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Preface

It is known that many dynamic systems in our world can be better described by

differential equations of a non-integer-order, i.e., they behave like non-integer-

order (fractional-order) systems. Such systems can be found not only in electronics

and signal processing, but also in thermodynamics, biology, chemistry, medicine,

mechanics, control theory, nanotechnologies, finances, etc. Thus, fractional-order

systems are an emerging area of multidisciplinary research labeled even as the

“twenty-first century systems.” Electronic engineers are very interested in applying

the concept of fractional calculus. It is motivated mainly by the interdisciplinary

nature of this research and possibility to obtain qualitatively new circuit solutions

that can provide characteristics not available at integer-order systems. For example,

the capability for stepless control of the slope of frequency characteristics in

fractional-order filters in comparison with the corresponding integer-order filters

is an attractive feature. Fractional-order impedance circuits are also very promising

in modeling electrical properties of biological materials, tissues, or cells. Oscilla-

tors of fractional-order provide possibility of obtaining higher oscillation frequen-

cies compared to the integer-order counterparts with the same values of passive

element parameters offering arbitrary phase shift between output signals.

This book deals with the design and realization of analog fractional-order

circuits, which offer the following benefits: (i) capability for on-chip implementa-

tion, (ii) capability for low-voltage operation, and (iii) electronic adjustment of their

characteristics. Applications of fractional-order circuits, including: a preprocessing

stage suitable for the implementation of the Pan-Tompkins algorithm for detecting

the QRS complexes of an electrocardiogram (ECG), a fully tunable implementation

of the Cole-Cole model used for the modeling of biological tissues, and a simple

non-impedance based measuring technique for super-capacitors. A part of the

material presented in this book, originates from the work done by Georgia

Tsirimokou for her Ph.D. at University of Patras, Greece. It includes details and

measurement results for each research project, supported by Grant Ε.029 from the

Research Committee of the University of Patras (Programme K. Karatheodori).

Rio Patras, Greece Georgia Tsirimokou

Rio Patras, Greece Costas Psychalinos

Sharjah, UAE Ahmed Elwakil

Cairo, Egypt
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Chapter 1

Introduction

1.1 Fractional Calculus

Fractional calculus is three centuries old as the conventional calculus and consist a

super set of integer-order calculus, which has the potential to accomplish what

integer-order calculus cannot. Its origins dating back to a correspondence from

1695 between Leibnitz and L’Hôpital, with L’Hôpital inquiring about Leibnitz

notation for the n-th derivative of a function dny/dxn, i.e. what would be the result

if n¼ 1/2. The reply from Leibnitz, “It will lead to a paradox, a paradox from which

one day useful consequences will be drawn, because there are no useless para-

doxes”, was the motivation for fractional calculus to be born. Fractional calculus

does not mean the calculus of fractions, nor does it mean a fraction of any calculus

differentiation, integration or calculus of variations. The fractional calculus is a

name of theory of integrations and derivatives of arbitrary order, which unify and

generalize the notation of integer-order differentiation and n-fold integration. The

beauty of this subject is that fractional derivatives and integrals translate better the

reality of nature! This feature is an efficient tool, offering the capability of having

available a language of nature, which can be used to talk with.

Despite the fact that for the past three centuries this field was of interest to

mathematicians, only the last few years did this appear in several applied fields of

science such as materials theory, diffusion theory, engineering, biomedicine, eco-

nomics, control theory, electromagnetic, robotics, and signal and image processing

[1–6]. Over all these last years fractional order systems or systems containing

fractional derivatives and integrals have been studied in engineering and science

area. A vast number of model make use of the fractional-order derivatives that exist

in the literature. However, there are many of these definitions in the literature

nowadays, but few of them are commonly used, including Riemann-Liouville,

Caputo, Weyl, Jumarie, Hadamard, Davison and Essex, Riesz, Erdelyi-Kober,

and Coimbra. There are two main approaches for defining a fractional derivative.



The first considers differentiation and integration as limits of finite differences. The

Grunwald-Letnikov definition follows this approach. The other approach general-

izes a convolution type representation of repeated integration. The Riemann-

Liouville and Caputo definitions employ this approach. Riemann-Liouville and

Caputo fractional derivatives are fundamentally related to fractional integration

operators and, hence, are the most popular.

The Caputo derivative is very useful when dealing with real-world problems,

because it allows traditional initial and boundary conditions to be included in the

formulation of the problem and, in addition, the derivative of a constant is zero

[7]. As a result, the aforementioned definition will be used within this work, the

expression of which is given as

0D
α
t f tð Þ ¼ 1

Γ n� αð Þ
ðt

0

f nð Þ τð Þ
t� τð Þαþ1�n

dτ ð1:1Þ

where n-1 � α � n and Γ(�) is the gamma function.

In the design and analysis of electronic circuits, the Laplace transform is a very

useful tool, transforming the circuit from the time-domain into the frequency

domain. With this transformation, the analysis of circuits can be algebraically

conducted rather than by solving differential equations. Thus, applying the Laplace

transform to (1.1) yields

Lf0Dα
t f ðtÞg ¼ sαFðsÞ �

Xn�1

k¼0

sα�k�1f ð0ÞðkÞ ð1:2Þ

where f (0) is the initial condition.
The variable sα is the fractional Laplacian operator, which allows for the design

and analysis of systems using concepts from fractional calculus without having to

solve time-domain complicated representations.

In the analog domain, such an operation using the aforementioned definitions

can be called as fractance device, which is an electrical element and exhibits

fractional-order impedance properties. The expression for impedance function of

a fractance device is given by

Z sð Þ ¼ κsα ¼ κωð Þαejαπ2 ð1:3Þ

where κ is a constant and α is a fractional-order.

Depending upon the values of α, the behavior of the element changes from

inductor to capacitor. In the range 0 < α < 2, this element may generally be

considered to represent a fractional-order inductor, while for the range�2< α< 0,

it may be considered to represent a fractional-order capacitor. For the special case

of α ¼ 1 this element represents an inductor while for α ¼ �1 it represents a

capacitor.
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At α ¼ �2, it represents the well-known frequency-dependent negative resistor

(FDNR). A typical diagram for classifying these elements is depicted in Fig. 1.1.

However, there are no commercial available fractance devices for the physical

realization of fractional-order circuits and systems. Therefore, until commercial

fractance devices become available to physically realize circuits that make use of

the advantages of sα, integer-order approximations have to be used. There are many

methods used to create an approximation of sα that include continued fraction

expansions (CFEs) as well as rational approximation methods [2]. These methods

present a large array of approximations with varying accuracy, which depends on

the order of the approximation. It is known that the continued fraction expansion for

(1 þ x)α is given as [8]

1þ xð Þα ¼ 1

1�
αx

1þ
1þ αð Þx
2þ

1� αð Þx
3þ

2þ αð Þx
2þ

2� αð Þx
5þ � � � ð1:4Þ

The above expression converges in the finite complex s-plane, along with the

negative real axis from x ¼ �1 to x ¼ �1. Substituting x ¼ s-1 and taking up to

10 number of terms in Eq. (1.4), the rational approximations obtained for sα are

presented in Table 1.1. In order to obtain the rational approximation of 1/ sα, the
expressions have to be simply inverted or the variable has to be set to α ! -α.
Higher-order rational approximations can be obtained by increasing the number of

terms in Eq. (1.4). Thus, the general form of the obtained rational approximation of

the variable sα around a specific frequency ωo is that given in (1.5)

τsð Þα ffi α0 τsð Þn þ α1 τsð Þn�1 þ � � � þ αn�1 τsð Þ þ αn

αn τsð Þn þ αn�1 τsð Þn�1 þ � � � þ α1 τsð Þ þ α0
ð1:5Þ

where n is the order of the approximation and (ωo¼ 1/τ) the center frequency where
the approximation is performed.

Fig. 1.1 Classification

diagram of fractional-order

elements
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In terms of circuit complexity and magnitude and phase accuracy, the second-

order approximation of variable sα is an efficient tool for implementing fractional-

order circuits. The corresponding expression for approximating variable (τsα) is
also given by (1.6) as

Table 1.1 Rational approximation for (τs)α

No.
of
terms Rational approximation for α Design equations of coefficients

2 α0 τsð Þ þ α1
α1 τsð Þ þ α0

α0¼ (1� α)α1¼ (1þα)

4 α0 τsð Þ2 þ α1 τsð Þ þ α2

α2 τsð Þ2 þ α1 τsð Þ þ α0

α0¼ (α2þ 3αþ 2)

α1¼ (8� 2α2)

α2¼ (α2� 3αþ 2)

6 α0 τsð Þ3 þ α1 τsð Þ2 þ α2 τsð Þ þ α3

α3 τsð Þ3 þ α2 τsð Þ2 þ α1 τsð Þ þ α0
α0¼ (α3þ 6α2þ 11αþ 6)

α1¼ (�3α3� 6α2þ 27αþ 54)

α2¼ (3α3� 6α2� 27αþ 54)

α3¼ (�α3þ 6α2� 11αþ 6)

8 α0 τsð Þ4 þ α1 τsð Þ3 þ α2 τsð Þ2 þ α3 τsð Þ þ α4

α4 τsð Þ4 þ α3 τsð Þ3 þ α2 τsð Þ2 þ α1 τsð Þ þ α0
α0¼ (α4þ 10α3þ 35α2þ 50αþ 24)

α1 ¼ �4α4 � 20α3 þ 40α2

þ320αþ 384

� �

α2¼ (6α4�150α2þ 864)

α3 ¼ �4α4 þ 20α3 þ 40α2

�320αþ 384

� �

α4¼ (α4� 10α3þ 35α2� 50αþ 24)

10 α0 τsð Þ5 þ α1 τsð Þ4 þ α2 τsð Þ3 þ α3 τsð Þ2 þ α4 τsð Þ þ α5

α5 τsð Þ5 þ α4 τsð Þ4 þ α3 τsð Þ3 þ α2 τsð Þ2 þ α1 τsð Þ þ α0 α0 ¼ �α5 � 15α4 � 85α3

�225α2 � 274α� 120

� �

α1 ¼ 5α5 þ 45α4 þ 5α3

�1005α2 � 3250α� 3000

� �

α2 ¼ �10α5 � 30α4 þ 410α3

þ1230α2 � 4000α� 12000

� �

α3 ¼ 10α5 � 30α4 � 410α3

þ1230α2 þ 4000α� 12000

� �

α4 ¼ �5α5 þ 45α4 � 5α3

�1005α2 þ 3250α� 3000

� �

α5 ¼ α5 � 15α4 þ 85α3

�225α2 þ 274α� 120

� �
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τsð Þα ffi α2 þ 3αþ 2ð Þ τsð Þ2 þ 8� 2α2ð Þ τsð Þ þ α2 � 3αþ 2ð Þ
α2 � 3αþ 2ð Þ τsð Þ2 þ 8� 2α2ð Þ τsð Þ þ α2 þ 3αþ 2ð Þ

¼ α0 τsð Þ2 þ α1 τsð Þ þ α2

α2 τsð Þ2 þ α1 τsð Þ þ α0

ð1:6Þ

where the design equations of coefficients αi (i ¼ 0,1,2) are already defined as

α0 ¼ α2 þ 3αþ 2ð Þ
α1 ¼ 8� 2α2ð Þ
α2 ¼ α2 � 3αþ 2ð Þ

ð1:7Þ

Another approach for obtaining the second-order approximation for sα is using
the continued fraction expansions [9], [10] of the two functions

1þ τsð Þα ffi 2þ 1þ 2αð Þ τsð Þ
2þ 1� 2αð Þ τsð Þ ð1:8Þ

1� 1

τsþ 1

� �α

ffi τsð Þ þ 1� αð Þ=2
τsð Þ þ 1þ αð Þ=2 ð1:9Þ

where (1.8) is the approximation for high frequencies ω > > 1, and (1.9) the

approximation for ω < < 1.

Noting that the product 1þ τsð Þα � 1� 1
τsþ1

� �α
¼ τsð Þα, a second-order approx-

imation can therefore be written as shown is (1.10).

ðτsÞα ffi 2ð1þ αÞðτsÞ2 þ ð5� α2ÞðτsÞ þ 2ð1� αÞ
2ð1� αÞðτsÞ2 þ ð5� α2ÞðτsÞ þ 2ð1þ αÞ

¼ α0ðτsÞ2 þ α1ðτsÞ þ α2

α2ðτsÞ2 þ α1ðτsÞ þ α0

ð1:10Þ

where the design equations of coefficients αi (i ¼ 0, 1, 2) are defined as

α0 ¼ 2ð1þ αÞ
α1 ¼ ð5� α2Þ
α2 ¼ 2ð1� αÞ

ð1:11Þ

Although there are additional methods for obtaining the rational approximations

of the variable sα, such as Carlson’s, Matsuda’s, and Oustaloop’s methods,

according to [11], the CFE is an attractive choice in terms of phase and gain

error. Thus, the aforementioned procedure of the second-order approximation of

the CFE will be adopted in the framework of this work.

1.1 Fractional Calculus 5



1.2 Literature Overview

Integrators and differentiators are very useful building blocks for performing signal

conditioning in biomedical applications. They are employed for realizing filters,

oscillators, and impedance emulators, and in control systems. Fractional-order digital

implementations of such circuits have been already published in the literature [12–16].

Significant research effort is going on to develop fractional-order capacitors, also

known as constant phase elements (CPEs) as stand-alone two-terminal devices. For

example, CPEs have been developed by utilizing electrolytic process [17], fractal

structures on silicon [18], by dipping a capacitive type polymer-coated probe in a

polarizable medium [19–21], and most recently in [22] using graphene. All the

aforementioned solutions are not commercially available and, also, suffer from the

benefit of on-line adjustability. Existing techniques for emulating a CPE mostly rely on

passive RC trees, the components of which can be obtained by several suitable methods

such as the continued fraction expansion [23–26]. Following this approach, a number

of fractional-order circuits have been published in the literature [2, 27–34], where

various kinds of RC network topologies have been utilized. Another important element

for performing fractional-order signal processing is the fractional-order inductor (FOI),

which could be easily performed through the combination of a fractional-order capac-

itor and a generalized impedance converter (GIC) [35]. A summary of design equations

for deriving RC networks is given in Table 1.2a, 1.2b, where the Foster and Cauer

networks have been utilized. The derived expressions have been obtained taking into

account that the impedance/admittance of a CPE using the CFE will be

Table 1.2a A systematic presentation for realizing fractional-order capacitors using RC networks

(Foster I, and Foster II)

Network type Foster I Foster II

Circuit topology R1 R2

C1 C2

Ro

Cn

Rn

R1 C1

R2 C2

Rn Cn

Ro

Impedance/admittance
Z sð Þ ¼ R0 þ

Xn
i¼1

1
Ci

sþ 1
RiCi

Y sð Þ
s

¼ 1

R0

þ
Xn
i¼1

1
Ri

sþ 1
RiCi

General form of partial frac-

tion expansion of (1.12) Z sð Þ ¼ k þ
Xn
i¼1

ri
s� pi

Y sð Þ
s

¼ k

s
þ
Xn
i¼1

ri
s� pi

Design equations for calculat-

ing values Ri, Ci
a R0¼ k, Ci ¼ 1

ri
, Ri ¼ 1

Ci pij j R0 ¼ 1

k
, Ci ¼ 1

ri
,

Ci ¼ 1

Ri pij j
ak and ri are constant terms, pi are the poles of impedance
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Z sð Þ ¼ 1

Cωo
� αns

n þ αn�1ωos
n�1 þ � � � þ α1ωo

n�1sþ α0ωo
n

α0sn þ α1ωosn�1 þ � � � þ αn�1ωo
n�1sþ αnωo

n
ð1:12aÞ

Y sð Þ ¼ Cωo � α0s
n þ α1ωos

n�1 þ � � � þ αn�1ωo
n�1sþ αnωo

n

αnsn þ αn�1ωosn�1 þ � � � þ α1ωo
n�1sþ α0ωo

n
ð1:12bÞ

Nevertheless, these realizations are problematic when it is desired to change the

characteristics of the designed emulator, since all the values of the passive compo-

nents of the tree have to be changed. Thus, only a fixed approximation for a specific

element valid over a center prespecified bandwidth with acceptable magnitude and

phase errors is offered. Another significant research effort that has gained a growing

research interest is the utilization of fractional-order calculus in filter design.

Implementation of fractional-order filters in fully digital form [36–39] offers the

advantages of easy design, reliability, programmability, and better noise rejection

in comparison with the corresponding analog realizations.

On the other hand, the digital implementation suffers from the high power

consumption associated with the required analog-to-digital (A/D) converter.

Analog realizations of fractional-order filters have been already introduced in

discrete component form in [12], [21], [28], [32–34], [40–43]. The used active

elements were operational amplifiers (op-amps), second-generation current con-

veyors (CCIIs), and current feedback operational amplifiers (CFOAs). Because of

the employment of passive resistors, an additional automatic tuning circuitry is

required for compensating the deviations from the desired frequency response.

Table 1.2b A systematic presentation for realizing fractional-order capacitors using RC networks

(Cauer I, and Cauer II)

Network type Cauer I Cauer II

Circuit topology R1

C1 Ro

R2

C2

Rn

Cn R1

C1

RoR2

C2

Rn

Cn

Impedance/admittance
Z sð Þ ¼ R1 þ 1

C1sþ
1

R2 þ � �

� 1

Rn þ
1

Cnsþ
1

R0

Z sð Þ ¼ 1

1

R1

þ
1

1

C1s
þ

1

1

R2

þ
� �

� 1

1

Rn
þ

1

1

Cns
þ

1

1

R0

General form of partial

fraction expansion of

(1.12)

Z sð Þ ¼ qr1 þ
1

qc1sþ
1

qr2 þ
� �

� 1

qrn þ
1

qcnsþ
1

qr0

Z sð Þ ¼ 1

qr1
þ 1
qc1
s

þ
1

qr2 þ
� �

� 1

qrn þ
1

qcn
s

þ
1

qr0

Design equations for

calculating values Ri,Ci
a

Ri¼ qri (i¼ 0, . . . , n)
Cj¼ qcj ( j¼ 1, . . . , n)

Ri¼ 1/qri (i¼ 0, . . . , n)
Cj¼ 1/qcj ( j¼ 1, . . . , n)

acoefficients qri (i ¼ 0,. . .,n), qcj ( j ¼ 1,. . .,n) are that obtained from the CFE

1.2 Literature Overview 7



Another important drawback is the absence of programmability, making these

structures not capable of fulfilling the demand for realizing programmable analog

filters. All the above designs offer one type of filter function, and therefore the

existence of filter topologies which are capable for implementing various types of

filter functions without modifying their core is very important from the design

flexibility point of view.

1.3 Book Objectives

The contribution made in this book is that the utilization of the second-order

approximation of CFE in order to present a systematic way for describing

the design equations of fractional-order generalized transfer functions, offered the

capability of designing the following analog integrated implementations for the first

time in the literature:

• Fractional-order differentiator/integrator topologies, which offer the following

benefits:

– Capability of being realized using the same topology

– The frequency characteristics as well as the fractional order α are able to be

easily electronically tuned

– Fully integratable topologies

– Resitorless realizations

– Only grounded capacitors are employed

– Operation in a low-voltage environment

• Fractional-order generalized filters, offering the following characteristics:

– Capability of realizing different families of filters (i.e., Butterworth,

Chebychev, etc.) using the same topology

– Capability of realizing different types of filters classified through the

bandform frequency response (i.e., lowpass, highpass, bandpass, etc.) using

the same topology

– All the above frequency characteristics as well as the fractional order are able to

be easily electronically tuned offering design flexibility and programmability

– Resitorless realizations

– Only grounded capacitors are employed

– Operation in a low-voltage environment

• Fully integrated fractional-order (capacitor and inductor) emulators, offering the

following attractive benefits:

– Electronic tuning of the impedance magnitude

– Electronic tuning of the fractional order

– Electronic tuning of the bandwidth of operation

– Resitorless realizations

8 1 Introduction



– Only grounded capacitors are employed

– Operation in a low-voltage environment

The main active cells that are employed are current mirrors, nonlinear

trancoductunce cells (known as S, C cells), and operational transconductance

amplifiers (OTAs). As a result, the designer has only to choose the appropriate

values of the dc bias currents in order to realize the desired transfer function, and

therefore the proposed schemes offer attractive features.

• Also, some interesting applications of the aforementioned designs will be

presented, where reasonable characteristics are offered making them attractive

candidates for realizing high performance fractional-order systems.

• Finally, simple circuit implementation setups are introduced for characterizing

fractional-order elements.

Consequently, the rest of the text of this book is organized as follows:

In Chap. 2, a systematic way of realizing fractional-order differentiator/integra-

tor topologies, as well as fractional-order generalized filters, is introduced. More

specifically, fractional-order filters of order α (low-pass, high-pass, band-pass,

all-pass), 1 þ α (low-pass, high-pass, band-pass, band-stop), α þ β (low-pass,

high-pass, band-pass, band-stop), and n þ α are presented, where n and α,β are

the integer and fractional parts, respectively. The theoretical mathematical back-

ground, as well as the design equations obtained using the second-order approxi-

mation of CFE, is given in detail. As a result, the appropriate selection of active

building blocks that could be used for realizing these topologies is depended on the

designer demand.

In Chap. 3, the realization of fractional-order topologies using the current-mode

technique is presented. Current-mirror blocks are utilized for performing fractional-

order topologies. The realization of fractional-order filters of order 1 þ α with

programmable characteristics are presented, the behavior of which has been eval-

uated through simulation results. Moreover, fractional-order blocks, including

differentiators and lossy and lossless integrators are presented, which are able to

be realized using the same structure topology. Filters of order 1 þ α are also given

where current mirror building blocks are utilized for realizing the aforementioned

circuits. The performance of the proposed topologies has been evaluated through

simulation and comparison results using the Analog Design Environment of the

Cadence software.

In Chap. 4, the realization of fractional-order topologies using the voltage mode

technique is presented. The basic building block that has been employed for this

purpose is an OTA, As a result, fractional-order filters of order α, and α þ β, are
realized, where the filter schemes are generalized in the sense that they offer various

types of filter functions. The performance of the proposed topologies has been evalu-

ated through simulation and comparison results using theAnalogDesignEnvironment

of the Cadence software, which proof that they offer reasonable characteristics.

In Chap. 5, a systematic procedure in an algorithmic way for realizing fractional-

order capacitor and inductor emulators are introduced for the first time in the

1.3 Book Objectives 9
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literature. Taking into account the offered benefits of the second-order approxima-

tion of the CFE, as well as the utilization of OTAs as active elements, the order,

impedance, and bandwidth of operation are able to be electronically tuned through

appropriate bias currents. The utilization of the already studied methods for emu-

lating fractional-order capacitors and inductors will be used for fabricating these

elements for the first time in the literature. The proposed designs are fabricated in

AMS 0.35 μm C35B4C3 CMOS technology, the right operation of which has been

verified through experimental results. As design examples, the performance of an

LβCα parallel resonator as well as a fractional band pass filter of order α þ β are

presented, which proofs that the fabricated designs offer attractive benefits and are

able to be utilized in high performance systems.

In Chap. 6, an attractive fractional-order topology capable for handling noisy

ECGs is introduced. The realization of this system is performed using the Sinh-

Domain technique. The performance of the proposed blocks has been evaluated

through the Analog Design Environment of the Cadence software. Taking into

account that the characterization of fractional-order elements is in general a

difficult, not straight forward, and cost-effective procedure, simple experimental

setups for characterizing fractional-order capacitors and supercapacitors are

introduced. In addition, fractional-order capacitors are employed in order to

emulate biological tissues using the well-known Cole-Cole model. Finally, the

design and evaluation of a fractional-order oscillator is realized proofing the

necessity of fractional calculus especially when compared with the

conventional way.
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Chapter 2

Procedure for Designing Fractional-Order
Filters

2.1 Introduction

Fractional-order differentiation and integration topologies offer attractive features

in various interdisciplinary applications. A typical application is the substitution of

conventional integer order parts of a system with the fractional-order parts, respec-

tively, where the existence of derivation/integration has a decisive position, and

offers important benefits. Also, they are able to be used in order to realize one of the

most important circuits in fractional-order theory, which is the fractal device. On

the other hand, fractional-order filters, offer more precise control of the attenuation

gradient, which is an efficient feature in biomedical engineering. Fractional-order

filters, differentiators, and integrators, will be presented in a systematic way that

describes the most important features of these structures; realizing such circuits

through the utilization of a general form enabling the capability of realizing

different kind of circuits by the same topology, which is very important from the

flexibility point of view. All the above will be performed through the utilization of

the second-order CFE, which is an efficient tool, in terms of accuracy and circuit

complexity, and has been described in Chap. 1 in detail. As a consequence, the main

benefit of this procedure is that having available the design equations, which are

expressed through integer-order functions, the capability of realizing these types of

functions utilizing different ways of circuit design could be achieved.

http://dx.doi.org/10.1007/978-3-319-55633-8_1


2.2 Fractional-Order Generalized Filters (Order α)

Integrators and differentiators are very useful building blocks for performing signal

conditioning in biomedical applications. Also, they are employed for realizing

oscillators, impedance emulators, and in control systems. Fractional-order digital

implementations of such circuits have been already published in the literature [1–5].

The utilization of the second-order expressions of CFE is an appropriate tool for

realizing fractional-order differentiators and integrators in order to approximate the

variable (τs)α using the formula given in (2.1). In case that α ¼ 1, this transfer

function represents a differentiator, while for α ¼ �1 an integrator. In the range

(0 < α < 1), this element may generally be considered to represent a fractional-

order differentiator, while in the range (�1 < α < 0), a fractional-order integrator.

τsð Þα ¼ α0 τsð Þ2 þ α1 τsð Þ þ α2

α2 τsð Þ2 þ α1 τsð Þ þ α0
ð2:1Þ

2.2.1 Fractional-Order Differentiator

The transfer function, as well as the magnitude response of an integer-order

differentiator is given by the formula H(s) ¼ τs, and H(ω) ¼ ω/ωo, respectively.

The unity gain frequency is ωo ¼ 1/τ , where τ is the corresponding time-constant.

In addition the phase response is constant and equal to π/2. Thus, the transfer

function of a fractional-order differentiator will be given by (2.2) as

H sð Þ ¼ τsð Þα ð2:2Þ

where (0< α< 1) is the order of the differentiator. The magnitude response is given

as H(ω) ¼ (ω/ωo)
α, from which is obvious that the unity gain frequency has the

same expression as in the case of its integer-order counterpart. Also, in this case the

phase response is constant but equal to απ/2 predicting the total reliance of phase

from the fractional-order α [6].

Comparing the above expressions of magnitude responses of fractional and

integer-order differentiator, it is obvious that at the same frequency the fractional-

order differentiator realizes a gain smaller than that achieved by its integer-order

counterpart. As a result, with the substitution of (2.1) into (2.2), the transfer

function of fractional-order differentiator is expressed as shown in (2.3), where αi
(i ¼ 0, 1, 2) is given by (1.6) or (1.10). Their values depend on the type of the

approximation that has been utilized.

Hdiff sð Þ ¼
αo
α2

� �
s2 þ α1

α2

� �
1
τ sþ 1

τ2

s2 þ α1
α2

� �
1
τ sþ αo

α2

� �
1
τ2

ð2:3Þ
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2.2.2 Fractional-Order Integrator

The transfer function of a fractional-order lossless integrator could be written as

shown in (2.4), while the magnitude response is given as H(ω) ¼ (ωo/ω)
α, where

ωo ¼ 1/τ is the unity gain frequency of the integrator. Its phase response will be a

constant equal to �απ/2.

H sð Þ ¼ 1

τsð Þα ð2:4Þ

The corresponding expressions of its integer-order counterpart with the same

unit gain frequency will be H(ω)¼ ωo/ω and�π/2, respectively. By using the same

order of approximation as in the case of fractional-order differentiator, the transfer

function in (2.4) could be approximated as it is demonstrated in (2.5), where αi
(i ¼ 0,1,2) is given by (1.6) or (1.10).

Hint sð Þ ¼
α2
α0

� �
s2 þ α1

α0

� �
1
τ sþ 1

τ2

s2 þ α1
α0

� �
1
τ sþ α2

α0

� �
1
τ2

ð2:5Þ

Taking into account that the transfer function in (2.3) and (2.5) have an integer-

order form, they could be easily performed either by the typical functional block

diagram (FBD) of the follow-the-leader-feedback (FLF) topology depicted in

Fig. 2.1a, or the inverse-follow-the-leader, multi-feedback (IFLF) topology given

in Fig. 2.1b, where the notation (xGi) implies a scaled replica of the corresponding

output. The transfer function is that in (2.6). Comparing (2.3) and (2.5) with (2.6)

Fig. 2.1 FBD for realizing fractional-order differentiator/integrator of order α using (a) FLF
current-mode topology, (b) IFLF voltage-mode topology
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the derived expressions of time-constants τi and gain factors Gi (i ¼ 0,1,2) are as

summarized in Tables 2.1, and 2.2, respectively.

H sð Þ ¼ G2s
2 þ G1

τ1
sþ G0

τ1τ2

s2 þ 1
τ1
sþ 1

τ1τ2

ð2:6Þ

2.3 Fractional-Order Generalized Filters (Order α)

Fractional-order filters of order α where (0 < α < 1) will be presented and some of

the most critical frequencies have been derived in order to be fully characterized.

From the stability point of view, this system is stable if and only if α> 0 and α< 2,

while it will oscillate if and only if α > 0 and α ¼ 2; otherwise it is unstable. The

derived frequency responses of filters of order α exhibit a stopband attenuation

proportionate to the fractional-order α, which offers a more precise control of the

attenuation gradient compared to the attenuation offered in the case of integer-order

filters of order n, which is �6�n dB/oct [6–19].

Thus, low-pass, high-pass, band-pass, and all-pass filters of order α will be

presented. Also, using a general topology, all the aforementioned type of filters

could be realized, using the same core. The most important critical frequencies that

will be studied are the following:

• ωp is the frequency at which the magnitude response has a maximum or a

minimum and is obtained by solving the equation d
dω H jωð Þj jω¼ωp

¼ 0

• ωh is the half-power frequency at which H jωð Þj jω¼ωh
¼ H jωð Þj jω¼ωp

=
ffiffiffi
2

p

• ωrp is the right-phase frequency at which the phase ∠H( jω)¼� π/2

It should be mentioned that ωrp exists only if α > 1.

Table 2.1 Design

expressions of time-constants

τi for approximating

fractional-order

differentiator, lossless

integrator with unity gain

frequency (ωo ¼ 1/τ)

Transfer function τ1 τ2
H(s)¼ (τs)α α2

α1

� �
� τ α1

α0

� �
� τ

H sð Þ ¼ 1

τsð Þα
α0
α1

� �
� τ α1

α2

� �
� τ

Table 2.2 Design

expressions of gain factors Gi

for approximating fractional-

order differentiator, lossless

integrator with unity gain

frequency (ωo ¼ 1/τ)

Transfer function G2 G1 G0

H(s)¼ (τs)α α0
α2

� �
1 α2

α0

� �

H sð Þ ¼ 1

τsð Þα
α2
α0

� �
1 α0

α2

� �
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2.3.1 Fractional-Order Low-Pass Filter (FLPF)

The transfer function of a FLPF is that in (2.7), where κ is the low-frequency gain

and ωo� 1/τ the pole frequency. The magnitude and phase response are given by

(2.8). The critical frequencies are summarized in Table 2.3, where the magnitude

and phase values are also given. Using (2.8), the expressions for the ωh and the

corresponding phase are these in (2.9).

H sð Þ ¼ κ
ωo

α

sα þ ωo
α
¼ κ

1

τsð Þα þ 1
ð2:7Þ

H jωð Þj j ¼ κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω
ωo

� �2α
þ 2 ω

ωo

� �α
cos απ

2

� �þ 1

r ð2:8aÞ

∠HðjωÞ ¼ ∠κ � tan �1

ω
ωo

� �α
sin απ

2

� �
ω
ωo

� �α
cos απ

2

� �þ 1

0
B@

1
CA ð2:8bÞ

In addition, the peak and right-phase frequency are found as ωp ¼ ωo[�cos(απ/
2)]1/α, and ωrp ¼ ωo/[�cos(απ/2)]1/α. The stopband attenuation gradient of the

fractional-order low-pass filter order α is equal to �6�α dB/oct.

ωh ¼ ωo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos 2

απ

2

� �r
� cos

απ

2

� �	 
1 α=

ð2:9aÞ

∠H jωð Þω¼ωh
¼ ∠κ � tan �1 sin απ

2

� �
2cos απ

2

� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos 2 απ

2

� �q
0
B@

1
CA ð2:9bÞ

2.3.2 Fractional-Order High-Pass Filter (FHPF)

The transfer function of a FHPF with high-frequency gain κ and pole frequency

ωo� 1/τ is that in (2.10). The magnitude response and phase response are given by

(2.11), while all the critical frequencies are summarized in Table 2.4.

Table 2.3 Magnitude and

phase values at important

frequencies for the FLPF

ω jH( jω)j ∠jH( jω)j
!0 κ ∠κ

ωo
κ

2 cos απ
4

∠κ� απ/4

!1 0 ∠κ� απ/2

ωh
κ � 1ffiffiffi

2
p ∠κ � tan �1 sin απ

2ð Þ
2cos απ

2ð Þþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þcos 2 απ

2ð Þp
 !
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H sð Þ ¼ κ
ωo

αsα

sα þ ωo
α
¼ κ

τsð Þα
τsð Þα þ 1

ð2:10Þ

H jωð Þj j ¼
κ ω

ωo

� �α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω
ωo

� �2α
þ 2 ω

ωo

� �α
cos απ

2

� �þ 1

r ð2:11aÞ

∠H jωð Þ ¼ ∠κ þ απ=2� tan �1

ω
ωo

� �α
sin απ

2

� �
ω
ωo

� �α
cos απ

2

� �þ 1

0
B@

1
CA ð2:11bÞ

The corresponding expressions for the ωh and phase at this frequency are given

by (2.12). In addition, the peak, and right-phase frequency are found as ωp ¼ ωo/

[�cos(απ/2)]1/α, and ωrp ¼ ωo[�cos(απ/2)]1/α. From these expressions it is seen

that both ωp and ωrp exist only if α > 1. Also, the stopband attenuation gradient of

the fractional-order high-pass filter of order α is equal to þ6�α dB/oct.

ωh ¼ ωo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos 2

απ

2

� �r
þ cos

απ

2

� �	 
1 α=

ð2:12aÞ

∠H jωð Þω¼ωh
¼ ∠κ þ απ

2
� tan �1 sin απ

2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos 2 απ

2

� �q
0
B@

1
CA ð2:12bÞ

2.3.3 Fractional-Order Band-Pass Filter (FBPF)

The transfer function of a FBPF with peak-frequency gain κ and pole frequency

ωo � 1/τ is that in (2.13), where the magnitude and phase is as shown in (2.14a) and

(2.14b), respectively. In order to obtain a FBPF response, the condition α > β
should be fulfilled. All the critical frequencies are summarized in Table 2.5.

Table 2.4 Magnitude and

phase values at important

frequencies for the FHPF

ω jH( jω)j ∠jH( jω)j
!0 0 ∠κþ απ/2

ωo
κ

2 cos απ
4

� � ∠κþ απ/4

!1 κ ∠κ

ωh κ � 1ffiffiffi
2

p
∠κ þ απ

2
� tan �1 sin απ

2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos 2 απ

2

� �q
0
B@

1
CA
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H sð Þ ¼ κ
ωo

αsβ

sα þ ωo
α
¼ κ

τsð Þβ
τsð Þα þ 1

ð2:13Þ

H jωð Þj j ¼
κ ω

ωo

� �β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω
ωo

� �2α
þ 2 ω

ωo

� �α
cos απ

2

� �þ 1

r ð2:14aÞ

∠H jωð Þ ¼ ∠κ þ βπ=2� tan �1

ω
ωo

� �α
sin απ

2

� �
ω
ωo

� �α
cos απ

2

� �þ 1

0
B@

1
CA ð2:14bÞ

The peak frequency (ωp), calculated from the condition d
dω H jωð Þj jω¼ωp

¼ 0, is

given by (2.15). In the case that α ¼ 2β, then ωp ¼ ωo. Obviously, for α ¼ β, the
transfer function in (2.13) is modified and corresponds to the already known FHPF.

ωp ¼ ωo

cos απ
2

� �
2β � αð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 4β α� βð Þtan 2 απ

2

� �qh i
2 α� βð Þ

8<
:

9=
;

1 α=

ð2:15Þ

All the critical frequencies are summarized in Table 2.5, where the magnitude

and phase values are also given. It should be mentioned that the stopband attenu-

ation gradient at the upper frequencies is �6�(α�β) dB/oct, while for the lower

frequencies is þ6 β dB/oct, offering the capability of realizing a low-Q band pass

filter with different slopes of the stopband attenuations. In case that α ¼ 2β, the
slope is then equal to �6�β dB/oct, and þ6 β dB/oct, respectively.

2.3.4 Fractional-Order All-Pass Filter (FAPF)

A FAPF with gain κ and pole frequency ωo� 1/τ is described through the transfer

function given by (2.16)

H sð Þ ¼ κ
sα � ωo

α

sα þ ωo
α
¼ κ

τsð Þα � 1

τsð Þα þ 1
ð2:16Þ

Table 2.5 Magnitude and

phase values at important

frequencies for the FBPF

ω |H( jω)| ∠|H( jω)|

!0 0 ∠κþβπ/2

ωp¼ωo ωo
β

2 cos απ
4

� � ∠κþ [(2β� α)π]/4

!1 ωo
αωβ ‐ α ∠κþ [(β� α)π]/2
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Its frequency behavior is described by (2.17)

H jωð Þj j ¼ κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω
ωo

� �2α
� 2 ω

ωo

� �α
cos απ

2

� �þ 1

ω
ωo

� �2α
þ 2 ω

ωo

� �α
cos απ

2

� �þ 1

vuuuut ð2:17aÞ

It can be easily seen here that ωp ¼ ωrp ¼ ωo, as well as that at this frequency a

minima occurs if α < 1 and a maxima occurs if α > 1 while the magnitude remains

flat when α ¼ 1 (i.e., classical integer-order all-pass filter). All the critical frequen-

cies are summarized in Table 2.6 where the magnitude and phase values are also

given.

∠H jωð Þ ¼ ∠κ

�tan �1

ω
ωo

� �α
sin

απ

2

� �
ω
ωo

� �α
cos

απ

2

� �
� 1

0
B@

1
CA� tan �1

ω
ωo

� �α
sin

απ

2

� �
ω
ωo

� �α
cos

απ

2

� �
þ 1

0
B@

1
CA

ð2:17bÞ

2.3.5 Design Equations for Generalized Filters of Order α

Taking into account that the transfer functions of all the aforementioned fractional-

order filters are expressed through the variables (τs)α and/or (τs)β, and the fact that

they are not realizable, they should be approximated by appropriate expressions.

Using the second-order expressions of the CFE given by (2.1) and substituting into

(2.7), (2.10), (2.13), and (2.16), the derived transfer functions are given in (2.18).

The coefficient αi corresponds to the approximation of variable (τs)α, while bi to
the variable (τs)β. Comparing the transfer functions of the FLPF and FHPF, the

numerator in HHP(s) is easily derived through the substitution: α0$α2 in the

numerator of HLP(s).
Inspecting the transfer functions of FLPF, FHPF, and FAPF it is concluded that

all of them have the same form. Consequently, they could be realized by the same

topology just by changing the coefficient values. A suitable solution for this purpose

has been already given in Fig. 2.1, where the realized transfer function is that given

in (2.6).

Table 2.6 Magnitude and

phase values at important

frequencies for the FAPF

ω |H( jω)| ∠|H( jω)|

!0 0 ∠κþ π

ωp¼ωo κ � tan απ

4

� �
∠κþ π/2

ωh κ ∠κ
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H LP
α sð Þ ¼ κ

α0 þ α2
� α2s

2 þ α11τ sþ α0 1τ2

s2 þ 2α1
α0þα2

� �
1
τ sþ 1

τ2

ð2:18aÞ

HHP
α sð Þ ¼ κ

α0 þ α2
� α0s

2 þ α11τ sþ α2 1
τ2

s2 þ 2α1
α0þα2

� �
1
τ sþ 1

τ2

ð2:18bÞ

HAP
α sð Þ ¼ κ

α0 � α2
α0 þ α2

� s2 � 1
τ2

s2 þ 2α1
α0þα2

� �
1
τ sþ 1

τ2

ð2:18cÞ

HBP
α sð Þ ¼ κ

α0 þ α2
� α2s

2 þ α1 1
τ sþ α0 1

τ2

s2 þ 2α1
α0þα2

� �
1
τ sþ 1

τ2

� 1
b2

� b0s
2 þ b1

1
τ sþ b2

1
τ2

s2 þ b1
b2

� �
1
τ sþ b0

b2
1
τ2

ð2:18dÞ

Comparing the coefficients of (2.6) with those of FLPF, FHPF, and FAPF in

(2.18), it is derived that the design equations about the time-constants of fractional-

order low-pass, high-pass, and all-pass filters of order α are those in (2.19).

The corresponding design equations for the scaling factors Gi (i ¼ 0, 1, 2) are

summarized in Table 2.7.

τ1 ¼ α0 þ α2
2α1

� τ ð2:19aÞ

τ2 ¼ 2α1
α2 þ α0

� τ ð2:19bÞ

With regards to the FBPF realization, a possible solution is the FBD in Fig. 2.2,

where H1(s) and H2(s) are mentioned filter blocks as that in Fig. 2.1, which realize

the transfer function in (2.6). The expressions for time-constants τij, where (i¼ 1, 2)

is the number of time-constants of each state, and ( j ¼ 1, 2) is the number of state,

are given by (2.20). The time-constants of the first stageτi1 have the same values as

in (2.19). The corresponding design equation for the scaling factors Gij (i ¼ 0, 1, 2

and j ¼ 1, 2) of both stages are also summarized in Table 2.7.

Table 2.7 Values of scaling

factors Gij for realizing FLPF,

FHPF, FAPF, and FBPF of

order α in Figs 2.1, and 2.2

Filter G2 G1 G0

FLPF κ � α2
α2 þ α0

κ

2
κ � α0

α2 þ α0

FHPF κ � α0
α2 þ α0

κ

2
κ � α2

α0 þ α2

FAPF κ � α0 � α2
α2 þ α0

0 �κ � α0 � α2
α2 þ α0

FBPF ( j ¼ 1) κ � α2
α2 þ α0

κ

2
κ � α0

α2 þ α0

( j ¼ 2) b0
b2

1 b2
b0
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τ11 ¼ α0 þ α2
2α1

� τ, τ12 ¼ b2
b1

� τ ð2:20aÞ

τ21 ¼ 2α1
α2 þ α0

� τ, τ22 ¼ b1
b0

� τ ð2:20bÞ

2.4 Fractional-Order Generalized Filters (Order 1 þ α)

Although, fractional-order filters constitute a small portion of fractional-order

calculus, they have gained a growing research interest offering important features

especially on behavior of the attenuation gradient. The stopband attenuation of

integer order filters has been limited to increments based on the order n, but using
the fractional Laplacian operator attenuations between these integer steps can be

achieved creating fractional step filter of order (nþ α), where α is the fractional step
between integer orders n and n þ 1 and is therefore limited to (0 < α < 1). The

derived frequency responses of filters of order 1 þ α exhibit a stopband attenuation

equal to �6�(1 þ α) dB/oct, which offer a more precise control of the attenuation

gradient compared to the attenuation offered in the case of integer-order filters of

order n, which is �6�n dB/oct [6–19]. In this section, low-pass, high-pass, band-

pass, and band-stop filters of order 1 þ α are presented, and some of the most

critical frequencies (ωp, ωh) are also given in order to be fully characterized.

Finally, using the CFE method, the derived design equations results into a general

topology, from which all the aforementioned type of filters could be realized.

2.4.1 Fractional-Order Low-Pass Filter (FLPF)

According to the analysis provided in [8], the direct realization of a fractional filter

of the order n þ α is stable in the case that n þ α < 2. Therefore, only fractional

filters of the order 1 þ α offer realizations without stability problem. The transfer

function of a 1 þ α-order fractional low-pass filter is given by

Fig. 2.2 FBD for realizing

FBPF of order α using (a)
current mode topology, (b)
voltage mode topology
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H sð Þ ¼ κ1
s1þα þ κ2

ð2:21Þ

where the low-frequency gain is equal to κ1/κ2, and the�3 dB frequency is given by

(2.22)

ω�3dB ¼ κ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos 2

1þ αð Þπ
2

r !
� cos

1þ αð Þπ
2

" # 1
1þα

ð2:22Þ

The obtained frequency responses suffer from the presence of an undesired peaking

equal to κ1/κ2[(sin(1 þ α)π/2)] at the frequency ωp ¼ [�κ2cos(1 þ α)π/2]�(1þα).

In order to overcome this problem, the modified transfer function given by (2.23),

which intends to approximate the all-pole Butterworth response, is introduced, where

an extra termequal to κ3s
α has been added in the denominator of the transfer function in

(2.21). The transfer function of a FLPF with low-frequency gain κ1/κ2 and pole

frequency ωo ¼ 1/τ is that in (2.23)

H sð Þ ¼ κ1

τsð Þ1þα þ κ3 τsð Þα þ κ2
ð2:23Þ

The factors κi (i ¼ 1, 2, 3) are calculated by appropriate expressions, in order to

minimize the error in the frequency response [9]. Such expressions are recalled in

(2.24).

κ1 ¼ 1

κ2 ¼ 0:2937αþ 0:71216
κ3 ¼ 1:068α2 þ 0:161αþ 0:3324

ð2:24Þ

The magnitude response and phase response are given by (2.25) as

H jωð Þj j ¼ κ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω
ωo

� �2 1þαð Þ
� 2κ2 ω

ωo

� �1þα
sin

απ

2

� �
þ κ32 ω

ωo

� �2α
þ

2κ2κ3 ω
ωo

� �α
cos

απ

2

� �
þ κ22

vuuut
ð2:25aÞ

∠H jωð Þ ¼ ∠κ1 � tan �1

ω
ωo

� �1þα
cos απ

2

� �þ κ3 ω
ωo

� �α
sin απ

2

� �
� ω

ωo

� �1þα
sin απ

2

� �þ κ3 ω
ωo

� �α
cos απ

2

� �þ κ2

0
B@

1
CA ð2:25bÞ

The peak frequency (ωp) is calculated solving the following equation:

2 1þ αð Þ ωp

ωo

� �2þα
� 2κ2 1þ αð Þ ωp

ωo

� �
sin

απ

2

� �
þ2ακ32

ωp

ωo

� �α
þ 2ακ2κ3 cos

απ

2

� �
¼ 0

ð2:26Þ

which is derived from (2.25) under the condition d
dω H jωð Þj jω¼ωp

¼ 0.
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The half-power (�3 dB) frequency (ωh), defined as the frequency where there is

a 0.707 drop of the passband gain, is calculated solving the following equation:

ωh

ωo

� �2 1þαð Þ
� 2κ2

ωh

ωo

� �1þα
sin

απ

2

� �
þ κ32

ωh

ωo

� �2α
þ 2κ2κ3

ωh

ωo

� �α
cos

απ

2

� �
� κ22 ¼ 0

ð2:27Þ

Also, the stopband attenuation gradient of the 1 þ α fractional-order low-pass

filter is equal to �6�(1 þ α) dB/oct.

2.4.2 Fractional-Order High-Pass Filter (FHPF)

The transfer function of a FHPF is given by (2.28)

H sð Þ ¼ κ1s1þa

τsð Þ1þa þ κ3 τsð Þa þ κ2
ð2:28Þ

The magnitude response and phase response are given by (2.29).

H jωð Þj j ¼
κ1 ω

ωo

� �1þα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω
ωo

� �2 1þαð Þ
� 2κ2 ω

ωo

� �1þα
sin

απ

2

� �
þ κ32 ω

ωo

� �2α
þ

2κ2κ3 ω
ωo

� �α
cos

απ

2

� �
þ κ22

vuuut
ð2:29aÞ

∠H jωð Þ ¼ ∠κ1 þ 1þ αð Þπ
2

�tan �1

ω
ωo

� �1þα
cos

απ

2

� �
þ κ3 ω

ωo

� �α
sin

απ

2

� �
� ω

ωo

� �1þα
sin

απ

2

� �
þ κ3 ω

ωo

� �α
cos

απ

2

� �
þ κ2

0
B@

1
CA ð2:29bÞ

The peak frequency (ωp) is calculated solving the equation given in (2.30),

which is derived from (2.29) under the condition d
dω H jωð Þj jω¼ωp

¼ 0.

κ2 1þ αð Þ ωp

ωo

� �1þα
sin

απ

2

� �
� κ32

ωp

ωo

� �2α
� 2þ αð Þκ2κ3 ωp

ωo

� �α
cos

απ

2

� �
� 1þ αð Þκ22 ¼ 0

ð2:30Þ

The half-power (�3 dB) frequency (ωh), defined as the frequency where there is

a 0.707 drop of the passband gain, is calculated solving the equation given in (2.31).
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Also, the stopband attenuation gradient of the fractional-order high-pass filter order

1 þ α is equal to þ6�(1 þ α) dB/oct.

ωh

ωo

� �2 1þαð Þ
þ 2κ2

ωh

ωo

� �1þα
sin

απ

2

� �
� κ32

ωh

ωo

� �2α
� 2κ2κ3

ωh

ωo

� �α
cos

απ

2

� �
� κ22 ¼ 0

ð2:31Þ

2.4.3 Fractional-Order Band-Pass Filter (FBPF)

The transfer function of a FBPF is given by (2.32)

H sð Þ ¼ κ1
κ3 τsð Þa

τsð Þ1þa þ κ3 τsð Þa þ κ2
ð2:32Þ

Using (2.32), the magnitude and phase response are given as

H jωð Þj j ¼
κ1κ3 ω

ωo

� �α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω
ωo

� �2 1þαð Þ
� 2κ2 ω

ωo

� �1þα
sin

απ

2

� �
þ κ32 ω

ωo

� �2α
þ

2κ2κ3 ω
ωo

� �α
cos

απ

2

� �
þ κ22

vuuut
ð2:33aÞ

∠H jωð Þ ¼∠κ1κ3 þ απ

2

�tan �1

ω
ωo

� �1þα
cos

απ

2

� �
þ κ3 ω

ωo

� �α
sin

απ

2

� �
� ω

ωo

� �1þα
sin

απ

2

� �
þ κ3 ω

ωo

� �α
cos

απ

2

� �
þ κ2

0
B@

1
CA ð2:33bÞ

The peak frequency (ωp) is calculated solving the equation given in (2.34),

which is derived from (2.33a) under the condition d
dω H jωð Þj jω¼ωp

¼ 0.

ωp

ωo

� �2 1þαð Þ
� 1� αð Þκ2 ωp

ωo

� �1þα
sin

απ

2

� �
� ακ2κ3

ωp

ωo

� �α
cos

απ

2

� �
� ακ22 ¼ 0

ð2:34Þ

The half-power (�3 dB) freaquencies (ωh1, ωh2) are defined as the frequencies

where there is a 0.707 drop of the passband gain. The quality factor of the filter (Q)
is calculated solving the following equation:

Q ¼ ωp

ωh2 � ωh1

ð2:35Þ

where ωh2 and ωh1 are the upper and lower half-power frequencies, respectively.
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Also, the stopband attenuation gradient at the upper frequencies is �6 dB/oct,

while for the lower frequencies isþ6�α dB/oct, offering the capability of realizing a

FBPF with the stopband attenuation being varied at the lower frequencies.

2.4.4 Fractional-Order Band-Stop Filter (FBSF)

A FBSF has the transfer function given by (2.36)

H sð Þ ¼ κ1
τsð Þ1þα þ κ2

τsð Þ1þα þ κ3 τsð Þα þ κ2
ð2:36Þ

The magnitude response and phase response are given by (2.37), while the peak

frequency (ωp) is calculated from (2.37) under the condition d
dω H jωð Þj jω¼ωp

¼ 0.

The half-power (�3 dB) frequencies (ωh) are calculated from the condition that at

these frequencies there is a 0.707 drop of the passband gain.

H jωð Þj j ¼ κ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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vuuuuuuuut
ð2:37aÞ

∠HðjωÞ ¼ ∠k1 þ tan�1
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2
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2
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ð2:37bÞ

The quality factor of the filter is calculated according to the formula:

Q ¼ ωp

ωh2 � ωh1

ð2:38Þ

where ωh2 and ωh1 are the upper and lower half-power frequencies, respectively.

2.4.5 Design Equations for Generalized Filters
of Order 1 þ α

The realization of the fractional-order filters of order 1 þ α has been achieved in a

similar way as in the previous section, where the approximation of variable (τs)α
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has been performed through the utilization of the second-order expressions of the

CFE given by (2.1) and substitution into (2.23), (2.28), (2.32), and (2.36). As a

result, the derived transfer functions are that in (2.39).

Inspecting the transfer functions of FLPF, FHPF, FBPF, and FBSF, it is con-

cluded that all of them have the same form. Consequently they could be realized by

the same topology just by changing the coefficient values. A suitable solution for

this purpose is depicted in Fig. 2.3, where a typical (FBD) of a (FLF) topology and

an (IFLF) topology are given in Fig. 2.3a and Fig. 2.3b, respectively. The realized

transfer function is that given in (2.40).

H LP
1þα sð Þ ¼ κ1

α0
� α2 1

τ s
2 þ α1 1

τ2 sþ α0 1
τ3

s3 þ α1 þ κ2α2 þ κ3α0
α0

� �
1

τ
s2þ

α2 þ κ2α1 þ κ3α1
α0

� �
1

τ2
sþ κ3α2 þ κ2α0

α0

� �
1

τ3

2
6664

3
7775

ð2:39aÞ

HHP
1þα sð Þ ¼ κ1

α0
� α0s3 þ α1s2 þ α2s

s3 þ α1 þ κ2α2 þ κ3α0
α0

� �
1

τ
s2þ

α2 þ κ2α1 þ κ3α1
α0

� �
1

τ2
sþ κ3α2 þ κ2α0

α0

� �
1

τ3

2
6664

3
7775

ð2:39bÞ

HBP
1þα sð Þ ¼ κ1κ3

α0
� α01τs

2 þ α1 1
τ2 sþ α2 1

τ3

s3 þ α1 þ κ2α2 þ κ3α0
α0

� �
1

τ
s2þ

α2 þ κ2α1 þ κ3α1
α0

� �
1

τ2
sþ κ3α2 þ κ2α0

α0

� �
1

τ3

2
664

3
775

ð2:39cÞ

Fig. 2.3 FBD for realizing FLPF, FHPF, FBPF, and FBSF of order 1 þ α using (a) current mode

topology, (b) voltage mode topology
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HBS
1þα sð Þ ¼ κ1

α0
� α0s

3 þ α1 þ κ2α2ð Þ1τs2 þ α2 þ κ2α1ð Þ 1τ2 sþ κ2α0ð Þ 1τ3
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τ
s2þ
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α0
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τ2
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1

τ3

2
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3
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ð2:39dÞ

H sð Þ ¼ G3s
3 þ G2

τ1
s2 þ G1

τ1τ2
sþ G0

τ1τ2τ3

s3 þ 1
τ1
s2 þ 1

τ1τ2
sþ 1

τ1τ2τ3

ð2:40Þ

Comparing the coefficients of (2.40) with these of FLPF, FHPF, and FBSF it is

derived that the design equations about the time-constants τi (i ¼ 1, 2, 3) of all the

filters are given in (2.41).

τ1 ¼ α0
κ2α2 þ κ3α0 þ α1

� τ ð2:41aÞ

τ2 ¼ κ2α2 þ κ3α0 þ α1
κ2α1 þ κ3α1 þ α2

� τ ð2:41bÞ

τ3 ¼ κ2α1 þ κ3α1 þ α2
κ2α0 þ κ3α2

� τ ð2:41cÞ

The corresponding design equations for the scaling factors Gi (i ¼ 0,. . .,3) are
summarized in Table 2.8.

2.5 Fractional-Order Generalized Filters (Order α þ β)

The utilization of two different orders α and β, where α þ β < 2 and α, β > 0

provides one more degree of freedom, which is able to vary, in order to realize

fractional order filters of order α þ β. Such kind of filters exhibit a stopband

attenuation which is proportionate to the fractional-order α, β. In this section,

Table 2.8 Values of scaling factors Gi (i ¼ 0,. . .,3) for realizing fractional low-pass, high-pass,

band-pass, and band-stop filter in Fig. 2.3 of order 1 þ α

Filter G3 G2 G1 G0

FLPF 0 κ1α2
κ2α2 þ κ3α0 þ α1

κ1α1
α2 þ κ2 þ κ3ð Þα1

κ1α0
κ2α0 þ κ3α2

FHPF κ1 κ1α1
κ2α2 þ κ3α0 þ α1

κ1α2
α2 þ κ2 þ κ3ð Þα1

0

FBPF 0 κ1κ3α0
κ2α2 þ κ3α0 þ α1

κ1κ3α1
α2 þ κ2 þ κ3ð Þα1

κ1κ3α2
κ2α0 þ κ3α2

FBSF κ1 κ1 α1 þ κ2α2ð Þ
κ2α2 þ κ3α0 þ α1

κ1 α2 þ κ2α1ð Þ
α2 þ κ2 þ κ3ð Þα1

κ1κ2α0
κ3α2 þ κ2α0
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FLPF, FHPF, FBPF, and FBSF of order α þ β are presented, and some of the most

critical frequencies have been derived in order to be fully characterized.

The most important critical frequencies that will be presented are the following:

• ωp is the frequency at which the magnitude response has a maximum or a

minimum and is obtained by solving the equation d
dω H jωð Þj jω¼ωp

¼ 0

• ωh is the half-power frequency at which the power drops to half the passband

power, i.e., H jωð Þj jω¼ωh
¼ H jωð Þj jω¼ωp

=
ffiffiffi
2

p

Also, using a general topology, all the aforementioned type of filters could be

realized and this is very important from the flexibility point of view.

2.5.1 Fractional-Order Low-Pass Filter (FLPF)

The transfer function of the FLPF of order α þ β is given by Eq. (2.42)

H sð Þ ¼ κ1

τsð Þαþβ þ κ3 τsð Þβ þ κ2
ð2:42Þ

The magnitude response and phase response are given by (2.43). The half-power

(�3 dB) frequency (ωh), defined as the frequency where there is a 0.707 drop of the

passband gain, is calculated solving the equation given by (2.44), which is derived

taking into account that the maximum gain of the filter is κ1/κ2. Also, the stopband
attenuation gradient of the fractional-order low-pass filter of order α þ β is equal to

�6�(α þ β) dB/oct.

H jωð Þj j ¼ κ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω
ωo

� �2 αþβð Þ
þ κ32 ω

ωo

� �2β
þ κ22 þ 2κ3 ω

ωo

� �αþ2β
cos

απ

2

� �

þ2κ2 ω
ωo

� �αþβ
cos

αþ βð Þπ
2

	 

þ 2κ2κ3 ω

ωo

� �β
cos

βπ

2

� �
vuuuuut

ð2:43aÞ
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cos

βπ

2

� �
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ð2:44Þ
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2.5.2 Fractional-Order High-Pass Filter (FHPF)

The transfer function of a HLPF with maximum gain equal to κ1/κ2 is that in (2.45)

H sð Þ ¼ κ1 τsð Þαþβ

τsð Þαþβ þ κ3 τsð Þβ þ κ2
ð2:45Þ

The magnitude response and phase response are given by (2.46) as

H jωð Þj j ¼
κ1 ω

ωo

� �αþβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω
ωo

� �2 αþβð Þ
þ κ32 ω

ωo

� �2β
þ κ22 þ 2κ3 ω

ωo

� �αþ2β
cos

απ

2

� �
þ

þ2κ2 ω
ωo

� �αþβ
cos

αþ βð Þπ
2

	 

þ 2κ2κ3 ω

ωo

� �β
cos

βπ

2

� �
vuuuuut

ð2:46aÞ
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The half-power (�3 dB) frequency (ωh), defined as the frequency where there is

a 0.707 drop of the passband gain, is calculated solving the equation given in (2.47).

Also, the stopband attenuation gradient of the fractional-order high-pass filter of

order α þ β is equal to 6�(α þ β) dB/oct.
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� 2κ3
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2
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ð2:47Þ

2.5.3 Fractional-Order Band-Pass Filter (FBPF)

The transfer function of a FBPF is

H sð Þ ¼ κ1
κ3 τsð Þβ

τsð Þαþβ þ κ3 τsð Þβ þ κ2
ð2:48Þ
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Using (2.48), the magnitude and phase response is expressed through the fol-

lowing equations:

H jωð Þj j ¼
κ1κ3 ω

ωo

� �β
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∠H jωð Þ ¼∠κ1κ3 þ βπ

2

�tan �1

ω
ωo

� �αþβ
sin

αþ βð Þπ
2

	 

þ κ3 ω

ωo

� �β
sin

βπ

2

� �
ω
ωo

� �αþβ
cos

αþ βð Þπ
2

	 

þ κ3 ω

ωo

� �β
cos

βπ

2

� �
þ κ2

0
BB@

1
CCA
ð2:49bÞ

The peak frequency (ωp) is calculated solving the equation given in (2.49),

which is derived from (2.48) with the condition: d
dω H jωð Þj jω¼ωp

¼ 0.

α ωp
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The quality factor of the filter is calculated according to the formula:

Q ¼ ωp

ωh2 � ωh1

ð2:51Þ

where ωh2 and ωh1 are the upper and lower half-power frequencies, respectively.

Also, the stopband attenuation gradient at the upper frequencies is �6�α dB/oct,

while for the lower frequencies isþ6�β dB/oct, offering the capability of realizing a
FBPF with the stopband attenuation being varied in both frequency regions.

2.5.4 Fractional-Order Band-Stop Filter (FBSF)

A FBSF has the transfer function given by (2.52).

H sð Þ ¼ κ1
τsð Þaþβ þ κ2

τsð Þaþβ þ κ3 τsð Þβ þ κ2
ð2:52Þ
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H jωð Þj j ¼ κ1
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The magnitude response and phase response are given by (2.53), while the peak

frequency (ωp) is calculated from (2.53) under the condition d
dω H jωð Þj jω¼ωp

¼ 0.

The half-power (�3 dB) frequencies (ωh) are calculated using the fact that at these

frequencies there is a 0.707 drop of the passband gain which is equal to κ1. The
quality factor of the filter is calculated from (2.51).

2.5.5 Design Equations for Generalized Filters
of Order α þ β

Utilizing the second-order expression of the CFE given by (2.1) and substituting

into (2.42), (2.45), (2.48), and (2.52) the derived transfer function for FLPF, FHPF,

FBPF, and FBSF is the following:

Hαþβ sð Þ ¼ κ1
D4

� N4s
4 þ N3

1
τs

3 þ N2
1
τ2s

2 þ N1
1
τ3 sþ N0
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s4 þ D3
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� �
1
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3 þ D2
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τ2s

2 þ D1
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� �
1
τ3sþ D0

D4

1
τ4

h i ð2:54Þ

where the coefficients of the denominator Di and nominator Ni (i ¼ 1,. . .,4) have
been defined in (2.55), and Table 2.9, respectively.

D0 � α2b2 þ κ3α0b2 þ κ2α0b0
D1 � α1b2 þ α2b1 þ κ3α1b2 þ κ3α0b1 þ κ2α1b0 þ κ2α0b1
D2 � α0b2 þ α0b1 þ α2b0 þ κ3α2b2 þ κ3α1b1 þ κ3α0b0

þκ2α2b0 þ κ2α1b1 þ κ2α0b2
D3 � α0b1 þ α1b0 þ κ3α2b1 þ κ3α1b0 þ κ2α2b1 þ κ2α1b2

D4 � α0b0 þ κ3α2b0 þ κ2α2b2

ð2:55Þ
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Comparing the transfer functions of the FLPF and FHPF, it is easily derived that

the numerator inHHP(s) is derived through the substitution α0$α2 and b0$b2 in the
numerator of HLP(s). In a similar way, the numerator in HBP(s) is derived through

the substitution b0$b2 in the numerator of HLP(s) multiplied by the factor κ3.
Inspecting the transfer function given in (2.54), it is easily concluded that all of

them were expressed by the same form, and consequently they could be realized by

the same topology just by changing the coefficient values.

A suitable solution for this purpose is depicted in Fig. 2.4, where a typical FBD

of a FLF topology and an IFLF topology are given in Fig. 2.4a and Fig. 2.4b,

respectively. The realized transfer function is that given in (2.56).

Comparing the coefficients of (2.54) with those in (2.56), it is derived that the

design equations about the time-constants τj ( j ¼ 1,. . .,4) of all the filters and the

corresponding design equation for the scaling factor Gi (i ¼ 0,. . .,4) are given in

(2.57) and (2.58), respectively.

H sð Þ ¼ G4s
4 þ G3

τ1
s3 þ G2

τ1τ2
s2 þ G1

τ1τ2τ3
sþ G0

τ1τ2τ3τ4

s4 þ 1
τ1
s3 þ 1

τ1τ2
s2 þ 1

τ1τ2τ3
sþ 1

τ1τ2τ3τ4

ð2:56Þ

τj ¼ D5�j

D4�j
� τ ð2:57Þ

Gi ¼ κ1
Ni

Di
ð2:58Þ

where the values of the coefficients Ni are those given in Table 2.9, and depend on

the desired filter function.

Fig. 2.4 FBD for realizing fractional FLPF, FHPF, FBPF, and FBSF of order α þ β using (a)
current mode topology, (b) voltage mode topology
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2.6 Fractional-Order Filters of Order n þ α

The procedure for realizing a high-order fractional filter of order n þ α will be

studied, where n is the integer-order of the filter and corresponds to values n � 2,

and α is the order of the fractional part of the filter where (0 < α < 1). Such kind of

filters exhibits stopband attenuation equal to �6�(n þ α) dB/oct. The attenuation

offered in the case of integer-order filters of order n, which is �6�n dB/oct. Thus,

low-pass, high-pass, band-pass, and band-stop filters of order n þ α are presented,

and two different design procedures are followed in order to realize these kinds of

filters. According to [8, 9], the realization of a fractional-order filter of order n þ α
with Butterworth characteristics could be performed through the utilization of the

polynomial ratio given by (2.59)

Hnþα sð Þ ¼ H1þα sð Þ
Bn�1 sð Þ ð2:59Þ

where H1þα (s) is the transfer function given by (2.23), (2.28), (2.32), (2.36) for

realizing a FLPF, FHPF, FBPF, and FBSF, respectively, and Bn–1 (s) is the

corresponding Butterworth polynomial of order n-1.
Some of these polynomials are the following:

B1 sð Þ ¼ sþ 1

B2 sð Þ ¼ s2 þ ffiffiffi
2

p
sþ 1

B3 sð Þ ¼ sþ 1ð Þ s2 þ sþ 1ð Þ
B4 sð Þ ¼ s2 þ 0:7654sþ 1ð Þ s2 þ 1:8478sþ 1ð Þ

B5 sð Þ ¼ sþ 1ð Þ s2 þ 0:618sþ 1ð Þ s2 þ 1:618sþ 1ð Þ

ð2:60Þ

The gain response of the (n þ α) filter is that given in (2.61)

Hnþα ωð Þj j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω

ωo

� �2 1þαð Þ	 

� 1þ ω

ωo

� �2 n�1ð Þ	 
s ð2:61Þ

Performing a routine algebraic procedure it is derived from (2.61) that

ωh

ωo

� �2 nþαð Þ
þ ωh

ωo

� �2 n�1ð Þ
þ ωh

ωo

� �2 1þαð Þ
� 1 ¼ 0 ð2:62Þ
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2.6.1 Design Equations for Generalized Filters
of Order n þ α

Utilizing the second-order expression of the CFE given by (2.1) and using the

expressions in (2.39), then from (2.59) it is obtained that the general forms of the

transfer functions will be the following:

H LP
nþα sð Þ ¼ κ1

α0
� α2 1τn s

2 þ α1 1
τnþ1 sþ α0 1

τnþ2

snþ2 þ βnþ1
1
τs

nþ1 þ � � � þ β1
1

τnþ1sþ β0
1

τnþ2

� � ð2:63aÞ

HHP
nþα sð Þ ¼ κ1

α0
� α0 1

τn�1 s
3 þ α1 1

τn s
2 þ α2 1

τnþ1s

snþ2 þ βnþ1
1
τs

nþ1 þ � � � þ β1
1

τnþ1sþ β0
1

τnþ2

� � ð2:63bÞ

HBP
nþα sð Þ ¼ κ1κ3

α0
� α0 1τn s

2 þ α1 1
τnþ1 sþ α2 1

τnþ2

snþ2 þ βnþ1
1
τs

nþ1 þ � � � þ β1
1

τnþ1sþ β0
1

τnþ2

� � ð2:63cÞ

HBS
nþα sð Þ ¼ κ1

α0

�
α0

1

τn�1
s3 þ α1 þ κ2α2ð Þ 1

τn
s2 þ α2 þ κ2α1ð Þ 1

τnþ1
sþ κ2α0

1

τnþ2

snþ2 þ βnþ1

1

τ
snþ1 þ � � � þ β1

1

τnþ1
sþ β0

1

τnþ2

	 
 ð2:63dÞ

where βκ (κ ¼ 0,1,. . .,nþ 1) is a function of αi, which is a result of multiplication of

the denominator of H1þα(s) in (2.39) and the coefficients of Bn–1(s).
Inspecting the transfer functions of FLPF, FHPF, FBPF, and FBSF, it is con-

cluded that all of them have the same form. Consequently they could be realized by

the same topology just by changing the coefficient values. A suitable solution for

this purpose is depicted in Fig. 2.5, where a typical FBD of a FLF topology and an

IFLF topology are given in Fig. 2.5a and Fig. 2.5b, respectively.

Fig. 2.5 FBD for realizing FLPF, FHPF, FBPF, and FBSF of order n þ α using Bn-1(s)
Butterworth polynomials (a) current mode topology, (b) voltage mode topology
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The realized transfer function is that given in (2.64). Comparing the coefficients

of (2.64) with these of FLPF, FHPF, and FBSF it is derived that, under the

assumption that βnþ2 ¼ 1, the design equations about the time-constants τj
( j ¼ 1, 2,. . ., n þ 2) of all the filters are given in (2.65). The corresponding design

equations for the scaling factors Gi (i ¼ 0,. . .,3) are summarized in Table 2.10.

Hnþα sð Þ ¼
G3

τ1���τn�1
s3 þ G2

τ1���τn s
2 þ G1

τ1���τnþ1
sþ G0

τ1���τnþ2

snþ2 þ 1
τ1
snþ1 þ 1

τ1τ2
sn þ � � � þ 1

τ1τ2���τnþ2

ð2:64Þ

τj ¼
βnþ3�j

βnþ2�j

� τ ð2:65Þ

In case time-constants are to be expressed as a function of the desired half-power

frequency (ωh), then the above equation could be modified as

τj ¼
βnþ3�j

βnþ2�j

� ωh

ωo

� �
ð2:66Þ

Taking into account the fact that all the aforementioned procedure is somewhat

complicated due to the algebraic calculation of the coefficients βκ especially in case
of high-order filters. Thus, an alternative solution for realizing high-order fractional

filters is through the cascade connection of 1 þ α and n�1 order filters, which is

expressed in the following equation as

Hnþα sð Þ ¼ H1þα sð Þ � Hn�1 sð Þ ð2:67Þ

where Hn�1(s) ¼ 1/ Bn�1(s) is the transfer function of the n�1 order Butterworth

filter, the derivation of which is a trivial procedure.

A suitable topology for this purpose is depicted in Fig. 2.6, from which is

obvious that having available the topology of an 1 þ α order filter and an integer-

order filter of an n�1 order filter, it is readily obtained that one additional step is

required for realizing an n þ α order fractional filter.

Table 2.10 Values of scaling

factors Gi for realizing FLPF,

FHPF, FBPF, and FBSF in

Fig. 2.5 of order n þ α

Filter G3 G2 G1 G0

FLPF 0 κ1α2
α0β2

κ1α1
α0β1

κ1
β0

FHPF κ1 κ1α1
α0β2

κ1α2
α0β1

0

FBPF 0 κ1κ3
β2

κ1κ3α1
α0β1

κ1κ3α2
α0β0

FBSF κ1
β3

κ1 α1 þ κ2α2ð Þ
α0β2

κ1 α2 þ κ2α1ð Þ
α0β1

κ1κ2
β0
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The gain response of the filter is that given in (2.68), where ωo1 and ωo2 are the

�3 dB frequencies of the 1 þ α and n�1 order filters, respectively.

Hnþα ωð Þj j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω

ωo1

� �2 1þαð Þ
r � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ω
ωo2

� �2 n�1ð Þ
r ð2:68Þ

Performing a routine algebraic procedure it is derived from (2.68) that

ωh

ωo1

Þ2ð1þαÞ � ωh

ωo2

Þ2ðn�1Þ þ ωh

ωo2

Þ2ðn�1Þ þ ωh

ωo1

Þ2ð1þαÞ � 1 ¼ 0

����
ð2:69Þ

Taking into account that ωo1 and ωo2 are selected to be the same and equal to ωo,

then (2.69) is simplified to (2.62).

2.7 Summary

Fractional-order differentiation/integrator blocks and fractional order generalized

filters have been realized in this section, through the utilization of the CFE, which

enables the opportunity of realizing all the aforementioned topologies through

integer-order counterparts which is a trivial procedure. Each category has been

performed by using a general form, offering the capability of implementing various

types of transfer functions without modifying their core, which is very important

from the design flexibility point of view. Having available all this procedure, then it

is easy to realize every kind of the aforementioned fractional-order circuits using

the suitable or desirable way of implementing the integer-order counterparts (i.e.,

integrators), which thereafter depends on the designer choice. They could be

realized either using a current mode procedure using for example current-mirrors,

or a voltage mode using OTAs. Some of these implementations will be described

and realized in detail in the next sessions.

Fig. 2.6 FBD for realizing

FLPF, FHPF, FBPF, and

FBSF of order n þ α using

(n-1) Butterworth filter (a)
current-mode topology, (b)
voltage-mode topology
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Chapter 3

Current-Mode Fractional-Order Filters

3.1 Introduction

The design of analog integrated circuits which are able to operate in a low-voltage

environment is an imperative need that has been extremely increased. The afore-

mentioned feature constitutes a difficult procedure especially when the IC designs

should be able to operate not only in a low-voltage environment, but also providing

high performance under these conditions. This could be easily achieved by using

the current-mode technique, which have the benefit of overcoming the gain-

bandwidth product limitation, and that the intermediate nodes have low impedance.

Thus, small variations of current correspond to small variations of voltages.

Current-mode circuits constitute the complementary of voltage-mode circuits,

where the input-output and intermediate signals are currents. Also, the majority

of these topologies are very simple structures offering the advantage of extremely

reduced circuit complexity.

3.2 Basic Building Blocks

Current-mirrors constitute attractive building blocks which under special condi-

tions are appropriate for biomedical applications. Taking into account that biolog-

ical signals lie in low frequency range, the realization of circuits with large-time

constants is necessary for this type of systems. Due to the fact that the time-

constants are given by the expression τ ¼ C/gm, where gm is the small-signal

transconductance of the input MOS transistor which is depended on the level of

the bias current Io. The large time-constants could be achieved by increasing the

value of capacitance [1–3] and/or reducing the value of gm through an appropriate

adjustment of the bias current.



As it has been already mentioned, the reduction of transconductance could be

achieved through a reduction of the related dc bias current Io. Taking into account

the class-A nature of the current-mirror filters, the level of the input current should

be smaller than that of the bias current (i.e., iin � Io). Therefore, this solution

dramatically limits the range of the input currents, which could be successfully

handled by the filter. Thus, an alternative solution for realizing large time-constants

is the employment of appropriate linear compression and expansion of the input and

output currents, respectively.

A typical FBD of a current-mode first-order low-pass filter is as shown in

Fig. 3.1a, with the corresponding current-mirror realization depicted in Fig. 3.1b

[4]. The transfer function is that given by (3.1)

iout
iin

¼ 1

τ � sþ 1
ð3:1Þ

where τ is the time-constant, given by

τ ¼ C

gm,Mn1

ð3:2Þ

where gm,Mn1 is the small-signal transconductance parameter of Mn1.

Assuming that MOS transistors operate in the subthreshold region, the expres-

sion of time-constant is the following:

Fig. 3.1 Typical first-order

filter using current-mirror

(a) FBD representation and

(b) typical circuitry
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τ ¼ CnVT

Io
ð3:3Þ

where n is the subthreshold slope factor (1 < n < 2), VT the thermal voltage

(�26 mV at 27 �C), and Io the bias current.
Inspecting (3.3), it is obvious that large time-constants could be realized by

increasing the value of capacitor through the employment of a capacitance multi-

plier and/or reducing the value of transconductance of Mn1 by a factor κ.
The capacitance scaling introduced in [1], which is depicted in Fig. 3.2, imple-

ments a multiplication of the capacitor value by a factor (κ þ 1). Thus, in order to

achieve a large time-constant for the realized filter topology, the capacitor in

Fig. 3.1b should be substituted by the topology in Fig. 3.2. Consequently, the

resulted topology would be more complicated than that in Fig. 3.1b. In addition,

the dc power dissipation of the filter in Fig. 3.1 would be significantly increased

from 2VDDIo to (3 þ κ)VDDIo.
The proposed solution for decreasing the transconductance (gm) without affect-

ing the range of the input current is demonstrated, at FBD level, in Fig. 3.3a. The

introduced concept is the linear counterpart of the concept of companding filters.

The realization of large-time constants in the companding filters has been intro-

duced in [5], where appropriate modifications in the bias of current dividers have

been performed. The main drawback of the companding technique is the increased

circuit complexity and, therefore, the increased power dissipation. As a result, the

current-mirror blocks constitute attractive candidates for realizing low power

topologies suitable for handling low-frequency signals.

The current-mirror implementation of the FBD in Fig. 3.3a is given in Fig. 3.3b.

The current that feeds transistor Mp1 is iin þ Io while due to the current mirror

formed by transistors Mp1–Mp2, the current in transistor Mn1 will be equal to

Fig. 3.2 Capacitor

multiplier introduced in [1]
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(iin þ Io/κ). Thus, a linear compression of the instantaneous value of the input

current is performed.

Therefore, according to (3.3), the realized value of time-constant is increased by

the a factor κ. The aspect ratio ofMn2 is also scaled by a factor κ as shown in Fig. 3.3
in order to achieve a low-frequency gain equal to one, and perform the linear

expansion of the output current. As a result, the realized time-constant is given by

τ ¼ κ � CnVT

Io
ð3:4Þ

An important benefit that should be also mentioned is the fact that the achieved

scaling factor does not affect the level of the maximum current that could be

handled by the filter and this is very important from the design flexibility point

of view.

Taking into account that the realization of large-time constant has been achieved

just by adding two transistors, the total power dissipation will be increased from its

initial value 2VDDIo to [2 þ (1/κ)]VDDIo, while the solution derived using the extra

block in Fig. 3.2 leads to a configuration with an extra number of five transistors and

a total power dissipation (3þ κ)VDDIo. As a result, the proposed solution is the most

attractive in terms of circuit complexity and power dissipation.

The topology of the corresponding lossless integrator is given in Fig. 3.4, where

the realized transfer function is given by (3.5), while the time-constant is still given

by the expression in (3.4)

Fig. 3.3 Lossy integrator with large-time constant realization capability (a) FBD representation

and (b) current-mirror realization
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iout
iin

¼ 1

τ � s ð3:5Þ

Finally, the only restriction that should be fulfilled using the proposed technique

is the fact that the amplitude range of the input signal should be iin � Io, and this is

originated from the inherent class-A nature of the integrator. In order to overcome

this drawback, a pseudo-class AB could be constructed using the FBD in Fig. 3.5,

which is constructed from two identical class-A paths, which are fed by the always-

positive output currents of current splitter.

The realization of the current splitter in a transistor level is depicted in Fig. 3.6,

where the expressions for its output currents are given by

iin1 ¼ iin þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

iin
2 þ 4IB

2
p

2
ð3:6Þ

iin2 ¼ �iin þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

iin
2 þ 4IB

2
p

2
ð3:7Þ

Fig. 3.4 Lossless integrator with large time-constant realized using current mirrors

Fig. 3.5 A pseudo-class

AB system realization
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3.3 Fractional-Order Filters with Large Time-Constant

The realization of the FBDs in Figs. 2.1a, b, 2.2a, b, and 2.3a will be performed

through the employment of the core cells in Figs. 3.1, 3.3, and 3.4. The resulted

topologies are demonstrated in Figs. 3.7 and 3.8, respectively. Inspecting them it is

derived that the required inversions of the output current of integrators have been

done through the utilization of extra current-mirrors, while the scaled replicas of the

output current have been realized by appropriately configured extra output branches.

It should bementioned at this point that the scheme in Fig. 3.7 is versatile in the sense

that fractional-order differentiator and integrators could be simultaneously realized

without modifying the connectivity between the intermediate stages.

A similar conclusion holds for the scheme in Fig. 3.8, where a low-pass filter of

arbitrary order 1 þ α could be realized.

The features of both topologies are the following:

• The transfer functions of the fractional-order differentiator, lossless and lossy

integrator of order α, are realized by the same core, and this is very important

from the flexibility point of view.

• Fractional-order filters of any type (i.e., FLPF, FHPF, FBPF, FBSF) of order

1 þ α could be realized by the same core, and therefore, they can be considered

as generalized filter structures.

• They offer resistorless realizations due to the employment of the

transconductance parameter (gm) of MOS transistors for realizing the required

time-constant as well as for scaling factors.

• Their frequency characteristics could be electronically adjusted. This is originated

from the fact that the transconductance gm is controlled by an appropriate dc current.
• Only grounded capacitors are utilized.

Fig. 3.6 Transistor-level realization of a current splitter
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3.4 Simulation and Comparison Results

3.4.1 First-Order Filter Using Current Mirrors with Large
Time-Constants

The performance of the filter in Fig. 3.3 has been evaluated using the Analog

Design Environment of the Cadence software and the Design kit provided by the

TSMC 180 nm CMOS process. The employed dc bias voltage scheme was

VDD ¼ 0.5 V and VDC ¼ 300 mV, while the dc bias current was Io ¼ 3 nA which

corresponds to a transconductance level equal to 88.7 nS. In order to realize a

low-pass filter with cutoff frequency fo¼ 10 Hz, the required capacitor value will be

equal to 1.41 nF, which is a nonrealistic value from the integration point of view.

The utilization of the proposed solution where a scaling factor κ ¼ 30 is

achieved, the required time-constant could be realized by considering a capacitor

equal to 47.1 pF. The aspect ratios of transistors were 10 μm/5 μm for Mn1, 20 μm/

5 μm for Mn3, and 5.6 μm/2 μm for Mp2. The distribution of dc current has been

performed using nMOS and pMOS current mirrors with aspect ratio 5 μm/5 μm and

10 μm/5 μm, respectively.

The simulated results of the first-order filter in Fig. 3.3 for bias current being

tuned at values Io ¼ 1.5, 3, and 6 nA are demonstrated in Fig. 3.9.

The derived cutoff frequencies were 5.04 Hz, 9.6 Hz, and 18.7 Hz, respectively,

which are very close to the corresponding theoretical values 5 Hz, 10 Hz, and

20 Hz.

The linear performance of the filter in Fig. 3.3 is obtained through the Periodic

Steady State (PSS) analysis of the Analog Design Environment, while the noise was

integrated through the passband of the filter. In addition, the sensitivity of the

frequency characteristics of the filter, with respect to the MOS transistor
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Fig. 3.9 Frequency response of the first-order low-pass filter in Fig. 3.3
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mismatching and process variations, has been evaluated through the Monte Carlo

analysis offered by the Analog Design Environment.

The obtained results showing the total performance of the filter in Fig. 3.3 are

summarized in Table 3.1, where the corresponding factors for the filter in Fig. 3.1

are also given. It should be mentioned at this point that the power dissipation for the

scheme derived from the solution in Fig. 3.3 would be 49.5 nA and this makes its

employment not attractive in low-power applications. According to the derived

results, the proposed solution offers the benefits of significant reduction (about

27 times) of the total silicon area in comparison with that required in the case of the

topology in Fig. 3.2.

The price paid is that the dynamic range of the filter has been reduced due to the

increased rms value of the noise; in addition, the sensitivity of the circuit has been

also increased.

3.4.2 Fractional-Order Circuits Using Current Mirrors
with Large Time-Constants

As a first step, a differentiator with order α¼ 0.5 and unity gain frequency fo¼ 10 Hz

will be designed. This will be achieved by using the topologies in Figs. 3.1, 3.3, and

3.4 in order to realize the FBD in Fig. 2.1a. The resulted topology is that demon-

strated in Fig. 3.7. There should be mentioned that the proposed topology is able to

realize also fractional-order lossless and lossy integrators of order α, just by

calculating the appropriate design equations given in Tables 2.1 and 2.2, combined

with Eq. (3.4).

Considering that Io ¼ 300 pA, then using the design equations provided in

Tables 2.1 and 2.2, and Eq. (3.4) for κ ¼ 6, the values of capacitors have been

calculated as C1 ¼ 2.36 pF and C2 ¼ 47.2 pF. In addition, the scaling factors Gi

(i ¼ 0, 1, 2) were G2 ¼ 5, G1 ¼ 1, and G0 ¼ 0.2. Considering MOS transistors

biased at the subthreshold region, the power supply voltage was VDD¼ 0.5 V, while

the dc voltage required for biasing the cascade transistors was VDC ¼ 350 mV. The

Table 3.1 Performance factors for the filter in Fig. 3.3 and compared with that in Fig. 3.1

Performance factor Fig. 3.1 Fig. 3.3 (κ ¼ 30)

Power (nW) @ VDDVDD ¼ 0.5 V 3 3.05

Cutoff frequency fo (Hz) 9.4 9.6

Amplitude (nA) @ THD 2% 2.96 2.91

Input referred noise (pA) 0.47 1.2

Dynamic Range (dB) 73 64.7

Transistor area (μm)2 300 2072.2

Capacitor area (μm)2 670,884 22,363

Standard deviation of gain 12.4 m 29.3 m

Standard deviation of fo (Hz) 0.17 0.34
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aspect ratios of transistors are 5 μm/10 μm forMn1–Mn5, 4 μm/10 μm forMn6–Mn10,

10 μm/1 μm forMc1–Mc14, 2 μm/4 μm for Mp1–Mp8, and 4 μm/5 μm for Mp9–Mp14.

The simulated magnitude and phase responses are given in Fig. 3.10, where the

corresponding theoretically predicted plots (dashed lines) are also provided. The

unity-gain frequency was 8.8 Hz. According to these plots, the differentiator

approximates the ideal response with a phase error smaller than 5� within the

bandwidth BW ¼ 62.7 Hz–1.7 Hz ¼ 61 Hz. The dc power dissipation of the

differentiator was P ¼ 2.98 nW.

Thus, the normalized power dissipation, defined as Pnorm ¼ P/( fo�BW), will be

equal to 4.88pJ. Taking into account that the corresponding Sinh-Domain counter-

part introduced in [5] has power dissipation equal to 8.33nW and BW¼ 162.50 Hz–

1.27 Hz ¼ 161.23 Hz (at an accuracy level smaller than 5�), the corresponding

value of Pnorm will be equal to 5.16 pJ.

Consequently, the proposed fractional-order differentiator offers a more power

efficient design than that introduced in [5]. In addition, the total capacitance for the

proposed differentiator was 49.56 pF, while for that in [5] 400 pF. Thus, another

important feature offered by the proposed topology is the significant reduction of

the total occupied silicon area.

The realization of the FBD in Fig. 2.3a using the aforementioned concept is

demonstrated in Fig. 3.8, which will be employed for realizing low-pass filter

functions, of order n þ α ¼ 1.3, 1.5, and 1.7, with Butterworth (all-pole) frequency

characteristics. Assuming cutoff frequency fo¼ 10 Hz and bias current Io¼ 105pA,

the values of capacitors, calculated according to (3.4), and (2.40) for K ¼ 2.5, are

given in Table 3.2. Also, the scaling factors according to Table 2.8 using the

approximation in (1.6) are given in Table 3.2. The aspect ratios of MOS transistors

of the filter in Fig. 3.8 are 5 μm/10 μm for Mn1–Mn3, 4 μm/10 μm for Mn4–Mn9,

10 μm/1 μm forMc1–Mc14, 2 μm/4 μm for Mp1–Mp7, and 4 μm/5 μm for Mp8–Mp13.

Fig. 3.10 Magnitude and phase responses of a fractional-order differentiator (α¼ 0.5) derived by

the topology in Fig. 3.7
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The obtained frequency responses are demonstrated in Fig. 3.11. The cutoff

frequency was 8.97, 9, and 8.5 Hz at orders 1.3, 1.5, and 1.7, respectively. The

corresponding values of the slope of the stopband attenuation were �7.3 (�24.2),

�8.6 (�28.6), and�9.23 (�30.7) dB/oct (dB/dec), while the theoretically predicted

values were�7.8 (�26),�9 (�30), and�10.2 (�34) dB/oct (dB/dec), respectively.

The linear performance of the topology in Fig. 3.8 has been evaluated in the case

that n ¼ 1.5. For this purpose, a stimulus with 0.1 Hz frequency and variable

amplitude has been utilized. The total harmonic distortion (THD) was equal to 2%

at an input level equal to 112pA. The noise has been integrated within the passband

of the filter and the rms value of the input referred noise was 0.55pA. Thus, the

value of the Dynamic Range (DR) of the filter will be 43.1 dB.

The sensitivity of the filter with respect to the effect of MOS transistor param-

eters mismatching as well as the process parameters variations has been evaluated

through the Monte Carlo analysis offered by the analog Design Environment. The

obtained statistical results about the standard deviation of low-frequency gain,

cutoff frequency, and slope of the stopband attenuation, for a number N ¼ 100

runs, were 0.1, 1.2 Hz, and 0.36 dB/oct, respectively.

The power efficiency of the proposed fractional-order low-pass filter could be

further enhanced through the utilization of the FBD as given in Fig. 3.5, which

corresponds into a pseudo class-AB circuit topology. It is constructed from a

current-splitter topology and two identical class-A paths. A current-splitter topology

is depicted in Fig. 3.6; the output currents are given by (3.6) and (3.7), respectively.

Fig. 3.11 Simulated

frequency responses of the

low-pass filter (n þ α ¼ 1.3,

1.5, and 1.7)

Table 3.2 Values of

capacitances and scaling

factors for the 1 þ α order

FLPF in Fig. 3.8, derived

according to the

approximation in (1.6)

α ¼ 0.3 α ¼ 0.5 α ¼ 0.7

G2 0.117 0.07 0.033

G1 0.7 0.61 0.515

G0 1.010 1.005 1

C1 (pF) 5.8 6.94 7.68

C2 (pF) 18.1 17.2 17.2

C3 (pF) 74.7 65.2 58.8
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Considering that the splitter operates under VDD ¼ 0.5 V and VDC ¼ 350 mV

power supply voltages and dc bias current Io,s ¼ 105 pA, the aspect ratios of MOS

transistors are 5 μm/10 μm forMn1–Mn3, 4 μm/10 μm forMn4–Mn9, 10 μm/1 μm for

Mc1–Mc14, 2 μm/4 μm for Mp1–Mp7, and 4 μm/5 μm for Mp8–Mp13. The obtained

frequency response for the class-AB realization of the low-pass filter of order 1.5 is

also provided in Fig. 3.11 (red dash line), where the cutoff frequency and the slope

of the stopband attenuation were 9.5 Hz and �8.8 dB/oct, respectively. The

obtained performance results are summarized in Table 3.3. In order to estimate

the power efficiency of the designs under comparison, the Figure of Merit (FoM)

defined by (3.8) has been utilized.

FOM ¼ P

nf o DRð Þ ð3:8Þ

According to the obtained results, it is concluded that in terms of power

dissipation and/or total silicon area, the proposed class-A filter is the best choice.

In the case that the power efficiency is the most important performance factor, then

the proposed class-AB fractional-order filter should be employed at the expense of

the total required silicon area.

3.5 Summary

A new scheme was introduced, which offers the capability of realizing current-

mirror filters with large-time constants. This has been achieved through a linear

compression and expansion of the input signal without affecting the

Table 3.3 Performance evaluation results of the proposed fractional-order (nþ α¼ 1.5) low-pass

filter topologies

Performance factor [5] Fig. 3.8 (Class-A) Fig. 3.8 (Class-AB)

Power (nW) @ VDD ¼ 0.5 V 5.80 0.82 2.05

Total capacitance (pF)

Low-frequency gain

180

0.94

90

0.98

180

0.98

Total active silicon area (μm2) 13,213 1531 6502

Total passive silicon area (μm2) 84,884 42,442 84,884

Cutoff frequency fo (Hz) 11 9 9.5

Slope (dB/oct) –9.7 –8.6 –8.8

Amplitude (pA) @ THD 2% 897 112 1710

Input referred noise (pA) 0.34 0.55 0.29

Dynamic Range (dB) 65.40 43.15 72.4

FoM (pJ) 0.21 0.38 0.03

St.d of low-frequency gain 0.05 0.1 0.13

St.d of cutoff frequency (Hz) 1.5 1.2 0.75

St.d of slope (dB/oct) 0.34 0.36 0.26
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transconductance value. Compared with the conventional current-mirror filter

structure, the price paid was the reduction of the dynamic range and the sensitivity

performance. Nevertheless, it constitutes an attractive technique for implementing

systems with on-chip capacitors, especially for biomedical applications.

The aforementioned technique has been utilized in order to realize fractional-

order blocks, including differentiators, lossy and lossless integrators, as well as

filters of order 1 þ α (0 < α < 1). The benefit offered by these schemes is the

low-voltage operation and reduced circuit complexity compared to the

corresponding companding counterparts. The ultra-low voltage operation is

performed through the employment of MOS transistors biased in the subthreshold

region, while the reduction of circuit complexity is achieved through the utilization

of current-mirrors as active elements which are very simple structures. Finally, the

power efficiency of the proposed topologies has been further enhanced by utilizing

a pseudo class-AB topology.
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Chapter 4

Voltage-Mode Fractional-Order Filters

4.1 Introduction

Fractional-order filters have been already introduced in discrete component form in

[1–12]. The used active elements were op-amps, CCIIs, and CFOAs. Due to the

employment of passive resistors, the realized time-constants have the form τ ¼ RC
and, consequently, an additional automatic tuning circuitry is required for compen-

sating the deviations from the desired frequency response. Another important

drawback is the absence of programmability, making these structure not compatible

with the now days trend for realizing programmable analog filters. Alternative

fractional-order filters that do not suffer from the aforementioned drawbacks have

been introduced in [13–15].

The proposed structures using OTAs as active building block offer the following

attractive characteristics:

• Realization of lowpass, highpass, bandpass, allpass, or bandstop filter functions

by the same topology

• Electronic adjustment of their frequency characteristics as well as of their order

• Resistorless realizations, and

• Employment of only grounded capacitors.

4.2 Basic Building Blocks

The OTA, which is utilized, is that demonstrated in Fig. 4.1. A benefit of that

scheme is its enhanced linearity [16].

Considering that the MOS transistors operate in subthreshold region, the expres-

sion of their small-signal transconductance is gm¼ Io/nVT, where VT is the thermal

voltage (26 mV@ 27 �C), Io the bias current, and n the subthreshold slope factor of



an MOS transistor. Taking into account that transistorsMn1–Mn2 andMn3–Mn4 have

aspect ratios A:1 and 1:A, respectively, the value of the transconductance of the

OTA is then given by

gm ¼ gmo
4A

1þ Að Þ2 ð4:1Þ

where gmo is the transconductance of OTA in the case that A ¼ 1. That is, gm ¼ Io/
nVT.

The scaling factor A is used to increase the linearity of the active cell and has

been chosen equal to five in order to maximize the differential input range for a

THD level equal to 2% and, simultaneously, achieving a monotonic increase of

THD level with the increase of the input amplitude.

4.3 Fractional-Order Generalized Filters

In order to realize fractional-order low-pass, high-pass, and all-pass filters of order

α using the voltage mode technique, the FBD in Fig. 2.1b will be utilized. Thus, the

resulted topology derived according to the approximation in (1.6) and using OTAs

as active elements is demonstrated in Fig. 4.2. The lower left OTA is a multiple

output element, where the noninverting output and inverting output are used for

realizing the fractional-order low-pass, fractional-order high-pass functions, and

fractional-order all-pass function, respectively. This could be easily performed

using an appropriate switching scheme.

Fig. 4.1 OTA structure with enhanced linearity
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In order to realize a fractional-order band-pass of order α, the topology in

Fig. 2.2b could be used where the building blocks H1(s), and H2(s) are those

depicted in Fig. 4.2.

The corresponding topology for implementing fractional-order low-pass, high-

pass, band-pass, and band-stop filter functions of order α þ β is demonstrated in

Fig. 4.3, where the FBD in Fig. 2.4b is utilized.

The main benefits offered by these topologies are the following:

• Different filter functions are realized by the same core, which is very important

from the flexibility point of view.

• The realizations are resistorless due to the employment of OTAs as active

elements.

• Their frequency characteristics and order could be electronically adjusted by an

appropriate dc current.

• Only grounded capacitors are utilized and this is very important especially in

high frequency applications.

Fig. 4.2 OTA-C realization of fractional low-pass, high-pass, all-pass filter functions of order α

Fig. 4.3 OTA-C realization of low-pass, high-pass, band-pass, and band-stop filter functions of

order α þ β
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4.4 Simulation Results

The behavior of the proposed generalized filter structures is evaluated through

simulation results, where the most important factors have been considered. Thus,

the performance is evaluated using the Analog Design Environment of the Cadence

software and the Design Kit provided by the AMS 0.35 μm CMOS process. The

employed bias scheme was VDD¼ 1.5 V and VCM¼ 0.75 V. The aspect ratios of the

transistors of the OTA in Fig. 4.1 were 60 μm/10 μm for Mb1–Mb3, 25 μm/1 μm for

Mn1, Mn4, 5 μm/1 μm for Mn2, Mn3, and 10 μm/15 μm for Mp1–Mp2. Assuming that

the desired pole frequency is fo ¼ 100 Hz and both capacitors have the same value

equal to C1 ¼ C2 ¼ 50 pF, the values of bias currents Ioi and scaling factors are

summarized in Table 4.1.

Firstly, the filter topology given in Fig. 4.2 will be evaluated through simulation

results. Using (4.1) it is readily obtained that the realized time-constants of (2.19)

will be given as shown in (4.2) from which is obvious that they could be electron-

ically controlled.

τi ¼ CinVT

Ioi
� 1þ Að Þ2

4A
ð4:2Þ

where (i ¼ 1, 2) is the number of integrator.

The derived frequency response is given in the plots of Fig. 4.4, where with

dashed lines the corresponding theoretically predicted responses are also provided.

In the next, the behavior of fractional filters of order α þ β will be evaluated,

utilizing the same design considerations. The values of bias currents Ioi are sum-

marized in Table 4.2.

The layout design that has been performed in order to be taken into account the

parasitic capacitances and resistances of the topology is demonstrated in Fig. 4.5.

The obtained frequency responses with the corresponding theoretically predicted

are simultaneously given in Fig. 4.6.

The electronic tuning capability of the proposed generalized fractional-order

filters is demonstrated in the case of α þ β order FBPF. The corresponding values

Table 4.1 Values of scaling factors, and bias currents for fractional filters of order α in Fig. 4.2,

derived according to the approximation in (1.6)

fo ¼ 100 Hz

C ¼ 50 pF LP (α¼ 0.5) HP (α¼ 0.5) AP (α¼ 0.5)

BP j ¼ 1

(α¼ 1, β ¼ 0.5)

BP j ¼ 2

(α¼ 1, β ¼ 0.5)

G2 0.167 0.833 0.667 0 5

G1 0.5 0.5 0 0.5 1

G0 0.833 0.167 �0.667 1 0.2

Io 6.37 nA 6.37 nA 6.37 nA 3.82 nA 19.1 nA

Io1 6.37 nA 6.37 nA 6.37 nA 3.82 nA 19.1 nA

Io2 573.4 pA 573.4 pA 573.4 pA 955 pA 955 pA
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of bias currents and scaling factors for tuning α and β are given in Table 4.3,

while the obtained frequency responses are demonstrated in Fig. 4.7. Using these

plots, the obtained frequency characteristics of the filters are summarized in

Table 4.4, where the corresponding theoretically predicted values are given in

parentheses.

Fig. 4.4 Frequency response of the fractional generalized filter of order α in Fig. 4.2

Table 4.2 Values of scaling factors, and bias currents for fractional filters of order α þ β in

Fig. 4.3, derived according to the approximation in (1.6)

fo ¼ 100 Hz

C ¼ 50 pF LP α ¼ 1, β ¼ 0.5 HP α ¼ 0.5, β ¼1 BS α ¼ 1, β ¼ 0.5 BP α ¼ 1, β ¼ 0.5

G4 0 0.8333 1 0

G3 0.0476 0.5556 0.7619 0.2381

G2 0.2973 0.3438 0.5946 0.4054

G1 0.5556 0.0476 0.5926 0.4074

G0 0.8333 0 0.8333 0.1667

Io 8.03 nA 8.6 nA 8.03 nA 8.03 nA

Io1 8.03 nA 8.6 nA 8.03 nA 8.03 nA

Io2 3.37 nA 2.26 nA 3.18 nA 3.37 nA

Io3 1.39 nA 1.25 nA 1.47 nA 1.39 nA

Io4 424.7 pA 455 pA 424.7 pA 424.7 pA
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Fig. 4.6 (a) magnitude, and (b) phase response of the fractional generalized filter of order α þ β

Fig. 4.5 Layout design of the fractional generalized filter of order α þ β in Fig. 4.3
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Table 4.3 Bias currents and scaling factors for tuning the order α and β of an FBPF

fo ¼ 100 Hz, C ¼ 50 pF α ¼ 0.7, β ¼ 0.5 α ¼ 0.8, β ¼ 0.7 α ¼ 0.9, β ¼ 0.9

G4 0.0771 0.0453 0.0196

G3 0.2979 0.3156 0.3333

G2 0.4200 0.4425 0.4759

G1 0.3654 0.3501 0.3333

G0 0.1643 0.0780 0.0196

Io 9.89 nA 8.1 nA 6.63 nA

Io1 9.89 nA 8.1 nA 6.63 nA

Io2 3.25 nA 2.95 nA 2.65 nA

Io3 1.24 nA 1.30 nA 1.37 nA

Io4 368.6 pA 443.7 pA 550.4 pA

Fig. 4.7 Electronic tunability of the order α þ β of the FBPF (a) magnitude and (b) phase

response
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4.5 Summary

A generalized voltage-mode filter topology is inotroduced in this Chapter, uisng

OTAs as active elements. Different types of filter functions could be realized

without modifying its core, which is very important form the design flexibility

point of view. In addition their frequency characteristics could be electronically

programmed through appropriate bias currents. The performance of the filters has

been evaluated through postlayout simulations results, which proves that they could

be considered as attractive candidates in several applications, especially when high

performance is required.
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Chapter 5

Emulation of Fractional-Order Capacitors
(CPEs) and Inductors (FOIs)

5.1 Introduction

Fractional-order impedances are, as has been already mentioned, the generalized

form of conventional circuit impedances and are essential for accurate and realistic

circuit models in a wide range of applications [1]. A fractional derivative for order α
described by the Caputo derivative [2] is that already given in (1.1). Assuming zero

initial conditions, it is then possible to define a general electrical impedance

described through the following expression

ZðsÞ ¼ κsα ¼ ðκωÞαej απ
2ð Þ ¼ ðκωÞα cos

απ

2

� �
þ jsin

απ

2

� �� �
¼ jzj∠ϑ ð5:1Þ

where ϑ ¼ απ/2.
The impedance Z(s) in (5.1) is capable for representing different types of

elements, the nature of which is depended on value of variables (κ, α). Thus, in
case that (κ, α) ¼ (R, 0), then the Z(s) represents a resistor. Also, if (κ, α) ¼ (L, 1),
then it represents an inductor, while for (κ, α) ¼ (1/C,�1), it represents a capacitor.

In the range (0 < α < 1), this element may generally be considered to represent a

fractional-order inductor. For any (�1< α< 0), it may be considered to represent a

fractional-order capacitor. Thereafter, when α 6¼ �1, those elements could be

termed as fractional-order inductors and fractional-order capacitors with

frequency-dependent losses [3].

However, inspecting expression (5.1), there should be mentioned that in order

not to be inconsistent in the units of L, and C, the constant κ is called pseudo-

inductance and pseudo-capacitance, where Lβ and Cα are the corresponding asso-

ciated symbols. As a consequence, the impedance for a fractional-order capacitor is

given in (5.2)

http://dx.doi.org/10.1007/978-3-319-55633-8_1


ZCα,α sð Þ ¼ 1

Cαsα
ð5:2Þ

where Cα is the normalized capacitance and has the units of Farad/sec1-α.

From now onwards, taking into account that the impedance of a fractional-order

capacitor, also known as a Constant-Phase Element (CPE), is that given by (6.2),

then the phase angle is where ϑ¼�απ/2, and the order α is in the range (0< α< 1).

The value (in Farad) of the frequency-dependent capacitance (C) of a fractional-

order capacitor will be then calculated as

C ¼ Cα

ω1�α
: ð5:3Þ

In addition, the impedance for a fractional-order inductor is that given in (5.4)

ZLβ ,β sð Þ ¼ Lβs
β ð5:4Þ

where Lβ is the normalized inductance and has the units of Henry/sec1-β.

Also, taking into account that the impedance of a fractional-order inductor,

called as Fractional-Order Inductor (FOI), is that given by (5.5), then the phase

angle is ϑ ¼ βπ/2, and the order β is in the range (0 < β < 1). Therefore, the

relationship between inductance and pseudo-inductance is

L ¼ Lβ
ω1�β

ð5:5Þ

Taking into account that fractional order capacitors and inductors are a set of the

most important elements in several applications especially in order to emulate

biological tissues, there should be mentioned that there is need for developing

both voltage and current-excited elements [4, 5]. The necessity of such systems

relies on the fact that not only potentiostatic (voltage-excited), but also

galvanostatic (current-excited) measurements are required for characterizing

these elements. As a result, the aforementioned schemes will be extended devel-

oped and presented in the next sessions.

5.2 Proposed Emulation Scheme for Voltage
Exited CPE and FOI

Inspecting the general form of electrical impedance given in (5.1), there can be

easily seen that the realization of fractional-order capacitor/inductor emulators

could be achieved using a fractional-order differentiator/integrator of order α/β
with unity gain frequency ω ¼ 1/τ, along with an appropriate voltage-to-current

converter. The functional block diagram for emulating a fractional-order capacitor
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or inductor is shown in Fig. 5.1. The corresponding scheme for the floating element

has been easily derived using a two-input differentiator/integrator and a multiple

output voltage-to-current converter as demonstrated in Fig. 5.1b. The equivalent

impedance, either for grounded capacitor/inductor (Zeq � υ/i) or for floating

(Zeq � υ1–υ2/i), is given by the expression.

Zeq ¼ 1

gmH sð Þ ð5:6Þ

where H(s) could be equal to (τsα) or 1/(τsβ), and R ¼ 1/gm is the equivalent

impedance in (Ω) at a given frequency.

The frequency dependence of equivalent impedance is clearly demonstrated

using the following forms:

Zeq CPEð Þ ¼ 1

gm

ωo

ω

� �α
ð5:7Þ

Zeq FOIð Þ ¼ 1

gm

ω

ωo

� �β

ð5:8Þ

Using (5.2), (5.4), and (5.6), it is obtained that

Cα ¼ gmτ
α ð5:9Þ

Lβ ¼ τβ=gm ð5:10Þ

Fig. 5.1 Emulation schemes for the voltage-excited (a) grounded and (b) floating fractional-order
capacitor/inductor
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Also, using (5.3) and (5.5), the expressions for (5.9) and (5.10) could be

written as

C ¼ gm
ωo

αω1�α
ð5:11Þ

L ¼ 1

gmωo
αω1�α

ð5:12Þ

Selecting ω ¼ ωo, from (5.11) and (5.12), it is derived that the value of the

de-normalized capacitance/inductance will be

C ¼ gm
ωo

ð5:13Þ

L ¼ 1

gmωo
ð5:14Þ

Inspecting the above equations, it can be easily observed the fact that the time-

constant τ is chosen trough the unity gain frequency ωo of the differentiator/integra-

tor, while the equivalent impedance, and as a consequence the capacitance valueCα,

is determined through the transconductance (gm) of the voltage-to-current converter.
The two-input fractional-order differentiator/ integrator block denoted as H(s) in

Fig. 5.1, could be realized using the functional block diagram given in Fig. 2.1b,

where the second-order approximation of the CFE has been utilized. The realization

of the corresponding scheme could be realized using OTAs as active elements and

is that demonstrated in Fig. 5.2. In case that a grounded element is needed, then this

could be achieved by setting υin� equal to VCM. Thus, the only input voltage υ is that

Fig. 5.2 Emulation scheme for the fractional-order capacitor (Io
0 ¼ Io2)/inductor (Io

0 ¼ Io1) using
OTAs

68 5 Emulation of Fractional-Order Capacitors (CPEs) and Inductors (FOIs)

http://dx.doi.org/10.1007/978-3-319-55633-8_2#Fig1


denoted as υinþ. The transfer function H(s) has been already described in Chap. 2

with (2.3), and (2.5). Thus, the resulted equivalent impedance using the second-

order approximation of CFE is described by (5.15).

Zeq ¼ 1

gm
� G2s

2 þ G1

τ1
sþ G0

τ1τ2

s2 þ 1
τ1
sþ 1

τ1τ2

ð5:15Þ

The design equations are already given in Tables 2.1 and 2.2, from which can be

readily obtained that the time-constants τ1 and τ2 as well as the gain factors Gj are

dependent on the order of the CPE/FOI (α/β). For the sake of completeness, the

design equations derived according to the approximation (1.6) are summarized in

Table 5.1.

There should bementioned that the required voltage scaling factorsGj can be easily

implemented by OTAs with appropriate transconductance values (i.e., Gj ¼ gmj/gm).
From the resulted design equations, it is obviously clear that the order (α/β) of the
fractional-order differentiator/integrator and as a consequence the order of fractional-

order capacitor/inductor emulator is determined through appropriate values of time-

constants τi and gain factors Gj.

As it has been already mentioned, the capacitance value (in Farad) is determined

through the transconductance gm of the voltage-to-current converter. In other

words, the order α/β at a given frequency ωo is orthogonal to the equivalent

impedance Zeq. As a result, having available these equations, the utilization of

any type of circuit design, which is able to realize the FBD shown in Fig. 2.1b along

with an appropriate V ! I converter (gm), offers the capability of realizing the

transfer function given in (5.15).

Taking into account that MOS transistors of OTAs that depicted in Fig. 4.1 are

biased in subthreshold region, the transconductance gm is that given by (5.16)

gm ¼ Io
nVT

� 4A

1þ Að Þ2 ð5:16Þ

Table 5.1 Design equations

for the emulated fractional-

order capacitors and inductors

around a center frequency

ωo ¼ 1/τ

Design parameters CPE FOI

τ1 α2 � 3αþ 2

�2α2 þ 8

� �
� τ β2 þ 3β þ 2

�2β2 þ 8

� �
� τ

τ2 α2 þ 3αþ 2

�2α2 þ 8

� �
� τ �2β2 þ 8

β2 � 3β þ 2

� �
� τ

G2 α2 þ 3αþ 2

α2 � 3αþ 2

� �
β2 � 3β þ 2

β2 þ 3β þ 2

� �
G1 1 1

G0 α2 � 3αþ 2

α2 þ 3αþ 2

� �
β2 þ 3β þ 2

β2 � 3β þ 2

� �
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Thus, the realized time-constants of (5.15) will be given as

τi ¼ CinVT

Ioi
� 1þ Að Þ2

4A
� 1
τ
, i ¼ 1; 2ð Þ ð5:17Þ

where τ is the desired unity gain frequency of the differentiator/integrator, and A is

set equal to 5 for enhanced linearity.

Inspecting expressions given in (5.13) and (5.14) combined with that in (5.16), it

is easily obtained the fact that not only the order of the CPE/FOI (α/β), but also the

equivalent capacitance/inductance could be electronically controlled through the

appropriate bias currents Io of the V ! I converters. Summarizing, the

corresponding equations for the bias currents of the differentiator are the following:

Io1 ¼ C1nVT � 1þ Að Þ2
4A

� �2α2 þ 8

α2 � 3αþ 2

� �
� 1
τ

ð5:18Þ

Io2 ¼ C2nVT � 1þ Að Þ2
4A

� α2 þ 3αþ 2

�2α2 þ 8

� �
� 1
τ

ð5:19Þ

while for the integrator

Io1 ¼ C1nVT � 1þ Að Þ2
4A

� �2β2 þ 8

β2 þ 3β þ 2

� �
� 1
τ

ð5:20Þ

Io2 ¼ C2nVT � 1þ Að Þ2
4A

� β2 � 3β þ 2

�2β2 þ 8

� �
� 1
τ

ð5:21Þ

In addition, the equivalent capacitance/inductance is electronically controlled

through the bias current of the V ! I converter using

IoC ¼ CnVT � 1þ Að Þ2
4A

� 1
τ

ð5:22Þ

IoL ¼ 1

L
nVT � 1þ Að Þ2

4A
� τ ð5:23Þ

Owing to the nature of the employed approximation, the bandwidth of the CPE is

[ωo/10,10ωo]. Due to the fact that the unity-gain frequency of the differentiator/

integrator is ωo ¼ 1/τ, then from the expressions about the time-constants in

Table 5.1 and (5.17) it is concluded that the bandwidth is also electronically

controlled through the appropriate bias currents given in (5.20), (5.21), and

(5.22). There should be mentioned that the bias current noted as Io
0 in Fig. 5.2, is

set equal to Io2 in case of a fractional-order differentiator and equal to Io1 in case of a
fractional order integrator. Summarizing, the order of emulated capacitor/inductor

and the equivalent impedance could be electronically adjusted through bias
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currents, and this is very important from the flexibility point of view. The robust-

ness and flexibility of this design can be appreciated when compared, for example,

to that in [6]. This is due to the fact that the CPE in [6] has been implemented by

dipping a capacitive type polymer-coated probe in a polarizable medium, while the

emulation of the fractional-order inductor is performed through the utilization of a

generalized impedance converter (GIC), constructed from two operational ampli-

fiers and four passive resistors in association with the CPE. Therefore, this solution

suffers from the drawbacks of noncommercial availability of CPE as well as of the

absence of electronic tuning of the characteristics (magnitude, order, and band-

width) of the emulated fractional inductor.

An important thing that should be mentioned is the fact that in case that a higher-

order approximation is needed, then the design equations of time-constants and gain

factors that approximate the fractional order differentiator/integrator should be

redefined. After that, the realization of the fractional-order capacitor/inductor by

utilizing the block diagram is given in Fig. 5.1 is a trivial procedure.

5.3 Proposed Emulation Scheme for Current
Excited CPE and FOI

Although the emulation of voltage-excited fractional-order capacitor and inductor

impedances was previously presented, this topology is not capable for emulating

the current excited behavior of the fractional-order impedances. An appropriate

topology for this feature is that given in Fig. 5.3, which is constructed using a

voltage-mode block denoted as H(s) and appropriately configured OTAs with

small-signal transconductance gm.

Fig. 5.3 Emulation schemes for the current-excited (a) grounded and (b) floating fractional-order
capacitor/inductor using OTAs as active elements
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The transfer function, which is able to represent the operation of fractional-order

differentiator/integrator of order (α/β) with unity gain frequency ωo ¼ 1/τ, is
implemented and described in detail in previous section. The OTA-C realization

is that depicted in Fig. 5.2.

Taking into account that a low impedance node for admitting the input current is

required, the leftmost OTA in Fig. 5.3a is capable for performing this implemen-

tation. Assuming that the impedance of the H(s) block is infinite, then

i ¼ i1 þ i2�i3.

5.4 Chip Fabrication and Experimental Results

The utilization of the already studied methods in previous sections for emulating

fractional-order capacitors and inductors will be used for fabricating these elements

for the first time in the literature. The equivalent capacitance and inductance could

be electronically adjusted using a single bias current and two externals capacitors,

which are responsible for selecting the bandwidth of operation. Each CPE/FOI has

been implemented using the circuit given in Fig. 5.2, where OTAs were used as

active elements, in order to realize the proposed topology given in Fig. 5.1. The

corresponding impedances, which are able to be realized using these emulators, by

utilizing the second-order approximation of CFE, are the following

ZCPE ¼ 1

gm
� α2 þ 3αþ 2ð Þ τs2ð Þ þ �2α2 þ 8ð Þ τsð Þ þ α2 � 3αþ 2ð Þ
α2 � 3αþ 2ð Þ τs2ð Þ þ �2α2 þ 8ð Þ τsð Þ þ α2 þ 3αþ 2ð Þ ð5:24Þ

ZFOI ¼ 1

gm
� β2 � 3β þ 2
� �

τs2ð Þ þ �2β2 þ 8
� �

τsð Þ þ β2 þ 3β þ 2
� �

β2 þ 3β þ 2
� �

τs2ð Þ þ �2β2 þ 8
� �

τsð Þ þ β2 � 3β þ 2
� � ð5:25Þ

The transconductance gm is capable for being electronically programmed

through bias current Io as shown in (5.26).

gm ¼ 5

9
� Io
nVT

ð5:26Þ

where n is the MOS transistor subthreshold slope factor (n � 1.3), and VT is the

thermal voltage (VT � 26 mV).

As a result, the equivalent capacitance/inductance values are determined through

the following equations

Ceq ¼ 5

9
� Io
nVT

� τu CPEð Þ ð5:27Þ

Leq ¼ 9

5
� nVT

Io
� τu FOIð Þ ð5:28Þ

where τu ¼ 1/ωo is the unity gain frequency of the differentiator/integrator.
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The topology of OTA that has been utilized is depicted in Fig. 4.1, while the

aspect ratios of transistors are 10 μm/10 μm forMb1–Mb3, 50 μm/1 μm forMn1–Mn4,

10 μm/1 μm for Mn2–Mn3, and 60 μm/10 μm for Mp1–Mp2.

The design of the chips has been performed under the following considerations:

• CPEs and FOIs with fixed order will be fabricated. More specifically in the first

chip will be included CPEs with orders 0.3, 0.4, 0.5, 0.6, and 0.7, while in the

second CPES and FOIs with orders 0.2, 0.5, and 0.8.

• External capacitors with equal value, i.e., C1 ¼ C2 ¼ Cext, will be used. As a

result, the time-constant of the unity gain frequency will be calculated according

to (5.29) and (5.30) for CPE of order α and FOI of order β, respectively.

τu CPEð Þ ¼ 9

5
� CextnVT

Io
� α

2 þ 3αþ 2

�2α2 þ 8
ð5:29Þ

τu FOIð Þ ¼ 9

5
� CextnVT

Io
� β

2 � 3β þ 2

�2β2 þ 8
ð5:30Þ

Thus, the appropriate bias currents Io1 and Io2, as well as the design equations of
gain factors Gi (i ¼ 0, 1, 2), are summarized in Table 5.2.

• The same bias voltage scheme will be employed for all the emulators.

Only one dc current source with value Io will be required for biasing the chip.

This will be the current for biasing the V ! I converter, which has a

transconductance gm. The realization of the required bias currents (Io), as well as
of their scaled replicas for each CPE/FOI, will be performed using appropriate

current mirror stages. Please note that the order is fixed for every CPE/FOI and,

therefore, static current mirrors have been used. Therefore, the symbol each of the

designed CPE/FOI emulators is that demonstrated in Fig. 5.4.

Under the aforementioned conditions, there will be presented the effects of Cext

and Io variations in the behavior of the emulators. In other words, the tuning

capability will be investigated.

Table 5.2 Design equations for bias currents and gain factors shown in Fig. 5.2

Variable CPE FOI

Io1 �2α2 þ 8ð Þ2
α2 þ 3αþ 2ð Þ α2 � 3αþ 2ð Þ � Io

�2β2 þ 8
� �2

β2 þ 3β þ 2
� �

β2 � 3β þ 2
� � � Io

Io2 Io Io
G2 α2 þ 3αþ 2

α2 � 3αþ 2

� �
β2 � 3β þ 2

β2 þ 3β þ 2

� �
G1 1 1

G0 α2 � 3αþ 2

α2 þ 3αþ 2

� �
β2 þ 3β þ 2

β2 � 3β þ 2

� �
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5.4.1 Effects of Variation of the External Capacitors
of the Chip

Assuming that the time-constant of the differentiator/integrator will be changed to a

new value: τ0 ¼ κτ (κ ¼ C0
ext/Cext), where C0

ext is the new value of external

capacitors, then according to (5.29) or (5.30) the unity-gain frequency ωo ¼ 1/τ
will be changed to a new value equal to ωo/κ. As a result, the bandwidth of

operation of the CPE/FOI that initially was equal to [ωo/10, 10ωo] will be changed

to [ωo/(10κ), (10)/κ]. Also, the impedance of both initial and tuned frequency

remains the same.

5.4.2 Effects of Variation of the Bias Current of the Chip

In case that the time-constant of the differentiator/integrator is changed to a new

value: τ0 ¼ τ/n (n ¼ Io
0/Io), where Io0 is the new value of bias current, the unity-gain

frequency ωo ¼ 1/τ will be changed to a new value equal to nωo. As a result, the

bandwidth of operation of the CPE/FOI which initially was equal to [ωo /10, 10ωo]

will be changed to [nωo /10, 10nωo]. In addition, the value of transconductance

gm of the V! I converter is changed to g0m ¼ ngm. Finally, the realized impedances

of CPE and FOI will be scaled by a factor n1-α and 1/n1þβ, respectively.

5.4.3 Effects of Variation of both the Bias Current (Io)
and External Capacitors (Cext) of the Chip

Let us consider that n ¼ κ (i.e., Io
0/Io ¼ C0

ext/Cext). Then, according to (5.29) or

(5.30), the time-constant of the differentiator/integrator and, consequently, the

unity-gain frequency remain unchanged. Therefore, the bandwidth of operation of

the CPE/FOI [ωo/10, 10ωo] is not affected. The value of the transconductance gm of

the V ! I converter is changed to g0m ¼ ngm due to the change of Io. From the

Fig. 5.4 Symbol of

CPE/FOI emulator
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above, it is readily concluded that this tuning scheme allows the scaling of imped-

ances without affecting the bandwidth of operation.

Summarizing, it is derived that the new values of capacitances and inductances

using (5.11), (5.12), (5.13), and (5.14) are given in Table 5.3.

Both designs are fabricated in AMS 0.35 μm C35B4C3 CMOS technology, and

the total occupied is 2.82mm2. The first chip named kpproj1 includes CPEs with

orders 0.3, 0.4, 0.5, 0.6, and 0.7 where nano-Farad pseudo-capacitances could be

achieved. A die photo of the aforementioned work is shown in Fig. 5.5. The

possible values of bias current Io were found to be in general around [40–200 nA]

offering reasonable results, where magnitude and phase error offered is less than

10% within this range.

The evaluation of circuits is realized using the HIOKI 3522 HiTESTER LCR

meter applying a differential input voltage 20 mV. A typical value of bias current Io
was chosen equal to 95 nA. The employed power supply voltages were set as

VDD ¼ �VSS ¼ 0.75 V, and VCM ¼ 0 V.

Table 5.3 Expressions for calculating values of Cα, Lβ, Ceq, Leq according to the variation of the

bias current (Io) and/or external capacitors (Cext)

τ
0 ¼ κτ, κ ¼ C0

ext

Cext

� �
τ0 ¼ τ

n
, n ¼ I0o

Io

� �
κ ¼ n,

I0o
Io

¼ C0
ext

Cext

C0
α ¼ Cα � κα C0

α ¼ Cα � n1�α C0
α ¼ nCα

L0β ¼ Lβ � κβ L0β ¼
Lβ
n1þβ

L0β ¼
Lβ
n

Ceq

0 ¼Ceq � κ Ceq

0 ¼C Ceq

0 ¼ nCeq

Leq
0
eq¼ Leq � κ Leq

0 ¼ L

n2
Leq

0 ¼ Leq
n

Fig. 5.5 Die photo of the

integrated fractional-order

capacitors with fixed orders

α ¼ 0.3, 0.4, 0.5, 0.6, 0.7
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Thus, selecting a center frequency τu ¼ 1/200π rad/sec (i.e., 100 Hz), and using

appropriate values for external capacitors being calculated from (5.29), the magni-

tude impedances for CPEs of order α ¼ 0.3, 0.5, 0.7 are shown in Fig. 5.6a.

The bestfit straight lines in the log-log scale for all orders show slopes of �0.3,

�0.44, �0.56, �0.64, and �0.75 which are very close to the desired ideal values,

respectively.

The measured pseudo-capacitances Cα were calculated as 209.63nF/sec0.7,

130.78nF/sec0.6, 60.83nF/sec0.5, 31.86nF/sec0.4, and 15.26nF/sec0.3, while the

theoretical predicted values are 227nF/sec0.7, 119nF/sec0.6, 62.6nF/sec0.5,

32.9nF/sec0.4, and 17.3nF/sec0.3, respectively. Figure 5.6b shows the measured

impedance phase for the same CPEs compared with their theoretical phase angles

of �27�, �45�, �63�, respectively. Due to the limitations of the second-order

approximation particularly as the fractional order increases, the phase error

increases beyond 700 Hz. However, in the range 10–600 Hz, the phase error does

not exceed 5� for all CPEs.
The second chip named kpproj2 includes CPEs and FOIs with orders 0.2, 0.5,

and 0.8 where kilo-Henry pseudo-inductances could be achieved. A die photo of

Fig. 5.6 Experimental

results of (a) magnitude and

(b) phase for CPEs of order
α ¼ 0.3, 0.5, and 0.7 with

Ceq ¼ 2.5 nF @ 100 Hz
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this work is shown in Fig. 5.7a, where each inductor emulator as shown in Fig. 5.7b

measures 236 μm � 225 μm.

The employed power supply voltages were set as VDD ¼ �Vss ¼ 0.75 V, and

VCM ¼ 0 V. Thus, selecting a center frequency τu ¼ 1/200π rad/s (i.e., 100 Hz),

and using appropriate values for external capacitors being calculated from (5.29)

and (5.30), when a typical value of bias current Io equal to 95 nA was selected,

the magnitude impedances for CPEs of order α ¼ 0.2, 0.5, 0.8, and FOIs of

order β ¼ 0.2, 0.5, 0.8 are shown in Fig. 5.8. The best fit straight lines in the

log-log scale for all orders show slopes of�0.23,�0.53, and�0.81 for CPEs and of

0.25, 0.57, and 0.84 for FOIs, which are very close to the desired ideal values,

respectively.

The measured pseudo-capacitances Cα were calculated as 456.1nF/sec0.8,

67nF/sec0.5, 9.3nF/sec0.2, while the theoretical predicted values are 433nF/sec0.8,

Fig. 5.7 (a) Die photo of

the integrated fractional-

order capacitors with fixed

orders α ¼ 0.2, 0.5, 0.8, and

fractional-order inductors

with fixed orders β ¼ 0.2,

0.5, 0.8. (b) die photo zoom

on a single fractional-order

inductor
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62.6nF/sec0.5, 9.1nF/sec0.2, respectively. Also, the measured pseudo-inductances Lβ
were calculated as 164 kH/sec0.8, 25.42 kH/sec0.5, 4.1 kH/sec0.2, while the theoret-

ical predicted values are 175 kH/sec0.8, 25.4 kH/sec0.5, 3.7 kH/sec0.2, respectively.

Figure 5.9a shows the measured impedance phase for the same CPEs compared

with their theoretical phase angles of �18�, �45�, �72�, while Fig. 5.9b shows the
measured impedance phase for the same FOIs compared with their theoretical

phase angles of 18�, 45�, 72�.
Due to the limitations of the second-order approximation particularly as the

fractional order increases, the phase error increases beyond 800 Hz. However, in the

range 10–600 Hz, the phase error does not exceed 5� for all emulators. The

investigation of tunability using different values of bias current for a fixed order

is shown in Fig. 5.10. The variation of pseudo-inductances and phase for a fixed

order β ¼ 0.5 is readily obtained by applying bias currents (80 nA, 95 nA, 120 nA)

and measured as Lβ ¼ (32.14 k, 25.42 k, 18.91 k) H/sec0.5, which are very close to

the theoretically predicted values (33.13 k, 25.4 k, 18.03 k) H/sec0.5.

Fig. 5.8 Experimental

results of magnitude for (a)
CPEs of order α ¼ 0.2, 0.5,

and 0.8 with Ceq¼ 2.5 nF@

100 Hz, and (b) FOIs of
order β ¼ 0.2, 0.5, and 0.8

with Leq ¼ 1.014 kH @

100 Hz
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Fig. 5.9 Experimental

results of phase for (a) CPEs
of order α ¼ 0.2, 0.5, and

0.8 with Ceq ¼ 2.5 nF @

100 Hz, and (b) FOIs of
order β ¼ 0.2, 0.5, and 0.8

with Leq ¼ 1.014 kH @

100 Hz

Fig. 5.10 Effect of tuning

of bias current in the (a)
magnitude and (b) phase of
FOI of order β ¼ 0.5, and

bias current Io ¼ 80 nA,

95 nA, and 120 nA
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5.5 Fractional-Order Resonators Using Emulated
CPEs and FOIs

Fractional-order-capacitors and inductors have been already mentioned as very

important building blocks for several applications. The realization of a parallel

resonance network using the already building blocks could result in one of the most

simple and sensitive sensors. The behavior of the aforementioned network is

essentially the same as a fractional-order band-pass filter as shown in Fig. 5.11.

In case that the characteristics of building blocks could be easily tuned, then the

proposed system could be used for precise calibration/measurement of an unknown

fractional-order element. Thus, an attractive benefit of this topology is the capabil-

ity of the fully characterization of the parameters (Cα, Lβ, α, β) by solving two

nonlinear equations. This could be achieved just through collecting data from a

single ac frequency response.

In order to be completely described the mathematical background of a

fractional-order parallel resonance, the topology (RLβCα) of Fig. 5.11 will be

analyzed. The realized transfer function of the aforementioned scheme is given in

(5.31)

H sð Þ ¼
1

RCa
sβ

sαþβ þ 1
RCa

sβ þ 1
LβCa

ð5:31Þ

which could be alternatively expressed as

H jωð Þ ¼ Re H jωð Þf g þ jIm H jωð Þf g ð5:32Þ

where

Re H jωð Þf g ¼
1

RCa
ωβ ω αþβð Þ cos απ

2

� �þ 1
RCa

ωβ cos βπ
2

� �þ 1
LβCa

h i
ω αþβð Þ cos αþβð Þπ

2

� �
þ 1

RCa
ωβ cos βπ

2

� �þ 1
LβCa

h i2
þ ω αþβð Þ sin αþβð Þπ

2

� �
þ 1

RCa
ωβ cos βπ

2

� �h i2
ð5:33aÞ

and

Fig. 5.11 RLβCα parallel

resonator
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Im H jωð Þf g ¼
1

RCa
ωβ �ω αþβð Þ cos απ

2

� �þ 1
LβCa

sin βπ
2

� �h i
ω αþβð Þ cos αþβð Þπ

2

� �
þ 1

RCa
ωβ cos βπ

2

� �þ 1
LβCa

h i2
þ ω αþβð Þ sin αþβð Þπ

2

� �
þ 1

RCa
ωβ cos βπ

2

� �h i2
ð5:33bÞ

The magnitude and phase responses of H( jω) are, respectively, given by (5.34)

and (5.35), respectively. An analysis of the magnitude response proofs that the stop-

band attenuation is asymmetric. More specific, the slope at high frequencies is�6�α
dB/oct, while at low frequencies is þ6�β dB/oct. In addition, new critical frequen-

cies have been added, compared to the conventional case of an integer-order

resonance.

H jωð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re H jωð Þf g2 þ Im H jωð Þf g2

q

¼
1

RCa
ωβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 αþβð Þ þ ωβ

RCa

� �2
þ 2ω αþ2βð Þ

RCa
cos

απ

2

� �
þ 2ωβ

RLβCa
2
ωβ cos

βπ

2

� �

þ 2ω αþβð Þ

LβCa
cos

αþ βð Þπ
2

� �
þ 1

LβCa

� �2

vuuuuuut
ð5:34Þ

∠H jωð Þ ¼ tan �1 Im H jωð Þf g
Re H jωð Þf g
� �

¼ tan �1

�ω αþβð Þ sin
απ

2

� �
þ 1

LβCa
sin

βπ

2

� �

ω αþβð Þ cos
απ

2

� �
þ 1

LβCa
cos

βπ

2

� �
þ 1

RCa
ωβ

2
664

3
775

ð5:35Þ

The definitions of these frequencies are the following

• Pure real frequency denoted as ωpr at which the imaginary part of the transfer

function becomes equal to zero (i.e., Im{H( jω)} ¼ 0) and is given by

ωpr ¼
sin βπ

2

� �
LβCa sin

απ
2

� �
 ! 1

αþβ

ð5:36Þ

It is important to be mentioned that when α ¼ β ¼ 1 the above expression is

simplified toωpr ¼ ωr ¼
ffiffiffiffiffiffiffiffiffiffiffi
1=LC

p
, which is the well-known resonance frequency of
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an integer-order resonator. Also, according to (5.35) the phase response at ωrp is

equal to 0 or π.

• The peak frequency (ωp) at which the magnitude response has a maximum and is

obtained by solving the equation d
dω H jωð Þj j ¼ 0. As a result, the peak frequency

can be obtained by solving the following nonlinear equation

αωp
2 αþβð Þ þ α

RCα
ωp

αþ2β cos
απ

2

� �
� β

RLβCa
2
ωp

β cos
βπ

2

� �

� β � a

LβCa
ωp

αþβ cos
αþ βð Þπ

2

� �
� β

LβCa

� �2 ¼ 0:
ð5:37Þ

It is obvious that in general, the peak frequency is different from the resonance

frequencies either ωpr or ωr. Nevertheless, all the above frequencies are equalized

only in case α ¼ β ¼ 1. Then ωp ¼ ωpr ¼ ωr ¼
ffiffiffiffiffiffiffiffiffiffiffi
1=LC

p
.

• Pure imagine frequency denoted as ωpi at which the real part of the transfer

function becomes equal to zero (i.e., Re{H( jω)} ¼ 0) and is given by (5.38)

ωpi
αþβð Þ cos

απ

2

� �
þ 1

RCa
ωpi

β þ 1

LβCa
cos

βπ

2

� �
¼ 0 ð5:38Þ

Note that according to (5.35), the phase has a value equal to �π/2. This

frequency exists only if the circuit has two elements at least, but at least one of

them should be a fractional-order element.

• Half-power frequencies ωh at which the power drops to half the passband power,

i.e., H jωð Þj jω¼ωh
¼ H jωð Þj jω¼ωp

=
ffiffiffi
2

p
, where ωh2 and ωh1 are the upper and lower

half-power frequencies, respectively.

Assuming that a frequency scan is performed, using the magnitude and phase

response can be easily measured the most important frequencies. Considering that

there are four different equations that describe the most critical frequencies, then it

is a trivial procedure for finding the four unknown parameters (Cα, Lβ, α, β) of a
fractional-order capacitor, and a fractional-order capacitor. In case that the inductor

is not fractional, then the required equations are limited to be two, as there are only

two unknown parameters (Cα, α,), and only two measurements are required.

Considering the parallel resonator given in Fig. 5.11, there will be presented

experimental results using the fabricated chip named kpproj2. Taking into account

that in this project both fractional-order capacitors and inductors of order 0.2, 0.5,

0.8 are available, the evaluation of a fractional-order resonator could be easily

verified. As a first step the impedance of the parallel resonator LβCα is tested using

the same LCR meter.

A typical value of bias current Io was chosen equal to 95 nA. Thus, selecting a

center frequency τu ¼ 1/200π rad/sec (i.e., 100 Hz), the resonator was tested for Cα

¼ (433n, 62.6, 9.07) nF/sec1�α, and Lβ ¼ (175.6, 25.4, 3.7) kH/sec1�β for orders
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0.2, 0.5, and 0.8, respectively. Applying a differential input signal 20 mV, the

magnitude and phase responses for various cases of (α, β) are shown in Fig. 5.12.

The obtained results are summarized in Table 5.4, where the corresponding theo-

retical predicted values are also given between parentheses.

Concerning the affection of bias current in the magnitude and phase of the

resonator for a fixed order α ¼ β ¼ 0.5 is demonstrated in Fig. 5.13. The derived

experimental results are given in Table 5.5. As a result, the affection of bias current

is in accordance with the study already given in previously.

After that, the circuit of Fig. 5.11 is tested, which is essentially a fractional-order

band-pass filter, using different values of R. As a first step, fixing R ¼ 1 MΩ, and
using the already tested LβCα setup with Ceq ¼ 2.5 nF and Leq ¼ 1.014kH @

100 Hz, the obtained results of fractional-order bandpass filter of order α ¼ β ¼ 0.5

are demonstrated in Fig. 5.14.

Fig. 5.12 (a) Magnitude

and (b) phase measurements

for the LβCα parallel

resonator with Ceq ¼ 2.5 nF,

and Leq ¼ 1.014 kH @

100 Hz, for various orders

Table 5.4 Frequency characteristics of the LβCα resonator with Ceq ¼ 2.5 nF, and Leq ¼ 1.014 kH

@ 100 Hz

(α, β) ¼ (0.5,0.2) (α, β) ¼ (0.5,0.5) (α, β) ¼ (0.5,0.8) (α, β) ¼ (0.8,0.8)

fp (Hz) 36.7 (38.2) 92.84 (100) 116 (121.3) 107.7 (100)

jZ( j2π fp)j (Ω) 411.2 k (408.8 k) 444.5 k (439.8 k) 580.5 k (600.6 k) 991.7 k (984.8 k)

fpr (Hz) 38.1 (33.4) 103 (100) 134 (130) 105 (100)
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In addition, a comparison of the magnitude response for different cases (R¼ 0.5,

1, 2, 5) MΩ, with bias current being fixed at 95 nA, is simultaneously given. The

gain at fp was measured (�6.54 dB, �10.24 dB, �14.81 dB, �21.76 dB),

respectively.

5.6 Summary

A fractional-order capacitor and inductor emulator is fully integrated, the right

operation of which has been verified through experimental results. The basic

building blocks are gm-cells with MOS transistors operating in the subthreshold

Fig. 5.13 (a) Magnitude

and (b) phase measurements

for the L0.5C0.5 parallel

resonator with order 0.5 at

bias currents (80 nA, 95 nA,

120 nA)

Table 5.5 Frequency characteristics of the fractional-order L0.5C0.5 resonator with Ceq ¼ 2.5 nF,

and Leq ¼ 1.014 kH @ 100 Hz for three different bias currents

(α ¼ β ¼ 0.5) Io ¼ 80 nA Io ¼ 95 nA Io ¼ 120 nA

fp (Hz) 80 (83.69) 92.84 (100) 100 (125.3)

jZ( j2π fp)j (Ω) 516.3 (525.1 K) 444.5 K (439.8 K) 368.3 K (350.1 K)

fpr (Hz) 89.5 (83.5) 103 (100) 123 (125.3)
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region offering electronic tunability through bias current. Having available those

emulators, an LβCα parallel resonator, as well as a fractional-order bandpass filter, is

possible to be realized. The experimental results prove that the fabricated circuit

offers a good accuracy, when compared to theoretical values. The main benefit of

this resonator is that it can be operated in a low frequency operation, which is a very

difficult procedure using the circuits already reported in the literature [7, 8].
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Chapter 6

Applications of Fractional-Order Circuits

6.1 Introduction

Fractional-order calculus consists one of the most important mathematical tools,

which offer attractive features when applied in several applications. The most

important features are highlighted especially when compared with the

corresponding integer-order counterparts. The first topology that utilizes and proves

this feature is using a fractional-order differentiator in the preprocessing chain for

detecting the QRS complexes according to the Pan-Tompkins algorithm, where the

efficiency of handling signals in a noisy environment has been achieved and proved

through simulation results. A fully tunable impedance model using the already

proposed fractional-order capacitors and inductor emulators will be realized and

verified through simulation results. This emulator is capable of emulating models

representing the impedance of many types of biological tissues. The characteriza-

tion of fractional-order circuits is an important procedure, which in general requires

expensive equipment. Thus, appropriate experimental setups are introduced, which

are very simple and cost-effective alternative using operational amplifier-based

circuits. Finally, the design and evaluation of a fractional-order oscillator is intro-

duced proving that fractional-order oscillators have a unique advantage when

compared to their integer-order counterparts. That is the capability of producing

higher frequencies for the same inductance and capacitance values as a result of the

existence of one or more fractional-order differential equations.



6.2 A Preprocessing Stage Suitable for Implementation
of the Pan-Tompkins Algorithm

Fractional-order differentiators and integrator topologies, which are the most

important building blocks, are designed by employing the concept of the Sinh-

Domain filtering. Companding technique offers the benefits of resistorless realiza-

tions with potential for adjusting their frequency characteristics through appropriate

DC currents. In addition, they are capable for operating in an ultralow-power supply

environment, which is very important from the nowadays trend point of view. The

performance of the proposed blocks has been evaluated through the Analog Design

Environment of the Cadence software, using MOS transistor models provided by

the TSMC 180 nm process.

The distinct characteristic of the technique is that, it is the large-signal transfer

function of the circuit that is linearized, not the individual transconductance or active

resistive elements as would be the case in conventional circuit design techniques. In

addition, the frequency characteristics could be electronic adjusted through bias

currents. The absence of passive resistors and the employment of only grounded

capacitors constitute attractive features making them efficient blocks for realizing

high performance circuit topologies. Also, the realization of companding filters

usingMOS transistors biased in the weak inversion offers the capability of operation

in an ultralow-voltage environment [1–8]. The general topology of a linear system,

the principle of which is that the input current is compressed into a voltage in order to

be processed from the core of the system and then the output voltage expanded into a

linear current at the output of the system, is given in Fig. 6.1.

Taking into account that MOS transistors operating in the subthreshold region

will be employed, the proposed topologies are able to operate in ultra low-voltage

environment with reduced power consumption. Thus, the preservation of the linear

operation of the system has been achieved through the utilization of the following

set of complementary operators

bυin ¼ sinh�1 iinð Þ� � � VDC þ nVT � sinh�1 iin
2IB

� �
ð6:1Þ

iout ¼ sinh bυoutð Þ½ � � 2IB � sinh bυout � VDC

nVT

� �
ð6:2Þ

Fig. 6.1 Realization of a linear system using companding technique in Sinh-Domain
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where IB is a bias current, n is the subthreshold slope factor (1 < n < 2), VT is

the thermal voltage (� 26 mV at 27 �C), bυin and bυout are the compressed input

and output voltages, and iin, iout are the linear input and output currents,

respectively.

The conversion of the linear input current into a compressed voltage is described

through the [sinh�1] operator in (6.1), while the conversion of the compressed

output voltage into a linear current through the [sinh] operator in (6.2). The

fundamental elements for realizing Sinh-Domain circuits are nonlinear

transconductor cells, known as S and C cells [4, 7–12]. A typical multiple-output

cell is depicted in Fig. 6.2. Thus, following this consideration, the expressions

of output currents are given by Eqs. (6.3) and (6.4), where bυinþ and bυin� are the

voltages at the non-inverting and inverting inputs, respectively.

isinh ¼ sinh υ̂ð Þ � 2IB � sinh υ̂ inþ � υ̂ in�
nVT

� �
ð6:3Þ

icosh ¼ cosh υ̂ð Þ � 2IB � cosh υ̂inþ � υ̂in�
nVT

� �
ð6:4Þ

Additional replicas of the output currents could be derived through the formation

of extra current mirrors.

Fig. 6.2 Multiple-output nonlinear transconductor cell (a) circuitry and (b) associated symbol
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Another useful building block for realizing Sinh-Domain integrators is the

two-quadrant divider. That topology is realized using appropriately configured

S cells as it is demonstrated in Fig. 6.3 with the associated symbol.

The input–output relationship is given by the formula iout ¼ IDIV�(i1/i2), where i1
and i2 are the corresponding input currents, and IDIV is the bias current of

divider [8].

Using the aforementioned cells, the general topology of a Sinh-Domain lossless

integrator is demonstrated in Fig. 6.4. The current that flows through the capacitor is

derived as

ic ¼ C
dbυout
dt

¼ 2IDIV �
2IB � sinh bυ in�VDC

nVT

� �
2IB � cosh bυout�VDC

nVT

� � ð6:5Þ

Taking into account that the input–output current relationship of the

two-quadrant divider is iout ¼ IDIV(i1/i2), then using (6.2) the expression in (6.5)

could be written as

τ � d
dt

sinh bυoutð Þ½ � ¼ sinh bυinð Þ½ � , τ � d
dt
iout ¼ iin ð6:6Þ

Fig. 6.3 Two-quadrant divider realization (a) using S cells and (b) associated symbol

Fig. 6.4 General schemes of Sinh-Domain (a) lossless and (b) lossy integrators
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Thus, the derived transfer function of lossless integrator is proved and given as

H sð Þ ¼ 1

τ � s ð6:7Þ

where the time constant (τ ) is given by (6.8)

τ ¼ CnVT

IDIV
ð6:8Þ

In case that a scaled output is also needed, the enhanced topology is also

depicted in Fig. 6.4a. This has been achieved through adding an extra S cell,

which is biased at a current G�IB. The modified output current of this S cell is

given by (6.9), while using (6.3), (6.7), and (6.9) the transfer function is given by

(6.10)

ioutð�GÞ ¼ 2GIB � sinh υ̂ inþ � υ̂ in�
nVT

� �
ð6:9Þ

H sð Þ �Gð Þ ¼
G

τ � s ð6:10Þ

Taking into account that the required time constants are realized through the bias

current of the divider (IDIV) [13], the electronic adjustment of the gain factor (G) of

the transfer function is realized through DC bias current of the corresponding

nonlinear transconductor without disturbing the time constant of the filter.

Following a similar procedure, the corresponding lossy integrator is demon-

strated in Fig. 6.4b. The realized transfer functions will be given by (6.11) and

(6.12), while the time constant is still given by Eq. (6.8).

H sð Þ ¼ 1

τ � sþ 1
ð6:11Þ

H sð Þ �Gð Þ ¼
G

τ � sþ 1
ð6:12Þ

Taking into account that the expression of the time constant in Eq. (6.8) is

depended on the bias current IDIV, the range of the input signals which could be

handled by the integrator is not limited by the value of the bias current which is

employed for biasing the nonlinear S/S0/C cell. As a result, the topologies in Fig. 6.4

offer the capability for realizing large time constants without affecting the level of

input currents, i.e., they behave as capacitor multipliers with scaling factor equal to

2IB/IDIV [13].

Another important block for realizing circuits in Sinh-Domain is a multiple-

output summation block with a scaled output. The proposed topology is depicted in

Fig. 6.5, where according to (6.1), the voltage could be written as given in (6.13).

The two S cells at the right of the figure are biased at currents IB andG � IB , and their
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corresponding outputs could be expressed, using (6.3), as iout ¼ (i1 þ i2) and iout
(xG)¼G � (i1þ i2).

bυin ¼ VDC þ nVT � sinh�1 i1 þ i2
2I0

� �
ð6:13Þ

The realization of a fractional-order differentiator/integrator blocks will be

performed using the procedure presented in Chap. 2. The transfer function given

in (2.6) is capable for approximating a fractional-order differentiator, a fractional-

order lossless and lossy integrator using the same topology without any modifica-

tion. Assuming that companding is a current mode technique, the realization of this

topology could be derived using the FBD given in Fig. 2.1a.

Thus, the Sinh-Domain realization is that depicted in Fig. 6.6. For the sake of

completeness the expressions of gain values Gj ( j ¼ 0, 1, 2) and time constantsτi
(i ¼ 1, 2) using the second-order approximation given in (1.6), are summarized in

Table 6.1.

Fig. 6.5 Realization of

summation in the Sinh-

Domain

Fig. 6.6 Sinh-Domain realization of the fractional-order differentiator of order α, using the

second-order approximation in (1.6)
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Due to the large spread of values of DC bias current of divider observed at the

realization of various orders of fractional-order topologies, the enhanced version of

the two-quadrant divider as that given in Fig. 6.7 will be employed. The bias current

that has been achieved using two more extra stages than the conventional counter-

part is IDIV ¼ I0DIV= κ1 � κ2ð Þ, giving an additional degree of freedom in the imple-

mentation point of view. Thus, the resulted design equations for the appropriate bias

currents are also given in Table 6.1.

The electrocardiogram (ECG) is a powerful tool for noninvasively diagnosing

cardiac diseases. An important research subject is the detection of QRS complex in

an ECG. The Pan-Tompkins algorithm is one of the most popular methods for

detecting the QRS complexes [14, 15]. The QRS detection task is difficult due to the

time-varying morphology of ECG, the physiological variability of the QRS

Table 6.1 Values of scaling factors Gj, τi, and bias currents for realizing fractional-order

differentiator, lossless, and lossy integrator of order α, using the second-order approximation

in (1.6)

Design
parameters H(s)¼ (τ � s)α H sð Þ ¼ 1

τ � sð Þα H sð Þ ¼ 1

τ � sð Þα þ 1

G2 α2 þ 3αþ 2

α2 � 3αþ 2

� �
α2 � 3αþ 2

α2 þ 3αþ 2

� �
α2 � 3αþ 2

2α2 þ 4

� �
G1 1 1 0.5

G0 α2 � 3αþ 2

α2 þ 3αþ 2

� �
α2 þ 3αþ 2

α2 � 3αþ 2

� �
α2 þ 3αþ 2

2α2 þ 4

� �
τ1 α2 � 3αþ 2

�2α2 þ 8

� �
� τ α2 þ 3αþ 2

�2α2 þ 8

� �
� τ α2 þ 2

�2α2 þ 8

� �
� τ

τ2 �2α2 þ 8

α2 þ 3αþ 2

� �
� τ �2α2 þ 8

α2 � 3αþ 2

� �
� τ �2α2 þ 8

α2 þ 2

� �
� τ

IDIV1
κ1κ2nCVTωo

�2α2 þ 8

α2 � 3αþ 2

� �
κ1κ2nCVTωo

�2α2 þ 8

α2 þ 3αþ 2

� �
κ1κ2nCVTωo

�2α2 þ 8

α2 þ 2

� �
IDIV2

κ1κ2nCVTωo
α2 þ 3αþ 2

�2α2 þ 8

� �
κ1κ2nCVTωo

α2 � 3αþ 2

�2α2 þ 8

� �
κ1κ2nCVTωo

α2 þ 2

�2α2 þ 8

� �

Fig. 6.7 Enhanced version of a two-quadrant divider
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complexes, and the noise presented in ECG signals. The main noise sources are

muscular activity, movement artifacts, power line interference, and baseline wan-

dering [16, 17]. Fractional-order differentiation is an attractive mathematical tool

for features extraction from noisy signals, especially when compared to the con-

ventional integer-order calculus. Fractional-order operators accumulate, in a

weighted form, the whole information of the signal [18, 19, 20].

A typical preprocessing chain of the Pan-Tompkins algorithm consists of a

typical bandpass filter, a differentiator, and squarer. The bandpass filter is respon-

sible for the selection of frequencies between QRS complex of the ECG signal.

Thereafter, the differentiator finds the high slopes of the signal, and finally the

squarer is used in order to emphasize the higher frequency content of the signal,

which is unique characteristic of QRS complex compared to the other ECG waves.

The modified chain using the fractional-order differentiator is that given in Fig. 6.8.

The BP filter has been realized through a two-integrator loop as that demon-

strated in Fig. 6.9; the transfer function is the following

H sð Þ ¼
ωo

Q � s
s2 þ ωo

Q � sþ ω2
o

ð6:14Þ

The resonance frequency ωo and the Q factor are defined by (6.15) and (6.16)

ωo ¼ 1ffiffiffiffiffiffiffiffi
τ1τ2

p ð6:15Þ

Fig. 6.8 Block diagram for implementing the Pan-Tompkins algorithm using fractional-order

differentiator of order α

Fig. 6.9 Sinh-Domain realization of the second-order bandpass filter
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Q ¼
ffiffiffiffi
τ1
τ2

r
ð6:16Þ

where the time constants τi (i ¼ 1, 2) are given by the expression τ ¼ nCVT/IDIV.
Considering that the bias scheme is VDD¼ 0.5 V, VDC¼ 200 mV, IB1¼ IB2¼ 50

pA, and IDIV1 ¼ IDIV2 ¼ 100 pA, the capacitor values for realizing a bandpass filter

function with cutoff frequencies 5 and 15 Hz were C1 ¼ 47 pF and C2 ¼ 62.6 pF.

The simulated values of cutoff frequencies were 5.1 Hz and 14.6 Hz, respectively.

The required current squaring operation has been realized by the topology given

in Fig. 6.10, which is actually a four-quadrant multiplier [12, 21, 22]. The circuitry

of the current splitter is shown in Fig. 3.6, and the realized expression for the output

current is iout ¼ i2in/ISQ, where ISQ is a DC bias current. The aspect ratios of the

MOS transistors, for a bias current ISQ ¼ ISPL ¼ 200 pA, are 34 μm/15 μm forMp1–

Mp4, 40 μm/10 μm for Mp5–Mp6, 4 μm/10 μm for Mp7–Mn9, and 10 μm/15 μm for

Mn1–Mn4.

In order to be evident the efficiency of the proposed topology, Pan-Tompkins

algorithm will be also studied for the integer-order differentiator. The Sinh-Domain

of an integer-order differentiator is that depicted in Fig. 6.11 [23]. Thus, all the

intermediate blocks are ready for being utilized in order to perform the

Pan-Tompkins algorithm. As a first step, the ECG signal should be applied at the

input of the system. A noiseless ECG, which is derived through the MATLAB

toolbox available in [24] is given in Fig. 6.12a. A noisy ECG, obtained through the

addition of Gaussian noise (awgn command of MATLAB) with signal-to-noise

ratio (SNR) equal to 0 dB. The aforementioned signal is depicted in Fig. 6.12b.

Therefore, the obtained waveforms, which have been performed at transistor level,

using the time-domain analysis tool provided by the Analog Design Environment of

the Cadence software are realistic. The waveform at the output of the bandpass filter

for both systems is depicted in Fig. 6.12c. The waveforms after the integer-order

and fractional-order differentiation with unity gain frequency 10 Hz are demon-

strated in Fig. 6.12d, e, respectively. It is obvious that the noise at the output of the

Fig. 6.10 Sinh-Domain realization of the current squarer
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fractional-order differentiator is significantly suppressed. As a result, the output

waveform in Fig. 6.12g is less noisy than that of Fig. 6.12f.

Consequently, the proposed fractional-order differentiator that has been utilized

offers more efficient results than that of integer-order realization.

6.3 A fully Tunable Implementation
of the Cole-Cole Model

Fractional-order capacitors have been already mentioned as very important build-

ing blocks in several applications especially in the field of bioimpedance, which

measures the passive electrical properties of biological materials. These measure-

ments give information about the electrochemical process in tissues and can be used

to characterize the tissue or monitor for physiological changes. In the field of

bioimpedance measurements the Cole impedance model, introduced by Kenneth

Cole in 1940 [25], is widely used for characterizing biological tissues and bio-

chemical materials. The Cole-impedance model is widely popular to biology and

medicine [26], due to its simplicity and good fit with measured data, illustrating the

behavior of impedance as a function of frequency.

The single-dispersion Cole model, shown in Fig. 6.13, is composed of three

hypothetical circuit elements: (i) a high-frequency resistor R1, (ii) a low-frequency

resistor R0, and (iii) a fractional-order capacitor (Cα, α). The impedance of the Cole-

model is given by (6.17).

Z sð Þ ¼ R/ þ R0 � R/
1þ τsð Þα ð6:17Þ

where

sα ¼ ωð Þα cos
απ

2

� �
þ j sin

απ

2

� �h i

Fig. 6.11 Sinh-Domain

realization of the integer-

order differentiator
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Fig. 6.12 Simulated waveforms for (a) noiseless ECG, (b) noisy ECG, (c) output of the bandpass
filter, (d) output of the integer-order differentiator, (e) output of the fractional-order differentiator,
(f) output of the squarer after an integer-order differentiation, and (g) output of the squarer after a
fractional-order differentiation
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A fully-tunable Cole-impedance emulator can be realized using the proposed

current excited fractional-order capacitor given in Fig. 5.3 and replacing the passive

resistors by appropriately configured OTAs, the topology of which is that given in

Fig. 6.14, where the transconductance value is given as gm ¼ 1/R.

In order to demonstrate a complete model, the Cole-impedance model parame-

ters previously extracted from an apple and plumb in [27] are used.

These parameters, which are scaled by a factor of 100 in order to be able

emulated by this design, are summarized in Table 6.2. The appropriate values for

bias currents and scaling factors are given in Table 6.3 for both models which are

calculated using the design equations given in Table 5.1 and (5.16–5.17).

Fig. 6.13 Theoretical

Cole-impedance model

Fig. 6.14 OTA structure

realization for emulating a

floating resistor

Table 6.2 Cole-impedance

parameters extracted from an

apple and plumb

Parameter Apple Plumb

α 0.696 0.64

R1 (Ω) 195 k 42.4 k

R0 (Ω) 2.414 M 1.02 M

Cα (F/sec
1�α) 511p 2.09n

Table 6.3 Bias currents and

scaling factors for the

emulation of the Cole-

impedance model parameters

of the apple and plumb model

described in Table 6.2

Parameter Apple Plumb

Io1 1.84 μA 1.33 μA
I0o ¼ Io2 67.6 nA 54.5 nA

G2 11.53 8.843

G1 1 1

G0 0.087 0.113

IR0–IR1 27.4 nA 61 nA

IR0 312 nA 1.4 μA
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The MOS transistor aspect rations for the OTAS emulating floating resistors are

10 μm/10 μm for Mb1–Mb3, 50 μm/1 μm for Mn1–Mn4, 10 μm/1 μm for Mn2–Mn3,

and 60 μm/10 μm for Mp1–Mp2.

The real Z0(Ω) and imaginary part Z00(Ω) of impedance derived using post-layout

simulation results are given in Fig. 6.15, where the corresponding theoretical

simulations (dashed lines) are also given. In addition, the Nyquist plot of the

emulated Cole-impedances is given in Fig. 6.16, while the corresponding theoret-

ical simulations are also given. The well-known form of the semicircle is presented

using this format, while the maximum and minimum values of impedances for both

apple and plumb are given in Table 6.4. From these results it is obvious that the

Fig. 6.15 Post-layout simulation results of the (a) real and (b) imaginary part of Cole-impedance

model for the apple and plumb model parameters
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proposed design is in a very good agreement within the frequency range that the

fractional-order capacitor approximation offers a good performance.

Summarizing, the proposed emulation of the Cole-impedance based on the OTA

topology is very good at capturing this behavior. This emulation scheme can be

used to emulate the behavior of biological tissues with potential applications for

self-test or emulated systems for bioimpedance measurements.

6.4 Simple Non-impedance-Based Measuring Technique
for Supercapacitors

Supercapacitors are electrical devices which are used to store energy and offer high

power density that is not possible to achieve with traditional capacitors. Thus, they

bridge the gap between electrolytic capacitors and rechargeable batteries.

Nowadays, supercapacitors have many industrial applications and are used

wherever a high current in a short time is needed. They are able to store or yield

a lot of energy in a short period of time. According to IEC standard 62391-1 four

Fig. 6.16 Post-layout Nyquist impedance plots of the two emulated Cole-impedances

Table 6.4 Cole-impedance parameters extracted from an apple and plumb

Performance

factors Apple Plumb

Simulation Theoretical Simulation Theoretical

Z0min (Ω) 391 k 372 k 127.9 k 147.9 k

Z0max (Ω) 2.15 M 2.236 M 952.7 k 959.2 k

Z00min (Ω) �669.1 k �659.1 k �281.1 k �274.5 k

f @Z
00
min Hzð Þ 2384 2329 2970 2344
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application classes for supercapacitors are identified depending on their charge

capacitance and time response: (i) memory backup, (ii) energy storage, (iii) power

applications in propulsion systems, and (iv) pulse/instantaneous power. These

power sources can be found in diverse technological domains ranging from energy

storage for wind turbines [28] and other renewable energy sources [29], hybrid and

electric vehicles [30], biomedical sensors [31] to wireless sensor nodes [32]. The

typical working frequency range of supercapacitors varies from a fraction of 1 Hz to

1 kHz [33].

In terms of modeling, the impedance measurement of supercapacitors usually

shows a frequency-dependent behavior that cannot be described by usual electric

components. It is rather explained by a capacitance-dispersion phenomenon due to

distributed surface reactivity, inhomogeneity, fractal/rough geometry, and porosity

in terms of a CPE. Among the different models used to for supercapacitor charac-

terization [34, 35], the simplest and most widely used is that shown in Fig. 6.17. The

total impedance of the model is given by (6.18).

Standard LCR meters, which are designed with the assumption that α ¼ 1, are

commonly used to measure capacitance. However, some supercapacitors exhibit

appreciable deviation from ideality with the increased frequency [36]. This indi-

cates that it would be incorrect to assume a behavior that is typical of a normal

capacitor when measuring the electric properties of a supercapacitor. Furthermore,

in some supercapacitors, (Cα, α) show a frequency-dependent behavior with their

respective values significantly changing from near DC frequency (mHz range) to

low-frequency range (Hz range) to medium frequency range (kHz range). A

suitable topology that has been proposed in order to characterize the electric

parameters of a supercapacitor R0-Cα is that given in Fig. 6.18. The resulted transfer

function is given by (6.19) as

Z sð Þ ¼ R0 þ 1

Cα � sα ð6:18Þ

Fig. 6.18 Proposed

topology for extracting

parameters of a

supercapacitor using R0-Cα

model

Fig. 6.17 Model representing the impedance of a supercapacitor
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H sð Þ ¼ �Rex

R0

� ωo
α

sα þ ωo
α

ð6:19Þ

where Rex/R0 is the high-frequency gain, and ωo is the pole frequency given by

ωo ¼ 1

R0Cαð Þ1=α
ð6:20Þ

The magnitude response and phase response are given by (6.21).

jHðjωÞj ¼ ðRex=R0Þ � ωαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω
ωo
Þ2α þ 2 ω

ωo
Þαcos απ

2

	 
þ 1
��r ð6:21Þ

∠H jωð Þ ¼ π þ απ=2� tan -1

ω
ωo

� �α
sin απ

2

	 

ω
ωo

� �α
cos απ

2

	 
þ 1

0B@
1CA ð6:22Þ

The resulted transfer function corresponds also to a fractional-order high-pass

filter whose half-power frequency to pole frequency ratio is that in (6.23a), while

the corresponding phase at this frequency is that given in (6.23b)

ωh ¼ ωo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos 2

απ

2

� �r
þ cos

απ

2

� �� �1 α=

ð6:23aÞ

∠ H jωð Þj jω¼ωh
¼ π þ απ=2� tan -1 sin απ

2

	 

2 cos απ

2

	 
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos 2 απ

2

	 
q
0B@

1CA ð6:23bÞ

The procedure that can be followed in order to measure the characteristics of a

supercapacitor is the following:

1. Assuming that a typical value for R0 is [5–100Ω], a reasonable choice is 500Ω.
Thus, applying an input voltage 50 mV and monitoring output voltage while

frequency is gradually increased, then, and noting that then the value R0 could be

calculated using (6.24), and the fact that the high frequency gain is Rex/R0

R0 ¼ Rex

Vinj j
Voutj jmax

ð6:24Þ

where |Vin| ¼ 50 mV, and |Vout|max is the stabilized maximum value of output

voltage at a high-frequency value. The voltage power supply for the op amp is set

equal to 	9 V.
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2. Taking into account that the phase angle between input and output (high-pass

nature of setup) at very low frequencies is π þ (απ/2), the order α could be easily

determined.

3. In addition, the pole frequency can be calculated, by measuring the frequency

(ωh) at which there is 0.707 drop of the maximum output gain, i.e.,

Vout ¼ Voutmax/√2, and then using (6.23a). Finally, the value of the pseudo-

capacitance is calculated using (6.20).

A commercial NEC/TOKIN 5.5 V supercapacitor rated as 1 F (part#

FGR0H105ZF) was selected for testing. The datasheet indicates that the nominal

capacitance when charging is 1F and it is 1.3F when discharging; both measured at

frequency very close to DC. Characterization of the electrical properties of the

supercapacitor were carried out using

1. Standard precision LCR meters (Tisley LCR-6401 data-bridge and Thurlby

Thandar Inst. LCR-400).

2. A Biologic VSP-300 electrochemical workstation equipped with an impedance

analyzer operating in the 10 μHz to 7 MHz frequency range. With this instru-

ment the supercapacitor parameters were investigated using both potentiostatic

electrochemical impedance spectroscopy (PEIS) and galvanostatic electrochem-

ical impedance spectroscopy (GEIS) in the two frequency ranges: (1 kHz–

10 Hz) and (100–2.5 mHz) each with 10 points per decade. A least-square fitting

algorithm was used in order to estimate (R0, Cα).

3. The proposed topology given in Fig. 6.18.

The utilization of the first way resulted into measuring a capacitance of 5476 μF
and 730 μF respectively at 100 Hz and 1 kHz. The series resistance was R0 ¼ 6Ω in

both cases. Thus, the values of measured capacitances are totally different from the

rated value of 1F.

Impedance spectroscopy measurements using the electrochemical station in the

frequency range (1 kHz–10 Hz) (100�2.5 mHz) are shown in Fig. 6.19a and

Fig. 6.19b, respectively. Using the aforementioned fitting algorithm, the obtained

values of parameters (R0, C, α) in the frequency range (1 kHz–10 Hz) was (7.6Ω,
0.214F/sec1–α, 0.29) and (7.7Ω, 0.2 F/sec1–α, 0.33) using GEIS and PEIS, respec-

tively. Also, in the frequency range (100�2.5 mHz) was (15.6Ω, 0.533F/sec1–α,
0.90). As a result, it is obvious that Cα is far away from the rated value in low and

medium frequencies, making this type of measurement unreliable for characterizing

supercapacitors. Inspecting Fig. 6.19b, it is evident that only very close to DC can a

circuit designer rely on the datasheet values of a supercapacitor. In the practical

range for most circuit design applications, the supercapacitor is far from being an

ideal capacitor with as low as 0.3 from GEIS measurements. Therefore, a circuit

designer needs a simple test circuit, like the one proposed here in Fig. 6.18, to

extract practical supercapacitor parameters at his targeted application frequency.

Applying a 50mVpp input signal, and increasing the frequency until output

voltage stabilizes at a maximum value, the high frequency gain is achieved at

approximately 60 Hz. Thus, the output voltage was measured 3.74 V as shown in

Fig. 6.20a. As a result, the value of R0 was calculated using (6.24), and knowing that
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Rex was selected as 500 Ω, 6.7 Ω. The obtained value is very close to that measured

using EIS. The source frequency was then reduced until Vout ¼ 2.65 V, which

corresponds to the half-power frequency and occurred at 1 Hz. Finally, the source

frequency was reduced to 100 mHz as shown in Fig. 6.20b.

Fig. 6.19 Nyquist plots in

the frequency ranges (a)
1 kHz to 10 Hz and (b)
100–2.5 mHz of

supercapacitor

Fig. 6.20 Experimental observation from the setup in Fig. 6.18 at (a) 60 Hz, (b) 100 mHz
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The value of order was calculated α � 0.3, by measuring the phase difference

between Vin and�Vout. The obtained value is very close to that given by EIS data. A

second measuring of phase difference was made at 30 mHz, which yielded

α � 0.29. Therefore, using (6.23a) the pole frequency is calculated to be

fo � 0.0935 Hz, while using (6.20) the capacitance value is found to be

C � 0.174 F/sec1�α; close enough to the value given by EIS (0.200 and 0.214

using PEIS and GEIS, respectively).

Concluding, the electric characterization of a commercial supercapacitor,

assumed to behave as R0-Cα equivalent circuit is performed using LCR meters,

EIS, and a simple nonimpedance-based technique using an op amp. In the fre-

quency range of interest for supercapacitor applications (1 Hz–1 kHz), LCR results

show a large deviation from the actual EIS data, as the former is not designed to

take into account the frequency-dispersion capacitance of the device. Although in

the DC range data from both measuring devices converge, it is not of practical

interest to a circuit designer. Thus, instead of using an LCR meter or an expensive

EIS workstation, a very simple electric circuit using an op amp can be made

successfully extract the (R0, Cα, α) parameters with minimum computational effort

and good level of accuracy.

6.5 Design and Evaluation of a Fractional-Order Oscillator

Fractional-order oscillators were first introduced in [37] where a classical Wien-

bridge oscillator was studied when its two ideal capacitors are replaced by two

identical fractional-order capacitors characterized by

i tð Þ ¼ Cα
dαυ tð Þ
dtα

ð6:25Þ

where α is known as the dispersion coefficient or the order of the fractional

capacitor (0 
 α 
 1) and Cα is the pseudo-capacitance in units of F/sec1�α.

On the other hand, fractional-order inductors are characterized by the current-

voltage relationship [38] given in (6.26)

υðtÞ ¼ Lβ
dβiðtÞ
dtβ

ð6:26Þ

where β is the order of the inductor (0 
 β 
 1) and Lβ is the pseudo-inductance in
units of H/sec1�β.

A fractional-order inductor can be realized from a fractional-order capacitor and

generalized impedance converter setup [39]. An oscillator with fractional-order

inductors has not been experimentally verified before, although such an oscillator

was studied for example in [40]. Thus, the derivative of the classical Hartley

oscillator relying on a T � Network composed of a grounded capacitor and two
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inductors in three different cases is studied in detail. Firstly, the ideal capacitor is

substituted with a fractional-order capacitor. In the next, ideal inductors are

replaced with the corresponding fractional-order counterparts. The characteristic

equation describing the oscillator is different in each case and as a consequence the

oscillation frequency, too. Considering the oscillator circuit in Fig. 6.21, and

assuming that the two inductors are similar with inductance L and internal parasitic

resistance r, the characteristic equation of this oscillator will be given as

s3 þ as2 þ bsþ c ¼ 0 ð6:27Þ

where

a ¼ 2r þ R

L

b ¼ 2

LC
þ r

L

� �2

þ rR

L2

c ¼ 2r þ Rþ Rf

L2C

ð6:28Þ

Assuming that the oscillation start-up (marginal stability) condition is ab ¼ c
then

Rf ¼ 2r þ Rþ rC

L
r þ Rð Þ 2r þ Rð Þ ð6:29Þ

Where in case that R > > r, this condition becomes

k ¼ Rf

R
¼ 1þ rC

L
R ð6:30Þ

For ideal inductors with r! 0, the ideal start-up condition is Rf ¼ R; that is, the
op amp is operating as a unity gain inverting amplifier with k ¼ 1. The oscillation

frequency is then

Fig. 6.21 Hartley oscillator

with an operational

amplifier
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ωo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

LC
þ r2 þ rR

L2
¼

ffiffiffi
2

pffiffiffiffiffiffi
LC

p r!0j
s

ð6:31Þ

Now consider replacing the ideal capacitor C with a fractional-order whose

impedance is Z ¼ 1/( jω)αCα. The characteristic equation in this case becomes

s 2þαð Þ þ as 1þαð Þ þ bsþ csα þ d ¼ 0 ð6:32Þ

where

a ¼ 2r þ R

L
, b ¼ 2

LCα

c ¼ r2 þ rR

L2
, d ¼ 2r þ Rþ Rf

L2Cα

ð6:33Þ

For simplicity, we consider the case of half-order capacitor with α ¼ 0.5. Noting

that in this case

jωð Þα ¼ ωα cos
απ

2

� �
þ j sin

απ

2

� �h i
¼

ffiffiffiffi
ω

p ffiffiffi
2

p 1þ jð Þ α¼0:5j ð6:34Þ

the oscillation start-up condition can be obtained by solving for Rf the Eq. (6.35)

obtained by equating the real part of (6.32) to zero after substituting for s0.5 from
(6.34).

ω2:5 þ aω1:5 � cω0:5 �
ffiffiffi
2

p
d ¼ 0 ð6:35Þ

For ideal inductors with r! 0 (c! 0) the oscillation start-up condition becomes

k þ 1 ¼ L2C0:5ffiffiffi
2

p ωo
2:5 þ LC0:5ffiffiffi

2
p ωo

1:5 ð6:36Þ

where ωo is the oscillation frequency obtained as the solution to (6.37), which for

c ! 0 simplifies to (6.38)

ωo
2 � aωo �

ffiffiffi
2

p
bωo

0:5 � c ¼ 0 ð6:37Þ

ωo
1:5 � R

L
ωo

0:5 � 2
ffiffiffi
2

p

LC0:5
¼ 0 ð6:38Þ

Next we consider the case when one of the two inductors is fractional-order with

impedance Z ¼ Lβ ( jω)
β while the other inductor remains to be an ideal inductor

with impedance Z ¼ jωL. Hence, assuming the capacitor is integer-order with

impedance ZC ¼ 1/jωC, there are two possible cases depending on which inductor
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is fractional order. The characteristic equations in the two cases are given by (6.39)

and (6.40), respectively for a right-hand and a left-hand fractional inductor (see

Fig. 6.21).

s 2þβð Þ þ R

L
s 1þβð Þ þ 1

LC
sβ þ 1

LβC
sþ Rþ Rf

LLβC
¼ 0 ð6:39Þ

s 2þβð Þ þ R

Lβ
s2 þ 1

LC
sβ þ 1

LβC
sþ Rþ Rf

LLβC
¼ 0 ð6:40Þ

For the case of half-order inductor (β ¼ 0.5), we obtain the start-up condition as

shown in (6.41) and (6.42), respectively for the two cases

k þ 1 ¼ L0:5ffiffiffi
2

p
R
ωo

0:5 LCωo
2 þ RCωo � 1

	 
 ð6:41Þ

k þ 1 ¼ L0:5ffiffiffi
2

p
R
ωo

0:5 LCωo
2 þ

ffiffiffi
2

p
RLC

L0:5
ωo

1:5 � 1

� �
ð6:42Þ

where ωo is the oscillation frequency obtained as the solution to that given in (6.43)

or (6.44), respectively.

ωo
2 � R

L
ωo �

ffiffiffi
2

p

L0:5C
ω0:5 � 1

LC
¼ 0 ð6:43Þ

ωo
2 �

ffiffiffi
2

p

L0:5C
ω0:5 � 1

LC
¼ 0 ð6:44Þ

The oscillation frequency was fixed 1 kHz in order to test all three cases. Also,

the two inductors were fixed at L ¼ 800 mH, and the fractional-order capacitor was

emulated using the second-order network shown in Fig. 6.22 with Ra ¼ 160 Ω,
Rb ¼ 485 Ω, Rc ¼ 3.3 kΩ, Cb ¼ 173 nF, and Cc ¼ 450 nF for approximating

C0.5 � 16 μF/sec0.5 (i.e., 0.2 μF at fo). Using (6.38) and (6.36) then R ¼ 2.8 kΩ and

k � 11.4. The observed oscillatory waveform is shown in Fig. 6.23a where the

measured frequency was 0.93 kHz, which is very close to the targeted value of

1 kHz.

Firstly the right-hand inductor is fixed as 800 mH and fix R ¼ 1 kΩ. Then, the
fractional-order left-hand inductor value was selected L0.5 ¼ 63.4 H/sec0.5 (equiv-

alent approximately to 800 mH at the desired oscillation frequency). Solving (6.44)

Fig. 6.22 Second-order

approximation of a

fractional-order capacitor

using RC network
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then yields C ¼ 76.5 nF and then solving (6.42) results in k ¼ 6.4. The floating

fractional-order is realized by inserting a fractional-order capacitor C0.5 in a GIC

circuit realized using 4 CFOAs (AD844 chips), as shown in Fig. 6.24 and an

equivalent impedance [41] given by (6.45) with all resistors equal to 10kΩ.

Zeq ¼ R2R3R4

R1

C0:5s
0:5 ð6:45Þ

In order to obtain the desired value for L0.5, the component values of the

emulator in Fig. 6.22 are changed to Ra ¼ 4 kΩ, Rb ¼ 12.2 kΩ, Rc ¼ 83.3 kΩ,
Cb ¼ 6.9 nF, and Cc ¼ 18 nF. The observed sinusoidal waveform in this case is

shown in Fig. 6.23b with a measured oscillation frequency of 1.01 kHz again very

close to the designed value. Finally, the case where the right-hand inductor is

fractional (L0.5 ¼ 63.4 H/sec0.5) and the left-hand inductor is fixed (L ¼ 800 mH)

was also tested having R¼ 1 kΩ and then using (6.43) to calculate C¼ 95.4 nF and

(6.41) to obtain k¼ 8.3. Note that despite the fact that all fixed components have the

same values as for the case of the left-hand fractional inductor, the necessary start-

Fig. 6.23 Experimentally observed oscillations with fo¼ 1 kHz, in the case of (a) fractional-order
capacitor, (b) fractional-order left-hand inductor, and (c) fractional-order right-hand inductor
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up gain here is higher and so is the needed value of C. The observed waveform in

this case is shown in Fig. 6.23c with a measured oscillation frequency of 0.995 kHz.

Fractional-order oscillators have a unique advantage when compared to their

integer-order counterparts. That is the capability of producing higher frequencies

for the same inductance and capacitance values as a result of the existence of one or

more fractional-order differential equations. This is clear in the Hartley oscillator

studied here where in the integer-order case and assuming L ¼ 800 mH and

C ¼ 0.2 μF, (6.31) predicts the oscillation frequency of 563 Hz with a start-up

gain k ¼ 1. However, with a half-order fractional capacitor C0.5 � 16 μF/sec0.5

having an equivalent capacitance of 0.2 μF @ 1 kHz, the oscillator produced a

waveform of twice the frequency approximately, that is, 1 kHz. Also, with a half-

order inductor L0.5 ¼ 63.4 H/sec0.5 (left-hand or right-hand) having an equivalent

inductance of 800 mH @ 1 kHz, the same higher oscillation frequency was

achieved. Of course, the boot in frequency will be significantly appreciated in the

MHz or GHz frequency ranges if fractional-order capacitors or inductors operating

at these frequencies become available. The cost, however, that has to be paid for

achieving higher oscillation frequencies with fractional-order devices is in the start-

up gain k. This is clear in the current study where for the integer-order oscillator

k ¼ 1, while it is k ¼ 11.4 when C is replaced by C0.5 and it is k ¼ 6.4 and k ¼ 8.3

respectively when L is replaced with L0.5 in the left-hand and right-hand positions of
the T � network.

Summarizing, a fractional-order Hartley oscillator has been studied and exper-

imentally verified. The employment of fractional-order devices in the oscillator

requires knowledge of the targeted oscillation frequency in order to identify which

device from the original integer-order oscillator is better to replace.

Fig. 6.24 Realization of

the floating fractional-order

inductor using a fractional-

order capacitor inside a GIC

circuit

110 6 Applications of Fractional-Order Circuits



References

1. Tsividis, Y.: Externally linear, time-invariant systems and their applications to companding

signal processors. IEEE Trans. Circ. Syst. II. 44(2), 65–85 (1997)

2. Frey, D.R.: Log-domain filtering: an approach to current-mode filtering. IET Proc. Circ Dev.

Syst. Pt.-G. 140(6), 406–416 (1996)

3. Serdijn, W., Kouwenhoven, M., Mulder, J., van Roermund, A.: Design of high dynamic range

fully integratable translinear filters. Analog Integr. Circ. Sig. Proc. 19(3), 223–239 (1999)

4. Katsiamis, A., Glaros, K., Drakakis, E.: Insights and advances on the design of CMOS sinh

companding filters. IEEE Trans. Circ. Syst. I. 55(9), 2539–2550 (2008)

5. Psychalinos, C.: Low-voltage complex log-domain filters. IEEE Trans. Circ. Syst. I. 55(11),
3404–3412 (2008)

6. Psychalinos, C.: Log-domain SIMO and MISO low-voltage universal Biquads. Analog Integr.

Circ. Sig. Proc. 67(2), 201–211 (2011)

7. Kasimis, C., Psychalinos, C.: Design of Sinh-Domain filters using comple-mentary operators.

Int. J. Circ. Theory Appl. 40(10), 1019–1039 (2012)

8. Kasimis, C., Psychalinos, C.: 1.2V BiCMOS Sinh-Domain filters. Circ. Syst. Sig. Proc. 31(4),
1257–1277 (2012)

9. Mulder, J., Serdijn, W.A., van der Woerd, A.C., van Roermund, A.H.M.: “A syllabic

companding translinear Filter”, Proc. in IEEE International Symposium Circuits Systems

(ISCAS), Hong Kong, pp. 101–104 (1997)

10. Adams, R.W.: “Filtering in the log domain”, Preprint #1470, 63rd AES Conference, New York

(1979)

11. Tsirimokou, G., Laoudias, C., Psychalinos C.: 0.5-V fractional-order companding filters. Int.

J. Circ. Theory Appl. 43(9), 1105–1126 (2015)

12. Tsirimokou, G., Laoudias, C., Psychalinos, C.: Tinnitus detector realization using sinh-domain

circuits. J. Low Power Electron. 9(4), 458–470 (2013)

13. Kafe, F., Psychalinos, C.: Realization of companding filters with large time-constants for

biomedical applications. Analog Integr. Circ. Sig. Process. 78(1), 217–231 (2014)

14. Pan, J., Tompkins, W.: A real-time QRS detection algorithm. I.E.E.E. Trans. Biomed. Eng. 32
(3), 230–236 (1985)

15. Hamilton, P., Tompkins, W.: Quantitative investigation of QRS detection rules using the

MIT/BIH arrhythmia database. IEEE Trans. Biomed.l Eng. 33(12), 1157–1165 (1986)

16. Bailey, J., Berson, A., Garson, A., Horan, L., Macfarlane, P., Mortara, D., et al.: Recommen-

dations for standardization and specifications in automated electrocardiography: bandwidth

and digital signal processing. J. Am. Heart Assoc. Circ. 81, 730–739 (1990)

17. Kligfield, P., Gettes, L., Bailey, J., Childers, R., Deal, B., Hancock, W., et al.: Recommenda-

tions for the standardization and interpretation of the electrocardiogram part I: the electrocar-

diogram and its technology. Journal of the American Heart Association Circulation. 115,
1306–1324 (2007)

18. Ferdi, Y., Hebeuval, J., Charef, A., Boucheham, B.: R wave detection using fractional digital

differentiation. ITBMRBM. 24(5-6), 273–280 (2003)

19. Goutas, A., Ferdi, Y., Herbeuval, J.P., Boudraa, M., Boucheham, B.: Digital fractional order

differentiation-based algorithm for P and T-waves detection and delineation. Int. Arab. J. Inf.

Technol. 26(2), 127–132 (2005)

20. Benmalek, M., Charef, A.: Digital fractional order operators for R-wave detection in electro-

cardiogram signal. IET Sig. Process. 3(5), 381–391 (2009)

21. Sawigun, C., Serdijn, W.: Ultra-low-power, class-AB. CMOS four-quadrant current multi-

plier. Electron. Lett. 45(10), 483–484 (2009)

22. Kasimis, C., Psychalinos, C.: 0.65 V class-AB current-mode four-quadrant multiplier with

reduced power dissipation. Int. J. Electron. Commun. 65(7), 673–677 (2011)

23. Tsirimokou, G., Psychalinos, C., Khanday, F.A., Shah N.A.: 0.5V Sinh-Domain Differentiator.

Int. J. Electron. Lett. 3(1), 34–44 (2015)

References 111



24. http://www.physionet.org/physiotools/ecgsyn/. Accessed 25 Aug 2014

25. Cole, K.S.: Permeability and impermeability of cell membranes for ions. Proc. Cold Spring.

Harb. Lab. Symp. Quant. Biol. 8, 110–122 (1940)

26. Freeborn, T.J.: A survey of fractional-order circuits models for biology and biomedicine. IEEE

J. Emerging. Sel. Top. Circ. Syst. 3(3), 416–424 (2013)

27. Maundy, B., Elwakil, A.S.: Extracting single dispersion Cole-Cole imped-ance model param-

eters using an integrator setup. Analog Int. Circ. Sig. Process. 71(1), 107–110 (2012)

28. Abbey, C., Joos, G.: Supercapacitor energy storage for wind energy applications. IEEE Trans.

Ind. Appl. 43(3), 769–776 (2007)

29. Pegueroles-Queralt, J., Bianchi, F.D., Gomis-Bellmunt, O.: A power smoothing system based

on supercapacitors for renewable distributed generation. IEEE Trans. Ind. Electron. 62(1),
343–350 (2015)

30. Cao, J., Emadi, A.: A new battery/ultracapacitor hybrid energy storage system for electric,

hybrid, and plug-in hybrid electric vehicles. IEEE Trans. Power Electron. 27(1), 122–132
(2012)

31. Pandey, A., Allos, F., Hu A.P., et al.: “Integration of supercapacitors into wirelessly charged

biomedical sensors”, in Proc. Of Sixth IEEE Conference on Industrial Electronics and Appli-

cations (ICIEA), pp. 56–61 (2011)

32. Kim, S., No, K.S., Chou, P.H.: Design and performance analysis of supercapacitor charging

circuits for wireless sensor nodes. IEEE J. Emerging Sel. Top. Circ. Syst. 1(3), 391–402 (2011)
33. Du, C., Pan, N.: High power density supercapacitor electrodes of carbon nanotube films by

electrophoretic deposition. Nanotechnology. 17(21), 5314 (2006)

34. Mahon, P.J., Paul, G.L., Keshishian, S.M., Vassallo, A.M.: Measure-ment and modeling of the

higher-power performance of carbon-based supercapacitors. J. Power Sources. 91(1), 68–76
(2000)

35. Martynyuk, V., Ortigueira, M.: Fractional model of an electrochemical capacitor. Signal

Process. 107(2), 355–360 (2015)

36. Bondarenko, A., Ragoisha, G.: “Progress in Chemometrics Research” (Nova Science,

New York, (http://www.abc.chemistry.bsu.by/vi/), 2005)

37. Ahmed, W., Elkhazali, R., Elwakil, A.S.: Fractional-order Wienbridge oscillator. Electron.

Lett. 37, 1110–1112 (2001)

38. Radwan, A., Salama, K.,: Frcational-order RC and RL ciruits. Circuits, Systems and Signal

Processing Journal. 31(6), 1901–1915 (2012)

39. Freeborn, T.J., Maundy, B.J., Elwakil, A.S.: Fractional resonance based filters. Math. Probl.

Eng. 726721, 1–10 (2013)

40. Radwan, A.G., Elwakil, A.S., Soliman, A.M.: Fractional-order sinusoidal oscillators: design

procedure and practical examples. IEEE Trans. Circ. Syst. I. 55, 2051–2063 (2008)

41. Psychalinos, C., Pal, K., Vlassis, S.: A floating generalized impedance converter with current

feedback amplifiers. Int. J. Electron. Commun. (AEU). 62, 81–85 (2008)

112 6 Applications of Fractional-Order Circuits

http://www.physionet.org/physiotools/ecgsyn/
http://www.abc.chemistry.bsu.by/vi/


Chapter 7

Conclusions andMotivation for Future Work

7.1 Conclusions

Throughout this work the second-order approximation of the CFE is utilized in

order to present a systematic way for describing the design equations of fractional-

order generalized transfer functions. Thus, fractional-order transfer functions are

approximated using integer-order transfer functions, which are easy to realize. The

main active cells that are employed are current mirrors, nonlinear transconductance

cells (known as S, C cells), and OTAs, which are very attractive building blocks

offering the capability of implementing resistorless realizations with electronic

tuning, where only grounded capacitors are employed. As a result, the designer

has only to choose the appropriate values of DC bias currents in order to realize the

desired transfer function. Taking into account that MOS transistors are biased in

subthreshold region, these topologies are able to operate in a low-voltage environ-

ment with reduced power consumption, making them attractive candidates when

they are utilized in biomedical applications.

Consequently, the following analog integrated implementations are realized:

• Fully integratable fractional-order differentiator/integrator topologies, as well as

fractional-order generalized filters (i.e., low-pass, high-pass, bandpass), are

designed, which are able to be realized using the same topology, while the

frequency characteristics as well as the fractional-order (α) are capable to be

easily electronically tuned, offering design flexibility and programmability.

• Fully integrated fractional-order (capacitor and inductor) emulators, offering the

capability of electronic tuning of impedance magnitude, fractional order, and the

bandwidth of operation. The proposed designs are fabricated in AMS 0.35 μm
C35B4C3 CMOS technology the efficiency of which has been verified through

experimental results. As design examples, the performance of an LβCα parallel

resonator, as well as a fractional bandpass filter of order α þ β, is presented,



which proves that the fabricated designs offer attractive benefits and are able to

be utilized in high performance systems.

• Also, some interesting applications of the aforementioned designs are presented.

Firstly, a fractional-order differentiator is utilized in the Pan-Tompkins algo-

rithm, in order to prove that fractional-order topologies are capable for handling

ECG signals in a noisy environment. As a second example, a fully tunable

biological tissue model is realized using appropriate fractional-order topologies

(Cole-Cole model). The correct operation of the aforementioned applications

has been verified through simulation and comparison results using the Analog

Design Environment of the Cadence software. In addition, a very simple circuit

topology is introduced for characterizing fractional-order elements. The pro-

posed topology uses operational amplifiers, which are easy to find, and hence

there is not required expensive equipment as in the corresponding already

published solutions. The aforementioned setup is utilized in order to characterize

a supercapacitor, where experimental results are obtained affirming the utility of

the proposed circuit. Finally a fractional-order oscillator is realized using

fractional-order elements. The topology that has been used in order to evaluate

the efficiency of the oscillator is the already known Hartley oscillator, where the

integer-order elements are substituted with fractional-order parts. The main

attractive benefit that is offered is the achievement of higher-order frequencies

for the same values of capacitances and inductances, which is very important for

performing high performance analog circuit designs.

7.2 Motivation for Future Work

Taking into account that the utilization of the second-order approximation offers a

limited bandwidth of operation, higher-order approximation of the variable (τs)α

could be utilized in order to achieve more efficient designs. In addition, other types

of approximation methods could be studied, especially when the order of approx-

imation is increased. For example, the utilization of Oustaloup method could be an

alternative solution for this purpose.

Fractional-order capacitor and inductor emulators are as already mentioned the

most important circuits in this field, and as a consequence other approaches could

be realized. More efficient building blocks could be utilized in order to increase the

quality of these emulators. In addition, CPEs and FOIs which are able to operate in

a higher voltage environment are circuits that should be designed especially in case

that they are going to be combined with circuits that operate in a high voltage

environment. The proposed topologies could be realized in the sense that the

frequency characteristics, as well as the fractional-order, are digitally programmed

and the resulted designs are fully integrated. Nevertheless, the already designed

fractional-order elements could be also used in several applications such as energy

where supercapacitors are widely used, in control systems (PID controllers), and in

modeling of different types of biological tissues.
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