡

{
[H(t)]j/j!

}
e−H(t),
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C̃(T ) =
1
T

{
[cK + c0(K)]

∞∑
j=0

pj(T )[1 − G(j)(K)]

+
∞∑

j=0

pj(T )
∫ K

0

[cK + c0(x)] dG(j)(x)

+ cM

∞∑
j=1

pj(T )
j∑

i=1

[1 − G(i)(K)] + cm

∞∑
j=1

pj(T )
j∑

i=1

G(i)(K)

}
.

(9.12)

(2) Optimum Policy

Suppose that shocks occur in a Poisson process with rate λ, i.e., F (t) =
1− e−λt and pj(t) = [(λt)j/j!]e−λt (j = 0, 1, 2, · · · ). In addition, it is assumed
that c0(x) = c0x, i.e., the PM cost is proportional to the total damage. Then,
(9.11) or (9.12) is simplified as

C(T ) =
1
T

{
c0

∞∑
j=1

pj(T )
∫ K

0

[1 − G(j)(x)] dx

− (cM − cm)
∞∑

j=1

pj(T )
j∑

i=1

G(i)(K) + cK + cMλT

}
. (9.13)

We seek an optimum PM time T ∗ that minimizes C(T ) in (9.13). It is
clear that limT→0 C(T ) = ∞ and limT→∞ C(T ) = λcM . Thus, there exists a
positive T ∗ (0 < T ∗ ≤ ∞) that minimizes C(T ). Differentiating C(T ) with
respect to T and setting it equal to zero,

c0

⎧⎨⎩λT

∞∑
j=0

pj(T )
∫ K

0

[G(j)(x) − G(j+1)(x)] dx

−
∞∑

j=1

pj(T )
∫ K

0

[1 − G(j)(x)] dx

⎫⎬⎭
+ (cM − cm)

∞∑
j=1

pj(T )
j∑

i=1

[G(i)(K) − G(j)(K)] = cK . (9.14)

In the particular case of c0 = 0, (9.14) becomes

∞∑
j=1

pj(T )
j∑

i=1

[G(i)(K) − G(j)(K)] =
cK

cM − cm
. (9.15)

Letting the left-hand side of (9.15) be denoted by Q(T ), limT→0 Q(T ) = 0,
limT→∞ Q(T ) =

∑∞
j=1 G(j)(K) ≡ MG(K), and
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dQ(T )
dT

= λ
∞∑

j=1

pj(T )[G(j)(K) − G(j+1)(K)] > 0.

Thus, Q(T ) is strictly increasing from 0 to MG(K) that is the expected number
of shocks before the total damage exceeds a threshold level K. In this case,
we have the following optimum policy:

(i) If MG(K) > cK/(cM − cm), then there exists a finite and unique T ∗

(0 < T ∗ < ∞) that satisfies (9.15).
(ii) If MG(K) ≤ cK/(cM − cm), then T ∗ = ∞, i.e., the PM should not be

done.

Note that an optimum T ∗ (0 < T ∗ < ∞) always exists for c0 > 0 because
the left-hand side of (9.14) increases from 0 to ∞, as T → ∞.

9.1.2 Incremental Backup

We apply the cumulative damage model discussed in Section 9.1.1 to the
backup of secondary storage files in a database system. Suppose that a
database is updated in a Poisson process with rate λ. To ensure the safety of
data and to save costs or hours, we make the following backup policy: When
the total dumped files do not exceed a threshold level K, we perform the
incremental backup of only new files since the previous backup. Conversely,
when the total files have exceeded K, we perform the total backup instead
where both the time and size of the backup are constant. In addition, we
perform the full backup at periodic times nT (n = 1, 2, · · · ) where all files are
dumped and the system returns to its initial state.

Let us introduce the following costs: Cost cK + c0x is incurred for the full
backup when the total files are x (0 ≤ x ≤ K) at periodic times nT , and cost
cK + c0K is incurred for the full backup when the total files have exceeded
K. Furthermore, let cm and cM (cm < cM ) be the costs for incremental and
total backups, respectively. Under such assumptions, the expected cost rate
has been already given in (9.13).

In this section, we consider two cases: (1) Backup files due to each update
have an identical probability distribution, and (2) backup files due to each
update have different probability distributions that increase at a geometric
rate.

(1) Identical Distribution

Suppose that backup files due to each update have an identical exponential
distribution G(x), i.e., G(j)(x) =

∑∞
i=j [(µx)i/i!]e−µx (j = 0, 1, 2, · · · ). Then,

because ∫ K

0

[G(j)(x) − G(j+1)(x)] dx =
1
µ

G(j+1)(K),
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and ∫ K

0

[1 − G(j)(x)] dx =
1
µ

j∑
i=1

G(i)(K),

the expected cost rate C(T ) in (9.13) and (9.14) is simplified, respectively, as

C(T ) =
1
T

⎡⎣cK + cMλT −
(

cM − cm − c0

µ

) ∞∑
j=1

pj(T )
j∑

i=1

G(i)(K)

⎤⎦ , (9.16)

and (
cM − cm − c0

µ

) ∞∑
j=1

pj(T )
j∑

i=1

[G(i)(K) − G(j)(K)] = cK , (9.17)

where pj(t) = [(λt)j/j!]e−λt (j = 0, 1, 2, · · · ). The left-hand side of (9.17) is a
strictly increasing function of T from 0 to (cM − cm − c0/µ)µK.

Therefore, if cM − cm − c0/µ > cK/(µK), then there exists a finite and
unique T ∗ that satisfies (9.17), and the resulting cost rate is

C(T ∗)
λ

= cM −
(

cM − cm − c0

µ

) ∞∑
j=1

pj(T ∗)G(j+1)(K). (9.18)

Conversely, if cM − cm − c0/µ ≤ cK/(µK), then T ∗ = ∞ and C(∞) = λcM .

(2) Different Distribution

First, we show that an amount Wj of files that is dumped at the jth update
decreases at a geometric ratio. Suppose that an amount of files at some update
is W , the total volume of files is M , and the total files that have been already
dumped are A (0 ≤ A ≤ M). Then, assume that an amount of newly dumped
files is proportional to the vacant space, i.e., W (M − A)/M . Letting Wj be
newly dumped files at the jth update,

W1 = W,

Wj+1 = W
M −∑j

i=1 Wi

M
(j = 1, 2, · · · ).

Solving this equation,

Wj = W

(
1 − W

M

)j−1

(j = 1, 2, · · · ). (9.19)

We set W/M ≡ 1 − α (0 ≤ α < 1) that is an amount ratio of dumped
files at the first update. Then, Wj/M = (1 − α)αj−1 (j = 1, 2, · · · ) that is a
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geometric distribution with mean 1/(1−α). This indicates that an amount of
newly dumped files is strictly decreasing and forms a geometric process with
W/aj−1 (j = 1, 2, · · · ), where 1/a ≡ α [250].

Furthermore, it is of interest that the total ratio of dumped files until the
jth update is

1
M

j∑
i=1

Wi = 1 − αj (j = 1, 2, · · · ),

that is equal to the reliability of a parallel system with j units each of whose
reliabilities is 1 − α.

It is usually known that an initial estimated amount of dumped files is
about 25% and a threshold level K is 60% of the total volume. In this case,
the number of updates where the total files exceed K is given by a minimum
value that satisfies 1− (1− 0.25)n ≥ 0.6 and its solution is n = 4. Conversely,
if the number of updates where the total files exceed 60% is n = 4, then the
amount rate is given by 1 − α4 ≥ 0.6 and 1 − α is larger than 0.205.

Suppose that an amount Wj of newly dumped files at the jth update has
an exponential distribution Gj(x) = 1 − e−µjx (µ1 < µ2 < · · · ). Then, the
distribution of total files until the jth update is easily given by

G(j)(x) = 1 −
j∑

l=1

⎛⎝ j∏
i=1,i�=l

µi

µi − µl

⎞⎠ e−µlx (j = 1, 2, · · · ), (9.20)

where
∑1

l=1

∏1
i=1,i�=l = 1. In particular, when Wj increases at a geometric

ratio (0 < α < 1), i.e., Wj = αj−1W and 1/µj = αj−1/µ1 = αj−1/µ,

G(j)(x) = 1 −
j∑

l=1

⎛⎝ j∏
i=1,i�=l

1
1 − αi−l

⎞⎠ e−µx/αl−1
(j = 1, 2, · · · ). (9.21)

Thus, substituting G(j)(x) in (9.21) in (9.13) and (9.14), respectively, the
expected cost rate is

C(T ) =
1
T

⎡⎣cK + cMλT −
∞∑

j=1

pj(T )
j∑

i=1

(
cM − cm − c0

µ
αi−1

)
G(i)(K)

⎤⎦ ,

(9.22)
and (9.14) is

∞∑
j=1

pj(T )
j∑

i=1

[(
cM − cm − c0

µ
αi−1

)
G(i)(K)−

(
cM − cm − c0

µ
αj−1

)
G(j)(K)

]
= cK . (9.23)

Denoting the left-hand side of (9.23) by Q1(T ), when MG(K) ≡∑∞
j=1 G(j)(K) <

∞, Q1(0) ≡ limT→0 Q1(T ) = 0, and
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Q1(∞) ≡ lim
T→∞

Q1(T ) =
∞∑

j=1

(
cM − cm − c0

µ
αj−1

)
G(j)(K).

Therefore, if Q1(∞) > cK , then there exists a finite T ∗ (0 < T ∗ < ∞)
that satisfies (9.23), and the resulting cost rate is

C(T ∗)
λ

= cM −
∞∑

j=1

(
cM − cm − c0

µ
αj

)
pj(T ∗)G(j+1)(K). (9.24)

Example 9.1. First, suppose that Wj has an identical exponential distribution
Gj(x) = 1 − e−µx (j = 1, 2, · · · ), the total volume of files is 3 × 105 trucks,
and a threshold level K is 1.2 × 105 and 1.8 × 105 trucks that correspond to
40% and 60% of the total volume, respectively.

Table 9.1 presents the optimum full backup time λT ∗ and the resulting
cost rate C(T ∗)/λ for cK/(cM − cm − c0/µ) = 1, 2, 5, 10, 15 and µK = 12, 18
when cM = C(∞)/λ = 6 and cm + c0/µ = 5. This indicates that the optimum
T ∗ increases with both cK/(cM − cm − c0/µ) and µK, and C(T ∗) increases
with cK/(cM − cm − c0/µ), and conversely, decreases with µK. However, they
are almost unchanged for cK/(cM − cm − c0/µ) and µK.

For example, when the mean time between updates is 1/λ = 1 day, the
dumped file is 1/µ = 104 trucks and K = 1.2 × 105 trucks, the optimum full
backup time T ∗ is about 9 days for cK/(cM − cm − c0/µ) = 2. In this case,
µK/λ = 12 days represents the mean time until the total dumped files exceed
a threshold level K.

Secondly, suppose that the amount Wj of newly dumped files at the jth up-
date has different exponential distributions Gj(x) = 1 − e−µjx (j = 1, 2, · · · ),
and Wj decreases at a geometric ratio α (0 < α < 1), i.e., Wj = αj−1W and
1/µj = αj−1/µ1 ≡ αj−1/µ. Furthermore, the total volume of files is 5 × 105

trucks, a threshold level K is 4 × 105 trucks that corresponds to 80% of the
total volume, and the mean amount of dumped files due to the first update is
1/µ = 105 trucks that corresponds to 25% of the total volume, i.e., µK = 4.

Table 9.2 presents the optimum full backup time λT ∗ for cK/(cM−cm) = 1,
2, 3, 4, 5, 6 and α = 1.00, 0.95, 0.90, 0.85, 0.80, 0.75 when (c0/µ)/(cM −
cm) = 0.1. This indicates that the optimum T ∗ increases when cK/(cM − cm)
increases. For example, when the mean time between updates is 1/λ = 1
day, the mean dumped file is 1/µ = 105 trucks and K = 4 × 105 trucks, the
optimum time T ∗ is about 10 days for cK/(cM − cm) = 3 and α = 0.85.

This also indicates that λT ∗ decreases when α increases when a finite
optimum time exists. For example, when α = 0.90, if cK/(cM − cm) ≥ 5.37−
0.4 = 4.97, then a finite T ∗ does not exist. When α = 0.80, MG(K) = ∞, i.e.,
the total dumped files might not exceed K with a certain probability. In this
case, when cK/(cM − cm) ≥ 5, there does not exist a finite T that satisfies
(9.23). When α = 0.75, no finite T exists for any cK/(cM − cm) = 1 – 6.
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Table 9.1. Optimum full backup time λT ∗ and expected cost rate C(T ∗)/λ when
cM = 6 and cm + c0/µ = 5

µK = 12 µK = 18cK
cM−cm−c0/µ λT ∗ C(T ∗)/λ λT ∗ C(T ∗)/λ

1 7.462 5.179 11.001 5.112
2 9.084 5.299 12.767 5.196
5 12.469 5.578 16.069 5.403
10 18.856 5.909 20.372 5.679
15 ∞ 6.000 25.893 5.898

Table 9.2. Optimum full backup time λT ∗ when µK = 4 and (c0/µ)/(cM − cm) =
0.1

cK/(cM − cm)
α

1 2 3 4 5 6
MG(K)

1.00 3.67 5.53 7.82 ∞ ∞ ∞ 4
0.95 4.10 6.17 8.66 ∞ ∞ ∞ 4.49
0.90 4.46 6.59 8.88 12.21 ∞ ∞ 5.37
0.85 5.04 7.4 7 10.01 13.25 18.67 ∞ 15.28
0.80 6.12 9.63 14.32 28.85 ∞ ∞ ∞
0.75 ∞ ∞ ∞ ∞ ∞ ∞ ∞

9.2 Incremental and Cumulative Backup Policies

The incremental backup exports only files that have changed or are new since
the last incremental backup or full backup. On the other hand, the cumu-
lative backup exports only files that have changed or are new since the last
full backup. When some errors have occurred in storage media, we can re-
cover a database system by importing files of all incremental backups and
the full backup for the incremental backup scheme and by importing files of
the last cumulative and full backups for the cumulative backup scheme. The
cumulative backup exports more files than the incremental one at each up-
date, however, it imports less files than the incremental one when we recover
a database system.

It is an important problem to determine which backup scheme should be
adopted as the backup policy. It is supposed that the full backup is planned
at time T or when a database system fails, whichever occurs first. Then,
we compare two schemes of incremental and cumulative backups, using the
results in Section 9.1. Furthermore, we discuss optimum full backup times for
the incremental and cumulative backups and compare them numerically.



9.2 Incremental and Cumulative Backup Policies 159

9.2.1 Expected Cost Rates

We make the same assumptions as those of Section 9.1.2, Gj(x) = G(x) for all
j, and K = ∞, i.e., the total dumped files are eternally additive. In addition,
a database in secondary media fails according to a general distribution D(t)
with finite mean 1/γ. Suppose that the full backup is done at a planned time
T (0 < T ≤ ∞) or when a database fails, whichever occurs first.

Let us introduce the following maintenance costs: Cost cF is incurred for
the full backup, and cost cK +c0x is incurred for the incremental backup when
the amount of export files at the backup time is x, and for the cumulative
backup when the total amount of export files at the backup time is x. The
recovery cost is cR + c0x for the cumulative backup if the database fails when
the total amount of import files at the recovery time is x, and is cR+c0x+jcN

for the incremental backup when the number of backups is j.
Let denote by

Mj =
∫ ∞

0

(cK + c0x) dG(j)(x)

= cK +
jc0

µ
,

Nj =
∫ ∞

0

(cR + c0x) dG(j)(x)

= cR +
jc0

µ
.

Note that jM1 is the expected cost of the incremental backup and
∑j

i=1 Mi

is the expected cost of the cumulative backup at the jth update, and Nj is
the expected recovery cost of the cumulative backup, and Nj + jcN is the
expected recovery cost of the incremental backup when j numbers of updates
have occurred at the failure of the database.

Therefore, the expected cost until the full backup for the incremental and
cumulative backups are, respectively,

C̃I(T ) = cF + D(T )
∞∑

j=0

[F (j)(T ) − F (j+1)(T )](jM1)

+
∞∑

j=0

∫ T

0

[F (j)(t) − F (j+1)(t)] dD(t)(jM1 + Nj + jcN )

= cF + cRD(T )

+
(

cK +
c0

µ

)∫ T

0

D(t) dMF (t) +
(

cN +
c0

µ

)∫ T

0

MF (t) dD(t), (9.25)

and
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C̃C(T ) = cF + D(T )
∞∑

j=0

[F (j)(T ) − F (j+1)(T )]
j∑

i=1

Mi

+
∞∑

j=0

∫ T

0

[F (j)(t) − F (j+1)(t)] dD(t)

(
j∑

i=0

Mi + Nj

)

= cF + cRD(T ) + cK

∫ T

0

D(t) dMF (t)

+
c0

µ

[∫ T

0

MF (t) dD(t) +
∞∑

j=1

j

∫ T

0

D(t) dF (j)(t)
]
, (9.26)

where
∑0

i=1 ≡ 0, D(t) ≡ 1 − D(t), and MF (t) ≡∑∞
j=1 F (j)(t).

To compare the two expected costs, we find the difference between them
as follows:

C̃C(T )− C̃I(T ) =
c0

µ

∞∑
j=1

j

∫ T

0

D(t) dF (j+1)(t)− cN

∫ T

0

MF (t) dD(t). (9.27)

Hence, if

c0

µ

∞∑
j=1

j

∫ T

0

D(t) dF (j+1)(t) > cN

∫ T

0

MF (t) dD(t),

then the incremental backup is better than the cumulative one when the
full backup is done at time T . The smaller the extra cost cN required for the
incremental backup when the database fails, the more the incremental backup
is useful as the backup scheme.

(1) Optimum Full Backup Time for Incremental Backup

Consider the optimum policy for the incremental backup. Because the mean
time to the full backup is

TD(T ) +
∫ T

0

t dD(t) =
∫ T

0

D(t) dt, (9.28)

the expected cost rate is, dividing (9.25) by (9.28),

CI(T ) =

cF + cRD(T ) + (cK + c0/µ)
∫ T

0
D(t) dMF (t)

+(cN + c0/µ)
∫ T

0
MF (t) dD(t)∫ T

0
D(t) dt

. (9.29)

We find an optimum time T ∗
1 that minimizes CI(T ) when a database is

updated in a Poisson process, i.e., MF (t) = λt. Differentiating CI(T ) with
respect to T and setting it equal to zero,
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cR

[
r(T )
∫ T

0

D(t) dt − D(T )

]
+ λ

(
cN +

c0

µ

)∫ T

0

D(t)[Tr(T ) − tr(t)] dt = cF ,

(9.30)
where r(t) ≡ d(t)/D(t) and d(t) is a density function of D(t). Let Q1(T ) be
the left-hand side of (9.30). Then, if the failure rate r(t) is strictly increasing,
Q1(T ) is also strictly increasing from 0 to Q1(∞). Thus, if Q1(∞) > cF , then
there exists a finite and unique T ∗ that satisfies (9.30). Note that if r(t) is
strictly increasing to ∞, then Q1(∞) = ∞. In this case, the resulting cost
rate is

CI(T ∗
1 ) = λ

(
cK +

c0

µ

)
+
[
cR + λT ∗

1

(
cN +

c0

µ

)]
r(T ∗

1 ). (9.31)

(2) Optimum Full Backup Time for Cumulative Backup

From (9.26) and (9.28), the expected cost rate for the cumulative backup when
a database is updated in a Poisson process with rate λ is

CC(T ) = λ

(
cK +

c0

µ

)
+

cF + cRD(T ) + (λc0/µ)[
∫ T

0
λtD(t) dt +

∫ T

0
t dD(t)]∫ T

0
D(t) dt

.

(9.32)
Thus, differentiating CC(T ) with respect to T and setting it equal to zero,

cR

[
r(T )
∫ T

0

D(t) dt − D(T )

]
+

λc0

µ

∫ T

0

D(t)[λ(T −t)+Tr(T )−tr(t)] dt = cF .

(9.33)
Hence, if r(t) is strictly increasing, then the left-hand side Q2(T ) of (9.33) is
also strictly increasing from 0 to Q2(∞). Thus, if Q2(∞) > cF , then there
exists a finite and unique T ∗

2 that satisfies (9.33). In this case, the resulting
cost rate is

CC(T ∗
2 ) = λ

(
cK +

c0

µ

)
+

λc0

µ

[
λT ∗

2 + T ∗
2 r(T ∗

2 )
]

+ cRr(T ∗
2 ). (9.34)

Example 9.2. Suppose that a database is updated in a Poisson process
with rate λ, the backup is done with probability α (0 < α ≤ 1), and it fails
with probability β ≡ 1 − α at each update time, i.e., F (j)(t) − F (j+1)(t) =
[(αλt)j/j!]e−αλt (j = 0, 1, 2, · · · ), MF (t) = αλt, and D(t) = 1− e−βλt. In this
case, (9.27) becomes

C̃C(T ) − C̃I(T ) = λ

(
αc0

µ
− βcN

)∫ T

0

αλte−βλt dt. (9.35)

Thus, if α(c0/µ) > βcN , then the incremental backup is better than the
cumulative one, and vice versa.



162 9 Backup Policies for a Database System

Table 9.3. Optimum full backup time λT ∗
1 and expected cost rate CI(T

∗
1 )/(λc0/µ)

of the incremental backup for cN/(c0/µ) when cF /(c0/µ) = 64, cK/(c0/µ) = 40,
cR/(c0/µ) = 100, and α = 0.98

cN/(c0/µ) λT ∗
1 CI(T

∗
1 )/(λc0/µ)

20 18.74 49.89
30 15.25 51.45
40 13.17 52.76
49 11.88 52.82
50 11.76 53.94

First, when the incremental backup is adopted, (9.30) is rewritten as

αλT − α

β
(1 − e−βλT ) =

cF

cN + c0/µ
, (9.36)

whose left-hand side is strictly increasing from 0 to ∞. Thus, there exists a
finite and unique T ∗

1 that satisfies (9.36), and the resulting cost rate is

CI(T ∗
1 )

λ
= αcK + βcR + αβλT ∗

1 cN + (1 + βλT ∗
1 )

αc0

µ
. (9.37)

Note from (9.36) that the optimum T ∗
1 does not depend on cK and cR.

Table 9.3 presents the optimum full backup time T ∗
1 and the expected cost

rate CI(T ∗
1 )/(λc0/µ) of the incremental backup for cN/(c0/µ) = 20, 30, 40,

50 when cF /(c0/µ) = 64, cK/(c0/µ) = 40, cR/(c0/µ) = 100, and α = 0.98.
Note that all costs are relative to cost c0/µ and all times are relative to 1/λ.
For example, when cN/(c0/µ) = 30, λT ∗

1 is about 15.25, that is, when the
mean time of update is 1/(αλ) = 1 day, the optimum T ∗

1 is about 15 days.
Secondly, when the cumulative backup is adopted, (9.33) is

αλT − α

β
(1 − e−βλT ) =

βcF

c0/µ
, (9.38)

whose left-hand side is equal to that of (9.36), and the resulting cost rate is

CC(T ∗
2 )

λ
= αcK + βcR + (1 + λT ∗

2 )
αc0

µ
. (9.39)

From the above results, if cN/(c0/µ) < α/β, then T ∗
1 is larger than T ∗

2

and vice versa. In this example, when cN/(c0/µ) = 49, λT ∗
1 = λT ∗

2 = 11.88
and CI(T ∗

1 )/(λc0/µ) = CC(T ∗
2 )/(λc0/µ) = 52.82. Hence, if cN/(c0/µ) < 49,

then the incremental backup is better than the cumulative one.
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9.3 Optimum Full Backup Level for Cumulative Backup

In this section, we derive an optimum full backup level for the cumulative
backup. Suppose that we do the full backup when the total files have exceeded
a managerial level K (0 ≤ K ≤ ∞) or when the recovery is completed if the
database fails, whichever occurs first. The cumulative backup is done at each
update between the full backups.

Underlying the same assumptions as those of Section 9.2, the probability
that the full backup is done when the total files have exceeded K is

∞∑
j=0

[G(j)(K) − G(j+1)(K)]
∫ ∞

0

D(t) dF (j+1)(t), (9.40)

and the probability that it is done when the database fails is

∞∑
j=0

G(j)(K)
∫ ∞

0

[F (j)(t) − F (j+1)(t)] dD(t), (9.41)

where (9.40) + (9.41) = 1. Furthermore, the mean time to the full backup is

∞∑
j=0

[G(j)(K) − G(j+1)(K)]
∫ ∞

0

t D(t) dF (j+1)(t)

+
∞∑

j=0

G(j)(K)
∫ ∞

0

t [F (j)(t) − F (j+1)(t)] dD(t)

=
∞∑

j=0

G(j)(K)
∫ ∞

0

[F (j)(t) − F (j+1)(t)]D(t) dt, (9.42)

and the expected number of backups before the full backup is

∞∑
j=1

j[G(j)(K) − G(j+1)(K)]
∫ ∞

0

D(t) dF (j+1)(t)

+
∞∑

j=1

jG(j)(K)
∫ ∞

0

[F (j)(t) − F (j+1)(t)] dD(t)

=
∞∑

j=1

G(j)(K)
∫ ∞

0

D(t) dF (j)(t). (9.43)

Let us introduce the following costs: Cost cF is incurred for the full backup,
cost cK + c0(x) is incurred for the cumulative backup when the total files are
x (0 ≤ x ≤ K), and cost cR + c0(x) is incurred for the recovery when the
database fails, where c0(0) ≡ 0. Using the same arguments for obtaining
(9.26), the total expected cost until the full backup is



164 9 Backup Policies for a Database System

cF +
∞∑

j=0

∫ ∞

0

[F (j)(t) − F (j+1)(t)] dD(t)

×
{

j∑
i=1

∫ K

0

[cK + c0(x)] dG(i)(x) +
∫ K

0

[cR + c0(x)] dG(j)(x)

}

= cF +
∞∑

j=1

∫ ∞

0

D(t) dF (j)(t)
∫ K

0

[cK + c0(x)] dG(j)(x)

+
∞∑

j=0

∫ ∞

0

[F (j)(t) − F (j+1)(t)] dD(t)
∫ K

0

[cR + c0(x)] dG(j)(x). (9.44)

Therefore, the expected cost rate is, dividing (9.44) by (9.42),

CC(K) =

cF +
∑∞

j=1

∫∞
0

D(t) dF (j)(t)
∫K

0
[cK + c0(x)] dG(j)(x)

+
∑∞

j=0

∫∞
0

[F (j)(t) − F (j+1)(t)] dD(t)
∫ K

0
[cR + c0(x)] dG(j)(x)∑∞

j=0 G(j)(K)
∫∞
0 [F (j)(t) − F (j+1)(t)]D(t) dt

.

(9.45)
In particular, when K = 0, i.e., the full backup is done at the first update

or at the failure of the database, whichever occurs first, the expected cost in
(9.45) is

CC(0) =
cF + cR

∫∞
0

F (t) dD(t)∫∞
0

F (t)D(t) dt
, (9.46)

where F (t) ≡ 1 − F (1)(t). When K = ∞, i.e., the full backup is done only at
the failure of the database, the expected cost in (9.45) is

CC(∞)
γ

= cF + cR + cK

∞∑
j=1

∫ ∞

0

D(t) dMF (t)

+
∞∑

j=1

∫ ∞

0

[2F (j)(t) − F (j+1)(t)] dD(t)
∫ ∞

0

c0(x) dG(j)(x), (9.47)

where MF (t) ≡∑∞
j=1 F (j)(t).

Next, suppose that c0(x) = c0x and a database is updated in a Poisson pro-
cess with rate αλ, i.e., F (j)(t)−F (j+1)(t) = [(αλt)j/j!]e−αλt (j = 0, 1, 2, · · · ),
D(t) = 1 − e−βλt, and γ = βλ, where 0 < α < 1 and β = 1 − α. In this case,
the expected cost rate in (9.45) is rewritten as

CC(K)
λ

=
cF − cK + (1 + β)c0

∑∞
j=1 αj

∫ K

0
xdG(j)(x)∑∞

j=0 αjG(j)(K)
+ cK + βcR. (9.48)

We find an optimum level K∗ that minimizes CC(K). Differentiating
CC(K) with respect to K and setting it equal to zero,
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∞∑
j=0

αj

∫ K

0

G(j)(x) dx =
cF − cK

(1 + β)c0
, (9.49)

whose left-hand side is strictly increasing from 0 to ∞. Therefore, there exists
an optimum K∗ (0 < K∗ < ∞) that satisfies (9.49), and the resulting cost
rate is

CC(K∗)
λ

= (1 + β)c0K
∗ + cK + βcR. (9.50)

Example 9.3. Suppose that G(x)=1−e−µx, i.e., G(j)(x)=
∑∞

i=j [(µx)i/i!]e−µx

(j = 0, 1, 2, · · · ). Then, an optimum K∗ is given by a unique solution of the
equation

K − α

βµ
(1 − e−βµK) =

β

1 + β

cF − cK

c0
. (9.51)

Furthermore, an optimum K∗ is approximately

K̃ =
1

1 + β

cF − cK

c0
, (9.52)

and K∗ < K̃ that approaches K̃, as β → 0. In the same values of Example
9.2, µK∗ = 6.09, µK̃ = 23.53, and CC(K∗)/(λc0/µ) = 48.21

Furthermore, when the full backup is done at time T before the total files
exceed K or the database fails, and its full backup cost is cF , the expected
cost rate in (9.45) is easily extended as

CC(K, T ) =

cF +
∑∞

j=1

∫ T

0 D(t) dF (j)(t)
∫ K

0 [cK + c0(x)] dG(j)(x)

+
∑∞

j=0

∫ T

0
[F (j)(t) − F (j+1)(t)] dD(t)

∫ K

0
[cR + c0(x)] dG(j)(x)∑∞

j=0 G(j)(K)
∫ T

0
[F (j)(t) − F (j+1)(t)]D(t) dt

.

(9.53)
When c0(x) = c0x and K = ∞, this corresponds to the cumulative backup
model in Section 9.2.
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Other Related Stochastic Models

The cumulative damage model is called the compound renewal process or the
compound Poisson process in the theory of stochastic processes when shocks
occur in a Poisson process. Examples to these processes of other practical fields
are total claims on an insurance company, drifting of stones on river beds,
model for Brownian motion, distribution of galaxies, number of customers or
amount of materials in a queuing process or storage process [11, 238, 239] and
cancer epidemiology [240,241]. For example, we can apply the damage model
to the simplest queuing process. A customer arrives at a counter with one
server. If the server is free, the customer can be served immediately. Otherwise,
if the server is busy with another customer, the customer has to wait for the
service and forms a queue [61]. If the arrivals of customers are replaced with
shocks and their total times of waiting and service with total damage, this
corresponds to the cumulative damage model whose total damage decreases
with time (Figure 10.1). In this process, we are mainly interested in the busy
period that the server is working for arrival customers.

We introduce briefly typical related models such as the downtime of re-
pairable systems, shot noise, insurance, and stochastic duels.

10.1 Other Models

(1) Downtime Distribution

An operating unit is repaired when it fails, and after the completion of its
repair, it begins to operate again. It is assumed that the failure time is a
random variable Xj having an identical distribution F (t) with finite mean
1/λ and the repair time is a random variable variable Wj having an identical
distribution G(x) with finite mean 1/µ, i.e., F (t) ≡ Pr {Xj ≤ t} and G(x) ≡
Pr {Wj ≤ x} (j = 1, 2, · · · ). Then, the total downtime D(t) during the interval
[0, t] is, replacing t in (2.3) with t − x (see (2) of Section 2.1.1 in [1]),
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Z(t)

0
t

Arrival time of customers

Fig. 10.1. Process for the total waiting and service time Z(t) of a queuing model

Pr {D(t) ≤ x} =
∞∑

j=0

G(j)(x)[F (j)(t − x) − F (j+1)(t − x)], (10.1)

where G(j)(x) (F (j)(t)) is the j-fold Stieltjes convolution of G(x) (F (t)) with
itself. Thus, the distribution that the total downtime exceeds a specified level
K > 0 in time t is

Pr {D(t) > K} =
∞∑

j=0

[G(j)(K) − G(j+1)(K)]F (j)(t − K) for t > K.

The mean time that the total downtime first exceeds K is∫ ∞

0

Pr{D(t) ≤ K} dt = K +
1
λ

⎡⎣ ∞∑
j=0

G(j)(K)

⎤⎦ . (10.2)

In particular, when F (t) = 1 − e−λt and G(x) = 1 − e−µx, from Example
2.2,

Pr{D(t) > K}

= 1 − e−λ(t−K)

[
1 +
√

λµ(t − K)
∫ K

0

e−µuu−1/2I1(2
√

λµ(t − K)u) du

]
for t > K,
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0

Pr {D(t) ≤ K} dt = K +
1
λ

(1 + µK).

Next, let Y be the first time that one amount of downtime due to unit
failures exceeds a fixed time c > 0, that is called an allowed time. Then, the
distribution of a random variable Y and its mean time is, from (1.39) and
(1.40) of [1], respectively,∫ ∞

0

e−st d Pr {Y ≤ t} =
F ∗(s)e−scG(c)

1 − F ∗(s)
∫ c

0 e−st dG(t)
, (10.3)

E {Y } =
1/λ +

∫ c

0
G(t) dt

G(c)
, (10.4)

where G(x) ≡ 1 − G(x), and F ∗(s) is the Laplace–Stieltjes (LS) transform of
F (t). The mean time E{Y } is easily given by solving the renewal equation

E{Y } =
∫ ∞

c

(
1
λ

+ c

)
dG(x) +

∫ c

0

(
1
λ

+ x + E{Y }
)

dG(x).

(2) Shot Noise

Suppose that a shot noise occurs at time interval Xj and its amount is Wj .
The total amount of shot noise is additive and falls into decay with time
according to the rate function h(·). Then, the total amount of shot noise at
time t is

Z(t) ≡
N(t)∑
j=1

Wjh(t − Sj), (10.5)

where Sj ≡ ∑j
i=1 Xi and N(t) ≡ maxj{Sj ≤ t} [242, 243]. The stochastic

behaviors of such shot noise were mathematically analyzed [244–248]. This can
be also applied to riverflow [249], dams [250–253], and storage models [254–
256]. If h(t) = e−αt, then this corresponds to the cumulative damage model
with annealing in (3) of Section 2.5. Some failure distributions of reliability
models were investigated by using the model of shot noise [126, 257].

(3) Insurance

The cumulative process can be applied to insurance, replacing shock with
claim and damage with claim size [258]. In this case, random variables Wj ,
N(t), and Z(t) defined in (2.1) represent a claim size, the number of claims up
to time t, and the total claim amount up to time t, respectively. Furthermore,
the risk reserve R(t) at time t is given by [259] (Figure 10.2)

R(t) = u + bt −
N(t)∑
j=1

Wj = u + bt − Z(t), (10.6)
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R(t)

u

0
t

Claim Ruin

Fig. 10.2. Process for risk reserve R(t) of an insurance model

where u is the initial risk reserve and b > 0 is the premium rate. The proba-
bility of ultimate ruin is given by

ψ(u) ≡ Pr{R(t) < 0 for some t > 0}
= Pr{Z(t) − bt > u for some t > 0} . (10.7)

The properties of ruin probability ψ(u) have been studied and summarized
[258–261].

10.2 Stochastic Duels

This section introduces a classical model of stochastic duels in which each
firing delivers an amount of damage governed by a random variable and it re-
quires a specified threshold level of damage to kill the opponent. The theory
of stochastic duels was studied [74, 75, 262–266]. The optimum engagement
problem of shooting strategy with incomplete damage information was con-
sidered [267].

The stochastic model in which each firing delivers the same amount of
damage to the opponent and the kill requires a fixed number of hits was
proposed, and the probability that a duelist wins against the opponent was
obtained [263,264]. In addition, the weapon lifetimes that can be functions of
time or number of rounds fired were considered [265], and the total damage
resulting from firings was assumed to depend on both time and the num-
ber of rounds fired [75]. Recently, multiple damage functions to estimate the
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probability that a single weapon detonation destroys a point target were dis-
cussed [266].

This section assumes that each firing delivers an amount of damage and it
requires a prespecified threshold level of damage to the opponent, where each
damage is additive. A duelist loses when the total damage exceeds a threshold
level. This corresponds to the cumulative damage model by replacing rounds
fired with shocks and threshold level with failure level.

We consider five models of stochastic duels and derive analytically the
probabilities of winning the duel with reference to Chapter 2.

(1) Standard Model

Consider a stochastic duel with two contestants, say, A and B. Both contes-
tants have unlimited ammunition and unlimited time to kill the opponent.
Duelist A (B) begins simultaneously with a weapon and fires at time inter-
vals according to an identical probability distribution FA(t) with finite mean
1/λA (FB(t) with finite mean 1/λB), respectively, i.e., FA(t) and FB(t) are
distribution functions of times between rounds fired. Each firing delivers an
amount of damage with a general distribution GA(x) (GB(x)), and requires
a threshold level KA (KB) of the total damage to kill the opponent. Duelist
A (B) wins the duel if he or she delivers KA (KB) to A (B), respectively. It
is assumed that each damage is additive and does not deteriorate.

Let ZA(t) (ZB(t)) be the total damage up to time t by A (B). Recalling that
duelist A kills B when the total damage delivered by A exceeds a threshold
level KA, the probability that A kills B up to time t is, from (2.9),

ΦA(t) ≡ Pr {ZA(t) > KA} =
∞∑

j=0

[G(j)
A (KA) − G

(j+1)
A (KA)]F (j+1)

A (t). (10.8)

Taking the LS transform of (10.8),

Φ∗
A(s) ≡

∫ ∞

0

e−st dΦA(t) =
∞∑

j=0

[G(j)
A (KA) − G

(j+1)
A (KA)][F ∗

A(s)]j+1, (10.9)

where F ∗
A(s) is the LS transform of FA(t). The mean time for A to kill B is

lA ≡
∫ ∞

0

t dΦA(t) =
1

λA

∞∑
j=0

G
(j)
A (KA). (10.10)

In the same fashion, the probability ΦB(t) that B kills A up to time t can be
obtained by exchanging from suffix A into B.

Therefore, the probability PA(t) that A wins the duel up to time t is

PA(t) =
∫ t

0

[1 − ΦB(u)] dΦA(u), (10.11)
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and conversely, the probability PB(t) that B wins the duel up to time t is

PB(t) =
∫ t

0

[1 − ΦA(u)] dΦB(u). (10.12)

(2) Imperfect Hit

It is assumed that A (B) hits the opponent B (A) with probability pA (pB)
and A (B) misses B (A) with qA ≡ 1 − pA (qB ≡ 1 − pB), respectively. Then,
the probability distribution of time for A to score one hit on B up to time t
is, from Example 1.1,

F1(t) = [1 + qAFA(t) + qAFA(t) ∗ qAFA(t) + · · · ] ∗ pAFA(t).

Thus, replacing FA(t) in (10.8) with F1(t), we have ΦA(t). The LS transform
is

Φ∗
A(s) =

∞∑
j=0

[G(j)
A (KA) − G

(j+1)
A (KA)]

[
pAF ∗

A(s)
1 − qAF ∗

A(s)

]j+1

, (10.13)

and the mean time for A to kill B is

lA =
1

pAλA

∞∑
j=0

G
(j)
A (KA). (10.14)

The other quantities can be obtained in a similar fashion.

(3) Independent Damage

It is assumed that the amount of damage is not additive and the amount is
nullified immediately when it is less than KA (KB). The other assumptions
are the same as those of case (1) except that the total damage is additive.
Then, the LS transform of the probability that A kills B up to time t is, from
Section 2.2,

Φ∗
A(s) =

∞∑
j=0

{
[GA(KA)]j − [GA(KA)]j+1

}
[F ∗

A(s)]j+1

=
[1 − GA(KA)]F ∗

A(s)
1 − GA(KA)F ∗

A(s)
, (10.15)

and the mean time for A to kill B is

lA =
1

λA[1 − GA(KA)]
. (10.16)
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(4) Random Threshold Level

It is assumed that a threshold level KA (KB) is a random variable with a gen-
eral distribution LA(x) (LB(x)), respectively. Then, from (2) in Section 2.5,
for case (1),

Φ∗
A(s) =

∞∑
j=0

[F ∗
A(s)]j+1

∫ ∞

0

[G(j)
A (x) − G

(j+1)
A (x)] dLA(x), (10.17)

for case (2),

Φ∗
A(s) =

∞∑
j=0

[
pAF ∗

A(s)
1 − qAF ∗

A(s)

]j+1 ∫ ∞

0

[G(j)
A (x) − G

(j+1)
A (x)] dLA(x), (10.18)

and for case (3),

Φ∗
A(s) =

∞∑
j=0

[F ∗
A(s)]j+1

∫ ∞

0

{
[GA(x)]j − [GA(x)]j+1

}
dLA(x). (10.19)

The other quantities can be obtained in a similar fashion.

(5) Lifetimes of Weapons

Consider the lifetimes of A’s (B’s) weapon distributed with RA(t) (RB(t)),
respectively. It is assumed that the failed weapon of A (B) remains in the duel
until A (B) is killed or B’s (A’s) weapon fails. Then, the probability that A
wins in the duel up to time t is

PA(t) =
∫ t

0

[1 − RA(u)]
{

1 −
∫ u

0

[1 − RB(v)] dΦB(v)
}

dΦA(u), (10.20)

and the tie probability is

PAB(t) =
∫ t

0

[1 − ΦA(u)] dRA(u)
∫ t

0

[1 − ΦB(u)] dRB(u), (10.21)

that represents the probability that both A and B cannot kill the opponent
because of failures of the weapons up to time t. Note that PA(∞)+ PB(∞) +
PAB(∞) = 1.

Example 10.1. It is assumed that GA(x) ≡ 0 for x < 1 and 1 for x ≥ 1 and
KA is a positive integer. Then, from (10.13),

Φ∗
A(s) =

[
pAF ∗

A(s)
1 − qAF ∗

A(s)

]KA

.

Furthermore, LA(x) is a discrete distribution, i.e.,
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Pr{KA = j} = αj (j = 1, 2, · · · ),

where
∑∞

j=1 αj = 1. Then, from (10.18),

Φ∗
A(s) =

∞∑
j=1

αj

[
pAF ∗

A(s)
1 − qAF ∗

A(s)

]j
.

Example 10.2. Suppose in case (4) that all random variables are exponential,
i.e., F (t) = 1−e−λt, G(x) = 1−e−µx, and L(x) = 1−e−αx, where the suffixes
of the three parameters are omitted. Then, from (10.18),

Φ∗
A(s) =

αλp

(α + µ)s + αλp
.

By inversion,
ΦA(t) = 1 − e−θAt,

where θA ≡ αλp/(α + µ). For duelist B,

ΦB(t) = 1 − e−θBt.

Thus, from (10.11),

PA(t) =
θA

θA + θB
[1 − e−(θA+θB)t],

PB(t) =
θB

θA + θB
[1 − e−(θA+θB)t].

Furthermore, when the lifetimes of the weapons are assumed to be RA(t) =
1 − e−γAt and RB(t) = 1 − e−γB(t), from case (5),

PA(t) =
θA

γB + θB

{
γB

γA + θA
[1 − e−(γA+θA)t]

+
θB

γA + θA + γB + θB
[1 − e−(γA+θA+γB+θB)t]

}
,

PB(t) =
θB

γA + θA

{
γA

γB + θB
[1 − e−(γB+θB)t]

+
θA

γA + θA + γB + θB
[1 − e−(γA+θA+γB+θB)t]

}
,

PAB(t) =
γA

γA + θA

γB

γB + θB
[1 − e−(γA+θA)t][1 − e−(γB+θB)t],

where it is clearly seen that PA(∞) + PB(∞) + PAB(∞) = 1.
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