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Preface

It is a distinct pleasure for us to present this volume, which gathers the results of
the Proceedings of the 4th International Castle Meeting on Coding Theory and its
Applications (4ICMCTA) held at Palmela Castle, Portugal, on September 15-18,
2014.

The 4ICMCTA meeting was organized under the auspices of the Research
& Developmente Center for Mathematics and Applications (CIDMA) from the
University of Aveiro. Following in the spirit of the previous installments held at
La Mota Castle, Spain, in 1999 and 2008, and in Cardona Castle, Spain, in 2011,
the meeting was a good opportunity for communicating new results, exchanging
ideas, strengthening international cooperation, and introducing young researchers
into the Coding Theory community.

The event’s scientific program consisted of four invited talks and 39 regular talks
by authors from 24 different countries. This volume contains the contribution of one
invited speaker, as well as 37 communications presented at the meeting. The topics
represent some of the most relevant research areas in modern Coding Theory: codes
and combinatorial structures, algebraic geometric codes, group codes, quantum
codes, convolutional codes, network coding and cryptography. We thank all the
authors for their participation. We are also grateful to the scientific committee and
to all the external reviewers who implemented a careful reviewing process that
guaranteed the high quality of the accepted contributions. Moreover, we would like
to mention the valuable support of Angela Barbero and @yvind Ytrehus from the
steering committee.

We also thank all the people who made this meeting possible, namely the
Organizing Committee (Paulo Almeida, Isabel Bras, Diego Napp, Ricardo Pereira
and Rita Simdes), Edubox SA and the University of Aveiro for the administrative
support. In particular, we thank CIDMA, the Portuguese Foundation for Science and
Technology (FCT) and the Portuguese International Center for Mathematics (CIM)
for their financial support.
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Last but not least, we would like to thank CIM and Springer-Verlag for giving
us the opportunity to publish these proceedings in the Springer CIM Series in
Mathematical Sciences.

February 2015 Raquel Pinto
Paula Rocha
Paolo Vettori
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Capacity of Higher-Dimensional Constrained
Systems

Brian Marcus

Abstract One-dimensional constrained systems, also known as discrete noiseless
channels and sofic shifts, have a well-developed theory and have played an impor-
tant role in applications such as modulation coding for data recording. Shannon
found a closed form expression for the capacity of such systems in his seminal
paper, and capacity has served as a benchmark for the efficiency of coding schemes
as well as a guide for code construction. Advanced data recording technologies,
such as holographic recording, may require higher-dimensional constrained coding.
However, in higher dimensions, there is no known general closed form expression
for capacity. In fact, the exact capacity is known for only a few higher-dimensio-
nal constrained systems. Nevertheless, there have been many good methods for
efficiently approximating capacity for some classes of constrained systems. These
include transfer matrix and spatial mixing methods. In this article, we will survey
progress on these and other methods.

Keywords Constrained systems * Capacity * Entropy * Constrained coding

1 Introduction

In contrast to error correction coding, the main philosophy of constrained coding is
to avoid patterns that are more prone to error rather than to correct error patterns.
In some systems, there are certain patterns that will likely lead to failure and so
a constrained encoder encodes user data sequences in a way that avoids the most
problematic patterns. In practice a constrained encoder is used in cascade with an
error correction encoder, and in recent years there has been much work done on

B. Marcus ()
Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
e-mail: marcus @math.ubc.ca
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4 B. Marcus

codes that are both constrained codes and error correcting codes. In fact, the line
between constrained coding and error correction code has become rather blurred.
However, in this article we will not consider questions of error correction.

2 1D Constraints (Sequences)

2.1 Motivation: Magnetic Recording

Historically, the main motivation for constrained codes was the magnetic recording
channel. The classical system is illustrated in Fig. 1. At every tick of a clock cycle,
a ‘1’ is recorded by changing the direction of current in the write-head and a ‘0’ is
recorded by keeping the direction the same. This effectively encodes the data into a
sequence of magnets. When reading, a ‘1’ is sensed by a change in magnetization
and converted into a readback voltage and a ‘0’ is sensed by the absence of voltage.

It is desirable that the 1’s occur sufficiently frequently but not too frequently. The
reason for the former is clock drift: the clock is not perfect and thus must be adjusted
in order to keep synchronization with the data patterns; this is done by observing a
sufficient set of nonzero voltage samples. The reason for the latter is intersymbol
interference: if 1’s are too close to each other, then they could interfere and cancel
out or mislead the detector to thinking that at least one of the 1’s is in the wrong
position (see Fig.2).

Clock drift and intersymbol interference can be mitigated by encoding data
into binary sequences with lower and upper bounds d and k& on the runlengths of
zeros between successive 1’s. This constraint is called the RLL(d, k) constraint (see
Fig. 3). Such a constraint effectively controls separation between peaks/troughs in
the read waveform.

As an example, the following sequence satisfies RLL(1, 3):

1010001010010001

Data 0 1 0 1 0 0 0 1 1 1 0 1 0
Write current
Magnetic track N [ S1[E N] C——

T
Read voltage 1 IAI IVI L 1 I

Detected data 0 1 0 1 0o 0 0 1 1 1 0 1 0

Fig. 1 Magnetic recording channel
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Magnetic track N[~ s1[s N] [N _Ss][s

Read voltage

Fig. 2 Intersymbol interference

00...

Fig. 3 RLL constraint

A constrained encoder (also known as a modulation encoder) encodes arbitrary
user data sequences into constrained sequences. For example, the following table
represents an encoder for the RLL(1, 3) constraint at rate 1:2:

Previous input Present input Present output
0 0 10
1 0 00
— 1 01

Here a (‘present’) 1-bit input is encoded into a 2-bit output as a function of the input
and the previous input. The reader can check that all encoded sequences satisfy
RLL(1,3). Note that the input bit can be recovered form the 2-bit output by simply
reading off the 2nd bit. In particular, the decoder operates independently block to
block, and this feature avoids error propagation in decoding. This particular encoder,
known as Modified Frequency Modulation, was one of the first encoders to be used
in magnetic recording.

Constrained coding continues to enjoy widespread interest beyond data record-
ing. We refer to [13] for a recent example where constrained codes are used to
provide a wide range of trade-offs between rate of information transmission and
performance of energy transfer in certain wireless communication systems.
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2.2 Definitions and Examples

A ID constraint (or 1D constrained system) is the set of sequences obtained
by sequentially reading the labels of a finite directed labeled graph. The labels
are chosen from a finite set called an alphabet. The labeled graph is often
called a presentation and the sequences so obtained are often called the allowed
sequences. Given a 1D constrained system, one can always find a presentation that is
deterministic in the sense that at each state, the outgoing edges are labeled distinctly.

The classical examples are the RLL(d, k) constraint (Fig.3), and the CHG(b)
constraint consisting of sequences of symbols =1 where the absolute value of the
running sum is required to be bounded by b for all sequences independent of length
(Fig.4); this constraint was imposed to control the spectral content of the set of
encoded signals.

Other examples, which are not necessarily of practical interest, include the
golden mean constraint where 1’s are required to be isolated (Fig. 5), the even (resp.,
odd) constraint where runlengths of zeros are required to be even (resp., odd) (Figs. 6
and 7). For instance, the following sequence satisfies the even constraint:

01000010010011001

For more background on 1D constraints, see [31]. For background on the related
concept of sofic shift, see [25].

Fig. 4 CHG(b) constraint
0
1
oo
Fig. 5 Golden mean constraint
1
0
&0

Fig. 6 EVEN constraint
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Fig. 7 ODD constraint 0,1

OO

2.3 1D Capacity, Exact Computation

Let X be a 1D constraint and B,(X) be the number of allowed sequences of
length n. Define the capacity of X as:

log B, (X
¢(X) := lim log B, (X)

—>00 n

So, the capacity is the asymptotic growth rate of the number of allowed sequences.
In that sense, it is a measure of the size of a constraint. Its operational importance
derives from the classical result of Shannon:

Theorem 1 ([39]) Given a 1D constraint X, c(X) is the supremum of rates of all
possible decodable constrained encoders for X .

Here, decodable means decodable in any sense, including state dependent
decoders. The result does not necessarily yield codes at rate exactly equal to c(X).
The following results go further.

Theorem 2 ([1, 19]) Any rate < c¢(X) can be achieved with a finite-state encoder
and non-catastrophic decoder:

We won’t give a precise definition of ‘non-catastrophic,” but the rough idea is
that the decoder will not propagate errors. In most cases of interest, this can be
achieved by a sliding-window decoder. In fact, the proof is constructive and in many
cases gives efficient encoders by the so-called state-splitting algorithm. However, in
today’s disk drives, rates of encoding are very high and efficient encoding methods
are much different.

The capacity of a 1D constraint is explicitly computable. As a simple example,
consider X = G, the golden mean constraint. It is easy to show that

By+1(X) = By(X) + By—1(X)

and so the sequence B,(X) is Fibonacci, up to some initial conditions. This

1+/35

sequence grows like powers of the golden mean and hence ¢(X) = log =5
0.69. This also explains the origin of the name of the golden mean constraint.

In general, the computation proceeds using simple linear algebra, which we
describe as follows. Let A be the adjacency matrix of a deterministic presentation
of X; this means that the rows and columns of A are indexed by the vertices of the
presentation and A, is the number of edges from u to v. Note that the information
given by the labels of the graph is not incorporated in A.

~
~
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Theorem 3 ([39]) c(X) = logA(A), where A is the adjacency matrix of a
deterministic presentation of X and A(A) is the largest eigenvalue of A.

For the golden mean constraint, we see that the adjacency matrix of the
presentation in Fig. 5 is:

A=

[I—

1
0

<

1+
2

An easy computation shows that A(4) = 3

c(X) above.

, agreeing with the computation of

3 2D Constraints (Arrays)

3.1 Motivation: 2D Recording, Statistical Mechanics

In magnetic and optical storage disks, data is recorded on parallel tracks in a 2D
medium. In analogy with intersymbol interference, a constraint may be imposed
to limit inter-track interference; this could potentially increase track density and
overall information density.

Over the past few decades, there has been particular interest in the development
of holographic data storage systems. While holographic recording still holds
promise, it has not advanced sufficiently to compete with the consistent advances of
more conventional magnetic and optical recording. Nevertheless, the system setup
illustrates how constrained coding may be used in storage devices of the future.

As indicated in Fig. 8, in such a system a laser illuminates a programmable array,
called a spatial light modulator (SLM). A given 2D array of 0’s and 1’s is represented
by a so-called object beam. The interference pattern between the object beam and
a simple plane wave, called a reference beam, at given angle of propagation, is

Holographic Medium

Reference Angles

Fig. 8 Holographic recording channel
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recorded in a three-dimensional medium, such as a crystal. The object beam can be
reproduced by illuminating the crystal with the same reference beam used to record
it; the object beam can be effectively recovered on an array known as a charge
coupled device (CCD). By varying the angle of the reference beam, many arrays
can be recorded in the same medium.

While data is physically recorded in a 3D medium, the data really is a collection
of 2D arrays. Since light from two adjacent pixels may interfere, inter-symbol
interference can be a problem, and for this reason a constraint may be imposed to
limit the distance between two 1’s. For instance, 1’s may be required to be isolated
both horizontally and vertically. See Fig.9 for a typical array that satisfies this
constraint. Often this is known as the hard square constraint, because it models the
hard square lattice gas in statistical mechanics: arrays of “hard” particles, positioned
at sites labelled 1, that cannot overlap [40] (see Fig. 10).

Since local variations of light intensity can occur from pixel to pixel, another
constraint of interest is the imposition of a balance between the number of 0’s and
1’s within small regions; this enables the selection of a good local threshold for
detection. For more information on the holographic channel, see [2].

Another application of 2D constrained coding is that of 2D barcodes (Fig. 11),
used for individual product identification, such as PDF417 for airline tickets and QR
for automobiles [42].

Fig. 9 Hard square (HS)
constraint

0 0 1 0 0

Fig. 10 Hard square lattice
gas
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Fig. 11 Bar codes

X

QR code PDF417

o~

3.2 Definitions and Examples

A 2D constraint is the set of all 2D arrays on the square lattice defined by a pair
of finite directed labelled graphs (“horizontal” and “vertical”). This can be made
precise in many different ways: a pair of vertex-labeled graphs with the same labeled
vertices (but different edges), a pair of edge-labeled graphs with the same labeled
edges (but different vertices), and a collection of labeled square tiles with colored
edges such that the colors of adjacent tiles match up (see, for example, [27]).

However, for our purposes, we find it useful to focus on two special classes of
2D constraints: the square of a 1D constraint, and finite type constraints, described
as follows.

Given a 1D constraint X, we define the square, X ®2 10 be the set of all arrays
that satisfy X in both the horizontal and vertical direction. For example, observe
that the hard square constraint, H.S, defined above is the same as the square of the
golden mean constraint: HS = G®2

As another example consider, EVEN ®2 the 2D EVEN constraint, where run-
lengths of 0’s are required to be even both horizontally and vertically; a typical
pattern in this constraint is:

01000011001110
00100100001001
00010000100000
01000000100000
11001100100001
01000011110010

Similarly, we have ODD®2, the 2D ODD constraint.

Given a finite list .# of finite patterns, we define the constraint of finite type
(also called shift of finite type) X & as the set of all arrays which do not contain any
sub-array from .%. As an example, the hard square constraint HS = G®? = X »
where

F={nu, i}
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A variation of HS is the Non-attacking kings constraint (NAK), where 1’s are
isolated horizontally, vertically and diagonally: NAK = X & where

y:{llvivl]sll}v
with typical allowed pattern:

01010100100000
00000000000101
00001010010000°
10100000000101

Such a constraint may be imposed if intersymbol interference is not adequately
handled by the hard square constraint.

Finally, we mention the Read/Write Isolated Memory constraint [17], where 1’s
are required to be isolated horizontally and diagonally, but not necessarily vertically:
RWIM = X & where

F={u, ', Y
with a typical allowed pattern:

01010000100000
00010000000101
00000010100000
10100000100101

Here, instead of a physical 2D array, the array represents a sequence of rewrites of a
physical 1D memory. The horizontal constraint is imposed to mitigate intersymbol
interference (thereby aiding the read process) and the diagonal constraint is imposed
to eliminate the possibility that the write-head will need to re-write two adjacent
memory cells in one rewrite (thereby aiding the write process).

3.3 2D Capacity

The definition of capacity of a 2D constraint naturally generalizes the definition of
capacity of a 1D constraint.

For a 2D constraint X, let B;,x,(X) denote the number of allowed arrays of size
n x n and define the capacity of X as:

c(X) = lim 08B X)
n

—00 n?
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In contrast to a 1D constraint X, where the capacity is exactly the log of the
largest eigenvalue of a specific matrix associated to X, there is no known general,
tractable expression for capacity of a 2D constraint (say in terms of a pair of labelled
graphs or a finite list of forbidden finite patterns). In fact, even for constraints as
simple as the hard square constraint, the exact capacity is not known. The quest for
¢(H S) has become somewhat of a “holy grail,” in part because of its interpretation
as the free energy of a hard square lattice gas [40].

3.4 Examples of Exact Computation

There are some constraints for which capacity is known exactly. One example is a
class of constraints with algebraic structure: a group shift is a shift-invariant, closed
subgroup of G# ? for some finite group G. The capacity of a group shift is known to
be the log of a positive integer, which can be viewed as the size of a basis in some
sense [26]. A special case, of particular interest in coding theory, is the class of 2D
convolutional codes, which are group shifts where G = F” for a finite field F and
positive integer n.

There are other isolated examples, where capacity is known exactly; however, in
each case, constraints obtained by seemingly small variations do not have known
capacity:

. ¢(RLL(d,d + 1)®%) = 0, but ¢(RLL(d, d + 2)®?) is unknown [21].

. ¢(CHG(2)®?) = 1/4,butfor b > 3, c(CHG(b)®?) is unknown [27].

. ¢(ODD®?) = 1/2, but ¢(EVEN®2) is unknown [27].

. The hard hexagon model is the set of binary configurations on the 2-dimensional
triangular lattice where adjacent vertices cannot both be 1. The capacity of this
model is known to be log(4) where A is the largest root of a specific degree-24
polynomial [3]. Yet, for similar constraints such as HS, NAK, and RWIM, the
capacity is unknown.

5. The g-colored checkerboard C, is the set of all g-ary configurations on the

2-dimensional square lattice such that adjacent sites have different symbols

(each of the g symbols is viewed as a ‘color;” so this constraint is the set of

configurations of ¢ colors such that adjacent sites have different colors). C, can

be viewed as a constraint of finite type defined by forbidden list:

AW N =

y:{ab,zzazb}
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For instance, a typical element of Cj is

01021010121212
20212102010101
12101010121210
01020201010121

It is easy to see that ¢(C;) = 0. It is known [23] that ¢(C3) = (3/2) log(4/3),
yet for g > 4, ¢(C,) is unknown.

6. The dimer model is the set of all tilings of the plane by dominos (1 x 2 and 2 x 1
rectangles). See Fig. 12.
This set can be viewed as the set of all configurations on an alphabet of four
symbols {L, R, T, B} subject to the constraint that to the right of an L must be
an R, to the top of a B must be a T, etc. In this way, one sees that this is a
constraint of finite type defined by the forbidden list

T TT B L R
o —
F ={LL,LT,LB,RR,TR, BR, LR’ T’B’B’B}
See Fig. 13.

It is known [20] that

1

c¢( Dimers ) = 6?2
bid

//10g(4+2cos@+2cos¢)d9d¢>

However, for the monomer-dimer model (i.e., tilings by dominos and 1 x 1
squares), the capacity is unknown.

Fig. 12 Dimer tiling

Fig. 13 Dimer tiling as a

constraint of finite type L R T T T T
T T1LBlB 1B [B
BlBJL/RfLIR
L R|T|L T
'L R]B|T|T|B
LI RIBJB
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3.5 Strip Systems

While only a handful of 2D constraints have known capacity, there has been much
success in obtaining excellent approximations to capacity. In the following sections,
we discuss some approaches to approximations. There are many other techniques,
such as to [5, 7, 11, 14, 15, 34, 38] and many more.

Many numerical approximations are based, in one way or another, on the notion
of a strip system, S, = S,(X), defined for any given 2D constraint X and
positive integer n, as the set of allowed arrays of X on an n-high strip. A typical
configuration for X = HS andn = 4 is:

--00010001010---
00101010000---
$+-10000000010---

$.-.01000010001---
n

Observe that S, itself can be viewed as a 1D constraint, with alphabet consisting of
all allowed columns configurations of height n (over the original alphabet of the 2D
constraint X'). The following result is an easy consequence of the definition.

Theorem 4 Let X be a 2D constraint and ¢, (X) := c(Sy). Then

. (X)
lim

n—o0o n

=c(X).

Thus, 2D capacities can be approximated by 1D capacities. However, the
convergence is typically very slow because generally the time to compute ¢, (X)
is exponential in n, owing to the exponential size of the alphabet of S,,.

Now assume, for simplicity, that X is a nearest neighbour constraint; this means
that X is a constraint of finite type, defined by forbidden patterns only on rectangles
of size 1 x 2 and 2 x 1. For instance, the hard square constraint, HS, is nearest
neighbour. For such a constraint, let 4, denote the set of all allowed n-letter columns

An

az
ai

dn by
in X. Thenthe pairc = :,d = : isallowedin S, if and only if
a b
a b
apby
az‘bz

aib



Capacity of Higher-Dimensional Constrained Systems 15

is allowed in the original 2D constraint X . Defining the horizontal transfer matrix
H,, indexed by A4, by:

(Hy)e.qa = 1iff c¢d is allowed

we see that ¢, (X) = log(A(H,)). It follows that

c(X) = nlim M.

—>00 n

3.6 Numerical Approximations in Symmetric Case

In this section we give a rough idea of an efficient way to find lower bounds on the
capacity of certain 2D constraints.

For this, assume that the constraint is not only nearest neighbor but also the
square of a 1D constraint that is symmetric in the sense that ab is allowed iff ba
is allowed (note that the hard square constraint satisfies all of these properties).
Then each H, is a symmetric matrix. It follows that A(H,) is lower bounded by its
Rayleigh quotients; in particular, letting 1, denote the vector of all 1’s, we have

1,H,1,

A(H,) = =,
()= 575

where V' denotes transpose. It follows that for all p,

1,(H.)"1,
A((Hy)") = Tl},ln,
Thus,
log(A((H,)? 1 1,(H,)P1/
c(x) = tim CEAUD) oy Ly IntH7L,
n—00 pn n—00 pn 1,-1/

Since the limit is over n, we must, at the very least, construct H, for ever
increasing n in order to obtain good lower bounds. However, observe that the
numerator can be interpreted as the number of allowed n x (p + 1) arrays, and
so we can count patterns from top to bottom instead of from left to right:

«~p+1—-
M1 0 0
[0 1 O
n 1 0 1
[0 1 0
1 0 0
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Letting V), denote the vertical transfer matrix for a strip of width p 4 1, we have
L,(H,)"1, =1,(V,)"'1),
and so

n—11/

n—00 pn 1, 1;
This lower bound is much easier to compute: instead of calculating (H,)? for a
fixed power p and different matrices H,,, we calculate (V)" for a fixed matrix V),
and different powers n. Since the powers of a nonnegative matrix grow like powers
of the largest eigenvalue, we then obtain

Theorem 5 ([32]) Let V), denote the vertical transfer matrix for a strip of width
p+1L

c(X) = (1/p)(log(A(V})) —log(A(V0))).

This result was later rediscovered and improved:

Theorem 6 ([6, 9]) Given p and q,

c(X) = (1/p)(log(A(Vp+24)) — log(A(V2y)))

Calkin and Wilf also obtained upper bounds using similar considerations.

Further improvements on lower bounds were obtained in Louidor-Marcus [27] by
replacing the sequence 1, with other sequences of vectors y,, such that y,(H,)”y,,
represent “weighted counts.” Using these techniques, ¢(NAK) was determined to
within 7 digits, c(RWIM) to within 4 digits, and c(EVEN®?) to within 2 digits.

Further improvements, especially on lower bounds, have been recently obtained
by Chan and Rechnitzer [8], using a variation of transfer matrices (called “Corner
Transfer Matrices”), originally developed by Baxter in his solution to the capacity
of the hard hexagon model. Using these methods, they have improved the estimates
above and determined the capacity of the hard square constraint to within 17 digits.

3.7 Asymptotic Rate of Approximation

Recall that for 1D constraints, the capacity can be computed exactly as the log of
the largest eigenvalue of a matrix associated with a given constraint. One might ask
if the same holds for 2D constraints (possibly with an infinite dimensional matrix)?
A sobering thought is that it is algorithmically undecidable to decide whether a
constraint has strictly positive capacity [4].
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But there is another way to think about this. One can ask what real numbers occur
as the capacity of a 2D constraint? The analogue for 1D capacities is known. To
describe this result, we need the notion of an algebraic integer, which is defined as
aroot of a polynomial with integer coefficients and leading coefficient = 1. For each
algebraic integer, there is a unique such polynomial, called the minimal polynomial,
of minimal degree. The roots of such a polynomial are known as the algebraic
conjugates of an algebraic integer. A Perron number is an algebraic integer which
strictly dominates in absolute value all of its algebraic conjugates.

Theorem 7 ([24]) A real number ¢ > 0 is the capacity of a 1D constrained system
iff it is the log of a root of a Perron number.

The “only if” part is a fairly easy consequence of the fact that the capacity is the
log of the largest eigenvalue of a matrix with nonnegative integer entries. The “if”
part is much more subtle, but is constructive given the minimal polynomial.

In contrast, the characterization of numbers which occur as the capacity of
a 2D constraint is given by a computational-theoretic, rather than algebraic,
characterization as follows.

Theorem 8 ([18]) A real number ¢ > 0 is the capacity of a 2D constrained system
if and only if c¢ is right recursively enumerable (rre), i.e. there is an algorithm
(Turing machine), which, on input n, produces a rational number t, such that
t, > c and lim,— oo t, = C

The “only if” part can be proved using the approximations given in the definition
of capacity, and in fact ¢, := @ works. The “if” part is again far more subtle, but
somewhat constructive, in the sense fact that for any given rre number, a constraint
can be constructed given the associated Turing machine.

Unfortunately, rre numbers, and hence 2D capacities, can be arbitrarily poorly
approximable. However, some are better than others. We say that a real number
¢ > 0 is approximable in polynomial time if there is an algorithm (i.e., Turing
machine), which, on input z, produces a rational number #,, computed in polynomial
time, s.t. |t, — ¢| < 1/n. If the capacity of a 2D constraint is approximable in
polynomial time, then we can regard its capacity as being “within reach,” if not
exactly known. The capacity of the hard square constraint has this property:

Theorem 9 ([16, 35]) c(HS) is approximable in polynomial time.

The proofs both rely on a notion of strong spatial mixing but otherwise are quite
different. Pavlov’s approximations are easier to describe: let r, := c¢,+1(HS) —
cn(HS); he shows that r, converges to c(H S) exponentially fast and then “trades
off” this exponential convergence with the exponential time to compute r,,, yielding
polynomial approximability.

Since then, techniques from both proofs have been applied to other constraints.
Marcus and Pavlov [29, 30] have used techniques based on Pavlov’s approach to
prove polynomial approximability for some general classes of constraints. And
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Wang-Yin-Zhong [43] used the Gamarnik-Katz technique to prove polynomial
approximability of ¢(RWIM). However, at present, it is unknown whether ¢ (NAK)
is polynomially approximable.

3.8 Higher Dimensions

One can consider d-dimensional constrained systems for any dimension d, in
particular the d-th power X®¢ of a 1D constraint. which generalizes the square
of a 1D constraint. Most capacity approximation techniques extend to higher
dimensions, but are generally less accurate. There are also a few cases where
capacities are known exactly. For instance, exact capacity is known for group shifts
in all dimensions. And for all d, ¢(CHG(2)®¢) = (1/2)¢, and c(ODD®%) = 1/2
[27].

It is easy to see that for any 1D constraint X, the capacity ¢(X ®¢) is monotoni-
cally non-increasing in d, and so the limit as d — oo exists. Can one compute this
limit?

The independence entropy of a 1D constraint measures the contribution to
capacity attributed to sequences of positions whose values can be freely switched
without violating the constraint. This concept was developed in [28] (where the
reader can find a precise definition), based on the precursor notion of maximal
insertion rate developed in [36]. The independence entropy of a 1D constraint turns
out to be explicitly computable, and has the following significance:

Theorem 10 ([33]) For a 1D constraint X, limg_ oo ¢(X ®?) equals the indepen-
dence entropy of X.

So, while the computation of capacity for d-dimensional constraints, d > 2, is
extremely challenging, it is very easy to compute in the limit as d — co.

3.9 Encoding for 2D Constraints

Recall from Sect. 2.3 that the capacity of a 1D constraint is the maximal rate of an
invertible encoder and that general efficient encoding methods exist. While in some
sense capacity of a 2D constraint is the maximal rate of an encoder, the theory and
practice of 2D encoding is far behind. Here, we mention just a few ideas.

One simple idea is to use 1D encoding techniques to encode into strip systems
and then insert buffer rows between strips to ensure that the constraint is satisfied
across the strips. This works only for certain constraints such as the hard square,
where one can insert a buffer row of all 0’s. As a typical example, consider
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01010010100010
10000100010101
01001010101010

00000000000000

00100010010010
10000100000101
00101010110000

A more interesting class of encoders is the class of 2D Bit Stuffing Encoders
[37]. Again this works only for certain constraints. For example, for the hard square
constraint, one encodes an information sequence in a row-by-row rastering fashion:
for each information bit ‘0’, write ‘0’ in a given position; for each information bit
‘1’, write ‘1’ in a given position and a ‘stuffed’‘0’ immediately below and to the
right in order to guarantee that the constraint is satisfied. One decodes sequentially
by discarding ‘stuffed’ ‘0’s. This scheme is then improved upon as follows.

1. First encode an information sequence by a variable-rate transformer into a biased
IID(p, 1— p) sequence (i.e., in the output sequences of the transformer, O appears
with probability p and 1 appears with probability 1 — p).

2. Then write encoded bits as described above.

3. Optimize over p: increasing p from 1/2 to 1 reduces the number of ‘stuffed’” 0’s
and therefore increases the number of available encoding positions, but it also
reduces the rate of the transformer.

4. The optimal p can be determined analytically and yields an encoder at rate within
1% of c(HS).

Further improvements and applications of bit stuffing to other constraints are given
in Tal-Roth [41].

Finally we mention that for some 2D group shifts, there are constructions of 2D
algebraic encoders. We define an invertible algebraic 2D encoder for a group shift
X € G%* asamap

fiH? > X

(for some finite group H) which is simultaneously a group isomorphism and a
sliding-block map (the latter in the sense that there is a positive integer N such
that the value, f(x)s, of a configuration of X at a given site s € Z? depends only
on the values of x in a square of size N centered at s)

For 2D convolutional codes, necessary and sufficient conditions for invertible
algebraic 2D encoders were given by Fornasini-Valcher [12]. There has been
considerable further work on both the structure of and encoding for group shifts,
within both the symbolic dynamics and systems theory communities; see, for
example, [10, 22].
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From 1D Convolutional Codes to 2D
Convolutional Codes of Rate 1/n

Paulo Almeida, Diego Napp, and Raquel Pinto

Abstract In this paper we introduce a new type of superregular matrices that give
rise to novel constructions of two-dimensional (2D) convolutional codes with finite
support. These codes are of rate 1/n and degree § with n > § + 1 and achieve the
maximum possible distance among all 2D convolutional codes with finite support
with the same parameters.

Keywords 1D and 2D convolutional codes * MDS codes * Superregular matrix

1 Introduction

When considering data recorded in two dimensions, like pictures and video, two-
dimensional (2D) convolutional codes [2-5, 7, 8] seem to be a better framework
to encode such data than one-dimensional (1D) codes, since it takes advantage
of the interdependence of the data in more than one direction. In [3] the distance
properties of 2D convolutional codes of rate 1/n and degree § were studied, and
constructions of such codes with maximum possible distance (MDS) were given
forn > w In this paper we relax this restriction and present 2D MDS
convolutional codes of rate 1/n with n > § 4+ 1. The idea is to consider 1D
convolutional codes obtained as the projection of the 2D code on the vertical lines.
For that we need to introduce a new type of matrices of a particular structure and
show that they are superregular.
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2 1D and 2D Convolutional Codes

In this section we give some basic results on 1D and 2D convolutional codes that
will be useful throughout the paper.

Let IF be a finite field and F[z,] the ring of polynomials in one indeterminate
with coefficients in F. A 1D (finite support) convolutional code % of rate k/n is
an [F[z;]-submodule of F[z,]", where k is the rank of € (see [6]). A full column
rank matrix G(z,) € Flz,]”*¥ whose columns constitute a basis for % is called an
encoder of %. So,

C = im]F[zz] G(Zz)

= [¥@) € Flal" | ¥(:2) = G (@)ii(z2) with (2) € Flzo]*}
The weight of a word ¥(z2) = Y, v(i )75 € Flz,]" is given by

wit(¥(22)) = Y wi(v(i)),

ieN

where the weight of a constant vector v(i) is the number of nonzero entries of v(i)
and the distance of a 1D convolutional code % is defined as

dist(%) = min {wt(¥(z2)) | V(z2) € €, with V(z2) # 0}.

If ¥ is a 1D convolutional code of rate 1/n, then all its encoders differ by a
nonzero constant. The degree of ¢ is defined as the column degree of any encoder
of €. The next result follows immediately.

Corollary 1 ([6]) Let € be a 1D convolutional code of rate 1/n with degree v.
Then

dist(¥) < n(v + 1).

A 1D convolutional code of rate 1/n with degree v and distance n(v + 1) is said
to be Maximum Distance Separable (MDS). In [3] constructions of such codes were
given forn > v + 1 as stated in the next theorem.

Theorem 2 Letv,n € Nwithn > v+ 1and9 = [Gy Gy ---G,], with G; € F",
i =0,1,...,v, be a matrix such that all its minors of any order are different from
zero. Then € = Impp, Y i_, Gizh is an MDS 1D convolutional code of rate 1/n
and degree v.
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We are going to consider now convolutional codes whose codewords belong to
Flz1,22]", where F[z;, z5] is the ring of polynomials in two indeterminates with
coefficients in . Such codes are called 2D (finite support) convolutional codes.
More precisely, a 2D (finite support) convolutional code % of rate k/n is a free
F[z1, z2]-submodule of F[z;, z5]" of rank k (see [7, 8]). An encoder of ¢ is a full
column rank matrix G(zl ,22) € Flz1., 22]"* whose columns constitute a basis for %
Therefore,

¢ = imF[m,zz] G(ZleZ)
= {f'(zl, 2) € Flz1.22]" | ¥(21.22) =G (z1. 22)0i(z1. 22) with @(z1, 25) €F [z, Zz]k} .

The weight of a word V(z1,22) = > ;)ew2 V(i, j)z’izé € Flz1, 22]" is defined in
a similar way to the 1D case as

wt(V(z1,22)) = Z wt(v(i, J)),

(i.j)EN?
and the distance of € as
dist(%) = min {wt(v(z1,22)) | V(z1,22) € €, with ¥(z1, 22) # 0}.

In this paper, we restrict to 2D convolutional codes of rate 1/n. Given an encoder

G(,2) = Z G(i, )2z € Flz1. z2]"
(i,j)eN?

of a 2D convolutional code % of rate 1/n, we define the degree of G(zl,zz) as
8§ = max{i + j | G(i,j) # 0}. Since two encoders of ¥ differ by a nonzero
constant, all encoders of % have the same degree and we define the degree of € as
the degree of any of its encoders.

If % is a 2D convolutional code of rate 1/n and degree §, then

G+DB+2)

dist(¥) <
ist(%) < >

ey

Such bound is called the 2D generalized Singleton bound and if the distance of ¢
equals such bound, % is said to be MDS (see [3]).
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3 Superregular Matrices

In [1] a new type of superregular matrices was introduced. The superregular matrices
we are going to construct in this work have similar entries and, therefore, some
properties are the same, even if the structure of these new matrices is different.
Before we develop our new construction, we will recall some definitions pertinent
to this type of superregular matrices.

Let A = [p;¢] be a square matrix of order m over IF and S, the symmetric group
of order m. The determinant of A is given by

Al =Y (=D o0y o).

€S,

Whenever we use the word term, we will be considering one product of the form
Hio(1) " * Mma(m)» With o € S, and the word component will be reserved to refer to
each of the (i), with 1 <i < m in a term. Denote [L15(1) - fmo (m) DY Mo

A trivial term of the determinantis a term (i, with at least one component ;4 ;)
equal to zero. If A is a square submatrix of a matrix B with entries in IF, and all the
terms of the determinant of A are trivial, we say that |A] is a trivial minor of B (if
B = A we simply say that | A| is a trivial minor). We say that B is superregular if
all its nontrivial minors are different from zero.

The next theorem states that square matrices over FF of a certain form are
superregular.

Theorem 3 Let o be a primitive element of a finite field F = F,v and A = [j;¢]
be a square matrix over F of order m, with the following properties

1. If pie # O then ;e = aPit for a positive integer Biy;

2. If 6 € S,, is the permutation defined by 6 (i) = m —i + 1, then g is a nontrivial
term of |A|;

3Ifl=m—i+ 1,4 <, ue#0and iy # 0 then 2By < Biv;

4 Ifl>m—i+1,i <i, uig # 0and iy # 0 then 2B < Bire.

Suppose | A| is a nontrivial minor and N is greater than any exponent of « appearing
as a nontrivial term of |A|. Then |A| # 0.

Proof Let o € S, such that . is a nontrivial term of |A|. By property 1, we have
Uo = afo, for a positive integer B, .

LetT,, = {0 € S, | 0 # 6 and u, is a nontrivial term of |A|}. If T, = @ then
|A] = ps = oP £ 0.



From 1D Convolutional Codes to 2D Convolutional Codes of Rate 1/n 29

If T,, # @,let ¢ € T,,. We are going to prove that if ¢ # & then B; < f,.
Since y, in a nontrivial term of |A|, for any 1 < i < m, there exists £ > i such that
o(f) >m—1i + 1. Now, for any 1 < £ < m define

Se={i|i<fando(l)>m—i+ 1}.

Notice that U S¢ =1{1,2,...,m} and, since 0 # &, exists at least one
1<j<m

Lo, such that 1 < £y < m and Sy, = @. By properties 3 and 4, we have that

Yies, Bim—i+1 < Beow. Therefore B5 = > /L, Bim—i+1 < Zn%él Beow <
S¢#0

s, Beow- So |A] = afi + Zfl\;—éﬁl ena’, where ¢, € F,. Hence || #0. O

Let us now construct specific types of superregular matrices, which will be useful
in the next section. Let p be a prime number, N a positive integer and o be a
primitive element of a finite field F = F,v. For 0 < a < Sdand0 < b <6—a
define the n x 1 matrix G(a, b) as

' ' ' , , \ T
(—a—b)n(§+1)+a (—a—b)n+1)(§+1)+a (—a—b+1n—1)(E+1)+a
G(a,b) = [a2 o? cooof ]
2
For example, if § = 2
0 6n 1
o? o? o?
3 32n+1) 4
2 o2 o2
G(0,2) = . G(0,0) = . G(1,1) =
3(n—1) 3(3n—1) 3(n—1)+1
o? o? o?

The following technical lemmas will be useful in the next section.
Lemmad4 Let§ > 0,0 < j <8andn > 8 — j + 1. Then for N > 2°"72, the
matrices

have all its minors of any dimension, different from zero.

Note that all elements of &; are different from zero, which means that all its
minors are nontrivial. Moreover, up to column permutations, the minors of ¢;
satisfy Theorem 3.
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Lemma 5 Let N > 27! and o a primitive element of a finite field F = F,v. Let
n>3and G(a,b) € F", with0 <a <2and 0 < b < 2 — a, be defined as in (2).
Then the following matrices are superregular:

G(0,2) G(0,1) G(0,0) 0 0 G(0,2)

Ay =1 G(0,1) G(0,0) 0 , Ay = 0 G(0,2) G(0,1) |,
G(0,0) 0 0 G(0,2) G(0,1) G(0,0)

0 0 G(0,2)

0 0 0 G2 0 G(0,2) G(0,1)

0 0 G(0,2) G(0,1) 0 G(.1)G0.0)
A3 = | G(0,2) G(0,1) G(0,0) 0 , Ay = ’ ’

G(0,2) G(0,0) 0 |’
GO,1) 0 0
| G(0,0) 0 0

G(0,1) G(0,0) 0 0
G(0,0) 0 0 0

0 0 G(0,2)
0 G(0,2) G(0,1)
and As = | G(0,2) G(0,1) G(0,0)
G(0.1) G(0,0) 0
G(0,0) 0 0

4 Constructions of MDS 2D Convolutional Codes of Rate 1/n
and Degree § <2forn > 4§ +1

In this section we will consider 2D convolutional codes of rate 1/n and degree
8 and we will give constructions of MDS codes for § < 2. Let G(Zl,ZZ) =
20§i+j§5 G(, j)zﬁzé be an encoder of €, with G(i, j) € F,~ defined as in (2).
We can write

8
G@.z) =) G, 3)

j=0

where G;(z2) = 2,8;6 G(j, i)z, € F[z]", j = 0,1,...,8. Analogously, given
a(z1,22) € Flz1,22] and ¥(z1,22) = G(z1,22)0(z1,22), wWe can write them in the
same way, i.e.,

5+4

¢
0(z1,22) = Zﬁj (z2)z] and V(z1,22) = Z‘A"j (22)z], 4

Jj=0 Jj=0
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with £ € N, where @ (z2) = ;5 u(J, i)Zy € Flzo], forany j =0,...,¢ and

8

Vs(z2) = Z G;(z22)0,—;(z2), forany s =0,...,8 +¢
i=0

(we consider G, (z2) = 0ifa < O orif a > £). Note that v(zp) are codewords of 1D
convolutional codes.

We conjecture that forn > 6 + 1 and N sufficiently large, the 2D convolutional
code € = Impy, ) G(zl ,72) is MDS. Next theorem considers such codes for § < 2.

Theorem 6 Let N >2”~',§ <2,n > § + 1 and G(z1,22) as defined in (3). Then
¢ = Imyy, ;,)G (21, 22) is a 2D MDS convolutional code of rate 1/n and degree §.

Proof 1t is obvious that ¢ has rate 1/n and degree §. Let us consider first § = 2. To
prove that & is MDS we have to show that all nonzero codewords of ¥, v(z1, z2),
have weight greater or equal than 67. Let ¥(z; , 22) be a nonzero codeword of % and
0(z1,22) € Fpn(z1,22] such that ¥(z1,22) = G(z1,22)0(z1, 22) and let us represent
both vectors as in (4). It is obvious that @(z1,z2) 7# 0 and in order to calculate
the weight of ¥(z;,z2) we can assume without loss of generality that Gip(z2) # O.

Thus 90(z2) = Go(z2)io(22), 91(z2) = [Go(z2) Gi(2)] [ﬁl(b) } and 92(22) =

lip(22)
Uiy (22)
[Go(z2) Gi(z2) Ga(z2)] | 01(z2) |, are all nonzero vectors, i.e., the weight of any
tip(22)

of these vectors is at least one. By definition, G(z1, z2) = Ug(z2) + 0 (z2)z1 + -+ +
uy (m)z‘f, with Gy (z2) # 0 for some £ € N. Then, since V24¢(z2) = G(2,0)t(z,) it
follows that wt(V24¢(z2)) = n wt(g(z2)) > n. Since Vo(z2) = Go(z2)lip(z2) then,
by Lemma 4, wt(Vo(z2)) > 3n. Now, if @; (z2) = 0 we have v1(z2) = G1(z2)00(z2)
and again by Lemma 4, wt(v,(z2)) > 2n. Hence

wt(¥(z21,22)) = Wt(Vo(22) + ¥1(22)21 + Va40(22)23T5) > 6n.
Next, we consider @ (z2) # 0. Suppose wt(lip(z2)) > 4 and let i; be the minimum

of the support of iiy(z2) and i, be the maximum of the support of iy(z,), i.e., min
Supp (G9(z2)) = i; and max Supp (0y(z2)) = i. Since i, > i1 + 3, we have that

v(0,i; +2) G(0,2) G(0,1) G(0,0) u(0,1i)
v(,ii+1) | =| G(,1) G(0,0) 0 u(0,i; + 1)
v(0,i1) G0,0) 0 0 u(0,i; + 2)
and
v(0,i + 2) 0 0 G(0,2) u(0,i; — 2)
v(0,i +1) | = 0 G(0,2)G(0,1) u(0,i — 1)

(0, iz) G(0,2) G(0,1) G(0,0) u(0, i»)
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Since the matrices A; and A, in Lemma 5 are superregular, we obtain, for s €
{1, ia}, wt(v(0, )23 +v(0, s+ 1)z 4+v(0, s +2)z5 %) > 3n—2. Then wt(¥o(22)) >
6n — 4. Therefore, wt(V(z1,22)) = wt(Vo(z2) + Vi(22)z1 + €’2+[(22)Z%+£) > 6n —
44 1+n > 6n,sincen > 3.

Assume now that wt(lip(z2)) = 3. If Supp(y(z2)) = {i,i + 1,i + 2}, for some
i € N, then ¥o(z2) = v(0,1)z5 +v(0,i +1)25 T 4+v(0,i +2)2,> +v(0,i +3)27 +
v(0,i + 4)z§+4, where

(0,1 + 4) 0 0 G(0,2)

(0,1 + 3) 0 G(0,2) G(0,1) u(0, 1)

v(0,i +2) | = | G(0,2) G(0,1) G(0,0) | | u(0.i +1) |.

v(0,i + 1) G(0,1) G(0,0) 0 u(0,i +2)
(0, 1) G(0,0) 0 0

and, since As is superregular, by Lemma 5, wt(Vo(z2)) > 5n — 2. Let j =
min Supp(@;(z2)). If j < i, then v(1,j) = G(0,0)u(l, /), if j > i then
v(1,i) = G(1,0)u(0,i) andif j =i, thenv(l,i) = G(1,0)u(0,i)+G(0,0)u(l,i),
so, in any case, we get wi(¥(z1,22)) = Wi¥o(z2) + W1(@)z1 + Vare(@)A ) =
5n—24+n—-1+n=7n—-3>6n,sincen > 3.

Suppose now that Supp(tip(z2)) = {i1,i2,i3} withi; <ip <izandi, —i; > 1 or
i3 —ip > 1. In this case, we will always obtain wt(Vy(z2)) > 6n — 2. For example,
Ifi; — iy = 2 and i3 — i, = 1, we have that

(v0,ii+5] [ o 0 G(0,2) ]
v(0,i) + 4) 0 G(0,2) G(0,1) w(0.1)
v(0,i1+3) | _ 0 G(0,1) G(0,0) u(07 )
v(0,i; +2) G(0,2) G(0,0) 0 u(07 ) ’
(0, + 1) G0,1) 0 0 ’
v(0,i1) | [ G0,00 0 0

so wt(Vo(z2)) > wt (v(o,il)zg +v(0,i + DT v (0,0 + 5)z;1+5) >

6n — 2. Thus wt(¥(z1,22)) = wt(Vo(z2) + ‘724.4(22)2%“) >6n-—2-+n > 6n,
since n > 3.

Suppose now wt(lip(z2)) = 2 and Supp(lip(z2)) = {i, j} withi < j, with similar
arguments as before we get wt(Vo(z2)) > 4n — 1. The worst case is when j =i + 1
where

v(0, i1 + 3) 0 G(0,2)
v0.i1+2) | | G(0.2) G(0. 1) [ u(0,7) }
vO0,iy +1) | | G(0.1) G(0,0) | | u(0,i +1)]"

(0, i) G(0,0) 0
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which implies wt(Vo(z2)) > 4n — 1. We also have wt(V{(z2)) > 2n —2 always. Thus
wi(V(z1.22)) = Wt(¥o(22) + V1(22)z1 + V24e(@)z]t) = dn— 1+ 20 =2+ n =
Tn —3 > 6n,sincen > 3.

Finally, assume that wt(ip(z2)) = 1. Here, we obtain wt(Vo(z2)) > 3n and
wt(V1(z2)) > 3n — 1. Hence, wt(V(z1,22)) > 6n, forn > 3.
For § < 1 the theorem follows immediately. O
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A Coding-Based Approach to Robust
Shortest-Path Routing

Angela L. Barbero and @yvind Ytrehus

Abstract Robust and distributed creation of routing tables is essential for the
functioning of a modern communication network. One of the two main types of
routing algorithms in use in today’s Internet is made up of variations of the so-called
distance-vector or Bellman-Ford algorithm (Bellman, Quart Appl Math 16:87-90,
1958; Ford (1956) Network flow theory paper P-923. RAND Corporation, Santa
Monica; Moore (1959) The shortest path through a maze. In: Proceedings of an
international symposium on the theory of switching 1957, Cambridge. Part II.
Harvard University Press, pp 285-292). These algorithms suffer from two main
deficiencies: (i) The amount of data exchanged for the algorithms to function is
considered excessive for some applications, and (ii) the algorithms respond slowly
to “bad news” in the network. This is known as the count-to-infinity (c2oc0) problem.
In order to address (ii), protocol designers (RFC1058 — routing information protocol
(1988) Internet Engineering Task Force) have introduced heuristics such as the “split
horizon” and the “route poisoning” techniques. It can be shown by simple examples
that these heuristics do not solve the c200 problem completely. In this paper we
describe a simple routing algorithm, the Tree Routing algorithm, that exchanges no
more data than existing algorithms, and that at the same time provides routing agents
with no less (and often more) insight into the topology of the network. The Tree
Routing algorithm is inspired by techniques used in information theory and coding
theory. We explain why the Tree Routing algorithm will never respond slower, and
will often respond faster, than existing algorithms.
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1 Introduction

Distance vector routing (DVR) is a classic technique [2—4] for obtaining minimum
distance routing tables in a communication network in a distributed way. The
algorithm, described in Sect.?2.1, relies on message exchange between neighbour
routers. DVR is used in the Internet in the form of the Routing Information Protocol
(RIP) [5] and its extensions [6, 7].

Shortest-path routing is simple (e.g. using Dijkstra’s algorithm) if nodes have
sufficient correct knowledge of the network topology. In this work, we elaborate on
a more general discussion initiated in [1] and proceed to present a new algorithm
that appears to represent a good tradeoff between data exchange and performance.
We observe that the core of the problem of the DVR family is that the structure of
its messages does not provide nodes with enough information about the network
topology. The new algorithm provides nodes with information about the relevant
parts of the network topology, at no increase in communication cost.

The connection to coding can be justified as follows: The core function carried
out by any routing algorithm is to collect information about the network structure,
and to use this collected information to calculate routing tables that are optimum
according to some pre-specified criteria. The collection of information implies an
information transfer, and this in turn requires that the information is encoded in a
suitable manner. Thus, coding is a subtask in the routing process, although it is often
not considered to be.

The structure of this abstract is as follows: Sect. 2 provides notation, the network
model, and describes previous work. The new algorithm is described in Sect. 3.
Application of the algorithm on a toy network is given in Sect. 4, while properties
of the algorithms are discussed in Sect. 5.

2 Background, Notation, and Network Model

A communication network is described in this paper by an undirected graph G =
G(¥, &), where 7 is the set of nodes and & C ¥ x ¥ is the set of undirected edges.
For convenience, we will use the terms edge and link as synonyms, and by node we
will mean what in network terminology is usually called a router. For a given node
v € ¥, we denote by A (v) = {u: {v,u} € &} the set of neighbours of v.

Each edge is assumed to have unit capacity. This corresponds to the case of
distance being measured in terms of the number of hops in the graph. Although this
may seem a crude measure of distance, this is actually what is used in many network
routing protocols.

We emphasize that the results in this paper may be adapted to more general
models that also represent, for example, broadcast links or more diverse link
capacities, and that take into account other distance measures.
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Table 1 Example

) Destination node id |id; |id, |--- |id,—;
of a routing table -
Distance dy |dy | [ dpy
Outgoing link Ly |Ly |-+ |L,—

2.1 Distance Vector Routing

Distance-Vector routing (DVR) is an example of a distributed version of the
Bellman-Ford algorithm. The purpose of the algorithm is to determine the shortest
path from each node to every other node. This path is represented in each node by a
routing table. For the case of a network with n nodes, this routing table at each node
has n — 1 columns and three rows, in the form of Table 1.

When a node has a data packet to forward to a destination node with identifier
idy, the sending node sends it to the corresponding outgoing link L.

In this distributed version of the BF algorithm, the nodes exchange information
(only) with its neighbours. This information is conveyed in messages that contain
the sending node’s current routing table (Table 1) except for the last row, which
contains information which is relevant only to the node itself.' In the standardized
protocols used in the Internet, like RIP in different versions, this routing table
exchange takes place either at regular intervals, or message transmission is triggered
by the arrival of new information in a node.

In addition, each node will monitor the distance d(id) to each of its neighbours
id on the corresponding link, (which, as noted above, in our case by definition is 1
to any neighbour node). Each time a routing message arrives, the current node will
update each column (i.e. each destination node idy) of its routing table according to
the following rules:

1. Let di (old) be the distance to node id; according to the old table, let dj (new) be
the distance according to the incoming table, and let d (neighbour) = 1 be the
length of the link.

2. If the incoming routing table message arrives on a link L that is not used for node
idy, then update the routing table if d (neighbour) + dy. (new) < di (old) with the
new distance d (neighbour) + di (new).

3. If the incoming routing table message arrives on a link L that is currently used
for node idy, then update the routing table with the new distance d (neighbour) +
dy (new).

In summary, in Distance Vector routing, each node executes Algorithm 1.

Distance Vector routing is simple and is known to converge fast to a set of
shortest paths for each node pair when good news arrive, i.e. when new links become
available.

Nevertheless, in some implementations even the last row is contained in the messages.
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Algorithm 1 The DVR algorithm (DVR)

Determine who the neighbours are
Initialize routing table: For each neighbour node, set the distance to 1 and the outgoing link to
the obvious value
while network is active do
Determine who are the neighbours now
(A) Send a message to each neighbour (if there are changes), consisting of the first two rows
of Table 1.
(B) Based on the current input from the neighbours, calculate new minimum distances to each
destination node, and update routing tables accordingly
end while

On the other hand, the algorithm responds slowly to bad news, i.e. when links
disappear, in some cases, notably for cyclic networks. This is known as the count-
to-infinity (c200) problem. In order to alleviate this, protocol designers have applied
heuristic techniques like “split horizon” and “route poisoning” [5]. Using the “split
horizon” heuristic, a node @ will not report to a neighbour b (in step (A) of the loop)
a path to node c if a’s best path to ¢ passes through b. In “split horizon” with “route
poisoning”, nodes will deliberately advertise to its neighbours infinite distances for
destinations for which the best paths have failed. This will trigger the neighbours to
suspend the split horizon strategy.

These heuristics still do not completely solve the (c2cc) problem for all network
topologies. In the next section we propose a related algorithm which improves the
response to bad news in many cases.

3 A New Algorithm

The new algorithm, the Tree Routing algorithm (TR), has two components, inspired
by information theoretic and coding theoretic arguments.

1. Instead of transferring distance vectors, in the Tree Routing algorithm a message
M (u,v) from a node u to a neighbour v € .4 (u) is comprised of the first two
rows of a table in the form of Table 2. In the second row, Parent, represents the
destination’s predecessor in a particular routing tree with a root in u. As argued
in [1], in terms of size of the exchanged messages, we may just as well transfer
the Parent instead of the Distance. This allows the recipient v to reconstruct the
particular routing tree that the sending neighbour u has built. Also observe that,
in consequence, the third row of Table 2, Distance, is implied by the first two
rows [1], and so is the fourth row.

2. Drawing from the similarity to belief propagation or message passing decoders
for LDPC codes, a message a M (u, v) from a node u to a neighbour v € A (1)
is computed based on the input to u from the other neighbours, {w : w €
A (w),w # v}. Thus, the particular routing tree mentioned above is the one
that u creates without using node v.
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Table 2 An extended

. Destination node id |id; |idy |--- |id,—;
routing table -
Parent node id P1 (P2 | | Pu—1
Distance dy |dy | [ dpy
Outgoing link Ly L, |-+ |L,—

The procedure is described in Algorithm 2.

Algorithm 2 The tree routing algorithm

Determine who the neighbours are
Initialize routing table: For each neighbour node, set the distance to 1 and the outgoing link to
the obvious value
while network is active, each node u will do
Determine .4 (1) := who the neighbours are now
(A) Send a message M (u,v) to each neighbour v € .4 (u) (if there are changes with respect
to most recent message transmitted from u to v ), consisting of the first two rows of Table 1.
M (u,v) is based on merging the most recent messages, {M(w,u) : w € A (1), w # v}.
(B) Receiving nodes should disregard a message advertising any path that uses a link that
according to more recent information does not exist (anymore).
(C) Based on the current input from all the neighbours, calculate the new routing table.
end while

The mechanism in (B) is necessary to counter the c2oc0 problem. Due to space
limitations we will not discuss in detail what we mean by most recent information,
beyond the following: In an implementation where message transmission is syn-
chronous, the age of information corresponds to the length of the path over which
information has travelled. In case of asynchronous communication, time stamps
may be necessary.

3.1 Variations

The description of the TR algorithm is by necessity general and rudimentary. We
observe that different versions of the TR can be designed, suited to the particular
emphasis on memory use, node computation requirements, and convergence speed,
and that it can be generalized to multipath applications.

Thus, in this paper, by the TR algorithm we mean the generic family of routing
algorithms which is distinguished from the DVR family by the nature of information
exchanged: The TR algorithms exchange tree structures while the DV algorithms
exchange distance vectors.
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T=t,
Table of B Table of B
(A Jc [p e |F | (A Jc [p [e [F |G|
from C 56 1B 2C 2C 3E 4F from C XB
from A 1B 5B 6C 4F 3G 2A fromA 1B 5E 6C 4F 3G 2A
Tree for B 1B 1B 2C 2C 3E 2A Updated treeforB 1B 5B 6C 4F 3G 2A
B < A g —F B4 = g ~F
c { c< -
< D =D

Fig. 1 Response to bad news. The left part of the figure shows the network at time 7y — 1, the
messages sent to B at that time, and the routing tree constructed for B. For convenience, we have
included Distance information, although this is implied by the Parent information and therefore
does not need to be sent. Thus C will report to B that A’s parent is G; this implies that the distance
to A is 5. The right part of the figure shows the network at time fo, after the link {B, C} has
collapsed

4 Example

Figure 1 shows an example of how the Tree Routing algorithm responds to bad
news. Figure 2 shows, by way of an example, a comparison of the network topology
information conveyed in Tree Routing and in Distance Vector Routing.

S Properties of the Tree Routing Algorithm

We are not aware of a formal definition of the (c200) problem. Therefore it is also
not clear how to provide formal statements of how the algorithms perform with
respect to this problem. We can however, prove the following statements (but do not
include the proofs here, for lack of space).

Proposition 1 The amount of data exchanged in the TR is not larger than in the
obvious representation of the DVR, and not significantly larger than an optimum
representation of the DVR [1].

Proposition 2 The TR conveys at least as much information (in the information
theoretic sense) about the network topology among the neighbours, as the DVR and
its variants do, and often more.

The more information a deciding entity is in possession of, the better are the
optimum decisions it can make. Thus, the last proposition suggests that, on average
and with optimum use of the collected information, a TR algorithm will converge
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TR, view from node A DVR, view from node A (SplHor)

(B c|p|E|F|G|H] [ 8lclple|FlG|H]
FromB A F B B D E D FromB 1 - 2 2 3 3 3
From C E A F G C C D From C - 1 3 3 2 2 4

B’sand C’s
messages @

B’sand C’s
messages

are easily do not allow
merged reconstruction
to complete of the
network complete

network

Fig. 2 A comparison of the TR and the DVR. The actual network is shown at the top of the figure.
On the left are shown the messages that B and C, respectively, send to A in the TR algorithm. For
each node in the respective routing trees of B and C, the parent node is given. This allows A to
reconstruct the two routing trees and, in this case, the entire network. The right part shows the
corresponding messages sent in the DVR algorithm. We observe that for the DVR algorithm, A is
unable to reconstruct a clear picture of the graph. Moreover, although it is still possible to deduce
that A is on a cycle, the current versions of the DVR do not attempt to do this, and it is difficult to
establish the exact structure of that cycle. This complicates the design of a simple rule to avoid the
¢200 problem

faster than a DVR algorithm on dynamic networks where nodes may move or links
may appear and disappear.

We will provide simulation results for the average convergence times and packet
delay values for different classes of graphs, including Gilbert random graphs and
random geometric graphs.
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Constructions of Fast-Decodable Distributed
Space-Time Codes

Amaro Barreal, Camilla Hollanti, and Nadya Markin

Abstract Fast-decodable distributed space-time codes are constructed by adapting
the iterative code construction introduced in [6] to the N-relay multiple-input
multiple-output channel, leading to the first fast-decodable distributed space-time
codes for more than one antenna per user. Explicit constructions are provided
alongside with a performance comparison to non-iterated (non-) fast-decodable
codes.

Keywords Distributed space-time codes ¢ Fast-decodability » Half-duplex relay
channel * Cyclic division algebras

1 Introduction

The increasing interest in cooperative diversity techniques as well as rapid growth
in the field of multi-antenna communications motivates the investigation of flexible
coding techniques for the multiple-input multiple-output (MIMO) cooperative
channel. The tools developed in [4] and [5] provide the necessary tools to construct
fast-decodable space-time (ST) codes for the N -relay non-orthogonal amplify-and-
forward (NAF) cooperative channel with a single antenna at both the source and the
relays. Our work extends these methods to the N -relay MIMO NAF channel, that is
the relays are allowed to employ multiple antennas for transmission and reception.
In addition, many ST codes for the relay scenario exhibit a high rate and hence
require a high number of receive antennas at the destination, whereas in this work a
single antenna suffices.
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2 The MIMO Amplify-and-Forward Channel

We consider the case of a single user communicating with a single destination over
a wireless network. N intermediate relays participate in the transmission process.
In addition, we assume the half-duplex constraint, that is the relays can only either
receive or transmit a signal in a given time instance.

Denote by ng, ny and n, the number of antennas at the source, destination, and
relays, respectively. A superframe consisting of N consecutive cooperation frames
of length 7', each composed of two partitions of 7/2 symbols, is defined, and all
channels are assumed to be static during the transmission of the entire superframe.

F

N note the Rayleigh distributed

Gy
A = /
N \‘ channels from the source to

" the destination, relays, and

\

N Hy : N from the relays to the desti-

\

. nation, respectively.
() e

In a realistic scenario, 1, < ng, the transmission process can be modeled as

Yii=vyiaFXi1+ Vi1, i=1,....N
Yio =VioFXio+Vio+ yrGiBi(yg HiXin + Wy). i=1,...,N

where Y; ; and X; ; are the received and sent matrices, V; ; and W; represent additive
white Gaussian noise, the matrices B; are needed for normalization and y; ;, yg,,
V;el- are signal-to-noise (SNR) related scalars.

From the destinations point of view, the above transmission model can be viewed
as a virtual single-user MIMO channel as

Yndxn = HnanXan + Vndxns

where n = N(ny + n,), X and Y are the (overall) transmitted and received
codewords whose structure will take a particular form, and the channel matrix H is
determined by the different relay paths. For more details, as well as for the remaining
case n, > n,, we refer to [8].

2.1 Optimal Space-Time Codes for MIMO NAF Relay
Channels

Let = denote exponential equality, i.e., we write

. 1 NR
F(SNR) = SNR? & fim [22/CNR) _
SNR—oo  log SNR
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and similar for 5 Consider an n4 x n MIMO channel and let .7 be a scalably dense
alphabet [8, p.651, Definition 2], that is for <7 (SNR) its value at a given SNR and
for 0 < r < min{ng,n} we require

|7 (SNR)| = SNR#
la|?> < SNR# fora € o/ (SNR),

for instance PAM or (rotated) QAM constellations. An nxn ST code 2™ such that

1. The entries of any X € 2" are linear combinations of elements in <7
2. On average, R complex symbols from .o¢ are transmitted per channel use.
3. min |det(X; — X;)| > x > 0 for a constant « independent of the SNR.

Xi#X; e
is called a rate- R non-vanishing determinant (NVD) code, and we say the code is
full-rate if R = ng4. This is the largest rate that still allows for the use of a linear
decoder, e.g., a sphere decoder, with n; antennas at the destination.

Consider an N-relay MIMO NAF channel. It was shown in [8] that given a
rate-2n; NVD block-diagonal code 27, thus where each X € 2" takes the form
X = diag{&;}}_, with &; € Mat(2n,, C), the equivalent code C = [C; --- Cy].
Ci =[&[1:n5,1:2n,] & [ns + 1: 2ny,1: 2n,]] achieves the optimal diversity-
multiplexing tradeoff (DMT) for the channel, transmitting C; in the i th cooperation
frame.

It would thus be desirable to have block-diagonal ST codes which in addition
achieve:

1. Full rate ny: The number of independent complex symbols (e.g., QAM) per
codeword equals ngy(ny + n,)N.
2. Full rank: min rank(X; — X;) = (ny +n,)N.

Xi #X‘/' ex
3. NVD: min |det(X; — X;)|*> > « > O for a constant k.
Xi #X j€ Zx
The last condition can be abandoned at the low SNR regime without compromising
the performance. For very low SNR, even relaxing on the full-rank condition does
not have adverse effect, since the determinant criterion is asymptotic in nature.

2.2 On Fast-Decodability

Consider a ST lattice code 2~ = {fo:l zi+Bi | zz € ZN J}, where {Bi}f?zl,
k < 2n?, are lattice basis matrices of a rank-k lattice A € Mat(n,C), and J C Z
is finite and referred to as the signaling alphabet. Maximum-likelihood decoding of
ST codes amounts to finding the codeword in 2" that achieves

Z = argmin{||Y — HX||%}X53(.
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Writing b; for the vectorization of HB;, that is stacking its columns followed
by separating the real and imaginary parts, define B = (by,...,b) and z =
(z1,....2k)T. Bach received codeword can thus be represented as B - z. Performing
OR-decomposition on B, where Q QT = I, R upper triangular, leads to finding

argmin{||Y — HX |3} xes ~ argmin{||Q"y — Rel[}:},¢ jx = argmin{]|y" — Rell}} e s

where y’ = QTy. This search can be simplified by using a sphere decoder, the
complexity of which is upper bounded by that of exhaustive search, i.e., by |J |¥.
The structure of the matrix R can however reduce the complexity of decoding. A
ST code whose decoding complexity is |J|¥', k¥’ < k — 1, due to the structure of
R is called fast-decodable [2]. A more extensive review on fast-decodability can be
found in [5].

3 Iterated Space-Time Codes

Recently, an iterative ST code construction has been proposed in [6]. By choosing
the maps and elements involved in the construction carefully, the resulting code can
inherit some good properties from the original code, such as fast-decodability or
full-diversity. This makes the proposed method an interesting tool for constructing
bigger codes from well-performing ones.

Consider a tower of field extensions Q C F C K, with F/Q finite Galois and K/F
cyclic Galois of degree n with Galois group I"(K/F) = (o). Let y € F* be such
that y' ¢ Nmg/p(K*),i = 1,...,n,and let ¢ = (K/F,0,y) = @?;(1) e'K, where
e" = y and ke = eo(k) for all k € K, be a cyclic division algebra of dimension
n? over its center F. Given ¢ = Z:-’;é elc; € €, the representation over its maximal
subfield is

¢ yolea—1) = yo" )

o) - yo" e
Aicr
cnm U(Cz;—z) 0”_"(60)
Let © € Autg(K) such that to0 = ot and commutes also with complex

conjugation, 72 = 1 and 7(y) = y. Fix § € F* such that 7(6) = 6. Setting
X = A(x),Y = A(y) € Mat(n, ¥), define a map

) X 0t(Y)
ap: (X,Y) > |:Y r(X):|‘

The conditions imposed on t and 6 ensure that the image of ¢y is an F-algebra,
and is division if and only if 8 # ct(c) for all ¢ € ¥. For more details on this
construction method, the reader may consult [6].
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4 Distributed Iterated Space-Time Codes

Consider an N -relay MIMO channel. Given a ST code 2~ C Mat(n, C), we define
the following map f : 2~ — Mat(nN, C)

S X e diaghy (X))

for a suitable function 1 such that n¥ = id. In the following, we will make
use of this function to construct distributed ST codes from iterated and non-
iterated codes. Often the map 7 is chosen to be a field automorphism, so that the
determinant will correspond to a field norm and be non-vanishing with a suitable
choice of fields. Here, we choose n = id, as in our specific examples the blocks
composing the codeword matrices will already have the NVD property, thus no
special modifications will be necessary. Note that if the blocks 1’ (X) are fast-
decodable, the resulting block-diagonal code will also be fast-decodable [5].

4.1 Explicit Constructions for N = 2 Relays and n, + n;, = 4

In the following, let N = 2 be the number of relays, both equipped with 7, antennas
and such that n, + n; = 4. We construct three different codes, each of them with
different characteristics, arising from the following towers of extensions:

Cs = (Ks/Fs, 05, —1) o = (Kg/Fg. 0g,1) Gn = (Kn/Q,0m,—5)
2 |2 |2
Ky = Fi(i) K, = Fy(v/3) Kin =Q(&s)
|2 12
F=Q(vV=7) Fe=Q() 4
2 2
Q Q Q
Gy i —i 0 V5= =5 OG5 63

1. The Silver code, well known to be fast-decodable [2, 3], is constructed from the
cyclic division algebra % and is a finite subset of

BS [x1ﬁ+(1+i)x3+(—1+2i)X4 —x;‘ﬁ—(l—Zi)x;‘—(l+i)xff]
ﬁ 0N T=(14+20)x3—(1=i)xg  xF /T—(1—i)xF—(—1=2i)x}

Choosing 6, = —17, ty = o0, and given two set elements X =
X(x1,x2,x3,x4),Y = Y(y1,¥2,¥3, ya), we construct a distributed iterated
Silver code via the map

xjeZ[i],1§j§4}.

X bs7(Y) 0 0
((XY) 0 _ |7y mwx)y o o
f(OZO\ (Xs Y))lzd = I:aﬁ 0 s, (XY):I — [0 T(O ) X QSTS(Y)] € Mat(S, K_g)-
0 0 Y wlX)
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Set Z; = {Zj_lz] i | zj € J NZ}, where a lattice basis A; = {S; } 0, is
given by

{ f(,(X(1,0,0,0),Y(0,0,0,0)))>%,..... f(ag, (X(0,0,0,0),Y(0,0,0, 1)))?,,
fag, (X(i,0,0,0), Y(0,0,0,0)))7,. ..., f(ag (X(0,0,0,0), Y(0,0,0,i)))%,

. The Golden code, a well-performing ST code introduced in [1], is constructed

from ¢, and consists of codewords taken from the set

L v(x1+x20) v(x3+x40)
ﬁ i0g(v)(x34x404 (@) 04 (V) (x1+x204 (@)

ijZ[i],1§j§4§,

where @ = (1 + +/5)/2and v = 1 4+ i — iw. The Golden code, although very
good in performance, is not fast-decodable without modifying the sphere decoder
used and has higher decoding complexity than the Silver code.

We set 8, = 1 — i, iy = o0, Then, for two elements X =
X(x1,x2,x3,%4), Y = Y(y1, 2, V3, ¥a), the distributed iterated Golden code
is constructed as

X 6,7,(Y) 0 0

rxeg(XY) 0 |y ) 0 o
gy (X.Y) 0 0 X Ggzg(Y)
0 0 Y 1X)

flag, (X, Y))y = € Mat(8, K,).

Set Z, = {Z —12j - Gj | z; € J NZ}, where a lattice basis A, = {G; }j_l is

{f (6, (X(1,0,0,0), Y(0,0,0,0))7y, .. ., (g, (X(0,0,0,0), Y(0,0,0, 1)),
f (9, (X(i,0,0,0),Y(0,0,0,0)))7. . ... f(eg,(X(0,0,0,0),Y(0,0,0,)))7,

Finally we also consider the fast-decodable MIDO 44 code constructed in [7],
using %, as the algebraic structure. Write ¢ = {5 and choose {1 — ¢, ¢ — ¢, % —

03,83 — %) abasis of Z[¢]. Setting r = | — 8/9|'/4, codewords are taken from
x1 =r2xy —r3op(xs) —rom(x3)*
r2xy x{ rom(x3)  —rop(x4)* , .
X3 —r3xff on(x1)  —rZo(x)* Xj € Z[é‘]’ 1 =J= 40

rxs rxy rlom(x2)  om(x)*
where for 1 < j <4, x; = x;(laj-3.laj—2. laj—1. laj) = laj—3(1 =) +14j2({ =

E) +1j1 (82 =23 +14j (£ —¢*). Given an element X = X (x1, X2, X3, X4) from
this set, the adaptation to the cooperative channel is

SO} =[X 9] € Mat(8, K.,).
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Set &, = {Z}ilzj -M; | z;j € J NZ}. Alattice basis A, = {Mj}}ﬁ:l is

{X(x1(1,0,0,0),0,0,0)....,X(0,0,0, x4(0,0,0, 1))}.

4.2 Determinant and Performance Comparison

For the carried out simulations we fix J = {£1}, the 2-PAM signaling constellation.
Further, comparison between the constructed codes requires some kind of normal-
ization, and we choose to normalize the volume of the fundamental parallelotope
of the underlying lattices to be §(A) = 1. We can then compare the distribution of
the normalized determinants among all codewords, as illustrated below. In addition
to the previously introduced codes, we further consider a modified version of the
distributed iterated Silver code using 6, = —1. Although this choice does not
guarantee full-diversity in general, with 2-PAM the resulting code is still fully
diverse (Figs.1 and 2).

Golden Silver_q7 Silver—; MIDO 44
Minimum det. 4.445-1073 1.553-107° 4.16-10~* 3.871-1077
Maximum det. 13.871 4.099 14.268 80.500
Average det. 1.819 0.493 2.007 7.485

log{Norm. Determinants)

MIDO A4
Golden
--Silver -1

Silver -17

‘10 b

=151

Fig. 1 The logarithmic distribution of the normalized determinants of all the 2'® codewords in
Zy» Xy and Z for both 6y = —17 and 6, = —1
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— Silver,

—*— MIDO,,

—<— Golden
Silver,,

BLER

SNR (dB)

Fig. 2 Performance comparison of the above four example codes with 2-PAM signaling. The data
rate is 16/8 = 2 bits per channel use (bpcu). The Silver code with 6; = —17 has the worst
performance, which is to be expected due to high peak-to-average power ratio stemming from the
fact that |17] is not close to one. The other codes perform more or less equally

The exact complexity reduction of the iterated distributed codes remains to be
examined. It is also not necessarily obvious, that the proposed construction achieves
the DMT, since the conditions in [8] require that the code rate is 2n;, while our
example constructions all have code rate ny = 1 < 2n;. However, since they are
full-rate (similarly to the codes in [8]) for n; antennas at the destination, we expect
that they do achieve the DMT.
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Cyclic Generalized Separable (L, G) Codes

Sergey Bezzateev

Abstract A new class of cyclic generalized separable (L, G) codes is constructed.

Keywords Generalized (L,G) codes * Goppa codes ¢ Cyclic codes

1 Introduction

A classical Goppa code [1] is determined by two objects: a Goppa polynomial G (x)
with coefficients from G F(g™) and location set L of codeword positions

L ={a,0,...,a,} SGF(@"),G(o;) #0, Ya; € L.

Definition 1 A g-ary vectora = (a14az...a,) is a codeword of (L, G)-code if and
only if the following equality is satisfied

. 1
Zai =0 mod G(x).
X — U

i=1

Definition 2 Goppa code is called separable if the polynomial G(x) does not have
multiple roots.

In [1] V.D. Goppa proved that the primitive BCH codes are the only sub-
class of Goppa codes that are cyclic with G(x) = (x — y)',y € GF(q™),
L € GF(¢g™) \ {y}. Accordingly, the only one class of separable Goppa codes
with G(x) = (x —y),y € GF(¢™), L € GF(q™) \ {y} defined as cyclic.

In 1973 in [2] and later in [3—11] a subclasses of extended separable Goppa codes
and subclasses of separable Goppa codes with Goppa polynomials of degree 2 and
additional parity check were proposed. It was proved that these codes are cyclic.
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However, the existence among separable Goppa codes any subclass of cyclic codes
remained an open problem ([12] Ch.12, Corollary 9, Research Problem 12.3).

In 2013 in [13] the subclass of cyclic separable Goppa codes with a special choice
of location set L and and Goppa polynomial G(X) of degree 2 was suggested.

L={a;.....00-1,0,} C{GF(g*)\ GF(¢™)} {1},
a, = l,a?m =o' =a,,n=q"%1,
G(x)=(x—-PB)x—B"), BeGF(g*™). B+ B € GF(g™).

G(oj) #0,0; #aj, Vi, je{l,....n}, 1 # .

A generalized Goppa code [14] can be constructed by using the following general-
ization of location set L:

P AN AC)
A A® T R@

where f;/(x) is a formal derivative of f;(x) in GF(q) and

ey

fix)=xt+ai x4+ +aix + aio,ai; € GF(g"),
ged(fi(x), f3(x)) =1, ged(fi(x), G(x)) =1, Vi, j, i # J.

Definition 3 g-ary vector a = (aa;...a,) is a codeword of generalized (L, G)-
code if and only if the following equality is satisfied

Za,- ]}/((;c)) =0 mod G(x). 2)
i=1 !

Generalized Goppa codes have allowed to expand a class of cyclic Goppa codes
with G(x) = (x —y)". Many cyclic (n, k, d) codes can be described as generalized
Goppa codes [15] with

fi(x) = flad'x), f(x)=x"+arx* " +... +ax+ao, a,a; € GF(g"),
ap 7é Ovan = 1’ nl(qﬂ - 1)v ng(ﬁ(x)v f](x)) = lv Vi?j? i 75]

and
G(x) = x'.

For such codes the design bound for minimum distance dg > % and the
corresponding decoding algorithm were determined [16, 17]. However, a subclass
of cyclic generalized separable Goppa codes is still remained limited by polynomial
G(x) = (x —y).y € GF(g").



Cyclic Generalized Separable (L, G) Codes 55

2 Two Subclasses of Binary Cyclic Generalized Separable
Goppa Codes

In this paper we will consider a binary case with two variants of separable Goppa
polynomial

G(x) =x"—land G(x) = x(x" — 1). (3)

We will need the following definitions.
Definition 4 For any integers n, n|(2” — 1) and /, 0 <[ < n a cyclotomic coset
m is given by

m; ={12) modn,Vj=0,1,..., 4 —1},

where A; is the smallest integer greater than 0 such that /2 =/ mod n.

Definition 5 The minimal polynomial M;(x) of element o’ € GF(2") is given by

Mi(x) = [] (x—a/). degMi(x) = A;.

JjEm|

Definition 6 The generator polynomial of a cyclic (n, k, d) code C is given by

g)= [[x—a)). D= Jmy andg(x)= [] My, (x). degg(x)= [[ &, =n—k.

jeD j=1 j=1 j=1

where D is the set containing the indices of the zeros of the generator polynomial
g(x). The size of set D is equal ton — k.

For some D let’s consider a binary linear (1, k, 7) code C; with the length 7,
dimension x, minimum distance t and parity-check matrix Hy,

.1/'1 /34'1
G(B1) ~°" G(By)

ﬂ./z J2
H, — | @0 Gy | A€ GF@O\{0.1), GF) N GFR™) = {0, 1},
- I"N=4{Ljn.... ik, NUD ={0,1,...,n—1}.

Ji Ji
ﬂk Uk

G(B) " G(By

“

Letb = (by by ... by byyy ... by) withh; = 1,Vi =1,...tandb; = 0,Vi =
T+ 1,...,7n be a codeword of this code. Then for this vector b and parity-check
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matrix H; we obtain

Bl B

b-H” =0and bj—— = L _=0,Vli=1,...,k. (5)
; G(:) ; G(:)

As in [17] we will call C; as non-zero- locator code for cyclic code C with the set

D ifforanym; C D exists j : j € m;, Z G(ﬁ ) # 0. We associate with codeword

b of this non-zero-locator code C, the followmg locator polynomial

JO) =& =B)x =P (x=po), B; € GF2"), j=1,....7,
filx) = (x —a'B)(x —a'fo) - (x —&' fr), € € GF(2™), " =1, (6)
ged(fi(x), fi(x) =1, Vi #j, i.j=1....n

Theorem 7 Generalized (L, G) code with Goppa polynomial G(x) (3) and locator
set L (1) defined by non-zero-locator code Cy, (4),(5) and by associated locator
polynomial f(x) (6) is a cyclic code C with the set D of indices of zeroes of
generator polynomial.

Proof Parity-check matrix Hg for this code is:

T
Z G(ﬁl Z <, ' '
= i=l ' oy
L

0o Zc(ﬁ)"' Z: e e
¢ . I BT (7

’ Ls Ls

0 T ﬂlég o T ﬂl(g [0 2RI 0 A8

@ Zl Gy o Zl G
L 1= 1= -
where {£1,¢,,...,4s} C D.

o

Note 8 By Definition 6 dimension of this code is k = n — || D||, where | D] is a
size of the set D.

For the case G(x) = x(x" — 1) we will obtain a similar theorem.

Theorem 9 Generalized (L, G) code with Goppa polynomial GA(x) (3) and locator
set L (1) defined by non-zero-code Cy. (4),(5) is a cyclic code C with the set D C
D U m_, of indices of zeroes of generator polynomial.
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Proof Parity-check matrix H g for this code is:

T T =
-1y 1 —1y 1
o ; GGy % l.; G(B)
T 0 T 4

91 Bi 4 B
G X Gy % X G

6 T
P 2 Bi l Bi =
Hg =1 oy Zl Gy M Zl G
2 =

Hg,if —1eDor0O€N,

a7l e

[1 n ],1f—l¢Dand0¢N.
Hg

®)
8]

Theorem 10 From (2), (3) and (6) we obtain the following estimation for minimal
distance of binary cyclic generalized separable Goppa code:

2 1
de > n for G(x) = x" —1
T
and
2 3 o
de > nt for G(x) = x(x" —1).

T

3 Trace Non-zero-Locator Code

As example of non-zero-locator code let’s consider a binary linear code with length
n , parity-check matrix

ﬁfl ﬁzjl /3711'1
el N G o .
ﬁ(jf;) Gﬁ(gz) ﬁ(,gz”) B anmve élement in GF(2%),
_ | ©® Gy G tr(p/) =0,vi=1,... k,
H; = , .. . )
N:{jlijssjk}v
Bk Bk Bk NuUD={0,1,...,n—1}.

GB) G(B?) " G

and codeword

b= (biby...by).wi(b)=pandby =by=bhy =...=by1=1.
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Now we can rewrite matrix Hg (7) in the following form

Gop (B ¢ i)
C(l tr (G(gﬁ)) ...O{nltr (G(gﬁ) afl aﬁ]
afztr (ﬂ(—;)) coabtr (ﬂ(—;)) otf2 ol
Hg = =
: " : oL (10)
Gy (B9 typ (£ L
Oll tr Tﬁ) B¢ s tr Tﬁ)) n
L .
where zr(Gﬂ(ﬂ)) £0i=1,....8 {{b,... Ls)CD.

For such trace non-zero-locator code we have locator polynomial f(x) from (6):
) = (x=B)x—p>) - (x—p"") = 21(x), 21(x) € Fa[x], deg 2i(x) = p,

£2(x) is a minimal polynomial of element 8 € GF(2").
From Theorem 10 we obtain the following estimation for minimal distance of
binary cyclic generalized separable Goppa code with trace non-zero-locator code:

2 1
do > 2 for Gx) = x" — 1
and
2 3 N
dg > nt for G(x) = x(x" —1).
4 Examples
1.

n=21,G(x) =x(x? —1),a € GF(25),a* = 1,8 € GF(2),
) =x"+x+x+x+1, fi(x) =" x" +a%x® +a*x* +a'x + 1,

x041 o x4 4504020
L= {x7+x6+x4+x+1 ol xTHabx0+atxtax+17 " aldxT+alB3x0417x44+020x 41 }’
L) 1 i
tr (é(?) 1.i=0.3.46.712.14,21,
tr (%) —0,i=1258.91011,13,15,16,17.18.19,20.

Therefore from Theorem 9 we have (21,6,7) cyclic code with generator
polynomial g(x) = m;(x)msms(x). From Theorem 10 we obtain the following
estimation for minimum distance for this generalized separable (L, G) code:

2 3 45
dg > n = — >6andwehavedg =d = 7.

"
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5

n=21,G(x) =x 1,0 € GF(2%,a* = 1,8 € GF(2"),
f(x):x7+x6+x4+x2+l’ﬁ(x):a7ix7+a6ix6+a4ix4+a2ix2+1,

L= X6 o7 x6 w64 g

P {-x7+xé+x4+x2+1 T T e T el T e )
f;‘) — 1=

tr(G(?) 1,i=2,3,56,11,13,20,

i (Gfm) =0,i=0,1,4,7,8,910,12,14,15,16,17,18, 19.

From Eq.(10) and Theorem 7 we have (21,6,7) cyclic code with generator
polynomial g(x) = m;(x)m3(x)ms(x). From Theorem 10 we obtain the
following estimation for minimum distance for this generalized separable (L, G)
code:

2 1 43
dg > " :7>6andwehavedé:d:7.

n

Conclusion

The new subclasses of cyclic generalized separable Goppa codes with Goppa
polynomials x” — 1 and x(x" — 1) are proposed. The parameters and examples
of the codes from these subclasses are shown.
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The One-Out-of-k Retrieval Problem and Linear
Network Coding

Giuseppe Bianchi, Lorenzo Bracciale, Keren Censor-Hillel, Andrea Lincoln,
and Muriel Médard

Abstract In this paper we show how linear network coding can reduce the number
of queries needed to retrieve one specific message among k distinct ones replicated
across a large number of randomly accessed nodes storing one message each.
Without network coding, this would require k queries on average. After proving that
no scheme can perform better than a straightforward lower bound of 0.5k average
queries, we propose and asymptotically evaluate, using mean field arguments, a
few example practical schemes, the best of which attains 0.82k queries on average.
The paper opens two complementary challenges: a systematic analysis of practical
schemes so as to identify the best performing ones and design guideline strategies,
as well as the need to identify tighter, nontrivial, lower bounds.

Keywords Delay tolerant network e Linear network coding ¢ Fluid approxima-
tions

1 Introduction

This paper introduces a new problem, which we call one-out-of-k retrieval. Suppose
there are k distinct messages X = {xi,...,xx}, where x; € 0,1" Vi € [1,k].
A receiver wishes to learn all m bits of one specific target message, x, € X. We can
produce some new set of messages ¥ = {yj, y,, ...} of arbitrary size and contents.
Each round, the receiver can request a message selected over a pre-determined
probability distribution from Y. We wish to come up with a set of linearly coded
messages for Y and a probability distribution over these such that the average
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number of rounds in which a message must be requested by the receiver from Y
to learn all m bits of x, is minimized.

This scenario is practically encountered in Delay Tolerant Networks (DTN).
In such networks, data replication across the moving terminals is at the core of
most proposed data access or data delivery solutions, as the likelihood that a user
interested in a specific data item “physically” meets only the single data producer
becomes rapidly negligible as the network size scales.

1.1 Contribution

PMost network coding research has focused on retrieving and decoding all the
messages instead of a specific subset Even for the case of k = 2, schemes exist
which take an average of ~1.828 coded messages from Y, outperforming the naive
average of 2. This raises some questions: how much reduction in average numbers
of messages from Y can we gain? And with which practical constructions?

In the paper, we present a lower bound of 0.5k for the average number of rounds
the receiver must request messages. Then, we propose some initial example schemes
where the selection of the probability distribution over Y results in a lower average
number of requests than the naive average of k messages needed from the set Y.

Moreover, we provide a general methodology to analyze such schemes. We
specifically show how to apply mean field arguments to derive the asymptotic
performance of the proposed approaches. We concretely apply our methodology
to two example schemes, the best of which attains an average of 0.82k rounds of
communication.

1.2  Previous Work

Previous work on network coding in DTNs has not considered the problem of
solving for one out of k messages. In our model, the protocol does not allow for the
receiver to request the specific information it wants and nor do we treat it as wanting
all information. For instance, LT codes [6] are designed with the different goal of
optimizing the decoding procedures. Many papers [2, 7, 8, 10] investigate routing
protocols in DTNs. These papers attempt to decode all messages, as opposed to just
one of k. Yoon and Hass consider application of linear network coding to DTN but,
unlike this work, investigate the case of sparse networks [9].



The One-Out-of-k Retrieval Problem and Linear Network Coding 63
2 Network Model and Problem Statement

In our model there are k messages X = {xj,..., Xk}, each of which is a can be
represented by a binary vector of length m bits. There is a receiver node, r, which
wants to know the contents of the one message, we will call this message x,. The
receiver, r, travels throughout the network and will receive messages from the nodes
it contacts in close proximity. We model this as r contacting a random node, which
transmits its output. These contacts cannot be commanded so messages may be
repeated and r can not query for a particular message. In each round, the receiver
node r receives exactly one coded message, y, from one of the transmitting nodes.
Each round has a constant duration. The nodes in this network can store linear
combinations of messages over some field F.

Definition 1 The type (or degree) of a coded message is the number of message
linearly combined in that data message.

These linear combinations are stored with header data that specifies which
messages were summed with what multiplicative constants.

Definition 2 Solving for message x; means determining all m bits in the mes-
sage X;.

Definition 3 The one-out-of-k retrieval problem is determining what coding
scheme produces the lowest expected time for r to solve for x, where a coding
scheme is the proportion py, p> ... pr of the codeword degrees distributed in the
networks.

In other words, we want to find p; --- py that minimize the time for retrieving
only one message, given that the receiver collects at each round an uncoded message
with probability p;, a “pair” (codeword with degree 2) with probability p,, a
“triplet” with probability p; etc.

Thus, Y is the set of all linear combinations of the k messages in X . Each coded
message, y € Y, is a linear combination of n messages and has a probability 5% of

)

being sent to the receiver.

2.1 A Trivial Example: k = 2

Consider the simple case where we have only two kind of different message that
we call A and B. If we do not use coding (p; = 1, p» = 0) it is trivial to show
that the average time spent from the receiver for collecting A (or equivalently B) is
2, i.e. k. Similarly if all nodes carry a random linear combination of both A and B
(p1 = 0, p» = 1) the expected retrieval time is exactly 2 encounters, so once again
the average is 2. Now let AB be the linear combination of A and B so that at each
encounter the receiver can collect A with probability p/2, B with probability p/2,
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Fig. 1 Average retrieval delay for the case of k = 2

and A B with probability 1 — p. The average delay to retrieve item A is:

1
Delay=1—p + ———
y p 1= )2
Then it is trivial to show that when p = 2 — +/2 the expected time to retrieve 4 is
minimized and equals to 2+/2 — 1 & 1.828, i.e. about 9 % lower than both previous
cases. Hence this problem is solved adopting the coding scheme p; = 2—+/2, p, =
V2 — 1. The delay versus p is shown in Fig. 1.

2.2 Lower Bound

For the problem of determining the contents of one message out of k we prove that
0.5k messages is the lowest achievable average cost.

Intuitively level to solve for ¢ messages we must receive at least ¢ coded
messages.

Lemma 4 On average there are greater than %k messages solved for before or in
the same round as x,.

Proof First let us define m ; as the number of messages solved before or at the same
time that x; is solved. If a message x; never has its contents solved then define
m; = k. For convenience, let m, be the number of messages solved before or at
the same time as the message of interest x,. x, is randomly selected from {x;|j €
[1, k]}. Thus, the average number of message solved before or at the same round as

k .
X, is the average vale of m; i.e. Z=1"1
If all the values of m ; are distinct then the minimum value they can have is the
integers from 1 to k thus the average value of m is:

(k+ Dk k+1
2k 2
If some messages are solved at the same time (in the same round) then this sum

is strictly greater because having multiple messages solved at the same time causes
double counting.
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Thus, on average there are greater than %k messages solved before or in the same
time step as x,. O

Next we use this lemma to prove a lower bound on the average number of rounds
needed.

Theorem 5 There exists no scheme in our model such that the contents of a
message X, selected at random can be solved with fewer than %k coded messages
on average.

Proof Given Lemma 4 when the receiver, r, has solved for x,, having received ¢,
coded messages, r has also solved for more than %k messages.

To solve for m ; messages the receiver must receive at least m; coded messages.
Thus the average number of coded messages needed to solve for x, must be greater
than or equal to the average value of m ;. Thus a lower bound for the average number
of coded messages needed is k /2. O

3 Methodology

Determining whether the set of received messages fully specifies the target one-
out-of-k message, is the major difficulty. Since messages are retrieved at random,
differently coded messages are collected (e.g. uncoded messages, linear combina-
tion of two messages, linear combination of all k¥ messages, and so on depending
on the construction). The set of collected messages also depends on time, requiring
a transient stochastic process to model a chosen strategy, which usually exhibits a
non-trivial space state.

To avoid such stochastic modeling complexity, the methodology employed
hereafter consists of three steps: (i) model a proposed coding strategy via a discrete
time (vector) stochastic process; this is arguably the most complex step, as discussed
later on; (ii) approximate the proposed coding strategy’s transient solution with the
deterministic mean trajectory specified by the drift (vector) differential equation
of a conveniently rescaled stochastic process, and (iii) derive the average number of
queries needed to retrieve the target message from a relevant probability distribution,
which is derived from the knowledge of the drift equation solutions.

The approximation in step (ii) above is motivated by the fact that practical values
of k are relatively large. It consists of using mean field techniques widely established
in the literature since [5], which have been successfully applied to a variety of
problems [1, 3], and which guarantee asymptotic convergence to exact results for
finite state space systems under mild assumptions (see e.g., [3]). Our own results
show a very accurate matching with simulation even for relatively small values of
k.

Details and a simple example of the proposed methodology are presented in
Appendix 1.
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4 Practical Example Cases

In order to understand the asymptotic nature of the gain, and show how the proposed
methodology can be concretely applied we show two example constructions. In both
cases, we compare analytical results with simulation.

4.1 All-or-Nothing Scheme

This scheme is extremely simple in terms of states, permits a simple analysis, and
can be used as a reference to gauge the improvements brought about by more
complex schemes. The all-or-nothing scheme comprises only two possible types
of messages, defined below.

Definition 6 A singleton is a message x; for i € [1, k] sent in plain text.

Definition 7 A fully coded message is a random linear combination Z?=1 a;x; of
all k messages over a large field size F, with o; € FF.

We assume that all messages x;, with i € [1,k], are equiprobable. Under this
assumption, the all-or-nothing scheme is characterized by a single parameter p,
where p is the singleton reception probability and 1 — p is the complementary
fully coded message reception probability. The state space thus comprises two state
variables: (i) the number of singletons received at a given time, and (ii) the number
of fully coded messages received at the same time.

Theorem 8 The all-or-nothing scheme achieves a best possible performance of
0.86k; which corresponds to the value p =~ 0.6264.

Proof Using the methodology presented above, let we define the following two
density processes:

e () € (0, 1) is the fraction of singletons accumulated until time ¢;
e d(t) € (0,1) is the fraction of fully coded messages accumulated until time ¢.

In this case, the drift differential equation reduces to two independent ordinary
differential equations. For the case of singletons, operating in a similar way to the
example in Appendix 1, we have:

sty =1-ps@), (D
which, when solved with initial conditions s(0) = 0, yields

s(t)y=1—e7". )
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For the case of fully coded messages, we have:
d'(t) = (1 — p)d(r) withd(0) =0. 3)
Therefore

d(t) = (1- p)t. @)

We now note that a target message is decoded when either the corresponding
singleton is received, or when the number of received singletons plus the number of
fully coded messages is equal to the total number k of distinct messages. In terms
of density processes, this latter condition is expressed by the equation

s)+dit)y=1 — e+ =1 (5)

Let us call ¢* the solution of this transcendental equation. By introducing the
. . W(tL;

Lambert W function, we can express ¢* in closed form as t* = IT”).

Finally, the average number of messages E[X] needed to decode the target

message can be computed:

- 1— e_W(%)
E[X] = / s(t)dt = ——— (6)
0 p
This expression is minimized when p = 0.626412, and yields a minimum
(normalized) number of retrieved messages E[X] = 0.859884. O

In order to verify the correctness of the analysis, Fig. 2a shows that simulations
vary the number of messages from k=2 to k=70. Note that the theoretical results
have an asymptotic nature, hence our choice of running simulations with small
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Fig. 2 Average retrieval delay varying the number of messages: mean field approximation vs
simulation. (a) All-or-Nothing. (b) Pairs
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values of k. Every point in the figure is the delay to retrieve a data message
averaged on 50,000 samples. Even though the proposed methodology obtains an
exact solution only for large values of k, already after k=20 the error is below 1 %.

4.2 Pairs-Only Scheme

This scheme shows how the state space can become extremely complex (actually
an infinite set of state variables) even when considering an apparently very simple
approach. Moreover, it can be solved using an alternative methodology, because its
emerging decoding structure can be cast as an Erdés-Rényi random graph; thus it
permits us to verify that our methodology, despite being extended to the case of
infinite state variables (hence violating the assumptions in [3]), nevertheless yields
the same results derived in the relevant random graph literature.

As the name suggests, the pairs-only scheme includes only one type of coded
message, namely the random linear combination of two randomly chosen messages.
This type of message is called pair and is formally defined as follows.

Definition 9 A pair is a random linear combination of two randomly chosen
messages over a large field size in the form {(ax; + Bx;)|i # j andi, j € [1,k]}
where o, B € F and F is a large field.

In analyzing this scheme, the difficulty lies in defining an appropriate state
space. Once this is done, the remaining analysis reduces to the conceptually
straightforward application of our methodology. The state space definition and
justification is presented in Appendix 2, along with the proof of the following
theorem:

Theorem 10 The pairs-only scheme achieves a performance of T—zzk ~ 0.8224k.

Our results confirm those found in random graphs literature. However, our approach
can be extended to coding schemes which cannot be directly cast as a random
graph problem, such as, the combination of singletons and pairs, which yields a
performance slightly below 0.8k (we postpone analysis to a later extended version
of this work). Comparison with simulation results averaged over 50.000 realizations
is reported in Fig. 2b. Again, results show that convergence to the asymptotic result
is very fast, with an error lower than 1 % for k > 20.

5 Conclusion

In this work we explore efficient solutions to one-out-of-k retrieval. We prove a
lower bound of 0.5k and upper bound of 0.8224k on the number of coded messages
needed on average to solve for the message of interest. Current simulation results
suggest that the true minimum value for one-out-of-k retrieval should be higher



The One-Out-of-k Retrieval Problem and Linear Network Coding 69

than 0.5k. The machinery given in Sect. 3 can be used to analyze various proposed
schemes to produce upper bounds. Generalizing one-out-of-k retrieval to m-out-of-k
retrieval is another interesting extension.

Acknowledgements This research is supported by NSF award CCF-1217506 and by the Israel
Science Foundation (grant number 1696/14). Keren Censor-Hillel is a Shalon Fellow.

Appendix 1

Let’s assume a discrete time scale, clocked by message arrivals, i.e., time n €
{1,2,---} is defined as the time of arrival of the n-th element. Let us now identify a
model for the receiver state. This is a critical step (as will appear in the construction
examples discussed later on), as the relation between receiver state and the different
“types” of messages collected (and how many) is in general not trivial and specific
for every scheme considered; For instance, the reception of two different “types”
of coded message, say a linear combination of messages A and B (called “pair”),
and an uncoded message A (called “singleton”) yields the decoding of message B,
and suggests to use as state variables the number of message “types” resulting after
decoding, in this case the two singletons A and B, rather than the actually received
message types (a pair an a singleton).

In most generality, the status of the receiver at an arbitrary discrete time 7 is
summarized by means of a state vector:

Y(n) = {Y1(n), Ya(n), -} (7

where v; (1) is defined as the number of messages of “type” i stored by the receiver
at time n.

Under the assumption of independent random messages being retrieved at each
time step, and appropriate choice of the space state, ¥ (1) introduced in (7) is a
discrete-time Markov chain. Let us now write the relevant time-dependent state
transition probabilities as functions of the vector state components normalized with
respect to k, i.e.:

P{y(n+ DY)} = Sim+n) (@) 3

The conditional expectation, namely the drift of the considered Markov chain, is
readily given by the vector

E[fn+D—dmiim]= Y (i-im) ,;(W”)):g(‘”(”)),

veEall states
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where we conveniently express the state vector components as normalized with
respect to k. We now introduce a new stochastic process which is a doubly-rescaled
version of (7) in terms of both state (normalized with respect to k, i.e., a density
process [1]) as well as time (also normalized with respect to k, i.e. t = n/k):

The conditional expectation (9) is readily rewritten for the rescaled process as:

Efo(t+1/k)—a()|o()]

Elk-o(t +1/k)—k-o(0)|a(1)] = 1k

=d (0(1))
(10)
For large k, and under quite general assumptions (it suffices the drift d()tobea
Lipschitz vector field [3]), the density process G (z) converges in probability to a
deterministic trajectory, computed by solving the system of differential equations
obtained by replacing the left side of equation (10) with the derivative o’ (t):

o'(t) =d (5(t)) (11)

at last, from the knowledge of o (¢), the average number of messages needed to
decode the target message is readily computed.

In order to better clarify, we present a trivial example.

Let us consider the simplest possible case of all messages being uncoded
(singletons). Note that the final result, i.e., k messages retrieved on average, could
be trivially derived from straightforward direct arguments; however, in addition to
show how the above methodology can be cast in practical cases, this derivation will
also recur as building block for the constructions discussed next, which instead do
not appear readily tractable with direct arguments.

The first step is to define a convenient state space. In this case, the obvious state
variable is the number S(n) of distinct singletons received at time n. The process
S(n) is a discrete time markov chain, with the only non null transition probabilities
being P {S(n +1) = S(n)|S(n)} = S(n)/k (probability that the new retrieved
singleton message is already stored), and P {S(n +1) = S(n) + 1|S(n)} = 1 —
S(n)/k (probability that the retrieved message is a new one). Hence, the drift of the
chainis givenby E [S(n + 1) — S(n)|S(n)] =1 - S(n)/ k.

The second step consists in rescaling the process, and write, for the resulting
density process s(t) = S(tk)/k, the differential drift equation s'(¢) = 1 — s(¢).
Since, at time ¢ = 0, no messages are received, the differential equation shall be
solved with the initial condition s(0) = 0, which yields s(¢) = 1 —¢’.

Finally, in order to derive the average number of messages needed to retrieve
a randomly chosen target message, we note that s(¢) is the fraction of messages
retrieved at time ¢, and hence can be interpreted as the cumulative probability
distribution function of the random variable X representing the retrieval (rescaled)
time. Thus, E[X] = fooo [1—s()]dt = fooo e'dt = 1. Rescaling back to the
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original discrete time scale, we get the final result of k average messages needed to
retrieve the target one.

Appendix 2

To avoid an overly long presentation, we directly operate over re-scaled state
variables, i.e., densities (the transformation from discrete state variables to densities
being readily performed as in the example presented in Sect. 4).

Since pairs are selected at random, the tracking of all the possible combination
of messages would yield state space explosion. To circumvent such issue, we resort
to the following convenient definition of an infinite, but numerable, set of state
variables s; (t), where

e s1(¢) is the fraction of messages (normalized with respect to k) which, at
(normalized) time #, do not belong to any so far received pair;

e s,(¢) is the fraction of messages which are covered by one and only one pair;

e s3(¢) is the fraction of messages which belong to a group of three messages
“connected” by two pairs;

* And, in most generality, s; (¢) is the fraction of messages which belong to a group
of i messages “connected” by i — 1 pairs.

For an illustrative example, assume the node has so far received the pairs AB,
AC, AD, EF, FG, HI, and JK. According to our definition, we have 1 group of 4
“connected” messages (A, B, C, D), 1 group of three connected messages (E,F,G),
two groups of two connected messages (H,I) and (J,K), and all remaining messages
not yet covered by any pair. Being k the total number of distinct messages, the
state representation for the above example would be: {s;(t) = 1 — 11/k,s:(t) =
4/k,s3(t) = 3/k,s4(t) = 4/k,s5(t) = 0,---}. Note that s;(¢) - k/i yields the
number of groups having cardinality i.

Suppose now that a pair Al is received: as a result, the two groups (A,B,C,D) and
(H,I) merge in a new group of cardinality 6. This corresponds to the transition to the
following state: {s1(t) = 1 —11/k,s52(t) = 2/k,s3(t) = 3/k,s4(t) = 0,s5(t) =
0,56(2) =6/k,---}.

For k — o0, the probability that a pair arrives in an already formed group of
finite size vanishes; as such, a state transition can occur only because two different
groups are merged via a random pair arrival. We can thus write the drift differential
equations as follows:

51 (1) = =2s1(1)

sy(1) = 2[-252(2) + 51(2)?]

s5(8) = 3[—2s3(2) + s1(2)s2(2) + 52(2)51(1)]

s4(t) = 4[=254(1) + 51(D)53() + 52(1)> + 53()s1(1) ]
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i—1

i =250+ Y5 (0)si—; (1)

j=1
S (12)

5i (1)

These equations are readily explained as follows. Let us first focus on the set of
messages so far not yet covered by any pair, i.e. those accounted by the state variable
s1(t). Let us also remark that, owing to the normalization, s, (¢) also corresponds to
the probability to pick one of such messages as a component of an arriving pair. A
state transition involving s; thus comprises two possible cases: (i) with probability
s1(¢)?, an arriving pair removes two of such messages and add them to the group
of non overlapping pairs, namely those accounted in the state variable s,, or (ii)
with probability 2s;(¢) - (1 — s1(¢)) only one of the messages is removed. This
corresponds to a negative drift for the state variable s;(¢) given by the average state
variable decrement:

s1(t) = =2 51(1)* = 251 (1) (1 — 51(1)) = —2s1(2),

as stated by the first equation in the above system.

Let us now focus on the set of messages accounted by the state s,(¢). We recall
that these are messages covered by exactly one pair, only. On one side, s,(¢) can
increase, with the addition of two new messages, only when an arriving pair covers
two messages belonging to the set s; (this occurs with probability s () as discussed
above). On the other side, it decreases of (i) four messages, whenever a new arriving
pair “hits” two messages in the set s, (hence “connects” the two pre-existing pairs
forming a 4-messages group, this event has probability s,(¢)?), or (ii) connects one
pair in s, with a message outside the set s,, this event occurs with probability 2.5, (¢)-
(1 — s2(2)). By averaging the resulting state variations, we obtain the second drift
equation. The remaining equations are derived via identical considerations.

It only remains to solve this differential system, using as initial conditions
51(0) = 1, 5,(0) = 0,Vi > 1. This is a purely calculus problem, not anymore
related to our specific modeling problem, which is addressed as follows. First, we
note that equations can be solved recursively, starting from the top. The following
set of solutions is readily obtained:

s1(1) = e

s(t) = 2e 4t

s3(t) = 6e7512

64
S4(t) = ?8_81‘1‘3
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250
Ss(l) — _e—10tt4
3
1728
S(J(t) — Te—IZIIS

13)

Where the general solution pattern can be easily determined, besides a multiplicative
constant C;, as:

si(t) = Cie_zitli_l (14)

Given that we are interested in the sum of all the s;(¢) we can easily recognize
that:

Doy =1 3G () = () as)
i=1 i=1

Where C_(e*t™") is the Z-Trasform of sequence C; calculated in the point e ¢!,
Combining Eqs. 12 and 14 we obtain:

i—1
Cie 723 — 1= 2it) = =2iCe "'~ + 72172 Y " CiCi
j=1
That after algebraic simplifications becomes:
i1
Cii—1)=i) CiCi;
j=1
We can transform this equation using the Z-Transform on i, so that:
~C, —zC] = —z(C2Y
and finally:
C.=2:C.C! —zC!

Solving the above differential equation in z we have:

—p
C.=—tw (—2e ) (16)
2 Z

where W is the Lambert Function and P is a constant.
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If we antitrasform the last expression, and after that we setted the constant P
(knowing that C; = 1), we have:

Qi)

C; -
i!

7)

C; assumes the following values: 1, 2, 6, 64/3, 250/3, 1728/5, 67228/45,
2097152/315, 1062882 /35, 80000000/567 ...
We can then express s; (¢) as:

(Zi)i—l

- ti—lE—Zit
L

si(t) =

And finally calculate the average delay as:

00 00 00 2
E[D] = Z/,ZOS"(” =Y m=5

i=i i=l1

This is equal to 0.822467k.

If we analyse the timeline of decoding process, we can notice a sharp threshold
(corresponding to the receiving of k/2 pairs) that separates a phase in which the
decoding of messages is negligible by a phase in which it is significant. Indeed, this
problem can be also modelled as a random graph with k vertices where we randomly
add edges. As Erdos pointed out in its seminal paper [4], after that vertices reach
a degree ¢ = 1 there is the emerging of a “giant component” whose size in the
supercritical part (i.e. ¢ > 1) is ~ y(c)k where y is the solution of ™7 =1 — y.
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On the Error-Correcting Radius of Folded
Reed-Solomon Code Designs

Joschi Brauchle

Abstract A general formula for the error-correcting radius of linear-algebraic mul-
tivariate interpolation decoding of folded Reed—Solomon (FRS) codes is derived.
Based on this result, an improved construction of FRS codes is motivated, which
can be obtained by puncturing Parvaresh—Vardy codes. The proposed codes allow
decoding for all rates, remove the structural loss in decoding radius of the original
FRS design and maximize the fraction of correctable errors.

Keywords Decoding radius ¢ Low-order folded Reed—Solomon Codes * Multi-
variate interpolation ¢ Parvaresh—Vardy codes

1 Introduction

Decoding Reed—Solomon (RS) codes can be seen as reconstructing a message
polynomial of limited degree from a set of noisy evaluation points. There exist
a multitude of univariate and multivariate interpolation decoding (MID) algo-
rithms solving this problem. The classical bounded minimum distance decoder of
Berlekamp—Welch (BW) [11] can be interpreted [1, 6] as a starting point for most
MID algorithms. For an RS code of rate R the BW decoder recovers a list-of-1
candidate polynomial at minimum Hamming distance from the received word up to
a fraction of (1 — R)/2 errors. Extending this idea, Sudan in [9] allowed for a list of
I > 1 candidate polynomials to be recovered up to a radius of 1 — /2R via bivariate
interpolation. Guruswami—Sudan [3] increased the radius to 1 — /R by means of
multiplicities of the interpolation points. Parvaresh—Vardy (PV) codes [8] improve
upon this value using MID of multiple algebraically correlated polynomials.
Simple linear-algebraic decoding of £-order PV codes allows to correct up to a
fraction of £/(£ 4+ 1)(1 — £R) errors, but with a strong rate limitation. Through a
puncturing pattern, Guruswami—Rudra [2] deduced m-folded Reed—Solomon (FRS)
codes from PV codes which are linear-algebraically decodable [10] up to a fraction
of s/(s + 1)(1—mR/(m — s + 1)) errors with a lesser rate restriction. By allowing
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higher degree interpolation and interpolation points with multiplicities (which
shall not be considered here for the sake of simple linear-algebraic decoding),
a fraction of 1 — (mR/(m — s + 1))*/6+D errors may be corrected using these
codes.

In this paper, a general formula for the decoding radius of linear-algebraic
MID in terms of code and decoder parameters is derived, showing that FRS codes
are not designed optimally. An improved version called “low-order” m-folded
Reed-Solomon (LOFRS) codes with a decoding radius up to m/(m + 1)(1 — R)
is motivated by this result. The term LOFRS was coined in a recent paper
by Guruswami—Wang [4], who present a similar design that we wish to
explicitly acknowledge. The contribution of this paper is to present LOFRS
codes from a different perspective and to illustrate their relationship to PV
codes.

The paper is organized as follows. Section 2 introduces notation and defines RS,
PV and FRS codes. In Section 3, a general formula for the decoding radius of linear-
algebraic MID is derived and applied to RS, PV and FRS codes. Section 4 analyzes
the parameters of this formula such that an optimal decoding radius is achieved. It is
shown that FRS codes can not make use of these parameters, so an improved design
for FRS codes is presented and evaluated. Section 5 concludes the paper.

2 Review of (Folded) Reed—Solomon and Parvaresh-Vardy
Codes

Let I, be a finite field of order ¢, and Fj := [F,\{0} its multiplicative group with
generating element @ € 7. A vector space of dimension £ over F, is denoted by Fg
and the ring of polynomials in indeterminate x with coefficients in I, by F,[x]. Let
Fylx]<k = {f € Fy[x]: deg f < k} be the vector space of polynomials in [F,[x]
of degree less than k. The set of integers {1,...,n} =: [1,n] and let &(j,i,{) =
{a e/t o/ T} be an ordered set of ¢ distinct multiples of o, starting at /.

Definition 1 (Evaluation Map) The evaluation map eve(;¢: Fy[x]<c — F(f is
defined as f +— (f(af)’ f(aj+i)’ L f(aj+(l—1)i))_

Definition 2 (Reed—Solomon Code) Let & be an evaluation set of n distinct
elements from F, called code locators. A RS code of length n = |&'| and dimension
k € [1,n] is the image of all message polynomials f(x) = fo + fix +--- +
fioixk e F,[x]<x under the evaluation map evyg, i.e.,

RS[g, &, k] == {(eve(f)) : V[ € Fylx]a} &)

and rate Rrs = k/n = R.If & = Fj, n = |IE‘(}“‘ = ¢ — 1, the code is called
primitive.

In this paper, all considered RS codes are primitive.
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Parvaresh—Vardy Codes generalize RS codes by evaluating more than just one
polynomial of degree less than k at a common set of evaluation points &.

Definition 3 (General Parvaresh-Vardy Code) Let e(x) € [,[x] be an irre-
ducible polynomial over [, of degree a > k. Let fo(x) € Fy[x]<x denote the
message polynomial as for RS codes. Choose integers a,d,{ so that f;(x) =
(f,-_l(x))d mod e(x) € FFy[x]<k. A PV code of dimension k is defined as all
matrices in F,*" such that

eve (fo)
PV[q.&. k.d €, e(x)] = : DV fo € Fy[x]ak ¢ - )

evo (fio1)

If £ = 1, only the message polynomial fy € IF,[x]« is used and PV codes (2) reduce
to RS codes as in (1). For £ > 1, additional algebraically correlated polynomials
Ji € Fy[x]<x carrying no further data are evaluated for i € [1,£ — 1], so the rate of
PV codes is limited to Rpy = k/(€n) = Rgs/X.

In the following, the parameters of PV codes are restricted: Let e(x) = x¢~! —«
and d = ¢, such that f;(x) = (fi—1(x))? mod (x?'—a) = fi_j(ax) =
Jo(a'x),i € [1,£ — 1], allowing for a simplified definition of PV codes:

Definition 4 (Simple Parvaresh-Vardy Code) For the choice of & = F;, e(x) =
x97! — o and d = g, the PV codeword symbols

¢; = [V (f). Vi1 (F)osVyivint ()] = [evegun(H] €EL ()

are based on evaluating a single polynomial f* € Fy[x]<x at £(j, 1, ).

Note that simple PV codes use repeated evaluation points in their codewords. For
example, the neighboring symbols

¢j = [evsgunN] = (1), fl@/™). f e/ I’ and
¢jp1 = [eveurrinN] =1 F@ ) f* ) f @ T

have ¢ — 1 evaluation points o/ !, ... /7! in common. In general, every
evaluation point is used in £ consecutive code symbols, therefore reducing the rate
by a factor of !/¢.

Folded Reed—Solomon codes avoid this rate loss by transmitting only codeword
symbols at code locators a/¢, j € [0,7/¢—1], eliminating repeated evaluation points.
Hence, FRS codes are PV codes where symbols ¢;, i # j{, are punctured.

Definition 5 (Folded Reed—Solomon Code) Let the folding parameter m > 1 be
an integer satisfying m|n and « be a primitive element of F,. Choose N = #/m dis-
joint ordered sets of evaluation points &(jm, 1,m) = {a/™, /"1 . a/mtm=1},
j €0, N —1]. An m-FRS code of dimension k and length N consists of symbols

¢; =[f@™) ... @ O] = [evegmim(N] €. )
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In case of m = 1, FRS codes reduce to RS codes. For n = ¢ — 1 and
UZJV ;i) E(jm,1,m) = IE‘(}“, FRS codes are essentially primitive RS codes, where
m consecutive RS symbols are grouped into vectors from F'. Due to this close
relationship, the rate Rprs = #/n = Rgs and minimum distance dy,in = n —k + 1
of FRS and RS codes are identical.

3 Decoding Radius of Linear-Algebraic MID

This section reviews linear-algebraic MID of PV, RS and FRS codes and derives a
general formula for an achievable decoding radius (fraction of correctable errors)
7 in terms of code and decoder parameters. The restriction to linear-algebraic
algorithms allows for a much simpler presentation, but naturally leads to a slightly
reduced decoding radius as well as an exponential list-size of the decoder output.
The former consequence is negligible for high rate codes of practical interest and
mitigation of the latter is possible [2, Sec. 4], but outside the scope of this paper.
Let s € [1,£] be an integer and (s + 1) the dimension of an interpolation point
(e, y1seeps)- Let Q(x, yiseenys) = Qo(x) + Qi(x)y1 + -+ + Os(X)ys €
Fy[x, y1,....,ys] be an (s + 1)-variate interpolation polynomial of degree 1 in
the indeterminates yi,..., y;. The codeword length shall be denoted by N and

N
the received matrix by r = (ry,r,,....ry_;) € (Fg) , with symbols r; =
[rje.rjetrs. .. rjerem]” € By, for j € [0, N—1]. Letthew = (1,k—1,....k—1)-
do

weighted degree of a monomial x yf‘ e ysds be defined as deg,, (xd"yf' e yff) =
dy + (k — 1)Y";_, d;. Consequently, deg, (Q) is the w-weighted degree of its
leading monomial under w-weighted lexicographic ordering. Let o € [1, £] denote
the step size between two consecutive interpolation points within the received vector
r. Let # C [0,n — 1] denote the set of indices i € .# of all (s + 1)-dimensional
interpolation points (ai JFoiys--->Foits—1) used by the decoding algorithm and let
I = || be its cardinality.

Linear-algebraic MID consists of an interpolation step and a root-finding step: In
the interpolation step, the decoder finds a nonzero (s + 1)-variate polynomial Q €
Fylx, y1,..., ys] of minimal deg,,(Q) = D and degree 1 in y,..., s, satisfying

Q(ozi,rgi,...,ra,-+s_1) =0, Vi Ef, (5)

giving a total of I constraints on at most (s + 1)(D + 1) — s(k — 1) coefficients
of Q. If D is large enough, the resulting homogeneous linear system of (5) has a
nonzero solution for Q. The minimal such w-weighted degree is given in terms of
I and s as

(6)

D(I,s) = {LMJ )

s+ 1
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In the root-finding step a list of candidate message polynomials f € Fy[x]<x is
recovered from r. For the codes and algorithms considered in this paper, it suffices
to find all y-roots fy € IF;[x]<x of Q, such that f;,i € [0,s — 1], satisfies

O(x, fo(x), fix),..., fs—1(x)) = 0. (N
Denote by E := [{j € [0, N —1]: r; # ¢,}] the total number of received symbols
in error. An interpolation point (@ iy .. Toits—1),i € .F,is said to agree with a

message polynomial fy € Fy[x]<x if r, = f; mod ¢(0t), t € [0i, 00 +5—1].

Lemma 6 The maximum number of interpolation points corrupted by a single
received symbol errorr; # ¢;, j € [0, N — 1], is given by

A(S L, s,0) ;= max; |{l € I oi,oi+s—1]N[jL, jl+L€—1] # (ZJH 8)

Proof An (s + 1)-dimensional interpolation point (&', 74;, . .., Toits—1), i € F,
corresponds to indices [o7,0i + s — 1] in the received vector r. A received symbol
r; € IE‘; uses indices [j€, j€ + £ — 1]. The j-th symbol r; affects the i-th
interpolation point if and only if the intersection [0i,0i +s— 1] N[j£, j€ + £ —1]

is not empty. O

Lemma 7 An (s + 1)-variate polynomial Q € F[x,y1,...,y] of deg, (Q) =
D(1,s) satisfying (5) will satisfy (7) if the number of agreements I —
EAW,L,s,0)> D(,s).

Proof According to the Polynomial Factor Theorem [7, Cor. X.1.4], the number of

roots of a non-constant univariate polynomial P(x) = Q(x, fo(x),..., fi—1(x)) €
F,[x]<p(1s) cannot exceed its degree, implying Q(x, fo(x), fi(x),..., fi—1(x)) =
0. O

Theorem 8 In case (7) suffices to recover all candidate polynomials fo € Fy[x]<x,
a fraction of correctable errors t is achievable if

- S I —k ©
T_(s+1)(A(f,€,s,o)N)' )

Proof Combining (6) and Lemma 7, we can choose any

<£< 1 s(I —k)+1
- N AL, L, s,0)N s+1 ’

T O

The result of Theorem 8 is applied to the following codes and decoding
algorithms:

(1) Decoding of RS Codes (BW Algorithm): RS codes use £ = 1 message
polynomial, N = n symbols ¢; € I, and 0 = 1. The decoder finds a bivariate
polynomial Q(x,y) = Qo(x)+ Q1(x)y € Fy[x, y] of minimalw = (1,k—1)-
weighted degree, passing through all (s + 1) = 2-dimensional points (', r;),
i € =1[0,n—1]. Due to (6), deg,(Q) = D(n.1) = | =] is needed
to satisfy all / = n conditions. A symbol error affects A(.#,1,1,1) = 1



82

2

3

)

J. Brauchle

interpolation point. Theorem 8 guarantees a fraction of correctable errors
gw = (1—R)/2 (10)

up to which the message polynomial f € [F,[x]«x can be recovered [6,
Thm. 5.2.2].
Decoding of PV Codes: A rate Rpy PV code uses N = n symbols ¢; € F(f
An (¢ + 1)-variate polynomial Q(x,y1,...,y¢0) = Qo(x) + Q1(x)y1 +
“+ Qe(x)ye € Fylx,y1,....yd of w = (1,k —1,...,k — 1)-weighted
degree is found, passing through (£ + 1)-dimensional interpolation points
(@, 7igs... Tigre—1), fori € £ =[0,n—1].
Hence, I = n and deg,(Q) > D(n,{) = L"‘:{fl l)J Incaser; # ¢,
A(SF,L,L,0) = 1 due to 0 = £. Theorem 8§ states that an achievable fraction
of correctable errors is

py = £/(€ + 1) (1 — £Rpy) (11)

such that a list of message polynomials fy € [F;[x]<x can be recovered [8,
Lem. 6-9].

FRS Decoding Scheme A: FRS codes are punctured PV codes with £ = m,
o = 1, symbols ¢; € F' and N = n/m. In the linear-algebraic decoding
scheme by Vadhan [5, 10], . is chosen so that all points (o[ r,, .., Figs—1) are
strictly contained inside the received symbols, i.e.,i € U mj mj +m—1],
see Fig. 1(left) for example with s = 3. Therefore, I = N (m—s+1) and
A(S,m,s,1) = m—s+1. An (s +1)-variate polynomial Q € F,[x, y1,..., ]

is found if deg,,(Q) > D(N(m —s + 1),5) = LN(m—s-l—i);i—s(k—l)J

Due to [5, Lem. 6] and (9), we can achieve a fraction of correctable errors

TrRS, = — (1—( " )R) for0<R<(m—s+1)/m.  (12)
s+1

m—s+1

FRS Decoding Scheme B: Another scheme suggested by Justesen [2, Sec. 3.2]

uses all / = n interpolation points, thus requiring deg,,(Q) > D(n,s) =
L%J Due to the FRS code design, the cost of increasing [ is that

interpolation points overlap into neighboring code symbols, see Fig. 1(right).
A symbol error affects A(.#,m,s,1) = m+s—1,i.e., anextra2(s — 1) points
over Scheme A. An achievable decoding radius is

s m
= 1—-R for0 < R <1. 13
TFRSp s—}—l(m—}—s—l)( ) orv=R= (13)

Note that tprs, > trrs, if R > (m —s + 1)/(2m).
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(N=1)m—1

(N=1)m+1

ro r

Fig. 1 FRS decoding schemes A (left) and B (right) using 3-variate interpolation. White boxes
represent symbols from I, grouped into interpolation points with code locator exponent in square
boxes. Gray boxes denote received symbols r ; € Fy', j € [0, N — 1]. Dotted borders with arrows
depict overlapping interpolation points between neighboring symbols

4 Optimal Design of FRS Codes in Terms of Decoding Radius

According to Theorem 8, 7 is a function of the interpolation parameter s € [1, m],
the number of interpolation points / € [1,n] used, code length N = #/m and
maximum number of interpolation points A(-¥,m,s,0) € [{/N,m + s — 1] affected
by one symbol error. The range of parameters s and I is straightforward. The
minimum value of A(.#,m, s, o) results from uniformly distributing / interpolation
points among N code symbols. The maximum results from the maximum number of
distinct (s+1)-dimensional points touching a symbol from . In order to maximize
the decoding radius in (9), the optimal parameters are sope = m, Iopy = n and
Aopt = m, such that

Topt = m/(m + 1)(1 — R). (14)

Neither FRS decoding scheme A (usingonly / = N(m—s+1) < I, interpolation
points) nor scheme B (with A(.#,m,s,1) = m + 5 — 1 > Ay interpolation points
affected by a symbol error) use these optimal values. In order to achieve the optimal
parameters /o, = n and Ao, = m, FRS codes shall be adapted as follows: Based
on FRS scheme B, the 2(s — 1) transboundary (s + 1)-dimensional interpolation
points shall “wrap around” into the same code symbol instead of a neighboring
one. This prevents crosstalk of erroneous interpolation points between neighboring
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symbols in case of symbol errors. The rate increase of an £ = m-FRS over an {-
order PV code is due to the use of disjoint evaluation sets in (4), which shall be
retained.

Definition 9 (Low-Order FRS Code) Let the folding parameter m > 1 be such
that m|n forn = g — 1 and let « be a primitive element of F,. Choose N = #/m dis-
joint sets of evaluation points &(j, N,m) = {ocj Jal TN i TN ,otj+"_N} ,J €
[0, N — 1] such that U’]V; V&G, N,m) = [F7. Note that oV is an element of low
order. A low-order m-FRS (LOFRS) code of dimension k and length N consists of
symbols

= [f@)). f@ ™) f @™ = [evegvam (O] €Fr. (15

For m = 1, LOFRS codes reduce to RS codes.
As for regular m-FRS codes, the decoder finds an (s + 1)-variate interpolation
polynomial QO € Fy[x, yi,.... y] passing through all / = n interpolation points,

ie. satlsfymg (5)fori e # = Uj—o{J + N[0,m — 1]}. Using (6), aw = (1,k —

1,...,k — 1)-weighted degree deg, (Q) > D(n,s) = L"Tfl I)J is required. Due
to the ch01ce of .# and 0 = 1, inter-symbol crosstalk of 1nterp01ation points is
avoided in case of r; # ¢; and so A(F,m,s,1) = m = Aoy, see Fig.2 for

(s+ 1) = 3. In the root ﬁndmg step, a list of message polynomials f* € Fy[x]_,
is recovered [4, Prop. 5.3] from Q(x, f(x), f(@™x),..., f(@“~D¥)) = 0 if the

1+n—N

L)

(0]

1+n—N

.rl

Fig. 2 MID of m-LOFRS code using 3-dimensional interpolation points. Dotted boxes with
arrows depict interpolation points wrapping around into the same codeword symbol
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1

09 = Singleton Bound
T = Berlekamp-Welch
; 0.8 = = = Parvaresh—Vardy
g 0 7' FRS Scheme A
f T - = - = FRS Scheme B
% 0.6 —+— LOFRS Scheme
S
g 05 A
ER S S
- 04 e Nk
© AN D
£ 03 R Y
£ 02 SN
0.1
< ]
il 1
0 \
0 01 02 03 04 05 06 07 08 09

Code Rate R

Fig. 3 Linear-algebraic MID radius t versus code rate R of £ = 5 PV codes, m = 5-FRS
decoding schemes A and B, and proposed m = 5-LOFRS codes for parameter s € [2,m]
(increasing along arrows)

agreement between r and f is larger than D(n, s). Hence, it is possible to achieve a
fraction of correctable errors

TLOFRS = S/(S =+ 1) (1 — R) > max{tpRsA, TFRSB} forO< R <1. (16)

By choosing the maximum interpolation parameter so, = m, the optimal
decoding radius T oprs = Topt is reached. In contrast, for FRS schemes A and B
we have

Trrs, = m/(m +1)(1 —mR) = Tpv a7

Tersy = m/(m 4+ 1)(m)/2m —1)(1 = R) ~ tw. (18)

Figure 3 compares the decoding radius of the BW algorithm for RS codes (10),
linear-algebraic decoding of order £ = 5 PV codes (11), m = 5-FRS decoding

scheme A (12), decoding scheme B (13) and m = 5-LOFRS codes (16) for s €
[2,m].

5 Conclusion

A general formula for the error-correcting radius of linear-algebraic MID of RS, PV
and FRS codes was derived and analyzed. Through this formula, an improved design
of m-FRS codes called Low-Order m-FRS codes was motivated, which was recently
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introduced by [4]. The proposed codes can be viewed in the context of punctured
PV codes and they reach the optimal decoding radius 7oy = m/(m 4+ 1)(1 — R).
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SPC Product Codes over the Erasure Channel

Sara D. Cardell and Joan-Josep Climent

Abstract SPC product codes are suitable for recovering lost symbols over erasure
channels. These codes have a small minimum distance. However, they are capable of
recovering a high number of erasures in some special cases, so the error correcting
capability is higher than the minimum distance. In this work, we count the number
of possible patterns that are uncorrectable when a number of erasures (up to 8) have
occurred.

Keywords Erasure channel ¢ Product code * Single parity-check code

1 Introduction

The erasure channel was introduced by Elias [2]. It is a communication channel
where each sent symbol is either correctly received or considered as erased. In this
model, each codeword symbol is lost with a fixed independent probability and an
[n, k, d]-code can recover up to d — 1 erasures. Given a fixed redundancy, maximum
distance separable (MDS) codes (i.e., codes with d — 1 = n — k) are often the best
adapted codes, since they offer maximal reliability.

The single parity-check (SPC) code is a very popular error detection code, since
it is very easy to implement [1, 3]. The encoder appends 1 bit to an information
sequence of n — 1 bits, such that the resultant codeword has an even number of ones.
Two or more SPC codes can be used jointly to obtain an SPC product code. Product
codes are powerful codes that can be used to correct errors or recover erasures. SPC
product codes have been proposed for applications such as cell loss recovery in ATM
networks [4, 7], since they achieve a good performance under various decoding
schemes [6]. The simplest form of an SPC product code is that where every row and
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every column is terminated by a single parity bit. This code has four as minimum
distance and is thus guaranteed to recover all erasure patterns with one, two and
three erasures. However, the code is capable of recovering many higher erasure
patterns, so the error correcting capability is higher than the minimum distance [1,
3]. It can be proven that, in some cases, up to 2n — 1 erasures can be corrected.
In [1, 3], the authors tried to count the number of patterns that cannot be corrected
when no more than 2n — 1 erasures have occurred. They obtained an upper bound
for the number of uncorrectable configurations when 6 erasures have occurred. In
this work we count the number of uncorrectable configurations for ¢ erasures, with
t =4,506,7,8.

2 Preliminaries

Let IF, be the Galois field with g elements. A linear product code ¢ over F,
is formed from two other linear codes %), and %, with parameters [n;, kj, dj]
and [n,, k,,d,] over F,, respectively. The product code ¢ will have parameters
[npny, kpk,, dyd,] over F, (see [6]). The codewords of length n;n, can be seen
as arrays with size n, X nj in a way that the columns are codewords of %, and the
rows are codewords of %,. Over the erasure channel, the product code corrects up
to dyd, — 1 erasures. However, we know that in some cases these codes can correct
more erasures.

Let Gj, and G, be the generator matrices of the codes %}, and %, respectively.
The generator matrix G of the code % can be constructed by taking the Kronecker
product of the matrices G, and G,, that is, G, ® G, [5, page 569]. A codeword C
in the product code can be generated either by multiplying a g-ary vector with size
kuk, by G or by using the expression C = (G,)" UG}, where U is a k, x kj, g-ary
matrix. Note that the codeword C is an n, X nj g-ary matrix.

In this work, we consider the product code € = %), ® 6,, where 6, = €, is
a linear binary code with parameters [n,n — 1, 2], which is called a single parity-
check (SPC) code. In this case, the parameters of the product code are [n2, (n —
1)2, 4]. Here, 6, and %, correct only one erasure. Since the minimum distance is 4,
the code € corrects only 3 erasures, but in some special cases the code can correct
more than 3 erasures.

Now, we introduce the definition of erasure pattern. An erasure pattern of size
m x m, with ¢ erasures, where 0 <t <m?and 1 <m < n,isan array of size m xm
where ¢ of the entries correspond to the position of the erasures.

An erasure pattern of size n xn corresponds to a codeword of size n xn, where the
position of the erasures is the unique information we consider. An erasure pattern
is said to be uncorrectable if and only if it contains a subpattern such that each row
and each column have two or more erasures. Given a codeword with ¢ erasures, the
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Fig. 1 Examples of erasure %X
patterns of size 6 X 6 with 11 %
erasures. (a) Correctable

erasure pattern of size 6 X 6

with 11 erasures. (b)

Uncorrectable erasure pattern

of size 6 X 6 with 11 erasures

() (b)

decoder will perform iterative row-wise and column-wise decoding to recover the
erased bits [1]. When a single bit is erased in a row or column, it can be recovered.
If more than 1 bit is erased in a row (column), it is skipped. Decoding is performed
until no further recovery is possible. Erasure patterns with more than three erasures
may or may not be correctable.

Example 1 Consider the SPC code (é with parameters [6, 5, 2]. We can construct
the binary product code ¥ = ¢ ® ¢ with parameters [36, 25, 4]. In principle, we
can only correct up to three erasures. Consider the erasure pattern in Fig. la. Since
every column is a codeword of %', we can correct columns with one erasure, that
is, erasures in every column but the first one. On the other hand, every row is a
codeword of € as well, so we can correct rows with one erasure and, then, we can
correct completely this erasure pattern.

On the other hand, consider the erasure pattern in Fig. 1b. We can only correct
seven erasures. The erasures in red cannot be corrected. O

For a codeword of size n x n, erasure patterns with 3 erasures or less are
always correctable. We would like to count the number of possible correctable
and uncorrectable erasure patterns with ¢ erasures, where ¢ > 4. In this paper we
consider the cases t = 4,5,6,7,8. A first approximation for the cases t = 4,5,6
can be found in [1, 3].

3 Counting Patterns

Assume we have a codeword of size n x n and that 4 erasures have occurred. The
only uncorrectable erasure pattern of 4 erasures is formed by a square. We have

2 o .
(Z) possibilities, since we only have to choose two columns and two rows. As a

consequence, the number of uncorrectable erasure patterns with 4 erasures is given
2
by (5)". ) .
In order to count the erasure patterns with 5 erasures, we just have to count the
erasure patterns with four erasures and add one more. Therefore, the number of

n2—4)'

. o 2
uncorrectable erasure patterns with 5 erasures is given by (5)"(";
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(@) (b) (©

Fig. 2 Examples of uncorrectable erasure patterns with 6 erasures

It is easy to count the possible uncorrectable patterns with 6 erasures. We only
have three possibilities (see Fig.2). The case considered in Fig.2a is easier. We
select three columns and three rows and count the possible uncorrectable erasure

. . . 2 s
patterns with 6 erasures of size 3 x 3, that is, 6(’;) . For the cases shown in Fig. 2b, c,

one tends to count (’;)2 ("22_ 4), that is, counting the uncorrectable erasure patterns of
size 2 x 2 and adding two extra erasures. In this case, the erasure patterns with the
form in Fig.2c are considered three times. We are counting more erasure patterns
than there exist. Then, what we do is counting how many of these erasure patterns

there are and we subtract it twice from the total quantity (since we know they

are counted three times): (’;)2("22_ 4) -2 [2(';) (’;)] Therefore, the total number of

uncorrectable erasure patterns with 6 erasures is (;)2("22_ N —4() () + 6(’;)2.

Following the same counting method, we obtain the uncorrectable erasure
patterns for 7 and 8 erasures.

Theorem 2 The number of uncorrectable erasure patterns with 7 erasures is given
by Ty + T, + T3 + Ty, where

n ’ n?—-9 n\(n\(n*>*-6
T1 = 6 N T2 = 2 5
3 1 2/\3 1
? 2 2\ ((n - 2)2
n n— n— n—
T3 =2 8 4
n—=2\{[(n—-2)>? n—2\(2(n—-2)
2 4 ki
n ? n—22 n—22 n—22-1 (n—2)?
T, = 2 4
Proof We consider all the possible uncorrectable patterns of size n x n with 7

erasures. To illustrate this proof, examples for all the possible uncorrectable patterns
of size 5 x 5 with 7 erasures are given in Figs. 3-5.
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(@) (b)

Fig. 3 Examples of erasure patterns with 7 erasures corresponding to 77 and 75

(a) (b) (© (@

Fig. 4 Examples of uncorrectable erasure patterns with 7 erasures corresponding to 73

(a) () (©

Fig. 5 Examples of uncorrectable erasure patterns with 7 erasures corresponding to 7}

We start considering patterns with a complete uncorrectable subpattern of size
3 x 3 with 6 erasures and an additional erasure not included in this subpattern (see
Fig.3a). We take three columns and three rows; there are six ways to place the

. 2

corresponding 6 erasures: 6(’;) . On the other hand, we have n> — 9 free places
. 2_

to put the remaining erasure: (” ] 9). Then, the number of uncorrectable erasure

. . . 22—
patterns with this form is 77 = 6(%)°(" ).

We consider now patterns with an uncorrectable subpattern of size 2 x 3 with
6 erasures and an additional erasure (see Fig.3b). We take two rows and three

columns: (’;) (’;) There are n*> — 6 free places left to put the remaining erasure:

2_ . . .
(" | 6). Taking into account that we must also consider the case with subpatterns
of size 3 x 2, the number of uncorrectable erasure patterns with this form is

T =2()()("7)-
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Consider now patterns shown in Figs.4 and 5. These patterns are composed
by a subpattern of size 2 x 2 with 4 erasures and 3 additional erasures. The only
difference between these two groups is that patterns in Fig. 4 have to be considered
twice (the patterns considered in this figure and the patterns obtained changing rows
by columns).

For patterns in Fig. 4, we take first two columns and two rows: (’;)2 (for the
subpattern). In Fig. 4a, from the remaining n — 2 columns, we take three different
columns, and we have to consider two different rows in each case: 23 (";2). In
Fig.4b, from the remaining n — 2 columns, we take two different columns, and
we have to consider two different rows in each case: 22 (";2). On the other hand,
there are (n — 2)? places to put the remaining erasure: (("_12)2). In Fig.4c, from
the remaining n — 2 columns, we take one, and we have to consider two different
rows in each case: 2(”;2). Moreover, there are (n — 2)? places to put the remaining

)2 . . .
two erasures, ((” 22) ) In Fig. 4d, from the remaining » — 2 columns, we take two

different columns, and we have to consider two different rows in each case: 22 (" ;2)
Furthermore, there are 2(n — 2) places to put the remaining erasure, so the total

number is 22 (" ;2) (2("1_ 2)). Since we have to consider every case twice, we have that

A (m\2 n—2 n—2\ ((n—2)>2 n—2\ ((n—2)2 n—2\ (2(n—2)
Ty =207 [8('3) + 40 ) (") + 20 ) (1) + 40 )|

We consider now patterns in Fig. 5. In each case, we take two columns and two
rows for the subpattern: (’;)2 In Fig. 5a, we take one column from the n —2 columns
left and two rows: 2("?2). The same happens for the other erasure that shares column

with the subpattern: 2(” Iz) There is one only possibility for the remaining erasure.
Since, in this special case, we have two subpatterns of size 2 x 2 with 4 erasures,
we are counting twice the number of subpatterns. Thus, we have to divide the

total number by two: 2(”;2)2. In Fig. 5b, two of the erasures are considered in the

. . 2 )
same way as in the previous case: 22 (” | 2) . For the third and last erasure, we have

(n — 2)2 — 1 places where it can be considered: (("_21)2_1). In Fig. 5c, none of the

additional erasures shares column or row with the subpattern. Thus, there are (n1—2)>
o —2)2
possibilities to place these three erasures: ((” 32) ) As a consequence, we have that

n\2 n—2 n—zn—z— n—2)2
o= () 207 + 407 (T + ()] 0
Theorem 3 The number of uncorrectable erasure patterns with 8 erasures is

2 2
_4
Si+ S+ (';) (”4 )—553—254—455—56 ,
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where

Y
)
() )
= B)OLI )
(2(n - 3)) ((n ~ 2)1(n - 3)) N (3(n - 2)) ((n - 2)1(n ~ 3))
)0 )
[ )

Due to the lack of space, this proof is not included. However, it follows the
same idea used to prove Theorem 2. A complete counting process of patterns with
8 erasures has been performed. In Fig. 6, examples for the corresponding patterns
considered for each group S;, fori = 1,2,3,4,5, 6 are shown.

Finally, it is well-known that the number of erasure patterns of size n x n with
¢ erasures is ("tz). According to this number and the results given in Theorems 2
and 3 it is easy to check that the probability of finding an uncorrectable erasure
pattern for t = 7,8, is close to zero when n is large. Unfortunately, when the
number of erasures grows, it becomes more difficult to count the number of possible
uncorrectable patterns of size n x n. We are working on an upper bound for 7
erasures, with 9 < ¢ < 2n — 1, that allows us to prove that the probability of
finding an uncorrectable erasure pattern is close to O when n grows. This would
prove that the probability of correcting a sent codeword when n is very large and
4 <t <2n—11salmost 1.
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() (b) (©

()

©)

()

Fig. 6 Examples of uncorrectable erasure patterns with 8 erasures related to Theorem 3.
(a) Uncorrectable erasure pattern corresponding to Sj. (b) Uncorrectable erasure pattern cor-
responding to S3. (¢) Uncorrectable erasure pattern corresponding to Ss. (d) Uncorrectable
erasure patterns corresponding to S,. (e) Uncorrectable erasure patterns corresponding to Sy.
(f) Uncorrectable erasure patterns corresponding to S
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Complementary Dual Codes
for Counter-Measures to Side-Channel Attacks

Claude Carlet and Sylvain Guilley

Abstract We recall why linear codes with complementary duals (LCD codes) play
arole in counter-measures to passive and active side-channel analyses on embedded
cryptosystems. The rate and the minimum distance of such LCD codes must be as
large as possible. We investigate constructions.

Keywords Linear codes with complementary duals (LCD) ¢ Cyclic codes ¢
Bose, Ray-Chaudhuri and Hocquenghem (BCH) codes * Generalized residue
codes

1 Introduction

Codes play a central role in digital communication. Recently, it has been shown
that codes can also help improve the security of the information processed by
sensitive devices, especially against so-called side-channel attacks (SCA) or fault
non-invasive attacks. This paper recalls that linear codes with complementary duals
(called LCD), which are linear codes with supplementary duals, play an important
role in armoring implementations against these two kinds of non-invasive attacks.

LCD codes, introduced by Massey [10], provide an optimum linear coding
solution for the two-user binary adder channel. Asymptotically good LCD codes
exist [11]. Some constructions are known: [1, 6, 7]. As another example, maximum
rank distance (MRD) codes generated by the trace-orthogonal-generator matrices
are LCD codes [13].

C. Carlet (<)

LAGA, UMR 7539, CNRS, Department of Mathematics, University of Paris XIII and University
of Paris VIII, 2 rue de la liberté, 93 526 Saint-Denis Cedex, France

e-mail: claude.carlet @univ-paris8.fr; claude.carlet@gmail.com

S. Guilley (B<)
TELECOM-ParisTech, Crypto Group, 37/39 rue Dareau, 75 634 Paris Cedex 13, France

Secure-IC S.A.S., 80 avenue des Buttes de Coésmes, 35 700 Rennes, France
e-mail: sylvain.guilley @telecom-paristech.fr; sylvain.guilley @enst.fr

© Springer International Publishing Switzerland 2015 97
R. Pinto et al. (eds.), Coding Theory and Applications, CIM Series
in Mathematical Sciences 3, DOI 10.1007/978-3-319-17296-5_9


mailto:claude.carlet@univ-paris8.fr
mailto:claude.carlet@gmail.com
mailto:sylvain.guilley@telecom-paristech.fr
mailto:sylvain.guilley@enst.fr

98 C. Carlet and S. Guilley

However, SCA sheds a new light on LCD codes and poses more accurately
the question of their effective construction achieving good minimum distance,
especially in the context of large rate.

2 Motivation

Implementations of cryptographic algorithms are prone to SCA and fault attacks
that aim at extracting the secret key when the algorithm is running over some device.
Non-invasive attacks observe some leakage (such as electromagnetic emanations) or
perturb internal data (for example with electromagnetic impulses), without damag-
ing the system. They are a special concern insofar as they leave no evidence that
they have been perpetrated. Those attacks can be classified into two categories:

* Side-channel attacks (SCA), that consist in passively recording some leakage,
that is the source of information to retrieve the key;

» Fault injection attacks (FIA), that consist in actively perturbing the computation
so as to obtain exploitable differences at the output.

Few generic protections, demonstrably provable against both threats, have been
proposed. The best understood and most studied protection against SCA is achieved
with masking. Every sensitive data x, say a binary vector, employed in the
cryptographic algorithm is exclusived-or with one uniformly distributed random
vector of the same length, called mask. We are interested in this article in a
homomorphic computation. This means that the computations are carried out on
the masked data itself. Therefore, it must be possible, from a masked sensitive
variable, denoted by z, to recover x (e.g., for the final demasking at the end of
the computation). This is possible if the sensitive data and the masks belong to
two supplementary subspaces of a larger space vector. Indeed, by definition of
supplementary subspaces, any element of the large space vector decomposes itself
in a unique way as the sum of two elements (in Boolean vector spaces, the sum is
the exclusive-or, denoted by “+4” in the sequel). It is thus decided to interpret those
two elements as the sensitive data and the mask. This method is called Orthogonal
Direct Sum Masking (ODSM), see [3].

We call n the dimension of this large vector space, which practically is F. Now,
we call C and D the two supplementary vector spaces:

"=CaD . (1)

The masks are the codewords of code D. By the rank-nullity theorem, if the
dimension of C is k, then the dimension of D is n — k. Let us consider generator
matrices G and G’ of C and D, respectively. Then every vector z € [} can be
written in a unique way as z = xG + yG’', x € Fg,y € IF’Z’_]‘. If C and D are
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furthermore orthogonal with respect to the usual inner product, i.e., D = C L then
C is said complementary dual.!

Definition 1 A linear code C is called complementary dual (LCD) if C and C+
are supplementary, that is (given their dimensions), C N C+ = {0}.

Note that D = C~ if and only if G’ is a parity-check matrix of C, thatis, GG'T = 0,
where G'T is the transposed matrix of matrix G'; we denote then G’ by H. We can
use an orthogonal projection to recover x and y from z: the relation z = xG + yH
implies zH' = yHH" and zG" = xGG'. The next characterization is due to
Massey [10]:

Proposition 2 Let C be a linear code. Let G be a generator matrix of C and H a
parity-check matrix. Then the three following properties are equivalent:

1. C is LCD,
2. The matrix HH is invertible,
3. The matrix GG is invertible.

We deduce from zHT = yHH" and zG™ = xGG', and from Proposition 2 that
if C is LCD, the matrices of the two projectionsz = xG + yH +— x and z — y are
respectively (see also [10, Proposition 1]):

G'(GGT)'sothatx = zGT(GGN)™' | )
HT(HH") 'sothaty = zH (HH")™" . (3)

The quality of the masking is an important factor. Let ¢ : I, — R be a
leakage function, that describes how z is leaked outside of device. The masked
word z conceals the information x at first degree if for all pseudo-Boolean function
¢ : I} — R of unitary numerical degree [4, Sec. 2.1], all the averages of ¢(2)
over the masks d € D for a given x are equal irrespective of x. This means that
Vx € F%, > yem—+ ¢(xG + yH) are the same, i.e., equal to ° i ¢(yH) (for
x = 0). Now, this notion can be generalized (see [2, Def. 2]). A zero-offset masking
countermeasure is of degree at least d if Vx € IE";, Zyan_k ¢(xG + yH) =
> yeRn—k ¢(yH) for all ¢ of numerical degree at most d. The greater the degree
of the countermeasure, the harder to pass a successful SCA. Actually, it is known
from [3, 5] that the countermeasure is (d —1)-th degree secure if D has dual distance
d, i.e., if C has minimal distance d. This result has been independently validated
in [8] ford € {1,2}.

Let us now consider a fault injection attack (FIA). The state z is modified into
z+e¢, for some random ¢ € ;. By supplementarity of C and D, there exists a unique
ordered pair (e, f) € IE"; xIE‘g_k such thate = eG + fH. A detection strategy could
consist in decoding z into (x, y), and checking that we recover the genuine values

“supplementary” would seem more appropriate than “complementary”, but the term is more than
10 year old.
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unchanged. However, x is sensitive: the purpose of the protection is exactly to avoid
representing x by replacing it by z. The random variable y, from its side, does not
convey any (statistically) exploitable information. So, checking whether or not the

mask has been altered, i.e., zH T(H H T)_l 2 v, is a harmless detection strategy.
This happens if and only if f = 0,i.e.,e € C. As & = 0 is pointless (since without
observable effect), harmful faults only happen if ¢ € C \ {0}. In particular, the
Hamming weight of & must be greater or equal to the minimal distance d of code
C for the fault not to be detected. Now, given that the minimal distance d of C is a
design parameter, it is set as high as possible.

Therefore, have C be LCD of greatest possible minimal distance simultaneously
improves the resistance against SCA and FIA.

There are two kinds of designs that can benefit from the described protection. The
first one is the implementation of hardware accelerators for block ciphers, such as
the AES. In this case, the data to protect are typically bytes, with k = 8. The second
kind is a general-purpose processor executing software cryptography. Its registers
can be protected individually (hence k = 32). For an improved security, it can be
advantageous to mask all the registers seen as one unique resource, made up of a few
hundreds to a few thousands bits. Therefore, we are interested in codes of various
dimensions, ranging from k = 8 to k ~ 4,096.

The problem is thus the following: for a given dimension k (architecture
parameter) and minimal distance d (security parameter), find a LCD code of length
n as small as possible (and therefore, of rate k/n as large as possible).

3 Constructions

LCD cyclic codes, which have a minoration on their minimal distance via the
BCH bound, have been characterized in [15]. A potentially stronger lower bound
on the minimum distance exists for the sub-class of quadratic-residue (QR) codes
[12, 14], which can also be LCD. A QR code has for length a prime number n
and has a minimal distance d at least </n. A binary QR code has length congruent
with =1 modulo 8 and is LCD if the length is congruent with 1 modulo 8 [9].
Asymptotically, </n is a rather low value compared with the Gilbert Varshamov
bound, but such value is not far from what we need in our framework. The main
drawback of QR codes is that their dimension equals % (if we include 1 as possible
zero of QR codes), while we need larger dimensions. This leads us to considering a
generalization of QR codes whose lengths are not prime.

3.1 LCD Cyclic Codes

We shall always consider n co-prime with ¢. Let 8 be a primitive n-th root of unity.
Let C be a cyclic code of zeros {f/, j € J € Z/nZ}. The BCH bound states
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that the minimum distance of C is bounded below by the length of any string of
consecutive elements in J, plus 1. As observed in [15]:

Proposition 3 A binary cyclic code is LCD if and only if its set of zeros is stable
by the multiplicative inverse, i.e., if and only if its generator polynomial g(X) is
self-reciprocal.

Example 4 The binary cyclic code of length 17 whose zeros are
{7, =0,1,2,4,8,913,15 16}

is LCD and has parameters [17,8, 6] and its generator polynomial is X° + X ¢ +
X’ 4 X%+ X3 + 1. Note that the set of zeros is stable under the Frobenius y + y2,
which makes the code binary, and that the string 15, 16,0, 1,2 in Z/17Z has length
5; the BCH bound is then tight for this code.

3.2 LCD Generalized Residue Codes

A background on quadratic residue codes can be found in [14], and on generalized
residues codes in [12]. Let n be any integer co-prime with g and let ¢ be any positive
integer. Let Q be the set of ¢-th powers in Z/nZ.:

0 ={i'ieZ/nZ} CZ/InZ .

Then Q is stable under multiplication in the sense that, for any s € Q, the mapping
r € Q + sris valued in Q (but, since 7 is not assumed to be a prime, the image
set of this mapping may be strictly included in Q, since there exist divisors of zero?
in Z/nZ): forevery i’, j' € Q, we have indeed i’ j' = (ij)’. Note that, since n is
not assumed to be a prime, Z/nZ \ Q may not be stable under this same mapping.
Assume that ¢ belongs to Q. Then Q is stable under multiplication by g, in the
strong sense that the mapping r € Q +— gr has image set @, since g being co-
prime with n, the multiplication by ¢ is a permutation of Z/nZ. Note that, for the
same reason, Q* = Q \ {0} is also stable under multiplication by ¢. Let C be
the cyclic code of length n over F,» whose zeros are B/, i € Q (resp. i € Q%,
i € Z/nZ\ Q,i € Z/nZ \ Q%). Then C is a code over I, since its set of zeros
is stable under the Frobenius automorphism. And if additionally —1 € Q (that is,
n — 1, which is also co-prime with 7), then Q is stable under multiplication by —1
in Z/nZ and C is LCD. We deduce, since we are looking for binary codes:

Proposition 5 Let n be an odd positive integer and t be any positive integer. Let Q
be the set of t-th powers in Z/nZ. Assume that 2 and —1 both belong to Q. Then

2For the same reason, we do not exclude i = 0 in the definition of Q above, contrary to the
definition of Q when n is a prime, since even if i 7 0 is imposed, 0 may belong to Q.
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the cyclic code of length n whose zeros are B',i € Q (resp.i € Q*, i € Z/nZ\ Q,
i € Z/nZ\ Q*) where B is a primitive n-th root of unity in an extension field of F,
is a binary cyclic LCD code.

Note that it is easy to find integers n such that 2 and —1 are quadratic residues
modulo 7, as the common divisors of an integer of the form 7> — 2 and of an integer
of the form s + 1. Since 7 is not assumed to be a prime, the size of Q may be
strictly smaller than % and the dimension k = n — card(Q) of the code may be

n—1
larger than “—.

Remark 6 For classical QR codes, n is a prime number (and 7./ n’Z is then a field)
andt = 2. Given a nonzero codeword f(X) of minimum weight d in the code
C of zeros B', i € Q* and j a non-residue, the polynomial f(X/) is a nonzero
codeword in the code of zeros B, i € Z/nZ\ Q, and f(X) f(X/) belongs then to
the intersection of these two codes and is a multiple of Zf;é x! which has weight

n. Then d?> > n (but since the size of Q* equals %, the dimension of the code is

”22, which is too small for our purpose).

3.3 Generating the Codes by the Use of Idempotents

The generator polynomial of a cyclic code C of length n may be complex to
calculate, because this needs to calculate in the Galois extension of F, containing
a primitive n-th root of unity 8. An alternative way is to use an idempotent as
generator of the code (this method is well-known and specially simple for classical
quadratic residue codes, see [9]). Let g(X) be the generator polynomial of a cyclic
code C. We have X" — 1 = g(X)h(X) where h(X) is co-prime with g(X) since n
is odd (all zeros of X" — 1 being then simple). Bezout’s theorem implies then the
existence of two polynomials u(X), v(X) such that g(X)u(X) + h(X)v(X) = 1,
which implies (g(X)u(X))?> = g(X)u(X) [mod X" —1]. Then E(X) = g(X)u(X)
is an idempotent in F,[X]/(X" — 1). If 8" is a zero of u(X), then it is also a zero
of g(X) because it cannot be in the same time a zero of u(X) and a zero of h(X).
We deduce that E(B7) = 0 if and only if g(8’) = 0 and E(X) is also a generator
of C. This holds, since E has no other zero, E(X) is equal to the product modulo
X" — 1 of g(X) by an invertible polynomial modulo X" — 1. Using that E(X)
is an idempotent, we have that f(X) € C if and only if f(X)E(X) = f(X).
This implies that E£(X) is unique, since if another idempotent F(X) exists in C,
we have F(X)E(X) = F(X) = E(X). Note that E applied to n-th roots of
unity takes values in [F,. The idempotent of C* equals the reciprocal of 1 + E(X).
The characterization of cyclic LCD codes by Massey recalled above gives then the
following characterization:

Proposition7 Let C be a cyclic code of length n over F,. Let E(X) be the
idempotent of C. Then C is LCD if and only if E(X) is self-reciprocal, that is,
if and only if the idempotent associated to C+ is 1 + E(X).
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We consider now again the case of generalized residue codes. If ¢ = 2 € O,
where Q is the set of ¢-th powers in Z/nZ, then the polynomial P(X) = ZJ-EQ X/
satisfies P2(X) = ZJ-EQ X% = P(X) [mod X" — 1] and is then an idempotent.
For every ¢-th power residue r, we have P(B") = ZjEQ B/ . If r is co-prime with
n then we deduce that P(8") = ZJ.EQ B/ = P(B) € F,. Hence:

Proposition 8 Let n be an odd positive integer and t be any positive integer. Let Q
be the set of t-th powers in 7/ nZ. Assume that 2 belongs to Q. Let C be the binary
cyclic code of length n over F, whose zeros are B', i € Q* where B is a primitive n-
th root of unity in an extension field of F,. Let P(X) = ZjEQ X/. If every nonzero
element in Q is co-prime with n, then P(X) or 1 + P(X) is the idempotent of the
code C.

Note that adding B° = 1 to the zeros of the code corresponds to multiplying
the idempotent by (X — 1) to obtain a generator polynomial (which is not an

idempotent).
We have now a simple way to practically generate LCD generalized residue
codes. But we need to check that the conditions “2 € Q”, “—1 € Q” and “every

nonzero element in Q is co-prime with n” can be satisfied simultaneously, in
particular for + = 2 which is the most interesting case for our applications. This
is work in progress but we already made the following observation:

Proposition 9 Let p be any odd prime number and n = p?. Let Q = {i%, i €
Z/nZ}. Then every nonzero element in Q is co-prime with n.

Indeed, let 0 < i = kp + [ < n. We have k,/ < p. Theni? = [? [mod p] and if
[ # 0 then i? is co-prime with p and then with 7.

4 Constructing LCD Codes from Other LCD Codes

The LCD property is invariant under permutation of the codeword coordinates. The
only other transformation that we known which preserves the LCD property is the
direct sum.

Proposition 10 [f C and C’ are LCD codes of parameters [n,k,d] and [n', k', d’],
respectively, then their direct sum C & C’ = {(c¢,c’),c € C,c¢’ € C'} is LCD of
parameters [n +n' .k + k' min(d,d")].

Indeed, (C ® C’)* = CL & C'* and then (C ® C’) N (C & C')t = (C N
CL) @ (C’' N C'F). The name of direct sum comes from the fact that the indices
of the codewords of C and of those of C’ being distinct, the sum of C and C’ as
vector-spaces is direct.
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5 Conclusion and Perspectives

Complementary dual codes have applications in information protection. An example
is that of a cryptographic implementation, be it hardware or software, that must be
simultaneously protected against information leakage and information corruption,
since both threats enable successful attacks. We construct cyclic LCD codes, and
find codes of large minimal distances within the class of generalized residue codes.
In addition to these codes, we detail some secondary constructions, using direct
sum.

As a perspective, we aim at defining bounds for the minimal distance of LCD
codes, and at finding codes that approach those bounds. Besides, LCD codes of
sparse generator matrices would help reduce the implementation complexity.

Acknowledgements The authors are grateful to Patrick Solé for pointing relevant previous art.
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Input-State-Output Representation
of Convolutional Product Codes

Joan-Josep Climent, Victoria Herranz, and Carmen Perea

Abstract In this paper, we present an input-state-output representation of a convo-
lutional product code; we show that this representation is non minimal. Moreover,
we introduce a lower bound on the free distance of the convolutional product code
in terms of the free distance of the constituent codes.

Keywords Convolutional code * Product code ¢ ISO representation ¢ Free dis-
tance ¢ Kronecker product

1 Introduction

The class of convolutional codes generalizes the class of linear block codes in a
natural way. In comparison to the literature on linear block codes, there are only
relatively few algebraic constructions of convolutional codes which have a good
designed distance. There are several methods for constructing convolutional codes,
for example by extending the constructions known for block codes to convolutional
codes, such as the ones based on cyclic or quasi-cyclic constructions on block codes
[7, 8,10, 19].

Combining known codes is a powerful method to obtain new codes with
better error correction capability avoiding the exponential increase of decoding
complexity. For convolutional codes, we can find in the literature some powerful
combining methods as woven convolutional codes [21, 22] and turbo codes [18].
More recently, as a natural extension of the direct product codes introduced by Elias
[3], Bossert, Medina and Sidorenko [1] introduce the product of convolutional codes
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and they show that every convolutional product code can be represented as a woven
convolutional code (see also [11]).

On the other hand, it is well-known that there exists a close connection between
linear systems over finite fields and convolutional codes. Rosenthal [13] provides
an excellent survey of the different points of view about convolutional codes. By
using the input-state-output representation of convolutional codes introduced by
Rosenthal and York [16], Climent, Herranz and Perea [2] and Herrnaz [4] introduce
the input-state-output representation of different serial and parallel concatenated
convolutional codes, and by using them, they also present a construction of new
codes with prescribed distance.

The rest of the paper is structured as follows. In Sect.2 we present the basic
notions and previous results related to convolutional codes and convolutional
product codes. Then, in Sect. 3, we introduce two input-state-output representations
of a convolutional product code and prove that none of them is minimal. Moreover
we introduce a lower bound on the free distance of the convolutional product code.

2 Preliminaries

Let F be a finite field and denote by F[z] the polynomial ring on the variable z with
coefficients in F. A convolutional code € of rate k /n is a submodule of F[z]" that
can be described as (see [17, 20])

% = imz(G(2)) = ((2) € Fl]" [ v(2) = G(u(z) with u(z) € F[2]*}

where u(z) is the information vector, v(z) is the corresponding codeword and G(z)
is an n x k polynomial matrix with rank k called generator or encoder matrix of
€. Two full column rank matrices G(z), G2(z) € F[z]"** are said to be equivalent
encoders if and only if there exists a unimodular matrix P(z) € F[z]*** such that
G1(z) = G1(z) P(z). The complexity of a convolutional code % is the highest degree
of the full size minors of any encoder of €. A generator matrix of a convolutional
code is called minimal if and only if the complexity is equal to the sum of the
column degrees.

A generator matrix is said to be catastrophic [6] if there exists some input
sequence u(z) with infinite nonzero entries which generates a codeword v(z) =
G(z)u(z) with a finite nonzero entries. A convolutional code % is observable if
one, and therefore any, generator matrix G(z) is right prime (see [14]). Furthermore,
if G(z) is a generator matrix of an observable convolutional code, then G(z) is a
noncatastrophic generator matrix (see [14]).

Let v(z) € ¢ and assume that v(z) = voz’ + v~ + -+ + v,_1z2 + v, with

v, e F' fort =0,1,...,y —1,y.If we considerv, = (y’f),wherey, e F"* and
u

t
u, € F¥, then the convolutional code % is equivalently described by the (4, B, C, D)
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representation (see [13, 16, 17, 20])

Yoo = At Bue | g0 x =0

y; = Cx; + Du,,
For each instant 7, we say that x; is the state vector, u, is the information vector,
y, is the parity vector, and v, is the codeword. In the linear systems theory, this
representation is known as the input-state-output (ISO) representation.

If € is a rate k/n convolutional code with complexity 6, we call ¢ an
(n,k,8)-code, and in that case, it is possible (see [9]) to choose matrices A, B, C
and D of sizes § X8, 8 xk, (n—k) x§ and (n — k) x k, respectively. In convolutional
coding theory, an ISO representation (A, B, C, D) having the above sizes is called
a minimal representation and it is characterized through the condition that the pair
(A, B) is controllable, that is (see [16]),

rank (B AB --- A"'B) = 6.

Moreover, if (A, B) is controllable, then the convolutional code defined by the
matrices (A, B, C, D) is an observable code if and only if (4, C) is an observable
pair (see [12]). Recall that (4, C) is an observable pair if (47, CT) is a controllable
pair.

The free distance of a convolutional code % can be characterized (see [5]) as

dfree((g) = min (Z Wt(ul‘) + Z Wt(-Yt))

t=0 t=0

where the minimum has to be taken over all possible nonzero codewords and where
wt denotes the Hamming weight. The free distance of an (n, k, §)-code ¥ is always
upper-bounded (see [15]) by the generalized Singleton bound

dpee(€) < (n — k) (m + 1) +8+1.

In addition, the convolutional code ¥ is called maximum-distance separable
(MDS) if its free distance is equal to the generalized Singleton bound.

To finish this section, we introduce the product of two convolutional codes
called “horizontal” and “vertical” codes respectively. Assume that 4, and %, are
horizontal (nj, kj,, 8,) and vertical (n,, k,, 6,) codes respectively. Then, the product
convolutional code (see [1, 11]) € = ¢, ® 6, is defined to be the convolutional
code whose codewords consist of all n, x n, matrices in which columns belong to
%, and rows belongs to €. It is an (nyn,, kyk,, 8k, + ki6,).
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Encoding of the product convolutional code % can be done as follows (see
[1, 11]). Let G,(z) and Gy(z) be generator matrices of the component convolutional
codes %, and %, respectively. Denote by U(z) a k,, x kj, information matrix. Now,
we can apply row-column encoding; i.e., every column of U(z) is encoded using
G,(z), and then every row of the resulting matrix G,(z)U(z) is encoded using G (z)
as (G,(z2)U(2))Gi(z)T. We can also apply column-row encoding; i.e., every row
of U(z) is encoded using Gj(z), and then every column of the resulting matrix
U(z)G(2)T is encoding using G,(z) as G,(z)(U(z)Gx(z)T). As a consequence of
the associativity of the product of matrices, we get the same matrix in both cases.
So, the codeword matrix V(z) is given by

V(@) =G U@R) Gy,
and by using properties of the Kronecker product, we have
vect (V(2)) = (Gi(2) ® G(2)) vect (U(z))

where vect () is the operator that transforms a matrix into a vector by stacking the
column vectors of the matrix below one another. So, the generator matrix G(z) of
the product convolutional code % is the Kronecker product

G(z) = Gi(z) ® G,(2)

of the generator matrices of the horizontal and vertical codes.

3 ISO Representation of a Product Convolutional Code

Assume that (A, B),,Cy,Dy) and (A,,B,,C,,D,) are the ISO representations of the
(np, kp, 8y) horizontal and (n,,k,,§,) vertical codes %, and %,, respectively.
Assume also that the k, x k; matrix U, is the information matrix of the product
code’d =6, QC,.

By using the ISO representation of the horizontal code %), we can encode the
information vector u, = vect (U;) as

h — h h
X/ = (4 ® Ii)x} + (By ® I,)u, } h (.V,) h
) = , t=0,1,2,..., x;=0. 1
Y= (Cy ® It)x! + (D ® I, )u, ! u 0 M
Analogously, by using the ISO representation of the vertical code %, we can encode
the same information vector u, as

X4 = (g, ® A)x] + (I, ® Bu, } W= (y}’
s r

, t=0,1,2,..., xh=0, 2
¥ = (I, ® C)x! + (I, ® D), u) 0 @
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Then we encode the parity vector y" (respectively, y*) by using the vertical code %,
(respectively, the horizontal code %) as

Y = U=k, ® A)x] + Unj—i, ® Byt v [V (=012 =0

0 = Uiy, ® CIE + i, ® D {7 7 1) IR,
€)

fpr = (A0 ® b )st + B ® b i (- n (07} g, =0
v} = (Ch ® L=k )8/ + (Dn ® Loy | 7 ot ) ST R

Then, by using properties of the Kronecker product we obtain the following
result.

Theorem 1 For the vectors y] and 1)? defined by expressions (3) and (4) respec-
tively, it follows that v/ =y, fort =0,1,2,...

Proof By induction over ¢. O

Next result establishes that the ISO representations defined by matrices in
expressions (1)—(4) are minimal ISO representations.

Theorem 2 Let us assume that (A, By, Cy, Dy) and (A, By, C,, D,) are minimal
ISO representations of the (ny,, ky, §,) horizontal and (n,, k,, 6,) vertical codes &,
and 6, respectively. Then

1. The matrices (Ap & I, By ® Ix,, Ch @ Ix,, D, @ Ii,) in expression (1) define a
minimal ISO representation of an (npk,, kyk,, 8yk,) convolutional code €, (k,).

2. The matrices (I, @ Ay, Ir, ® By, I, ® Cy, Iy, ® D,) in expression (2) define a
minimal ISO representation of an (kpn,, kyk,, ki8,) convolutional code 6, (ky,).

3. The matrices (I1,,—x, ® Ay, Ln,—k, @ By, In,—k, & Cy, In,—r, ® D,) in expres-
sion (3) define a minimal ISO representation of an ((n,—kp)n,, (ny—kn)k,, (n,—
kn)8,) convolutional code €,(ny, — kp).

4. The matrices (Ah ®In‘,—k‘,v By, ®Inv—kvv Ch ®Inv—kvs Dy, ®Inv—kv) in exPV€SSi0n (4)
define a minimal ISO representation of an (nj(n, —k,), kp(n, — k), §,(n, —k,))
convolutional code €, (n, — k).

Proof The result follows from the fact that (A4;, By, Cy, Dy) and (A,, B,, C,, D,)
are minimal ISO representations and the properties of the Kronecker product of
matrices. O

It is not difficult to show that the codes % (k,) and 4} (n, — k,) (respectively,
%, (kp) and 6, (n;, — kj)) correspond to the block parallel concatenation of convolu-
tional codes described in [4, Section 5.3], and therefore

dfree ((gh (kv)) = dfree (Cgh (nv - kv)) = dfree ((gh) s
dfree (Cgv(kh)) = dfree ((gv(nh - kh)) = dfree (Cgv) .

Now, by using the second model of serial concatenated convolutional codes
introduced in [2, 4] we have the following result.

&)
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Theorem 3 With the same notation as in Theorem 2.

1. If & is the rate kpk,/((n, — kp)n, + kpk,) convolutional code defined by the
serial concatenation of ¢, (k,) and €,(n, — kp,), then (A1, By, Cy,Dy), with

In —k, ®Av Ch®Bvi| |:Dh®Bvi|
A = h h N B = N
! [ ! By ® I,

o Ap ® I,
C, = Inh—kh ®Cv Ch®DV D = Dh®DV
! 0 C®l | T A

is an ISO representation of A.
2. If S is the rate kyk,/(n,(n, — k) + kpk,) convolutional code defined by the
serial concatenation of 6, (k) and €,(n, — k,), then (A3, B,, C,, Dy), with

A — Ap ® In,—k, Bn ® C, B, — B, ® D,
2 0 I,®4,] > ln,®B, |

C, = Ch ® Inv—kv Dh &® Cv D, = Dh ® Dv
2 0 Ikh ® Cv ’ 2 Ikh ® Dv )

is an ISO representation of ..
Proof The result follows from Theorem 9 of [2]. O

In general the ISO representations (A, B;, C;,D;) and (A;, B,, C;, D») intro-
duced in the above theorem are not minimal (see [2, 4]). In [2, 4] we can find some
sufficient conditions to ensure the minimality of the above ISO representations.

Now, by Theorem 15 of [2] we have that

dfree (fgﬂl) = dfree ((gh) and dfree (yZ) = dfree ((gv) . (6)

As a consequence of Theorem 1, by using the second model of parallel
concatenation (see [4, Section 5.2]) we have the following result.

Theorem 4 With the same notation as in Theorems 2 and 3.

1. If &, is the rate (kpk,/nyn,) convolutional code defined by the parallel
concatenation of .1 and 6,(ky,), then (2,81, €1, D) with

In;,—kh ® Av Ch ® Bv 0] _Dh &® Bv

Ay = (0] Ay ® I, (0] , B = B, ® I,
0] 0 Ikh ® Av_ _Ik/l &® Bv

Inh—kh ®C G, ®D, o ] _Dh ® D,

¢ = o I, O ., D= | Dy ®I,
0 0 Iy ®C, | I, ® D,

is an ISO representation of &.
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2. If &, is the rate (kpk,/npn,) convolutional code defined by the parallel
concatenation of % and 6, (k,), then (2, B, €5, D,) with

Ah ® Inv—kv Bh &® Cv 0 i Bh ® Dv

Ay = 0] I, ® A, 0] , By = Iy, ® B,
o O A®I, L By ® I,

Ch® Iy, Dh®C,, O ] [ Dy ® D,

& = o I, ®C, O s D= I, ®D,
0 0O Cy®I, | Dy ® I,

is an ISO representation of &,.

Note that, according to expressions (1)—(4) and Theorem 1, & is the product
convolutional code € = %, ® %,. Moreover, since 2; is a matrix of size
(nnd, + Snky) x (nyé, + 6ik,) and the complexity of € is k8, + &pk,, we can
ensure that the ISO representation (2, B, €}, ®;) provided by part 1 of Theorem 4
is nonminimal. By an analogous argument %7, is the product convolutional code
€ = %, ® ¢, and the ISO representation (2f,, B,, €,, D,) provided by part 2 of
Theorem 4 is nonminimal.

Next result introduces a lower bound on the free distance dj.. of the convolu-
tional product code in terms of the constituent convolutional codes.

Theorem 5 If 6, and G, are (ny, ki, 8,) and (n,, k,, 8,) codes, respectively, then,
dfree(%1 & Cgv) > max {dfree((gv)v dfree((gh)} .

Proof With the same notation as in Theorem 4, as a consequence of Theorem 5.8
of [4] we have that

dfree (f@l) > max {dfree (%) 5 dfree ((f‘,)} )
dfree (92) > max {dfree (e%) 5 dfree (Cgh)} .

The result follows now by expressions (5) and (6) an the fact that &} = &, =
G R G,. O
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Burst Erasure Correction of 2D Convolutional
Codes

Joan-Josep Climent, Diego Napp, Raquel Pinto, and Rita Simées

Abstract In this paper we address the problem of decoding 2D convolutional codes
over the erasure channel. In particular, we present a procedure to recover bursts of
erasures that are distributed in a diagonal line. To this end we introduce the notion of
balls around a burst of erasures which can be considered an analogue of the notion
of sliding window in the context of 1D convolutional codes. The main result reduces
the decoding problem of 2D convolutional codes to a problem of decoding a set of
associated 1D convolutional codes.

Keywords 2D convolutional codes ¢ Erasure channel

1 Introduction

When transmitting over an erasure channel the symbol sent either arrive correctly
or they are erased. Internet is an important instance of such a channel. One of the
problems that arises in this channel is that some packets get lost and the receiver
experience it as a delay on the received information. The solutions proposed to
deal with this problem are commonly based on the use of block codes. However,
in recent years, there has been an increased interest in the study of one-dimensional
(1D) convolutional codes over the erasure channel [2, 8—10] as a possible alternative
for the widely use of block codes. Due to their rich structure 1D convolutional codes
have an interesting property called sliding window property that allows adaptation
to the correction process to the distribution of the erasure pattern. In the recent
paper [10] it has been shown how it is possible to exploit this property in order
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to easily recover erasures which are uncorrectable by any other kind of (block)
codes. The codes proposed in this paper are codes with strong distance properties,
called Maximal Distance Profile (MDP), reverse-MDP and complete-MDP, and
simulations results have shown that they can decode extremely efficiently when
compared to MDS block codes.

In the 1D case, if the received codeword is viewed as a finite sequence v =
(vo,v1, ..., Vv¢), then the sliding windows is given by selecting a subsequence of v,
(vi,...,vit+n), where i, N € N depend on the erasure burst pattern. However, when
considering two-dimensional (2D) convolutional codes [4—7, 11] the information is
distributed in two dimensions and therefore there is not an obvious way to extend
the idea of sliding window to the 2D case. In this work we propose several solutions
for dealing with this problem by introducing the notion of balls around an erasure.
We show that when considering these particular balls one reduces the problem of
decoding 2D convolutional codes over the erasure channel to a problem related to
decoding of 1D convolutional codes.

2 2D Convolutional Codes

In this section we recall the basic background on 2D finite support convolutional
codes. Denote by F[z;, 7] the ring of polynomials in the two variables, z; and z;,
with coefficients in the finite field [F.

Definition 1 A 2D finite support convolutional code & of rate k/n is a free
F(z1, z2]-submodule of F[z;, z5]" with rank k.

A full column rank polynomial matrix G (z1,2,) € Flz1,z2]"** whose columns
constitute a basis for €, i.e., such that

¢ = imsp, -, G (21, 22)
= {(z1.22) € Flz1, 22]" | ¥(z1,22) =
G (21, 22)ii(z1, 22) with @t(z1, 22) € Flzi. 2] },

is called an encoder of €. The elements of € are called codewords.

If the code 4" admits a right factor prime encoder [3], then it can be equivalently
described using an (n — k) x n full rank polynomial matrix H (z1, z2), called parity-
check matrix of €, as

€ = Kergy, ) I:I(zl,zZ) = {9(Z1,ZZ) € Flzi, z0]" | ﬁ(ZuZz)f’(Zl,Zz) = 0}-

We denote by Ny the set of nonnegative integers, and define an ordering in N% as

(a,b) < (c,d)ifandonlyifa+b <c+d,ora+b=c+danddb <d. (1)
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For a polynomial vector ¥(z1,22) € F[z1, 22]", we write

P(z1,22) = v(0,0) +v(1,0)z1 +v(0, Dza + --- +v(0,y)z) = Z v(a,b)ziz,
0<a+b<y

(with y > 0) and we define its support as the set
supp(9(z1.22)) = {(a.b) € NZ | v(a.b) # 0}.
Moreover, we represent a polynomial matrix H (z1,z2) as
H(z1.22) = H(0,0) + H(1,0)z; + H(0, D)2y + -+ + H(0,8)3)
= Y HG.)d3. @)
0<i+j <8

where H(i, j) # 0forsome (i, j) withi +j = §. We call § the degree of H(z1.22).
The weight of ¥(z1,z2) is defined as

wt((.2) = Y wt(v(a.b))

(a.b)eN?

where wt (v(a, b)) is the number of nonzero entries of v(a, b) and the distance of a
code is

dist (%) = min {wt (¥(z1, 22)) | ¥(z1,22) € €, with ¥(z1,22) # 0} .

We can expand the kernel representation

H@,o)¥z,2)= Y, | Y, HGjwa—ib—j) |5 =0

O<a+b<y | 0<i+;<8

as
Hv =0 3)

where H, for § = 3, and v are given in Fig. 1, where O denotes the (n — k) x n zero
matrix. To understand the structure of matrix H, note that fort = 0, 1,2, ... in the
columns corresponding to the block indices @ +1, # +2,..., r(t_;Ll) +r+1
appear all the coefficient matrices of H (z1, z2) ordered according to < with the
particularity that the matrices H(i, j), withi 4+ j = d,ford =0,1,2,...,6 — 1,
are separated from the matrices H (i, j), withi + j = d + 1, by ¢ zero blocks.
Suppose now that the vector ¥(z1, z2) is transmitted through an erasure channel.

Each one of the components of v is either received correctly or is considered
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H(0,0)
H(1,0) H(0,0)
H(0,1) o  H(0,0)
H(2,0) H(1,0) 0  H(0,0)
H(1,1) H(0,1) H(1,0) 0  H(0,0)
H(0,2) o HO1) 0 o H(0,0)
H(3,0) H2,00 o0 H(10) o o H(0,0)
H(2,1) H(1,1) H(2,0) H(0.1) H(1.0) o0 o0 H(0,0) +(0,0)
H(1,2) H(0,2) H(1,1) o H(0.1) H(,0) 0 o H(0.0) V(1,0)
H(0,3) o H02) 0 o H(O01) o0 0 o0 H(0,0) V(0,1)
H(3,00 0 H(20) o0 o H(0) o o o 1(2,0)
H(2,1) H(3,0) H(1,1) H(2,0) 0 H(O1) H(1,0) 0 o W(1L1)
H(1,2) H(2,1) H(0.2) H(1,1) H(2.0) o H(0,1) H(10) 0 1(0,2)
H(0,3) H(1,2) 0 H(0,2) H(1,1) o0 0 H(0,1) H(1,0) V(3,0)
HO3) 0 o H02 o 0 o HO.I W2, 1)
H(3,0) 0 0 H20) o o o W(1,2)
H(2,1) H(3,0) o H(l1) H20) o o (0,3)
H(1,2) H(2,1) H(3,0) H(0,2) H(l,1) H(2,0) o0
H(0,3) H(1,2) H(2,1) 0 H(0,2) H(l,1) H(2,0) :
H(0,3) H(1,2) 0 0 (0,2) H(1,1)
H03) 0 0 o H(02)
H(3.0) 0 0 o
H(2,1) H3.0) o0 0
H(1,2) H(2.1) H3.0) 0
H(0,3) H(1,2) H(2,1) H(3,0)
H(0,3) H(1,2) H(2,1)
H(0,3) H(1,2)
H0.3) -
(a) ) (b)

Fig. 1 Parity check matrix H, for § = 3, and codeword v. (a) Matrix H. (b) Vector v

erasure. Denote by &(¥(z1,22)) and &(#(z1, 22)) the sets of indices in which there
are erasures and there are not erasures, respectively, i.e.,

EW(z1,22)) = {(a,b) € supp(¥(z1,72)) | there is an erasure in v(a, b)},
E((z1.22)) = supp(P(z1,22)) \ E( (a1, 22)).

One can select the columns of the matrix in (3) that correspond to the coefficient
of the erased elements to be the indeterminates of a new system. The rest of the
columns in (3) will help us to compute the independent terms. The terms erasure
and indeterminate are often used interchangeably. Hence, we denote by He and H
the submatrices of H whose block columns are indexed by & and &, respectively.
Analogously, we denote v¢ and vz to obtain Heve + Hzvz = 0. Note that as the
channel is an erasure channel, vz, and therefore Hzv z, is known. Hence, we obtain
a system of linear nonhomogeneous equations

Heve = —Hpvz, 4

where the components of the vector v, are the indeterminates to be determined.
Thus, in order to decode v we need to solve system (4).
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The next lemma shows the importance of the distance of a code when transmit-
ting over the erasure channel.

Lemma 2 Let € = kerpy, 2, H (z1, 22) be given. The following are equivalent:

1. dist(¥) > d.
2. Any d — 1 erasures can be recovered.
3. Any d — 1 columns of Hs are linearly independent.

In the context of 1D convolutional codes the analogous set of homogeneous
equations of (3) is

Hy
H, --- H, Yo
Vi
. =0, (5)
H, --- Hy
. Vy

where ¢ = kerﬁ(z) with I:I(z) = Hy+ Hiz+ -+ H,z".

In this case every component of the received codeword v = (vo,v2,...,V;)
depends on the previous o components. In order to find the values of a burst of
erasures occurring in v, we can use the so-called sliding window, that is, we can
select a suitable interval of consecutive components of v, say (v;,...,v;+x), and
solve the corresponding system of equations (see [10]).

In the 2D case each component of v, say v(a, b), depends on components which
support lie in the triangle {(a —i,b — j) | 0 <i 4+ j < §}, where § is the degree of
A (z1, 22) of the given 2D code € = ket -, A (z1,22)- It is not straightforward to
extend the notion of the sliding window in this context in order to correct burst of
2D erasures. A particular case is treated in the following section.

3 Decoding Burst of Erasures on Lines

It is well-known that a phenomena observed in many channels modeled via the
erasure channel is that errors tend to occur in bursts. This point is important to keep
in mind when designing codes which are capable of correcting many errors over
the erasure channel. In this preliminary work we aim at decoding burst of erasures
that are distributed in a diagonal. We present a notion that can be considered as the
analogue of the notion of sliding window, called ball around a burst of erasures,
that will reduce the problem of decoding a 2D convolutional code to the problem of
decoding a set of associated 1D convolutional codes.
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Let us first suppose that the set of erasures of ¥(z;, z2) contains a burst of erasures
which support lie in a diagonal, i.e., given by

E' 0, 2) ={r+t.s),r+r—1,s+1),....(r,s+1)} CEF(z1,22)).  (6)
Hence, Eq. (3) can be divided as
Heve = —Hz vz 7

where Hy and Hp, are submatrices of H whose block columns are indexed by
E((z1,22) and & ((z1.2)) = supp(P(z1,22)) \ &' (21, 22)), respectively, and
ver and v, are defined accordingly. If no confusion arises we use & and &” for
EW(z1,22)) and &' (¥(z1, 22)), respectively.

Definition 3 Let &’ be given with (r/,s/) = (r 4+ ¢,5) and (r*,s%) = (r,s + 1)
being the first and last position (ordered by <) in this set. We define § + 1 different
balls around & as

2,58 ={@b)la<r/ +j b<s"+]
rl s/ +j-8<a+b<r/ +5/ +j}
forj =0,1,2,...,6.
Example 4 Consider the burst of erasures given by
&' =1{(8.5).(7.6).(6.7).(5.8). (4.9)}.

then, (rf, sf) = (8,5) and (r[, s[) = (4,9), and for § = 3 Figure 2 shows the balls
£203(&) and £213(&£7).

12345678910 12345678910
(@) (b)

Fig. 2 Balls around the erasure given by 8" = {(8,5), (7,6), (6,7), (5,8), (4,9)}. (a) 203(&").
(b) £215(8”)
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By definition, the vector v contains a burst of erasures in a diagonal and vz
may contain erasures as well. Depending on the structure of Hges and H, these
errors may appear together in some of the equations of (7).

The following result gives a criterion to determine some sets of equations that
involve only erasures in v¢. The solution of such system would produce the desired
decoding of ver.

Theorem 5 Let ¢ = kerpy, -, I:I(zl ,22), 6 the degree ofI:I(zl, 22) and let & be the
support of the erasures and &' be the support of a burst of erasures distributed on a
diagonal line of a codeword ¥(z1, z2). If &' are the only erasures in 2 5(&"), i.e., if

ENQjs(&) =8,
then, there exists a subsystem of (7) such that
H,vs =a; (8)
where a; is a subvector of H 7V z that does not contain any erasures, and
H(j.0)
H(j—1,1) H(j,0)

H(j—2.2) H(G -1.1) H(j.0)

W,=| HO.j) HOj-DHCj-2) |

H(0.j) H(1,j — 1)
H(. )

forj=0,1,...,6

isa(n—k)t+1+86—j)xn(t+1) submatrix of He/, with t + 1 the cardinality
of &'.

The structure of the matrices Hfgo, have the same structure as the matrices in (5)
which appear in the decoding problem of 1D convolutional codes, see [1, 8] for
more details, and therefore the solution of (8) is analogous to the decoding problem
of 1D convolutional codes.

It was shown in [10] that there exists a type of 1D convolutional codes, called
(reverse or complete) MDP, that perform particularly well over the erasure channel.
This together with Theorem 5 suggest that in order to construct a 2D convolutional
code € = Kery, 2] H (z1, z2) with good decoding properties one can construct a

parity-check matrix HGi.22) = Z H(a, b)z‘fzg such that the associated 1D
0<a+b<é
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convolutional codes are given by ') = kergig H)(z) with HU)(z) = H) +
Hl(])z—i--” + HYz" and Hlij) = H(j —k,k),fork =0,1,...,j are MDP.

4 Conclusions

In this paper we have proposed a method to recover erasures &’ in a 2D (finite
support) convolutional code that are distributed in a diagonal line in the 2D plane.
We have shown that if &’ does not have more erasures close (meaning in a ball
centered around &”) then it is possible to consider &” as a burst of erasures of a set of
1D convolutional codes. Decoding these 1D convolutional codes would immediately
imply the recovery of the &”.

This procedure is far from solving all the possible erasure patterns but it
represents the first step toward the development of an effective approach to solve
more general patterns of erasures.
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Variations on Minimal Linear Codes

Gérard Cohen and Sihem Mesnager

Abstract Minimal linear codes are linear codes such that the support of every
codeword does not contain the support of another linearly independent codeword.
Such codes have applications in cryptography, e.g. to secret sharing. We pursue
here their study and construct asymptotically good families of minimal linear codes.
We also push further the study of quasi-minimal and almost-minimal linear codes,
relaxations of the minimal linear codes.

Keywords Minimal codes * Quasi-minimal codes

1 Introduction

A minimal codeword [10, 11] ¢ of a linear code C is a codeword such that its
support (set of non-zero coordinates) does not contain the support of another linearly
independent codeword. Minimal codewords are useful for defining access structures
in secret sharing schemes using linear codes. Determining the set of minimal
codewords is hard for general linear codes, although this has been studied for some
classes of specific linear codes. This led to work on how to find codes where all
codewords are minimal, in order to facilitate the choice of access structures. The
problem of finding a code satisfying this condition, called a minimal linear code has
first been envisioned in [7] and later studied in [3, 13].

Interestingly, in [3], the motivation for finding minimal linear codes is no longer
secret sharing but in a new proposal for secure two-party computation, where it is
required that minimal linear codes are used to ensure privacy.
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It is pointed out in [3] that minimal codes are close to the notions of intersecting
and separating codes [4, 5]. Such codes have been suggested for applications to
oblivious transfer [2], secret sharing [1, 7, 13] or digital fingerprinting [12].

We will focus here on the non-binary case, where the notion of minimal codes
is more restrictive than that of separating codes. Secret-sharing and secure two-
party computations both crucially hinge on a large alphabet; thus, one cannot rely
on the well-understood binary case only. We thus pursue in Sect. 2 the study of [3]
on bounds and criteria for minimal linear codes and exhibit families of minimal
codes with better rates (asymptotically non-zero). In Sect. 3, we relax the notion
of minimal codes and introduce quasi-minimal linear codes. Quasi-minimal linear
codes are codes where two non-zero codewords have the same support if and only
if they are linearly dependent. This slight relaxation enables to exhibit families with
improved non-zero asymptotic rates. Finally, we consider yet another generalization
to almost-minimal codes, where the property is allowed to fail for a small proportion
of codewords.

2 Minimal Codes: Bounds and Constructions

2.1 Definitions: Notations

We denote by | F| the cardinality of a set F. Letq = p", where p is a prime number
and/ € Nx. An [n, k, d, dyax]y code is a vector subspace of [y of dimension k with
minimum distance d and maximum distance d,,,,. The last two parameters refer to
the minimal (resp. maximal) Hamming distance between two codewords of %, or,
equivalently, the minimal (resp. maximal) Hamming weight of a codeword of ¢;
they will be omitted when irrelevant. Normalized parameters will be denoted by
R=Fk/n,§ =d/n,bnix = dnax/n.

The support of a codeword ¢ € € is supp(c) = {i € {1,...,n}|c; # 0}. The
Hamming weight of a codeword ¢ € % denoted by wt(c) is the cardinality of its
support: wt(c) = |supp(c)|. A codeword ¢ covers a codeword ¢’ if supp(c’) C

supp(c).
Definition 1 (Minimal codeword) A codeword c is minimal if it only covers I, -c,
ie. if V¢’ € €, (supp(c’) C supp(c)) = (c,¢’) linearly dependent [10].

Definition 2 (Minimal linear code) A linear code ¥ is minimal if every non-zero
codeword ¢ € € is minimal [7].

For a complete treatment and general references in coding theory, we refer to the
book of MacWilliams and Sloane [9].
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2.2 Bounds

Two non-constructive bounds on the rates of minimal codes are exhibited in [3]. We
recall them without proofs.

Theorem 3 (Maximal Bound) Ler € a minimal linear [n,k,d) q-ary code, then
R <log,(2) [3].

Theorem 4 (Minimal Bound) Forany R,0 < R =k/n < %logq(qz_”—;rl), there
exists an infinite sequence of [n, k] minimal linear codes [3].

2.3 A Sufficient Condition

There exists a sufficient condition on weights for a given linear code to be minimal.
More precisely, if the weights of a linear code are close enough to each other, then
each nonzero codeword of the code is a minimal vector as described by the following
statement.

Proposition 5 ([1]) Let € be an [n,k,d, dyqy] code. If dL > qq;l then € is
minimal. '

Remark 6 Note that the stronger sufficient condition % > =L fails to provide
asymptotically good codes; indeed, by the Plotkin bound [9], for any code, not
necessarily linear, of length n, size M and distance d, if d > (¢ — 1)n/q, then
M =d/d-(1-g™").

On the other hand, for § < 1 — q_l, the classical Varshamov-Gilbert bound [8]
guarantees the existence of asymptotic families of codes with non zero rate R(8, q).

2.4 Infinite Constructions

The general idea is to concatenate a g-ary “seed” or inner code (e.g. a simplex) with
an infinite family of algebraic-geometric (AG) codes (the outer codes) [14], in such
a way as to obtain a high enough minimum distance and conclude by Proposition 5.

In practice, we can take the seed to be the simplex code .7 . [n = (¢" —1)/(q —
.k =r,d = dyax = q"']; (With 8§ > (¢ — 1)/q), set r = 2m and concatenate
with AG[N,K = NR,D = NA, Dygx = NApax]n. These codes exist lying
almost on the Singleton bound, namely satisfying R + A = 1 — (¢" — 1)~! >
(g—1/q.

This concatenation results in the family C[nN, kK, d D], with maximum dis-
tance at most doxN. If dD/dpyx N = A > (¢ — 1)/q, this family is minimal by
Proposition 5.
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It is not hard to check that, for example, choosing g large and o small enough,
m>2,A=(@-1)/qg+a,R=1/g—1/(¢g" — 1) —a > 0, this is the case.

To summarize, we construct infinite families of codes with R = 2m(1/q —
1/(@" =1 —a)(g = 1)/(g*" = 1) ~ 2m/q*" satisfying §/8ax > (¢ —1)/q, thus
minimal. Note that, by the Plotkin bound, they necessarily satisfy § < (¢ —1)/q, so
the fact that §,,,, < 11is crucial.

3 Quasi-minimal Codes

We now relax the notion of minimal codes to that of quasi-minimal codes.
Minimality prevents a codeword from having its support included in the support
of a linearly independent codeword, whereas quasi-minimality only prevents two
linearly independent codewords from having the same support.

3.1 Definitions and Properties

Definition 7 (Quasi-minimal codeword) A codeword ¢ is quasi-minimal if V¢’ €
€, (supp(c’) = supp(c)) = (c,¢’) linearly dependent.

Definition 8 (Quasi-minimal linear code) A linear code € is quasi-minimal if
every non-zero codeword ¢ € % is quasi-minimal.

Quasi-minimality is clearly a weaker requirement than minimality. For instance,
every binary code is obviously quasi-minimal.

3.2 Constructions

We now give a construction based on the Kronecker (tensor) product of codes, which
yields infinite families of quasi-minimal codes with relatively slowly decreasing
rates.

Proposition 9 The product €1 @ ¢» of a quasi-minimal [n1, ki, di, (dmax)1]q code
¢\ and of a quasi-minimal [n,, ko, da, (dinax)2]y code €5 is a quasi-minimal [n; x
nj, kl X k27 dl X d2a dmax 2 (dmux)l X (dmax)2]q COde~

Proof The parameters are easy to check. For the quasi-minimality, let ¢ # 0, ¢’
be two codewords of 6] ® %>. By definition of the tensor product, they can both
be written as n; X n, matrices where rows are codewords of 4} and columns are
codewords of %>. More generally, the square of the [¢ + 1,2, ¢], simplex code is
a [(g + 1)%,4,¢%], minimal code. Let us assume that supp(c) = supp(c’). For
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i=1,...,n,j =1,....n let¢ (resp. lel) be the ith row of ¢ (resp. ¢’) and C}z
(resp. c}z) be the jth column of ¢ (resp. ¢’). For every i, supp(c!) = supp(c,),
so dA; such that c; 1 = Aicil. With the same reasoning on the columns, for every j,
there exists A ; such that c}z = Ajc%. Then, all the A;’s and A ;s are equal and there
exists A such that ¢’ = Ac, so ¢ and ¢’ are linearly dependent. Thus, €] ® %, is
quasi-minimal. O

3.3 A Sufficient Condition

We now prove a sufficient condition for quasi-minimality, weaker than the one
for minimality. This will then allow us to construct improved infinite classes of
asymptotically good quasi-minimal codes by concatenation.

Theorem 10 Let C be a linear [n,k,d, dypaxlq code; if d[dypax > (g —2)/(q—1),
then C is quasi-minimal.

Proof Let C be a linear [n, k, d], code and let c, ¢’ be two linearly independent
codewords of C such that supp(c) = supp(c’). Let @ be a primitive element
of F,. Then, w.Lo.g., one can write ¢ and ¢’ by blocks, in the following way:
¢ = Poll...|Bg—2ll0and ¢’ = a®Bo]|...|la?">B,4—]|0. Let A; be the size of the
q—2
(possibly empty) block §;. Then wt(c) = wt(c’) = Y A; > d. We also have, for
i=0
j=0,....,g—2,d(@c,c’) = > A; > d.If we sum all these inequalities, we get
i#]j
q—2
(g—2)> A; = (g — 1)d, hence wt(c) > Z—:;d > dyyax, a contradiction. Thus, ¢
i=0
and ¢’ cannot exist and C is quasi-minimal. O

Example 11 For g = 3, consider the code G[11, 5, 6, 9]3 obtained by shortening the
extended ternary Golay code [9]. It is quasi-minimal by the previous theorem. Its
(Kronecker) square is G2, a [121, 25, 36, > 81]3 quasi-minimal code by the previous

proposition, although is does not satisfy the sufficient condition of Theorem 10.

Now, the celebrated non-constructive Varshamov-Gilbert bound implies the

existence of infinite families of semi-constructive quasi-minimal codes with rate
R=1 - ﬁq(g—j) > 0. This is still far from the upper bound, derived analogously
to the minimal case:

Theorem 12 (Maximal Bound) Let € be a quasi-minimal linear [n,k,d], code,
then R < log,(2).
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3.4 Infinite Constructions of Quasi-minimal Codes

Again, we concatenate a g-ary inner code (e.g. a simplex) with an infinite family
of algebraic-geometric (AG) codes to get a high enough minimum distance and
conclude by Theorem 10.

Continue taking for seed .7, [n = (¢" —1)/(q— 1),k = r,d = dpax = q¢" '],
set r = 2m and concatenate with AG[N,K = NR, D = NA],n, obtaining the
family C[nN, kK, dD],. Analogously to the minimal case, If dD/d.xN = A >
(g — 2)/(q — 1), this family is quasi-minimal by Theorem 10.

Example 13 » Takeq = 4, .%,.4[85,4,64]4, A =2/3+a, R = 4/15, resulting in
an infinite construction of [n, 16n/1275] quaternary codes.

* For g = 3, we can improve on the simplex code seed: indeed, take the already
considered C[11, 5, 6, 9]; as inner code and AG[N, NR, NA];s with R + A =
191/208. Choose A = 3/4, R = 35/208; then concatenation results in an
infinite construction of quasi-minimal [r, & 0.076n] ternary codes.

4 Almost-Minimal Codes

Definition 14 (Almost-minimal linear code) A linear code % is said (¢)almost-
minimal if at most qkk pairs of codewords are bad, for some fixed € with 0 < ¢ <
1/2.

‘We now extend some results of [6] to almost-minimal codes.

Theorem 15 (Maximal Bound) Let ¢ an almost- minimal linear [n,k,d] q-ary
code, then R <log,(2)/(1 —¢€) + o(1).
Proof By definition, at most g**! codewords can share the same support. Thus,

|€] =q* <q*t'2"and R = k/n < log,(2)/(1 —€) + o(1). O
Theorem 16 (Minimal Bound) For any positive R = k /n such that
2

q
7> —q+1

1
R < log, (
€

<5 )+ o(1),

there exists an infinite sequence of [n, k| almost-minimal linear codes.

Proof Let us fix n and k. For a € Fy, such that [supp(a)| = i, there are g —q
linearly independent vectors b such that supp(b) C supp(a). The pair (a,b)
X

k

belongs to |:n B denotes the g-ary Gaussian

k —

binomial coefficient. There are less than

§:| linear [n, k] codes, where
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__ZO (N@—1D(q'—q) = 1+ (g—1g)"—q"*" < (¢* —q + 1)" such ordered

-2
bad irs. As 1 2k | M) > |
ad (a, b) pairs. As long as ¢ I:k:| > [k—Z

[n, k] codes containing no more than ¢?¢ bad pairs, i.e. almost-minimal codes. For
2 . S .
k/n < ﬁ logq(#) + o(1), this quantity is positive. O

:| (g> — g + 1), there are linear

4.1 Open Problem

Is it true that the best achievable rate of (quasi, almost) minimal codes is a decreasing
function of ¢? A weaker statement holds: if ¢ divides ¢’, then a ¢’- (quasi, almost)
minimal code yields a g-ary (quasi, almost) minimal code with the same rate.

Acknowledgements We thank Alexander Barg, Alain Patey and Zachi Tamo for helpful discus-
sions.
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Cryptanalysis of Public-Key Cryptosystems
That Use Subcodes of Algebraic Geometry
Codes

Alain Couvreur, Irene Marquez-Corbella, and Ruud Pellikaan

Abstract We give a polynomial time attack on the McEliece public key cryptosys-
tem based on subcodes of algebraic geometry (AG) codes. The proposed attack
reposes on the distinguishability of such codes from random codes using the Schur
product. Wieschebrink treated the genus zero case a few years ago but his approach
cannot be extent straightforwardly to other genera. We address this problem by
introducing and using a new notion, which we call the —closure of a code.

Keywords Algebraic geometry codes ¢ Code-based cryptography ¢ Schur prod-
ucts of codes ¢ Distinguishers

1 Introduction

After the original proposal of code based encryption scheme due to McEliece [15]
which was based on binary Goppa codes, several alternative proposals aimed at
reducing the key size by using codes with a higher correction capacity. Among many
others, generalised Reed—Solomon (GRS) codes are proposed in 1986 by Niederre-
iter [17] but are subject to a key-recovery polynomial time attack discovered by
Sidelnikov and Shestakov [21] in 1992. To avoid this attack, Berger and Loidreau
[1] proposed to replace GRS codes by some random subcodes of small codimension.
This proposal has been broken by Wieschebrink [24] using Schur products of codes.

Another proposal was to use algebraic geometry (AG) codes, concatenated AG
codes or their subfield subcodes [9]. The case of AG codes of genus 1 and 2 has been
broken by Faure and Minder [6]. Then, Marquez et al. proved that the structure
of a curve can be recovered from the very knowledge of an AG code [13, 14]
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without leading to an efficient attack. Finally a polynomial time attack of the scheme
based on AG codes has been obtained by the authors in [3]. This attack consists in
using the particular behaviour of AG codes with respect to the Schur product to
compute a filtration of the public key by AG subcodes, which leads to the design of
a polynomial time decoding algorithm allowing encrypted message recovery.

The genus zero case and Berger Loidreau’s proposal raises a natural question
what about using subcodes of AG codes? In this article we propose an attack of
this scheme. Compared to the genus zero case, Wieschebrink’s attack cannot extend
straightforwardly and we need to introduce and use a new notion which we call the
t—closure of a code. By this manner, we prove subcodes of AG codes to be non
secure when the subcode has a small codimension. It is worth noting that choosing
a subcode of high codimension instead of the code itself represents a huge loss in
terms of error correction capacity and hence is in general a bad choice. For this
reason, an attack on the small codimension codes is of interest.

Finally, it hardly needs to be recalled that this result does not imply the end of
code-based cryptography since Goppa codes, alternant codes and more generally
subfield subcodes of AG codes still resist to any known efficient attack. Their
resistance to the presented attack is discussed at the end of the article.

Due to space reasons, many proofs are omitted in this extended abstract.

2 Notation and Prerequisites

2.1 Curves and Algebraic Geometry Codes

The interested reader is referred to [22, 23] for further details on the notions
introduced in the present subsection. In this article, 2~ denotes a smooth projective
geometrically connected curve of genus g over a finite field F,. We denote by
P = (Pi,..., P,) an n-tuple of mutually distinct F,-rational points of 2", by Dp
the divisor Dp = P; + ---+ P, and by E an F,-divisor of degree m € Z and
support disjoint from that of D p.

The function field of 2" is denoted by F,(Z"). Given an [F,-divisor E on 2, the
corresponding Riemann-Roch space is denoted by L(E). The algebraic geometry
(AG) code €1 (X, P, E) of length n over IF, is the image of the evaluation map

n
evp : L(E) — F3

;o= (P, ... f(Py)

If 2g — 2 < m < n, then by Riemann-Roch Theorem, 6, (2", P, E) has dimension
m + 1 — g and minimum distance at least n — m.

When the curve is the projective line ', the corresponding codes are the so-called
generalised Reed—Solomon (GRS) codes defined as:

GRSy (a,b) := {(b1 f(a1),....bu flan)) | | € Fylx]<i].
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where a, b are two n—tuples in Iy such that the entries of a are pairwise distinct and
those of b are all nonzero and k < n.

Remark 1 See [8, Example 3.3] for a description of GRS codes as AG codes.

2.2  Schur Product

Given two elements a and b in ]FZ, the Schur product is the component wise

multiplication: a x b = (aiby,...,a,b,) . Let a € F", we set al = 1,...,1)
and by induction we define a/ ™! := a x a/ for any positive integer j. If all entries
of b are nonzero, we define b~! := (b7!,..., b, ') and thus, b~/ = (bj)_1 for any

positive integer ;.
For two codes A, B C IFZ, the code A * B is defined by

A x B :=Spang {axb|ac Aandb € B}.

For B = A, then A * A is denoted as A® and, we define A®) by induction for any
positive integer 7.

2.2.1 Application to Decoding, Error Correcting Pairs and Arrays

The notion of error-correcting pair (ECP) for a linear code was introduced by
Pellikaan [18, 19] and independently by Katter [10]. Broadly speaking, given a
positive integer ¢, a t—~ECP for a linear code ¢ C [F7 1s a pair of linear codes
(A, B) in Iy satisfying A x B € ¢ L together with several inequalities relating ¢
and the dimensions and (dual) minimum distances of A, B, C. This data provides
a decoding algorithm correcting up to ¢ errors in O(n*) operations in F,. ECP’s
provide a unifying point of view for several classical bounded distance decoding for
algebraic and AG codes. See [11] for further details.

For an AG code, there always exists a (—ECP with t = Ld*_%], where d*
denotes the Goppa designed distance (see [22, Definition 2.2.4]). Thus, ECP’s allow
to correct up to half the designed distance minus g /2. Filling this gap and correct up
to half the designed distance is possible thanks to more elaborate algorithms based
on the so-called error correcting arrays. See [5, 7] for further details.

2.2.2 Distinguisher and Cryptanalysis
Another and more recent application of the Schur product concerns cryptanalysis

of code-based public key cryptosystems. In this context, the Schur product is a
very powerful operation which can help to distinguish some algebraic codes such
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as AG codes from random ones. The point is that evaluation codes do not behave
like random codes with respect to the Schur product: the square of an AG code is
very small compared to that of a random code of the same dimension. Thanks to
this observation, Wieschebrink [24] gave an efficient attack of Berger Loidreau’s
proposal [1] based on subcodes of GRS codes.

Recent attacks consist in pushing this argument forward and take advantage to
this distinguisher in order to compute a filtration of the public code by a family of
very particular subcodes. This filtration method yields an alternative attack on GRS
codes [2]. Next it leads to a key recovery attack on wild Goppa codes over quadratic
extensions in [4]. Finally in the case of AG codes, this approach lead to an attack [3]
which consists in the computation of an ECP for the public code without retrieving
the structure of the curve, the points and the divisor.

3 The Attack

Our public key is a non structured generator matrix G of a subcode C of
61(Z, P, E)* of dimension [, together with the error correcting capacity ¢. The
goal of our attack is to recover the code €, (2", P, E)* from the knowledge of
C and then use the attack of [3] which provides a f—~ECP and hence a decoding
algorithm for 67.(Z", P, E), which yields a fortiori a decoding algorithm for C.

The genus zero case (i.e. the case of GRS codes) proposed in [1] was broken by
Wieschebrink [24] as follows:

¢ C is the public key contained in some secret GRSy (a, b).

+ Compute C® which is, with a high probability, equal to GRSy (a, b)®, which is
itself equal to GRSy;—;(a, b?).

 Apply Sidelnikov Shestakov attack [21] to recover a and b?, then find b.

Compared to Wieschebrink’s approach, our difficulty is that the attack [3] is not
a key-recovery attack but a blind construction of a decoding algorithm. For this
reason, even if C® provides probably the code €7 (2", P, E)?, it is insufficient
for our purpose: we need to find 6. (2", P, E). This is the reason why we introduce
the notion of #—closures.

3.1 The t-Closure Operation

Definition 2 (r—closure) Let C C [F7 be a code and 7 > 2 be an integer. The 7-
closure of C is defined by

C = {aEIFZ lasxCUD C C(’)}.

The code C is said to be t- closed if C' = C.
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Proposition 3 Let C € IFZ then for allt > 2,
—t 1\+
C' = (M (c))

Proposition 4 Let E be a divisor satisfying deg(E) > 2g + 1. Then:
(i) €L.(Z,P,E)) =%,(Z,P,LE).
(ii) C(X . P, E) =€.(2, P,E) ifdeg(E) < "=2.

Proof (i) is proved in [3] and is a consequence of [16]. For (ii), Proposition 3 shows
that

T PE) = (602, P.E) ™ (61(2, P, E)m)l)? (1)

Moreover, 6. (2", P,tE)t = €.(Z, P, (tE)*) where (tE)* = Dp —tE + K
for some canonical divisor K on Z". Thus, deg ((ZE)J-) =n—deg(tE) +2g — 2.
Since, by assumption, deg(E) < ”t;z we have deg ((ZE )J-) > 2g. Moreover, since
deg E > 2g + 1, then, thanks to (i), Eq. (1) yields

(2, P,(t —1)E)* € (X, P,tE)r =6,(2,P,Dp —E + K)
=%6.(%2,P,E)*.

|

Corollary 5 Let E be a divisor and 2g + 1 < deg(E) < “32. Then
G Z . P.E) =%.(2,P,E).

Conjecture 6 1f 2g + 1 < deg(E) < ”—;l, let C be subcode of €. (Z, P, E) of
dimension / such that and 2k + 1 — g < (142—1)’ where k = deg(E) +1—¢g
is the dimension of €. (X", P, E), then the probability that C @ ig different from

€L(Z, P,2F) tends to 0 when k tends to infinity.

We give a proof along the lines of [ 12, Remark 5] for the special case of subcodes
of GRS codes. Our experimental results are in good agreement with this conjecture
(see Table 1). The following corollary is central to our attack.

Corollary7 If 2g + 1 < deg(E) < 52 and 2k + 1 —g < (') for k =

deg(E) + 1 — g, then the equality C = CL(Z, P, E) holds for random [-
dimensional subcodes C of €1(Z", P, E) with a probability tending to 0 when k
tends to infinity.



138 A. Couvreur et al.

Table 1 Running times of
the attack over Hermitian
codes

q |n k t |Time |Keysize |'w 1 L

7% 1343 | 193 |54 |80s 83 ko 230 50 | 1000
137 ko 241100 | 1000
163 ko 262|150 | 1000

92 729 521 [19 |30min |216ko 232 50 | 500
670 ko 2121 1200 | 500
835 ko 2178 1400 | 500

3.2 Principle of the Attack

The public key consists in C € €.(2,P,E)- and t = L%J Set ] :=
dim C. First, let us assume moreover that

2¢ +1 < deg(E) < "3 k = deg(E) +1—g and 2k — 1+ ¢ < (‘7).

Step 1. With a high probability, we may assume that C® = % (2", P,2E) and
hence C- = €1.(2, P, E) by Corollary 7. Thus, compute C _ by solving a linear
system or by applying Proposition 3.

Step 2. Apply the polynomial time attack presented in [3] to obtain an ECP,
denoted by (A, B), for €.,(Z", P, E). Which yields a decoding algorithm for C.
Estimated complexity: The computation of a closure costs O(n*) operations in
IF, and the rest of the attack is in O((log(s + g))n*) (see [3] for further details).

In case deg(E) > "L, then the attack can be applied to several shortenings of

C whose 2—closures are computed separately and are then summed up to provide
€L (Z, P, E). This method is described and applied in [3, 4].

This attack has been implemented with MAGMA. To this end L random
subcodes of dimension / from Hermitian codes of parameters [n, k], were created.
It turned out that for all created subcodes a #-ECP could be reconstructed. Time
represents the average time of the attack obtained with an Intel ® CoreTM 2 Duo
2.8 GHz. The work factor w of an ISD attack is given. These work factors have been
computed thanks to Christiane Peter’s Software [20].

3.3 Which Codes Are Subject to This Attack?

Basically, the subcode C € %,.(Z", P, E) should satisfy:

@ (T = dim%L(2, P.2E);

. n—2.
(i) 2g+ 1 <degE < "5=;

The left-hand inequality of (ii) is in general satisfied. On the other hand, as explained
above, the right-hand inequality of (ii) can be relaxed by using a shortening trick.
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Constraint (i) is more central since a subcode which does not satisfies it will
probably behave like a random code and it can be checked that a random code is in
general 2—closed. Thus, computing the 2—closure of such a subcode will not provide
any significant result. On the other hand, for an AG code of dimension k, subcodes
which do not satisfy (i) have dimension smaller than V2k and choosing such very
small subcodes and decode them as subcodes of 67, (2, P, E) would represent a
big loss of efficiency. In addition, if these codes are too small they can be subject to
generic attacks like information set decoding.

3.3.1 Subfield Subcodes Still Resist

Another class of subcodes which resist to this attack are the subcodes C such that

C CL(Z, P, E). It is rather difficult to classify such subcodes but there is a
very identifiable family: the subfield subcodes. Let [F be a proper subfield of I,
(here we assume ¢ to be non prime) and let C := 47.(Z°, P, E) N F" (and then
apply a base field extension if one wants to have an F,—subcode). The point is
that C2 C (6.(Z,P,E)®) N [F; and the 2-closure of C will in general differ
from €. (2", P, E). For this reason, subfield subcodes resist to this kind of attacks.
Notice that even in genus zero: subfield subcodes of GRS codes still resist to
filtration attacks unless for the cases presented in [4].
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Extending Construction X for Quantum
Error-Correcting Codes

Akshay Degwekar, Kenza Guenda, and T. Aaron Gulliver

Abstract In this paper we extend the work of Lisonek and Singh on construction
X for quantum error-correcting codes to finite fields of order p? where p is prime.
Further, we give some new results on the Hermitian dual of repeated root cyclic
codes. These results are used to construct new quantum error-correcting codes.

Keywords Quantum codes * Construction X ¢ Optimal codes ¢ Cyclic codes

1 Introduction

Quantum error correcting codes have been introduced as an alternative to classical
codes for use in quantum communication channels. Since the landmark papers of
Shor [7] and Steane [8], this field of research has grown rapidly. Recently, Lisonek
and Singh [5] gave a variant of construction X that produces binary stabilizer
quantum codes from arbitrary linear codes. In their construction, the requirement
on the duality of the linear codes was relaxed. In this paper, we extend their work on
construction X to obtain quantum error-correcting codes over finite fields of order
p? where p is a prime number. Further, new results are obtained on the Hermitian
dual of repeated root cyclic codes. These results are used to construct new quantum
error-correcting codes.

The remainder of the paper is organized as follows. In Sect. 2, we present our
main result on the extension of the quantum construction X. Section 3 characterizes
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the generator polynomial of the Hermitian dual of a repeated root cyclic code. We
also give the structure of cyclic codes of length 3p* over FF > as well as the structure
of the dual codes. Our interest in this class of codes comes from the importance of
relaxing the condition (n, p) = 1, which allows us to consider codes other than the
simple root codes.

2 Extending Construction X for [,
Let ), denote the finite field with p elements and F}, = F,\{0}. Further, let IF’;) )

denote the vector space of all n-tuples over I . For, x € IF’; , denote the conjugate

of x by x = x?,and for x, y € F’;z, let (x,y) = > /_, x;J; denote the Hermitian

inner product. Then the norm of x is defined as ||x|| = (x,x) = Y7, x;*T!, and
the trace of x as Tr(x) = x + X [6]. Both the trace and norm are mappings from
F p2 o F P

Usually a dual contained condition is required to construct CSS quantum codes
as given by the following result.

Proposition 1 ([4]) [fthere exists anF 2-linear [n,k,d] > code B such that Bt c
B, then there exists an [[n, 2k — n, d]], quantum code.

In the remainder of this section, we give some important lemmas which will be
useful in the proof of our main result.

Lemma 2 Let S be a subspace ofF’;z such that there exist x,y € S with (x,y) #
0. Then for all k € IF ), there exists z € S with ||z|| = k.

Proof This is a non-constructive proof of the existence of the required element z.
With the assumption on x and y, let ¢ € F 2 and g(c) = [lex + y|| = Y j_ (cxi +
y:)PT! be a polynomial of degree p + 1 in ¢. We claim that as ¢ ranges over the
elements of IF 2, the rhs will range over all elements of I .

Assume now that there exists some k € [, such that Ve € F 2, g(c) # k.
For each i € F,\{k}, let S; = {c € F,2; g(c) = i}. Since the polynomial g has
degree p + 1, g can have at most p + 1 roots in any field. Then |S;| < p + 1, as
the polynomial g(c) — i can have at most p + 1 roots, and the S; partition the set
Fp. Then [F 2| = p* < Yicr \iy ISil < (p + D(p —1) = p> — 1, which is a
contradiction. Hence the result follows. O

Lemma 3 Let D be a subspace ofIF’;)z and assume that M is a basis for D 0 DL,
Then there exists an orthonormal set B such that M U B is a basis for D.

Proof The proof given here is a generalization of the proof for the analogous case
presented in [5, Theorem 2]. Let W be a subspace of IE"; , such that

D={DnDY)yaew, 1)
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and let [ = dim(W). For each 0 < i < [, we can construct an orthonormal set S;
that is a basis for an i-dimensional subspace T; of W such that

W=T & nw). 2)

The process is iterative. Define Sy := ¢ and suppose that for some 0 < i < [, the
set S; is an orthonormal basis for 7; such that dim(7;) = i and (2) holds. Let x be a
non-zero vector in 7-* N W . Then there exists y € T-*NW such that (x, y) # 0.1f
no such y exists, then x € D which would contradict (1) because the intersection
of D and D" is {0}. Hence by Lemma 2, there must exist a z € T,.J‘h N W such
that ||z|| = 1. Set S;+1 = S; U {z}. Clearly all the elements in S;4; are orthogonal
to each other. In addition, ||s|| = 1 forall s € S; 4.

Let T; 4+ be the subspace spanned by S; 1. As z € T;, we have that dim(7;4,) =
i + 1. To show that

W =T &5 nW), 3)

we must first show that 7;4; N Tij‘_”l NW =0.Letv e T4 N Tij‘_”l N w. As

veTiy,wehavev = u+ czwhereu € T; and ¢ € Isz. Since v € T,.J;_”l, we have
foreachw € T; and each d € IF > that

0= (u+czw+dz) = (uw) +duz) +clz,w) +cd|lz| = (u.w) + cd.

We must have ¢ = 0 or else (¢, w) + ¢d would not remain constant as d runs over
the elements of Isz. Thus (u,w) = 0 forall w € T;, and hence u € TiJ"’. AsueT;
and T; NT;™" = 0, we obtain that u = 0. Hence v is also 0 and ;4 N T,.J;_’“l nw =0.

Next we show that W = T;4; + (Ti4; N W). Let w € W. By assumption
W =T + (Tl-J"’ N W), so there exist vectors x € T; and y € TiJ‘h N W such

that w = x + y. Now it is shown that W = T; 4| + (T,-J;_”1 N W). By assumption

W =T + (TiJ"’ (W), so there exist vectors x € T; and y € T; N W. Clearly
x € Tiyyand forany u + dz € T;4 (whereu € T; and d € F,2), we have

(y—=(y.dzu+dz) = (y,u) +d(y.2) — (y.2){z.u) —d (. 2)|[z|
=d(y.,2) —d(y.2) = 0. €
Thusy € T;+1 NW,and hence W = T; 1, + (Ti+1 N W). This completes the proof
that (2) implies (3) assuming that the vector z is chosen as described above. O

Theorem 4 For an [n,k],> linear code C, let e = n —k — dim(C N cLh.
Then there exists a quantum code with parameters [[n + e,2k — n,d]], and
d > min(wt(C), wt(C 4+ C+4) + 1).
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Proof We start with the observation that the equation x> + 1 = 0 always has a
solution in [F ,». This can be proven using the fact that F;z = F,2\{0} is a cyclic

group. Let B be a generator of IE‘;Z. Then g% = —1 for some k, and since (—1)% = 1,

B = 1and (p? — 1)|2k, so k is even. Thus, B is the required solution.
As defined previously

e = dim(C*") — dim(CNC*") = dim(C + C**) — dim(C).
Let s = dim(C N C+"), and G be the matrix

MYX}’[ OSXe
G = A(n—e—ZS)Xn O(n—e—Zs)xe , )
Bexn ,Bk/zlexe

where the size of the matrix is indicated by the subscripts, and 0 and I denote a zero
matrix and identity matrix, respectively.

For a matrix P, let r(P) denote the set of rows of P. The matrix G is constructed
such that r (M) is a basis for C N C+#, r(M) U r(A) is a basis for C, r(M) U r(B)
is a basis for C1*, and r(B) is an orthonormal set. The existence of such a matrix
B follows from Lemma 3. Note that (M) U r(A) U r(B) is a basis for C + C 1.

Let E be the linear code for which G is a generator matrix. Further, let S denote
the union of the first s rows of G and the last e rows of G, i.e. S is the set of rows
of the matrix

van Osxe
S = ) . 6
(Bexn ,Bk/zlexe) ( )

We observe that each row of S is orthogonal to each row of G because any row from
the first s rows of S represents a vector in C N C*, and hence is orthogonal with
all codewords in C + C**, the code represented by G.

Consider a row from the last e rows in S. This row is orthogonal to the first
n —e — s rows of G because they represent the code C while the matrix B
represents codewords from C 1. These rows of the matrix are orthogonal to each
other because the rows of B are orthogonal and 8%/ will contribute 0. Any row
z is self-orthogonal since from the construction ||z|| = 1 and the identity matrix
will contribute —1, giving an inner product of 0. This completes the proof of the
observation. Thus, each vector from S belongs to £ L1, and the vectors in S are
linearly independent because

dim(EJ'”)=n+e—(n—s)=e+s= |S].

Hence S is a basis for EL#. Since S is a subset of G by construction, it follows that
E+ti CE.
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Let x be a non-zero vector in E. Then x is a linear combination of rows of
G. Due to the vertical block structure of G, we can write x = (x'|x?), where
x! e F", and x? e F¢,. If none of the last e rows of G are contained in this

linear combination with a non-zero coefficient, then x! € C\{0}, and so wt(x) =
wt(x!) > wt(C). If some of the last e rows of G are in this linear combination
with a non-zero coefficient, then x! € C + C1» and wt(x) = wt(x') + wt(x?) >
wt(C+C+#)+1.Thus E isan [n+e, k+e, d],> code withd > min(wt(C), wt(C +
Clh) + 1) and E+n C E. The code E is such that EL* C E, and thus the result
follows from Proposition 1. O

Many constructions of quantum codes use self-orthogonal codes [1, 2], which
corresponds to the case when e = 0 in Theorem 4. The results in the next section
are required to construct the quantum codes in subsequent sections. Note that many
of the results in the next section can easily be generalized to constacyclic codes.

3 The Hermitian Dual of Repeated Root Cyclic Codes

Let p be a prime number and C a cyclic code of length n over the finite field F ,»

F 2 [x
Then C is given by the principal ideal g(x) in (4 and so g(x) is called the
X

1
generator polynomial for C. When the length n d1V1de>s p, C is called a repeated
root cyclic code.

In this section, we obtain the generator polynomial of the Hermitian dual of a
repeated root cyclic code. We also give the structure of the cyclic codes of length
3p* over IF > as well as the structure of the dual codes. Our interest in this class
of codes comes from the importance of relaxing the condition (n, p) = 1, which
allows us to consider codes other than simple root codes.

Let f(x) = ap + aix + ... + a,x" be a polynomial in FF2[x], and fx) =
ag + arx + ... + a,x". The polynomial inverse of f is denoted by f*(x) =
X' fxY=a,+a,_1x+...+apx",sothen fL(x) =a +a,_ix+...+aox"
is the orthogonal polynomial of f.

The following properties can easily be verified.

Lemma 5 Let f(x) and g(x) be polynomials over IF ym. Then

1. Conjugation is additive: f(x) + g(x) = f(x) + g(x);

2. Conjugation is multiplicative: f(x)g(x) = f(x) g(x);

3. Polynomial inversion is additive if the polynomials have the same degree:
(f() +8(x)" = f(x)" +g(x)";

Polynomial inversion is multiplicative: (f(x)g(x))* = f(x)* g(x)*;

Inversion and conjugation commute with each other: (f(x) ) = (f(x))*; and

6. Both operations are self-inverses: (f(x)*)* = f(x) and f(x) = f(x).

A

d
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Lemma 6 Leta(x) =ap+aix + ... +a,_1x" " andb(x) = by + bix + ... +

1 . . sz [x] WaRY . sz [x] .
bu—1x""" be polynomials in ————. Then a(x)b(x) = 0 in ———— if and only
(o —1) IR
if (ag,ay,...,ay—1) is orthogonal to (b,—1,by,—3,...,by) and all its cyclic shifts.

Thatis (a,b*) = 0 <= a(x)b(x)* = 0.

Proof 1Tt is well known (see for example [3]), that if a(x) = a9 + a1x + ... +

—_ _ . . sz [)C]
a,—1x""and b(x) = by + b1x + ... + b,—1x""! are polynomials in oy
x" —
. Flx] . . .
then a(x)b(x) = 0 in o if and only if (ag,ay,...,a,—1) is orthogonal to
XN —

(bn—1,bn—2, ..., bo) and all its cyclic shifts. Hence by applying this fact to a(x) and
b(x), and noting that b(x) = b(x), the result follows. O

We now use Lemma 6 to derive an expression for the Hermitian dual of a cyclic
code. Let S € R and let the annihilator be ann(S) = {g € R|fg =0, Vf € S}.
Then ann(S) is also an ideal of the ring and hence is generated by a polynomial.

Lemma 7 If g(x) generates the code C, then C+h = ann(g(x)*).

Proof Assume that g(x) generates the code C. Then each codeword in C has the
form a(x) = g(x)c(x). Let a codeword b(x) lie in the Hermitian dual C*. Then
by Lemma 6 we have that

a(x)bt(x) =0,
and by Lemma 5 this is equivalent to

b(x)(g(x)") = 0. )
Then by (7) we have that for a codeword b(x), b(x) € C1' = b(x) €
ann(g (x)*), which completes the proof. O

Lemma 8 Assume that C = (g(x)) is a cyclic code of length n over F ,» with

n_

1
generator polynomial g(x). Define h(x) = ol B Then we have that Cth =
glx
{h(x)).
Proof From Lemma 7 it is known that C" = ann(g(x)"). Thus, we must show
that ann(gt(x)) = (h(x)). One way containment is easy since (h*(x)) <

ann(gL(x)), which is true because A+ (x)g+(x) = (h(x)g(x))* = " — 1)+ =0
by Lemma 5. For containment the other way, we observe that since ann(g®(x))
F e [x]
(x" —1)
bt (x). Then b1 (x)gt(x) = x" — 1 = A(x" — 1)1 (because b(x) is the smallest
degree polynomial, this is an equality). Hence b(x)g(x) = x" — 1, so it must be
that b(x) = h(x) since both are unitary polynomials. This completes the proof. O

is an ideal of the polynomial ring , it is generated by a polynomial, say
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Theorem 9 Let p > 3 be a prime. Then

1. There exists w € F 2 such that w® = 1 and the factorization of x*” — 1 into
irreducible factors over F ,2[x] is

P —1l=x-1D"(x =) (x —)";
2. The cyclic codes of length 3p* are always of the form
((x =D (x =) (x = 0H)),

where 0 <1, j,k < p°, and the code has p2(3p‘v_i_j_k) codewords; and
3. The Hermitian dual of the codes have the form

(x=DP " (x—)” T (x —®)?” %) ifp=1 mod 3,

CJ_,I = ; 5 i S
(x =D (x =) T (x —w)” %) ifp=2 mod 3.

®)

Proof

1. Since p is a prime number, p # 0 mod 3, and p> — 1 = (p + 1)(p — 1), so
either p+1 =0 mod 3or p—1 =0 mod 3. Therefore an element of order 3
exists in F 2. Let this element be o, so then (x — 1)(x — »)(x — ©?) = x> — 1.
In a field of characteristic p, it is known that x” — 1 = (x” — 1)? if n = mp.
Therefore we have that x37" — 1 = (x> = 1)”’ = ((x — )(x —w)(x — w?))?".

2. From part 1, we know that the irreducible factors are (x — 1), (x — w) and (x —
®?), each of multiplicity p*. As the generator polynomial divides x*”° — 1, the
statement follows.

3. We know from Lemma 8 that

CH = (h*(x)),

and hence

(= D7 (x — )" (x —?)”
(x = Di(x — )/ (x —0?)F

CH = )*

(x = P ~i(x —w)P' I (x — w2)P—k)*
[ = D7 = )P [0 = )P ]

(
(
([ = D7 ][—o(x — 0™ )?P ] [—0*(x — 077" ])
(
(

[(x = DP 7 [(x — 02)? I ][(x — @)P’])
[(x =17 7i(x — )" 7 [(x=w)” )
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= ([(x = D" [(x — )" I [(x — wP)” 7))

)= D77 i(x —0?)?” T (x —w)” %) if p=1 mod 3, ©)
=D (x— o) (x —0?)?” ) if p =2 mod 3,

since(x —1)* =—x+1=—-(x—-1),(x—w) =-0x+1=—-0kx—0?),
and w”? = wif p =1 mod 3 and w” = w?if p =2 mod 3, which completes
the proof.

O

4 Extension to Simple Root Cyclic Codes

This section considers cyclic codes of length n over F > such that (p,n) = 1. In
this case, a cyclic code can be represented by its defining set Z. If m has order p?
modulo n, then IF 2 is the splitting field of x" — 1 containing a primitive nth root
of unity. Consider a primitive root 8. Then {k|g(8¥) = 0, 0 < k < n} is a defining

set of C. Note that this set depends on the choice of §. We can make a canonical
pZm_l

choice for B by fixing a primitive element « of F 2 and letting 8 = a7+ . Let
a be defined by the PrimitiveElement function in Magma. This will be used in the
code constructions in the next section.

For n and m as defined above and a € {0,...,n — 1}, the set {ag/ mod n|0 <
Jj < m}iscalled a cyclotomic coset modulo n. It is well known that a defining set of
a cyclic code of length 7 is the union of cyclotomic cosets modulo n. Let Z, denote
the set of integers modulo n. Clearly defining sets can be considered as subsets of
Z,.For S C Z,, denote S = Z,\{S} and —p>S = {—p?s mod n|s € S}.

We now prove the following lemma.

Lemma 10 If C is a linear cyclic code with defining set Z, then dim(C1h) —
dim(C N Ctr) =1|Z N —pZ|.

Proof Let C be a linear cyclic code of length n, and [ [.c, (x — B%) be the generator
polynomial for C. Then from Lemma 8 the generator polynomial for C1* is
[lke—pz(x — %), and the generator polynomial for C N C 1 is [lrezn—pz(x —ph,
which gives that

dim(C1t") —dim(C N CY")y =n— |- pZ| - (n—|Z U —pZ))
=|ZU—-pZ|-|-pZ|=|ZN-pZ|.

|

Theorem 11 Assume n is divisible by p> — 1 and let C be an [n, k]2 cyclic code

with defining set Z such that (Z N —pZ) C T = {pgfluc ef{l,....p2 =1L If
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e = |Z N —pZ|, then there exists an [[n + e,2k —n + e, d]], quantum code with
d > min{wt(C), wt(C,) 4+ 1, wt(C + CL") + 2} where the minimum is taken over
the cyclic codes C,, with defining set Z\{u} for eachu € Z N —pZ.

Proof The proof requires a modification to the proof of Theorem 4, in particular the
set of orthonormal vectors used is changed. First, observe that each of the elements
in T is a cyclotomic coset and contains only one element. Let ¢ = p> — 1, n =
(p* — 1)l = g/, and @ be a (p* — 1)-th root of unity. Consider the polynomials

0 -1
by (x) = X 1 _ Z (xqi+q—l +ofxdita2 4y w(q—l)rxqi)_
X —wf 4
i=0
For convenience, we let {b;|i € O0,1,...,]} also denote the corresponding

codewords. This is an orthonormal set because

-1
(bu, b)) =¢q Z(wi(u+vp)) =q Zl- _ Ol_l(a)i(”_")) _ 0 u#v '
i=0 gl u=v

To remove the gl factor, we can multiply each element by a constant. Thus, to add
the rows for B to the matrix, we add U = {b,|’7” e ZN—pZy}.

To prove the claim regarding the distance, we have three cases: no row from B is
a linear combination, exactly one row from U is a linear combination with a non-
zero coefficient, and at least two rows are a combination. The proof of the first and
the last cases is the same as in the proof of Theorem 4. For the second case, let b, be
the row with non-zero coefficient. Then the code generated would be span(C, b,),
which is precisely the cyclic code with defining set Z \{(;T"l} This completes the
proof. O

Appendix: Code Construction Examples

In this appendix, comprehensive tables of codes generated using the results in the
paper are presented. Table 1 presents quantum codes obtained using Theorem 4.
Many of these codes have parameters better than the best known binary quantum
codes. Table 2 presents the parameters of quantum codes obtained from repeated
root cyclic codes using Theorem 9. These are codes of length 3p* over fields of
size p.
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Table 1 Codes obtained using Theorem 4 and the best known binary QECCs

New code

Generator polynomial

Best known
binary
QECC

[[33,31,2]]3

xB 4+ a®x2 4+ x4 o?x10 + 2x° + 2x% 4+ ®x7 + a®x0 +
2x° + a3 xt + odxd + afx? + o?

(133,31, 1]]»

35.33.2]]; |x+1 (35,33, 1]]>
39.37.2])s |x+2 (39,37, 1]]>
[[40,26,5]]5 |x7 4+ ax® 4+ ax® + ax* + x3 + a’x? + o’x + & [[40, 26, 4]],
[[40,24,6]]3 | x® + o3x7 + ax® 4+ a’x + 2x* + x3 + @?x%? + ax + o [[40, 24, 5]],
[[41,39,2]]3 |x+1 [[41,39, 1],
[[41,9,11]]5 | x'" 4+ o>xP + a’x™* + ax' 4+ a®x12 + @?x' + 2x° 4+ [[41, 9, 8]]>

a7x7 +2x% + o3x% + 2x* + afx3 + o"x% + o

[[41, 19, 8]]3

M+ ax® +ax® + o’x + 2x7 + &P x0 + o2x° + oPxt +
x4+ a?x+2

[[41, 19, 6]],

[[40, 20, 7]]3

X104 x4+ a7x0 + odx® + 2x* + X +ax +o?

[[40, 20, 6]],

[[41,25, 6]]3

x84+ %7 +a’xb + xt +o’x3 +adx? +2x + o

[[41,25, 4]],

[[40, 10, 10]]3

x4 abx™ + x4 x4 @?x ! 4+ X1+ o3x® + aOx® +
X'+ 2+’ ot + P Fax?+a’x 4o

[[40, 10, 8]]»

[[40, 16, 8]]3

X2+l x +odx10 + x% + a¥x ¥ x7 + a¥x + X+
2x4 + x3 4+ ax + o?

[[40, 16, 6]]»

[[41,13,9]]5

x14+2x13+ax12+2x10 +a2x9+x8+a5x7+a5x6+
X+ adxt +abxd +2x?2+oPx + o

[[41,13,7]]»

41,21, 75 | x4+ a7x% + a®x7 + a®x¢ +2x° + o"x* + 3+ &3x + o | [[41,21,6]],
[[41,27,5]]3 | x7 +2x° + &3x° + a’x* + o7x3 + 2x2 + o3x + o [[41,27,4]],
33,31,2]; |x+1 (33,31, 1>
[[40,26,5]]5 |x7 + ax® + ax® + ax* + x3 + a’x? + @’x + @ [[40, 26, 4]],
[[40,24,6]]3 | x® + o3x7 + ax® + a’x + 2x* + x3 + a?x? + ax + o? [[40, 24, 5]],
[[41,39,2]]; |x+1 [[41,39,1]]»
[[41,9,11]]5 | x' + x> + o®x' + ax!® + a®x!2 + o2x! + 2x° + (41,9, 8]]»

a7x7 +2x0 + 3x% + 2x* + afx3 + o"x% + o

[[41, 19, 8]]3

M+ ax® +ax® + o’x + 2x7 + &P x0 + o2x° + oPxt +
x4+ a?x+2

[[41, 19, 6]],

[[40, 20, 7]]3

x4 afx +a7x0 + X+ 2xt ot xd +ax +o?

[[40, 20, 6]]»

[[41,25,6]]3

x84+ afx7 +a’xb + x* +o’xd + aPx? +2x + o

[[41,25,4]],

[[40, 10, 10]]5

x4 abx™ + x4 @®x 12 4+ @?x ! 4+ X1+ o3x° + aOx® +
X'+ 2+’ ot 4+ P Faxt+a’x 4o’

[[40, 10, 8]]»

[[40, 16, 8]]3

x12+a3xll+a3x10+x9+a5x8 +a5x7+a5x6+a5x5+
2x* 4+ x% + afx + o?

[[40, 16, 6]]»

[[41,13,9]]5

x14+2x13+ax12+2x10 +(12)C9+X8+(¥5X7+(15)C6+
X+ adxt +abxd +2x2+oPx + o

[[41,13,7]]»

[[41,21,7]]5

x4+ a’x% + ax7 + afx® +2x° + o' x* + X3+ oPx + o

[[41,21, 6]],

[[41,27,5]]5

xT 4+ 2x + x> + o’ x* + a’x3 +2x2 + a’x + o?

(141,27, 4]],

(continued)
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Table 1 (continued)
Best known
binary
New code Generator polynomial QECC

[[41,9,11]]5

x10 4+ ax +aBx! 4+ 3xB +4x2 4 oPx! 43510 4
a10x8+a3x7+a14x5+a8x4+a19x3 —|—4x2+a17x+a8

(41, 9. 8]]

[[40,2,12]]5

19 020518 2517 4 10516 4 3,15 | (20,14 |
x4+ a?x 2 4+ o0x 1 + a8 x 10 + 3x% + o 4+ 4x7 +
a11x6+(x23x5 +a22x4+a8x3+a5x2 +a9x+a4

[[40,2,10]]>

[[41,5,12]]5

I8 517 19516 1 o23115 4 o314 4 05013 4712 4
M+ 7x10 4+ 3% + %8 + oPx7 + a?x0 + ol +
aSxt +oaxd +a'%%2 +adx +1

[[417 5’ 9]]2

[[40, 6, 11]]5

x”+a10x16+a4x15+a22x14+a9x13+a*x12+3x“+
4x10+a5x9 —I—a16x8+a19x7+a22x6+a9x5+a4x4+
4x3 4+ a'7x? + a'x + 4

([0, 6. 8]]

[[39,15,9]]5

x4+ 2x" + o x10 + o'0x% + oPx® + o3 x7 + oBxb +
a15x5+a22x4+x3 +a9x2+2x+a16

[[39, 15, 7]]»

[[39,23, 5]]5

x8+a21x7+3x6_l_axS+a16x4+a17x3+a2x2+a21x+a16

[[39, 23, 4]]»

[[40,22, 6]]5

x4+ a’x® + abx7 + o?x0 + o?x + o¥x* + al4x3 +
ax? +a%x + 4

[[40,22, 5]]»

[[41,21,7]]5

x10+(x3x9+x8+a10x7+a2x6+a22x5—I—(x23x4+ax3+
a??x? +ax + 1

[[41,21, 6]]»

[[39, 11, 10]]5

x4+ aPx? 4 o2 4 ol0x 10 + o 10x% + 4x® + o357 +
4x° + 4x* + o?x3 + %2 4+ ox + of

[[39, 11, 8]]»

[[39,19,7]]5

x10 4+ alx8 + ax7 + a*x0 + ax® + 4x* + o8x3 + o?x? +
alx + ab

[[39, 19, 5]]»

[[40, 18, 8]]5

xll+x10 +al3x9+al7x8+2x7 —I—a14x6+(x17x5—|—3x4+
a®xd +o?x? +aPx + 4

[[40, 18, 6]]»

[[31, 13, 6]]5

X3 X+ X+ 4t P+ 3P+ x+ 4

[[31, 13, 5]],

[[32,0, 11]]5

x16+3x15+2x14+x13+x11+2x10+x9+x8+4x7+
x4+ x5+ 3xt 4233+ x4+ 1

[[32,0,10]]>

[31,7.8]]s | x244x+ax1042x+4x3+2x7+ x4+ 3x°+x*+x3+2x+1 | [[31,7,7]]»

32,12, 7))s |20 4+ 3x7 4+ x0 4+ x5 + x* +3x> + 4x + 1 [[32, 12, 6]],
[[31,25,3])s | x>+ x2+3x+4 [[31,25,2]]»
[[32,18,5]]5 |x7 +3x> 4+ 3x3 +4x2 + 4 (32,18, 4]],
[[32,6,91s | xB+2x" +x104 x2+4x8 +3x0 4+ 2x° +4x3 +4x2 +4x +4 | [[32,6, 8]]»

[[33,31,2]]s |x+4 [[33,31, 1]]»
[[35,33,2]]s |x+4 [[35,33, 1]]»
[[37,35.2])s |x+a'® (37,35, 1]]
[37.35,2])s |x +a'f (37,35, 1]]
[25.23.2]]s |x +a'f [[25,23, 1]]»
[[24,20,3]]5s |x2 4+ o¥x + a!7 [[24, 20, 2]]»
[[25,21,3]]5 | x?+ ax + a7 [[25,21,2]]»
[[24,18,4])5 | x3 4+ a'x? +a'Sx +3 [[24,18,2]],
[25,19.4]]5 |x* 4+ a"x? + a'%x + o?! (25,19, 2]]»
25,17,5]]s |x*+a’x® + 4x2 + «'0x + 3 [[25,17,3]]

(continued)
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Table 1 (continued)

Best known
binary
New code Generator polynomial QECC
[[33,31,2]]s |x+4 [[33,31, 1]]»

[[32,0,13]]7 | x' 4 2x15 4 3x1 + 4x12 + 21 + 4x10 4+ x% + 5x% + 4x7 + | [[32,0, 10]],
6x% +5x° +2x* +3x3 +3x2 +4x + 1

31,1,12]]7 |x" 4+ 3x" 4+ 6x'3 4 6x'12 4 3x! 4 4x!10 4 x% + 248 + [[31, 1, 11]],
4x5 433 + x* +3x* +6x2+2x + 6

[133,21,5]]7 | x4+ a*x® + aBx* + a®x3 4+ a3'x? + a®x + a'® (33,21, 4]},

[[33.31,2]); |x+6 [[33,31,1]]

Table 2 Parameters of the Code Code Code

quantum codes obtained from
repeated root cyclic codes
using Theorem 9

[15.9.2]bs | [15.7.3]bs | [[16.6.4]]ss
[175.69.2l2s | [[75.59.31ls | [[75.49. 41l1s
[182.26. 51125

[[375,369,2]]25 | [[375,319,3]]25 | [[375.269, 4]]25
(2115200 | (211330 | (21 11. 4]}
[21.7.50 | [22.8.5]0 | [[21.5.6]las
[123. 1. 7))o

[[147,141,2]]40 | [[147,127,3]]40 | [[147,113, 4]]49
[[147, 85, 5]]49 [[147,71, 6]]40
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On the Fan Associated to a Linear Code

Natalia Diick, Irene Marquez-Corbella, and Edgar Martinez-Moro

Abstract We will show how one can compute all reduced Grobner bases with
respect to a degree compatible ordering for code ideals — even though these binomial
ideals are not toric. To this end, the correspondence of linear codes and binomial
ideals will be briefly described as well as their resemblance to toric ideals. Finally,
we will hint at applications of the degree compatible Grobner fan to the code
equivalence problem.

Keywords Linear code ¢ Grobner basis ® Grobner fan

1 Introduction

The Grobner fan of an ideal in the commutative polynomial ring consists of
polyhedral cones indexing the different leading ideals and is thus the geometric
collection of all reduced Grobner bases for this ideal. One application of the Grobner
fan is the so-called Grobner walk which is the conversion of Grobner bases.

With the software system TiGERS in [5] (Toric Grobner bases Enumeration by
Reverse Search) an efficient alternative for computing the Grobner fan has been
provided for the special case of toric ideals. Indeed, by identifying a reverse search
tree on the cones of the Grobner fan, a memory-less combinatorial Grobner walk
can be established that furthermore, requires no cost weight vectors.

Linear codes, on the other hand, can be linked to this whole subject by associating
to each linear code a binomial ideal that encodes the information about the code
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in the exponents. This correspondence proved to be very beneficial as it provided
new approaches to several well-known problems in coding theory. Almost all
applications, however, require the computation of a degree compatible Grobner
basis.

In this work, it will be shown how methods from the software system TiGERS
developed by Rekha R. Thomas (see [5]) can be modified in order to compute all
reduced Grobner bases with respect to a degree compatible ordering for code ideals
— even though these binomial ideals are not toric. To this end, the correspondence
of linear codes and binomial ideals will be briefly described as well as their
resemblance to toric ideals. Finally, we will hint at applications of the degree
compatible Grobner fan to the code equivalence problem.

2 The Degree Compatible Grobner Fan

In this work we shall use the notion of Grobner basis and the ideal associated
to a linear code. Due to the restriction of the space we will not define what a
Grobner basis is, the reader can find a good introductory text for example in [3].
Also for simplicity we will restrict ourselves to binary linear codes even if all the
computation could be done in general (see [7] for the ideal associated to a g-ary
linear code).

Let K[x] be the polynomial ring with variables x = xi, ..., x, and coefficients
an arbitrary field K. We will define the ideal associated to a binary linear code € of
length n as

I =1(%) = ({x*—x"|a—b e ¢}) CK[x],

where the operation A means substitute the 0, 1 elements in the binary field F, by
the corresponding O, 1 in the set of integers Z. In this extended abstract the A will
be omitted if no confusion arises to simplify the notation.

This binomial ideal has been proved valuable for several applications and
captures the combinatorial properties of the code (see [6] and the references therein).
Note that for those applications K can be the binary field, which is the usual election,
and in this case we must explicitly mark which terms are the leading terms.

In this paper it shall be assumed that the leading term of a binomial is the one
with coefficient 1 and the non leading term has coefficient —1. Abusing the notation
if K is the binary field, since 1 = —1, this writing of the binomials will be assumed
as a formal pointer (in [5] the leading terms were underlined).

Note also that the explicit knowledge of the underlying term order is not
necessary. In fact, in all the following computations only the leading term of each
binomial has to be known.
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In the rest of the paper we will use the following notation and concepts from

[5]:

e ¢, (1) is the reduced Grobner basis for the ideal / w.r.t. the monomial order >,
e C,. (1) is the Grobner cone corresponding to 4. (1).
e T, (1) is thereverse search tree for the ideal / as constructed in [5, Definition 2.5]

Note that in [5] the complete Grobner fan is considered, i.e., the whole R”, since
the considered toric ideals are homogeneous w.r.t. a certain grading. This is not the
case for our code ideal and so here the Grobner fan is considered only in R’} .

Proposition 1 ([4]) Let > be a term order and v € Cs(I). For anyu € R" holds
() =Iy() <= Iu(g) =1(g) Vge¥% (),

where lt, stands for the leading (initial) term (ideal) induced by the order > given
by the weight vector u.

Note that it is a well known fact that a reduced Grobner basis for an ideal 7
w.r.t. a certain monomial order is degree compatible if and only if the corresponding
Grobner cone contains the all-one vector 1. From a coding-theory point of view,
degree compatible orderings are the ones one must analyze since the weight of a
vector is translated on the degree of a monomial. In this sense degree compatible
orderings provide us a test set for the code and therefore a gradient descent decoding
algorithm, see [2]. The following proposition characterizes when there is a unique
degree compatible Grobner basis.

Proposition 2 Let & be a reduced Grobner basis for 1(%) w.r.t. a certain degree

compatible ordering >. The Grobner basis ¢4 is the only reduced degree compatible
Grobner basis for 1(%) if and only if

deg(x?) > deg(x”) forall x*—x"e¥. (1)

Proof Assume that (1) holds but there is another Grobner basis ¢’ for (%) w.r.t.
another degree compatible order >’. Since >’ is degree compatible, 1t./(g) =
It (g) for all g € 4. And by Proposition 1 we see that It./ (1(%)) = It-(I1(%))
and thus, 9 = ¥’.
Or equivalently, we can argue that the all-one vector is in the interior of the cone
C,-(1(%)) and so clearly it cannot be contained in another cone in the Grobner fan.
In order to show the other direction assume that (1) does not hold, i.e., there

is at least one binomial x* — x” in & such that deg(x?) = deg(x’). Then
1 ¢ Int(C.-(1(%¥))) and in particular, there must be a neighbouring cone that also
contains 1 and thus corresponds to a degree compatible ordering. O

In terms of the Grobner fan the above proposition can also be expressed as
follows: A reduced Grobner basis ¢ w.r.t. a degree compatible ordering is the only
degree compatible Grobner basis if and only if the all-one vector 1 lies in the interior
of the Grobner cone of 4.
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We say that two binary linear codes 4] and %, are permutation equivalent
provided there is a permutation of coordinates which sends %) to %,. In the same
fashion two binomial degree compatible Grobner bases are permutation equivalent
if there is a permutation of the variables that transforms one into the other. There
is a close relationship between code equivalence and the equivalence of the degree
compatible Grobner bases associated to their code ideals stated as follows: If the
two degree compatible Grobner bases are permutation equivalent so are the codes,
unfortunately the converse is not true, given two permutation equivalent codes not
all the degree compatible Grobner bases are permutation equivalent (only two of
them should be). The reader can see [1] for a proof of this discussion.

Indeed if one has only a unique degree compatible Grobner basis for a given code
(Proposition 2) checking permutation equivalence is reduced to checking if the two
unique bases are permutation equivalent using the techniques in [1]. If this is not the
case one needs to compute the whole set of degree compatible Grobner bases which
we call the degree compatible Grobner fan. We will tackle this task in the following
section.

3 Adapting the TiIGERS Strategy

We can adapt the TIGERS Algorithm in [5] for computing the degree compatible
Grobner fan for (%) as follows: We start with a degree compatible Grébner
basis (note that this basis can be computed by the algorithm stated in [1]). By
Proposition 2 we can determine whether it is the only degree compatible Grobner
basis or not. If not, we flip only those facet binomials where both terms have
the same degree and recompute the Grobner basis. Unfortunately due the lack of
space these steps can not be detailed in this extended abstract but they are showed
in [5]. Lemma 3 below guarantees that we will always find at least one facet
binomial where both terms have the same degree. Additionally, we can employ the
reverse search tree defined in [5] for traversing the Grobner cones that are degree
compatible.

Lemma 3 Let G be the reduced Grobner basis for I(%) w.r.t. a degree compatible
ordering. If ¢4 is not the only degree compatible Grobner basis, that is 1 ¢
Int(C(I1(%))), then among all the facet binomials of ¢ is at least one binomial
x* — xP such that deg(x*) = deg(x?).

Proof Let ¥ = {x* —xP |1 <i < j + k} and order the binomials such that
deg(x¥) > deg(xP) for 1 <i < j and deg(x%) = deg(xP) for 14+ <i < j +k.

Assume that all facet binomials are such that the degree of the leading term is
strictly greater than the degree of the other term. Then the cone

C'={ueR) |¢-u>p;-uforalll <i<;}
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equals the Grobner cone C(I(%)) of the Grobner basis ¢. But then 1 € Int(C’) =
Int(C(1(%))), which is a contradiction. O

Lemma 4 Let Y,,,, be the reduced Gribner basis obtained from 9,4 by flipping the
facet binomial x* — xP. Any new leading terms in 9., i.e., leading terms of Gy,
that do not appear in 9,4, are divisible by x*.

Proof Any new leading terms arise from the Grobner basis computation of the
quasi-monomial ideal

T:={—x"yuT, T :={x"|x"—x" e,

that consists of the designated flipping binomial with changed leading term and all
the other leading terms in ¥,,,. To be more precise, a new leading term arises from
an S-polynomial of the form

S (xf —x*,x¥) = x'x*,  wherex” = lem(x”, x%)/x’,

which is not being reduced to zero by the elements in 7. When computing a Grobner
basis, then this S-polynomial is either reduced to zero or its remainder on division
by the set T is added to the Grobner basis of 7. We distinguish the following
situations:

1. Neither x# nor any monomial in 7’ divides x”x%: The monomial xx* cannot be
further reduced and thus is being attached to the Grobner basis of 7.

2. A monomial in 7’ divides x”x*: The monomial xx* is being reduced to zero
and thus, this S-polynomial results in no new term.

3. The monomial x# divides x”x*: Since x* and x? have disjoint support (see [2]),
xP has to divide x”, the monomial x”x¥ is reduced to

x7 x7
Vel _ w20 (B o — 2 (x% 2
x'x Xxﬁ(x x) Xﬂ(x).
So, whenever the S-polynomial cannot be reduced to zero, we obtain a monomial
which is divisible by x*. O

Proposition 5 7. (1(%)) is an acyclic directed graph with a unique sink that we
will call the reverse search tree.

Proof We prove that T (1(%¢)) is a tree by showing that there is no cycle in this
construction. We show this by contradiction. For the other claims see the proof of [5,
Theorem 2.6].

Assume that there is a cycle in the reverse search tree, say ¢4, — % —>

. —> %, —> 9, where %, is obtained from %; by flipping along x* — x%.
Then ¥; contains this binomial with leading term x* and ¥, | with leading term
xP . Inspecting the cycle we see that the binomial x*! — xf! lies in ¢, with leading
term x*! and appears in % with leading term xf1. Then no binomial in %, has the
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leading term x*'. However, as we arrive at ¢ after £ flipping steps, we conclude that
x% —xP1 must be inserted at some successive flipping step. Assume that this happens
in the i;th flipping process, 1 < i; < £. Then by Lemma 4, x*! is divisible by x*1.
And since ¢, is a Grobner basis this implies that x*1 cannot be the leading term of
any element in ¢); it must have been inserted as a new leading term during some
preceding flipping step, say i» < i;. By the same argument the monomial x*1 is
divisible by x*2 and then x*2 cannot appear as the leading term of any element in 4.
Continuing this process we get a decreasing sequence of indices i1 > i, > i3 > ...
which eventually must terminate, say after k steps, i.e., iy = 1. Then x% = x*!

and from the divisibility relations X% | x%k-1 | ... | x¥2 | x*1 | x*! we actually
obtain equality of all leading terms of the flipping binomials. However, this is a
contradiction. O

The following proposition states the discussion at the end of Sect. 2.

Proposition 6 Two linear codes ¢, and 6, are permutation-equivalent if and
only if they have the same degree compatible Grobner fan structure, i.e., there is
permutation o € S, such that o (G fan(61)) = Gfan(6,), where o (G fan(%)))
means permuting the variables in each of the degree compatible Grobner basis
within the fan.

Example 7 Consider two binary [6, 3] codes 6] and %> with respective parity check
matrices

110000 111111
H=[1001100),H,=]1000101
000011 010100

In [1, Example 2 and 5] it is shown that these codes are not permutation-equivalent.
Here, we show how the degree compatible Grobner fans of both codes can be
employed to show their non-equivalence. The degree compatible Grobner fan for
%) consists of 8 Grobner basis which are all of cardinality 6 (see Example 8). The
Grobner basis for 4, w.r.t. the grevlex basis is given by

2 .
{X3 — X5, X] — X5, X4X5 — X2X¢, X2X5 — X4X¢, XoX4 — X5X¢} U{xi —1]i=2,4,5, 6}

and consists of nine elements. Thus, we can already conclude that these two codes
cannot be permutation-equivalent.

Example 8 The reverse search tree Tx (1(%)) for the binary [6, 3] code %) from the
previous example with > being pure lex is given in Fig. 1.
And the Grobner bases are (the flipping binomials are underlined)
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49
% 94 %
% % %,
Ys

Fig. 1 The reverse search tree for ¢,

_ 2 2 2
G = {x1—xz,x3—x4,x5—x6,x2—1,x4—1,x6—1}
@ = {x1 — x2,x4 — X3, X5 — X6, X3 — 1, x5 — 1, x7 — 1}
@y = {x3— x1,x4 — X3, X5 — X6, X7 — 1, x5 — 1, x7 — 1}
_ 2 2 2
G, = {x1—xz,x3—x4,x6—x5,x2—1,x4—1,x5—1}
_ 2 2 2
Gs = {xl—xz,x4—x3,x6—x5,x2—l,x3 —l,xs—l}
G = {xz—xl,x4—x3,x6—x5,x12—l,xg—l,xg—l}
G = {xz—xl,x3—x4,x6—x5,x12—l,xf—l,xg—l}
G = {xz—xl,x3—x4,x5—x6,x12—l,xf—l,xg—1}.

4 Conclusions

We have shown how the computation of the degree compatible Grobner fan of a code
is useful for determining the code equivalence problem. Anyway one can not forget
that this is an NP-problem and therefore the Grobner basis computation comprises a
hard step. Further research in the topic points toward analyzing heuristic techniques
for eliminating the need of transverse the whole fan or at least for trying to deduce
the answer from partial information about the initial Grobner basis.

Acknowledgements N. Diick is partially supported by a grant of the Deutscher Akademischer
Austauschdienst. 1. Marquez-Corbella and E. Martinez-Moro are supported by the Spanish
MINECO grant MTM2012-36917-C03-03.



160 N. Diick et al.

References

1. Borges-Quintana, M., Borges-Trenard, M.A., Martinez-Moro, E.: On a Grobner bases structure
associated to linear codes. J. Discret. Math. Sci. Cryptogr. 10(2), 151-191 (2007)

2. Borges-Quintana, M., Borges-Trenard, M.A., Fitzpatrick, P., Martinez-Moro, E.: Grobner bases
and combinatorics for binary codes. Appl. Algebra Eng. Commun. Comput. 19(5), 393411
(2008)

3. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Compu-
tational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics,
2nd edn. Springer, New York (1997)

4. Fukuda, K., Jensen, A.N., Thomas, R.R.: Computing Grobner fans. Math. Comput. 76(260),
2189-2212 (2007) (electronic)

5. Huber, B., Thomas, R.R.: Computing Grobner fans of toric ideals. Exp. Math. 9(3), 321-331
(2000)

6. Marquez-Corbella, 1., Martinez-Moro, E.: Algebraic structure of the minimal support codewords
set of some linear codes. Adv. Math. Commun. 5(2), 233-244 (2011)

7. Marquez-Corbella, 1., Martinez-Moro, E., Sudrez Canedo, E.: On the ideal associated to any
linear code. Adv. Math. Commun. -(-) (2014, submitted)



Lattice Encoding of Cyclic Codes
from Skew-Polynomial Rings

Jérome Ducoat and Frédérique Oggier

Abstract We propose a construction of lattices from cyclic codes from skew-
polynomial rings. This construction may be seen as a variation of Construction A
of lattices from linear codes, obtained from quotients of orders in cyclic division
algebras. An application is coset encoding of wiretap space-time codes.

Keywords Lattices ¢ Cyclic division algebras ¢ Skew-polynomials ¢ Cyclic
codes

1 Introduction

Constructions of lattices from linear codes over finite fields (or rings) have been
classically studied, starting from the so-called Construction A [4, 6] of lattices
from binary linear codes. Let p : ZN IE‘Q’ be the map of reduction modulo
2 componentwise. Let C C IE‘Q’ be an (N, k) linear binary code. Then p~'(C)
is a lattice. One possible way of generalizing this construction is by considering
cyclotomic fields [5]. Let Q(¢,) be a cyclotomic field, with ring of integers Z[{ ],
where ¢, is a primitive pth root of unity, p a prime. Let p : Z[{ p]N > Fg be
this time the reduction componentwise modulo the prime ideal p = (1 —¢,). Then
p~!(C) is a lattice, when C is an (N, k) linear code over F,,. In particular, p = 2
yields the binary Construction A. Similar constructions from number fields with a
totally ramified prime and from totally real cyclic number fields with a completely
split prime have been proposed respectively in [7] and [12]. Note that the latter
construction has also been generalized to cyclic division algebras.

Let K/ F be a cyclic extension of number fields, with respective maximal orders
Ok and Op. We are proposing a variation of the above Constructions A, where
lattices are obtained from quotients of the natural order A of a cyclic division
algebra, as explained in Sect. 2, instead of quotients of the maximal order of number
fields. The resulting quotient A/p A of the natural order of a cyclic division algebra
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by a two-sided ideal p A, where p is a prime ideal of OF inert in K/ F, turns out
to be isomorphic to a ring of skew-polynomials. Denote this isomorphism by .
Let C be a cyclic code constructed over the ring of skew-polynomials (see Sect. 3)
and let p denote the compositum of the canonical projection A — A/pA with
Y. Then p~!(C) is a lattice. Application of this construction to space-time coding,
more specifically to coset encoding, is discussed in Sect. 4.

2 Quotients of Cyclic Division Algebras

Let K/ F be a number field extension of degree n with cyclic Galois group (o), and
respective rings of integers Ok and Or. Consider the cyclic algebra

K®Ked---Ke'!

wheree” = u € F,andek = o(k)e fork € K. We assumethatu’,i =0,...,n—1,
are not norms in K/ F so that the algebra is division. Let A be its natural order

A=0Cx ®Oge®---® Ore" .

Let p be a prime ideal of OF so that pA is a two-sided ideal of A. Assume that p
is inert in K/ F, so that pOk is a prime ideal of 0. Then A/pA is an Ok /pCk-
algebra and from [9], we have the following isomorphism:

AJpA =~ (Ox/pOx) ® (Ox /pOx)e ® -~ @ (Ox JpOx)e"™".

Note that since pOy is a prime ideal of Ok, the finite ring Ok /pO is an integral
domain, so is a finite field that we denote by IF,. Here, ¢ = p”f, where p is the
prime number lying below p and f is the inertial degree of p above p.

The algebra A/pA can alternatively be described in terms of skew-polynomial
with coefficients in Ok /pOk = F,,.

Definition 1 Givenaring R with a group (o) acting on it, the skew-polynomial ring
S[x; 0] is the set of polynomials s + s1x + ... + x,x",s5;, € S fori =0,...,n,
with xs = o(x)s forall s € S.

Lemma 2 There is an F,-algebra isomorphism between A/p A and the quotient of
F,[x; 0] by the two-sided ideal generated by x" — u.

Proof We define the map
¢ Fylx;o] = A/pA
f(x) — f(e).

Using the isomorphism given above and in [9], it is easily seen that ¢ is a surjective
[F,-algebra homomorphism. Moreover, the kernel of ¢ is the two-sided ideal of
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F,[x;0] generated by x” — u. Indeed, it is easily seen that x" — u lies in ker(p).
Conversely, let f(x) € ker(¢). We write

f) =Y s
i=0

for some s; € F,,i =0,...,m. Then f(e) = 0in A/pA. Since the ring F,[x; o] is
left Euclidean [10], there exist some polynomials g(x) and A (x) such that

f(x) = g()(x" —u) + h(x)

where /1(x) has degree <n — 1. Hence, f(e) = 0 is equivalent to i(e) = 0. Yet,
0= h(e) =ro+re—+---+ rn_le"_l in A/pA ~ (ﬁK/pﬁK) &) (ﬁK/pﬁK)e &)
- ® (Ox/pOx)e" . Therefore, rg = 1 = --- = r,—; = 0 and h(x) = 0. We
conclude that f(x) is a (left) multiple of x" — u. Consequently, ker(¢) = (x" — u)
and we get the desired isomorphism. O

Denote by ¢ the inverse isomorphism of the one given in Lemma 2:
Y A/pA = Fylx;o]/(x" —u).

Note that since u € F, x" — u belongs to the center of IF,[x; o] and the ideal
(x" — u) is two-sided.

Let .# be aleft ideal of A. Assume that .# N O D p. Then .7 /p A is an ideal of
A/pA. In the sequel, we will study the left ideal ¥ (% /pA) of Fy[x;0]/(x" — u).

3 Polynomial Codes and a Variation of Construction A

Definition 3 ([3]) Let f € F,[x; 0] be a polynomial of degree n. If (f) is a two-
sided ideal of F,[x; o], then a 0-code consists of codewords a = (ag, ai, ..., a,—1)
that are coefficient tuples of elements a(x) = ap + a;x + ... + ap—1x" ! of a left
ideal of I, [x; 0]/(f). The elements a(x) are left multiples of a right divisor g of
S . If f lies in the center of F,[x; o], then the o-code corresponding to the left ideal
(g)/(f) is called a central o-code.

Using the isomorphism 1 defined in Sect.2, for every left ideal .# of A, we
consider the o-code C = (£ /pA) over F,.
We set the map:

p:A—=Y(A/pA) =Fylx:0]/(x" —u),
compositum of the canonical projection A — A/p A with . We then set

L=pC)=-s.
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Then L is a lattice, that is a Z-module of rank n*[F : Q] since O is a Z-module of
rank n[F : Q).

From this point of view, the above construction may be interpreted as a variation
of Construction A [4], which consists of obtaining a lattice from a linear code
over a finite field (ring), as shortly described in the introduction. This is also a
generalization of the lattice construction of [8], defined over number fields.

Example 4 Let K = Q(i) and F = Q. Then 0 = Z and Ok = Z[i]. Set p = 3,
which remains inert in Q(i). Hence, Z[i]/3Z[i] ~ Fy. Let  be the quaternion
division algebra defined by

0 =0Q@) & Q()e,
with e = —1. Since Ng/r(a + ib) = a* + b* a,b € Z, —1 cannot be a norm
and 9 is indeed a quaternion division algebra. We set A = Z[i] & Zli]e and .¥ =

(14+1i + e)A. Then .# contains 3 since the norm of 1 4+ i + e is 3. Let & denote a
primitive root of Fg over 3, satisfying o> + 1 = 0. We have

Y((14+i+e)mod3) =1+ o+ x,
which is a right divisor of x2 4 1 in Fg[x; o]:
XHl=@—-1l+a)(x+1+a).
Therefore, the left ideal (x + 14 a)Fo[x; o]/ (x% + 1) consisting of the left multiples

of x + 1 4+ « modulo x? + 1 is a central o-code. Taking the pre-image by v, it
corresponds to the left-ideal .# /3 A, with .& = A(1 +1i + e).

4 Application to Space-Time Codes

Cyclic division algebras are by now classically used to design space-time codes [2,
11]. Matrix codewords are obtained as follows. From now on, to make the notation
easier, we assume that u € Op. To any elementa = ag + aje + --- + ap—1e" ' of
A, we can associate a matrix in Mat, (Ok) (since u € OF) by:

ao uo(an—1) uo*(an—) -+~ uo" '(ay)
ar uo(ag) uo*(ay—1) -+ uo" '(az)

M(a) = :
uo" " (ap-1)

ap—1 uo(an—) uaz(a,,_3) ua"‘l(ao)
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The map

A — Mat, (Ok)
a+— M(a)

is an Ok -algebra injective homomorphism.
We apply this to our previous example.

Example 5 For ¢ = a + be in the natural order Z[i] & Zli]e of the quaternion
algebra 9, a,b € Z]i]

-
=37

where - is the non-trivial Galois automorphism of Q(i)/Q. Let ¢ = (a + be)(1 +
i + e)beanelementof &/ = A(1 +i + e) (witha, b € Z[i]). Then

t=a(l+i)—b+ (a+b(l—1i))e.
Hence,

M) = a(l+1i) —.b —(_a + b.(l +_l)) .
a+b(l—i) a(l—i)—>b
Note that .# = p~!(C) is a real lattice with rank 4 embedded in R?: by
vectorizing the matrices M(¢) and separating real and imaginary parts, a generator
matrix of this lattice is given by

1 110-10 1 -1
-1101 0 1 —-1-1
-101-1-1-1-10
0-111 1 1 0 1

Letnow v = (vy, ..., V,) be the information vector to be mapped to a lattice point
in L, where L is used as a lattice code. The lattice L = p~'(C) = .# A may by
construction be written as a union of cosets of p A, where each coset representative
may be chosen to be a codeword in the code C. Namely, if g is a right divisor of
x" —u and if a central o-code C = (g)/(x" —u) C F,[x;0]/(x" —u) has dimension
k = n —deg(g), since

A/pA =T, [x:0]/(x" —u)
there is an isomorphism

S /pA =C.
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This allows us to associate in a unique way a coset of pA to a codeword. The
mapping from v to a point in L may be done by attributing some information
coefficients vj,...,vr to be encoded using the code C, and the rest of the
information coefficients to be mapped to a point in the lattice p A. Coset encoding is
necessary in the context of wiretap codes [1]: information symbols are mapped to a
codeword in C, while random symbols are picked uniformly at random in the lattice
pA to confuse the eavesdropper. The construction of the lattice L = p~'(C) = .%
thus enables coset encoding for wiretap space-time codes.

5 Future Work

In this paper, we presented a construction of lattices from cyclic codes from skew-
polynomials, which can be seen as a variation of the well known Construction A of
lattices from linear codes. Natural future research directions include:

* Linking the properties of the cyclic code C to that of the lattice L = p~'(C):
there are standard duality results for the classical Construction A, relating the
dual of the code with the dual of the lattice, as well as the weight enumerator of
the code with the theta series of the lattice.

» Design of wiretap space-time codes: this consists of choosing the cyclic division
algebras, the corresponding two-sided ideal and cyclic code, to optimize the
confusion at the eavesdropper.

Acknowledgements The research of J. Ducoat and F. Oggier is supported by the Singapore
National Research Foundation under Research Grant NRF-RF2009-07.
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On Extendibility of Additive Code Isometries

Serhii Dyshko

Abstract For linear codes, the MacWilliams Extension Theorem states that each
linear isometry of a code extends to a linear isometry of the whole space. But, in
general, it is not the situation for nonlinear codes. In the paper it was proved, that
if the length of an additive code is less than some threshold value, then an analogue
of the MacWilliams Extension Theorem holds. One family of unextendible code
isometries for the threshold value of code length is described.

Keywords Additive code » Code isometry * MacWilliams extension theorem

1 Introduction

The code is a subset of the space with the Hamming metric. A map that preserves
the Hamming metric is called an isometry. The description of code isometries
is fundamental because it helps to identify codes with equal metric parameters.
Moreover, results, based on the properties of weight and distance enumerators, could
be translated without any changes from a code to all its isometric codes.

Besides the metric, codes can have additional algebraic structures, for example
the structure of a vector space or a group. The most developed are linear codes. A
code is said to be linear if it is a vector space over the alphabet, where the alphabet
is considered as a finite field. There is a full description of linear isometries of
linear codes. The famous MacWilliams Extension Theorem states that every linear
code isometry extends to a linear isometry of the whole space. The proof of the
MacWilliams Extension Theorem firstly appeared in the works of MacWilliams and
it was later refined by several authors. Namely, Ward and Wood greatly simplified
it, using character theory approach (see [8]).

Unlike linear codes, there are nonlinear codes with isometries that do not extend
to isometries of the whole space. In general, the problem of description of code
isometries for nonlinear case is difficult. Nevertheless, in some classes of codes it
can be solved. For example, in [1, 5] and [7] authors describe a lot of code families
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that satisfy extendibility property. There they also observe various classes that do
not satisfy it. Among the studied families there are some subclasses of codes that
achieve the Singleton bound (MDS codes, see [6, p. 20]), some subclasses of codes
with equal distance between codewords (equidistant codes) and some perfect codes
(see [6, Ch.§ 11]).

In this paper we focus our attention on the class of additive codes and their
additive isometries. A code is called additive if it is an additive abelian group. An
isometry of an additive code is called additive if it preserves the group structure of
the code. Nonlinear codes are not widely used in practice and are less developed, but
it appears that additive codes with additional requirement of a special kind of self-
orthogonality naturally describe quantum stabilizer codes that are used to protect
quantum information (see [4]). The description of quantum code isometries greatly
depends on the description of additive code isometries.

The main result of this paper is formulated in Theorem 10. We determine the
length threshold for which an analogue of the MacWilliams Extension Theorems
for additive codes holds. We also proved that this result cannot be improved by
increasing the bound on the code length.

2 Additive Isometries of Space

Let L be a finite field, let m be a positive integer and let K be a subfield of L. A
code is a subset of L™. A code is called K-linear if it is a K-linear vector space
in L™. If the code is L-linear we call this code linear. Additive code is a code that
is closed under addition. Any K-linear code is additive. In the other direction, any
additive code in L™ is I ,-linear, where p is the characteristic of L.

An isometry of a code C € L™ isamap f : C — L™ that preserves the
Hamming distance. If f is a K-linear map, then f is an isometry if and only if f
preserves the Hamming weight.

Example 1 Consider two codes C; = {(0,0,0),(1,1,0), (w,0, 1), (w? 1,1)} and
C, = {(0,0,0), (0, 0%, ), (1,0,1), (1, 0%, ©?)} in F3, where F; = {0, 1, 0w, w?}
and @ + 1 = 2. All the codes are F,-linear. Define a map f : C; — C, in the
following way: /((0,0,0)) = (0,0,0), f((1,1,0)) = (0.0 ), f((®.0,1)) =
(1,0,1) and f((w* 1,1)) = (1,w* »?). Evidently, the map f is [F>-linear and
preserves the Hamming weight. Therefore f is an [F,-linear isometry of the ;-
linear code Cy in Fi Note that C; and C, are not [F4-linear.

Amap f : L™ — L™ is called monomial, if there exist a permutation = € S,
andcy,¢o...,cn € L\ {0} suchthatforallu € L™, f(u) = f((u1,uz,...,un)) =
(C1Ux(1), CoUg(2)s - - - » CmUx(m)). It is easy to see that a monomial map is a linear
isometry of L and each linear isometry of the whole space L™ is a monomial map.
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Theorem 2 (MacWilliams Extension Theorem) Ler L be a finite field, let m be a
positive integer and let C C L™ be a linear code. Each linear isometry of C extends
to a monomial map.

Considering the arguments above, the MacWilliams Extension Theorem states that
any linear isometry of a linear code extends to a linear isometry of the whole space.

We deal with K-linear isometries of a K-linear code and their extendibility to
the whole space L™. Hence, we describe all K-linear isometries of the space L™.
Let Autg (L) denotes the set of all K-linear invertible maps from L to itself.

Definition3 A map f : L™ — L™ is called general monomial if there exist a per-
mutation 7 € S, and g1, ..., g&n € Autg(L) such that for all u € L™ the following

holds: f(u) = f((ur.uz. ... um)) = (g1 (Ur1)). &2(Ux): - -+ G (Uz(m)))-

Proposition 4 A general monomial map is a K-linear isometry of the space L™.
Moreover;, any K -linear isometry of the space is a general monomial map.

Proof From the definition it is easy to see that a general monomial map is a K-linear
isometry. In [3], it was proved that any isometry of the space L™ is a composition
of coordinate permutation and a tuple of permutations of the alphabet L, where the
ith element in the tuple acts on the ith coordinate. Since a K-linear permutation of
L is exactly an element of Autg (L) we get the statement of the proposition. O

A general theorem, analogue of the MacWilliams Extension Theorem, does not
exist for nonlinear codes. This means that there is a nonlinear code and an isometry
of the code that does not extend to an isometry of the whole space. Call such
isometries unextendible. We have the same situation even if we look at additive
codes. The counterexample is the following.

Example 5 Let m = |K| + 1. Consider two K-linear codes C; = (v;, v2)x and
C, = (I/ll, M2)K with

vi) _ (01 1 ... 1 i)Oll...l_ul

v ) 1 x;xp ... Xk Oww...o) \u)’
where x; € K are all differentand w € L\ K. Define the K-linearmap f : C; — C,
in the following way: f(v;) = u; and f(v;) = up. The map f is an isometry. But,
there is no general monomial map that acts on Cj in the same way as the map f. The

first coordinates of all vectors in C, are always zero, but there is no such all-zero
coordinate in C;.

3 Extendibility of Additive Isometries

Let C be a K-linear code in L™. Denote by xi,...,x; € L™ a K-linear basis of

correspond to vectors xi, ..., Xk, is called a generator matrix of C. Let M,x, (F)
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denotes the set of all ¢ x b matrices with the entries from a field F. Obviously,
A € Myxm (L)

Denote the degree of the extension [L : K] = n. Consider L as a n-dimensional
vector space over K and fix its basis by,...,b, € L. This is equivalent to the
establishment of an isomorphism L =~ K" of K-linear vector spaces. In the
generator matrix A replace each entry a;; € L by the corresponding vector-row

(afjl), ... ,af;')) € K", wherea;; = Y |_, af]l.)bl, fori e {1,...,k},j €{l,....,m}.
In result, we get a K -generator matrix B € My, (K) of C:

alV.aal) o a . al) e

B=1 1 oo
I L BN (I R )

The K-generator matrix B can be observed as the concatenation of m smaller
matrices, B = (By|Ba|...|By), where B; is the ith block of B, fori € {1,...,m}.

We are interested in the subspace V; € K k wherei € {1,...,m}, that is defined
as a K-span of the columns of B;. With the K-generator matrix B associate a fuple
of the subspaces V1, ..., V, C K.

Let f : C — L™ be a K-linear injective map. Let A’ € Myx,, (L) be a matrix
with the rows f(x1),..., f(xn), where x, ..., x; are the rows of A. The matrix A’
is a generator matrix of f(C). Define the K-generator matrix B’ in the same way
as we defined B. Let Vi, ..., V,, € K* be the tuple of subspaces that correspond to
BandletU,...,U, C K* be the tuple of subspaces that correspond to B’.

Proposition 6 The map f extends to a general monomial map if and only if there
exists a permutation w € Sy, such that U; = V), fori € {1,...,m}.

Proof 1f the map f extends to a general monomial transformation 4 : L™ — L™
(with the permutation = € §,), then the tuples Uy, ..., U, and Vi, ..., Vaom)
are equal. In the other direction, let B and B’ be the K-generator matrices that
correspond to the tuples of subspaces Vi,...,V, and Uj,...,U,. Then there
exist a permutation 7 € S, and invertible matrices G; € M,;x,(K), such that
B = (Br1)G1|...|Bxm)Gm) = (B{|...|B,,) = B’. This correspond to a general
monomial transformation 4 : L™ — L™, such that h = f on the code generated
by B. O

We use the ideas presented in the proof of the MacWilliams Extension Theorem
by Ward and Wood (see [8]) to get a description of K-linear isometries of K-linear
codes in L™. For a finite abelian group G let G be the set of all homomorphisms
from (G, +) to (C\ {0}, -). There is defined a product of two homomorphisms: for
g.h € G define (gh)(x) = g(x)h(x) for all x € G. The set G with the defined
product form a group and is called a group of characters.

Let X be a set and let A be a subset of X. An indicator function is a map 14 :
X —{0,1},suchthat 1 4(x) = lif x € A and 14(x) = 0 — otherwise.



On Extendibility of Additive Code Isometries 173

Proposition 7 Let C be a K-linear code in L™ and f : C — L™ be a K-linear
map. The map f is an isometry if and only if the following equality holds:

G | G|
;le" = ;mﬂm . (1)

Proof Let U be a k-dimensional vector space over K with some fixed basis, where
k = dimg C. Consider two K-linearmaps A, : U — L™, definedas A(u) = u’ A
and w(u) = u’ A, for u € U, where A is a generator matrix of C and A’ is the
corresponding generator matrix of f(C). It appears that u(u) = f(A(u)) for all
ueU,AM(U)=Cand u(U) = f(C).

For the weight function wt : L — {0, 1}, which maps 0 to 0 and other elements
to 1, the following holds: for all a € L : \Tl| erﬁ x(@) = 1 — wt(a) (see [6,
p- 143]). Using weight representation in terms of character sums, we have that for
allu e U:

m—wt (L)) = ILIZZ x(hi @) . )

i=1
For a K-linear map ¢ : U — L define a map ¢ : L > U,)( = oo y.
Transforming the sum in Eq. (2), we get:

Y2k = ILIZ(Z T f,.@)m)n

i=1 yei el \i=l

By the definition, the map f is an isometry if for all x € C, wt(x) = wt(f(x)), or
the same, for all u € U, wt(A(u)) = wt(u(u)). Consequently, f is an isometry if
and only if the following equality holds:

U |
Zu(g |X,-(£)|]l"'(“(n))”_,§;(§| ARG ))

Since different characters in U are linearly independent, the coefficients in the
equation are equal for each w € U. This is equivalent to:

m

1 1
» Ly =2 —1; -
v 7 Ai(L AT i (L
() )

It can be proved that this equality is equivalent to Eq. (1). O

To illustrate Proposition 7 we consider the following example observed in [9].
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Example 8 Let C be a F,-linear code in F3, generated by three vectors: C =
((1,1,0), (w,®,0), (1,0, 1))p,, where Fy = {0,1,0, 0%} with ® + 1 = ?
Define an F,-linear map f : C — Fi on the generators in the following way:
f((l,l,O)) = (1,1,0), f((w,a),O)) = (1,0,1) and f((l,O, 1)) = (w,,0).
Obviously, f(C) = C.

Consider the isomorphism of the F,-linear vector spaces Fy — F%, 1~ (1,0)
and o — (0, 1). We use the following generator matrix A and the corresponding
[F,-generator matrix B of the code C:

110 10/1000
A=|lww0], B=1010100
101 100010

Since f fixes the first generator vector of C and permute second and third, it is easy
to construct the corresponding generator matrix A’ and the F,-generator matrix B’
of the code f(C):

110 10/10/00
A=1101|, BB=[100010
wwl 010100

Now we calculate the tuples of subspaces Vi, V5, V3 C IF; and U,,U,, Uz C
3. The subspaces are: V; = ((1,0,1),(0,1,0))r,, V2 = ((1,0,0),(0,1,0))r,
and V3 = ((0,0,1))r,. In the same way, U; = ((1,1,0),(0,0,1))r,, U» =
((1,0,0), (0,0, 1)), and Us = ((0,1,0))r,. Equation (1) after multiplication by
4 from both sides becomes:

]]'Vl + ]].V2 + 2]].{/3 = ]]'Ul + ]].U2 + 2]].(/3 .

One can verify that for the defined subspaces Vi, V5, V3 and U;, U,, Us the equality
holds and thus, by Proposition 7, the map f : C — IFZ is an [F,-linear isometry.
Moreover, by Proposition 6, since the tuples of subspaces Vi, V», V3 and Uy, Us, Us
do not coincide up to the order of terms, the isometry f is unextendible.

Regarding Eq. (1), we have the following statement.

Proposition 9 Let W be a finite space over K and Uy, ..., U,, Vy,..., Vs C W be
different subspaces of W. Assume that ay, .. .,a,,by,...,by > 0 and

Za,-]lyl. = Zb,‘]].vi . (3)

i=1 i=1

Then max{r, s} is greater than the cardinality of K.
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Proof Among the subspaces Vi,...,V;, Ui, ..., U, choose one that is maximal by
inclusion. It is either V; for some i € {1,...,s},or U; forsome j € {1,...,¢}.In
the first case dimg V; > 1l and V; = U;=1(V,- NUj), whereforall j € {1,...,r}:
Vi nU; # V;. Such coverings are discussed in [2] and there it was proved that
r > |K|. Similarly, in the second case s > |K|. O

Theorem 10 Let L be a finite field and let K be a proper subfield of L. Letm < |K|
and let C be a K-linear code in L™. Each K -linear isometry of C extends to a K -
linear isometry of the whole space.

Proof From Proposition 4, to prove the theorem, it is enough to show that: if there
exists such K-linear code C C L™ and K-linear isometry f : C — L™ that
does not extend to general monomial map, then m > |K]|. Since f is an isometry,
Proposition 7 implies that Eq. (1) holds. Let Vi, ..., V,, be a tuple of subspaces of
C and Uy, ..., U, be the corresponding tuple of subspaces of f(C). There is an
alternative: the tuples of the subspaces Vi, ..., V,, and Uy, ..., U, or coincide up to
a permutation of the elements, or not. In the first case, by Propositions 4 and 6, f
extends to an isometry of the whole space L. In the second case in Eq. (1) group
the equal terms from each side and eliminate the equal terms from the different
sides. After canceling and elimination there exists i € {1,...,m} such that for all
Jj €{l,....,m} : V; # U;. So, we obtain an equation in form of Eq.(3), where
conditions of Proposition 9 are satisfied. Therefore m > max{r, s} > |K|. O
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The Extension Theorem with Respect
to Symmetrized Weight Compositions

Noha ElGarem, Nefertiti Megahed, and Jay A. Wood

Abstract We will say that an alphabet A satisfies the extension property with
respect to a weight w if every linear isomorphism between two linear codes in
A" that preserves w extends to a monomial transformation of A”. In the 1960s
MacWilliams proved that finite fields have the extension property with respect
to Hamming weight. It is known that a module A has the extension property
with respect to Hamming weight or a homogeneous weight if and only if A is
pseudo-injective and embeds into R. The main theorem presented in this paper
gives a sufficient condition for an alphabet to have the extension property with
respect to symmetrized weight compositions. It has already been proven that a
Frobenius bimodule has the extension property with respect to symmetrized weight
compositions. This result follows from the main theorem.

Keywords Linear codes over finite modules ¢ Extension theorem ¢ Symmetrized
weight composition

1 Introduction

In the 1960s Florence Jessie MacWilliams proved in her doctoral dissertation
[13] that two linear codes over a finite field are isometric if and only if they are
monomially equivalent. Two linear codes of the same length are said to be isometric
if there is a linear injective map from one to the other that preserves Hamming
weight. In other words, two linear codes C;,C, C IFZ are isometric if there is a
linear injective map f : C; — C, such that wt(f(c)) = wt(c) for every ¢ € Cy,
where wt denotes the Hamming weight on IF,. The codes are said to be monomially
equivalent if there is a monomial transformation, or an n X n monomial matrix M,
such that C; = C; M. Because monomial equivalence implies the existence of an
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isometry, what MacWilliams proved for codes over finite fields is that any isometry
can be extended to a monomial transformation. MacWilliams also proved a semi-
linear version of this extension theorem. In 1996, a character theoretic proof of
MacWilliams’ result appeared in [14].

The publication of [12] rekindled the interest of researchers in codes over
finite rings and the question arose, which types of rings satisfy MacWilliams’
Extension Theorem? In [17], the character theoretic proof of [14] was generalized
to prove that finite Frobenius rings satisfy the Extension Theorem with respect to
Hamming weight. In [4] Dinh and Lépez-Permouth proved some partial converses
and provided a strategy to prove the full converse. The strategy led to a proof of the
full converse in [18] for linear codes over finite rings with the Hamming weight.

In 1997, Constantinescu and Heise introduced a new weight on finite rings [2],
namely, the homogeneous weight. The authors of [3] used combinatorial methods to
prove the extension theorem for homogeneous weights over the ring Z,,. Following
their lead, Greferath and Schmidt proved that every Hamming weight isometry is
a homogeneous weight isometry and vice versa, thereby translating all results on
the Extension Theorem for Hamming weight to homogeneous weights and vice
versa [11]. Greferath, Nechaev, and Wisbauer proved the Extension Theorem for
Hamming and homogeneous weights over Frobenius bimodules in [10].

More general weight functions were considered next, specifically bi-invariant
weight functions. A weight w on a ring R is said to be bi-invariant if w(ux) =
w(x) = w(xu) for every x in R and every unit « in R. The extension theorem was
proved for bi-invariant weights in the case of finite chain rings in [6], in the case
of Z,, in [7], in the case of finite direct products of finite chain rings in [9], in the
case of matrix rings over finite fields in [19], and in the case of principal ideal rings,
necessary and sufficient conditions were found for bi-invariant weights to satisfy the
extension theorem in [8].

The present paper considers the Extension Theorem with respect to another
type of weight, namely the symmetrized weight composition over certain module
alphabets. The Extension Theorem for symmetrized weight compositions was
proved for linear codes over finite fields in [5], over finite Frobenius rings in [15],
and over Frobenius bimodule alphabets in [19]. In [1], Barra and Gluesing-Luerssen
greatly simplified the proof in [15], and we apply their ideas to the case of certain
module alphabets.

The following is a summary of the contents of this paper. Section 2 provides
some basic definitions, as well as the Extension Theorems known for module
alphabets equipped with Hamming weight. In Sect. 3, we apply some of the ideas
of [1] to module alphabets. The main result of this paper (Theorem 13) states that
a sufficient condition for an R-module A to satisfy the Extension Theorem with
respect to symmetrized weight compositions is that A can be embedded into rR.
This condition implies that a Frobenius bimodule satisfies the Extension Theorem
with respect to symmetrized weight compositions.

The Extension Theorem for symmetrized weight compositions over finite Frobe-
nius rings has been used in [15] and [16] to prove extension theorems for more
general weight functions. We anticipate proving similar results in future work.
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2 Background

Throughout this paper, let R be a finite ring with unity and let A be a finite left R-
module; A will serve as the alphabet for linear codes. We will adopt the following
convention: when dealing with maps on left R-modules, the input to the map will
be written on the left. In other words, if we have a left R-module A and a map f on
A, then for a € A, we write af for f(a).

Definition 1 A linear code of length n over the alphabet A is a left R-submodule
Cc cA".

Definition 2 A monomial transformation of A" is an R-linear automorphism 7" of
A" of the form

(al, ceey a,,)T = (aa(l)fl, caey ag(,,)f,,),
where (a1, ...,a,) € A", 0 isapermutationof {1,2,...,n}and 7y, ..., 7, € Aut(A),
the group of automorphisms of the left R-module A. If 71, . . ., 7, all belong to some

subgroup G of Aut(A4), we say that T is a G-monomial transformation of A”.

A weight on an alphabet A is defined to be a rational-valued functionw : 4 — Q
with w(0) = 0. We define the extension property as follows.

Definition 3 Let A be an R-module. We say that the alphabet A satisfies the exten-
sion property with respect to the Hamming weight if every R-linear isomorphism
between two R-linear codes in A" that preserves Hamming weight extends to a
monomial transformation of A”.

The class of Frobenius bimodules stood out in coding theory as all Frobenius
bimodules satisfy the extension property with respect to Hamming weight [10]. A
Frobenius bimodule is defined as follows.

Definition 4 Let A be a bimodule over the ring R. We say that A is a Frobenius
bimodule if RA =g R and Ag =~ Rpg, where R = Homgz(R, C*) is the character
module of R.

The following theorem was proved in [17] and [18].

Theorem 5 Let R be a finite ring and A = R. Then R satisfies the extension
property with respect to Hamming weight if and only if R is Frobenius.

Necessary and sufficient conditions for a module alphabet A to satisfy the
extension property with respect to Hamming weight were established in [19]. The
first condition is that the R-module alphabet A is pseudo-injective, in other words
for every R-submodule B of A and every injective R-linear mapping f : B — A,
the mapping f extends to an R-linear mapping F : A — A. The second condition
that arises is that A have a cyclic socle. The socle of an R-module A4 is defined to
be the sum of all its simple R-submodules. We note that a left R-module A has a
cyclic socle if and only if A embeds into R ([19], Proposition 5.3).
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Theorem 6 Let R be a finite ring and A a finite R-module. Then A satisfies the
extension property with respect to Hamming weight if and only if A is pseudo-
injective and has a cyclic socle.

3 The Extension Theorem for Symmetrized Weight
Compositions

Given a weight w on an alphabet A, define the symmetry group of w as the set of all
automorphisms of A that preserve w. Denote the symmetry group by

Sym(w) := {t € Aut(A)|w(at) = w(a) forevery a € A}.

Then for a general weight w, the extension property is defined as follows.

Definition 7 Let A be an alphabet and w a weight on A. Then A has the extension
property with respect to w if for any two linear codes C;, C, C A", and R-linear
isomorphism f : C; — C, that preserves w, f is extendable to a Sym(w)-monomial
transformation of A”.

The symmetry group of a weight w on an alphabet A acts on A on the right so
that the orbit of an element a in A4 is orb(a) = {at|t € Sym(w)}. The symmetrized
weight composition counts the number of entries of x = (x1,...,x,) € A" that
belong to any given orbit of this action.

We now give the formal definition of the symmetrized weight composition.

Definition 8 Let G be a subgroup of the automorphism group of a finite R-module
A. Define ~on Abya ~ bifandonly if a = bt for some 7 € G. Let A/G denote
the orbit space of this action. The symmetrized weight composition is a function
swc: A" x A/G — Q defined by,

swe(x,a) = sweg(x) = |{i 2 x; ~ a}l,

where x = (x1,...,x,) € A" anda € A/G.

Note that if a,b € A are in the same orbit, then swc, = swc, and so the
symmetrized weight composition is well-defined.

Definition 9 The alphabet A has the extension property with respect to swc if for
any two linear codes C;, C; C A", and R-linear isomorphism f : C; — C; that
preserves swc, f is extendable to a G-monomial transformation of A”.

We wish to find conditions on the module alphabet A equipped with swc to satisfy
the extension property analogous to those found in Theorem 6 for Hamming weight.
Theorem 13 gives a sufficient condition and its proof uses some of the ideas found
in [1].
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In order to prove the main theorem, we need a few results concerning admissible
characters. More details can be found in [19] and [20] (where admissible characters
were called generating characters).

Definition 10 Let A be a finite left R-module. We say a character p € Ais (left)
admissible if ker p contains no nonzero left R-submodules. There is a corresponding
notion of right admissible characters for right R-modules.

The proof of the main theorem requires a proposition from [20].

Proposition 11 ([20], Proposition 12) Let A be a finite left R-module. Then A has
an admissible character if and only if A can be embedded in gR.

The reader will verify that Frobenius bimodules have admissible characters.

The condition that will appear in the main theorem (Theorem 13) is that the R-
module alphabet A can be embedded into R. As mentioned earlier, this condition is
equivalent to the condition that the alphabet A has a cyclic socle due to the following
result (Proposition 5.3 in [19]).

Proposition 12 Let R be a ring and A a left R-module. Then soc(A) is cyclic if
and only if A can be embedded into g R.

We now state and prove the main theorem.

Theorem 13 Let A be a finite left R-module equipped with a symmetrized weight
composition. If A can be embedded into R, then A has the extension property with
respect to the symmetrized weight composition. In particular, this theorem applies
to Frobenius bimodules.

Proof Suppose Cy,C, C A" are two R-linear codes, and f : C; — C, is an
R-linear isomorphism that preserves swc. Let M be the module underlying the
two codes C;,Cy with A : M — A" andv : M — A", the inclusion maps of
Cy and C; into A", respectively, and v = A o f (recall that inputs to functions
are written on the left). Suppose A = (Ay,...,A,) and v = (vy,...,v,), where
Ai,v; € Homg(M, A). Since f preserves swc, then swc,(xA) = swe,(xv) for
everya € A/ G and every x € M. Following [1], if we fix x € M then there exists
a permutation o, of {1,...,n} and elements ¢; , € G such that xA; = xvs (P, «
foreach j € {1,...,n}. Let ¥ € G, noting that G C Aut(A), then forall j,

XA Y = Xvo, ()P Y- (1)

Since A can be embedded into ﬁ, it follows from Proposition 11 that A has an
admissible character p : A — C*. Compose p with both sides of Eq. (1) to get

(XA 9)p = (X, (jHPjx V) P-

We can now take the summation of the previous equation over all j € {1,...,n}
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and all ¥ € G yielding the following,

Z Z(x%' V)p = Z Z(xvax(n%,xlﬂ)p

j=1vyeG j=1vyeG

> (o,

k=11€G

Since the above equation is true for every x € M, we have the following equation
of characters of M,

n n

2.2 Qe =) o &)

j=1yeG k=17€G

We can now make use of the fact that characters of M are linearly independent,
when considered as complex-valued functions on M. On the left hand side of
Eq.(2), fix j = 1 and v = id4. By the independence of characters it follows
that there exists k; € {1,...,n} and 7; € G such that A; o p = v, 71 o p. Then
im(A;—vg, 1) C ker o. But p is an admissible character of A and therefore contains
no non-zero submodules. It follows that im(A; — vg,7;) = 0 and so A} = vy, 75.
Re-indexing (letting ¢ = 71v), shows that

Swp =Y (nruvp =Y (up)p.

veG veG ¢€G

This allows us to reduce the outer summation in Eq.(2) by one. Proceeding by
induction, we find a permutation ¢ and automorphisms t,...,7, € G with
Ai = Vo (i) Ti- O

A natural question to ask is whether the converse of Theorem 13 is true. In other
words, if the extension property holds for an R-module alphabet A equipped with a
symmetrized weight composition, must A have a cyclic socle? Or equivalently must
there be an embedding of A into R? This remains an open question.
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Minimal Realizations of Syndrome Formers
of a Special Class of 2D Codes

Ettore Fornasini, Telma Pinho, Raquel Pinto, and Paula Rocha

Abstract In this paper we consider a special class of 2D convolutional codes
(composition codes) with encoders G(d, d>) that can be decomposed as the product
of two 1D encoders, i.e., G(d1,d;) = Ga(d2)Gi(dy). In case that Gi(d;) and
G,(d,) are prime we provide constructions of syndrome formers of the code,
directly from G,(d;) and G,(d,). Moreover we investigate the minimality of 2D
state-space realization by means of a separable Roesser model of syndrome formers
of composition codes, where G, (d>) is a quasi-systematic encoder.

Keywords Encoders and syndrome forms ¢ 2D composition codes ¢ 2D
state-space models

1 Introduction and Preliminary Concepts

Minimal state-space realization of convolutional codes play an important role in effi-
cient code generation and verification. This question has been widely investigated in
the literature for 1D codes [3, 6], however it is still open for the 2D case. Preliminary
results concerning 2D encoder and code realizations have been presented in [10]. In
this paper we study the syndrome former realization problem for a special class of
2D codes.
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We consider 2D convolutional codes constituted by sequences indexed by Z?
and taking values in ", where [ is a field. Such sequences {w(i, j)} j)ez> can be
represented by bilateral formal power series

Wdid) =y wii, j)did].

(i.j)ez?

For n € N, the set of 2D bilateral formal power series over " is denoted by
F3p,. This set is a module over the ring [F[d;, d»] of 2D polynomials over IF. The set
of matrices of size n x k with elements in F[d|, d,] will be denoted by F"*¥[d,, d].

_ Given a subset ¢ of sequences indexed by 72, taking values in ", we denote by
% the subset of .Z),, defined by ¢ = {W | w € €}.

Definition 1 A 2D convolutional code is a subset ¢ of sequences indexed by 72
such that % is a submodule of .7}, which coincides with the image of .#%, (for
some k € N) by a polynomial matrix G(d,, d»), i.e.,

¢ =imG(dy, do) = {W(dy, o) | W(d1, do) = G(d, dr)i(dy, o), ii(dy, dy) € FLp).

It follows, as a consequence of [Theorem 2.2, [7]], that a 2D convolutional
code can always be given as the image of a full column rank polynomial matrix
G(dy,dy) € F"™k[d,, d>]. Such polynomial matrix is called an encoder of €. A
code with encoders of size n x k is said to have rate k/n.

A 2D convolutional code & of rate k/n can also be represented as the kernel
of a (n — k) x n left-factor prime polynomial matrix (i.e. a matrix without left
nonunimodular factors), as follows from [Theorem 1, [12]].

Definition 2 Let € be a 2D convolutional code of rate k/n. A left-factor prime
matrix H(d,, d>) € F"=*"[d, d,] such that
¢ =ker H(d\, d>).

is called a syndrome former of 4.
Note that w is in € if and only if H(d;, d>)w = 0.

Remark 3 This means that whereas codewords are output sequences of an encoder,
they constitute the output-nulling inputs of a syndrome former of the code.

Given an encoder G(dy,d;) of €, a syndrome former of ¢ can be obtained
by constructing a (n — k) x n left-factor prime matrix H(di,d,) such that
H(d,,dy)G(dy,dy) = 0. Moreover all syndrome formers of ¢ are of the form
U(d,,d»)H(d,,d,), where U(d,, d») € F"~*"=K[d, d,] is unimodular.
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2 Composition Codes and Their Syndrome Formers

In this section we consider a particular class of 2D convolutional codes generated by
2D polynomial encoders that are obtained from the composition of two 1D polyno-
mial encoders. Such encoders/codes will be called composition encoders/codes. Our
goal is to characterize the syndrome formers of such codes. The formal definition of
composition encoders is as follows.

Definition 4 An encoder G(d,, d>) € F"*¥[d,, d] such that
G(di,d>) = G1(d2)G1(dy), (D

where G,(d;) € FP*¥[d,] and G,(d,) € F"*P[d,] are 1D encoders, is said to be a
composition encoder.

Note that the requirement that G;(d;), for i = 1,2, is a 1D encoder implies the
condition that G;(d;) is a full column rank matrix. Moreover this requirement
clearly implies that G»(d2)Gi(d;) has full column rank, hence the composition
G,(d2)G1(d3) of two 1D encoders is indeed a 2D encoder.

The 2D composition code ¢ associated with G(d1, d>) is such that

¢ = imG(d,,d>) = G2(d>)(im G (d}))
= {W(d,.d>) | 33(dy, dy) € im(G1(d,)) such that Ww(d,,d>) = Ga(d2)2(dy, d>)}.

We shall concentrate on a particular class of composition codes, namely on
those that admit a composition encoder G(d, d5) as in (1) with G,(d») and G;(d;)
both right-prime encoders (i.e., they admit a left polynomial inverse), and derive
a procedure for constructing the corresponding syndrome formers based on 1D
polynomial methods. This procedure will be useful later on for the study of state-
space realizations.

It is important to observe that as G,(d,) and G;(d;) are both assumed to have
polynomial inverses, then G(d;, d,) also has a 2D polynomial left inverse (given
by the product of the left inverses of G(d;) and G,(d,)) and therefore G(d,, d>)
is right-zero prime!(ZP). Recall that if a 2D convolutional code admits a right-
zero prime encoder then all its 7FP encoders are rZP. Moreover, the corresponding
syndrome formers are also IZP (see Prop. A.4 of [4]).

'A polynomial matrix G(d,, d,) is right/left-zero prime (+ZP/IZP) if the ideal generated by the
maximal order minors of G(d;,d,) is the ring F[d;, d,] itself, or equivalently if and only if
admits a polynomial left/right inverse. Moreover right/left-zero primeness implies right/left-factor
primeness(rF'P/IFP).
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Since G, (d,) € F"*?[d,] is right-prime there exists a unimodular matrix U(d,) €
F""[d,] such that

U(ds)Go(ds) = m .

We shall partition U(d>) as

| La(d>)
Uldy) = [ i dz)} , ?)

where L,(d;) has p rows.
It is easy to check that, if H (d)) € F»7®*P[d] is a syndrome former of

the 1D convolutional code im G(d;) (i.e., H,(d)) is left-prime and is such that
Hi(d1)G(dy) = 0), then

|:Hl(dl)L2(d2)

Ha(dy) } G2(d2)G(d1) = 0. 3)

This reasoning leads to the following proposition.

Proposition 5 Let €, with ¢ = im G(dy,dy), be a composition code with
G(d,, dy) € ank[dl,dz] such that G(dy,dy) = G2(d2)Gi(dy), where Gy(d,) €
F"™*?[d,] and Gi(dy) € FP**[d\] are both right-prime 1D encoders. Let further

H\(d,) be a (p—k) x p ID syndrome former of im G|(d,) and define |:L2(d2):| as

H,(d»)
in (2). Then
e =[]

is a syndrome former of €.

Proof Since (3) is obviously satisfied and H(d,, d>) has size (n — k) X n, we only
have to prove that H(d, d,) is left-factor prime. Note that as H;(d1) is left-prime,
there exists R;(d;) € FP*P=%)[d,] such that H,(d,)R;(d,) = I,_. Now it is easy
to see that

R |

constitutes a polynomial right inverse of H(d, d»). Consequently H (d,, d;) is left-
zero prime which implies that it is left-factor prime as we wish to prove. O
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3 State-Space Realizations of Encoders and Syndrome
Formers

In this section we recall some fundamental concepts concerning 1D and 2D state-
space realizations of transfer functions, having in mind the realizations of encoders
and syndrome formers.

A 1D state-space model

x(t+1)=Ax() + Bu(t)
w(t) = Cx(t) + Du(t)

denoted by X7 (A, B, C, D) is a realization of dimension m of M(d) € F**"[d]

if M(d) = C(I,, — Ad)"'Bd + D. Moreover, it is a minimal realization if the

size of the state x is minimal among all the realizations of M(d). The dimension

of a minimal realization of M(d) is called the McMillan degree of M(d) and is

given by (M) = intdeg |:M1(d):| , where intdeg M (d) is the maximum degree of
r

its r-order minors [11].

As for the 2D case, there exist several types of state-space models [1, 2]. In
our study we shall consider separable Roesser models [13]. These models have the
following form:

x1@ +1,j) = Auxi1(Q, j) + Anx2(i, j) + Biu(, j)
xXo(i, j +1) = Aaix1(i, j) + Anxa(i, j) + Bou(i, j) “
y(i,j)=Cix1(i,j) + Coxa(i, j) + Du(i, j)

where A1, A12, A21, A2, By, Ba, Cy, C, and D are matrices over IF, with suitable
dimensions, u is the input-variable, y is the output-variable, and x = (x, x3) is
the state variable where x| and x, are the horizontal and the vertical state-variables,
respectively. The dimension of the system described by (4) is given by the size of x.
Moreover either Aj; = 0 or A; = 0. The separable Roesser model corresponding
to Eqs(4) with A1, = 0 is denoted by EIZZD(A“, Az, A, B, By, Cy, Cy, D),
whereas the one with A>; = 0is denoted by X3P (A1, A1z, Az, Bi, By, C1, Ca, D).

The remaining considerations of this section can be stated for both cases when
A;p = 0 or Ay; = 0, however we just consider Aj, = 0; the case Ay} = 0 is
completely analogous, with the obvious adaptations.

Definition 6 X7 (A1, A21, An, Bi, By, C1, Ca, D) is said to be a realization of
the 2D polynomial matrix M(d,, d,) € F**"[dy, d5] if

-1

_ I—And; 0 B 0
M(dy,d>) = [C Cz][ ds 1 _Azzdj ([O}dl + [Bj dz) + D.
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As it is well known different realizations of M(d, d,) may not have the same
dimension. For the sake of efficient implementation, we are interested in studying
the realizations of M (dy, d,) with minimal dimension. Such realizations are called
minimal. The Roesser McMillan degree of M(d,,d,), wr(M), is defined as the
dimension of a minimal realization of M(d,, d»).

Note that every polynomial matrix M(d,, d,) € F**"[d, d,] can be factorized as
follows:

M(dy, d2) = My(d2) M (d,), )

where M(dy) = [zrn|---|1nar§2]zv2 € F*Pldy] and Mi(d) =

N, [Ik Ikdf‘]T € FP*"[d,], with N, and N constant matrices.

If N, has full column rank and N, has full row rank we say that (5) is an optimal
decomposition of M(d, dy). As shown in [8, 9], if (5) is an optimal decomposition,
given a minimal realization Y10 (A, By, C, D_l) of My (d;) (of dimension p(My))
and a minimal realization X'? (A4, B, C,, D_z) of M;(d>) (of dimension u(M;))
then the 2D system ElzzD(An,Am,Azz,BI,BZ,Cl,Cz,D), where Ay, = B,Cy,
B, = BzD_l, C, = D_zél and D = D_2D_1, is a minimal realization of
M(d,, d,) of dimension ur(M) = p(M,) + pn(M>). A similar reasoning can
be made if we factorize M(d,,d,) = M, (dl)]l;lz(dz), where M, (d1) € F>*P[d]
and Mz(dz) € FP*’[d,], for some p € N, to obtain a minimal realization
X3P (An, A1z, Ax, B1, By, C1, Ca, D) of M(d,, d>).

Note that, since both encoders and syndrome formers are (2D) polynomial
matrices, they both can be realized by means of (4). However, when considering
realizations of an encoder G(dy, d,) = G,(d)G1(d;) we shall take A1, = 0 and
y = w; on the other hand when considering realizations of a syndrome former
H(d,,d,) = H(d,)H,(d), we shall take A1 = 0, u = wand y = 0, (cf.
Remark 3).

4 Minimal Syndrome Former Realizations of a Special Class
of Composition Codes

In the sequel the composition codes 4 to be considered are such that ¢ =
im G(d,, d3), where the encoder G(dy, d,) is as in (1) and satisfies the following
properties:
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(P1) Gi(dy) is a minimal 1D polynomial encoder? (for instance, prime and
column reduced?), with full row rank over F;
(P2) Gz(d>) is a quasi-systematic 1D polynomial encoder, i.e., there exists an

Iy ] Galds) €

invertibl trix T e F™” h that TGy(d2) = | -
invertible matrix suc a 2(d2) |:G2(d2)

F(=P%P[d,].

Note that both G;(d;) and G,(d,) are minimal encoders of the corresponding
1D convolutional codes. Moreover, G(d, d2) is a minimal encoder of €, i.e., it has
minimal Roesser McMillan degree among all encoders of &, [9, 10], in the sequel
we denote this minimal degree by u(%).

In what follows, we shall derive a syndrome former construction for the code %,
based on Proposition 5. Define

Li(dy) 0

. I}EF(”_k)X”[dl]ande(dz)z[ ro

Hi(d\) = |: _Go(dy) I

} T e F™[dy],

where Li(d)) € FP™0*?[d|] and [~G1(d>) I] € F"~P*"[d,] are 1D syndrome
formers of the 1D convolutional codes im G (d;) and im G,(d>), respectively. Let

H(d,,dy) = H\(d\)H,(d>) (6)
_ | Li(dy) O
B [—G_z(dz) 1} " @

It is easy to see that H(d, d>) is a syndrome former of . It can be shown that it

is possible to assume, without loss of generality, that (6) is an optimal decomposition
of H(dy,d,). Then

pr(H) = w(Hi) + p(Ha) = p(Ly) + p(=Ga) = p(Ly) + n(Go).

Note that since L (d) is a syndrome former of the 1D convolutional code im G (d;)
and G(d) is a minimal encoder of im G(d,), it follows that u(L;) > w(Gy),
[5, 6], and hence ugr(H) > ur(G). Moreover, (L) = u(Gy) if Li(d;) has
minimal McMillan degree among all syndrome formers of im G (d;), for instance,
if Li(d;) is row reduced, [5, 6], (which can always be assumed without loss of
generality, since otherwise pre-multiplication of H(d, d,) by a suitable unimodular
matrix U(d)) yields another syndrome former for %', with L;(d;) row reduced); in
this case ugr(H) = ur(G).

2A minimal 1D encoder is an encoder with minimal McMillan degree among all the encoders of
the same code.

3A full row (column) rank matrix M(d) € F"*¥[d] is said to be row (column) reduced if
intdeg M(d) is equal to the sum of the row (column) degrees of M(d); in that case u(M) =
intdeg M(d).



192 E. Fornasini et al.

Thus given the encoder G(d,,d,) we have constructed a syndrome former
H(d,,d,), as in Proposition 5. Moreover, based on the special properties of
G(di, d>), we have shown that the minimal realizations of H(d, d») have dimen-
sion ur(H) = pur(G) = (%) (recall that G(d,, d) is a minimal encoder).

We next show that ugr(H) is minimal among the McMillan degree of all
syndrome formers of ¢ with similar structure as H(d,, d>).

Theorem 7 Let €, with % = im G(d,, d>), be a 2D composition code, and assume
that G(dy,dr) = Ga2(d2)G1(dy), where Gi(dy) and Gy(dy) satisfy properties
Xi(d) 0 }
T be a
X21(d2) X22(d>)
syndrome former of €, where X\(d,) € FP=*r[q,], Xa1(da) € F(=P*P([d,],
X2s(dy) € F=PX0=D[dy)] and T € F™" as in (P2). Then ug(H) > ().

Proof Note that H(d,, d>)G(d,, d>) = 0 if and only if

(P1) and (P2), respectively. Let further H(d,, dy)) = [

%XI(dI)Gl(dl) =0 ®)

(X21(d2) + X22(d2)Go(dr)) G (dy) = 0.

Then X;(d;) must be a syndrome former of the 1D convolutional code im G;(d;)
and consequently (X;) > w(Gy) [6]. On the other hand we have that X»;(d») +
X2,(d2)G2(d>) = 0, that is equivalent to [X21(d2) Xzz(dz)] |:G_ éd ):| = 0, and

2(a2
therefore [X21(d2) Xzz(dz)] is a syndrome former of the 1D convolutional code

I I . I . .
[Gz(dz)] Hence u ([X21 Xzz]) Egy ([GJ) since |:G_2(d2)i| is a minimal en-

:|. Now, since H (d,, d,) = [Xl(dl) 0:| [ I 0 :| T

coder of im
[ 0 1] [X2(d2) X2r(d>)

1
G1(d>)
it is not difficult to see that

rr(H) = (X)) + 1 ([Xo1 X2]) = 1(Gr) + ([éz])

= w(Gy) + p (T_1 [Glz]) = ur(G) = u(%).

|

Corollary 8 Using the notation and conditions of Theorem 7, the syndrome former
of € given by (7) has minimal Roesser McMillan degree among all syndrome
formers of the same structure.
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Shifted de Bruijn Graphs

Ragnar Freij

Abstract We are studying a generalization of the de Bruijn graphs, with appli-
cations to storage. We use spectral methods to enumerate the Euler circuits in this
graph, which correspond to (very long) strings accessing every string of fixed length
exactly once, with the reader reset at regular intervals. We prove that, when the
alphabet is of size g, the subwords considered are of length n and a new reader
is initiated every k letters, there are exactly (¢%)!¥" /¢g**" such exhaustive words.
The enumeration generalizes classic results by Tutte, and relates crucially to subtree
enumeration in large networks.

Keywords de Bruijn graphs ¢ Euler cycles ¢ Exact enumeration ¢ Spanning
trees * String networks

1 Introduction

De Bruijn graphs are an old class of graphs [14], which have recently earned a
lot of attention from the network storage and bioinformatics communities [1, 2, 9]
but still wait for some of the attention it deserves from coding theorists. They are
used to encode large data strings in terms of their substrings carrying non-trivial
information, and provide an example of fast-encodable, fast-searchable datastruc-
tures for strings. De Bruijn graphs have also found their way to pure mathematics,
for example Cooper and Graham have constructed a higher-dimensional analogue
(where strings are replaced by arrays) [4], and Ehrenborg et al. have studied a
version that encodes permutation pattern containment [5]. The nodes of the graph
are strings of length n, and there is a (directed) edge from vy ---v, to u;---u, if
Vp eV, = Uy -+ - Uy—1. Any such graph, where the strings are from an alphabet on ¢
letters, embeds into the universal de Bruijn graph D(q, n), consisting of all ¢” such
strings, with the same adjacency relations.
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The original result of de Bruijn graphs was computing the number of Hamilto-
nian circuits in D(2, n), which by construction equals the number of binary strings
on 2" +n — 1 letters, that contain any binary n-letter string exactly once. Flye Saint-
Marie proved, in response to a question in I’ Intermédiaire des Mathématiciens, that
there are exactly 2% ~"~! such exhaustive words [6]. In subsequent work, using more
graph theoretical techniques, van Aardenne-Ehrenfest and de Bruijn generalized this
to the g-letter case [14]. Recently, Rosenfeld has neatly demonstrated how to solve
such problems using the spectral theory of arc graphs [10, 11].

A prototypical application of de Bruijn graphs in bioinformatics is related to
genome assembly [3]. Here, one has a circular genome, and in a laboratory one can
repeatedly read short subsequences of this genome. After many enough such reads,
one has read the entire genome, but it remains to put together the reads into the
original circular string. Every way to do this corresponds to an Eulerian cycle in the
de Bruijn graphs spanned by the reads. In this paper, we study a shifted version of
this problem.

This means that the relevant graph that models the gathered data has vertices
indexed by strings of length n, and there is a directed edge from vy - -- v, to u; - - - uy
if Vgg1+--vy = uy---uy—. Herek is the length of a byte, and will in practical
applications often, but not always, divide n. The universal such graph for n-letter
strings from a g-letter alphabet is denoted by D(q, n, k), and our main result in this
paper will be studying its spectrum and enumerating its Eulerian circuits.

2 Preliminaries on Graph Spectra

To fix some notation, a graph is a pair G = (V(G), E(G)) of a vertex set and
an edge set. All our graphs are directed and finite, with loops and multiple edges
allowed. When e = (u, v) is a directed edge, we write #(e) = u and h(e) = v (read
“tail of e” and “head of e”, respectively). If i(e) = t(e), then we say that e is a
loop.

A Hamiltonian circuit in a graph is a circuit that passes through every node
exactly once, and an Eulerian circuit is a circuit that passes every edge exactly
once. While it is in general NP-hard to show that a given graph has a Hamiltonian
circuit [8], having an Eulerian circuit has a much easier criterion. Indeed, a directed
graph contains an Eulerian circuit if and only if it is connected and has that the
indegree §4(v) and the outdegree §_(v) agree on each node v in G. (This result
dates back to Euler.) When this is the case, the following classic result by de
Bruijn, Aardenne-Ehrenfest, Smith and Tutte [14] relate Eulerian cycles (with a
given starting edge ep) to directed spanning trees (directed away from a given root
vertex vg). Forv € V(G), let t(G, v) be the number of trees in G directed away from
v, and for e € E(G), let €(G, e) be the number of Eulerian cycles in G starting at e.
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Theorem 1 (BEST Theorem) Let G = (V,E) be a connected digraph with
84+(v) = 8-(v) foreveryv € V. Fix eg € E and let vy = t(eg). Then

€(G.e0) = ©(G.vo) [ [ G4 — D).

ueV

Besides the original proof in [14], a good, self-contained proof of Theorem 1
occurs in [12], section 5.6. As the number of Euler cycles €(G, ey) does not depend
on ey, it follows curiously that (G, vy) does not depend on the choice of vy.
Moreover, the number of rooted trees has a following important interpretation as
a determinant (or as a product of eigenvalues):

For a digraph G on n nodes, we define its adjacency matrix A = A(G) to be the
n X n matrix whose entries A4; ; are the number of edges from node i to node j. We
also define the Laplacian matrix L = L(G) by

L,',j = _Ai,j ifi 75 j, and L,',i = 8_(1')141",'.

In particular, if G has uniform outdegree d, then L(G) = dI — A(G). As the row
sums in L(G) are zero by construction, L has 0 as an eigenvalue.

The following celebrated theorem by Tutte [13] is a directed version of the
matrix-tree theorem, and relates these matrices to the numbers (G, v) and €(G, e).

Theorem 2 Let G be a digraph on n nodes with Laplacian matrix L = L(G). Let
Mo =0, 11, ..., un—1 be the eigenvalues of L(G). Then ©(G,v) = L ]_[i7é0 Wi

n

This allows us to compute (G, v), which we will henceforth denote by t(G), as
1/n times the product of the zeroes of the (reduced) characteristic polynomial

X(L(G))(t) _ det(t] — L(G))
¢ T ¢ ‘

This is in turn the coefficient of ¢ in det(L(G) — ¢1), so it can be computed as
1 d
7(G) = — - — det(L(G) — t1)|;=0.
n dt

In the case where G is d-regular, which will interest us most, we have L(G) =
d1 — A(G), so we immediately get the following theorem.

Theorem 3 Let G be a digraph on N nodes with 6_(v) = 6+(v) = d for every
v € V(G). Fix a root vertex u € V(G). The number of rooted spanning trees in G is

d
w6 = 3+ L HAG) D=,
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and the number of Eulerian cycles in G is
€(G) = (d - D" -2(G,u).

The arc graph of G is the digraph I"'(G) with V(I'(G)) = E(G), and an edge
(e, f) whenever h(e) = t(f). In particular, I"(G) has no multiple edges, and
has a loop for every loop in G. Clearly an Eulerian cycle in G corresponds to
a Hamiltonian cycle in I'(G). The following relationship between the spectra of
G and I'(G) was demonstrated in [10], but will here be given a slightly different
presentation.

Let D4 and D_ be matrices with rows indexed by edges and columns indexed by
vertices of G. The entries are given by Dy (e, u) = ly=p() and D_(e, u) = 1= (),
so D4 keeps track of incoming edges and D_ keeps track of outgoing edges from
every node. It is easy to verify that the adjacency matrices can be written

A(G) = D, DT
and
A(I'(G)) = DT D_ = (DI D)T.
But this implies that, for every eigenvalue A # 0, we have
AG)x = D, DT (x) = Ax <= A(I'(G))" DI (x) = D' D, D’ (x) = ADT (x),

so the non-zero eigenvalues of A(G) and A(I'(G)) agree. This proves that the
characteristic polynomials satisfy the equation

XA G))(@0) = "N y(AG) (), (1

where M and N are the numbers of edges and vertices respectively in the graph G.

3 Shifted DeBruijn Graphs

The DeBruijn graphs were constructed to solve the following innocent looking
problem: Is there a binary word wy ---w, that, when read cyclically, contains all
binary words on n letters as a factor exactly once? If so, how many such words are
there? The problem was first solved in [6], and the solution was later generalized to
the g-letter case in [14]. The strikingly beautiful result is that there are exactly
()"

qn
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such words. As explained in the introduction, these words are usually interpreted as
Hamiltonian cycles in the digraph D(q, n). But when n > 1, the edge u; - - - u,—; <
uy - --u, of D(g,n —1) can be considered labelled by the string u; - - - u, € [g]", and
under this correspondence we see that D(g,n) = I'(D(g,n — 1)), so we might as
well regard the exhaustive strings as Eulerian cyclesin D(gq,n — 1).

In this paper, we introduce the three-parameter family of shifted de Bruijn
graphs D(q,n,k), for ¢ > 1,1 < k < n. The set of nodes is the same as
before, V(D(q,n,k)) = V(D(g,n)) = [q]", but this time we have an edge
(u,v) € E(D(g,n,k)) whenever uy4;---u, = uj---u,—;. In particular, we
get the specialization D(gq,n,1) = D(q,n). It is also easy to see that we have
D(q.nt, k) = D(q%, n, k) for every integer £. So the shifted de Bruijn graphs are
only novel when n and k are relatively prime.

As explained in the introduction, computer science applications will often have
n divisible by k (as a string typically consists of an integer number of bytes).
In applications from chemistry and bioinformatics, where the bytes for example
correspond to observed DNA sequences read from a long string, such assumptions
are much less natural. The notion of shifted de Bruijn graphs was suggested by
Richard Ehrenborg (personal communication).

We extend our definition to the case 0 < r < k, by letting D(q, r,k) have
q" vertices (labelled by words in [¢]") and g¥~" arcs between every ordered pair
(u, v) of nodes. The following is our key lemma for understanding shifted de Bruijn
graphs, and also explains why the definition is natural when r > k.

Lemma 4 For any integers ¢,k > 1, n > 0, we have I'(D(q,n,k)) = D(q,n +
k, k).

Proof We can label the edges of D(q,n, k) as e,, by (n+k)-letter words w € [¢]" ¥,
where 7(€y; -, ) = w1y and h(ey ., ) = Ug+1--Up+k. Note that when
n < k, there are exactly ¢~ words with this property, for every u; - --u, and
W1+ Utk -

Now {e,, : w € [q]"T¥} = V(I'(D(q.n.k))), and [q]"T* = V(D(q.n + k., k)).
There is an arc (ey, e,) in I'(D(q,n,k)) if and only if ugy1---styqr = vi---vy,
which is equivalent to (u, v) being an arc of D(g,n + k, k). This proves the lemma.

O

Lemma5 Let 0 < r < k, and fix any v € V(G). Then t(D(q,r,k),v) =
k(¢g"—=1) ,—r
q q -

Proof In the range r < k, D(q,r, k) is a complete graph on N = ¢g" nodes with
duplicated edges (in both directions). A spanning tree of D(q, r, k), cannot contain
two edges between the same pair of points, so it must correspond to a spanning tree
in Ky, together with N — 1 independent choices of one out of g*~" parallel edges.
Indeed, once the tree is fixed, the direction of each edge is determined by the tree
being rooted at v.
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A complete graph has N V=2 spanning trees (this is folklore, see [12] for a proof),
which gives

r(D(q, r k), V) — NN—2q(k—r)(qr_1) — qr(qr_z)q(k—r)(qr_l) — qk(qr_l)q_r.

4 The Spectrum of Shifted de Bruijn Graphs

Since the shifted de Bruijn graphs are regular, we can apply Theorem 3 to count
the number of Euler cycles via the spectrum of the adjacency matrix (rather than
the laplacian). This is valuable, because by Lemma 4 the shifted de Bruijn graphs
are arc graphs, so we can use Eq. (1) to understand the spectra of their adjacency
matrices.

Theorem 6 The number of Eulerian cycles in D(q,n, k) satisfies

e(D(g,n. k) = (@) g7

Proof We first consider the number of rooted trees t(D(q, n, k)):=t(D(q,n, k), u)
(recall that this does not depend on u). By Theorem 3, we have

d
©(D(q.n.k)) = % g AP k) (O i=a-

Note that D(g,n,k) has M = ¢"™* edges and N = ¢" vertices. By Lemma 4,
we have that D(g,n + k,k) = I'(D(g,n, k)), and by Eq. 1, we thus get

n—+k

X(AD(g,n + k. k) =17 =" x(A(D(q,n. k))).

It follows by induction that
X(A(D(g,n, k) = 197" x(A(D(g, . k))),

where r is the remainder of n modulo k. The graph D(q,n,k) is ¢*-regular for
every n by construction, and thus

x(A(D(q,n,k)))(¢") = x(L(D(g,n,k)))(0) =0
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(as the Laplacian matrix is always singular). We can now use Theorem 3 (together
with the observation that D(q, n, k) has ¢" vertices and is d = g*-regular for every
n) to obtain

d
©(D(g.n.k)) = q7" 1 x(A(D(q.n. k) (O)]:=4
d n r
=q "1 x(ADg.r ) O)=g

—n n__,r d
=q"g" ”’EX(A(D(q,r,k)))(t)lmqk

=q7"¢"" g’ t(D(q. 7. k))
— q—nqk(q”—q’)qk(q’—l) — qk(q”—l)q—n’
where the last line is Lemma 5.
Finally, Theorem 3 yields

e(D(g.n.k)) = (d — 1) - =(D(q.n.k))
= (qk _ 1)!q”qk(q”—l)q—n

= ()N q™ "

|

Note that this formula is consistent with the “homogeneity” property

D(q,n.k) = D(q", 7 %), and reduces when k = 1 to the known formula
g7

e(D(g,m) = L.

As mentioned in the introduction, application of de Bruijn graphs often concern
certain subgraphs of the universal de Bruijn graph. Indeed, we are often not
interested in all 7 letter strings on a g letter alphabet, but only in some certain subset
of them, for example th