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CONVERSIONS BETWEEN U.S. CUSTOMARY UNITS AND SI UNITS

Times conversion factor

U.S. Customary unit Equals SI unit
Accurate Practical

Acceleration (linear)

foot per second squared ft/s* 0.3048%* 0.305 meter per second squared m/s”

inch per second squared in./s* 0.0254* 0.0254 meter per second squared m/s”
Area

square foot ft? 0.09290304* 0.0929 square meter m?

square inch in. 645.16* 645 square millimeter mm?>
Density (mass)

slug per cubic foot slug/ft3 515.379 515 kilogram per cubic meter kg/m3
Density (weight)

pound per cubic foot 1b/ft 157.087 157 newton per cubic meter N/m?

pound per cubic inch 1b/in.? 271.447 271 kilonewton per cubic

meter kN/m?

Energy; work

foot-pound ft-1b 1.35582 1.36 joule (N-m) J

inch-pound in.-1b 0.112985 0.113 joule J

kilowatt-hour kWh 3.6* 3.6 megajoule MJ

British thermal unit Btu 1055.06 1055 joule J
Force

pound 1b 4.44822 4.45 newton (kg-m/s%) N

kip (1000 pounds) k 4.44822 4.45 kilonewton kN
Force per unit length

pound per foot Ib/ft 14.5939 14.6 newton per meter N/m

pound per inch Ib/in. 175.127 175 newton per meter N/m

kip per foot k/ft 14.5939 14.6 kilonewton per meter kN/m

kip per inch k/in. 175.127 175 kilonewton per meter kN/m
Length

foot ft 0.3048* 0.305 meter m

inch in. 25.4% 25.4 millimeter mm

mile mi 1.609344%* 1.61 kilometer km
Mass

slug 1b-s2/ft 14.5939 14.6 kilogram kg
Moment of a force; torque

pound-foot Ib-ft 1.35582 1.36 newton meter N-m

pound-inch Ib-in. 0.112985 0.113 newton meter N-m

kip-foot k-ft 1.35582 1.36 kilonewton meter kN-m

kip-inch k-in. 0.112985 0.113 kilonewton meter kN-m




CONVERSIONS BETWEEN U.S. CUSTOMARY UNITS AND SI UNITS (Continued)

Times conversion factor
U.S. Customary unit Equals SI unit
Accurate Practical

Moment of inertia (area)

inch to fourth power in? 416,231 416,000 millimeter to fourth
power mm*

inch to fourth power in* 0.416231 X 10~° 0.416 X 10°®| meter to fourth power m*
Moment of inertia (mass)

slug foot squared slug-ft* 1.35582 1.36 kilogram meter squared  kg:m”
Power

foot-pound per second ft-1b/s 1.35582 1.36 watt (J/s or N-m/s) \

foot-pound per minute ft-1b/min 0.0225970 0.0226 watt \

horsepower (550 ft-1b/s) hp 745.701 746 watt W
Pressure; stress

pound per square foot pst 47.8803 47.9 pascal (N/m?) Pa

pound per square inch psi 6894.76 6890 pascal Pa

kip per square foot kst 47.8803 47.9 kilopascal kPa

kip per square inch ksi 6.89476 6.89 megapascal MPa
Section modulus

inch to third power in.? 16,387.1 16,400 millimeter to third power mm?>

inch to third power in? 16.3871 X 107 16.4 X 107° meter to third power m’
Velocity (linear)

foot per second ft/s 0.3048%* 0.305 meter per second m/s

inch per second in./s 0.0254%* 0.0254 meter per second m/s

mile per hour mph 0.44704* 0.447 meter per second m/s

mile per hour mph 1.609344%* 1.61 kilometer per hour km/h
Volume

cubic foot ft’ 0.0283168 0.0283 cubic meter m’

cubic inch in.? 16.3871 x 107° 16.4 X 107° | cubic meter m’

cubic inch in? 16.3871 16.4 cubic centimeter (cc) cm’

gallon (231 in.?) gal. 3.78541 3.79 liter L

gallon (231 in.?) gal. 0.00378541 0.00379 cubic meter m’

*An asterisk denotes an exact conversion factor
Note: To convert from SI units to USCS units, divide by the conversion factor

Temperature Conversion Formulas  7(°C) = %[T(OF) —32] = T(K) — 273.15

T(K) = g[T(OF) — 32] + 273.15 = T(°C) + 273.15

T(°F) = %T(OC) +32= %T(K) — 459.67
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James Monroe Gere
1925-2008

James Monroe Gere, Professor Emeritus of Civil Engineering at Stanford University, died in
Portola Valley, CA, on January 30, 2008. Jim Gere was born on June 14, 1925, in Syracuse,
NY. He joined the U.S. Army Air Corps at age 17 in 1942, serving in England, France and
Germany. After the war, he earned undergraduate and master’s degrees in Civil Engineering
from the Rensselaer Polytechnic Institute in 1949 and 1951, respectively. He worked as an
instructor and later as a Research Associate for Rensselaer between 1949 and 1952. He was
awarded one of the first NSF Fellowships, and chose to study at Stanford. He received his
Ph.D. in 1954 and was offered a faculty position in Civil Engineering, beginning a 34-year
career of engaging his students in challenging topics in mechanics, and structural and earth-
quake engineering. He served as Department Chair and Associate Dean of Engineering and in
1974 co-founded the John A. Blume Earthquake Engineering Center at Stanford. In 1980, Jim
Gere also became the founding head of the Stanford Committee on Earthquake Preparedness,
which urged campus members to brace and strengthen office equipment, furniture, and other

contents items that could pose a life safety hazard in the event of an earthquake. That same year, he was invited as one of
the first foreigners to study the earthquake-devastated city of Tangshan, China. Jim retired from Stanford in 1988 but con-
tinued to be a most valuable member of the Stanford community as he gave freely of his time to advise students and to

Jim Gere in the Timoshenko
Library at Stanford holding a
copy of the 2nd edition of this
text (photo courtesy of Richard
Weingardt Consultants, Inc.)

guide them on various field trips to the California earthquake country.

Jim Gere was known for his outgoing manner, his cheerful personality and wonderful
smile, his athleticism, and his skill as an educator in Civil Engineering. He authored nine text-
books on various engineering subjects starting in 1972 with Mechanics of Materials, a text that
was inspired by his teacher and mentor Stephan P. Timoshenko. His other well-known text-
books, used in engineering courses around the world, include: Theory of Elastic Stability,
co-authored with S. Timoshenko; Matrix Analysis of Framed Structures and Matrix Algebra
for Engineers, both co-authored with W. Weaver; Moment Distribution; Earthquake Tables:
Structural and Construction Design Manual, co-authored with H. Krawinkler; and Terra Non
Firma: Understanding and Preparing for Earthquakes, co-authored with H. Shah.

Respected and admired by students, faculty, and staff at Stanford University, Professor
Gere always felt that the opportunity to work with and be of service to young people both
inside and outside the classroom was one of his great joys. He hiked frequently and regu-
larly visited Yosemite and the Grand Canyon national parks. He made over 20 ascents of
Half Dome in Yosemite as well as “John Muir hikes” of up to 50 miles in a day. In 1986 he
hiked to the base camp of Mount Everest, saving the life of a companion on the trip. James
was an active runner and completed the Boston Marathon at age 48, in a time of 3:13.

James Gere will be long remembered by all who knew him as a considerate and loving
man whose upbeat good humor made aspects of daily life or work easier to bear. His last proj-
ect (in progress and now being continued by his daughter Susan of Palo Alto) was a book
based on the written memoirs of his great-grandfather, a Colonel (122d NY) in the Civil War.
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Preface

Mechanics of Materials is a basic engineering subject that must be under-
stood by anyone concerned with the strength and physical performance of
structures, whether those structures are man-made or natural. The subject
matter includes such fundamental concepts as stresses and strains, defor-
mations and displacements, elasticity and inelasticity, strain energy, and
load-carrying capacity. These concepts underlie the design and analysis of
a huge variety of mechanical and structural systems.

At the college level, mechanics of materials is usually taught during
the sophomore and junior years. The subject is required for most stu-
dents majoring in mechanical, structural, civil, biomedical, aeronautical,
and aerospace engineering. Furthermore, many students from such
diverse fields as materials science, industrial engineering, architecture,
and agricultural engineering also find it useful to study this subject.

About this Book

The main topics covered in this book are the analysis and design of
structural members subjected to tension, compression, torsion, and
bending, including the fundamental concepts mentioned in the first para-
graph. Other topics of general interest are the transformations of stress
and strain, combined loadings, stress concentrations, deflections of
beams, and stability of columns.

Specialized topics include the following: Thermal effects, dynamic
loading, nonprismatic members, beams of two materials, shear centers,
pressure vessels, and statically indeterminate beams. For completeness
and occasional reference, elementary topics such as shear forces, bending
moments, centroids, and moments of inertia also are presented. As an aid
to the student reader, each chapter begins with a Chapter Overview and
closes with a Chapter Summary & Review in which the key points pre-
sented in the chapter are listed for quick review (in preparation for
examinations on the material). Each chapter also opens with a photo-
graph of a component or structure which illustrates the key concepts to
be discussed in that chapter.

Much more material than can be taught in a single course is
included in this book, and therefore instructors have the opportunity to
select the topics they wish to cover. As a guide, some of the more
specialized topics are identified in the table of contents by stars.

Xi



PREFACE

Considerable effort has been spent in checking and proofreading the
text so as to eliminate errors, but if you happen to find one, no matter
how trivial, please notify me by e-mail (bgoodno@ce.gatech.edu). Then
we can correct any errors in the next printing of the book.

Examples

Examples are presented throughout the book to illustrate the theoretical
concepts and show how those concepts may be used in practical situations.
In some cases, photographs have been added showing actual engineering
structures or components to reinforce the tie between theory and applica-
tion. The examples vary in length from one to four pages, depending upon
the complexity of the material to be illustrated. When the emphasis is on
concepts, the examples are worked out in symbolic terms so as to better
illustrate the ideas, and when the emphasis is on problem-solving, the
examples are numerical in character. In selected examples throughout the
text, graphical display of results (e.g., stresses in beams) has been added to
enhance the student’s understanding of the problem results.

Problems

In all mechanics courses, solving problems is an important part of the
learning process. This textbook offers more than 1,000 problems for
homework assignments and classroom discussions. Approximately 40%
of the problems are new or significantly revised in the seventh edition.
The problems are placed at the end of each chapter so that they are easy
to find and don’t break up the presentation of the main subject matter.
Also, an unusually difficult or lengthy problem is indicated by attaching
one or more stars (depending upon the degree of difficulty) to the prob-
lem number, thus alerting students to the time necessary for solution.
In general, problems are arranged in order of increasing difficulty.
Answers to all problems are listed near the back of the book.

Units

Both the International System of Units (SI) and the U.S. Customary
System (USCS) are used in the examples and problems. Discussions of
both systems and a table of conversion factors are given in Appendix A.
For problems involving numerical solutions, odd-numbered problems are
in USCS units and even-numbered problems are in SI units. This conven-
tion makes it easy to know in advance which system of units is being
used in any particular problem. In addition, tables containing properties
of structural-steel shapes in both USCS and SI units have been added to
Appendix E so that solution of beam analysis and design examples and
end-of-chapter problems can be carried out in either USCS or SI units.

References and Historical Notes

References and historical notes appear immediately after the last chapter
in the book. They consist of original sources for the subject matter plus
brief biographical information about the pioneering scientists, engineers,
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and mathematicians who created the subject of mechanics of materials. A
separate name index makes it easy to look up any of these historical figures.

Appendixes

Reference material appears in the appendixes at the back of the book. Much
of the material is in the form of tables—properties of plane areas, properties
of structural-steel shapes, properties of structural lumber, deflections and
slopes of beams, and properties of materials (Appendixes D through H,
respectively).

In contrast, Appendixes A and B are descriptive—the former gives a
detailed description of the SI and USCS systems of units, and the latter
presents the methodology for solving problems in mechanics. Included
in the latter are topics such as dimensional consistency and significant
digits. Lastly, as a handy time—saver, Appendix C provides a listing of
commonly used mathematical formulas.

S.P. Timoshenko (1878-1972) and J.M. Gere (1925-2008)

Many readers of this book will recognize the name of Stephen P.
Timoshenko—probably the most famous name in the field of applied
mechanics. Timoshenko is generally recognized as the world’s most out-
standing pioneer in applied mechanics. He contributed many new ideas
and concepts and became famous for both his scholarship and his teach-
ing. Through his numerous textbooks he made a profound change in the
teaching of mechanics not only in this country but wherever mechanics is
taught. Timoshenko was both teacher and mentor to James Gere and
provided the motivation for the first edition of this text, authored by
James M. Gere and published in 1972; the second and each subsequent
edition of this book were written by James Gere over the course of his
long and distinguished tenure as author, educator, and researcher at
Stanford University. James Gere started as a doctoral student at Stanford
in 1952 and retired from Stanford as a professor in 1988 having authored
this and eight other well known and respected text books on mechanics,
and structural and earthquake engineering. He remained active at
Stanford as Professor Emeritus until his death in January of 2008.

A brief biography of Timoshenko appears in the first reference at
the back of the book, and also in an August 2007 STRUCTURE maga-
zine article entitled “Stephen P. Timoshenko: Father of Engineering
Mechanics in the U.S.” by Richard G. Weingardt, P.E. This article pro-
vides an excellent historical perspective on this and the many other
engineering mechanics textbooks written by each of these authors.

Acknowledgments

To acknowledge everyone who contributed to this book in some manner is
clearly impossible, but I owe a major debt to my former Stanford teachers,
especially my mentor and friend, and lead author, James M. Gere. I am
also indebted to the many teachers of mechanics and reviewers of the
book who have helped to shape this textbook in its various editions over
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charoen and Ms. Jee-Eun Hur, provided invaluable assistance in
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edition.
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goal was the same as mine—to produce the best possible seventh edition
of this text, never compromising on any aspect of the book.

The people with whom I have had personal contact at Cengage
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then guide me through the project; Hilda Gowans, Senior Developmental
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provide information and encouragement; Nicola Winstanley who man-
aged all aspects of new photo selection; Andrew Adams, who created the
covers; Peter Papayanakis, who created the interior book design; and
Lauren Betsos, Global Marketing Services Coordinator, who developed
promotional material in support of the text. I would like to especially
acknowledge the work of Rose Kernan of RPK Editorial Services, who
edited the manuscript and laid out the pages. To each of these individuals
I express my heartfelt thanks not only for a job well done but also for
the friendly and considerate way in which it was handled.

I am deeply appreciative of the patience and encouragement pro-
vided by my family, especially my wife, Lana, throughout this project.

Finally, I am honored and extremely pleased to be involved in this
endeavor, at the invitation of my mentor and friend of thirty eight years,
Jim Gere, which extends this textbook toward the forty year mark. I too
am committed to the continued excellence of this text and welcome all
comments and suggestions. Please feel free to provide me with your
critical input at bgoodno @ce.gatech.edu.

BARRY J. GOODNO
Atlanta, Georgia
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Symbols

arca

area of flange; area of web

dimensions, distances

centroid, compressive force, constant of integration

distance from neutral axis to outer surface of a beam

diameter

diameter, dimension, distance

modulus of elasticity

reduced modulus of elasticity; tangent modulus of elasticity
eccentricity, dimension, distance, unit volume change (dilatation)
force

shear flow, shape factor for plastic bending, flexibility, frequency (Hz)
torsional flexibility of a bar

modulus of elasticity in shear

acceleration of gravity

height, distance, horizontal force or reaction, horsepower
height, dimensions

moment of inertia (or second moment) of a plane area
moments of inertia with respect to x, y, and z axes

moments of inertia with respect to x; and y, axes (rotated axes)
product of inertia with respect to xy axes

product of inertia with respect to x,y, axes (rotated axes)

polar moment of inertia

principal moments of inertia

torsion constant

stress-concentration factor, bulk modulus of elasticity, effective length
factor for a column

spring constant, stiffness, symbol for V P/EI
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torsional stiffness of a bar

length, distance

effective length of a column

natural logarithm (base e); common logarithm (base 10)
bending moment, couple, mass

plastic moment for a beam; yield moment for a beam
moment per unit length, mass per unit length

axial force

factor of safety, integer, revolutions per minute (rpm)
origin of coordinates

center of curvature

force, concentrated load, power

allowable load (or working load)

critical load for a column

plastic load for a structure

reduced-modulus load for a column; tangent-modulus load for a column

yield load for a structure

pressure (force per unit area)

force, concentrated load, first moment of a plane area
intensity of distributed load (force per unit distance)
reaction, radius

radius, radius of gyration (r = \/I/_A)

section modulus of the cross section of a beam, shear center
distance, distance along a curve

tensile force, twisting couple or torque, temperature
plastic torque; yield torque

thickness, time, intensity of torque (torque per unit distance)
thickness of flange; thickness of web

strain energy

strain-energy density (strain energy per unit volume)
modulus of resistance; modulus of toughness

shear force, volume, vertical force or reaction
deflection of a beam, velocity

dv/dx, d*v]dx?, etc.

force, weight, work

load per unit of area (force per unit area)

rectangular axes (origin at point O)

rectangular axes (origin at centroid C)

coordinates of centroid
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plastic modulus of the cross section of a beam

angle, coefficient of thermal expansion, nondimensional ratio
angle, nondimensional ratio, spring constant, stiffness
rotational stiffness of a spring

shear strain, weight density (weight per unit volume)

shear strains in xy, yz, and zx planes

shear strain with respect to x,y, axes (rotated axes)

shear strain for inclined axes

deflection of a beam, displacement, elongation of a bar or spring
temperature differential

plastic displacement; yield displacement

normal strain

normal strains in x, y, and z directions

normal strains in x; and y, directions (rotated axes)

normal strain for inclined axes

principal normal strains

lateral strain in uniaxial stress

thermal strain

yield strain

angle, angle of rotation of beam axis, rate of twist of a bar in torsion
(angle of twist per unit length)

angle to a principal plane or to a principal axis
angle to a plane of maximum shear stress
curvature (k = 1/p)

distance, curvature shortening

Poisson’s ratio

radius, radius of curvature (p = 1/k), radial distance in polar
coordinates, mass density (mass per unit volume)

normal stress

normal stresses on planes perpendicular to x, y, and z axes

normal stresses on planes perpendicular to x,y, axes (rotated axes)
normal stress on an inclined plane

principal normal stresses

allowable stress (or working stress)

critical stress for a column (o = P_/A)

proportional-limit stress

residual stress

thermal stress

ultimate stress; yield stress
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T shear stress

Toy Ty Tox shear stresses on planes perpendicular to the x, y, and z axes and acting
parallel to the y, z, and x axes
v shear stress on a plane perpendicular to the x, axis and acting parallel to

the y, axis (rotated axes)

7,  shear stress on an inclined plane
Tallow allowable stress (or working stress) in shear
Ty Ty ultimate stress in shear; yield stress in shear

¢  angle, angle of twist of a bar in torsion
¢ angle, angle of rotation

o  angular velocity, angular frequency (w = 27f)

*A star attached to a section number indicates a specialized or advanced topic.
One or more stars attached to a problem number indicate an increasing level of
difficulty in the solution.
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This telecommunications tower is an assemblage of many members that act primarily in
tension or compression.




Tension, Compression,
and Shear

CHAPTER OVERVIEW

In Chapter 1, we are introduced to mechanics of materials, which exam-
ines the stresses, strains, and displacements in bars of various materials
acted on by axial loads applied at the centroids of their cross sections.
We will learn about normal stress (o) and normal strain (€) in materials
used for structural applications, then identify key properties of various
materials, such as the modulus of elasticity (£) and yield (o) and ulti-
mate (o,,) stresses, from plots of stress (o) versus strain (€). We will also
plot shear stress (7) versus shear strain (y) and identify the shearing
modulus of elasticity (G). If these materials perform only in the linear
range, stress and strain are related by Hooke’s Law for normal stress and
strain (o = E - €) and also for shear stress and strain (7 = G - ). We
will see that changes in lateral dimensions and volume depend upon
Poisson’s ratio (v). Material properties E, G, and v, in fact, are directly
related to one another and are not independent properties of the material.

Assemblage of bars to form structures (such as trusses) leads
to consideration of average shear (7) and bearing (o) stresses in
their connections as well as normal stresses acting on the net area of the
cross section (if in tension) or on the full cross-sectional area (if
in compression). If we restrict maximum stresses at any point to allow-
able values by use of factors of safety, we can identify allowable levels
of axial loads for simple systems, such as cables and bars. Factors of
safety relate actual to required strength of structural members and
account for a variety of uncertainties, such as variations in material
properties and probability of accidental overload. Lastly, we will con-
sider design: the iterative process by which the appropriate size of
structural members is determined to meet a variety of both strength and
stiffness requirements for a particular structure subjected to a variety of
different loadings.
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SECTION 1.1 Introduction to Mechanics of Materials

1.1 INTRODUCTION TO MECHANICS OF MATERIALS

Mechanics of materials is a branch of applied mechanics that deals
with the behavior of solid bodies subjected to various types of loading.
Other names for this field of study are strength of materials and
mechanics of deformable bodies. The solid bodies considered in this
book include bars with axial loads, shafts in torsion, beams in bending,
and columns in compression.

The principal objective of mechanics of materials is to determine
the stresses, strains, and displacements in structures and their compo-
nents due to the loads acting on them. If we can find these quantities for
all values of the loads up to the loads that cause failure, we will have a
complete picture of the mechanical behavior of these structures.

An understanding of mechanical behavior is essential for the safe
design of all types of structures, whether airplanes and antennas, buildings
and bridges, machines and motors, or ships and spacecraft. That is why
mechanics of materials is a basic subject in so many engineering fields. Stat-
ics and dynamics are also essential, but those subjects deal primarily with
the forces and motions associated with particles and rigid bodies. In
mechanics of materials we go one step further by examining the stresses and
strains inside real bodies, that is, bodies of finite dimensions that deform
under loads. To determine the stresses and strains, we use the physical prop-
erties of the materials as well as numerous theoretical laws and concepts.

Theoretical analyses and experimental results have equally important
roles in mechanics of materials. We use theories to derive formulas
and equations for predicting mechanical behavior, but these expressions
cannot be used in practical design unless the physical properties of the
materials are known. Such properties are available only after careful
experiments have been carried out in the laboratory. Furthermore, not all
practical problems are amenable to theoretical analysis alone, and in
such cases physical testing is a necessity.

The historical development of mechanics of materials is a fascinating
blend of both theory and experiment—theory has pointed the way to
useful results in some instances, and experiment has done so in others.
Such famous persons as Leonardo da Vinci (1452-1519) and Galileo
Galilei (1564-1642) performed experiments to determine the strength of
wires, bars, and beams, although they did not develop adequate theories
(by today’s standards) to explain their test results. By contrast, the
famous mathematician Leonhard Euler (1707-1783) developed the math-
ematical theory of columns and calculated the critical load of a column in
1744, long before any experimental evidence existed to show the signifi-
cance of his results. Without appropriate tests to back up his theories,
Euler’s results remained unused for over a hundred years, although today
they are the basis for the design and analysis of most columns.”

“The history of mechanics of materials, beginning with Leonardo and Galileo, is given in
Refs. 1-1, 1-2, and 1-3.
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When studying mechanics of materials, you will find that your efforts
are divided naturally into two parts: first, understanding the logical
development of the concepts, and second, applying those concepts to
practical situations. The former is accomplished by studying the deriva-
tions, discussions, and examples that appear in each chapter, and
the latter is accomplished by solving the problems at the ends of the
chapters. Some of the problems are numerical in character, and others
are symbolic (or algebraic).

An advantage of numerical problems is that the magnitudes of all
quantities are evident at every stage of the calculations, thus providing
an opportunity to judge whether the values are reasonable or not. The
principal advantage of symbolic problems is that they lead to
general-purpose formulas. A formula displays the variables that affect
the final results; for instance, a quantity may actually cancel out of the
solution, a fact that would not be evident from a numerical solution.
Also, an algebraic solution shows the manner in which each variable
affects the results, as when one variable appears in the numerator and
another appears in the denominator. Furthermore, a symbolic solution
provides the opportunity to check the dimensions at every stage of the
work.

Finally, the most important reason for solving algebraically is to
obtain a general formula that can be used for many different problems. In
contrast, a numerical solution applies to only one set of circumstances.
Because engineers must be adept at both kinds of solutions, you will find
a mixture of numeric and symbolic problems throughout this book.

Numerical problems require that you work with specific units of
measurement. In keeping with current engineering practice, this book
utilizes both the International System of Units (SI) and the U.S. Customary
System (USCS). A discussion of both systems appears in Appendix A,
where you will also find many useful tables, including a table of
conversion factors.

All problems appear at the ends of the chapters, with the problem
numbers and subheadings identifying the sections to which they belong.
In the case of problems requiring numerical solutions, odd-numbered
problems are in USCS units and even-numbered problems are in SI units.

The techniques for solving problems are discussed in detail in
Appendix B. In addition to a list of sound engineering procedures,
Appendix B includes sections on dimensional homogeneity and signifi-
cant digits. These topics are especially important, because every equation
must be dimensionally homogeneous and every numerical result must be
expressed with the proper number of significant digits. In this book, final
numerical results are usually presented with three significant digits when
a number begins with the digits 2 through 9, and with four significant
digits when a number begins with the digit 1. Intermediate values are
often recorded with additional digits to avoid losing numerical accuracy
due to rounding of numbers.
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1.2 NORMAL STRESS AND STRAIN

FIG. 1-1 Structural members subjected to
axial loads. (The tow bar is in tension
and the landing gear strut is in
compression.)

The most fundamental concepts in mechanics of materials are stress and
strain. These concepts can be illustrated in their most elementary form
by considering a prismatic bar subjected to axial forces. A prismatic
bar is a straight structural member having the same cross section
throughout its length, and an axial force is a load directed along the axis
of the member, resulting in either tension or compression in the bar.
Examples are shown in Fig. 1-1, where the tow bar is a prismatic
member in tension and the landing gear strut is a member in compres-
sion. Other examples are the members of a bridge truss, connecting rods
in automobile engines, spokes of bicycle wheels, columns in buildings,
and wing struts in small airplanes.

For discussion purposes, we will consider the tow bar of Fig. 1-1
and isolate a segment of it as a free body (Fig. 1-2a). When drawing this
free-body diagram, we disregard the weight of the bar itself and assume
that the only active forces are the axial forces P at the ends. Next we
consider two views of the bar, the first showing the same bar before the
loads are applied (Fig. 1-2b) and the second showing it after the loads
are applied (Fig. 1-2c). Note that the original length of the bar is denoted
by the letter L, and the increase in length due to the loads is denoted by
the Greek letter 6 (delta).

The internal actions in the bar are exposed if we make an imaginary
cut through the bar at section mn (Fig. 1-2c). Because this section is taken
perpendicular to the longitudinal axis of the bar, it is called a cross section.

We now isolate the part of the bar to the left of cross section mn as a
free body (Fig. 1-2d). At the right-hand end of this free body (section mn)
we show the action of the removed part of the bar (that is, the part to the
right of section mn) upon the part that remains. This action consists of
continuously distributed stresses acting over the entire cross section, and
the axial force P acting at the cross section is the resultant of those
stresses. (The resultant force is shown with a dashed line in
Fig. 1-2d.)

Stress has units of force per unit area and is denoted by the Greek
letter o (sigma). In general, the stresses o acting on a plane surface may
be uniform throughout the area or may vary in intensity from one point
to another. Let us assume that the stresses acting on cross section mn

Tow bar
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FIG. 1-2 Prismatic bar in tension:

(a) free-body diagram of a segment of
the bar, (b) segment of the bar before
loading, (c) segment of the bar after
loading, and (d) normal stresses in the
bar
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(Fig. 1-2d) are uniformly distributed over the area. Then the resultant of
those stresses must be equal to the magnitude of the stress times the
cross-sectional area A of the bar, that is, P = oA. Therefore, we obtain
the following expression for the magnitude of the stresses:

_E 1-1
v= (1-1)

This equation gives the intensity of uniform stress in an axially loaded,
prismatic bar of arbitrary cross-sectional shape.

When the bar is stretched by the forces P, the stresses are tensile
stresses; if the forces are reversed in direction, causing the bar to be
compressed, we obtain compressive stresses. Inasmuch as the stresses
act in a direction perpendicular to the cut surface, they are called normal
stresses. Thus, normal stresses may be either tensile or compressive.
Later, in Section 1.6, we will encounter another type of stress, called
shear stress, that acts parallel to the surface.

When a sign convention for normal stresses is required, it is
customary to define tensile stresses as positive and compressive stresses
as negative.

Because the normal stress o is obtained by dividing the axial force
by the cross-sectional area, it has units of force per unit of area. When
USCS units are used, stress is customarily expressed in pounds per
square inch (psi) or kips per square inch (ksi).” For instance, suppose

*One kip, or kilopound, equals 1000 Ib.



FIG. 1-3 Steel eyebar subjected to tensile
loads P

SECTION 1.2 Normal Stress and Strain

that the bar of Fig. 1-2 has a diameter d of 2.0 inches and the load P has
a magnitude of 6 kips. Then the stress in the bar is

P P 6k
7T AT mdA T wQOin)YA
In this example the stress is tensile, or positive.

When SI units are used, force is expressed in newtons (N) and area
in square meters (m?). Consequently, stress has units of newtons per
square meter (N/m?), that is, pascals (Pa). However, the pascal is such a
small unit of stress that it is necessary to work with large multiples,
usually the megapascal (MPa).

To demonstrate that a pascal is indeed small, we have only to note
that it takes almost 7000 pascals to make 1 psi.” As an illustration, the
stress in the bar described in the preceding example (1.91 ksi) converts to
13.2 MPa, which is 13.2 X 10° pascals. Although it is not recommended
in SI, you will sometimes find stress given in newtons per square
millimeter (N/mm?), which is a unit equal to the megapascal (MPa).

= 1.91 ksi (or 1910 psi)

The equation o = P/A is valid only if the stress is uniformly distributed over
the cross section of the bar. This condition is realized if the axial force P
acts through the centroid of the cross-sectional area, as demonstrated later in
this section. When the load P does not act at the centroid, bending of the bar
will result, and a more complicated analysis is necessary (see Sections 5.12
and 11.5). However, in this book (as in common practice) it is understood
that axial forces are applied at the centroids of the cross sections unless
specifically stated otherwise.

The uniform stress condition pictured in Fig. 1-2d exists throughout
the length of the bar except near the ends. The stress distribution at the
end of a bar depends upon how the load P is transmitted to the bar. If the
load happens to be distributed uniformly over the end, then the stress
pattern at the end will be the same as everywhere else. However, it is
more likely that the load is transmitted through a pin or a bolt, producing
high localized stresses called stress concentrations.

One possibility is illustrated by the eyebar shown in Fig. 1-3. In this
instance the loads P are transmitted to the bar by pins that pass through
the holes (or eyes) at the ends of the bar. Thus, the forces shown in the
figure are actually the resultants of bearing pressures between the pins
and the eyebar, and the stress distribution around the holes is quite
complex. However, as we move away from the ends and toward the
middle of the bar, the stress distribution gradually approaches the
uniform distribution pictured in Fig. 1-2d.

As a practical rule, the formula ¢ = P/A may be used with good
accuracy at any point within a prismatic bar that is at least as far away

“Conversion factors between USCS units and ST units are listed in Table A-5, Appendix A.
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from the stress concentration as the largest lateral dimension of the bar. In
other words, the stress distribution in the steel eyebar of Fig. 1-3 is
uniform at distances b or greater from the enlarged ends, where b is the
width of the bar, and the stress distribution in the prismatic bar of Fig. 1-2
is uniform at distances d or greater from the ends, where d is the diameter
of the bar (Fig. 1-2d). More detailed discussions of stress concentrations
produced by axial loads are given in Section 2.10.

Of course, even when the stress is not uniformly distributed, the
equation o = P/A may still be useful because it gives the average
normal stress on the cross section.

As already observed, a straight bar will change in length when loaded
axially, becoming longer when in tension and shorter when in compression.
For instance, consider again the prismatic bar of Fig. 1-2. The elongation &
of this bar (Fig. 1-2c) is the cumulative result of the stretching of all
elements of the material throughout the volume of the bar. Let us assume
that the material is the same everywhere in the bar. Then, if we consider half
of the bar (length L/2), it will have an elongation equal to §/2, and if we
consider one-fourth of the bar, it will have an elongation equal to §/4.

In general, the elongation of a segment is equal to its length divided
by the total length L and multiplied by the total elongation 6. Therefore, a
unit length of the bar will have an elongation equal to 1/L times 6. This
quantity is called the elongation per unit length, or strain, and is denoted
by the Greek letter € (epsilon). We see that strain is given by the equation

é
c= (1-2)

If the bar is in tension, the strain is called a tensile strain, representing an
elongation or stretching of the material. If the bar is in compression, the
strain is a compressive strain and the bar shortens. Tensile strain is
usually taken as positive and compressive strain as negative. The strain €
is called a normal strain because it is associated with normal stresses.

Because normal strain is the ratio of two lengths, it is a dimension-
less quantity, that is, it has no units. Therefore, strain is expressed
simply as a number, independent of any system of units. Numerical
values of strain are usually very small, because bars made of structural
materials undergo only small changes in length when loaded.

As an example, consider a steel bar having length L equal to 2.0 m.
When heavily loaded in tension, this bar might elongate by 1.4 mm,
which means that the strain is

0 14mm _6
€ =—=——— =0.0007 =700 X 10
L 20m
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In practice, the original units of 6 and L are sometimes attached to the
strain itself, and then the strain is recorded in forms such as mm/m,
pm/m, and in./in. For instance, the strain € in the preceding illustration
could be given as 700 wm/m or 700X 107° in./in. Also, strain is some-
times expressed as a percent, especially when the strains are large. (In
the preceding example, the strain is 0.07%.)

The definitions of normal stress and normal strain are based upon purely
static and geometric considerations, which means that Eqs. (1-1) and
(1-2) can be used for loads of any magnitude and for any material. The
principal requirement is that the deformation of the bar be uniform
throughout its volume, which in turn requires that the bar be prismatic,
the loads act through the centroids of the cross sections, and the material
be homogeneous (that is, the same throughout all parts of the bar). The
resulting state of stress and strain is called uniaxial stress and strain.

Further discussions of uniaxial stress, including stresses in direc-
tions other than the longitudinal direction of the bar, are given later in
Section 2.6. We will also analyze more complicated stress states, such
as biaxial stress and plane stress, in Chapter 7.

Throughout the preceding discussion of stress and strain in a prismatic
bar, we assumed that the normal stress o was distributed uniformly over
the cross section. Now we will demonstrate that this condition is met if
the line of action of the axial forces is through the centroid of the cross-
sectional area.

Consider a prismatic bar of arbitrary cross-sectional shape subjected
to axial forces P that produce uniformly distributed stresses o (Fig. 1-4a).
Also, let p; represent the point in the cross section where the line of
action of the forces intersects the cross section (Fig. 1-4b). We construct
a set of xy axes in the plane of the cross section and denote the coordi-
nates of point p; by x and y. To determine these coordinates, we observe
that the moments M, and M, of the force P about the x and y axes,
respectively, must be equal to the corresponding moments of the
uniformly distributed stresses.

The moments of the force P are

M,.= Py M,= —Px (a,b)

y

in which a moment is considered positive when its vector (using the
. . o, . . . . *
right-hand rule) acts in the positive direction of the corresponding axis.

“To visualize the right-hand rule, imagine that you grasp an axis of coordinates with your
right hand so that your fingers fold around the axis and your thumb points in the positive
direction of the axis. Then a moment is positive if it acts about the axis in the same direc-
tion as your fingers.
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FIG. 1-4 Uniform stress distribution in
a prismatic bar: (a) axial forces P,
and (b) cross section of the bar

(a)

(b)

The moments of the distributed stresses are obtained by integrating
over the cross-sectional area A. The differential force acting on an
element of area dA (Fig. 1-4b) is equal to odA. The moments of this
elemental force about the x and y axes are oydA and —oxdA, respectively,
in which x and y denote the coordinates of the element dA. The total
moments are obtained by integrating over the cross-sectional area:

M, =[oydA M, =-[oxda (c.d)

These expressions give the moments produced by the stresses o.

Next, we equate the moments M, and M, as obtained from the
force P (Egs. a and b) to the moments obtained from the distributed
stresses (Egs. ¢ and d):

Py = fa'ydA Px = fo-di

Because the stresses ¢ are uniformly distributed, we know that they are
constant over the cross-sectional area A and can be placed outside the
integral signs. Also, we know that o is equal to P/A. Therefore, we
obtain the following formulas for the coordinates of point p;:

M o fdi

YT A A

(1-3a,b)

These equations are the same as the equations defining the coordinates
of the centroid of an area (see Eqs. 12-3a and b in Chapter 12). There-
fore, we have now arrived at an important conclusion: In order to have
uniform tension or compression in a prismatic bar, the axial force must
act through the centroid of the cross-sectional area. As explained previ-
ously, we always assume that these conditions are met unless it is
specifically stated otherwise.

The following examples illustrate the calculation of stresses and
strains in prismatic bars. In the first example we disregard the weight of
the bar and in the second we include it. (It is customary when solving
textbook problems to omit the weight of the structure unless specifically
instructed to include it.)
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Example 1-1

FIG. 1-5 Example 1-1. Hollow aluminum
post in compression

A short post constructed from a hollow circular tube of aluminum supports a
compressive load of 26 kips (Fig. 1-5). The inner and outer diameters of the
tube are d; = 4.0 in. and d, = 4.5 in., respectively, and its length is 16 in. The
shortening of the post due to the load is measured as 0.012 in.

Determine the compressive stress and strain in the post. (Disregard the
weight of the post itself, and assume that the post does not buckle under the
load.)

Solution

Assuming that the compressive load acts at the center of the hollow tube,
we can use the equation o = P/A (Eq. 1-1) to calculate the normal stress. The
force P equals 26 k (or 26,000 1b), and the cross-sectional area A is

A= %(d% —d? = % (4.5 in.)? — (4.0 in.)?| = 3.338 in.2

Therefore, the compressive stress in the post is

P 26,000 1b 7790 vsi
= = Y i
7T A 33382 =
The compressive strain (from Eq. 1-2) is
5 0.012in.
e=—2=""" _ 750 % 10°°
/L 16 in.

Thus, the stress and strain in the post have been calculated.

Note: As explained earlier, strain is a dimensionless quantity and no units
are needed. For clarity, however, units are often given. In this example, € could
be written as 750 X 10 ~° in./in. or 750 pin./in.
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Example 1-2

FIG. 1-6 Example 1-2. Steel rod
supporting a weight W

A circular steel rod of length L and diameter d hangs in a mine shaft and holds
an ore bucket of weight W at its lower end (Fig. 1-6).

(a) Obtain a formula for the maximum stress oy, in the rod, taking into
account the weight of the rod itself.

(b) Calculate the maximum stress if L = 40 m, d = 8§ mm, and W = 1.5 kN.

=

Solution

(a) The maximum axial force Fy,,x in the rod occurs at the upper end and is
equal to the weight W of the ore bucket plus the weight W, of the rod itself. The
latter is equal to the weight density vy of the steel times the volume V of the rod,
or

Wo =V =yAL (1-4)

in which A is the cross-sectional area of the rod. Therefore, the formula for the
maximum stress (from Eq. 1-1) becomes

Finax W + yAL w
Omax = = ” = + ‘)/L (1_5)
A A A

(b) To calculate the maximum stress, we substitute numerical values into the
preceding equation. The cross-sectional area A equals 7d*/4, where d = 8 mm,
and the weight density v of steel is 77.0 kN/m> (from Table H-1 in Appendix H).
Thus,

1.5kN

— 3
Tinax = (8 mm) 4 + (77.0 kN/m”)(40 m)

= 29.8 MPa + 3.1 MPa = 32.9 MPa

In this example, the weight of the rod contributes noticeably to the maximum
stress and should not be disregarded.
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1.3 MECHANICAL PROPERTIES OF MATERIALS

FIG. 1-7 Tensile-test machine with
automatic data-processing system.
(Courtesy of MTS Systems Corporation)

The design of machines and structures so that they will function prop-
erly requires that we understand the mechanical behavior of the
materials being used. Ordinarily, the only way to determine how materials
behave when they are subjected to loads is to perform experiments in
the laboratory. The usual procedure is to place small specimens of the
material in testing machines, apply the loads, and then measure the
resulting deformations (such as changes in length and changes in diameter).
Most materials-testing laboratories are equipped with machines capable
of loading specimens in a variety of ways, including both static and
dynamic loading in tension and compression.

A typical tensile-test machine is shown in Fig. 1-7. The test spec-
imen is installed between the two large grips of the testing machine and
then loaded in tension. Measuring devices record the deformations, and
the automatic control and data-processing systems (at the left in the
photo) tabulate and graph the results.

A more detailed view of a tensile-test specimen is shown in Fig. 1-8
on the next page. The ends of the circular specimen are enlarged where
they fit in the grips so that failure will not occur near the grips them-
selves. A failure at the ends would not produce the desired information
about the material, because the stress distribution near the grips is not
uniform, as explained in Section 1.2. In a properly designed specimen,
failure will occur in the prismatic portion of the specimen where the
stress distribution is uniform and the bar is subjected only to pure
tension. This situation is shown in Fig. 1-8, where the steel specimen
has just fractured under load. The device at the left, which is attached by
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FIG. 1-8 Typical tensile-test specimen
with extensometer attached; the
specimen has just fractured in tension.
(Courtesy of MTS Systems Corporation)

two arms to the specimen, is an extensometer that measures the elonga-
tion during loading.

In order that test results will be comparable, the dimensions of test
specimens and the methods of applying loads must be standardized.
One of the major standards organizations in the United States is the
American Society for Testing and Materials (ASTM), a technical society
that publishes specifications and standards for materials and testing.
Other standardizing organizations are the American Standards Associa-
tion (ASA) and the National Institute of Standards and Technology
(NIST). Similar organizations exist in other countries.

The ASTM standard tension specimen has a diameter of 0.505 in.
and a gage length of 2.0 in. between the gage marks, which are the
points where the extensometer arms are attached to the specimen (see
Fig. 1-8). As the specimen is pulled, the axial load is measured and
recorded, either automatically or by reading from a dial. The elongation
over the gage length is measured simultaneously, either by mechanical
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gages of the kind shown in Fig. 1-8 or by electrical-resistance strain
gages.

In a static test, the load is applied slowly and the precise rate of
loading is not of interest because it does not affect the behavior of the
specimen. However, in a dynamic test the load is applied rapidly and
sometimes in a cyclical manner. Since the nature of a dynamic load
affects the properties of the materials, the rate of loading must also be
measured.

Compression tests of metals are customarily made on small speci-
mens in the shape of cubes or circular cylinders. For instance, cubes
may be 2.0 in. on a side, and cylinders may have diameters of 1 in. and
lengths from 1 to 12 in. Both the load applied by the machine and the
shortening of the specimen may be measured. The shortening should be
measured over a gage length that is less than the total length of the spec-
imen in order to eliminate end effects.

Concrete is tested in compression on important construction proj-
ects to ensure that the required strength has been obtained. One type
of concrete test specimen is 6 in. in diameter, 12 in. in length, and
28 days old (the age of concrete is important because concrete gains
strength as it cures). Similar but somewhat smaller specimens are
used when performing compression tests of rock (Fig. 1-9, on the
next page).

Test results generally depend upon the dimensions of the specimen being
tested. Since it is unlikely that we will be designing a structure having
parts that are the same size as the test specimens, we need to express
the test results in a form that can be applied to members of any size.
A simple way to achieve this objective is to convert the test results to
stresses and strains.

The axial stress o in a test specimen is calculated by dividing the
axial load P by the cross-sectional area A (Eq. 1-1). When the initial
area of the specimen is used in the calculation, the stress is called the
nominal stress (other names are conventional stress and engineering
stress). A more exact value of the axial stress, called the true stress, can
be calculated by using the actual area of the bar at the cross section
where failure occurs. Since the actual area in a tension test is always less
than the initial area (as illustrated in Fig. 1-8), the true stress is larger
than the nominal stress.

The average axial strain € in the test specimen is found by dividing
the measured elongation & between the gage marks by the gage length L
(see Fig. 1-8 and Eq. 1-2). If the initial gage length is used in the calcula-
tion (for instance, 2.0 in.), then the nominal strain is obtained. Since
the distance between the gage marks increases as the tensile load is
applied, we can calculate the true strain (or natural strain) at any value
of the load by using the actual distance between the gage marks. In
tension, true strain is always smaller than nominal strain. However, for
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FIG. 1-9 Rock sample being tested in
compression to obtain compressive
strength, elastic modulus and
Poisson’s ratio (Courtesy of MTS
Systems Corporation)

most engineering purposes, nominal stress and nominal strain are
adequate, as explained later in this section.

After performing a tension or compression test and determining the
stress and strain at various magnitudes of the load, we can plot a
diagram of stress versus strain. Such a stress-strain diagram is a char-
acteristic of the particular material being tested and conveys important
information about the mechanical properties and type of behavior."

“Stress-strain diagrams were originated by Jacob Bernoulli (1654-1705) and J. V. Poncelet

(1788-1867); see Ref. 1-4.



FIG. 1-10 Stress-strain diagram for
a typical structural steel in tension
(not to scale)

SECTION 1.3 Mechanical Properties of Materials

The first material we will discuss is structural steel, also known as
mild steel or low-carbon steel. Structural steel is one of the most widely
used metals and is found in buildings, bridges, cranes, ships, towers,
vehicles, and many other types of construction. A stress-strain diagram
for a typical structural steel in tension is shown in Fig. 1-10. Strains are
plotted on the horizontal axis and stresses on the vertical axis. (In order
to display all of the important features of this material, the strain axis in
Fig. 1-10 is not drawn to scale.)

The diagram begins with a straight line from the origin O to point A,
which means that the relationship between stress and strain in this initial
region is not only linear but also proportional.” Beyond point A, the
proportionality between stress and strain no longer exists; hence the
stress at A is called the proportional limit. For low-carbon steels, this
limit is in the range 30 to 50 ksi (210 to 350 MPa), but high-strength
steels (with higher carbon content plus other alloys) can have propor-
tional limits of more than 80 ksi (550 MPa). The slope of the straight
line from O to A is called the modulus of elasticity. Because the slope
has units of stress divided by strain, modulus of elasticity has the same
units as stress. (Modulus of elasticity is discussed later in Section 1.5.)

With an increase in stress beyond the proportional limit, the strain
begins to increase more rapidly for each increment in stress. Conse-
quently, the stress-strain curve has a smaller and smaller slope, until, at
point B, the curve becomes horizontal (see Fig. 1-10). Beginning at this
point, considerable elongation of the test specimen occurs with no
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“Two variables are said to be proportional if their ratio remains constant. Therefore,
a proportional relationship may be represented by a straight line through the origin.
However, a proportional relationship is not the same as a linear relationship. Although a
proportional relationship is linear, the converse is not necessarily true, because a rela-
tionship represented by a straight line that does not pass through the origin is linear but
not proportional. The often-used expression “directly proportional” is synonymous with
“proportional” (Ref. 1-5).
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FIG. 1-11 Necking of a mild-steel bar in
tension

noticeable increase in the tensile force (from B to C). This phenomenon
is known as yielding of the material, and point B is called the yield
point. The corresponding stress is known as the yield stress of the
steel.

In the region from B to C (Fig. 1-10), the material becomes perfectly
plastic, which means that it deforms without an increase in the applied
load. The elongation of a mild-steel specimen in the perfectly plastic
region is typically 10 to 15 times the elongation that occurs in the linear
region (between the onset of loading and the proportional limit). The
presence of very large strains in the plastic region (and beyond) is the
reason for not plotting this diagram to scale.

After undergoing the large strains that occur during yielding in the
region BC, the steel begins to strain harden. During strain hardening, the
material undergoes changes in its crystalline structure, resulting in
increased resistance of the material to further deformation. Elongation of
the test specimen in this region requires an increase in the tensile load,
and therefore the stress-strain diagram has a positive slope from C to D.
The load eventually reaches its maximum value, and the corresponding
stress (at point D) is called the ultimate stress. Further stretching of the
bar is actually accompanied by a reduction in the load, and fracture
finally occurs at a point such as E in Fig. 1-10.

The yield stress and ultimate stress of a material are also called the
yield strength and ultimate strength, respectively. Strength is a general
term that refers to the capacity of a structure to resist loads. For instance,
the yield strength of a beam is the magnitude of the load required to cause
yielding in the beam, and the ultimate strength of a truss is the maximum
load it can support, that is, the failure load. However, when conducting a
tension test of a particular material, we define load-carrying capacity by the
stresses in the specimen rather than by the total loads acting on the speci-
men. As a result, the strength of a material is usually stated as a stress.

When a test specimen is stretched, lateral contraction occurs, as
previously mentioned. The resulting decrease in cross-sectional area is
too small to have a noticeable effect on the calculated values of the
stresses up to about point C in Fig. 1-10, but beyond that point the
reduction in area begins to alter the shape of the curve. In the vicinity of
the ultimate stress, the reduction in area of the bar becomes clearly visi-
ble and a pronounced necking of the bar occurs (see Figs. 1-8 and 1-11).

If the actual cross-sectional area at the narrow part of the neck is
used to calculate the stress, the true stress-strain curve (the dashed line
CE'’ in Fig. 1-10) is obtained. The total load the bar can carry does indeed
diminish after the ultimate stress is reached (as shown by curve DE), but
this reduction is due to the decrease in area of the bar and not to a loss in
strength of the material itself. In reality, the material withstands an
increase in true stress up to failure (point E’). Because most structures are
expected to function at stresses below the proportional limit, the conven-
tional stress-strain curve OABCDE, which is based upon the original
cross-sectional area of the specimen and is easy to determine, provides
satisfactory information for use in engineering design.
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FIG. 1-12 Stress-strain diagram for a
typical structural steel in tension (drawn
to scale)
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FIG. 1-13 Typical stress-strain diagram
for an aluminum alloy

FIG. 1-14 Arbitrary yield stress
determined by the offset method
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The diagram of Fig. 1-10 shows the general characteristics of the
stress-strain curve for mild steel, but its proportions are not realistic
because, as already mentioned, the strain that occurs from B to C may be
more than ten times the strain occurring from O to A. Furthermore,
the strains from C to E are many times greater than those from B to C.
The correct relationships are portrayed in Fig. 1-12, which shows a
stress-strain diagram for mild steel drawn to scale. In this figure, the
strains from the zero point to point A are so small in comparison to the
strains from point A to point E that they cannot be seen, and the initial
part of the diagram appears to be a vertical line.

The presence of a clearly defined yield point followed by large
plastic strains is an important characteristic of structural steel that is
sometimes utilized in practical design (see, for instance, the discussions
of elastoplastic behavior in Sections 2.12 and 6.10). Metals such as
structural steel that undergo large permanent strains before failure are
classified as ductile. For instance, ductility is the property that enables a
bar of steel to be bent into a circular arc or drawn into a wire without
breaking. A desirable feature of ductile materials is that visible distor-
tions occur if the loads become too large, thus providing an opportunity
to take remedial action before an actual fracture occurs. Also, materials
exhibiting ductile behavior are capable of absorbing large amounts of
strain energy prior to fracture.

Structural steel is an alloy of iron containing about 0.2% carbon,
and therefore it is classified as a low-carbon steel. With increasing
carbon content, steel becomes less ductile but stronger (higher yield
stress and higher ultimate stress). The physical properties of steel are
also affected by heat treatment, the presence of other metals, and manu-
facturing processes such as rolling. Other materials that behave in a
ductile manner (under certain conditions) include aluminum, copper,
magnesium, lead, molybdenum, nickel, brass, bronze, monel metal,
nylon, and teflon.

Although they may have considerable ductility, aluminum alloys
typically do not have a clearly definable yield point, as shown by the
stress-strain diagram of Fig. 1-13. However, they do have an initial
linear region with a recognizable proportional limit. Alloys produced for
structural purposes have proportional limits in the range 10 to 60 ksi
(70 to 410 MPa) and ultimate stresses in the range 20 to 80 ksi (140 to
550 MPa).

When a material such as aluminum does not have an obvious yield
point and yet undergoes large strains after the proportional limit is
exceeded, an arbitrary yield stress may be determined by the offset
method. A straight line is drawn on the stress-strain diagram parallel to
the initial linear part of the curve (Fig. 1-14) but offset by some standard
strain, such as 0.002 (or 0.2%). The intersection of the offset line and
the stress-strain curve (point A in the figure) defines the yield stress.
Because this stress is determined by an arbitrary rule and is not an
inherent physical property of the material, it should be distinguished
from a true yield stress by referring to it as the offset yield stress. For a
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FIG. 1-16 Typical stress-strain diagram
for a brittle material showing the propor-
tional limit (point A) and fracture stress
(point B)

material such as aluminum, the offset yield stress is slightly above the
proportional limit. In the case of structural steel, with its abrupt transi-
tion from the linear region to the region of plastic stretching, the offset
stress is essentially the same as both the yield stress and the proportional
limit.

Rubber maintains a linear relationship between stress and strain up
to relatively large strains (as compared to metals). The strain at the pro-
portional limit may be as high as 0.1 or 0.2 (10% or 20%). Beyond the
proportional limit, the behavior depends upon the type of rubber
(Fig. 1-15). Some kinds of soft rubber will stretch enormously without
failure, reaching lengths several times their original lengths. The mate-
rial eventually offers increasing resistance to the load, and the
stress-strain curve turns markedly upward. You can easily sense this
characteristic behavior by stretching a rubber band with your hands.
(Note that although rubber exhibits very large strains, it is not a ductile
material because the strains are not permanent. It is, of course, an elas-
tic material; see Section 1.4.)

The ductility of a material in tension can be characterized by its
elongation and by the reduction in area at the cross section where frac-
ture occurs. The percent elongation is defined as follows:

, L — Ly
Percent elongation = 7 (100) (1-6)
0

in which L, is the original gage length and L, is the distance between
the gage marks at fracture. Because the elongation is not uniform
over the length of the specimen but is concentrated in the region of
necking, the percent elongation depends upon the gage length. There-
fore, when stating the percent elongation, the gage length should
always be given. For a 2 in. gage length, steel may have an elongation
in the range from 3% to 40%, depending upon composition; in the case
of structural steel, values of 20% or 30% are common. The elongation
of aluminum alloys varies from 1% to 45%, depending upon composi-
tion and treatment.

The percent reduction in area measures the amount of necking that
occurs and is defined as follows:

A —
Percent reduction in area = % (100) (1-7)
0

in which A is the original cross-sectional area and A, is the final area at
the fracture section. For ductile steels, the reduction is about 50%.
Materials that fail in tension at relatively low values of strain are
classified as brittle. Examples are concrete, stone, cast iron, glass,
ceramics, and a variety of metallic alloys. Brittle materials fail with only
little elongation after the proportional limit (the stress at point A in
Fig. 1-16) is exceeded. Furthermore, the reduction in area is insignificant,
and so the nominal fracture stress (point B) is the same as the true
ultimate stress. High-carbon steels have very high yield stresses—over
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100 ksi (700 MPa) in some cases—but they behave in a brittle manner
and fracture occurs at an elongation of only a few percent.

Ordinary glass is a nearly ideal brittle material, because it exhibits
almost no ductility. The stress-strain curve for glass in tension is essen-
tially a straight line, with failure occurring before any yielding takes
place. The ultimate stress is about 10,000 psi (70 MPa) for certain kinds
of plate glass, but great variations exist, depending upon the type of
glass, the size of the specimen, and the presence of microscopic defects.
Glass fibers can develop enormous strengths, and ultimate stresses over
1,000,000 psi (7 GPa) have been attained.

Many types of plastics are used for structural purposes because of
their light weight, resistance to corrosion, and good electrical insulation
properties. Their mechanical properties vary tremendously, with some
plastics being brittle and others ductile. When designing with plastics it
is important to realize that their properties are greatly affected by both
temperature changes and the passage of time. For instance, the ultimate
tensile stress of some plastics is cut in half merely by raising the temper-
ature from 50° F to 120° F. Also, a loaded plastic may stretch gradually
over time until it is no longer serviceable. For example, a bar of
polyvinyl chloride subjected to a tensile load that initially produces a
strain of 0.005 may have that strain doubled after one week, even
though the load remains constant. (This phenomenon, known as creep,
is discussed in the next section.)

Ultimate tensile stresses for plastics are generally in the range 2 to
50 ksi (14 to 350 MPa) and weight densities vary from 50 to 90 Ib/ft®
(8to 14 kN/m?). One type of nylon has an ultimate stress of 12 ksi
(80 MPa) and weighs only 70 Ib/ft® (11 kN/m?), which is only 12%
heavier than water. Because of its light weight, the strength-to-weight
ratio for nylon is about the same as for structural steel (see Prob. 1.3-4).

A filament-reinforced material consists of a base material (or
matrix) in which high-strength filaments, fibers, or whiskers are
embedded. The resulting composite material has much greater strength
than the base material. As an example, the use of glass fibers can more
than double the strength of a plastic matrix. Composites are widely used
in aircraft, boats, rockets, and space vehicles where high strength and
light weight are needed.

Stress-strain curves for materials in compression differ from those in
tension. Ductile metals such as steel, aluminum, and copper have pro-
portional limits in compression very close to those in tension, and the
initial regions of their compressive and tensile stress-strain diagrams are
about the same. However, after yielding begins, the behavior is quite dif-
ferent. In a tension test, the specimen is stretched, necking may occur, and
fracture ultimately takes place. When the material is compressed, it bulges
outward on the sides and becomes barrel shaped, because friction between
the specimen and the end plates prevents lateral expansion. With increasing
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load, the specimen is flattened out and offers greatly increased resistance to
further shortening (which means that the stress-strain curve becomes very
steep). These characteristics are illustrated in Fig. 1-17, which shows a
compressive stress-strain diagram for copper. Since the actual cross-sec-
tional area of a specimen tested in compression is larger than the initial
area, the true stress in a compression test is smaller than the nominal stress.

Brittle materials loaded in compression typically have an initial
linear region followed by a region in which the shortening increases at
a slightly higher rate than does the load. The stress-strain curves for
compression and tension often have similar shapes, but the ultimate
stresses in compression are much higher than those in tension. Also,
unlike ductile materials, which flatten out when compressed, brittle
materials actually break at the maximum load.

Properties of materials are listed in the tables of Appendix H at the back
of the book. The data in the tables are typical of the materials and are
suitable for solving problems in this book. However, properties of mate-
rials and stress-strain curves vary greatly, even for the same material,
because of different manufacturing processes, chemical composition,
internal defects, temperature, and many other factors.

For these reasons, data obtained from Appendix H (or other tables
of a similar nature) should not be used for specific engineering or design
purposes. Instead, the manufacturers or materials suppliers should be
consulted for information about a particular product.

1.4 ELASTICITY, PLASTICITY, AND CREEP

Stress-strain diagrams portray the behavior of engineering materials
when the materials are loaded in tension or compression, as described in
the preceding section. To go one step further, let us now consider what
happens when the load is removed and the material is unloaded.

Assume, for instance, that we apply a load to a tensile specimen so
that the stress and strain go from the origin O to point A on the stress-
strain curve of Fig. 1-18a. Suppose further that when the load is removed,
the material follows exactly the same curve back to the origin O. This
property of a material, by which it returns to its original dimensions
during unloading, is called elasticity, and the material itself is said to be
elastic. Note that the stress-strain curve from O to A need not be linear in
order for the material to be elastic.

Now suppose that we load this same material to a higher level, so that
point B is reached on the stress-strain curve (Fig. 1-18b). When unloading
occurs from point B, the material follows line BC on the diagram. This
unloading line is parallel to the initial portion of the loading curve; that is,
line BC is parallel to a tangent to the stress-strain curve at the origin.
When point C is reached, the load has been entirely removed, but a
residual strain, or permanent strain, represented by line OC, remains in
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the material. As a consequence, the bar being tested is longer than it was
before loading. This residual elongation of the bar is called the perma-
nent set. Of the total strain OD developed during loading from O to B, the
strain CD has been recovered elastically and the strain OC remains as a
permanent strain. Thus, during unloading the bar returns partially to its
original shape, and so the material is said to be partially elastic.

Between points A and B on the stress-strain curve (Fig. 1-18b), there
must be a point before which the material is elastic and beyond which
the material is partially elastic. To find this point, we load the material
to some selected value of stress and then remove the load. If there is no
permanent set (that is, if the elongation of the bar returns to zero), then
the material is fully elastic up to the selected value of the stress.

The process of loading and unloading can be repeated for succes-
sively higher values of stress. Eventually, a stress will be reached such
that not all the strain is recovered during unloading. By this procedure, it
is possible to determine the stress at the upper limit of the elastic region,
for instance, the stress at point E in Figs. 1-18a and b. The stress at this
point is known as the elastic limit of the material.

Many materials, including most metals, have linear regions at the
beginning of their stress-strain curves (for example, see Figs. 1-10 and
1-13). The stress at the upper limit of this linear region is the propor-
tional limit, as explained in the preceeding section. The elastic limit is
usually the same as, or slightly above, the proportional limit. Hence, for
many materials the two limits are assigned the same numerical value. In
the case of mild steel, the yield stress is also very close to the propor-
tional limit, so that for practical purposes the yield stress, the elastic
limit, and the proportional limit are assumed to be equal. Of course, this
situation does not hold for all materials. Rubber is an outstanding
example of a material that is elastic far beyond the proportional limit.

The characteristic of a material by which it undergoes inelastic strains
beyond the strain at the elastic limit is known as plasticity. Thus, on the
stress-strain curve of Fig. 1-18a, we have an elastic region followed by a
plastic region. When large deformations occur in a ductile material loaded
into the plastic region, the material is said to undergo plastic flow.

If the material remains within the elastic range, it can be loaded, unloaded,
and loaded again without significantly changing the behavior. However,
when loaded into the plastic range, the internal structure of the material is
altered and its properties change. For instance, we have already observed
that a permanent strain exists in the specimen after unloading from the
plastic region (Fig. 1-18b). Now suppose that the material is reloaded
after such an unloading (Fig. 1-19). The new loading begins at point C on
the diagram and continues upward to point B, the point at which
unloading began during the first loading cycle. The material then follows
the original stress-strain curve toward point F. Thus, for the second
loading, we can imagine that we have a new stress-strain diagram with its
origin at point C.
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During the second loading, the material behaves in a linearly elastic
manner from C to B, with the slope of line CB being the same as the slope
of the tangent to the original loading curve at the origin O. The propor-
tional limit is now at point B, which is at a higher stress than the original
elastic limit (point E). Thus, by stretching a material such as steel or
aluminum into the inelastic or plastic range, the properties of the material
are changed—the linearly elastic region is increased, the proportional
limit is raised, and the elastic limit is raised. However, the ductility is
reduced because in the “new material” the amount of yielding beyond
the elast}c limit (from B to F') is less than in the original material (from
EtoF).

The stress-strain diagrams described previously were obtained from
tension tests involving static loading and unloading of the specimens,
and the passage of time did not enter our discussions. However, when
loaded for long periods of time, some materials develop additional
strains and are said to creep.

This phenomenon can manifest itself in a variety of ways. For
instance, suppose that a vertical bar (Fig. 1-20a) is loaded slowly by a
force P, producing an elongation equal to Jy. Let us assume that the
loading and corresponding elongation take place during a time interval
of duration #, (Fig. 1-20b). Subsequent to time t#y, the load remains
constant. However, due to creep, the bar may gradually lengthen, as
shown in Fig. 1-20b, even though the load does not change. This
behavior occurs with many materials, although sometimes the change is
too small to be of concern.

As another manifestation of creep, consider a wire that is stretched
between two immovable supports so that it has an initial tensile stress oy
(Fig. 1-21). Again, we will denote the time during which the wire is
initially stretched as #,. With the elapse of time, the stress in the wire
gradually diminishes, eventually reaching a constant value, even though
the supports at the ends of the wire do not move. This process, is called
relaxation of the material.

Creep is usually more important at high temperatures than at
ordinary temperatures, and therefore it should always be considered in
the design of engines, furnaces, and other structures that operate at
elevated temperatures for long periods of time. However, materials such
as steel, concrete, and wood will creep slightly even at atmospheric
temperatures. For example, creep of concrete over long periods of time
can create undulations in bridge decks because of sagging between the
supports. (One remedy is to construct the deck with an upward camber,
which is an initial displacement above the horizontal, so that when creep
occurs, the spans lower to the level position.)

“The study of material behavior under various environmental and loading conditions is an
important branch of applied mechanics. For more detailed engineering information about
materials, consult a textbook devoted solely to this subject.
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1.5 LINEAR ELASTICITY, HOOKE’S LAW, AND POISSON’S RATIO

Many structural materials, including most metals, wood, plastics, and
ceramics, behave both elastically and linearly when first loaded.
Consequently, their stress-strain curves begin with a straight line passing
through the origin. An example is the stress-strain curve for structural
steel (Fig. 1-10), where the region from the origin O to the proportional
limit (point A) is both linear and elastic. Other examples are the regions
below both the proportional limits and the elastic limits on the diagrams
for aluminum (Fig. 1-13), brittle materials (Fig. 1-16), and copper
(Fig. 1-17).

When a material behaves elastically and also exhibits a linear
relationship between stress and strain, it is said to be linearly elastic.
This type of behavior is extremely important in engineering for an
obvious reason—by designing structures and machines to function in
this region, we avoid permanent deformations due to yielding.

The linear relationship between stress and strain for a bar in simple
tension or compression is expressed by the equation

o= Fe (1-8)

in which o is the axial stress, € is the axial strain, and E is a constant of
proportionality known as the modulus of elasticity for the material. The
modulus of elasticity is the slope of the stress-strain diagram in the linearly
elastic region, as mentioned previously in Section 1.3. Since strain is dimen-
sionless, the units of £ are the same as the units of stress. Typical units of E
are psi or ksi in USCS units and pascals (or multiples thereof) in SI units.

The equation o = Ee is commonly known as Hooke’s law, named
for the famous English scientist Robert Hooke (1635-1703). Hooke was
the first person to investigate scientifically the elastic properties of mate-
rials, and he tested such diverse materials as metal, wood, stone, bone,
and sinew. He measured the stretching of long wires supporting weights
and observed that the elongations “always bear the same proportions one
to the other that the weights do that made them” (Ref. 1-6). Thus, Hooke
established the linear relationship between the applied loads and the
resulting elongations.

Equation (1-8) is actually a very limited version of Hooke’s law
because it relates only to the longitudinal stresses and strains developed
in simple tension or compression of a bar (uniaxial stress). To deal with
more complicated states of stress, such as those found in most structures
and machines, we must use more extensive equations of Hooke’s law
(see Sections 7.5 and 7.6).

The modulus of elasticity has relatively large values for materials
that are very stiff, such as structural metals. Steel has a modulus of
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FIG. 1-22 Axial elongation and lateral
contraction of a prismatic bar in tension:
(a) bar before loading, and (b) bar after
loading. (The deformations of the bar
are highly exaggerated.)

approximately 30,000 ksi (210 GPa); for aluminum, values around
10,600 ksi (73 GPa) are typical. More flexible materials have a lower
modulus—values for plastics range from 100 to 2,000 ksi (0.7 to
14 GPa). Some representative values of E are listed in Table H-2,
Appendix H. For most materials, the value of E in compression is nearly
the same as in tension.

Modulus of elasticity is often called Young’s modulus, after
another English scientist, Thomas Young (1773-1829). In connection
with an investigation of tension and compression of prismatic bars,
Young introduced the idea of a “modulus of the elasticity.” However,
his modulus was not the same as the one in use today, because it
involved properties of the bar as well as of the material (Ref. 1-7).

When a prismatic bar is loaded in tension, the axial elongation is
accompanied by lateral contraction (that is, contraction normal to the direc-
tion of the applied load). This change in shape is pictured in Fig. 1-22, where
part (a) shows the bar before loading and part (b) shows it after loading. In
part (b), the dashed lines represent the shape of the bar prior to loading.

Lateral contraction is easily seen by stretching a rubber band, but in
metals the changes in lateral dimensions (in the linearly elastic region)
are usually too small to be visible. However, they can be detected with
sensitive measuring devices.

The lateral strain € at any point in a bar is proportional to the axial
strain € at that same point if the material is linearly elastic. The ratio of
these strains is a property of the material known as Poisson’s ratio. This
dimensionless ratio, usually denoted by the Greek letter » (nu), can be
expressed by the equation

__ lateral strain _ €’ (1-9)

axial strain €

The minus sign is inserted in the equation to compensate for the fact that
the lateral and axial strains normally have opposite signs. For instance,
the axial strain in a bar in tension is positive and the lateral strain is
negative (because the width of the bar decreases). For compression we
have the opposite situation, with the bar becoming shorter (negative
axial strain) and wider (positive lateral strain). Therefore, for ordinary
materials Poisson’s ratio will have a positive value.

When Poisson’s ratio for a material is known, we can obtain the
lateral strain from the axial strain as follows:

€ = —ve (1-10)
When using Egs. (1-9) and (1-10), we must always keep in mind that

they apply only to a bar in uniaxial stress, that is, a bar for which the
only stress is the normal stress o in the axial direction.
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Poisson’s ratio is named for the famous French mathematician
Siméon Denis Poisson (1781-1840), who attempted to calculate this
ratio by a molecular theory of materials (Ref. 1-8). For isotropic
materials, Poisson found » = 1/4. More recent calculations based upon
better models of atomic structure give v = 1/3. Both of these values are
close to actual measured values, which are in the range 0.25 to 0.35 for
most metals and many other materials. Materials with an extremely low
value of Poisson’s ratio include cork, for which v is practically zero, and
concrete, for which v is about 0.1 or 0.2. A theoretical upper limit for
Poisson’s ratio is 0.5, as explained later in Section 7.5. Rubber comes
close to this limiting value.

A table of Poisson’s ratios for various materials in the linearly elastic
range is given in Appendix H (see Table H-2). For most purposes,
Poisson’s ratio is assumed to be the same in both tension and compression.

When the strains in a material become large, Poisson’s ratio changes.
For instance, in the case of structural steel the ratio becomes almost 0.5
when plastic yielding occurs. Thus, Poisson’s ratio remains constant only
in the linearly elastic range. When the material behavior is nonlinear, the
ratio of lateral strain to axial strain is often called the contraction ratio.
Of course, in the special case of linearly elastic behavior, the contraction
ratio is the same as Poisson’s ratio.

For a particular material, Poisson’s ratio remains constant throughout
the linearly elastic range, as explained previously. Therefore, at any
given point in the prismatic bar of Fig. 1-22, the lateral strain remains
proportional to the axial strain as the load increases or decreases.
However, for a given value of the load (which means that the axial
strain is constant throughout the bar), additional conditions must be met
if the lateral strains are to be the same throughout the entire bar.

First, the material must be homogeneous, that is, it must have
the same composition (and hence the same elastic properties) at every
point. However, having a homogeneous material does not mean that the
elastic properties at a particular point are the same in all directions. For
instance, the modulus of elasticity could be different in the axial and
lateral directions, as in the case of a wood pole. Therefore, a second
condition for uniformity in the lateral strains is that the elastic properties
must be the same in all directions perpendicular to the longitudinal axis.
When the preceding conditions are met, as is often the case with metals,
the lateral strains in a prismatic bar subjected to uniform tension will be
the same at every point in the bar and the same in all lateral directions.

Materials having the same properties in all directions (whether axial,
lateral, or any other direction) are said to be isotropic. If the properties
differ in various directions, the material is anisotropic (or aeolotropic).

In this book, all examples and problems are solved with the assump-
tion that the material is linearly elastic, homogeneous, and isotropic,
unless a specific statement is made to the contrary.
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Example 1-3

FIG. 1-23 Example 1-3. Steel pipe in
compression

A steel pipe of length L = 4.0 ft, outside diameter d> = 6.0 in., and inside
diameter d; = 4.5 in. is compressed by an axial force P =140 k (Fig. 1-23). The
material has modulus of elasticity £ = 30,000 ksi and Poisson’s ratio v = 0.30.

Determine the following quantities for the pipe: (a) the shortening d, (b) the
lateral strain €', (c) the increase Ad, in the outer diameter and the increase Ad,
in the inner diameter, and (d) the increase At in the wall thickness.

Solution
The cross-sectional area A and longitudinal stress o are determined as follows:

A= f (@3 — d%) = f (6.0in.)> — (4.5in.)?] = 12.37 in.2

g=— f = — % = —11.32 ksi (compression)

Because the stress is well below the yield stress (see Table H-3, Appendix H),
the material behaves linearly elastically and the axial strain may be found from
Hooke’s law:

o —11.32ksi e
=222 3973 %10
E 30,000 ksi

The minus sign for the strain indicates that the pipe shortens.
(a) Knowing the axial strain, we can now find the change in length of the
pipe (see Eq. 1-2):

8= el = (—377.3 X 107%)(4.0 ft)(12 in./ft) = —0.018 in.

The negative sign again indicates a shortening of the pipe.
(b) The lateral strain is obtained from Poisson’s ratio (see Eq. 1-10):

€' = —ve= —(0.30)(—377.3 X 10 = 1132 X 1076

The positive sign for €’ indicates an increase in the lateral dimensions, as
expected for compression.
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(c) The increase in outer diameter equals the lateral strain times the diameter:
Ad, = €'d,=(113.2 X 107°)(6.0 in.) = 0.000679 in.
Similarly, the increase in inner diameter is
Ad, = €'d; = (113.2 X 10~ °)(4.5 in.) = 0.000509 in.

(d) The increase in wall thickness is found in the same manner as the
increases in the diameters; thus,

At = €'t = (113.2X107°)(0.75 in.) = 0.000085 in.

This result can be verified by noting that the increase in wall thickness is equal
to half the difference of the increases in diameters:

Ad, — Ad
Ar= % = %(0.000679 in. — 0.000509 in.) = 0.000085 in.

as expected. Note that under compression, all three quantities increase (outer
diameter, inner diameter, and thickness).

Note: The numerical results obtained in this example illustrate that the dimen-
sional changes in structural materials under normal loading conditions
are extremely small. In spite of their smallness, changes in dimensions
can be important in certain kinds of analysis (such as the analysis of statically inde-
terminate structures) and in the experimental determination of stresses and strains.
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1.6 SHEAR STRESS AND STRAIN

Diagonal bracing for an elevated walkway
showing a clevis and a pin in double shear

(b)

FIG. 1-24 Bolted connection in which the
bolt is loaded in double shear

In the preceding sections we discussed the effects of normal stresses
produced by axial loads acting on straight bars. These stresses are called
“normal stresses” because they act in directions perpendicular to the
surface of the material. Now we will consider another kind of stress,
called a shear stress, that acts tangential to the surface of the material.

As an illustration of the action of shear stresses, consider the bolted
connection shown in Fig. 1-24a. This connection consists of a flat bar A,
a clevis C, and a bolt B that passes through holes in the bar and clevis.
Under the action of the tensile loads P, the bar and clevis will press
against the bolt in bearing, and contact stresses, called bearing stresses,
will be developed. In addition, the bar and clevis tend to shear the bolt,
that is, cut through it, and this tendency is resisted by shear stresses in
the bolt. As an example, consider the bracing for an elevated pedestrian
walkway shown in the photograph.

(©) (d) (©

To show more clearly the actions of the bearing and shear stresses, let
us look at this type of connection in a schematic side view (Fig. 1-24b).
With this view in mind, we draw a free-body diagram of the bolt
(Fig. 1-24c). The bearing stresses exerted by the clevis against the bolt
appear on the left-hand side of the free-body diagram and are labeled 1
and 3. The stresses from the bar appear on the right-hand side and are
labeled 2. The actual distribution of the bearing stresses is difficult to
determine, so it is customary to assume that the stresses are uniformly dis-
tributed. Based upon the assumption of uniform distribution, we can



FIG. 1-25 Bolted connection in which the
bolt is loaded in single shear

SECTION 1.6 Shear Stress and Strain

calculate an average bearing stress o;, by dividing the total bearing force
F,, by the bearing area A,

E,

= (1-11)
Ap

gy

The bearing area is defined as the projected area of the curved bearing
surface. For instance, consider the bearing stresses labeled 1. The
projected area A, on which they act is a rectangle having a height equal to
the thickness of the clevis and a width equal to the diameter of the bolt.
Also, the bearing force F), represented by the stresses labeled 1 is equal to
P/2. The same area and the same force apply to the stresses labeled 3.

Now consider the bearing stresses between the flat bar and the bolt
(the stresses labeled 2). For these stresses, the bearing area A, is a rectangle
with height equal to the thickness of the flat bar and width equal to the bolt
diameter. The corresponding bearing force F, is equal to the load P.

The free-body diagram of Fig. 1-24c shows that there is a tendency
to shear the bolt along cross sections mn and pg. From a free-body
diagram of the portion mnpq of the bolt (see Fig. 1-24d), we see that
shear forces V act over the cut surfaces of the bolt. In this particular
example there are two planes of shear (mn and pq), and so the bolt is said
to be in double shear. In double shear, each of the shear forces is equal
to one-half of the total load transmitted by the bolt, that is, V = P/2.

(b) (©) (d)
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FIG. 1-25 (Repeated)

The shear forces V are the resultants of the shear stresses distributed
over the cross-sectional area of the bolt. For instance, the shear stresses
acting on cross section mn are shown in Fig. 1-24e. These stresses act
parallel to the cut surface. The exact distribution of the stresses is not
known, but they are highest near the center and become zero at certain
locations on the edges. As indicated in Fig. 1-24e, shear stresses are
customarily denoted by the Greek letter 7 (tau).

A bolted connection in single shear is shown in Fig. 1-25a, where the
axial force P in the metal bar is transmitted to the flange of the steel
column through a bolt. A cross-sectional view of the column (Fig. 1-25b)
shows the connection in more detail. Also, a sketch of the bolt (Fig. 1-
25¢) shows the assumed distribution of the bearing stresses acting on the
bolt. As mentioned earlier, the actual distribution of these bearing stresses
is much more complex than shown in the figure. Furthermore, bearing
stresses are also developed against the inside surfaces of the bolt head and
nut. Thus, Fig. 1-25¢ is not a free-body diagram—only the idealized
bearing stresses acting on the shank of the bolt are shown in the figure.

By cutting through the bolt at section mn we obtain the diagram
shown in Fig. 1-25d. This diagram includes the shear force V (equal to
the load P) acting on the cross section of the bolt. As already pointed
out, this shear force is the resultant of the shear stresses that act over the
cross-sectional area of the bolt.

(b) (©) d)



FIG. 1-26 Failure of a bolt in single shear
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Load

Load

The deformation of a bolt loaded almost to fracture in single shear
is shown in Fig. 1-26 (compare with Fig. 1-25¢).

In the preceding discussions of bolted connections we disregarded
friction (produced by tightening of the bolts) between the connecting
elements. The presence of friction means that part of the load is carried
by friction forces, thereby reducing the loads on the bolts. Since friction
forces are unreliable and difficult to estimate, it is common practice to
err on the conservative side and omit them from the calculations.

The average shear stress on the cross section of a bolt is obtained
by dividing the total shear force V by the area A of the cross section on
which it acts, as follows:

\%
aver . (1_12)
Taver = 4

In the example of Fig. 1-25, which shows a bolt in single shear, the
shear force V is equal to the load P and the area A is the cross-sectional
area of the bolt. However, in the example of Fig. 1-24, where the bolt is
in double shear, the shear force V equals P/2.

From Eq. (1-12) we see that shear stresses, like normal stresses,
represent intensity of force, or force per unit of area. Thus, the units of
shear stress are the same as those for normal stress, namely, psi or ksi in
USCS units and pascals or multiples thereof in SI units.

The loading arrangements shown in Figs. 1-24 and 1-25 are examples
of direct shear (or simple shear) in which the shear stresses are created by
the direct action of the forces in trying to cut through the material. Direct
shear arises in the design of bolts, pins, rivets, keys, welds, and glued joints.

Shear stresses also arise in an indirect manner when members are
subjected to tension, torsion, and bending, as discussed later in Sections 2.6,
3.3, and 5.8, respectively.

To obtain a more complete picture of the action of shear stresses, let us
consider a small element of material in the form of a rectangular paral-
lelepiped having sides of lengths a, b, and c in the x, y, and z directions,
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FIG. 1-27 Small element of material
subjected to shear stresses

FIG. 1-28 Element of material subjected to

(b)

shear stresses and strains

Tension, Compression, and Shear

respectively (Fig. 1-27)." The front and rear faces of this element are
free of stress.

Now assume that a shear stress 7 is distributed uniformly over the
right-hand face, which has area bc. In order for the element to be in
equilibrium in the y direction, the total shear force 7;bc acting on the
right-hand face must be balanced by an equal but oppositely directed
shear force on the left-hand face. Since the areas of these two faces are
equal, it follows that the shear stresses on the two faces must be equal.

The forces 7bc acting on the left- and right-hand side faces
(Fig. 1-27) form a couple having a moment about the z axis of magni-
tude mabc, acting counterclockwise in the figure.”" Equilibrium of the
element requires that this moment be balanced by an equal and opposite
moment resulting from shear stresses acting on the top and bottom faces
of the element. Denoting the stresses on the top and bottom faces as 7,
we see that the corresponding horizontal shear forces equal mac. These
forces form a clockwise couple of moment 7,abc. From moment
equilibrium of the element about the z axis, we see that Tmabc equals
Tabc, or

(1-13)

T = T

Therefore, the magnitudes of the four shear stresses acting on the
element are equal, as shown in Fig. 1-28a.

In summary, we have arrived at the following general observations
regarding shear stresses acting on a rectangular element:

1. Shear stresses on opposite (and parallel) faces of an element are
equal in magnitude and opposite in direction.

2. Shear stresses on adjacent (and perpendicular) faces of an element
are equal in magnitude and have directions such that both stresses
point toward, or both point away from, the line of intersection of the
faces.

These observations were obtained for an element subjected only to shear
stresses (no normal stresses), as pictured in Figs. 1-27 and 1-28. This
state of stress is called pure shear and is discussed later in greater detail

(Section 3.5). _ _ _ _
For most purposes, the preceding conclusions remain valid even

when normal stresses act on the faces of the element. The reason is that
the normal stresses on opposite faces of a small element usually are
equal in magnitude and opposite in direction; hence they do not alter the
equilibrium equations used in reaching the preceding conclusions.

“A parallelepiped is a prism whose bases are parallelograms; thus, a parallelepiped has
six faces, each of which is a parallelogram. Opposite faces are parallel and identical par-
allelograms. A rectangular parallelepiped has all faces in the form of rectangles.

A couple consists of two parallel forces that are equal in magnitude and opposite in
direction.



SECTION 1.6 Shear Stress and Strain

Shear stresses acting on an element of material (Fig. 1-28a) are accom-
panied by shear strains. As an aid in visualizing these strains, we note
that the shear stresses have no tendency to elongate or shorten the
element in the x, y, and z directions—in other words, the lengths of the
sides of the element do not change. Instead, the shear stresses produce a
change in the shape of the element (Fig. 1-28b). The original element,
which is a rectangular parallelepiped, is deformed into an oblique paral-
lelepiped, and the front and rear faces become rhomboids.”

Because of this deformation, the angles between the side faces
change. For instance, the angles at points ¢ and s, which were 7/2 before
deformation, are reduced by a small angle y to 7/2 — vy (Fig. 1-28b). At
the same time, the angles at points p and r are increased to 7/2 + 7. The
angle 7y is a measure of the distortion, or change in shape, of the ele-
ment and is called the shear strain. Because shear strain is an angle, it is
usually measured in degrees or radians.

As an aid in establishing sign conventions for shear stresses and strains,
we need a scheme for identifying the various faces of a stress element
(Fig. 1-28a). Henceforth, we will refer to the faces oriented toward the
positive directions of the axes as the positive faces of the element. In
other words, a positive face has its outward normal directed in the posi-
tive direction of a coordinate axis. The opposite faces are negative faces.
Thus, in Fig. 1-28a, the right-hand, top, and front faces are the positive
x, y, and z faces, respectively, and the opposite faces are the negative x,
v, and z faces.

Using the terminology described in the preceding paragraph, we may
state the sign convention for shear stresses in the following manner:

A shear stress acting on a positive face of an element is positive if it acts
in the positive direction of one of the coordinate axes and negative if it
acts in the negative direction of an axis. A shear stress acting on a nega-
tive face of an element is positive if it acts in the negative direction of an
axis and negative if it acts in a positive direction.

Thus, all shear stresses shown in Fig. 1-28a are positive.
The sign convention for shear strains is as follows:

Shear strain in an element is positive when the angle between two positive
faces (or two negative faces) is reduced. The strain is negative when the
angle between two positive (or two negative) faces is increased.

*An oblique angle can be either acute or obtuse, but it is nor a right angle. A rhomboid
is a parallelogram with oblique angles and adjacent sides not equal. (A rhombus is
a parallelogram with oblique angles and all four sides equal, sometimes called a
diamond-shaped figure.)
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Thus, the strains shown in Fig. 1-28b are positive, and we see that posi-
tive shear stresses are accompanied by positive shear strains.

The properties of a material in shear can be determined experimentally
from direct-shear tests or from torsion tests. The latter tests are performed
by twisting hollow, circular tubes, thereby producing a state of pure shear,
as explained later in Section 3.5. From the results of these tests, we can plot
shear stress-strain diagrams (that is, diagrams of shear stress 7 versus
shear strain ). These diagrams are similar in shape to tension-test diagrams
(o versus €) for the same materials, although they differ in magnitudes.

From shear stress-strain diagrams, we can obtain material properties
such as the proportional limit, modulus of elasticity, yield stress, and
ultimate stress. These properties in shear are usually about half as large
as those in tension. For instance, the yield stress for structural steel in
shear is 0.5 to 0.6 times the yield stress in tension.

For many materials, the initial part of the shear stress-strain diagram
is a straight line through the origin, just as it is in tension. For this
linearly elastic region, the shear stress and shear strain are proportional,
and therefore we have the following equation for Hooke’s law in shear:

7= Gy (1-14)

in which G is the shear modulus of elasticity (also called the modulus
of rigidity).

The shear modulus G has the same units as the tension modulus E,
namely, psi or ksi in USCS units and pascals (or multiples thereof) in SI
units. For mild steel, typical values of G are 11,000 ksi or 75 GPa; for
aluminum alloys, typical values are 4000 ksi or 28 GPa. Additional values
are listed in Table H-2, Appendix H.

The moduli of elasticity in tension and shear are related by the
following equation:

18

C=%21+» (-1

in which v is Poisson’s ratio. This relationship, which is derived later in
Section 3.6, shows that E, G, and » are not independent elastic proper-
ties of the material. Because the value of Poisson’s ratio for ordinary
materials is between zero and one-half, we see from Eq. (1-15) that G
must be from one-third to one-half of E.

The following examples illustrate some typical analyses involving
the effects of shear. Example 1-4 is concerned with shear stresses in a
plate, Example 1-5 deals with bearing and shear stresses in pins and
bolts, and Example 1-6 involves finding shear stresses and shear strains
in an elastomeric bearing pad subjected to a horizontal shear force.
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Example 1-4
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Example 1-5

FIG. 1-30 Example 1-5. (a) Pin connec-
tion between strut S and base plate B
(b) Cross section through the strut S

A steel strut S serving as a brace for a boat hoist transmits a compressive force
P = 12 k to the deck of a pier (Fig. 1-30a). The strut has a hollow square cross
section with wall thickness + = 0.375 in. (Fig. 1-30b), and the angle 6 between
the strut and the horizontal is 40°. A pin through the strut transmits the
compressive force from the strut to two gussets G that are welded to the base
plate B. Four anchor bolts fasten the base plate to the deck.

The diameter of the pin is dpin = 0.75 in., the thickness of the gussets is
tc = 0.625 in., the thickness of the base plate is 7z = 0.375 in., and the diameter
of the anchor bolts is dy,.;; = 0.50 in.

Determine the following stresses: (a) the bearing stress between the strut
and the pin, (b) the shear stress in the pin, (c) the bearing stress between the pin
and the gussets, (d) the bearing stress between the anchor bolts and the base
plate, and (e) the shear stress in the anchor bolts. (Disregard any friction
between the base plate and the deck.)

Pin

(a) (b)

Solution

(a) Bearing stress between strut and pin. The average value of the bearing
stress between the strut and the pin is found by dividing the force in the strut by
the total bearing area of the strut against the pin. The latter is equal to twice the
thickness of the strut (because bearing occurs at two locations) times the diam-
eter of the pin (see Fig. 1-30b). Thus, the bearing stress is

P 12k
2d  2(0.375in.)(0.75 in.)

pin

g1 = = 21.3 ksi
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Example 1-6

FIG. 1-31 Example 1-6. Bearing pad in
shear

A bearing pad of the kind used to support machines and bridge girders consists
of a linearly elastic material (usually an elastomer, such as rubber) capped by a
steel plate (Fig. 1-31a). Assume that the thickness of the elastomer is &, the
dimensions of the plate are a X b, and the pad is subjected to a horizontal shear
force V.

Obtain formulas for the average shear stress 7,y in the elastomer and the
horizontal displacement d of the plate (Fig. 1-31b).

(b)

Solution
Assume that the shear stresses in the elastomer are uniformly distributed
throughout its entire volume. Then the shear stress on any horizontal plane
through the elastomer equals the shear force V divided by the area ab of the
plane (Fig. 1-31a):
Vv

aver 1-16
T, b (1-16)

The corresponding shear strain (from Hooke’s law in shear; Eq. 1-14) is

Taver V
_ Taver _ 1-17
Y=G6, T @G, (1-17)

in which G, is the shear modulus of the elastomeric material. Finally, the hori-
zontal displacement d is equal to 4 tan y (from Fig. 1-31b):

d=htan'y=htan( v ) (1-18)

abG,
In most practical situations the shear strain vy is a small angle, and in such cases
we may replace tan y by y and obtain

hV

d=hy=—= (1-19)

Equations (1-18) and (1-19) give approximate results for the horizontal
displacement of the plate because they are based upon the assumption that the
shear stress and strain are constant throughout the volume of the elastomeric
material. In reality the shear stress is zero at the edges of the material (because
there are no shear stresses on the free vertical faces), and therefore the deforma-
tion of the material is more complex than pictured in Fig. 1-31b. However, if
the length a of the plate is large compared with the thickness / of the elastomer,
the preceding results are satisfactory for design purposes.




SECTION 1.7 Allowable Stresses and Allowable Loads

1.7 ALLOWABLE STRESSES AND ALLOWABLE LOADS

Engineering has been aptly described as the application of science to
the common purposes of life. In fulfilling that mission, engineers design
a seemingly endless variety of objects to serve the basic needs of
society. These needs include housing, agriculture, transportation,
communication, and many other aspects of modern life. Factors to be
considered in design include functionality, strength, appearance,
economics, and environmental effects. However, when studying
mechanics of materials, our principal design interest is strength, that is,
the capacity of the object to support or transmit loads. Objects that
must sustain loads include buildings, machines, containers, trucks,
aircraft, ships, and the like. For simplicity, we will refer to all such
objects as structures; thus, a structure is any object that must support
or transmit loads.

If structural failure is to be avoided, the loads that a structure is capable
of supporting must be greater than the loads it will be subjected to when
in service. Since strength is the ability of a structure to resist loads, the
preceding criterion can be restated as follows: The actual strength of a
structure must exceed the required strength. The ratio of the actual
strength to the required strength is called the factor of safety n:

Actual strength
Factor of safety n = < 1.1a STene (1-20)
Required strength

Of course, the factor of safety must be greater than 1.0 if failure is to be
avoided. Depending upon the circumstances, factors of safety from
slightly above 1.0 to as much as 10 are used.

The incorporation of factors of safety into design is not a simple
matter, because both strength and failure have many different mean-
ings. Strength may be measured by the load-carrying capacity of a
structure, or it may be measured by the stress in the material. Failure
may mean the fracture and complete collapse of a structure, or it may
mean that the deformations have become so large that the structure
can no longer perform its intended functions. The latter kind of
failure may occur at loads much smaller than those that cause actual
collapse.

The determination of a factor of safety must also take into
account such matters as the following: probability of accidental over-
loading of the structure by loads that exceed the design loads; types
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of loads (static or dynamic); whether the loads are applied once or are
repeated; how accurately the loads are known; possibilities for fatigue
failure; inaccuracies in construction; variability in the quality of
workmanship; variations in properties of materials; deterioration due
to corrosion or other environmental effects; accuracy of the methods
of analysis; whether failure is gradual (ample warning) or sudden (no
warning); consequences of failure (minor damage or major catas-
trophe); and other such considerations. If the factor of safety is too
low, the likelihood of failure will be high and the structure will be
unacceptable; if the factor is too large, the structure will be wasteful
of materials and perhaps unsuitable for its function (for instance, it
may be too heavy).

Because of these complexities and uncertainties, factors of safety
must be determined on a probabilistic basis. They usually are established
by groups of experienced engineers who write the codes and specifica-
tions used by other designers, and sometimes they are even enacted into
law. The provisions of codes and specifications are intended to provide
reasonable levels of safety without unreasonable costs.

In aircraft design it is customary to speak of the margin of safety
rather than the factor of safety. The margin of safety is defined as the
factor of safety minus one:

Margin of safety = n — 1 (1-21)

Margin of safety is often expressed as a percent, in which case the value
given above is multiplied by 100. Thus, a structure having an actual
strength that is 1.75 times the required strength has a factor of safety of
1.75 and a margin of safety of 0.75 (or 75%). When the margin of safety
is reduced to zero or less, the structure (presumably) will fail.

Factors of safety are defined and implemented in various ways. For
many structures, it is important that the material remain within the
linearly elastic range in order to avoid permanent deformations when the
loads are removed. Under these conditions, the factor of safety is
established with respect to yielding of the structure. Yielding begins
when the yield stress is reached at any point within the structure. There-
fore, by applying a factor of safety with respect to the yield stress (or
yield strength), we obtain an allowable stress (or working stress) that
must not be exceeded anywhere in the structure. Thus,

Yield strength
Allowable stress = ———————— (1-22)
Factor of safety
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or, for tension and shear, respectively,

Oy Ty
Tallow — and Tallow — (1'23a’b)
ny np

in which oy and 7y are the yield stresses and n; and n, are the
corresponding factors of safety. In building design, a typical factor of
safety with respect to yielding in tension is 1.67; thus, a mild steel
having a yield stress of 36 ksi has an allowable stress of 21.6 ksi.

Sometimes the factor of safety is applied to the ultimate stress
instead of the yield stress. This method is suitable for brittle materials,
such as concrete and some plastics, and for materials without a clearly
defined yield stress, such as wood and high-strength steels. In these
cases the allowable stresses in tension and shear are

Oy U
Tallow — and Tallow — (1'24a’b)
ns ny

in which oy and 7y are the ultimate stresses (or ultimate strengths).
Factors of safety with respect to the ultimate strength of a material are
usually larger than those based upon yield strength. In the case of mild
steel, a factor of safety of 1.67 with respect to yielding corresponds to
a factor of approximately 2.8 with respect to the ultimate strength.

After the allowable stress has been established for a particular material
and structure, the allowable load on that structure can be determined.
The relationship between the allowable load and the allowable stress
depends upon the type of structure. In this chapter we are concerned
only with the most elementary kinds of structures, namely, bars in
tension or compression and pins (or bolts) in direct shear and bearing.

In these kinds of structures the stresses are uniformly distributed (or
at least assumed to be uniformly distributed) over an area. For instance,
in the case of a bar in tension, the stress is uniformly distributed over the
cross-sectional area provided the resultant axial force acts through the
centroid of the cross section. The same is true of a bar in compression
provided the bar is not subject to buckling. In the case of a pin subjected
to shear, we consider only the average shear stress on the cross section,
which is equivalent to assuming that the shear stress is uniformly
distributed. Similarly, we consider only an average value of the bearing
stress acting on the projected area of the pin.
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Therefore, in all four of the preceding cases the allowable load (also
called the permissible load or the safe load) is equal to the allowable
stress times the area over which it acts:

Allowable load = (Allowable stress)(Area) (1-25)

For bars in direct tension and compression (no buckling), this
equation becomes

Pallow = Oallow A (1-26)

in which oy, 18 the permissible normal stress and A is the cross-
sectional area of the bar. If the bar has a hole through it, the net area is
normally used when the bar is in tension. The net area is the gross
cross-sectional area minus the area removed by the hole. For compression,
the gross area may be used if the hole is filled by a bolt or pin that can
transmit the compressive stresses.

For pins in direct shear, Eq. (1-25) becomes

Pallow = Tallow A (1'27)

in which 7, is the permissible shear stress and A is the area over which

the shear stresses act. If the pin is in single shear, the area is the cross-

sectional area of the pin; in double shear, it is twice the cross-sectional area.
Finally, the permissible load based upon bearing is

Pallow = O-bAb (1'28)

in which oy, is the allowable bearing stress and A, is the projected area
of the pin or other surface over which the bearing stresses act.

The following example illustrates how allowable loads are deter-
mined when the allowable stresses for the material are known.
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Example 1-7
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A load greater than this value will overstress the main part of the hanger, that is,
the actual stress will exceed the allowable stress, thereby reducing the factor of
safety.

(b) At the cross section of the hanger through the bolt hole, we must make
a similar calculation but with a different allowable stress and a different area.
The net cross-sectional area, that is, the area that remains after the hole is drilled
through the bar, is equal to the net width times the thickness. The net width is
equal to the gross width b, minus the diameter d of the hole. Thus, the equation
for the allowable load P, at this section is

P> = GuliowA = anow(bs — d)t = (11,000 psi)(3.0 in. — 1.0in.)(0.5 in.)
11,000 1b

(c) The allowable load based upon bearing between the hanger and the bolt
is equal to the allowable bearing stress times the bearing area. The bearing area
is the projection of the actual contact area, which is equal to the bolt diameter
times the thickness of the hanger. Therefore, the allowable load (Eq. 1-28) is

P; = 0,A = g,dt = (26,000 psi)(1.0 in.)(0.5 in.) = 13,000 1b

(d) Finally, the allowable load P, based upon shear in the bolt is equal to
the allowable shear stress times the shear area (Eq. 1-27). The shear area is
twice the area of the bolt because the bolt is in double shear; thus:

Py = TatowA = Tanow(2)(md*/4) = (6,500 psi)(2)(7)(1.0 in.)*/4 = 10,200 Ib

We have now found the allowable tensile loads in the hanger based upon all
four of the given conditions.

Comparing the four preceding results, we see that the smallest value of the
load is

Paiow = 10,200 Ib

This load, which is based upon shear in the bolt, is the allowable tensile load in
the hanger.
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1.8 DESIGN FOR AXIAL LOADS AND DIRECT SHEAR

In the preceding section we discussed the determination of allowable
loads for simple structures, and in earlier sections we saw how to find
the stresses, strains, and deformations of bars. The determination of such
quantities is known as analysis. In the context of mechanics of mate-
rials, analysis consists of determining the response of a structure to
loads, temperature changes, and other physical actions. By the response
of a structure, we mean the stresses, strains, and deformations produced
by the loads.

Response also refers to the load-carrying capacity of a structure; for
instance, the allowable load on a structure is a form of response.

A structure is said to be known (or given) when we have a complete
physical description of the structure, that is, when we know all of its
properties. The properties of a structure include the types of members
and how they are arranged, the dimensions of all members, the types of
supports and where they are located, the materials used, and the properties
of the materials. Thus, when analyzing a structure, the properties are
given and the response is to be determined.

The inverse process is called design. When designing a structure,
we must determine the properties of the structure in order that the struc-
ture will support the loads and perform its intended functions. For
instance, a common design problem in engineering is to determine the
size of a member to support given loads. Designing a structure is usually
a much lengthier and more difficult process than analyzing it—indeed,
analyzing a structure, often more than once, is typically part of the
design process.

In this section we will deal with design in its most elementary form
by calculating the required sizes of simple tension and compression
members as well as pins and bolts loaded in shear. In these cases the
design process is quite straightforward. Knowing the loads to be trans-
mitted and the allowable stresses in the materials, we can calculate the
required areas of members from the following general relationship
(compare with Eq. 1-25):

Load to be transmitted
Allowable stress

Required area = (1-29)

This equation can be applied to any structure in which the stresses are
uniformly distributed over the area. (The use of this equation for finding
the size of a bar in tension and the size of a pin in shear is illustrated in
Example 1-8, which follows.)

In addition to strength considerations, as exemplified by Eq. (1-29),
the design of a structure is likely to involve stiffness and stability.
Stiffness refers to the ability of the structure to resist changes in shape
(for instance, to resist stretching, bending, or twisting), and stability
refers to the ability of the structure to resist buckling under compressive
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stresses. Limitations on stiffness are sometimes necessary to prevent
excessive deformations, such as large deflections of a beam that might
interfere with its performance. Buckling is the principal consideration
in the design of columns, which are slender compression members
(Chapter 11).

Another part of the design process is optimization, which is the
task of designing the best structure to meet a particular goal, such as
minimum weight. For instance, there may be many structures that will
support a given load, but in some circumstances the best structure will
be the lightest one. Of course, a goal such as minimum weight usually
must be balanced against more general considerations, including the
aesthetic, economic, environmental, political, and technical aspects of
the particular design project.

When analyzing or designing a structure, we refer to the forces that
act on it as either loads or reactions. Loads are active forces that are
applied to the structure by some external cause, such as gravity, water
pressure, wind, amd earthquake ground motion. Reactions are passive
forces that are induced at the supports of the structure—their magni-
tudes and directions are determined by the nature of the structure itself.
Thus, reactions must be calculated as part of the analysis, whereas loads
are known in advance.

Example 1-8, on the following pages, begins with a review of free-
body diagrams and elementary statics and concludes with the design of
a bar in tension and a pin in direct shear.

When drawing free-body diagrams, it is helpful to distinguish reac-
tions from loads or other applied forces. A common scheme is to place a
slash, or slanted line, across the arrow when it represents a reactive
force, as illustrated in Fig. 1-34 of the following example.
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Example 1-8

FIG. 1-33 Example 1-8. Two-bar truss
ABC supporting a sign of weight W

The two-bar truss ABC shown in Fig. 1-33 has pin supports at points A and C,
which are 2.0 m apart. Members AB and BC are steel bars, pin connected at
joint B. The length of bar BC is 3.0 m. A sign weighing 5.4 kN is suspended
from bar BC at points D and E, which are located 0.8 m and 0.4 m, respectively,
from the ends of the bar.

Determine the required cross-sectional area of bar AB and the required
diameter of the pin at support C if the allowable stresses in tension and shear are
125 MPa and 45 MPa, respectively. (Note: The pins at the supports are in
double shear. Also, disregard the weights of members AB and BC.)

Solution

The objectives of this example are to determine the required sizes of bar
AB and the pin at support C. As a preliminary matter, we must determine the
tensile force in the bar and the shear force acting on the pin. These quantities are
found from free-body diagrams and equations of equilibrium.

Reactions. We begin with a free-body diagram of the entire truss (Fig. 1-34a).
On this diagram we show all forces acting on the truss—namely, the loads from
the weight of the sign and the reactive forces exerted by the pin supports at A
and C. Each reaction is shown by its horizontal and vertical components, with
the resultant reaction shown by a dashed line. (Note the use of slashes across the
arrows to distinguish reactions from loads.)

The horizontal component R,y of the reaction at support A is obtained by
summing moments about point C, as follows (counterclockwise moments are
positive):

D>Mc=0 Rup(2.0m) — (2.7kN)(0.8 m) — (2.7kN)(2.6 m) =0

continued
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FIG. 1-34 Free-body diagrams for
Example 1-8
Solving this equation, we get
Rup = 4.590 kN

Next, we sum forces in the horizontal direction and obtain
ZFhoriz =0 RCH = RAH = 4.590 kN

To obtain the vertical component of the reaction at support C, we may use
a free-body diagram of member BC, as shown in Fig. 1-34b. Summing moments
about joint B gives the desired reaction component:

SMp=0  —Rey(3.0m) + (2.7 kN)(2.2 m) + (2.7 kN)(0.4 m) = 0
Rey = 2.340 kN

Now we return to the free-body diagram of the entire truss (Fig. 1-34a) and
sum forces in the vertical direction to obtain the vertical component R,y of the
reaction at A:

DFyer =0 Riy+ Rcy—27kN —27kN =0
Ry = 3.060 kN
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As a partial check on these results, we note that the ratio R,y /R, of the forces
acting at point A is equal to the ratio of the vertical and horizontal components
of line AB, namely, 2.0 m/3.0 m, or 2/3.

Knowing the horizontal and vertical components of the reaction at A, we
can find the reaction itself (Fig. 1-34a):

Ri= VRan) + (Ray)> = 5516 kN

Similarly, the reaction at point C is obtained from its componets Rcy and Rcy,

as follows:
Rc=VRcu)* + (Rey)® = 5.152kN

Tensile force in bar AB. Because we are disregarding the weight of bar AB,
the tensile force F,p in this bar is equal to the reaction at A (see Fig.1-34):

FAB = RA = 5.516 kN

Shear force acting on the pin at C. This shear force is equal to the reaction
R (see Fig. 1-34); therefore,

Ve=Re=5.152kN

Thus, we have now found the tensile force F 45 in bar AB and the shear force V-
acting on the pin at C.

Required area of bar. The required cross-sectional area of bar AB is calcu-
lated by dividing the tensile force by the allowable stress, inasmuch as the stress
is uniformly distributed over the cross section (see Eq. 1-29):

Fap _ 5516 kN
Tallow 125 MPa

App= = 44.1 mm®

Bar AB must be designed with a cross-sectional area equal to or greater than
44.1 mm? in order to support the weight of the sign, which is the only load we
considered. When other loads are included in the calculations, the required area
will be larger.

Required diameter of pin. The required cross-sectional area of the pin at C,
which is in double shear, is

Ve  5.152kN

= = = 57.2 mm?
27w 2(45 MPa) mm

Apin

from which we can calculate the required diameter:

= V4A,;,/m = 8.54 mm

d

pin

continued
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A pin of at least this diameter is needed to support the weight of the sign
without exceeding the allowable shear stress.

Notes: In this example we intentionally omitted the weight of the truss
from the calculations. However, once the sizes of the members are known,
their weights can be calculated and included in the free-body diagrams of
Fig. 1-34.

When the weights of the bars are included, the design of member AB
becomes more complicated, because it is no longer a bar in simple tension.
Instead, it is a beam subjected to bending as well as tension. An analogous situ-
ation exists for member BC. Not only because of its own weight but also
because of the weight of the sign, member BC is subjected to both bending and
compression. The design of such members must wait until we study stresses in
beams (Chapter 5).

In practice, other loads besides the weights of the truss and sign would
have to be considered before making a final decision about the sizes of the bars
and pins. Loads that could be important include wind loads, earthquake loads,
and the weights of objects that might have to be supported temporarily by the
truss and sign.

(2)

(b)
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CHAPTER SUMMARY & REVIEW

In Chapter 1 we learned about mechanical properties of construction materials. We
computed normal stresses and strains in bars loaded by centroidal axial loads, and
also shear stresses and strains (as well as bearing stresses) in pin connections used to
assemble simple structures, such as trusses. We also defined allowable levels of
stress from appropriate factors of safety and used these values to set allowable loads
that could be applied to the structure.

Some of the major concepts presented in this chapter are as follows.

1.

The principal objective of mechanics of materials is to determine the stresses,
strains, and displacements in structures and their components due to the loads
acting on them. These components include bars with axial loads, shafts in
torsion, beams in bending, and colums in compression.

Prismatic bars subjected to tensile or compressive loads acting through the cen-
troid of their cross section (to avoid bending) experience normal stress and strain
and either extension or contraction proportional to their lengths. These stresses
and strains are uniform except near points of load application where high local-
ized stresses, or stress-concentrations, occur.

We investigated the mechanical behavior of various materials and plotted the
resulting stress-strain diagram, which conveys important information about the
material. Ductile materials (such as mild steel) have an initial linear relationship
between normal stress and strain (up to the proportional limit) and are said to be
linearly elastic with stress and strain related by Hooke’s law (o = E - €); they also
have a well-defined yield point. Other ductile materials (such as aluminum
alloys) typically do not have a clearly definable yield point, so an arbitrary yield
stress may be determined by using the offset method.

Materials that fail in tension at relatively low values of strain (such as concrete,
stone, cast iron, glass ceramics and a variety of metallic alloys) are classified as
brittle. Brittle materials fail with only little elongation after the proportional limit.

If the material remains within the elastic range, it can be loaded, unloaded, and
loaded again without significantly changing the behavior. However when loaded
into the plastic range, the internal structure of the material is altered and its
properties change. Loading and unloading behavior of materials depends on the
elasticity and plasticity properties of the material, such as the elastic limit and
possibility of permanent set (residual strain) in the material. Sustained loading
over time may lead to creep and relaxation.

Axial elongation of bars loaded in tension is accompanied by lateral contraction;
the ratio of lateral strain to normal strain is known as Poisson’s ratio. Poisson’s
ratio remains constant throughout the linearly elastic range, provided the mate-
rial is homogeneous and isotropic. Most of the examples and problems in the
text are solved with the assumption that the material is linearly elastic, homoge-
neous, and isotropic.

Normal stresses act perpendicular to the surface of the material and shear
stresses act tangential to the surface. We investigated bolted connections
between plates in which the bolts were subjected to either single or double shear
as well as average bearing stresses. The bearing stresses act on the rectangular
projection of the actual curved contact surface between a bolt and plate.

continued
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8.

10.

11.

We looked at an element of material acted on by shear stresses and strains to
study a state of stress referred to as pure shear. We saw that shear strain () is
a measure of the distortion or change in shape of the element in pure shear. We
looked at Hooke’s law in shear in which shear stress (7) is related to shear strain
by the shearing modulus of elasticity (G), 7 = G- . We noted that £ and G are
related and therefore are not independent elastic properties of the material.

Strength is the capacity of a structure or component to support or transmit loads.
Factors of safety relate actual to required strength of structural members and
account for a variety of uncertainties, such as variations in material properties,
uncertain magnitudes or distributions of loadings, probability of accidental over-
load, and so on. Because of these uncertainties, factors of safety must be
determined using probabilistic methods.

Yield or ultimate level stresses can be divided by factors of safety to produce
allowable values for use in design. For a pin-connected member in axial fension,
the allowable load depends on the allowable stress times the appropriate area
(e.g., net cross-sectional area for bars acted on by centroidal tensile loads,
cross-sectional area of pin for pins in shear, and projected area for bolts in bear-
ing). If the bar is in compression, net cross-sectional area need not be used, but
buckling may be an important consideration.

Lastly, we considered design, the iterative process by which the appropriate size
of structural members is determined to meet a variety of both strength and stiff-
ness requirements for a particular structure subjected to a variety of different
loadings. However, incorporation of factors of safety into design is not a simple
matter, because both strength and failure have many different meanings.
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PROBLEMS CHAPTER 1

Normal Stress and Strain

1.2-1 A hollow circular post ABC (see figure) supports a
load P; = 1700 Ib acting at the top. A second load P, is
uniformly distributed around the cap plate at B. The diam-
eters and thicknesses of the upper and lower parts of the
post are dap = 1.25in., t45 = 0.5 in., dgc = 2.25 in., and
tgc = 0.375 in., respectively.

(a) Calculate the normal stress o, in the upper part of
the post.

(b) If it is desired that the lower part of the post have
the same compressive stress as the upper part, what should
be the magnitude of the load P,?

(c) If P, remains at 1700 Ib and P, is now set at 2260 Ib,
what new thickness of BC will result in the same compres-
sive stress in both parts?

PROB. 1.2-1

1.2-2 A force P of 70N is applied by a rider to the
front hand brake of a bicycle (P is the resultant of an
evenly distributed pressure). As the hand brake pivots at A,
a tension 7 develops in the 460-mm long brake cable (A, =
1.075 mm?) which elongates by & = 0.214 mm. Find normal
stress o and strain ¢ in the brake cable.

Brake cable, L = 460 mm

Hand brake pivot A

P (Resultant
of distributed
pressure)

Uniform hand
brake pressure

PROB. 1.2-2
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1.2-3 A bicycle rider would like to compare the effective-
ness of cantilever hand brakes [see figure part (a)] versus V
brakes [figure part (b)].

(a) Calculate the braking force Ry at the wheel rims for
each of the bicycle brake systems shown. Assume that all
forces act in the plane of the figure and that cable tension
T = 45 lbs. Also, what is the average compressive normal
stress o, on the brake pad (A = 0.625 in%)?

anchored to frame
(a) Cantilever brakes

PROB. 1.2-3

1.2-4 A circular aluminum tube of length L = 400 mm is
loaded in compression by forces P (see figure). The
outside and inside diameters are 60 mm and 50 mm,
respectively. A strain gage is placed on the outside of
the bar to measure normal strains in the longitudinal
direction.

(a) If the measured strain is € = 550 X 107, what is
the shortening 6 of the bar?

(b) If the compressive stress in the bar is intended to
be 40 MPa, what should be the load P?

(b) For each braking system, what is the stress in the
brake cable (assume effective cross-sectional area of
0.00167 in*)?

(HINT: Because of symmetry, you only need to use the
right half of each figure in your analysis.)

25 in.

L Hy
PlvotI points Ly
anchored to frame N\ |
Va
(b) V brakes
Strain gage
P ( % P
> 7
LiL =400 mm —»‘
PROB. 1.2-4

1.2-5 The cross section of a concrete corner column that
is loaded uniformly in compression is shown in the
figure.



(a) Determine the average compressive stress o, in the
concrete if the load is equal to 3200 k.

(b) Determine the coordinates x. and y. of the point
where the resultant load must act in order to produce
uniform normal stress in the column.

«— 24 in.—><«20 in.~>

20in. [ = 2

° °
—S— . .
16 in. T
Y O L, . i
. L ., oo 9.
8 in. e © o % G
X
[€—>|
8 in.

PROB. 1.2-5

1.2-6 A car weighing 130 kN when fully loaded is pulled
slowly up a steep inclined track by a steel cable (see figure).
The cable has an effective cross-sectional area of 490 mm?,
and the angle « of the incline is 30°.

Calculate the tensile stress o; in the cable.

PROB. 1.2-6

1.2-7 Two steel wires support a moveable overhead camera
weighing W = 251b (see figure) used for close-up viewing
of field action at sporting events. At some instant, wire 1 is at
an angle o = 20° to the horizontal and wire 2 is at an angle

CHAPTER 1 Problems

B = 48°. Both wires have a diameter of 30 mils. (Wire dia-
meters are often expressed in mils; one mil equals 0.001 in.)
Determine the tensile stresses o; and o> in the two wires.

PROB. 1.2-7

1.2-8 A long retaining wall is braced by wood shores set at
an angle of 30° and supported by concrete thrust blocks, as
shown in the first part of the figure. The shores are evenly
spaced, 3 m apart.

For analysis purposes, the wall and shores are ideal-
ized as shown in the second part of the figure. Note that the
base of the wall and both ends of the shores are assumed to
be pinned. The pressure of the soil against the wall is
assumed to be triangularly distributed, and the resultant
force acting on a 3-meter length of the wall is F = 190 kN.

If each shore has a 150 mm X 150 mm square cross
section, what is the compressive stress o, in the shores?

Soil Retaining
wall

Concrete
Shore  thrust

block

PROB. 1.2-8
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1.2-9 A pickup truck tailgate supports a crate (W = 150 Ib),
as shown in the figure. The tailgate weighs W;= 60 1b
and is supported by two cables (only one is shown in
the figure). Each cable has an effective cross-sectional area
A, =0.017 in>.

(a) Find the tensile force T and normal stress o in each
cable.

(b) If each cable elongates 6 = 0.01 in. due to the
weight of both the crate and the tailgate, what is the
average strain in the cable?

K We=1501b
H=12in.
A G
iy
Truck _—,l . AN Tail gate
dr=141in.
\ Wr=0601b
L=161in.

PROBS. 1.2-9 and 1.2-10

1.2-10 Solve the preceding problem if the mass of the tail gate
is My = 27 kg and that of the crate is M- = 68 kg. Use dimen-
sions H = 305 mm, L = 406 mm, d- = 460 mm, and dy =
350 mm. The cable cross-sectional area is A, = 11.0 mm?.

(a) Find the tensile force T and normal stress o in each
cable.

(b) If each cable elongates 6 = 0.25 mm due to the
weight of both the crate and the tailgate, what is the
average strain in the cable?

d. =460 mm
$y 2
— {{:—\\
NS =
—  =—
Truck ]
| dr =350 mm
L Z
L =406 mm
PROB. 1.2-10

*1.2-11 An L-shaped reinforced concrete slab 12 ft X 12
ft (but with a 6 ft X 6 ft cutout) and thickness t = 9.0 in, is
lifted by three cables attached at O, B and D, as shown in
the figure. The cables are combined at point Q, which is
7.0 ft above the top of the slab and directly above the center
of mass at C. Each cable has an effective cross-sectional
area of A, = 0.12 in’.

(a) Find the tensile force T; (i = 1, 2, 3) in each cable due
to the weight W of the concrete slab (ignore weight of cables).

(b) Find the average stress o, in each cable. (See Table
H-1 in Appendix H for the weight density of reinforced
concrete.)

B (12,0, 0)

1b
ft3
Thickness t, c.g at (5 ft, 5 ft, 0)

Concrete slab y =150

PROB. 1.2-11



*1.2-12 A round bar ACB of length 2L (see figure) rotates
about an axis through the midpoint C with constant angular
speed w (radians per second). The material of the bar has
weight density y.

(a) Derive a formula for the tensile stress o, in the bar
as a function of the distance x from the midpoint C.

(b) What is the maximum tensile stress oyax?

PROB. 1.2-12

1.2-13 Two gondolas on a ski lift are locked in the position
shown in the figure while repairs are being made elsewhere.
The distance between support towers is L = 100 ft. The
length of each cable segment under gondola weights Wy =
450 1b and W= 6501b are Dz = 12 ft, Dy = 70 ft, and
D¢p = 20 ft. The cable sag at B is Az = 3.9 ft and that at
C(A¢) is 7.1 ft. The effective cross-sectional area of the
cable is A, = 0.12 in%.

(a) Find the tension force in each cable segment; neglect
the mass of the cable.

(b) Find the average stress (o) in each cable segment.

1WB 1% Support
tower

} L=100 ft |

PROB. 1.2-13

1.2-14 A crane boom of mass 450 kg with its center of mass
at C is stabilized by two cables AQ and BQ (4, = 304 mm?>
for each cable) as shown in the figure. A load P = 20 kN is
supported at point D. The crane boom lies in the y—z plane.

CHAPTER 1 Problems

(a) Find the tension forces in each cable: T,, and
Tpo (kN); neglect the mass of the cables, but include the
mass of the boom in addition to load P.

(b) Find the average stress (o) in each cable.

PROB. 1.2-14

1.3-1 Imagine that a long steel wire hangs vertically from a
high-altitude balloon.

(a) What is the greatest length (feet) it can have without
yielding if the steel yields at 40 ksi?

(b) If the same wire hangs from a ship at sea, what is
the greatest length? (Obtain the weight densities of steel
and sea water from Table H-1, Appendix H.)

1.3-2 Imagine that a long wire of tungsten hangs vertically
from a high-altitude balloon.

(a) What is the greatest length (meters) it can have
without breaking if the ultimate strength (or breaking
strength) is 1500 MPa?

(b) If the same wire hangs from a ship at sea, what is the
greatest length? (Obtain the weight densities of tungsten and
sea water from Table H-1, Appendix H.)
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1.3-3 Three different materials, designated A, B, and C, are
tested in tension using test specimens having diameters of
0.505 in. and gage lengths of 2.0 in. (see figure). At failure,
the distances between the gage marks are found to be 2.13,
2.48, and 2.78 in., respectively. Also, at the failure cross
sections the diameters are found to be 0.484, 0.398, and
0.253 in., respectively.

Determine the percent elongation and percent reduction
in area of each specimen, and then, using your own judg-
ment, classify each material as brittle or ductile.

Gage

PROB. 1.3-3

1.3-4 The strength-to-weight ratio of a structural material
is defined as its load-carrying capacity divided by
its weight. For materials in tension, we may use a charac-
teristic tensile stress (as obtained from a stress-strain
curve) as a measure of strength. For instance, either the
yield stress or the ultimate stress could be used, depending
upon the particular application. Thus, the strength-to-
weight ratio Rgy for a material in tension is defined as

o
Ryw =—

in which o is the characteristic stress and y is the weight
density. Note that the ratio has units of length.

Using the ultimate stress oy, as the strength parameter,
calculate the strength-to-weight ratio (in units of meters)
for each of the following materials: aluminum alloy
6061-T6, Douglas fir (in bending), nylon, structural steel
ASTM-A572, and a titanium alloy. (Obtain the material
properties from Tables H-1 and H-3 of Appendix H. When
a range of values is given in a table, use the average value.)

1.3-5 A symmetrical framework consisting of three pin-
connected bars is loaded by a force P (see figure). The angle
between the inclined bars and the horizontal is & = 48°. The
axial strain in the middle bar is measured as 0.0713.

Determine the tensile stress in the outer bars if they are
constructed of aluminum alloy having the stress-strain
diagram shown in Fig. 1-13. (Express the stress in USCS
units.)

PROB. 1.3-5

1.3-6 A specimen of a methacrylate plastic is tested in tension
at room temperature (see figure), producing the stress-strain
data listed in the accompanying table (see the next page).

Plot the stress-strain curve and determine the propor-
tional limit, modulus of elasticity (i.e., the slope of the
initial part of the stress-strain curve), and yield stress at
0.2% offset. Is the material ductile or brittle?

P -
‘\’. \, g —
; C— 7
PROB. 1.3-6

STRESS-STRAIN DATA FOR PROBLEM 1.3-6

Stress (MPa) Strain
8.0 0.0032
17.5 0.0073
25.6 0.0111
31.1 0.0129
39.8 0.0163
44.0 0.0184
48.2 0.0209
53.9 0.0260
58.1 0.0331
62.0 0.0429
62.1 Fracture




*1.3-7 The data shown in the accompanying table were
obtained from a tensile test of high-strength steel. The test
specimen had a diameter of 0.505 in. and a gage length of
2.00 in. (see figure for Prob. 1.3-3). At fracture, the elonga-
tion between the gage marks was 0.12 in. and the minimum
diameter was 0.42 in.

Plot the conventional stress-strain curve for the steel
and determine the proportional limit, modulus of elasticity
(i.e., the slope of the initial part of the stress-strain curve),
yield stress at 0.1% offset, ultimate stress, percent elonga-
tion in 2.00 in., and percent reduction in area.

TENSILE-TEST DATA FOR PROBLEM 1.3-7

Load (Ib) Elongation (in.)
1,000 0.0002
2,000 0.0006
6,000 0.0019

10,000 0.0033
12,000 0.0039
12,900 0.0043
13,400 0.0047
13,600 0.0054
13,800 0.0063
14,000 0.0090
14,400 0.0102
15,200 0.0130
16,800 0.0230
18,400 0.0336
20,000 0.0507
22,400 0.1108
22,600 Fracture

1.4-1 A bar made of structural steel having the stress-strain
diagram shown in the figure has a length of 48 in. The yield
stress of the steel is 42 ksi and the slope of the initial linear
part of the stress-strain curve (modulus of elasticity) is
30 X 10° ksi. The bar is loaded axially until it elongates
0.20 in., and then the load is removed.

CHAPTER 1 Problems

How does the final length of the bar compare with
its original length? (Hint: Use the concepts illustrated in
Fig. 1-18b.)

o (ksi)
60

ol

0 0.002 0.004 0.006

PROB. 1.4-1

1.4-2 A bar of length 2.0 m is made of a structural steel
having the stress-strain diagram shown in the figure. The
yield stress of the steel is 250 MPa and the slope of the
initial linear part of the stress-strain curve (modulus of
elasticity) is 200 GPa. The bar is loaded axially until it
elongates 6.5 mm, and then the load is removed.

How does the final length of the bar compare with
its original length? (Hint: Use the concepts illustrated in
Fig. 1-18b.)

o (MPa)
300

200

100

0 0.002 0.004 0.006

PROB. 1.4-2



CHAPTER 1 Tension, Compression, and Shear

1.4-3 An aluminum bar has length L = 5 ft and diameter
d = 1.25in. The stress-strain curve for the aluminum is
shown in Fig. 1-13 of Section 1.3. The initial straight-
line part of the curve has a slope (modulus of elasticity) of
10 X 10° psi. The bar is loaded by tensile forces P = 39 k
and then unloaded.

(a) What is the permanent set of the bar?

(b) If the bar is reloaded, what is the proportional
limit? (Hint: Use the concepts illustrated in Figs. 1-18b and
1-19.)

1.4-4 A circular bar of magnesium alloy is 750 mm long.
The stress-strain diagram for the material is shown in the
figure. The bar is loaded in tension to an elongation of
6.0 mm, and then the load is removed.

(a) What is the permanent set of the bar?

(b) If the bar is reloaded, what is the proportional limit?
(Hint: Use the concepts illustrated in Figs. 1-18b and 1-19.)

200
=
o (MPa) '/
//
100
//
0
0 0.005 0.010
€

PROBS. 1.4-3 and 1.4-4

*1.4-5 A wire of length L = 4 ft and diameter d = 0.125 in.
is stretched by tensile forces P = 600 Ib. The wire is made of
a copper alloy having a stress-strain relationship that may be
described mathematically by the following equation:

18,000€

= =e=0. = ksi
T 300e 0=€e=003 (o Si)

o

in which € is nondimensional and o has units of kips per
square inch (ksi).
(a) Construct a stress-strain diagram for the material.
(b) Determine the elongation of the wire due to the
forces P.

(c) If the forces are removed, what is the permanent set
of the bar?

(d) If the forces are applied again, what is the propor-
tional limit?

When solving the problems for Section 1.5, assume that the
material behaves linearly elastically.

1.5-1 A high-strength steel bar used in a large crane has
diameter d = 2.00 in. (see figure). The steel has modulus of
elasticity E = 29 X 10° psi and Poisson’s ratio » = 0.29.
Because of clearance requirements, the diameter of the bar
is limited to 2.001 in. when it is compressed by axial
forces.

What is the largest compressive load P, that is
permitted?

PROB. 1.5-1

1.5-2 A round bar of 10 mm diameter is made of
aluminum alloy 7075-T6 (see figure). When the bar is
stretched by axial forces P, its diameter decreases by
0.016 mm.

Find the magnitude of the load P. (Obtain the material
properties from Appendix H.)

idz 10 mm

7075—T6/ f

\th

PROB. 1.5-2

1.5-3 A polyethylene bar having diameter d; = 4.0 in. is
placed inside a steel tube having inner diameter d, = 4.01 in.
(see figure). The polyethylene bar is then compressed by an
axial force P.



At what value of the force P will the space between
the polyethylene bar and the steel tube be closed? (For
polyethylene, assume £ = 200 ksi and v = 0.4.)

Steel
tube

di dy

Polyethylene V v
bar

PROB. 1.5-3

1.5-4 A prismatic bar with a circular cross section is
loaded by tensile forces P = 65 kN (see figure). The bar
has length L = 1.75 m and diameter d = 32 mm. It is made
of aluminum alloy with modulus of elasticity E = 75 GPa
and Poisson’s ratio v = 1/3.

Find the increase in length of the bar and the percent
decrease in its cross-sectional area.

A

PROBS. 1.5-4 and 1.5-5

1.5-5 A bar of monel metal as in the figure (length L = 9 in.,
diameter d = 0.225 in.) is loaded axially by a tensile force P.
If the bar elongates by 0.0195 in., what is the decrease in
diameter d? What is the magnitude of the load P? Use the
data in Table H-2, Appendix H.

1.5-6 A tensile test is peformed on a brass specimen 10 mm
in diameter using a gage length of 50 mm (see figure). When
the tensile load P reaches a value of 20 kN, the distance
between the gage marks has increased by 0.122 mm.

CHAPTER 1 Problems

(a) What is the modulus of elasticity E of the brass?
(b) If the diameter decreases by 0.00830 mm, what is
Poisson’s ratio?

PROB. 1.5-6

1.5-7 A hollow, brass circular pipe ABC (see figure) supports
a load P; = 26.5 kips acting at the top. A second load P, =
22.0 kips is uniformly distributed around the cap plate at B.
The diameters and thicknesses of the upper and lower parts of
the pipe are dsp = 1.25in., typ = 0.5 in., dgc = 2.25 in., and
tgc = 0.3751n., respectively. The modulus of elasticity is
14,000 ksi. When both loads are fully applied, the wall thick-
ness of pipe BC increases by 200 X 10~ % in.

(a) Find the increase in the inner diameter of pipe
segment BC.

(b) Find Poisson’s ratio for the brass.

(c) Find the increase in the wall thickness of
pipe segment AB and the increase in the inner diameter
of AB.

Py
A T
b
| |
o]}
| |
IAB =
| |
l . l P2
| |
B Wl
| |
Cap plate

IpC ——>

C

PROB. 1.5-7
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*1.5-8 A brass bar of length 2.25 m with a square cross
section of 90 mm on each side is subjected to an axial tensile
force of 1500 kN (see figure). Assume that £ = 110 GPa
and v = 0.34.

Determine the increase in volume of the bar.

90 mm 90 mm
|
— 7'
1500 kKN 1500 kN
L— 2.25m —>‘
PROB. 1.5-8

Shear Stress and Strain

1.6-1 An angle bracket having thickness 7= 0.75in. is
attached to the flange of a column by two 5/8-inch diameter
bolts (see figure). A uniformly distributed load from a
floor joist acts on the top face of the bracket with a pressure
p = 275 psi. The top face of the bracket has length L = 8 in.
and width b = 3.0 in.

Determine the average bearing pressure o; between
the angle bracket and the bolts and the average shear stress
Taver i the bolts. (Disregard friction between the bracket
and the column.)

PROB. 1.6-2

1 /Distributed pressure on angle bracket

. ., O 9. ., ., o ©°. .. ., © ©°.
S N RO

Sle—

7
7
Floor slab

11 Floor joist
18 T
oo

L

™ Angle bracket

PROB. 1.6-1

1.6-2 Truss members supporting a roof are connected to a
26-mm-thick gusset plate by a 22 mm diameter pin as
shown in the figure and photo. The two end plates on the
truss members are each 14 mm thick.

(a) If the load P = 80 kN, what is the largest bearing
stress acting on the pin?

(b) If the ultimate shear stress for the pin is 190 MPa,
what force Py, is required to cause the pin to fail in shear?

(Disregard friction between the plates.)

Roof structure

Truss members supporting a roof




1.6-3 The upper deck of a football stadium is supported by
braces each of which transfers a load P = 160 kips to the
base of a column [see figure part (a)]. A cap plate at the
bottom of the brace distributes the load P to four flange
plates (#y = 1in.) through a pin (d, = 2 in.) to two gusset
plates (¢, = 1.5 in.) [see figure parts (b) and (c)].
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Determine the following quantities.

(a) The average shear stress T, in the pin.

(b) The average bearing stress between the flange
plates and the pin (o;,), and also between the gusset plates
and the pin (oy,).

(Disregard friction between the plates.)

— Cap plate

Flange plate

— Pin(d,=2in.)

Gusset plate
(t,=1.51in.)

(b) Detail at bottom of brace

P=160k

’(; Cap plate

| J«— Pin (d,=2in.)

<~—— Flange plate
(tr=1in.)

Gusset plate

Y 7y (1= 1.5 in.)
110/2 110/2

PROB. 1.6-3

(c) Section through bottom of brace



68 CHAPTER 1 Tension, Compression, and Shear

1.6-4 The inclined ladder AB supports a house painter
(82 kg) at C and the self weight (¢ = 36 N/m) of the ladder
itself. Each ladder rail (¢, = 4 mm) is supported by a shoe
(t, = 5 mm) which is attached to the ladder rail by a bolt of
diameter d,, = 8 mm.

(a) Find support reactions at A and B.

(b) Find the resultant force in the shoe bolt at A.

(c) Find maximum average shear (7) and bearing (o;,)
stresses in the shoe bolt at A.

Typical rung

Ladder rail (¢, = 4 mm)

Shoe bolt (d, = 8 mm)
_—Ladder shoe (, =5 mm)

Ay Ay
2 2

Section at base

¥
L— Assume no slip at A

1 a=18m 7 m
A

PROB. 1.6-4

1.6-5 The force in the brake cable of the V-brake system
shown in the figure is 7 = 45 Ib. The pivot pin at A has
diameter d,, = 0.25 in. and length L, = 5/8 in.

Use dimensions show in the figure. Neglect the weight
of the brake system.

(a) Find the average shear stress T,., in the pivot pin
where it is anchored to the bicycle frame at B.

(b) Find the average bearing stress o, e, in the pivot
pin over segment AB.

<— Lower end of front brake cable

Hg
—< Y
Hp
~— Pivot pins
anchored to
frame (dp)
PROB. 1.6-5



1.6-6 A steel plate of dimensions 2.5 X 1.2 X 0.1 m is
hoisted by steel cables with lengths L; = 3.2 m and L, =
3.9 m that are each attached to the plate by a clevis and pin
(see figure). The pins through the clevises are 18 mm in
diameter and are located 2.0 m apart. The orientation
angles are measured to be 0 = 94.4° and a = 54.9°.

For these conditions, first determine the cable forces
T, and T,, then find the average shear stress 7,,., in both
pin 1 and pin 2, and then the average bearing stress oy
between the steel plate and each pin. Ignore the mass of the
cables.

Clevis
and pin 2

Center of mass
of plate

PROB. 1.6-6

1.6-7 A special-purpose eye bolt of shank diameter d =
0.50 in. passes through a hole in a steel plate of thickness
t, = 0.75 in. (see figure) and is secured by a nut with thick-
ness ¢ = 0.25 in. The hexagonal nut bears directly against
the steel plate. The radius of the circumscribed circle for the
hexagon is r = 0.40 in. (which means that each side of the
hexagon has length 0.401in.). The tensile forces in three
cables attached to the eye bolt are 7; = 800 Ib., 7, = 550 Ib.,
and 75 = 1241 Ib.

(a) Find the resultant force acting on the eye bolt.

(b) Determine the average bearing stress o;, between the
hexagonal nut on the eye bolt and the plate.

CHAPTER 1 Problems

(c) Determine the average shear stress T,., in the nut
and also in the steel plate.

Steel plate

PROB. 1.6-7

1.6-8 An elastomeric bearing pad consisting of two steel
plates bonded to a chloroprene elastomer (an artificial
rubber) is subjected to a shear force V during a static loading
test (see figure). The pad has dimensions @ = 125 mm and
b = 240 mm, and the elastomer has thickness t = 50 mm.
When the force V equals 12 kN, the top plate is found to
have displaced laterally 8.0 mm with respect to the bottom
plate.

What is the shear modulus of elasticity G of the
chloroprene?

PROB. 1.6-8
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1.6-9 A joint between two concrete slabs A and B is filled
with a flexible epoxy that bonds securely to the concrete
(see figure). The height of the joint is 7 = 4.0 in., its
length is L = 40 in., and its thickness is t+ = 0.5 in.
Under the action of shear forces V, the slabs displace
vertically through the distance d = 0.002 in. relative to
each other.

(a) What is the average shear strain v,  in the
epoxy?

(b) What is the magnitude of the forces V if the shear
modulus of elasticity G for the epoxy is 140 ksi?

g
1E

PROB. 1.6-9

1.6-10 A flexible connection consisting of rubber pads
(thickness t = 9 mm) bonded to steel plates is shown in the
figure. The pads are 160 mm long and 80 mm wide.

(a) Find the average shear strain 7,,., in the rubber if
the force P = 16 kN and the shear modulus for the rubber
is G = 1250 kPa.

(b) Find the relative horizontal displacement & between
the interior plate and the outer plates.

P ‘ 160 mm 4>‘ o
= Rubber pad
D) X
e
P X<—J \Rubber pad
2
| 80 mm ‘ -
\ \ t=9 mm
—_—
.
Section X-X
PROB. 1.6-10

1.6-11 A spherical fiberglass buoy used in an underwater
experiment is anchored in shallow water by a chain
[see part (a) of the figure]. Because the buoy is positioned
just below the surface of the water, it is not expected to
collapse from the water pressure. The chain is attached to
the buoy by a shackle and pin [see part (b) of the figure].
The diameter of the pin is 0.5 in. and the thickness of the
shackle is 0.25 in. The buoy has a diameter of 60 in. and
weighs 1800 1b on land (not including the weight of the
chain).

(a) Determine the average shear stress 7, in the pin.

(b) Determine the average bearing stress o between
the pin and the shackle.




PROB. 1.6-11

(b)

Pin
= Shackle

PROB. 1.6-12
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*1,6-12 The clamp shown in the figure is used to support
a load hanging from the lower flange of a steel beam. The
clamp consists of two arms (A and B) joined by a pin at C.
The pin has diameter d = 12 mm. Because arm B straddles
arm A, the pin is in double shear.

Line 1 in the figure defines the line of action of the
resultant horizontal force H acting between the lower
flange of the beam and arm B. The vertical distance from
this line to the pin is # = 250 mm. Line 2 defines the line
of action of the resultant vertical force V acting between
the flange and arm B. The horizontal distance from this
line to the centerline of the beam is ¢ = 100 mm. The
force conditions between arm A and the lower flange are
symmetrical with those given for arm B.

Determine the average shear stress in the pin at C
when the load P = 18 kN.
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*1.6-13 A hitch-mounted bicycle rack is designed to carry up
to four 30-Ib. bikes mounted on and strapped to two arms GH
[see bike loads in the figure part (a)]. The rack is attached to
the vehicle at A and is assumed to be like a cantilever beam
ABCDGH [figure part (b)]. The weight of fixed segment AB is
W; = 10 1b, centered 9 in. from A [see the figure part (b)] and
the rest of the rack weighs W, = 40 1b, centered 19 in. from A.
Segment ABCDG is a steel tube, 2 X 2 in., of thickness 7 =
1/8 in. Segment BCDGH pivots about a bolt at B of diameter
dg = 0.25 in. to allow access to the rear of the vehicle without
removing the hitch rack. When in use, the rack is secured in an
upright position by a pin at C (diameter of pin d, = 5/16 in.)
[see photo and figure part (c)]. The overturning effect of the
bikes on the rack is resisted by a force couple F - h at BC.

(a) Find the support reactions at A for the fully loaded rack;

(b) Find forces in the bolt at B and the pin at C.

(c) Find average shear stresses T,y in both the bolt at
B and the pin at C.

(d) Find average bearing stresses ¢, in the bolt at B
and the pin at C.

Bike loads

support
atA

y 4 bike loads

2 X2X1/8in.
tube

(c) Section a—a

PROB. 1.6-13

**1.6-14 A bicycle chain consists of a series of small
links, each 12 mm long between the centers of the pins (see
figure). You might wish to examine a bicycle chain and
observe its construction. Note particularly the pins, which
we will assume to have a diameter of 2.5 mm.

In order to solve this problem, you must now make
two measurements on a bicycle (see figure): (1) the length
L of the crank arm from main axle to pedal axle, and (2) the
radius R of the sprocket (the toothed wheel, sometimes
called the chainring).

(a) Using your measured dimensions, calculate the
tensile force 7 in the chain due to a force F = 800 N
applied to one of the pedals.

(b) Calculate the average shear stress 7,y in the pins.



PROB. 1.6-14

**1.6-15 A shock mount constructed as shown in the figure
is used to support a delicate instrument. The mount consists
of an outer steel tube with inside diameter b, a central steel
bar of diameter d that supports the load P, and a hollow
rubber cylinder (height /2) bonded to the tube and bar.

(a) Obtain a formula for the shear stress 7 in the
rubber at a radial distance r from the center of the shock
mount.

(b) Obtain a formula for the downward displacement &
of the central bar due to the load P, assuming that G is the
shear modulus of elasticity of the rubber and that the steel
tube and bar are rigid.

Steel tube
P
v Steel bar
d Rubber

—=—

PROB. 1.6-15

1.6-16 The steel plane truss shown in the figure is loaded by
three forces P, each of which is 490 kN. The truss members
each have a cross-sectional area of 3900 mm’ and are
connected by pins each with a diameter of d,= 18 mm.
Members AC and BC each consist of one bar with thickness of
tac = tgc = 19 mm. Member AB is composed of two bars [see
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figure part (b)] each having thickness #45/2 = 10mm and
length L =3 m. The roller support at B, is made up of two
support plates, each having thickness f,,/2 = 12 mm.

(a) Find support reactions at joints A and B and forces
in members AB, BC, and AB.

(b) Calculate the largest average shear stress 7, max in
the pin at joint B, disregarding friction between the members;
see figures parts (b) and (c) for sectional views of the joint.

(c) Calculate the largest average bearing stress oy max
acting against the pin at joint B.

P =490 kN

(2)
F BC at 450
Member AB Member BC
Pin «— Support

plate

(b) Section a—a at
joint B (Elevation view)

Member AB
(2 bars, each IA—B)
? 2 Fpc
Fyp Fyp
2 2
Pin Support plate

13
(2 plates, each %)

0|

2y

Load P at joint B is applied
to the two support plates

(c) Section b—b at
joint B (Plan view)

PROB. 1.6-16
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1.6-17 A spray nozzle for a garden hose requires a force
F = 51b. to open the spring-loaded spray chamber AB. The
nozzle hand grip pivots about a pin through a flange at O.
Each of the two flanges has thickness t = 1/16 in., and the
pin has diameter d, = 1/8in. [see figure part (a)]. The
spray nozzle is attached to the garden hose with a quick
release fitting at B [see figure part (b)]. Three brass balls
(diameter d;, = 3/16 in.) hold the spray head in place under
water pressure force f, = 30 Ib. at C [see figure part (c)].
Use dimensions given in figure part (a).

(a) Find the force in the pin at O due to applied
force F.

(b) Find average shear stress 7,,., and bearing stress
0y, in the pin at O.

Spray
nozzle Flange

Sprayer
hand grip
Water pressure

force on nozzle, f,

Quick
release
fittings

Garden hose

(a)

PROB. 1.6-17

(c) Find the average shear stress T, in the brass
retaining balls at C due to water pressure force f,.

1.6-18 A single steel strut AB with diameter d, = 8 mm.
supports the vehicle engine hood of mass 20 kg which
pivots about hinges at C and D [see figures (a) and (b)].
The strut is bent into a loop at its end and then attached to
a bolt at A with diameter d;, = 10 mm. Strut AB lies in a
vertical plane.

(a) Find the strut force F and average normal stress o
in the strut.

(b) Find the average shear stress T,y in the bolt at A.

(c) Find the average bearing stress oy, on the bolt at A.

(©)

3 brass retaining
balls at 120°,

diameter dj, = 16 in.
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h =660 mm

(a)

b=254mm c¢=506 mm

y
a =760 mm
} \ \L d =150 mm
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Hood g
h =660 mm
1 A
D |©
C z n
Hinge Strut ™ T
d; =8 mm '
(b)
PROB. 1.6-18

1.6-19 The top portion of a pole saw used to trim small
branches from trees is shown in the figure part (a). The
cutting blade BCD [see figure parts (a) and (c)] applies a
force P at point D. Ignore the effect of the weak return
spring attached to the cutting blade below B. Use proper-
ties and dimensions given in the figure.

(a) Find the force P on the cutting blade at D if the
tension force in the rope is 7 =251b (see free body
diagram in part (b)].

(b) Find force in the pin at C.

(c) Find average shear stress T,y and bearing stress
0, in the support pin at C [see Section a—a through cutting
blade in figure part (c)].

(a

6 in.

CHAPTER 1 Problems

) Top part of pole saw

(b) Free-body diagram

Cutting blade

3.
(tp = 3 in.)

Collar

C
3.
(tC = ? ln.)
- Pin at C
D 1.
(d,= 3 in.)

(c) Section a—a
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Allowable Loads

1.7-1 A bar of solid circular cross section is loaded in
tension by forces P (see figure). The bar has length L =
16.0 in. and diameter d = 0.50 in. The material is a magne-
sium alloy having modulus of elasticity E = 6.4 X 10° psi.
The allowable stress in tension is Oy = 17,000 psi, and
the elongation of the bar must not exceed 0.04 in.

What is the allowable value of the forces P?

PROB. 1.7-1

1.7-2 A torque T, is transmitted between two flanged
shafts by means of ten 20-mm bolts (see figure and photo).
The diameter of the bolt circle is d = 250 mm.

If the allowable shear stress in the bolts is 85 MPa,
what is the maximum permissible torque? (Disregard fric-
tion between the flanges.)

Drive shaft coupling on a ship propulsion motor

PROB. 1.7-2

1.7-3 A tie-down on the deck of a sailboat consists of a bent
bar bolted at both ends, as shown in the figure. The diameter
dp of the bar is 1/4 in., the diameter dy, of the washers is 7/8
in., and the thickness ¢ of the fiberglass deck is 3/8 in.

If the allowable shear stress in the fiberglass is 300 psi,
and the allowable bearing pressure between the washer and
the fiberglass is 550 psi, what is the allowable load Pjow
on the tie-down?

dB «— l —> dB

T

< dy]

PROB. 1.7-3

1.7-4 Two steel tubes are joined at B by four pins
(d, = 11 mm), as shown in the cross section a—a in the
figure. The outer diameters of the tubes are d,p = 40 mm
and dpc = 28 mm. The wall thicknesses are f4,z = 6 mm
and tpc = 7 mm. The yield stress in tension for the steel is
oy = 200 MPa and the ultimate stress in fension is
oy = 340 MPa. The corresponding yield and ultimate
values in shear for the pin are 80 MPa and 140 MPa,
respectively. Finally, the yield and ultimate values in
bearing between the pins and the tubes are 260 MPa and
450 MPa, respectively. Assume that the factors of safety
with respect to yield stress and ultimate stress are 4 and 5,
respectively.

(a) Calculate the allowable tensile force Py, consid-
ering tension in the tubes.

(b) Recompute Py, for shear in the pins.

(c) Finally, recompute P, for bearing between the
pins and the tubes. Which is the controlling value of P?
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Section a—a

PROB. 1.7-4

1.7-5 A steel pad supporting heavy machinery rests on four
short, hollow, cast iron piers (see figure). The ultimate
strength of the cast iron in compression is 50 ksi. The outer
diameter of the piers is d = 4.5 in. and the wall thickness is
t = 0.40 in.

Using a factor of safety of 3.5 with respect to the
ultimate strength, determine the total load P that may be
supported by the pad.

PROB. 1.7-5
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1.7-6 The rear hatch of a van [BDCF in figure part (a)] is
supported by two hinges at By and B, and by two struts A;B;
and A,B, (diameter d; = 10 mm) as shown in figure part (b).
The struts are supported at A; and A, by pins, each with
diameter d, = 9 mm and passing through an eyelet of thick-
ness t = 8§ mm at the end of the strut [figure part (b)]. If a
closing force P = 50 N is applied at G and the mass of the
hatch M;, = 43 kg is concentrated at C:

(a) What is the force F in each strut? [Use the free-
body diagram of one half of the hatch in the figure
part ()]

(b) What is the maximum permissible force in the
strut, Fow, If the allowable stresses are as follows:
compressive stress in the strut, 70 MPa; shear stress in the
pin, 45 MPa; and bearing stress between the pin and the
end of the strut, 110 MPa.

Bottom
part of
strut
t=8 mm
(@) (b)
27mm 505 mm  505mm
[
C G
 /
M, y
710 mm 5 X8 P
2

10°
A «— Pin support

A

©)
PROB. 1.7-6
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1.7-7 A lifeboat hangs from two ship’s davits, as shown in
the figure. A pin of diameter d = 0.80 in. passes through
each davit and supports two pulleys, one on each side of the
davit.

Cables attached to the lifeboat pass over the pulleys
and wind around winches that raise and lower the lifeboat.
The lower parts of the cables are vertical and the upper
parts make an angle a = 15° with the horizontal. The
allowable tensile force in each cable is 1800 1b, and the
allowable shear stress in the pins is 4000 psi.

If the lifeboat weighs 1500 1b, what is the maximum
weight that should be carried in the lifeboat?

PROB. 1.7-7

1.7-8 A cable and pulley system in figure part (a) supports a
cage of mass 300 kg at B. Assume that this includes the mass
of the cables as well. The thickness of each the three steel
pulleys is t = 40 mm. The pin diameters are d,,, = 25 mm,
d,p =30mm and d,c =22 mm [see figure, parts (a) and
part (b)].

(a) Find expressions for the resultant forces acting on
the pulleys at A, B, and C in terms of cable tension 7.

(b) What is the maximum weight W that can be added
to the cage at B based on the following allowable stresses?
Shear stress in the pins is 50 MPa; bearing stress between
the pin and the pulley is 110 MPa.

a
— dyp =25 mm

L
C

@ Calfle /p b

|
|
T a
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-
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d, LL- e N
|.— Support
L bracket

Cage at B

Section a—a: pulley support

detail at A and C Section a—a: pulley

support detail at B

(b)
PROB. 1.7-8



1.7-9 A ship’s spar is attached at the base of a mast by a
pin connection (see figure). The spar is a steel tube of outer
diameter d> = 3.5 in. and inner diameter d; = 2.8 in. The
steel pin has diameter d = 1in., and the two plates
connecting the spar to the pin have thickness ¢t = 0.5 in.
The allowable stresses are as follows: compressive stress in
the spar, 10 ksi; shear stress in the pin, 6.5 ksi; and bearing
stress between the pin and the connecting plates, 16 ksi.

Determine the allowable compressive force P, in
the spar.

Mast

Spar

Connecting
plate

PROB. 1.7-9

1.7-10 What is the maximum possible value of the
clamping force C in the jaws of the pliers shown in the
figure if the ultimate shear stress in the 5-mm diameter pin
is 340 MPa?

What is the maximum permissible value of the applied
load P if a factor of safety of 3.0 with respect to failure of
the pin is to be maintained?

CHAPTER1 Problems 79

PROB. 1.7-10

1.7-11 A metal bar AB of weight W is suspended by a system
of steel wires arranged as shown in the figure. The diameter of
the wires is 5/64 in., and the yield stress of the steel is 65 ksi.

Determine the maximum permissible weight W, for
a factor of safety of 1.9 with respect to yielding.

I ‘{ 7.0 ft } |

PROB. 1.7-11
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1.7-12 A plane truss is subjected to loads 2P and P at
joints B and C, respectively, as shown in the figure
part (a). The truss bars are made of two L102 X 76 X 6.4
steel angles [see Table E-5(b): cross sectional area of the
two angles, A = 2180 mm?, figure part (b)] having an
ultimate stress in tension equal to 390 MPa. The angles
are connected to an 12 mm-thick gusset plate at C [figure
part (c)] with 16-mm diameter rivets; assume each rivet
transfers an equal share of the member force to the
gusset plate. The ultimate stresses in shear and bearing
for the rivet steel are 190 MPa and 550 MPa, respec-
tively.

Determine the allowable load P,y if a safety factor
of 2.5 is desired with respect to the ultimate load that
can be carried. (Consider tension in the bars, shear in the
rivets, bearing between the rivets and the bars, and also
bearing between the rivets and the gusset plate. Disregard
friction between the plates and the weight of the truss
itself.)

1.7-13 A solid bar of circular cross section (diameter d) has
a hole of diameter d/5 drilled laterally through the center of
the bar (see figure). The allowable average tensile stress on
the net cross section of the bar is o7jow-

(a) Obtain a formula for the allowable load P, that
the bar can carry in tension.

(b) Calculate the value of P, if the bar is made of
brass with diameter d = 1.75 in. and oo = 12 ksi.

(Hint: Use the formulas of Case 15 Appendix D.)

id |||« d/5 | | d/5
P T ) s
< \ [N

T >ld <

PROB. 1.7-13
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PROB. 1.7-12



1.7-14 A solid steel bar of diameter ¢, = 60 mm has a hole
of diameter d, = 32 mm drilled through it (see figure).
A steel pin of diameter d, passes through the hole and is
attached to supports.

Determine the maximum permissible tensile load Py
in the bar if the yield stress for shear in the pin is 7, = 120
MPa, the yield stress for tension in the bar is oy = 250 MPa
and a factor of safety of 2.0 with respect to yielding is
required. (Hint: Use the formulas of Case 15, Appendix D.)

PROB. 1.7-14

1.7-15 A sign of weight W is supported at its base by four
bolts anchored in a concrete footing. Wind pressure p acts
normal to the surface of the sign; the resultant of the uniform
wind pressure is force F at the center of pressure. The wind
force is assumed to create equal shear forces F/4 in the y-
direction at each bolt [see figure parts (a) and (c)]. The
overturning effect of the wind force also causes an uplift
force R at bolts A and C and a downward force (—R) at
bolts B and D [see figure part (b)]. The resulting effects of
the wind, and the associated ultimate stresses for each stress
condition, are: normal stress in each bolt (g, = 60 ksi); shear
through the base plate (7, = 17 ksi); horizontal shear and
bearing on each bolt (7, = 25 ksi and gy, = 75 ksi); and
bearing on the bottom washer at B (or D) (03, = 50 ksi).

Find the maximum wind pressure p,.x (psf) that can
be carried by the bolted support system for the sign if a
safety factor of 2.5 is desired with respect to the ultimate
wind load that can be carried.

Use the following numerical data: bolt d;, = ¥, in.;
washer d,, = 1.5 in.; base plate #,, = 1 in.; base plate dimen-
sions 7 = 14 in. and b = 12 in.; W = 500 lb; H = 17 ft; sign
dimensions (L, = 10 ft. X L, = 12 ft.); pipe column dia-
meter d = 6 in., and pipe column thickness = 3/8 in.

CHAPTER 1 Problems
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1.7-16 The piston in an engine is attached to a connecting
rod AB, which in turn is connected to a crank arm BC (see
figure). The piston slides without friction in a cylinder and
is subjected to a force P (assumed to be constant) while
moving to the right in the figure. The connecting rod,
which has diameter d and length L, is attached at both ends
by pins. The crank arm rotates about the axle at C with the
pin at B moving in a circle of radius R. The axle at C,
which is supported by bearings, exerts a resisting
moment M against the crank arm.

(a) Obtain a formula for the maximum permissible
force P,ow based upon an allowable compressive stress
o, in the connecting rod.

(b) Calculate the force Pgow for the following data:
o. = 160 MPa, d = 9.00 mm, and R = 0.28L.

Connecting rod

Cylinder  Piston

—

PROB. 1.7-16

Design for Axial Loads and Direct Shear

1.8-1 An aluminum tube is required to transmit an axial
tensile force P = 33 k [see figure part (a)]. The thickness of
the wall of the tube is to be 0.25 in.

(a) What is the minimum required outer diameter
din 1f the allowable tensile stress is 12,000 psi?

(b) Repeat part (a) if the tube will have a hole of diam-
eter d/10 at mid-length [see figure parts (b) and (c)].

id

(a)

Hole of diameter d/10 i d

PROB. 1.8-1

1.8-2 A copper alloy pipe having yield stress oy = 290 MPa
is to carry an axial tensile load P = 1500 kN [see figure
part (a)]. A factor of safety of 1.8 against yielding is to be
used.

(a) If the thickness t of the pipe is to be one-eighth of
its outer diameter, what is the minimum required outer
diameter d,,;,,?

(b) Repeat part (a) if the tube has a hole of diameter
d/10 drilled through the entire tube as shown in the figure

[part (b)].
P d

(a)

P Hole of diameter d/10 d
Z 3 t=—
8

d

(b)

PROB. 1.8-2

1.8-3 A horizontal beam AB with cross-sectional dimensions
(b =0.75in.) X (h = 8.01in.) is supported by an inclined
strut CD and carries a load P = 2700 Ib at joint B [see figure
part (a)]. The strut, which consists of two bars each of thick-
ness 5b/8, is connected to the beam by a bolt passing through
the three bars meeting at joint C [see figure part (b)].



(a) If the allowable shear stress in the bolt is 13,000 psi,
what is the minimum required diameter d,,;, of the bolt at C?

(b) If the allowable bearing stress in the bolt is 19,000 psi,
what is the minimum required diameter d,.;,, of the bolt at C?

} 4 ft } 5 ft |
o — B
A C
3 ft P
D
(a)
b
P 3 ﬂ Beam AB (b X h)
D} Bolt (dpy;,)
L3
2 b
B 8
Strut CD
(b)
PROB. 1.8-3

1.8-4 Lateral bracing for an elevated pedestrian walkway is
shown in the figure part (a). The thickness of the clevis plate
t. =16 mm and the thickness of the gusset plate 7, =
20 mm [see figure part (b)]. The maximum force in the
diagonal bracing is expected to be F = 190 kN.

If the allowable shear stress in the pin is 90 MPa and
the allowable bearing stress between the pin and both the
clevis and gusset plates is 150 MPa, what is the minimum
required diameter d,;, of the pin?
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Gusset plate

(b)
PROB. 1.8-4

1.8-5 Forces P, = 1500 Ib and P, = 2500 Ib are applied at
joint C of plane truss ABC shown in the figure part (a).
Member AC has thickness 4~ = 5/16 in. and member AB is
composed of two bars each having thickness 45/2 = 3/16
in. [see figure part (b)]. Ignore the effect of the two plates
which make up the pin support at A.

If the allowable shear stress in the pin is 12,000 psi
and the allowable bearing stress in the pin is 20,000 psi,
what is the minimum required diameter d.;, of the pin?

; 2

Pin Pin
support
plates A

A A

2 2
Section a—a
(b)

PROB. 1.8-5
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1.8-6 A suspender on a suspension bridge consists of a
cable that passes over the main cable (see figure) and
supports the bridge deck, which is far below. The
suspender is held in position by a metal tie that is
prevented from sliding downward by clamps around the
suspender cable.

Let P represent the load in each part of the suspender
cable, and let 6 represent the angle of the suspender cable
just above the tie. Finally, let oy, represent the allowable
tensile stress in the metal tie.

(a) Obtain a formula for the minimum required cross-
sectional area of the tie.

(b) Calculate the minimum area if P = 130 kN, 6 = 75°,
and oy0w = 80 MPa.

PROB. 1.8-6

1.8-7 A square steel tube of length L = 20 ft and width
b, = 10.0 in. is hoisted by a crane (see figure). The tube
hangs from a pin of diameter d that is held by the cables at

points A and B. The cross section is a hollow square with
inner dimension »; = 8.5 in. and outer dimension b, =
10.0 in. The allowable shear stress in the pin is 8,700 psi,
and the allowable bearing stress between the pin and the
tube is 13,000 psi.

Determine the minimum diameter of the pin in
order to support the weight of the tube. (Note: Disregard
the rounded corners of the tube when calculating its
weight.)

PROB. 1.8-7

1.8-8 A cable and pulley system at D is used to bring a
230-kg pole (ACB) to a vertical position as shown in the
figure part (a). The cable has tensile force 7 and is attached
at C. The length L of the pole is 6.0 m, the outer diameter is
d = 140 mm, and the wall thickness t = 12 mm. The pole
pivots about a pin at A in figure part (b). The allowable
shear stress in the pin is 60 MPa and the allowable bearing
stress is 90 MPa.

Find the minimum diameter of the pin at A in order to
support the weight of the pole in the position shown in the
figure part (a).
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1.8-10 A tubular post of outer diameter d> is guyed by
two cables fitted with turnbuckles (see figure). The cables
are tightened by rotating the turnbuckles, thus producing
tension in the cables and compression in the post. Both
cables are tightened to a tensile force of 110 kN. Also,
the angle between the cables and the ground is 60°, and
the allowable compressive stress in the post is g, = 35
MPa.

If the wall thickness of the post is 15 mm, what is the
minimum permissible value of the outer diameter d,?

Pin support
plates

PROB. 1.8-8 ___

1.8-9 A pressurized circular cylinder has a sealed cover
plate fastened with steel bolts (see figure). The pressure p of
the gas in the cylinder is 290 psi, the inside diameter D of
the cylinder is 10.0 in., and the diameter dp of the bolts is
0.50 in.

If the allowable tensile stress in the bolts is 10,000 psi,
find the number n of bolts needed to fasten the cover. PROB. 1.8-10
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1.8-11 A large precast concrete panel for a warehouse is
being raised to a vertical position using two sets of cables
at two lift lines as shown in the figure part (a). Cable 1 has
length L; = 22 ft and distances along the panel (see figure
part (b)) are @ = L{/2 and b = L,/4. The cables are attached
at lift points B and D and the panel is rotated about its base
at A. However, as a worst case, assume that the panel is
momentarily lifted off the ground and its total weight must
be supported by the cables. Assuming the cable lift forces F
at each lift line are about equal, use the simplified model of
one half of the panel in figure part (b) to perform your
analysis for the lift position shown. The total weight of the
panel is W = 85 kips. The orientation of the panel is
defined by the following angles: y = 20° and 6 = 10°.

Find the required cross-sectional area Ac of the cable
if its breaking stress is 91 ksi and a factor of safety of 4
with respect to failure is desired.

PROB. 1.8-11

1.8-12 A steel column of hollow circular cross section is
supported on a circular steel base plate and a concrete
pedestal (see figure). The column has outside diameter
d = 250 mm and supports a load P = 750 kN.

(a) If the allowable stress in the column is 55 MPa,
what is the minimum required thickness ¢? Based upon your
result, select a thickness for the column. (Select a thickness
that is an even integer, such as 10, 12, 14, . . ., in units of
millimeters.)

(b) If the allowable bearing stress on the concrete
pedestal is 11.5 MPa, what is the minimum required
diameter D of the base plate if it is designed for the allowable
load P,y that the column with the selected thickness can
support?

PROB. 1.8-12

1.8-13 An elevated jogging track is supported at intervals
by a wood beam AB (L = 7.5 ft) which is pinned at A and
supported by steel rod BC and a steel washer at B. Both
the rod (dzc = 3/161in.) and the washer (dz = 1.0in.)
were designed using a rod tension force of Tz = 425 Ib.
The rod was sized using a factor of safety of 3 against
reaching the ultimate stress o, = 60 ksi. An allowable
bearing stress o3, = 565 psi was used to size the washer
at B.

Now, a small platform HF is to be suspended below a
section of the elevated track to support some mechanical
and electrical equipment. The equipment load is uniform
load g = 50 1b/ft and concentrated load Wy = 1751b at
mid-span of beam HF. The plan is to drill a hole through
beam AB at D and install the same rod (dgc) and washer
(dp) at both D and F to support beam HF.

(a) Use o, and oy, to check the proposed design for
rod DF and washer d; are they acceptable?



(b) Also re-check the normal tensile stress in rod BC
and bearing stress at B; if either is inadequate under the
additional load from platform HF, redesign them to meet
the original design criteria.
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PROB. 1.8-13

*1.8-14 A flat bar of width » = 60 mm and thickness
t = 10 mm is loaded in tension by a force P (see figure).
The bar is attached to a support by a pin of diameter d that
passes through a hole of the same size in the bar. The
allowable tensile stress on the net cross section of the bar is
or = 140 MPa, the allowable shear stress in the pin is
7s = 80 MPa, and the allowable bearing stress between the
pin and the bar is oz = 200 MPa.

(a) Determine the pin diameter d,,, for which the load P
will be a maximum.

(b) Determine the corresponding value P, of the load.
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PROB. 1.8-14

**1.8-15 Two bars AB and BC of the same material
support a vertical load P (see figure). The length L of the
horizontal bar is fixed, but the angle 6 can be varied by
moving support A vertically and changing the length of bar
AC to correspond with the new position of support A. The
allowable stresses in the bars are the same in tension and
compression.

We observe that when the angle 6 is reduced, bar AC
becomes shorter but the cross-sectional areas of both bars
increase (because the axial forces are larger). The opposite
effects occur if the angle 6 is increased. Thus, we see that
the weight of the structure (which is proportional to the
volume) depends upon the angle 6.

Determine the angle 6 so that the structure has
minimum weight without exceeding the allowable stresses
in the bars. (Note: The weights of the bars are very small
compared to the force P and may be disregarded.)

PROB. 1.8-15



An oil drilling rig is comprised of axially loaded members that must be designed for a variety of
loading conditions, including self weight, impact, and temperature effects.




Axially Loaded Members

CHAPTER OVERVIEW

In Chapter 2, we consider several other aspects of axially loaded members,
beginning with the determination of changes in lengths caused by loads
(Sections 2.2 and 2.3). The calculation of changes in lengths is an essential
ingredient in the analysis of statically indeterminate structures, a topic we
introduce in Section 2.4. If the member is statically indeterminate, we must
augment the equations of statical equilibrium with compatibility equations
(which rely on force-displacement relations) to solve for any unknowns of
interest, such as support reactions or internal axial forces in members.
Changes in lengths also must be calculated whenever it is necessary to con-
trol the displacements of a structure, whether for aesthetic or functional
reasons. In Section 2.5, we discuss the effects of temperature on the length of
a bar, and we introduce the concepts of thermal stress and thermal strain.
Also included in this section is a discussion of the effects of misfits and
prestrains. A generalized view of the stresses in axially loaded bars is pre-
sented in Section 2.6, where we discuss the stresses on inclined sections (as
distinct from cross sections) of bars. Although only normal stresses act on
cross sections of axially loaded bars, both normal and shear stresses act on
inclined sections. Stresses on inclined sections of axially loaded members
are investigated as a first step toward a more complete consideration of plane
stress states in later chapters. We then introduce several additional topics of
importance in mechanics of materials, namely, strain energy (Section 2.7),
impact loading (Section 2.8), fatigue (Section 2.9), stress concentrations
(Section 2.10), and nonlinear behavior (Sections 2.11 and 2.12). Although
these subjects are discussed in the context of members with axial loads, the
discussions provide the foundation for applying the same concepts to other
structural elements, such as bars in torsion and beams in bending.

Chapter 2 is organized as follows:

2.1 Introduction 91

2.2 Changes in Lengths of Axially Loaded Members 91
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SECTION 2.2 Changes in Lengths of Axially Loaded Members

2.1 INTRODUCTION

Structural components subjected only to tension or compression are
known as axially loaded members. Solid bars with straight longitudinal
axes are the most common type, although cables and coil springs also
carry axial loads. Examples of axially loaded bars are truss members,
connecting rods in engines, spokes in bicycle wheels, columns in build-
ings, and struts in aircraft engine mounts. The stress-strain behavior of
such members was discussed in Chapter 1, where we also obtained equa-
tions for the stresses acting on cross sections (o = P/A) and the strains in
longitudinal directions (e = 6/L).

2.2 CHANGES IN LENGTHS OF AXIALLY LOADED MEMBERS

FIG. 2-1 Spring subjected to an
axial load P

FIG. 2-2 Elongation of an axially loaded
spring

When determining the changes in lengths of axially loaded members, it is
convenient to begin with a coil spring (Fig. 2-1). Springs of this type are
used in large numbers in many kinds of machines and devices—for
instance, there are dozens of them in every automobile.

When a load is applied along the axis of a spring, as shown in
Fig. 2-1, the spring gets longer or shorter depending upon the direction
of the load. If the load acts away from the spring, the spring elongates
and we say that the spring is loaded in fension. If the load acts toward
the spring, the spring shortens and we say it is in compression.
However, it should not be inferred from this terminology that the indi-
vidual coils of a spring are subjected to direct tensile or compressive
stresses; rather, the coils act primarily in direct shear and torsion (or
twisting). Nevertheless, the overall stretching or shortening of a spring
is analogous to the behavior of a bar in tension or compression, and so
the same terminology is used.

The elongation of a spring is pictured in Fig. 2-2, where the upper part of
the figure shows a spring in its natural length L (also called its unstressed
length, relaxed length, or free length), and the lower part of the figure
shows the effects of applying a tensile load. Under the action of the force
P, the spring lengthens by an amount & and its final length becomes L + 0.
If the material of the spring is linearly elastic, the load and elongation will
be proportional:

P =ké 0 =fP (2-1a,b)

in which k and f are constants of proportionality.

The constant k is called the stiffness of the spring and is defined as
the force required to produce a unit elongation, that is, k = P/§. Simi-
larly, the constant f is known as the flexibility and is defined as the
elongation produced by a load of unit value, that is, f = §/P. Although
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FIG. 2-3 Prismatic bar of circular
Cross section

Solid cross sections

_

Hollow or tubular cross sections

1

Thin-walled open cross sections

FIG. 2-4 Typical cross sections of
structural members

FIG. 2-5 Elongation of a prismatic bar in
tension

we used a spring in tension for this discussion, it should be obvious that
Egs. (2-1a) and (2-1b) also apply to springs in compression.

From the preceding discussion it is apparent that the stiffness and
flexibility of a spring are the reciprocal of each other:

_ 1 2-2ab
== (2-2a,b)
The flexibility of a spring can easily be determined by measuring the
elongation produced by a known load, and then the stiffness can be
calculated from Eq. (2-2a). Other terms for the stiffness and flexibility of
a spring are the spring constant and compliance, respectively.

The spring properties given by Eqgs. (2-1) and (2-2) can be used in
the analysis and design of various mechanical devices involving springs,
as illustrated later in Example 2-1.

Axially loaded bars elongate under tensile loads and shorten under
compressive loads, just as springs do. To analyze this behavior, let us
consider the prismatic bar shown in Fig. 2-3. A prismatic bar is a struc-
tural member having a straight longitudinal axis and constant cross
section throughout its length. Although we often use circular bars in our
illustrations, we should bear in mind that structural members may have a
variety of cross-sectional shapes, such as those shown in Fig. 2-4.

The elongation 6 of a prismatic bar subjected to a tensile load P is
shown in Fig. 2-5. If the load acts through the centroid of the end cross
section, the uniform normal stress at cross sections away from the ends is
given by the formula o = P/A, where A is the cross-sectional area.
Furthermore, if the bar is made of a homogeneous material, the axial
strain is € = 6/L, where d is the elongation and L is the length of the bar.

Let us also assume that the material is linearly elastic, which means
that it follows Hooke’s law. Then the longitudinal stress and strain are
related by the equation o = Ee, where E is the modulus of elasticity.
Combining these basic relationships, we get the following equation for
the elongation of the bar:

—PL
EA

0 (2-3)

This equation shows that the elongation is directly proportional to the
load P and the length L and inversely proportional to the modulus of
elasticity E and the cross-sectional area A. The product EA is known as
the axial rigidity of the bar.

Although Eq. (2-3) was derived for a member in tension, it applies
equally well to a member in compression, in which case 6 represents the
shortening of the bar. Usually we know by inspection whether a member



FIG. 2-6 Typical arrangement of strands
and wires in a steel cable
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gets longer or shorter; however, there are occasions when a sign conven-
tion is needed (for instance, when analyzing a statically indeterminate bar).
When that happens, elongation is usually taken as positive and shortening
as negative.

The change in length of a bar is normally very small in comparison
to its length, especially when the material is a structural metal, such as
steel or aluminum. As an example, consider an aluminum strut that is
75.0 in. long and subjected to a moderate compressive stress of 7000
psi. If the modulus of elasticity is 10,500 ksi, the shortening of the strut
(from Eq. 2-3 with P/A replaced by o) is 6 = 0.050 in. Consequently,
the ratio of the change in length to the original length is 0.05/75, or
1/1500, and the final length is 0.999 times the original length. Under
ordinary conditions similar to these, we can use the original length of a
bar (instead of the final length) in calculations.

The stiffness and flexibility of a prismatic bar are defined in the
same way as for a spring. The stiffness is the force required to produce a
unit elongation, or P/d, and the flexibility is the elongation due to a unit
load, or &/P. Thus, from Eq. (2-3) we see that the stiffness and flexibility
of a prismatic bar are, respectively,

k=— == (2-4a,b)

Stiffnesses and flexibilities of structural members, including those given
by Egs. (2-4a) and (2-4b), have a special role in the analysis of large
structures by computer-oriented methods.

Cables are used to transmit large tensile forces, for example, when lifting
and pulling heavy objects, raising elevators, guying towers, and
supporting suspension bridges. Unlike springs and prismatic bars, cables
cannot resist compression. Furthermore, they have little resistance to
bending and therefore may be curved as well as straight. Nevertheless, a
cable is considered to be an axially loaded member because it is
subjected only to tensile forces. Because the tensile forces in a cable are
directed along the axis, the forces may vary in both direction and magni-
tude, depending upon the configuration of the cable.

Cables are constructed from a large number of wires wound in some
particular manner. While many arrangements are available depending
upon how the cable will be used, a common type of cable, shown in
Fig. 2-6, is formed by six strands wound helically around a central
strand. Each strand is in turn constructed of many wires, also wound heli-
cally. For this reason, cables are often referred to as wire rope.

The cross-sectional area of a cable is equal to the total cross-
sectional area of the individual wires, called the effective area or
metallic area. This area is less than the area of a circle having the same
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diameter as the cable because there are spaces between the individual
wires. For example, the actual cross-sectional area (effective area) of a
particular 1.0 inch diameter cable is only 0.471 in.?, whereas the area of a
1.0 in. diameter circle is 0.785 in.?

Under the same tensile load, the elongation of a cable is greater than
the elongation of a solid bar of the same material and same metallic
cross-sectional area, because the wires in a cable “tighten up” in the same
manner as the fibers in a rope. Thus, the modulus of elasticity (called the
effective modulus) of a cable is less than the modulus of the material of
which it is made. The effective modulus of steel cables is about 20,000 ksi
(140 GPa), whereas the steel itself has a modulus of about 30,000 ksi
(210 GPa).

When determining the elongation of a cable from Eq. (2-3), the
effective modulus should be used for E and the effective area should be
used for A.

In practice, the cross-sectional dimensions and other properties of
cables are obtained from the manufacturers. However, for use in
solving problems in this book (and definitely not for use in engineering
applications), we list in Table 2-1 the properties of a particular type of
cable. Note that the last column contains the ultimate load, which is the
load that would cause the cable to break. The allowable load is
obtained from the ultimate load by applying a safety factor that may
range from 3 to 10, depending upon how the cable is to be used. The
individual wires in a cable are usually made of high-strength steel, and
the calculated tensile stress at the breaking load can be as high as
200,000 psi (1400 MPa).

The following examples illustrate techniques for analyzing simple
devices containing springs and bars. The solutions require the use of free-
body diagrams, equations of equilibrium, and equations for changes in
length. The problems at the end of the chapter provide many additional
examples.

TABLE 2-1 PROPERTIES OF STEEL CABLES*

Nominal Approximate Effective Ultimate
diameter weight area load
in.  (mm) | Ibft O/m) | in? (mm® b (kN)

0.50 (12) 0.42 6.1) | 0.119 (76.7) 23,100 (102)
0.75 (20) 0.95 (13.9) | 0.268 (173) 51,900 (231)

100 (25 | 167 (24.4) | 0471 (304) 91,300 (406)
125  (32) | 264 (385 | 0.745 (481) | 144,000 (641)
150 (38 | 3.83  (55.9) | 1.08 (697) | 209,000 (930)
175 @44 | 524  (76.4) | 147 (948) | 285,000  (1260)

2.00 (50) 6.84 (99.8) 1.92 (1230) 372,000 (1650)

* To be used solely for solving problems in this book.
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metal parts of the device may be disregarded because they are negligible
compared to the change in length of the spring.)

Solution

Inspection of the device (Fig. 2-7a) shows that the weight W acting down-
ward will cause the pointer at C to move to the right. When the pointer moves to
the right, the spring stretches by an additional amount—an amount that we can
determine from the force in the spring.

To determine the force in the spring, we construct a free-body diagram of
frame ABC (Fig. 2-7b). In this diagram, W represents the force applied by the
hanger and F represents the force applied by the spring. The reactions at the
pivot are indicated with slashes across the arrows (see the discussion of reactions
in Section 1.8).

Taking moments about point B gives

F=Kb (a)
c

The corresponding elongation of the spring (from Eq. 2-1a) is

ek ®

F_ Wb
k

To bring the pointer back to the mark, we must turn the nut through enough revo-
lutions to move the threaded rod to the left an amount equal to the elongation of
the spring. Since each complete turn of the nut moves the rod a distance equal to
the pitch p, the total movement of the rod is equal to np, where n is the number
of turns. Therefore,

)

ck ©

np =

from which we get the following formula for the number of revolutions of the nut:

)
ckp

n

(d)

Numerical results. As the final step in the solution, we substitute the given
numerical data into Eq. (d), as follows:

_Wb _ (2 1b)(10.5 in.)
ckp (6.4 in.)(4.2 Ib/in.)(1/16 in.)

n = 12.5 revolutions

This result shows that if we rotate the nut through 12.5 revolutions, the threaded
rod will move to the left an amount equal to the elongation of the spring caused
by the 2-1b load, thus returning the pointer to the reference mark.
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Solution

To find the displacement of point A, we need to know the displacements of
points B and C. Therefore, we must find the changes in lengths of bars BD and
CE, using the general equation 6 = PL/EA (Eq. 2-3).

We begin by finding the forces in the bars from a free-body diagram of
the beam (Fig. 2-8b). Because bar CE is pinned at both ends, it is a “two-force”
member and transmits only a vertical force Fcr to the beam. However, bar
BD can transmit both a vertical force Fp, and a horizontal force H. From equi-
librium of beam ABC in the horizontal direction, we see that the horizontal force
vanishes.

Two additional equations of equilibrium enable us to express the forces Fpp
and F g in terms of the load P. Thus, by taking moments about point B and then
summing forces in the vertical direction, we find

FCE: 2P FBD =3P (a)
" BH C/
A( ******************** ;"*27‘ s Note that the force Fr acts downward on bar ABC and the force Fpp acts
A‘ B ¢E upward. Therefore, member CE is in tension and member BD is in compression.
5BD/;9 f The shortening of member BD is
% s
Opp =~
EApp
A
450 mm 225 mm (3P)(480 mm) G
= = 6.887P X 10 °mm (P = newtons b
| (205 GPa)(1020 mm?) e
(©)

Note that the shortening dpp is expressed in millimeters provided the load P is
FIG. 2-8¢c (Repeated) expressed in newtons.
Similarly, the lengthening of member CE is

5. - FerLer
CE —

_ (2P)(600 mm)
(205 GPa)(520 mm?)

=11.26P X 10 ®*mm (P = newtons) (©)

Again, the displacement is expressed in millimeters provided the load P is
expressed in newtons. Knowing the changes in lengths of the two bars, we can
now find the displacement of point A.

Displacement diagram. A displacement diagram showing the relative posi-
tions of points A, B, and C is sketched in Fig. 2-8c. Line ABC represents the
original alignment of the three points. After the load P is applied, member BD
shortens by the amount &z, and point B moves to B'. Also, member CE elon-
gates by the amount 8z and point C moves to C'. Because the beam ABC is
assumed to be rigid, points A’, B', and C' lie on a straight line.

For clarity, the displacements are highly exaggerated in the diagram. In
reality, line ABC rotates through a very small angle to its new position A'B'C’
(see Note 2 at the end of this example).
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2.3 CHANGES IN LENGTHS UNDER NONUNIFORM CONDITIONS

FIG. 2-9 (a) Bar with external loads acting
at intermediate points; (b), (c), and (d)
free-body diagrams showing the internal
axial forces N, N, and N5

When a prismatic bar of linearly elastic material is loaded only at the
ends, we can obtain its change in length from the equation 6 = PL/EA,
as described in the preceding section. In this section we will see how this
same equation can be used in more general situations.

Suppose, for instance, that a prismatic bar is loaded by one or more axial
loads acting at intermediate points along the axis (Fig. 2-9a). We can deter-
mine the change in length of this bar by adding algebraically the elongations
and shortenings of the individual segments. The procedure is as follows.

1.

2.

Identify the segments of the bar (segments AB, BC, and CD) as
segments 1, 2, and 3, respectively.

Determine the internal axial forces N, N,, and N5 in segments 1, 2,
and 3, respectively, from the free-body diagrams of Figs. 2-9b, c,
and d. Note that the internal axial forces are denoted by the letter N
to distinguish them from the external loads P. By summing forces in
the vertical direction, we obtain the following expressions for the
axial forces:

Ny=—Pg+P-+P, Ny=P-+P, N;=Pp

In writing these equations we used the sign convention given in the
preceding section (internal axial forces are positive when in tension
and negative when in compression).

(a) (b) () )



E, L,
B y
E, L,

FIG. 2-10 Bar consisting of prismatic
segments having different axial forces,
different dimensions, and different
materials
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3. Determine the changes in the lengths of the segments from Eq. (2-3):

oMbl s Nl Nl
EA EA EA
in which L, L,, and L5 are the lengths of the segments and FA is the
axial rigidity of the bar.
4. Add 6, ,, and d5 to obtain J, the change in length of the entire bar:

3
BZZ 5i:51+62+63
i=1
As already explained, the changes in lengths must be added algebraically,
with elongations being positive and shortenings negative.

This same general approach can be used when the bar consists of several
prismatic segments, each having different axial forces, different dimen-
sions, and different materials (Fig. 2-10). The change in length may be
obtained from the equation

NiL; (2-5)
1 EiAi

[«7]
I
M=

in which the subscript i is a numbering index for the various segments of
the bar and 7 is the total number of segments. Note especially that N; is
not an external load but is the internal axial force in segment i.

Sometimes the axial force N and the cross-sectional area A vary con-
tinuously along the axis of a bar, as illustrated by the tapered bar of
Fig. 2-11a. This bar not only has a continuously varying cross-sectional
area but also a continuously varying axial force. In this illustration, the load
consists of two parts, a single force Py acting at end B of the bar and
distributed forces p(x) acting along the axis. (A distributed force has units
of force per unit distance, such as pounds per inch or newtons per meter.)
A distributed axial load may be produced by such factors as centrifugal
forces, friction forces, or the weight of a bar hanging in a vertical position.

Under these conditions we can no longer use Eq. (2-5) to obtain the
change in length. Instead, we must determine the change in length of a
differential element of the bar and then integrate over the length of the bar.

We select a differential element at distance x from the left-hand end
of the bar (Fig. 2-11a). The internal axial force N(x) acting at this cross
section (Fig. 2-11b) may be determined from equilibrium using either
segment AC or segment CB as a free body. In general, this force is a
function of x. Also, knowing the dimensions of the bar, we can express
the cross-sectional area A(x) as a function of x.
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FIG. 2-11 Bar with varying
cross-sectional area and
varying axial force

le—— x——>| «—dx

C C
5 “ NG N(X)<§ 9 NG)

L

(a) (b) (©

The elongation dé of the differential element (Fig. 2-11c) may be
obtained from the equation 6 = PL/EA by substituting N(x) for P, dx for L,
and A(x) for A, as follows:

5 — N(x) dx
EA(x)

The elongation of the entire bar is obtained by integrating over the length:

(2-6)

L, L,
5=J da=jM (2-7)
0 0 FA(x)

If the expressions for N(x) and A(x) are not too complicated, the integral
can be evaluated analytically and a formula for & can be obtained, as
illustrated later in Example 2-4. However, if formal integration is either
difficult or impossible, a numerical method for evaluating the integral
should be used.

Equations (2-5) and (2-7) apply only to bars made of linearly elastic
materials, as shown by the presence of the modulus of elasticity E in the
formulas. Also, the formula 6 = PL/EA was derived using the assumption
that the stress distribution is uniform over every cross section (because it is
based on the formula o = P/A). This assumption is valid for prismatic bars
but not for tapered bars, and therefore Eq. (2-7) gives satisfactory results for
a tapered bar only if the angle between the sides of the bar is small.

As an illustration, if the angle between the sides of a bar is 20°, the
stress calculated from the expression o = P/A (at an arbitrarily selected
cross section) is 3% less than the exact stress for that same cross section
(calculated by more advanced methods). For smaller angles, the error is
even less. Consequently, we can say that Eq. (2-7) is satisfactory if the
angle of taper is small. If the taper is large, more accurate methods of
analysis are needed (Ref. 2-1).

The following examples illustrate the determination of changes in
lengths of nonuniform bars.
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Solution

Axial forces in bar ABC. From Fig. 2-12a, we see that the vertical displace-
ment of point C is equal to the change in length of bar ABC. Therefore, we must
find the axial forces in both segments of this bar.

The axial force N, in the lower segment is equal to the load P,. The axial
force N; in the upper segment can be found if we know either the vertical reaction
at A or the force applied to the bar by the beam. The latter force can be obtained
from a free-body diagram of the beam (Fig. 2-12b), in which the force acting on
the beam (from the vertical bar) is denoted P and the vertical reaction at support D
is denoted Rp. No horizontal force acts between the bar and the beam, as can be
seen from a free-body diagram of the vertical bar itself (Fig. 2-12c). Therefore,
there is no horizontal reaction at support D of the beam.

Taking moments about point D for the free-body diagram of the beam
(Fig. 2-12b) gives

Pyb (5600 1)(25.0 in.)

P.=
g 28.0 in.

= 5000 Ib (a)

This force acts downward on the beam (Fig. 2-12b) and upward on the vertical
bar (Fig. 2-12c).
Now we can determine the downward reaction at support A (Fig. 2-12c):

R, =P3; — P, =50001b — 2100 b = 2900 1b (b)

The upper part of the vertical bar (segment AB) is subjected to an axial compres-
sive force N, equal to R4, or 2900 1b. The lower part (segment BC) carries an
axial tensile force N, equal to Py, or 2100 1Ib.

Note: As an alternative to the preceding calculations, we can obtain the
reaction R, from a free-body diagram of the entire structure (instead of from the
free-body diagram of beam BDE).

Changes in length. With tension considered positive, Eq. (2-5) yields

n

NiL; _ N\L, n NoL,

5= 2Ed o 2N

£, EA,  EA,  EA, &

_ __(Z290016)20.0im) _ . (2100 1b)(34.8 in.)
(29.0 X 10° psi)(0.25 in.%) ~ (29.0 X 10° psi)(0.15 in.?)

= —0.0080 in. + 0.0168 in. = 0.0088 in.

in which ¢ is the change in length of bar ABC. Since 6 is positive, the bar
elongates. The displacement of point C is equal to the change in length of the
bar:

0c = 0.0088 in.

This displacement is downward.
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Change in length. We now substitute the expression for A(x) into Eq. (2-7)
and obtain the elongation o:

X

Lp Lp
N(x)dx Pdx(4L%) 4PL3 dx
0= = 2.2y 2 2 (d)
EA(x) .. E(mdix™) wEd;

A La

By performing the integration (see Appendix C for integration formulas) and
substituting the limits, we get

5:4PL3, Al _4PLi (11 ©
mEd% | x L, mEd%3 \Ly, Lg

This expression for é can be simplified by noting that

1 1 LB_LA L

L Le Lis  Lis o
Thus, the equation for 6 becomes
4PL (L
0= B = (g)
7TEdA LB

Finally, we substitute L,/Lz=d,/dy (see Eq. a) and obtain

5= 4PL
7TEdAdB

(2-8)

This formula gives the elongation of a tapered bar of solid circular cross section.
By substituting numerical values, we can determine the change in length for any
particular bar.

Note 1: A common mistake is to assume that the elongation of a tapered bar
can be determined by calculating the elongation of a prismatic bar that has the
same cross-sectional area as the midsection of the tapered bar. Examination of
Eq. (2-8) shows that this idea is not valid.

Note 2: The preceding formula for a tapered bar (Eq. 2-8) can be
reduced to the special case of a prismatic bar by substituting dy = dg = d.
The result is

_4PL _ PL
7Ed®> EA

which we know to be correct.

A general formula such as Eq. (2-8) should be checked whenever possible
by verifying that it reduces to known results for special cases. If the reduction
does not produce a correct result, the original formula is in error. If a correct
result is obtained, the original formula may still be incorrect but our confidence
in it increases. In other words, this type of check is a necessary but not sufficient
condition for the correctness of the original formula.
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2.4 STATICALLY INDETERMINATE STRUCTURES

FIG. 2-14 Statically determinate bar

$RB

FIG. 2-15 Statically indeterminate bar

The springs, bars, and cables that we discussed in the preceding sections
have one important feature in common—their reactions and internal
forces can be determined solely from free-body diagrams and equations
of equilibrium. Structures of this type are classified as statically
determinate. We should note especially that the forces in a statically
determinate structure can be found without knowing the properties of the
materials. Consider, for instance, the bar AB shown in Fig. 2-14. The
calculations for the internal axial forces in both parts of the bar, as well
as for the reaction R at the base, are independent of the material of which
the bar is made.

Most structures are more complex than the bar of Fig. 2-14, and their
reactions and internal forces cannot be found by statics alone. This situa-
tion is illustrated in Fig. 2-15, which shows a bar AB fixed at both ends.
There are now two vertical reactions (R4 and Rp) but only one useful
equation of equilibrium—the equation for summing forces in the vertical
direction. Since this equation contains two unknowns, it is not sufficient
for finding the reactions. Structures of this kind are classified as stati-
cally indeterminate. To analyze such structures we must supplement the
equilibrium equations with additional equations pertaining to the
displacements of the structure.

To see how a statically indeterminate structure is analyzed, consider
the example of Fig. 2-16a. The prismatic bar AB is attached to rigid sup-
ports at both ends and is axially loaded by a force P at an intermediate
point C. As already discussed, the reactions R4 and Rz cannot be found
by statics alone, because only one equation of equilibrium is available:

ZFvertZO RA_P+RB:0 (a)

An additional equation is needed in order to solve for the two unknown
reactions.

The additional equation is based upon the observation that a bar with
both ends fixed does not change in length. If we separate the bar from its
supports (Fig. 2-16b), we obtain a bar that is free at both ends and loaded
by the three forces, R4, Rp, and P. These forces cause the bar to change
in length by an amount 84, which must be equal to zero:

8.5=0 (b)

This equation, called an equation of compatibility, expresses the fact
that the change in length of the bar must be compatible with the condi-
tions at the supports.

In order to solve Egs. (a) and (b), we must now express the compati-
bility equation in terms of the unknown forces R, and Rpz. The
relationships between the forces acting on a bar and its changes in length
are known as force-displacement relations. These relations have various
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FIG. 2-16 Analysis of a statically
indeterminate bar

forms depending upon the properties of the material. If the material is
linearly elastic, the equation 6 = PL/EA can be used to obtain the force-
displacement relations.

Let us assume that the bar of Fig. 2-16 has cross-sectional area A and
is made of a material with modulus E. Then the changes in lengths of the
upper and lower segments of the bar are, respectively,

RACI RBb
Oac = Scp = — d
AC = g B A (c,d)

where the minus sign indicates a shortening of the bar. Equations (c) and
(d) are the force-displacement relations.

We are now ready to solve simultaneously the three sets of equations
(the equation of equilibrium, the equation of compatibility, and the force-
displacement relations). In this illustration, we begin by combining the
force-displacement relations with the equation of compatibility:

RACl RBb
San = Sac + Bp = o — B2
'AB 'AC CB EA EA

0 (e)

Note that this equation contains the two reactions as unknowns.
The next step is to solve simultaneously the equation of equilibrium
(Eq. a) and the preceding equation (Eq. e). The results are

_P P

R
AT L L

(2-9a,b)

With the reactions known, all other force and displacement quantities
can be determined. Suppose, for instance, that we wish to find the down-
ward displacement 6. of point C. This displacement is equal to the
elongation of segment AC:

RAa _ Pab

Al _ (2-10)
EA  LEA

Oc = 6ac =

Also, we can find the stresses in the two segments of the bar directly
from the internal axial forces (e.g., o4c = R4/A = Pb/AL).

From the preceding discussion we see that the analysis of a statically
indeterminate structure involves setting up and solving equations of
equilibrium, equations of compatibility, and force-displacement
relations. The equilibrium equations relate the loads acting on the
structure to the unknown forces (which may be reactions or internal
forces), and the compatibility equations express conditions on the
displacements of the structure. The force-displacement relations are
expressions that use the dimensions and properties of the structural
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members to relate the forces and displacements of those members. In
the case of axially loaded bars that behave in a linearly elastic manner,
the relations are based upon the equation 6 = PL/EA. Finally, all three
sets of equations may be solved simultaneously for the unknown
forces and displacements.

In the engineering literature, various terms are used for the conditions
expressed by the equilibrium, compatibility, and force- displacement equa-
tions. The equilibrium equations are also known as static or kinetic
equations; the compatibility equations are sometimes called geometric equa-
tions, kinematic equations, or equations of consistent deformations; and the
force-displacement relations are often referred to as constitutive relations
(because they deal with the constitution, or physical properties, of the
materials).

For the relatively simple structures discussed in this chapter, the
preceding method of analysis is adequate. However, more formalized
approaches are needed for complicated structures. Two commonly used
methods, the flexibility method (also called the force method) and the
stiffness method (also called the displacement method), are described in
detail in textbooks on structural analysis. Even though these methods
are normally used for large and complex structures requiring the solu-
tion of hundreds and sometimes thousands of simultaneous equations,
they still are based upon the concepts described previously, that is,
equilibrium equations, compatibility equations, and force-displacement
relations.”

The following two examples illustrate the methodology for analyz-
ing statically indeterminate structures consisting of axially loaded
members.

“From a historical viewpoint, it appears that Euler in 1774 was the first to analyze a
statically indeterminate system; he considered the problem of a rigid table with four legs
supported on an elastic foundation (Refs. 2-2 and 2-3). The next work was done by the
French mathematician and engineer L. M. H. Navier, who in 1825 pointed out that
statically indeterminate reactions could be found only by taking into account the elasticity
of the structure (Ref. 2-4). Navier solved statically indeterminate trusses and beams.
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Example 2-5

(a)

FIG. 2-17 Example 2-5. Analysis of a
statically indeterminate structure

A solid circular steel cylinder S is encased in a hollow circular copper tube C
(Figs. 2-17a and b). The cylinder and tube are compressed between the rigid
plates of a testing machine by compressive forces P. The steel cylinder has cross-
sectional area A; and modulus of elasticity E;, the copper tube has area A. and
modulus E,, and both parts have length L.

Determine the following quantities: (a) the compressive forces Pg in the
steel cylinder and P. in the copper tube; (b) the corresponding compressive
stresses o and o; and (c) the shortening & of the assembly.

(b)

©)

Solution

(a) Compressive forces in the steel cylinder and copper tube. We begin by
removing the upper plate of the assembly in order to expose the compressive
forces P; and P, acting on the steel cylinder and copper tube, respectively
(Fig. 2-17c). The force Py is the resultant of the uniformly distributed stresses
acting over the cross section of the steel cylinder, and the force P, is the
resultant of the stresses acting over the cross section of the copper tube.

Equation of equilibrium. A free-body diagram of the upper plate is shown in
Fig. 2-17d. This plate is subjected to the force P and to the unknown compres-
sive forces P, and P, ; thus, the equation of equilibrium is

> Fyerr =0 P,+P.—P=0 )
This equation, which is the only nontrivial equilibrium equation available,

contains two unknowns. Therefore, we conclude that the structure is statically
indeterminate.
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These equations show that the compressive forces in the steel and copper parts
are directly proportional to their respective axial rigidities and inversely propor-
tional to the sum of their rigidities.

(b) Compressive stresses in the steel cylinder and copper tube. Knowing the
axial forces, we can now obtain the compressive stresses in the two materials:

5 _ 188 . 128
A,Y E\‘AS + ECAC 0-( A(' EXA.Y + E(TAL'

‘(‘TU

(2-12a,b)

Note that the ratio /o, of the stresses is equal to the ratio E,/E,. of the moduli
of elasticity, showing that in general the “stiffer” material always has the larger
stress.

(c) Shortening of the assembly. The shortening 6 of the entire assembly can
be obtained from either Eq. (h) or Eq. (i). Thus, upon substituting the forces
(from Eqs. 2-11a and b), we get

_PL PL PL

5= = =
E,A, E.A. EA+E.A,

(2-13)

This result shows that the shortening of the assembly is equal to the total load
divided by the sum of the stiffnesses of the two parts (recall from Eq. 2-4a that
the stiffness of an axially loaded bar is k = EA/L).

Alternative solution of the equations. Instead of substituting the force-
displacement relations (Eqgs. h and i) into the equation of compatibility, we could
rewrite those relations in the form
_ EA 5 P, = E.A,
IL IL

Py 8. (1)

and substitute them into the equation of equilibrium (Eq. f):

E A E A,
s 5 63_{_ C C

L L

5.=P (m)

This equation expresses the equilibrium condition in terms of the unknown
displacements. Then we solve simultaneously the equation of compatibility
(Eq. g) and the preceding equation, thus obtaining the displacements:

6s = 65 = L (l’l)

EX AS + EC A(‘
which agrees with Eq. (2-13). Finally, we substitute expression (n) into Egs. (k)
and (1) and obtain the compressive forces P and P, (see Egs. 2-11a and b).

Note: The alternative method of solving the equations is a simplified
version of the stiffness (or displacement) method of analysis, and the first
method of solving the equations is a simplified version of the flexibility (or
force) method. The names of these two methods arise from the fact that Eq. (m)
has displacements as unknowns and stiffnesses as coefficients (see Eq. 2-4a),
whereas Eq. (j) has forces as unknowns and flexibilities as coefficients (see
Eq. 2-4b).
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Equation of compatibility. To obtain an equation pertaining to the displace-
ments, we observe that the load P causes bar AB to rotate about the pin support
at A, thereby stretching the wires. The resulting displacements are shown in the
displacement diagram of Fig. 2-18c, where line AB represents the original
position of the rigid bar and line AB’ represents the rotated position. The
displacements 0; and &, are the elongations of the wires. Because these
displacements are very small, the bar rotates through a very small angle (shown
highly exaggerated in the figure) and we can make calculations on the assumption
that points D, F, and B move vertically downward (instead of moving along the
arcs of circles).

Because the horizontal distances AD and DF are equal, we obtain the
following geometric relationship between the elongations:

62 = 261 (p)

Equation (p) is the equation of compatibility.

Force-displacement relations. Since the wires behave in a linearly elastic
manner, their elongations can be expressed in terms of the unknown forces T
and 75 by means of the following expressions:

T\L, _ L,

o = =
1 2 E2A2

"~ EiA,

in which A; and A, are the cross-sectional areas of wires CD and EF, respec-
tively; that is,

2 2
Al: Wdl A2: 7Td2
4 4

For convenience in writing equations, let us introduce the following notation
for the flexibilities of the wires (see Eq. 2-4b):

__L

__L

f 1 f 2 (q’r)

Then the force-displacement relations become

o1 = fiT, 02 = fol» (s,0)

Solution of equations. We now solve simultaneously the three sets of
equations (equilibrium, compatibility, and force-displacement equations). Substi-
tuting the expressions from Egs. (s) and (t) into the equation of compatibility
(Eq. p) gives

LT =2AT, (u)

The equation of equilibrium (Eq. o) and the preceding equation (Eq. u) each
contain the forces 77 and 75 as unknown quantities. Solving those two equations
simultaneously yields

_ 3P . OhP
4fi + 1> 2 afi + 1>

Knowing the forces 7 and 75, we can easily find the elongations of the wires
from the force-displacement relations.

T, (v,w)
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2.5 THERMAL EFFECTS, MISFITS, AND PRESTRAINS

A B

FIG. 2-19 Block of material subjected to
an increase in temperature

External loads are not the only sources of stresses and strains in a structure.
Other sources include thermal effects arising from temperature changes,
misfits resulting from imperfections in construction, and prestrains that
are produced by initial deformations. Still other causes are settlements (or
movements) of supports, inertial loads resulting from accelerating
motion, and natural phenomenon such as earthquakes.

Thermal effects, misfits, and prestrains are commonly found in both
mechanical and structural systems and are described in this section. As a
general rule, they are much more important in the design of statically
indeterminate structures that in statically determinate ones.

Changes in temperature produce expansion or contraction of structural
materials, resulting in thermal strains and thermal stresses. A simple
illustration of thermal expansion is shown in Fig. 2-19, where the block
of material is unrestrained and therefore free to expand. When the
block is heated, every element of the material undergoes thermal strains
in all directions, and consequently the dimensions of the block increase.
If we take corner A as a fixed reference point and let side AB maintain
its original alignment, the block will have the shape shown by the
dashed lines.

For most structural materials, thermal strain €; is proportional to the
temperature change AT; that is,

er = a(AT) (2-15)

in which « is a property of the material called the coefficient of
thermal expansion. Since strain is a dimensionless quantity, the coef-
ficient of thermal expansion has units equal to the reciprocal of
temperature change. In SI units the dimensions of a can be expressed
as either 1/K (the reciprocal of kelvins) or 1/°C (the reciprocal of
degrees Celsius). The value of « is the same in both cases because a
change in temperature is numerically the same in both kelvins and
degrees Celsius. In USCS units, the dimensions of « are 1/°F (the
reciprocal of degrees Fahrenheit).” Typical values of « are listed in
Table H-4 of Appendix H.

When a sign convention is needed for thermal strains, we usually
assume that expansion is positive and contraction is negative.

To demonstrate the relative importance of thermal strains, we will
compare thermal strains with load-induced strains in the following
manner. Suppose we have an axially loaded bar with longitudinal strains
given by the equation € = o/E, where o is the stress and E is the

“For a discussion of temperature units and scales, see Section A.4 of Appendix A.



FIG. 2-20 Increase in length of a prismatic
bar due to a uniform increase in temper-
ature (Eq. 2-16)
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modulus of elasticity. Then suppose we have an identical bar subjected to
a temperature change AT, which means that the bar has thermal strains
given by Eq. (2-15). Equating the two strains gives the equation

o = Ea(AT)

From this equation we can calculate the axial stress o that produces the
same strain as does the temperature change AT. For instance, consider a
stainless steel bar with E = 30 X 10° psiand @ = 9.6 X 107%°F. A
quick calculation from the preceding equation for o shows that a change
in temperature of 100°F produces the same strain as a stress of 29,000
psi. This stress is in the range of typical allowable stresses for stainless
steel. Thus, a relatively modest change in temperature produces strains of
the same magnitude as the strains caused by ordinary loads, which shows
that temperature effects can be important in engineering design.

Ordinary structural materials expand when heated and contract when
cooled, and therefore an increase in temperature produces a positive
thermal strain. Thermal strains usually are reversible, in the sense that the
member returns to its original shape when its temperature returns to the
original value. However, a few special metallic alloys have recently been
developed that do not behave in the customary manner. Instead, over
certain temperature ranges their dimensions decrease when heated and
increase when cooled.

Water is also an unusual material from a thermal standpoint—it
expands when heated at temperatures above 4°C and also expands when
cooled below 4°C. Thus, water has its maximum density at 4°C.

Now let us return to the block of material shown in Fig. 2-19. We
assume that the material is homogeneous and isotropic and that the
temperature increase A7 is uniform throughout the block. We can calculate
the increase in any dimension of the block by multiplying the original
dimension by the thermal strain. For instance, if one of the dimensions
is L, then that dimension will increase by the amount

87" = GTL = a(AT)L (2—16)

Equation (2-16) is a temperature-displacement relation, analogous to
the force-displacement relations described in the preceding section. It can
be used to calculate changes in lengths of structural members subjected
to uniform temperature changes, such as the elongation &7 of the pris-
matic bar shown in Fig. 2-20. (The transverse dimensions of the bar also
change, but these changes are not shown in the figure since they usually
have no effect on the axial forces being transmitted by the bar.)

In the preceding discussions of thermal strains, we assumed that the
structure had no restraints and was able to expand or contract freely.
These conditions exist when an object rests on a frictionless surface or
hangs in open space. In such cases no stresses are produced by a
uniform temperature change throughout the object, although nonuniform
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AT,

AT,

FIG. 2-21 Statically determinate truss with
a uniform temperature change in each
member

Forces can develop in statically
indeterminate trusses due to temperature
and prestrain

temperature changes may produce internal stresses. However, many
structures have supports that prevent free expansion and contraction, in
which case thermal stresses will develop even when the temperature
change is uniform throughout the structure.

To illustrate some of these ideas about thermal effects, consider the
two-bar truss ABC of Fig. 2-21 and assume that the temperature of bar
AB is changed by AT, and the temperature of bar BC is changed by AT,.
Because the truss is statically determinate, both bars are free to lengthen
or shorten, resulting in a displacement of joint B. However, there are no
stresses in either bar and no reactions at the supports. This conclusion
applies generally to statically determinate structures; that is, uniform
temperature changes in the members produce thermal strains (and the
corresponding changes in lengths) without producing any corresponding
stresses.

FIG. 2-22 Statically indeterminate truss
subjected to temperature changes

A statically indeterminate structure may or may not develop
temperature stresses, depending upon the character of the structure and
the nature of the temperature changes. To illustrate some of the possibilities,
consider the statically indeterminate truss shown in Fig. 2-22. Because
the supports of this structure permit joint D to move horizontally, no
stresses are developed when the entire truss is heated uniformly. All
members increase in length in proportion to their original lengths, and
the truss becomes slightly larger in size.

However, if some bars are heated and others are not, thermal stresses
will develop because the statically indeterminate arrangement of the bars
prevents free expansion. To visualize this condition, imagine that just
one bar is heated. As this bar becomes longer, it meets resistance from
the other bars, and therefore stresses develop in all members.

The analysis of a statically indeterminate structure with temperature
changes is based upon the concepts discussed in the preceding section,
namely equilibrium equations, compatibility equations, and displacement
relations. The principal difference is that we now use temperature-
displacement relations (Eq. 2-16) in addition to force-displacement
relations (such as 6 = PL/EA) when performing the analysis. The
following two examples illustrate the procedures in detail.
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the bar elongates by an amount d7, and when only the reaction R, is acting,
the bar shortens by an amount 6y (Fig. 2-23c). Thus, the net change in length is
s = 67 — Op, and the equation of compatibility becomes

Sup=07—0r=0 (©)

Displacement relations. The increase in length of the bar due to the temper-
ature change is given by the temperature-displacement relation (Eq. 2-16):

87 = a(AT)L (d

in which « is the coefficient of thermal expansion. The decrease in length due to
the force R, is given by the force-displacement relation:

R\L
EA

51\’ = (e)

in which E is the modulus of elasticity and A is the cross-sectional area.
Solution of equations. Substituting the displacement relations (d) and (e)
into the equation of compatibility (Eq. c) gives the following equation:

R,L
8y — 6p= a(AT)L — —— =
T r = a(AT) EA 0 (@)

We now solve simultaneously the preceding equation and the equation of equi-
librium (Eq. a) for the reactions R, and Rp:

R4y = Rz = EA«(AT) (2-17)
From these results we obtain the thermal stress o in the bar:

R, R
or = TA = 73 = Ea(AT) (2-18)

This stress is compressive when the temperature of the bar increases.

Note 1: In this example the reactions are independent of the length of the
bar and the stress is independent of both the length and the cross-sectional area
(see Egs. 2-17 and 2-18). Thus, once again we see the usefulness of a symbolic
solution, because these important features of the bar’s behavior might not be
noticed in a purely numerical solution.

Note 2: When determining the thermal elongation of the bar (Eq. d), we
assumed that the material was homogeneous and that the increase in temperature
was uniform throughout the volume of the bar. Also, when determining the
decrease in length due to the reactive force (Eq. e), we assumed linearly elastic
behavior of the material. These limitations should always be kept in mind when
writing equations such as Egs. (d) and (e).

Note 3: The bar in this example has zero longitudinal displacements, not only
at the fixed ends but also at every cross section. Thus, there are no axial strains in
this bar, and we have the special situation of longitudinal stresses without longitu-
dinal strains. Of course, there are transverse strains in the bar, from both the
temperature change and the axial compression.
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(Fig. 2-24b). The resulting elongations of the sleeve and bolt are denoted &;
and 0,, respectively, and the corresponding temperature-displacement relations are

0 = as(AT)L &, = ag(AT)L (g,h)

Since ag is greater than ajp, the elongation §; is greater than &,, as shown in
Fig. 2-24b.

The axial forces in the sleeve and bolt must be such that they shorten the
sleeve and stretch the bolt until the final lengths of the sleeve and bolt are the
same. These forces are shown in Fig. 2-24c, where Pg denotes the compressive
force in the sleeve and Py denotes the tensile force in the bolt. The corresponding
shortening 05 of the sleeve and elongation J, of the bolt are

Pl PyL

_ 5
EsAs “ T EpAg @)

83

in which EgAg and EzAp are the respective axial rigidities. Equations (i) and (j)
are the load-displacement relations.

Now we can write an equation of compatibility expressing the fact that the
final elongation & is the same for both the sleeve and bolt. The elongation of the
sleeve is 6, — 05 and of the bolt is 6, + &,; therefore,

8:51_53:52“"84 (k)

Substituting the temperature-displacement and load-displacement relations
(Egs. g toj) into this equation gives

PsL PgL
8= ay(AT)L — —>— = ap(AT)L +
as(AT) Eo A, ag(AT) E A,

M
from which we get

PsL n PgL

= ay(AT)L — ax(AT)L (m)

which is a modified form of the compatibility equation. Note that it contains the
forces Pg and Pg as unknowns.

An equation of equilibrium is obtained from Fig. 2-24c, which is a free-
body diagram of the part of the assembly remaining after the head of the bolt is
removed. Summing forces in the horizontal direction gives

Pg = Pg (n)

which expresses the obvious fact that the compressive force in the sleeve is equal
to the tensile force in the bolt.

We now solve simultaneously Egs. (m) and (n) and obtain the axial forces in
the sleeve and bolt:

(a5 — ap)(AT)EsAsEpAp
Pg= P = 2-19
s EsAg + EgApg @-19)

When deriving this equation, we assumed that the temperature increased and that
the coefficient ag was greater than the coefficient az. Under these conditions, Pg is
the compressive force in the sleeve and Py is the tensile force in the bolt.



SECTION 2.5 Thermal Effects, Misfits, and Prestrains 123




CHAPTER 2 Axially Loaded Members

FIG. 2-25 Statically determinate structure
with a small misfit

(b)

FIG. 2-26 Statically indeterminate
structure with a small misfit

Suppose that a member of a structure is manufactured with its length
slightly different from its prescribed length. Then the member will not fit
into the structure in its intended manner, and the geometry of the struc-
ture will be different from what was planned. We refer to situations of
this kind as misfits. Sometimes misfits are intentionally created in order
to introduce strains into the structure at the time it is built. Because these
strains exist before any loads are applied to the structure, they are called
prestrains. Accompanying the prestrains are prestresses, and the struc-
ture is said to be prestressed. Common examples of prestressing are
spokes in bicycle wheels (which would collapse if not prestressed), the
pretensioned faces of tennis racquets, shrink-fitted machine parts, and
prestressed concrete beams.

If a structure is statically determinate, small misfits in one or
more members will not produce strains or stresses, although there will
be departures from the theoretical configuration of the structure. To
illustrate this statement, consider a simple structure consisting of a
horizontal beam AB supported by a vertical bar CD (Fig. 2-25a). If
bar CD has exactly the correct length L, the beam will be horizontal
at the time the structure is built. However, if the bar is slightly longer
than intended, the beam will make a small angle with the horizontal.
Nevertheless, there will be no strains or stresses in either the bar or
the beam attributable to the incorrect length of the bar. Furthermore,
if a load P acts at the end of the beam (Fig. 2-25b), the stresses in the
structure due to that load will be unaffected by the incorrect length of
bar CD.

In general, if a structure is statically determinate, the presence of
small misfits will produce small changes in geometry but no strains or
stresses. Thus, the effects of a misfit are similar to those of a temperature
change.

The situation is quite different if the structure is statically indeter-
minate, because then the structure is not free to adjust to misfits (just as
it is not free to adjust to certain kinds of temperature changes). To show
this, consider a beam supported by two vertical bars (Fig. 2-26a). If both
bars have exactly the correct length L, the structure can be assembled
with no strains or stresses and the beam will be horizontal.

Suppose, however, that bar CD is slightly longer than the prescribed
length. Then, in order to assemble the structure, bar CD must be
compressed by external forces (or bar EF stretched by external forces),
the bars must be fitted into place, and then the external forces must be
released. As a result, the beam will deform and rotate, bar CD will be in
compression, and bar EF will be in tension. In other words, prestrains
will exist in all members and the structure will be prestressed, even
though no external loads are acting. If a load P is now added (Fig. 2-26b),
additional strains and stresses will be produced.

The analysis of a statically indeterminate structure with misfits and
prestrains proceeds in the same general manner as described previously
for loads and temperature changes. The basic ingredients of the analysis



FIG. 2-27 The pitch of the threads is the
distance from one thread to the next

FIG. 2-28 Double-acting turnbuckle.
(Each full turn of the turnbuckle
shortens or lengthens the cable by 2p,
where p is the pitch of the screw
threads.)
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are equations of equilibrium, equations of compatibility, force-displacement
relations, and (if appropriate) temperature-displacement relations. The
methodology is illustrated in Example 2-9.

Prestressing a structure requires that one or more parts of the structure be
stretched or compressed from their theoretical lengths. A simple way to
produce a change in length is to tighten a bolt or a turnbuckle. In the case
of a bolt (Fig. 2-27) each turn of the nut will cause the nut to travel along
the bolt a distance equal to the spacing p of the threads (called the pitch
of the threads). Thus, the distance 6 traveled by the nut is

6=np (2-22)

in which »n is the number of revolutions of the nut (not necessarily an
integer). Depending upon how the structure is arranged, turning the nut
can stretch or compress a member.

In the case of a double-acting turnbuckle (Fig. 2-28), there are two
end screws. Because a right-hand thread is used at one end and a left-hand
thread at the other, the device either lengthens or shortens when the buckle
is rotated. Each full turn of the buckle causes it to travel a distance p
along each screw, where again p is the pitch of the threads. Therefore, if
the turnbuckle is tightened by one turn, the screws are drawn closer
together by a distance 2p and the effect is to shorten the device by 2p.
For n turns, we have

5= 2np (2-23)
Turnbuckles are often inserted in cables and then tightened, thus

creating initial tension in the cables, as illustrated in the following
example.
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Example 2-9

The mechanical assembly shown in Fig. 2-29a consists of a copper tube, a rigid
end plate, and two steel cables with turnbuckles. The slack is removed from the
cables by rotating the turnbuckles until the assembly is snug but with no initial
stresses. (Further tightening of the turnbuckles will produce a prestressed
condition in which the cables are in tension and the tube is in compression.)

(a) Determine the forces in the tube and cables (Fig. 2-29a) when the turn-
buckles are tightened by 7 turns.

(b) Determine the shortening of the tube.

Rigid
Copper tube Stefl/ cable /Tumbuckle / plagte
< &> 1
(a)
>
> L g
— h 5,
>
(b) |
Sar>
N
5,
= =2
FIG. 2-29 Example 2-9. Statically I ToF
indeterminate assembly with a copper ©) | < P,
tube in compression and two steel
cables in tension => > s
Solution

We begin the analysis by removing the plate at the right-hand end of the
assembly so that the tube and cables are free to change in length (Fig. 2-29b).
Rotating the turnbuckles through n turns will shorten the cables by a distance

6, = 2np (0)

as shown in Fig. 2-29b.

The tensile forces in the cables and the compressive force in the tube must
be such that they elongate the cables and shorten the tube until their final lengths
are the same. These forces are shown in Fig. 2-29¢, where P, denotes the tensile
force in one of the steel cables and P. denotes the compressive force in the
copper tube. The elongation of a cable due to the force P, is

PL

S5, =
> EA,

(P
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2.6 STRESSES ON INCLINED SECTIONS

In our previous discussions of tension and compression in axially loaded
members, the only stresses we considered were the normal stresses acting
on cross sections. These stresses are pictured in Fig. 2-30, where we
consider a bar AB subjected to axial loads P.

When the bar is cut at an intermediate cross section by a plane mn
(perpendicular to the x axis), we obtain the free-body diagram shown in
Fig. 2-30b. The normal stresses acting over the cut section may be calcu-
lated from the formula o, = P/A provided that the stress distribution is
uniform over the entire cross-sectional area A. As explained in Chapter 1,
this condition exists if the bar is prismatic, the material is homogeneous,
the axial force P acts at the centroid of the cross-sectional area, and the
cross section is away from any localized stress concentrations. Of course,
there are no shear stresses acting on the cut section, because it is perpen-
dicular to the longitudinal axis of the bar.

For convenience, we usually show the stresses in a two-dimensional
view of the bar (Fig. 2-30c) rather than the more complex three-
dimensional view (Fig. 2-30b). However, when working with
two-dimensional figures we must not forget that the bar has a thickness

y
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i i
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e - ——F 57 1 —_—
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FIG. 2-30 Prismatic bar in tension m
showing the stresses acting on cross P

0 _P
section mn: (a) bar with axial forces P, * ¢ E T A

(b) three-dimensional view of the cut
bar showing the normal stresses, and
(c) two-dimensional view

(©)



FIG. 2-31 Stress element at point C of the
axially loaded bar shown in Fig. 2-30c:
(a) three-dimensional view of the
element, and (b) two-dimensional view
of the element
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perpendicular to the plane of the figure. This third dimension must be
considered when making derivations and calculations.

The most useful way of representing the stresses in the bar of Fig. 2-30 is
to isolate a small element of material, such as the element labeled C in
Fig. 2-30c, and then show the stresses acting on all faces of this element.
An element of this kind is called a stress element. The stress element at
point C is a small rectangular block (it doesn’t matter whether it is a cube
or a rectangular parallelepiped) with its right-hand face lying in cross
section mn.

The dimensions of a stress element are assumed to be infinitesimally
small, but for clarity we draw the element to a large scale, as in Fig. 2-31a.
In this case, the edges of the element are parallel to the x, y, and z axes,
and the only stresses are the normal stresses o, acting on the x faces
(recall that the x faces have their normals parallel to the x axis). Because it
is more convenient, we usually draw a two-dimensional view of the
element (Fig. 2-31b) instead of a three-dimensional view.

The stress element of Fig. 2-31 provides only a limited view of the
stresses in an axially loaded bar. To obtain a more complete picture, we
need to investigate the stresses acting on inclined sections, such as the
section cut by the inclined plane pg in Fig. 2-32a. Because the stresses
are the same throughout the entire bar, the stresses acting over the
inclined section must be uniformly distributed, as pictured in the free-
body diagrams of Fig. 2-32b (three-dimensional view) and Fig. 2-32c
(two-dimensional view). From the equilibrium of the free body we know
that the resultant of the stresses must be a horizontal force P. (The resul-
tant is drawn with a dashed line in Figs. 2-32b and 2-32c.)
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As a preliminary matter, we need a scheme for specifying the orien-
tation of the inclined section pg. A standard method is to specify the
angle 6 between the x axis and the normal 7 to the section (see Fig. 2-33a
on the next page). Thus, the angle 6 for the inclined section shown in the
figure is approximately 30°. By contrast, cross section mn (Fig. 2-30a)
has an angle 6 equal to zero (because the normal to the section is the x
axis). For additional examples, consider the stress element of Fig. 2-31.
The angle 6 for the right-hand face is 0, for the top face is 90°
(a longitudinal section of the bar), for the left-hand face is 180°, and for
the bottom face is 270° (or —90°).

Let us now return to the task of finding the stresses acting on
section pq (Fig. 2-33b). As already mentioned, the resultant of these
stresses is a force P acting in the x direction. This resultant may be
resolved into two components, a normal force N that is perpendicular to
the inclined plane pg and a shear force V that is tangential to it. These
force components are

N = Pcos 6 V=Psin 0 (2-26a,b)

Associated with the forces N and V are normal and shear stresses that are
uniformly distributed over the inclined section (Figs. 2-33c and d). The



FIG. 2-33 Prismatic bar in tension
showing the stresses acting on an
inclined section pg
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(a)

(b)

normal stress is equal to the normal force N divided by the area of the sec-
tion, and the shear stress is equal to the shear force V divided by the area
of the section. Thus, the stresses are

o= N T= v (2-27a,b)
A Ay
in which A is the area of the inclined section, as follows:
A= A (2-28)

cos 6
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FIG. 2-34 Sign convention for stresses
acting on an inclined section. (Normal
stresses are positive when in tension and
shear stresses are positive when they
tend to produce counterclockwise
rotation.)

As usual, A represents the cross-sectional area of the bar. The stresses o
and 7 act in the directions shown in Figs. 2-33c and d, that is, in the same
directions as the normal force N and shear force V, respectively.

At this point we need to establish a standardized notation and sign
convention for stresses acting on inclined sections. We will use a
subscript € to indicate that the stresses act on a section inclined at an
angle 6 (Fig. 2-34), just as we use a subscript x to indicate that the
stresses act on a section perpendicular to the x axis (see Fig. 2-30).
Normal stresses o, are positive in tension and shear stresses 7, are
positive when they tend to produce counterclockwise rotation of the
material, as shown in Fig. 2-34.

Ty

0 (i
X

\ T

For a bar in tension, the normal force N produces positive normal
stresses oy (see Fig. 2-33c) and the shear force V produces negative shear
stresses Ty (see Fig. 2-33d). These stresses are given by the following
equations (see Eqgs. 2-26, 2-27, and 2-28):

Vv

N _ £cos20 Tg= ——— = — gsinﬂcos 0

7T A A A

Introducing the notation o, = P/A, in which o, is the normal stress on a
cross section, and also using the trigonometric relations

cos’f = %(1 + cos 26) sinf cos 6 = %(sin 26)

we get the following expressions for the normal and shear stresses:

09 = 0,c0s*0 = % (1 + cos 20) (2-29a)
Ty = —0,sinf cosh = —%(sin 20) (2-29b)

These equations give the stresses acting on an inclined section oriented at
an angle 6 to the x axis (Fig. 2-34).

It is important to recognize that Egs. (2-29a) and (2-29b) were
derived only from statics, and therefore they are independent of the mate-
rial. Thus, these equations are valid for any material, whether it behaves
linearly or nonlinearly, elastically or inelastically.
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|
-90° —45° 0

FIG. 2-35 Graph of normal stress o and

shear stress 7, versus angle  of the -0.50;
inclined section (see Fig. 2-34 and

Egs. 2-29a and b)

The manner in which the stresses vary as the inclined section is cut at
various angles is shown in Fig. 2-35. The horizontal axis gives the angle 6
as it varies from —90° to +90°, and the vertical axis gives the stresses o7
and 7, Note that a positive angle 6 is measured counterclockwise from
the x axis (Fig. 2-34) and a negative angle is measured clockwise.

As shown on the graph, the normal stress o, equals o, when 6 = 0.
Then, as 6 increases or decreases, the normal stress diminishes until at
6 = £90° it becomes zero, because there are no normal stresses on
sections cut parallel to the longitudinal axis. The maximum normal
stress occurs at # = 0 and is

Omax — Ox (2_30)

Also, we note that when @ = £45°, the normal stress is one-half the
maximum value.

The shear stress 7, is zero on cross sections of the bar (6 = 0) as well
as on longitudinal sections (6 = *=90°). Between these extremes, the
stress varies as shown on the graph, reaching the largest positive value
when @ = —45° and the largest negative value when 6 = +45°. These
maximum shear stresses have the same magnitude:

Tonae = (231)
but they tend to rotate the element in opposite directions.

The maximum stresses in a bar in tension are shown in Fig. 2-36.
Two stress elements are selected—element A is oriented at # = 0° and
element B is oriented at & = 45°. Element A has the maximum normal
stresses (Eq. 2-30) and element B has the maximum shear stresses
(Eq. 2-31). In the case of element A (Fig. 2-36b), the only stresses are the
maximum normal stresses (no shear stresses exist on any of the faces).
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FIG. 2-36 Normal and shear stresses
acting on stress elements oriented at
6 = 0° and 6 = 45° for a bar in tension

Ox

(a)

0 =45°

(b) (©)

In the case of element B (Fig. 2-36c), both normal and shear
stresses act on all faces (except, of course, the front and rear faces of
the element). Consider, for instance, the face at 45° (the upper right-
hand face). On this face the normal and shear stresses (from
Egs. 2-29a and b) are o, /2 and — o, /2, respectively. Hence, the normal
stress is tension (positive) and the shear stress acts clockwise (nega-
tive) against the element. The stresses on the remaining faces are
obtained in a similar manner by substituting § = 135°, —45°, and
—135° into Egs. (2-29a and b).

Thus, in this special case of an element oriented at § = 45°, the
normal stresses on all four faces are the same (equal to o/2) and all four
shear stresses have the maximum magnitude (equal to o/2). Also, note
that the shear stresses acting on perpendicular planes are equal in magni-
tude and have directions either toward, or away from, the line of
intersection of the planes, as discussed in detail in Section 1.6.

If a bar is loaded in compression instead of tension, the stress o, will
be compression and will have a negative value. Consequently, all stresses
acting on stress elements will have directions opposite to those for a bar
in tension. Of course, Egs. (2-29a and b) can still be used for the calcula-
tions simply by substituting o, as a negative quantity.
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FIG. 2-37 Shear failure along a 45° plane
of a wood block loaded in compression

FIG. 2-38 Slip bands (or Liiders’ bands) in a
polished steel specimen loaded in tension
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Even though the maximum shear stress in an axially loaded bar is only
one-half the maximum normal stress, the shear stress may cause failure if
the material is much weaker in shear than in tension. An example of a
shear failure is pictured in Fig. 2-37, which shows a block of wood that
was loaded in compression and failed by shearing along a 45° plane.

A similar type of behavior occurs in mild steel loaded in tension.
During a tensile test of a flat bar of low-carbon steel with polished
surfaces, visible slip bands appear on the sides of the bar at approxi-
mately 45° to the axis (Fig. 2-38). These bands indicate that the material
is failing in shear along the planes on which the shear stress is maximum.
Such bands were first observed by G. Piobert in 1842 and W. Liiders in
1860 (see Refs. 2-5 and 2-6), and today they are called either Liiders’
bands or Piobert’s bands. They begin to appear when the yield stress is
reached in the bar (point B in Fig. 1-10 of Section 1.3).

Uniaxial Stress

The state of stress described throughout this section is called uniaxial
stress, for the obvious reason that the bar is subjected to simple tension
or compression in just one direction. The most important orientations
of stress elements for uniaxial stress are § = 0 and 6 = 45° (Fig. 2-36b
and c); the former has the maximum normal stress and the latter has the
maximum shear stress. If sections are cut through the bar at other
angles, the stresses acting on the faces of the corresponding stress ele-
ments can be determined from Egs. (2-29a and b), as illustrated in
Examples 2-10 and 2-11 that follow.

Uniaxial stress is a special case of a more general stress state known
as plane stress, which is described in detail in Chapter 7.

Load

1

Load
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Example 2-10
A prismatic bar having cross-sectional area A = 1200 mm? is compressed by an
axial load P = 90 kN (Fig. 2-39a).
(a) Determine the stresses acting on an inclined section pg cut through the
bar at an angle 6 = 25°.
(b) Determine the complete state of stress for # = 25° and show the stresses
on a properly oriented stress element.
y

=25

r_9 . | P=90kN 13.4 MPa\

28.7 MPa
P 28.7 MPa /
25°

KAﬁ MPa

A

q
(a

)
28.7 MPa
28.7 MPa 250 et
KA'W/P&S e / 28.7 MPa
\ 13.4 MPa

(b) (c)

FIG. 2-39 Example 2-10. Stresses on an
inclined section

Solution
(a) Stresses on the inclined section. To find the stresses acting on a section
at @ = 25°, we first calculate the normal stress o, acting on a cross section:

P 90KN
== S _ _5Mp
. A 1200 mm? a
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Example 2-11

A compression bar having a square cross section of width b must support a load
P = 8000 Ib (Fig. 2-40a). The bar is constructed from two pieces of material that
are connected by a glued joint (known as a scarf joint) along plane pgq, which is
at an angle o = 40° to the vertical. The material is a structural plastic for which
the allowable stresses in compression and shear are 1100 psi and 600 psi, respec-
tively. Also, the allowable stresses in the glued joint are 750 psi in compression
and 500 psi in shear.
Determine the minimum width b of the bar.

Solution

For convenience, let us rotate a segment of the bar to a horizontal position
(Fig. 2-40b) that matches the figures used in deriving the equations for the stresses
on an inclined section (see Figs. 2-33 and 2-34). With the bar in this position, we
see that the normal 7 to the plane of the glued joint (plane pg) makes an angle
B =90° — a, or 50°, with the axis of the bar. Since the angle 6 is defined as posi-
tive when counterclockwise (Fig. 2-34), we conclude that # = —50° for the glued
joint.

The cross-sectional area of the bar is related to the load P and the stress o,
acting on the cross sections by the equation

a=L (a)
Oy

Therefore, to find the required area, we must determine the value of o, cor-
responding to each of the four allowable stresses. Then the smallest value of o
will determine the required area. The values of o, are obtained by rearranging
Egs. (2-29a and b) as follows:

o =—2 o=—-—2 (2-32a,b)
cos 6 sin € cos 6

We will now apply these equations to the glued joint and to the plastic.

(a) Values of o, based upon the allowable stresses in the glued joint. For
compression in the glued joint we have gy = —750 psi and 8 = —50°. Substi-
tuting into Eq. (2-32a), we get

—750 psi

=———> = —1815 psi b
T = " cos —30°) psi (b)

For shear in the glued joint we have an allowable stress of 500 psi.
However, it is not immediately evident whether 7, is +500 psi or —500 psi. One
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2.7 STRAIN ENERGY

Strain energy is a fundamental concept in applied mechanics, and strain-
energy principles are widely used for determining the response of
machines and structures to both static and dynamic loads. In this section
we introduce the subject of strain energy in its simplest form by considering
only axially loaded members subjected to static loads. More complicated
structural elements are discussed in later chapters—bars in torsion in
Section 3.9 and beams in bending in Section 9.8. In addition, the use
L — of strain energy in connection with dynamic loads is described in
Sections 2.8 and 9.10.

To illustrate the basic ideas, let us again consider a prismatic bar of
length L subjected to a tensile force P (Fig. 2-41). We assume that the
load is applied slowly, so that it gradually increases from zero to its

5 maximum value P. Such a load is called a static load because there are
*\ﬂ no dynamic or inertial effects due to motion. The bar gradually elongates
as the load is applied, eventually reaching its maximum elongation & at
the same time that the load reaches its full value P. Thereafter, the load
and elongation remain unchanged.
FIG. 2-41 Prismatic bar subjected to a During the loading process, the load P moves slowly through the
statically applied load distance 6 and does a certain amount of work. To evaluate this work, we
recall from elementary mechanics that a constant force does work equal
to the product of the force and the distance through which it moves.
However, in our case the force varies in magnitude from zero to its
maximum value P. To find the work done by the load under these
conditions, we need to know the manner in which the force varies. This
information is supplied by a load-displacement diagram, such as the
one plotted in Fig. 2-42. On this diagram the vertical axis represents
the axial load and the horizontal axis represents the corresponding
elongation of the bar. The shape of the curve depends upon the properties
of the material.

Let us denote by P; any value of the load between zero and the
maximum value P, and let us denote the corresponding elongation of the
bar by ;. Then an increment dP; in the load will produce an increment
dé, in the elongation. The work done by the load during this incremental
elongation is the product of the load and the distance through which it
moves, that is, the work equals P;dé8;. This work is represented in the
figure by the area of the shaded strip below the load-displacement curve.
The total work done by the load as it increases from zero to the
maximum value P is the summation of all such elemental strips:

P

~

8
W= J Pldal (2-33)
0

In geometric terms, the work done by the load is equal to the area below
the load-displacement curve.

When the load stretches the bar, strains are produced. The presence
FIG. 2-42 Load-displacement diagram of these strains increases the energy level of the bar itself. Therefore, a
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SECTION 2.7 Strain Energy

new quantity, called strain energy, is defined as the energy absorbed by
the bar during the loading process. From the principle of conservation of
energy, we know that this strain energy is equal to the work done by the
load provided no energy is added or subtracted in the form of heat.
Therefore,

S
U=W= f P.ds, (2-34)

0

in which U is the symbol for strain energy. Sometimes strain energy is
referred to as internal work to distinguish it from the external work done
by the load.

Work and energy are expressed in the same units. In SI, the unit of
work and energy is the joule (J), which is equal to one newton meter
(1J =1 Nm). In USCS units, work and energy are expressed in foot-
pounds (ft-1b), foot-kips (ft-k), inch-pounds (in.-lb), and inch-kips
(in.-k)."

If the force P (Fig. 2-41) is slowly removed from the bar, the bar
will shorten. If the elastic limit of the material is not exceeded, the
bar will return to its original length. If the limit is exceeded, a perma-
nent set will remain (see Section 1.4). Thus, either all or part of the
strain energy will be recovered in the form of work. This behavior is
shown on the load-displacement diagram of Fig. 2-43. During loading,
the work done by the load is equal to the area below the curve
(area OABCDO). When the load is removed, the load-displacement
diagram follows line BD if point B is beyond the elastic limit, and a
permanent elongation OD remains. Thus, the strain energy recovered
during unloading, called the elastic strain energy, is represented by the
shaded triangle BCD. Area OABDO represents energy that is lost in
the process of permanently deforming the bar. This energy is known as
the inelastic strain energy.

Most structures are designed with the expectation that the material
will remain within the elastic range under ordinary conditions of service.
Let us assume that the load at which the stress in the material reaches the
elastic limit is represented by point A on the load-displacement curve
(Fig. 2-43). As long as the load is below this value, all of the strain
energy is recovered during unloading and no permanent elongation
remains. Thus, the bar acts as an elastic spring, storing and releasing
energy as the load is applied and removed.

“Conversion factors for work and energy are given in Appendix A, Table A-5.
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FIG. 2-44 Load-displacement diagram for
a bar of linearly elastic material

Let us now assume that the material of the bar follows Hooke’s law, so
that the load-displacement curve is a straight line (Fig. 2-44). Then
the strain energy U stored in the bar (equal to the work W done by the
load) is

U=W=— (2-35)

which is the area of the shaded triangle OAB in the figure.”
The relationship between the load P and the elongation 6 for a bar of
linearly elastic material is given by the equation

_FPL

§=
EA

(2-36)

Combining this equation with Eq. (2-35) enables us to express the strain
energy of a linearly elastic bar in either of the following forms:

P2L EA8?
U =

U= 2Fa 2L

(2-37a,b)

The first equation expresses the strain energy as a function of the load
and the second expresses it as a function of the elongation.

From the first equation we see that increasing the length of a bar
increases the amount of strain energy even though the load is unchanged
(because more material is being strained by the load). On the other hand,
increasing either the modulus of elasticity or the cross-sectional area
decreases the strain energy because the strains in the bar are reduced.
These ideas are illustrated in Examples 2-12 and 2-15.

Strain-energy equations analogous to Egs. (2-37a) and (2-37b) can
be written for a linearly elastic spring by replacing the stiffness EA/L of
the prismatic bar by the stiffness k of the spring. Thus,

2 2
P U= koo (2-38a,b)

U=k 2

Other forms of these equations can be obtained by replacing k by 1/f,
where fis the flexibility.

“The principle that the work of the external loads is equal to the strain energy (for the
case of linearly elastic behavior) was first stated by the French engineer B. P. E.
Clapeyron (1799-1864) and is known as Clapeyron’s theorem (Ref. 2-7).
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FIG. 2-45 Bar consisting of prismatic
segments having different cross-
sectional areas and different axial forces
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FIG. 2-46 Nonprismatic bar with varying
axial force
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The total strain energy U of a bar consisting of several segments is equal
to the sum of the strain energies of the individual segments. For instance,
the strain energy of the bar pictured in Fig. 2-45 equals the strain energy
of segment AB plus the strain energy of segment BC. This concept is
expressed in general terms by the following equation:

U= Z U; (2-39)
i=1

in which U; is the strain energy of segment i of the bar and n is the
number of segments. (This relation holds whether the material behaves in
a linear or nonlinear manner.)

Now assume that the material of the bar is linearly elastic and that
the internal axial force is constant within each segment. We can then use
Eq. (2-37a) to obtain the strain energies of the segments, and Eq. (2-39)
becomes

& NPL
U ; A (2-40)
in which N; is the axial force acting in segment i and L;, E;, and A; are
properties of segment i. (The use of this equation is illustrated in Examples
2-12 and 2-15 at the end of the section.)

We can obtain the strain energy of a nonprismatic bar with
continuously varying axial force (Fig. 2-46) by applying Eq. (2-37a) to a
differential element (shown shaded in the figure) and then integrating
along the length of the bar:

L 2
U j IN@Fdx (2-41)

)y 2EA(x)

In this equation, N(x) and A(x) are the axial force and cross-sectional area
at distance x from the end of the bar. (Example 2-13 illustrates the use of
this equation.)

The preceding expressions for strain energy (Eqs. 2-37 through 2-41)
show that strain energy is not a linear function of the loads, not even when
the material is linearly elastic. Thus, it is important to realize that we
cannot obtain the strain energy of a structure supporting more than one
load by combining the strain energies obtained from the individual loads
acting separately.

In the case of the nonprismatic bar shown in Fig. 2-45, the total
strain energy is not the sum of the strain energy due to load P, acting
alone and the strain energy due to load P, acting alone. Instead, we must
evaluate the strain energy with all of the loads acting simultaneously, as
demonstrated later in Example 2-13.
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FIG. 2-47 Structure supporting a single
load P

Although we considered only tension members in the preceding
discussions of strain energy, all of the concepts and equations apply
equally well to members in compression. Since the work done by an
axial load is positive regardless of whether the load causes tension or
compression, it follows that strain energy is always a positive quan-
tity. This fact is also evident in the expressions for strain energy of
linearly elastic bars (such as Eqs. 2-37a and 2-37b). These expres-
sions are always positive because the load and elongation terms are
squared.

Strain energy is a form of potential energy (or “energy of posi-
tion”) because it depends upon the relative locations of the particles or
elements that make up the member. When a bar or a spring is
compressed, its particles are crowded more closely together; when it is
stretched, the distances between particles increase. In both cases the
strain energy of the member increases as compared to its strain energy
in the unloaded position.

The displacement of a linearly elastic structure supporting only one load
can be determined from its strain energy. To illustrate the method,
consider a two-bar truss (Fig. 2-47) loaded by a vertical force P. Our
objective is to determine the vertical displacement 6 at joint B where the
load is applied.

When applied slowly to the truss, the load P does work as it moves
through the vertical displacement 6. However, it does no work as it
moves laterally, that is, sideways. Therefore, since the load-displacement

~ /-

C=mmmmmnie
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diagram is linear (see Fig. 2-44 and Eq. 2-35), the strain energy U stored
in the structure, equal to the work done by the load, is

Pé
U=W=—
2
from which we get
2U
0=— 2-42
- (2-42)

This equation shows that under certain special conditions, as outlined in
the following paragraph, the displacement of a structure can be deter-
mined directly from the strain energy.

The conditions that must be met in order to use Eq. (2-42) are as
follows: (1) the structure must behave in a linearly elastic manner, and
(2) only one load may act on the structure. Furthermore, the only displace-
ment that can be determined is the displacement corresponding to the load
itself (that is, the displacement must be in the direction of the load and
must be at the point where the load is applied). Therefore, this method for
finding displacements is extremely limited in its application and is not a
good indicator of the great importance of strain-energy principles in struc-
tural mechanics. However, the method does provide an introduction to the
use of strain energy. (The method is illustrated later in Example 2-14.)

In many situations it is convenient to use a quantity called strain-energy
density, defined as the strain energy per unit volume of material. Expres-
sions for strain-energy density in the case of linearly elastic materials can
be obtained from the formulas for strain energy of a prismatic bar
(Egs. 2-37a and b). Since the strain energy of the bar is distributed
uniformly throughout its volume, we can determine the strain-energy
density by dividing the total strain energy U by the volume AL of the bar.
Thus, the strain-energy density, denoted by the symbol u, can be
expressed in either of these forms:

i ES®
w=n U= (2-43a,b)
If we replace P/A by the stress o-and §/L by the strain €, we get
2 2
o Ee
= — =— 2-44
u °E u > ( a,b)

These equations give the strain-energy density in a linearly elastic
material in terms of either the normal stress ¢ or the normal strain e.
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The expressions in Egs. (2-44a and b) have a simple geometric inter-
pretation. They are equal to the area oe/2 of the triangle below the
stress-strain diagram for a material that follows Hooke’s law (o = Ee).
In more general situations where the material does not follow Hooke’s
law, the strain-energy density is still equal to the area below the stress-
strain curve, but the area must be evaluated for each particular material.

Strain-energy density has units of energy divided by volume. The SI
units are joules per cubic meter (J/m?) and the USCS units are foot-pounds
per cubic foot, inch-pounds per cubic inch, and other similar units. Since
all of these units reduce to units of stress (recall that 1 J = 1 N-m), we can
also use units such as pascals (Pa) and pounds per square inch (psi) for
strain-energy density.

The strain-energy density of the material when it is stressed to the
proportional limit is called the modulus of resilience u,. It is found by
substituting the proportional limit oy, into Eq. (2-44a):

2
_Op

= 2-45
Y= (2-45)

For example, a mild steel having o,,; = 36,000 psi and £ = 30 X 10° psi
has a modulus of resilience u, = 21.6 psi (or 149 kPa). Note that the
modulus of resilience is equal to the area below the stress-strain curve up
to the proportional limit. Resilience represents the ability of a material to
absorb and release energy within the elastic range.

Another quantity, called toughness, refers to the ability of a material
to absorb energy without fracturing. The corresponding modulus, called
the modulus of toughness 1, is the strain-energy density when the mate-
rial is stressed to the point of failure. It is equal to the area below the
entire stress-strain curve. The higher the modulus of toughness, the greater
the ability of the material to absorb energy without failing. A high
modulus of toughness is therefore important when the material is subject
to impact loads (see Section 2.8).

The preceding expressions for strain-energy density (Egs. 2-43 to
2-45) were derived for uniaxial stress, that is, for materials subjected
only to tension or compression. Formulas for strain-energy density in
other stress states are presented in Chapters 3 and 7.
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(b) Strain energy U, of the second bar. The strain energy is found by
summing the strain energies in the three segments of the bar (see Eq. 2-40).
Thus,

. N?L,  PXL/5) P*4L/5) PL  2U,
U = z = + = — =1
“ 2EA, 2FA 2E(4A) S5EA 5

(b)

which is only 40% of the strain energy of the first bar. Thus, increasing the cross-
sectional area over part of the length has greatly reduced the amount of strain
energy that can be stored in the bar.

(c) Strain energy Usj of the third bar. Again using Eq. (2-40), we get

T Z N?L _ PXL/15) N PX(14L/15) _ 3P’L _ 3U,
? 2E,A; 2FA 2E(4A) 20EA 10

i=1

©)

The strain energy has now decreased to 30% of the strain energy of the first
bar.

Note: Comparing these results, we see that the strain energy decreases as
the part of the bar with the larger area increases. If the same amount of work
is applied to all three bars, the highest stress will be in the third bar, because
the third bar has the least energy-absorbing capacity. If the region having
diameter d is made even smaller, the energy-absorbing capacity will decrease
further.

We therefore conclude that it takes only a small amount of work to bring
the tensile stress to a high value in a bar with a groove, and the narrower
the groove, the more severe the condition. When the loads are dynamic and
the ability to absorb energy is important, the presence of grooves is very
damaging.

In the case of static loads, the maximum stresses are more important than
the ability to absorb energy. In this example, all three bars have the same max-
imum stress P/A (provided stress concentrations are alleviated), and therefore
all three bars have the same load-carrying capacity when the load is applied
statically.
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Example 2-14

FIG. 2-50 Example 2-14. Displacement of
a truss supporting a single load P

Determine the vertical displacement 6 of joint B of the truss shown in Fig. 2-50.
Note that the only load acting on the truss is a vertical load P at joint B. Assume
that both members of the truss have the same axial rigidity EA.

Solution

Since there is only one load acting on the truss, we can find the displace-
ment corresponding to that load by equating the work of the load to the strain
energy of the members. However, to find the strain energy we must know the
forces in the members (see Eq. 2-37a).

From the equilibrium of forces acting at joint B we see that the axial force F
in either bar is

P
F=
2 cos B ®
in which f is the angle shown in the figure.
Also, from the geometry of the truss we see that the length of each bar is
_H
~ s B (8
in which H is the height of the truss.
We can now obtain the strain energy of the two bars from Eq. (2-37a):
F°L, P’H
U= = h
@ 2EA  4EAcos’ B ®
Also, the work of the load P (from Eq. 2-35) is
P53 .
W=—
> @

where 65 is the downward displacement of joint B. Equating U and W and
solving for 6z, we obtain

PH

S 2-4
2FA cos® B (2-48)

Op

Note that we found this displacement using only equilibrium and strain energy—we
did not need to draw a displacement diagram at joint B.
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FIG. 2-52 Example 2-15. Proposed
modifications to the bolts: (a) Bolts with
reduced shank diameter, and (b) bolts
with increased length

Substituting these expressions into Eq. (j), we get the following formula for the
strain energy of one of the original bolts:

_2Pg— 1 N 2P%

U
: 7Ed? 7Ed?

®

(b) Bolts with reduced shank diameter. These bolts can be idealized as pris-
matic bars having length ¢ and diameter d, (Fig. 2-52a). Therefore, the strain
energy of one bolt (see Eq. 2-37a) is

P’g  2P%
U, = =
2T 2FEA,  wEd? (m)
The ratio of the strain energies for cases (1) and (2) is
U. gd*
2 (n)

U, - (g — nd? + 1d*

or, upon substituting numerical values,

U (1.50 in.)(0.500 in.) B
U, (1.50 in. — 0.25 in.)(0.406 in.)* + (0.25 in.)(0.500 in.)*

1.40

Thus, using bolts with reduced shank diameters results in a 40% increase in the
amount of strain energy that can be absorbed by the bolts. If implemented, this
scheme should reduce the number of failures caused by the impact loads.

(¢) Long bolts. The calculations for the long bolts (Fig. 2-52b) are the same
as for the original bolts except the grip g is changed to the grip L. Therefore, the
strain energy of one long bolt (compare with Eq. 1) is

_2PL—1n  2P%

U.
? wEd? wEd?

(0)

Since one long bolt replaces two of the original bolts, we must compare the
strain energies by taking the ratio of Us to 2U|, as follows:

U5 _ (L—1td?+td®

2U,  2g—Hd> +2td> ®

Substituting numerical values gives

U; __(13.5in. — 0.25in.)(0.406 in.)* + (0.25 in.)(0.500 in.)> 18
20, 2(1.50in. — 0.25in.)(0.406 in.)* + 2(0.25 in.)(0.500 in.)> ~

Thus, using long bolts increases the energy-absorbing capacity by 318% and
achieves the greatest safety from the standpoint of strain energy.

Note: When designing bolts, designers must also consider the maximum
tensile stresses, maximum bearing stresses, stress concentrations, and many other
matters.
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*2.8 IMPACT LOADING

v

Sliding collar

of mass M [ =
-

Flange
(a)

AR

FIG. 2-53 Impact load on a prismatic bar
AB due to a falling object of mass M

Loads can be classified as static or dynamic depending upon whether
they remain constant or vary with time. A static load is applied slowly,
so that it causes no vibrational or dynamic effects in the structure. The
load increases gradually from zero to its maximum value, and thereafter
it remains constant.

A dynamic load may take many forms—some loads are applied
and removed suddenly (impact loads), others persist for long periods of
time and continuously vary in intensity (fluctuating loads). Impact loads
are produced when two objects collide or when a falling object strikes a
structure. Fluctuating loads are produced by rotating machinery, traffic,
wind gusts, water waves, earthquakes, and manufacturing processes.

As an example of how structures respond to dynamic loads, we
will discuss the impact of an object falling onto the lower end of a
prismatic bar (Fig. 2-53). A collar of mass M, initially at rest, falls
from a height & onto a flange at the end of bar AB. When the collar
strikes the flange, the bar begins to elongate, creating axial stresses
within the bar. In a very short interval of time, such as a few millisec-
onds, the flange will move downward and reach its position of
maximum displacement. Thereafter, the bar shortens, then lengthens,
then shortens again as the bar vibrates longitudinally and the end of
the bar moves up and down. The vibrations are analogous to those that
occur when a spring is stretched and then released, or when a person
makes a bungee jump. The vibrations of the bar soon cease because of
various damping effects, and then the bar comes to rest with the
mass M supported on the flange.

The response of the bar to the falling collar is obviously very compli-
cated, and a complete and accurate analysis requires the use of advanced
mathematical techniques. However, we can make an approximate
analysis by using the concept of strain energy (Section 2.7) and making
several simplifying assumptions.

Let us begin by considering the energy of the system just before the
collar is released (Fig. 2-53a). The potential energy of the collar with
respect to the elevation of the flange is Mgh, where g is the acceleration
of gravity.” This potential energy is converted into kinetic energy as the
collar falls. At the instant the collar strikes the flange, its potential energy
with respect to the elevation of the flange is zero and its kinetic energy is
Mv?/2, where v = V2gh is its velocity.”

“In SI units, the acceleration of gravity g = 9.81 m/s?; in USCS units, g =322 ft/s%.
For more precise values of g, or for a discussion of mass and weight, see
Appendix A.

““In engineering work, velocity is usually treated as a vector quantity. However, since
kinetic energy is a scalar, we will use the word “velocity” to mean the magnitude of the
velocity, or the speed.
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During the ensuing impact, the kinetic energy of the collar is transformed
into other forms of energy. Part of the kinetic energy is transformed into
the strain energy of the stretched bar. Some of the energy is dissipated in
the production of heat and in causing localized plastic deformations
of the collar and flange. A small part remains as the kinetic energy of the
collar, which either moves further downward (while in contact with the
flange) or else bounces upward.

To make a simplified analysis of this very complex situation, we will
idealize the behavior by making the following assumptions. (1) We
assume that the collar and flange are so constructed that the collar
“sticks” to the flange and moves downward with it (that is, the collar
does not rebound). This behavior is more likely to prevail when the mass
of the collar is large compared to the mass of the bar. (2) We disregard
all energy losses and assume that the kinetic energy of the falling mass is
transformed entirely into strain energy of the bar. This assumption
predicts larger stresses in the bar than would be predicted if we took
energy losses into account. (3) We disregard any change in the potential
energy of the bar itself (due to the vertical movement of elements of the
bar), and we ignore the existence of strain energy in the bar due to its
own weight. Both of these effects are extremely small. (4) We assume
that the stresses in the bar remain within the linearly elastic range. (5) We
assume that the stress distribution throughout the bar is the same as when
the bar is loaded statically by a force at the lower end, that is, we assume
the stresses are uniform throughout the volume of the bar. (In reality
longitudinal stress waves will travel through the bar, thereby causing
variations in the stress distribution.)

On the basis of the preceding assumptions, we can calculate the
maximum elongation and the maximum tensile stresses produced by the
impact load. (Recall that we are disregarding the weight of the bar itself
and finding the stresses due solely to the falling collar.)

The maximum elongation §,,,, (Fig. 2-53b) can be obtained from the
principle of conservation of energy by equating the potential energy lost
by the falling mass to the maximum strain energy acquired by the bar.
The potential energy lost is W(h + O,ax), Where W = Mg is the weight
of the collar and & + 0, is the distance through which it moves. The
strain energy of the bar is EA82,./2L, where EA is the axial rigidity
and L is the length of the bar (see Eq. 2-37b). Thus, we obtain the
following equation:

EAS3ax
2L

This equation is quadratic in J,,,x and can be solved for the positive root;

the result is
2 1/2
§max = ﬂ {(ﬂ) + 2h<ﬂ>] (2_50)
EA EA EA

W(h + Omax) = (2-49)
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Note that the maximum elongation of the bar increases if either the
weight of the collar or the height of fall is increased. The elongation
diminishes if the stiffness EA/L is increased.

The preceding equation can be written in simpler form by introducing
the notation
_ WL _ MgL

EA EA

in which & is the elongation of the bar due to the weight of the collar
under static loading conditions. Equation (2-50) now becomes

Smax = 6st + (6§t + 2h5st)l/2 (2'52)

1/2
Omax = 651[1 + (1 + ?) } (2-53)

st

R (2-51)

or

From this equation we see that the elongation of the bar under the impact
load is much larger than it would be if the same load were applied statically.
Suppose, for instance, that the height / is 40 times the static displacement J;
the maximum elongation would then be 10 times the static elongation.
When the height 4 is large compared to the static elongation, we can
disregard the “ones” on the right-hand side of Eq. (2-53) and obtain

| 2
Smax =V 2h8st = A4E“/AL (2'54)

in which M = W/g and v = V2gh is the velocity of the falling mass when
it strikes the flange. This equation can also be obtained directly from
Eq. (2-49) by omitting ..« on the left-hand side of the equation and then
solving for &,.x. Because of the omitted terms, values of &,,,, calculated
from Eq. (2-54) are always less than those obtained from Eq. (2-53).

The maximum stress can be calculated easily from the maximum elongation
because we are assuming that the stress distribution is uniform throughout
the length of the bar. From the general equation 6 = PL/EA = oL/E, we
know that

ES,.,.
= —max 2.55
1o 3 ( )

Substituting from Eq. (2-50), we obtain the following equation for the
maximum tensile stress:

2 12
2WhE
Omax = v + <K> + Wh (2-56)
A A AL
Introducing the notation

M Ed,
Oy = K _ Mg _ EOu (2-57)

A A L
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in which oy, is the stress when the load acts statically, we can write
Eq. (2-56) in the form

2hE 172
Omax = Oy T (Ui + T O-S[) (2‘58)
or
1/2
Omax = Og| 1 = |1 + 2hE (2-59)
Loy

This equation is analogous to Eq. (2-53) and again shows that an impact
load produces much larger effects than when the same load is applied
statically.

Again considering the case where the height % is large compared to
the elongation of the bar (compare with Eq. 2-54), we obtain

2
Oinax = 2hEost — My E (2—60)
V L AL

From this result we see that an increase in the kinetic energy Mv>/2 of
the falling mass will increase the stress, whereas an increase in the
volume AL of the bar will reduce the stress. This situation is quite
different from static tension of the bar, where the stress is independent of
the length L and the modulus of elasticity E.

The preceding equations for the maximum elongation and maximum
stress apply only at the instant when the flange of the bar is at its lowest
position. After the maximum elongation is reached in the bar, the bar will
vibrate axially until it comes to rest at the static elongation. From then on,
the elongation and stress have the values given by Eqgs. (2-51) and (2-57).

Although the preceding equations were derived for the case of a pris-
matic bar, they can be used for any linearly elastic structure subjected to
a falling load, provided we know the appropriate stiffness of the struc-
ture. In particular, the equations can be used for a spring by substituting
the stiffness k of the spring (see Section 2.2) for the stiffness EA/L of the
prismatic bar.

The ratio of the dynamic response of a structure to the static response (for
the same load) is known as an impact factor. For instance, the impact
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factor for the elongation of the bar of Fig. 2-53 is the ratio of the
maximum elongation to the static elongation:

Impact factor = (2-61)

St

This factor represents the amount by which the static elongation is ampli-
fied due to the dynamic effects of the impact.

Equations analogous to Eq. (2-61) can be written for other impact
factors, such as the impact factor for the stress in the bar (the ratio of
Omax 10 0y). When the collar falls through a considerable height, the
impact factor can be very large, such as 100 or more.

A special case of impact occurs when a load is applied suddenly with no
initial velocity. To explain this kind of loading, consider again the prismatic
bar shown in Fig. 2-53 and assume that the sliding collar is lowered
gently until it just touches the flange. Then the collar is suddenly
released. Although in this instance no kinetic energy exists at the beginning
of extension of the bar, the behavior is quite different from that of static
loading of the bar. Under static loading conditions, the load is released
gradually and equilibrium always exists between the applied load and the
resisting force of the bar.

However, consider what happens when the collar is released
suddenly from its point of contact with the flange. Initially the elonga-
tion of the bar and the stress in the bar are zero, but then the collar
moves downward under the action of its own weight. During this
motion the bar elongates and its resisting force gradually increases.
The motion continues until at some instant the resisting force just
equals W, the weight of the collar. At this particular instant the elonga-
tion of the bar is é,,. However, the collar now has a certain Kinetic
energy, which it acquired during the downward displacement &;.
Therefore, the collar continues to move downward until its velocity is
brought to zero by the resisting force in the bar. The maximum elonga-
tion for this condition is obtained from Eq. (2-53) by setting & equal to
zero; thus,

8max = 26st (2‘62)

From this equation we see that a suddenly applied load produces an elon-
gation twice as large as the elongation caused by the same load applied
statically. Thus, the impact factor is 2.
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After the maximum elongation 23, has been reached, the end of the
bar will move upward and begin a series of up and down vibrations,
eventually coming to rest at the static elongation produced by the weight
of the collar.”

The preceding analyses were based upon the assumption that no energy
losses occur during impact. In reality, energy losses always occur, with
most of the lost energy being dissipated in the form of heat and localized
deformation of the materials. Because of these losses, the kinetic energy
of a system immediately after an impact is less than it was before the
impact. Consequently, less energy is converted into strain energy of the
bar than we previously assumed. As a result, the actual displacement of
the end of the bar of Fig. 2-53 is less than that predicted by our simplified
analysis.

We also assumed that the stresses in the bar remain within the
proportional limit. If the maximum stress exceeds this limit, the analysis
becomes more complicated because the elongation of the bar is no
longer proportional to the axial force. Other factors to consider are the
effects of stress waves, damping, and imperfections at the contact
surfaces. Therefore, we must remember that all of the formulas in this
section are based upon highly idealized conditions and give only a rough
approximation of the true conditions (usually overestimating the
elongation).

Materials that exhibit considerable ductility beyond the proportional
limit generally offer much greater resistance to impact loads than do
brittle materials. Also, bars with grooves, holes, and other forms of stress
concentrations (see Sections 2.9 and 2.10) are very weak against
impact—a slight shock may produce fracture, even when the material
itself is ductile under static loading.

“Equation (2-62) was first obtained by the French mathematician and scientist J. V. Poncelet
(1788-1867); see Ref. 2-8.
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Since the height of fall is very large compared to the static elongation, we obtain
nearly the same result by calculating the maximum elongation from Eq. (2-54):

Smax = V218, = [2(150 mm)(0.0106 mm)]** = 1.78 mm

The impact factor is equal to the ratio of the maximum elongation to the static
elongation:

5max _ 1.79 mm
Oyt 0.0106 mm

Impact factor = =169

This result shows that the effects of a dynamically applied load can be very large
as compared to the effects of the same load acting statically.

(b) Maximum tensile stress. The maximum stress produced by the falling
collar is obtained from Eq. (2-55), as follows:

o = E&pnax _ (210 GPa)(1.79 mm) _ 188 MPa
L 2.0m

This stress may be compared with the static stress (see Eq. 2-57), which is

Mg _ (20 kg)(9.81 m/s°)
A (7/4)(15 mm)?

XW _ Al = 1.11 MPa

Oy =

The ratio of Tpay to 0y is 188/1.11=169, which is the same impact factor as for
the elongations. This result is expected, because the stresses are directly propor-
tional to the corresponding elongations (see Eqs. 2-55 and 2-57).
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*2.9 REPEATED LOADING AND FATIGUE
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FIG. 2-56 Types of repeated loads:

(a) load acting in one direction only,
(b) alternating or reversed load, and
(c) fluctuating load that varies about an
average value

The behavior of a structure depends not only upon the nature of the mate-
rial but also upon the character of the loads. In some situations the loads
are static—they are applied gradually, act for long periods of time, and
change slowly. Other loads are dynamic in character—examples are
impact loads acting suddenly (Section 2.8) and repeated loads recurring
for large numbers of cycles.

Some typical patterns for repeated loads are sketched in Fig. 2-56.
The first graph (a) shows a load that is applied, removed, and applied
again, always acting in the same direction. The second graph (b) shows
an alternating load that reverses direction during every cycle of load-
ing, and the third graph (c) illustrates a fluctuating load that varies
about an average value. Repeated loads are commonly associated with
machinery, engines, turbines, generators, shafts, propellers, airplane
parts, automobile parts, and the like. Some of these structures are sub-
jected to millions (and even billions) of loading cycles during their
useful life.

A structure subjected to dynamic loads is likely to fail at a lower
stress than when the same loads are applied statically, especially when
the loads are repeated for a large number of cycles. In such cases
failure is usually caused by fatigue, or progressive fracture. A familiar
example of a fatigue failure is stressing a metal paper clip to the
breaking point by repeatedly bending it back and forth. If the clip is
bent only once, it does not break. But if the load is reversed by bending
the clip in the opposite direction, and if the entire loading cycle is
repeated several times, the clip will finally break. Fatigue may be
defined as the deterioration of a material under repeated cycles of stress
and strain, resulting in progressive cracking that eventually produces
fracture.

In a typical fatigue failure, a microscopic crack forms at a point of
high stress (usually at a stress concentration, discussed in the next
section) and gradually enlarges as the loads are applied repeatedly.
When the crack becomes so large that the remaining material cannot
resist the loads, a sudden fracture of the material occurs (Fig. 2-57).
Depending upon the nature of the material, it may take anywhere from
a few cycles of loading to hundreds of millions of cycles to produce a
fatigue failure.

The magnitude of the load causing a fatigue failure is less than the
load that can be sustained statically, as already pointed out. To deter-
mine the failure load, tests of the material must be performed. In the
case of repeated loading, the material is tested at various stress levels
and the number of cycles to failure is counted. For instance, a specimen
of material is placed in a fatigue-testing machine and loaded repeatedly
to a certain stress, say 0. The loading cycles are continued until failure
occurs, and the number n of loading cycles to failure is noted. The test
is then repeated for a different stress, say o». If o, is greater than o7,
the number of cycles to failure will be smaller. If o, is less than o7, the



FIG. 2-57 Fatigue failure of a bar loaded
repeatedly in tension; the crack spread
gradually over the cross section until
fracture occurred suddenly. (Courtesy of
MTS Systems Corporation)

Failure
stress
o

Fatigue limit

Number n of cycles to failure

FIG. 2-58 Endurance curve, or S-N
diagram, showing fatigue limit

FIG. 2-59 Typical endurance curves for
steel and aluminum in alternating
(reversed) loading
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number will be larger. Eventually, enough data are accumulated to plot
an endurance curve, or S-N diagram, in which failure stress (S) is
plotted versus the number (N) of cycles to failure (Fig. 2-58). The
vertical axis is usually a linear scale and the horizontal axis is usually a
logarithmic scale.

The endurance curve of Fig. 2-58 shows that the smaller the stress,
the larger the number of cycles to produce failure. For some materials
the curve has a horizontal asymptote known as the fatigue limit or
endurance limit. When it exists, this limit is the stress below which a
fatigue failure will not occur regardless of how many times the load is
repeated. The precise shape of an endurance curve depends upon many
factors, including properties of the material, geometry of the test
specimen, speed of testing, pattern of loading, and surface condition of
the specimen. The results of numerous fatigue tests, made on a great
variety of materials and structural components, have been reported in
the engineering literature.

Typical S-N diagrams for steel and aluminum are shown in Fig. 2-59.
The ordinate is the failure stress, expressed as a percentage of the
ultimate stress for the material, and the abscissa is the number of cycles
at which failure occurred. Note that the number of cycles is plotted on a
logarithmic scale. The curve for steel becomes horizontal at about
107 cycles, and the fatigue limit is about 50% of the ultimate tensile

100

80
Failure stress

(Percent of
ultimate
tensile stress)

Aluminum

20

0 | | | | |
10 1w0* 100 109 107 108
Number 7 of cycles to failure
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stress for ordinary static loading. The fatigue limit for aluminum is not as
clearly defined as that for steel, but a typical value of the fatigue limit is
the stress at 5% 10% cycles, or about 25% of the ultimate stress.

Since fatigue failures usually begin with a microscopic crack at a point
of high localized stress (that is, at a stress concentration), the condition
of the surface of the material is extremely important. Highly polished
specimens have higher endurance limits. Rough surfaces, especially those
at stress concentrations around holes or grooves, greatly lower the
endurance limit. Corrosion, which creates tiny surface irregularities, has a
similar effect. For steel, ordinary corrosion may reduce the fatigue limit by
more than 50%.

*2.10 STRESS CONCENTRATIONS
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FIG. 2-60 Stress distributions near the end
of a bar of rectangular cross section
(width b, thickness 7) subjected to a
concentrated load P acting over a

small area

When determining the stresses in axially loaded bars, we customarily use
the basic formula o = P/A, in which P is the axial force in the bar and A
is its cross-sectional area. This formula is based upon the assumption that
the stress distribution is uniform throughout the cross section. In reality,
bars often have holes, grooves, notches, keyways, shoulders, threads, or
other abrupt changes in geometry that create a disruption in the otherwise
uniform stress pattern. These discontinuities in geometry cause high
stresses in very small regions of the bar, and these high stresses are
known as stress concentrations. The discontinuities themselves are
known as stress raisers.

Stress concentrations also appear at points of loading. For instance, a
load may act over a very small area and produce high stresses in the
region around its point of application. An example is a load applied
through a pin connection, in which case the load is applied over the
bearing area of the pin.

The stresses existing at stress concentrations can be determined
either by experimental methods or by advanced methods of analysis,
including the finite-element method. The results of such research for
many cases of practical interest are readily available in the engineering
literature (for example, Ref. 2-9). Some typical stress-concentration data
are given later in this section and also in Chapters 3 and 5.

To illustrate the nature of stress concentrations, consider the stresses in a
bar of rectangular cross section (width b, thickness f) subjected to a
concentrated load P at the end (Fig. 2-60). The peak stress directly under
the load may be several times the average stress P/bt, depending upon the
area over which the load is applied. However, the maximum stress
diminishes rapidly as we move away from the point of load application,
as shown by the stress diagrams in the figure. At a distance from the end



FIG. 2-61 Illustration of Saint-Venant’s
principle: (a) system of concentrated
loads acting over a small region of a bar,
and (b) statically equivalent system

SECTION 2.10 Stress Concentrations

of the bar equal to the width b of the bar, the stress distribution is nearly
uniform, and the maximum stress is only a few percent larger than the
average stress. This observation is true for most stress concentrations,
such as holes and grooves.

Thus, we can make a general statement that the equation o = P/A
gives the axial stresses on a cross section only when the cross section is
at least a distance b away from any concentrated load or discontinuity in
shape, where b is the largest lateral dimension of the bar (such as the
width or diameter).

The preceding statement about the stresses in a prismatic bar is part
of a more general observation known as Saint-Venant’s principle. With
rare exceptions, this principle applies to linearly elastic bodies of all
types. To understand Saint-Venant’s principle, imagine that we have a
body with a system of loads acting over a small part of its surface. For
instance, suppose we have a prismatic bar of width b subjected to a
system of several concentrated loads acting at the end (Fig. 2-61a). For
simplicity, assume that the loads are symmetrical and have only a
vertical resultant.

Next, consider a different but statically equivalent load system acting
over the same small region of the bar. (“Statically equivalent” means the
two load systems have the same force resultant and same moment resul-
tant.) For instance, the uniformly distributed load shown in Fig. 2-61b
is statically equivalent to the system of concentrated loads shown in
Fig. 2-61a. Saint-Venant’s principle states that the stresses in the body
caused by either of the two systems of loading are the same, provided we
move away from the loaded region a distance at least equal to the largest

(a) (b)
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FIG. 2-60 Repeated

FIG. 2-62 Stress distribution in a flat bar
with a circular hole

dimension of the loaded region (distance » in our example). Thus, the
stress distributions shown in Fig. 2-60 are an illustration of Saint-
Venant’s principle. Of course, this “principle” is not a rigorous law of
mechanics but is a common-sense observation based upon theoretical and
practical experience.

Saint-Venant’s principle has great practical significance in the design
and analysis of bars, beams, shafts, and other structures encountered in
mechanics of materials. Because the effects of stress concentrations are
localized, we can use all of the standard stress formulas (such as o = P/A)
at cross sections a sufficient distance away from the source of the concen-
tration. Close to the source, the stresses depend upon the details of the
loading and the shape of the member. Furthermore, formulas that are
applicable to entire members, such as formulas for elongations, displace-
ments, and strain energy, give satisfactory results even when stress
concentrations are present. The explanation lies in the fact that stress
concentrations are localized and have little effect on the overall behavior
of a member.”

Now let us consider some particular cases of stress concentrations caused
by discontinuities in the shape of a bar. We begin with a bar of rectangular
cross section having a circular hole and subjected to a tensile force P
(Fig. 2-62a). The bar is relatively thin, with its width b being much larger
than its thickness z. Also, the hole has diameter d.

c/2
P <— b Qiid —_—>P
T c/2
(@)
jp— C
_j
(b)

“Saint-Venant’s principle is named for Barré de Saint-Venant (1797-1886), a famous
French mathematician and elastician (Ref. 2-10). It appears that the principle applies
generally to solid bars and beams but not to all thin-walled open sections. For a discus-
sion of the limitations of Saint-Venant’s principle, see Ref. 2-11.



FIG. 2-63 Stress-concentration factor K
for flat bars with circular holes

SECTION 2.10 Stress Concentrations

The normal stress acting on the cross section through the center
of the hole has the distribution shown in Fig. 2-62b. The maximum
stress Omax occurs at the edges of the hole and may be significantly
larger than the nominal stress o = P/ct at the same cross section. (Note
that ct is the net area at the cross section through the hole.) The intensity
of a stress concentration is usually expressed by the ratio of the
maximum stress to the nominal stress, called the stress-concentration
factor K:

Umax
K=— (2-67)

o-nom

For a bar in tension, the nominal stress is the average stress based upon
the net cross-sectional area. In other cases, a variety of stresses may be
used. Thus, whenever a stress concentration factor is used, it is important
to note carefully how the nominal stress is defined.

A graph of the stress-concentration factor K for a bar with a hole is
given in Fig. 2-63. If the hole is tiny, the factor K equals 3, which means
that the maximum stress is three times the nominal stress. As the hole
becomes larger in proportion to the width of the bar, K becomes smaller
and the effect of the concentration is not as severe.

From Saint-Venant’s principle we know that, at distances equal to
the width b of the bar away from the hole in either axial direction, the
stress distribution is practically uniform and equal to P divided by the
gross cross-sectional area (o = P/bt).
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FIG. 2-64 Stress-concentration factor K

Stress-concentration factors for two other cases of practical interest are
given in Figs. 2-64 and 2-65. These graphs are for flat bars and circular
bars, respectively, that are stepped down in size, forming a shoulder. To
reduce the stress-concentration effects, fillets are used to round off the re-
entrant corners.” Without the fillets, the stress-concentration factors would
be extremely large, as indicated at the left-hand side of each graph where K
approaches infinity as the fillet radius R approaches zero. In both cases the
maximum stress occurs in the smaller part of the bar in the region of the
fillet.”

3.0
\ R
P
—_—
25 !
K 1.1 Onom = 7
20 \ t = thickness
b-c Q\
R="— ==
2 \>
1.5
0 0.05 0.25 0.30

for flat bars with shoulder fillets. The
dashed line is for a full quarter-circular
fillet.

FIG. 2-65 Stress-concentration factor K
for round bars with shoulder fillets. The
dashed line is for a full quarter-circular
fillet.
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“A fillet is a curved concave surface formed where two other surfaces meet. Its purpose
is to round off what would otherwise be a sharp re-entrant corner.

“"The stress-concentration factors given in the graphs are theoretical factors for bars of
linearly elastic material. The graphs are plotted from the formulas given in Ref. 2-9.
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Because of the possibility of fatigue failures, stress concentrations are
especially important when the member is subjected to repeated
loading. As explained in the preceding section, cracks begin at the
point of highest stress and then spread gradually through the material
as the load is repeated. In practical design, the fatigue limit (Fig. 2-58)
is considered to be the ultimate stress for the material when the
number of cycles is extremely large. The allowable stress is obtained
by applying a factor of safety with respect to this ultimate stress.
Then the peak stress at the stress concentration is compared with the
allowable stress.

In many situations the use of the full theoretical value of the
stress-concentration factor is too severe. Fatigue tests usually produce
failure at higher levels of the nominal stress than those obtained by
dividing the fatigue limit by K. In other words, a structural member
under repeated loading is not as sensitive to a stress concentration as
the value of K indicates, and a reduced stress-concentration factor is
often used.

Other kinds of dynamic loads, such as impact loads, also require
that stress-concentration effects be taken into account. Unless better infor-
mation is available, the full stress-concentration factor should be used.
Members subjected to low temperatures also are highly susceptible to fail-
ures at stress concentrations, and therefore special precautions should be
taken in such cases.

The significance of stress concentrations when a member is
subjected to static loading depends upon the kind of material. With
ductile materials, such as structural steel, a stress concentration can
often be ignored. The reason is that the material at the point of
maximum stress (such as around a hole) will yield and plastic flow
will occur, thus reducing the intensity of the stress concentration and
making the stress distribution more nearly uniform. On the other
hand, with brittle materials (such as glass) a stress concentration will
remain up to the point of fracture. Therefore, we can make the general
observation that with static loads and a ductile material the stress-
concentration effect is not likely to be important, but with static loads
and a brittle material the full stress-concentration factor should be
considered.

Stress concentrations can be reduced in intensity by properly propor-
tioning the parts. Generous fillets reduce stress concentrations at
re-entrant corners. Smooth surfaces at points of high stress, such as on
the inside of a hole, inhibit the formation of cracks. Proper reinforcing
around holes can also be beneficial. There are many other techniques for
smoothing out the stress distribution in a structural member and thereby
reducing the stress-concentration factor. These techniques, which are
usually studied in engineering design courses, are extremely important in
the design of aircraft, ships, and machines. Many unnecessary structural
failures have occurred because designers failed to recognize the effects of
stress concentrations and fatigue.
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*2.11 NONLINEAR BEHAVIOR
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FIG. 2-66 Types of idealized material
behavior: (a) elastic-nonlinear
stress-strain curve, (b) general
nonlinear stress-strain curve,

(c) elastoplastic stress-strain curve,
and (d) bilinear stress-strain curve

Up to this point, our discussions have dealt primarily with members and
structures composed of materials that follow Hooke’s law. Now we will
consider the behavior of axially loaded members when the stresses exceed
the proportional limit. In such cases the stresses, strains, and displacements
depend upon the shape of the stress-strain curve in the region beyond the
proportional limit (see Section 1.3 for some typical stress-strain diagrams).

For purposes of analysis and design, we often represent the actual
stress-strain curve of a material by an idealized stress-strain curve that
can be expressed as a mathematical function. Some examples are shown
in Fig. 2-66. The first diagram (Fig. 2-66a) consists of two parts, an ini-
tial linearly elastic region followed by a nonlinear region defined by an
appropriate mathematical expression. The behavior of aluminum alloys
can sometimes be represented quite accurately by a curve of this type, at
least in the region before the strains become excessively large (compare
Fig. 2-66a with Fig. 1-13).

In the second example (Fig. 2-66b), a single mathematical expres-
sion is used for the entire stress-strain curve. The best known expression
of this kind is the Ramberg-Osgood stress-strain law, which is described
later in more detail (see Egs. 2-70 and 2-71).
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The stress-strain diagram frequently used for structural steel is
shown in Fig. 2-66¢. Because steel has a linearly elastic region followed
by a region of considerable yielding (see the stress-strain diagrams of
Figs. 1-10 and 1-12), its behavior can be represented by two straight
lines. The material is assumed to follow Hooke’s law up to the yield
stress oy, after which it yields under constant stress, the latter behavior
being known as perfect plasticity. The perfectly plastic region continues
until the strains are 10 or 20 times larger than the yield strain. A material
having a stress-strain diagram of this kind is called an elastoplastic
material (or elastic-plastic material).



FIG. 2-67 Change in length of a tapered
bar consisting of a material having a
nonlinear stress-strain curve

SECTION 2.11  Nonlinear Behavior

Eventually, as the strain becomes extremely large, the stress-strain
curve for steel rises above the yield stress due to strain hardening, as
explained in Section 1.3. However, by the time strain hardening begins,
the displacements are so large that the structure will have lost its useful-
ness. Consequently, it is common practice to analyze steel structures on
the basis of the elastoplastic diagram shown in Fig. 2-66c, with the same
diagram being used for both tension and compression. An analysis made
with these assumptions is called an elastoplastic analysis, or simply,
plastic analysis, and is described in the next section.

Figure 2-66d shows a stress-strain diagram consisting of two
lines having different slopes, called a bilinear stress-strain diagram.
Note that in both parts of the diagram the relationship between stress
and strain is linear, but only in the first part is the stress proportional
to the strain (Hooke’s law). This idealized diagram may be used to
represent materials with strain hardening or it may be used as an
approximation to diagrams of the general nonlinear shapes shown in
Figs. 2-66a and b.

The elongation or shortening of a bar can be determined if the stress-strain
curve of the material is known. To illustrate the general procedure, we will
consider the tapered bar AB shown in Fig. 2-67a. Both the cross-sectional
area and the axial force vary along the length of the bar, and the material
has a general nonlinear stress-strain curve (Fig. 2-67b). Because the bar is
statically determinate, we can determine the internal axial forces at all
cross sections from static equilibrium alone. Then we can find the stresses
by dividing the forces by the cross-sectional areas, and we can find the

A

— = =
X 1 L—dx
L

(a)

(b)
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strains from the stress-strain curve. Lastly, we can determine the change in
length from the strains, as described in the following paragraph.

The change in length of an element dx of the bar (Fig. 2-67a) is
€ dx, where € is the strain at distance x from the end. By integrating this
expression from one end of the bar to the other, we obtain the change in
length of the entire bar:

7L,
o= J €dx (2-68)
0

where L is the length of the bar. If the strains are expressed analyti-
cally, that is, by algebraic formulas, it may be possible to integrate
Eq. (2-68) by formal mathematical means and thus obtain an expres-
sion for the change in length. If the stresses and strains are expressed
numerically, that is, by a series of numerical values, we can proceed
as follows. We can divide the bar into small segments of length Ax,
determine the average stress and strain for each segment, and then
calculate the elongation of the entire bar by summing the elongations
for the individual segments. This process is equivalent to evaluating
the integral in Eq. (2-68) by numerical methods instead of by formal
integration.

If the strains are uniform throughout the length of the bar, as in the
case of a prismatic bar with constant axial force, the integration of
Eq. (2-68) is trivial and the change in length is

6=¢€L (2-69)

as expected (compare with Eq. 1-2 in Section 1.2).

Stress-strain curves for several metals, including aluminum and magnesium,
can be accurately represented by the Ramberg-Osgood equation:

m

€ o o
—=—+ a(—) (2-70)
€ 0o 0o

In this equation, o and € are the stress and strain, respectively, and €, oy, «,

and m are constants of the material (obtained from tension tests). An alterna-

tive form of the equation is

e=3+ﬂ<i) 2-71)
E E \oy
in which E=0y/¢€, is the modulus of elasticity in the initial part of the
stress-strain curve.”

A graph of Eq. (2-71) is given in Fig. 2-68 for an aluminum alloy for
which the constants are as follows: E = 10 X 10° psi, op = 38,000 psi,

“The Ramberg-Osgood stress-strain law was presented in Ref. 2-12.



FIG. 2-68 Stress-strain curve for an
aluminum alloy using the Ramberg-
Osgood equation (Eq. 2-72)
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where ¢ has units of pounds per square inch (psi).
A similar equation for an aluminum alloy, but in SI units (E =
70 GPa, oy = 260 MPa, a = 3/7, and m = 10), is as follows:

S A S 273
€7 70,000 " 6282 | 260 @73)
where ¢ has units of megapascals (MPa). The calculation of the change
in length of a bar, using Eq. (2-73) for the stress-strain relationship, is
illustrated in Example 2-18.

If a structure is statically indeterminate and the material behaves
nonlinearly, the stresses, strains, and displacements can be found by solv-
ing the same general equations as those described in Section 2.4 for
linearly elastic structures, namely, equations of equilibrium, equations of
compatibility, and force-displacement relations (or equivalent stress-strain
relations). The principal difference is that the force-displacement relations
are now nonlinear, which means that analytical solutions cannot be
obtained except in very simple situations. Instead, the equations must be
solved numerically, using a suitable computer program.
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Example 2-18
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FIG. 2-69 Example 2-18. Elongation of a
bar of nonlinear material using the
Ramberg-Osgood equation

A prismatic bar AB of length L = 2.2 m and cross-sectional area A = 480 mm?
supports two concentrated loads P; = 108 kN and P, = 27 kN, as shown in
Fig. 2-69. The material of the bar is an aluminum alloy having a nonlinear
stress-strain curve described by the following Ramberg-Osgood equation
(Eq. 2-73):

- 1 o \10
e=—F— 4+ — | —
70,000  628.2 (260)

in which o has units of MPa. (The general shape of this stress-strain curve is
shown in Fig. 2-68.)

Determine the displacement &5 of the lower end of the bar under each of the
following conditions: (a) the load P; acts alone, (b) the load P, acts alone, and
(c) the loads P, and P, act simultaneously.

Solution

(a) Displacement due to the load P; acting alone. The load P; produces a
uniform tensile stress throughout the length of the bar equal to Pi/A, or 225
MPa. Substituting this value into the stress-strain relation gives € = 0.003589.
Therefore, the elongation of the bar, equal to the displacement at point B, is (see
Eq. 2-69)

op = €L = (0.003589)(2.2 m) = 7.90 mm

(b) Displacement due to the load P,. acting alone. The stress in the upper
half of the bar is P,/A or 56.25 MPa, and there is no stress in the lower half.
Proceeding as in part (a), we obtain the following elongation:

op = €L/2 = (0.0008036)(1.1 m) = 0.884 mm

(c) Displacement due to both loads acting simultaneously. The stress in the
lower half of the bar is P;/A and in the upper half is (P, + P,)/A. The corresponding
stresses are 225 MPa and 281.25 MPa, and the corresponding strains are 0.003589
and 0.007510 (from the Ramberg-Osgood equation). Therefore, the elongation of
the bar is

oz = (0.003589)(1.1 m) + (0.007510)(1.1 m)
=3.95mm + 8.26 mm = 12.2 mm

The three calculated values of 5 illustrate an important principle pertaining to a
structure made of a material that behaves nonlinearly:

In a nonlinear structure, the displacement produced by two (or more) loads
acting simultaneously is not equal to the sum of the displacements produced by
the loads acting separately.
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FIG. 2-70 Idealized stress-strain diagram
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FIG. 2-71 Load-displacement diagram for
a prismatic bar of elastoplastic material

FIG. 2-72 Statically determinate structure
consisting of axially loaded members

In the preceding section we discussed the behavior of structures when the
stresses in the material exceed the proportional limit. Now we will
consider a material of considerable importance in engineering design—
steel, the most widely used structural metal. Mild steel (or structural
steel) can be modeled as an elastoplastic material with a stress-strain
diagram as shown in Fig. 2-70. An elastoplastic material initially behaves
in a linearly elastic manner with a modulus of elasticity E. After plastic
yielding begins, the strains increase at a more-or-less constant stress,
called the yield stress oy. The strain at the onset of yielding is known as
the yield strain ey.

The load-displacement diagram for a prismatic bar of elastoplastic
material subjected to a tensile load (Fig. 2-71) has the same shape as the
stress-strain diagram. Initially, the bar elongates in a linearly elastic
manner and Hooke’s law is valid. Therefore, in this region of loading
we can find the change in length from the familiar formula 6 = PL/EA.
Once the yield stress is reached, the bar may elongate without an
increase in load, and the elongation has no specific magnitude.
The load at which yielding begins is called the yield load Py and the
corresponding elongation of the bar is called the yield displace-
ment 8y. Note that for a single prismatic bar, the yield load Py equals
oyA and the yield displacement &y equals PyL/EA, or oyL/E. (Similar
comments apply to a bar in compression, provided buckling does
not occur.)

If a structure consisting only of axially loaded members is statically
determinate (Fig. 2-72), its overall behavior follows the same pattern.
The structure behaves in a linearly elastic manner until one of its
members reaches the yield stress. Then that member will begin to elon-
gate (or shorten) with no further change in the axial load in that member.
Thus, the entire structure will yield, and its load-displacement diagram
has the same shape as that for a single bar (Fig. 2-71).

The situation is more complex if an elastoplastic structure is statically
indeterminate. If one member yields, other members will continue to
resist any increase in the load. However, eventually enough members
will yield to cause the entire structure to yield.

To illustrate the behavior of a statically indeterminate structure,
we will use the simple arrangement shown in Fig. 2-73 on the next
page. This structure consists of three steel bars supporting a load P
applied through a rigid plate. The two outer bars have length L, the
inner bar has length L,, and all three bars have the same cross-
sectional area A. The stress-strain diagram for the steel is idealized as
shown in Fig. 2-70, and the modulus of elasticity in the linearly elastic
region is E = oy /e€y.
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FIG. 2-73 Elastoplastic analysis of a
statically indeterminate structure

As is normally the case with a statically indeterminate structure,
we begin the analysis with the equations of equilibrium and compati-
bility. From equilibrium of the rigid plate in the vertical direction we
obtain

2F1+F2:P (a)

where F| and F, are the axial forces in the outer and inner bars, respectively.
Because the plate moves downward as a rigid body when the load is
applied, the compatibility equation is

5] = 62 (b)

where 6, and &, are the elongations of the outer and inner bars, respectively.
Because they depend only upon equilibrium and geometry, the two
preceding equations are valid at all levels of the load P; it does not matter
whether the strains fall in the linearly elastic region or in the plastic
region.

When the load P is small, the stresses in the bars are less than the
yield stress oy and the material is stressed within the linearly elastic
region. Therefore, the force-displacement relations between the bar
forces and their elongations are

_ KL,

5 _ Bl

6 =
FA 27 FA ©

Substituting in the compatibility equation (Eq. b), we get

F\L, = F>L, (d)
Solving simultaneously Egs. (a) and (d), we obtain

PL, PL,

Fil=—"2— Fy=—2—
L+ 2L, L, +2L,

(2-74a,b)
Thus, we have now found the forces in the bars in the linearly elastic
region. The corresponding stresses are

_F PL, F_ PL

= =22 "1 (2.75b)
A AL, + 2Ly A AL, + 2Ly

log] 0> =
These equations for the forces and stresses are valid provided the stresses
in all three bars remain below the yield stress oy.

As the load P gradually increases, the stresses in the bars increase
until the yield stress is reached in either the inner bar or the outer bars.
Let us assume that the outer bars are longer than the inner bar, as
sketched in Fig. 2-73:

L >1L, (e)

Then the inner bar is more highly stressed than the outer bars (see
Egs. 2-75a and b) and will reach the yield stress first. When that
happens, the force in the inner bar is F, = oy A. The magnitude of the
load P when the yield stress is first reached in any one of the bars is
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FIG. 2-74 Load-displacement diagram for
the statically indeterminate structure
shown in Fig. 2-73
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called the yield load Py. We can determine Py by setting F, equal to
oyA in Eq. (2-74b) and solving for the load:

Py = aYA<1 + —ZLL 2) (2-76)
1

As long as the load P is less than Py, the structure behaves in a linearly
elastic manner and the forces in the bars can be determined from
Egs. (2-74a and b).

The downward displacement of the rigid bar at the yield load, called
the yield displacement &y, is equal to the elongation of the inner bar
when its stress first reaches the yield stress oy:

_ KL, _ oyL, _ oyL,

5
Y EA E E

2-77)

The relationship between the applied load P and the downward displace-
ment 6 of the rigid bar is portrayed in the load-displacement diagram of
Fig. 2-74. The behavior of the structure up to the yield load Py is repre-
sented by line OA.

With a further increase in the load, the forces F; in the outer bars
increase but the force F, in the inner bar remains constant at the value
oy A because this bar is now perfectly plastic (see Fig. 2-71). When
the forces F; reach the value oy A, the outer bars also yield and there-
fore the structure cannot support any additional load. Instead, all three
bars will elongate plastically under this constant load, called the
plastic load Pp. The plastic load is represented by point B on the load-
displacement diagram (Fig. 2-74), and the horizontal line BC represents
the region of continuous plastic deformation without any increase in
the load.

The plastic load Pp can be calculated from static equilibrium (Eq. a)
knowing that

Fy=o0yA Fr = oyA ®
Thus, from equilibrium we find
Pp = 30')/A (2_78)

The plastic displacement 6p at the instant the load just reaches the
plastic load Pp is equal to the elongation of the outer bars at the instant
they reach the yield stress. Therefore,

_ kL, oL, oyL,

= = (2-79)

S,
" EA E E

Comparing 6p with 8y, we see that in this example the ratio of the plastic
displacement to the yield displacement is

% _ L

= 2-80
5 L (2-80)
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Also, the ratio of the plastic load to the yield load is

& = & (2-81)
Py L,+2L,

For example, if L; = 1.5L,, the ratios are 6p/0y = 1.5 and Pp/Py = 9/7 =
1.29. In general, the ratio of the displacements is always larger than the
ratio of the corresponding loads, and the partially plastic region AB on the
load-displacement diagram (Fig. 2-74) always has a smaller slope than
does the elastic region OA. Of course, the fully plastic region BC has the
smallest slope (zero).

To understand why the load-displacement graph is linear in the partially
plastic region (line AB in Fig. 2-74) and has a slope that is less than in
the linearly elastic region, consider the following. In the partially plastic
region of the structure, the outer bars still behave in a linearly elastic
manner. Therefore, their elongation is a linear function of the load.
Since their elongation is the same as the downward displacement of the
rigid plate, the displacement of the rigid plate must also be a linear
function of the load. Consequently, we have a straight line between
points A and B. However, the slope of the load-displacement diagram in
this region is less than in the initial linear region because the inner
bar yields plastically and only the outer bars offer increasing resist-
ance to the increasing load. In effect, the stiffness of the structure has
diminished.

From the discussion associated with Eq. (2-78) we see that the
calculation of the plastic load Pp requires only the use of statics,
because all members have yielded and their axial forces are known. In
contrast, the calculation of the yield load Py requires a statically inde-
terminate analysis, which means that equilibrium, compatibility, and
force-displacement equations must be solved.

After the plastic load Pp is reached, the structure continues to deform
as shown by line BC on the load-displacement diagram (Fig. 2-74). Strain
hardening occurs eventually, and then the structure is able to support addi-
tional loads. However, the presence of very large displacements usually
means that the structure is no longer of use, and so the plastic load Pp is
usually considered to be the failure load.

The preceding discussion has dealt with the behavior of a structure
when the load is applied for the first time. If the load is removed before
the yield load is reached, the structure will behave elastically and return to
its original unstressed condition. However, if the yield load is exceeded,
some members of the structure will retain a permanent set when the load
is removed, thus creating a prestressed condition. Consequently, the struc-
ture will have residual stresses in it even though no external loads are
acting. If the load is applied a second time, the structure will behave in a
different manner.
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(a) Yield load and yield displacement. When the load P is small and the
stresses in the material are in the linearly elastic region, the force-displacement
relations for the two bars are

F.L FL

_AL  _FL .
EA (@)

1 2 EA

Combining these equations with the compatibility condition (Eq. h) gives

FL _  FL
i=za{ or  F,=2F (k)

Now substituting into the equilibrium equation (Eq. g), we find

_3P _5P

F
Y5 727 5

(Lm)

Bar 2, which has the larger force, will be the first to reach the yield stress. At that
instant the force in bar 2 will be F, = gyA. Substituting that value into Eq. (m)
gives the yield load Py, as follows:

SoyA
py=""1 (2-82)
6
The corresponding elongation of bar 2 (from Eq. j) is 6, = oyL/E, and therefore
the yield displacement at point B is

3_62 _ 30'yL

Oy =
) 2F

(2-83)

Both Py and dy are indicated on the load-displacement diagram (Fig. 2-75b).

(b) Plastic load and plastic displacement. When the plastic load Pp is
reached, both bars will be stretched to the yield stress and both forces F
and F, will be equal to oyA. It follows from equilibrium (Eq. g) that the plastic
load is

PP = (TyA (2—84)

At this load, the left-hand bar (bar 1) has just reached the yield stress; there-
fore, its elongation (from Eq. i) is §; = oy L/E, and the plastic displacement of
point B is

3(TyL

6p:351: E

(2-85)

The ratio of the plastic load Pp to the yield load Py is 6/5, and the ratio of the
plastic displacement &p to the yield displacement &y is 2. These values are also
shown on the load-displacement diagram.

(¢) Load-displacement diagram. The complete load-displacement behavior
of the structure is pictured in Fig. 2-75b. The behavior is linearly elastic in
the region from O to A, partially plastic from A to B, and fully plastic from B to C.
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CHAPTER SUMMARY & REVIEW

In Chapter 2, we investigated the behavior of axially loaded bars acted on by distrib-
uted loads, such as self weight, and also temperature changes and prestrains. We
developed force-displacement relations for use in computing changes in lengths of
bars under both uniform (i.e., constant force over its entire length) and nonuniform
conditions (i.e., axial forces, and perhaps also cross-sectional area, vary over the
length of the bar). Then, equilibrium and compatibility equations were developed for
statically indeterminate structures in a superposition procedure leading to solution for
all unknown forces, stresses, etc. We developed equations for normal and shear
stresses on inclined sections and, from these equations, found maximum normal and
shear stresses along the bar. A number of advanced topics were presented in the last
parts of the chapter. The major concepts presented in this chapter are as follows:

1. The elongation or shortening of prismatic bars subjected to tensile or compres-
sive centroidal loads is proportional to both the load and the length of the bar,
and inversely proportional to the axial rigidity (E4) of the bar; this relationship is
called a force-displacement relation.

2. Cables are tension-only elements, and an effective modulus of elasticity (E,)
and effective cross sectional area (4,) should be used to account for the tighten-
ing effect that occurs when cables are placed under load.

3. The axial rigidity per unit length of a bar is referred to as its stiffness (k), and
the inverse relationship is the flexibility (f=/ k) of the bar.

4. The summation of the displacements of the individual segments of a nonpris-
matic bar equals the elongation or shortening of the entire bar (). Free-body
diagrams are used to find the axial force (V) in each segment J; if axial forces
and/or cross sectional areas vary continuously, an integral expression is
required.

5. If the bar structure is statically indeterminate, additional equations (beyond
those available from statics) are required to solve for unknown forces. Compati-
bility equations are used to relate bar displacements to support conditions and
thereby generate additional relationships among the unknowns. It is convenient
to use a superposition of “released” (or statically determinate) structures to
represent the actual statically indeterminate bar structure.

6. Thermal effects result in displacements proportional to the temperature change
and the length of the bar but not stresses in statically determinate structures.
The coefficient of thermal expansion () of the material also is required to com-
pute axial displacements due to thermal effects.

7. Misfits and prestrains induce axial forces only in statically indeterminate bars.

8. Maximum normal and shear stresses can be obtained by considering an inclined
stress element for a bar loaded by axial forces. The maximum normal stress
occurs along the axis of the bar, but the maximum shear stress occurs at an incli-
nation of 45° to the axis of the bar, and the maximum shear stress is one-half of
the maximum normal stress.
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2.2-1 The L-shaped arm ABC shown in the figure lies in a
vertical plane and pivots about a horizontal pin at A. The
arm has constant cross-sectional area and total weight W.
A vertical spring of stiffness k supports the arm at point B.
Obtain a formula for the elongation of the spring due to the
weight of the arm.

ol

PROB. 2.2-1

2.2-2 A steel cable with nominal diameter 25 mm (see
Table 2-1) is used in a construction yard to lift a bridge
section weighing 38 kN, as shown in the figure. The cable
has an effective modulus of elasticity £ = 140 GPa.

(a) If the cable is 14 m long, how much will it stretch
when the load is picked up?

(b) If the cable is rated for a maximum load of 70 kN,
what is the factor of safety with respect to failure of the
cable?

— |

PROB. 2.2-2

2.2-3 A steel wire and a copper wire have equal lengths
and support equal loads P (see figure). The moduli of
elasticity for the steel and copper are E; = 30,000 ksi and
E. = 18,000 ksi, respectively.

(a) If the wires have the same diameters, what is the
ratio of the elongation of the copper wire to the elongation
of the steel wire?

(b) If the wires stretch the same amount, what is the
ratio of the diameter of the copper wire to the diameter of
the steel wire?

PROB. 2.2-3

2.2-4 By what distance & does the cage shown in the figure
move downward when the weight W is placed inside it?
(See the figure on the next page.)

Consider only the effects of the stretching of the
cable, which has axial rigidity EA = 10,700 kN. The
pulley at A has diameter d4, = 300 mm and the pulley at B
has diameter dg = 150 mm. Also, the distance L; = 4.6 m,
the distance L, = 10.5 m, and the weight W = 22 kN.
(Note: When calculating the length of the cable, include
the parts of the cable that go around the pulleys at A
and B.)



PROB. 2.2-4

2.2-5 A safety valve on the top of a tank containing steam
under pressure p has a discharge hole of diameter d (see
figure). The valve is designed to release the steam when the
pressure reaches the value p,a.

If the natural length of the spring is L and its stiffness is &,
what should be the dimension /4 of the valve? (Express your
result as a formula for /.)

PROB. 2.2-5

2.2-6 The device shown in the figure consists of a pointer
ABC supported by a spring of stiffness k = 800 N/m. The
spring is positioned at distance » = 150 mm from the pinned
end A of the pointer. The device is adjusted so that when
there is no load P, the pointer reads zero on the angular scale.

CHAPTER 2 Problems 183

If the load P = 8 N, at what distance x should the load
be placed so that the pointer will read 3° on the scale?

PROB. 2.2-6

2.2-7 Two rigid bars, AB and CD, rest on a smooth hori-
zontal surface (see figure). Bar AB is pivoted end A, and
bar CD is pivoted at end D. The bars are connected to
each other by two linearly elastic springs of stiffness k.
Before the load P is applied, the lengths of the springs are
such that the bars are parallel and the springs are without
stress.

Derive a formula for the displacement &. at point C
when the load P is acting near point B as shown. (Assume
that the bars rotate through very small angles under the
action of the load P.)

PROB. 2.2-7
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2.2-8 The three-bar truss ABC shown in the figure has a
span L = 3 m and is constructed of steel pipes having cross-
sectional area A = 3900 mm? and modulus of elasticity E =
200 GPa. Identical loads P act both vertically and horizon-
tally at joint C, as shown.

(a) If P = 650 kN, what is the horizontal displacement
of joint B?

(b) What is the maximum permissible load value P,
if the displacement of joint B is limited to 1.5 mm?

PROB. 2.2-8

2.2-9 An aluminum wire having a diameter d = 1/10 in.
and length L = 12 ft is subjected to a tensile load P (see
figure). The aluminum has modulus of elasticity E =
10,600 ksi

If the maximum permissible elongation of the wire is
1/8 in. and the allowable stress in tension is 10 ksi, what is
the allowable load P,,,?

PROB. 2.2-9

2.2-10 A uniform bar AB of weight W = 25 N is supported
by two springs, as shown in the figure. The spring on the left
has stiffness k; = 300 N/m and natural length L; = 250 mm.
The corresponding quantities for the spring on the right are
k, =400 N/m and L, = 200 mm. The distance between the
springs is L =350 mm, and the spring on the right is
suspended from a support that is distance 7 = 80 mm below
the point of support for the spring on the left. Neglect the
weight of the springs.

(a) At what distance x from the left-hand spring (figure
part a) should a load P = 18 N be placed in order to bring
the bar to a horizontal position?

(b) If P is now removed, what new value of k; is
required so that the bar (figure part a) will hang in a hori-
zontal position under weight W?

(c) If P is removed and k; = 300 N/m, what distance b
should spring k; be moved to the right so that the bar (figure
part a) will hang in a horizontal position under weight W?

(d) If the spring on the left is now replaced by two
springs in series (k; = 300N/m, k3) with overall natural
length L; = 250 mm (see figure part b), what value of k5 is
required so that the bar will hang in a horizontal position
under weight W?

New position of
k for part (c) only

p_Load P for
‘ part (a) only

L

(@)

PROB. 2.2-10

2.2-11 A hollow, circular, cast-iron pipe (E, = 12,000 ksi)
supports a brass rod (£, = 14,000 ksi) and weight W = 2 kips,
as shown. The outside diameter of the pipe is d. = 6 in.

(a) If the allowable compressive stress in the pipe is
5000 psi and the allowable shortening of the pipe is 0.02 in.,
what is the minimum required wall thickness #.,i,? (Include
the weights of the rod and steel cap in your calculations.)



(b) What is the elongation of the brass rod &, due to
both load W and its own weight?
(c) What is the minimum required clearance h?

Nut & washer

(dw = % in-) \.ﬁ.
Steel cap /

(t;=1in.)

7

Cast iron pipe

d.=6in.,1,) L,=351t

L, =41t

Brass rod /

(d,: %in.)

PROB. 2.2-11

*2.2-12 The horizontal rigid beam ABCD is supported by
vertical bars BE and CF and is loaded by vertical forces
P; = 400 kN and P, = 360 kN acting at points A and D,
respectively (see figure). Bars BE and CF are made of
steel (E = 200 GPa) and have cross-sectional areas
Ape = 11,100 mm? and Acr = 9,280 mm®. The distances
between various points on the bars are shown in the figure.

Determine the vertical displacements &, and 6&p of
points A and D, respectively.

“—1.5m—F—1.5m— 2.1m |
A(J B e —— D
P, =400 kN 24m P, =360kN

F P A
0.6 m
E |

PROB. 2.2-12
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**2.2-13 A framework ABC consists of two rigid bars AB
and BC, each having length b (see the first part of the figure
below). The bars have pin connections at A, B, and C and
are joined by a spring of stiffness k. The spring is attached at
the midpoints of the bars. The framework has a pin support
at A and a roller support at C, and the bars are at an angle «
to the horizontal.

When a vertical load P is applied at joint B (see the
second part of the figure at the top of the next column) the
roller support C moves to the right, the spring is stretched,
and the angle of the bars decreases from « to the angle 6.

Determine the angle 0 and the increase 6 in the distance
between points A and C. (Use the following data; » = 8.0 in.,
k= 161b/in., « = 45°,and P = 10 1b.)

**2.2-14 Solve the preceding problem for the following
data: b = 200 mm, k = 3.2 kN/m, o = 45°, and P = 50 N.

PROBS. 2.2-13 and 2.2-14
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2.3-1 Calculate the elongation of a copper bar of solid
circular cross section with tapered ends when it is stretched
by axial loads of magnitude 3.0 k (see figure).

The length of the end segments is 20 in. and the length
of the prismatic middle segment is 50 in. Also, the diameters
at cross sections A, B, C, and D are 0.5, 1.0, 1.0, and 0.5 in.,
respectively, and the modulus of elasticity is 18,000 ksi.
(Hint: Use the result of Example 2-4.)

A B
3.0k ¢ D
— in’%&o K

PROB. 2.3-1

2.3-2 A long, rectangular copper bar under a tensile load P
hangs from a pin that is supported by two steel posts (see
figure). The copper bar has a length of 2.0 m, a cross-sectional
area of 4800 mm?, and a modulus of elasticity E. = 120 GPa.
Each steel post has a height of 0.5 m, a cross-sectional area of
4500 mm?, and a modulus of elasticity E; = 200 GPa.

(a) Determine the downward displacement & of the
lower end of the copper bar due to a load P = 180 kN.

(b) What is the maximum permissible load P, if the
displacement 6 is limited to 1.0 mm?

PROB. 2.3-2

2.3-3 A steel bar AD (see figure) has a cross-sectional
area of 0.40 in.? and is loaded by forces P; = 2700 lb,
P, = 1800 Ib, and P; = 1300 lb. The lengths of the
segments of the bar are a = 60 in., b = 24 in., and ¢ = 36 in.

(a) Assuming that the modulus of elasticity £ =
30 X 10° psi, calculate the change in length & of the bar.
Does the bar elongate or shorten?

(b) By what amount P should the load P5 be increased
so that the bar does not change in length when the three loads
are applied?

A B
l a 117\"\

PROB. 2.3-3

2.3-4 A rectangular bar of length L has a slot in the middle
half of its length (see figure). The bar has width b, thickness ¢,
and modulus of elasticity E. The slot has width b/4.

(a) Obtain a formula for the elongation 6 of the bar due
to the axial loads P.

(b) Calculate the elongation of the bar if the material is
high-strength steel, the axial stress in the middle region is
160 MPa, the length is 750 mm, and the modulus of elas-
ticity is 210 GPa.

PROBS. 2.3-4 and 2.3-5

2.3-5 Solve the preceding problem if the axial stress in the
middle region is 24,000 psi, the length is 30 in., and the
modulus of elasticity is 30 X 10° psi.

2.3-6 A two-story building has steel columns AB in the first
floor and BC in the second floor, as shown in the figure. The
roof load P; equals 400 kN and the second-floor load P,
equals 720 kN. Each column has length L = 3.75 m. The
cross-sectional areas of the first- and second-floor columns
are 11,000 mm? and 3,900 mm>, respectively.

(a) Assuming that £ = 206 GPa, determine the total
shortening 8, of the two columns due to the combined
action of the loads P; and P-.



(b) How much additional load P, can be placed at the
top of the column (point C) if the total shortening 4 is not
to exceed 4.0 mm?

P=400kN|
M
L=375m
Py=T720kN
i B
L=375m
A

PROB. 2.3-6

2.3-7 A steel bar 8.0 ft long has a circular cross section of
diameter d; = 0.75 in. over one-half of its length and diam-
eter d, = 0.5 in. over the other half (see figure). The
modulus of elasticity E = 30 X 10° psi.

(a) How much will the bar elongate under a tensile load
P = 5000 1b?

(b) If the same volume of material is made into a bar of
constant diameter d and length 8.0 ft, what will be the elon-
gation under the same load P?

[d1=075in. 14,2050 in.

P P =5000Ib

PROB. 2.3-7

2.3-8 A bar ABC of length L consists of two parts of equal
lengths but different diameters. Segment AB has diameter
d; = 100 mm, and segment BC has diameter d, = 60 mm.
Both segments have length /2 = 0.6 m. A longitudinal hole
of diameter d is drilled through segment AB for one-half of
its length (distance L/4 = 0.3 m). The bar is made of plastic
having modulus of elasticity £ = 4.0 GPa. Compressive
loads P = 110 kN act at the ends of the bar.

(a) If the shortening of the bar is limited to 8.0 mm,
what is the maximum allowable diameter d,,,, of the hole?
(See figure part a.)

(b) Now, if d,,. is instead set at d>/2, at what distance b
from end C should load P be applied to limit the bar short-
ening to 8.0 mm? (See figure part b.)

CHAPTER 2 Problems

(c) Finally, if loads P are applied at the ends and
dmax = dp/2, what is the permissible length x of the hole if
shortening is to be limited to 8.0 mm? (See figure part c.)

0
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\_/q
~U1

PROB. 2.3-8
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2.3-9 A wood pile, driven into the earth, supports a
load P entirely by friction along its sides (see figure).
The friction force f per unit length of pile is assumed to
be uniformly distributed over the surface of the pile. The
pile has length L, cross-sectional area A, and modulus of
elasticity E.

(a) Derive a formula for the shortening & of the pile in
terms of P, L, E, and A.

(b) Draw a diagram showing how the compressive
stress o varies throughout the length of the pile.

PROB. 2.3-9

Sweated
joint

2.3-10 Consider the copper tubes joined below using a
“sweated” joint. Use the properties and dimensions
given.

(a) Find the total elongation of segment 2-3-4 (3,_4) for
an applied tensile force of P = 5 kN. Use E. = 120 GPa.

(b) If the yield strength in shear of the tin-lead
solder is 7, = 30 MPa and the tensile yield strength of the
copper is o, = 200 MPa, what is the maximum load Py«
that can be applied to the joint if the desired factor of
safety in shear is FS, = 2 and in tension is FS, = 1.7?

(c) Find the value of L, at which tube and solder
capacities are equal.

2.3-11 The nonprismatic cantilever circular bar shown has
an internal cylindrical hole of diameter d/2 from O to x, so
the net area of the cross section for Segment 1 is (3/4)A.
Load P is applied at x, and load P/2 is applied at x = L.
Assume that E is constant.

Segment number

Solder joints

—

dp=18.9 mm
t=1.25 mm
dy=22.2 mm
t=1.65 mm
L; =40 mm
L2 =L4= 18 mm

Tin-lead solder in space
between copper tubes;
assume thickness of
solder equal zero

PROB. 2.3-10



(a) Find reaction force R;.

(b) Find internal axial forces N; in segments 1 and 2.

(c) Find x required to obtain axial displacement at
joint 3 of 6; = PL/EA.

(d) In (c¢), what is the displacement at joint 2, 6,?

(e) If P acts at x = 2L/3 and P/2 at joint 3 is replaced
by BP, find B so that 6; = PL/EA.

(f) Draw the axial force (AFD: N(x), 0 = x = L) and
axial displacement (ADD: 8(x), 0 =x =1L) diagrams
using results from (b) through (d) above.

Segment 1 ‘ Segment 2
l d 3 A
R, l 4 A »
B e ] > P > —
) 2
T ld 2 3
‘ 2
\ X \ L—x—
AFD 0 0
ADD 0 0
PROB. 2.3-11

2.3-12 A prismatic bar AB of length L, cross-sectional area
A, modulus of elasticity E, and weight W hangs vertically
under its own weight (see figure).

(a) Derive a formula for the downward displacement 8.
of point C, located at distance /1 from the lower end of
the bar.

(b) What is the elongation g of the entire bar?

(c) What is the ratio 3 of the elongation of the upper
half of the bar to the elongation of the lower half of the
bar?

CHAPTER 2 Problems

]

PROB. 2.3-12

*2.3-13 A flat bar of rectangular cross section, length L, and
constant thickness ¢ is subjected to tension by forces P (see
figure). The width of the bar varies linearly from b; at the
smaller end to b, at the larger end. Assume that the angle of
taper is small.

(a) Derive the following formula for the elongation of
the bar:

PL b,

§=——In
Etb, — by) by

(b) Calculate the elongation, assuming L = 5 ft,
t =10 in, P = 25k, by = 4.0 in.,, b, = 6.0 in., and
E =30 X 10° psi.

PROB. 2.3-13



CHAPTER 2 Axially Loaded Members

*2.3-14 A post AB supporting equipment in a laboratory is
tapered uniformly throughout its height A (see figure). The
cross sections of the post are square, with dimensions b X b
at the top and 1.5b X 1.5b at the base.

Derive a formula for the shortening 6 of the post due to
the compressive load P acting at the top. (Assume that the
angle of taper is small and disregard the weight of the post
itself.)

1.5b

PROB. 2.3-14

*2.3-15 A long, slender bar in the shape of a right circular
cone with length L and base diameter d hangs vertically
under the action of its own weight (see figure). The weight of
the cone is W and the modulus of elasticity of the material
isE.

Derive a formula for the increase & in the length of the
bar due to its own weight. (Assume that the angle of taper of
the cone is small.)

d
/[ /

PROB. 2.3-15

2.3-16 A uniformly tapered tube AB of circular cross
section and length L is shown in the figure. The average
diameters at the ends are d, and dg = 2d,. Assume E is
constant. Derive a formula for the elongation & of the tube
when it is subjected to loads P acting at the ends for the
following cases:

(a) A hole of constant diameter d, is drilled from B
toward A to form a hollow section of length x (see figure
part a).

(b) A hole of variable diameter d(x) is drilled from B
toward A to form a hollow section of length x and
constant thickness 7 (see figure part b). (Assume that

t = da/20.)
I
A B

*% |

%d—A{
J@L

@ | L l
d(x)
@z constant
J dp L
(b)

PROB. 2.3-16

**2.3-17 The main cables of a suspension bridge [see part (a)
of the figure] follow a curve that is nearly parabolic because
the primary load on the cables is the weight of the bridge
deck, which is uniform in intensity along the horizontal.
Therefore, let us represent the central region AOB of one of
the main cables [see part (b) of the figure] as a parabolic
cable supported at points A and B and carrying a uniform



load of intensity g along the horizontal. The span of the cable
is L, the sag is h, the axial rigidity is EA, and the origin of
coordinates is at midspan.

(a) Derive the following formula for the elongation of
cable AOB shown in part (b) of the figure:
ql’® 164>

1+
8hEA ( 312

6= )

(b) Calculate the elongation & of the central span of
one of the main cables of the Golden Gate Bridge,
for which the dimensions and properties are L = 4200 ft,
h = 470 ft, g = 12,700 1b/ft, and E = 28,800,000 psi.
The cable consists of 27,572 parallel wires of diameter
0.196 in.

Hint: Determine the tensile force T at any point in the
cable from a free-body diagram of part of the cable; then
determine the elongation of an element of the cable of length
ds; finally, integrate along the curve of the cable to obtain an
equation for the elongation 6.

(a)
N T,
; |
0 L,
EERRENREEN
(b)

**2.3-18 A bar ABC revolves in a horizontal plane about
a vertical axis at the midpoint C (see figure). The bar,
which has length 2L and cross-sectional area A, revolves at
constant angular speed w. Each half of the bar (AC and
BC) has weight W, and supports a weight W, at its end.

CHAPTER 2 Problems

Derive the following formula for the elongation of
one-half of the bar (that is, the elongation of either AC
or BC):

L’

S=
3gEA

(Wi + 3W,)

in which E is the modulus of elasticity of the material of the
bar and g is the acceleration of gravity.

@

Wzg Wl/ =7 Wl/ §W2

PROB. 2.3-18

2.4-1 The assembly shown in the figure consists of a brass
core (diameter d; = 0.25 in.) surrounded by a steel shell
(inner diameter d, = 0.28 in., outer diameter d; = 0.35 in.).
A load P compresses the core and shell, which have length
L = 4.0 in. The moduli of elasticity of the brass and steel are
E, =15 X 10° psi and E; = 30 X 10° psi, respectively.

(a) What load P will compress the assembly by
0.003 in.?

(b) If the allowable stress in the steel is 22 ksi and the
allowable stress in the brass is 16 ksi, what is the allowable
compressive load Pow? (Suggestion: Use the equations
derived in Example 2-5.)

P

Steel shell
Brass core

dy

d34’

PROB. 2.4-1
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2.4-2 A cylindrical assembly consisting of a brass core and
an aluminum collar is compressed by a load P (see figure).
The length of the aluminum collar and brass core is 350 mm,
the diameter of the core is 25 mm, and the outside diameter
of the collar is 40 mm. Also, the moduli of elasticity of the
aluminum and brass are 72 GPa and 100 GPa, respectively.

(a) If the length of the assembly decreases by 0.1% when
the load P is applied, what is the magnitude of the load?

(b) What is the maximum permissible load P, if the
allowable stresses in the aluminum and brass are 80 MPa and
120 MPa, respectively? (Suggestion: Use the equations
derived in Example 2-5.)

P
% -
N—1]
i i Aluminum collar
i { Brass core
] ]
i i
i 1350 mm
1
] ]
1 1
1 1
i i 25 mm
40 mm

PROB. 2.4-2

2.4-3 Three prismatic bars, two of material A and one of
material B, transmit a tensile load P (see figure). The two outer
bars (material A) are identical. The cross-sectional area of the
middle bar (material B) is 50% larger than the cross-sectional
area of one of the outer bars. Also, the modulus of elasticity of
material A is twice that of material B.

(a) What fraction of the load P is transmitted by the
middle bar?

(b) What is the ratio of the stress in the middle bar to the
stress in the outer bars?

(c) What is the ratio of the strain in the middle bar to the
strain in the outer bars?

PROB. 2.4-3

2.4-4 A circular bar ACB of diameter d having a cylindrical
hole of length x and diameter d/2 from A to C is held
between rigid supports at A and B. A load P acts at L/2 from
ends A and B. Assume E is constant.

(a) Obtain formulas for the reactions R, and Ry at
supports A and B, respectively, due to the load P (see figure
part a).

(b) Obtain a formula for the displacement & at the
point of load application (see figure part a).

(c) For what value of x is Rg = (6/5) R,? (See figure part a.)

(d) Repeat (a) if the bar is now tapered linearly from A to
B as shown in figure part b and x = L/2.

(e) Repeat (a) if the bar is now rotated to a vertical posi-
tion, load P is removed, and the bar is hanging under its own
weight (assume mass density = p). (See figure part c.) Assume
that x = L/2

| L | P,
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PROB. 2.4-4

2.4-5 Three steel cables jointly support a load of 12 k (see
figure). The diameter of the middle cable is 3/4 in. and
the diameter of each outer cable is 1/2 in. The tensions in
the cables are adjusted so that each cable carries one-third of
the load (i.e., 4 k). Later, the load is increased by 9 k to a
total load of 21 k.

(a) What percent of the total load is now carried by the
middle cable?

(b) What are the stresses o3, and oy, in the middle and
outer cables, respectively? (Note: See Table 2-1 in Section 2.2
for properties of cables.)

CHAPTER 2 Problems

PROB. 2.4-5

2.4-6 A plastic rod AB of length L = 0.5 m has a diam-
eter d; = 30 mm (see figure). A plastic sleeve CD of
length ¢ = 0.3 m and outer diameter d, = 45 mm is
securely bonded to the rod so that no slippage can occur
between the rod and the sleeve. The rod is made of an
acrylic with modulus of elasticity E; = 3.1 GPa and the
sleeve is made of a polyamide with E, = 2.5 GPa.

(a) Calculate the elongation 6 of the rod when it is
pulled by axial forces P = 12 kN.

(b) If the sleeve is extended for the full length of the
rod, what is the elongation?

(c) If the sleeve is removed, what is the elongation?

PROB. 2.4-6
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2.4-7 The axially loaded bar ABCD shown in the figure is
held between rigid supports. The bar has cross-sectional
area A; from A to C and 24, from C to D.

(a) Derive formulas for the reactions R4 and R, at the
ends of the bar.

(b) Determine the displacements &z and 8¢ at points B
and C, respectively.

(c) Draw an axial-displacement diagram (ADD) in
which the abscissa is the distance from the left-hand support
to any point in the bar and the ordinate is the horizontal
displacement § at that point.

el )
‘A B C D

L

4 4 2

PROB. 2.4-7

2.4-8 The fixed-end bar ABCD consists of three prismatic
segments, as shown in the figure. The end segments have
cross-sectional area A; = 840 mm> and length L; = 200 mm.
The middle segment has cross-sectional area A, = 1260 mm?
and length L, = 250 mm. Loads Py and P are equal to
25.5 kN and 17.0 kN, respectively.

(a) Determine the reactions R4 and Rp at the fixed
supports.

(b) Determine the compressive axial force Fpc in the
middle segment of the bar.

Ay Ay Ay
Pp Pc l
A D
B C
Ly | L, Ly
PROB. 2.4-8

2.4-9 The aluminum and steel pipes shown in the figure are
fastened to rigid supports at ends A and B and to a rigid plate
C at their junction. The aluminum pipe is twice as long as the
steel pipe. Two equal and symmetrically placed loads P act
on the plate at C.

(a) Obtain formulas for the axial stresses o, and oy in
the aluminum and steel pipes, respectively.

(b) Calculate the stresses for the following data: P = 12 k,
cross-sectional area of aluminum pipe A, = 8.92 in.%, cross-
sectional area of steel pipe A, = 1.03 in.%, modulus of elasticity
of aluminum E, = 10 X 10° psi, and modulus of elasticity of
steel E, = 29 X 10° psi.

A E E/Steel pipe
L i
Pl 1 ¥ 1P
3
[ . : ]
g
I I
1 1
1 1
| i
oL i i Aluminum
i i pipe
0
I I
1 1
1 1
1 1
Bl |

PROB. 2.4-9

2.4-10 A nonprismatic bar ABC is composed of two
segments: AB of length L; and cross-sectional area A;;
and BC of length L, and cross-sectional area A,.
The modulus of elasticity E, mass density p, and accelera-
tion of gravity g are constants. Initially, bar ABC is
horizontal and then is restrained at A and C and rotated to
a vertical position. The bar then hangs vertically under its
own weight (see figure). Let Ay = 2A, = Aand L, = 3 L,
_2 5

L,=%L.

(a) Obtain formulas for the reactions R, and R, at
supports A and C, respectively, due to gravity.

(b) Derive a formula for the downward displacement 0z
of point B.

(c) Find expressions for the axial stresses a small
distance above points B and C, respectively.



A
Al \\
Ly
0 B
4
Stress
elements
L,
L7
Ay \
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PROB. 2.4-10

2.4-11 A bimetallic bar (or composite bar) of square
cross section with dimensions 2b X 2b is constructed of
two different metals having moduli of elasticity E; and
E, (see figure). The two parts of the bar have the same
cross-sectional dimensions. The bar is compressed by
forces P acting through rigid end plates. The line of
action of the loads has an eccentricity e of such magni-
tude that each part of the bar is stressed uniformly in
compression.

(a) Determine the axial forces P and P, in the two parts
of the bar.

(b) Determine the eccentricity e of the loads.

(c) Determine the ratio /0, of the stresses in the two
parts of the bar.

E,

E— =

S

2]

PROB. 2.4-11
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2.4-12 A rigid bar of weight W = 800 N hangs from three
equally spaced vertical wires (length L = 150 mm, spacing
a = 50 mm): two of steel and one of aluminum. The wires
also support a load P acting on the bar. The diameter of
the steel wires is d; =2 mm, and the diameter of the
aluminum wire is d, = 4 mm. Assume E; = 210 GPa and
E, = 70 GPa.

(a) What load P, can be supported at the midpoint of
the bar (x = a) if the allowable stress in the steel wires is
220 MPa and in the aluminum wire is 80 MPa? (See figure
parta.)

(b) What is Pyjow if the load is positioned at x = a/2?
(See figure part a.)

(c) Repeat (b) above if the second and third wires are
switched as shown in figure part b.

e >« a >

Rigid bar
of weight W

Rigid bar
/ of weight W

PROB. 2.4-12
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*2.4-13 A horizontal rigid bar of weight W = 7200 Ib is
supported by three slender circular rods that are equally
spaced (see figure). The two outer rods are made of
aluminum (£, = 10 X 10° psi) with diameter d; = 0.4 in. and
length L; = 40 in. The inner rod is magnesium (£, = 6.5 X
10° psi) with diameter d, and length L,. The allowable
stresses in the aluminum and magnesium are 24,000 psi and
13,000 psi, respectively.

If it is desired to have all three rods loaded to their
maximum allowable values, what should be the diameter d,
and length L, of the middle rod?

=N
-— -
dy
d—1> «— —> <—dl Ll

W = weight of rigid bar
PROB. 2.4-13

2.4-14 A circular steel bar ABC (E = 200 GPa) has cross-
sectional area A from A to B and cross-sectional area A, from
B to C (see figure). The bar is supported rigidly at end A and
is subjected to a load P equal to 40 kN at end C. A circular
steel collar BD having cross-sectional area A3 supports the bar
at B. The collar fits snugly at B and D when there is no load.

Determine the elongation 64 of the bar due to the
load P. (Assume L; = 2L; = 250 mm, L, = 225 mm, A, =
2A5 = 960 mm?, and A, = 300 mm?.)

PROB. 2.4-14

**2.4-15 A rigid bar AB of length L = 66 in. is hinged to a
support at A and supported by two vertical wires attached at
points C and D (see figure). Both wires have the same cross-
sectional area (A = 0.0272 in.?) and are made of the same
material (modulus £ = 30 X 10° psi). The wire at C has length
h = 18 in. and the wire at D has length twice that amount. The
horizontal distances are ¢ = 20 in. and d = 50 in.

(a) Determine the tensile stresses oc and op in the
wires due to the load P = 340 Ib acting at end B of the bar.

(b) Find the downward displacement dp at end B of the
bar.

PROB. 2.4-15

*2.4-16 A rigid bar ABCD is pinned at point B and
supported by springs at A and D (see figure). The springs
at A and D have stiffnesses k; = 10 kN/m and &k, =
25 kN/m, respectively, and the dimensions a, b, and ¢ are
250 mm, 500 mm, and 200 mm, respectively. A load P acts
at point C.

If the angle of rotation of the bar due to the action of the
load P is limited to 3°, what is the maximum permissible
load P,,,,?

| a=250mm | b =500 mm \
Al Bl C D
P
¢ =200 mm
ko = 25 kN/m
ki = 10 kN/m
PROB. 2.4-16

**2.4-17 A trimetallic bar is uniformly compressed by an
axial force P = 9 kips applied through a rigid end plate (see
figure). The bar consists of a circular steel core surrounded



by brass and copper tubes. The steel core has diameter
1.25 in., the brass tube has outer diameter 1.75 in., and the
copper tube has outer diameter 2.25 in. The corresponding
moduli of elasticity are E; = 30,0000 ksi, E, = 16,000 ksi,
and E. = 18,000 ksi.

Calculate the compressive stresses oy, 03, and o, in the
steel, brass, and copper, respectively, due to the force P.

P9k Copper tube ,Brass tube
Y
N Steel core
1.25
in.
<J .7547
in.
0 225
in.

PROB. 2.4-17

2.5-1 The rails of a railroad track are welded together at
their ends (to form continuous rails and thus eliminate the
clacking sound of the wheels) when the temperature is
60°F.

What compressive stress o is produced in the rails when
they are heated by the sun to 120°F if the coefficient of
thermal expansion & = 6.5 X 10~ %°F and the modulus of
elasticity E = 30 X 10° psi?

2.5-2 An aluminum pipe has a length of 60 m at a
temperature of 10°C. An adjacent steel pipe at the same
temperature is 5 mm longer than the aluminum pipe.

At what temperature (degrees Celsius) will the aluminum
pipe be 15 mm longer than the steel pipe? (Assume that the
coefficients of thermal expansion of aluminum and steel are
a, =23 X 107%°C and o, = 12 X 10~%/°C, respectively.)

CHAPTER 2 Problems

2.5-3 A rigid bar of weight W = 750 Ib hangs from three
equally spaced wires, two of steel and one of aluminum (see
figure). The diameter of the wires is 1/8 in. Before they were
loaded, all three wires had the same length.

What temperature increase AT in all three wires will
result in the entire load being carried by the steel wires?
(Assume E; = 30 X 10° psi, @, = 6.5 X 107 °F, and
a, = 12 X 107°%°F.)

W=17501b
Y

PROB. 2.5-3

2.5-4 A steel rod of 15-mm diameter is held snugly (but
without any initial stresses) between rigid walls by the
arrangement shown in the figure. (For the steel rod, use
o =12 X 107°/°C and E = 200 GPa.)

(a) Calculate the temperature drop AT (degrees
Celsius) at which the average shear stress in the 12-mm
diameter bolt becomes 45 MPa.

(b) What are the average bearing stresses in the bolt
and clevis at A and the washer (d,, = 20 mm) and wall
(t = 18mm) at B?

Washer,
d,, =20 mm
12-mm diameter bolt /
N B
A \ ) 15 mm 18 mm
Clevis,
t=10 mm

PROB. 2.5-4
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2.5-5 A bar AB of length L is held between rigid supports
and heated nonuniformly in such a manner that the temper-
ature increase AT at distance x from end A is given by the
expression AT = ATpx3/L3, where ATy is the increase in
temperature at end B of the bar (see figure part a).

(a) Derive a formula for the compressive stress o, in the
bar. (Assume that the material has modulus of elasticity £ and
coefficient of thermal expansion ).

(b) Now modify the formula in (a) if the rigid support
at A is replaced by an elastic support at A having a spring
constant k (see figure part b). Assume that only bar AB is
subject to the temperature increase.

AT AT
N
0
A B
f—
I L |
(@)
AT
AT
N
0

(b)

PROB. 2.5-5

2.5-6 A plastic bar ACB having two different solid circular
cross sections is held between rigid supports as shown in the
figure. The diameters in the left- and right-hand parts are
50 mm and 75 mm, respectively. The corresponding lengths
are 225 mm and 300 mm. Also, the modulus of elasticity £
is 6.0 GPa, and the coefficient of thermal expansion « is
100 X 10~%°C. The bar is subjected to a uniform tempera-
ture increase of 30°C.

(a) Calculate the following quantities: (1) the compres-
sive force N in the bar; (2) the maximum compressive stress
o,; and (3) the displacement ¢ of point C.

(b) Repeat (a) if the rigid support at A is replaced by an
elastic support having spring constant k = 50 MN/m (see
figure part b; assume that only the bar ACB is subject to the
temperature increase).

|75mm p

| A |[50mm C
| T T 1
L225 mm#%o mm

(a)

|75mm g

kA |[50mm C
| f 1 '
LZZS mmJ<—300 mm

(b)

PROB. 2.5-6

2.5-7 A circular steel rod AB (diameter d; = 1.0 in., length
L, =3.0 ft) has a bronze sleeve (outer diameter d, =
1.25 in., length L, = 1.0 ft) shrunk onto it so that the two
parts are securely bonded (see figure).

Calculate the total elongation 6 of the steel bar due to a
temperature rise AT = 500°F. (Material properties are as
follows: for steel, E, = 30 X 10° psi and o, = 6.5 X 107 %/°F;
for bronze, E, = 15 X 10° psiand o, = 11 X 107%/°F.)

S
o
.
> Uw

PROB. 2.5-7

2.5-8 A brass sleeve S is fitted over a steel bolt B (see figure),
and the nut is tightened until it is just snug. The bolt has a
diameter dg = 25 mm, and the sleeve has inside and outside
diameters d; = 26 mm and d, = 36 mm, respectively.
Calculate the temperature rise AT that is required to
produce a compressive stress of 25 MPa in the sleeve.



(Use material properties as follows: for the sleeve,
as = 21 X 107%°C and E; = 100 GPa; for the bolt,
ag = 10 X 107%°C and Ez = 200 GPa.) (Suggestion: Use
the results of Example 2-8.)

dy
i d d Sleeve (S)
|
1 l
i i 5 1
T Bolt (B)

PROB. 2.5-8

2.5-9 Rectangular bars of copper and aluminum are held by
pins at their ends, as shown in the figure. Thin spacers
provide a separation between the bars. The copper bars have
cross-sectional dimensions 0.5 in. X 2.0 in., and the
aluminum bar has dimensions 1.0 in. X 2.0 in.

Determine the shear stress in the 7/16 in. diameter
pins if the temperature is raised by 100°F. (For copper,
E.= 18,000 ksi and o, = 9.5 X 10~ %°F; for aluminum,
E, = 10,000 ksi and a, = 13 X 10~ 5/°F.) Suggestion: Use
the results of Example 2-8.

?m; Copper bar\ %

[

| B Aluminum bar |

[ B A N [:?
Era Copper bar"

PROB. 2.5-9F

*2.5-10 A rigid bar ABCD is pinned at end A and supported
by two cables at points B and C (see figure). The cable at B has
nominal diameter dz = 12 mm and the cable at C has nominal
diameter d-= 20 mm. A load P acts at end D of the bar.

What is the allowable load P if the temperature rises by
60°C and each cable is required to have a factor of safety of
at least 5 against its ultimate load?

(Note: The cables have effective modulus of elasticity
E =140 GPa and coefficient of thermal expansion a =
12 X 10~%/°C. Other properties of the cables can be found in
Table 2-1, Section 2.2.)

CHAPTER 2 Problems
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PROB. 2.5-10

*2.5-11 A rigid triangular frame is pivoted at C and held by
two identical horizontal wires at points A and B (see figure).
Each wire has axial rigidity EA = 120 k and coefficient of
thermal expansion @ = 12.5 X 10~ °/°F.

(a) If a vertical load P = 500 Ib acts at point D, what are
the tensile forces 7, and T in the wires at A and B, respec-
tively?

(b) If, while the load P is acting, both wires have their
temperatures raised by 180°F, what are the forces T, and T3?

(c) What further increase in temperature will cause the
wire at B to become slack?

PROB. 2.5-11

2.5-12 A steel wire AB is stretched between rigid supports
(see figure). The initial prestress in the wire is 42 MPa when
the temperature is 20°C.

(a) What is the stress o in the wire when the tempera-
ture drops to 0°C?

(b) At what temperature 7 will the stress in the wire
become zero? (Assume a = 14 X 107%/°C and E = 200 GPa.)

A L
I-H Steel wire j H-I

PROB. 2.5-12




CHAPTER 2 Axially Loaded Members

2.5-13 A copper bar AB of length 25 in. and diameter 2 in.
is placed in position at room temperature with a gap of
0.008 in. between end A and a rigid restraint (see figure).
The bar is supported at end B by an elastic spring with
spring constant k = 1.2 X 10° Ib/in.

(a) Calculate the axial compressive stress o, in the bar
if the temperature of the bar only rises S0°F. (For copper,
use @ = 9.6 X 107%°F and E = 16 X 10° psi.)

(b) What is the force in the spring? (Neglect gravity
effects.)

(c) Repeat (a) if k — .

0.008 in.l

A

25 in. d=2in.

PROB. 2.5-13

2.5-14 A bar AB having length L and axial rigidity EA is
fixed at end A (see figure). At the other end a small gap of
dimension s exists between the end of the bar and a rigid
surface. A load P acts on the bar at point C, which is two-
thirds of the length from the fixed end.

If the support reactions produced by the load P are to be
equal in magnitude, what should be the size s of the gap?

PROB. 2.5-14

2.5-15 Pipe 1 has been inserted snugly into Pipe 2, but the
holes for a connecting pin do not line up: there is a gap s.
The user decides to apply either force P; to Pipe 1 or force
P, to Pipe 2, whichever is smaller. Determine the following
using the numerical properties in the box.

(a) If only P, is applied, find P; (kips) required to close
gap s; if a pin is then inserted and P; removed, what are reac-
tion forces R, and Ry for this load case?

(b) If only P, is applied, find P, (kips) required to close
gap s; if a pin is inserted and P, removed, what are reaction
forces R, and Ry for this load case?

(c) What is the maximum shear stress in the pipes, for
the loads in (a) and (b)?

(d) If a temperature increase AT is to be applied to the
entire structure to close gap s (instead of applying forces P;
and P,), find the AT required to close the gap. If a pin is
inserted after the gap has closed, what are reaction forces R,
and Ry for this case?

(e) Finally, if the structure (with pin inserted) then
cools to the original ambient temperature, what are reaction
forces R, and Rp?

Pipe 1 (steel)
ﬂ ﬁ Gap s

T
s p L] —=4—
RA ‘ | AN RB

Pz‘,\% PyatL,

L
2

Pipe 2 (brass)

P2at

Numerical properties

E; =30,000 ksi, E, = 14,000 ksi

@) =6.5 X 10°%°F, a, = 11 X 10°%/°F

Gap s =0.05 in.

Ly =56in.,d;=6in.,t; =0.5in.,A; = 8.64 in.2
L,=36in.,dy=5in., 1, =025 in., A, = 3.73 in.2

PROB. 2.5-15

2.5-16 A nonprismatic bar ABC made up of segments AB
(length L;, cross-sectional area A;) and BC (length L,,
cross-sectional area A,) is fixed at end A and free at end C
(see figure). The modulus of elasticity of the bar is E.
A small gap of dimension s exists between the end of the
bar and an elastic spring of length L5 and spring constant k.
If bar ABC only (not the spring) is subjected to temperature
increase AT determine the following.

(a) Write an expression for reaction forces R4 and R
if the elongation of ABC exceeds gap length s.

(b) Find expressions for the displacements of points B
and C if the elongation of ABC exceeds gap length s.
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PROB. 2.5-16

2.5-17 Wires B and C are attached to a support at the left-
hand end and to a pin-supported rigid bar at the right-hand
end (see figure). Each wire has cross-sectional area
A = 0.03 in? and modulus of elasticity E = 30 X 10° psi.
When the bar is in a vertical position, the length of each
wire is L = 80 in. However, before being attached to the
bar, the length of wire B was 79.98 in. and of wire C was
79.95 in.

Find the tensile forces Tz and T in the wires under
the action of a force P = 700 Ib acting at the upper end of the
bar.

S

B b
C b
\

80 in. }

PROB. 2.5-17

2.5-18 A rigid steel plate is supported by three posts of high-
strength concrete each having an effective cross-sectional area
A = 40,000 mm” and length L = 2 m (see figure). Before the
load P is applied, the middle post is shorter than the others by
an amount s = 1.0 mm.

Determine the maximum allowable load P, if the
allowable compressive stress in the concrete iS Oyow =
20 MPa. (Use E = 30 GPa for concrete.)
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PROB. 2.5-18

2.5-19 A capped cast-iron pipe is compressed by a brass
rod, as shown. The nut is turned until it is just snug, then add
an additional quarter turn to pre-compress the CI pipe. The
pitch of the threads of the bolt is p = 52 mils (a mil is one-
thousandth of an inch). Use the numerical properties
provided.

(a) What stresses o, and o, will be produced in the
cast-iron pipe and brass rod, respectively, by the additional
quarter turn of the nut?

(b) Find the bearing stress oy, beneath the washer and
the shear stress 7, in the steel cap.

Nut & washer
(dw = % in,) \_ﬂ-_
Steel cap /
(t,=1in)

Cast iron pipe
(d,=61in.,
d; =5.625 in.)

LL‘i = 4 ft /
Brass rod
1.
(dr = 7 1n.)

Modulus of elasticity, E:
Steel (30,000 ksi)

Brass (14,000 ksi)

Cast iron (12,000 ksi)

PROB. 2.5-19
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2.5-20 A plastic cylinder is held snugly between a rigid
plate and a foundation by two steel bolts (see figure).

Determine the compressive stress o, in the plastic
when the nuts on the steel bolts are tightened by one
complete turn.

Data for the assembly are as follows: length L =
200 mm, pitch of the bolt threads p = 1.0 mm, modulus of
elasticity for steel E;, = 200 GPa, modulus of elasticity for
the plastic E, = 7.5 GPa, cross-sectional area of one bolt
A = 36.0 mm?, and cross-sectional area of the plastic
cylinder A, = 960 mm?.

PROBS. 2.5-20 and 2.5-21

2.5-21 Solve the preceding problem if the data for the
assembly are as follows: length L = 10 in., pitch of the
bolt threads p = 0.058 in., modulus of elasticity for
steel E; = 30 X 10° psi, modulus of elasticity for the plastic
E,= 500 ksi, cross-sectional area of one bolt A, =
0.06 ir12.2, and cross-sectional area of the plastic cylinder A, =
1.5in.

2.5-22 Consider the sleeve made from two copper tubes
joined by tin-lead solder over distance s. The sleeve has brass
caps at both ends, which are held in place by a steel bolt and
washer with the nut turned just snug at the outset. Then, two
“loadings” are applied: n = 1/2 turn applied to the nut; at the
same time the internal temperature is raised by AT = 30°C.

(a) Find the forces in the sleeve and bolt, P, and Pg, due
to both the prestress in the bolt and the temperature increase.
For copper, use E. = 120 GPa and «, = 17 X 107%/°C; for
steel, use E, = 200 GPa and o, = 12 X 10~%°C. The pitch of
the bolt threads is p = 1.0 mm. Assume s = 26 mm and bolt
diameter d, = 5 mm.

(b) Find the required length of the solder joint, s, if
shear stress in the sweated joint cannot exceed the allowable
shear stress 7,; = 18.5 MPa.

(c) What is the final elongation of the entire assem-
blage due to both temperature change AT and the initial
prestress in the bolt?

i/5=np

<~ Brass
cap
£ g
EEE AT
655
I
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2.5-23 A polyethylene tube (length L) has a cap which when
installed compresses a spring (with undeformed length L; > L)
by amount 8 = (L; — L). Ignore deformations of the cap and
base. Use the force at the base of the spring as the redundant.
Use numerical properties in the boxes given.

(a) What is the resulting force in the spring, F;?

(b) What is the resulting force in the tube, F,?

(c) What is the final length of the tube, L;?

(d) What temperature change AT inside the tube will
result in zero force in the spring?

s=Li-L| —
o |

Cap (assume rigid)

PROB. 2.5-22

Tube
(d(), t,L, oy, Et)

/

Spring (k, Ly > L)




Modulus of elasticity
Polyethylene tube (E, = 100 ksi)

Coefficients of thermal expansion
a,; =80 X 10-6/°F, a, = 6.5 X 10-6/°F

Properties and dimensions

dy=61in. tzéin.

Ly =12125in.>L=12in. k=15 liqu

PROB. 2.5-23

2.5-24 Prestressed concrete beams are sometimes manufac-
tured in the following manner. High-strength steel wires are
stretched by a jacking mechanism that applies a force Q, as
represented schematically in part (a) of the figure. Concrete
is then poured around the wires to form a beam, as shown in
part (b).

After the concrete sets properly, the jacks are released
and the force Q is removed [see part (c) of the figure]. Thus,
the beam is left in a prestressed condition, with the wires in
tension and the concrete in compression.

Let us assume that the prestressing force Q produces in
the steel wires an initial stress o, = 620 MPa. If the moduli
of elasticity of the steel and concrete are in the ratio 12:1 and
the cross-sectional areas are in the ratio 1:50, what are the
final stresses o, and o in the two materials?

Steel wires
0 4—[ J ]—» 0
(2)
Concrete
,'1,,,,,,,&,",,.1,'1 ,,,,,,,

Q€e— |- .. 7. .- AT N e el 4
(b)
""f"’.;‘;".'””f‘f'f"f"”

ST .o T
(©)

PROB. 2.5-24
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2.5-25 A polyethylene tube (length L) has a cap which is
held in place by a spring (with undeformed length L; < L).
After installing the cap, the spring is post-tensioned by
turning an adjustment screw by amount . Ignore deforma-
tions of the cap and base. Use the force at the base of the
spring as the redundant. Use numerical properties in the
boxes below.

(a) What is the resulting force in the spring, F;?

(b) What is the resulting force in the tube, F,?

(c) What is the final length of the tube, L;?

(d) What temperature change AT inside the tube will
result in zero force in the spring?

A
Cap (assume rigid) ]
Tube
(do, 1, L, o, Ey)
L1
Spring (k, Ly < L) 7
s=L-L, —
—
—
'4
Adjustment
screw
screw

Modulus of elasticity
Polyethylene tube (E, = 100 ksi)

Coefficients of thermal expansion
a, =80 X 10-9/°F, oy, = 6.5 X 10-6/°F

Properties and dimensions

dp=6in. t=%in.
kip

L=12in. Ll =11.875in. k= 15?
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2.6-1 A steel bar of rectangular cross section (1.5 in. X
2.0 in.) carries a tensile load P (see figure). The allowable
stresses in tension and shear are 14,500 psi and 7,100 psi,
respectively. Determine the maximum permissible load P,,,.

P{_‘ﬁ = ; 2.0 in. »

1.5 in.

PROB. 2.6-1

2.6-2 A circular steel rod of diameter d is subjected to a
tensile force P = 3.5 kN (see figure). The allowable stresses
in tension and shear are 118 MPa and 48 MPa, respectively.
What is the minimum permissible diameter d,;, of the rod?

PROB. 2.6-2

2.6-3 A standard brick (dimensions 8 in. X 4 in. X 2.5 in.)
is compressed lengthwise by a force P, as shown in the
figure. If the ultimate shear stress for brick is 1200 psi and
the ultimate compressive stress is 3600 psi, what force P«
is required to break the brick?

PROB. 2.6-3

2.6-4 A brass wire of diameter d = 2.42 mm is stretched
tightly between rigid supports so that the tensile force is T =
98 N (see figure). The coefficient of thermal expansion for
the wire is 19.5 X 10~%°C and the modulus of elasticity is
E =110 GPa.

(a) What is the maximum permissible temperature
drop AT if the allowable shear stress in the wire is 60 MPa?

(b) At what temperature change does the wire go slack?

A Aol

T & |4 |
!
PROBS. 2.6-4 and 2.6-5

2.6-5 A brass wire of diameter d = 1/16 in. is stretched
between rigid supports with an initial tension 7" of 37 1b (see
figure). Assume that the coefficient of thermal expansion is
10.6 X 10~ %/°F and the modulus of elasticity is 15 X 10° psi.)

(a) If the temperature is lowered by 60°F, what is the
maximum shear stress 7, in the wire?

(b) If the allowable shear stress is 10,000 psi, what is
the maximum permissible temperature drop?

(c) At what temperature change AT does the wire go
slack?

2.6-6 A steel bar with diameter d = 12 mm is subjected to a
tensile load P = 9.5 kN (see figure).

(a) What is the maximum normal stress gy, in the bar?

(b) What is the maximum shear stress 7yax?

(c) Draw a stress element oriented at 45° to the axis
of the bar and show all stresses acting on the faces of this
element.

ldz 12 mm

T

A~

F= 9;5 kN
1 >

PROB. 2.6-6

2.6-7 During a tension test of a mild-steel specimen (see
figure), the extensometer shows an elongation of 0.00120 in.
with a gage length of 2 in. Assume that the steel is stressed
below the proportional limit and that the modulus of elas-
ticity £ = 30 X 10° psi.



(a) What is the maximum normal stress oy,,, in the
specimen?

(b) What is the maximum shear stress 7;,,x?

(c) Draw a stress element oriented at an angle of 45° to
the axis of the bar and show all stresses acting on the faces of
this element.

PROB. 2.6-7

2.6-8 A copper bar with a rectangular cross section is held
without stress between rigid supports (see figure). Subse-
quently, the temperature of the bar is raised 50°C.

Determine the stresses on all faces of the elements A
and B, and show these stresses on sketches of the elements.
(Assume @ = 17.5 X 107%°C and E = 120 GPa.)

PROB. 2.6-8

2.6-9 The bottom chord AB in a small truss ABC (see figure)
is fabricated from a W8 X 28 wide-flange steel section. The
cross-sectional area A = 8.25 in.” (Appendix E, Table E-1 (a))
and each of the three applied loads P = 45 k. First, find mem-
ber force N,p; then, determine the normal and shear stresses
acting on all faces of stress elements located in the web of
member AB and oriented at (a) an angle 6 = 0°, (b) an angle 6
=30° and (c) an angle 6 = 45°. In each case, show the
stresses on a sketch of a properly oriented element.
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‘ py

PROB. 2.6-9

2.6-10 A plastic bar of diameter d =32 mm is com-
pressed in a testing device by a force P = 190 N applied as
shown in the figure.

(a) Determine the normal and shear stresses acting on
all faces of stress elements oriented at (1) an angle 6 = 0°,
(2) an angle 6 = 22.5°, and (3) an angle 6 = 45°. In each
case, show the stresses on a sketch of a properly oriented
element. What are o, and Typax?

(b) Find 0y, and 7, in the plastic bar if a re-centering
spring of stiffness k is inserted into the testing device, as
shown in the figure. The spring stiffness is 1/6 of the axial
stiffness of the plastic bar.

P=190N

}100‘n“‘} 300 mm

—— 200 mm

Re-centering
spring
(Part (b) only)

| |.—Plastic bar

|.d=32mm

-

PROB. 2.6-10
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2.6-11 A plastic bar of rectangular cross section (b = 1.5 in.
and h =3 in.) fits snugly between rigid supports at room
temperature (68°F) but with no initial stress (see figure). When
the temperature of the bar is raised to 160°F, the compressive
stress on an inclined plane pq at midspan becomes 1700 psi.

(a) What is the shear stress on plane pg? (Assume a =
60 X 107 %°F and E = 450 X 10> psi.)

(b) Draw a stress element oriented to plane pg and
show the stresses acting on all faces of this element.

(c) If the allowable normal stress is 3400 psi and the
allowable shear stress is 1650 psi, what is the maximum
load P (in +x direction) which can be added at the quarter
point (in addition to thermal effects above) without
exceeding allowable stress values in the bar?

Load P for part (c) only ¢

PROBS. 2.6-11

2.6-12 A copper bar of rectangular cross section (b = 18 mm
and & = 40 mm) is held snugly (but without any initial stress)
between rigid supports (see figure). The allowable stresses on
the inclined plane pg at midspan, for which 6 = 55°, are speci-
fied as 60 MPa in compression and 30 MPa in shear.

(a) What is the maximum permissible temperature rise
AT if the allowable stresses on plane pg are not to be
exceeded? (Assume a = 17 X 107%/°C and E = 120 GPa.)

(b) If the temperature increases by the maximum permis-
sible amount, what are the stresses on plane pg?

(c) If the temperature rise AT = 28°C, how far to the right
of end A (distance L, expressed as a fraction of length L) can
load P = 15 kN be applied without exceeding allowable stress
values in the bar? Assume that o, = 75 MPa and 7, = 35 MPa.

\ L | L |
2 2
p
A B
Load for part (c) only ¢
PROBS. 2.6-12

2.6-13 A circular brass bar of diameter d is member AC
in truss ABC which has load P = 5000 Ib applied at joint
C. Bar AC is composed of two segments brazed together
on a plane pg making an angle « = 36° with the axis of
the bar (see figure). The allowable stresses in the brass
are 13,500 psi in tension and 6500 psi in shear. On the
brazed joint, the allowable stresses are 6000 psi in
tension and 3000 psi in shear. What is the tensile force
Nyc in bar AC? What is the minimum required diameter
d i of bar AC?

PROB. 2.6-13

2.6-14 Two boards are joined by gluing along a scarf
joint, as shown in the figure. For purposes of cutting
and gluing, the angle « between the plane of the joint
and the faces of the boards must be between 10° and
40°. Under a tensile load P, the normal stress in the
boards is 4.9 MPa.

(a) What are the normal and shear stresses acting on the
glued joint if a = 20°?

(b) If the allowable shear stress on the joint is
2.25 MPa, what is the largest permissible value of the angle a?

(c) For what angle « will the shear stress on the glued joint
be numerically equal to twice the normal stress on the joint?



PROB. 2.6-14

2.6-15 Acting on the sides of a stress element cut from a
bar in uniaxial stress are tensile stresses of 10,000 psi and
5000 psi, as shown in the figure.

(a) Determine the angle 6 and the shear stress 7, and
show all stresses on a sketch of the element.

(b) Determine the maximum normal stress oy,,, and the
maximum shear stress 7, in the material.

5000 psi oy = 10,000 psi

N

NN
NA

5000 psi

/

T To
10,000 psi

PROB. 2.6-15

2.6-16 A prismatic bar is subjected to an axial force that
produces a tensile stress gy = 65 MPa and a shear stress
T¢ = 23 MPa on a certain inclined plane (see figure). Deter-
mine the stresses acting on all faces of a stress element
oriented at = 30° and show the stresses on a sketch of the
element.
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A < -

PROB. 2.6-16

*2.6-17 The normal stress on plane pq of a prismatic bar in
tension (see figure) is found to be 7500 psi. On plane rs,
which makes an angle 8 = 30° with plane pq, the stress is
found to be 2500 psi.

Determine the maximum normal stress oy, and
maximum shear stress 7;,,, in the bar.

PROB. 2.6-17

*2.6-18 A tension member is to be constructed of two
pieces of plastic glued along plane pg (see figure). For
purposes of cutting and gluing, the angle # must be between
25° and 45°. The allowable stresses on the glued joint in
tension and shear are 5.0 MPa and 3.0 MPa, respectively.

(a) Determine the angle 6 so that the bar will carry the
largest load P. (Assume that the strength of the glued joint
controls the design.)

(b) Determine the maximum allowable load P,,,, if the
cross-sectional area of the bar is 225 mm?>.

PROB. 2.6-18
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2.6-19 A nonprismatic bar 1-2-3 of rectangular cross section
(b X h) and two materials is held snugly (but without any
initial stress) between rigid supports (see figure). The allow-
able stresses in compression and in shear are specified as
o, and T, respectively. Use the following numerical data:
(Data: by = 4b,/3 = b; Ay =2A, = A; E, =3E,JA=E; o) =
San/d = a; 0, =40,/3 = 04 T = 204/5, T = 30,/5;
let o, =11 ksi, P =12 kips, A =6 in%, E = 30,000 ksi,
a=6.5X10°°F; y; = 5y/3 =v.)

(a) If load P is applied at joint 2 as shown, find an
expression for the maximum permissible temperature rise
AT,,.x so that the allowable stresses are not to be exceeded
at either location A or B.

(b) If load P is removed and the bar is now rotated to a
vertical position where it hangs under its own weight (load
intensity = w; in segment 1-2 and w, in segment 2-3), find an
expression for the maximum permissible temperature rise
AT,.« o that the allowable stresses are not exceeded at either
location 1 or 3. Locations 1 and 3 are each a short distance
from the supports at 1 and 3 respectively.

by b,
1 2
1 P 3
———
Ep Ay a Ey, Ar, oy
(a)
i 1
=
Pl B A by
2
Wa || Ea, Ay, by
27 by l
1 3

PROB. 2.6-19

When solving the problems for Section 2.7, assume that the
material behaves linearly elastically.

2.7-1 A prismatic bar AD of length L, cross-sectional
area A, and modulus of elasticity E is subjected to loads 5P,
3P, and P acting at points B, C, and D, respectively (see
figure). Segments AB, BC, and CD have lengths /6, L/2, and
L/3, respectively.

(a) Obtain a formula for the strain energy U of the bar.

(b) Calculate the strain energy if P = 6 k, L = 52 in.,
A = 2.76 in%, and the material is aluminum with £ = 10.4 X
10° psi.

5P 3P P
A B C D
‘eg | L L]
6 | 2 3
PROB. 2.7-1

2.7-2 A bar of circular cross section having two different
diameters d and 2d is shown in the figure. The length of each
segment of the bar is /2 and the modulus of elasticity of the
material is E.

(a) Obtain a formula for the strain energy U of the bar
due to the load P.

(b) Calculate the strain energy if the load P = 27 kN,
the length L = 600 mm, the diameter d = 40 mm, and the
material is brass with £ = 105 GPa.

PROB. 2.7-2

2.7-3 A three-story steel column in a building supports
roof and floor loads as shown in the figure. The story height
H is 10.5 ft, the cross-sectional area A of the column is 15.5
in.?, and the modulus of elasticity E of the steel is 30 X 10°
psi.

Calculate the strain energy U of the column assuming
P] :40kandP2:P3:60k



Py
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H
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H
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H

PROB. 2.7-3

2.7-4 The bar ABC shown in the figure is loaded by a force
P acting at end C and by a force Q acting at the midpoint B.
The bar has constant axial rigidity EA.

(a) Determine the strain energy U, of the bar when the
force P acts alone (Q = 0).

(b) Determine the strain energy U, when the force Q
acts alone (P = 0).

(c) Determine the strain energy Uz when the forces P
and Q act simultaneously upon the bar.

0 P
A B C

\ s | 2 |
\ 2 \

N

PROB. 2.7-4

2.7-5 Determine the strain energy per unit volume (units of
psi) and the strain energy per unit weight (units of in.) that
can be stored in each of the materials listed in the accompa-
nying table, assuming that the material is stressed to the
proportional limit.

DATA FOR PROBLEM 2.7-5

Weight Modulus of  Proportional
density elasticity limit
Material (Ib/in.”) (ksi) (psi)
Mild steel 0.284 30,000 36,000
Tool steel 0.284 30,000 75,000
Aluminum 0.0984 10,500 60,000
Rubber (soft) 0.0405 0.300 300
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2.7-6 The truss ABC shown in the figure is subjected to a
horizontal load P at joint B. The two bars are identical with
cross-sectional area A and modulus of elasticity E.

(a) Determine the strain energy U of the truss if the
angle B = 60°.

(b) Determine the horizontal displacement 85 of joint B by
equating the strain energy of the truss to the work done by the
load.

PROB. 2.7-6

2.7-7 The truss ABC shown in the figure supports a hori-
zontal load P, = 300 Ib and a vertical load P, = 900 1b. Both
bars have cross-sectional area A = 2.4 in.” and are made of
steel with E = 30 X 10° psi.

(a) Determine the strain energy U, of the truss when
the load P, acts alone (P> = 0).

(b) Determine the strain energy U, when the load P,
acts alone (P, = 0).

(c) Determine the strain energy Us; when both loads act
simultaneously.

B P,=3001b

P,=9001b

‘ 60 in. |

PROB. 2.7-7
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2.7-8 The statically indeterminate structure shown in the
figure consists of a horizontal rigid bar AB supported by five
equally spaced springs. Springs 1, 2, and 3 have stiffnesses
3k, 1.5k, and k, respectively. When unstressed, the lower
ends of all five springs lie along a horizontal line. Bar AB,
which has weight W, causes the springs to elongate by an
amount 6.

(a) Obtain a formula for the total strain energy U of the
springs in terms of the downward displacement 6 of the bar.

(b) Obtain a formula for the displacement 6 by equating
the strain energy of the springs to the work done by the
weight W.

(c) Determine the forces F'y, F», and F; in the springs.

(d) Evaluate the strain energy U, the displacement 8, and
the forces in the springs if W = 600 N and k = 7.5 N/mm.

PROB. 2.7-8

2.7-9 A slightly tapered bar AB of rectangular cross section
and length L is acted upon by a force P (see figure). The
width of the bar varies uniformly from b, at end A to b, at
end B. The thickness 7 is constant.

(a) Determine the strain energy U of the bar.

(b) Determine the elongation 6 of the bar by equating
the strain energy to the work done by the force P.

PROB. 2.7-9

*2.7-10 A compressive load P is transmitted through a
rigid plate to three magnesium-alloy bars that are identical
except that initially the middle bar is slightly shorter than
the other bars (see figure). The dimensions and properties of

the assembly are as follows: length L = 1.0 m, cross-
sectional area of each bar A = 3000 mm?, modulus of
elasticity E = 45 GPa, and the gap s = 1.0 mm.

(a) Calculate the load P, required to close the gap.

(b) Calculate the downward displacement 6 of the rigid
plate when P = 400 kN.

(c) Calculate the total strain energy U of the three bars
when P = 400 kN.

(d) Explain why the strain energy U is not equal to P5/2.
(Hint: Draw a load-displacement diagram.)

o ) s

PROB. 2.7-10

**2.7-11 A block B is pushed against three springs by a force
P (see figure). The middle spring has stiftness k; and the outer
springs each have stiffness k,. Initially, the springs are
unstressed and the middle spring is longer than the outer
springs (the difference in length is denoted s).

(a) Draw a force-displacement diagram with the force P
as ordinate and the displacement x of the block as abscissa.

(b) From the diagram, determine the strain energy U; of
the springs when x = 2s.

(c) Explain why the strain energy U, is not equal to
P6/2, where 6 = 2s.

ko
P
> B k
ko

© )

PROB. 2.7-11

***2,7-12 A bungee cord that behaves linearly elastically
has an unstressed length Lo = 760 mm and a stiffness k = 140
N/m. The cord is attached to two pegs, distance b = 380 mm



apart, and pulled at its midpoint by a force P = 80 N (see figure).
(a) How much strain energy U is stored in the cord?
(b) What is the displacement d¢ of the point where the
load is applied?
(c) Compare the strain energy U with the quantity P5c/2.
(Note: The elongation of the cord is not small compared
to its original length.)

PROB. 2.7-12

Impact Loading

The problems for Section 2.8 are to be solved on the basis of
the assumptions and idealizations described in the text. In
particular, assume that the material behaves linearly elasti-
cally and no energy is lost during the impact.

2.8-1 A sliding collar of weight W = 150 Ib falls from a height
h = 2.0 in. onto a flange at the bottom of a slender vertical rod
(see figure). The rod has length L = 4.0 ft, cross-sectional area
A = 0.75 in.%, and modulus of elasticity E = 30 X 10° psi.

Calculate the following quantities: (a) the maximum
downward displacement of the flange, (b) the maximum
tensile stress in the rod, and (c) the impact factor.

Collar

|

Rod

Flange

@

PROB. 2.8-1
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2.8-2 Solve the preceding problem if the collar has mass
M = 80 kg, the height 2 = 0.5 m, the length L = 3.0 m, the
cross-sectional area A = 350 mm?, and the modulus of elas-
ticity E = 170 GPa.

2.8-3 Solve Problem 2.8-1 if the collar has weight W =
50 1b, the height 7 = 2.0 in., the length L = 3.0 ft, the cross-
sectional area A = 0.25 in.?, and the modulus of elasticity

E = 30,000 ksi.
‘: i
Collar
EI] L
Rod
h
Flau{A

PROBS. 2.8-2 and 2.8-3

2.8-4 A block weighing W = 5.0 N drops inside a cylinder
from a height # = 200 mm onto a spring having stiffness k =
90 N/m (see figure). (a) Determine the maximum shortening
of the spring due to the impact, and (b) determine the impact
factor.

Block T

Cylinder h

1

PROBS. 2.8-4 and 2.8-5
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2.8-5 Solve the preceding problem if the block weighs
W=1.01b,h =12 in.,and k = 0.5 Ib/in.

2.8-6 A small rubber ball (weight W = 450 mN) is attached
by a rubber cord to a wood paddle (see figure). The natural
length of the cord is Ly = 200 mm, its cross-sectional area is
A = 1.6 mm?, and its modulus of elasticity is £ = 2.0 MPa.
After being struck by the paddle, the ball stretches the cord
to a total length L; = 900 mm.

What was the velocity v of the ball when it left the
paddle? (Assume linearly elastic behavior of the rubber cord,
and disregard the potential energy due to any change in
elevation of the ball.)

PROB. 2.8-6

2.8-7 A weight W = 4500 Ib falls from a height 4 onto
a vertical wood pole having length L = 15 ft, diameter
d = 12 in., and modulus of elasticity E = 1.6 X 10° psi
(see figure).

If the allowable stress in the wood under an impact load
is 2500 psi, what is the maximum permissible height 4?

h

d=12in. |

““ L=151t

PROB. 2.8-7

2.8-8 A cable with a restrainer at the bottom hangs vertically
from its upper end (see figure). The cable has an effective
cross-sectional area A = 40 mm? and an effective modulus of
elasticity £ = 130 GPa. A slider of mass M = 35 kg drops
from a height 2 = 1.0 m onto the restrainer.

If the allowable stress in the cable under an impact load
is 500 MPa, what is the minimum permissible length L of the
cable?

Restrainer

PROBS. 2.8-8 and 2.8-9

2.8-9 Solve the preceding problem if the slider has weight
W =1001b, h = 45 in., A = 0.080 in%, E = 21 X 10° psi,
and the allowable stress is 70 ksi.

2.8-10 A bumping post at the end of a track in a railway
yard has a spring constant k = 8.0 MN/m (see figure). The
maximum possible displacement d of the end of the striking
plate is 450 mm.

What is the maximum velocity vy, that a railway car of
weight W =545 kN can have without damaging the
bumping post when it strikes it?

||f VA AN

———=T Tnoneene
| —

PROB. 2.8-10



2.8-11 A bumper for a mine car is constructed with a
spring of stiffness k = 1120 Ib/in. (see figure). If a car
weighing 3450 1b is traveling at velocity v = 7 mph when it
strikes the spring, what is the maximum shortening of the
spring?

BE . s e
PROB. 2.8-11

*2.8-12 A bungee jumper having a mass of 55 kg leaps
from a bridge, braking her fall with a long elastic shock cord
having axial rigidity EA = 2.3 kN (see figure).

If the jumpoff point is 60 m above the water, and if it is
desired to maintain a clearance of 10 m between the jumper
and the water, what length L of cord should be used?

PROB. 2.8-12
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*2.8-13 A weight W rests on top of a wall and is attached
to one end of a very flexible cord having cross-sectional
area A and modulus of elasticity E (see figure). The other
end of the cord is attached securely to the wall. The weight
is then pushed off the wall and falls freely the full length of
the cord.

(a) Derive a formula for the impact factor.

(b) Evaluate the impact factor if the weight, when
hanging statically, elongates the band by 2.5% of its original
length.

PROB. 2.8-13

**2.8-14 A rigid bar AB having mass M = 1.0 kg and
length L = 0.5 m is hinged at end A and supported at end B
by a nylon cord BC (see figure). The cord has cross-sectional
area A = 30 mm?, length b = 0.25 m, and modulus of elas-
ticity E = 2.1 GPa.

If the bar is raised to its maximum height and then
released, what is the maximum stress in the cord?

PROB. 2.8-14
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The problems for Section 2.10 are to be solved by considering
the stress-concentration factors and assuming linearly
elastic behavior.

2.10-1 The flat bars shown in parts (a) and (b) of the figure
are subjected to tensile forces P = 3.0 k. Each bar has thick-
ness ¢ = 0.25 in.

(a) For the bar with a circular hole, determine the
maximum stresses for hole diameters d = 1 in.and d = 2 in. if
the width » = 6.0 in.

(b) For the stepped bar with shoulder fillets, determine
the maximum stresses for fillet radii R = 0.25 in. and R =
0.5 in. if the bar widths are » = 4.0 in. and ¢ = 2.5 in.

~
S ——>
O —>|
~

(b)

PROBS. 2.10-1 and 2.10-2

2.10-2 The flat bars shown in parts (a) and (b) of the figure
are subjected to tensile forces P = 2.5 kN. Each bar has
thickness t = 5.0 mm.

(a) For the bar with a circular hole, determine the
maximum stresses for hole diameters ¢ = 12 mm and
d = 20 mm if the width b = 60 mm.

(b) For the stepped bar with shoulder fillets, determine
the maximum stresses for fillet radii R = 6 mm and R =
10 mm if the bar widths are » = 60 mm and ¢ = 40 mm.

2.10-3 A flat bar of width b and thickness 7 has a hole of
diameter d drilled through it (see figure). The hole may have
any diameter that will fit within the bar.

What is the maximum permissible tensile load P, if
the allowable tensile stress in the material is o;?

PROB. 2.10-3

2.10-4 A round brass bar of diameter d; = 20 mm has upset
ends of diameter d, = 26 mm (see figure). The lengths of the
segments of the bar are L; = 0.3 m and L, = 0.1 m. Quarter-
circular fillets are used at the shoulders of the bar, and the
modulus of elasticity of the brass is £ = 100 GPa.

If the bar lengthens by 0.12 mm under a tensile load P,
what is the maximum stress o;,,, in the bar?

p 10 | | P

D S A )

f
L.

PROBS. 2.10-4 and 2.10-5

f
l«—1Ly

2.10-5 Solve the preceding problem for a bar of monel
metal having the following properties: d; = 1.0 in., d, =
1.4 in., L; = 200 in., L, = 5.0 in., and E = 25 X 10° psi.
Also, the bar lengthens by 0.0040 in. when the tensile load is
applied.

2.10-6 A prismatic bar of diameter dy = 20 mm is being
compared with a stepped bar of the same diameter (d; =
20 mm) that is enlarged in the middle region to a diameter d,
= 25 mm (see figure). The radius of the fillets in the stepped
bar is 2.0 mm.

(a) Does enlarging the bar in the middle region make it
stronger than the prismatic bar? Demonstrate your answer by
determining the maximum permissible load P, for the pris-
matic bar and the maximum permissible load P, for
the enlarged bar, assuming that the allowable stress for the
material is 80 MPa.

(b) What should be the diameter d of the prismatic bar
if it is to have the same maximum permissible load as does
the stepped bar?



PROB. 2.10-6

2.10-7 A stepped bar with a hole (see figure) has widths
b = 2.4 in. and ¢ = 1.6 in. The fillets have radii equal to
0.2 in.

What is the diameter d,,,,, of the largest hole that can be
drilled through the bar without reducing the load-carrying
capacity?

N
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PROB. 2.10-7

Nonlinear Behavior (Changes in Lengths of Bars)

2.11-1 A bar AB of length L and weight density y hangs
vertically under its own weight (see figure). The stress-strain
relation for the material is given by the Ramberg-Osgood
equation (Eq. 2-71):

o a'oa<0')m
e=Z4+ 2% ZL
E E go

Derive the following formula

2 m
s | _oal (v_L)
2F (m +1)E \ oy

for the elongation of the bar.
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PROB. 2.11-1

2.11-2 A prismatic bar of length L = 1.8 m and cross-
sectional area A = 480 mm? is loaded by forces P; = 30 kN
and P, = 60 kN (see figure). The bar is constructed of
magnesium alloy having a stress-strain curve described by
the following Ramberg-Osgood equation:

o 1 o 10
= +— (= =
€7 45000 618 (170) (o= MPa)

in which o has units of megapascals.

(a) Calculate the displacement o of the end of the bar
when the load P; acts alone.

(b) Calculate the displacement when the load P, acts alone.

(c) Calculate the displacement when both loads act
simultaneously.

PROB. 2.11-2

2.11-3 A circular bar of length L = 32 in. and diameter
d = 0.75 in. is subjected to tension by forces P (see figure).
The wire is made of a copper alloy having the following
hyperbolic stress-strain relationship:

o 18000
1 + 300e

(a) Draw a stress-strain diagram for the material.
(b) If the elongation of the wire is limited to 0.25 in. and

the maximum stress is limited to 40 ksi, what is the allow-
able load P?

d
P |

0=€=0.03 (o = ksi)

Y~

PROB. 2.11-3
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2.11-4 A prismatic bar in tension has length L = 2.0 m and
cross-sectional area A = 249 mm?. The material of the bar
has the stress-strain curve shown in the figure.

Determine the elongation & of the bar for each of the
following axial loads: P = 10 kN, 20 kN, 30 kN, 40 kN, and
45 kN. From these results, plot a diagram of load P versus
elongation & (load-displacement diagram).

200
-
o (MPa) P
//
100 /,
0
0 0.005 0.010

PROB. 2.11-4

2.11-5 An aluminum bar subjected to tensile forces P has
length L = 150 in. and cross-sectional area A = 2.0 in.” The
stress-strain behavior of the aluminum may be represented
approximately by the bilinear stress-strain diagram shown in
the figure.

Calculate the elongation & of the bar for each of the
following axial loads: P = 8 k, 16 k, 24 k, 32 k, and 40 k.
From these results, plot a diagram of load P versus elonga-
tion & (load-displacement diagram).

o
- 6 i
12,000 F-—--- Ey=2.4x10° psi
psi
E| =10 x 106 psi
0 €

PROB. 2.11-5

*2.11-6 A rigid bar AB, pinned at end A, is supported by a
wire CD and loaded by a force P at end B (see figure). The
wire is made of high-strength steel having modulus of

elasticity £ = 210 GPa and yield stress oy = 820 MPa. The
length of the wire is L = 1.0 m and its diameter is d =
3 mm. The stress-strain diagram for the steel is defined by
the modified power law, as follows:

(a) Assuming n = 0.2, calculate the displacement &5 at
the end of the bar due to the load P. Take values of P from
2.4 kN to 5.6 kN in increments of 0.8 kN.

(b) Plot a load-displacement diagram showing P versus 6B.

| 2b b l

PROB. 2.11-6

The problems for Section 2.12 are to be solved assuming that
the material is elastoplastic with yield stress oy, yield strain
€y, and modulus of elasticity E in the linearly elastic region
(see Fig. 2-70).

2.12-1 Two identical bars AB and BC support a vertical load
P (see figure). The bars are made of steel having a stress-
strain curve that may be idealized as elastoplastic with yield
stress oy. Each bar has cross-sectional area A.

Determine the yield load Py and the plastic load Pp.

PROB. 2.12-1



2.12-2 A stepped bar ACB with circular cross sections is
held between rigid supports and loaded by an axial force P at
midlength (see figure). The diameters for the two parts of the
bar are d; = 20 mm and d, = 25 mm, and the material is
elastoplastic with yield stress oy = 250 MPa.

Determine the plastic load Pp.

A | ¢t S
—
f k f
L L
2 | 2
PROB. 2.12-2

2.12-3 A horizontal rigid bar AB supporting a load P is
hung from five symmetrically placed wires, each of cross-
sectional area A (see figure). The wires are fastened to a
curved surface of radius R.

(a) Determine the plastic load Pp if the material of the
wires is elastoplastic with yield stress oy.

(b) How is Pp changed if bar AB is flexible instead of
rigid?

(c) How is Pp changed if the radius R is increased?

PROB. 2.12-3

2.12-4 A load P acts on a horizontal beam that is supported by
four rods arranged in the symmetrical pattern shown in the fig-
ure. Each rod has cross-sectional area A and the material is
elastoplastic with yield stress oy. Determine the plastic load Pp.

CHAPTER 2 Problems

PROB. 2.12-4

2.12-5 The symmetric truss ABCDE shown in the figure is

constructed of four bars and supports a load P at joint E. Each

of the two outer bars has a cross-sectional area of 0.307 in.%,

and each of the two inner bars has an area of 0.601 in.? The

material is elastoplastic with yield stress oy = 36 ksi.
Determine the plastic load Pp.

k21 in. >} 54 in. <21 in. >

PROB. 2.12-5



CHAPTER 2 Axially Loaded Members

2.12-6 Five bars, each having a diameter of 10 mm, support
a load P as shown in the figure. Determine the plastic load Pp
if the material is elastoplastic with yield stress oy = 250 MPa.

bl bl bl b

O, O, 7 O, 9 [
2b
) t
vYP
PROB. 2.12-6

2.12-7 A circular steel rod AB of diameter d = 0.60 in. is
stretched tightly between two supports so that initially the
tensile stress in the rod is 10 ksi (see figure). An axial force
P is then applied to the rod at an intermediate location C.

(a) Determine the plastic load Pp if the material is
elastoplastic with yield stress oy = 36 ksi.

(b) How is Pp changed if the initial tensile stress is
doubled to 20 ksi?

A

PROB. 2.12-7

*2.12-8 A rigid bar ACB is supported on a fulcrum at C
and loaded by a force P at end B (see figure). Three identical
wires made of an elastoplastic material (yield stress oy and
modulus of elasticity E) resist the load P. Each wire has
cross-sectional area A and length L.

(a) Determine the yield load Py and the corresponding
yield displacement Jy at point B.

(b) Determine the plastic load Pp and the corresponding
displacement 8p at point B when the load just reaches the
value Pp.

(c) Draw a load-displacement diagram with the load P
as ordinate and the displacement d of point B as abscissa.

f
L
A C B
!
P
LL e a a—f
PROB. 2.12-8

*2.12-9 The structure shown in the figure consists of a
horizontal rigid bar ABCD supported by two steel wires, one
of length L and the other of length 3L/4. Both wires have
cross-sectional area A and are made of elastoplastic material
with yield stress oy and modulus of elasticity E. A vertical
load P acts at end D of the bar.

(a) Determine the yield load Py and the corresponding
yield displacement Oy at point D.

(b) Determine the plastic load Pp and the corresponding
displacement &p at point D when the load just reaches the
value Pp.

(c) Draw a load-displacement diagram with the load P
as ordinate and the displacement Jp, of point D as abscissa.

Vo7
l 1
A B c \ D
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PROB. 2.12-9

**2.12-10 Two cables, each having a length L of
approximately 40 m, support a loaded container of weight
W (see figure). The cables, which have effective cross-
sectional area A = 48.0 mm? and effective modulus of
elasticity E = 160 GPa, are identical except that one cable
is longer than the other when they are hanging separately
and unloaded. The difference in lengths is d = 100 mm.
The cables are made of steel having an elastoplastic stress-
strain diagram with oy = 500 MPa. Assume that the
weight W is initially zero and is slowly increased by the
addition of material to the container.



(a) Determine the weight Wy that first produces yielding
of the shorter cable. Also, determine the corresponding elon-
gation 8y of the shorter cable.

(b) Determine the weight Wp that produces yielding of
both cables. Also, determine the elongation p of the shorter
cable when the weight W just reaches the value Wp.

(c) Construct a load-displacement diagram showing the
weight W as ordinate and the elongation & of the shorter
cable as abscissa. (Hint: The load displacement diagram is
not a single straight line in the region 0 = W = Wy.)

PROB. 2.12-10

**2.12-11 A hollow circular tube T of length L = 15 in. is
uniformly compressed by a force P acting through a rigid
plate (see figure). The outside and inside diameters of the
tube are 3.0 and 2.75 in., repectively. A concentric solid
circular bar B of 1.5 in. diameter is mounted inside the tube.

CHAPTER 2 Problems

When no load is present, there is a clearance ¢ = 0.010 in.
between the bar B and the rigid plate. Both bar and tube are
made of steel having an elastoplastic stress-strain diagram
with E = 29 X 10% ksi and oy = 36 ksi.

(a) Determine the yield load Py and the corresponding
shortening 8y of the tube.

(b) Determine the plastic load Pp and the corresponding
shortening 6, of the tube.

(c) Construct a load-displacement diagram showing the
load P as ordinate and the shortening 6 of the tube as abscissa.
(Hint: The load-displacement diagram is not a single straight
line in the region 0 = P < Py.)

PROB. 2.12-11



Circular shafts are essential components in machines and devices for power generation and transmission.




Torsion

CHAPTER OVERVIEW

Chapter 3 is concerned with the twisting of circular bars and hollow shafts
acted upon by torsional moments. First, we consider uniform torsion which
refers to the case in which torque is constant over the length of a prismatic
shaft, while nonuniform torsion describes cases in which the torsional
moment and/or the torsional rigidity of the cross section varies over the
length. As for the case of axial deformations, we must relate stress and
strain and also applied loading and deformation. For torsion, recall that
Hookes Law for shear states that shearing stresses, 7, are proportional to
shearing strains, 7, with the constant of proportionality being G, the shear-
ing modulus of elasticity. Both shearing stresses and shearing strains vary
linearly with increasing radial distance in the cross section, as described by
the torsion formula. The angle of twist, ¢, is proportional to the internal
torsional moment and the torsional flexibility of the circular bar. Most of the
discussion in this chapter is devoted to linear elastic behavior and small
rotations of statically determinate members. However, if the bar is statically
indeterminate, we must augment the equations of statical equilibrium with
compatibility equations (which rely on torque-displacement relations) to
solve for any unknowns of interest, such as support moments or internal
torsional moments in members. Stresses on inclined sections also are inves-
tigated as a first step toward a more complete consideration of plane stress
states in later chapters. Finally, a number of specialized and advanced topics
(such as strain energy, shear flow in thin-walled tubes, and stress concentra-
tions in torsion) are introduced at the end of this chapter.

The topics in Chapter 3 are organized as follows:

3.1 Introduction 222
3.2 Torsional Deformations of a Circular Bar 223
3.3 Circular Bars of Linearly Elastic Materials 226
3.4 Nonuniform Torsion 238
3.5 Stresses and Strains in Pure Shear 245
3.6 Relationship Between Moduli of Elasticity £ and G 252
3.7 Transmission of Power by Circular Shafts 254
3.8 Statically Indeterminate Torsional Members 259
3.9 Strain Energy in Torsion and Pure Shear 263
3.10 Thin-Walled Tubes 270
*3.11 Stress Concentrations in Torsion 279
Chapter Summary & Review 282
Problems 283

*Specialized and/or advanced topics 291



CHAPTER 3 Torsion

3.1 INTRODUCTION

FIG. 3-1 Torsion of a screwdriver due to a
torque T applied to the handle
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FIG. 3-2 Circular bar subjected to torsion
by torques 7 and 7,

In Chapters 1 and 2, we discussed the behavior of the simplest type of
structural member—namely, a straight bar subjected to axial loads. Now
we consider a slightly more complex type of behavior known as torsion.
Torsion refers to the twisting of a straight bar when it is loaded by
moments (or torques) that tend to produce rotation about the longitudinal
axis of the bar. For instance, when you turn a screwdriver (Fig. 3-1a), your
hand applies a torque 7 to the handle (Fig. 3-1b) and twists the shank of the
screwdriver. Other examples of bars in torsion are drive shafts in automo-
biles, axles, propeller shafts, steering rods, and drill bits.

An idealized case of torsional loading is pictured in Fig. 3-2a,
which shows a straight bar supported at one end and loaded by two
pairs of equal and opposite forces. The first pair consists of the
forces P; acting near the midpoint of the bar and the second pair
consists of the forces P, acting at the end. Each pair of forces forms a
couple that tends to twist the bar about its longitudinal axis. As we
know from statics, the moment of a couple is equal to the product of
one of the forces and the perpendicular distance between the lines of
action of the forces; thus, the first couple has a moment 7, = P;d; and
the second has a moment 7, = P»d,.

Typical USCS units for moment are the pound-foot (Ib-ft) and the
pound-inch (Ib-in.). The SI unit for moment is the newton meter (N-m).

The moment of a couple may be represented by a vector in the form
of a double-headed arrow (Fig. 3-2b). The arrow is perpendicular to the
plane containing the couple, and therefore in this case both arrows are
parallel to the axis of the bar. The direction (or sense) of the moment is
indicated by the right-hand rule for moment vectors—namely, using your
right hand, let your fingers curl in the direction of the moment, and then
your thumb will point in the direction of the vector.

An alternative representation of a moment is a curved arrow acting in
the direction of rotation (Fig. 3-2c). Both the curved arrow and vector
representations are in common use, and both are used in this book. The
choice depends upon convenience and personal preference.

Moments that produce twisting of a bar, such as the moments T
and 7, in Fig. 3-2, are called torques or twisting moments. Cylindrical
members that are subjected to torques and transmit power through rotation
are called shafts; for instance, the drive shaft of an automobile or the
propeller shaft of a ship. Most shafts have circular cross sections, either
solid or tubular.

In this chapter we begin by developing formulas for the deformations
and stresses in circular bars subjected to torsion. We then analyze the state
of stress known as pure shear and obtain the relationship between the
moduli of elasticity £ and G in tension and shear, respectively. Next, we
analyze rotating shafts and determine the power they transmit. Finally, we
cover several additional topics related to torsion, namely, statically inde-
terminate members, strain energy, thin-walled tubes of noncircular cross
section, and stress concentrations.
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3.2 TORSIONAL DEFORMATIONS OF A CIRCULAR BAR

We begin our discussion of torsion by considering a prismatic bar of
circular cross section twisted by torques 7 acting at the ends (Fig. 3-3a).
Since every cross section of the bar is identical, and since every cross
section is subjected to the same internal torque 7, we say that the bar is in
pure torsion. From considerations of symmetry, it can be proved that cross
sections of the bar do not change in shape as they rotate about the longitu-
dinal axis. In other words, all cross sections remain plane and circular and
all radii remain straight. Furthermore, if the angle of rotation between one
end of the bar and the other is small, neither the length of the bar nor its
radius will change.

To aid in visualizing the deformation of the bar, imagine that the left-
hand end of the bar (Fig. 3-3a) is fixed in position. Then, under the action of
the torque 7, the right-hand end will rotate (with respect to the left-hand
end) through a small angle ¢, known as the angle of twist (or angle of rota-
tion). Because of this rotation, a straight longitudinal line pg on the surface
of the bar will become a helical curve pg’, where ¢’ is the position of point
q after the end cross section has rotated through the angle ¢ (Fig. 3-3b).

The angle of twist changes along the axis of the bar, and at intermediate
cross sections it will have a value ¢(x) that is between zero at the left- hand
end and ¢ at the right-hand end. If every cross section of the bar has the
same radius and is subjected to the same torque (pure torsion), the angle
¢(x) will vary linearly between the ends.

Now consider an element of the bar between two cross sections distance dx
apart (see Fig. 3-4a on the next page). This element is shown enlarged in
Fig. 3-4b. On its outer surface we identify a small element abcd, with sides
ab and cd that initially are parallel to the longitudinal axis. During twisting
of the bar, the right-hand cross section rotates with respect to the left-hand
cross section through a small angle of twist d¢, so that points b and ¢ move
to ' and ¢’, respectively. The lengths of the sides of the element, which is
now element ab’c’d, do not change during this small rotation.

However, the angles at the corners of the element (Fig. 3-4b) are no
longer equal to 90° The element is therefore in a state of pure shear,

FIG. 3-3 Deformations of a circular bar in
pure torsion

(b)
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FIG. 3-4 Deformation of an element of
length dx cut from a bar in torsion

(b) ©

which means that the element is subjected to shear strains but no normal
strains (see Fig. 1-28 of Section 1.6). The magnitude of the shear strain at
the outer surface of the bar, denoted .., is equal to the decrease in the
angle at point a, that is, the decrease in angle bad. From Fig. 3-4b we see
that the decrease in this angle is

b
Ymax = ab (a)

where 7.« is measured in radians, bb' is the distance through which
point b moves, and ab is the length of the element (equal to dx). With r
denoting the radius of the bar, we can express the distance bb’ as rd¢,
where d¢ also is measured in radians. Thus, the preceding equation
becomes

_rd¢
Yomax = 7 (b)

This equation relates the shear strain at the outer surface of the bar to the
angle of twist.

The quantity d¢/dx is the rate of change of the angle of twist ¢ with
respect to the distance x measured along the axis of the bar. We will
denote d¢/dx by the symbol 6 and refer to it as the rate of twist, or the
angle of twist per unit length:

_do -
=" 3-1)

With this notation, we can now write the equation for the shear strain at
the outer surface (Eq. b) as follows:
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FIG.3-5 Shear strains in a circular tube

SECTION 3.2 Torsional Deformations of a Circular Bar

Vonax = —rjx‘b = r6 (3-2)

For convenience, we discussed a bar in pure torsion when deriving
Egs. (3-1) and (3-2). However, both equations are valid in more general
cases of torsion, such as when the rate of twist € is not constant but varies
with the distance x along the axis of the bar.

In the special case of pure torsion, the rate of twist is equal to the total
angle of twist ¢ divided by the length L, that is, # = ¢/L. Therefore, for
pure torsion only, we obtain

Vv = V1) = (3-3)

r
IL
This equation can be obtained directly from the geometry of Fig. 3-3a by
noting that 7., is the angle between lines pg and pq’, that is, Y. is the
angle gpq'. Therefore, ym.L is equal to the distance gq’ at the end of
the bar. But since the distance gq’ also equals r¢ (Fig. 3-3b), we obtain

r$ = YmaxL, Which agrees with Eq. (3-3).

The shear strains within the interior of the bar can be found by the same
method used to find the shear strain v,,,, at the surface. Because radii in
the cross sections of a bar remain straight and undistorted during twisting,
we see that the preceding discussion for an element abcd at the outer sur-
face (Fig. 3-4b) will also hold for a similar element situated on the surface
of an interior cylinder of radius p (Fig. 3-4c). Thus, interior elements are
also in pure shear with the corresponding shear strains given by the equa-
tion (compare with Eq. 3-2):

_ P
Y= PO = F Ymax (3-4)

This equation shows that the shear strains in a circular bar vary linearly
with the radial distance p from the center, with the strain being zero at the
center and reaching a maximum value 7,,,, at the outer surface.

A review of the preceding discussions will show that the equations for the
shear strains (Egs. 3-2 to 3-4) apply to circular tubes (Fig. 3-5) as well as
to solid circular bars. Figure 3-5 shows the linear variation in shear strain
between the maximum strain at the outer surface and the minimum strain at
the interior surface. The equations for these strains are as follows:

) _n, _né (3-5a,b)

max L Ymin = r_z Ymax — L

in which r; and r, are the inner and outer radii, respectively, of the tube.
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All of the preceding equations for the strains in a circular bar are
based upon geometric concepts and do not involve the material properties.
Therefore, the equations are valid for any material, whether it behaves elas-
tically or inelastically, linearly or nonlinearly. However, the equations are
limited to bars having small angles of twist and small strains.

3.3 CIRCULAR BARS OF LINEARLY ELASTIC MATERIALS

FIG. 3-6 Shear stresses in a circular bar in
torsion

Now that we have investigated the shear strains in a circular bar in torsion
(see Figs. 3-3 to 3-5), we are ready to determine the directions and magni-
tudes of the corresponding shear stresses. The directions of the stresses
can be determined by inspection, as illustrated in Fig. 3-6a. We observe
that the torque 7 tends to rotate the right-hand end of the bar counter-
clockwise when viewed from the right. Therefore the shear stresses 7
acting on a stress element located on the surface of the bar will have the
directions shown in the figure.

For clarity, the stress element shown in Fig. 3-6a is enlarged in
Fig. 3-6b, where both the shear strain and the shear stresses are shown. As
explained previously in Section 2.6, we customarily draw stress elements
in two dimensions, as in Fig. 3-6b, but we must always remember that
stress elements are actually three-dimensional objects with a thickness
perpendicular to the plane of the figure.

The magnitudes of the shear stresses can be determined from the
strains by using the stress-strain relation for the material of the bar. If the
material is linearly elastic, we can use Hooke’s law in shear (Eq. 1-14):

=Gy (3-6)

in which G is the shear modulus of elasticity and vy is the shear strain in
radians. Combining this equation with the equations for the shear strains
(Egs. 3-2 and 3-4), we get

(b) (©
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FIG. 3-7 Longitudinal and transverse
shear stresses in a circular bar subjected
to torsion

-

FIG. 3-8 Tensile and compressive stresses
acting on a stress element oriented at
45%o the longitudinal axis

FIG. 3-9 Determination of the resultant
of the shear stresses acting on a cross
section

SECTION 3.3 Circular Bars of Linearly Elastic Materials

P
Tmax = Gro 7= Gpl = — Thax (3-7a,b)

in which 7,,,, is the shear stress at the outer surface of the bar (radius r), 7
is the shear stress at an interior point (radius p), and @ is the rate of twist.
(In these equations, @ has units of radians per unit of length.)

Equations (3-7a) and (3-7b) show that the shear stresses vary linearly
with the distance from the center of the bar, as illustrated by the triangular
stress diagram in Fig. 3-6¢. This linear variation of stress is a consequence
of Hookes law. If the stress-strain relation is nonlinear, the stresses will
vary nonlinearly and other methods of analysis will be needed.

The shear stresses acting on a cross-sectional plane are accompa-
nied by shear stresses of the same magnitude acting on longitudinal
planes (Fig. 3-7). This conclusion follows from the fact that equal shear
stresses always exist on mutually perpendicular planes, as explained in
Section 1.6. If the material of the bar is weaker in shear on longitudinal
planes than on cross-sectional planes, as is typical of wood when the
grain runs parallel to the axis of the bar, the first cracks due to torsion
will appear on the surface in the longitudinal direction.

The state of pure shear at the surface of a bar (Fig. 3-6b) is equivalent to
equal tensile and compressive stresses acting on an element oriented at
an angle of 457 as explained later in Section 3.5. Therefore, a rectangular
element with sides at 45%o the axis of the shaft will be subjected to tensile
and compressive stresses, as shown in Fig. 3-8. If a torsion bar is made of a
material that is weaker in tension than in shear, failure will occur in tension
along a helix inclined at 45%o the axis, as you can demonstrate by twisting a
piece of classroom chalk.

The next step in our analysis is to determine the relationship between the
shear stresses and the torque 7. Once this is accomplished, we will be able
to calculate the stresses and strains in a bar due to any set of applied
torques.

The distribution of the shear stresses acting on a cross section is pic-
tured in Figs. 3-6¢ and 3-7. Because these stresses act continuously around
the cross section, they have a resultant in the form of a moment—a moment
equal to the torque T acting on the bar. To determine this resultant, we con-
sider an element of area dA located at radial distance p from the axis of the
bar (Fig. 3-9). The shear force acting on this element is equal to 7 dA,
where 7 is the shear stress at radius p. The moment of this force about the
axis of the bar is equal to the force times its distance from the center, or
TpdA. Substituting for the shear stress 7 from Eq. (3-7b), we can express
this elemental moment as

Toax
aMm = TpdAZTpdA
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The resultant moment (equal to the torque 7') is the summation over the
entire cross-sectional area of all such elemental moments:

Tmax Tmax
T= J dM = —J prdA = Ip (3-8)
A ‘A

r r

in which

Ip = Lpsz (3-9)

is the polar moment of inertia of the circular cross section.
For a circle of radius r and diameter d, the polar moment of inertia is

4 4
fp = — (3-10)

2 32

as given in Appendix D, Case 9. Note that moments of inertia have units
of length to the fourth power."

An expression for the maximum shear stress can be obtained by rear-
ranging Eq. (3-8), as follows:

Tr
Tmax = — 3-11
I (3-11)

This equation, known as the torsion formula, shows that the maximum
shear stress is proportional to the applied torque 7" and inversely propor-
tional to the polar moment of inertia /p.

Typical units used with the torsion formula are as follows. In SI,
the torque 7 is usually expressed in newton meters (N-m), the radius r
in meters (m), the polar moment of inertia /p in meters to the fourth
power (m*), and the shear stress 7 in pascals (Pa). If USCS units are
used, T is often expressed in pound-feet (Ib-ft) or pound-inches
(Ib-in.), r in inches (in.), Ip in inches to the fourth power (in.*), and 7
in pounds per square inch (psi).

Substituting » = d/2 and I, = 7d*/32 into the torsion formula, we
get the following equation for the maximum stress:

16T
Tmax = 3 (3-12)

This equation applies only to bars of solid circular cross section, whereas
the torsion formula itself (Eq. 3-11) applies to both solid bars and circular
tubes, as explained later. Equation (3-12) shows that the shear stress is
inversely proportional to the cube of the diameter. Thus, if the diameter is
doubled, the stress is reduced by a factor of eight.

“Polar moments of inertia are discussed in Section 12.6 of Chapter 12.
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The shear stress at distance p from the center of the bar is

P Tp
= Sk 3-13

; . (3-13)
which is obtained by combining Eq. (3-7b) with the torsion formula
(Eq. 3-11). Equation (3-13) is a generalized torsion formula, and we see
once again that the shear stresses vary linearly with the radial distance
from the center of the bar.

The angle of twist of a bar of linearly elastic material can now be related to
the applied torque 7. Combining Eq. (3-7a) with the torsion formula, we get

9=—— (3-14)

in which @ has units of radians per unit of length. This equation shows that
the rate of twist 6 is directly proportional to the torque 7" and inversely
proportional to the product GIp, known as the torsional rigidity of the bar.

For a bar in pure torsion, the total angle of twist ¢, equal to the rate
of twist times the length of the bar (that is, ¢ = 6L), is

_TIL
b= Gl (3-15)

in which ¢ is measured in radians. The use of the preceding equations
in both analysis and design is illustrated later in Examples 3-1 and 3-2.

The quantity GIp/L, called the torsional stiffness of the bar, is the
torque required to produce a unit angle of rotation. The torsional
flexibility is the reciprocal of the stiffness, or L/GlIp, and is defined as the
angle of rotation produced by a unit torque. Thus, we have the following
expressions:

Gl L
ke =—+ fr="cr
P

(a,b)
These quantities are analogous to the axial stiffness k = EA/L and axial
flexibility f = L/EA of a bar in tension or compression (compare with
Eqgs. 2-4a and 2-4b). Stiffnesses and flexibilities have important roles in
structural analysis.

The equation for the angle of twist (Eq. 3-15) provides a convenient
way to determine the shear modulus of elasticity G for a material. By
conducting a torsion test on a circular bar, we can measure the angle of
twist ¢ produced by a known torque 7. Then the value of G can be calcu-
lated from Eq. (3-15).
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FIG.3-10 Circular tube in torsion

Circular tubes are more efficient than solid bars in resisting torsional
loads. As we know, the shear stresses in a solid circular bar are maximum
at the outer boundary of the cross section and zero at the center. Therefore,
most of the material in a solid shaft is stressed significantly below the
maximum shear stress. Furthermore, the stresses near the center of the
cross section have a smaller moment arm p for use in determining the torque
(see Fig. 3-9 and Eq. 3-8).

By contrast, in a typical hollow tube most of the material is near the
outer boundary of the cross section where both the shear stresses and the
moment arms are highest (Fig. 3-10). Thus, if weight reduction and
savings of material are important, it is advisable to use a circular tube.
For instance, large drive shafts, propeller shafts, and generator shafts
usually have hollow circular cross sections.

The analysis of the torsion of a circular tube is almost identical to that
for a solid bar. The same basic expressions for the shear stresses may be
used (for instance, Eqgs. 3-7a and 3-7b). Of course, the radial distance p is
limited to the range r, to r,, where r; is the inner radius and r, is the outer
radius of the bar (Fig. 3-10).

The relationship between the torque 7 and the maximum stress is
given by Eq. (3-8), but the limits on the integral for the polar moment of
inertia (Eq. 3-9) are p = r; and p = r,. Therefore, the polar moment of
inertia of the cross-sectional area of a tube is

_ T4 o4 _ T g4 4
IP_Z(r2 ”1)—32(d2 dy) (3-16)

The preceding expressions can also be written in the following forms:
Ip =T + ) = TR + ) (3-17)

in which r is the average radius of the tube, equal to (r; + 1,)/2; d is
the average diameter, equal to (d; + d,)/2; and t is the wall thickness
(Fig. 3-10), equal to r, — ry. Of course, Eqgs. (3-16) and (3-17) give
the same results, but sometimes the latter is more convenient.

If the tube is relatively thin so that the wall thickness ¢ is small
compared to the average radius r, we may disregard the terms #* in
Eq. (3-17). With this simplification, we obtain the following approximate
Sformulas for the polar moment of inertia:

ad>t

Ip =~ 2mrit =

(3-18)

These expressions are given in Case 22 of Appendix D.
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Reminders: In Egs. 3-17 and 3-18, the quantities r and d are the
average radius and diameter, not the maximums. Also, Egs. 3-16 and 3-17
are exact; Eq. 3-18 is approximate.

The torsion formula (Eq. 3-11) may be used for a circular tube of
linearly elastic material provided I is evaluated according to Eq. (3-16),
Eq. (3-17), or, if appropriate, Eq. (3-18). The same comment applies to the
general equation for shear stress (Eq. 3-13), the equations for rate of twist
and angle of twist (Egs. 3-14 and 3-15), and the equations for stiffness and
flexibility (Egs. a and b).

The shear stress distribution in a tube is pictured in Fig. 3-10. From
the figure, we see that the average stress in a thin tube is nearly as great as
the maximum stress. This means that a hollow bar is more efficient in the
use of material than is a solid bar, as explained previously and as demon-
strated later in Examples 3-2 and 3-3.

When designing a circular tube to transmit a torque, we must be
sure that the thickness ¢ is large enough to prevent wrinkling or buckling
of the wall of the tube. For instance, a maximum value of the radius to
thickness ratio, such as (r,/f)n.x = 12, may be specified. Other design
considerations include environmental and durability factors, which also
may impose requirements for minimum wall thickness. These topics are
discussed in courses and textbooks on mechanical design.

The equations derived in this section are limited to bars of circular cross
section (either solid or hollow) that behave in a linearly elastic manner.
In other words, the loads must be such that the stresses do not exceed the
proportional limit of the material. Furthermore, the equations for stresses
are valid only in parts of the bars away from stress concentrations (such as
holes and other abrupt changes in shape) and away from cross sections
where loads are applied. (Stress concentrations in torsion are discussed
later in Section 3.11.)

Finally, it is important to emphasize that the equations for the torsion
of circular bars and tubes cannot be used for bars of other shapes. Non-
circular bars, such as rectangular bars and bars having I-shaped cross
sections, behave quite differently than do circular bars. For instance,
their cross sections do nof remain plane and their maximum stresses are
not located at the farthest distances from the midpoints of the cross
sections. Thus, these bars require more advanced methods of analysis,
such as those presented in books on theory of elasticity and advanced
mechanics of materials.”

The torsion theory for circular bars originated with the work of the famous French
scientist C. A. de Coulomb (1736-1806); further developments were due to Thomas
a0ng and A. Duleau (Ref. 3-1). The general theory of torsion (for bars of any shape) is
due to the most famous elastician of all time, Barréde Saint-8hant (1797-1886); see
Ref. 2-10.
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Example 3-1

FIG. 3-11 Example 3-1. Bar in pure
torsion

Ship drive shaft is a key part of the propulsion
system

A solid steel bar of circular cross section (Fig. 3-11) has diameter d = 1.5 in.,
length L = 54 in., and shear modulus of elasticity G = 11.5 X 10° psi. The bar is
subjected to torques T acting at the ends.

(a) If the torques have magnitude 7' = 250 Ib-ft, what is the maximum shear
stress in the bar? What is the angle of twist between the ends?

(b) If the allowable shear stress is 6000 psi and the allowable angle of twist
is 2.55 what is the maximum permissible torque?

d=1.5in.

ke [
<<

i,

[ L=>54in. |

Solution

(a) Maximum shear stress and angle of twist. Because the bar has a solid
circular cross section, we can find the maximum shear stress from Eq. (3-12),
as follows:

167 16(250 Ib-fo)(12 in./ft)
Tmax = "3 = m(1.5in.)?

= 4530 psi

In a similar manner, the angle of twist is obtained from Eq. (3-15) with the polar
moment of inertia given by Eq. (3-10):

7Td4 7T(1.5 in.)4 . 4
Ip = = = V. .
P %) 3 0.4970 in

b= TL _ (250 1b-ft)6(12.1n./ft)(54 .m.‘)l — 0.02834 rad = 1.62°
GIp  (11.5 X 10° psi)(0.4970 in.”)

Thus, the analysis of the bar under the action of the given torque is completed.

(b) Maximum permissible torque. The maximum permissible torque is deter-
mined either by the allowable shear stress or by the allowable angle of twist.
Beginning with the shear stress, we rearrange Eq. (3-12) and calculate as follows:

3
7Td Tallow

T:
! 16

= 1—7; (1.5 in.)*(6000 psi) = 3980 Ib-in. = 331 Ib-ft

Any torque larger than this value will result in a shear stress that exceeds the
allowable stress of 6000 psi.

Using a rearranged Eq. (3-15), we now calculate the torque based upon the
angle of twist:



SECTION 3.3 Circular Bars of Linearly Elastic Materials 233

“"‘nn._-y




CHAPTER 3 Torsion

_Db
=10
e
<;d0*> <;d1*>
dp
(a) (b)

FIG. 3-12 (Repeated)

from which we get
dyp = 0.0535m = 53.5 mm

In the case of the allowable rate of twist, we start by finding the required polar
moment of inertia (see Eq. 3-14):

T 1200 N*m
© GOyow (78 GPa)(0.75m)( 7 rad/180%

T = 1175 X 10" m*

Since the polar moment of inertia is equal to 77d */32, the required diameter is

321 X 107° m*
di= 77”=32(“75 7710 M) 1197 X 10~ m*

or

dy = 0.0588 m = 58.8 mm

Comparing the two values of dy, we see that the rate of twist governs the design
and the required diameter of the solid shaft is

dy = 58.8 mm

In a practical design, we would select a diameter slightly larger than the calculated
value of d; for instance, 60 mm.

(b) Hollow shaft. Again, the required diameter is based upon either the allow-
able shear stress or the allowable rate of twist. We begin by noting that the outer
diameter of the bar is d> and the inner diameter is

d] = d2 —2t= d2 - 2(01d2) = 08d2

Thus, the polar moment of inertia (Eq. 3-16) is
T T T
I =~ ds—dh = B [d‘z‘ = (O.Sdz)“] =% (0.5904d3) = 0.05796d5

In the case of the allowable shear stress, we use the torsion formula
(Eq. 3-11) as follows:

_Ir_ Td)2) _ T

Tallow = " 0.05796d2  0.1159d3

Rearranging, we get

s T  1200N'm

2= = =258.8 X 10 °m?
0.11597,10w  0.1159(40 MPa)

Solving for d, gives
d> = 0.0637 m = 63.7 mm

which is the required outer diameter based upon the shear stress.
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Example 3-3

FIG. 3-13 Example 3-3. Comparison of
hollow and solid shafts

A hollow shaft and a solid shaft constructed of the same material have the same
length and the same outer radius R (Fig. 3-13). The inner radius of the hollow
shaft is 0.6R.

(a) Assuming that both shafts are subjected to the same torque, compare their
shear stresses, angles of twist, and weights.

(b) Determine the strength-to-weight ratios for both shafts.

0.6R

(@ (b)

Solution

(a) Comparison or shear stresses. The maximum shear stresses, given by the
torsion formula (Eq. 3-11), are proportional to 1/Ip inasmuch as the torques and
radii are the same. For the hollow shaft, we get

4 4
Ip = % = @ = 0.43527R"

and for the solid shaft,

R4
Ip = ”T =0.57R*

Therefore, the ratio B; of the maximum shear stress in the hollow shaft to that in
the solid shaft is

T 057R*
=—=—""" ___115
P = = 0assamR

where the subscripts H and S refer to the hollow shaft and the solid shaft,
respectively.

Comparison of angles of twist. The angles of twist (Eq. 3-15) are also
proportional to 1/Ip, because the torques 7, lengths L, and moduli of elasticity G
are the same for both shafts. Therefore, their ratio is the same as for the shear
stresses:

du 0.57R*
=H_ =T 115
P2 ¢s  0.43527R*
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3.4 NONUNIFORM TORSION

fﬁ@ﬁ
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FIG. 3-14 Bar in nonuniform torsion
(Case 1)

As explained in Section 3.2, pure torsion refers to torsion of a prismatic bar
subjected to torques acting only at the ends. Nonuniform torsion differs from
pure torsion in that the bar need not be prismatic and the applied torques may
act anywhere along the axis of the bar. Bars in nonuniform torsion can be ana-
lyzed by applying the formulas of pure torsion to finite segments of the bar
and then adding the results, or by applying the formulas to differential ele-
ments of the bar and then integrating.

To illustrate these procedures, we will consider three cases of nonuni-
form torsion. Other cases can be handled by techniques similar to those
described here.

Case 1. Bar consisting of prismatic segments with constant torque
throughout each segment (Fig. 3-14). The bar shown in part (a) of the
figure has two different diameters and is loaded by torques acting at points
A, B, C, and D. Consequently, we divide the bar into segments in such a
way that each segment is prismatic and subjected to a constant torque.
In this example, there are three such segments, AB, BC, and CD. Each
segment is in pure torsion, and therefore all of the formulas derived in
the preceding section may be applied to each part separately.

The first step in the analysis is to determine the magnitude and direc-
tion of the internal torque in each segment. Usually the torques can be
determined by inspection, but if necessary they can be found by cutting
sections through the bar, drawing free-body diagrams, and solving equa-
tions of equilibrium. This process is illustrated in parts (b), (c), and (d) of
the figure. The first cut is made anywhere in segment CD, thereby expos-
ing the internal torque Tcp. From the free-body diagram (Fig. 3-14b), we
see that T¢p is equal to —7; — T, + T5. From the next diagram we see
that Tgc equals —7; — T, and from the last we find that 7,5 equals —T;
Thus,

Tep=-—T,— T, + T3 Tge=~-T—T, Tap=—T, (abo)

Each of these torques is constant throughout the length of its segment.

When finding the shear stresses in each segment, we need only the
magnitudes of these internal torques, since the directions of the stresses are
not of interest. However, when finding the angle of twist for the entire bar,
we need to know the direction of twist in each segment in order to combine
the angles of twist correctly. Therefore, we need to establish a sign conven-
tion for the internal torques. A convenient rule in many cases is the
following: An internal torque is positive when its vector points away from the
cut section and negative when its vector points toward the section. Thus, all
of the internal torques shown in Figs. 3-14b, c, and d are pictured in their
positive directions. If the calculated torque (from Eq. a, b, or ¢) turns out
to have a positive sign, it means that the torque acts in the assumed direc-
tion; if the torque has a negative sign, it acts in the opposite direction.

The maximum shear stress in each segment of the bar is readily obtained
from the torsion formula (Eq. 3-11) using the appropriate cross-sectional
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FIG. 3-15 Bar in nonuniform torsion
(Case 2)
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dimensions and internal torque. For instance, the maximum stress in
segment BC (Fig. 3-14) is found using the diameter of that segment and
the torque T calculated from Eq. (b). The maximum stress in the
entire bar is the largest stress from among the stresses calculated for
each of the three segments.

The angle of twist for each segment is found from Eq. (3-15), again
using the appropriate dimensions and torque. The total angle of twist of
one end of the bar with respect to the other is then obtained by algebraic
summation, as follows:

db=¢,+ o+ ...+ ¢, (3-19)

where ¢ is the angle of twist for segment 1, ¢, is the angle for segment 2,
and so on, and 7 is the total number of segments. Since each angle of twist
is found from Eq. (3-15), we can write the general formula

b= Z b = Z T;L; (3-20)
i=1 i=1 Gi(IP)i

in which the subscript i is a numbering index for the various segments.
For segment i of the bar, 7; is the internal torque (found from equilibrium,
as illustrated in Fig. 3-14), L, is the length, G; is the shear modulus, and
(Ip); is the polar moment of inertia. Some of the torques (and the
corresponding angles of twist) may be positive and some may be negative.
By summing algebraically the angles of twist for all segments, we obtain
the total angle of twist ¢ between the ends of the bar. The process is illus-
trated later in Example 3-4.

Case 2. Bar with continuously varying cross sections and constant
torque (Fig. 3-15). When the torque is constant, the maximum shear stress
in a solid bar always occurs at the cross section having the smallest diam-
eter, as shown by Eq. (3-12). Furthermore, this observation usually holds
for tubular bars. If this is the case, we only need to investigate the smallest
cross section in order to calculate the maximum shear stress. Otherwise, it
may be necessary to evaluate the stresses at more than one location in
order to obtain the maximum.

To find the angle of twist, we consider an element of length dx at
distance x from one end of the bar (Fig. 3-15). The differential angle of
rotation d¢ for this element is

Tdx
GIp(x)

d¢ = (d)
in which Ip(x) is the polar moment of inertia of the cross section at
distance x from the end. The angle of twist for the entire bar is the
summation of the differential angles of rotation:

I, IL,
= | g = | Tdx_ (3-21)
e Jo ¢ J()Glp(x)
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FIG. 3-16 Bar in nonuniform torsion
(Case 3)

If the expression for the polar moment of inertia /p(x) is not too complex,
this integral can be evaluated analytically, as in Example 3-5. In other
cases, it must be evaluated numerically.

Case 3. Bar with continuously varying cross sections and continu-
ously varying torque (Fig. 3-16). The bar shown in part (a) of the figure is
subjected to a distributed torque of intensity ¢ per unit distance along the
axis of the bar. As a result, the internal torque 7(x) varies continuously
along the axis (Fig. 3-16b). The internal torque can be evaluated with the
aid of a free-body diagram and an equation of equilibrium. As in Case 2,
the polar moment of inertia /p(x) can be evaluated from the cross-sectional
dimensions of the bar.

Knowing both the torque and polar moment of inertia as functions
of x, we can use the torsion formula to determine how the shear stress
varies along the axis of the bar. The cross section of maximum shear
stress can then be identified, and the maximum shear stress can be
determined.

The angle of twist for the bar of Fig. 3-16a can be found in the same
manner as described for Case 2. The only difference is that the torque, like
the polar moment of inertia, also varies along the axis. Consequently, the
equation for the angle of twist becomes

IL, L
T(x) dx
|l e || Zhegieks (3-22)
i L i L GIp(x)

This integral can be evaluated analytically in some cases, but usually it
must be evaluated numerically.

The analyses described in this section are valid for bars made of linearly
elastic materials with circular cross sections (either solid or hollow). Also,
the stresses determined from the torsion formula are valid in regions of the
bar away from stress concentrations, which are high localized stresses that
occur wherever the diameter changes abruptly and wherever concentrated
torques are applied (see Section 3.11). However, stress concentrations
have relatively little effect on the angle of twist, and therefore the equa-
tions for ¢ are generally valid.

Finally, we must keep in mind that the torsion formula and the
formulas for angles of twist were derived for prismatic bars. We can safely
apply them to bars with varying cross sections only when the changes in
diameter are small and gradual. As a rule of thumb, the formulas given
here are satisfactory as long as the angle of taper (the angle between the
sides of the bar) is less than 10?
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The torque in segment BC is found in a similar manner, using the free-body
diagram of Fig. 3-18b:

TBC = _Tl = —275N'm

Note that this torque has a negative sign, which means that its direction is opposite to
the direction shown in the figure.

Shear stresses. The maximum shear stresses in segments BC and CD are
found from the modified form of the torsion formula (Eq. 3-12); thus,

16T _ 16(275 N-m)

= =51.9MP
BCT TR T 2(G0mm) a
16T,  16(175 N-m)
= = =330 MP
o TR T (30 mm) a

Since the directions of the shear stresses are not of interest in this example, only
absolute values of the torques are used in the preceding calculations.

Angles of twist. The angle of twist ¢z, between gears B and D is the alge-
braic sum of the angles of twist for the intervening segments of the bar, as given
by Eq. (3-19); thus,

bsp = bpc T dcp

When calculating the individual angles of twist, we need the moment of inertia of
the cross section:

d* _ @30 mm)*

= 2 4
) 0 79,520 mm

Ip =

Now we can determine the angles of twist, as follows:

TgcLge (=275 N-m)(500 mm) B
GI,  (80GPa)79,520mm*) _ -0216rad

Pac =

bep = TeoLep (175 N-m)(400 mm)
cD =

G, (80 GPa)(79,520 mm®) _ >-0110rad

Note that in this example the angles of twist have opposite directions. Adding
algebraically, we obtain the total angle of twist:

dup = bpc + dep = —0.0216 + 0.0110 = —0.0106 rad = —0.61°

The minus sign means that gear D rotates clockwise (when viewed from the right-
hand end of the shaft) with respect to gear B. However, for most purposes only the
absolute value of the angle of twist is needed, and therefore it is sufficient to say
that the angle of twist between gears B and D is 0.61°The angle of twist between
the two ends of a shaft is sometimes called the wind-up.

Notes: The procedures illustrated in this example can be used for shafts
having segments of different diameters or of different materials, as long as the
dimensions and properties remain constant within each segment.

Only the effects of torsion are considered in this example and in the problems
at the end of the chapter. Bending effects are considered later, beginning with
Chapter 4.
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To evaluate the integral in this equation, we note that it is of the form

J dx
(a + bx)*

in which

a=dy b= @ (e,f)

With the aid of a table of integrals (see Appendix C), we find

J A _ 1
(a + bx)* 3b(a + bx)’

This integral is evaluated in our case by substituting for x the limits 0 and L and
substituting for @ and b the expressions in Egs. (e) and (f). Thus, the integral in
Eq. (3-25) equals

L (1 ©
3dp—d) \d&i 4y :
Replacing the integral in Eq. (3-25) with this expression, we obtain
32TL 1 1
sS—————— === 3-26
= 3Gy — d) (di d%) (20

which is the desired equation for the angle of twist of the tapered bar.
A convenient form in which to write the preceding equation is

_ L (B+B+ 1) 307
o7y ( 3p° G20
in which
_ dg _ wd
B= d_A (Ip)a = 0 (3-28)

The quantity S is the ratio of end diameters and (Ip)4 is the polar moment of
inertia at end A.

In the special case of a prismatic bar, we have 8 = 1 and Eq. (3-27) gives
¢ = TL/G(Ip),, as expected. For values of B greater than 1, the angle of rotation
decreases because the larger diameter at end B produces an increase in the
torsional stiffness (as compared to a prismatic bar).
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3.5 STRESSES AND STRAINS IN PURE SHEAR

FIG.3-20 Stresses acting on a stress
element cut from a bar in torsion (pure
shear)

When a circular bar, either solid or hollow, is subjected to torsion, shear
stresses act over the cross sections and on longitudinal planes, as illus-
trated previously in Fig. 3-7. We will now examine in more detail the
stresses and strains produced during twisting of a bar.

We begin by considering a stress element abcd cut between two
cross sections of a bar in torsion (Figs. 3-20a and b). This element is in a
state of pure shear, because the only stresses acting on it are the shear
stresses 7 on the four side faces (see the discussion of shear stresses in
Section 1.6.)

The directions of these shear stresses depend upon the directions of
the applied torques 7. In this discussion, we assume that the torques
rotate the right-hand end of the bar clockwise when viewed from the
right (Fig. 3-20a); hence the shear stresses acting on the element have
the directions shown in the figure. This same state of stress exists for a
similar element cut from the interior of the bar, except that the magni-
tudes of the shear stresses are smaller because the radial distance to the
element is smaller.

The directions of the torques shown in Fig. 3-20a are intentionally
chosen so that the resulting shear stresses (Fig. 3-20b) are positive
according to the sign convention for shear stresses described previously in
Section 1.6. This sign convention is repeated here:

A shear stress acting on a positive face of an element is positive if it
acts in the positive direction of one of the coordinate axes and negative if
it acts in the negative direction of an axis. Conversely, a shear stress acting
on a negative face of an element is positive if it acts in the negative
direction of one of the coordinate axes and negative if it acts in the posi-
tive direction of an axis.

Applying this sign convention to the shear stresses acting on the
stress element of Fig. 3-20b, we see that all four shear stresses are
positive. For instance, the stress on the right-hand face (which is a posi-
tive face because the x axis is directed to the right) acts in the positive
direction of the y axis; therefore, it is a positive shear stress. Also, the
stress on the left-hand face (which is a negative face) acts in the
negative direction of the y axis; therefore, it is a positive shear stress.
Analogous comments apply to the remaining stresses.
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FIG. 3-21 Analysis of stresses on inclined
planes: (a) element in pure shear,

(b) stresses acting on a triangular stress
element, and (c) forces acting on the
triangular stress element (free-body
diagram)

We are now ready to determine the stresses acting on inclined planes cut
through the stress element in pure shear. We will follow the same
approach as the one we used in Section 2.6 for investigating the stresses
in uniaxial stress.

A two-dimensional view of the stress element is shown in Fig. 3-21a.
As explained previously in Section 2.6, we usually draw a two-dimen-
sional view for convenience, but we must always be aware that the
element has a third dimension (thickness) perpendicular to the plane of
the figure.

We now cut from the element a wedge-shaped (or “triangular”) stress
element having one face oriented at an angle 6 to the x axis (Fig. 3-21b).
Normal stresses o, and shear stresses 7y act on this inclined face and
are shown in their positive directions in the figure. The sign convention
for stresses o, and 7, was described previously in Section 2.6 and is
repeated here:

Normal stresses o, are positive in tension and shear stresses 7, are
positive when they tend to produce counterclockwise rotation of the
material. (Note that this sign convention for the shear stress 74 acting on
an inclined plane is different from the sign convention for ordinary shear
stresses 7 that act on the sides of rectangular elements oriented to a set of
Xy axes.)

The horizontal and vertical faces of the triangular element (Fig. 3-21b)
have positive shear stresses 7 acting on them, and the front and rear faces of
the element are free of stress. Therefore, all stresses acting on the element
are visible in this figure.

The stresses oy and 7y may now be determined from the equilibrium
of the triangular element. The forces acting on its three side faces can be
obtained by multiplying the stresses by the areas over which they act.
For instance, the force on the left-hand face is equal to 7A,, where Ay is
the area of the vertical face. This force acts in the negative y direction
and is shown in the free-body diagram of Fig. 3-21c. Because the
thickness of the element in the z direction is constant, we see that the
area of the bottom face is Ay tan # and the area of the inclined face is A




FIG. 3-22 Graph of normal stresses o and
shear stresses 7y versus angle 6 of the
inclined plane
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sec 6. Multiplying the stresses acting on these faces by the correspon-
ding areas enables us to obtain the remaining forces and thereby
complete the free-body diagram (Fig. 3-21c).

We are now ready to write two equations of equilibrium for the trian-
gular element, one in the direction of o, and the other in the direction
of 74 When writing these equations, the forces acting on the left-hand and
bottom faces must be resolved into components in the directions of oy
and 7,. Thus, the first equation, obtained by summing forces in the direc-
tion of oy, is

g9Ag sec 0 = TAgsin 0 + 7Aq tan 6 cos 6
or
0y = 27sin fcos 6 (3-29a)
The second equation is obtained by summing forces in the direction of 7
ToAg sec 6 = 1Ay cos 8 — Ay tan Osin 6
or
7o = T(cos*6 — sin’f) (3-29b)

These equations can be expressed in simpler forms by introducing the
following trigonometric identities (see Appendix C):

sin 260 = 2 sin @ cos 6 cos 26 = cos? 6 — sin® 6

Then the equations for o and 75 become
oy = 75in 20 Ty = TCOS 20 (3-30a,b)

Equations (3-30a and b) give the normal and shear stresses acting on any
inclined plane in terms of the shear stresses 7 acting on the x and y planes
(Fig. 3-21a) and the angle 6 defining the orientation of the inclined plane
(Fig. 3-21b).

The manner in which the stresses o and 7, vary with the orientation
of the inclined plane is shown by the graph in Fig. 3-22, which is a plot of
Eqgs. (3-30a and b). We see that for § = 0, which is the right-hand face of
the stress element in Fig. 3-21a, the graph gives oy = 0 and 79 = 7. This
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FIG. 3-23 Stress elements oriented at
0 = 0 and 6 = 45%or pure shear

latter result is expected, because the shear stress 7 acts counterclockwise
against the element and therefore produces a positive shear stress 7.

For the top face of the element (6 = 90j, we obtain o, = 0 and
79 = — 7. The minus sign for 74 means that it acts clockwise against the
element, that is, to the right on face ab (Fig. 3-21a), which is consistent
with the direction of the shear stress 7. Note that the numerically largest
shear stresses occur on the planes for which 6 = 0 and 905 as well as on
the opposite faces (0 = 180%nd 2705.

From the graph we see that the normal stress o, reaches a maximum
value at § = 45° At that angle, the stress is positive (tension) and equal
numerically to the shear stress 7. Similarly, o has its minimum value
(which is compressive) at § = —452 At both of these 45%ngles, the shear
stress Ty is equal to zero. These conditions are pictured in Fig. 3-23 which
shows stress elements oriented at # = 0 and 6 = 45°The element at 459s
acted upon by equal tensile and compressive stresses in perpendicular
directions, with no shear stresses.

Note that the normal stresses acting on the 45%lement (Fig. 3-23b)
correspond to an element subjected to shear stresses 7 acting in the direc-
tions shown in Fig. 3-23a. If the shear stresses acting on the element of
Fig. 3-23a are reversed in direction, the normal stresses acting on the
45%lanes also will change directions.

Omin =—T Omax = T

—
‘\450
y L
.
r
/ \

TE

Omax = T Omin=—T7

(a) (b)

If a stress element is oriented at an angle other than 457 both normal
and shear stresses will act on the inclined faces (see Egs. 3-30a and b and
Fig. 3-22). Stress elements subjected to these more general conditions are
discussed in detail in Chapter 7.

The equations derived in this section are valid for a stress element in
pure shear regardless of whether the element is cut from a bar in torsion or
from some other structural element. Also, since Egs. (3-30) were derived
from equilibrium only, they are valid for any material, whether or not it
behaves in a linearly elastic manner.

The existence of maximum tensile stresses on planes at 45°%o the
x axis (Fig. 3-23b) explains why bars in torsion that are made of
materials that are brittle and weak in tension fail by cracking along



FIG. 3-24 Torsion failure of a brittle
material by tension cracking along a 45°
helical surface

FIG.3-25 Strains in pure shear: (a) shear
distortion of an element oriented at

6 = 0, and (b) distortion of an element
oriented at 6 = 45°
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T ( \450 Crack a T

a 45°helical surface (Fig. 3-24). As mentioned in Section 3.3, this
type of failure is readily demonstrated by twisting a piece of class-
room chalk.

Let us now consider the strains that exist in an element in pure shear.
For instance, consider the element in pure shear shown in Fig. 3-23a.
The corresponding shear strains are shown in Fig. 3-25a, where the
deformations are highly exaggerated. The shear strain 7y is the change
in angle between two lines that were originally perpendicular to each
other, as discussed previously in Section 1.6. Thus, the decrease in the
angle at the lower left-hand corner of the element is the shear strain vy
(measured in radians). This same change in angle occurs at the upper
right-hand corner, where the angle decreases, and at the other two cor-
ners, where the angles increase. However, the lengths of the sides of the
element, including the thickness perpendicular to the plane of the
paper, do not change when these shear deformations occur. Therefore,
the element changes its shape from a rectangular parallelepiped (Fig. 3-23a)
to an oblique parallelepiped (Fig. 3-25a). This change in shape is called
a shear distortion.

If the material is linearly elastic, the shear strain for the element
oriented at 6 = 0 (Fig. 3-25a) is related to the shear stress by Hooke$ law
in shear:

Y= G (3-31)

where, as usual, the symbol G represents the shear modulus of elasticity.

.
/
fr
T/
—
e

(a) (b)

Omax = T

Omin =—7
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Next, consider the strains that occur in an element oriented at
0 = 45°(Fig. 3-25b). The tensile stresses acting at 45°%end to elongate
the element in that direction. Because of the Poisson effect, they also
tend to shorten it in the perpendicular direction (the direction where
0 = 135%r —455. Similarly, the compressive stresses acting at 135%end
to shorten the element in that direction and elongate it in the 45%irection.
These dimensional changes are shown in Fig. 3-25b, where the dashed
lines show the deformed element. Since there are no shear distortions, the
element remains a rectangular parallelepiped even though its dimensions
have changed.

If the material is linearly elastic and follows Hooke$ law, we can
obtain an equation relating strain to stress for the element at § = 45°
(Fig. 3-25b). The tensile stress oy, acting at @ = 45%roduces a positive
normal strain in that direction equal to oy, /E. Since 0y, = 7, we can
also express this strain as 7/E. The stress op,,x also produces a negative
strain in the perpendicular direction equal to — v7/E, where v is Poissons
ratio. Similarly, the stress o;,;, = —7 (at # = 135% produces a negative
strain equal to —7/E in that direction and a positive strain in the perpendi-
cular direction (the 45°direction) equal to v7/E. Therefore, the normal
strain in the 45%irection is

T VT T

€max E+ Z E(1+V) (3-32)
which is positive, representing elongation. The strain in the perpendicular
direction is a negative strain of the same amount. In other words, pure
shear produces elongation in the 45°irection and shortening in the 135°
direction. These strains are consistent with the shape of the deformed
element of Fig. 3-25a, because the 45°diagonal has length ened and the
135%iagonal has shortened.

In the next section we will use the geometry of the deformed element
to relate the shear strain vy (Fig. 3-25a) to the normal strain €,,,, in the 45°
direction (Fig. 3-25b). In so doing, we will derive the following relation-
ship:

s
€max = P (3'33)

This equation, in conjunction with Eq. (3-31), can be used to calculate the
maximum shear strains and maximum normal strains in pure torsion when
the shear stress 7is known.
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FIG.3-27 Stress and strain elements for
the tube of Example 3-6: (a) maximum
shear stresses, (b) maximum tensile and
compressive stresses; (¢) maximum
shear strains, and (d) maximum tensile
and compressive strains

58.2 MPa
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3.6 RELATIONSHIP BETWEEN MODULI OF ELASTICITY EAND G

An important relationship between the moduli of elasticity £ and G can be
obtained from the equations derived in the preceding section. For this
purpose, consider the stress element abcd shown in Fig. 3-28a on the next
page. The front face of the element is assumed to be square, with the
length of each side denoted as 4. When this element is subjected to pure
shear by stresses 7, the front face distorts into a rhombus (Fig. 3-28b) with
sides of length / and with shear strain y = 7/G. Because of the distortion,
diagonal bd is lengthened and diagonal ac is shortened. The length of
diagonal bd is equal to its initial length V2 h times the factor 1 + Emaxs
where €,,,, 1 the normal strain in the 45%irection; thus,

Lpg ="V2h(1 + €nay) (a)

This length can be related to the shear strain vy by considering the geom-
etry of the deformed element.

To obtain the required geometric relationships, consider triangle abd
(Fig. 3-28c) which represents one-half of the rhombus pictured in
Fig. 3-28b. Side bd of this triangle has length L, (Eq. a), and the other
sides have length h. Angle adb of the triangle is equal to one-half of
angle adc of the thombus, or 77/4 — /2. The angle abd in the triangle is
the same. Therefore, angle dab of the triangle equals 7/2 + 7. Now using
the law of cosines (see Appendix C) for triangle abd, we get



FIG. 3-28 Geometry of deformed

element in pure shear
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L3, =W + h* — 2h* cos (g + 'y)
Substituting for L, from Eq. (a) and simplifying, we get
(1 + €)= 1— cos <§ + y)
By expanding the term on the left-hand side, and also observing that
cos(7/2 + y) = —sin 7y, we obtain

L+ 260 + Emax = 1 + sin vy

Because €, and 7y are very small strains, we can disregard €2 . in com-
parison with 2€,,, and we can replace sin 7y by 7. The resulting
expression is

€max —

(SN

(3-34)

which establishes the relationship already presented in Section 3.5 as
Eq. (3-33).

The shear strain y appearing in Eq. (3-34) is equal to 7/G by Hookes
law (Eq. 3-31) and the normal strain €,,, is equal to 7(1 + »)/E by
Eq. (3-32). Making both of these substitutions in Eq. (3-34) yields

)

S =0+ (3-35)

We see that E, G, and v are not independent properties of a linearly elastic
material. Instead, if any two of them are known, the third can be calcu-
lated from Eq. (3-39).

Typical values of E, G, and v are listed in Table H-2, Appendix H.
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3.7 TRANSMISSION OF POWER BY CIRCULAR SHAFTS

FIG. 3-29 Shaft transmitting a constant
torque 7 at an angular speed w

The most important use of circular shafts is to transmit mechanical power
from one device or machine to another, as in the drive shaft of an automo-
bile, the propeller shaft of a ship, or the axle of a bicycle. The power is
transmitted through the rotary motion of the shaft, and the amount of
power transmitted depends upon the magnitude of the torque and the
speed of rotation. A common design problem is to determine the required
size of a shaft so that it will transmit a specified amount of power at a
specified rotational speed without exceeding the allowable stresses for the
material.

Let us suppose that a motor-driven shaft (Fig. 3-29) is rotating at
an angular speed w, measured in radians per second (rad/s). The shaft
transmits a torque 7 to a device (not shown in the figure) that is
performing useful work. The torque applied by the shaft to the external
device has the same sense as the angular speed w, that is, its vector
points to the left. However, the torque shown in the figure is the torque
exerted on the shaft by the device, and so its vector points in the oppo-
site direction.

In general, the work W done by a torque of constant magnitude is
equal to the product of the torque and the angle through which it rotates;
that is,

W=Ty (3-36)

where i is the angle of rotation in radians.
Power is the rate at which work is done, or

aw _ . di

p="=
dr dr

(3-37)

in which P is the symbol for power and ¢ represents time. The rate of
change diyjdt of the angular displacement ¢ is the angular speed w, and
therefore the preceding equation becomes

P=Tow (w = rad/s) (3-38)
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This formula, which is familiar from elementary physics, gives the power
transmitted by a rotating shaft transmitting a constant torque 7.

The units to be used in Eq. (3-38) are as follows. If the torque T is
expressed in newton meters, then the power is expressed in watts (W).
One watt is equal to one newton meter per second (or one joule per
second). If T is expressed in pound-feet, then the power is expressed in
foot-pounds per second.”

Angular speed is often expressed as the frequency f of rotation, which
is the number of revolutions per unit of time. The unit of frequency is the
hertz (Hz), equal to one revolution per second (s~ 1. Inasmuch as one
revolution equals 27 radians, we obtain

w=27f (w=radfs, f=Hz=s"") (3-39)
The expression for power (Eq. 3-38) then becomes
P=2xfT (f=Hz=s" (3-40)

Another commonly used unit is the number of revolutions per minute
(rpm), denoted by the letter n. Therefore, we also have the following
relationships:

n=60Ff (3-41)

and

_ 2anT
60

In Egs. (3-40) and (3-42), the quantities P and 7 have the same units as in
Eq. (3-38); that is, P has units of watts if 7 has units of newton meters,
and P has units of foot-pounds per second if 7 has units of pound-feet.

In U.S. engineering practice, power is sometimes expressed in horse-
power (hp), a unit equal to 550 ft-Ib/s. Therefore, the horsepower H being
transmitted by a rotating shaft is

P (n = rpm) (3-42)

_ 2T _ 2mnT
60(550) 33,000

(n=r1pm, T = Ib-ft, H=hp)  (3-43)

One horsepower is approximately 746 watts.

The preceding equations relate the torque acting in a shaft to the
power transmitted by the shaft. Once the torque is known, we can deter-
mine the shear stresses, shear strains, angles of twist, and other desired
quantities by the methods described in Sections 3.2 through 3.5.

The following examples illustrate some of the procedures for
analyzing rotating shafts.

“See Table A-1, Appendix A, for units of work and power.
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Example 3-7

FIG. 3-30 Example 3-7. Steel shaft in
torsion

A motor driving a solid circular steel shaft transmits 40 hp to a gear at B (Fig. 3-30).
The allowable shear stress in the steel is 6000 psi.
(a) What is the required diameter d of the shaft if it is operated at 500 rpm?
(b) What is the required diameter d if it is operated at 3000 rpm?

Solution

(a) Motor operating at 500 rpm. Knowing the horsepower and the speed of
rotation, we can find the torque 7 acting on the shaft by using Eq. (3-43). Solving
that equation for 7, we get

_ 33,000H _ 33,000(40 hp)

T
2mn 27(500 rpm)

= 420.2 Ib-ft = 5042 1b-in.

This torque is transmitted by the shaft from the motor to the gear.
The maximum shear stress in the shaft can be obtained from the modified
torsion formula (Eq. 3-12):

_ o _ler
max 7Td3

Solving that equation for the diameter d, and also substituting 7,jjow fOr Tinax,
we get

167 _ 16(5042 Ib-in.)

—~ = 4280 in.?
T Tallow 77(6000 PSl)

d*=

from which

d=1.621n.

The diameter of the shaft must be at least this large if the allowable shear stress is
not to be exceeded.




SECTION 3.7 Transmission of Power by Circular Shafts 257

A solid steel shaft ABC of 50 mm diameter (Fig. 3-31a) is driven at A by a motor

that transmits 50 kW to the shaft at 10 Hz. The gears at B and C drive machinery

requiring power equal to 35 kW and 15 kW, respectively.
Compute the maximum shear stress 7,,,, in the shaft and the angle of twist
dac between the motor at A and the gear at C. (Use G = 80 GPa.)

1.0 m —| 1.2m
Motor
A E B

T,=796N-m Tz=557TN-m  To=239N-m

e

(@ (b)

FIG. 3-31 Example 3-8. Steel shaft in
torsion

continued
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Solution
Torques acting on the shaft. We begin the analysis by determining the torques

applied to the shaft by the motor and the two gears. Since the motor supplies
50 kW at 10 Hz, it creates a torque 7, at end A of the shaft (Fig. 3-31b) that we
can calculate from Eq. (3-40):
_ P 50kW

2@f  2m(10 Hz)
In a similar manner, we can calculate the torques 7 and T applied by the gears
to the shaft:

TA =796 N-m

_ P 35kW
- 27f 2m(10Hz)
_ P I5kW
- 2#f 2w(10Hz)

TB = 557 N'm

Tc =239 N'm
These torques are shown in the free-body diagram of the shaft (Fig. 3-31b). Note
that the torques applied by the gears are opposite in direction to the torque applied
by the motor. (If we think of 7, as the “load” applied to the shaft by the motor,
then the torques 7 and 7 are the “reactions” of the gears.)

The internal torques in the two segments of the shaft are now found (by
inspection) from the free-body diagram of Fig. 3-31b:

TAB =796 N-m TBC =239 N'm

Both internal torques act in the same direction, and therefore the angles of twist in
segments AB and BC are additive when finding the total angle of twist. (To be
specific, both torques are positive according to the sign convention adopted in
Section 3.4.)
Shear stresses and angles of twist. The shear stress and angle of twist in segment
AB of the shaft are found in the usual manner from Eqgs. (3-12) and (3-15):
16745 _ 16(796 N-m)

— = = 32.4 MP
ST T a0mmy a

TapLag (796 N-m)(1.0 m)
Pap = =

Gl . = 0.0162 rad
P80 GPa)(—)(SO mm)*
32
The corresponding quantities for segment BC are
16Tz  16(239 N-m)
= = = 9.7 MP
BET TR m(50 mm) a
TgcL 239 N-m)(1.2
ne = —ACHE = & ’:)( M 0.0058 rad
r (80 GPa)<3—2>(50 mm)*

Thus, the maximum shear stress in the shaft occurs in segment AB and is
Tmax = 32.4 MPa
Also, the total angle of twist between the motor at A and the gear at C'is
bac = ¢pap + Ppc = 0.0162 rad + 0.0058 rad = 0.0220 rad = 1.26°

As explained previously, both parts of the shaft twist in the same direction, and
therefore the angles of twist are added.
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3.8 STATICALLY INDETERMINATE TORSIONAL MEMBERS

(b)

n /Tube () 7}.\8
i T
Bar (1) L —_—
End
plate

n i dy )
[[—*
—_—

T N Tube (2)

(e)

FIG. 3-32 Statically indeterminate bar in
torsion

The bars and shafts described in the preceding sections of this chapter are
statically determinate because all internal torques and all reactions can be
obtained from free-body diagrams and equations of equilibrium. However,
if additional restraints, such as fixed supports, are added to the bars, the
equations of equilibrium will no longer be adequate for determining the
torques. The bars are then classified as statically indeterminate. Torsional
members of this kind can be analyzed by supplementing the equilibrium
equations with compatibility equations pertaining to the rotational displace-
ments. Thus, the general method for analyzing statically indeterminate
torsional members is the same as described in Section 2.4 for statically
indeterminate bars with axial loads.

The first step in the analysis is to write equations of equilibrium,
obtained from free-body diagrams of the given physical situation. The
unknown quantities in the equilibrium equations are torques, either
internal torques or reaction torques.

The second step in the analysis is to formulate equations of compati-
bility, based upon physical conditions pertaining to the angles of twist. As
a consequence, the compatibility equations contain angles of twist as
unknowns.

The third step is to relate the angles of twist to the torques by
torque-displacement relations, such as ¢ = TL/GIp. After introducing
these relations into the compatibility equations, they too become equa-
tions containing torques as unknowns. Therefore, the last step is to
obtain the unknown torques by solving simultaneously the equations of
equilibrium and compatibility.

To illustrate the method of solution, we will analyze the composite
bar AB shown in Fig. 3-32a. The bar is attached to a fixed support at end
A and loaded by a torque 7T at end B. Furthermore, the bar consists of
two parts: a solid bar and a tube (Figs. 3-32b and c), with both the solid
bar and the tube joined to a rigid end plate at B.

For convenience, we will identify the solid bar and tube (and their
properties) by the numerals 1 and 2, respectively. For instance, the diam-
eter of the solid bar is denoted d; and the outer diameter of the tube is
denoted d,. A small gap exists between the bar and the tube, and there-
fore the inner diameter of the tube is slightly larger than the diameter d;
of the bar.

When the torque T is applied to the composite bar, the end plate
rotates through a small angle ¢ (Fig. 3-32¢) and torques 7', and 7, are
developed in the solid bar and the tube, respectively (Figs. 3-32d and e).
From equilibrium we know that the sum of these torques equals the
applied load, and so the equation of equilibrium is

T1+T2:T (a)

Because this equation contains two unknowns (7 and 75,), we recognize
that the composite bar is statically indeterminate.
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To obtain a second equation, we must consider the rotational displace-
ments of both the solid bar and the tube. Let us denote the angle of twist
of the solid bar (Fig. 3-32d) by ¢; and the angle of twist of the tube by ¢,
(Fig. 3-32¢). These angles of twist must be equal because the bar and tube
are securely joined to the end plate and rotate with it; consequently, the
equation of compatibility is

b1 = ¢po (b)

The angles ¢ and ¢, are related to the torques 7', and 7, by the torque-
displacement relations, which in the case of linearly elastic materials are
obtained from the equation ¢ = TL/GIp. Thus,

T\L T,L
¢1:—1 b2 2

= (c,d)
Gilp; Gylps

in which G, and G, are the shear moduli of elasticity of the materials and
Ip, and Ip, are the polar moments of inertia of the cross sections.

When the preceding expressions for ¢; and ¢, are substituted into
Eq. (b), the equation of compatibility becomes

T,L _ T>L ©
Gipr  Golp

‘We now have two equations (Egs. a and e) with two unknowns, so we can
solve them for the torques 7'} and 7T>. The results are

T, = T(%) T, = T<%> (3-44a.b)
Gilpy + Gaolps Gilp + Galpy

With these torques known, the essential part of the statically indeterminate
analysis is completed. All other quantities, such as stresses and angles of
twist, can now be found from the torques.

The preceding discussion illustrates the general methodology for ana-
lyzing a statically indeterminate system in torsion. In the following
example, this same approach is used to analyze a bar that is fixed against
rotation at both ends. In the example and in the problems, we assume that
the bars are made of linearly elastic materials. However, the general
methodology is also applicable to bars of nonlinear materials—the only
change is in the torque-displacement relations.
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Solution of equations. The preceding equation can be solved for the
torque 7, which then can be substituted into the equation of equilibrium (Eq. f)
to obtain the torque 7. The results are

Lplpa Lalpp
Ta= TO( Lol + Lalps ) 2= T\ Lyl + Lalpy | G420

Thus, the reactive torques at the ends of the bar have been found, and the statically
indeterminate part of the analysis is completed.

As a special case, note that if the bar is prismatic (Ipy = Ipg = Ip) the
preceding results simplify to

ToLs ToLa

T, = 3 T = 3 (3-46a,b)
where L is the total length of the bar. These equations are analogous to those
for the reactions of an axially loaded bar with fixed ends (see Egs. 2-9a and
2-9b).

Maximum shear stresses. The maximum shear stresses in each part of the bar
are obtained directly from the torsion formula:

Tada P Tpdp
2 CB

TaCc = = s

Substituting from Eqgs. (3-45a) and (3-45b) gives

ToLpda ToLadp

T YN Lplps + Lalpg) P gl + Lalpg) O 8D

By comparing the product Lgd, with the product L,dp, we can immediately deter-
mine which segment of the bar has the larger stress.

Angle of rotation. The angle of rotation ¢ at section C is equal to the angle
of twist of either segment of the bar, since both segments rotate through the same
angle at section C. Therefore, we obtain

TALA TB LB TOLALB
po= ot = BB (348)
Glp Glpp G(Lglpp + Lalpp)

In the special case of a prismatic bar (Ipy = Ipp = Ip), the angle of rotation at the
section where the load is applied is

ToLaLp
<= GLl, (3-49)

This example illustrates not only the analysis of a statically indeterminate bar
but also the techniques for finding stresses and angles of rotation. In addition, note
that the results obtained in this example are valid for a bar consisting of either
solid or tubular segments.
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3.9 STRAIN ENERGY IN TORSION AND PURE SHEAR

FIG. 3-34 Prismatic bar in pure torsion

Torque
A
T ______________
—w= ¢
U=W= )
0 ¢

Angle of rotation

FIG. 3-35 Torque-rotation diagram for
a bar in pure torsion (linearly elastic
material)

When a load is applied to a structure, work is performed by the load
and strain energy is developed in the structure, as described in detail in
Section 2.7 for a bar subjected to axial loads. In this section we will
use the same basic concepts to determine the strain energy of a bar in
torsion.

Consider a prismatic bar AB in pure torsion under the action of a
torque 7 (Fig. 3-34). When the load is applied statically, the bar twists
and the free end rotates through an angle ¢. If we assume that the material
of the bar is linearly elastic and follows Hookes law, then the relationship
between the applied torque and the angle of twist will also be linear, as
shown by the torque-rotation diagram of Fig. 3-35 and as given by the
equation ¢ = TL/Glp.

The work W done by the torque as it rotates through the angle ¢ is
equal to the area below the torque-rotation line OA, that is, it is equal to the
area of the shaded triangle in Fig. 3-35. Furthermore, from the principle of
conservation of energy we know that the strain energy of the bar is equal
to the work done by the load, provided no energy is gained or lost in the
form of heat. Therefore, we obtain the following equation for the strain
energy U of the bar:

U=W= ¢ (3-50)

This equation is analogous to the equation U = W = P§/2 for a bar
subjected to an axial load (see Eq. 2-35).

Using the equation ¢ = TL/GIp, we can express the strain energy in
the following forms:

(3-51a,b)

The first expression is in terms of the load and the second is in terms of the
angle of twist. Again, note the analogy with the corresponding equations for a
bar with an axial load (see Eqs. 2-37a and b).

The SI unit for both work and energy is the joule (J, which is equal
to one newton meter (1 J = 1 N-m). The basic USCS unit is the foot-
pound (ft-Ib), but other similar units, such as inch-pound (in.-lb) and
inch-kip (in.-k), are commonly used.

If a bar is subjected to nonuniform torsion (described in Section 3.4), we
need additional formulas for the strain energy. In those cases where the
bar consists of prismatic segments with constant torque in each segment
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(see Fig. 3-14a of Section 3.4), we can determine the strain energy of each
segment and then add to obtain the total energy of the bar:

Uu=> U, (3-52)

in which U; is the strain energy of segment i and n is the number of
segments. For instance, if we use Eq. (3-51a) to obtain the individual
strain energies, the preceding equation becomes

" T

(3-53)

in which T7; is the internal torque in segment i and L;, G;, and (Ip); are the
torsional properties of the segment.

If either the cross section of the bar or the internal torque varies along
the axis, as illustrated in Figs. 3-15 and 3-16 of Section 3.4, we can obtain
the total strain energy by first determining the strain energy of an element
and then integrating along the axis. For an element of length dx, the strain
energy is (see Eq. 3-51a)

_ [TwPdx

du
2GIp(x)

in which 7(x) is the internal torque acting on the element and Ip(x) is the
polar moment of inertia of the cross section at the element. Therefore, the
total strain energy of the bar is

LIT(x)dx

U =
o 2GIp(x)

(3-54)
Once again, the similarities of the expressions for strain energy in torsion
and axial load should be noted (compare Eqgs. 3-53 and 3-54 with Eqgs. 2-40
and 2-41 of Section 2.7).

The use of the preceding equations for nonuniform torsion is illus-
trated in the examples that follow. In Example 3-10 the strain energy is
found for a bar in pure torsion with prismatic segments, and in Examples
3-11 and 3-12 the strain energy is found for bars with varying torques and
varying cross-sectional dimensions.

In addition, Example 3-12 shows how, under very limited conditions,
the angle of twist of a bar can be determined from its strain energy. (For a
more detailed discussion of this method, including its limitations, see the
subsection “Displacements Caused by a Single Load” in Section 2.7.)

When evaluating strain energy we must keep in mind that the equations
derived in this section apply only to bars of linearly elastic materials with
small angles of twist. Also, we must remember the important observation
stated previously in Section 2.7, namely, the strain energy of a structure
supporting more than one load cannot be obtained by adding the strain
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energies obtained for the individual loads acting separately. This
observation is demonstrated in Example 3-10.

Because the individual elements of a bar in torsion are stressed in pure
shear, it is useful to obtain expressions for the strain energy associated
with the shear stresses. We begin the analysis by considering a small ele-
ment of material subjected to shear stresses 7on its side faces (Fig. 3-36a).
For convenience, we will assume that the front face of the element is
square, with each side having length /. Although the figure shows only a
two-dimensional view of the element, we recognize that the element is
actually three dimensional with thickness ¢ perpendicular to the plane of
the figure.

Under the action of the shear stresses, the element is distorted so that
the front face becomes a rhombus, as shown in Fig. 3-36b. The change in
angle at each corner of the element is the shear strain 7.

The shear forces V acting on the side faces of the element (Fig. 3-36¢)
are found by multiplying the stresses by the areas At over which they act:

V= r1ht (a)

These forces produce work as the element deforms from its initial shape
(Fig. 3-36a) to its distorted shape (Fig. 3-36b). To calculate this work we
need to determine the relative distances through which the shear forces
move. This task is made easier if the element in Fig. 3-36¢ is rotated as a
rigid body until two of its faces are horizontal, as in Fig. 3-36d. During the
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rigid-body rotation, the net work done by the forces V is zero because the
forces occur in pairs that form two equal and opposite couples.

As can be seen in Fig. 3-36d, the top face of the element is displaced
horizontally through a distance 6 (relative to the bottom face) as the shear
force is gradually increased from zero to its final value V. The displace-
ment 0 is equal to the product of the shear strain -y (which is a small angle)
and the vertical dimension of the element:

8= vyh (b)

If we assume that the material is linearly elastic and follows Hookes law,
then the work done by the forces V is equal to V§/2, which is also the
strain energy stored in the element:

U=W=— (c)

Note that the forces acting on the side faces of the element (Fig. 3-36d) do
not move along their lines of action—hence they do no work.

Substituting from Eqgs. (a) and (b) into Eq. (c), we get the total strain
energy of the element:

Tyh’t
2

Because the volume of the element is 4%, the strain-energy density u
(that is, the strain energy per unit volume) is

u="r (d)

Finally, we substitute Hooke$ law in shear ( 7 = G7) and obtain the
following equations for the strain-energy density in pure shear:

2
= ,=07 (3-55a,b)

These equations are similar in form to those for uniaxial stress
(see Egs. 2-44a and b of Section 2.7).

The SI unit for strain-energy density is joule per cubic meter
(Jm %), and the USCS unit is inch-pound per cubic inch (or other
similar units). Since these units are the same as those for stress, we
may also express strain-energy density in pascals (Pa) or pounds per
square inch (psi).

In the next section (Section 3.10) we will use the equation for
strain-energy density in terms of the shear stress (Eq. 3-55a) to deter-
mine the angle of twist of a thin-walled tube of arbitrary
cross-sectional shape.



SECTION 3.9 Strain Energy in Torsion and Pure Shear 267

Example 3-10
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Example 3-11

FIG. 3-38 Example 3-11. Strain energy
produced by a distributed torque

A prismatic bar AB, fixed at one end and free at the other, is loaded by a dis-
tributed torque of constant intensity ¢ per unit distance along the axis of the bar
(Fig. 3