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Preface

It is a distinct pleasure for us to present this volume, which gathers the results of
the Proceedings of the 4th International Castle Meeting on Coding Theory and its
Applications (4ICMCTA) held at Palmela Castle, Portugal, on September 15–18,
2014.

The 4ICMCTA meeting was organized under the auspices of the Research
& Developmente Center for Mathematics and Applications (CIDMA) from the
University of Aveiro. Following in the spirit of the previous installments held at
La Mota Castle, Spain, in 1999 and 2008, and in Cardona Castle, Spain, in 2011,
the meeting was a good opportunity for communicating new results, exchanging
ideas, strengthening international cooperation, and introducing young researchers
into the Coding Theory community.

The event’s scientific program consisted of four invited talks and 39 regular talks
by authors from 24 different countries. This volume contains the contribution of one
invited speaker, as well as 37 communications presented at the meeting. The topics
represent some of the most relevant research areas in modern Coding Theory: codes
and combinatorial structures, algebraic geometric codes, group codes, quantum
codes, convolutional codes, network coding and cryptography. We thank all the
authors for their participation. We are also grateful to the scientific committee and
to all the external reviewers who implemented a careful reviewing process that
guaranteed the high quality of the accepted contributions. Moreover, we would like
to mention the valuable support of Ángela Barbero and Øyvind Ytrehus from the
steering committee.

We also thank all the people who made this meeting possible, namely the
Organizing Committee (Paulo Almeida, Isabel Brás, Diego Napp, Ricardo Pereira
and Rita Simões), Edubox SA and the University of Aveiro for the administrative
support. In particular, we thank CIDMA, the Portuguese Foundation for Science and
Technology (FCT) and the Portuguese International Center for Mathematics (CIM)
for their financial support.
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vi Preface

Last but not least, we would like to thank CIM and Springer-Verlag for giving
us the opportunity to publish these proceedings in the Springer CIM Series in
Mathematical Sciences.

February 2015 Raquel Pinto
Paula Rocha
Paolo Vettori
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Part I
Invited Talk



Capacity of Higher-Dimensional Constrained
Systems

Brian Marcus

Abstract One-dimensional constrained systems, also known as discrete noiseless
channels and sofic shifts, have a well-developed theory and have played an impor-
tant role in applications such as modulation coding for data recording. Shannon
found a closed form expression for the capacity of such systems in his seminal
paper, and capacity has served as a benchmark for the efficiency of coding schemes
as well as a guide for code construction. Advanced data recording technologies,
such as holographic recording, may require higher-dimensional constrained coding.
However, in higher dimensions, there is no known general closed form expression
for capacity. In fact, the exact capacity is known for only a few higher-dimensio-
nal constrained systems. Nevertheless, there have been many good methods for
efficiently approximating capacity for some classes of constrained systems. These
include transfer matrix and spatial mixing methods. In this article, we will survey
progress on these and other methods.

Keywords Constrained systems • Capacity • Entropy • Constrained coding

1 Introduction

In contrast to error correction coding, the main philosophy of constrained coding is
to avoid patterns that are more prone to error rather than to correct error patterns.
In some systems, there are certain patterns that will likely lead to failure and so
a constrained encoder encodes user data sequences in a way that avoids the most
problematic patterns. In practice a constrained encoder is used in cascade with an
error correction encoder, and in recent years there has been much work done on

B. Marcus (�)
Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
e-mail: marcus@math.ubc.ca

© Springer International Publishing Switzerland 2015
R. Pinto et al. (eds.), Coding Theory and Applications, CIM Series
in Mathematical Sciences 3, DOI 10.1007/978-3-319-17296-5_1
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4 B. Marcus

codes that are both constrained codes and error correcting codes. In fact, the line
between constrained coding and error correction code has become rather blurred.
However, in this article we will not consider questions of error correction.

2 1D Constraints (Sequences)

2.1 Motivation: Magnetic Recording

Historically, the main motivation for constrained codes was the magnetic recording
channel. The classical system is illustrated in Fig. 1. At every tick of a clock cycle,
a ‘1’ is recorded by changing the direction of current in the write-head and a ‘0’ is
recorded by keeping the direction the same. This effectively encodes the data into a
sequence of magnets. When reading, a ‘1’ is sensed by a change in magnetization
and converted into a readback voltage and a ‘0’ is sensed by the absence of voltage.

It is desirable that the 1’s occur sufficiently frequently but not too frequently. The
reason for the former is clock drift: the clock is not perfect and thus must be adjusted
in order to keep synchronization with the data patterns; this is done by observing a
sufficient set of nonzero voltage samples. The reason for the latter is intersymbol
interference: if 1’s are too close to each other, then they could interfere and cancel
out or mislead the detector to thinking that at least one of the 1’s is in the wrong
position (see Fig. 2).

Clock drift and intersymbol interference can be mitigated by encoding data
into binary sequences with lower and upper bounds d and k on the runlengths of
zeros between successive 1’s. This constraint is called the RLL(d; k) constraint (see
Fig. 3). Such a constraint effectively controls separation between peaks/troughs in
the read waveform.

As an example, the following sequence satisfies RLL.1; 3/:

1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1

Fig. 1 Magnetic recording channel
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Fig. 2 Intersymbol interference
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Fig. 3 RLL constraint

A constrained encoder (also known as a modulation encoder) encodes arbitrary
user data sequences into constrained sequences. For example, the following table
represents an encoder for the RLL.1; 3/ constraint at rate 1:2:

Previous input Present input Present output

0 0 10

1 0 00

� 1 01

Here a (‘present’) 1-bit input is encoded into a 2-bit output as a function of the input
and the previous input. The reader can check that all encoded sequences satisfy
RLL(1,3). Note that the input bit can be recovered form the 2-bit output by simply
reading off the 2nd bit. In particular, the decoder operates independently block to
block, and this feature avoids error propagation in decoding. This particular encoder,
known as Modified Frequency Modulation, was one of the first encoders to be used
in magnetic recording.

Constrained coding continues to enjoy widespread interest beyond data record-
ing. We refer to [13] for a recent example where constrained codes are used to
provide a wide range of trade-offs between rate of information transmission and
performance of energy transfer in certain wireless communication systems.
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2.2 Definitions and Examples

A 1D constraint (or 1D constrained system) is the set of sequences obtained
by sequentially reading the labels of a finite directed labeled graph. The labels
are chosen from a finite set called an alphabet. The labeled graph is often
called a presentation and the sequences so obtained are often called the allowed
sequences. Given a 1D constrained system, one can always find a presentation that is
deterministic in the sense that at each state, the outgoing edges are labeled distinctly.

The classical examples are the RLL.d; k/ constraint (Fig. 3), and the CHG.b/
constraint consisting of sequences of symbols ˙1 where the absolute value of the
running sum is required to be bounded by b for all sequences independent of length
(Fig. 4); this constraint was imposed to control the spectral content of the set of
encoded signals.

Other examples, which are not necessarily of practical interest, include the
golden mean constraint where 1’s are required to be isolated (Fig. 5), the even (resp.,
odd) constraint where runlengths of zeros are required to be even (resp., odd) (Figs. 6
and 7). For instance, the following sequence satisfies the even constraint:

0 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1

For more background on 1D constraints, see [31]. For background on the related
concept of sofic shift, see [25].

0 1 2 . . . b

+1 +1 +1 +1

−1−1−1−1

Fig. 4 CHG(b) constraint

1

0

0

Fig. 5 Golden mean constraint

0

0

1

Fig. 6 EVEN constraint
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Fig. 7 ODD constraint 0,1

0

2.3 1D Capacity, Exact Computation

Let X be a 1D constraint and Bn.X/ be the number of allowed sequences of
length n. Define the capacity of X as:

c.X/ WD lim
n!1

logBn.X/

n

So, the capacity is the asymptotic growth rate of the number of allowed sequences.
In that sense, it is a measure of the size of a constraint. Its operational importance
derives from the classical result of Shannon:

Theorem 1 ([39]) Given a 1D constraint X , c.X/ is the supremum of rates of all
possible decodable constrained encoders for X .

Here, decodable means decodable in any sense, including state dependent
decoders. The result does not necessarily yield codes at rate exactly equal to c.X/.
The following results go further.

Theorem 2 ([1, 19]) Any rate � c.X/ can be achieved with a finite-state encoder
and non-catastrophic decoder.

We won’t give a precise definition of ‘non-catastrophic,’ but the rough idea is
that the decoder will not propagate errors. In most cases of interest, this can be
achieved by a sliding-window decoder. In fact, the proof is constructive and in many
cases gives efficient encoders by the so-called state-splitting algorithm. However, in
today’s disk drives, rates of encoding are very high and efficient encoding methods
are much different.

The capacity of a 1D constraint is explicitly computable. As a simple example,
consider X D G, the golden mean constraint. It is easy to show that

BnC1.X/ D Bn.X/C Bn�1.X/

and so the sequence Bn.X/ is Fibonacci, up to some initial conditions. This

sequence grows like powers of the golden mean and hence c.X/ D log 1Cp5
2
�

0:69: This also explains the origin of the name of the golden mean constraint.
In general, the computation proceeds using simple linear algebra, which we

describe as follows. Let A be the adjacency matrix of a deterministic presentation
of X ; this means that the rows and columns of A are indexed by the vertices of the
presentation and Auv is the number of edges from u to v. Note that the information
given by the labels of the graph is not incorporated in A.
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Theorem 3 ([39]) c.X/ D log�.A/, where A is the adjacency matrix of a
deterministic presentation of X and �.A/ is the largest eigenvalue of A.

For the golden mean constraint, we see that the adjacency matrix of the
presentation in Fig. 5 is:

A D � 1110
�

An easy computation shows that �.A/ D 1Cp5
2

, agreeing with the computation of
c.X/ above.

3 2D Constraints (Arrays)

3.1 Motivation: 2D Recording, Statistical Mechanics

In magnetic and optical storage disks, data is recorded on parallel tracks in a 2D
medium. In analogy with intersymbol interference, a constraint may be imposed
to limit inter-track interference; this could potentially increase track density and
overall information density.

Over the past few decades, there has been particular interest in the development
of holographic data storage systems. While holographic recording still holds
promise, it has not advanced sufficiently to compete with the consistent advances of
more conventional magnetic and optical recording. Nevertheless, the system setup
illustrates how constrained coding may be used in storage devices of the future.

As indicated in Fig. 8, in such a system a laser illuminates a programmable array,
called a spatial light modulator (SLM). A given 2D array of 0’s and 1’s is represented
by a so-called object beam. The interference pattern between the object beam and
a simple plane wave, called a reference beam, at given angle of propagation, is

Fig. 8 Holographic recording channel
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recorded in a three-dimensional medium, such as a crystal. The object beam can be
reproduced by illuminating the crystal with the same reference beam used to record
it; the object beam can be effectively recovered on an array known as a charge
coupled device (CCD). By varying the angle of the reference beam, many arrays
can be recorded in the same medium.

While data is physically recorded in a 3D medium, the data really is a collection
of 2D arrays. Since light from two adjacent pixels may interfere, inter-symbol
interference can be a problem, and for this reason a constraint may be imposed to
limit the distance between two 1’s. For instance, 1’s may be required to be isolated
both horizontally and vertically. See Fig. 9 for a typical array that satisfies this
constraint. Often this is known as the hard square constraint, because it models the
hard square lattice gas in statistical mechanics: arrays of “hard” particles, positioned
at sites labelled 1, that cannot overlap [40] (see Fig. 10).

Since local variations of light intensity can occur from pixel to pixel, another
constraint of interest is the imposition of a balance between the number of 0’s and
1’s within small regions; this enables the selection of a good local threshold for
detection. For more information on the holographic channel, see [2].

Another application of 2D constrained coding is that of 2D barcodes (Fig. 11),
used for individual product identification, such as PDF417 for airline tickets and QR
for automobiles [42].

Fig. 9 Hard square (HS)
constraint

00 0 0

0 0 0 0

1 0 0 0

0 0 0 0

1 0 0 0

1

1

1

1

1

1

Fig. 10 Hard square lattice
gas
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0 0 0 0

1 0 0 0

1
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1

1

1
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Fig. 11 Bar codes

3.2 Definitions and Examples

A 2D constraint is the set of all 2D arrays on the square lattice defined by a pair
of finite directed labelled graphs (“horizontal” and “vertical”). This can be made
precise in many different ways: a pair of vertex-labeled graphs with the same labeled
vertices (but different edges), a pair of edge-labeled graphs with the same labeled
edges (but different vertices), and a collection of labeled square tiles with colored
edges such that the colors of adjacent tiles match up (see, for example, [27]).

However, for our purposes, we find it useful to focus on two special classes of
2D constraints: the square of a 1D constraint, and finite type constraints, described
as follows.

Given a 1D constraint X , we define the square, X˝2, to be the set of all arrays
that satisfy X in both the horizontal and vertical direction. For example, observe
that the hard square constraint, HS , defined above is the same as the square of the
golden mean constraint:HS D G˝2

As another example consider, EVEN˝2, the 2D EVEN constraint, where run-
lengths of 0’s are required to be even both horizontally and vertically; a typical
pattern in this constraint is:

0 1 0 0 0 0 1 1 0 0 1 1 1 0

0 0 1 0 0 1 0 0 0 0 1 0 0 1

0 0 0 1 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0

1 1 0 0 1 1 0 0 1 0 0 0 0 1

0 1 0 0 0 0 1 1 1 1 0 0 1 0

Similarly, we have ODD˝2, the 2D ODD constraint.
Given a finite list F of finite patterns, we define the constraint of finite type

(also called shift of finite type) XF as the set of all arrays which do not contain any
sub-array from F . As an example, the hard square constraint HS D G˝2 D XF

where

F D f 11 ; 1
1 g:
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A variation of HS is the Non-attacking kings constraint (NAK), where 1’s are
isolated horizontally, vertically and diagonally: NAK D XF where

F D f 11 ; 1
1 ;

1
1 ;

1
1 g;

with typical allowed pattern:

0 1 0 1 0 1 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 1 0 1 0 0 1 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 1 0 1

:

Such a constraint may be imposed if intersymbol interference is not adequately
handled by the hard square constraint.

Finally, we mention the Read/Write Isolated Memory constraint [17], where 1’s
are required to be isolated horizontally and diagonally, but not necessarily vertically:
RWIM D XF where

F D f 11 ; 1
1 ;

1
1 g

with a typical allowed pattern:

0 1 0 1 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0 1 0 0 0 0 0

1 0 1 0 0 0 0 0 1 0 0 1 0 1

Here, instead of a physical 2D array, the array represents a sequence of rewrites of a
physical 1D memory. The horizontal constraint is imposed to mitigate intersymbol
interference (thereby aiding the read process) and the diagonal constraint is imposed
to eliminate the possibility that the write-head will need to re-write two adjacent
memory cells in one rewrite (thereby aiding the write process).

3.3 2D Capacity

The definition of capacity of a 2D constraint naturally generalizes the definition of
capacity of a 1D constraint.

For a 2D constraint X , let Bn�n.X/ denote the number of allowed arrays of size
n � n and define the capacity of X as:

c.X/ WD lim
n!1

logBn�n.X/
n2
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In contrast to a 1D constraint X , where the capacity is exactly the log of the
largest eigenvalue of a specific matrix associated to X , there is no known general,
tractable expression for capacity of a 2D constraint (say in terms of a pair of labelled
graphs or a finite list of forbidden finite patterns). In fact, even for constraints as
simple as the hard square constraint, the exact capacity is not known. The quest for
c.HS/ has become somewhat of a “holy grail,” in part because of its interpretation
as the free energy of a hard square lattice gas [40].

3.4 Examples of Exact Computation

There are some constraints for which capacity is known exactly. One example is a
class of constraints with algebraic structure: a group shift is a shift-invariant, closed
subgroup of GZ2 for some finite groupG. The capacity of a group shift is known to
be the log of a positive integer, which can be viewed as the size of a basis in some
sense [26]. A special case, of particular interest in coding theory, is the class of 2D
convolutional codes, which are group shifts where G D F n for a finite field F and
positive integer n.

There are other isolated examples, where capacity is known exactly; however, in
each case, constraints obtained by seemingly small variations do not have known
capacity:

1. c.RLL.d; d C 1/˝2/ D 0, but c.RLL.d; d C 2/˝2/ is unknown [21].
2. c.CHG.2/˝2/ D 1=4, but for b � 3, c.CHG.b/˝2/ is unknown [27].
3. c.ODD˝2/ D 1=2, but c.EVEN˝2/ is unknown [27].
4. The hard hexagon model is the set of binary configurations on the 2-dimensional

triangular lattice where adjacent vertices cannot both be 1. The capacity of this
model is known to be log.�/ where � is the largest root of a specific degree-24
polynomial [3]. Yet, for similar constraints such as HS , NAK, and RWIM, the
capacity is unknown.

5. The q-colored checkerboard Cq is the set of all q-ary configurations on the
2-dimensional square lattice such that adjacent sites have different symbols
(each of the q symbols is viewed as a ‘color;” so this constraint is the set of
configurations of q colors such that adjacent sites have different colors). Cq can
be viewed as a constraint of finite type defined by forbidden list:

F D fab; a
b
W a D bg



Capacity of Higher-Dimensional Constrained Systems 13

For instance, a typical element of C3 is

0 1 0 2 1 0 1 0 1 2 1 2 1 2

2 0 2 1 2 1 0 2 0 1 0 1 0 1

1 2 1 0 1 0 1 0 1 2 1 2 1 0

0 1 0 2 0 2 0 1 0 1 0 1 2 1

It is easy to see that c.C2/ D 0. It is known [23] that c.C3/ D .3=2/ log.4=3/,
yet for q � 4, c.Cq/ is unknown.

6. The dimer model is the set of all tilings of the plane by dominos (1� 2 and 2� 1
rectangles). See Fig. 12.
This set can be viewed as the set of all configurations on an alphabet of four
symbols fL;R; T;Bg subject to the constraint that to the right of an L must be
an R, to the top of a B must be a T, etc. In this way, one sees that this is a
constraint of finite type defined by the forbidden list

F D fLL;LT;LB;RR; TR;BR; T
L
;
T

R
;
T

T
;
B

B
;
L

B
;
R

B
g

See Fig. 13.
It is known [20] that

c. Dimers / D 1

16�2

Z �

��

Z �

��
log.4C 2 cos� C 2 cos�/ d�d�

However, for the monomer-dimer model (i.e., tilings by dominos and 1 � 1
squares), the capacity is unknown.

Fig. 12 Dimer tiling

Fig. 13 Dimer tiling as a
constraint of finite type L

L L
LL

L
L

R

R R
R

R
R
R

T T
T T T T

T T
TT

B B
B B B B

B
BB

B
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3.5 Strip Systems

While only a handful of 2D constraints have known capacity, there has been much
success in obtaining excellent approximations to capacity. In the following sections,
we discuss some approaches to approximations. There are many other techniques,
such as to [5, 7, 11, 14, 15, 34, 38] and many more.

Many numerical approximations are based, in one way or another, on the notion
of a strip system, Sn WD Sn.X/, defined for any given 2D constraint X and
positive integer n, as the set of allowed arrays of X on an n-high strip. A typical
configuration for X D HS and n D 4 is:

" � � � 0 1 0 0 0 0 1 0 0 0 1 � � �
n � � � 0 0 0 1 0 0 0 1 0 1 0 � � �
j � � � 0 0 1 0 1 0 1 0 0 0 0 � � �
# � � � 1 0 0 0 0 0 0 0 0 1 0 � � �

Observe that Sn itself can be viewed as a 1D constraint, with alphabet consisting of
all allowed columns configurations of height n (over the original alphabet of the 2D
constraint X ). The following result is an easy consequence of the definition.

Theorem 4 Let X be a 2D constraint and cn.X/ WD c.Sn/. Then

lim
n!1

cn.X/

n
D c.X/:

Thus, 2D capacities can be approximated by 1D capacities. However, the
convergence is typically very slow because generally the time to compute cn.X/
is exponential in n, owing to the exponential size of the alphabet of Sn.

Now assume, for simplicity, that X is a nearest neighbour constraint; this means
thatX is a constraint of finite type, defined by forbidden patterns only on rectangles
of size 1 � 2 and 2 � 1. For instance, the hard square constraint, HS , is nearest
neighbour. For such a constraint, letAn denote the set of all allowed n-letter columns

an

:::
a2
a1

in X . Then the pair c D
an

:::
a2
a1

, d D
bn

:::
b2
b1

is allowed in Sn if and only if

anbn

:::
a2b2
a1b1
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is allowed in the original 2D constraint X . Defining the horizontal transfer matrix
Hn, indexed by An, by:

.Hn/c;d D 1 iff cd is allowed

we see that cn.X/ D log.�.Hn//. It follows that

c.X/ D lim
n!1

log.�.Hn//

n
:

3.6 Numerical Approximations in Symmetric Case

In this section we give a rough idea of an efficient way to find lower bounds on the
capacity of certain 2D constraints.

For this, assume that the constraint is not only nearest neighbor but also the
square of a 1D constraint that is symmetric in the sense that ab is allowed iff ba
is allowed (note that the hard square constraint satisfies all of these properties).
Then each Hn is a symmetric matrix. It follows that �.Hn/ is lower bounded by its
Rayleigh quotients; in particular, letting 1n denote the vector of all 1’s, we have

�.Hn/ � 1nHn10n
1n � 10n

;

where v0 denotes transpose. It follows that for all p,

�..Hn/
p/ � 1n.Hn/

p10n
1n � 10n

;

Thus,

c.X/ D lim
n!1

log.�..Hn/
p//

pn
� lim

n!1
1

pn
log

1n.Hn/
p10n

1n � 10n
Since the limit is over n, we must, at the very least, construct Hn for ever

increasing n in order to obtain good lower bounds. However, observe that the
numerator can be interpreted as the number of allowed n � .p C 1/ arrays, and
so we can count patterns from top to bottom instead of from left to right:

 p C 1!
" 1 0 0

j 0 1 0

n 1 0 1

j 0 1 0

# 1 0 0
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Letting Vp denote the vertical transfer matrix for a strip of width p C 1, we have

1n.Hn/
p10n D 1p.Vp/n�110p

and so

c.X/ � lim
n!1

1

pn
log

1p.Vp/n�110p
1p10p

This lower bound is much easier to compute: instead of calculating .Hn/
p for a

fixed power p and different matrices Hn, we calculate .Vp/n for a fixed matrix Vp
and different powers n. Since the powers of a nonnegative matrix grow like powers
of the largest eigenvalue, we then obtain

Theorem 5 ([32]) Let Vp denote the vertical transfer matrix for a strip of width
p C 1.

c.X/ � .1=p/.log.�.Vp// � log.�.V0///:

This result was later rediscovered and improved:

Theorem 6 ([6, 9]) Given p and q,

c.X/ � .1=p/.log.�.VpC2q//� log.�.V2q///

Calkin and Wilf also obtained upper bounds using similar considerations.
Further improvements on lower bounds were obtained in Louidor-Marcus [27] by

replacing the sequence 1n with other sequences of vectors yn, such that yn.Hn/
py0n

represent “weighted counts.” Using these techniques, c.NAK/ was determined to
within 7 digits, c.RWIM/ to within 4 digits, and c.EVEN˝2/ to within 2 digits.

Further improvements, especially on lower bounds, have been recently obtained
by Chan and Rechnitzer [8], using a variation of transfer matrices (called “Corner
Transfer Matrices”), originally developed by Baxter in his solution to the capacity
of the hard hexagon model. Using these methods, they have improved the estimates
above and determined the capacity of the hard square constraint to within 17 digits.

3.7 Asymptotic Rate of Approximation

Recall that for 1D constraints, the capacity can be computed exactly as the log of
the largest eigenvalue of a matrix associated with a given constraint. One might ask
if the same holds for 2D constraints (possibly with an infinite dimensional matrix)?
A sobering thought is that it is algorithmically undecidable to decide whether a
constraint has strictly positive capacity [4].
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But there is another way to think about this. One can ask what real numbers occur
as the capacity of a 2D constraint? The analogue for 1D capacities is known. To
describe this result, we need the notion of an algebraic integer, which is defined as
a root of a polynomial with integer coefficients and leading coefficientD 1. For each
algebraic integer, there is a unique such polynomial, called the minimal polynomial,
of minimal degree. The roots of such a polynomial are known as the algebraic
conjugates of an algebraic integer. A Perron number is an algebraic integer which
strictly dominates in absolute value all of its algebraic conjugates.

Theorem 7 ([24]) A real number c � 0 is the capacity of a 1D constrained system
iff it is the log of a root of a Perron number.

The “only if” part is a fairly easy consequence of the fact that the capacity is the
log of the largest eigenvalue of a matrix with nonnegative integer entries. The “if”
part is much more subtle, but is constructive given the minimal polynomial.

In contrast, the characterization of numbers which occur as the capacity of
a 2D constraint is given by a computational-theoretic, rather than algebraic,
characterization as follows.

Theorem 8 ([18]) A real number c � 0 is the capacity of a 2D constrained system
if and only if c is right recursively enumerable (rre), i.e. there is an algorithm
(Turing machine), which, on input n, produces a rational number tn such that
tn � c and limn!1 tn D c

The “only if” part can be proved using the approximations given in the definition
of capacity, and in fact tn WD cn.X/

n
works. The “if” part is again far more subtle, but

somewhat constructive, in the sense fact that for any given rre number, a constraint
can be constructed given the associated Turing machine.

Unfortunately, rre numbers, and hence 2D capacities, can be arbitrarily poorly
approximable. However, some are better than others. We say that a real number
c � 0 is approximable in polynomial time if there is an algorithm (i.e., Turing
machine), which, on inputn, produces a rational number tn, computed in polynomial
time, s.t. jtn � cj < 1=n: If the capacity of a 2D constraint is approximable in
polynomial time, then we can regard its capacity as being “within reach,” if not
exactly known. The capacity of the hard square constraint has this property:

Theorem 9 ([16, 35]) c.HS/ is approximable in polynomial time.

The proofs both rely on a notion of strong spatial mixing but otherwise are quite
different. Pavlov’s approximations are easier to describe: let rn WD cnC1.HS/ �
cn.HS/; he shows that rn converges to c.HS/ exponentially fast and then “trades
off” this exponential convergence with the exponential time to compute rn, yielding
polynomial approximability.

Since then, techniques from both proofs have been applied to other constraints.
Marcus and Pavlov [29, 30] have used techniques based on Pavlov’s approach to
prove polynomial approximability for some general classes of constraints. And
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Wang-Yin-Zhong [43] used the Gamarnik-Katz technique to prove polynomial
approximability of c.RWIM/. However, at present, it is unknown whether c.NAK/
is polynomially approximable.

3.8 Higher Dimensions

One can consider d -dimensional constrained systems for any dimension d , in
particular the d -th power X˝d of a 1D constraint. which generalizes the square
of a 1D constraint. Most capacity approximation techniques extend to higher
dimensions, but are generally less accurate. There are also a few cases where
capacities are known exactly. For instance, exact capacity is known for group shifts
in all dimensions. And for all d , c.CHG.2/˝d / D .1=2/d , and c.ODD˝d / D 1=2

[27].
It is easy to see that for any 1D constraint X , the capacity c.X˝d / is monotoni-

cally non-increasing in d , and so the limit as d !1 exists. Can one compute this
limit?

The independence entropy of a 1D constraint measures the contribution to
capacity attributed to sequences of positions whose values can be freely switched
without violating the constraint. This concept was developed in [28] (where the
reader can find a precise definition), based on the precursor notion of maximal
insertion rate developed in [36]. The independence entropy of a 1D constraint turns
out to be explicitly computable, and has the following significance:

Theorem 10 ([33]) For a 1D constraint X , limd!1 c.X˝d / equals the indepen-
dence entropy of X .

So, while the computation of capacity for d -dimensional constraints, d � 2, is
extremely challenging, it is very easy to compute in the limit as d !1.

3.9 Encoding for 2D Constraints

Recall from Sect. 2.3 that the capacity of a 1D constraint is the maximal rate of an
invertible encoder and that general efficient encoding methods exist. While in some
sense capacity of a 2D constraint is the maximal rate of an encoder, the theory and
practice of 2D encoding is far behind. Here, we mention just a few ideas.

One simple idea is to use 1D encoding techniques to encode into strip systems
and then insert buffer rows between strips to ensure that the constraint is satisfied
across the strips. This works only for certain constraints such as the hard square,
where one can insert a buffer row of all 0’s. As a typical example, consider
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0 1 0 1 0 0 1 0 1 0 0 0 1 0

1 0 0 0 0 1 0 0 0 1 0 1 0 1

0 1 0 0 1 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 1 0 0 1 0

1 0 0 0 0 1 0 0 0 0 0 1 0 1

0 0 1 0 1 0 1 0 1 1 0 0 0 0

A more interesting class of encoders is the class of 2D Bit Stuffing Encoders
[37]. Again this works only for certain constraints. For example, for the hard square
constraint, one encodes an information sequence in a row-by-row rastering fashion:
for each information bit ‘0’, write ‘0’ in a given position; for each information bit
‘1’, write ‘1’ in a given position and a ‘stuffed’‘0’ immediately below and to the
right in order to guarantee that the constraint is satisfied. One decodes sequentially
by discarding ‘stuffed’ ‘0’s. This scheme is then improved upon as follows.

1. First encode an information sequence by a variable-rate transformer into a biased
IID.p; 1�p/ sequence (i.e., in the output sequences of the transformer, 0 appears
with probability p and 1 appears with probability 1 � p).

2. Then write encoded bits as described above.
3. Optimize over p: increasing p from 1/2 to 1 reduces the number of ‘stuffed’ 0’s

and therefore increases the number of available encoding positions, but it also
reduces the rate of the transformer.

4. The optimalp can be determined analytically and yields an encoder at rate within
1 % of c.HS/.

Further improvements and applications of bit stuffing to other constraints are given
in Tal-Roth [41].

Finally we mention that for some 2D group shifts, there are constructions of 2D
algebraic encoders. We define an invertible algebraic 2D encoder for a group shift
X � GZ2 as a map

f W HZ2 ! X

(for some finite group H ) which is simultaneously a group isomorphism and a
sliding-block map (the latter in the sense that there is a positive integer N such
that the value, f .x/s , of a configuration of X at a given site s 2 Z2 depends only
on the values of x in a square of size N centered at s)

For 2D convolutional codes, necessary and sufficient conditions for invertible
algebraic 2D encoders were given by Fornasini-Valcher [12]. There has been
considerable further work on both the structure of and encoding for group shifts,
within both the symbolic dynamics and systems theory communities; see, for
example, [10, 22].
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From 1D Convolutional Codes to 2D
Convolutional Codes of Rate 1=n

Paulo Almeida, Diego Napp, and Raquel Pinto

Abstract In this paper we introduce a new type of superregular matrices that give
rise to novel constructions of two-dimensional (2D) convolutional codes with finite
support. These codes are of rate 1=n and degree ı with n � ı C 1 and achieve the
maximum possible distance among all 2D convolutional codes with finite support
with the same parameters.

Keywords 1D and 2D convolutional codes • MDS codes • Superregular matrix

1 Introduction

When considering data recorded in two dimensions, like pictures and video, two-
dimensional (2D) convolutional codes [2–5, 7, 8] seem to be a better framework
to encode such data than one-dimensional (1D) codes, since it takes advantage
of the interdependence of the data in more than one direction. In [3] the distance
properties of 2D convolutional codes of rate 1=n and degree ı were studied, and
constructions of such codes with maximum possible distance (MDS) were given
for n � .ıC1/.ıC2/

2
. In this paper we relax this restriction and present 2D MDS

convolutional codes of rate 1=n with n � ı C 1. The idea is to consider 1D
convolutional codes obtained as the projection of the 2D code on the vertical lines.
For that we need to introduce a new type of matrices of a particular structure and
show that they are superregular.
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2 1D and 2D Convolutional Codes

In this section we give some basic results on 1D and 2D convolutional codes that
will be useful throughout the paper.

Let F be a finite field and FŒz2� the ring of polynomials in one indeterminate
with coefficients in F. A 1D (finite support) convolutional code C of rate k=n is
an FŒz2�-submodule of FŒz2�n, where k is the rank of C (see [6]). A full column
rank matrix OG.z2/ 2 FŒz2�n�k whose columns constitute a basis for C is called an
encoder of C . So,

C D imFŒz2�
OG.z2/

D
n
Ov.z2/ 2 FŒz2�

n j Ov.z2/ D OG.z2/ Ou.z2/ with Ou.z2/ 2 FŒz2�
k
o
:

The weight of a word Ov.z2/ DPi�0 v.i/zi2 2 FŒz2�n is given by

wt.Ov.z2// D
X

i2N
wt.v.i//;

where the weight of a constant vector v.i/ is the number of nonzero entries of v.i/
and the distance of a 1D convolutional code C is defined as

dist.C / D min fwt.Ov.z2// j Ov.z2/ 2 C ; with Ov.z2/ ¤ 0g :

If C is a 1D convolutional code of rate 1=n, then all its encoders differ by a
nonzero constant. The degree of C is defined as the column degree of any encoder
of C . The next result follows immediately.

Corollary 1 ([6]) Let C be a 1D convolutional code of rate 1=n with degree �.
Then

dist.C / � n.� C 1/:

A 1D convolutional code of rate 1=n with degree � and distance n.�C 1/ is said
to be Maximum Distance Separable (MDS). In [3] constructions of such codes were
given for n � � C 1 as stated in the next theorem.

Theorem 2 Let �; n 2 N with n � � C 1 and G D ŒG0 G1 � � �G��, with Gi 2 F
n,

i D 0; 1; : : : ; �, be a matrix such that all its minors of any order are different from
zero. Then C D ImFŒz2�

P�
iD0 Gi zi2 is an MDS 1D convolutional code of rate 1=n

and degree �.



From 1D Convolutional Codes to 2D Convolutional Codes of Rate 1=n 27

We are going to consider now convolutional codes whose codewords belong to
FŒz1; z2�n, where FŒz1; z2� is the ring of polynomials in two indeterminates with
coefficients in F. Such codes are called 2D (finite support) convolutional codes.
More precisely, a 2D (finite support) convolutional code C of rate k=n is a free
FŒz1; z2�-submodule of FŒz1; z2�n of rank k (see [7, 8]). An encoder of C is a full
column rank matrix OG.z1; z2/ 2 FŒz1; z2�n�k whose columns constitute a basis for C .
Therefore,

C D imFŒz1;z2�
OG.z1; z2/

D
n
Ov.z1; z2/ 2 FŒz1; z2�

n j Ov.z1; z2/D OG.z1; z2/ Ou.z1; z2/ with Ou.z1; z2/2FŒz1; z2�k
o
:

The weight of a word Ov.z1; z2/ DP
.i;j /2N2 v.i; j /zi1z

j
2 2 FŒz1; z2�n is defined in

a similar way to the 1D case as

wt.Ov.z1; z2// D
X

.i;j /2N2
wt.v.i; j //;

and the distance of C as

dist.C / D min fwt.Ov.z1; z2// j Ov.z1; z2/ 2 C ; with Ov.z1; z2/ ¤ 0g :

In this paper, we restrict to 2D convolutional codes of rate 1=n. Given an encoder

OG.z1; z2/ D
X

.i;j /2N2
G.i; j /zi1z

j
2 2 FŒz1; z2�

n

of a 2D convolutional code C of rate 1=n, we define the degree of OG.z1; z2/ as
ı D maxfi C j j G.i; j / ¤ 0g. Since two encoders of C differ by a nonzero
constant, all encoders of C have the same degree and we define the degree of C as
the degree of any of its encoders.

If C is a 2D convolutional code of rate 1=n and degree ı, then

dist.C / � .ı C 1/.ı C 2/
2

n: (1)

Such bound is called the 2D generalized Singleton bound and if the distance of C
equals such bound, C is said to be MDS (see [3]).
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3 Superregular Matrices

In [1] a new type of superregular matrices was introduced. The superregular matrices
we are going to construct in this work have similar entries and, therefore, some
properties are the same, even if the structure of these new matrices is different.
Before we develop our new construction, we will recall some definitions pertinent
to this type of superregular matrices.

Let A D Œ�i`� be a square matrix of orderm over F and Sm the symmetric group
of orderm. The determinant of A is given by

jAj D
X

	2Sm
.�1/sgn.	/�1	.1/ � � ��m	.m/:

Whenever we use the word term, we will be considering one product of the form
�1	.1/ � � ��m	.m/, with 	 2 Sm, and the word component will be reserved to refer to
each of the �i	.i/, with 1 � i � m in a term. Denote �1	.1/ � � ��m	.m/ by �	 .

A trivial term of the determinant is a term �	 , with at least one component�i	.i/
equal to zero. If A is a square submatrix of a matrix B with entries in F, and all the
terms of the determinant of A are trivial, we say that jAj is a trivial minor of B (if
B D A we simply say that jAj is a trivial minor). We say that B is superregular if
all its nontrivial minors are different from zero.

The next theorem states that square matrices over F of a certain form are
superregular.

Theorem 3 Let ˛ be a primitive element of a finite field F D FpN and A D Œ�i`�

be a square matrix over F of orderm, with the following properties

1. If �i` ¤ 0 then �i` D ˛ˇi` for a positive integer ˇi`;
2. If O	 2 Sm is the permutation defined by O	.i/ D m� iC1, then � O	 is a nontrivial

term of jAj;
3. If ` � m� i C 1, ` < `0, �i` ¤ 0 and �i`0 ¤ 0 then 2ˇi` � ˇi`0;
4. If ` � m� i C 1, i < i 0, �i` ¤ 0 and �i 0` ¤ 0 then 2ˇi` � ˇi 0`.
Suppose jAj is a nontrivial minor andN is greater than any exponent of ˛ appearing
as a nontrivial term of jAj. Then jAj ¤ 0.

Proof Let 	 2 Sm such that �	 is a nontrivial term of jAj. By property 1, we have
�	 D ˛ˇ	 , for a positive integer ˇ	 .

Let Tm D f	 2 Sm j 	 ¤ O	 and �	 is a nontrivial term of jAjg. If Tm D ; then
jAj D � O	 D ˛ˇO	 ¤ 0.
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If Tm ¤ ;, let 	 2 Tm. We are going to prove that if 	 ¤ O	 then ˇ O	 < ˇ	 .
Since �	 in a nontrivial term of jAj, for any 1 � i � m, there exists ` � i such that
	.`/ � m � i C 1. Now, for any 1 � ` � m define

S` D fi j i � ` and 	.`/ � m � i C 1g:

Notice that
[

1�j�m
S` D f1; 2; : : : ; mg and, since 	 ¤ O	 , exists at least one

`0, such that 1 � `0 � m and S`0 D ;. By properties 3 and 4, we have thatP
i2S` ˇi m�iC1 � ˇ` 	.`/: Therefore ˇ O	 D

Pm
iD1 ˇi m�iC1 �

Pm
`D1

S`¤0
ˇ` 	.`/ <

Pm
`D1 ˇ` 	.`/. So jAj D ˛ˇO	 CPN�1

hDˇ
O	C1 
h˛

h; where 
h 2 Fp . Hence jAj ¤ 0. ut
Let us now construct specific types of superregular matrices, which will be useful

in the next section. Let p be a prime number, N a positive integer and ˛ be a
primitive element of a finite field F D FpN . For 0 � a � ı and 0 � b � ı � a
define the n � 1 matrix G.a; b/ as

G.a; b/ D
h
˛2

.ı�a�b/n.ıC1/Ca

˛2
..ı�a�b/nC1/.ıC1/Ca

: : : ˛2
..ı�a�bC1/n�1/.ıC1/Ca

iT

(2)

For example, if ı D 2

G.0; 2/ D

2

6
6
6
6
4

˛2
0

˛2
3

:::

˛2
3.n�1/

3

7
7
7
7
5

G.0; 0/ D

2

6
6
6
6
4

˛2
6n

˛2
3.2nC1/

:::

˛2
3.3n�1/

3

7
7
7
7
5

G.1; 1/ D

2

6
6
6
6
4

˛2
1

˛2
4

:::

˛2
3.n�1/C1

3

7
7
7
7
5

The following technical lemmas will be useful in the next section.

Lemma 4 Let ı � 0, 0 � j � ı and n � ı � j C 1. Then for N � 29n�2, the
matrices

Gj D ŒG.j; 0/ G.j; 1/ � � �G.j; ı � j /� 2 F
n�.ı�jC1/
pN

have all its minors of any dimension, different from zero.

Note that all elements of Gj are different from zero, which means that all its
minors are nontrivial. Moreover, up to column permutations, the minors of Gj
satisfy Theorem 3.



30 P. Almeida et al.

Lemma 5 Let N � 29n�1 and ˛ a primitive element of a finite field F D FpN . Let
n � 3 and G.a; b/ 2 F

n, with 0 � a � 2 and 0 � b � 2 � a, be defined as in (2).
Then the following matrices are superregular:

A1 D
2

4
G.0; 2/ G.0; 1/ G.0; 0/

G.0; 1/ G.0; 0/ 0

G.0; 0/ 0 0

3

5 ; A2 D
2

4
0 0 G.0; 2/

0 G.0; 2/ G.0; 1/

G.0; 2/ G.0; 1/ G.0; 0/

3

5 ;

A3 D

2

66
6
6
6
4

0 0 0 G.0; 2/

0 0 G.0; 2/ G.0; 1/

G.0; 2/ G.0; 1/ G.0; 0/ 0

G.0; 1/ G.0; 0/ 0 0

G.0; 0/ 0 0 0

3

77
7
7
7
5
; A4 D

2

6
66
6
6
6
6
4

0 0 G.0; 2/

0 G.0; 2/ G.0; 1/

0 G.0; 1/ G.0; 0/

G.0; 2/ G.0; 0/ 0

G.0; 1/ 0 0

G.0; 0/ 0 0

3

7
77
7
7
7
7
5

;

and A5 D

2

6
6
6
6
6
4

0 0 G.0; 2/

0 G.0; 2/ G.0; 1/

G.0; 2/ G.0; 1/ G.0; 0/

G.0; 1/ G.0; 0/ 0

G.0; 0/ 0 0

3

7
7
7
7
7
5
:

4 Constructions of MDS 2D Convolutional Codes of Rate 1/n
and Degree ı � 2 for n � ı C 1

In this section we will consider 2D convolutional codes of rate 1=n and degree
ı and we will give constructions of MDS codes for ı � 2. Let OG.z1; z2/ DP

0�iCj�ı G.i; j /zi1z
j
2 be an encoder of C , with G.i; j / 2 FpN defined as in (2).

We can write

OG.z1; z2/ D
ıX

jD0
Gj .z2/z

j
1 ; (3)

where Gj .z2/ D Pı�j
iD0 G.j; i/zi2 2 FŒz2�n, j D 0; 1; : : : ; ı. Analogously, given

Ou.z1; z2/ 2 FŒz1; z2� and Ov.z1; z2/ D OG.z1; z2/ Ou.z1; z2/, we can write them in the
same way, i.e.,

Ou.z1; z2/ D
X̀

jD0
Ouj .z2/zj1 and Ov.z1; z2/ D

ıCX̀

jD0
Ovj .z2/zj1 ; (4)
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with ` 2 N, where Ouj .z2/ DPi�0 u.j; i/zi2 2 FŒz2�, for any j D 0; : : : ; ` and

Ovs.z2/ D
ıX

iD0
Gi .z2/ Ous�i .z2/; for any s D 0; : : : ; ı C `

(we consider Oua.z2/ D 0 if a < 0 or if a > `). Note that Ovs.z2/ are codewords of 1D
convolutional codes.

We conjecture that for n � ı C 1 and N sufficiently large, the 2D convolutional
code C D ImFŒz1;z2�

OG.z1; z2/ is MDS. Next theorem considers such codes for ı � 2.

Theorem 6 Let N � 29n�1, ı � 2, n � ıC 1 and OG.z1; z2/ as defined in (3). Then
C D ImFŒz1;z2�

OG.z1; z2/ is a 2D MDS convolutional code of rate 1=n and degree ı.

Proof It is obvious that C has rate 1=n and degree ı. Let us consider first ı D 2. To
prove that C is MDS we have to show that all nonzero codewords of C , Ov.z1; z2/,
have weight greater or equal than 6n. Let Ov.z1; z2/ be a nonzero codeword of C and
Ou.z1; z2/ 2 FpN Œz1; z2� such that Ov.z1; z2/ D OG.z1; z2/ Ou.z1; z2/ and let us represent
both vectors as in (4). It is obvious that Ou.z1; z2/ ¤ 0 and in order to calculate
the weight of Ov.z1; z2/ we can assume without loss of generality that Ou0.z2/ ¤ 0.

Thus Ov0.z2/ D G0.z2/ Ou0.z2/, Ov1.z2/ D ŒG0.z2/ G1.z2/�

� Ou1.z2/
Ou0.z2/

�
and Ov2.z2/ D

ŒG0.z2/ G1.z2/ G2.z2/�

2

4
Ou2.z2/
Ou1.z2/
Ou0.z2/

3

5 ; are all nonzero vectors, i.e., the weight of any

of these vectors is at least one. By definition, Ou.z1; z2/ D Ou0.z2/C Ou1.z2/z1 C � � � C
Ou`.z2/z`1, with Ou`.z2/ ¤ 0 for some ` 2 N. Then, since Ov2C`.z2/ D G.2; 0/ Ou`.z2/ it
follows that wt.Ov2C`.z2// D n wt. Ou`.z2// � n: Since Ov0.z2/ D G0.z2/ Ou0.z2/ then,
by Lemma 4, wt.Ov0.z2// � 3n. Now, if Ou1.z2/ D 0 we have Ov1.z2/ D G1.z2/ Ou0.z2/
and again by Lemma 4, wt.Ov1.z2// � 2n. Hence

wt.Ov.z1; z2// � wt.Ov0.z2/C Ov1.z2/z1 C Ov2C`.z2/z2C`1 / � 6n:

Next, we consider Ou1.z2/ ¤ 0. Suppose wt. Ou0.z2// � 4 and let i1 be the minimum
of the support of Ou0.z2/ and i2 be the maximum of the support of Ou0.z2/, i.e., min
Supp . Ou0.z2// D i1 and max Supp . Ou0.z2// D i2. Since i2 � i1 C 3, we have that

2

4
v.0; i1 C 2/
v.0; i1 C 1/

v.0; i1/

3

5 D
2

4
G.0; 2/ G.0; 1/ G.0; 0/

G.0; 1/ G.0; 0/ 0

G.0; 0/ 0 0

3

5

2

4
u.0; i1/

u.0; i1 C 1/
u.0; i1 C 2/

3

5

and

2

4
v.0; i2 C 2/
v.0; i2 C 1/

v.0; i2/

3

5 D
2

4
0 0 G.0; 2/

0 G.0; 2/ G.0; 1/

G.0; 2/ G.0; 1/ G.0; 0/

3

5

2

4
u.0; i2 � 2/
u.0; i2 � 1/

u.0; i2/

3

5 :
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Since the matrices A1 and A2 in Lemma 5 are superregular, we obtain, for s 2
fi1; i2g, wt.v.0; s/zs2Cv.0; sC1/zsC12 Cv.0; sC2/zsC22 / � 3n�2. Then wt.Ov0.z2// �
6n � 4. Therefore, wt.Ov.z1; z2// � wt.Ov0.z2/ C Ov1.z2/z1 C Ov2C`.z2/z2C`1 / � 6n �
4C 1C n � 6n, since n � 3.

Assume now that wt. Ou0.z2// D 3. If Supp. Ou0.z2// D fi; i C 1; i C 2g, for some
i 2 N, then Ov0.z2/ D v.0; i/zi2Cv.0; iC1/ziC12 Cv.0; iC2/ziC22 Cv.0; iC3/ziC32 C
v.0; i C 4/ziC42 , where

2

6
6
6
6
6
4

v.0; i C 4/
v.0; i C 3/
v.0; i C 2/
v.0; i C 1/

v.0; i/

3

7
7
7
7
7
5
D

2

6
6
6
6
6
4

0 0 G.0; 2/

0 G.0; 2/ G.0; 1/

G.0; 2/ G.0; 1/ G.0; 0/

G.0; 1/ G.0; 0/ 0

G.0; 0/ 0 0

3

7
7
7
7
7
5

2

4
u.0; i/

u.0; i C 1/
u.0; i C 2/

3

5 ;

and, since A5 is superregular, by Lemma 5, wt.bv0.z2// � 5n � 2. Let j D
min Supp. Ou1.z2//. If j < i , then v.1; j / D G.0; 0/u.1; j /, if j > i then
v.1; i/ D G.1; 0/u.0; i/ and if j D i , then v.1; i/ D G.1; 0/u.0; i/CG.0; 0/u.1; i/,
so, in any case, we get wt.Ov.z1; z2// D wt.Ov0.z2/ C Ov1.z2/z1 C Ov2C`.z2/z2C`1 / �
5n� 2C n � 1C n D 7n� 3 � 6n, since n � 3.

Suppose now that Supp. Ou0.z2// D fi1; i2; i3g with i1 < i2 < i3 and i2� i1 > 1 or
i3 � i2 > 1. In this case, we will always obtain wt.bv0.z2// � 6n � 2. For example,
If i2 � i1 D 2 and i3 � i2 D 1, we have that

2

6
66
6
6
6
6
4

v.0; i1 C 5/
v.0; i1 C 4/
v.0; i1 C 3/
v.0; i1 C 2/
v.0; i1 C 1/

v.0; i1/

3

7
77
7
7
7
7
5

D

2

6
66
6
6
6
6
4

0 0 G.0; 2/

0 G.0; 2/ G.0; 1/

0 G.0; 1/ G.0; 0/

G.0; 2/ G.0; 0/ 0

G.0; 1/ 0 0

G.0; 0/ 0 0

3

7
77
7
7
7
7
5

2

4
u.0; i1/
u.0; i2/
u.0; i3/

3

5 ;

so wt.Ov0.z2// � wt
�

v.0; i1/z
i1
2 C v.0; i1 C 1/zi1C12 C � � � C v.0; i1 C 5/zi1C52

�
�

6n � 2. Thus wt.Ov.z1; z2// D wt.Ov0.z2/ C Ov2C`.z2/z2C`1 / � 6n � 2 C n � 6n,
since n � 3.

Suppose now wt. Ou0.z2// D 2 and Supp. Ou0.z2// D fi; j gwith i < j , with similar
arguments as before we get wt.Ov0.z2// � 4n� 1. The worst case is when j D i C 1
where

2

6
6
4

v.0; i1 C 3/
v.0; i1 C 2/
v.0; i1 C 1/

v.0; i1/

3

7
7
5 D

2

6
6
4

0 G.0; 2/

G.0; 2/ G.0; 1/

G.0; 1/ G.0; 0/

G.0; 0/ 0

3

7
7
5

�
u.0; i/

u.0; i C 1/
�
;
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which implies wt.Ov0.z2// � 4n�1. We also have wt.Ov1.z2// � 2n�2 always. Thus
wt.Ov.z1; z2// D wt.Ov0.z2/C Ov1.z2/z1 C Ov2C`.z2/z2C`1 / � 4n � 1C 2n � 2 C n D
7n� 3 � 6n, since n � 3.

Finally, assume that wt. Ou0.z2// D 1. Here, we obtain wt.Ov0.z2// � 3n and
wt.Ov1.z2// � 3n� 1. Hence, wt.Ov.z1; z2// � 6n, for n � 3.

For ı � 1 the theorem follows immediately. ut
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A Coding-Based Approach to Robust
Shortest-Path Routing

Ángela I. Barbero and Øyvind Ytrehus

Abstract Robust and distributed creation of routing tables is essential for the
functioning of a modern communication network. One of the two main types of
routing algorithms in use in today’s Internet is made up of variations of the so-called
distance-vector or Bellman-Ford algorithm (Bellman, Quart Appl Math 16:87–90,
1958; Ford (1956) Network flow theory paper P-923. RAND Corporation, Santa
Monica; Moore (1959) The shortest path through a maze. In: Proceedings of an
international symposium on the theory of switching 1957, Cambridge. Part II.
Harvard University Press, pp 285–292). These algorithms suffer from two main
deficiencies: (i) The amount of data exchanged for the algorithms to function is
considered excessive for some applications, and (ii) the algorithms respond slowly
to “bad news” in the network. This is known as the count-to-infinity (c21) problem.
In order to address (ii), protocol designers (RFC1058 – routing information protocol
(1988) Internet Engineering Task Force) have introduced heuristics such as the “split
horizon” and the “route poisoning” techniques. It can be shown by simple examples
that these heuristics do not solve the c21 problem completely. In this paper we
describe a simple routing algorithm, the Tree Routing algorithm, that exchanges no
more data than existing algorithms, and that at the same time provides routing agents
with no less (and often more) insight into the topology of the network. The Tree
Routing algorithm is inspired by techniques used in information theory and coding
theory. We explain why the Tree Routing algorithm will never respond slower, and
will often respond faster, than existing algorithms.

Keywords Communication networks • Routing • Distance vector algorithm •
Information theory • Coding • Belief propagation

Á.I. Barbero (�)
Department of Applied Mathematics, Universidad de Valladolid, 47011 Valladolid, Spain
e-mail: angbar@wmatem.eis.uva.es

Ø. Ytrehus (�)
Department of Informatics, University of Bergen, N-5020 Bergen, Norway
e-mail: oyvind@ii.uib.no

© Springer International Publishing Switzerland 2015
R. Pinto et al. (eds.), Coding Theory and Applications, CIM Series
in Mathematical Sciences 3, DOI 10.1007/978-3-319-17296-5_3

35

mailto:angbar@wmatem.eis.uva.es
mailto:oyvind@ii.uib.no


36 Á.I. Barbero and Ø. Ytrehus

1 Introduction

Distance vector routing (DVR) is a classic technique [2–4] for obtaining minimum
distance routing tables in a communication network in a distributed way. The
algorithm, described in Sect. 2.1, relies on message exchange between neighbour
routers. DVR is used in the Internet in the form of the Routing Information Protocol
(RIP) [5] and its extensions [6, 7].

Shortest-path routing is simple (e.g. using Dijkstra’s algorithm) if nodes have
sufficient correct knowledge of the network topology. In this work, we elaborate on
a more general discussion initiated in [1] and proceed to present a new algorithm
that appears to represent a good tradeoff between data exchange and performance.
We observe that the core of the problem of the DVR family is that the structure of
its messages does not provide nodes with enough information about the network
topology. The new algorithm provides nodes with information about the relevant
parts of the network topology, at no increase in communication cost.

The connection to coding can be justified as follows: The core function carried
out by any routing algorithm is to collect information about the network structure,
and to use this collected information to calculate routing tables that are optimum
according to some pre-specified criteria. The collection of information implies an
information transfer, and this in turn requires that the information is encoded in a
suitable manner. Thus, coding is a subtask in the routing process, although it is often
not considered to be.

The structure of this abstract is as follows: Sect. 2 provides notation, the network
model, and describes previous work. The new algorithm is described in Sect. 3.
Application of the algorithm on a toy network is given in Sect. 4, while properties
of the algorithms are discussed in Sect. 5.

2 Background, Notation, and Network Model

A communication network is described in this paper by an undirected graph G D
G.V ;E /, where V is the set of nodes and E 	 V �V is the set of undirected edges.
For convenience, we will use the terms edge and link as synonyms, and by node we
will mean what in network terminology is usually called a router. For a given node
v 2 V , we denote by N .v/ D fu W fv; ug 2 E g the set of neighbours of v.

Each edge is assumed to have unit capacity. This corresponds to the case of
distance being measured in terms of the number of hops in the graph. Although this
may seem a crude measure of distance, this is actually what is used in many network
routing protocols.

We emphasize that the results in this paper may be adapted to more general
models that also represent, for example, broadcast links or more diverse link
capacities, and that take into account other distance measures.
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Table 1 Example
of a routing table

Destination node id id1 id2 � � � idn�1

Distance d1 d2 � � � dn�1

Outgoing link L1 L2 � � � Ln�1

2.1 Distance Vector Routing

Distance-Vector routing (DVR) is an example of a distributed version of the
Bellman-Ford algorithm. The purpose of the algorithm is to determine the shortest
path from each node to every other node. This path is represented in each node by a
routing table. For the case of a network with n nodes, this routing table at each node
has n � 1 columns and three rows, in the form of Table 1.

When a node has a data packet to forward to a destination node with identifier
idk , the sending node sends it to the corresponding outgoing link Lk .

In this distributed version of the BF algorithm, the nodes exchange information
(only) with its neighbours. This information is conveyed in messages that contain
the sending node’s current routing table (Table 1) except for the last row, which
contains information which is relevant only to the node itself.1 In the standardized
protocols used in the Internet, like RIP in different versions, this routing table
exchange takes place either at regular intervals, or message transmission is triggered
by the arrival of new information in a node.

In addition, each node will monitor the distance d.id/ to each of its neighbours
id on the corresponding link, (which, as noted above, in our case by definition is 1
to any neighbour node). Each time a routing message arrives, the current node will
update each column (i.e. each destination node idk) of its routing table according to
the following rules:

1. Let dk.old/ be the distance to node idk according to the old table, let dk.new/ be
the distance according to the incoming table, and let d.neighbour/ D 1 be the
length of the link.

2. If the incoming routing table message arrives on a linkL that is not used for node
idk , then update the routing table if d.neighbour/Cdk.new/ < dk.old/ with the
new distance d.neighbour/C dk.new/.

3. If the incoming routing table message arrives on a link L that is currently used
for node idk , then update the routing table with the new distance d.neighbour/C
dk.new/.

In summary, in Distance Vector routing, each node executes Algorithm 1.
Distance Vector routing is simple and is known to converge fast to a set of

shortest paths for each node pair when good news arrive, i.e. when new links become
available.

1Nevertheless, in some implementations even the last row is contained in the messages.
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Algorithm 1 The DVR algorithm (DVR)
Determine who the neighbours are
Initialize routing table: For each neighbour node, set the distance to 1 and the outgoing link to
the obvious value
while network is active do

Determine who are the neighbours now
(A) Send a message to each neighbour (if there are changes), consisting of the first two rows
of Table 1.
(B) Based on the current input from the neighbours, calculate new minimum distances to each
destination node, and update routing tables accordingly

end while

On the other hand, the algorithm responds slowly to bad news, i.e. when links
disappear, in some cases, notably for cyclic networks. This is known as the count-
to-infinity (c21) problem. In order to alleviate this, protocol designers have applied
heuristic techniques like “split horizon” and “route poisoning” [5]. Using the “split
horizon” heuristic, a node a will not report to a neighbour b (in step (A) of the loop)
a path to node c if a’s best path to c passes through b. In “split horizon” with “route
poisoning”, nodes will deliberately advertise to its neighbours infinite distances for
destinations for which the best paths have failed. This will trigger the neighbours to
suspend the split horizon strategy.

These heuristics still do not completely solve the (c21) problem for all network
topologies. In the next section we propose a related algorithm which improves the
response to bad news in many cases.

3 A New Algorithm

The new algorithm, the Tree Routing algorithm (TR), has two components, inspired
by information theoretic and coding theoretic arguments.

1. Instead of transferring distance vectors, in the Tree Routing algorithm a message
M.u; v/ from a node u to a neighbour v 2 N .u/ is comprised of the first two
rows of a table in the form of Table 2. In the second row, Parent, represents the
destination’s predecessor in a particular routing tree with a root in u. As argued
in [1], in terms of size of the exchanged messages, we may just as well transfer
the Parent instead of the Distance. This allows the recipient v to reconstruct the
particular routing tree that the sending neighbour u has built. Also observe that,
in consequence, the third row of Table 2, Distance, is implied by the first two
rows [1], and so is the fourth row.

2. Drawing from the similarity to belief propagation or message passing decoders
for LDPC codes, a message a M.u; v/ from a node u to a neighbour v 2 N .u/
is computed based on the input to u from the other neighbours, fw W w 2
N .u/;w ¤ vg. Thus, the particular routing tree mentioned above is the one
that u creates without using node v.
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Table 2 An extended
routing table

Destination node id id1 id2 � � � idn�1

Parent node id p1 p2 � � � pn�1

Distance d1 d2 � � � dn�1

Outgoing link L1 L2 � � � Ln�1

The procedure is described in Algorithm 2.

Algorithm 2 The tree routing algorithm
Determine who the neighbours are
Initialize routing table: For each neighbour node, set the distance to 1 and the outgoing link to
the obvious value
while network is active, each node u will do

Determine N .u/ WD who the neighbours are now
(A) Send a message M.u; v/ to each neighbour v 2 N .u/ (if there are changes with respect
to most recent message transmitted from u to v ), consisting of the first two rows of Table 1.
M.u; v/ is based on merging the most recent messages, fM.w; u/ W w 2 N .u/;w ¤ vg.
(B) Receiving nodes should disregard a message advertising any path that uses a link that
according to more recent information does not exist (anymore).
(C) Based on the current input from all the neighbours, calculate the new routing table.

end while

The mechanism in (B) is necessary to counter the c21 problem. Due to space
limitations we will not discuss in detail what we mean by most recent information,
beyond the following: In an implementation where message transmission is syn-
chronous, the age of information corresponds to the length of the path over which
information has travelled. In case of asynchronous communication, time stamps
may be necessary.

3.1 Variations

The description of the TR algorithm is by necessity general and rudimentary. We
observe that different versions of the TR can be designed, suited to the particular
emphasis on memory use, node computation requirements, and convergence speed,
and that it can be generalized to multipath applications.

Thus, in this paper, by the TR algorithm we mean the generic family of routing
algorithms which is distinguished from the DVR family by the nature of information
exchanged: The TR algorithms exchange tree structures while the DV algorithms
exchange distance vectors.
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Fig. 1 Response to bad news. The left part of the figure shows the network at time t0 � 1, the
messages sent to B at that time, and the routing tree constructed for B. For convenience, we have
included Distance information, although this is implied by the Parent information and therefore
does not need to be sent. Thus C will report to B that A’s parent is G; this implies that the distance
to A is 5. The right part of the figure shows the network at time t0, after the link fB;C g has
collapsed

4 Example

Figure 1 shows an example of how the Tree Routing algorithm responds to bad
news. Figure 2 shows, by way of an example, a comparison of the network topology
information conveyed in Tree Routing and in Distance Vector Routing.

5 Properties of the Tree Routing Algorithm

We are not aware of a formal definition of the (c21) problem. Therefore it is also
not clear how to provide formal statements of how the algorithms perform with
respect to this problem. We can however, prove the following statements (but do not
include the proofs here, for lack of space).

Proposition 1 The amount of data exchanged in the TR is not larger than in the
obvious representation of the DVR, and not significantly larger than an optimum
representation of the DVR [1].

Proposition 2 The TR conveys at least as much information (in the information
theoretic sense) about the network topology among the neighbours, as the DVR and
its variants do, and often more.

The more information a deciding entity is in possession of, the better are the
optimum decisions it can make. Thus, the last proposition suggests that, on average
and with optimum use of the collected information, a TR algorithm will converge
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Fig. 2 A comparison of the TR and the DVR. The actual network is shown at the top of the figure.
On the left are shown the messages that B and C, respectively, send to A in the TR algorithm. For
each node in the respective routing trees of B and C, the parent node is given. This allows A to
reconstruct the two routing trees and, in this case, the entire network. The right part shows the
corresponding messages sent in the DVR algorithm. We observe that for the DVR algorithm, A is
unable to reconstruct a clear picture of the graph. Moreover, although it is still possible to deduce
that A is on a cycle, the current versions of the DVR do not attempt to do this, and it is difficult to
establish the exact structure of that cycle. This complicates the design of a simple rule to avoid the
c21 problem

faster than a DVR algorithm on dynamic networks where nodes may move or links
may appear and disappear.

We will provide simulation results for the average convergence times and packet
delay values for different classes of graphs, including Gilbert random graphs and
random geometric graphs.
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Constructions of Fast-Decodable Distributed
Space-Time Codes

Amaro Barreal, Camilla Hollanti, and Nadya Markin

Abstract Fast-decodable distributed space-time codes are constructed by adapting
the iterative code construction introduced in [6] to the N -relay multiple-input
multiple-output channel, leading to the first fast-decodable distributed space-time
codes for more than one antenna per user. Explicit constructions are provided
alongside with a performance comparison to non-iterated (non-) fast-decodable
codes.

Keywords Distributed space-time codes • Fast-decodability • Half-duplex relay
channel • Cyclic division algebras

1 Introduction

The increasing interest in cooperative diversity techniques as well as rapid growth
in the field of multi-antenna communications motivates the investigation of flexible
coding techniques for the multiple-input multiple-output (MIMO) cooperative
channel. The tools developed in [4] and [5] provide the necessary tools to construct
fast-decodable space-time (ST) codes for the N -relay non-orthogonal amplify-and-
forward (NAF) cooperative channel with a single antenna at both the source and the
relays. Our work extends these methods to theN -relay MIMO NAF channel, that is
the relays are allowed to employ multiple antennas for transmission and reception.
In addition, many ST codes for the relay scenario exhibit a high rate and hence
require a high number of receive antennas at the destination, whereas in this work a
single antenna suffices.
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2 The MIMO Amplify-and-Forward Channel

We consider the case of a single user communicating with a single destination over
a wireless network. N intermediate relays participate in the transmission process.
In addition, we assume the half-duplex constraint, that is the relays can only either
receive or transmit a signal in a given time instance.

Denote by ns , nd and nr the number of antennas at the source, destination, and
relays, respectively. A superframe consisting of N consecutive cooperation frames
of length T , each composed of two partitions of T=2 symbols, is defined, and all
channels are assumed to be static during the transmission of the entire superframe.

Relay 1

...

Relay N

Dest.

G1

GN

Source
F

H1

HN

F , Hi and Gi, 1 ≤ i ≤ N de-
note the Rayleigh distributed
channels from the source to
the destination, relays, and
from the relays to the desti-
nation, respectively.

In a realistic scenario, nr � ns , the transmission process can be modeled as

Yi;1 D �i;1FXi;1 C Vi;1 ; i D 1; : : : ; N
Yi;2 D �i;2FXi;2 C Vi;2 C �RiGiBi .� 0RiHiXi;1 CWi/ ; i D 1; : : : ; N

where Yi;j andXi;j are the received and sent matrices, Vi;j andWi represent additive
white Gaussian noise, the matrices Bi are needed for normalization and �i;j , �Ri ,
� 0Ri are signal-to-noise (SNR) related scalars.

From the destinations point of view, the above transmission model can be viewed
as a virtual single-user MIMO channel as

Ynd�n D Hnd�nXn�n C Vnd�n;
where n D N.ns C nr /, X and Y are the (overall) transmitted and received
codewords whose structure will take a particular form, and the channel matrix H is
determined by the different relay paths. For more details, as well as for the remaining
case nr > ns , we refer to [8].

2.1 Optimal Space-Time Codes for MIMO NAF Relay
Channels

Let
�D denote exponential equality, i.e., we write

f .SNR/
�D SNRb , lim

SNR!1
logf .SNR/

log SNR
D b
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and similar for
��. Consider an nd �nMIMO channel and let A be a scalably dense

alphabet [8, p.651, Definition 2], that is for A .SNR/ its value at a given SNR and
for 0 � r � minfnd ; ng we require

jA .SNR/j �D SNR
r
n

jaj2 �� SNR
r
n for a 2 A .SNR/;

for instance PAM or (rotated) QAM constellations. An n�n ST code X such that

1. The entries of any X 2X are linear combinations of elements in A .
2. On average,R complex symbols from A are transmitted per channel use.
3. min

Xi¤Xj2X
j det.Xi � Xj /j � � > 0 for a constant � independent of the SNR.

is called a rate-R non-vanishing determinant (NVD) code, and we say the code is
full-rate if R D nd . This is the largest rate that still allows for the use of a linear
decoder, e.g., a sphere decoder, with nd antennas at the destination.

Consider an N -relay MIMO NAF channel. It was shown in [8] that given a
rate-2ns NVD block-diagonal code X , thus where each X 2 X takes the form
X D diagf
i gNiD1 with 
i 2 Mat.2ns;C/, the equivalent code C D �

C1 � � � CN
�
,

Ci D
�

i Œ1 W ns; 1 W 2ns� 
i Œns C 1 W 2ns; 1 W 2ns�

�
achieves the optimal diversity-

multiplexing tradeoff (DMT) for the channel, transmitting Ci in the i th cooperation
frame.

It would thus be desirable to have block-diagonal ST codes which in addition
achieve:

1. Full rate nd : The number of independent complex symbols (e.g., QAM) per
codeword equals nd .ns C nr /N .

2. Full rank: min
Xi¤Xj2X

rank.Xi �Xj / D .ns C nr/N .

3. NVD: min
Xi¤Xj2X

j det.Xi �Xj /j2 � � > 0 for a constant �.

The last condition can be abandoned at the low SNR regime without compromising
the performance. For very low SNR, even relaxing on the full-rank condition does
not have adverse effect, since the determinant criterion is asymptotic in nature.

2.2 On Fast-Decodability

Consider a ST lattice code X D fPk
iD1 zi � Bi j zi 2 Z \ J g, where fBi gkiD1,

k � 2n2, are lattice basis matrices of a rank-k lattice � � Mat.n;C/, and J 	 Z

is finite and referred to as the signaling alphabet. Maximum-likelihood decoding of
ST codes amounts to finding the codeword in X that achieves

Z D arg minfjjY �HX jj2F gX2X :
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Writing bi for the vectorization of HBi , that is stacking its columns followed
by separating the real and imaginary parts, define B D .b1; : : : ; bk/ and z D
.z1; : : : ; zk/T . Each received codeword can thus be represented as B � z. Performing
QR-decomposition on B , where QQ� D I , R upper triangular, leads to finding

arg minfjjY �HX jj2F gX2X Ý arg minfjjQ�y �Rzjj2Egz2J k D arg minfjjy0 �Rzjj2E gz2J k ;

where y0 D Q�y. This search can be simplified by using a sphere decoder, the
complexity of which is upper bounded by that of exhaustive search, i.e., by jJ jk .
The structure of the matrix R can however reduce the complexity of decoding. A
ST code whose decoding complexity is jJ jk0

, k0 < k � 1, due to the structure of
R is called fast-decodable [2]. A more extensive review on fast-decodability can be
found in [5].

3 Iterated Space-Time Codes

Recently, an iterative ST code construction has been proposed in [6]. By choosing
the maps and elements involved in the construction carefully, the resulting code can
inherit some good properties from the original code, such as fast-decodability or
full-diversity. This makes the proposed method an interesting tool for constructing
bigger codes from well-performing ones.

Consider a tower of field extensionsQ � F � K, with F=Q finite Galois and K=F
cyclic Galois of degree n with Galois group � .K=F/ D h	i. Let � 2 F� be such
that �i … NmK=F.K�/, i D 1; : : : ; n, and let C D .K=F; 	; �/ DLn�1

iD0 eiK, where
en D � and ke D e	.k/ for all k 2 K, be a cyclic division algebra of dimension
n2 over its center F. Given c DPn�1

iD0 ei ci 2 C , the representation over its maximal
subfield is

� W c 7!

2

6
4

c0 �	.cn�1/ ��� �	n�1.c1/

c1 	.c0/ ��� �	n�1.c2/

:::
:::

:::
:::

cn�1 	.cn�2/ ��� 	n�1.c0/

3

7
5

Let � 2 AutQ.K/ such that �	 D 	� and commutes also with complex
conjugation, �2 D 1 and �.�/ D � . Fix � 2 F� such that �.�/ D � . Setting
X D �.x/, Y D �.y/ 2 Mat.n;C /, define a map

˛� W .X; Y / 7!
�
X ��.Y /

Y �.X/

�
:

The conditions imposed on � and � ensure that the image of ˛� is an F-algebra,
and is division if and only if � ¤ c�.c/ for all c 2 C . For more details on this
construction method, the reader may consult [6].
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4 Distributed Iterated Space-Time Codes

Consider an N -relay MIMO channel. Given a ST code X 	 Mat.n;C/, we define
the following map f WX ! Mat.nN;C/

f N
� W X 7! diagf�i .X/gN�1iD0

for a suitable function � such that �N D id. In the following, we will make
use of this function to construct distributed ST codes from iterated and non-
iterated codes. Often the map � is chosen to be a field automorphism, so that the
determinant will correspond to a field norm and be non-vanishing with a suitable
choice of fields. Here, we choose � D id, as in our specific examples the blocks
composing the codeword matrices will already have the NVD property, thus no
special modifications will be necessary. Note that if the blocks �i .X/ are fast-
decodable, the resulting block-diagonal code will also be fast-decodable [5].

4.1 Explicit Constructions for N D 2 Relays and nr C ns D 4

In the following, letN D 2 be the number of relays, both equipped with nr antennas
and such that nr C ns D 4. We construct three different codes, each of them with
different characteristics, arising from the following towers of extensions:

1. The Silver code, well known to be fast-decodable [2, 3], is constructed from the
cyclic division algebra Cs and is a finite subset of
(
1p
7

h
x1
p
7C.1Ci /x3C.�1C2i/x4 �x�

2

p
7�.1�2i/x�

3 �.1Ci /x�

4

x2
p
7�.1C2i/x3�.1�i /x4 x�

1

p
7�.1�i /x�

3 �.�1�2i/x�

4

i
ˇ
ˇ
ˇ
ˇ̌xj 2 ZŒi �; 1 � j � 4

)

:

Choosing �s D �17, �s D 	s , and given two set elements X D
X.x1; x2; x3; x4/; Y D Y.y1; y2; y3; y4/, we construct a distributed iterated
Silver code via the map

f .˛�s .X; Y //
2
id D

h
˛�s .X;Y / 0

0 ˛�s .X;Y /

i
D
"
X �s�s .Y / 0 0
Y �s.X/ 0 0
0 0 X �s�s .Y /
0 0 Y �s.X/

#

2 Mat.8;Ks/:
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Set Xs D fP16
jD1 zj � Sj j zj 2 J \ Zg, where a lattice basis �s D fSj g16jD1 is

given by

ff .˛�s .X.1; 0; 0; 0/; Y.0; 0; 0; 0///2id; : : : ; f .˛�s .X.0; 0; 0; 0/; Y.0; 0; 0; 1///2id;
f .˛�s .X.i; 0; 0; 0/; Y.0; 0; 0; 0///

2
id; : : : ; f .˛�s .X.0; 0; 0; 0/; Y.0; 0; 0; i///

2
idg:

2. The Golden code, a well-performing ST code introduced in [1], is constructed
from Cg and consists of codewords taken from the set

(
1p
5

h
�.x1Cx2!/ �.x3Cx4!/

i	g.�/.x3Cx4	g.!// 	g.�/.x1Cx2	g.!//
i
ˇ
ˇ
ˇ̌
ˇ
xj 2 ZŒi �; 1 � j � 4

)

;

where ! D .1Cp5/=2 and � D 1C i � i!. The Golden code, although very
good in performance, is not fast-decodable without modifying the sphere decoder
used and has higher decoding complexity than the Silver code.

We set �g D 1 � i , �g D 	g . Then, for two elements X D
X.x1; x2; x3; x4/; Y D Y.y1; y2; y3; y4/, the distributed iterated Golden code
is constructed as

f .˛�g .X; Y //
2
id D

h
˛�g .X;Y / 0

0 ˛�g .X;Y /

i
D
2

4
X �g�g.Y / 0 0

Y �g.X/ 0 0

0 0 X �g�g.Y /

0 0 Y �g.X/

3

5 2 Mat.8;Kg/:

Set Xg D fP16
jD1 zj �Gj j zj 2 J \ Zg, where a lattice basis�g D fGj g16jD1 is

ff .˛�g .X.1; 0; 0; 0/; Y.0; 0; 0; 0///2id; : : : ; f .˛�g .X.0; 0; 0; 0/; Y.0; 0; 0; 1///2id;
f .˛�g .X.i; 0; 0; 0/; Y.0; 0; 0; 0///

2
id; : : : ; f .˛�g .X.0; 0; 0; 0/; Y.0; 0; 0; i///

2
idg:

3. Finally we also consider the fast-decodable MIDOA4 code constructed in [7],
using Cm as the algebraic structure. Write � D �5 and choose f1� �; � � �2; �2 �
�3; �3 � �4g a basis of ZŒ��. Setting r D j � 8=9j1=4, codewords are taken from

8
<

:

2

4
x1 �r2x�

2 �r3	m.x4/ �r	m.x3/�
r2x2 x�

1 r	m.x3/ �r2	m.x4/�
rx3 �r3x�

4 	m.x1/ �r2	.x2/�
r3x4 rx�

3 r2	m.x2/ 	m.x1/
�

3

5

ˇ
ˇ
ˇ̌
ˇ
xj 2 ZŒ��; 1 � j � 4

9
=

;
;

where for 1 � j � 4, xj D xj .l4j�3; l4j�2; l4j�1; l4j / D l4j�3.1��/Cl4j�2.��
�2/C l4j�1.�2��3/C l4j .�3��4/. Given an elementX D X.x1; x2; x3; x4/ from
this set, the adaptation to the cooperative channel is

f .X/2id D
�
X 0
0 X

� 2 Mat.8;Km/:
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Set Xm D fP16
jD1 zj �Mj j zj 2 J \ Zg. A lattice basis �m D fMj g16jD1 is

fX.x1.1; 0; 0; 0/; 0; 0; 0/; : : : ; X.0; 0; 0; x4.0; 0; 0; 1//g:

4.2 Determinant and Performance Comparison

For the carried out simulations we fix J D f˙1g, the 2-PAM signaling constellation.
Further, comparison between the constructed codes requires some kind of normal-
ization, and we choose to normalize the volume of the fundamental parallelotope
of the underlying lattices to be ı.�/ D 1. We can then compare the distribution of
the normalized determinants among all codewords, as illustrated below. In addition
to the previously introduced codes, we further consider a modified version of the
distributed iterated Silver code using �s D �1. Although this choice does not
guarantee full-diversity in general, with 2-PAM the resulting code is still fully
diverse (Figs.1 and 2).

Golden Silver�17 Silver�1 MIDOA4

Minimum det. 4:445 � 10�3 1:553 � 10�5 4:16 � 10�4 3:871 � 10�7

Maximum det. 13:871 4:099 14:268 80:500
Average det. 1:819 0:493 2:007 7:485

Fig. 1 The logarithmic distribution of the normalized determinants of all the 216 codewords in
Xg , Xm and Xs for both �s D �17 and �s D �1
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Fig. 2 Performance comparison of the above four example codes with 2-PAM signaling. The data
rate is 16=8 D 2 bits per channel use (bpcu). The Silver code with �s D �17 has the worst
performance, which is to be expected due to high peak-to-average power ratio stemming from the
fact that j17j is not close to one. The other codes perform more or less equally

The exact complexity reduction of the iterated distributed codes remains to be
examined. It is also not necessarily obvious, that the proposed construction achieves
the DMT, since the conditions in [8] require that the code rate is 2ns , while our
example constructions all have code rate nd D 1 < 2ns . However, since they are
full-rate (similarly to the codes in [8]) for nd antennas at the destination, we expect
that they do achieve the DMT.
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Cyclic Generalized Separable .L; G/ Codes

Sergey Bezzateev

Abstract A new class of cyclic generalized separable .L;G/ codes is constructed.

Keywords Generalized .L;G/ codes • Goppa codes • Cyclic codes

1 Introduction

A classical Goppa code [1] is determined by two objects: a Goppa polynomialG.x/
with coefficients from GF.qm/ and location set L of codeword positions

L D f˛1; ˛2; : : : ; ˛ng � GF.qm/;G.˛i / ¤ 0; 8˛i 2 L:

Definition 1 A q-ary vector a D .a1a2 : : : an/ is a codeword of .L;G/-code if and
only if the following equality is satisfied

nX

iD1
ai

1

x � ˛i 
 0 mod G.x/:

Definition 2 Goppa code is called separable if the polynomialG.x/ does not have
multiple roots.

In [1] V.D. Goppa proved that the primitive BCH codes are the only sub-
class of Goppa codes that are cyclic with G.x/ D .x � �/t ; � 2 GF.qm/;

L � GF.qm/ n f�g: Accordingly, the only one class of separable Goppa codes
with G.x/ D .x � �/; � 2 GF.qm/; L � GF.qm/ n f�g defined as cyclic.

In 1973 in [2] and later in [3–11] a subclasses of extended separable Goppa codes
and subclasses of separable Goppa codes with Goppa polynomials of degree 2 and
additional parity check were proposed. It was proved that these codes are cyclic.

S. Bezzateev (�)
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However, the existence among separable Goppa codes any subclass of cyclic codes
remained an open problem ([12] Ch.12, Corollary 9, Research Problem 12.3).

In 2013 in [13] the subclass of cyclic separable Goppa codes with a special choice
of location set L and and Goppa polynomialG.X/ of degree 2 was suggested.

L D f˛1; ˛2 : : : ; ˛n�1; ˛ng 	 fGF.q2m/ nGF.qm/gSf1g;
˛n D 1; ˛q

m

i D ˛�1i D ˛n�i ; n D qm ˙ 1;
G.x/ D .x � ˇ/.x � ˇ�1/; ˇ 2 GF.q2m/; ˇ C ˇ�1 2 GF.qm/;
G.˛i / ¤ 0; ˛i ¤ ˛j ; 8i; j 2 f1; : : : ; ng; i ¤ j:

A generalized Goppa code [14] can be constructed by using the following general-
ization of location set L:

L D
�
f 01 .x/
f1.x/

;
f 02 .x/
f2.x/

; : : : ;
f 0n.x/
fn.x/

	
; (1)

where f 0i .x/ is a formal derivative of fi .x/ in GF.q/ and

fi .x/ D x` C ai;`�1x`�1 C : : :C ai;1x C ai;0; ai;j 2 GF.q�/;
gcd.fi .x/; fj .x// D 1; gcd.fi .x/;G.x// D 1; 8i; j; i ¤ j:

Definition 3 q-ary vector a D .a1a2 : : : an/ is a codeword of generalized .L;G/-
code if and only if the following equality is satisfied

nX

iD1
ai
f 0i .x/
fi .x/


 0 mod G.x/: (2)

Generalized Goppa codes have allowed to expand a class of cyclic Goppa codes
with G.x/ D .x � �/t :Many cyclic .n; k; d/ codes can be described as generalized
Goppa codes [15] with

fi .x/ D f .˛ix/; f .x/ D x` C a`�1x`�1 C : : :C a1x C a0; ˛; aj 2 GF.q�/;
a0 ¤ 0; ˛n D 1; nj.q� � 1/; gcd.fi .x/; fj .x// D 1; 8i; j; i ¤ j

and

G.x/ D xt :

For such codes the design bound for minimum distance dG � tC1
`

and the
corresponding decoding algorithm were determined [16, 17]. However, a subclass
of cyclic generalized separable Goppa codes is still remained limited by polynomial
G.x/ D .x � �/; � 2 GF.q�/.
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2 Two Subclasses of Binary Cyclic Generalized Separable
Goppa Codes

In this paper we will consider a binary case with two variants of separable Goppa
polynomial

G.x/ D xn � 1 and OG.x/ D x.xn � 1/: (3)

We will need the following definitions.

Definition 4 For any integers n; nj.2m � 1/ and l; 0 � l < n a cyclotomic coset
ml is given by

ml D fl2j mod n;8j D 0; 1; : : : ; �l � 1g;

where �l is the smallest integer greater than 0 such that l2�l 
 l mod n:

Definition 5 The minimal polynomialMl.x/ of element ˛l 2 GF.2m/ is given by

Ml.x/ D
Y

j2ml
.x � ˛j /; degMl.x/ D �l :

Definition 6 The generator polynomial of a cyclic .n; k; d/ code C is given by

g.x/D
Y

j2D

.x�˛j /; DD
�[

jD1

mlj and g.x/D
�Y

jD1

Mlj .x/; degg.x/D
Y

jD1

�lj D n�k;

where D is the set containing the indices of the zeros of the generator polynomial
g.x/. The size of set D is equal to n � k.

For some D let’s consider a binary linear .�; �; �/ code CL with the length �,
dimension �, minimum distance � and parity-check matrix HL

HL D

2

6
66
6
6
6
4

ˇ
j1
1

G.ˇ1/
: : :

ˇ
j1
�

G.ˇ�/

ˇ
j2
1

G.ˇ1/
: : :

ˇ
j2
�

G.ˇ�/

:::
: : :

:::

ˇ
jk
1

G.ˇ1/
: : :

ˇ
jk
�

G.ˇ�/

3

7
77
7
7
7
5

;
ˇi 2 GF.2�/ n f0; 1g; GF.2�/\GF.2m/ D f0; 1g;
N D fj1; j2; : : : ; jkg; N [D D f0; 1; : : : ; n � 1g:

(4)

Let b D . b1 b2 : : : b� b�C1 : : : b�/ with bi D 1;8i D 1; : : : � and bi D 0;8i D
� C 1; : : : ; � be a codeword of this code. Then for this vector b and parity-check
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matrixHL we obtain

b �HT D 0 and
�X

iD1
bi

ˇ
jl
i

G.ˇi/
D

�X

iD1

ˇ
jl
i

G.ˇi /
D 0;8l D 1; : : : ; k: (5)

As in [17] we will call CL as non-zero-locator code for cyclic code C with the set

D if for anymi 	 D exists j W j 2 mi;
�P

iD1
ˇ
j
i

G.ˇi /
¤ 0 . We associate with codeword

b of this non-zero-locator code CL the following locator polynomial

f .x/ D .x � ˇ1/.x � ˇ2/ � � � .x � ˇ� /; ˇj 2 GF.2�/; j D 1; : : : ; �;
fi .x/ D .x � ˛iˇ1/.x � ˛iˇ2/ � � � .x � ˛iˇ� /; ˛ 2 GF.2m/; ˛n D 1;
gcd.fi .x/; fj .x// D 1; 8i ¤ j; i; j D 1; : : : ; n:

(6)

Theorem 7 Generalized .L;G/ code with Goppa polynomialG.x/ (3) and locator
set L (1) defined by non-zero-locator code CL (4),(5) and by associated locator
polynomial f .x/ (6) is a cyclic code C with the set D of indices of zeroes of
generator polynomial.

Proof Parity-check matrixHG for this code is:

HG D

2

6
6
66
6
6
6
66
4

˛
`1
1

�P

iD1
ˇ
`1
i

G.ˇi /
: : : ˛`1n

�P

iD1
ˇ
`1
i

G.ˇi /

˛
`2
1

�P

iD1
ˇ
`2
i

G.ˇi /
: : : ˛`2n

�P

iD1
ˇ
`2
i

G.ˇi /

:::
: : :

:::

˛
`ı
1

�P

iD1
ˇ
`ı
i

G.ˇi /
: : : ˛`ın

�P

iD1
ˇ
`ı
i

G.ˇi /

3

7
7
77
7
7
7
77
5

D

2

6
6
6
4

˛
`1
1 : : : ˛`1n
˛
`2
1 : : : ˛`2n
:::
: : :

:::

˛
`ı
1 : : : ˛`ın

3

7
7
7
5
;

where f`1; `2; : : : ; `ıg � D:

(7)

ut
Note 8 By Definition 6 dimension of this code is k D n � kDk, where kDk is a
size of the set D.

For the case OG.x/ D x.xn � 1/ we will obtain a similar theorem.

Theorem 9 Generalized .L; OG/ code with Goppa polynomial OG.x/ (3) and locator
set L (1) defined by non-zero-code CL (4),(5) is a cyclic code OC with the set OD �
D [m�1 of indices of zeroes of generator polynomial.



Cyclic Generalized Separable .L;G/ Codes 57

Proof Parity-check matrixH OG for this code is:

H
OG D

2

6
666
666
666
666
4

˛�1
1

�P

iD1

1
G.ˇi /

: : : ˛�1
n

�P

iD1

1
G.ˇi /

˛`11

�P

iD1

ˇ
`1
i

G.ˇi /
: : : ˛`1n

�P

iD1

ˇ
`1
i

G.ˇi /

˛`21

�P

iD1

ˇ
`2
i

G.ˇi /
: : : ˛`2n

�P

iD1

ˇ
`2
i

G.ˇi /

:::
: : :

:::

˛`ı1

�P

iD1

ˇ
`ı
i

G.ˇi /
: : : ˛`ın

�P

iD1

ˇ
`ı
i

G.ˇi /

3

7
777
777
777
777
5

D
8
<

:

HG; if � 1 2 D or 0 2 N;�
˛�1
1 : : : ˛�1

n

HG

�
; if � 1 … D and 0 … N:

(8)
ut

Theorem 10 From (2), (3) and (6) we obtain the following estimation for minimal
distance of binary cyclic generalized separable Goppa code:

dG � 2nC 1
�

for G.x/ D xn � 1

and

d OG �
2nC 3
�

for OG.x/ D x.xn � 1/:

3 Trace Non-zero-Locator Code

As example of non-zero-locator code let’s consider a binary linear code with length
� , parity-check matrix

HL D

2

6
66
6
6
4

ˇj1

G.ˇ/

ˇ2j1

G.ˇ2/
: : :

ˇ�j1

G.ˇ�/
ˇj2

G.ˇ/

ˇ2j2

G.ˇ2/
: : :

ˇ�j2

G.ˇ�/

:::
: : :

:::
ˇjk

G.ˇ/

ˇ2jk

G.ˇ2/
: : :

ˇ�jk

G.ˇ�/

3

7
77
7
7
5
;

ˇ � primitive element in GF.2�/;
t r.ˇji / D 0;8i D 1; : : : ; k;
N D fj1; j2; : : : ; jkg;
N [D D f0; 1; : : : ; n � 1g:

(9)

and codeword

b D .b1b2 : : : b�/;wt.b/ D � and b1 D b2 D b22 D : : : D b2��1 D 1:
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Now we can rewrite matrixHG (7) in the following form

HG D

2

6
6
6
66
6
4

˛
`1
1 t r

�
ˇ`1

G.ˇ/

�
: : : ˛`1n t r

�
ˇ`1

G.ˇ/

�

˛
`2
1 t r

�
ˇ`2

G.ˇ/

�
: : : ˛`2n t r

�
ˇ`2

G.ˇ/

�

:::
: : :

:::

˛
`ı
1 t r

�
ˇ`ı

G.ˇ/

�
: : : ˛`ın t r

�
ˇ`ı

G.ˇ/

�

3

7
7
7
77
7
5

D

2

6
6
6
4

˛
`1
1 : : : ˛`1n
˛
`2
1 : : : ˛`2n
:::
: : :

:::

˛
`ı
1 : : : ˛`ın

3

7
7
7
5
;

where t r
�
ˇ`i

G.ˇ/

�
¤ 0; i D 1; : : : ; ı; f`1; `2; : : : ; `ıg � D:

(10)

For such trace non-zero-locator code we have locator polynomial f .x/ from (6):

f .x/ D .x�ˇ/.x�ˇ2/ � � � .x�ˇ2��1

/ D ˝1.x/; ˝1.x/ 2 F2Œx�; deg˝1.x/ D �;
˝1.x/ is a minimal polynomial of element ˇ 2 GF.2�/.

From Theorem 10 we obtain the following estimation for minimal distance of
binary cyclic generalized separable Goppa code with trace non-zero-locator code:

dG � 2nC 1
�

for G.x/ D xn � 1

and

d OG �
2nC 3
�

for OG.x/ D x.xn � 1/:

4 Examples

1.

n D 21; OG.x/ D x.x21 � 1/; ˛ 2 GF.26/; ˛21 D 1; ˇ 2 GF.27/;
f .x/ D x7 C x6 C x4 C x C 1; fi .x/ D ˛7i x7 C ˛6i x6 C ˛4i x4 C ˛ix C 1;
L D f x6C1

x7Cx6Cx4CxC1 ;
˛7x6C˛

˛7x7C˛6x6C˛4x4C˛xC1 ; : : : ;
˛14x6C˛20

˛14x7C˛15x6C˛17x4C˛20xC1g;
t r
�

ˇi

OG.ˇ/
�
D 1; i D 0; 3; 4; 6; 7; 12; 14; 21;

t r
�

ˇi

OG.ˇ/
�
D 0; i D 1; 2; 5; 8; 9; 10; 11; 13; 15; 16; 17; 18; 19; 20:

Therefore from Theorem 9 we have .21; 6; 7/ cyclic code with generator
polynomial g.x/ D m1.x/m3m5.x/. From Theorem 10 we obtain the following
estimation for minimum distance for this generalized separable .L; OG/ code:

dG � 2nC 3
�

D 45

7
> 6 and we have dG D d D 7:
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2.

n D 21; OG.x/ D x21 � 1; ˛ 2 GF.26/; ˛21 D 1; ˇ 2 GF.27/;
f .x/ D x7 C x6 C x4 C x2 C 1; fi .x/ D ˛7ix7 C ˛6ix6 C ˛4ix4 C ˛2ix2 C 1;
L D f x6

x7Cx6Cx4Cx2C1
; ˛7x6

˛7x7C˛6x6C˛4x4C˛2x2C1
; : : : ; ˛14x6C˛20

˛14x7C˛15x6C˛17x4C˛19x2C1
g;

t r
�

ˇi

OG.ˇ/

�
D 1; i D 2; 3; 5; 6; 11; 13; 20;

t r
�

ˇi

OG.ˇ/

�
D 0; i D 0; 1; 4; 7; 8; 9; 10; 12; 14; 15; 16; 17; 18; 19:

From Eq. (10) and Theorem 7 we have .21; 6; 7/ cyclic code with generator
polynomial g.x/ D m1.x/m3.x/m5.x/. From Theorem 10 we obtain the
following estimation for minimum distance for this generalized separable .L;G/
code:

d OG �
2nC 1
�

D 43

7
> 6 and we have d OG D d D 7:

5 Conclusion

The new subclasses of cyclic generalized separable Goppa codes with Goppa
polynomials xn � 1 and x.xn � 1/ are proposed. The parameters and examples
of the codes from these subclasses are shown.
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The One-Out-of-k Retrieval Problem and Linear
Network Coding

Giuseppe Bianchi, Lorenzo Bracciale, Keren Censor-Hillel, Andrea Lincoln,
and Muriel Médard

Abstract In this paper we show how linear network coding can reduce the number
of queries needed to retrieve one specific message among k distinct ones replicated
across a large number of randomly accessed nodes storing one message each.
Without network coding, this would require k queries on average. After proving that
no scheme can perform better than a straightforward lower bound of 0:5k average
queries, we propose and asymptotically evaluate, using mean field arguments, a
few example practical schemes, the best of which attains 0:82k queries on average.
The paper opens two complementary challenges: a systematic analysis of practical
schemes so as to identify the best performing ones and design guideline strategies,
as well as the need to identify tighter, nontrivial, lower bounds.

Keywords Delay tolerant network • Linear network coding • Fluid approxima-
tions

1 Introduction

This paper introduces a new problem, which we call one-out-of-k retrieval. Suppose
there are k distinct messages X D fx1; : : : ; xkg, where xi 2 0; 1m 8i 2 Œ1; k�.
A receiver wishes to learn all m bits of one specific target message, xr 2 X . We can
produce some new set of messages Y D fy1; y2; : : :g of arbitrary size and contents.
Each round, the receiver can request a message selected over a pre-determined
probability distribution from Y . We wish to come up with a set of linearly coded
messages for Y and a probability distribution over these such that the average
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number of rounds in which a message must be requested by the receiver from Y

to learn all m bits of xr is minimized.
This scenario is practically encountered in Delay Tolerant Networks (DTN).

In such networks, data replication across the moving terminals is at the core of
most proposed data access or data delivery solutions, as the likelihood that a user
interested in a specific data item “physically” meets only the single data producer
becomes rapidly negligible as the network size scales.

1.1 Contribution

PMost network coding research has focused on retrieving and decoding all the
messages instead of a specific subset Even for the case of k D 2, schemes exist
which take an average of�1:828 coded messages from Y , outperforming the naive
average of 2. This raises some questions: how much reduction in average numbers
of messages from Y can we gain? And with which practical constructions?

In the paper, we present a lower bound of 0:5k for the average number of rounds
the receiver must request messages. Then, we propose some initial example schemes
where the selection of the probability distribution over Y results in a lower average
number of requests than the naive average of k messages needed from the set Y .

Moreover, we provide a general methodology to analyze such schemes. We
specifically show how to apply mean field arguments to derive the asymptotic
performance of the proposed approaches. We concretely apply our methodology
to two example schemes, the best of which attains an average of 0:82k rounds of
communication.

1.2 Previous Work

Previous work on network coding in DTNs has not considered the problem of
solving for one out of k messages. In our model, the protocol does not allow for the
receiver to request the specific information it wants and nor do we treat it as wanting
all information. For instance, LT codes [6] are designed with the different goal of
optimizing the decoding procedures. Many papers [2, 7, 8, 10] investigate routing
protocols in DTNs. These papers attempt to decode all messages, as opposed to just
one of k. Yoon and Hass consider application of linear network coding to DTNs but,
unlike this work, investigate the case of sparse networks [9].
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2 Network Model and Problem Statement

In our model there are k messages X D fx1; : : : ; xkg, each of which is a can be
represented by a binary vector of length m bits. There is a receiver node, r , which
wants to know the contents of the one message, we will call this message xr . The
receiver, r , travels throughout the network and will receive messages from the nodes
it contacts in close proximity. We model this as r contacting a random node, which
transmits its output. These contacts cannot be commanded so messages may be
repeated and r can not query for a particular message. In each round, the receiver
node r receives exactly one coded message, y, from one of the transmitting nodes.
Each round has a constant duration. The nodes in this network can store linear
combinations of messages over some field Ff .

Definition 1 The type (or degree) of a coded message is the number of message
linearly combined in that data message.

These linear combinations are stored with header data that specifies which
messages were summed with what multiplicative constants.

Definition 2 Solving for message xj means determining all m bits in the mes-
sage xj .

Definition 3 The one-out-of-k retrieval problem is determining what coding
scheme produces the lowest expected time for r to solve for xr where a coding
scheme is the proportion p1; p2 : : : pk of the codeword degrees distributed in the
networks.

In other words, we want to find p1 � � �pk that minimize the time for retrieving
only one message, given that the receiver collects at each round an uncoded message
with probability p1, a “pair” (codeword with degree 2) with probability p2, a
“triplet” with probability p3 etc.

Thus, Y is the set of all linear combinations of the k messages in X . Each coded
message, y 2 Y , is a linear combination of n messages and has a probability pn

.kn/
of

being sent to the receiver.

2.1 A Trivial Example: k D 2

Consider the simple case where we have only two kind of different message that
we call A and B . If we do not use coding (p1 D 1; p2 D 0) it is trivial to show
that the average time spent from the receiver for collecting A (or equivalently B) is
2, i.e. k. Similarly if all nodes carry a random linear combination of both A and B
(p1 D 0; p2 D 1) the expected retrieval time is exactly 2 encounters, so once again
the average is 2. Now let AB be the linear combination of A and B so that at each
encounter the receiver can collect A with probability p=2, B with probability p=2,



64 G. Bianchi et al.

 1.82
 1.84
 1.86
 1.88

 1.9
 1.92
 1.94
 1.96
 1.98

 2

 0  0.2  0.4  0.6  0.8  1

E
[D

]

p

Fig. 1 Average retrieval delay for the case of k D 2

and AB with probability 1 � p. The average delay to retrieve item A is:

Delay D 1 � p C 1

1 � p=2

Then it is trivial to show that when p D 2 �p2 the expected time to retrieve A is
minimized and equals to 2

p
2� 1 � 1:828, i.e. about 9 % lower than both previous

cases. Hence this problem is solved adopting the coding scheme p1 D 2�
p
2; p2 Dp

2 � 1. The delay versus p is shown in Fig. 1.

2.2 Lower Bound

For the problem of determining the contents of one message out of k we prove that
0:5k messages is the lowest achievable average cost.

Intuitively level to solve for c messages we must receive at least c coded
messages.

Lemma 4 On average there are greater than 1
2
k messages solved for before or in

the same round as xr .

Proof First let us definemj as the number of messages solved before or at the same
time that xj is solved. If a message xj never has its contents solved then define
mj D k. For convenience, let mr be the number of messages solved before or at
the same time as the message of interest xr . xr is randomly selected from fxj jj 2
Œ1; k�g. Thus, the average number of message solved before or at the same round as

xr is the average vale of mj i.e.
Pk
iD1 mj
k

.
If all the values of mj are distinct then the minimum value they can have is the

integers from 1 to k thus the average value of mj is:

.k C 1/k
2k

D k C 1
2

:

If some messages are solved at the same time (in the same round) then this sum
is strictly greater because having multiple messages solved at the same time causes
double counting.
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Thus, on average there are greater than 1
2
k messages solved before or in the same

time step as xr . ut
Next we use this lemma to prove a lower bound on the average number of rounds

needed.

Theorem 5 There exists no scheme in our model such that the contents of a
message xr selected at random can be solved with fewer than 1

2
k coded messages

on average.

Proof Given Lemma 4 when the receiver, r , has solved for xr , having received tr
coded messages, r has also solved for more than 1

2
k messages.

To solve for mj messages the receiver must receive at least mj coded messages.
Thus the average number of coded messages needed to solve for xr must be greater
than or equal to the average value ofmj . Thus a lower bound for the average number
of coded messages needed is k=2. ut

3 Methodology

Determining whether the set of received messages fully specifies the target one-
out-of-k message, is the major difficulty. Since messages are retrieved at random,
differently coded messages are collected (e.g. uncoded messages, linear combina-
tion of two messages, linear combination of all k messages, and so on depending
on the construction). The set of collected messages also depends on time, requiring
a transient stochastic process to model a chosen strategy, which usually exhibits a
non-trivial space state.

To avoid such stochastic modeling complexity, the methodology employed
hereafter consists of three steps: (i) model a proposed coding strategy via a discrete
time (vector) stochastic process; this is arguably the most complex step, as discussed
later on; (ii) approximate the proposed coding strategy’s transient solution with the
deterministic mean trajectory specified by the drift (vector) differential equation
of a conveniently rescaled stochastic process, and (iii) derive the average number of
queries needed to retrieve the target message from a relevant probability distribution,
which is derived from the knowledge of the drift equation solutions.

The approximation in step (ii) above is motivated by the fact that practical values
of k are relatively large. It consists of using mean field techniques widely established
in the literature since [5], which have been successfully applied to a variety of
problems [1, 3], and which guarantee asymptotic convergence to exact results for
finite state space systems under mild assumptions (see e.g., [3]). Our own results
show a very accurate matching with simulation even for relatively small values of
k.

Details and a simple example of the proposed methodology are presented in
Appendix 1.
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4 Practical Example Cases

In order to understand the asymptotic nature of the gain, and show how the proposed
methodology can be concretely applied we show two example constructions. In both
cases, we compare analytical results with simulation.

4.1 All-or-Nothing Scheme

This scheme is extremely simple in terms of states, permits a simple analysis, and
can be used as a reference to gauge the improvements brought about by more
complex schemes. The all-or-nothing scheme comprises only two possible types
of messages, defined below.

Definition 6 A singleton is a message xi for i 2 Œ1; k� sent in plain text.

Definition 7 A fully coded message is a random linear combination
Pk

iD1 ˛ixi of
all k messages over a large field size F, with ˛i 2 F.

We assume that all messages xi , with i 2 Œ1; k�, are equiprobable. Under this
assumption, the all-or-nothing scheme is characterized by a single parameter p,
where p is the singleton reception probability and 1 � p is the complementary
fully coded message reception probability. The state space thus comprises two state
variables: (i) the number of singletons received at a given time, and (ii) the number
of fully coded messages received at the same time.

Theorem 8 The all-or-nothing scheme achieves a best possible performance of
0:86k; which corresponds to the value p � 0:6264.

Proof Using the methodology presented above, let we define the following two
density processes:

• s.t/ 2 .0; 1/ is the fraction of singletons accumulated until time t ;
• d.t/ 2 .0; 1/ is the fraction of fully coded messages accumulated until time t .

In this case, the drift differential equation reduces to two independent ordinary
differential equations. For the case of singletons, operating in a similar way to the
example in Appendix 1, we have:

s0.t/ D 1 � ps.t/; (1)

which, when solved with initial conditions s.0/ D 0, yields

s.t/ D 1 � e�pt : (2)
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For the case of fully coded messages, we have:

d 0.t/ D .1 � p/d.t/ with d.0/ D 0: (3)

Therefore

d.t/ D .1 � p/t: (4)

We now note that a target message is decoded when either the corresponding
singleton is received, or when the number of received singletons plus the number of
fully coded messages is equal to the total number k of distinct messages. In terms
of density processes, this latter condition is expressed by the equation

s.t/C d.t/ D 1 ! e�pt C t D 1: (5)

Let us call t� the solution of this transcendental equation. By introducing the

Lambert W function, we can express t� in closed form as t� D W.
p

1�p /

p
.

Finally, the average number of messages EŒX� needed to decode the target
message can be computed:

EŒX� D
Z t�

0

s.�/d� D 1� e�W
�

p
1�p

�

p
(6)

This expression is minimized when p D 0:626412, and yields a minimum
(normalized) number of retrieved messages EŒX� D 0:859884. ut

In order to verify the correctness of the analysis, Fig. 2a shows that simulations
vary the number of messages from k = 2 to k = 70. Note that the theoretical results
have an asymptotic nature, hence our choice of running simulations with small
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values of k. Every point in the figure is the delay to retrieve a data message
averaged on 50,000 samples. Even though the proposed methodology obtains an
exact solution only for large values of k, already after k = 20 the error is below 1 %.

4.2 Pairs-Only Scheme

This scheme shows how the state space can become extremely complex (actually
an infinite set of state variables) even when considering an apparently very simple
approach. Moreover, it can be solved using an alternative methodology, because its
emerging decoding structure can be cast as an Erdős-Rényi random graph; thus it
permits us to verify that our methodology, despite being extended to the case of
infinite state variables (hence violating the assumptions in [3]), nevertheless yields
the same results derived in the relevant random graph literature.

As the name suggests, the pairs-only scheme includes only one type of coded
message, namely the random linear combination of two randomly chosen messages.
This type of message is called pair and is formally defined as follows.

Definition 9 A pair is a random linear combination of two randomly chosen
messages over a large field size in the form f.˛xi C ˇxj /ji ¤ j and i; j 2 Œ1; k�g
where ˛; ˇ 2 F and F is a large field.

In analyzing this scheme, the difficulty lies in defining an appropriate state
space. Once this is done, the remaining analysis reduces to the conceptually
straightforward application of our methodology. The state space definition and
justification is presented in Appendix 2, along with the proof of the following
theorem:

Theorem 10 The pairs-only scheme achieves a performance of �
2

12
k � 0:8224k.

Our results confirm those found in random graphs literature. However, our approach
can be extended to coding schemes which cannot be directly cast as a random
graph problem, such as, the combination of singletons and pairs, which yields a
performance slightly below 0:8k (we postpone analysis to a later extended version
of this work). Comparison with simulation results averaged over 50.000 realizations
is reported in Fig. 2b. Again, results show that convergence to the asymptotic result
is very fast, with an error lower than 1 % for k > 20.

5 Conclusion

In this work we explore efficient solutions to one-out-of-k retrieval. We prove a
lower bound of 0:5k and upper bound of 0:8224k on the number of coded messages
needed on average to solve for the message of interest. Current simulation results
suggest that the true minimum value for one-out-of-k retrieval should be higher
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than 0:5k. The machinery given in Sect. 3 can be used to analyze various proposed
schemes to produce upper bounds. Generalizing one-out-of-k retrieval to m-out-of-k
retrieval is another interesting extension.

Acknowledgements This research is supported by NSF award CCF-1217506 and by the Israel
Science Foundation (grant number 1696/14). Keren Censor-Hillel is a Shalon Fellow.

Appendix 1

Let’s assume a discrete time scale, clocked by message arrivals, i.e., time n 2
f1; 2; � � � g is defined as the time of arrival of the n-th element. Let us now identify a
model for the receiver state. This is a critical step (as will appear in the construction
examples discussed later on), as the relation between receiver state and the different
“types” of messages collected (and how many) is in general not trivial and specific
for every scheme considered; For instance, the reception of two different “types”
of coded message, say a linear combination of messages A and B (called “pair”),
and an uncoded message A (called “singleton”) yields the decoding of message B ,
and suggests to use as state variables the number of message “types” resulting after
decoding, in this case the two singletons A and B , rather than the actually received
message types (a pair an a singleton).

In most generality, the status of the receiver at an arbitrary discrete time n is
summarized by means of a state vector:

N .n/ D f 1.n/;  2.n/; � � � g (7)

where  i.n/ is defined as the number of messages of “type” i stored by the receiver
at time n.

Under the assumption of independent random messages being retrieved at each
time step, and appropriate choice of the space state, N .n/ introduced in (7) is a
discrete-time Markov chain. Let us now write the relevant time-dependent state
transition probabilities as functions of the vector state components normalized with
respect to k, i.e.:

P
˚ N .nC 1/j N .n/
 D f N .nC1/

� N .n/
k

�
(8)

The conditional expectation, namely the drift of the considered Markov chain, is
readily given by the vector

E
� N .nC 1/� N .n/j N .n/� D

X

Nv2all states


 Nv � N .n/� f Nv
� N .n/

k

�
D Nd

� N .n/
k

�
;

(9)
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where we conveniently express the state vector components as normalized with
respect to k. We now introduce a new stochastic process which is a doubly-rescaled
version of (7) in terms of both state (normalized with respect to k, i.e., a density
process [1]) as well as time (also normalized with respect to k, i.e. t D n=k):

N	.t/ D
N .t � k/
k

The conditional expectation (9) is readily rewritten for the rescaled process as:

E Œk � N	.t C 1=k/� k � N	.t/j N	.t/� D E Œ N	.t C 1=k/ � N	.t/j N	.t/�
1=k

D Nd . N	.t//
(10)

For large k, and under quite general assumptions (it suffices the drift Nd.:/ to be a
Lipschitz vector field [3]), the density process N	.t/ converges in probability to a
deterministic trajectory, computed by solving the system of differential equations
obtained by replacing the left side of equation (10) with the derivative N	 0.t/:

N	 0.t/ D Nd . N	.t// (11)

at last, from the knowledge of N	.t/, the average number of messages needed to
decode the target message is readily computed.

In order to better clarify, we present a trivial example.
Let us consider the simplest possible case of all messages being uncoded

(singletons). Note that the final result, i.e., k messages retrieved on average, could
be trivially derived from straightforward direct arguments; however, in addition to
show how the above methodology can be cast in practical cases, this derivation will
also recur as building block for the constructions discussed next, which instead do
not appear readily tractable with direct arguments.

The first step is to define a convenient state space. In this case, the obvious state
variable is the number S.n/ of distinct singletons received at time n. The process
S.n/ is a discrete time markov chain, with the only non null transition probabilities
being P fS.nC 1/ D S.n/jS.n/g D S.n/=k (probability that the new retrieved
singleton message is already stored), and P fS.nC 1/ D S.n/C 1jS.n/g D 1 �
S.n/=k (probability that the retrieved message is a new one). Hence, the drift of the
chain is given by E ŒS.nC 1/� S.n/jS.n/� D 1 � S.n/=k.

The second step consists in rescaling the process, and write, for the resulting
density process s.t/ D S.tk/=k, the differential drift equation s0.t/ D 1 � s.t/.
Since, at time t D 0, no messages are received, the differential equation shall be
solved with the initial condition s.0/ D 0, which yields s.t/ D 1 � et .

Finally, in order to derive the average number of messages needed to retrieve
a randomly chosen target message, we note that s.t/ is the fraction of messages
retrieved at time t , and hence can be interpreted as the cumulative probability
distribution function of the random variable X representing the retrieval (rescaled)
time. Thus, EŒX� D R1

0
Œ1 � s.t/� dt D R1

0
etdt D 1. Rescaling back to the
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original discrete time scale, we get the final result of k average messages needed to
retrieve the target one.

Appendix 2

To avoid an overly long presentation, we directly operate over re-scaled state
variables, i.e., densities (the transformation from discrete state variables to densities
being readily performed as in the example presented in Sect. 4).

Since pairs are selected at random, the tracking of all the possible combination
of messages would yield state space explosion. To circumvent such issue, we resort
to the following convenient definition of an infinite, but numerable, set of state
variables si .t/, where

• s1.t/ is the fraction of messages (normalized with respect to k) which, at
(normalized) time t , do not belong to any so far received pair;

• s2.t/ is the fraction of messages which are covered by one and only one pair;
• s3.t/ is the fraction of messages which belong to a group of three messages

“connected” by two pairs;
• And, in most generality, si .t/ is the fraction of messages which belong to a group

of i messages “connected” by i � 1 pairs.

For an illustrative example, assume the node has so far received the pairs AB,
AC, AD, EF, FG, HI, and JK. According to our definition, we have 1 group of 4
“connected” messages (A, B, C, D), 1 group of three connected messages (E,F,G),
two groups of two connected messages (H,I) and (J,K), and all remaining messages
not yet covered by any pair. Being k the total number of distinct messages, the
state representation for the above example would be: fs1.t/ D 1 � 11=k; s2.t/ D
4=k; s3.t/ D 3=k; s4.t/ D 4=k; s5.t/ D 0; � � � g. Note that si .t/ � k=i yields the
number of groups having cardinality i .

Suppose now that a pair AI is received: as a result, the two groups (A,B,C,D) and
(H,I) merge in a new group of cardinality 6. This corresponds to the transition to the
following state: fs1.t/ D 1 � 11=k; s2.t/ D 2=k; s3.t/ D 3=k; s4.t/ D 0; s5.t/ D
0; s6.t/ D 6=k; � � � g.

For k ! 1, the probability that a pair arrives in an already formed group of
finite size vanishes; as such, a state transition can occur only because two different
groups are merged via a random pair arrival. We can thus write the drift differential
equations as follows:

s01.t/ D �2s1.t/
s02.t/ D 2

��2s2.t/C s1.t/2
�

s03.t/ D 3 Œ�2s3.t/C s1.t/s2.t/C s2.t/s1.t/�
s04.t/ D 4

��2s4.t/C s1.t/s3.t/C s2.t/2 C s3.t/s1.t/
�
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� � � D � � �

s0i .t/ D i
2

4�2si .t/C
i�1X

jD1
sj .t/si�j .t/

3

5

� � � D � � � (12)

These equations are readily explained as follows. Let us first focus on the set of
messages so far not yet covered by any pair, i.e. those accounted by the state variable
s1.t/. Let us also remark that, owing to the normalization, s1.t/ also corresponds to
the probability to pick one of such messages as a component of an arriving pair. A
state transition involving s1 thus comprises two possible cases: (i) with probability
s1.t/

2, an arriving pair removes two of such messages and add them to the group
of non overlapping pairs, namely those accounted in the state variable s2, or (ii)
with probability 2s1.t/ � .1 � s1.t// only one of the messages is removed. This
corresponds to a negative drift for the state variable s1.t/ given by the average state
variable decrement:

s01.t/ D �2 � s1.t/2 � 2s1.t/.1 � s1.t// D �2s1.t/;

as stated by the first equation in the above system.
Let us now focus on the set of messages accounted by the state s2.t/. We recall

that these are messages covered by exactly one pair, only. On one side, s2.t/ can
increase, with the addition of two new messages, only when an arriving pair covers
two messages belonging to the set s1 (this occurs with probability s1.t/2 as discussed
above). On the other side, it decreases of (i) four messages, whenever a new arriving
pair “hits” two messages in the set s2 (hence “connects” the two pre-existing pairs
forming a 4-messages group, this event has probability s2.t/2), or (ii) connects one
pair in s2 with a message outside the set s2, this event occurs with probability 2s2.t/ �
.1 � s2.t//. By averaging the resulting state variations, we obtain the second drift
equation. The remaining equations are derived via identical considerations.

It only remains to solve this differential system, using as initial conditions
s1.0/ D 1, si .0/ D 0;8i > 1. This is a purely calculus problem, not anymore
related to our specific modeling problem, which is addressed as follows. First, we
note that equations can be solved recursively, starting from the top. The following
set of solutions is readily obtained:

s1.t/ D e�2t

s2.t/ D 2e�4t t

s3.t/ D 6e�6t t2

s4.t/ D 64

3
e�8t t3
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s5.t/ D 250

3
e�10t t4

s6.t/ D 1728

5
e�12t t5

� � � (13)

Where the general solution pattern can be easily determined, besides a multiplicative
constant Ci , as:

si .t/ D Cie�2i t t i�1 (14)

Given that we are interested in the sum of all the si .t/ we can easily recognize
that:

1X

iD1
si .t/ D t�1

1X

iD1
Ci


e2t t�1

��i D t�1Cz


e2t t�1

�
(15)

Where Cz.e
2t t�1/ is the Z-Trasform of sequence Ci calculated in the point e2t t�1.

Combining Eqs. 12 and 14 we obtain:

Cie
�2i t t i�2.i � 1 � 2it/ D �2iCie�2i t t i�1 C e�2i t t i�2i

i�1X

jD1
CjCi�j

That after algebraic simplifications becomes:

Ci.i � 1/ D i
i�1X

jD1
CjCi�j

We can transform this equation using the Z-Transform on i , so that:

�Cz � zC 0z D �z.C 2
z /
0

and finally:

Cz D 2zCzC
0
z � zC 0z

Solving the above differential equation in z we have:

Cz D �1
2
W

�
�2e

�P

z

�
(16)

whereW is the Lambert Function and P is a constant.
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If we antitrasform the last expression, and after that we setted the constant P
(knowing that C1 D 1), we have:

Ci D .2i/i�1

i Š
(17)

Ci assumes the following values: 1, 2, 6, 64=3, 250=3, 1728=5, 67228=45,
2097152=315, 1062882=35, 80000000=567 . . .

We can then express si .t/ as:

si .t/ D .2i/i�1

i Š
t i�1E�2i t

And finally calculate the average delay as:

EŒD� D
1X

iDi

Z 1

tD0
si .t/ D

1X

iD1

1

2i2
D �2

12

This is equal to 0:822467k.
If we analyse the timeline of decoding process, we can notice a sharp threshold

(corresponding to the receiving of k=2 pairs) that separates a phase in which the
decoding of messages is negligible by a phase in which it is significant. Indeed, this
problem can be also modelled as a random graph with k vertices where we randomly
add edges. As Erdos pointed out in its seminal paper [4], after that vertices reach
a degree c D 1 there is the emerging of a “giant component” whose size in the
supercritical part (i.e. c > 1) is � y.c/k where y is the solution of e�cy D 1 � y.
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On the Error-Correcting Radius of Folded
Reed–Solomon Code Designs

Joschi Brauchle

Abstract A general formula for the error-correcting radius of linear-algebraic mul-
tivariate interpolation decoding of folded Reed–Solomon (FRS) codes is derived.
Based on this result, an improved construction of FRS codes is motivated, which
can be obtained by puncturing Parvaresh–Vardy codes. The proposed codes allow
decoding for all rates, remove the structural loss in decoding radius of the original
FRS design and maximize the fraction of correctable errors.

Keywords Decoding radius • Low-order folded Reed–Solomon Codes • Multi-
variate interpolation • Parvaresh–Vardy codes

1 Introduction

Decoding Reed–Solomon (RS) codes can be seen as reconstructing a message
polynomial of limited degree from a set of noisy evaluation points. There exist
a multitude of univariate and multivariate interpolation decoding (MID) algo-
rithms solving this problem. The classical bounded minimum distance decoder of
Berlekamp–Welch (BW) [11] can be interpreted [1, 6] as a starting point for most
MID algorithms. For an RS code of rate R the BW decoder recovers a list-of-1
candidate polynomial at minimum Hamming distance from the received word up to
a fraction of .1 � R/=2 errors. Extending this idea, Sudan in [9] allowed for a list of
l � 1 candidate polynomials to be recovered up to a radius of 1�p2R via bivariate
interpolation. Guruswami–Sudan [3] increased the radius to 1 � pR by means of
multiplicities of the interpolation points. Parvaresh–Vardy (PV) codes [8] improve
upon this value using MID of multiple algebraically correlated polynomials.

Simple linear-algebraic decoding of `-order PV codes allows to correct up to a
fraction of `=.`C 1/.1 � `R/ errors, but with a strong rate limitation. Through a
puncturing pattern, Guruswami–Rudra [2] deducedm-folded Reed–Solomon (FRS)
codes from PV codes which are linear-algebraically decodable [10] up to a fraction
of s=.s C 1/.1�mR=.m� s C 1// errors with a lesser rate restriction. By allowing
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higher degree interpolation and interpolation points with multiplicities (which
shall not be considered here for the sake of simple linear-algebraic decoding),
a fraction of 1 � .mR=.m � s C 1//s=.sC1/ errors may be corrected using these
codes.

In this paper, a general formula for the decoding radius of linear-algebraic
MID in terms of code and decoder parameters is derived, showing that FRS codes
are not designed optimally. An improved version called “low-order” m-folded
Reed–Solomon (LOFRS) codes with a decoding radius up to m=.mC 1/.1 � R/
is motivated by this result. The term LOFRS was coined in a recent paper
by Guruswami–Wang [4], who present a similar design that we wish to
explicitly acknowledge. The contribution of this paper is to present LOFRS
codes from a different perspective and to illustrate their relationship to PV
codes.

The paper is organized as follows. Section 2 introduces notation and defines RS,
PV and FRS codes. In Section 3, a general formula for the decoding radius of linear-
algebraic MID is derived and applied to RS, PV and FRS codes. Section 4 analyzes
the parameters of this formula such that an optimal decoding radius is achieved. It is
shown that FRS codes can not make use of these parameters, so an improved design
for FRS codes is presented and evaluated. Section 5 concludes the paper.

2 Review of (Folded) Reed–Solomon and Parvaresh–Vardy
Codes

Let Fq be a finite field of order q, and F
�
q :D Fqnf0g its multiplicative group with

generating element ˛ 2 F
�
q . A vector space of dimension ` over Fq is denoted by F

`
q

and the ring of polynomials in indeterminate x with coefficients in Fq by FqŒx�. Let
FqŒx�<k :D ˚

f 2 FqŒx� W deg f < k



be the vector space of polynomials in FqŒx�

of degree less than k. The set of integers f1; : : : ; ng D: Œ1; n� and let E .j; i; `/ :D˚
˛j; ˛jCi; : : : ; ˛jCi.`�1/



be an ordered set of ` distinct multiples of ˛i, starting at ˛j.

Definition 1 (Evaluation Map) The evaluation map evE .j;i;`/WFqŒx�<k ! F
`
q is

defined as f 7! 

f


˛j
�
; f


˛jCi

�
; : : : ; f



˛jC.`�1/i

��
.

Definition 2 (Reed–Solomon Code) Let E be an evaluation set of n distinct
elements from Fq called code locators. A RS code of length n D jE j and dimension
k 2 Œ1; n� is the image of all message polynomials f .x/ D f0 C f1x C � � � C
fk�1xk�1 2 FqŒx�<k under the evaluation map evE , i.e.,

RSŒq;E ; k� :D ˚.evE .f // W 8f 2 FqŒx�<k



(1)

and rate RRS D k=n D: R. If E D F
�
q , n D ˇ

ˇF�q
ˇ
ˇ D q � 1, the code is called

primitive.

In this paper, all considered RS codes are primitive.
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Parvaresh–Vardy Codes generalize RS codes by evaluating more than just one
polynomial of degree less than k at a common set of evaluation points E .

Definition 3 (General Parvaresh–Vardy Code) Let e.x/ 2 FqŒx� be an irre-
ducible polynomial over Fq of degree a � k. Let f0.x/ 2 FqŒx�<k denote the
message polynomial as for RS codes. Choose integers a; d; ` so that fi .x/ :D
.fi�1.x//d mod e.x/ 2 FqŒx�<k . A PV code of dimension k is defined as all
matrices in F

`�n
q such that

PV
�
q;E ; k; d; `; e.x/

�
:D
8
<

:

0

@
evE .f0/:::

evE .f`�1/

1

A W 8f0 2 FqŒx�<k

9
=

;
: (2)

If ` D 1, only the message polynomialf0 2 FqŒx�<k is used and PV codes (2) reduce
to RS codes as in (1). For ` > 1, additional algebraically correlated polynomials
fi 2 FqŒx�<k carrying no further data are evaluated for i 2 Œ1; ` � 1�, so the rate of
PV codes is limited to RPV D k=.`n/ D RRS=`.

In the following, the parameters of PV codes are restricted: Let e.x/ D xq�1 � ˛
and d D q, such that fi .x/ D .fi�1.x//q mod



xq�1 � ˛� D fi�1.˛x/ D

f0.˛
ix/, i 2 Œ1; ` � 1�, allowing for a simplified definition of PV codes:

Definition 4 (Simple Parvaresh–Vardy Code) For the choice of E D F
�
q , e.x/ D

xq�1 � ˛ and d D q, the PV codeword symbols

cj D
�
ev̨ j .f /; ev̨ jC1 .f /;:::; ev˛jC`�1 .f /

�T D �evE .j;1;`/.f /
�T 2 F

`
q (3)

are based on evaluating a single polynomial f 2 FqŒx�<k at E .j; 1; `/.

Note that simple PV codes use repeated evaluation points in their codewords. For
example, the neighboring symbols

cj D
�
evE .j;1;`/.f /

�T D �
f


˛j
�
; f


˛jC1

�
; : : : ; f



˛jC`�1

� �T
and

cjC1 D
�
evE .jC1;1;`/.f /

�T D �
f


˛jC1

�
; : : : ; f



˛jC`�1

�
; f


˛jC`

� �T

have ` � 1 evaluation points ˛jC1; : : : ; ˛jC`�1 in common. In general, every
evaluation point is used in ` consecutive code symbols, therefore reducing the rate
by a factor of 1=`.

Folded Reed–Solomon codes avoid this rate loss by transmitting only codeword
symbols at code locators ˛j`, j 2 Œ0; n=`�1�, eliminating repeated evaluation points.
Hence, FRS codes are PV codes where symbols ci , i ¤ j`, are punctured.

Definition 5 (Folded Reed–Solomon Code) Let the folding parameter m � 1 be
an integer satisfying mjn and ˛ be a primitive element of Fq . Choose N D n=m dis-
joint ordered sets of evaluation points E .jm; 1;m/ D ˚˛jm; ˛jmC1; : : : ; ˛jmCm�1
 ;
j 2 Œ0; N � 1�. An m-FRS code of dimension k and length N consists of symbols

cj D
�
f .˛jm/; : : : ; f .˛jmCm�1/

�T D �evE .jm;1;m/.f /
�T 2 F

m
q : (4)
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In case of m D 1, FRS codes reduce to RS codes. For n D q � 1 andSN�1
jD0 E.jm; 1;m/ D F

�
q , FRS codes are essentially primitive RS codes, where

m consecutive RS symbols are grouped into vectors from F
m
q . Due to this close

relationship, the rate RFRS D k=n D RRS and minimum distance dmin D n � k C 1
of FRS and RS codes are identical.

3 Decoding Radius of Linear-Algebraic MID

This section reviews linear-algebraic MID of PV, RS and FRS codes and derives a
general formula for an achievable decoding radius (fraction of correctable errors)
� in terms of code and decoder parameters. The restriction to linear-algebraic
algorithms allows for a much simpler presentation, but naturally leads to a slightly
reduced decoding radius as well as an exponential list-size of the decoder output.
The former consequence is negligible for high rate codes of practical interest and
mitigation of the latter is possible [2, Sec. 4], but outside the scope of this paper.

Let s 2 Œ1; `� be an integer and .s C 1/ the dimension of an interpolation point
.x; y1; : : : ; ys/. Let Q.x; y1; : : : ; ys/ D Q0.x/ C Q1.x/y1 C � � � C Qs.x/ys 2
FqŒx; y1;:::; ys � be an .s C 1/-variate interpolation polynomial of degree 1 in
the indeterminates y1; : : : ; ys . The codeword length shall be denoted by N and

the received matrix by r D .r0; r1; : : : ; rN�1/ 2
�
F
`
q

�
N
, with symbols rj D

Œrj `; rj `C1; : : : ; rj `C`�1�T 2 F
`
q , for j 2 Œ0; N�1�. Let the w D .1; k�1; : : : ; k�1/-

weighted degree of a monomial xd0yd11 � � �ydss be defined as degw



xd0y

d1
1 � � �ydss

�
:D

d0 C .k � 1/Ps
iD1 di . Consequently, degw.Q/ is the w-weighted degree of its

leading monomial under w-weighted lexicographic ordering. Let 	 2 Œ1; `� denote
the step size between two consecutive interpolation points within the received vector
r. Let I � Œ0; n � 1� denote the set of indices i 2 I of all .s C 1/-dimensional
interpolation points .˛i ; r	 i ; : : : ; r	 iCs�1/ used by the decoding algorithm and let
I :D jI j be its cardinality.

Linear-algebraic MID consists of an interpolation step and a root-finding step: In
the interpolation step, the decoder finds a nonzero .sC 1/-variate polynomialQ 2
FqŒx; y1;:::; ys � of minimal degw.Q/ D D and degree 1 in y1; : : : ; ys , satisfying

Q.˛i ; r	 i ; : : : ; r	 iCs�1/ D 0; 8i 2 I ; (5)

giving a total of I constraints on at most .s C 1/.D C 1/ � s.k � 1/ coefficients
of Q. If D is large enough, the resulting homogeneous linear system of (5) has a
nonzero solution for Q. The minimal such w-weighted degree is given in terms of
I and s as

D.I; s/ :D
�
I C s.k � 1/

s C 1
�
: (6)
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In the root-finding step a list of candidate message polynomials f 2 FqŒx�<k is
recovered from r. For the codes and algorithms considered in this paper, it suffices
to find all y-roots f0 2 FqŒx�<k of Q, such that fi , i 2 Œ0; s � 1�, satisfies

Q.x; f0.x/; f1.x/; : : : ; fs�1.x// D 0: (7)

Denote by E :D jfj 2 Œ0; N � 1� W rj ¤ cj gj the total number of received symbols
in error. An interpolation point .˛i ; r	 i ; : : : ; r	 iCs�1/, i 2 I , is said to agree with a
message polynomial f0 2 FqŒx�<k if rt D ft mod `.˛

i /, t 2 Œ	 i; 	 i C s � 1�.
Lemma 6 The maximum number of interpolation points corrupted by a single
received symbol error rj ¤ cj , j 2 Œ0; N � 1�, is given by

A.I ; `; s; 	/ :D maxj
ˇ
ˇ˚i 2 I W Œ	 i; 	 iCs�1�\ Œj `; j`C`�1� ¤ ;
ˇˇ: (8)

Proof An .s C 1/-dimensional interpolation point .˛i; r	 i ; : : : ; r	 iCs�1/, i 2 I ,
corresponds to indices Œ	 i; 	 i C s � 1� in the received vector r. A received symbol
rj 2 F

`
q uses indices Œj `; j` C ` � 1�. The j -th symbol rj affects the i -th

interpolation point if and only if the intersection Œ	 i; 	 i C s � 1�\ Œj `; j`C `� 1�
is not empty. ut
Lemma 7 An .s C 1/-variate polynomial Q 2 FqŒx; y1;:::; ys � of degw.Q/ D
D.I; s/ satisfying (5) will satisfy (7) if the number of agreements I �
EA.I; `; s; 	/> D.I; s/.

Proof According to the Polynomial Factor Theorem [7, Cor. X.1.4], the number of
roots of a non-constant univariate polynomial P.x/ D Q.x; f0.x/; : : : ; fs�1.x//2
FqŒx��D.I;s/ cannot exceed its degree, implyingQ.x; f0.x/; f1.x/; : : : ; fs�1.x// 

0. ut
Theorem 8 In case (7) suffices to recover all candidate polynomials f0 2 FqŒx�<k ,
a fraction of correctable errors � is achievable if

� �
�

s

s C 1
��

I � k
A.I ; `; s; 	/N

�
: (9)

Proof Combining (6) and Lemma 7, we can choose any

� � E

N
<

1

A.I ; `; s; 	/N

�
s.I � k/C 1

s C 1
�
: ut

The result of Theorem 8 is applied to the following codes and decoding
algorithms:

(1) Decoding of RS Codes (BW Algorithm): RS codes use ` D 1 message
polynomial, N D n symbols cj 2 Fq and 	 D 1. The decoder finds a bivariate
polynomialQ.x; y/ D Q0.x/CQ1.x/y 2 FqŒx; y� of minimal w D .1; k�1/-
weighted degree, passing through all .s C 1/ D 2-dimensional points .˛i ; ri /,
i 2 I D Œ0; n � 1�. Due to (6), degw.Q/ � D.n; 1/ D �

nCk�1
2

˘
is needed

to satisfy all I D n conditions. A symbol error affects A.I ; 1; 1; 1/ D 1
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interpolation point. Theorem 8 guarantees a fraction of correctable errors

�BW D .1 � R/=2 (10)

up to which the message polynomial f 2 FqŒx�<k can be recovered [6,
Thm. 5.2.2].

(2) Decoding of PV Codes: A rate RPV PV code uses N D n symbols cj 2 F
`
q .

An .` C 1/-variate polynomial Q.x; y1; : : : ; y`/ D Q0.x/ C Q1.x/y1 C
� � � C Q`.x/y` 2 FqŒx; y1;:::; y`� of w D .1; k � 1; : : : ; k � 1/-weighted
degree is found, passing through .` C 1/-dimensional interpolation points
.˛i; ri`; : : : ; ri`C`�1/, for i 2 I D Œ0; n � 1�.

Hence, I D n and degw.Q/ � D.n; `/ D �
nC`.k�1/
`C1

˘
. In case rj ¤ cj ,

A.I ; `; `; `/ D 1 due to 	 D `. Theorem 8 states that an achievable fraction
of correctable errors is

�PV D `=.`C 1/ .1 � `RPV/ (11)

such that a list of message polynomials f0 2 FqŒx�<k can be recovered [8,
Lem. 6–9].

(3) FRS Decoding Scheme A: FRS codes are punctured PV codes with ` D m,
	 D 1, symbols cj 2 F

m
q and N D n=m. In the linear-algebraic decoding

scheme by Vadhan [5, 10], I is chosen so that all points .˛i ; ri ; : : : ; riCs�1/ are
strictly contained inside the received symbols, i.e., i 2 SN�1

jD0Œmj;mj Cm�1�,
see Fig. 1(left) for example with s = 3. Therefore, I D N.m � s C 1/ and
A.I ; m; s; 1/ D m�sC1. An .sC1/-variate polynomialQ 2 FqŒx; y1;:::; ys �

is found if degw.Q/ � D.N.m � s C 1/; s/ D
j
N.m� sC 1/Cs.k� 1/

sC 1
k

.

Due to [5, Lem. 6] and (9), we can achieve a fraction of correctable errors

�FRSAD
s

sC1
�
1�
�

m

m�sC1
�
R

�
for 0 � R � .m � s C 1/=m: (12)

(4) FRS Decoding Scheme B: Another scheme suggested by Justesen [2, Sec. 3.2]
uses all I D n interpolation points, thus requiring degw.Q/ � D.n; s/ Dj
nCs.k�1/
sC1

k
. Due to the FRS code design, the cost of increasing I is that

interpolation points overlap into neighboring code symbols, see Fig. 1(right).
A symbol error affectsA.I ; m; s; 1/ D mC s� 1, i.e., an extra 2.s� 1/ points
over Scheme A. An achievable decoding radius is

�FRSB D
s

s C 1
�

m

mC s � 1
�
.1 �R/ for 0 � R � 1: (13)

Note that �FRSB > �FRSA if R > .m � s C 1/=.2m/.
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Fig. 1 FRS decoding schemes A (left) and B (right) using 3-variate interpolation. White boxes
represent symbols from Fq , grouped into interpolation points with code locator exponent in square
boxes. Gray boxes denote received symbols rj 2 F

m
q , j 2 Œ0; N � 1�. Dotted borders with arrows

depict overlapping interpolation points between neighboring symbols

4 Optimal Design of FRS Codes in Terms of Decoding Radius

According to Theorem 8, � is a function of the interpolation parameter s 2 Œ1;m�,
the number of interpolation points I 2 Œ1; n� used, code length N D n=m and
maximum number of interpolation points A.I ; m; s; 	/ 2 ŒI=N;mC s� 1� affected
by one symbol error. The range of parameters s and I is straightforward. The
minimum value ofA.I ; m; s; 	/ results from uniformly distributing I interpolation
points amongN code symbols. The maximum results from the maximum number of
distinct .sC1/-dimensional points touching a symbol fromF

m
q . In order to maximize

the decoding radius in (9), the optimal parameters are sopt D m, Iopt D n and
Aopt D m, such that

�opt D m=.mC 1/.1 � R/: (14)

Neither FRS decoding scheme A (using only I D N.m�sC1/ < Iopt interpolation
points) nor scheme B (with A.I ; m; s; 1/ D mC s � 1 > Aopt interpolation points
affected by a symbol error) use these optimal values. In order to achieve the optimal
parameters Iopt D n and Aopt D m, FRS codes shall be adapted as follows: Based
on FRS scheme B, the 2.s � 1/ transboundary .s C 1/-dimensional interpolation
points shall “wrap around” into the same code symbol instead of a neighboring
one. This prevents crosstalk of erroneous interpolation points between neighboring
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symbols in case of symbol errors. The rate increase of an ` D m-FRS over an `-
order PV code is due to the use of disjoint evaluation sets in (4), which shall be
retained.

Definition 9 (Low-Order FRS Code) Let the folding parameter m � 1 be such
thatmjn for n D q� 1 and let ˛ be a primitive element of Fq. ChooseN D n=m dis-
joint sets of evaluation points E .j;N;m/ D ˚˛j ; ˛jCN ; ˛jC2N ; : : : ; ˛jCn�N 
 ; j 2
Œ0; N � 1� such that

S
N � 1
j D 0 E .j;N;m/ D F

�
q . Note that ˛N is an element of low

order. A low-order m-FRS (LOFRS) code of dimension k and length N consists of
symbols

cj D
�
f .˛j /; f .˛jCN /;:::; f .˛jCn�N /

�T D �evE .j;N;m/.f /
�T 2 F

m
q : (15)

For m D 1, LOFRS codes reduce to RS codes.
As for regular m-FRS codes, the decoder finds an .s C 1/-variate interpolation

polynomial Q 2 FqŒx; y1;:::; ys � passing through all I D n interpolation points,
i.e., satisfying (5) for i 2I D SN�1

jD0fj CNŒ0;m � 1�g. Using (6), a w D .1; k �
1; : : : ; k � 1/-weighted degree degw.Q/ � D.n; s/ D

� nCs.k�1/
sC1

˘
is required. Due

to the choice of I and 	 D 1, inter-symbol crosstalk of interpolation points is
avoided in case of rj ¤ cj and so A.I ; m; s; 1/ D m D Aopt, see Fig. 2 for
.s C 1/ D 3. In the root-finding step, a list of message polynomials f 2 FqŒx�<k
is recovered [4, Prop. 5.3] from Q.x; f .x/; f .˛N x/; : : : ; f .˛.s�1/N // D 0 if the
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Fig. 2 MID of m-LOFRS code using 3-dimensional interpolation points. Dotted boxes with
arrows depict interpolation points wrapping around into the same codeword symbol
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agreement between r and f is larger thanD.n; s/. Hence, it is possible to achieve a
fraction of correctable errors

�LOFRS D s=.s C 1/ .1� R/ > maxf�FRSA ; �FRSBg for 0 � R � 1: (16)

By choosing the maximum interpolation parameter sopt D m, the optimal
decoding radius �LOFRS D �opt is reached. In contrast, for FRS schemes A and B
we have

�FRSA D m=.mC 1/.1 �mR/ D �PV (17)

�FRSB D m=.mC 1/.m/=.2m � 1/.1 �R/ � �BW: (18)

Figure 3 compares the decoding radius of the BW algorithm for RS codes (10),
linear-algebraic decoding of order ` D 5 PV codes (11), m D 5-FRS decoding
scheme A (12), decoding scheme B (13) and m D 5-LOFRS codes (16) for s 2
Œ2;m�.

5 Conclusion

A general formula for the error-correcting radius of linear-algebraic MID of RS, PV
and FRS codes was derived and analyzed. Through this formula, an improved design
ofm-FRS codes called Low-Orderm-FRS codes was motivated, which was recently
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introduced by [4]. The proposed codes can be viewed in the context of punctured
PV codes and they reach the optimal decoding radius �opt D m=.mC 1/.1 �R/.
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SPC Product Codes over the Erasure Channel

Sara D. Cardell and Joan-Josep Climent

Abstract SPC product codes are suitable for recovering lost symbols over erasure
channels. These codes have a small minimum distance. However, they are capable of
recovering a high number of erasures in some special cases, so the error correcting
capability is higher than the minimum distance. In this work, we count the number
of possible patterns that are uncorrectable when a number of erasures (up to 8) have
occurred.

Keywords Erasure channel • Product code • Single parity-check code

1 Introduction

The erasure channel was introduced by Elias [2]. It is a communication channel
where each sent symbol is either correctly received or considered as erased. In this
model, each codeword symbol is lost with a fixed independent probability and an
Œn; k; d �-code can recover up to d�1 erasures. Given a fixed redundancy, maximum
distance separable (MDS) codes (i.e., codes with d � 1 D n � k) are often the best
adapted codes, since they offer maximal reliability.

The single parity-check (SPC) code is a very popular error detection code, since
it is very easy to implement [1, 3]. The encoder appends 1 bit to an information
sequence of n�1 bits, such that the resultant codeword has an even number of ones.
Two or more SPC codes can be used jointly to obtain an SPC product code. Product
codes are powerful codes that can be used to correct errors or recover erasures. SPC
product codes have been proposed for applications such as cell loss recovery in ATM
networks [4, 7], since they achieve a good performance under various decoding
schemes [6]. The simplest form of an SPC product code is that where every row and
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every column is terminated by a single parity bit. This code has four as minimum
distance and is thus guaranteed to recover all erasure patterns with one, two and
three erasures. However, the code is capable of recovering many higher erasure
patterns, so the error correcting capability is higher than the minimum distance [1,
3]. It can be proven that, in some cases, up to 2n � 1 erasures can be corrected.
In [1, 3], the authors tried to count the number of patterns that cannot be corrected
when no more than 2n � 1 erasures have occurred. They obtained an upper bound
for the number of uncorrectable configurations when 6 erasures have occurred. In
this work we count the number of uncorrectable configurations for t erasures, with
t D 4; 5; 6; 7; 8.

2 Preliminaries

Let Fq be the Galois field with q elements. A linear product code C over Fq

is formed from two other linear codes Ch and Cv with parameters Œnh; kh; dh�
and Œnv; kv; dv� over Fq , respectively. The product code C will have parameters
Œnhnv; khkv; dhdv� over Fq (see [6]). The codewords of length nhnv can be seen
as arrays with size nv � nh in a way that the columns are codewords of Cv and the
rows are codewords of Ch. Over the erasure channel, the product code corrects up
to dhdv � 1 erasures. However, we know that in some cases these codes can correct
more erasures.

Let Gh and Gv be the generator matrices of the codes Ch and Cv, respectively.
The generator matrix G of the code C can be constructed by taking the Kronecker
product of the matrices Gh and Gv, that is, Gh ˝ Gv [5, page 569]. A codeword C
in the product code can be generated either by multiplying a q-ary vector with size
khkv by G or by using the expression C D .Gv/

T UGh, where U is a kv � kh q-ary
matrix. Note that the codeword C is an nv � nh q-ary matrix.

In this work, we consider the product code C D Ch ˝ Cv, where Ch D Cv is
a linear binary code with parameters Œn; n � 1; 2�, which is called a single parity-
check (SPC) code. In this case, the parameters of the product code are Œn2; .n �
1/2; 4�. Here, Ch and Cv correct only one erasure. Since the minimum distance is 4,
the code C corrects only 3 erasures, but in some special cases the code can correct
more than 3 erasures.

Now, we introduce the definition of erasure pattern. An erasure pattern of size
m�m, with t erasures, where 0 � t � m2 and 1 � m � n, is an array of sizem�m
where t of the entries correspond to the position of the erasures.

An erasure pattern of size n�n corresponds to a codeword of size n�n, where the
position of the erasures is the unique information we consider. An erasure pattern
is said to be uncorrectable if and only if it contains a subpattern such that each row
and each column have two or more erasures. Given a codeword with t erasures, the
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Fig. 1 Examples of erasure
patterns of size 6� 6 with 11
erasures. (a) Correctable
erasure pattern of size 6� 6
with 11 erasures. (b)
Uncorrectable erasure pattern
of size 6� 6 with 11 erasures
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decoder will perform iterative row-wise and column-wise decoding to recover the
erased bits [1]. When a single bit is erased in a row or column, it can be recovered.
If more than 1 bit is erased in a row (column), it is skipped. Decoding is performed
until no further recovery is possible. Erasure patterns with more than three erasures
may or may not be correctable.

Example 1 Consider the SPC code OC with parameters Œ6; 5; 2�. We can construct
the binary product code C D OC ˝ OC with parameters Œ36; 25; 4�. In principle, we
can only correct up to three erasures. Consider the erasure pattern in Fig. 1a. Since
every column is a codeword of OC , we can correct columns with one erasure, that
is, erasures in every column but the first one. On the other hand, every row is a
codeword of OC as well, so we can correct rows with one erasure and, then, we can
correct completely this erasure pattern.

On the other hand, consider the erasure pattern in Fig. 1b. We can only correct
seven erasures. The erasures in red cannot be corrected. ut

For a codeword of size n � n, erasure patterns with 3 erasures or less are
always correctable. We would like to count the number of possible correctable
and uncorrectable erasure patterns with t erasures, where t � 4. In this paper we
consider the cases t D 4; 5; 6; 7; 8. A first approximation for the cases t D 4; 5; 6

can be found in [1, 3].

3 Counting Patterns

Assume we have a codeword of size n � n and that 4 erasures have occurred. The
only uncorrectable erasure pattern of 4 erasures is formed by a square. We have

n

2

�2
possibilities, since we only have to choose two columns and two rows. As a

consequence, the number of uncorrectable erasure patterns with 4 erasures is given
by


n
2

�2
.

In order to count the erasure patterns with 5 erasures, we just have to count the
erasure patterns with four erasures and add one more. Therefore, the number of

uncorrectable erasure patterns with 5 erasures is given by


n
2

�2
n2�4
1

�
.
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Fig. 2 Examples of uncorrectable erasure patterns with 6 erasures

It is easy to count the possible uncorrectable patterns with 6 erasures. We only
have three possibilities (see Fig. 2). The case considered in Fig. 2a is easier. We
select three columns and three rows and count the possible uncorrectable erasure
patterns with 6 erasures of size 3�3, that is, 6



n
3

�2
. For the cases shown in Fig. 2b, c,

one tends to count


n
2

�2
n2�4
2

�
, that is, counting the uncorrectable erasure patterns of

size 2 � 2 and adding two extra erasures. In this case, the erasure patterns with the
form in Fig. 2c are considered three times. We are counting more erasure patterns
than there exist. Then, what we do is counting how many of these erasure patterns
there are and we subtract it twice from the total quantity (since we know they

are counted three times):


n
2

�2
n2�4
2

� � 2 �2
n
2

�

n
3

��
. Therefore, the total number of

uncorrectable erasure patterns with 6 erasures is


n

2

�2
n2�4
2

� � 4
n
2

�

n

3

�C 6
n
3

�2
.

Following the same counting method, we obtain the uncorrectable erasure
patterns for 7 and 8 erasures.

Theorem 2 The number of uncorrectable erasure patterns with 7 erasures is given
by T1 C T2 C T3 C T4, where

T1 D 6
 
n

3

!2 
n2 � 9
1

!

; T2 D 2
 
n

2

! 
n

3

! 
n2 � 6
1

!

;

T3 D 2
 
n

2

!2 "

8

 
n � 2
3

!

C 4
 
n � 2
2

! 
.n � 2/2

1

!

C

C2
 
n� 2
1

! 
.n� 2/2

2

!

C 4
 
n � 2
2

! 
2.n� 2/

1

!#

;

T4 D
 
n

2

!22

42

 
n� 2
1

!2
C 4

 
n � 2
1

!2 
.n � 2/2 � 1

1

!

C
 
.n � 2/2

3

!3

5 :

Proof We consider all the possible uncorrectable patterns of size n � n with 7
erasures. To illustrate this proof, examples for all the possible uncorrectable patterns
of size 5 � 5 with 7 erasures are given in Figs. 3–5.
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Fig. 3 Examples of erasure patterns with 7 erasures corresponding to T1 and T2
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Fig. 4 Examples of uncorrectable erasure patterns with 7 erasures corresponding to T3
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Fig. 5 Examples of uncorrectable erasure patterns with 7 erasures corresponding to T4

We start considering patterns with a complete uncorrectable subpattern of size
3 � 3 with 6 erasures and an additional erasure not included in this subpattern (see
Fig. 3a). We take three columns and three rows; there are six ways to place the
corresponding 6 erasures: 6



n

3

�2
. On the other hand, we have n2 � 9 free places

to put the remaining erasure:


n2�9
1

�
. Then, the number of uncorrectable erasure

patterns with this form is T1 D 6


n
3

�2
n2�9
1

�
.

We consider now patterns with an uncorrectable subpattern of size 2 � 3 with
6 erasures and an additional erasure (see Fig. 3b). We take two rows and three
columns:



n
2

�

n
3

�
. There are n2 � 6 free places left to put the remaining erasure:



n2�6
1

�
. Taking into account that we must also consider the case with subpatterns

of size 3 � 2, the number of uncorrectable erasure patterns with this form is

T2 D 2


n

2

�

n

3

�

n2�6
1

�
.
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Consider now patterns shown in Figs. 4 and 5. These patterns are composed
by a subpattern of size 2 � 2 with 4 erasures and 3 additional erasures. The only
difference between these two groups is that patterns in Fig. 4 have to be considered
twice (the patterns considered in this figure and the patterns obtained changing rows
by columns).

For patterns in Fig. 4, we take first two columns and two rows:


n
2

�2
(for the

subpattern). In Fig. 4a, from the remaining n � 2 columns, we take three different
columns, and we have to consider two different rows in each case: 23



n�2
3

�
. In

Fig. 4b, from the remaining n � 2 columns, we take two different columns, and
we have to consider two different rows in each case: 22



n�2
2

�
. On the other hand,

there are .n � 2/2 places to put the remaining erasure:


.n�2/2
1

�
. In Fig. 4c, from

the remaining n � 2 columns, we take one, and we have to consider two different
rows in each case: 2



n�2
1

�
. Moreover, there are .n � 2/2 places to put the remaining

two erasures,


.n�2/2
2

�
. In Fig. 4d, from the remaining n � 2 columns, we take two

different columns, and we have to consider two different rows in each case: 22


n�2
2

�
.

Furthermore, there are 2.n � 2/ places to put the remaining erasure, so the total
number is 22



n�2
2

�

2.n�2/
1

�
. Since we have to consider every case twice, we have that

T3 D 2


n
2

�2 h
8


n�2
3

�C 4
n�2
2

�

.n�2/2
1

�C 2
n�2
1

�

.n�2/2
2

�C 4
n�2
2

�

2.n�2/
1

�i
.

We consider now patterns in Fig. 5. In each case, we take two columns and two
rows for the subpattern:



n
2

�2
. In Fig. 5a, we take one column from the n�2 columns

left and two rows: 2


n�2
1

�
. The same happens for the other erasure that shares column

with the subpattern: 2


n�2
1

�
. There is one only possibility for the remaining erasure.

Since, in this special case, we have two subpatterns of size 2 � 2 with 4 erasures,
we are counting twice the number of subpatterns. Thus, we have to divide the

total number by two: 2


n�2
1

�2
. In Fig. 5b, two of the erasures are considered in the

same way as in the previous case: 22


n�2
1

�2
. For the third and last erasure, we have

.n � 2/2 � 1 places where it can be considered:


.n�2/2�1

1

�
. In Fig. 5c, none of the

additional erasures shares column or row with the subpattern. Thus, there are .n�2/2
possibilities to place these three erasures:



.n�2/2
3

�
. As a consequence, we have that

T4 D


n
2

�2 h
2


n�2
1

�2 C 4
n�2
1

�2
.n�2/2�1
1

�C 
.n�2/2
3

�i
. ut

Theorem 3 The number of uncorrectable erasure patterns with 8 erasures is

S1 C S2 C
2

4
 
n

2

!2 
n2 � 4
4

!

� 5S3 � 2S4 � 4S5 � S6
3

5 ;
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where

S1 D 72
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5 :

Due to the lack of space, this proof is not included. However, it follows the
same idea used to prove Theorem 2. A complete counting process of patterns with
8 erasures has been performed. In Fig. 6, examples for the corresponding patterns
considered for each group Si , for i D 1; 2; 3; 4; 5; 6 are shown.

Finally, it is well-known that the number of erasure patterns of size n � n with

t erasures is


n2

t

�
. According to this number and the results given in Theorems 2

and 3 it is easy to check that the probability of finding an uncorrectable erasure
pattern for t D 7; 8, is close to zero when n is large. Unfortunately, when the
number of erasures grows, it becomes more difficult to count the number of possible
uncorrectable patterns of size n � n. We are working on an upper bound for t
erasures, with 9 � t � 2n � 1, that allows us to prove that the probability of
finding an uncorrectable erasure pattern is close to 0 when n grows. This would
prove that the probability of correcting a sent codeword when n is very large and
4 � t � 2n � 1 is almost 1.
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Fig. 6 Examples of uncorrectable erasure patterns with 8 erasures related to Theorem 3.
(a) Uncorrectable erasure pattern corresponding to S1. (b) Uncorrectable erasure pattern cor-
responding to S3. (c) Uncorrectable erasure pattern corresponding to S5. (d) Uncorrectable
erasure patterns corresponding to S2. (e) Uncorrectable erasure patterns corresponding to S4.
(f) Uncorrectable erasure patterns corresponding to S6
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Complementary Dual Codes
for Counter-Measures to Side-Channel Attacks

Claude Carlet and Sylvain Guilley

Abstract We recall why linear codes with complementary duals (LCD codes) play
a role in counter-measures to passive and active side-channel analyses on embedded
cryptosystems. The rate and the minimum distance of such LCD codes must be as
large as possible. We investigate constructions.

Keywords Linear codes with complementary duals (LCD) • Cyclic codes •
Bose, Ray-Chaudhuri and Hocquenghem (BCH) codes • Generalized residue
codes

1 Introduction

Codes play a central role in digital communication. Recently, it has been shown
that codes can also help improve the security of the information processed by
sensitive devices, especially against so-called side-channel attacks (SCA) or fault
non-invasive attacks. This paper recalls that linear codes with complementary duals
(called LCD), which are linear codes with supplementary duals, play an important
role in armoring implementations against these two kinds of non-invasive attacks.

LCD codes, introduced by Massey [10], provide an optimum linear coding
solution for the two-user binary adder channel. Asymptotically good LCD codes
exist [11]. Some constructions are known: [1, 6, 7]. As another example, maximum
rank distance (MRD) codes generated by the trace-orthogonal-generator matrices
are LCD codes [13].
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However, SCA sheds a new light on LCD codes and poses more accurately
the question of their effective construction achieving good minimum distance,
especially in the context of large rate.

2 Motivation

Implementations of cryptographic algorithms are prone to SCA and fault attacks
that aim at extracting the secret key when the algorithm is running over some device.
Non-invasive attacks observe some leakage (such as electromagnetic emanations) or
perturb internal data (for example with electromagnetic impulses), without damag-
ing the system. They are a special concern insofar as they leave no evidence that
they have been perpetrated. Those attacks can be classified into two categories:

• Side-channel attacks (SCA), that consist in passively recording some leakage,
that is the source of information to retrieve the key;

• Fault injection attacks (FIA), that consist in actively perturbing the computation
so as to obtain exploitable differences at the output.

Few generic protections, demonstrably provable against both threats, have been
proposed. The best understood and most studied protection against SCA is achieved
with masking. Every sensitive data x, say a binary vector, employed in the
cryptographic algorithm is exclusived-or with one uniformly distributed random
vector of the same length, called mask. We are interested in this article in a
homomorphic computation. This means that the computations are carried out on
the masked data itself. Therefore, it must be possible, from a masked sensitive
variable, denoted by z, to recover x (e.g., for the final demasking at the end of
the computation). This is possible if the sensitive data and the masks belong to
two supplementary subspaces of a larger space vector. Indeed, by definition of
supplementary subspaces, any element of the large space vector decomposes itself
in a unique way as the sum of two elements (in Boolean vector spaces, the sum is
the exclusive-or, denoted by “C” in the sequel). It is thus decided to interpret those
two elements as the sensitive data and the mask. This method is called Orthogonal
Direct Sum Masking (ODSM), see [3].

We call n the dimension of this large vector space, which practically is Fn2 . Now,
we call C and D the two supplementary vector spaces:

F
n
2 D C ˚D : (1)

The masks are the codewords of code D. By the rank-nullity theorem, if the
dimension of C is k, then the dimension of D is n � k. Let us consider generator
matrices G and G0 of C and D, respectively. Then every vector z 2 F

n
2 can be

written in a unique way as z D xG C yG0, x 2 F
k
2 ; y 2 F

n�k
2 . If C and D are
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furthermore orthogonal with respect to the usual inner product, i.e., D D C?, then
C is said complementary dual.1

Definition 1 A linear code C is called complementary dual (LCD) if C and C?
are supplementary, that is (given their dimensions), C \ C? D f0g.
Note thatD D C? if and only ifG0 is a parity-check matrix ofC , that is,GG0T D 0,
where G0T is the transposed matrix of matrix G0; we denote then G0 by H . We can
use an orthogonal projection to recover x and y from z: the relation z D xG C yH
implies zH T D yHH T and zGT D xGGT. The next characterization is due to
Massey [10]:

Proposition 2 Let C be a linear code. Let G be a generator matrix of C and H a
parity-check matrix. Then the three following properties are equivalent:

1. C is LCD,
2. The matrix HH T is invertible,
3. The matrix GGT is invertible.

We deduce from zH T D yHH T and zGT D xGGT, and from Proposition 2 that
if C is LCD, the matrices of the two projections z D xGCyH 7! x and z 7! y are
respectively (see also [10, Proposition 1]):

GT.GGT/�1 so that x D zGT.GGT/�1 ; (2)

H T.HH T/�1 so that y D zH T.HH T/�1 : (3)

The quality of the masking is an important factor. Let � W F
n
2 ! R be a

leakage function, that describes how z is leaked outside of device. The masked
word z conceals the information x at first degree if for all pseudo-Boolean function
� W Fn2 ! R of unitary numerical degree [4, Sec. 2.1], all the averages of �.z/
over the masks d 2 D for a given x are equal irrespective of x. This means that
8x 2 F

k
2 ;
P

y2Fn�k �.xG C yH/ are the same, i.e., equal to
P

y2Fn�k �.yH/ (for
x D 0). Now, this notion can be generalized (see [2, Def. 2]). A zero-offset masking
countermeasure is of degree at least d if 8x 2 F

k
2 ;
P

y2Fn�k �.xG C yH/ DP
y2Fn�k �.yH/ for all � of numerical degree at most d . The greater the degree

of the countermeasure, the harder to pass a successful SCA. Actually, it is known
from [3, 5] that the countermeasure is .d�1/-th degree secure ifD has dual distance
d , i.e., if C has minimal distance d . This result has been independently validated
in [8] for d 2 f1; 2g.

Let us now consider a fault injection attack (FIA). The state z is modified into
zC", for some random " 2 F

n
2 . By supplementarity ofC andD, there exists a unique

ordered pair .e; f / 2 F
k
2�Fn�k2 such that " D eGCfH . A detection strategy could

consist in decoding z into .x; y/, and checking that we recover the genuine values

1“supplementary” would seem more appropriate than “complementary”, but the term is more than
10 year old.
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unchanged. However, x is sensitive: the purpose of the protection is exactly to avoid
representing x by replacing it by z. The random variable y, from its side, does not
convey any (statistically) exploitable information. So, checking whether or not the

mask has been altered, i.e., zH T.HH T/�1 ‹D y, is a harmless detection strategy.
This happens if and only if f D 0, i.e., " 2 C . As " D 0 is pointless (since without
observable effect), harmful faults only happen if " 2 C n f0g. In particular, the
Hamming weight of " must be greater or equal to the minimal distance d of code
C for the fault not to be detected. Now, given that the minimal distance d of C is a
design parameter, it is set as high as possible.

Therefore, have C be LCD of greatest possible minimal distance simultaneously
improves the resistance against SCA and FIA.

There are two kinds of designs that can benefit from the described protection. The
first one is the implementation of hardware accelerators for block ciphers, such as
the AES. In this case, the data to protect are typically bytes, with k D 8. The second
kind is a general-purpose processor executing software cryptography. Its registers
can be protected individually (hence k D 32). For an improved security, it can be
advantageous to mask all the registers seen as one unique resource, made up of a few
hundreds to a few thousands bits. Therefore, we are interested in codes of various
dimensions, ranging from k D 8 to k � 4;096.

The problem is thus the following: for a given dimension k (architecture
parameter) and minimal distance d (security parameter), find a LCD code of length
n as small as possible (and therefore, of rate k=n as large as possible).

3 Constructions

LCD cyclic codes, which have a minoration on their minimal distance via the
BCH bound, have been characterized in [15]. A potentially stronger lower bound
on the minimum distance exists for the sub-class of quadratic-residue (QR) codes
[12, 14], which can also be LCD. A QR code has for length a prime number n
and has a minimal distance d at least

p
n. A binary QR code has length congruent

with ˙1 modulo 8 and is LCD if the length is congruent with 1 modulo 8 [9].
Asymptotically,

p
n is a rather low value compared with the Gilbert Varshamov

bound, but such value is not far from what we need in our framework. The main
drawback of QR codes is that their dimension equals n˙1

2
(if we include 1 as possible

zero of QR codes), while we need larger dimensions. This leads us to considering a
generalization of QR codes whose lengths are not prime.

3.1 LCD Cyclic Codes

We shall always consider n co-prime with q. Let ˇ be a primitive n-th root of unity.
Let C be a cyclic code of zeros fˇj ; j 2 J � Z=nZg. The BCH bound states
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that the minimum distance of C is bounded below by the length of any string of
consecutive elements in J , plus 1. As observed in [15]:

Proposition 3 A binary cyclic code is LCD if and only if its set of zeros is stable
by the multiplicative inverse, i.e., if and only if its generator polynomial g.X/ is
self-reciprocal.

Example 4 The binary cyclic code of length 17 whose zeros are

fˇj ; j D 0; 1; 2; 4; 8; 9; 13; 15; 16g

is LCD and has parameters Œ17; 8; 6� and its generator polynomial is X9 C X6 C
X5CX4CX3C1. Note that the set of zeros is stable under the Frobenius � 7! �2,
which makes the code binary, and that the string 15; 16; 0; 1; 2 in Z=17Z has length
5; the BCH bound is then tight for this code.

3.2 LCD Generalized Residue Codes

A background on quadratic residue codes can be found in [14], and on generalized
residues codes in [12]. Let n be any integer co-prime with q and let t be any positive
integer. Let Q be the set of t-th powers in Z=nZ:

Q D fi t ; i 2 Z=nZg � Z=nZ :

ThenQ is stable under multiplication in the sense that, for any s 2 Q, the mapping
r 2 Q 7! sr is valued in Q (but, since n is not assumed to be a prime, the image
set of this mapping may be strictly included inQ, since there exist divisors of zero2

in Z=nZ): for every i t ; j t 2 Q, we have indeed i tj t D .ij /t . Note that, since n is
not assumed to be a prime, Z=nZ nQ may not be stable under this same mapping.
Assume that q belongs to Q. Then Q is stable under multiplication by q, in the
strong sense that the mapping r 2 Q 7! qr has image set Q, since q being co-
prime with n, the multiplication by q is a permutation of Z=nZ. Note that, for the
same reason, Q� D Q n f0g is also stable under multiplication by q. Let C be
the cyclic code of length n over Fqm whose zeros are ˇi , i 2 Q (resp. i 2 Q�,
i 2 Z=nZ n Q, i 2 Z=nZ nQ�). Then C is a code over Fq since its set of zeros
is stable under the Frobenius automorphism. And if additionally �1 2 Q (that is,
n � 1, which is also co-prime with n), then Q is stable under multiplication by �1
in Z=nZ and C is LCD. We deduce, since we are looking for binary codes:

Proposition 5 Let n be an odd positive integer and t be any positive integer. LetQ
be the set of t-th powers in Z=nZ. Assume that 2 and �1 both belong to Q. Then

2For the same reason, we do not exclude i D 0 in the definition of Q above, contrary to the
definition of Q when n is a prime, since even if i ¤ 0 is imposed, 0 may belong toQ.
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the cyclic code of length n whose zeros are ˇi , i 2 Q (resp. i 2 Q�, i 2 Z=nZnQ,
i 2 Z=nZ nQ�) where ˇ is a primitive n-th root of unity in an extension field of Fq ,
is a binary cyclic LCD code.

Note that it is easy to find integers n such that 2 and �1 are quadratic residues
modulo n, as the common divisors of an integer of the form r2� 2 and of an integer
of the form s2 C 1. Since n is not assumed to be a prime, the size of Q may be
strictly smaller than nC1

2
and the dimension k D n � card.Q/ of the code may be

larger than n�1
2

.

Remark 6 For classical QR codes, n is a prime number (and Z=nZ is then a field)
and t D 2. Given a nonzero codeword f .X/ of minimum weight d in the code
C of zeros ˇi ; i 2 Q�, and j a non-residue, the polynomial f .Xj / is a nonzero
codeword in the code of zeros ˇi ; i 2 Z=nZ nQ, and f .X/f .Xj / belongs then to
the intersection of these two codes and is a multiple of

Pn�1
iD0 xi which has weight

n. Then d2 � n (but since the size of Q� equals n�1
2

, the dimension of the code is
n˙1
2

, which is too small for our purpose).

3.3 Generating the Codes by the Use of Idempotents

The generator polynomial of a cyclic code C of length n may be complex to
calculate, because this needs to calculate in the Galois extension of Fq containing
a primitive n-th root of unity ˇ. An alternative way is to use an idempotent as
generator of the code (this method is well-known and specially simple for classical
quadratic residue codes, see [9]). Let g.X/ be the generator polynomial of a cyclic
code C . We have Xn � 1 D g.X/h.X/ where h.X/ is co-prime with g.X/ since n
is odd (all zeros of Xn � 1 being then simple). Bezout’s theorem implies then the
existence of two polynomials u.X/; v.X/ such that g.X/u.X/ C h.X/v.X/ D 1,
which implies .g.X/u.X//2 D g.X/u.X/ [modXn�1]. ThenE.X/ D g.X/u.X/
is an idempotent in FqŒX�=.X

n � 1/. If ˇi is a zero of u.X/, then it is also a zero
of g.X/ because it cannot be in the same time a zero of u.X/ and a zero of h.X/.
We deduce that E.ˇi / D 0 if and only if g.ˇi / D 0 and E.X/ is also a generator
of C . This holds, since E has no other zero, E.X/ is equal to the product modulo
Xn � 1 of g.X/ by an invertible polynomial modulo Xn � 1. Using that E.X/
is an idempotent, we have that f .X/ 2 C if and only if f .X/E.X/ D f .X/.
This implies that E.X/ is unique, since if another idempotent F.X/ exists in C ,
we have F.X/E.X/ D F.X/ D E.X/. Note that E applied to n-th roots of
unity takes values in F2. The idempotent of C? equals the reciprocal of 1CE.X/.
The characterization of cyclic LCD codes by Massey recalled above gives then the
following characterization:

Proposition 7 Let C be a cyclic code of length n over Fq . Let E.X/ be the
idempotent of C . Then C is LCD if and only if E.X/ is self-reciprocal, that is,
if and only if the idempotent associated to C? is 1CE.X/.
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We consider now again the case of generalized residue codes. If q D 2 2 Q,
whereQ is the set of t-th powers in Z=nZ, then the polynomialP.X/ DPj2Q Xj

satisfies P2.X/ D P
j2Q X2j 
 P.X/ [mod Xn � 1] and is then an idempotent.

For every t-th power residue r , we have P.ˇr / DP
j2Q ˇrj . If r is co-prime with

n then we deduce that P.ˇr/ DPj2Q ˇj D P.ˇ/ 2 F2. Hence:

Proposition 8 Let n be an odd positive integer and t be any positive integer. LetQ
be the set of t-th powers in Z=nZ. Assume that 2 belongs to Q. Let C be the binary
cyclic code of length n over Fq whose zeros are ˇi , i 2 Q� where ˇ is a primitive n-
th root of unity in an extension field of Fq . Let P.X/ DPj2Q Xj . If every nonzero
element in Q is co-prime with n, then P.X/ or 1C P.X/ is the idempotent of the
code C .

Note that adding ˇ0 D 1 to the zeros of the code corresponds to multiplying
the idempotent by .X � 1/ to obtain a generator polynomial (which is not an
idempotent).

We have now a simple way to practically generate LCD generalized residue
codes. But we need to check that the conditions “2 2 Q”, “�1 2 Q” and “every
nonzero element in Q is co-prime with n” can be satisfied simultaneously, in
particular for t D 2 which is the most interesting case for our applications. This
is work in progress but we already made the following observation:

Proposition 9 Let p be any odd prime number and n D p2. Let Q D fi 2; i 2
Z=nZg. Then every nonzero element in Q is co-prime with n.

Indeed, let 0 < i D kp C l < n. We have k; l < p. Then i 2 
 l2 [mod p] and if
l ¤ 0 then i 2 is co-prime with p and then with n.

4 Constructing LCD Codes from Other LCD Codes

The LCD property is invariant under permutation of the codeword coordinates. The
only other transformation that we known which preserves the LCD property is the
direct sum.

Proposition 10 If C and C 0 are LCD codes of parameters Œn; k; d � and Œn0; k0; d 0�,
respectively, then their direct sum C ˚ C 0 D f.c; c0/; c 2 C; c0 2 C 0g is LCD of
parameters ŒnC n0; k C k0; min.d; d 0/�.
Indeed, .C ˚ C 0/? D C? ˚ C 0? and then .C ˚ C 0/ \ .C ˚ C 0/? D .C \
C?/ ˚ .C 0 \ C 0?/. The name of direct sum comes from the fact that the indices
of the codewords of C and of those of C 0 being distinct, the sum of C and C 0 as
vector-spaces is direct.
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5 Conclusion and Perspectives

Complementary dual codes have applications in information protection. An example
is that of a cryptographic implementation, be it hardware or software, that must be
simultaneously protected against information leakage and information corruption,
since both threats enable successful attacks. We construct cyclic LCD codes, and
find codes of large minimal distances within the class of generalized residue codes.
In addition to these codes, we detail some secondary constructions, using direct
sum.

As a perspective, we aim at defining bounds for the minimal distance of LCD
codes, and at finding codes that approach those bounds. Besides, LCD codes of
sparse generator matrices would help reduce the implementation complexity.

Acknowledgements The authors are grateful to Patrick Solé for pointing relevant previous art.
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Input-State-Output Representation
of Convolutional Product Codes

Joan-Josep Climent, Victoria Herranz, and Carmen Perea

Abstract In this paper, we present an input-state-output representation of a convo-
lutional product code; we show that this representation is non minimal. Moreover,
we introduce a lower bound on the free distance of the convolutional product code
in terms of the free distance of the constituent codes.

Keywords Convolutional code • Product code • ISO representation • Free dis-
tance • Kronecker product

1 Introduction

The class of convolutional codes generalizes the class of linear block codes in a
natural way. In comparison to the literature on linear block codes, there are only
relatively few algebraic constructions of convolutional codes which have a good
designed distance. There are several methods for constructing convolutional codes,
for example by extending the constructions known for block codes to convolutional
codes, such as the ones based on cyclic or quasi-cyclic constructions on block codes
[7, 8, 10, 19].

Combining known codes is a powerful method to obtain new codes with
better error correction capability avoiding the exponential increase of decoding
complexity. For convolutional codes, we can find in the literature some powerful
combining methods as woven convolutional codes [21, 22] and turbo codes [18].
More recently, as a natural extension of the direct product codes introduced by Elias
[3], Bossert, Medina and Sidorenko [1] introduce the product of convolutional codes
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and they show that every convolutional product code can be represented as a woven
convolutional code (see also [11]).

On the other hand, it is well-known that there exists a close connection between
linear systems over finite fields and convolutional codes. Rosenthal [13] provides
an excellent survey of the different points of view about convolutional codes. By
using the input-state-output representation of convolutional codes introduced by
Rosenthal and York [16], Climent, Herranz and Perea [2] and Herrnaz [4] introduce
the input-state-output representation of different serial and parallel concatenated
convolutional codes, and by using them, they also present a construction of new
codes with prescribed distance.

The rest of the paper is structured as follows. In Sect. 2 we present the basic
notions and previous results related to convolutional codes and convolutional
product codes. Then, in Sect. 3, we introduce two input-state-output representations
of a convolutional product code and prove that none of them is minimal. Moreover
we introduce a lower bound on the free distance of the convolutional product code.

2 Preliminaries

Let F be a finite field and denote by FŒz� the polynomial ring on the variable z with
coefficients in F. A convolutional code C of rate k=n is a submodule of FŒz�n that
can be described as (see [17, 20])

C D imFŒz�.G.z// D fv.z/ 2 FŒz�n j v.z/ D G.z/u.z/ with u.z/ 2 FŒz�kg

where u.z/ is the information vector, v.z/ is the corresponding codeword andG.z/
is an n � k polynomial matrix with rank k called generator or encoder matrix of
C . Two full column rank matrices G1.z/; G2.z/ 2 FŒz�n�k are said to be equivalent
encoders if and only if there exists a unimodular matrix P.z/ 2 FŒz�k�k such that
G2.z/DG1.z/P.z/. The complexity of a convolutional code C is the highest degree
of the full size minors of any encoder of C . A generator matrix of a convolutional
code is called minimal if and only if the complexity is equal to the sum of the
column degrees.

A generator matrix is said to be catastrophic [6] if there exists some input
sequence u.z/ with infinite nonzero entries which generates a codeword v.z/ D
G.z/u.z/ with a finite nonzero entries. A convolutional code C is observable if
one, and therefore any, generator matrixG.z/ is right prime (see [14]). Furthermore,
if G.z/ is a generator matrix of an observable convolutional code, then G.z/ is a
noncatastrophic generator matrix (see [14]).

Let v.z/ 2 C and assume that v.z/ D v0z� C v1z��1 C � � � C v��1z C v� with

vt 2 F
n, for t D 0; 1; : : : ; � � 1; � . If we consider vt D

�
yt
ut

�
, where yt 2 F

n�k and

ut 2Fk, then the convolutional codeC is equivalently described by the .A;B; C;D/
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representation (see [13, 16, 17, 20])

xtC1 D Axt C But ;
yt D Cxt CDut ;

	
; t D 0; 1; 2; : : : ; x0 D 0:

For each instant t , we say that xt is the state vector, ut is the information vector,
yt is the parity vector, and vt is the codeword. In the linear systems theory, this
representation is known as the input-state-output (ISO) representation.

If C is a rate k=n convolutional code with complexity ı, we call C an
.n; k; ı/-code, and in that case, it is possible (see [9]) to choose matrices A, B , C
andD of sizes ı�ı, ı�k, .n�k/�ı and .n�k/�k, respectively. In convolutional
coding theory, an ISO representation .A;B; C;D/ having the above sizes is called
a minimal representation and it is characterized through the condition that the pair
.A;B/ is controllable, that is (see [16]),

rank


B AB � � � Aı�1B� D ı:

Moreover, if .A;B/ is controllable, then the convolutional code defined by the
matrices .A;B; C;D/ is an observable code if and only if .A; C / is an observable
pair (see [12]). Recall that .A; C / is an observable pair if .AT ; C T / is a controllable
pair.

The free distance of a convolutional code C can be characterized (see [5]) as

dfree.C / D min

 1X

tD0
wt.ut /C

1X

tD0
wt.yt /

!

where the minimum has to be taken over all possible nonzero codewords and where
wt denotes the Hamming weight. The free distance of an .n; k; ı/-code C is always
upper-bounded (see [15]) by the generalized Singleton bound

dfree.C / � .n � k/
��

ı

k

�
C 1

�
C ı C 1:

In addition, the convolutional code C is called maximum-distance separable
(MDS) if its free distance is equal to the generalized Singleton bound.

To finish this section, we introduce the product of two convolutional codes
called “horizontal” and “vertical” codes respectively. Assume that Ch and Cv are
horizontal .nh; kh; ıh/ and vertical .nv; kv; ıv/ codes respectively. Then, the product
convolutional code (see [1, 11]) C D Ch ˝ Cv is defined to be the convolutional
code whose codewords consist of all nv � nh matrices in which columns belong to
Cv and rows belongs to Ch. It is an .nhnv; khkv; ıhkv C khıv/.
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Encoding of the product convolutional code C can be done as follows (see
[1, 11]). Let Gv.z/ and Gh.z/ be generator matrices of the component convolutional
codes Cv and Ch, respectively. Denote by U.z/ a kv � kh information matrix. Now,
we can apply row-column encoding; i.e., every column of U.z/ is encoded using
Gv.z/, and then every row of the resulting matrix Gv.z/U.z/ is encoded using Gh.z/
as .Gv.z/U.z//Gh.z/T . We can also apply column-row encoding; i.e., every row
of U.z/ is encoded using Gh.z/, and then every column of the resulting matrix
U.z/Gh.z/T is encoding using Gv.z/ as Gv.z/.U.z/Gh.z/T /. As a consequence of
the associativity of the product of matrices, we get the same matrix in both cases.
So, the codeword matrix V.z/ is given by

V.z/ D Gv.z/ U.z/Gh.z/
T ;

and by using properties of the Kronecker product, we have

vect .V .z// D .Gh.z/˝Gv.z// vect .U.z//

where vect .�/ is the operator that transforms a matrix into a vector by stacking the
column vectors of the matrix below one another. So, the generator matrix G.z/ of
the product convolutional code C is the Kronecker product

G.z/ D Gh.z/˝Gv.z/

of the generator matrices of the horizontal and vertical codes.

3 ISO Representation of a Product Convolutional Code

Assume that .Ah;Bh;Ch;Dh/ and .Av;Bv;Cv;Dv/ are the ISO representations of the
.nh; kh; ıh/ horizontal and .nv; kv; ıv/ vertical codes Ch and Cv, respectively.
Assume also that the kv � kh matrix Ut is the information matrix of the product
code C D Ch ˝ Cv.

By using the ISO representation of the horizontal code Ch we can encode the
information vector ut D vect .Ut / as

xhtC1 D .Ah ˝ Ikv /x
h
t C .Bh ˝ Ikv/ut

yht D .Ch ˝ Ikv /x
h
t C .Dh ˝ Ikv /ut

	
; vht D

�
yht
ut

�
; t D 0; 1; 2; : : : ; xh0 D 0: (1)

Analogously, by using the ISO representation of the vertical code Cv we can encode
the same information vector ut as

xv
tC1 D .Ikh ˝ Av/xv

t C .Ikh ˝ Bv/ut
yv
t D .Ikh ˝ Cv/xv

t C .Ikh ˝Dv/ut

	
; vv

t D
�

yv
t

ut

�
; t D 0; 1; 2; : : : ; xÍ0 D 0; (2)
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Then we encode the parity vector yht (respectively, yv
t ) by using the vertical code Cv

(respectively, the horizontal code Ch) as

xv
tC1 D .Inh�kh ˝ Av/x

v
t C .Inh�kh ˝ Bv/yht

yv
t D .Inh�kh ˝ Cv/x

v
t C .Inh�kh ˝Dv/yht

)

; vv
t D

 
yv
t

yht

!

; t D 0; 1; 2; : : : ; xv
0 D 0;

(3)

xhtC1 D .Ah ˝ Inv�kv /x
h
t C .Bh ˝ Inv�kv /y

v
t

yht D .Ch ˝ Inv�kv /x
h
t C .Dh ˝ Inv�kv /y

v
t

)

; yht D
 
yht
yv
t

!

; t D 0; 1; 2; : : : ; xh0 D 0;
(4)

Then, by using properties of the Kronecker product we obtain the following
result.

Theorem 1 For the vectors yv
t and yht defined by expressions (3) and (4) respec-

tively, it follows that yv
t D yht , for t D 0; 1; 2; : : :

Proof By induction over t . ut
Next result establishes that the ISO representations defined by matrices in

expressions (1)–(4) are minimal ISO representations.

Theorem 2 Let us assume that .Ah; Bh; Ch;Dh/ and .Av; Bv; Cv;Dv/ are minimal
ISO representations of the .nh; kh; ıh/ horizontal and .nv; kv; ıv/ vertical codes Ch
and Cv, respectively. Then

1. The matrices .Ah˝ Ikv ; Bh˝ Ikv ; Ch˝ Ikv ;Dh˝ Ikv/ in expression (1) define a
minimal ISO representation of an .nhkv; khkv; ıhkv/ convolutional code Ch.kv/.

2. The matrices .Ikh ˝Av; Ikh ˝Bv; Ikh ˝Cv; Ikh ˝Dv/ in expression (2) define a
minimal ISO representation of an .khnv; khkv; khıv/ convolutional code Cv.kh/.

3. The matrices .Inh�kh ˝ Av; Inh�kh ˝ Bv; Inh�kh ˝ Cv; Inh�kh ˝ Dv/ in expres-
sion (3) define a minimal ISO representation of an ..nh�kh/nv; .nh�kh/kv; .nh�
kh/ıv/ convolutional code Cv.nh � kh/.

4. The matrices .Ah˝Inv�kv ; Bh˝Inv�kv ; Ch˝Inv�kv ;Dh˝Inv�kv/ in expression (4)
define a minimal ISO representation of an .nh.nv�kv/; kh.nv�kv/; ıh.nv�kv//

convolutional code Ch.nv � kv/.

Proof The result follows from the fact that .Ah; Bh; Ch;Dh/ and .Av; Bv; Cv;Dv/

are minimal ISO representations and the properties of the Kronecker product of
matrices. ut

It is not difficult to show that the codes Ch.kv/ and Ch.nv � kv/ (respectively,
Cv.kh/ and Cv.nh � kh/) correspond to the block parallel concatenation of convolu-
tional codes described in [4, Section 5.3], and therefore

dfree .Ch.kv// D dfree .Ch.nv � kv// D dfree .Ch/ ;

dfree .Cv.kh// D dfree .Cv.nh � kh// D dfree .Cv/ :
(5)

Now, by using the second model of serial concatenated convolutional codes
introduced in [2, 4] we have the following result.
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Theorem 3 With the same notation as in Theorem 2.

1. If S1 is the rate khkv=..nh � kh/nv C khkv/ convolutional code defined by the
serial concatenation of Ch.kv/ and Cv.nh � kh/, then .A1;B1;C1;D1/, with

A1 D
�
Inh�kh ˝ Av Ch ˝ Bv

O Ah ˝ Ikv

�
; B1 D

�
Dh ˝ Bv

Bh ˝ Ikv

�
;

C1 D
�
Inh�kh ˝ Cv Ch ˝Dv

O Ch ˝ Ikv

�
; D1 D

�
Dh ˝Dv

Dh ˝ Ikv

�
;

is an ISO representation of S1.
2. If S2 is the rate khkv=.nh.nv � kv/ C khkv/ convolutional code defined by the

serial concatenation of Cv.kh/ and Ch.nv � kv/, then .A2;B2;C2;D2/, with

A2 D
�
Ah ˝ Inv�kv Bh ˝ Cv

O Ikh ˝ Av

�
; B2 D

�
Bh ˝Dv

Ikh ˝ Bv

�
;

C2 D
�
Ch ˝ Inv�kv Dh ˝ Cv

O Ikh ˝ Cv

�
; D2 D

�
Dh ˝Dv

Ikh ˝Dv

�
;

is an ISO representation of S2.

Proof The result follows from Theorem 9 of [2]. ut
In general the ISO representations .A1;B1;C1;D1/ and .A2;B2;C2;D2/ intro-

duced in the above theorem are not minimal (see [2, 4]). In [2, 4] we can find some
sufficient conditions to ensure the minimality of the above ISO representations.

Now, by Theorem 15 of [2] we have that

dfree .S1/ � dfree .Ch/ and dfree .S2/ � dfree .Cv/ : (6)

As a consequence of Theorem 1, by using the second model of parallel
concatenation (see [4, Section 5.2]) we have the following result.

Theorem 4 With the same notation as in Theorems 2 and 3.

1. If P1 is the rate .khkv=nhnv/ convolutional code defined by the parallel
concatenation of S1 and Cv.kh/, then .A1;B1;C1;D1/ with

A1 D
2

4
Inh�kh ˝ Av Ch ˝ Bv O

O Ah ˝ Ikv O

O O Ikh ˝ Av

3

5 ; B1 D
2

4
Dh ˝ Bv

Bh ˝ Ikv

Ikh ˝ Bv

3

5

C1 D
2

4
Inh�kh ˝ Cv Ch ˝Dv O

O Ch ˝ Ikv O

O O Ikh ˝ Cv

3

5 ; D1 D
2

4
Dh ˝Dv

Dh ˝ Ikv

Ikh ˝Dv

3

5

is an ISO representation of P1.
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2. If P2 is the rate .khkv=nhnv/ convolutional code defined by the parallel
concatenation of S2 and Ch.kv/, then .A2;B2;C2;D2/ with

A2 D
2

4
Ah ˝ Inv�kv Bh ˝ Cv O

O Ikh ˝ Av O

O O Ah ˝ Ikv

3

5 ; B2 D
2

4
Bh ˝Dv

Ikh ˝Bv

Bh ˝ Ikv

3

5

C2 D
2

4
Ch ˝ Inv�kv Dh ˝ Cv O

O Ikh ˝ Cv O

O O Ch ˝ Ikv

3

5 ; D2 D
2

4
Dh ˝Dv

Ikh ˝Dv

Dh ˝ Ikv

3

5

is an ISO representation of P2.

Note that, according to expressions (1)–(4) and Theorem 1, P1 is the product
convolutional code C D Ch ˝ Cv. Moreover, since A1 is a matrix of size
.nhıv C ıhkv/ � .nhıv C ıhkv/ and the complexity of C is khıv C ıhkv, we can
ensure that the ISO representation .A1;B1;C1;D1/ provided by part 1 of Theorem 4
is nonminimal. By an analogous argument P2 is the product convolutional code
C D Ch ˝ Cv and the ISO representation .A2;B2;C2;D2/ provided by part 2 of
Theorem 4 is nonminimal.

Next result introduces a lower bound on the free distance dfree of the convolu-
tional product code in terms of the constituent convolutional codes.

Theorem 5 If Ch and Cv are .nh; kh; ıh/ and .nv; kv; ıv/ codes, respectively, then,

dfree.Ch ˝ Cv/ � max
˚
dfree.Cv/; dfree.Ch/



:

Proof With the same notation as in Theorem 4, as a consequence of Theorem 5.8
of [4] we have that

dfree .P1/ � max
˚
dfree .S1/ ; dfree .Cv/



;

dfree .P2/ � max
˚
dfree .S2/ ; dfree .Ch/



:

The result follows now by expressions (5) and (6) an the fact that P1 D P2 D
Ch ˝ Cv. ut
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Burst Erasure Correction of 2D Convolutional
Codes

Joan-Josep Climent, Diego Napp, Raquel Pinto, and Rita Simões

Abstract In this paper we address the problem of decoding 2D convolutional codes
over the erasure channel. In particular, we present a procedure to recover bursts of
erasures that are distributed in a diagonal line. To this end we introduce the notion of
balls around a burst of erasures which can be considered an analogue of the notion
of sliding window in the context of 1D convolutional codes. The main result reduces
the decoding problem of 2D convolutional codes to a problem of decoding a set of
associated 1D convolutional codes.

Keywords 2D convolutional codes • Erasure channel

1 Introduction

When transmitting over an erasure channel the symbol sent either arrive correctly
or they are erased. Internet is an important instance of such a channel. One of the
problems that arises in this channel is that some packets get lost and the receiver
experience it as a delay on the received information. The solutions proposed to
deal with this problem are commonly based on the use of block codes. However,
in recent years, there has been an increased interest in the study of one-dimensional
(1D) convolutional codes over the erasure channel [2, 8–10] as a possible alternative
for the widely use of block codes. Due to their rich structure 1D convolutional codes
have an interesting property called sliding window property that allows adaptation
to the correction process to the distribution of the erasure pattern. In the recent
paper [10] it has been shown how it is possible to exploit this property in order
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to easily recover erasures which are uncorrectable by any other kind of (block)
codes. The codes proposed in this paper are codes with strong distance properties,
called Maximal Distance Profile (MDP), reverse-MDP and complete-MDP, and
simulations results have shown that they can decode extremely efficiently when
compared to MDS block codes.

In the 1D case, if the received codeword is viewed as a finite sequence v D
.v0; v1; : : : ; v`/, then the sliding windows is given by selecting a subsequence of v,
.vi ; : : : ; viCN /, where i; N 2 N depend on the erasure burst pattern. However, when
considering two-dimensional (2D) convolutional codes [4–7, 11] the information is
distributed in two dimensions and therefore there is not an obvious way to extend
the idea of sliding window to the 2D case. In this work we propose several solutions
for dealing with this problem by introducing the notion of balls around an erasure.
We show that when considering these particular balls one reduces the problem of
decoding 2D convolutional codes over the erasure channel to a problem related to
decoding of 1D convolutional codes.

2 2D Convolutional Codes

In this section we recall the basic background on 2D finite support convolutional
codes. Denote by FŒz1; z2� the ring of polynomials in the two variables, z1 and z2,
with coefficients in the finite field F.

Definition 1 A 2D finite support convolutional code C of rate k=n is a free
FŒz1; z2�-submodule of FŒz1; z2�n with rank k.

A full column rank polynomial matrix OG.z1; z2/ 2 FŒz1; z2�n�k whose columns
constitute a basis for C , i.e., such that

C D imFŒz1;z2�
OG.z1; z2/

D fOv.z1; z2/ 2 FŒz1; z2�
n j Ov.z1; z2/ D

OG.z1; z2/ Ou.z1; z2/ with Ou.z1; z2/ 2 FŒz1; z2�
k g ;

is called an encoder of C . The elements of C are called codewords.

If the code C admits a right factor prime encoder [3], then it can be equivalently
described using an .n� k/� n full rank polynomial matrix OH.z1; z2/, called parity-
check matrix of C , as

C D kerFŒz1;z2� OH.z1; z2/ D
n
Ov.z1; z2/ 2 FŒz1; z2�

n j OH.z1; z2/Ov.z1; z2/ D 0
o
:

We denote by N0 the set of nonnegative integers, and define an ordering in N
2
0 as

.a; b/ � .c; d / if and only if aC b < cC d; or aC b D cC d and b < d: (1)
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For a polynomial vector Ov.z1; z2/ 2 FŒz1; z2�n, we write

Ov.z1; z2/ D v.0; 0/C v.1; 0/z1C v.0; 1/z2 C � � � C v.0; �/z�2 D
X

0�aCb��
v.a; b/za1z

b
2;

(with � � 0) and we define its support as the set

supp.Ov.z1; z2// D f.a; b/ 2 N
2
0 j v.a; b/ ¤ 0g:

Moreover, we represent a polynomial matrix OH.z1; z2/ as

OH.z1; z2/ D H.0; 0/CH.1; 0/z1 CH.0; 1/z2 C � � � CH.0; ı/zı2
D

X

0�iCj�ı
H.i; j /zi1z

j
2 ; (2)

whereH.i; j / ¤ 0 for some .i; j /with iCj D ı. We call ı the degree of OH.z1; z2/.
The weight of Ov.z1; z2/ is defined as

wt .Ov.z1; z2// D
X

.a;b/2N20
wt .v.a; b//

where wt .v.a; b// is the number of nonzero entries of v.a; b/ and the distance of a
code is

dist .C / D min fwt .Ov.z1; z2// j Ov.z1; z2/ 2 C ; with Ov.z1; z2/ ¤ 0g :

We can expand the kernel representation

OH.z1; z2/Ov.z1; z2/ D
X

0�aCb��

2

4
X

0�iCj�ı
H.i; j /v.a � i; b � j /

3

5 za1zb2 D 0

as

Hv D 0 (3)

where H, for ı D 3, and v are given in Fig. 1, whereO denotes the .n� k/� n zero
matrix. To understand the structure of matrix H, note that for t D 0; 1; 2; : : : in the
columns corresponding to the block indices t .tC1/

2
C1; t.tC1/

2
C2; : : : ; t.tC1/

2
C tC1

appear all the coefficient matrices of OH.z1; z2/ ordered according to � with the
particularity that the matrices H.i; j /, with i C j D d , for d D 0; 1; 2; : : : ; ı � 1,
are separated from the matricesH.i; j /, with i C j D d C 1, by t zero blocks.

Suppose now that the vector Ov.z1; z2/ is transmitted through an erasure channel.
Each one of the components of v is either received correctly or is considered
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H(0,0)

H(1,0)

H(0,1)

H(2,0)

H(1,1)

H(0,2)

H(3,0)

H(2,1)

H(1,2)

H(0,3)

H(0,0)

O

H(1,0)

H(0,1)

O

H(2,0)

H(1,1)

H(0,2)

O

H(3,0)

H(2,1)

H(1,2)

H(0,3)

H(0,0)

O

H(1,0)

H(0,1)

O

H(2,0)

H(1,1)

H(0,2)

O

H(3,0)

H(2,1)

H(1,2)

H(0,3)

H(0,0)

O

O

H(1,0)

H(0,1)

O

O

H(2,0)

H(1,1)

H(0,2)

O

O

H(3,0)

H(2,1)

H(1,2)

H(0,3)

H(0,0)

O

O

H(1,0)

H(0,1)

O

O

H(2,0)
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Fig. 1 Parity check matrix H, for ı D 3, and codeword v. (a) Matrix H. (b) Vector v

erasure. Denote by E .Ov.z1; z2// and NE .Ov.z1; z2// the sets of indices in which there
are erasures and there are not erasures, respectively, i.e.,

E .Ov.z1; z2// D f.a; b/ 2 supp.Ov.z1; z2// j there is an erasure in v.a; b/g ;
NE .Ov.z1; z2// D supp.Ov.z1; z2// n E .Ov.z1; z2//:

One can select the columns of the matrix in (3) that correspond to the coefficient
of the erased elements to be the indeterminates of a new system. The rest of the
columns in (3) will help us to compute the independent terms. The terms erasure
and indeterminate are often used interchangeably. Hence, we denote by HE and H NE
the submatrices of H whose block columns are indexed by E and NE , respectively.
Analogously, we denote vE and v NE to obtain HE vE C H NE v NE D 0: Note that as the
channel is an erasure channel, v NE , and therefore H NE v NE , is known. Hence, we obtain
a system of linear nonhomogeneous equations

HE vE D �H NE v NE ; (4)

where the components of the vector vE are the indeterminates to be determined.
Thus, in order to decode vE we need to solve system (4).
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The next lemma shows the importance of the distance of a code when transmit-
ting over the erasure channel.

Lemma 2 Let C D kerFŒz1;z2� OH.z1; z2/ be given. The following are equivalent:

1. dist .C / � d .
2. Any d � 1 erasures can be recovered.
3. Any d � 1 columns of HE are linearly independent.

In the context of 1D convolutional codes the analogous set of homogeneous
equations of (3) is

2

6
66
6
6
6
66
6
6
6
6
4

H0

:::
: : :

H˛ � � � H0

:: :
:::
: : :

H˛ � � � H0

:: :
:::

H˛

3

7
77
7
7
7
77
7
7
7
7
5

2

6
6
6
4

v0
v1
:::

v�

3

7
7
7
5
D 0; (5)

where C D ker OH.z/ with OH.z/ D H0 CH1zC � � � CH˛z˛ .
In this case every component of the received codeword v D .v0; v2; : : : ; v� /

depends on the previous ˛ components. In order to find the values of a burst of
erasures occurring in v, we can use the so-called sliding window, that is, we can
select a suitable interval of consecutive components of v, say .vi ; : : : ; viCN /, and
solve the corresponding system of equations (see [10]).

In the 2D case each component of v, say v.a; b/, depends on components which
support lie in the triangle f.a� i; b � j / j 0 � i C j � ıg, where ı is the degree of
OH.z1; z2/ of the given 2D code C D kerFŒz1;z2� OH.z1; z2/. It is not straightforward to

extend the notion of the sliding window in this context in order to correct burst of
2D erasures. A particular case is treated in the following section.

3 Decoding Burst of Erasures on Lines

It is well-known that a phenomena observed in many channels modeled via the
erasure channel is that errors tend to occur in bursts. This point is important to keep
in mind when designing codes which are capable of correcting many errors over
the erasure channel. In this preliminary work we aim at decoding burst of erasures
that are distributed in a diagonal. We present a notion that can be considered as the
analogue of the notion of sliding window, called ball around a burst of erasures,
that will reduce the problem of decoding a 2D convolutional code to the problem of
decoding a set of associated 1D convolutional codes.
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Let us first suppose that the set of erasures of Ov.z1; z2/ contains a burst of erasures
which support lie in a diagonal, i.e., given by

E 0.Ov.z1; z2// D f.rC t; s/; .rC t �1; sC1/; : : : ; .r; sC t/g 	 E .Ov.z1; z2//: (6)

Hence, Eq. (3) can be divided as

HE 0 vE 0 D �H NE 0 v NE 0 (7)

where HE 0 and H NE 0 are submatrices of H whose block columns are indexed by
E 0.Ov.z1; z2// and NE 0.Ov.z1; z2// D supp.Ov.z1; z2// n E 0.Ov.z1; z2//, respectively, and
vE 0 and v NE 0 are defined accordingly. If no confusion arises we use E and E 0 for
E .Ov.z1; z2// and E 0.Ov.z1; z2//, respectively.

Definition 3 Let E 0 be given with .rf ; sf / D .r C t; s/ and .r`; s`/ D .r; s C t/
being the first and last position (ordered by �) in this set. We define ı C 1 different
balls around E 0 as

˝j;ı.E
0/ D ˚.a; b/ j a � rf C j; b � s` C j;

rf C sf C j � ı � aC b � rf C sf C j 


for j D 0; 1; 2; : : : ; ı.
Example 4 Consider the burst of erasures given by

E 0 D f.8; 5/; .7; 6/; .6; 7/; .5; 8/; .4; 9/g;

then, .rf ; sf / D .8; 5/ and .r`; s`/ D .4; 9/, and for ı D 3 Figure 2 shows the balls
˝0;3.E 0/ and ˝1;3.E 0/.

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

(a) (b)

Fig. 2 Balls around the erasure given by E 0 D f.8; 5/; .7; 6/; .6; 7/; .5; 8/; .4; 9/g. (a) ˝0;3.E 0/.
(b) ˝1;3.E 0/
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By definition, the vector vE 0 contains a burst of erasures in a diagonal and v NE 0

may contain erasures as well. Depending on the structure of HE 0 and H NE 0 these
errors may appear together in some of the equations of (7).

The following result gives a criterion to determine some sets of equations that
involve only erasures in vE 0 . The solution of such system would produce the desired
decoding of vE 0 .

Theorem 5 Let C D kerFŒz1;z2� OH.z1; z2/, ı the degree of OH.z1; z2/ and let E be the
support of the erasures and E 0 be the support of a burst of erasures distributed on a
diagonal line of a codeword Ov.z1; z2/. If E 0 are the only erasures in ˝j;ı.E 0/, i.e., if

E \˝j;ı.E
0/ D E 0;

then, there exists a subsystem of (7) such that

Hj

E 0vE 0 D aj (8)

where aj is a subvector of H NE 0 v NE 0 that does not contain any erasures, and

Hj

E 0 D

2
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6
66
6
6
6
6
66
6
6
6
66
4

H.j; 0/

H.j � 1; 1/ H.j; 0/

H.j � 2; 2/ H.j � 1; 1/ H.j; 0/
:::

:::
:::

: : :

H.0; j / H.1; j � 1/ H.2; j � 2/
H.0; j / H.1; j � 1/ � � � H.j; 0/

: : :
: : :

: : :

H.0; j / H.1; j � 1/
H.0; j /

3

7
7
77
7
7
7
7
77
7
7
7
77
5

;

for j D 0; 1; : : : ; ı

is a .n� k/.t C 1C ı � j /� n.t C 1/ submatrix of HE 0 , with t C 1 the cardinality
of E 0.

The structure of the matrices Hj

E 0 have the same structure as the matrices in (5)
which appear in the decoding problem of 1D convolutional codes, see [1, 8] for
more details, and therefore the solution of (8) is analogous to the decoding problem
of 1D convolutional codes.

It was shown in [10] that there exists a type of 1D convolutional codes, called
(reverse or complete) MDP, that perform particularly well over the erasure channel.
This together with Theorem 5 suggest that in order to construct a 2D convolutional
code C D kerFŒz1;z2� OH.z1; z2/ with good decoding properties one can construct a

parity-check matrix OH.z1; z2/ D
X

0�aCb�ı
H.a; b/za1z

b
2 such that the associated 1D
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convolutional codes are given by C .j / D kerFŒz� OH.j /.z/ with OH.j /.z/ D H
.j /
0 C

H
.j /
1 zC � � � CH.j /

� z� andH.j /

k D H.j � k; k/, for k D 0; 1; : : : ; j are MDP.

4 Conclusions

In this paper we have proposed a method to recover erasures E 0 in a 2D (finite
support) convolutional code that are distributed in a diagonal line in the 2D plane.
We have shown that if E 0 does not have more erasures close (meaning in a ball
centered around E 0) then it is possible to consider E 0 as a burst of erasures of a set of
1D convolutional codes. Decoding these 1D convolutional codes would immediately
imply the recovery of the E 0.

This procedure is far from solving all the possible erasure patterns but it
represents the first step toward the development of an effective approach to solve
more general patterns of erasures.
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Variations on Minimal Linear Codes

Gérard Cohen and Sihem Mesnager

Abstract Minimal linear codes are linear codes such that the support of every
codeword does not contain the support of another linearly independent codeword.
Such codes have applications in cryptography, e.g. to secret sharing. We pursue
here their study and construct asymptotically good families of minimal linear codes.
We also push further the study of quasi-minimal and almost-minimal linear codes,
relaxations of the minimal linear codes.

Keywords Minimal codes • Quasi-minimal codes

1 Introduction

A minimal codeword [10, 11] c of a linear code C is a codeword such that its
support (set of non-zero coordinates) does not contain the support of another linearly
independent codeword. Minimal codewords are useful for defining access structures
in secret sharing schemes using linear codes. Determining the set of minimal
codewords is hard for general linear codes, although this has been studied for some
classes of specific linear codes. This led to work on how to find codes where all
codewords are minimal, in order to facilitate the choice of access structures. The
problem of finding a code satisfying this condition, called a minimal linear code has
first been envisioned in [7] and later studied in [3, 13].

Interestingly, in [3], the motivation for finding minimal linear codes is no longer
secret sharing but in a new proposal for secure two-party computation, where it is
required that minimal linear codes are used to ensure privacy.
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It is pointed out in [3] that minimal codes are close to the notions of intersecting
and separating codes [4, 5]. Such codes have been suggested for applications to
oblivious transfer [2], secret sharing [1, 7, 13] or digital fingerprinting [12].

We will focus here on the non-binary case, where the notion of minimal codes
is more restrictive than that of separating codes. Secret-sharing and secure two-
party computations both crucially hinge on a large alphabet; thus, one cannot rely
on the well-understood binary case only. We thus pursue in Sect. 2 the study of [3]
on bounds and criteria for minimal linear codes and exhibit families of minimal
codes with better rates (asymptotically non-zero). In Sect. 3, we relax the notion
of minimal codes and introduce quasi-minimal linear codes. Quasi-minimal linear
codes are codes where two non-zero codewords have the same support if and only
if they are linearly dependent. This slight relaxation enables to exhibit families with
improved non-zero asymptotic rates. Finally, we consider yet another generalization
to almost-minimal codes, where the property is allowed to fail for a small proportion
of codewords.

2 Minimal Codes: Bounds and Constructions

2.1 Definitions: Notations

We denote by jF j the cardinality of a set F . Let q D ph, where p is a prime number
and h 2 N
. An Œn; k; d; dmax�q code is a vector subspace of Fnq of dimension k with
minimum distance d and maximum distance dmax. The last two parameters refer to
the minimal (resp. maximal) Hamming distance between two codewords of C , or,
equivalently, the minimal (resp. maximal) Hamming weight of a codeword of C ;
they will be omitted when irrelevant. Normalized parameters will be denoted by
R D k=n; ı D d=n; ımax D dmax=n.

The support of a codeword c 2 C is supp.c/ D fi 2 f1; : : : ; ngjci ¤ 0g. The
Hamming weight of a codeword c 2 C denoted by wt.c/ is the cardinality of its
support: wt.c/ D jsupp.c/j. A codeword c covers a codeword c0 if supp.c0/ 	
supp.c/.

Definition 1 (Minimal codeword) A codeword c is minimal if it only covers Fq �c,
i.e. if 8c0 2 C ; .supp.c0/ 	 supp.c// H) .c; c0/ linearly dependent [10].

Definition 2 (Minimal linear code) A linear code C is minimal if every non-zero
codeword c 2 C is minimal [7].

For a complete treatment and general references in coding theory, we refer to the
book of MacWilliams and Sloane [9].
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2.2 Bounds

Two non-constructive bounds on the rates of minimal codes are exhibited in [3]. We
recall them without proofs.

Theorem 3 (Maximal Bound) Let C a minimal linear Œn; k; d � q-ary code, then
R � logq.2/ [3].

Theorem 4 (Minimal Bound) For any R, 0 � R D k=n � 1
2

logq.
q2

q2�qC1 /, there
exists an infinite sequence of Œn; k� minimal linear codes [3].

2.3 A Sufficient Condition

There exists a sufficient condition on weights for a given linear code to be minimal.
More precisely, if the weights of a linear code are close enough to each other, then
each nonzero codeword of the code is a minimal vector as described by the following
statement.

Proposition 5 ([1]) Let C be an Œn; k; d; dmax� code. If d
dmax

>
q�1
q

then C is
minimal.

Remark 6 Note that the stronger sufficient condition d
n
>

q�1
q

fails to provide
asymptotically good codes; indeed, by the Plotkin bound [9], for any code, not
necessarily linear, of length n, size M and distance d , if d > .q � 1/n=q, then
M � d=.d � .1 � q�1//.

On the other hand, for ı < 1 � q�1, the classical Varshamov-Gilbert bound [8]
guarantees the existence of asymptotic families of codes with non zero rate R.ı; q/.

2.4 Infinite Constructions

The general idea is to concatenate a q-ary “seed” or inner code (e.g. a simplex) with
an infinite family of algebraic-geometric (AG) codes (the outer codes) [14], in such
a way as to obtain a high enough minimum distance and conclude by Proposition 5.

In practice, we can take the seed to be the simplex code Sq;r Œn D .qr � 1/=.q �
1/; k D r; d D dmax D qr�1�q (with ı > .q � 1/=q), set r D 2m and concatenate
with AGŒN;K D NR;D D N�;Dmax D N�max�q2m . These codes exist lying
almost on the Singleton bound, namely satisfying R C � D 1 � .qm � 1/�1 >
.q � 1/=q.

This concatenation results in the family C ŒnN; kK; dD�q with maximum dis-
tance at most dmaxN . If dD=dmaxN D � > .q � 1/=q, this family is minimal by
Proposition 5.
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It is not hard to check that, for example, choosing q large and ˛ small enough,
m � 2;� D .q � 1/=q C ˛;R D 1=q � 1=.qm � 1/� ˛ > 0, this is the case.

To summarize, we construct infinite families of codes with R D 2m.1=q �
1=.qm � 1/� ˛/.q � 1/=.q2m � 1/ � 2m=q2m satisfying ı=ımax > .q � 1/=q, thus
minimal. Note that, by the Plotkin bound, they necessarily satisfy ı < .q� 1/=q, so
the fact that ımax < 1 is crucial.

3 Quasi-minimal Codes

We now relax the notion of minimal codes to that of quasi-minimal codes.
Minimality prevents a codeword from having its support included in the support
of a linearly independent codeword, whereas quasi-minimality only prevents two
linearly independent codewords from having the same support.

3.1 Definitions and Properties

Definition 7 (Quasi-minimal codeword) A codeword c is quasi-minimal if 8c0 2
C ; .supp.c0/ D supp.c// H) .c; c0/ linearly dependent.

Definition 8 (Quasi-minimal linear code) A linear code C is quasi-minimal if
every non-zero codeword c 2 C is quasi-minimal.

Quasi-minimality is clearly a weaker requirement than minimality. For instance,
every binary code is obviously quasi-minimal.

3.2 Constructions

We now give a construction based on the Kronecker (tensor) product of codes, which
yields infinite families of quasi-minimal codes with relatively slowly decreasing
rates.

Proposition 9 The product C1 ˝ C2 of a quasi-minimal Œn1; k1; d1; .dmax/1�q code
C1 and of a quasi-minimal Œn2; k2; d2; .dmax/2�q code C2 is a quasi-minimal Œn1 �
n2; k1 � k2; d1 � d2; dmax � .dmax/1 � .dmax/2�q code.

Proof The parameters are easy to check. For the quasi-minimality, let c ¤ 0; c0
be two codewords of C1 ˝ C2. By definition of the tensor product, they can both
be written as n1 � n2 matrices where rows are codewords of C1 and columns are
codewords of C2. More generally, the square of the Œq C 1; 2; q�q simplex code is
a Œ.q C 1/2; 4; q2�q minimal code. Let us assume that supp.c/ D supp.c0/. For
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i D 1; : : : ; n1, j D 1; : : : ; n2 let c1i (resp. c
01
i ) be the i th row of c (resp. c0) and c2j

(resp. c
02
j ) be the j th column of c (resp. c0). For every i , supp.c1i / D supp.c

01
i /,

so 9�i such that c
01
i D �ic

1
i . With the same reasoning on the columns, for every j ,

there exists �j such that c
02
j D �j c2j . Then, all the �i ’s and �j ’s are equal and there

exists � such that c0 D �c, so c and c0 are linearly dependent. Thus, C1 ˝ C2 is
quasi-minimal. ut

3.3 A Sufficient Condition

We now prove a sufficient condition for quasi-minimality, weaker than the one
for minimality. This will then allow us to construct improved infinite classes of
asymptotically good quasi-minimal codes by concatenation.

Theorem 10 Let C be a linear Œn; k; d; dmax�q code; if d=dmax � .q� 2/=.q� 1/,
then C is quasi-minimal.

Proof Let C be a linear Œn; k; d �q code and let c; c0 be two linearly independent
codewords of C such that supp.c/ D supp.c0/. Let ˛ be a primitive element
of Fq . Then, w.l.o.g., one can write c and c0 by blocks, in the following way:
c D ˇ0jj : : : jjˇq�2jj0 and c0 D ˛0ˇ0jj : : : jj˛q�2ˇq�2jj0. Let Ai be the size of the

(possibly empty) block ˇi . Then wt.c/ D wt.c0/ D
q�2P
iD0

Ai � d . We also have, for

j D 0; : : : ; q�2, d.˛j c; c0/ D P

i¤j
Ai � d . If we sum all these inequalities, we get

.q � 2/
q�2P
iD0

Ai � .q � 1/d , hence wt.c/ � q�1
q�2d > dmax , a contradiction. Thus, c

and c0 cannot exist and C is quasi-minimal. ut
Example 11 For q D 3, consider the codeGŒ11; 5; 6; 9�3 obtained by shortening the
extended ternary Golay code [9]. It is quasi-minimal by the previous theorem. Its
(Kronecker) square isG2, a Œ121; 25; 36;� 81�3 quasi-minimal code by the previous
proposition, although is does not satisfy the sufficient condition of Theorem 10.

Now, the celebrated non-constructive Varshamov-Gilbert bound implies the
existence of infinite families of semi-constructive quasi-minimal codes with rate
R D 1 � hq. q�2q�1 / > 0. This is still far from the upper bound, derived analogously
to the minimal case:

Theorem 12 (Maximal Bound) Let C be a quasi-minimal linear Œn; k; d �q code,
then R � logq.2/:
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3.4 Infinite Constructions of Quasi-minimal Codes

Again, we concatenate a q-ary inner code (e.g. a simplex) with an infinite family
of algebraic-geometric (AG) codes to get a high enough minimum distance and
conclude by Theorem 10.

Continue taking for seed Sq;r Œn D .qr �1/=.q�1/; k D r; d D dmax D qr�1�q ,
set r D 2m and concatenate with AGŒN;K D NR;D D N��q2m , obtaining the
family C ŒnN; kK; dD�q . Analogously to the minimal case, If dD=dmaxN D � >

.q � 2/=.q � 1/, this family is quasi-minimal by Theorem 10.

Example 13 • Take q D 4;S4;4Œ85; 4; 64�4;� D 2=3C˛;R D 4=15, resulting in
an infinite construction of Œn; 16n=1275� quaternary codes.

• For q D 3, we can improve on the simplex code seed: indeed, take the already
considered C Œ11; 5; 6; 9�3 as inner code and AGŒN;NR;N��35 with R C � D
191=208. Choose � D 3=4;R D 35=208; then concatenation results in an
infinite construction of quasi-minimal Œn;� 0:076n� ternary codes.

4 Almost-Minimal Codes

Definition 14 (Almost-minimal linear code) A linear code C is said (
)almost-
minimal if at most q2
k pairs of codewords are bad, for some fixed 
 with 0 � 
 <
1=2.

We now extend some results of [6] to almost-minimal codes.

Theorem 15 (Maximal Bound) Let C an almost- minimal linear Œn; k; d � q-ary
code, then R � logq.2/=.1� 
/C o.1/.
Proof By definition, at most q
kC1 codewords can share the same support. Thus,
jC j D qk � q
kC12n and R D k=n � logq.2/=.1� 
/C o.1/. ut
Theorem 16 (Minimal Bound) For any positive R D k=n such that

R � 1

2 � 2
 logq.
q2

q2 � q C 1/C o.1/;

there exists an infinite sequence of Œn; k� almost-minimal linear codes.

Proof Let us fix n and k. For a 2 F
n
q , such that jsupp.a/j D i , there are qi � q

linearly independent vectors b such that supp.b/ 	 supp.a/. The pair .a; b/

belongs to

�
n � 2
k � 2

�
linear Œn; k� codes, where

�
x

k

�
denotes the q-ary Gaussian

binomial coefficient. There are less than
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nP

iD0


n
i

�
.q � 1/i .qi � q/ D .1C .q � 1/q/n � qnC1 � .q2 � qC 1/n such ordered

bad .a; b/ pairs. As long as q2
k
�
n

k

�
�
�
n � 2
k � 2

�
.q2 � q C 1/n, there are linear

Œn; k� codes containing no more than q2
k bad pairs, i.e. almost-minimal codes. For

k=n � 1
2�2
 logq.

q2

q2�qC1 /C o.1/, this quantity is positive. ut

4.1 Open Problem

Is it true that the best achievable rate of (quasi, almost) minimal codes is a decreasing
function of q? A weaker statement holds: if q divides q0, then a q0- (quasi, almost)
minimal code yields a q-ary (quasi, almost) minimal code with the same rate.

Acknowledgements We thank Alexander Barg, Alain Patey and Zachi Tamo for helpful discus-
sions.
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Cryptanalysis of Public-Key Cryptosystems
That Use Subcodes of Algebraic Geometry
Codes

Alain Couvreur, Irene Márquez-Corbella, and Ruud Pellikaan

Abstract We give a polynomial time attack on the McEliece public key cryptosys-
tem based on subcodes of algebraic geometry (AG) codes. The proposed attack
reposes on the distinguishability of such codes from random codes using the Schur
product. Wieschebrink treated the genus zero case a few years ago but his approach
cannot be extent straightforwardly to other genera. We address this problem by
introducing and using a new notion, which we call the t–closure of a code.

Keywords Algebraic geometry codes • Code-based cryptography • Schur prod-
ucts of codes • Distinguishers

1 Introduction

After the original proposal of code based encryption scheme due to McEliece [15]
which was based on binary Goppa codes, several alternative proposals aimed at
reducing the key size by using codes with a higher correction capacity. Among many
others, generalised Reed–Solomon (GRS) codes are proposed in 1986 by Niederre-
iter [17] but are subject to a key-recovery polynomial time attack discovered by
Sidelnikov and Shestakov [21] in 1992. To avoid this attack, Berger and Loidreau
[1] proposed to replace GRS codes by some random subcodes of small codimension.
This proposal has been broken by Wieschebrink [24] using Schur products of codes.

Another proposal was to use algebraic geometry (AG) codes, concatenated AG
codes or their subfield subcodes [9]. The case of AG codes of genus 1 and 2 has been
broken by Faure and Minder [6]. Then, Marquez et al. proved that the structure
of a curve can be recovered from the very knowledge of an AG code [13, 14]
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without leading to an efficient attack. Finally a polynomial time attack of the scheme
based on AG codes has been obtained by the authors in [3]. This attack consists in
using the particular behaviour of AG codes with respect to the Schur product to
compute a filtration of the public key by AG subcodes, which leads to the design of
a polynomial time decoding algorithm allowing encrypted message recovery.

The genus zero case and Berger Loidreau’s proposal raises a natural question
what about using subcodes of AG codes? In this article we propose an attack of
this scheme. Compared to the genus zero case, Wieschebrink’s attack cannot extend
straightforwardly and we need to introduce and use a new notion which we call the
t–closure of a code. By this manner, we prove subcodes of AG codes to be non
secure when the subcode has a small codimension. It is worth noting that choosing
a subcode of high codimension instead of the code itself represents a huge loss in
terms of error correction capacity and hence is in general a bad choice. For this
reason, an attack on the small codimension codes is of interest.

Finally, it hardly needs to be recalled that this result does not imply the end of
code-based cryptography since Goppa codes, alternant codes and more generally
subfield subcodes of AG codes still resist to any known efficient attack. Their
resistance to the presented attack is discussed at the end of the article.

Due to space reasons, many proofs are omitted in this extended abstract.

2 Notation and Prerequisites

2.1 Curves and Algebraic Geometry Codes

The interested reader is referred to [22, 23] for further details on the notions
introduced in the present subsection. In this article, X denotes a smooth projective
geometrically connected curve of genus g over a finite field Fq . We denote by
P D .P1; : : : ; Pn/ an n-tuple of mutually distinct Fq-rational points of X , by DP

the divisor DP D P1 C � � � C Pn and by E an Fq-divisor of degree m 2 Z and
support disjoint from that of DP .

The function field of X is denoted by Fq.X /. Given an Fq-divisorE on X , the
corresponding Riemann-Roch space is denoted by L.E/. The algebraic geometry
(AG) code CL.X ; P;E/ of length n over Fq is the image of the evaluation map

evP W
(
L.E/ �! F

n
q

f 7�! .f .P1/; : : : ; f .Pn//

If 2g � 2 < m < n, then by Riemann-Roch Theorem, CL.X ; P;E/ has dimension
mC 1 � g and minimum distance at least n �m.

When the curve is the projective line ‘1, the corresponding codes are the so-called
generalised Reed–Solomon (GRS) codes defined as:

GRSk.a;b/ WD f.b1f .a1/; : : : ; bnf .an// j f 2 FqŒx�<kg:
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where a;b are two n–tuples in F
n
q such that the entries of a are pairwise distinct and

those of b are all nonzero and k < n.

Remark 1 See [8, Example 3.3] for a description of GRS codes as AG codes.

2.2 Schur Product

Given two elements a and b in F
n
q , the Schur product is the component wise

multiplication: a 
 b D .a1b1; : : : ; anbn/ . Let a 2 F
n
q , we set a0 WD .1; : : : ; 1/

and by induction we define ajC1 WD a 
 aj for any positive integer j . If all entries
of b are nonzero, we define b�1 WD .b�11 ; : : : ; b�1n / and thus, b�j D 
bj ��1 for any
positive integer j .

For two codes A;B � F
n
q , the code A 
 B is defined by

A 
 B WD Span
Fq
fa 
 b j a 2 A and b 2 Bg :

For B D A, then A 
 A is denoted as A.2/ and, we define A.t/ by induction for any
positive integer t .

2.2.1 Application to Decoding, Error Correcting Pairs and Arrays

The notion of error-correcting pair (ECP) for a linear code was introduced by
Pellikaan [18, 19] and independently by Kötter [10]. Broadly speaking, given a
positive integer t , a t–ECP for a linear code C � F

n
q is a pair of linear codes

.A;B/ in F
n
q satisfying A 
 B � C? together with several inequalities relating t

and the dimensions and (dual) minimum distances of A;B;C . This data provides
a decoding algorithm correcting up to t errors in O.n3/ operations in Fq . ECP’s
provide a unifying point of view for several classical bounded distance decoding for
algebraic and AG codes. See [11] for further details.

For an AG code, there always exists a t–ECP with t D b d��1�g
2
c, where d�

denotes the Goppa designed distance (see [22, Definition 2.2.4]). Thus, ECP’s allow
to correct up to half the designed distance minus g=2. Filling this gap and correct up
to half the designed distance is possible thanks to more elaborate algorithms based
on the so-called error correcting arrays. See [5, 7] for further details.

2.2.2 Distinguisher and Cryptanalysis

Another and more recent application of the Schur product concerns cryptanalysis
of code-based public key cryptosystems. In this context, the Schur product is a
very powerful operation which can help to distinguish some algebraic codes such
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as AG codes from random ones. The point is that evaluation codes do not behave
like random codes with respect to the Schur product: the square of an AG code is
very small compared to that of a random code of the same dimension. Thanks to
this observation, Wieschebrink [24] gave an efficient attack of Berger Loidreau’s
proposal [1] based on subcodes of GRS codes.

Recent attacks consist in pushing this argument forward and take advantage to
this distinguisher in order to compute a filtration of the public code by a family of
very particular subcodes. This filtration method yields an alternative attack on GRS
codes [2]. Next it leads to a key recovery attack on wild Goppa codes over quadratic
extensions in [4]. Finally in the case of AG codes, this approach lead to an attack [3]
which consists in the computation of an ECP for the public code without retrieving
the structure of the curve, the points and the divisor.

3 The Attack

Our public key is a non structured generator matrix G of a subcode C of
CL.X ; P;E/? of dimension l , together with the error correcting capacity t . The
goal of our attack is to recover the code CL.X ; P;E/? from the knowledge of
C and then use the attack of [3] which provides a t–ECP and hence a decoding
algorithm for CL.X ; P;E/, which yields a fortiori a decoding algorithm for C .

The genus zero case (i.e. the case of GRS codes) proposed in [1] was broken by
Wieschebrink [24] as follows:

• C is the public key contained in some secret GRSk.a;b/.
• Compute C .2/ which is, with a high probability, equal to GRSk.a;b/.2/, which is

itself equal to GRS2k�1.a;b2/.
• Apply Sidelnikov Shestakov attack [21] to recover a and b2, then find b.

Compared to Wieschebrink’s approach, our difficulty is that the attack [3] is not
a key-recovery attack but a blind construction of a decoding algorithm. For this
reason, even if C .2/ provides probably the code CL.X ; P;E/.2/, it is insufficient
for our purpose: we need to find CL.X ; P;E/. This is the reason why we introduce
the notion of t–closures.

3.1 The t-Closure Operation

Definition 2 (t–closure) Let C 	 F
n
q be a code and t � 2 be an integer. The t-

closure of C is defined by

C
t D

n
a 2 F

n
q j a 
 C .t�1/ � C .t/

o
:

The code C is said to be t- closed if C
t D C .
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Proposition 3 Let C 2 F
n
q , then for all t � 2,

C
t D

�
C .t�1/ 
 
C .t/

�?�?
:

Proposition 4 Let E be a divisor satisfying deg.E/ � 2gC 1. Then:

(i) CL.X ; P;E/.t/ D CL.X ; P; tE/.

(ii) CL.X ; P;E/
t D CL.X ; P;E/ if deg.E/ � n�2

t
�

Proof (i) is proved in [3] and is a consequence of [16]. For (ii), Proposition 3 shows
that

CL.X ; P;E/
t D

�
CL.X ; P;E/.t�1/ 
 
CL.X ; P;E/.t/

�?�?
: (1)

Moreover, CL.X ; P; tE/? D CL.X ; P; .tE/?/ where .tE/? D DP � tE C K
for some canonical divisor K on X . Thus, deg



.tE/?

� D n � deg.tE/C 2g � 2.
Since, by assumption, deg.E/ � n�2

t
we have deg



.tE/?

� � 2g. Moreover, since
degE � 2gC 1, then, thanks to (i), Eq. (1) yields

CL.X ; P; .t � 1/E/ 
 CL.X ; P; tE/? D CL.X ; P;DP �E CK/
D CL.X ; P;E/?:

ut
Corollary 5 Let E be a divisor and 2g C 1 � deg.E/ � n�2

2
. Then

CL.X ; P;E/
2 D CL.X ; P;E/.

Conjecture 6 If 2g C 1 � deg.E/ � n�1
2

, let C be subcode of CL.X ; P;E/ of

dimension l such that and 2k C 1 � g � 

lC1
2

�
, where k D deg.E/ C 1 � g

is the dimension of CL.X ; P;E/, then the probability that C .2/ is different from
CL.X ; P; 2E/ tends to 0 when k tends to infinity.

We give a proof along the lines of [12, Remark 5] for the special case of subcodes
of GRS codes. Our experimental results are in good agreement with this conjecture
(see Table 1). The following corollary is central to our attack.

Corollary 7 If 2g C 1 � deg.E/ � n�2
2

and 2k C 1 � g � 

lC1
2

�
for k D

deg.E/ C 1 � g, then the equality C
2 D CL.X ; P;E/ holds for random l-

dimensional subcodes C of CL.X ; P;E/ with a probability tending to 0 when k
tends to infinity.



138 A. Couvreur et al.

Table 1 Running times of
the attack over Hermitian
codes

q n k t Time Key size w l L

72 343 193 54 80 s 83 ko 230 50 1000

137 ko 243 100 1000

163 ko 262 150 1000

92 729 521 19 30min 216 ko 232 50 500

670 ko 2121 200 500

835 ko 2178 400 500

3.2 Principle of the Attack

The public key consists in C � CL.X ; P;E/? and t D
j
d��g�1

2

k
. Set l WD

dimC . First, let us assume moreover that

2g C 1 � deg.E/ � n�1
2
; k D deg.E/C 1 � g and 2k � 1C g � 
lC1

2

�
:

Step 1. With a high probability, we may assume that C .2/ D CL.X ; P; 2E/ and

hence C
2 D CL.X ; P;E/ by Corollary 7. Thus, computeC

2
by solving a linear

system or by applying Proposition 3.
Step 2. Apply the polynomial time attack presented in [3] to obtain an ECP,
denoted by .A;B/, for CL.X ; P;E/. Which yields a decoding algorithm for C .
Estimated complexity: The computation of a closure costs O.n4/ operations in
Fq and the rest of the attack is in O..log.t C g//n4/ (see [3] for further details).

In case deg.E/ > n�1
2

, then the attack can be applied to several shortenings of
C whose 2–closures are computed separately and are then summed up to provide
CL.X ; P;E/. This method is described and applied in [3, 4].

This attack has been implemented with MAGMA. To this end L random
subcodes of dimension l from Hermitian codes of parameters Œn; k�q were created.
It turned out that for all created subcodes a t-ECP could be reconstructed. Time
represents the average time of the attack obtained with an Intel r CoreTM 2 Duo
2.8 GHz. The work factor w of an ISD attack is given. These work factors have been
computed thanks to Christiane Peter’s Software [20].

3.3 Which Codes Are Subject to This Attack?

Basically, the subcode C � CL.X ; P;E/ should satisfy:

(i)

dimCC1

2

� � dimCL.X ; P; 2E/;
(ii) 2gC 1 � degE � n�2

2
;

The left-hand inequality of (ii) is in general satisfied. On the other hand, as explained
above, the right-hand inequality of (ii) can be relaxed by using a shortening trick.
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Constraint (i) is more central since a subcode which does not satisfies it will
probably behave like a random code and it can be checked that a random code is in
general 2–closed. Thus, computing the 2–closure of such a subcode will not provide
any significant result. On the other hand, for an AG code of dimension k, subcodes
which do not satisfy (i) have dimension smaller than

p
2k and choosing such very

small subcodes and decode them as subcodes of CL.X ; P;E/ would represent a
big loss of efficiency. In addition, if these codes are too small they can be subject to
generic attacks like information set decoding.

3.3.1 Subfield Subcodes Still Resist

Another class of subcodes which resist to this attack are the subcodes C such that
C
2   CL.X ; P;E/. It is rather difficult to classify such subcodes but there is a

very identifiable family: the subfield subcodes. Let F be a proper subfield of Fq

(here we assume q to be non prime) and let C WD CL.X ; P;E/ \ F
n (and then

apply a base field extension if one wants to have an Fq–subcode). The point is
that C2 � .CL.X ; P;E/.2// \ F

n
q and the 2-closure of C will in general differ

from CL.X ; P;E/. For this reason, subfield subcodes resist to this kind of attacks.
Notice that even in genus zero: subfield subcodes of GRS codes still resist to
filtration attacks unless for the cases presented in [4].
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Extending Construction X for Quantum
Error-Correcting Codes

Akshay Degwekar, Kenza Guenda, and T. Aaron Gulliver

Abstract In this paper we extend the work of Lisonek and Singh on construction
X for quantum error-correcting codes to finite fields of order p2 where p is prime.
Further, we give some new results on the Hermitian dual of repeated root cyclic
codes. These results are used to construct new quantum error-correcting codes.

Keywords Quantum codes • Construction X • Optimal codes • Cyclic codes

1 Introduction

Quantum error correcting codes have been introduced as an alternative to classical
codes for use in quantum communication channels. Since the landmark papers of
Shor [7] and Steane [8], this field of research has grown rapidly. Recently, Lisonek
and Singh [5] gave a variant of construction X that produces binary stabilizer
quantum codes from arbitrary linear codes. In their construction, the requirement
on the duality of the linear codes was relaxed. In this paper, we extend their work on
construction X to obtain quantum error-correcting codes over finite fields of order
p2 where p is a prime number. Further, new results are obtained on the Hermitian
dual of repeated root cyclic codes. These results are used to construct new quantum
error-correcting codes.

The remainder of the paper is organized as follows. In Sect. 2, we present our
main result on the extension of the quantum construction X. Section 3 characterizes
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the generator polynomial of the Hermitian dual of a repeated root cyclic code. We
also give the structure of cyclic codes of length 3ps over Fp2 as well as the structure
of the dual codes. Our interest in this class of codes comes from the importance of
relaxing the condition .n; p/ D 1, which allows us to consider codes other than the
simple root codes.

2 Extending Construction X for Fp

Let Fp denote the finite field with p elements and F
�
p D Fpnf0g. Further, let Fn

p2

denote the vector space of all n-tuples over Fp2 . For, x 2 F
n
p2

denote the conjugate

of x by x D xp , and for x; y 2 F
n
p2

, let hx; yi D Pn
iD1 xi yi denote the Hermitian

inner product. Then the norm of x is defined as jjxjj D hx; xi DPn
iD1 xi pC1, and

the trace of x as Tr.x/ D x C x [6]. Both the trace and norm are mappings from
Fp2 to Fp .

Usually a dual contained condition is required to construct CSS quantum codes
as given by the following result.

Proposition 1 ([4]) If there exists an Fp2 -linear Œn; k; d �p2 codeB such that B? 	
B , then there exists an ŒŒn; 2k � n; d ��p quantum code.

In the remainder of this section, we give some important lemmas which will be
useful in the proof of our main result.

Lemma 2 Let S be a subspace of Fn
p2

such that there exist x; y 2 S with hx; yi ¤
0. Then for all k 2 Fp , there exists z 2 S with jjzjj D k.

Proof This is a non-constructive proof of the existence of the required element z.
With the assumption on x and y, let c 2 Fp2 and g.c/ D jjcxCyjj DPn

iD1.cxi C
yi /

pC1 be a polynomial of degree p C 1 in c. We claim that as c ranges over the
elements of Fp2 , the rhs will range over all elements of Fp.

Assume now that there exists some k 2 Fp such that 8c 2 Fp2 ; g.c/ ¤ k.
For each i 2 Fpnfkg, let Si D fc 2 Fp2 I g.c/ D ig. Since the polynomial g has
degree p C 1, g can have at most p C 1 roots in any field. Then jSi j � p C 1, as
the polynomial g.c/ � i can have at most p C 1 roots, and the Si partition the set
Fp2 . Then jFp2 j D p2 � P

i2Fpnfkg jSi j � .p C 1/.p � 1/ D p2 � 1, which is a
contradiction. Hence the result follows. ut
Lemma 3 Let D be a subspace of Fn

p2
and assume thatM is a basis forD \D?h .

Then there exists an orthonormal set B such that M [ B is a basis forD.

Proof The proof given here is a generalization of the proof for the analogous case
presented in [5, Theorem 2]. Let W be a subspace of Fn

p2
such that

D D .D \D?h/˚W; (1)
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and let l D dim.W /. For each 0 � i � l , we can construct an orthonormal set Si
that is a basis for an i -dimensional subspace Ti of W such that

W D Ti ˚ .T ?hi \W /: (2)

The process is iterative. Define S0 WD � and suppose that for some 0 � i < l , the
set Si is an orthonormal basis for Ti such that dim.Ti/ D i and (2) holds. Let x be a
non-zero vector in T ?h\W . Then there exists y 2 T ?h\W such that hx; yi ¤ 0. If
no such y exists, then x 2 D?h , which would contradict (1) because the intersection
of D and D?h is f0g. Hence by Lemma 2, there must exist a z 2 T ?hi \ W such
that jjzjj D 1. Set SiC1 D Si [ fzg. Clearly all the elements in SiC1 are orthogonal
to each other. In addition, jjsjj D 1 for all s 2 SiC1.

Let TiC1 be the subspace spanned by SiC1. As z 62 Ti , we have that dim.TiC1/ D
i C 1. To show that

W D TiC1 ˚ .T ?hiC1 \W /; (3)

we must first show that TiC1 \ T ?hiC1 \ W D 0. Let v 2 TiC1 \ T ?hiC1 \ W . As

v 2 TiC1, we have v D uC cz where u 2 Ti and c 2 Fp2 . Since v 2 T ?hiC1, we have
for each w 2 Ti and each d 2 Fp2 that

0 D huC cz;wC d zi D hu;wi C d hu; zi C chz;wi C cd jjzjj D hu;wi C cd :

We must have c D 0 or else hu;wi C cd would not remain constant as d runs over
the elements of Fp2 . Thus hu;wi D 0 for all w 2 Ti , and hence u 2 T ?hi . As u 2 Ti
and Ti\T ?hi D 0, we obtain that u D 0. Hence v is also 0 and TiC1\T ?hiC1\W D 0.

Next we show that W D TiC1 C .TiC1 \ W /. Let w 2 W . By assumption
W D Ti C .T ?hi \ W /, so there exist vectors x 2 Ti and y 2 T ?hi \ W such
that w D x C y. Now it is shown that W D TiC1 C .T ?hiC1 \ W /. By assumption

W D Ti C .T ?hi

T
W /, so there exist vectors x 2 Ti and y 2 Ti \ W . Clearly

x 2 TiC1 and for any uC d z 2 TiC1 (where u 2 Ti and d 2 Fp2), we have

hy � hy; ziz; uC d zi D hy; ui C d hy; zi � hy; zihz; ui � dhy; zijjzjj
D d hy; zi � d hy; zi D 0: (4)

Thus y 2 TiC1\W , and henceW D TiC1C .TiC1\W /. This completes the proof
that (2) implies (3) assuming that the vector z is chosen as described above. ut
Theorem 4 For an Œn; k�p2 linear code C , let e D n � k � dim.C \ C?h/.
Then there exists a quantum code with parameters ŒŒn C e; 2k � n; d ��p and
d � min.wt.C /;wt.C C C?h/C 1/.
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Proof We start with the observation that the equation x2 C 1 D 0 always has a
solution in Fp2 . This can be proven using the fact that F�

p2
D Fp2 nf0g is a cyclic

group. Let ˇ be a generator of F�
p2

. Then ˇk D �1 for some k, and since .�1/2 D 1,

ˇ2k D 1 and .p2 � 1/j2k, so k is even. Thus, ˇ
k
2 is the required solution.

As defined previously

e D dim.C?h/� dim.C\C?h/ D dim.C C C?h/ � dim.C /:

Let s D dim.C \ C?h/, and G be the matrix

G D
0

@
Ms�n 0s�e

A.n�e�2s/�n 0.n�e�2s/�e
Be�n ˇk=2Ie�e

1

A ; (5)

where the size of the matrix is indicated by the subscripts, and 0 and I denote a zero
matrix and identity matrix, respectively.

For a matrixP , let r.P / denote the set of rows ofP . The matrixG is constructed
such that r.M/ is a basis for C \C?h , r.M/[ r.A/ is a basis for C , r.M/[ r.B/
is a basis for C?h , and r.B/ is an orthonormal set. The existence of such a matrix
B follows from Lemma 3. Note that r.M/ [ r.A/ [ r.B/ is a basis for C C C?h .

Let E be the linear code for which G is a generator matrix. Further, let S denote
the union of the first s rows of G and the last e rows of G, i.e. S is the set of rows
of the matrix

S D
�
Ms�n 0s�e
Be�n ˇk=2Ie�e

�
: (6)

We observe that each row of S is orthogonal to each row ofG because any row from
the first s rows of S represents a vector in C \ C?h , and hence is orthogonal with
all codewords in C C C?h , the code represented by G.

Consider a row from the last e rows in S . This row is orthogonal to the first
n � e � s rows of G because they represent the code C while the matrix B

represents codewords from C?h . These rows of the matrix are orthogonal to each
other because the rows of B are orthogonal and ˇk=2I will contribute 0. Any row
z is self-orthogonal since from the construction jjzjj D 1 and the identity matrix
will contribute �1, giving an inner product of 0. This completes the proof of the
observation. Thus, each vector from S belongs to E?h , and the vectors in S are
linearly independent because

dim.E?h/ D nC e � .n � s/ D e C s D jS j:

Hence S is a basis forE?h . Since S is a subset of G by construction, it follows that
E?h � E .
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Let x be a non-zero vector in E . Then x is a linear combination of rows of
G. Due to the vertical block structure of G, we can write x D .x1jx2/, where
x1 2 F

n
p2

and x2 2 F
e
p2

. If none of the last e rows of G are contained in this

linear combination with a non-zero coefficient, then x1 2 Cnf0g, and so wt.x/ D
wt.x1/ � wt.C /. If some of the last e rows of G are in this linear combination
with a non-zero coefficient, then x1 2 C C C?h and wt.x/ D wt.x1/C wt.x2/ �
wt.CCC?h/C1. ThusE is an ŒnCe; kCe; d �p2 code with d � min.wt.C /;wt.CC
C?h/ C 1/ and E?h � E . The code E is such that E?h 	 E , and thus the result
follows from Proposition 1. ut

Many constructions of quantum codes use self-orthogonal codes [1, 2], which
corresponds to the case when e D 0 in Theorem 4. The results in the next section
are required to construct the quantum codes in subsequent sections. Note that many
of the results in the next section can easily be generalized to constacyclic codes.

3 The Hermitian Dual of Repeated Root Cyclic Codes

Let p be a prime number and C a cyclic code of length n over the finite field Fp2 .

Then C is given by the principal ideal g.x/ in
Fp2 Œx�

hxn � 1i , and so g.x/ is called the

generator polynomial for C . When the length n divides p, C is called a repeated
root cyclic code.

In this section, we obtain the generator polynomial of the Hermitian dual of a
repeated root cyclic code. We also give the structure of the cyclic codes of length
3ps over Fp2 as well as the structure of the dual codes. Our interest in this class
of codes comes from the importance of relaxing the condition .n; p/ D 1, which
allows us to consider codes other than simple root codes.

Let f .x/ D a0 C a1x C : : : C arxr be a polynomial in Fq2 Œx�, and f .x/ D
a0 C a1x C : : : C arx

r . The polynomial inverse of f is denoted by f ?.x/ D
xrf .x�1/ D ar C ar�1xC : : :C a0xr , so then f ?.x/ D ar C ar�1xC : : :C a0xr
is the orthogonal polynomial of f .

The following properties can easily be verified.

Lemma 5 Let f .x/ and g.x/ be polynomials over Fpm . Then

1. Conjugation is additive: f .x/C g.x/ D f .x/C g.x/;
2. Conjugation is multiplicative: f .x/g.x/ D f .x/ g.x/;
3. Polynomial inversion is additive if the polynomials have the same degree:
.f .x/C g.x//? D f .x/? C g.x/?;

4. Polynomial inversion is multiplicative: .f .x/g.x//? D f .x/? g.x/?;
5. Inversion and conjugation commute with each other: .f .x/?/ D .f .x//?; and

6. Both operations are self-inverses: .f .x/?/? D f .x/ and f .x/ D f .x/.
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Lemma 6 Let a.x/ D a0 C a1x C : : :C an�1xn�1 and b.x/ D b0 C b1x C : : :C
bn�1xn�1 be polynomials in

Fp2 Œx�

hxn � 1i . Then a.x/b.x/ D 0 in
Fp2 Œx�

hxn � 1i if and only

if .a0; a1; : : : ; an�1/ is orthogonal to .bn�1; bn�2; : : : ; b0/ and all its cyclic shifts.
That is ha; b?i D 0 ” a.x/b.x/? D 0.

Proof It is well known (see for example [3]), that if a.x/ D a0 C a1x C : : : C
an�1xn�1 and b.x/ D b0 C b1x C : : : C bn�1xn�1 are polynomials in

Fp2 Œx�

hxn � 1i ,

then a.x/b.x/ D 0 in
FŒx�

hxn � 1i if and only if .a0; a1; : : : ; an�1/ is orthogonal to

.bn�1; bn�2; : : : ; b0/ and all its cyclic shifts. Hence by applying this fact to a.x/ and

b.x/, and noting that b.x/ D b.x/, the result follows. ut
We now use Lemma 6 to derive an expression for the Hermitian dual of a cyclic

code. Let S � R and let the annihilator be ann.S/ D fg 2 Rjfg D 0; 8f 2 Sg.
Then ann.S/ is also an ideal of the ring and hence is generated by a polynomial.

Lemma 7 If g.x/ generates the code C , then C?h D ann.g.x/
?
/.

Proof Assume that g.x/ generates the code C . Then each codeword in C has the
form a.x/ D g.x/c.x/. Let a codeword b.x/ lie in the Hermitian dual C?h . Then
by Lemma 6 we have that

a.x/b?.x/ D 0;

and by Lemma 5 this is equivalent to

b.x/.g.x/
?
/ D 0: (7)

Then by (7) we have that for a codeword b.x/, b.x/ 2 C?h ” b.x/ 2
ann.g.x/

?
/, which completes the proof. ut

Lemma 8 Assume that C D hg.x/i is a cyclic code of length n over Fp2 with

generator polynomial g.x/. Define h.x/ D xn � 1
g.x/

. Then we have that C?h D
hh?.x/i.
Proof From Lemma 7 it is known that C?h D ann.g.x/?/. Thus, we must show
that ann.g?.x// D hh?.x/i. One way containment is easy since hh?.x/i �
ann.g?.x//, which is true because h?.x/g?.x/ D .h.x/g.x//? D .xn � 1/? D 0
by Lemma 5. For containment the other way, we observe that since ann.g?.x//

is an ideal of the polynomial ring
Fp2 Œx�

hxn � 1i , it is generated by a polynomial, say

b?.x/. Then b?.x/g?.x/ D xn � 1 D �.xn � 1/? (because b.x/ is the smallest
degree polynomial, this is an equality). Hence b.x/g.x/ D xn � 1, so it must be
that b.x/ D h.x/ since both are unitary polynomials. This completes the proof. ut
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Theorem 9 Let p > 3 be a prime. Then

1. There exists ! 2 Fp2 such that !3 D 1 and the factorization of x3p
s � 1 into

irreducible factors over Fp2 Œx� is

x3p
s � 1 D .x � 1/ps .x � !/ps .x � !2/ps I

2. The cyclic codes of length 3ps are always of the form

h.x � 1/i .x � !/j .x � !2/ki;

where 0 � i; j; k � ps , and the code has p2.3p
s�i�j�k/ codewords; and

3. The Hermitian dual of the codes have the form

C?h D
(
h.x � 1/ps�i .x � !/ps�j .x � !2/ps�ki if p 
 1 mod 3;

h.x � 1/ps�i .x � !2/ps�j .x � !/ps�ki if p 
 2 mod 3:
(8)

Proof

1. Since p is a prime number, p ¤ 0 mod 3, and p2 � 1 D .p C 1/.p � 1/, so
either pC 1 D 0 mod 3 or p � 1 D 0 mod 3. Therefore an element of order 3
exists in Fp2 . Let this element be !, so then .x � 1/.x � !/.x � !2/ D x3 � 1.
In a field of characteristic p, it is known that xn � 1 D .xm � 1/p if n D mp.
Therefore we have that x3p

s � 1 D .x3 � 1/ps D ..x � 1/.x � !/.x � !2//ps :
2. From part 1, we know that the irreducible factors are .x � 1/, .x � !/ and .x �
!2/, each of multiplicity ps . As the generator polynomial divides x3p

s � 1, the
statement follows.

3. We know from Lemma 8 that

C?h D hh?.x/i;

and hence

C?h D h .x � 1/
ps .x � !/ps .x � !2/ps

.x � 1/i .x � !/j .x � !2/k i
?

D h.x � 1/ps�i .x � !/ps�j .x � !2/ps�ki?
D hŒ.x � 1/ps�i �?Œ.x � !/ps�j �?Œ.x � !2/ps�k�?i
D hŒ�.x � 1/ps�i �Œ�!.x � !�1/ps�j �?Œ�!2.x � !�2/ps�k�?i
D hŒ.x � 1/ps�i �Œ.x � !2/ps�j �Œ.x � !/ps�k�i
D hŒ.x � 1/ps�i �Œ.x � !2/ps�j �Œ.x � !/ps�k�i
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D hŒ.x � 1/ps�i �Œ.x � !2p/ps�j �Œ.x � !p/ps�k�i

D
(
h.x � 1/ps�i .x � !2/ps�j .x � !/ps�ki if p 
 1 mod 3;

h.x � 1/ps�i .x � !/ps�j .x � !2/ps�ki if p 
 2 mod 3;
(9)

since .x � 1/? D �x C 1 D �.x � 1/, .x � !/? D �!x C 1 D �!.x � !2/,
and !p D ! if p 
 1 mod 3 and !p D !2 if p 
 2 mod 3, which completes
the proof.

ut

4 Extension to Simple Root Cyclic Codes

This section considers cyclic codes of length n over Fp2 such that .p; n/ D 1. In
this case, a cyclic code can be represented by its defining set Z. If m has order p2

modulo n, then Fp2m is the splitting field of xn � 1 containing a primitive nth root
of unity. Consider a primitive root ˇ. Then fkjg.ˇk/ D 0; 0 � k < ng is a defining
set of C . Note that this set depends on the choice of ˇ. We can make a canonical

choice for ˇ by fixing a primitive element ˛ of Fp2m and letting ˇ D ˛
p2m�1

n . Let
˛ be defined by the PrimitiveElement function in Magma. This will be used in the
code constructions in the next section.

For n and m as defined above and a 2 f0; : : : ; n � 1g, the set faqj mod nj0 �
j < mg is called a cyclotomic coset modulo n. It is well known that a defining set of
a cyclic code of length n is the union of cyclotomic cosets modulo n. Let Zn denote
the set of integers modulo n. Clearly defining sets can be considered as subsets of
Zn. For S 	 Zn, denote S D ZnnfSg and �p2S D f�p2s mod njs 2 Sg.

We now prove the following lemma.

Lemma 10 If C is a linear cyclic code with defining set Z, then dim.C?h/ �
dim.C \ C?h/ D jZ \ �pZj.
Proof Let C be a linear cyclic code of length n, and

Q
k2Z.x�ˇk/ be the generator

polynomial for C . Then from Lemma 8 the generator polynomial for C?h isQ
k2�pZ.x�ˇk/, and the generator polynomial forC \C?h is

Q
k2Z\�pZ.x�ˇk/,

which gives that

dim.C?h/ � dim.C \ C?h/ D n � j � pZj � .n � jZ [ �pZj/
D jZ [�pZj � j � pZj D jZ \�pZj:

ut
Theorem 11 Assume n is divisible by p2 � 1 and let C be an Œn; k�p2 cyclic code
with defining set Z such that .Z \ �pZ/ � T D f nk

p2�1 jk 2 f1; : : : ; p2 � 1gg. If
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e D jZ \ �pZj, then there exists an ŒŒnC e; 2k � nC e; d ��p quantum code with
d � minfwt.C /;wt.Cu/C 1;wt.C C C?h/C 2g where the minimum is taken over
the cyclic codes Cu with defining set Znfug for each u 2 Z \�pZ.

Proof The proof requires a modification to the proof of Theorem 4, in particular the
set of orthonormal vectors used is changed. First, observe that each of the elements
in T is a cyclotomic coset and contains only one element. Let q D p2 � 1, n D
.p2 � 1/l D ql , and ! be a .p2 � 1/-th root of unity. Consider the polynomials

bt .x/ D xn � 1
x � !t D

l�1X

iD0



xqiCq�1 C !txqiCq�2 C : : :C !.q�1/t xqi � :

For convenience, we let fbi ji 2 0; 1; : : : ; lg also denote the corresponding
codewords. This is an orthonormal set because

hbu; bvi D q
l�1X

iD0
.!i.uCvp// D q

X
i D 0l�1.!i.u�v// D

(
0 u ¤ v

ql u D v
:

To remove the ql factor, we can multiply each element by a constant. Thus, to add
the rows for B to the matrix, we add U D fbt j tnq 2 Z \�pZg.

To prove the claim regarding the distance, we have three cases: no row from B is
a linear combination, exactly one row from U is a linear combination with a non-
zero coefficient, and at least two rows are a combination. The proof of the first and
the last cases is the same as in the proof of Theorem 4. For the second case, let bt be
the row with non-zero coefficient. Then the code generated would be span.C; bt/,
which is precisely the cyclic code with defining set Znf tn

q�1 g. This completes the
proof. ut

Appendix: Code Construction Examples

In this appendix, comprehensive tables of codes generated using the results in the
paper are presented. Table 1 presents quantum codes obtained using Theorem 4.
Many of these codes have parameters better than the best known binary quantum
codes. Table 2 presents the parameters of quantum codes obtained from repeated
root cyclic codes using Theorem 9. These are codes of length 3ps over fields of
size p2.
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Table 1 Codes obtained using Theorem 4 and the best known binary QECCs

New code Generator polynomial

Best known
binary
QECC

ŒŒ33; 31; 2��3 x13C ˛5x12C ˛7x11C ˛2x10C 2x9C 2x8C ˛3x7C ˛6x6C
2x5 C ˛3x4 C ˛3x3 C ˛6x2C ˛2

ŒŒ33; 31; 1��2

ŒŒ35; 33; 2��3 x C 1 ŒŒ35; 33; 1��2

ŒŒ39; 37; 2��3 x C 2 ŒŒ39; 37; 1��2

ŒŒ40; 26; 5��3 x7 C ˛x6C ˛x5 C ˛6x4C x3 C ˛7x2C ˛5x C ˛ ŒŒ40; 26; 4��2

ŒŒ40; 24; 6��3 x8 C ˛3x7C ˛x6 C ˛7x5C 2x4 C x3C ˛2x2 C ˛x C ˛2 ŒŒ40; 24; 5��2

ŒŒ41; 39; 2��3 x C 1 ŒŒ41; 39; 1��2

ŒŒ41; 9; 11��3 x16 C ˛5x15 C ˛5x14 C ˛x13C ˛6x12C ˛2x11C 2x9 C
˛7x7 C 2x6 C ˛3x5 C 2x4 C ˛6x3 C ˛7x2C ˛7

ŒŒ41; 9; 8��2

ŒŒ41; 19; 8��3 x11 C ˛x10 C ˛x9C ˛5x8 C 2x7C ˛3x6 C ˛2x5C ˛3x4 C
x2 C ˛2xC 2

ŒŒ41; 19; 6��2

ŒŒ40; 20; 7��3 x10 C ˛6x9 C ˛7x6C ˛3x5 C 2x4C ˛3x3 C ˛x C ˛2 ŒŒ40; 20; 6��2

ŒŒ41; 25; 6��3 x8 C ˛6x7C ˛7x6 C x4 C ˛5x3C ˛3x2 C 2x C ˛7 ŒŒ41; 25; 4��2

ŒŒ40; 10; 10��3 x15 C ˛6x14 C x13 C ˛5x12C ˛2x11C x10C ˛3x9C ˛5x8 C
x7 C 2x6 C ˛7x5 C ˛7x4C x3 C ˛x2C ˛5x C ˛5

ŒŒ40; 10; 8��2

ŒŒ40; 16; 8��3 x12 C ˛3x11 C ˛3x10 C x9C ˛5x8 C ˛5x7 C ˛5x6C ˛5x5 C
2x4 C x3 C ˛6x C ˛2

ŒŒ40; 16; 6��2

ŒŒ41; 13; 9��3 x14 C 2x13 C ˛x12C 2x10 C ˛2x9 C x8C ˛5x7 C ˛5x6C
x5 C ˛3x4C ˛6x3 C 2x2 C ˛3x C ˛5

ŒŒ41; 13; 7��2

ŒŒ41; 21; 7��3 x10 C ˛7x9 C ˛6x7C ˛6x6 C 2x5C ˛7x4 C x3C ˛3x C ˛5 ŒŒ41; 21; 6��2

ŒŒ41; 27; 5��3 x7 C 2x6 C ˛3x5 C ˛7x4C ˛7x3 C 2x2C ˛3x C ˛2 ŒŒ41; 27; 4��2

ŒŒ33; 31; 2��3 x C 1 ŒŒ33; 31; 1��2

ŒŒ40; 26; 5��3 x7 C ˛x6C ˛x5 C ˛6x4C x3 C ˛7x2C ˛5x C ˛ ŒŒ40; 26; 4��2

ŒŒ40; 24; 6��3 x8 C ˛3x7C ˛x6 C ˛7x5C 2x4 C x3C ˛2x2 C ˛x C ˛2 ŒŒ40; 24; 5��2

ŒŒ41; 39; 2��3 x C 1 ŒŒ41; 39; 1��2

ŒŒ41; 9; 11��3 x16 C ˛5x15 C ˛5x14 C ˛x13C ˛6x12C ˛2x11C 2x9 C
˛7x7 C 2x6 C ˛3x5 C 2x4 C ˛6x3 C ˛7x2C ˛7

ŒŒ41; 9; 8��2

ŒŒ41; 19; 8��3 x11 C ˛x10 C ˛x9C ˛5x8 C 2x7C ˛3x6 C ˛2x5C ˛3x4 C
x2 C ˛2xC 2

ŒŒ41; 19; 6��2

ŒŒ40; 20; 7��3 x10 C ˛6x9 C ˛7x6C ˛3x5 C 2x4C ˛3x3 C ˛x C ˛2 ŒŒ40; 20; 6��2

ŒŒ41; 25; 6��3 x8 C ˛6x7C ˛7x6 C x4 C ˛5x3C ˛3x2 C 2x C ˛7 ŒŒ41; 25; 4��2

ŒŒ40; 10; 10��3 x15 C ˛6x14 C x13 C ˛5x12C ˛2x11C x10C ˛3x9C ˛5x8 C
x7 C 2x6 C ˛7x5 C ˛7x4C x3 C ˛x2C ˛5x C ˛5

ŒŒ40; 10; 8��2

ŒŒ40; 16; 8��3 x12 C ˛3x11 C ˛3x10 C x9C ˛5x8 C ˛5x7 C ˛5x6C ˛5x5 C
2x4 C x3 C ˛6x C ˛2

ŒŒ40; 16; 6��2

ŒŒ41; 13; 9��3 x14 C 2x13 C ˛x12C 2x10 C ˛2x9 C x8C ˛5x7 C ˛5x6C
x5 C ˛3x4C ˛6x3 C 2x2 C ˛3x C ˛5

ŒŒ41; 13; 7��2

ŒŒ41; 21; 7��3 x10 C ˛7x9 C ˛6x7C ˛6x6 C 2x5C ˛7x4 C x3C ˛3x C ˛5 ŒŒ41; 21; 6��2

ŒŒ41; 27; 5��3 x7 C 2x6 C ˛3x5 C ˛7x4C ˛7x3 C 2x2C ˛3x C ˛2 ŒŒ41; 27; 4��2

(continued)
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Table 1 (continued)

New code Generator polynomial

Best known
binary
QECC

ŒŒ41; 9; 11��5 x16 C ˛x15 C ˛23x14 C ˛3x13 C 4x12 C ˛15x11C 3x10 C
˛10x8 C ˛3x7 C ˛14x5 C ˛8x4C ˛19x3 C 4x2 C ˛17x C ˛8

ŒŒ41; 9; 8��2

ŒŒ40; 2; 12��5 x19 C ˛20x18C ˛22x17C ˛10x16C ˛3x15C ˛20x14 C
˛21x13C ˛22x12C ˛20x11 C ˛8x10C 3x9 C ˛22x8 C 4x7 C
˛11x6 C ˛23x5 C ˛22x4 C ˛8x3 C ˛5x2 C ˛9x C ˛4

ŒŒ40; 2; 10��2

ŒŒ41; 5; 12��5 x18C ˛15x17C ˛19x16C ˛23x15C ˛13x14C ˛5x13C ˛7x12C
x11 C ˛17x10C ˛3x9 C ˛19x8 C ˛19x7 C ˛5x6C ˛11x5C
˛8x4 C ˛x3C ˛10x2 C ˛5x C 1

ŒŒ41; 5; 9��2

ŒŒ40; 6; 11��5 x17 C ˛10x16C ˛4x15C ˛22x14C ˛9x13C ˛ � x12C 3x11C
4x10 C ˛5x9 C ˛16x8 C ˛19x7 C ˛22x6 C ˛9x5C ˛4x4 C
4x3 C ˛17x2 C ˛16x C 4

ŒŒ40; 6; 8��2

ŒŒ39; 15; 9��5 x12 C 2x11 C ˛5x10C ˛16x9C ˛3x8 C ˛3x7 C ˛13x6 C
˛15x5 C ˛22x4 C x3 C ˛9x2C 2x C ˛16

ŒŒ39; 15; 7��2

ŒŒ39; 23; 5��5 x8C˛21x7C3x6C˛x5C˛16x4C˛17x3C˛2x2C˛21xC˛16 ŒŒ39; 23; 4��2

ŒŒ40; 22; 6��5 x9 C ˛7x8C ˛8x7 C ˛2x6 C ˛21x5C ˛9x4 C ˛14x3 C
˛20x2 C ˛19x C 4

ŒŒ40; 22; 5��2

ŒŒ41; 21; 7��5 x10 C ˛3x9 C x8C ˛10x7 C ˛2x6 C ˛22x5 C ˛23x4 C ˛x3 C
˛22x2 C ˛15x C 1

ŒŒ41; 21; 6��2

ŒŒ39; 11; 10��5 x14 C ˛15x12C ˛21x11C ˛16x10C ˛16x9 C 4x8 C ˛3x7 C
4x5 C 4x4 C ˛22x3 C ˛19x2 C ˛9xC ˛8

ŒŒ39; 11; 8��2

ŒŒ39; 19; 7��5 x10 C ˛14x8 C ˛14x7 C ˛4x6C ˛x5 C 4x4 C ˛8x3C ˛3x2 C
˛14x C ˛8

ŒŒ39; 19; 5��2

ŒŒ40; 18; 8��5 x11 C x10 C ˛13x9 C ˛17x8 C 2x7 C ˛14x6 C ˛17x5 C 3x4C
˛15x3 C ˛21x2 C ˛23x C 4

ŒŒ40; 18; 6��2

ŒŒ31; 13; 6��5 x9 C 3x8 C x6 C x5C 4x4 C x3 C 3x2 C x C 4 ŒŒ31; 13; 5��2

ŒŒ32; 0; 11��5 x16 C 3x15 C 2x14C x13 C x11 C 2x10 C x9C x8 C 4x7 C
x6 C x5C 3x4 C 2x3 C xC 1

ŒŒ32; 0; 10��2

ŒŒ31; 7; 8��5 x12C4x11C4x10C2x9C4x8C2x7Cx6C3x5Cx4Cx3C2xC1 ŒŒ31; 7; 7��2

ŒŒ32; 12; 7��5 x10 C 3x7 C x6 C x5 C x4 C 3x2 C 4x C 1 ŒŒ32; 12; 6��2

ŒŒ31; 25; 3��5 x3 C x2C 3x C 4 ŒŒ31; 25; 2��2

ŒŒ32; 18; 5��5 x7 C 3x5 C 3x3 C 4x2 C 4 ŒŒ32; 18; 4��2

ŒŒ32; 6; 9��5 x13C2x11Cx10Cx9C4x8C3x6C2x5C4x3C4x2C4xC4 ŒŒ32; 6; 8��2

ŒŒ33; 31; 2��5 x C 4 ŒŒ33; 31; 1��2

ŒŒ35; 33; 2��5 x C 4 ŒŒ35; 33; 1��2

ŒŒ37; 35; 2��5 x C ˛16 ŒŒ37; 35; 1��2

ŒŒ37; 35; 2��5 x C ˛16 ŒŒ37; 35; 1��2

ŒŒ25; 23; 2��5 x C ˛16 ŒŒ25; 23; 1��2

ŒŒ24; 20; 3��5 x2 C ˛8xC ˛17 ŒŒ24; 20; 2��2

ŒŒ25; 21; 3��5 x2 C ˛13x C ˛17 ŒŒ25; 21; 2��2

ŒŒ24; 18; 4��5 x3 C ˛10x2 C ˛16x C 3 ŒŒ24; 18; 2��2

ŒŒ25; 19; 4��5 x3 C ˛19x2 C ˛10x C ˛21 ŒŒ25; 19; 2��2

ŒŒ25; 17; 5��5 x4 C ˛7x3C 4x2 C ˛16x C 3 ŒŒ25; 17; 3��2

(continued)
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Table 1 (continued)

New code Generator polynomial

Best known
binary
QECC

ŒŒ33; 31; 2��5 x C 4 ŒŒ33; 31; 1��2

ŒŒ32; 0; 13��7 x16C 2x15C 3x14C 4x12C x11C 4x10C x9C 5x8C 4x7C
6x6 C 5x5 C 2x4 C 3x3 C 3x2 C 4x C 1

ŒŒ32; 0; 10��2

ŒŒ31; 1; 12��7 x15 C 3x14 C 6x13C 6x12 C 3x11C 4x10 C x9C 2x8 C
4x6 C 3x5 C x4 C 3x3 C 6x2 C 2x C 6

ŒŒ31; 1; 11��2

ŒŒ33; 21; 5��7 x6 C ˛42x5 C ˛33x4 C ˛20x3C ˛30x2C ˛6x C ˛15 ŒŒ33; 21; 4��2

ŒŒ33; 31; 2��7 x C 6 ŒŒ33; 31; 1��2

Table 2 Parameters of the
quantum codes obtained from
repeated root cyclic codes
using Theorem 9

Code Code Code

ŒŒ15; 9; 2��25 ŒŒ15; 7; 3��25 ŒŒ16; 6; 4��25

ŒŒ75; 69; 2��25 ŒŒ75; 59; 3��25 ŒŒ75; 49; 4��25

ŒŒ82; 26; 5��25

ŒŒ375; 369; 2��25 ŒŒ375; 319; 3��25 ŒŒ375; 269; 4��25

ŒŒ21; 15; 2��49 ŒŒ21; 13; 3��49 ŒŒ21; 11; 4��49

ŒŒ21; 7; 5��49 ŒŒ22; 8; 5��49 ŒŒ21; 5; 6��49

ŒŒ23; 1; 7��49

ŒŒ147; 141; 2��49 ŒŒ147; 127; 3��49 ŒŒ147; 113; 4��49

ŒŒ147; 85; 5��49 ŒŒ147; 71; 6��49
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On the Fan Associated to a Linear Code

Natalia Dück, Irene Márquez-Corbella, and Edgar Martínez-Moro

Abstract We will show how one can compute all reduced Gröbner bases with
respect to a degree compatible ordering for code ideals – even though these binomial
ideals are not toric. To this end, the correspondence of linear codes and binomial
ideals will be briefly described as well as their resemblance to toric ideals. Finally,
we will hint at applications of the degree compatible Gröbner fan to the code
equivalence problem.

Keywords Linear code • Gröbner basis • Gröbner fan

1 Introduction

The Gröbner fan of an ideal in the commutative polynomial ring consists of
polyhedral cones indexing the different leading ideals and is thus the geometric
collection of all reduced Gröbner bases for this ideal. One application of the Gröbner
fan is the so-called Gröbner walk which is the conversion of Gröbner bases.

With the software system TiGERS in [5] (Toric Gröbner bases Enumeration by
Reverse Search) an efficient alternative for computing the Gröbner fan has been
provided for the special case of toric ideals. Indeed, by identifying a reverse search
tree on the cones of the Gröbner fan, a memory-less combinatorial Gröbner walk
can be established that furthermore, requires no cost weight vectors.

Linear codes, on the other hand, can be linked to this whole subject by associating
to each linear code a binomial ideal that encodes the information about the code
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in the exponents. This correspondence proved to be very beneficial as it provided
new approaches to several well-known problems in coding theory. Almost all
applications, however, require the computation of a degree compatible Gröbner
basis.

In this work, it will be shown how methods from the software system TiGERS
developed by Rekha R. Thomas (see [5]) can be modified in order to compute all
reduced Gröbner bases with respect to a degree compatible ordering for code ideals
– even though these binomial ideals are not toric. To this end, the correspondence
of linear codes and binomial ideals will be briefly described as well as their
resemblance to toric ideals. Finally, we will hint at applications of the degree
compatible Gröbner fan to the code equivalence problem.

2 The Degree Compatible Gröbner Fan

In this work we shall use the notion of Gröbner basis and the ideal associated
to a linear code. Due to the restriction of the space we will not define what a
Gröbner basis is, the reader can find a good introductory text for example in [3].
Also for simplicity we will restrict ourselves to binary linear codes even if all the
computation could be done in general (see [7] for the ideal associated to a q-ary
linear code).

Let KŒx� be the polynomial ring with variables x D x1; : : : ; xn and coefficients
an arbitrary field K. We will define the ideal associated to a binary linear code C of
length n as

I D I.C / D hfx�a � x�b j a � b 2 C gi � KŒx�;

where the operation � means substitute the N0; N1 elements in the binary field F2 by
the corresponding 0; 1 in the set of integers Z. In this extended abstract the � will
be omitted if no confusion arises to simplify the notation.

This binomial ideal has been proved valuable for several applications and
captures the combinatorial properties of the code (see [6] and the references therein).
Note that for those applicationsK can be the binary field, which is the usual election,
and in this case we must explicitly mark which terms are the leading terms.

In this paper it shall be assumed that the leading term of a binomial is the one
with coefficient 1 and the non leading term has coefficient�1. Abusing the notation
if K is the binary field, since 1 
 �1, this writing of the binomials will be assumed
as a formal pointer (in [5] the leading terms were underlined).

Note also that the explicit knowledge of the underlying term order is not
necessary. In fact, in all the following computations only the leading term of each
binomial has to be known.
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In the rest of the paper we will use the following notation and concepts from
[5]:

• G�.I / is the reduced Gröbner basis for the ideal I w.r.t. the monomial order �,
• C�.I / is the Gröbner cone corresponding to G�.I /.
• T�.I / is the reverse search tree for the ideal I as constructed in [5, Definition 2.5]

Note that in [5] the complete Gröbner fan is considered, i.e., the whole Rn, since
the considered toric ideals are homogeneous w.r.t. a certain grading. This is not the
case for our code ideal and so here the Gröbner fan is considered only in R

nC.

Proposition 1 ([4]) Let � be a term order and v 2 C�.I /. For any u 2 R
n holds

ltu.I / D ltv.I / ” ltu.g/ D ltv.g/ 8 g 2 G�.I /;

where ltu stands for the leading (initial) term (ideal) induced by the order � given
by the weight vector u.

Note that it is a well known fact that a reduced Gröbner basis for an ideal I
w.r.t. a certain monomial order is degree compatible if and only if the corresponding
Gröbner cone contains the all-one vector 1. From a coding-theory point of view,
degree compatible orderings are the ones one must analyze since the weight of a
vector is translated on the degree of a monomial. In this sense degree compatible
orderings provide us a test set for the code and therefore a gradient descent decoding
algorithm, see [2]. The following proposition characterizes when there is a unique
degree compatible Gröbner basis.

Proposition 2 Let G be a reduced Gröbner basis for I.C / w.r.t. a certain degree
compatible ordering�. The Gröbner basis G is the only reduced degree compatible
Gröbner basis for I.C / if and only if

deg.xa/ > deg.xb/ for all xa � xb 2 G : (1)

Proof Assume that (1) holds but there is another Gröbner basis G 0 for I.C / w.r.t.
another degree compatible order �0. Since �0 is degree compatible, lt�0.g/ D
lt�.g/ for all g 2 G . And by Proposition 1 we see that lt�0.I.C // D lt�.I.C //
and thus, G D G 0.

Or equivalently, we can argue that the all-one vector is in the interior of the cone
C�.I.C // and so clearly it cannot be contained in another cone in the Gröbner fan.

In order to show the other direction assume that (1) does not hold, i.e., there
is at least one binomial xa � xb in G such that deg.xa/ D deg.xb/. Then
1 … Int.C�.I.C /// and in particular, there must be a neighbouring cone that also
contains 1 and thus corresponds to a degree compatible ordering. ut

In terms of the Gröbner fan the above proposition can also be expressed as
follows: A reduced Gröbner basis G w.r.t. a degree compatible ordering is the only
degree compatible Gröbner basis if and only if the all-one vector 1 lies in the interior
of the Gröbner cone of G .
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We say that two binary linear codes C1 and C2 are permutation equivalent
provided there is a permutation of coordinates which sends C1 to C2. In the same
fashion two binomial degree compatible Gröbner bases are permutation equivalent
if there is a permutation of the variables that transforms one into the other. There
is a close relationship between code equivalence and the equivalence of the degree
compatible Gröbner bases associated to their code ideals stated as follows: If the
two degree compatible Gröbner bases are permutation equivalent so are the codes,
unfortunately the converse is not true, given two permutation equivalent codes not
all the degree compatible Gröbner bases are permutation equivalent (only two of
them should be). The reader can see [1] for a proof of this discussion.

Indeed if one has only a unique degree compatible Gröbner basis for a given code
(Proposition 2) checking permutation equivalence is reduced to checking if the two
unique bases are permutation equivalent using the techniques in [1]. If this is not the
case one needs to compute the whole set of degree compatible Gröbner bases which
we call the degree compatible Gröbner fan. We will tackle this task in the following
section.

3 Adapting the TiGERS Strategy

We can adapt the TiGERS Algorithm in [5] for computing the degree compatible
Gröbner fan for I.C / as follows: We start with a degree compatible Gröbner
basis (note that this basis can be computed by the algorithm stated in [1]). By
Proposition 2 we can determine whether it is the only degree compatible Gröbner
basis or not. If not, we flip only those facet binomials where both terms have
the same degree and recompute the Gröbner basis. Unfortunately due the lack of
space these steps can not be detailed in this extended abstract but they are showed
in [5]. Lemma 3 below guarantees that we will always find at least one facet
binomial where both terms have the same degree. Additionally, we can employ the
reverse search tree defined in [5] for traversing the Gröbner cones that are degree
compatible.

Lemma 3 Let G be the reduced Gröbner basis for I.C / w.r.t. a degree compatible
ordering. If G is not the only degree compatible Gröbner basis, that is 1 …
Int.C.I.C ///, then among all the facet binomials of G is at least one binomial
x˛ � xˇ such that deg.x˛/ D deg.xˇ/.

Proof Let G D ˚
x˛i � xˇi j 1 � i � j C k
 and order the binomials such that

deg.x˛i / > deg.xˇi / for 1 � i � j and deg.x˛i / D deg.xˇi / for 1Cj � i � jCk.
Assume that all facet binomials are such that the degree of the leading term is

strictly greater than the degree of the other term. Then the cone

C 0 D ˚u 2 R
nC j ˛i � u � ˇi � u for all 1 � i � j 
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equals the Gröbner cone C.I.C // of the Gröbner basis G . But then 1 2 Int.C 0/ D
Int.C.I.C ///, which is a contradiction. ut
Lemma 4 Let Gnew be the reduced Gröbner basis obtained from Gold by flipping the
facet binomial x˛ � xˇ. Any new leading terms in Gnew, i.e., leading terms of Gnew

that do not appear in Gold, are divisible by x˛ .

Proof Any new leading terms arise from the Gröbner basis computation of the
quasi-monomial ideal

T WD ˚xˇ � x˛

 [ T 0; T 0 WD ˚x˛i j x˛i � xˇi 2 Gold




that consists of the designated flipping binomial with changed leading term and all
the other leading terms in Gold. To be more precise, a new leading term arises from
an S-polynomial of the form

S


xˇ � x˛; x˛i

� D x�x˛; where x� D lcm.xˇ; x˛i /=xˇ;

which is not being reduced to zero by the elements in T . When computing a Gröbner
basis, then this S-polynomial is either reduced to zero or its remainder on division
by the set T is added to the Gröbner basis of T . We distinguish the following
situations:

1. Neither xˇ nor any monomial in T 0 divides x�x˛: The monomial x�x˛ cannot be
further reduced and thus is being attached to the Gröbner basis of T .

2. A monomial in T 0 divides x�x˛: The monomial x�x˛ is being reduced to zero
and thus, this S-polynomial results in no new term.

3. The monomial xˇ divides x�x˛: Since x˛ and xˇ have disjoint support (see [2]),
xˇ has to divide x� , the monomial x�x˛ is reduced to

x�x˛ � x˛
x�

xˇ


xˇ � x˛

� D x�

xˇ
.x˛/2 :

So, whenever the S-polynomial cannot be reduced to zero, we obtain a monomial
which is divisible by x˛. ut
Proposition 5 T�.I.C // is an acyclic directed graph with a unique sink that we
will call the reverse search tree.

Proof We prove that T�.I.C // is a tree by showing that there is no cycle in this
construction. We show this by contradiction. For the other claims see the proof of [5,
Theorem 2.6].

Assume that there is a cycle in the reverse search tree, say G1 �! G2 �!
: : : �! G` �! G1; where GiC1 is obtained from Gi by flipping along x˛i � xˇi .
Then Gi contains this binomial with leading term x˛i and GiC1 with leading term
xˇi . Inspecting the cycle we see that the binomial x˛1 � xˇ1 lies in G1 with leading
term x˛1 and appears in G2 with leading term xˇ1 . Then no binomial in G2 has the
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leading term x˛1 . However, as we arrive at G1 after ` flipping steps, we conclude that
x˛1�xˇ1 must be inserted at some successive flipping step. Assume that this happens
in the i1th flipping process, 1 < i1 � `. Then by Lemma 4, x˛1 is divisible by x˛i1 .
And since G1 is a Gröbner basis this implies that x˛i1 cannot be the leading term of
any element in G1; it must have been inserted as a new leading term during some
preceding flipping step, say i2 < i1. By the same argument the monomial x˛i1 is
divisible by x˛i2 and then x˛i2 cannot appear as the leading term of any element in G1.
Continuing this process we get a decreasing sequence of indices i1 > i2 > i3 > : : :
which eventually must terminate, say after k steps, i.e., ik D 1. Then x˛ik D x˛1

and from the divisibility relations x˛ik j x˛ik�1 j : : : j x˛i2 j x˛i1 j x˛1 we actually
obtain equality of all leading terms of the flipping binomials. However, this is a
contradiction. ut
The following proposition states the discussion at the end of Sect. 2.

Proposition 6 Two linear codes C1 and C2 are permutation-equivalent if and
only if they have the same degree compatible Gröbner fan structure, i.e., there is
permutation 	 2 Sn such that 	 .Gfan.C1// D Gfan.C2/; where 	 .Gfan.C1//
means permuting the variables in each of the degree compatible Gröbner basis
within the fan.

Example 7 Consider two binary Œ6; 3� codes C1 and C2 with respective parity check
matrices

H1 D
0

@
1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

1

A ; H2 D
0

@
1 1 1 1 1 1

0 0 0 1 0 1

0 1 0 1 0 0

1

A

In [1, Example 2 and 5] it is shown that these codes are not permutation-equivalent.
Here, we show how the degree compatible Gröbner fans of both codes can be
employed to show their non-equivalence. The degree compatible Gröbner fan for
C1 consists of 8 Gröbner basis which are all of cardinality 6 (see Example 8). The
Gröbner basis for C2 w.r.t. the grevlex basis is given by

fx3 � x5; x1 � x5; x4x5 � x2x6; x2x5 � x4x6; x2x4 � x5x6g [
˚
x2i � 1 j i D 2; 4; 5; 6




and consists of nine elements. Thus, we can already conclude that these two codes
cannot be permutation-equivalent.

Example 8 The reverse search tree T�.I.C // for the binary Œ6; 3� code C1 from the
previous example with � being pure lex is given in Fig. 1.
And the Gröbner bases are (the flipping binomials are underlined)
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Fig. 1 The reverse search tree for C1

G1 D
˚
x1 � x2; x3 � x4; x5 � x6; x22 � 1; x24 � 1; x26 � 1




G2 D
˚
x1 � x2; x4 � x3; x5 � x6; x22 � 1; x23 � 1; x26 � 1




G3 D
˚
x2 � x1; x4 � x3; x5 � x6; x21 � 1; x23 � 1; x26 � 1




G4 D
˚
x1 � x2; x3 � x4; x6 � x5; x22 � 1; x24 � 1; x25 � 1




G5 D
˚
x1 � x2; x4 � x3; x6 � x5; x22 � 1; x23 � 1; x25 � 1




G6 D
˚
x2 � x1; x4 � x3; x6 � x5; x21 � 1; x23 � 1; x25 � 1




G7 D
˚
x2 � x1; x3 � x4; x6 � x5; x21 � 1; x24 � 1; x25 � 1




G8 D
˚
x2 � x1; x3 � x4; x5 � x6; x21 � 1; x24 � 1; x26 � 1



:

4 Conclusions

We have shown how the computation of the degree compatible Gröbner fan of a code
is useful for determining the code equivalence problem. Anyway one can not forget
that this is an NP-problem and therefore the Gröbner basis computation comprises a
hard step. Further research in the topic points toward analyzing heuristic techniques
for eliminating the need of transverse the whole fan or at least for trying to deduce
the answer from partial information about the initial Gröbner basis.
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Lattice Encoding of Cyclic Codes
from Skew-Polynomial Rings

Jérôme Ducoat and Frédérique Oggier

Abstract We propose a construction of lattices from cyclic codes from skew-
polynomial rings. This construction may be seen as a variation of Construction A
of lattices from linear codes, obtained from quotients of orders in cyclic division
algebras. An application is coset encoding of wiretap space-time codes.

Keywords Lattices • Cyclic division algebras • Skew-polynomials • Cyclic
codes

1 Introduction

Constructions of lattices from linear codes over finite fields (or rings) have been
classically studied, starting from the so-called Construction A [4, 6] of lattices
from binary linear codes. Let � W ZN 7! F

N
2 be the map of reduction modulo

2 componentwise. Let C 	 F
N
2 be an .N; k/ linear binary code. Then ��1.C /

is a lattice. One possible way of generalizing this construction is by considering
cyclotomic fields [5]. Let Q.�p/ be a cyclotomic field, with ring of integers ZŒ�p�,
where �p is a primitive pth root of unity, p a prime. Let � W ZŒ�p�N 7! F

N
p be

this time the reduction componentwise modulo the prime ideal p D .1 � �p/. Then
��1.C / is a lattice, when C is an .N; k/ linear code over Fp. In particular, p D 2

yields the binary Construction A. Similar constructions from number fields with a
totally ramified prime and from totally real cyclic number fields with a completely
split prime have been proposed respectively in [7] and [12]. Note that the latter
construction has also been generalized to cyclic division algebras.

Let K=F be a cyclic extension of number fields, with respective maximal orders
OK and OF . We are proposing a variation of the above Constructions A, where
lattices are obtained from quotients of the natural order � of a cyclic division
algebra, as explained in Sect. 2, instead of quotients of the maximal order of number
fields. The resulting quotient�=p� of the natural order of a cyclic division algebra
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by a two-sided ideal p�, where p is a prime ideal of OF inert in K=F , turns out
to be isomorphic to a ring of skew-polynomials. Denote this isomorphism by  .
Let C be a cyclic code constructed over the ring of skew-polynomials (see Sect. 3)
and let � denote the compositum of the canonical projection � ! �=p� with
 . Then ��1.C / is a lattice. Application of this construction to space-time coding,
more specifically to coset encoding, is discussed in Sect. 4.

2 Quotients of Cyclic Division Algebras

LetK=F be a number field extension of degree n with cyclic Galois group h	i, and
respective rings of integers OK and OF . Consider the cyclic algebra

K ˚Ke˚ � � �Ken�1

where en D u 2 F , and ek D 	.k/e for k 2 K . We assume that ui , i D 0; : : : ; n�1,
are not norms in K=F so that the algebra is division. Let � be its natural order

� D OK ˚ OKe ˚ � � � ˚ OKe
n�1:

Let p be a prime ideal of OF so that p� is a two-sided ideal of �. Assume that p
is inert in K=F , so that pOK is a prime ideal of OK . Then �=p� is an OK=pOK-
algebra and from [9], we have the following isomorphism:

�=p� ' .OK=pOK/˚ .OK=pOK/e ˚ � � � ˚ .OK=pOK/en�1:

Note that since pOK is a prime ideal of OK , the finite ring OK=pOK is an integral
domain, so is a finite field that we denote by Fq . Here, q D pnf , where p is the
prime number lying below p and f is the inertial degree of p above p.

The algebra �=p� can alternatively be described in terms of skew-polynomial
with coefficients in OK=pOK D Fq .

Definition 1 Given a ringRwith a group h	i acting on it, the skew-polynomial ring
SŒxI 	� is the set of polynomials s0 C s1x C : : : C xnxn, si 2 S for i D 0; : : : ; n,
with xs D 	.x/s for all s 2 S .

Lemma 2 There is an Fq-algebra isomorphism between�=p� and the quotient of
FqŒxI 	� by the two-sided ideal generated by xn � u.

Proof We define the map

' W FqŒxI 	�! �=p�

f.x/ 7! f .e/:

Using the isomorphism given above and in [9], it is easily seen that ' is a surjective
Fq-algebra homomorphism. Moreover, the kernel of ' is the two-sided ideal of
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FqŒxI 	� generated by xn � u. Indeed, it is easily seen that xn � u lies in ker.'/.
Conversely, let f .x/ 2 ker.'/. We write

f .x/ D
mX

iD0
si x

i

for some si 2 Fq , i D 0; : : :; m. Then f .e/ D 0 in�=p�. Since the ring FqŒxI 	� is
left Euclidean [10], there exist some polynomials g.x/ and h.x/ such that

f .x/ D g.x/.xn � u/C h.x/

where h.x/ has degree �n � 1. Hence, f .e/ D 0 is equivalent to h.e/ D 0. Yet,
0 D h.e/ D r0 C r1e C � � � C rn�1en�1 in �=p� ' .OK=pOK/˚ .OK=pOK/e ˚
� � � ˚ .OK=pOK/en�1: Therefore, r0 D r1 D � � � D rn�1 D 0 and h.x/ D 0. We
conclude that f .x/ is a (left) multiple of xn � u. Consequently, ker.'/ D .xn � u/
and we get the desired isomorphism. ut

Denote by  the inverse isomorphism of the one given in Lemma 2:

 W �=p� Š FqŒxI 	�=.xn � u/:

Note that since u 2 F , xn � u belongs to the center of FqŒxI 	� and the ideal
.xn � u/ is two-sided.

Let I be a left ideal of�. Assume that I \OF � p. Then I =p� is an ideal of
�=p�. In the sequel, we will study the left ideal  .I =p�/ of FqŒxI 	�=.xn � u/.

3 Polynomial Codes and a Variation of Construction A

Definition 3 ([3]) Let f 2 FqŒxI 	� be a polynomial of degree n. If .f / is a two-
sided ideal of FqŒxI 	�, then a 	-code consists of codewords a D .a0; a1; : : : ; an�1/
that are coefficient tuples of elements a.x/ D a0 C a1x C : : :C an�1xn�1 of a left
ideal of FqŒxI 	�=.f /. The elements a.x/ are left multiples of a right divisor g of
f . If f lies in the center of FqŒxI 	�, then the 	-code corresponding to the left ideal
.g/=.f / is called a central 	-code.

Using the isomorphism  defined in Sect. 2, for every left ideal I of �, we
consider the 	-code C D  .I =p�/ over Fq .

We set the map:

� W �!  .�=p�/ D FqŒxI 	�=.xn � u/;

compositum of the canonical projection�! �=p� with  . We then set

L D ��1.C / D I :
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Then L is a lattice, that is a Z-module of rank n2ŒF W Q� since OK is a Z-module of
rank nŒF W Q�.

From this point of view, the above construction may be interpreted as a variation
of Construction A [4], which consists of obtaining a lattice from a linear code
over a finite field (ring), as shortly described in the introduction. This is also a
generalization of the lattice construction of [8], defined over number fields.

Example 4 Let K D Q.i/ and F D Q. Then OF D Z and OK D ZŒi �. Set p D 3,
which remains inert in Q.i/. Hence, ZŒi �=3ZŒi � ' F9. Let Q be the quaternion
division algebra defined by

Q D Q.i/˚Q.i/e;

with e2 D �1. Since NK=F .a C ib/ D a2 C b2, a; b 2 Z, �1 cannot be a norm
and Q is indeed a quaternion division algebra. We set � D ZŒi �˚ ZŒi �e and I D
.1C i C e/�. Then I contains 3 since the norm of 1C i C e is 3. Let ˛ denote a
primitive root of F9 over F3, satisfying ˛2 C 1 D 0. We have

 ..1C i C e/mod3/ D 1C ˛ C x;

which is a right divisor of x2 C 1 in F9ŒxI 	�:

x2 C 1 D .x � 1C ˛/.x C 1C ˛/:

Therefore, the left ideal .xC1C˛/F9ŒxI 	�=.x2C1/ consisting of the left multiples
of x C 1 C ˛ modulo x2 C 1 is a central 	-code. Taking the pre-image by  , it
corresponds to the left-ideal I =3�, with I D �.1C i C e/.

4 Application to Space-Time Codes

Cyclic division algebras are by now classically used to design space-time codes [2,
11]. Matrix codewords are obtained as follows. From now on, to make the notation
easier, we assume that u 2 OF . To any element a D a0 C a1e C � � � C an�1en�1 of
�, we can associate a matrix in Matn.OK/ (since u 2 OF ) by:

M.a/ D

2

66
6
6
6
6
4

a0 u	.an�1/ u	2.an�2/ � � � u	n�1.a1/
a1 u	.a0/ u	2.an�1/ � � � u	n�1.a2/
:::

:::
:::

: : :
:::

:::
:::

::: u	n�1.an�1/
an�1 u	.an�2/ u	2.an�3/ � � � u	n�1.a0/

3

77
7
7
7
7
5

:
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The map

�! Matn.OK/

a 7!M.a/

is an OK -algebra injective homomorphism.
We apply this to our previous example.

Example 5 For q D a C be in the natural order ZŒi � ˚ ZŒi �e of the quaternion
algebra Q, a; b 2 ZŒi �

M.q/ D
�
a �Nb
b Na

�

where N� is the non-trivial Galois automorphism of Q.i/=Q. Let t D .a C be/.1C
i C e/ be an element of I D �.1C i C e/ (with a; b 2 ZŒi �). Then

t D a.1C i/� b C .aC b.1� i//e:

Hence,

M.t/ D
�
a.1C i/� b �.aC b.1C i//
aC b.1 � i/ a.1� i/� b

�
:

Note that I D ��1.C / is a real lattice with rank 4 embedded in R
8: by

vectorizing the matrices M.t/ and separating real and imaginary parts, a generator
matrix of this lattice is given by

2

6
6
4

1 1 1 0 �1 0 1 �1
�1 1 0 1 0 1 �1 �1
�1 0 1 �1 �1 �1 �1 0

0 �1 1 1 1 1 0 1

3

7
7
5 :

Let now v D .v1; : : : ; vn/ be the information vector to be mapped to a lattice point
in L, where L is used as a lattice code. The lattice L D ��1.C / D I� may by
construction be written as a union of cosets of p�, where each coset representative
may be chosen to be a codeword in the code C . Namely, if g is a right divisor of
xn�u and if a central 	-codeC D .g/=.xn�u/ 	 FqŒxI 	�=.xn�u/ has dimension
k D n � deg.g/, since

�=p� Š FqŒxI 	�=.xn � u/

there is an isomorphism

I =p� Š C:
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This allows us to associate in a unique way a coset of p� to a codeword. The
mapping from v to a point in L may be done by attributing some information
coefficients v1; : : : ; vk to be encoded using the code C , and the rest of the
information coefficients to be mapped to a point in the lattice p�. Coset encoding is
necessary in the context of wiretap codes [1]: information symbols are mapped to a
codeword in C , while random symbols are picked uniformly at random in the lattice
p� to confuse the eavesdropper. The construction of the lattice L D ��1.C / D I
thus enables coset encoding for wiretap space-time codes.

5 Future Work

In this paper, we presented a construction of lattices from cyclic codes from skew-
polynomials, which can be seen as a variation of the well known Construction A of
lattices from linear codes. Natural future research directions include:

• Linking the properties of the cyclic code C to that of the lattice L D ��1.C /:
there are standard duality results for the classical Construction A, relating the
dual of the code with the dual of the lattice, as well as the weight enumerator of
the code with the theta series of the lattice.

• Design of wiretap space-time codes: this consists of choosing the cyclic division
algebras, the corresponding two-sided ideal and cyclic code, to optimize the
confusion at the eavesdropper.

Acknowledgements The research of J. Ducoat and F. Oggier is supported by the Singapore
National Research Foundation under Research Grant NRF-RF2009-07.
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On Extendibility of Additive Code Isometries

Serhii Dyshko

Abstract For linear codes, the MacWilliams Extension Theorem states that each
linear isometry of a code extends to a linear isometry of the whole space. But, in
general, it is not the situation for nonlinear codes. In the paper it was proved, that
if the length of an additive code is less than some threshold value, then an analogue
of the MacWilliams Extension Theorem holds. One family of unextendible code
isometries for the threshold value of code length is described.

Keywords Additive code • Code isometry • MacWilliams extension theorem

1 Introduction

The code is a subset of the space with the Hamming metric. A map that preserves
the Hamming metric is called an isometry. The description of code isometries
is fundamental because it helps to identify codes with equal metric parameters.
Moreover, results, based on the properties of weight and distance enumerators, could
be translated without any changes from a code to all its isometric codes.

Besides the metric, codes can have additional algebraic structures, for example
the structure of a vector space or a group. The most developed are linear codes. A
code is said to be linear if it is a vector space over the alphabet, where the alphabet
is considered as a finite field. There is a full description of linear isometries of
linear codes. The famous MacWilliams Extension Theorem states that every linear
code isometry extends to a linear isometry of the whole space. The proof of the
MacWilliams Extension Theorem firstly appeared in the works of MacWilliams and
it was later refined by several authors. Namely, Ward and Wood greatly simplified
it, using character theory approach (see [8]).

Unlike linear codes, there are nonlinear codes with isometries that do not extend
to isometries of the whole space. In general, the problem of description of code
isometries for nonlinear case is difficult. Nevertheless, in some classes of codes it
can be solved. For example, in [1, 5] and [7] authors describe a lot of code families
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that satisfy extendibility property. There they also observe various classes that do
not satisfy it. Among the studied families there are some subclasses of codes that
achieve the Singleton bound (MDS codes, see [6, p. 20]), some subclasses of codes
with equal distance between codewords (equidistant codes) and some perfect codes
(see [6, Ch. § 11]).

In this paper we focus our attention on the class of additive codes and their
additive isometries. A code is called additive if it is an additive abelian group. An
isometry of an additive code is called additive if it preserves the group structure of
the code. Nonlinear codes are not widely used in practice and are less developed, but
it appears that additive codes with additional requirement of a special kind of self-
orthogonality naturally describe quantum stabilizer codes that are used to protect
quantum information (see [4]). The description of quantum code isometries greatly
depends on the description of additive code isometries.

The main result of this paper is formulated in Theorem 10. We determine the
length threshold for which an analogue of the MacWilliams Extension Theorems
for additive codes holds. We also proved that this result cannot be improved by
increasing the bound on the code length.

2 Additive Isometries of Space

Let L be a finite field, let m be a positive integer and let K be a subfield of L. A
code is a subset of Lm. A code is called K-linear if it is a K-linear vector space
in Lm. If the code is L-linear we call this code linear. Additive code is a code that
is closed under addition. Any K-linear code is additive. In the other direction, any
additive code in Lm is Fp-linear, where p is the characteristic of L.

An isometry of a code C � Lm is a map f W C ! Lm that preserves the
Hamming distance. If f is a K-linear map, then f is an isometry if and only if f
preserves the Hamming weight.

Example 1 Consider two codes C1 D f.0; 0; 0/; .1; 1; 0/; .!; 0; 1/; .!2; 1; 1/g and
C2 D f.0; 0; 0/; .0; !2; !/; .1; 0; 1/; .1; !2; !2/g in F

3
4, where F4 D f0; 1; !; !2g

and ! C 1 D !2. All the codes are F2-linear. Define a map f W C1 ! C2 in the
following way: f



.0; 0; 0/

� D .0; 0; 0/, f


.1; 1; 0/

� D .0; !2; !/, f


.!; 0; 1/

� D
.1; 0; 1/ and f



.!2; 1; 1/

� D .1; !2; !2/. Evidently, the map f is F2-linear and
preserves the Hamming weight. Therefore f is an F2-linear isometry of the F2-
linear code C1 in F

3
4. Note that C1 and C2 are not F4-linear.

A map f W Lm ! Lm is called monomial, if there exist a permutation � 2 Sm
and c1; c2 : : : ; cm 2 L n f0g such that for all u 2 Lm, f .u/ D f 
.u1; u2; : : :; um/

� D
.c1u�.1/; c2u�.2/; : : : ; cmu�.m//. It is easy to see that a monomial map is a linear
isometry of Lm and each linear isometry of the whole space Lm is a monomial map.
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Theorem 2 (MacWilliams Extension Theorem) Let L be a finite field, let m be a
positive integer and letC � Lm be a linear code. Each linear isometry ofC extends
to a monomial map.

Considering the arguments above, the MacWilliams Extension Theorem states that
any linear isometry of a linear code extends to a linear isometry of the whole space.

We deal with K-linear isometries of a K-linear code and their extendibility to
the whole space Lm. Hence, we describe all K-linear isometries of the space Lm.
Let AutK.L/ denotes the set of all K-linear invertible maps from L to itself.

Definition 3 A map f W Lm ! Lm is called general monomial if there exist a per-
mutation � 2 Sm and g1; : : : ; gm 2 AutK.L/ such that for all u 2 Lm the following
holds: f .u/ D f 
.u1; u2; : : : ; um/

� D 
g1.u�.1//; g2.u�.2//; : : : ; gm.u�.m//
�
.

Proposition 4 A general monomial map is a K-linear isometry of the space Lm.
Moreover, anyK-linear isometry of the space is a general monomial map.

Proof From the definition it is easy to see that a general monomial map is aK-linear
isometry. In [3], it was proved that any isometry of the space Lm is a composition
of coordinate permutation and a tuple of permutations of the alphabet L, where the
i th element in the tuple acts on the i th coordinate. Since a K-linear permutation of
L is exactly an element of AutK.L/ we get the statement of the proposition. ut

A general theorem, analogue of the MacWilliams Extension Theorem, does not
exist for nonlinear codes. This means that there is a nonlinear code and an isometry
of the code that does not extend to an isometry of the whole space. Call such
isometries unextendible. We have the same situation even if we look at additive
codes. The counterexample is the following.

Example 5 Let m D jKj C 1. Consider two K-linear codes C1 D hv1; v2iK and
C2 D hu1; u2iK with

�
v1
v2

�
D
�
0 1 1 : : : 1

1 x1 x2 : : : xjKj

�
f�!
�
0 1 1 : : : 1

0 ! ! : : : !

�
D
�

u1
u2

�
;

where xi 2 K are all different and! 2 LnK . Define theK-linear map f W C1 ! C2
in the following way: f .v1/ D u1 and f .v2/ D u2. The map f is an isometry. But,
there is no general monomial map that acts onC1 in the same way as the map f . The
first coordinates of all vectors in C2 are always zero, but there is no such all-zero
coordinate in C1.

3 Extendibility of Additive Isometries

Let C be a K-linear code in Lm. Denote by x1; : : : ; xk 2 Lm a K-linear basis of
C . A matrix A D .aij /1�i�k;1�j�m with entries from L, formed by k rows that
correspond to vectors x1; : : : ; xk , is called a generator matrix of C . Let Ma�b.F /
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denotes the set of all a � b matrices with the entries from a field F . Obviously,
A 2 Mk�m.L/.

Denote the degree of the extension ŒL W K� D n. Consider L as a n-dimensional
vector space over K and fix its basis b1; : : : ; bn 2 L. This is equivalent to the
establishment of an isomorphism L Š Kn of K-linear vector spaces. In the
generator matrix A replace each entry aij 2 L by the corresponding vector-row


a
.1/
ij ; : : : ; a

.n/
ij

� 2 Kn, where aij DPn
lD1 a

.l/
ij bl , for i 2 f1; : : : ; kg; j 2 f1; : : : ; mg.

In result, we get a K-generator matrix B 2 Mk�nm.K/ of C :

B D

0

B
@

a
.1/
11 : : : a

.n/
11 a

.1/
12 : : : a

.n/
12 : : : a

.1/
1m : : : a

.n/
1m

:::
: : :

:::
:::
: : :

::: : : :
:::
: : :

:::

a
.1/

k1 : : : a
.n/

k1 a
.1/

k2 : : : a
.n/

k2 : : : a
.1/

km : : : a
.n/

km

1

C
A :

The K-generator matrix B can be observed as the concatenation of m smaller
matrices, B D .B1jB2j : : : jBm/, where Bi is the i th block of B , for i 2 f1; : : : ; mg.

We are interested in the subspace Vi � Kk , where i 2 f1; : : : ; mg, that is defined
as a K-span of the columns of Bi . With the K-generator matrix B associate a tuple
of the subspaces V1; : : : ; Vm � Kk.

Let f W C ! Lm be a K-linear injective map. Let A0 2 Mk�m.L/ be a matrix
with the rows f .x1/; : : : ; f .xm/, where x1; : : : ; xk are the rows of A. The matrix A0
is a generator matrix of f .C /. Define the K-generator matrix B 0 in the same way
as we defined B . Let V1; : : : ; Vm � Kk be the tuple of subspaces that correspond to
B and let U1; : : : ; Um � Kk be the tuple of subspaces that correspond to B 0.

Proposition 6 The map f extends to a general monomial map if and only if there
exists a permutation � 2 Sm such that Ui D V�.i/, for i 2 f1; : : : ; mg.
Proof If the map f extends to a general monomial transformation h W Lm ! Lm

(with the permutation � 2 Sn), then the tuples U1; : : : ; Um and V�.1/; : : : ; V�.m/
are equal. In the other direction, let B and B 0 be the K-generator matrices that
correspond to the tuples of subspaces V1; : : : ; Vm and U1; : : : ; Um. Then there
exist a permutation � 2 Sm and invertible matrices Gi 2 Mn�n.K/, such that
B D .B�.1/G1j : : : jB�.m/Gm/ D .B 01j : : : jB 0m/ D B 0. This correspond to a general
monomial transformation h W Lm ! Lm, such that h D f on the code generated
by B . ut

We use the ideas presented in the proof of the MacWilliams Extension Theorem
by Ward and Wood (see [8]) to get a description of K-linear isometries of K-linear
codes in Lm. For a finite abelian group G let OG be the set of all homomorphisms
from .G;C/ to .C n f0g; �/. There is defined a product of two homomorphisms: for
g; h 2 OG define .gh/.x/ D g.x/h.x/ for all x 2 G. The set OG with the defined
product form a group and is called a group of characters.

Let X be a set and let A be a subset of X . An indicator function is a map �A W
X ! f0; 1g, such that �A.x/ D 1 if x 2 A and �A.x/ D 0 – otherwise.



On Extendibility of Additive Code Isometries 173

Proposition 7 Let C be a K-linear code in Lm and f W C ! Lm be a K-linear
map. The map f is an isometry if and only if the following equality holds:

mX

iD1

1

jVi j�Vi D
mX

iD1

1

jUi j�Ui : (1)

Proof Let U be a k-dimensional vector space overK with some fixed basis, where
k D dimK C . Consider twoK-linear maps �;� W U ! Lm, defined as �.u/ D uT A
and �.u/ D uT A0, for u 2 U , where A is a generator matrix of C and A0 is the
corresponding generator matrix of f .C /. It appears that �.u/ D f .�.u// for all
u 2 U , �.U / D C and �.U / D f .C /.

For the weight function wt W L ! f0; 1g, which maps 0 to 0 and other elements
to 1, the following holds: for all a 2 L W 1

jLj
P

�2 OL �.a/ D 1 � wt.a/ (see [6,
p. 143]). Using weight representation in terms of character sums, we have that for
all u 2 U :

m � wt


�.u/

� D 1

jLj
mX

iD1

X

�2 OL
�


�i .u/

�
: (2)

For a K-linear map 	 W U ! L define a map O	 W OL ! OU ;� 7! 	 ı �.
Transforming the sum in Eq. (2), we get:

mX

iD1

X

�2 OL
O�i .�/ D jLj

X

�2 OU

 
mX

iD1

1

j O�i. OL/j
� O�i . OL/.�/

!

� :

By the definition, the map f is an isometry if for all x 2 C , wt.x/ D wt.f .x//, or
the same, for all u 2 U , wt.�.u// D wt.�.u//. Consequently, f is an isometry if
and only if the following equality holds:

X

�2 OU

 
mX

iD1

1

j O�i. OL/j
� O�i . OL/.�/

!

� D
X

�2 OU

 
mX

iD1

1

j O�i. OL/j
� O�i . OL/.�/

!

� :

Since different characters in OU are linearly independent, the coefficients in the
equation are equal for each � 2 OU . This is equivalent to:

mX

iD1

1

j O�i . OL/j
� O�i . OL/ D

mX

iD1

1

j O�i. OL/j
� O�i . OL/ :

It can be proved that this equality is equivalent to Eq. (1). ut
To illustrate Proposition 7 we consider the following example observed in [9].
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Example 8 Let C be a F2-linear code in F
3
4, generated by three vectors: C D

h.1; 1; 0/; .!; !; 0/; .1; 0; 1/iF2, where F4 D f0; 1; !; !2g with ! C 1 D !2.
Define an F2-linear map f W C ! F

3
4 on the generators in the following way:

f


.1; 1; 0/

� D .1; 1; 0/, f


.!; !; 0/

� D .1; 0; 1/ and f


.1; 0; 1/

� D .!; !; 0/.
Obviously, f .C / D C .

Consider the isomorphism of the F2-linear vector spaces F4 ! F
2
2, 1 7! .1; 0/

and ! 7! .0; 1/. We use the following generator matrix A and the corresponding
F2-generator matrix B of the code C :

A D
0

@
1 1 0

! ! 0

1 0 1

1

A ; B D
0

@
1 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1

A :

Since f fixes the first generator vector of C and permute second and third, it is easy
to construct the corresponding generator matrix A0 and the F2-generator matrix B 0
of the code f .C /:

A0 D
0

@
1 1 0

1 0 1

! ! 0

1

A ; B 0 D
0

@
1 0 1 0 0 0

1 0 0 0 1 0

0 1 0 1 0 0

1

A :

Now we calculate the tuples of subspaces V1; V2; V3 � F
3
2 and U1; U2; U3 �

F
3
2. The subspaces are: V1 D h.1; 0; 1/; .0; 1; 0/iF2, V2 D h.1; 0; 0/; .0; 1; 0/iF2

and V3 D h.0; 0; 1/iF2. In the same way, U1 D h.1; 1; 0/; .0; 0; 1/iF2, U2 D
h.1; 0; 0/; .0; 0; 1/iF2 and U3 D h.0; 1; 0/iF2. Equation (1) after multiplication by
4 from both sides becomes:

�V1 C �V2 C 2�V3 D �U1 C �U2 C 2�U3 :

One can verify that for the defined subspaces V1; V2; V3 and U1; U2; U3 the equality
holds and thus, by Proposition 7, the map f W C ! F

3
4 is an F2-linear isometry.

Moreover, by Proposition 6, since the tuples of subspaces V1; V2; V3 and U1; U2; U3
do not coincide up to the order of terms, the isometry f is unextendible.

Regarding Eq. (1), we have the following statement.

Proposition 9 Let W be a finite space over K and U1; : : : ; Ur ; V1; : : : ; Vs � W be
different subspaces of W . Assume that a1; : : : ; ar ; b1; : : : ; bs > 0 and

rX

iD1
ai�Ui D

sX

iD1
bi�Vi : (3)

Then maxfr; sg is greater than the cardinality of K .
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Proof Among the subspaces V1; : : : ; Vs; U1; : : : ; Ur choose one that is maximal by
inclusion. It is either Vi for some i 2 f1; : : : ; sg, or Uj for some j 2 f1; : : : ; tg. In
the first case dimK Vi > 1 and Vi DSr

jD1.Vi \ Uj /, where for all j 2 f1; : : : ; rg W
Vi \ Uj ¤ Vi . Such coverings are discussed in [2] and there it was proved that
r > jKj. Similarly, in the second case s > jKj. ut
Theorem 10 LetL be a finite field and letK be a proper subfield ofL. Letm � jKj
and let C be a K-linear code in Lm. Each K-linear isometry of C extends to a K-
linear isometry of the whole space.

Proof From Proposition 4, to prove the theorem, it is enough to show that: if there
exists such K-linear code C � Lm and K-linear isometry f W C ! Lm that
does not extend to general monomial map, then m > jKj. Since f is an isometry,
Proposition 7 implies that Eq. (1) holds. Let V1; : : : ; Vm be a tuple of subspaces of
C and U1; : : : ; Um be the corresponding tuple of subspaces of f .C /. There is an
alternative: the tuples of the subspaces V1; : : : ; Vm and U1; : : : ; Um or coincide up to
a permutation of the elements, or not. In the first case, by Propositions 4 and 6, f
extends to an isometry of the whole space Lm. In the second case in Eq. (1) group
the equal terms from each side and eliminate the equal terms from the different
sides. After canceling and elimination there exists i 2 f1; : : : ; mg such that for all
j 2 f1; : : : ; mg W Vi ¤ Uj . So, we obtain an equation in form of Eq. (3), where
conditions of Proposition 9 are satisfied. Thereforem � maxfr; sg > jKj. ut
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The Extension Theorem with Respect
to Symmetrized Weight Compositions

Noha ElGarem, Nefertiti Megahed, and Jay A. Wood

Abstract We will say that an alphabet A satisfies the extension property with
respect to a weight w if every linear isomorphism between two linear codes in
An that preserves w extends to a monomial transformation of An. In the 1960s
MacWilliams proved that finite fields have the extension property with respect
to Hamming weight. It is known that a module A has the extension property
with respect to Hamming weight or a homogeneous weight if and only if A is
pseudo-injective and embeds into OR. The main theorem presented in this paper
gives a sufficient condition for an alphabet to have the extension property with
respect to symmetrized weight compositions. It has already been proven that a
Frobenius bimodule has the extension property with respect to symmetrized weight
compositions. This result follows from the main theorem.

Keywords Linear codes over finite modules • Extension theorem • Symmetrized
weight composition

1 Introduction

In the 1960s Florence Jessie MacWilliams proved in her doctoral dissertation
[13] that two linear codes over a finite field are isometric if and only if they are
monomially equivalent. Two linear codes of the same length are said to be isometric
if there is a linear injective map from one to the other that preserves Hamming
weight. In other words, two linear codes C1; C2 	 F

n
q are isometric if there is a

linear injective map f W C1 ! C2 such that wt.f .c// D wt.c/ for every c 2 C1,
where wt denotes the Hamming weight on Fq . The codes are said to be monomially
equivalent if there is a monomial transformation, or an n � n monomial matrix M ,
such that C2 D C1M . Because monomial equivalence implies the existence of an
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isometry, what MacWilliams proved for codes over finite fields is that any isometry
can be extended to a monomial transformation. MacWilliams also proved a semi-
linear version of this extension theorem. In 1996, a character theoretic proof of
MacWilliams’ result appeared in [14].

The publication of [12] rekindled the interest of researchers in codes over
finite rings and the question arose, which types of rings satisfy MacWilliams’
Extension Theorem? In [17], the character theoretic proof of [14] was generalized
to prove that finite Frobenius rings satisfy the Extension Theorem with respect to
Hamming weight. In [4] Dinh and López-Permouth proved some partial converses
and provided a strategy to prove the full converse. The strategy led to a proof of the
full converse in [18] for linear codes over finite rings with the Hamming weight.

In 1997, Constantinescu and Heise introduced a new weight on finite rings [2],
namely, the homogeneous weight. The authors of [3] used combinatorial methods to
prove the extension theorem for homogeneous weights over the ring Zm. Following
their lead, Greferath and Schmidt proved that every Hamming weight isometry is
a homogeneous weight isometry and vice versa, thereby translating all results on
the Extension Theorem for Hamming weight to homogeneous weights and vice
versa [11]. Greferath, Nechaev, and Wisbauer proved the Extension Theorem for
Hamming and homogeneous weights over Frobenius bimodules in [10].

More general weight functions were considered next, specifically bi-invariant
weight functions. A weight w on a ring R is said to be bi-invariant if w.ux/ D
w.x/ D w.xu/ for every x in R and every unit u in R. The extension theorem was
proved for bi-invariant weights in the case of finite chain rings in [6], in the case
of Zm in [7], in the case of finite direct products of finite chain rings in [9], in the
case of matrix rings over finite fields in [19], and in the case of principal ideal rings,
necessary and sufficient conditions were found for bi-invariant weights to satisfy the
extension theorem in [8].

The present paper considers the Extension Theorem with respect to another
type of weight, namely the symmetrized weight composition over certain module
alphabets. The Extension Theorem for symmetrized weight compositions was
proved for linear codes over finite fields in [5], over finite Frobenius rings in [15],
and over Frobenius bimodule alphabets in [19]. In [1], Barra and Gluesing-Luerssen
greatly simplified the proof in [15], and we apply their ideas to the case of certain
module alphabets.

The following is a summary of the contents of this paper. Section 2 provides
some basic definitions, as well as the Extension Theorems known for module
alphabets equipped with Hamming weight. In Sect. 3, we apply some of the ideas
of [1] to module alphabets. The main result of this paper (Theorem 13) states that
a sufficient condition for an R-module A to satisfy the Extension Theorem with
respect to symmetrized weight compositions is that A can be embedded into R

OR.
This condition implies that a Frobenius bimodule satisfies the Extension Theorem
with respect to symmetrized weight compositions.

The Extension Theorem for symmetrized weight compositions over finite Frobe-
nius rings has been used in [15] and [16] to prove extension theorems for more
general weight functions. We anticipate proving similar results in future work.
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2 Background

Throughout this paper, let R be a finite ring with unity and let A be a finite left R-
module; A will serve as the alphabet for linear codes. We will adopt the following
convention: when dealing with maps on left R-modules, the input to the map will
be written on the left. In other words, if we have a left R-moduleA and a map f on
A, then for a 2 A, we write af for f .a/.

Definition 1 A linear code of length n over the alphabet A is a left R-submodule
C 	 An.

Definition 2 A monomial transformation of An is an R-linear automorphism T of
An of the form

.a1; : : :; an/T D .a	.1/�1; : : :; a	.n/�n/;

where .a1; : : :; an/ 2 An, 	 is a permutation of f1; 2; : : :; ng and �1; : : :; �n 2Aut(A),
the group of automorphisms of the left R-moduleA. If �1; : : :; �n all belong to some
subgroupG of Aut.A/, we say that T is a G-monomial transformation of An.

A weight on an alphabetA is defined to be a rational-valued function w W A! Q

with w.0/ D 0. We define the extension property as follows.

Definition 3 Let A be an R-module. We say that the alphabet A satisfies the exten-
sion property with respect to the Hamming weight if every R-linear isomorphism
between two R-linear codes in An that preserves Hamming weight extends to a
monomial transformation of An.

The class of Frobenius bimodules stood out in coding theory as all Frobenius
bimodules satisfy the extension property with respect to Hamming weight [10]. A
Frobenius bimodule is defined as follows.

Definition 4 Let A be a bimodule over the ring R. We say that A is a Frobenius
bimodule if RA ŠR OR and AR Š ORR, where OR D HomZ.R;C

�/ is the character
module of R.

The following theorem was proved in [17] and [18].

Theorem 5 Let R be a finite ring and A D R. Then R satisfies the extension
property with respect to Hamming weight if and only if R is Frobenius.

Necessary and sufficient conditions for a module alphabet A to satisfy the
extension property with respect to Hamming weight were established in [19]. The
first condition is that the R-module alphabet A is pseudo-injective, in other words
for every R-submodule B of A and every injective R-linear mapping f W B ! A,
the mapping f extends to an R-linear mapping QF W A! A. The second condition
that arises is that A have a cyclic socle. The socle of an R-module A is defined to
be the sum of all its simple R-submodules. We note that a left R-module A has a
cyclic socle if and only if A embeds into OR ([19], Proposition 5.3).
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Theorem 6 Let R be a finite ring and A a finite R-module. Then A satisfies the
extension property with respect to Hamming weight if and only if A is pseudo-
injective and has a cyclic socle.

3 The Extension Theorem for Symmetrized Weight
Compositions

Given a weight w on an alphabet A, define the symmetry group of w as the set of all
automorphisms of A that preserve w. Denote the symmetry group by

Sym.w/ WD f� 2 Aut.A/jw.a�/ D w.a/ for every a 2 Ag:

Then for a general weight w, the extension property is defined as follows.

Definition 7 Let A be an alphabet and w a weight on A. Then A has the extension
property with respect to w if for any two linear codes C1; C2 	 An, and R-linear
isomorphism f W C1 ! C2 that preserves w, f is extendable to a Sym.w/-monomial
transformation of An.

The symmetry group of a weight w on an alphabet A acts on A on the right so
that the orbit of an element a in A is orb.a/ D fa� j� 2 Sym.w/g. The symmetrized
weight composition counts the number of entries of x D .x1; : : :; xn/ 2 An that
belong to any given orbit of this action.

We now give the formal definition of the symmetrized weight composition.

Definition 8 LetG be a subgroup of the automorphism group of a finite R-module
A. Define � on A by a � b if and only if a D b� for some � 2 G. Let A=G denote
the orbit space of this action. The symmetrized weight composition is a function
swc W An �A=G ! Q defined by,

swc.x; a/ D swca.x/ D jfi W xi � agj;

where x D .x1; : : : ; xn/ 2 An and a 2 A=G.

Note that if a; b 2 A are in the same orbit, then swca D swcb and so the
symmetrized weight composition is well-defined.

Definition 9 The alphabet A has the extension property with respect to swc if for
any two linear codes C1; C2 	 An, and R-linear isomorphism f W C1 ! C2 that
preserves swc, f is extendable to a G-monomial transformation of An.

We wish to find conditions on the module alphabetA equipped with swc to satisfy
the extension property analogous to those found in Theorem 6 for Hamming weight.
Theorem 13 gives a sufficient condition and its proof uses some of the ideas found
in [1].
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In order to prove the main theorem, we need a few results concerning admissible
characters. More details can be found in [19] and [20] (where admissible characters
were called generating characters).

Definition 10 Let A be a finite left R-module. We say a character � 2 OA is (left)
admissible if ker � contains no nonzero leftR-submodules. There is a corresponding
notion of right admissible characters for right R-modules.

The proof of the main theorem requires a proposition from [20].

Proposition 11 ([20], Proposition 12) Let A be a finite left R-module. Then A has
an admissible character if and only if A can be embedded in R

OR.

The reader will verify that Frobenius bimodules have admissible characters.
The condition that will appear in the main theorem (Theorem 13) is that the R-

module alphabet A can be embedded into OR. As mentioned earlier, this condition is
equivalent to the condition that the alphabetA has a cyclic socle due to the following
result (Proposition 5.3 in [19]).

Proposition 12 Let R be a ring and A a left R-module. Then soc.A/ is cyclic if
and only if A can be embedded into R

OR.

We now state and prove the main theorem.

Theorem 13 Let A be a finite left R-module equipped with a symmetrized weight
composition. If A can be embedded into OR, then A has the extension property with
respect to the symmetrized weight composition. In particular, this theorem applies
to Frobenius bimodules.

Proof Suppose C1; C2 	 An are two R-linear codes, and f W C1 ! C2 is an
R-linear isomorphism that preserves swc. Let M be the module underlying the
two codes C1; C2 with � W M ! An and � W M ! An, the inclusion maps of
C1 and C2 into An, respectively, and � D � ı f (recall that inputs to functions
are written on the left). Suppose � D .�1; : : :; �n/ and � D .�1; : : :; �n/, where
�i ; �i 2 HomR.M;A/. Since f preserves swc, then swca.x�/ D swca.x�/ for
every a 2 A=G and every x 2 M . Following [1], if we fix x 2 M then there exists
a permutation 	x of f1; : : :; ng and elements �j;x 2 G such that x�j D x�	x.j /�j;x
for each j 2 f1; : : :; ng. Let  2 G, noting that G 	 Aut.A/, then for all j ,

x�j D x�	x.j /�j;x : (1)

Since A can be embedded into OR, it follows from Proposition 11 that A has an
admissible character � W A! C

�. Compose � with both sides of Eq. (1) to get

.x�j /� D .x�	x.j /�j;x /�:

We can now take the summation of the previous equation over all j 2 f1; : : :; ng
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and all  2 G yielding the following,

nX

jD1

X

 2G
.x�j /� D

nX

jD1

X

 2G
.x�	x.j /�j;x /�

D
nX

kD1

X

�2G
.x�k�/�:

Since the above equation is true for every x 2 M , we have the following equation
of characters of M ,

nX

jD1

X

 2G
.�j /� D

nX

kD1

X

�2G
.�k�/�: (2)

We can now make use of the fact that characters of M are linearly independent,
when considered as complex-valued functions on M . On the left hand side of
Eq. (2), fix j D 1 and  D idA. By the independence of characters it follows
that there exists k1 2 f1; : : :; ng and �1 2 G such that �1 ı � D �k1�1 ı �. Then
im.�1��k1�1/ 	 ker %. But � is an admissible character ofA and therefore contains
no non-zero submodules. It follows that im.�1 � �k1�1/ D 0 and so �1 D �k1�1.
Re-indexing (letting � D �1 ), shows that

X

 2G
.�1 /� D

X

 2G
.�k1�1 /� D

X

�2G
.�k1�/�:

This allows us to reduce the outer summation in Eq. (2) by one. Proceeding by
induction, we find a permutation 	 and automorphisms �1; : : :; �n 2 G with
�i D �	.i/�i . ut

A natural question to ask is whether the converse of Theorem 13 is true. In other
words, if the extension property holds for an R-module alphabet A equipped with a
symmetrized weight composition, mustA have a cyclic socle? Or equivalently must
there be an embedding of A into OR? This remains an open question.
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Minimal Realizations of Syndrome Formers
of a Special Class of 2D Codes

Ettore Fornasini, Telma Pinho, Raquel Pinto, and Paula Rocha

Abstract In this paper we consider a special class of 2D convolutional codes
(composition codes) with encodersG.d1; d2/ that can be decomposed as the product
of two 1D encoders, i.e., G.d1; d2/ D G2.d2/G1.d1/. In case that G1.d1/ and
G2.d2/ are prime we provide constructions of syndrome formers of the code,
directly from G1.d1/ and G2.d2/. Moreover we investigate the minimality of 2D
state-space realization by means of a separable Roesser model of syndrome formers
of composition codes, where G2.d2/ is a quasi-systematic encoder.

Keywords Encoders and syndrome forms • 2D composition codes • 2D
state-space models

1 Introduction and Preliminary Concepts

Minimal state-space realization of convolutional codes play an important role in effi-
cient code generation and verification. This question has been widely investigated in
the literature for 1D codes [3, 6], however it is still open for the 2D case. Preliminary
results concerning 2D encoder and code realizations have been presented in [10]. In
this paper we study the syndrome former realization problem for a special class of
2D codes.
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We consider 2D convolutional codes constituted by sequences indexed by Z
2

and taking values in F
n, where F is a field. Such sequences fw.i; j /g.i;j /2Z2 can be

represented by bilateral formal power series

Ow.d1; d2/ D
X

.i;j /2Z2
w.i; j /d i1d

j
2 :

For n 2 N, the set of 2D bilateral formal power series over Fn is denoted by
F n
2D . This set is a module over the ring FŒd1; d2� of 2D polynomials over F. The set

of matrices of size n� k with elements in FŒd1; d2� will be denoted by F
n�kŒd1; d2�.

Given a subset C of sequences indexed by Z
2, taking values in F

n, we denote by
OC the subset of F n

2D defined by OC D f Ow j w 2 C g.
Definition 1 A 2D convolutional code is a subset C of sequences indexed by Z

2

such that OC is a submodule of F n
2D which coincides with the image of F k

2D (for
some k 2 N) by a polynomial matrix G.d1; d2/, i.e.,

OC D imG.d1; d2/ D f Ow.d1; d2/ j Ow.d1; d2/ D G.d1; d2/Ou.d1; d2/; Ou.d1; d2/ 2 F k
2Dg:

It follows, as a consequence of [Theorem 2.2, [7]], that a 2D convolutional
code can always be given as the image of a full column rank polynomial matrix
G.d1; d2/ 2 F

n�kŒd1; d2�. Such polynomial matrix is called an encoder of C . A
code with encoders of size n � k is said to have rate k=n.

A 2D convolutional code C of rate k=n can also be represented as the kernel
of a .n � k/ � n left-factor prime polynomial matrix (i.e. a matrix without left
nonunimodular factors), as follows from [Theorem 1, [12]].

Definition 2 Let C be a 2D convolutional code of rate k=n. A left-factor prime
matrixH.d1; d2/ 2 F

.n�k/�nŒd1; d2� such that

OC D kerH.d1; d2/;

is called a syndrome former of C .

Note that w is in C if and only if H.d1; d2/ Ow D 0.

Remark 3 This means that whereas codewords are output sequences of an encoder,
they constitute the output-nulling inputs of a syndrome former of the code.

Given an encoder G.d1; d2/ of C , a syndrome former of C can be obtained
by constructing a .n � k/ � n left-factor prime matrix H.d1; d2/ such that
H.d1; d2/G.d1; d2/ D 0. Moreover all syndrome formers of C are of the form
U.d1; d2/H.d1; d2/, where U.d1; d2/ 2 F

.n�k/�.n�k/Œd1; d2� is unimodular.
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2 Composition Codes and Their Syndrome Formers

In this section we consider a particular class of 2D convolutional codes generated by
2D polynomial encoders that are obtained from the composition of two 1D polyno-
mial encoders. Such encoders/codes will be called composition encoders/codes. Our
goal is to characterize the syndrome formers of such codes. The formal definition of
composition encoders is as follows.

Definition 4 An encoderG.d1; d2/ 2 F
n�kŒd1; d2� such that

G.d1; d2/ D G2.d2/G1.d1/; (1)

where G1.d1/ 2 F
p�kŒd1� and G2.d2/ 2 F

n�pŒd2� are 1D encoders, is said to be a
composition encoder.

Note that the requirement that Gi.di /, for i D 1; 2, is a 1D encoder implies the
condition that Gi.di / is a full column rank matrix. Moreover this requirement
clearly implies that G2.d2/G1.d1/ has full column rank, hence the composition
G2.d2/G1.d2/ of two 1D encoders is indeed a 2D encoder.

The 2D composition code C associated with G.d1; d2/ is such that

OC D imG.d1; d2/ D G2.d2/.imG1.d1//
D f Ow.d1; d2/ j 9 Oz.d1; d2/ 2 im.G1.d1// such that Ow.d1; d2/ D G2.d2/Oz.d1; d2/g:

We shall concentrate on a particular class of composition codes, namely on
those that admit a composition encoder G.d1; d2/ as in (1) with G2.d2/ and G1.d1/
both right-prime encoders (i.e., they admit a left polynomial inverse), and derive
a procedure for constructing the corresponding syndrome formers based on 1D
polynomial methods. This procedure will be useful later on for the study of state-
space realizations.

It is important to observe that as G2.d2/ and G1.d1/ are both assumed to have
polynomial inverses, then G.d1; d2/ also has a 2D polynomial left inverse (given
by the product of the left inverses of G1.d1/ and G2.d2/) and therefore G.d1; d2/
is right-zero prime1(rZP). Recall that if a 2D convolutional code admits a right-
zero prime encoder then all its rFP encoders are rZP. Moreover, the corresponding
syndrome formers are also lZP (see Prop. A.4 of [4]).

1A polynomial matrix G.d1; d2/ is right/left-zero prime (rZP/lZP) if the ideal generated by the
maximal order minors of G.d1; d2/ is the ring FŒd1; d2� itself, or equivalently if and only if
admits a polynomial left/right inverse. Moreover right/left-zero primeness implies right/left-factor
primeness(rFP/lFP).
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SinceG2.d2/ 2 F
n�pŒd2� is right-prime there exists a unimodular matrixU.d2/ 2

F
n�nŒd2� such that

U.d2/G2.d2/ D
�
Ip
0

�
:

We shall partition U.d2/ as

U.d2/ D
�
L2.d2/

H2.d2/

�
; (2)

where L2.d2/ has p rows.
It is easy to check that, if H1.d1/ 2 F

.p�k/�pŒd1� is a syndrome former of
the 1D convolutional code imG1.d1/ (i.e., H1.d1/ is left-prime and is such that
H1.d1/G1.d1/ D 0), then

�
H1.d1/L2.d2/

H2.d2/

�
G2.d2/G1.d1/ D 0: (3)

This reasoning leads to the following proposition.

Proposition 5 Let C , with OC D imG.d1; d2/, be a composition code with
G.d1; d2/ 2 F

n�kŒd1; d2� such that G.d1; d2/ D G2.d2/G1.d1/, where G2.d2/ 2
F
n�pŒd2� and G1.d1/ 2 F

p�kŒd1� are both right-prime 1D encoders. Let further

H1.d1/ be a .p�k/�p 1D syndrome former of imG1.d1/ and define

�
L2.d2/

H2.d2/

�
as

in (2). Then

H.d1; d2/ D
�
H1.d1/L2.d2/

H2.d2/

�

is a syndrome former of C .

Proof Since (3) is obviously satisfied and H.d1; d2/ has size .n � k/ � n, we only
have to prove that H.d1; d2/ is left-factor prime. Note that as H1.d1/ is left-prime,
there exists R1.d1/ 2 F

p�.p�k/Œd1� such that H1.d1/R1.d1/ D Ip�k . Now it is easy
to see that

R.d1; d2/ D U.d2/�1
�
R1.d1/ 0

0 In�p

�
:

constitutes a polynomial right inverse ofH.d1; d2/. ConsequentlyH.d1; d2/ is left-
zero prime which implies that it is left-factor prime as we wish to prove. ut
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3 State-Space Realizations of Encoders and Syndrome
Formers

In this section we recall some fundamental concepts concerning 1D and 2D state-
space realizations of transfer functions, having in mind the realizations of encoders
and syndrome formers.

A 1D state-space model

(
x.t C 1/ D Ax.t/CBu.t/

w.t/ D Cx.t/CDu.t/

denoted by ˙1D.A;B;C;D/ is a realization of dimension m of M.d/ 2 F
s�r Œd �

if M.d/ D C.Im � Ad/�1Bd C D. Moreover, it is a minimal realization if the
size of the state x is minimal among all the realizations of M.d/. The dimension
of a minimal realization of M.d/ is called the McMillan degree of M.d/ and is

given by �.M/ D int deg

�
M.d/

Ir

�
, where int degM.d/ is the maximum degree of

its r-order minors [11].
As for the 2D case, there exist several types of state-space models [1, 2]. In

our study we shall consider separable Roesser models [13]. These models have the
following form:

8
ˆ̂
<

ˆ̂
:

x1.i C 1; j / D A11x1.i; j /C A12x2.i; j /C B1u.i; j /
x2.i; j C 1/ D A21x1.i; j /C A22x2.i; j /C B2u.i; j /
y.i; j / D C1x1.i; j /C C2x2.i; j /CDu.i; j /

(4)

where A11, A12, A21, A22, B1, B2, C1, C2 and D are matrices over F, with suitable
dimensions, u is the input-variable, y is the output-variable, and x D .x1; x2/ is
the state variable where x1 and x2 are the horizontal and the vertical state-variables,
respectively. The dimension of the system described by (4) is given by the size of x.
Moreover either A12 D 0 or A21 D 0. The separable Roesser model corresponding
to Eqs. (4) with A12 D 0 is denoted by ˙2D

12 .A11; A21; A22; B1; B2; C1; C2;D/,
whereas the one withA21 D 0 is denoted by˙2D

21 .A11; A12; A22; B1; B2; C1; C2;D/.
The remaining considerations of this section can be stated for both cases when

A12 D 0 or A21 D 0, however we just consider A12 D 0; the case A21 D 0 is
completely analogous, with the obvious adaptations.

Definition 6 ˙2D
12 .A11; A21; A22; B1; B2; C1; C2;D/ is said to be a realization of

the 2D polynomial matrix M.d1; d2/ 2 F
s�r Œd1; d2� if

M.d1; d2/ D
�
C1 C2

� �I �A11d1 0

�A21d2 I � A22d2
��1 ��

B1
0

�
d1 C

�
0

B2

�
d2

�
CD:
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As it is well known different realizations of M.d1; d2/ may not have the same
dimension. For the sake of efficient implementation, we are interested in studying
the realizations of M.d1; d2/ with minimal dimension. Such realizations are called
minimal. The Roesser McMillan degree of M.d1; d2/, �R.M/, is defined as the
dimension of a minimal realization of M.d1; d2/.

Note that every polynomial matrixM.d1; d2/ 2 F
s�r Œd1; d2� can be factorized as

follows:

M.d1; d2/ DM2.d2/M1.d1/; (5)

where M2.d2/ D
h
In j � � � j Ind `22

i
N2 2 F

s�pŒd2� and M1.d1/ D
N1

h
Ik : : : Ikd

`1
1

iT 2 F
p�r Œd1�, with N2 and N1 constant matrices.

If N2 has full column rank andN1 has full row rank we say that (5) is an optimal
decomposition ofM.d1; d2/. As shown in [8, 9], if (5) is an optimal decomposition,
given a minimal realization˙1D.A11; B1; NC1; ND1/ ofM1.d1/ (of dimension�.M1/)
and a minimal realization ˙1D.A22; NB2; C2; ND2/ of M2.d2/ (of dimension �.M2/)
then the 2D system ˙2D

12 .A11; A21; A22; B1; B2; C1; C2;D/, where A21 D NB2 NC1,
B2 D NB2 ND1, C1 D ND2

NC1 and D D ND2
ND1, is a minimal realization of

M.d1; d2/ of dimension �R.M/ D �.M1/ C �.M2/. A similar reasoning can
be made if we factorize M.d1; d2/ D NM1.d1/ NM2.d2/, where NM1.d1/ 2 F

s� NpŒd1�
and NM2.d2/ 2 F

Np�r Œd2�, for some p 2 N, to obtain a minimal realization
˙2D
21 .A11; A12; A22; B1; B2; C1; C2;D/ of M.d1; d2/.
Note that, since both encoders and syndrome formers are (2D) polynomial

matrices, they both can be realized by means of (4). However, when considering
realizations of an encoder G.d1; d2/ D G2.d2/G1.d1/ we shall take A12 D 0 and
y D w; on the other hand when considering realizations of a syndrome former
H.d1; d2/ D H1.d1/H2.d2/, we shall take A21 D 0, u D w and y D 0, (cf.
Remark 3).

4 Minimal Syndrome Former Realizations of a Special Class
of Composition Codes

In the sequel the composition codes C to be considered are such that OC D
imG.d1; d2/, where the encoder G.d1; d2/ is as in (1) and satisfies the following
properties:
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(P1) G1.d1/ is a minimal 1D polynomial encoder2 (for instance, prime and
column reduced3), with full row rank over F;

(P2) G2.d2/ is a quasi-systematic 1D polynomial encoder, i.e., there exists an

invertible matrix T 2 F
n�n such that TG2.d2/ D

�
Ip
NG2.d2/

�
, NG2.d2/ 2

F
.n�p/�pŒd2�.

Note that both G1.d1/ and G2.d2/ are minimal encoders of the corresponding
1D convolutional codes. Moreover,G.d1; d2/ is a minimal encoder of C , i.e., it has
minimal Roesser McMillan degree among all encoders of C , [9, 10], in the sequel
we denote this minimal degree by �.C /.

In what follows, we shall derive a syndrome former construction for the code C ,
based on Proposition 5. Define

H1.d1/ D
�
L1.d1/ 0

0 I

�
2 F

.n�k/�nŒd1� and H2.d2/ D
�

I 0

� NG2.d2/ I
�
T 2 F

n�nŒd2�;

where L1.d1/ 2 F
.p�k/�pŒd1� and

�� NG2.d2/ I
� 2 F

.n�p/�nŒd2� are 1D syndrome
formers of the 1D convolutional codes imG1.d1/ and imG2.d2/, respectively. Let

H.d1; d2/ D H1.d1/H2.d2/ (6)

D
�
L1.d1/ 0

� NG2.d2/ I
�
T: (7)

It is easy to see thatH.d1; d2/ is a syndrome former of C . It can be shown that it
is possible to assume, without loss of generality, that (6) is an optimal decomposition
of H.d1; d2/. Then

�R.H/ D �.H1/C �.H2/ D �.L1/C �.� NG2/ D �.L1/C �.G2/:

Note that sinceL1.d1/ is a syndrome former of the 1D convolutional code imG1.d1/
and G1.d1/ is a minimal encoder of imG1.d1/, it follows that �.L1/ � �.G1/,
[5, 6], and hence �R.H/ � �R.G/. Moreover, �.L1/ D �.G1/ if L1.d1/ has
minimal McMillan degree among all syndrome formers of imG1.d1/, for instance,
if L1.d1/ is row reduced, [5, 6], (which can always be assumed without loss of
generality, since otherwise pre-multiplication ofH.d1; d2/ by a suitable unimodular
matrix U.d1/ yields another syndrome former for C , with L1.d1/ row reduced); in
this case �R.H/ D �R.G/.

2A minimal 1D encoder is an encoder with minimal McMillan degree among all the encoders of
the same code.
3A full row (column) rank matrix M.d/ 2 F

n�kŒd � is said to be row (column) reduced if
int degM.d/ is equal to the sum of the row (column) degrees of M.d/; in that case �.M/ D
int degM.d/.
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Thus given the encoder G.d1; d2/ we have constructed a syndrome former
H.d1; d2/, as in Proposition 5. Moreover, based on the special properties of
G.d1; d2/, we have shown that the minimal realizations of H.d1; d2/ have dimen-
sion �R.H/ D �R.G/ D �.C / (recall that G.d1; d2/ is a minimal encoder).

We next show that �R.H/ is minimal among the McMillan degree of all
syndrome formers of C with similar structure as H.d1; d2/.

Theorem 7 Let C , with OC D imG.d1; d2/, be a 2D composition code, and assume
that G.d1; d2/ D G2.d2/G1.d1/, where G1.d1/ and G2.d2/ satisfy properties

(P1) and (P2), respectively. Let further QH.d1; d2/ D
�
X1.d1/ 0

X21.d2/ X22.d2/

�
T be a

syndrome former of C , where X1.d1/ 2 F
.p�k/�pŒd1�, X21.d2/ 2 F

.n�p/�pŒd2�,
X22.d2/ 2 F

.n�p/�.n�p/Œd2� and T 2 F
n�n as in (P2). Then �R. QH/ � �.C /.

Proof Note that QH.d1; d2/G.d1; d2/ D 0 if and only if

(
X1.d1/G1.d1/ D 0


X21.d2/CX22.d2/ NG2.d2/

�
G1.d1/ D 0:

(8)

Then X1.d1/ must be a syndrome former of the 1D convolutional code imG1.d1/
and consequently �.X1/ � �.G1/ [6]. On the other hand we have that X21.d2/ C
X22.d2/ NG2.d2/ D 0, that is equivalent to

�
X21.d2/ X22.d2/

� � I
NG2.d2/

�
D 0, and

therefore
�
X21.d2/ X22.d2/

�
is a syndrome former of the 1D convolutional code

�
I
NG2.d2/

�
. Hence �


�
X21 X22

�� � �

��
I
NG2
��

, since

�
I
NG2.d2/

�
is a minimal en-

coder of im

�
I
NG2.d2/

�
. Now, since QH.d1; d2/ D

�
X1.d1/ 0

0 I

� �
I 0

X21.d2/ X22.d2/

�
T ,

it is not difficult to see that

�R. QH/ D �.X1/C �

�
X21 X22

�� � �.G1/C �
��

I
NG2
��

D �.G1/C �
�
T�1

�
I
NG2
��
D �R.G/ D �.C /:

ut
Corollary 8 Using the notation and conditions of Theorem 7, the syndrome former
of C given by (7) has minimal Roesser McMillan degree among all syndrome
formers of the same structure.
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Shifted de Bruijn Graphs

Ragnar Freij

Abstract We are studying a generalization of the de Bruijn graphs, with appli-
cations to storage. We use spectral methods to enumerate the Euler circuits in this
graph, which correspond to (very long) strings accessing every string of fixed length
exactly once, with the reader reset at regular intervals. We prove that, when the
alphabet is of size q, the subwords considered are of length n and a new reader
is initiated every k letters, there are exactly .qk/Šq

n
=qkCn such exhaustive words.

The enumeration generalizes classic results by Tutte, and relates crucially to subtree
enumeration in large networks.

Keywords de Bruijn graphs • Euler cycles • Exact enumeration • Spanning
trees • String networks

1 Introduction

De Bruijn graphs are an old class of graphs [14], which have recently earned a
lot of attention from the network storage and bioinformatics communities [1, 2, 9]
but still wait for some of the attention it deserves from coding theorists. They are
used to encode large data strings in terms of their substrings carrying non-trivial
information, and provide an example of fast-encodable, fast-searchable datastruc-
tures for strings. De Bruijn graphs have also found their way to pure mathematics,
for example Cooper and Graham have constructed a higher-dimensional analogue
(where strings are replaced by arrays) [4], and Ehrenborg et al. have studied a
version that encodes permutation pattern containment [5]. The nodes of the graph
are strings of length n, and there is a (directed) edge from v1 � � � vn to u1 � � � un if
v2 � � � vn D u1 � � � un�1. Any such graph, where the strings are from an alphabet on q
letters, embeds into the universal de Bruijn graphD.q; n/, consisting of all qn such
strings, with the same adjacency relations.
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The original result of de Bruijn graphs was computing the number of Hamilto-
nian circuits in D.2; n/, which by construction equals the number of binary strings
on 2nCn�1 letters, that contain any binary n-letter string exactly once. Flye Saint-
Marie proved, in response to a question in l’Intermédiaire des Mathématiciens, that
there are exactly 22

n�n�1 such exhaustive words [6]. In subsequent work, using more
graph theoretical techniques, van Aardenne-Ehrenfest and de Bruijn generalized this
to the q-letter case [14]. Recently, Rosenfeld has neatly demonstrated how to solve
such problems using the spectral theory of arc graphs [10, 11].

A prototypical application of de Bruijn graphs in bioinformatics is related to
genome assembly [3]. Here, one has a circular genome, and in a laboratory one can
repeatedly read short subsequences of this genome. After many enough such reads,
one has read the entire genome, but it remains to put together the reads into the
original circular string. Every way to do this corresponds to an Eulerian cycle in the
de Bruijn graphs spanned by the reads. In this paper, we study a shifted version of
this problem.

This means that the relevant graph that models the gathered data has vertices
indexed by strings of length n, and there is a directed edge from v1 � � � vn to u1 � � � un
if vkC1 � � � vn D u1 � � � un�k . Here,k is the length of a byte, and will in practical
applications often, but not always, divide n. The universal such graph for n-letter
strings from a q-letter alphabet is denoted byD.q; n; k/, and our main result in this
paper will be studying its spectrum and enumerating its Eulerian circuits.

2 Preliminaries on Graph Spectra

To fix some notation, a graph is a pair G D .V .G/;E.G// of a vertex set and
an edge set. All our graphs are directed and finite, with loops and multiple edges
allowed. When e D .u; v/ is a directed edge, we write t.e/ D u and h.e/ D v (read
“tail of e” and “head of e”, respectively). If h.e/ D t.e/, then we say that e is a
loop.

A Hamiltonian circuit in a graph is a circuit that passes through every node
exactly once, and an Eulerian circuit is a circuit that passes every edge exactly
once. While it is in general NP-hard to show that a given graph has a Hamiltonian
circuit [8], having an Eulerian circuit has a much easier criterion. Indeed, a directed
graph contains an Eulerian circuit if and only if it is connected and has that the
indegree ıC.v/ and the outdegree ı�.v/ agree on each node v in G. (This result
dates back to Euler.) When this is the case, the following classic result by de
Bruijn, Aardenne-Ehrenfest, Smith and Tutte [14] relate Eulerian cycles (with a
given starting edge e0) to directed spanning trees (directed away from a given root
vertex v0). For v 2 V.G/, let �.G; v/ be the number of trees inG directed away from
v, and for e 2 E.G/, let 
.G; e/ be the number of Eulerian cycles in G starting at e.
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Theorem 1 (BEST Theorem) Let G D .V;E/ be a connected digraph with
ıC.v/ D ı�.v/ for every v 2 V . Fix e0 2 E and let v0 D t.e0/. Then


.G; e0/ D �.G; v0/
Y

u2V
.ıC.u/� 1/Š:

Besides the original proof in [14], a good, self-contained proof of Theorem 1
occurs in [12], section 5.6. As the number of Euler cycles 
.G; e0/ does not depend
on e0, it follows curiously that �.G; v0/ does not depend on the choice of v0.
Moreover, the number of rooted trees has a following important interpretation as
a determinant (or as a product of eigenvalues):

For a digraphG on n nodes, we define its adjacency matrix A D A.G/ to be the
n� n matrix whose entries Ai;j are the number of edges from node i to node j . We
also define the Laplacian matrix L D L.G/ by

Li;j D �Ai;j if i ¤ j; and Li;i D ı�.i/Ai;i :

In particular, if G has uniform outdegree d , then L.G/ D dI � A.G/. As the row
sums in L.G/ are zero by construction,L has 0 as an eigenvalue.

The following celebrated theorem by Tutte [13] is a directed version of the
matrix-tree theorem, and relates these matrices to the numbers �.G; v/ and 
.G; e/.

Theorem 2 Let G be a digraph on n nodes with Laplacian matrix L D L.G/. Let
�0 D 0; �1; : : : ; �n�1 be the eigenvalues of L.G/. Then �.G; v/ D 1

n

Q
i¤0 �i .

This allows us to compute �.G; v/, which we will henceforth denote by �.G/, as
1=n times the product of the zeroes of the (reduced) characteristic polynomial

�.L.G//.t/

t
WD det.tI � L.G//

t
:

This is in turn the coefficient of t in det.L.G/ � tI /, so it can be computed as

�.G/ D 1

n
� d

dt
det.L.G/ � tI /jtD0:

In the case where G is d -regular, which will interest us most, we have L.G/ D
dI �A.G/, so we immediately get the following theorem.

Theorem 3 Let G be a digraph on N nodes with ı�.v/ D ıC.v/ D d for every
v 2 V.G/. Fix a root vertex u 2 V.G/. The number of rooted spanning trees in G is

�.G; u/ D 1

N
� d

dt
�.A.G//.t/jtDd ;
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and the number of Eulerian cycles in G is


.G/ D .d � 1/ŠN � �.G; u/:

The arc graph of G is the digraph � .G/ with V.� .G// D E.G/, and an edge
.e; f / whenever h.e/ D t.f /. In particular, � .G/ has no multiple edges, and
has a loop for every loop in G. Clearly an Eulerian cycle in G corresponds to
a Hamiltonian cycle in � .G/. The following relationship between the spectra of
G and � .G/ was demonstrated in [10], but will here be given a slightly different
presentation.

LetDC andD� be matrices with rows indexed by edges and columns indexed by
vertices of G. The entries are given byDC.e; u/ D 1uDh.e/ andD�.e; u/ D 1uDt .e/,
so DC keeps track of incoming edges and D� keeps track of outgoing edges from
every node. It is easy to verify that the adjacency matrices can be written

A.G/ D DCDT�

and

A.� .G// D DTCD� D .DT�DC/T :

But this implies that, for every eigenvalue � ¤ 0, we have

A.G/x D DCDT�.x/ D �x” A.� .G//TDT�.x/ D DT�DCDT�.x/ D �DT�.x/;

so the non-zero eigenvalues of A.G/ and A.� .G// agree. This proves that the
characteristic polynomials satisfy the equation

�.A.� .G///.t/ D tM�N�.A.G//.t/; (1)

whereM and N are the numbers of edges and vertices respectively in the graph G.

3 Shifted DeBruijn Graphs

The DeBruijn graphs were constructed to solve the following innocent looking
problem: Is there a binary word w1 � � �wn that, when read cyclically, contains all
binary words on n letters as a factor exactly once? If so, how many such words are
there? The problem was first solved in [6], and the solution was later generalized to
the q-letter case in [14]. The strikingly beautiful result is that there are exactly

.qŠ/q
n�1

qn
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such words. As explained in the introduction, these words are usually interpreted as
Hamiltonian cycles in the digraphD.q; n/. But when n > 1, the edge u1 � � � un�1  
u2 � � � un ofD.q; n� 1/ can be considered labelled by the string u1 � � � un 2 Œq�n, and
under this correspondence we see that D.q; n/ Š � .D.q; n � 1//, so we might as
well regard the exhaustive strings as Eulerian cycles in D.q; n � 1/.

In this paper, we introduce the three-parameter family of shifted de Bruijn
graphs D.q; n; k/, for q � 1, 1 � k � n. The set of nodes is the same as
before, V.D.q; n; k// D V.D.q; n// D Œq�n, but this time we have an edge
.u; v/ 2 E.D.q; n; k// whenever ukC1 � � � un D u1 � � � un�k. In particular, we
get the specialization D.q; n; 1/ D D.q; n/. It is also easy to see that we have
D.q; n`; k`/ Š D.q`; n; k/ for every integer `. So the shifted de Bruijn graphs are
only novel when n and k are relatively prime.

As explained in the introduction, computer science applications will often have
n divisible by k (as a string typically consists of an integer number of bytes).
In applications from chemistry and bioinformatics, where the bytes for example
correspond to observed DNA sequences read from a long string, such assumptions
are much less natural. The notion of shifted de Bruijn graphs was suggested by
Richard Ehrenborg (personal communication).

We extend our definition to the case 0 � r � k, by letting D.q; r; k/ have
qr vertices (labelled by words in Œq�r ) and qk�r arcs between every ordered pair
.u; v/ of nodes. The following is our key lemma for understanding shifted de Bruijn
graphs, and also explains why the definition is natural when r > k.

Lemma 4 For any integers q; k � 1, n � 0, we have � .D.q; n; k// Š D.q; n C
k; k/.

Proof We can label the edges ofD.q; n; k/ as ew by .nCk/-letter words w 2 Œq�nCk ,
where t.eu1���unCk

/ D u1 � � � un and h.eu1���unCk
/ D ukC1 � � � unCk. Note that when

n < k, there are exactly qk�n words with this property, for every u1 � � � un and
ukC1 � � � unCk.

Now few W w 2 Œq�nCkg D V.� .D.q; n; k///, and Œq�nCk D V.D.q; nC k; k//.
There is an arc .eu; ev/ in � .D.q; n; k// if and only if ukC1 � � � unCk D v1 � � � vn,
which is equivalent to .u; v/ being an arc ofD.q; nC k; k/. This proves the lemma.

ut
Lemma 5 Let 0 � r < k, and fix any v 2 V.G/. Then �.D.q; r; k/; v/ D
qk.q

r�1/q�r .

Proof In the range r < k, D.q; r; k/ is a complete graph on N D qr nodes with
duplicated edges (in both directions). A spanning tree of D.q; r; k/, cannot contain
two edges between the same pair of points, so it must correspond to a spanning tree
in KN , together with N � 1 independent choices of one out of qk�r parallel edges.
Indeed, once the tree is fixed, the direction of each edge is determined by the tree
being rooted at v.
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A complete graph hasNN�2 spanning trees (this is folklore, see [12] for a proof),
which gives

�.D.q; r; k/; v/ D NN�2q.k�r/.qr�1/ D qr.qr�2/q.k�r/.qr�1/ D qk.qr�1/q�r :

ut

4 The Spectrum of Shifted de Bruijn Graphs

Since the shifted de Bruijn graphs are regular, we can apply Theorem 3 to count
the number of Euler cycles via the spectrum of the adjacency matrix (rather than
the laplacian). This is valuable, because by Lemma 4 the shifted de Bruijn graphs
are arc graphs, so we can use Eq. (1) to understand the spectra of their adjacency
matrices.

Theorem 6 The number of Eulerian cycles in D.q; n; k/ satisfies


.D.q; n; k// D .qk/Šqnq�k�n:

Proof We first consider the number of rooted trees �.D.q; n; k//WD�.D.q; n; k/; u/
(recall that this does not depend on u). By Theorem 3, we have

�.D.q; n; k// D 1

N
� d

dt
�.A.D.q; n; k///.t/jtDd :

Note that D.q; n; k/ has M D qnCk edges and N D qn vertices. By Lemma 4,
we have that D.q; nC k; k/ D � .D.q; n; k//, and by Eq. 1, we thus get

�.A.D.q; nC k; k/// D tqnCk�qn�.A.D.q; n; k///:

It follows by induction that

�.A.D.q; n; k/// D tqn�qr �.A.D.q; r; k///;

where r is the remainder of n modulo k. The graph D.q; n; k/ is qk-regular for
every n by construction, and thus

�.A.D.q; n; k///.qk / D �.L.D.q; n; k///.0/ D 0
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(as the Laplacian matrix is always singular). We can now use Theorem 3 (together
with the observation that D.q; n; k/ has qn vertices and is d D qk-regular for every
n) to obtain

�.D.q; n; k// D q�n d

dt
�.A.D.q; n; k///.t/jtDqk

D q�n d

dt
tq
n�qr �.A.D.q; r; k///.t/jtDqk

D q�nqk.qn�qr / d

dt
�.A.D.q; r; k///.t/jtDqk

D q�nqk.qn�qr /qr�.D.q; r; k//
D q�nqk.qn�qr /qk.qr�1/ D qk.qn�1/q�n;

where the last line is Lemma 5.
Finally, Theorem 3 yields


.D.q; n; k// D .d � 1/ŠN � �.D.q; n; k//
D .qk � 1/Šqnqk.qn�1/q�n
D .qk/Šq

n

q�k�n:

ut
Note that this formula is consistent with the “homogeneity” property

D.q; n; k/ Š D.q`; n
`
; k
`
/, and reduces when k D 1 to the known formula


.D.q; n// D qŠq
n

qnC1 .
As mentioned in the introduction, application of de Bruijn graphs often concern

certain subgraphs of the universal de Bruijn graph. Indeed, we are often not
interested in all n letter strings on a q letter alphabet, but only in some certain subset
of them, for example those occurring in a certain text file or those observed when
examining random sequences from a genome. If the subgraph in question is generic
at least globally (meaning that there is no huge clustering of the relevant strings),
the spectral structure of D.q; n; k/ is still of great relevance. For example, a natural
way to sample from the data set is by performing random walk on D.q; n; k/ and
testing for containment in the data set. For these purposes, it is relevant to know the
mixing properties, or the convergence rate of random walk onD.q; n; k/.

For a beautiful treatment of how to bound useful invariants such as access time
and cover time of random walk in terms of its spectrum, see [7]. Of course, the
limiting distribution is uniform over all strings, and for now, let us only remark that
the convergence rate of random walk on a regular graph G is given by �=d , where
d is the regular degree of the graph, and j�j is the second to largest modulus of
an eigenvalue of G. (The largest eigenvalue will always be d , with eigenvector the
uniform distribution.) In the case of de Bruijn graphs, we have d D qk and � D 0,
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which only proves that the convergence will be faster than exponential, but a much
finer result should be obtainable by a more detailed study.

These are only a few of the reasons why understanding the global spectral
behaviour of de Bruijn graphs helps us use substructures for storage applications.
It is our hope that many more such applications will appear in the near future, not
least through this conference.
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New Examples of Non-Abelian Group Codes

Cristina García Pillado, Santos González, Victor Markov, Consuelo Martínez,
and Alexandr Nechaev

Abstract It has been known some time ago that there are one-sided group codes
that are not abelian codes, however the similar question for group codes was not
known until we constructed an example of a non-abelian group code using the
group ring F5S4. The proof needs some computational help, since we need to know
the weight distribution of all abelian codes of length 24 over the prime field of 5
elements. It is natural to ask, is it really relevant that the group ring is semisimple?
What happens in the case of characteristic 2 and 3? Our interest to these questions
is connected also with the following open question: does the property of all group
codes for the given group to be abelian depend on the choice of the base field (the
similar property for left group codes does)? We have addressed this question, again
with computer help, proving that there are also examples of non-abelian group
codes in the non-semisimple case. The results show some interesting differences
between the cases of characteristic 2 and 3. Moreover, using the group SL.2; F3/
instead of the symmetric group we can prove, without using a computer for it,
that there is a code over F2 of length 24, dimension 6 and minimal weight 10. It
has greater minimum distance than any abelian group code having the same length
and dimension over F2, and moreover this code has the greatest minimum distance
among all binary linear codes with the same length and dimension. The existence of
such code gives a good reason to study non-abelian group codes.

Keywords Group code • Abelian group code • Semisimplicity

1 Introduction

Let G D fg0 D e; g1; : : : ; gn�1g be a finite group and F a field. Any (left) ideal L
of the group ring FG defines a (left) group code K.L/ of length n over F by the
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rule

.a0; a1; : : : ; an�1/ 2 K.L/, a0g0 C a1g1 C : : :C an�1gn�1 2 L:

In what follows e denotes the identity element of any groupG and all groups we
consider will be finite.

We can consider the natural action of the symmetric group Sn on the n-
dimensional space F n defined as permutation of coordinates:

	.a1; : : : ; an/ D .a	�1.1/; : : : ; a	�1.n// 8.a1; : : : ; an/ 2 F n:

Two codes C1; C2 � F n are permutation equivalent if there exists a permutation
	 2 Sn such that C2 D 	.C1/. For a given code C � F n the group of all
permutations 	 2 Sn such that 	.C / D C is denoted by PAut.C/.

Any code which is permutation equivalent to K.L/ for some (left) ideal L of the
ring FG is called a (left)G-code. Notice that a givenG-code can be realized also as
H group code for a differentH . In particular it is possible thatG is not abelian, but
H is abelian. A code is called abelian if it is an A-code for some abelian group A
[1]. It is known that all G-codes are abelian if jGj < 24, but there exist non-abelian
group codes when jGj D 24. In [4–6] we provide an example which involves the
group G D S4 and the finite field F D F5. It was already presented in 2011 in the
3rd ICMCTA. The semisimple group ring R D FG contains 5 two-sided minimal
ideals generated by 5 central elements (see [3]). Three of them define abelian codes
and the other two define Œ24; 9; 8�-non-abelian group codes.

Now we study how dependent this result is on the semisimplicity of the group
ring R D FG. What happens in the cases F D F2 and F D F3?

2 Case F D F3

Following the same lines that were used in the case of F D F5 it can be proved:

Theorem 1 Consider F D F3 and the ideal I D c2.e C c1/R, where

c2 D .1; 2/.3; 4/C .1; 3/.2; 4/C .1; 4/.2; 3/

and

c1 D .1; 2/C .1; 3/C .1; 4/C .2; 3/C .2; 4/C .3; 4/

are central elements of R D FS4. The codeK.I/ is not abelian.

The proof that this ideal is non-abelian is based on the computation of the weight
distribution for this ideal. Then a search through all ideals of dimension 9 in rings
FA, where A is an abelian group of order 24, is needed. To make the search faster,
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the group A is expressed as a direct sum of the cyclic group B of order 3 and
an abelian group D of order 8, what leads to an isomorphism FA Š FBŒD� Š
FB ˝F FD and FD is well known for every group of the kind.

No weight distribution obtained coincides with that of I .

3 Case F D F2

The central element in F5S4 that generates an ideal that defines a non-abelian code,
becomes, in the case of characteristic 2, the element

˛ D e C
X

� C
X

v2V
vC

X
c

where �; v and c run respectively over the set of transpositions, the Klein subgroup
V and the set of 4-cycles.

The element ˛ generates an ideal of dimension 5 containing a basis which
consists of elements of weight 16 that defines a Œ24; 5; 8�-code. The weight
distribution of such an ideal is:

• 1 element of weight 0
• 15 elements of weight 8
• 15 elements of weight 16
• 1 element of weight 24

Is the corresponding Œ24; 5; 8�-code C abelian?
Considering the abelian group C2 ˚ C12 D< b > ˚ < a >, the element

x D 1C aC a6 C a7 C b C ab C a6b C a7b

generates an ideal which defines a Œ24; 5; 8�-code with the same weight distribution
as C . This is not sufficient to assure that both codes are permutation equivalent,
however it is easy to find a linear weight preserving transformation between these
codes. So both codes are permutation equivalent and this code does not work as a
possible counterexample to our question.

An exhaustive computer search proves the following statements:

• Given an arbitrary code in R D F2S4 there is always an abelian code with the
same weight distribution and parameters.

• Every ideal of dimension less than or equal to 8, 12 or greater than or equal to 16
is permutation equivalent to an abelian code.

So we only need to check ideals of dimensions 9, 10 and 11 (the cases of
dimensions 15, 14 and 13 follow by duality).
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Theorem 2 Consider the ideal Y generated by the element

y D .3; 4/C .2; 4/C .1; 2/.3; 4/C .1; 3; 2; 4/C .1; 2; 4/
C.1; 4; 3/C .1; 2; 3; 4/C .1; 4; 3; 2/

The code K.Ry/ is not abelian.

The ideal Y has dimension 9 and its weight distribution is:

• 1 element of weight 0
• 87 elements of weight 8
• 336 elements of weight 12
• 87 elements of weight 16
• 1 element of weight 24

As it has just been mentioned, we know that there are ideals in FA for A D
C4˚C6 and A D C2˚C2˚C6 that have the same parameters and the same weight
distribution as the ideal Y . The result by Bernal et al. [1] characterizing abelian
group codes as those codesC such that PAut.C / contains a regular abelian subgroup
does not help to prove that this code is non-abelian because the group PAut.C / is
too large. The third way is to consider the linear weight preserving transformations
from Y to the abelian codes mentioned above. Initially, the exhaustive search of
such transformations seemed impossible even using a computer. But if one takes a
basis of the ideal Y consisting of 9 elements of weight 8 and divides it into blocks
of 3 elements each, one can check the linear weight preserving transformations
defined only on the corresponding 3-dimensional spaces. But by pure chance the
first block happened to have no such transformations into the abelian codes we were
interested in.

4 A “Good” Non-abelian Code

The examples we have provided have rather poor parameters when considered to
abelian codes of the same length and dimension. The following example is better
from this point of view.

The following result can be proved.

Theorem 3 There are no abelian codes over F2 having length 24, dimension 6 and
minimal weight greater than 8.

Now we can describe the main construction.
We start with the following example given in [2]. If the base field is E D F4 then

there exist left group codes over the quaternion groupQ D f˙1;˙i;˙j;˙kg that
are non-abelian. One of these codes is linked to a left ideal L of the group ring EQ
generated by the element i C j C k C # � 1C #2 � .�1/, where # generates E over
F D F2. We can prove that L has dimension 3 over E and minimal weight 5.
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Inside of the group G D SL.2; F3/ we can identify a subgroup isomorphic to
the quaternion group. Denote this subgroup also by Q and select an element t 2 G
having order 3. So the group T D< t > contains three elements andG decomposes
into a semi-direct product G D Q h T , which implies that FG is a free right
module over F T with basis Q. Now there are two orthogonal idempotents in the
ring R D F T , namely e1 D e C t C t2 and e2 D t C t2. Obviously this leads
to the decomposition of the ring F T into the direct sum of two subrings: R D
Re1 ˚ Re2. The first summand is isomorphic to F . A direct check shows that the
element te2 D eC t2 satisfies inRe2 the equation x2CxC1 D 0, and # is a root of
the same equation. So there exists a ring isomorphism betweenE andRe2 such that
1 corresponds to e2 D t C t2 and # corresponds to te2 D eC t2. This isomorphism
can be naturally extended to an F -linear mapping f W EQ! FG acting identically
onQ. The image f .L/ happens to be a two-sided ideal in FG and since f doubles
the dimension of any subspace in EQ and the weight of each element in EQ, the
ideal f .L/ has dimension 6 and minimal weight 10. The previous theorem assures
that the corresponding code is non-abelian.

Now, we can use the following result:

Theorem 4 (Theorem 5.1 [6]) Let F be a subfield of a field E and G a group. If
all G-codes over E are abelian then all G-codes over F are abelian.

As an immediate corollary we obtain

Theorem 5 For any finite field K of characteristic 2 there exists a non-abelian
group code of length 24 and dimension 6.

It is known that the greatest minimum distance of a linear binary code of
dimension 6 and length 24 is 10 [7]. So the code constructed above is “better” than
any abelian group code and achieves the upper bound of minimum distance in the
class of all binary linear codes (naturally with the same length and dimension).
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Cyclic Convolutional Codes over Separable
Extensions

José Gómez-Torrecillas, F.J. Lobillo, and Gabriel Navarro

Abstract We show that, under mild conditions of separability, an ideal code, as
defined in Lopez-Permouth and Szabo (J Pure Appl Algebra 217(5):958–972,2013),
is a direct summand of an Ore extension and, consequently, it is generated by
an idempotent element. We also design an algorithm for computing one of these
idempotents.

Keywords Separable extension • Convolutional code • Ideal code

1 Introduction

Most of the codes used in engineering support a vector space structure (linear
block codes) or become a direct summand of a free module over a polynomial
ring (convolutional codes). In the linear case, the benefits are increased if we also
consider the notion of cyclicity, since the vector space is also endowed with an
algebra structure and cyclic codes come to be ideals. Over convolutional codes,
this notion requires something more sophisticated than a simple extension of the
block one [1, 4, 5], and the underlying working algebra is no longer a polynomial
ring but a skew polynomial ring AŒzI 	� over a finite commutative semisimple
algebra A. Very recently, in [3], these codes are called ideal codes and they are
defined over Ore polynomial rings AŒzI 	; ı�, where A is a finite (possibly non–
commutative) semisimple algebra. Nevertheless, effective procedures and results to
compute generator matrices, parity check matrices and dual codes are only provided
whenever A is a separable group algebra of a finite group over a finite field, see [3,
Sections 4 and 5]. In this work we aim to cover more examples, see Example 3, than
the aforementioned papers by assuming only certain mild conditions of separability
in A, see Theorem 1. In particular, we prove that every ideal code is generated by
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an idempotent element (Theorem 4). We also provide an algorithm for computing a
generating idempotent (Algorithm 3) which, in particular, is applicable to the ideal
codes from [1], see Example 2. For brevity, we only shall consider Ore polynomial
rings AŒzI 	; ı�, where the 	-derivation ı D 0, albeit, under suitable conditions, our
results remain true for a more general ı. In our examples, except for 0 and 1, we
shall write the elements of a finite field F as powers of a primitive element and not
as polynomials.

2 Separable Extensions and Ideal Codes

A ring extension S � R of non–commutative rings is called separable if there exists
p DPi ai ˝ bi 2 R˝S R such that rp D pr for all r 2 R and

P
i ai bi D 1. This

element is called a separability element. In a separable extension, R–submodules
of a left R–module which are S–direct summands are also R–direct summands, as
proved in [2]. This is the key feature for us. Concretely, let I be a left ideal of R
which is a direct summand of R as an S -submodule, and let � denote the section of
the projection � W R ! R=I viewed as a morphism of left S -modules. Hence I
is also a direct summand of R as R-module. In fact, if

P
i ai ˝ bi is a separability

element, then ˇ W R=I ! R, defined by ˇ.r C I / D P
i ai �.bi r/ D

P
i rai �.bi /,

is the section of � viewed as a morphism of left R-modules.
Our first goal is to extend separability to Ore extensions. By Aut.R/ we denote

the set of ring automorphisms of a ring R. Let us fix 	 2 Aut.R/ with 	.S/ � S .
Even though that 	 needs not to be an S–bimodule map, it is possible to extend it
to a map 	˝ W R˝S R! R˝S R given by 	˝.a˝ b/ D 	.a/˝ 	.b/. We recall
that the Ore extension RŒzI 	�, where 	 2 Aut.R/, is the free right R–module with
basis the powers of z and multiplication defined by the rule

az D z	.a/ for all a 2 R:

Hence the elements in RŒzI 	� are polynomials in z with coefficients on the right,
and R � RŒzI 	� as polynomials of degree 0.

Theorem 1 Let S � R be a separable extension with separability element p DP
i ai ˝S bi 2 R ˝S R and 	 2 Aut.R/ with 	.S/ � S . If 	˝.p/ D p, then

SŒzI 	jS � � RŒzI 	� is separable and a separability element of the extension is given
by p DPi ai ˝SŒzI	jS � bi 2 RŒzI 	�˝SŒzI	jS � RŒzI 	�.
Example 2 When dealing with 	-cyclic convolutional codes (	-CCC’s) [1], Theo-
rem 1 can always be applied. We recall that a 	-CCC is a left ideal I of AŒzI 	�,
where A D FŒx�=hxn � 1i with .n; char.F// D 1, and 	 2 AutF.A/. Since A is a
finite product of finite field extensions of F, it is enough to compute a separability
element under the conditions of Theorem 1 for each block field. It is easy to see that
the sum of all of them is a separability element of the whole algebra A. To illustrate
the method, we shall detail the following example.
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Let F4 D F2Œ˛�=.˛
2 C ˛ C 1/ be the field with four elements and A D F4Œx�

.x5�1/ .
Hence A Š K0 �K1 �K2, where

K0 D F4Œx�

.x C 1/ ;K1 D F4Œx�

.x2 C ˛x C 1/ andK2 D F4Œx�

.x2 C ˛2x C 1/ :

Following [1], consider the isomorphisms  12 W K1 ! K2 and  21 W K2 ! K1

given by  12.x/ D ˛2x C 1 and  21.x/ D ˛x C ˛. Let 	 W A ! A be the
automorphism defined by 	.x/ 
 	.1; x; x/ D .1;  21.x/;  12.x/

4/ D x3, by
using Chinese Remainder Theorem (CRT). A separability element for each block
field extension can be obtained from dual bases. Concretely, for dual basis fai gi and
fbigi , simply set p DPi ai ˝ bi . In this case, f1g is a self-dual normal basis ofK0.
For K1, a normal basis is fx; x4g, and its dual basis is given by f˛x; .˛x/4g. Apply
 12 to obtain that f˛2xC1; .˛2xC1/4g and fxC˛; .xC˛/4g are dual basis forK2.
By using CRT, it is straightforward to calculate all these elements in A and compute
a separability element p:

p D .x4 C x3 C x2 C x C 1/˝ .x4 C x3 C x2 C x C 1/
C .˛2x4 C ˛2x3 C ˛x2 C ˛/˝ .x4 C x3 C ˛2x2 C ˛2/
C .˛x3 C ˛2x2 C ˛2x C ˛/˝ .˛2x3 C x2 C x C ˛2/
C .˛2x4 C ˛2x2 C ˛x C ˛/˝ .x4 C x2 C ˛2x C ˛2/
C .˛x4 C ˛2x3 C ˛2x C ˛/˝ .˛2x4 C x3 C x C ˛2/

Observe that, by construction, 	˝.p/ D p, so p is a separability element for the
extension F4Œz� � AŒzI 	�.
Example 3 Let A D M2.F8/ be the ring of 2 � 2 matrices over the field with
8 elements, where F8 D F2Œ˛�=.˛

3 C ˛ C 1/. Let 	 W A ! A be the inner
automorphism given by 	.X/ D UXU�1, where

U D
�
0 ˛2

˛3 ˛6

�
:

The reader may check that the order of 	 is 3. It is well-known that F8 	 A is a
separable extension and

e D
�
1 0

0 0

�
˝
�
1 0

0 0

�
C
�
0 0

1 0

�
˝
�
0 1

0 0

�

is a separability element. Hence, since .j	 j; char.F8// D 1, it is not difficult to check
that p D j	 j�1.e C 	˝.e/ C .	2/˝.e// is a separability element of the extension
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such that 	˝.p/ D p. Concretely

p D
�
1 0

0 0

�
˝
�
1 0

0 0

�
C
�
0 0

1 0

�
˝
�
0 1

0 0

�
C
�
0 0

˛4 1

�
˝
�
0 0

˛4 1

�

C
�
˛3 ˛6

1 ˛3

�
˝
�
0 0

˛ 0

�
C
�
0 ˛3

0 1

�
˝
�
0 ˛3

0 1

�
C
�
0 ˛6

0 0

�
˝
�
˛4 1

˛ ˛4

�
:

Note that this last trick can be used for the group algebras discussed in [3].

From now on F denotes a finite field and A a finite semisimple F–algebra. By
Artin–Wedderburn’s theorem and Wedderburn’s little theorem, A is isomorphic
to a finite direct product of matrix rings over finite field extensions of F. Since
matrix rings over a field are separable extension of their base field and finite
fields are separable, see Examples 2 and 3, it follows from [2, Proposition 2.5]
that F � A is a separable extension. Denote by p a separability element. Let
also B D fv0; : : : ; vn�1g be a basis of A over F. Under the usual identification
F
nŒz� Š FŒz�n, B induces an isomorphism of FŒz�–modules v W AŒzI 	� ! FŒz�n

given by v.
P

i zi fi / D

P

i zi fi;0; : : : ;
P

i zi fi;n�1
�

where, for all i , fi D fi;0v0 C
: : : Cfi;n�1vn�1 and the FŒz� action on AŒzI 	� is given by left multiplication. We
denote p D v�1.

By [3], an ideal code is a left ideal I � AŒzI 	� such that v.I / is a direct summand
of FŒz�n. Ideal codes generalize the notion of cyclicity in convolutional codes given
in [1]. Nevertheless, under the conditions of Theorem 1, I is also a direct summand
as left ideal of AŒzI 	�.
Theorem 4 Let A be a finite dimensional semisimple algebra over a finite field F,
p a separability element of the extension and 	 2 AutF.A/ with 	˝.p/ D p. Then
each ideal code is a direct summand of AŒzI 	� as a left ideal. In particular, it is
generated by an idempotent.

The following problem still remains open [3].

Conjecture 5 Let A be a finite dimensional semisimple algebra over a finite field
and 	 2 AutF.A/. Then each ideal code is a direct summand of AŒzI 	�.

3 Computing a Generating Idempotent

We follow the notation of Sect. 2. Let 	 2 AutF.A/ with 	˝.p/ D p. Let I be
the left ideal of R D AŒzI 	� generated by G D fg0; : : : ; gt�1g. Observe that R is
generated as an FŒz�–module by B, so a generator matrix M.G/ for v.I / has as
rows the vectors fv.vigj / j 0 � i � n � 1; 0 � j � t � 1g. Let us consider the
presentation of R=I

R
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Hence, by means of the isomorphisms of FŒz�-modules v and p, R=I is identified
with the cokernel of the right multiplication by the matrix M.G/. The left ideal I
is an ideal code if and only if it is a FŒz�–direct summand of R, equivalently, if and
only if the Smith canonical form H of M.G/ is basic, that is, H is the matrix of
size tn � n given by H D 


Ik 0
0 0

�
; where k is the dimension of the code, and Ik is

the identity matrix of order k. Let P and Q invertible matrices with coefficients in
FŒz� with suitable sizes such that PM.G/Q D H . Let also V D 
 0

In�k

�
, and V T the

transpose of V . Since the morphism h, given by right multiplication byQV , is also a
cokernel map forM.G/ with splitting morphism s, given by right multiplication by
V TQ�1, there exists an isomorphism of FŒz�–modules � W R=I ! FŒz�n�k uniquely
determined by h and � . Define � W R=I ! R by � D ps� . It is straightforward to
check that � is an splitting morphism for � as morphism of FŒz�–modules. According
to Sect. 2, the homomorphism of left R–modules ˇ W R=I ! R defined as

ˇ.r C I / D
X

i

ai �.bi r C I /

for all r C I 2 R=I splits � . In particular, e D ˇ.1 C I / is an idempotent in R
which generates a complement of I in R and, since �.1 � e/ D 0, then f D 1 � e
generates the left ideal I . Now, e can be explicitly computed:

e D ˇ.1C I / D
X

i

aip.v.bi /MhMs/:

The above reasoning proves the correctness of the following algorithm.

Example 6 (continuation of Example 2) Let I be the left ideal of AŒxI 	� gener-
ated by

g D z


˛x4 C ˛2x3 C ˛2x C ˛�C 
˛x3 C ˛2x2 C ˛2x C ˛� :

With the aid of some mathematical software, one may compute M.g/, which is
called the 	-circulant matrix of g in [1], whose Smith normal form decomposition
is H D PM.g/Q, where H D 


I2 0
0 0

�
. Therefore, I is a 	-cyclic convolutional

code of dimension 2 and length 5. Following Algorithm 3, a generating idempotent
is given by

f D z3


˛2x4 C ˛x3 C ˛x2 C ˛2x�C z2



x4 C x3 C x2 C x�

C z


x4 C x3 C x2 C x�C 
˛x4 C ˛2x3 C ˛2x2 C ˛x� :

A basic encoder may be calculated by considering the first two rows of the matrix
PM.g/, and the reader may check that the degree of I is ı D 2. Then, this is a
.5; 2; 2/4 convolutional code and its free distance is bounded by 9, the singleton
bound. Actually, we may calculate the first terms of the column and row distances
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Algorithm 3 Computation of a generating idempotent
Input: G D fg0; : : : ; gt�1g 	 R D AŒzI 	� non-zero. Assumption. F 	 A is finite semisimple

with separability element p DP
i ai ˝ bi in the conditions of Theorem 4.

Output: An idempotent f 2 R such that Rf D Rg0C � � � CRgt�1, or zero if it does not exist.
1: Compute the matrix M.G/
2: Compute the Smith normal form decomposition H D PM.G/Q

3: if H is not basic then
4: return 0
5: end if
6: V  


0
In�k

�
, where k D rank.H/ and n D dimF.A/

7: Mh QV , Ms  V TQ�1, M  MhMs

8: Compute ei D p.v.bi / �M/ for all i
9: e P

i ai ei
10: return f D 1� e

of I [6]. Concretely, dc0 D 6, dr0 D 8, dc1 D 8. Hence, the free distance of I is
dfree.I / D 8.

Example 7 (continuation of Example 3) Let B D ˚

1 0
0 0

�
;


0 1
0 0

�
;


0 0
1 0

�
;


0 0
0 1

�


be the chosen basis of M2.F8/ŒzI 	� as F8Œz�–module. Let I be the left ideal of

M2.F8/ŒzI 	� generated by the polynomial g D z2
�
˛ ˛2

˛3 ˛4

�
C z

�
˛4 0
˛3 1

�
C
�
˛2 1
˛ ˛6

�
.

Hence,

M.g/ D

0

BB
@

˛6z2 C ˛2 z2 C 1 ˛3z2 C z ˛4z2 C z
˛2z2 C ˛ ˛3z2 C ˛6 ˛6z2 C ˛5z z2

˛2z2 C ˛6z ˛3z2 C ˛6z ˛3zC ˛2 ˛3zC 1
˛5z2 C ˛4z ˛6z2 ˛zC ˛ ˛6

1

CC
A

whose Smith normal form decomposition is given byH D PM.g/Q, where

H D

0

BB
@

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

1

CC
A ; Q D

0

BB
@

1 ˛6zC ˛4 ˛5z2 C ˛3zC ˛4 ˛4z3 C ˛3z2 C ˛4zC ˛
0 ˛5zC ˛6 ˛4z2 C ˛5zC ˛6 ˛3z3 C ˛3zC ˛3
0 ˛ z ˛6z2 C zC ˛5
0 0 0 1

1

CC
A

and P D

0

B
B
@

˛4 ˛ 0 0

zC ˛2 ˛4zC ˛3 ˛4 0

˛4z2 C ˛2zC ˛4 ˛z2 C ˛3zC ˛5 ˛4z 0

˛z2 C ˛3zC ˛4 ˛5z2 C ˛3zC ˛5 ˛zC ˛6 1

1

C
C
A :

Therefore, I is an ideal code of dimension 2 and length 4. Following Algorithm 3,
the morphism h and its section s are given by the matrices

Mh D

0

B
B
@

˛5z2 C ˛3zC ˛4 ˛4z3 C ˛3z2 C ˛4zC ˛
˛4z2 C ˛5zC ˛6 ˛3z3 C ˛3zC ˛3

z ˛6z2 C zC ˛5
0 1

1

C
C
A and Ms D

�
0 ˛ ˛5zC ˛6 0
0 0 0 1

�
:
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Hence, �.aC I / D p.v.a/ �M/ for any aC I 2 R=I , where

M D

0

BB
@

0 ˛6z2 C ˛4zC ˛5 ˛3z3 C ˛2z2 C ˛3 ˛4z3 C ˛3z2 C ˛4zC ˛
0 ˛5z2 C ˛6zC 1 ˛2z3 C ˛5 ˛3z3 C ˛3zC ˛3
0 ˛z ˛5z2 C ˛6z ˛6z2 C zC ˛5
0 0 0 1

1

CC
A :

So, the parity check idempotent polynomial is e D �.id ˝ �/.p/. Concretely,

e D z3
�
˛6 1
˛5 ˛6

�
C z2

�
˛5 ˛
˛2 0

�
C z

�
0 ˛2

˛3 1

�
C
�
˛6 1
˛ ˛2

�

and the generating idempotent of I is

f D 1 � e D z3
�
˛6 1
˛5 ˛6

�
C z2

�
˛5 ˛
˛2 0

�
C z

�
0 ˛2

˛3 1

�
C
�
˛2 1
˛ ˛6

�
:

Again, we may calculate the first terms of the column and row distances of the ideal
code I . Concretely, dc0 D 3, dc1 D 4 and dr0 D 4. Hence, by [6], the free distance
of I is dfree.I / D 4. The degree is 2, therefore it is a .4; 2; 2/8 convolutional code.
The singleton bound is 7.
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Reachability of Random Linear Systems over
Finite Fields

Uwe Helmke, Jens Jordan, and Julia Lieb

Abstract This paper deals with the probability of classical system-theoretic prop-
erties of random linear systems defined over a finite field. Explicit formulas are
derived for the probability that the reachability matrix of a linear system has rank
r . We also calculate the probability that the parallel connection of two single-input
systems is reachable. Our results should be viewed as a first step to calculate the
probability that a network of linear systems is reachable.

Keywords Linear systems • Finite fields • Reachability • Grassmann mani-
folds • Parallel connection

1 Introduction

In network control of multi-agent systems a natural question of interest regards
the characterization of reachability and observability properties of classes of
interconnected linear systems. Networks of linear systems defined over finite fields
are of interest in many application areas, as they provide efficient tools to investigate
quantization effects, for studying convolutional codes and Boolean networks and
promise interesting applications to network coding; see e.g. [6, 10, 11] and [8]. In
such applications it becomes important to estimate the probability that randomly
chosen interconnection parameters entail reachability. It is for such reasons that
we became interested in estimating the probability that a linear control system is
reachable.

In this paper we determine the probability that a discrete-time linear control
system

x.� C 1/ D Ax.�/C Bu.�/; x.0/ D 0; � D 0; 1; 2; : : :
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with system matrices A 2 Fn�n; B 2 Fn�m defined over a finite field F is reachable.
We do this in Sect. 3 by calculating the number of state space pairs .A;B/ with
a reachability space of fixed dimension. One of our main results is Theorem 1,
which establishes an explicit formula for the number of reachable pairs. This extends
earlier results by [7], derived for m � 2 inputs. Our proof of Theorem 1 rests on
the Hermite cell decomposition of the quotient space of reachable pairs, introduced
in [4] and [5]. We also determine the probability for a parallel connection of two
single-input systems to be reachable. This is based on an explicit formula for the
number of pairs of coprime polynomials over F.

2 Counting Points of the Grassmannian

We begin with a brief summary of well-known properties of Grassmannians over
a finite field F with cardinality jFj. Throughout this paper we assume that F is
endowed with the uniform probability distribution that assigns to each field element
the same probability

t D 1

jFj :

The Grassmannian over a finite field F is the set Gk.Fn/ of all k-dimensional
linear subspaces V 	 Fn (more precisely, it is the set of F-rational points of the
Grassmann variety, but this distinction does not play a significant role in this paper).
To count the number of elements inGk.Fn/ one can proceed in at least two different
ways. The first approach proceeds by identifying the Grassmann manifold Gk.Fn/
of k-dimensional linear subspaces of Fn with the homogeneous space GLn.F/=P
by the parabolic subgroup

P D
�
GLk.F/ Fk�.n�k/
0 GLn�k.F/

�

of block upper triangular matrices. It is well-known and easily established that the
general linear groupGLn.F/ of invertible n � n-matrices has exactly

jGLn.F/j D t�n2
nY

jD1
.1 � t j / (1)

elements. Therefore the GrassmannianGk.Fn/ has exactly

jGk.Fn/j D jGLn.F/j
jGLk.F/jjGLn�k.F/jjFk�.n�k/j D t

�k.n�k/
n�kY

jD1

.1 � tkCj /
.1 � t j / (2)
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many points. In particular, we conclude the well-known formula that the projective
space Pn�1.F/ has exactly 1C t�1 C � � � C t1�n many elements.

Alternatively, one constructs a cell decomposition of the Grassmannian Gk.Fn/

Gk.Fn/ D
G

a2Ak;n
S.a/

into finitely many disjoint Euclidean spaces S.a/; see e.g. [9]. Recall that a
Schubert-cell S.a/ 	 Gk.Fn/ is defined for each sequence a D .a1; : : : ; ak/ of
strictly increasing integers 1 � a1 < : : : < ak � n. Let Ak;n denote the set of such
sequences a. Thus, S.a/ can be identified with the set of all full row rank k � n
matrices X that are in a-row echelon canonical form, i.e. X D .xij / 2 Fk�n has
the standard basis vectors e1; : : : ; ek at columns a1; : : : ; ak and satisfies xij D 0 for
j < ai . A simple counting argument shows that each Schubert cell S.a/ is uniquely
characterized by exactly

dimS.a/ D d.a/ WD k.n � k/�
kX

iD1
.ai � i/ (3)

free parameters and therefore consists of t�d.a/ elements. This implies that the
number of elements of the Grassmannian is given as

jGk.Fn/j D t�k.n�k/
X

a2Ak;n
t
Pk
iD1.ai�i /: (4)

In particular, we deduce from (2) the identity of power series

X

a2Ak;n
t
Pk
iD1.ai�i / D

kY

jD1

.1 � tn�kCj /
.1� t j / : (5)

3 Probability of Reachable Systems

We consider linear control systems of the form

x.� C 1/ D Ax.�/C Bu.�/; x.0/ D 0; � D 0; 1; 2; : : : (6)

and system matrices A 2 Fn�n; B 2 Fn�m; see [2] for a summary of linear systems
theory, developed over an arbitrary field. A linear system (6) is called reachable, if
for any element � 2 Fn there exists a finite sequence of inputs u0; : : : ; u�� 2 Fm

such that the sequence of states x.0/; x.1/; : : : ; x.�� C 1/ generated by (6) satisfies
x.�� C 1/ D �. We then say that � is reached from the initial condition x.0/ D 0
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in �� C 1 steps. A simple characterization of reachable linear systems is available
using the so-called Kalman test. Explicitly, (6) is reachable if and only if the n�nm-
reachability matrix satisfies

rank.B;AB; � � � ; An�1B/ D n:

Let ˙cr
n;m.F/ denote the set of all such reachable pairs and let j˙cr

n;m.F/j denote its
cardinality. We are interested in calculating the number of reachable pairs .A;B/ 2
Fn�n�Fn�m, i.e., the cardinality of j˙cr

n;m.F/j. Equivalently, for the equidistribution
on Fn�.nCm/, we want to compute the probability

Pn;m.t/ WD
j˙cr

n;m.F/j
jFn�n � Fn�mj

of a pair .A;B/ 2 Fn�n � Fn�m to be reachable. Our first theorem generalizes an
earlier result by [7] that has been restricted to the case m � 2.

Theorem 1 The probability that a pair .A;B/ 2 Fn�n � Fn�m, n;m � 1, is
reachable is equal to

Pn;m.t/ D
nCm�1Y

jDm
.1 � t j / D 1 � tm CO.tmC1/: (7)

In particular, we obtain for n � 2

.1 � tm/.1 � .n� 1/tmC1/ � Pn;m.t/ � .1 � tm/.1 � tmC1/: (8)

Proof Clearly, reachability is invariant under the state space similarity transforma-
tions .A;B/ 7! .TAT �1; TB/ with T 2 GLn.F/. Thus, GLn.F/ acts on ˙cr

n;m.F/
via similarity. We denote the corresponding orbit space by˙n;m.F/. Since .A;B/ is
reachable, the similarity action is a free action and therefore the map

GLn.F/! GLn.F/ � .A;B/; T 7! .TAT �1; TB/

from the group to the group orbit is injective. This implies that the cardinalities of
˙cr
n;m.F/ and ˙n;m.F/ are related as

j˙cr
n;m.F/j D jGLn.F/j � j˙n;m.F/j:

Thus, it amounts to determine the number of F-rational points in the quasi-affine
algebraic variety ˙n;m.F/. This we do following [4], using a cell decomposition
of ˙n;m.F/ that is obtained by fixing the so-called Hermite indices of reachable
pairs. This is the main point where our analysis departs from [7], who use the more
complicated Kronecker invariants rather the Hermite indices. We refer to [4] and [5]
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for further details and proofs of the subsequent statements on cell decompositions of
˙n;m.F/. Specifically, ˙n;m.F/ admits a disjoint decomposition into finitely many
affine spaces

˙n;m.F/ D
G

K2Kn;m
HerK;

parameterized by the combinationsK D .K1; : : : ; Km/ of n into m parts. Here, the
Hermite cells

HerK D Fn.K/

are affine spaces of dimension n.K/ D Pm
iD1.m � i C 1/Ki . In contrast, the

Grassmannian Gm�1.FnCm�1/ has the cell decomposition

Gm�1.FnCm�1/ D
G

a2Am�1;nCm�1

S.a/

into finitely many Schubert cells S.a/ D Fd.a/; where d.a/ is given by (3). Clearly,
the map f W Kn;m �! Am�1;nCm�1

.K1; : : : ; Km/ 7! aK WD .Km C 1;Km CKm�1 C 2; : : : ; Km C � � � CK2 Cm� 1/

is bijective and therefore defines a bijection HerK 7! S.aK/ of Hermite cells and
Schubert cells, respectively. Since

nm �
mX

iD1
.m � i C 1/Ki D

mX

iD1

0

@n �
iX

jD1
Kj

1

A D
m�1X

iD1

0

@
mX

jDiC1
Kj

1

A ;

we obtain

dimS.aK/ D n.m � 1/C .m � 1/m
2

�
m�1X

iD1

0

@
mX

jDiC1
Kj Cm � j C 1

1

A

D n.m � 1/�
m�1X

iD1

0

@
mX

jDiC1
Kj

1

A D dim HerK � n;

for all K 2 Kn;m. In particular, both spaces ˙n;m.F/ and Gm�1.FnCm�1/ admit
cell decompositions that are indexed by the combinations of n into m nonnegative
parts. Moreover, the mutual dimensions of the Schubert and Hermite cells differ
by n, respectively. Thus, although no direct relation between these very different
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spaces is known, the cardinalities of their F-rational points can be easily compared.
Explicitly, we obtain

j˙n;m.F/j D
X

K2Kn;m
t�n.K/ D t�n

X

a2Am�1;nCm�1

t�d.a/ D t�njGm�1.FnCm�1/j:

(9)

By (2), the Grassmannian Gm�1.FnCm�1/ has exactly

t�n.m�1/
nY

jD1

.1 � tmCj�1/
.1 � t j /

many elements. Thus, the cardinality of ˙cr
n;m.F/ is equal to

j˙cr
n;m.F/j D jGLn.F/jj˙n;m.F/j D t�n.mCn/ �

nCm�1Y

jDm
.1 � t j /;

which completes the proof of (7). The bounds (8) are easily deduced from (7). ut
We emphasize that the preceding theorem implies that the probability Pn;m.t/

increases monotonically to 1, whenever the cardinality of the field F grows
unbounded. Moreover, the approximation error is asymptotically given as tm and
therefore decreases exponentially in the number of inputs m.

3.1 Systems with r-Dimensional Reachability Subspace

One can extend Theorem 1 in a rather straightforward way to determine the number
of pairs .A;B/ with r-dimensional reachability subspace. Consider, for any r D
0; : : : ; n, the set

Srn;m.F/ WD f.A;B/ 2 Fn�n � Fn�m j rank.B;AB; � � � ; An�1B/ D rg:

In particular, ˙cr
n;m.F/ D Snn;m.F/. To compute the cardinality of Srn;m.F/ we

consider the set Sr of all systems of the form

A D
�
A1 A2
0 A3

�
; B D

�
B1
0

�
;
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where .A1; B1/ 2 ˙cr
r;m.F/ andA2 2 F.r�.n�r// andA3 2 F..n�r/�.n�r// are arbitrary.

This space has cardinality

jSr j D t�n.n�r/j˙cr
r;m.F/j D t�n

2Cr.n�m/
rCm�1Y

jDm
.1 � t j /:

Theorem 2 The cardinality of Srn;m.F/ is equal to

jSrn;m.F/j D t�n
2�rm

Qn
jDrC1.1 � t j /

QrCm�1
jDm .1 � t j /

Qn�r
jD1.1 � t j /

: (10)

Proof Let P 	 GLn.F/ denote the parabolic subgroup of all block upper triangular
matrices of the form

p 2P D
�
GLr.F/ Fr�.n�r/
0 GLn�r .F/

�
;

which acts on the product space GLn.F/ � Sr via

.g; .A;B// 7! .gp�1; .pAp�1; pB//: (11)

Let GLn.F/�P Sr denote the quotient space with respect to this free group action.
We then have the well-defined map � W GLn.F/ �P Sr �! Srn;m.F/, which
sends each orbit Œg; .A;B/� of (11) to the element .gAg�1; gB/. This map is a
bijection and induces a Gr.Fn/-bundle on Sr . Therefore, we obtain the equality
of cardinalities jGLn.F/�P Sr j D jSrn;m.F/j. Moreover, the cardinality of the orbit
space GLn.F/ �P Sr is equal to

jGLn.F/jjSr j
jPj D jGr.Fn/jjSr j:

Using Theorem 1, this implies

jSrn;m.F/j D t r
2�n2

Qn
jDrC1.1 � t j /Qn�r
jD1.1 � t j /

j˙cr
r;m.F/j D t�n

2�rm

Qn
jDrC1.1 � t j /

QrCm�1
jDm .1 � t j /

Qn�r
jD1.1 � t j /

:

This completes the proof. ut
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3.2 Parallel Connection of Single-Input Systems

We next compute the probability that a parallel connection of two linear systems is
reachable.

Theorem 3 The probability that the parallel connected system

x1.� C 1/ D A1x1.�/C b1u.�/
x2.� C 1/ D A2x2.�/C b2u.�/ (12)

with state vectors x1 2 Fn1 and x2 2 Fn2 is reachable is equal to

.1 � t/
n1Y

jD1
.1� t j /

n2Y

jD1
.1 � t j /: (13)

Proof Consider the right coprime factorizations .zI � Ai/�1bi D Ni.z/di .z/�1;
where Ni.z/ 2 Fni�1Œz� and di.z/ 2 FŒz� monic with deg.Ni/ < deg.di / D ni .
Since .Ai ; bi / is reachable if and only if the entries of Ni are linearly independent
over F, there are jGlni .F/j D t�n2i

Qni
jD1.1 � t j / possibilities for Ni . In [1] it has

been shown that reachability of (12) is equivalent to reachability of .Ai ; bi / and
coprimeness of the scalar polynomials d1.z/ and d2.z/. The number of coprime
pairs of monic polynomials .d1.z/; d2.z// is equal to t�n1�n2.1 � t/; see [3]. Thus,
the number of pairs .Ai ; bi / such that (12) is reachable is

t�n1�n2.1 � t/t�n21�n22
n1Y

jD1
.1 � t j /

n2Y

jD1
.1 � t j /;

which proves the theorem. ut

4 Conclusions

We compare cell decompositions of the moduli space of reachable linear systems
with the Grassmannian to derive an explicit formula for the probability that a
linear system is reachable. The formula has been extended to count the number
of reachable linear systems with r-dimensional reachability subspace, as well as
to compute the probability that the parallel connection of two linear single-input
systems is reachable. Future research will concern the extension to the parallel
connection of finitely many multivariable systems and to general networks of
systems.
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Classification of MDS Codes over Small
Alphabets

Janne I. Kokkala, Denis S. Krotov, and Patric R.J. Östergård

Abstract A q-ary code of length n, size M , and minimum distance d is called
an .n;M; d/q code. An .n; qk; d /q code with d D n � k C 1 is said to be
maximum distance separable (MDS). Here we show that every code with parameters
.k C d � 1; qk; d /q where k; d � 3 and q D 5; 7, is equivalent to a linear code,
which implies that the .6; 54; 3/5 code and the .n; 7n�2; 3/7 codes for n D 6; 7; 8

are unique. We also show that there are 14, 8, 4, and 4 equivalence classes of
.n; 8n�2; 3/8 codes for n D 6; 7; 8; 9, respectively. This work is continuation of a
previous article classifying .5; q3; 3/q codes for q D 5; 7; 8.

Keywords Classification • MDS codes • Perfect codes • Latin hypercubes

1 Introduction

A q-ary code of length n consists of a set of codewords that form a subset of
the words in Z

n
q . The Hamming distance between two words is the number of

coordinates in which they differ. The minimum distance of a code is the smallest
distance between any two distinct codewords. A code with minimum distance d is
able to detect errors in up to d�1 coordinates and correct errors in up to b.d�1/=2c
coordinates. A q-ary code of length n, size M , and minimum distance d is called
an .n;M; d/q code.

Two codes, C and C 0, are said to be equivalent, denoted by C Š C 0, if there is a
permutation of the coordinates and permutations of the coordinate values, separately
for each coordinate, that map the codewords of C onto the codewords of C 0. These
operations form a group G of order nŠ.qŠ/n. An element g 2 G mapping a code C
onto itself is called an automorphism of C .
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The Singleton bound states for the size of an .n;M; d/q code thatM � qn�dC1.
Codes meeting the Singleton bound are called maximum distance separable (MDS);
see [11] and [7, Chapter 11]. For codes with d D 3, the Hamming bound states that
M � qn=Œ1C n.q � 1/�. Codes attaining this bound are called perfect.

A common question in coding theory is whether codes with given parameters
exist. Further, the corresponding codes can be classified up to equivalence. In this
work, we focus mainly on .n; qn�2; 3/q codes, that is, one-error-correcting MDS
codes. The .q C 1; qq�1; 3/q codes are perfect, and they can further be shortened
to get a family of .n; qn�2; 3/q codes for 3 � n � q C 1. Linear



.qm � 1/=.q �

1/; q.q
m�1/=.q�1/�m; 3

�
q

codes, called Hamming codes, are perfect and exist for all
m � 2 and prime powers q. For m D 2, we get perfect MDS codes.

Unrestricted (that is, either linear or nonlinear) MDS codes are discussed for
example in [1]. In particular, it is known that d � q for even q and that d � q � 1
for odd q. The Hamming bound implies that .n; qn�2; 3/q codes do not exist for
n > q C 1. For short codes with these parameters, the following is known. The
.3; q; 3/q codes are trivially unique. The .4; q2; 3/q codes (for q � 3) correspond
to graeco-latin squares. The nonexistence of graeco-latin squares for q D 6 is well-
known, and for q � 8, they have been classified by McKay [8]. The .5; q3; 3/q
codes (for q � 4) correspond to graeco-latin cubes. The .5; 43; 3/4 code is unique,
which was proved by Alderson [2]. The nonexistence of .5; 63; 3/6 codes follows
from the nonexistence of .4; 62; 3/6 codes. The .5; q3; 3/q codes for q D 5; 7; 8

were recently classified in [5]; there are 1, 1, and 12484 equivalence classes for
q D 5; 7; 8, respectively. As for the perfect .qC 1; qq�1; 3/q codes, the cases q D 5
and q � 7 have remained open. Quite early, Lindström [6] showed that there are
more than one equivalence class of .q C 1; qq�1; 3/q codes when q > 8 is a proper
prime power. Heden [4] showed that for prime q, .q C 1; qq�1; 3/q codes of certain
type are equivalent to Hamming codes.

This work consists of two parts. We prove that every code with parameters .k C
d � 1; 7k; d /7 or .kC d � 1; 5k; d /5, where k; d � 3, is equivalent to a linear code,
using the fact that the unique graeco-latin cubes of orders 5 and 7 correspond to
linear codes. This implies that the .6; 54; 3/5 MDS code and the .n; 7n�2; 3/7 MDS
codes for n D 6; 7; 8 are unique.

In the second part, we present an approach for generating the .n; qn�2; 3/q codes
starting from the .n0; qn0�2; 3/q codes for n0 < n. We apply this approach to the
case q D 8 by starting from the .4; 82; 3/8 and .5; 83; 3/8 codes, and classify the
.n; 8n�2; 3/8 codes for 6 � n � 9. There are 14, 8, 4, and 4 equivalence classes of
.n; 8n�2; 3/q codes for n D 6; 7; 8; 9, respectively. For one-error-correcting codes,
the previously known cases along with the cases considered in this work are shown
in Table 1.
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Table 1 Kown numbers of equivalence classes of .n; qn�2; 3/q codes. The cases marked with �
have been settled in the present work

n n q 2 3 4 5 6 7 8 �9 proper prime power �11 prime

3 1 1 1 1 1 1 1 1 1

4 1 1 1 0 7 2165

5 1 1 0 1 12484

6 *1 0 *1 *14

7 0 *1 *8

8 *1 *4

9 *4

q C 1 (�10) �2 �1

2 Preliminaries

In this section, we consider basic properties of MDS codes and give definitions of
latin hypercubes which are equivalent to certain MDS codes.

2.1 MDS Codes and Latin Hypercubes

Definition 1 A latin hypercube of order q and dimension n is an q � q � � � � � q
(n times) array of elements from Zq such that if n � 1 coordinates are fixed, each
symbol occurs exactly once. For n D 1; 2; 3, they are permutations, latin squares
and latin cubes, respectively.

Definition 2 Two latin squares are orthogonal if each pair in Zq�Zq occurs exactly
once when the squares are superimposed. Two latin hypercubes are orthogonal if
when the hypercubes are superimposed, each q � q subarray is a superimposed pair
of orthogonal latin squares.

An n-dimensional latin hypercube corresponds to an .n C 1; qn; 2/q MDS
code: for example, let the word .x1; : : : ; xnC1/ be a codeword iff xnC1 occurs
at position .x1; : : : ; xn/ in the latin hypercube. Similarly, a pair of orthogonal n-
dimensional latin hypercubes corresponds to an .nC 2; qn; 3/q MDS code: let the
word .x1; : : : ; xnC2/ be a codeword iff xnC1 and xnC2 occur at position .x1; : : : ; xn/
in the first and second latin hypercube, respectively.

Definition 3 A latin hypercube f of prime order q is called linear if

˛0.f .x1; : : : ; xn// D ˛1.x1/C � � � C ˛n.xn/ (1)

for some permutations ˛0; ˛1; : : : ; ˛n of Zq .
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Definition 4 A k-tuple .f1; : : : ; fk/ of latin hypercubes of prime order q is called
linear if there are permutations ˛1; : : : ; ˛n, ˇ1; : : : ˇk of Zq such that

ˇi .fi .x1; : : : ; xn// D ai;1˛1.x1/C � � � C ai;n˛n.xn/C ai;0 i D 1; : : : ; k

for some coefficients ai;j , j 2 f0; 1; : : : ; ng, i 2 f1; : : : ; kg (we may always assume
w.l.o.g. that a1;1 D � � � D a1;n D 1 and a1;0 D 0).

A latin hypercube is linear iff the corresponding MDS code is equivalent to a
linear code, and an orthogonal pair of latin hypercubes is linear iff the corresponding
MDS code is equivalent to a linear code.

2.2 Properties of MDS Codes and Some Definitions

Definition 5 For an .n;M; d/q code C , let s.C; ˛; v/ be the .n � 1;M 0; d /q code
obtained by removing a coordinate ˛ and maintaining the codewords in C that have
the symbol v at that coordinate. This operation is called shortening.

Definition 6 For an .n;M; d/q code C , let e.C; ˛; v/ be the .n C 1;M; d/q
code obtained by adding a new coordinate with symbol v at that coordinate to
the codewords in C , such that s.e.C; ˛; v/; ˛; v/ D C . This operation is called
extending.

Consider an .n; qn�2; 3/q MDS code C . For a set of k D n� 2 coordinates, each
k-tuple of elements from Zq occurs exactly once in the given coordinates in C . We
observe that s.C; ˛; v/ is an .n�1; qn�3; 3/q MDS code. Further,C can be expressed
as a union of extended .n� 1; qn�3; 3/q codes, as C D Sv2Zq e.s.C; ˛; v/; ˛; v/ for
any ˛.

3 Theoretical Results

Definition 7 A rectangle of directions i , j (i ¤ j ), is a quadruple .a D
.a1; : : : ; an/; b D .b1; : : : ; bn/; c D .c1; : : : ; cn/; d D .d1; : : : ; dn// of elements
of Znq such that ai D bi , ci D di , bj D cj , dj D aj and ak D bk D ck D dk for all
k 2 f1; : : : ; ng n fi; j g.
Lemma 8 For every linear latin hypercube f of prime order q and dimension
n � 2, there is a unique function Rectf W Z3q ! Zq such that for every rectangle
.a; b; c; d / it holds f .a/ D Rectf .f .b/; f .c/; f .d//.

Proof Using the notation in (1), we see that f .a/ D ˛�10 .˛0.f .b// � ˛0.f .c// C
˛0.f .d///. ut
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Lemma 9 A linear hypercube f of order q can be uniquely reconstructed from the
function Rectf and the values f .x1; : : : ; xn/ where only one of xi is nonzero.

Proof The value f .x1; : : : ; xn/ can be determined recursively by reducing the
number of nonzero values among x1; : : : ; xn using

f .x1; : : : ; xi ; : : : ; xj ; : : : ; xn/ D Rectf . f .x1; : : : ; 0; : : : ; xj ; : : : ; xn/;

f .x1; : : : ; 0; : : : ; 0; : : : ; xn/;

f .x1; : : : ; xi ; : : : ; 0; : : : ; xn//:

ut
Lemma 10 Let f be a latin hypercube of dimension n � 4, for which any latin
hypercube obtained from f by fixing one argument is linear. Then f is linear.

Proof The latin hypercube t defined as t.x1; : : : ; xn�1/ D f .x1; : : : ; xn�1; 0/
is linear. We assume w.l.o.g. that t.x1; : : : ; xn�1/ D x1 C : : : C xn�1 and
f .0; : : : ; 0; i/ D i for all i . Then Rectt .a; b; c/ D a � b C c.

For j 2 f1; : : : ; n � 1g, let rj be the linear .n � 1/-dimensional hypercube
obtained from f by fixing the j th argument to be zero. Now rj and t share a com-
mon .n� 2/-dimensional hypercube l , which implies that Rectt D Rectl D Rectrj .
Further, because rj .i; 0; : : : ; 0/ D rj .0; i; 0; : : : ; 0/ D � � � D rj .0; : : : ; 0; i/ D i

for all i 2 Zq , Lemma 9 implies that rj .x1; : : : ; xn�1/ D x1 C � � � C xn�1. In other
words, f .x1; : : : ; xn/ D x1 C � � � C xn if at least one of xj is zero.

Finally, for i 2 Zq , consider si .x2; : : : ; xn/ D f .i; x2; : : : ; xn/. Again, si is linear
and shares a common .n� 2/-dimensional hypercube with t , so Rectt D Rectsi . On
the other hand, si .j; 0; : : : ; 0/ D si .0; j; 0; : : : ; 0/ D � � � D si .0; : : : ; 0; j / D i C j .
Thus, si is uniquely determined, and si .x2; : : : ; xn/ D i C x2 C � � � C xn. Thus
f .x1; : : : ; xn/ D x1 C � � � C xn. ut
Lemma 11 Let q be a prime, let c 2 Zq , let ˛; ˇ 2 Zq n f0g, and let �1, �2 and �3
be permutations of Zq such that �1.x/C �2.y/C �3.z/ D c iff xC ˛�1yCˇ�1z D
0. Then �i is an affine transformation of Zq , that is, �i .x/ D aix C bi for some
ai ; bi 2 Zq , for all i D 1; 2; 3.

Proof For all x, we find that �1.x/ � �1.x � 1/ D Œc � �2.�˛x/ � �3.0/� � Œc �
�2.�˛x/��3.ˇ/� D �3.ˇ/��3.0/. Thus �1 is affine. Similarly, so are �2 and �3. ut
Lemma 12 Let .f1; : : : ; fk/ be a k-tuple of latin hypercubes of prime order q and
dimension n � 3 such that fixing the values of any n � 3 variables in any two of
f1; : : : ; fk always results in a linear pair of latin cubes. Then .f1; : : : ; fk/ is linear.
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Proof By induction and Lemma 10, f1; : : : ; fk are linear latin hypercubes. W.l.o.g.
we may assume that

f1.x1; : : : ; xn/ D x1 C � � � C xn;
fi .x1; : : : ; xn/ D �i;1.x1/C � � � C �i;n.xn/;

for all i D 2; : : : ; k.
Consider some i 2 f2; : : : ; kg. Fixing the last n � 3 arguments of f1 and fi by

zeros, we get a linear pair of latin cubes .g; h/. For some permutations ˛1, ˛2, ˛3,
ˇ1, ˇ2,

g.x1; x2; x3/ D x1 C x2 C x3 D ˇ�11 .˛1.x1/C ˛2.x2/C ˛3.x3//;
h.x1; x2; x3/ D �i;1.x1/C �i;2.x2/C �i;3.x3/

D ˇ�12 .b1˛1.x1/C b2˛2.x2/C b3˛3.x3//:

By Lemma 11 the permutations ˛1, ˛2, ˛3, are affine transformations of Zq , and
thus also �i;1, �i;2, and �i;3 are affine transformations of Zq . Similarly, we establish
that �i;j is affine for every i from 1 to k and every j from 1 to n. So, .f1; : : : ; fk/ is
a linear k-tuple of latin hypercubes by the definition. ut
Theorem 13 Every code with parameters .kCd �1; 7k; d /7 or .kCd�1; 5k; d /5,
where k; d � 3, is equivalent to a linear code.

Proof Every code with the considered parameters is the set of solutions of a system

fi .x1; : : : ; xk/ D xkCi ; for i D 1; : : : ; d � 1;

where f1; : : : ; fd�1 are latin hypercubes, every two being orthogonal. In particular,
fixing any k � 3 arguments of both fi and fj , i ¤ j , always results in a pair
of orthogonal latin cubes. By the previous computational results [5], every such
pair of order 5 or 7 is linear. By Lemma 12, the .d � 1/-tuple of latin hypercubes
.f1; : : : ; fd�1/ is linear, which means that the code is equivalent to a linear code.

ut
Corollary 14 (MDS conjecture, q D 7) Every .n; 7k; d /7 MDS code, k � 2, d �
3, satisfies n � 8.

Proof For k � 3, such codes are linear, and the MDS conjecture is true for linear
codes when q is prime [3]. For k D 2, the nonexistence of an .n; qk; n � k C 1/q
MDS code for n > q C 1 is well-known [11]. ut
Corollary 15 The .6; 54; 3/5 MDS code and the .n; 7n�2; 3/7 MDS codes for n D
6; 7; 8 are unique.

Proof The linear perfect codes are the Hamming codes. Consider a linear
.n; 7n�2; 3/7 code for n D 6; 7. After multiplication of columns, the parity check
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matrix is of the form

�
0 1 � � � 1

1 a1 � � � an�1
�

, where ai are distinct. The set fai gi can be

mapped to f0; 1; : : : ; n�2g by an affine transformation x 7! bxCc. Multiplying the
second row by b, adding the first row multiplied by c to the second row, multiplying

the first column by b�1, and permuting the columns yields

�
0 1 � � � 1

1 0 � � � n � 2
�

. Thus

all such linear codes are equivalent. ut

4 Algorithm for Exhaustive Generation

We observe that the codes s.C; ˛1; v1/ and s.C; ˛2; v2/ with ˛1 ¤ ˛2 share a com-
mon shortened .n � 2; qn�4; 3/q code: for ˛1 > ˛2, the codes s.s.C; ˛1; v1/; ˛2; v2/
and s.s.C; ˛2; v2/; ˛1 � 1; v1/ are equal. This fact is central to our algorithm, as we
construct the .n; qn�2; 3/q codes by considering their shortened codes.

To reduce the number of partial and full codes obtained during the search, we
generate only codes that are of certain form. Given an ordered set OSn�1 D . OCn�1

i /i
of equivalence class representatives of .n � 1; qn�3; 3/q codes, we construct only
.n; qn�2; 3/q codes C for which the following conditions apply:

• s.C; 1; 0/ D OCn�1
i for some i

• If s.C; ˛; v/ Š OCn�1
j , then i � j .

Each .n; qn�2; 3/q code C is equivalent to a code that satisfies these properties. For
ease of notation, we define a function � that maps each .n � 1; qn�3; 3/q code C to
a number such that C Š OCn�1

�.C /.
The algorithm makes repeated use of the following procedure which, given an

index i and a coordinate-value pair .˛; v/, finds all possible codes C for which
e. OCn�1

i ; 1; 0/ [ e.C; ˛ C 1; v/ has minimum distance 3 and �.C / � i , up to a
permutation of values 1; 2; : : : ; q � 1 in the first coordinate. We loop over all j D
i; iC1; : : : ; j OSn�1j and all coordinate-value pairs .˛0; v0/ such that s. OCn�1

j ; ˛0; v0/ Š
s. OCn�1

i ; ˛; v/. At each step, we find any isomorphism h that maps the coordinate-
value pair .˛0; v0/ to .1; 0/ such that s.h OCn�1

j ; 1; 0/ D s. OCn�1
i ; ˛; v/, and loop over

all automorphisms g of s. OCn�1
i ; ˛; v/. We define Qg to be the isomorphism that keeps

the first coordinate intact and applies g to the last n � 2 coordinates. Finally, we
consider C D Qgh OCn�1

j and report it if the minimum distance of e. OCn�1
i ; 1; 0/ [

e.C; ˛C 1; v/ is 3.
We generate the .n; qn�2; 3/q codes in two phases. In the first phase, we find

codes of the form e. OCn�1
i ; 1; 0/ [ e.C 0; 2; 0/ that have minimum distance 3 and

�.C 0/ � i . These codes are possible subsets of the .n; qn�2; 3/q codes, and form
the seeds for the next phase.

In the second phase, we start from a seed C D e. OCn�1
i ; 1; 0/ [ e.C 0; 2; 0/

and augment it to full codes in all possible ways. We do this by finding sets of
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Table 2 The number of inequivalent seeds obtained during the search, the number of inequivalent
.n; 8n�2; 3/8 codes, and the CPU time used

n # of seeds # of inequivalent codes CPU time in hours

6 107 14 15

7 9 8 49

8 6 4 340

9 4 4 1,516

.n � 1; qn�3; 3/q codes fC 00v gv2Zq for which �.C 00v / � i and
S

v2Zq e.C
00
v ; 3; v/

is an .n; qn�2; 3/q code that contains all the codewords in the seed C . For fixed
v, finding all possible choices of C 00v such that e. OCn�1

i ; 1; 0/ [ e.C 00v ; 3; v/ has
minimum distance 3 can be done with the procedure presented above. The additional
restriction that s.C 00v ; 2; 0/ D s.C 0; 2; v/ either rejects the code immediately or
yields a unique permutation of the values in the first coordinate of C 00v . The
restriction that e.C 0; 2; 0/ [ e.C 00v ; 3; v/ has minimum distance 3 can also be used
to reject some choices of C 00v . Finally, we loop over all possible sets fC 00v gv2Zq and
report

S
v2Zq e.C

00
v ; 3; v/ if it has minimum distance 3 and all of its subcodesD have

�.D/ � i .
We perform isomorph rejection on the seeds and the full codes. To determine

whether two codes are equivalent, we transfer the codes to graphs as in, for example,
[5], and use nauty [9] to solve the graph isomorphism problem. The software
also produces the automorphism group of a graph, so it can be used to find all
automorphisms of a code. For large graphs, we use the sparse mode of nauty with
the random Schreier method enabled.

The search was carried out for q D 8 for n D 6; 7; 8; 9, starting from
.5; 83; 3/8 codes. The numbers of inequivalent seeds and the numbers of inequivalent
.n; 8n�2; 3/8 codes obtained during the search are shown in Table 2 along with the
CPU time used for the search. The times refer to a single core of a Intel Xeon
E5-2665 CPU. The numbers of seeds obtained depend on the exact representatives
OCn�1
i used, so they may differ in repeated studies. Of the four perfect codes, one is

equivalent to the Hamming code and three are nonlinear. We find that the nonlinear
codes cannot be obtained by any known constructions, including those in [10].
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On the Automorphism Groups
of the Z2Z4-Linear Hadamard Codes
and Their Classification

Denis S. Krotov and Mercè Villanueva

Abstract It is known that there are exactly b t�1
2
c and b t

2
c nonequivalent Z2Z4-

linear Hadamard codes of length 2t , with ˛ D 0 and ˛ 6D 0, respectively, for all
t � 3. In this paper, it is shown that each Z2Z4-linear Hadamard code with ˛ D 0

is equivalent to a Z2Z4-linear Hadamard code with ˛ 6D 0, so there are only b t
2
c

nonequivalentZ2Z4-linear Hadamard codes of length 2t . Moreover, the orders of the
permutation automorphism groups of the Z2Z4-linear Hadamard codes are given.

Keywords Z2Z4-linear codes • Additive codes • Hadamard codes • Automor-
phism group

1 Introduction

Let Z2 and Z4 be the rings of integers modulo 2 and modulo 4, respectively. Let Zn2
be the set of all binary vectors of length n and let Zn4 be the set of all quaternary
vectors of length n. For a vector x D .x1; : : : ; xn/ 2 Z

n
2 and a set I � f1; : : : ; ng,

we denote by xjI the vector x restricted to the coordinates in I .
Any nonempty subset C of Zn2 is a binary code and a subgroup of Zn2 is called a

binary linear code. Similarly, any nonempty subset C of Zn4 is a quaternary code and
a subgroup of Zn4 is called a quaternary linear code. Let C be a quaternary linear
code. Since C is a subgroup of Zn4 , it is isomorphic to an Abelian group Z

�
2 � Z

ı
4,

and we say that C is of type 2�4ı as a group. Quaternary codes can be seen as binary
codes under the usual Gray map defined as '.0/ D .0; 0/; '.1/ D .0; 1/; '.2/ D
.1; 1/; '.3/ D .1; 0/ in each coordinate. If C is a quaternary linear code, then the
binary code C D '.C / is called a Z4-linear code.
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Additive codes were first defined by Delsarte in 1973 as subgroups of the
underlying Abelian group in a translation association scheme [7, 8]. In the special
case of a binary Hamming scheme, that is, when the underlying Abelian group
is of order 2n, the additive codes coincide with the codes that are subgroups of
Z
˛
2 � Z

ˇ
4 . In order to distinguish them from additive codes over finite fields [3],

they are called Z2Z4-additive codes [4]. Since Z2Z4-additive codes are subgroups of
Z
˛
2�Zˇ4 , they can be seen as a generalization of binary (when ˇ D 0) and quaternary

(when ˛ D 0) linear codes. As for quaternary linear codes, Z2Z4-additive codes can
also be seen as binary codes by considering the extension of the usual Gray map:
˚ W Z˛2 � Z

ˇ
4 �! Z

n
2 , where n D ˛ C 2ˇ, given by

˚.x; y/ D .x; '.y1/; : : : ; '.yˇ//
8x 2 Z

˛
2 ; 8y D .y1; : : : ; yˇ/ 2 Z

ˇ
4 :

If C is a Z2Z4-additive code, C D ˚.C / is called a Z2Z4-linear code. Moreover, a
Z2Z4-additive code C is also isomorphic to an Abelian group Z

�
2 � Z

ı
4, and we say

that C (or equivalently the corresponding Z2Z4-linear code C D ˚.C /) is of type
.˛; ˇI �; ı/.

Let Sn be the symmetric group of permutations on the set f1; : : : ; ng, and let
id 2 Sn be the identity permutation. The group operation in Sn is the function
composition, denoted by ı. The composition 	1 ı 	2 maps any element x to
	1.	2.x//. A 	 2 Sn acts linearly on words of Z

n
2 or Z

n
4 by permuting the

coordinates, 	..c1; : : : ; cn// D .c	�1.1/; : : : ; c	�1.n//.
Let C be a Z2Z4-additive code of type .˛; ˇI �; ı/. We can assign a permutation

�x 2 Sn to each codeword x D .x01; : : : ; x 0̨ ; x1; : : : ; x2ˇ/ 2 C D ˚.C /, such that
�x D �12 ı �34 ı � � � ı �2ˇ�1 2ˇ , where

�ij D
�

id if .xi ; xj / D .0; 0/ or .1; 1/
.i; j / otherwise:

Given two codewords of C , x D .x0; x1; : : : ; x2ˇ/ and y D .y0; y1; : : : ; y2ˇ/, define
x ? y D x C �x.y/. Then, we have that .C; ?/ is an Abelian group [22], which is
isomorphic to .C ;C/ since

x ? y D .x0 C y0; '.'�1.x1; x2/C '�1.y1; y2//;
: : : ; '.'�1.x2ˇ�1; x2ˇ/C '�1.y2ˇ�1; y2ˇ///

D ˚.˚�1.x/C ˚�1.y//:

There are Z2Z4-linear codes in several important classes of binary codes. For
example, Z2Z4-linear perfect single error-correcting codes (or 1-perfect codes)
are found in [22] and fully characterized in [6]. Also, in subsequent papers
[5, 13, 14, 19, 20],Z2Z4-linear extended perfect and Hadamard codes are studied and
classified independently for ˛ D 0 and ˛ 6D 0. Finally, in [17, 21, 23], Z2Z4-linear
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Reed-Muller codes are also studied. Note that Z2Z4-linear codes have allowed to
classify more binary nonlinear codes, giving them a structure as Z2Z4-additive
codes.

A (binary) Hadamard code of length n is a binary code with 2n codewords
and minimum distance n=2 [16]. The Z2Z4-additive codes such that, under the
Gray map, give a Hadamard code are called Z2Z4-additive Hadamard codes and
the corresponding Z2Z4-linear codes are called Z2Z4-linear Hadamard codes, or
just Z4-linear Hadamard codes when ˛ D 0. The classification of Z2Z4-linear
Hadamard codes is given by the following results. For any integer t � 3 and
each ı 2 f1; : : : ; b.t C 1/=2cg, there is a unique (up to equivalence) Z4-linear
Hadamard code of type .0; 2t�1I t C 1 � 2ı; ı/, and all these codes are pairwise
nonequivalent, except for ı D 1 and ı D 2, where the codes are equivalent to
the linear Hadamard code, that is, the dual of the extended Hamming code [14].
Therefore, the number of nonequivalent Z4-linear Hadamard codes of length 2t

is b t�1
2
c for all t � 3. On the other hand, for any integer t � 3 and each

ı 2 f0; : : : ; bt=2cg, there is a unique (up to equivalence) Z2Z4-linear Hadamard
code of type .2t�ı; 2t�1 � 2t�ı�1I t C 1 � 2ı; ı/. All these codes are pairwise
nonequivalent, except for ı D 0 and ı D 1, where the codes are equivalent to
the linear Hadamard code [5]. Therefore, the number of nonequivalent Z2Z4-linear
Hadamard codes of length 2t with ˛ ¤ 0 is bt=2c for all t � 3.

Two structural properties of binary codes are the rank and the dimension of the
kernel. The rank of a code C , denoted by r , is simply the dimension of the linear
span, hC i, of C . The kernel of a codeC is defined as Ker.C / D fx 2 Z

n
2 W xCC D

C g [2]. If the all-zero vector belongs to C , Ker.C / is a linear subcode of C . We
denote by k the dimension of Ker.C /. In general, C can be written as the union
of cosets of Ker.C /, and Ker.C / is the largest linear code for which this is true
[2]. The Z2Z4-linear Hadamard codes can also be classified using either the rank or
the dimension of the kernel, as it is proven in [14, 20], where these parameters are
computed.

Two Z2Z4-additive codes C1 and C2 both of type .˛; ˇI �; ı/ are said to be
monomially equivalent, if one can be obtained from the other by permuting the
coordinates and (if necessary) changing the signs of certain Z4 coordinates. Two
Z2Z4-additive or Z2Z4-linear codes are said to be permutation equivalent if they
differ only by a permutation of coordinates. The monomial automorphism group
of a Z2Z4-additive code C , denoted by MAut.C /, is the group generated by
all permutations and sign-changes of the Z4 coordinates that preserves the set
of codewords of C , while the permutation automorphism group of C or C D
˚.C /, denoted by PAut.C / or PAut.C /, respectively, is the group generated by
all permutations that preserves the set of codewords [12].

The permutation automorphism group of a code is also an invariant, so it can
help in the classification of some families of codes. Moreover, the automorphism
group can also be used in decoding algorithms and to describe some other properties
like the weight distribution. The permutation automorphism group of Z2Z4-linear
(extended) 1-perfect codes has been studied in [15, 19]. The permutation automor-
phism group of (nonlinear) binary 1-perfect codes has also been studied before,



240 D.S. Krotov and M. Villanueva

obtaining some partial results [1, 9–11]. Finally, the permutation automorphism
group of Z2Z4-additive Hadamard codes has been studied in [18].

2 Classification of Z2Z4-Linear Hadamard Codes

In [14] and [5], Z2Z4-linear Hadamard codes are classified independently for ˛ D 0
and ˛ 6D 0. In this section, we show that each Z2Z4-linear Hadamard code with
˛ D 0 is equivalent to a Z2Z4-linear Hadamard code with ˛ 6D 0, so there are only
b t
2
c nonequivalent Z2Z4-linear Hadamard codes of length 2t .

We say that a function f from Z
i
2 � Z

j
4 to Z

s
2 � Z

t
4 is affine if f .0/ � f .x/ �

f .y/C f .x C y/ D 0 for every x and y from Z
i
2 � Z

j
4 (here and in what follows,

0 denotes the all-zero vector). Equivalently, f .�/ � f .0/ is a linear function, i.e., a
group homomorphism. Let B be the set of all affine functions from Z

�
2 � Z

Rı
4 to Z4.

These Z4-valued functions on Z
�
2 � Z

Rı
4 can be considered as words of length 2�C2Rı

over Z4. DenoteD
�;Rı D fx W Z�2 � Z

Rı
4 ! Z

2
2 W x.�/ D '.g.�// for some g 2 Bg.

Lemma 1 D�;Rı is a Z4-linear Hadamard code of length n D 2�C2RıC1 and type

.0; n=2I �; ı/, where ı D Rı C 1.

Proof There are 4 �2� �4Rı D 2n affine functions in B. The set B is closed under the
addition over Z4; so after applying the Gray map,D

�;Rı is a Z4-linear code of length

2� � 4Rı � 2 D n. Clearly, the minimum Hamming distance is n=2. ut
Define the function 'C W Z4 ! f0; 1g by 'C.0/ D 'C.3/ D 0, 'C.1/ D

'C.2/ D 1. Again, the Z2-valued or Z4-valued functions on Z
R�
2 � Z

ı
4 can be

considered as words of length 2 R�C2ı over Z2 or Z4, respectively. Let A be the set
of all affine functions f from Z

R�
2 � Z

ı
4 to Z4 that map the all-zero vector to 0 or 2:

f .0/ 2 f0; 2g. Denote C R�;ı D fh W Z R�2 �Zı4 ! Z2 W h.�/ D 'C.f .�// for some f 2
A g.
Lemma 2 C R�;ı is a Z2Z4-linear Hadamard code of length n D 2 R�C2ı and type
.˛; ˇI �; ı/, where � D R� C 1, ˛ D 2 R�Cı corresponding to the elements of order at
most 2 of Z R�2 � Z

ı
4, and ˇ D 2 R�Cı�1.2ı � 1/ corresponding to the pairs of opposite

elements of order 4.

Proof There are 2 � 2 R� � 4ı D 2n affine functions in A . The set A is closed under
the addition over Z4; so the Gray map image A D ˚.A / can also be considered
as a Z2Z4-linear code with 2 R�CıC1 coordinates over Z2, which correspond to the
elements of order at most 2 of Z R�2 � Z

ı
4.

Now, we will see that the code A can be obtained from C R�;ı by repeating twice
every coordinate. That is, strictly speaking, A is permutation equivalent to f.h; h/ W
h 2 C R�;ıg. Indeed, given v 2 Z

R�
2 � Z

ı
4 of order 4 and an affine function f 2 A ,
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the values 'C.f .v// and 'C.f .�v// of the corresponding codeword of C R�;ı each

occurs both in '.f .v// and '.f .�v//. If the order of v 2 Z
R�
2 � Z

ı
4 is 2 or less, then

'C.f .v// is duplicated in '.f .v//.
Finally, it is easy to check that the minimum Lee distance for the set of affine

functions A is n D 2 R�C2ı; so the minimum Hamming distance of C R�;ı is the half of
this value, that is, n=2. ut
Lemma 3 Let f W Z R�2 � Z

ı
4 ! Z4 be an affine function. Then h.�/ D 'C.f .�//

belongs to C R�;ı .

Proof In the case that f .0/ 2 f0; 2g, C R�;ı contains h by definition. On the other
hand, if f .0/ 2 f1; 3g, we will use that 'C.l/ D 'C.3� l/ for l 2 Z4. Then, h.�/ D
'C.f .�// D 'C.3�f .�//. Since 3�f .�/ is an affine function and 3�f .0/ 2 f0; 2g,
we obtain that h 2 C R�;ı . ut
Theorem 4 The Z4-linear Hadamard code D�;Rı of length n and type .0; n=2I �; ı/
is permutation equivalent to the Z2Z4-linear Hadamard code C�C1;Rı of type
.˛; ˇI � C 2; ı � 1/ with ˛ 6D 0.

Proof Consider a function f in B and the related functiong.v; e/ D f .v/C2ef .0/,
where v 2 Z

�
2 � Z

Rı
4 and e 2 Z2. We can see that

'.f .v// D 

'C.g.�v; 1//; 'C.g.v; 0//

�
;

'.f .�v// D 

'C.g.v; 1//; 'C.g.�v; 0//

�
:

In order to check these equalities, it is convenient to represent f .v/ as f0.v/Cf .0/,
where f0 W Z�2 � Z

Rı
4 ! Z4 is a group homomorphism (in particular, f0.�v/ D

�f0.v/).
Since g is an affine function from v 2 Z

�C1
2 � Z

Rı
4 to Z4, we can deduce from

Lemma 3 that there is a fixed coordinate permutation that sends every codeword of
D�;Rı to a codeword of C�C1;Rı . ut
Corollary 5 There are exactly b t

2
c nonequivalent Z2Z4-linear Hadamard codes of

length 2t .

3 The Permutation Automorphism Group

Considering the representation of a code as the union of cosets of its kernel, it is
possible to prove the following fact.
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Proposition 6 If ı � 2, then the order of the automorphism group of C satisfies

jAut.C /j � p � 2 12 R�. R�C1/C2 R�ıC 3
2 ı.ıC1/

R�Y

iD1
.2i � 1/

ıY

jD1
.2j � 1/;

where p D 6 if ı D 2 and p D 1 if ı � 3.

By Lemma 3, any nonsingular affine transformation of Z
R�
2 � Z

ı
4 belongs to

Aut.C /. Therefore, since for ı � 3, the number of nonsingular affine transforma-
tions coincides with the upper bound given in Proposition 6, we obtain the following
result:

Theorem 7 The automorphism group of the Z2Z4-linear Hadamard code C of type
.˛; ˇI R� C 1; ı/, with ı � 3, is the group of nonsingular affine transformations of
Z
R�
2 � Z

ı
4. Therefore, its order is

jAut.C /j D 2 12 R�. R�C1/C2 R�ıC 3
2 ı.ıC1/

R�Y

iD1
.2i � 1/

ıY

jD1
.2j � 1/:

In the case ı D 2, there are non-affine permutations in the automorphism group,
and the resulting formula again coincides with the upper bound of Proposition 6.

Theorem 8 The automorphism group of the Z2Z4-linear Hadamard code C of
type .˛; ˇI R� C 1; 2/ consists of all permutations expressed as  ˛, where ˛ is a
nonsingular affine transformation of Z R�2 � Z

2
4 and  is the identity permutation or

one of five non-affine permutations. The order of the automorphism group is

jAut.C /j D 6 � 2 12 R�. R�C1/C4 R�C9 � 3
R�Y

iD1
.2i � 1/:
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Linear Batch Codes

Helger Lipmaa and Vitaly Skachek

Abstract In an application, where a client wants to obtain many symbols from a
large database, it is often desirable to balance the load. Batch codes (introduced by
Ishai et al. in STOC 2004) do exactly that: the large database is divided between
many servers, so that the client has to only make a small number of queries to every
server to obtain sufficient information to reconstruct all desired symbols.

In this work, we formalize the study of linear batch codes. These codes, in
particular, are of potential use in distributed storage systems. We show that a
generator matrix of a binary linear batch code is also a generator matrix of classical
binary linear error-correcting code. This immediately yields that a variety of upper
bounds, which were developed for error-correcting codes, are applicable also to
binary linear batch codes. We also propose new methods for constructing large linear
batch codes from the smaller ones.

Keywords Batch codes • Error-correcting codes • Computationally-private infor-
mation retrieval • Load balancing • Distributed storage

1 Introduction

Consider the scenario where a client wants to retrievem symbols from an n symbol
database. Accessing a single server by all clients simultaneously can create serious
performance problems. A simple solution is to replicate the whole database between
M servers, so that the client can query approximately m=M symbols from every
server. However, that solution require to store N D Mn database symbols.

In anm-out-of-nCPIR (computationally-private information retrieval [5, 8]), the
client wants to retrieve m symbols from an n symbol database without the storage
provider getting to know which symbols were retrieved. An additional problem in
this case is the storage provider’s computational complexity that is �.n/ per query
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in almost all known 1-out-of-nCPIR protocols. (The only exception is [9], where the
per-query computational complexity is O.n= logn/.) Just performing m instances
of an 1-out-of-n CPIR protocol would result in a highly prohibitive computational
complexity.

To tackle both mentioned problems, Ishai et al. [7] proposed to use batch codes.
More precisely, let ˙ be a finite alphabet. In an .n;N;m;M; T /˙ batch code, a
database f of n strings in ˙ is divided into M buckets where each bucket contains
N=M strings in ˙ . If a client is to obtain m symbols of the original database, he
query (no more than) T symbols from each of the M buckets.

Batch codes have been recently studied very actively in the combinatorial setting.
Namely, a combinatorial batch code (CBC) satisfies the additional requirement that
every symbol of every bucket is equal to some symbol of the original database. (See
for example [2–4, 16].) New constructions of combinatorial batch codes, based on
affine planes and transversal designs, were recently presented in [15].

We stress that linear batch codes are also well suitable for the use in the
distributed data storage [6]. The buckets can be viewed as servers. The reading of
the requested data can be done “locally” from a small number of servers. If a small
number of buckets stopped functioning, the data can be reproduced by reading data
from (a small number) of other buckets.

In this paper, we formalize a framework for analysis of linear batch codes,
which resembles that of the classical error-correcting codes (ECCs). As we show,
generator matrices of good binary linear batch codes are also generator matrices
of good classical ECCs. This immediately gives us a set of tools and bounds from
the classical coding theory for analyzing binary linear batch codes. The converse,
however, is not true: not every good binary linear ECC is a good linear batch code.
Finally, we present a number of simple constructions of larger linear batch codes
from the smaller ones. The preliminary version of this paper is available as [10].

2 Preliminaries

Let Œn� , f1; 2; : : : ; ng. We denote by hvi ii2Œn� the linear span of the vectors vi ,
i 2 Œn�, over some finite field Fq . We use notation dH.x;y/ to denote the Hamming
distance between the vectors x and y, and notation wH.x/ to denote the Hamming
weight of x. We also denote by 0 the row vector consisting of all zeros, and by ei
the row vector having one at position i and zeros elsewhere (the length of vectors
will be clear from the context).

We start with the definition of a batch code. In this work, we focus on so-called
multiset batch codes, as they were defined in [7].

Definition 1 ([7]) Let˙ be a finite alphabet. We say that C is an .n;N;m;M; t/˙
batch code over a finite alphabet ˙ if it encodes any string x D .x1; x2; : : : ; xn/ 2
˙n intoM strings (buckets) of total lengthN over˙ , namely y1;y2; : : : ;yM , such
that for eachm-tuple (batch) of (not necessarily distinct) indices i1; i2; : : : ; im 2 Œn�,
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the symbols xi1 ; xi2 ; : : : ; xim can be retrieved bym users, respectively, by reading at
most t symbols from each bucket, such that each symbol xi` is recovered from the
symbols read by the `-th user alone.

The ratio R
4D n=N is called the rate of the code.

If for the code C it holds that t D 1, then we use notation .n;N;m;M/˙ for it.
This corresponds to an important special case when only one symbol is read from
each bucket. Note that the buckets in this definition correspond to the devices in the
above example, the encoding length N to the total storage, and the parameter t to
the maximal load. If ˙ D Fq is a finite field, we also use notation .n;N;m;M; t/q
(or .n;N;m;M/q) to denote .n;N;m;M; t/˙ (or .n;N;m;M/˙ , respectively).

Definition 2 We say that an .n;N;m;M; t/q batch code is linear, if every symbol
in every bucket is a linear combination of original database symbols.

3 Linear Batch Codes

In what follows, we consider the case of a linear batch codeC with t D 1. Moreover,
we limit ourselves to the case whenN DM , which means that each encoded bucket
contains just one symbol in Fq .

Definition 3 For simplicity we refer to a linear .n;N D M;m;M/q batch code as
ŒM; n;m�q batch code.

Let x D .x1; x2; : : : ; xn/ be an information string, and let y D .y1; y2; : : : ; yM /
be an encoding of x. Due to linearity of the code, each encoded symbol yi , i 2 ŒM �,
can be written as yi DPn

jD1 gj;ixj for some symbols gj;i 2 Fq , j 2 Œn�, i 2 ŒM �.
Then we can form the matrix G as follows:

G D
�
gj;i

�

j2Œn�;i2ŒM �
;

and thus the encoding is y D xG .
The n�M binary matrix G play a role similar to a generator matrix for a classical

linear ECC. In the sequel, we call G a generator matrix of the batch code C . We
denote by G i the i -th row of G and by G Œ`� the `-th column of G .

Theorem 4 Let C be an ŒM; n;m�q batch code. It is possible to retrieve
xi1 ; xi2 ; : : : ; xim simultaneously if and only if there exist m non-intersecting sets
T1; T2; : : : ; Tm of indices of columns in G , and for Tr there exists a linear
combination of columns of G indexed by that set, which equals to the column
vector eTir , for all r 2 Œm�.
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Proof 1. For each r 2 Œm�

eTir D
X

`2Tr
˛` �G Œ`� ;

where all ˛` 2 Fq . Due to linearity, the encoding of x D .x1; x2; : : : ; xn/ can be
written as y D .y1; y2; : : : ; yM / D x �G . Then,

xir D x � eTir D x �
0

@
X

`2Tr
˛` �G Œ`�

1

A D
X

`2Tr
˛`.x �G Œ`�/ D

X

`2Tr
˛` � y` ;

and therefore the value of xir can be obtained by querying only the values of y`
for ` 2 Tr . The conclusion follows from the fact that all Tr do not intersect.

2. To show the opposite direction of Theorem 4, we follow the idea of the proof of
Theorem 1 in [1]. Let Tr , for r 2 Œm�, be a set of indices of entries in y, which
are used to retrieve xir . We show that eTir 2 hG Œ`�i`2Tr .

Denote the vector spaceWr , hG Œ`�i`2Tr . Assume by contradiction that e ir …
Wr .

Recall that the dual space of Wr , denoted by W ?r , consists of all the vectors
orthogonal to any vector in Wr . Since eir … Wr , there exists a vector z 2 W ?r ,
which is not orthogonal to e ir , i.e. z � eir ¤ 0, and so zir ¤ 0. On the other hand,
this vector z is orthogonal to any vector G Œ`� for ` 2 Tr .

Consider the encoding of the vectors z and 0, z �G and 0 �G , respectively. In
both cases, all the coordinates of y indexed by Tr are all zeros. Therefore, the
result of the retrieval of the ir -th encoded symbol in both cases is the same, yet
zir ¤ 0. We obtain a contradiction.

Example 5 Consider the following linear binary batch codeC whose 4�9 generator
matrix is given by

G D

0

B
B
@

1 0 1 0 0 0 1 0 1

0 1 1 0 0 0 0 1 1

0 0 0 1 0 1 1 0 1

0 0 0 0 1 1 0 1 1

1

C
C
A :

Let x D .x1; x2; x3; x4/, y D xG .
Assume that we want to retrieve the values of .x1; x1; x2; x2/. We can retrieve

.x1; x1; x2; x2/ from the following set of equations:

8
ˆ̂<

ˆ̂
:

x1 D y1
x1 D y2 C y3
x2 D y5 C y8
x2 D y4 C y6 C y7 C y9

:
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Moreover, it is straightforward to verify that any 4-tuple .xi1 ; xi2 ; xi3 ; xi4 /, where
i1; i2; i3; i4 2 Œ4�, can be retrieved by using columns indexed by some four non-
intersecting sets of indices in Œ9�. Therefore, the code C is a Œ9; 4; 4�2 batch code.
As a matter of fact, this code is the two-layer construction of “subcube code” in [7,
Section 3.2].

Lemma 6 Let C be an ŒM; n;m�q batch code. Then, each row of G has Hamming
weight at least m.

Proof Consider row j , for an arbitrary j 2 Œn�. We can retrieve the combination
.xj ; xj ; : : : ; xj / if there are m non-intersecting sets of columns, such that sum of
the symbols in each set is equal eTj . Therefore, there are at least m columns in G

with a nonzero symbol in position j . ut
Lemma 7 Let C be an ŒM; n;m�q batch code. Then, the matrix G is full rank.

Proof We are able to recover any combination of size m of fx1; x2; : : : ; xng. Then,
the column vectors

0

BB
B
B
B
@

1

0

0
:::

0

1

CC
C
C
C
A
;

0

BB
B
B
B
@

0

1

0
:::

0

1

CC
C
C
C
A
;

0

BB
B
B
B
@

0

0

1
:::

0

1

CC
C
C
C
A
; � � �

0

BB
B
B
B
@

0

0

0
:::

1

1

CC
C
C
C
A

are all in the column space of G . Therefore, the column space of G has dimension
n, and so the matrix is full rank. ut

The following theorem is the main result of this section. The presented proof of
this theorem works only for binary batch codes.

Theorem 8 Let C be an ŒM; n;m�2 batch code C over F2. Then, G is a generator
matrix of the classical error-correcting ŒM; n;� m�2 code.

Proof Let C be a classical ECC, whose generating matrix is G . It is obvious that
the length of C is M . Moreover, since the matrix G is a full rank matrix due to
Lemma 7, we obtain that the dimension of C is n. Thus, the only parameter in
question is the minimum distance of C.

In order to show that the minimum distance of C is at leastm, it will be sufficient
to show that any non-zero linear combination of the rows of G has Hamming weight
at leastm. Consider an arbitrary linear combination of the rows of G , whose indices
are given by a set T ¤ ¿,

z D
X

i2T
G i :

Take an arbitrary index i0 2 T . Due to the properties of the batch codes we should
be able to recover .xi0 ; xi0 ; : : : ; xi0 / from y . Therefore, there existm disjoint sets of
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indices S1; S2; : : : ; Sm, Si � ŒM �, such that for all i 2 Œm�:
X

j2Si
G Œj � D eTi0 : (1)

Now, consider the sub-matrix M i of G which is formed by the rows of G

indexed by T and the columns of G indexed by Si . Due to (1), the row of M i

that corresponds to the row i0 in G , has an odd number of ones in it. All other rows
of M i contain an even number of ones. Therefore, the matrix M i contains an odd
number of ones. This means that the vector of z will also contain an odd number of
ones in the positions given by the set Si . This odd number is at least one.

We conclude that z contains at least one ‘1’ in positions given by the set Si , for
all i 2 Œm�. The sets Si are disjoint, and therefore the Hamming weight of z is at
least m. ut
Example 9 The converse of Theorem 8 is generally not true. In other words, if
G is a generator matrix of a classical error-correcting ŒM; n;m�2 code, then the
corresponding code C is not necessarily an ŒM; n;m�2 batch code. For example,
take G to be a generator matrix of the classical Œ4; 3; 2�2 ECC as follows:

G D
0

@
1 1 1 1

0 1 0 1

0 0 1 1

1

A :

Let x D .x1; x2; x3/, y D .y1; y2; y3; y4/ D xG .
It is impossible to retrieve .x2; x3/. This can be verified by the fact that

x2 D y1 C y2 D y3 C y4 and x3 D y1 C y3 D y2 C y4 ;

and so one of the yi ’s is always needed to compute each of x2 and x3.

Remark 10 The topic of linear ECCs was very intensively studied over the years.
Various well-studied properties of linear ECCs, such as MacWilliams identities [11],
apply also to linear batch codes due to Theorem 8 (for t D 1,M D N and q D 2). A
variety of bounds on the parameters of ECCs, such as sphere-packing bound, Plotkin
bound, Griesmer bound, Elias-Bassalygo bound, McEliece-Rodemich-Rumsey-
Welch bound [13] (see also [14, Chapter 4], [12]) apply to the parameters of linear
binary ŒM; n;m� batch codes.

4 Constructions of New Codes

In this section we present several simple methods to construct new linear batch
codes from the existing ones.
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Theorem 11 Let C1 be an ŒM1; n;m1�q batch code andC2 be an ŒM2; n;m2�q batch
code. Then, there exists an ŒM1 CM2; n;m1 Cm2�q batch code.

Proof Let G 1 and G 2 be n �M1 and n �M2 generator matrices corresponding to
C1 and C2, respectively. Consider the following n � .M1 CM2/ matrix

OG D Œ G 1 j G 2 � :

This matrix corresponds to a batch code of length M1 CM2 with n variables. It is
sufficient to show that any combination of m1 C m2 variables can be retrieved.
By the assumption, the first (any) m1 variables can be retrieved from the first
M1 coordinates of y and the last m2 variables can be retrieved from the last M2

coordinates of y . This completes the proof. ut
Theorem 12 Let C1 be an ŒM1; n1;m1�q batch code and C2 be an ŒM2; n2;m2�q
batch code. Then, there exists an ŒM1 CM2; n1 C n2;minfm1;m2g�q batch code.

Proof As before, denote by G 1 and G 2 the n1�M1 and n2�M2 generator matrices
corresponding to C1 and C2, respectively. Consider the following .n1Cn2/�.M1C
M2/ matrix

OG D
"

G 1 0

0 G 2

#

:

The matrix OG corresponds to a batch code of length M1 C M2 with n1 C n2
variables. Moreover, any combination of minfm1;m2g variables can be retrieved.
If all unknowns are from fx1; x2; : : : ; xn1g, then they can be retrieved by using only
the first M1 columns of OG . If all unknowns are from fxn1C1; xn1C2; : : : ; xn1Cn2g,
then they can be retrieved by using only the lastM2 columns of OG . Generally, some
unknowns can be retrieved by using combinations of the first M1 columns, while
the other unknowns are retrieved using combinations of the last M2 columns. Since
the number of unknowns is at most minfm1;m2g, we can always retrieve all of them
simultaneously. ut
Theorem 13 Let C be an ŒM; n;m�q batch code, and let G be the corresponding
n �M matrix. Then, the code OC , defined by the .nC 1/ � .M Cm/ matrix

OG D

0

BB
B
@

0 0 � � � 0
G

:::
:::
: : :

:::

0 0 � � � 0
� � � � � � � 1 1 � � � 1

1

CC
C
A

„ ƒ‚ …
M

„ ƒ‚ …
m
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is an ŒM Cm; nC 1;m� batch code, where � stands for an arbitrary symbol in Fq .

Proof As before, let x D .x1; x2; : : : ; xn; xnC1/ and y D .y1; y2; : : : ; yMCm/ D
x OG . Assume that we want to retrieve the vector z D .xi1 ; xi2 ; : : : ; xim /.

Take a particular xij in z, j 2 Œm�. Consider two cases. If ij ¤ nC 1 then, since
C is a batch code, we have

xij D
X

`2Tij
y` C � � xnC1 ;

where Tij � ŒM � and � 2 Fq . In that case, if � D 0, then xij D
P

`2Tij y`. If

� ¤ 0, then xij D
P

`2Tij y`C � � yMCj . Observe that all Tij are disjoint due to the

properties of a batch code.
In the second case, ij D nC 1, and we simply set xij D xnC1 D yMCj .
In both cases, we used sets fy` W ` 2 Tij [ fM C j gg to retrieve xij . These sets

are all disjoint for j 2 Œm�.
We conclude that all m unknowns xij , j 2 Œm�, can be retrieved simultaneously.

ut
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An Extension of the Brouwer-Zimmermann
Minimum Weight Algorithm

Petr Lisoněk and Layla Trummer

Abstract We study the algorithm for computing the minimum weight of a linear
code that was invented by A. Brouwer and later extended by K.-H. Zimmermann.
We show that matroid partitioning algorithms can be used to efficiently find a
favourable (and sometimes best possible) sequence of information sets on which
the Brouwer-Zimmermann minimum weight algorithm operates.

Keywords Linear code • Minimum weight • Brouwer-Zimmermann algorithm

1 Introduction

For a prime power q let Fq denote the field with q elements. We assume that q is
small, hence all arithmetic operations in Fq are performed at unit cost. For x 2 F

n
q

let wt.x/ denote the Hamming weight of x. By an Œn; k�q linear code we mean a
k-dimensional subspace of Fnq . Let d denote the minimum Hamming distance of
distinct codewords in C , then d is also the minimum Hamming weight of non-
zero codewords in C . Under the standard definitions of coding theory [2, 9] the
code C can detect up to d � 1 errors and it can correct up to b.d � 1/=2c
errors. Thus determining the value of d is critical for understanding of the error
detection/correction capability of C .

Vardy [11] showed that for general linear binary codes, computing the minimum
weight is an NP-hard problem, and the corresponding decision problem is NP-
complete. Hence any algorithm for computing the minimum weight will run in
superpolynomial time, unless P = NP.

This paper is concerned with the algorithm for computing the minimum weight
of a linear code that was invented by A. Brouwer and later extended by K.-
H. Zimmermann. The algorithm is outlined in Sect. 3. Before that, in Sect. 2 we
review background from matroid theory. In Sect. 4 we propose our extension to the
Brouwer-Zimmermann algorithm which consists in an efficient construction of a
good (sometimes best possible) sequence of information sets for the given code. In
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Sect. 5 we compare our approach to the previous literature. Throughout the paper we
also make references to the implementation of the Brouwer-Zimmermann algorithm
that is available in Magma [3].

2 Matroid Partitioning

A matroid is a pair M D .E; I / where E is the set of elements of M and I is a
collection of subsets of E , called the independent sets, that satisfies certain axioms.
Matroids are an axiomatic abstraction of the theory of linear dependence in vector
spaces. We recommend [10] for a current and comprehensive survey of matroid
theory.

A matroid partitioning algorithm takes as input matroids Mi D .E; Ii / where
1 � i � r . Note that all Mi have the same ground set E but in general their sets of
independent sets may be different. The algorithm decides whether there exist sets
S1; : : : ; Sr such that Si 2 Ii for 1 � i � r (that is, Si is an independent set with
respect to the i -th matroid) and

Sr
iD1 Si D E and Si \ Sj D ; whenever i ¤ j . If

such a partition does exist, then the algorithm finds one such partition.
The first matroid partitioning algorithm was invented by Edmonds [5]. A very

accessible description of Edmonds’ algorithm, including a pseudocode for it, can
be found in Section 8.7 of [8]. Assuming that matroid partition(s) do exist, the
version of Edmonds’ algorithm given in [8] finds a partition S1; : : : ; Sr such that the
sequence .jS1j; jS2j; : : : ; jSr j/ is lexicographically maximal among all sequences
.jU1j; jU2j; : : : ; jUr j/ where U1; : : : ; Ur is a matroid partition. Throughout the paper
jX j denotes the cardinality of set X .

The complexity analysis of Edmonds’ algorithm in [8] shows that the algorithm
runs in timeO.m3t/ wherem D jEj and t is the maximum time required for testing
whether F 2 Ii , where F is some subset of E and i is some number between 1 and
r .

For the type of matroids that we use in this paper, specialized matroid partitioning
algorithms exist, see [4] and later references, and their time complexity is lower.
However we choose to not go into more detail here, as all matroid partitioning
algorithms run in polynomial time whereas the algorithms for computing the
minimum weight of a linear code run overall in superpolynomial time (unless
P = NP). Hence the matroid partitioning step will not be the bottleneck, not only
asymptotically but also in practical computations, as we verified by a Magma
implementation.

3 Brouwer-Zimmermann Minimum Weight Algorithm

An algorithm for computing the minimum weight of a linear code over a finite field
was designed by A. Brouwer and subsequently extended by K.-H. Zimmermann.
Henceforth we will refer to it as Brouwer-Zimmermann algorithm, abbreviated
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BZ algorithm. A detailed description of the BZ algorithm can be found in [2,
Section 1.8], in [1] and in [6]. A thorough implementation of the algorithm is
available in Magma [3], and a description of the Magma implementation is given
in [6]. In [7] the algorithm was adapted to finding minimum weights of Z4-linear
quadratic residue codes.

Let C be a linear code whose minimum weight d we wish to determine. Let
C � be the set of non-zero codewords of C . Upon completion of each step, the BZ
algorithm considers C � as a disjoint union

C � D C 0 t C 00:

At this point, all elements of C 0 have been listed explicitly (but none of them needs
to be stored permanently), thus yielding an upper bound d � d where d is the
minimum weight of elements of C 0. At the same time, the algorithm establishes
a lower bound wt.c/ � d , where c denotes an arbitrary element of C 00, without
listing any elements of C 00 explicitly. If d � d , then the algorithm terminates with
the message that the minimum weight of C equals d . Otherwise, in the next step the
algorithm augments the set C 0 so that it remains easy to lower bound the weights of
elements of the new set C 00, and the same process is repeated. It is desired that upon
termination the set C 0 is as small as possible, since almost all effort of the algorithm
is spent on listing the elements of C 0 and computing their weights.

LetG be a generator matrix for an Œn; k�q code C . A subset T � f1; 2; : : : ; ng of
size jT j D k is called an information set for C if the corresponding columns in G
are linearly independent. Then there also exists a generator matrix GT for C such
that the columns of GT specified by T form an identity matrix. Each codeword of
C is of the form uGT for some u 2 F

k
q . We have

wt.uGT / � wt.u/ for all u 2 F
k
q : (1)

3.1 Outline of the BZ Algorithm

Let C be an Œn; k�q linear code with a generator matrix G. The BZ algorithm will
determine the minimum weight of C as follows.

The algorithm will find subsets T1; : : : ; T` of f1; 2; : : : ; ng such that each Ti is an
information set for C and

S`
iD1 Ti D f1; 2; : : : ; ng. Then Gauss-Jordan elimination

is applied to G to construct matricesG1; : : : ; G` so that Gi is a generator matrix for
C that has the identity matrix in the columns specified by Ti .

The sequence of non-negative integers r1; : : : ; r` is determined by

ri WD
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
Ti n

i�1[

jD1
Tj

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

for 1 � i � `: (2)

The integers ri are called relative ranks in [6], and we will follow this terminology.
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We will assume that the sequence of relative ranks is non-increasing, that is,

r1 � r2 � : : : � r`:

The methods used in [2, 6] for constructing sets Ti and matrices Gi produce them
in such a way that the sequence of relative ranks is non-increasing. Also, Eq. (4)
shows that it is more beneficial for the BZ algorithm to operate on matrices with
larger relative ranks prior to operating on matrices with smaller relative ranks.

While the algorithm is operating, it may decide to discard some matrices Gi
because their relative ranks are so small that they will not get an opportunity to
contribute to the lower bound on weights of codewords in C 00 before the termination
of the algorithm. Such decisions may be made on the fly, whenever the upper bound
d decreases as a consequence of discovering a codeword of weight less than the
previous value of d . A numerical example of this phenomenon is given in [6]. From
the complexity analysis point of view, predicting when such events will occur is
not possible, yet the impact of these events on the running time of the algorithm is
significant. In our analysis, we will assume that the algorithm operates throughout
the entire computation on the sequence of matrices G1; : : : ; GD where D is some
integer such that 1 � D � `. (The only exception may be the last iteration of
the algorithm which operates on G1; : : : ; Gz for some 1 � z � D.) We say that
the algorithm operates up to depth D. We will show below that this assumption is
consistent with one of the modes in which the BZ algorithm is used in practice.
The value of D is determined once the sets T1; : : : ; T` have been constructed. In [2]
D D ` is always used. In [6] the choices forD are discussed: In the mode where the
algorithm computes the minimum weight, the value of D is adjusted dynamically
according to the changes of the value of d . In the mode where the algorithm verifies
a lower bound on the minimum weight, the optimal value of D can be determined
in advance and it stays constant throughout the execution of the algorithm.

Each step of the algorithm is characterized by a pair of integers .w; j / where 1 �
w � k and 1 � j � D. The initial values of the main variables are .w; j / WD .1; 1/
and d WD n � k C 1 (Singleton bound).

In step .w; j / the algorithm enumerates all codewords uGj such that wt.u/ D w.
During this process, whenever a codeword x is generated such that wt.x/ < d , then
we set d WD wt.x/. In other words, the algorithm updates d according to

d WD min
�
d ; minfwt.uGj / W u 2 F

k
q ; wt.u/ D wg

�
(3)

without storing the set of codewords in memory. The new value of d is determined
as

d WD
jX

iD1
max.0;wC 1 � k C ri /C

DX

iDjC1
max.0;w � k C ri /: (4)
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Using (1) it is easy to see [6] that any codeword x 2 C � that has not been generated
by the algorithm up to this point satisfies wt.x/ � d . The algorithm now tests
whether d � d . If this is the case, then the algorithm terminates with the message
that the minimum weight of C equals d . Otherwise, if j < D, then the algorithm
proceeds to step .w; j C 1/, otherwise it proceeds to step .wC 1; 1/.

It is noted in [6] that the overall work of the algorithm can be reduced by the
factor of q � 1 by using only left-normalized vectors u in (3), since codewords
that are non-zero scalar multiples of each other have the same Hamming weight.
The overall running time of the BZ algorithm is essentially determined by the total
number of codewords of C that the algorithm generates during its execution. This
value is called the work factor in [6]. Assuming that the algorithm terminates upon
completing step .w; j /, the work factor is

W.D;w; j / D j

wX

zD1

 
k

z

!

.q � 1/z�1 C .D � j /
w�1X

zD1

 
k

z

!

.q � 1/z�1: (5)

3.2 Proving a Lower Bound on the Minimum Weight

The BZ algorithm can operate in different modes, and this is reflected for example
by the fact that the Magma implementation of it [6] offers several different com-
mands through which the algorithm can be invoked. The version of the algorithm
that we outlined in Sect. 3.1 computes the minimum weight of C . It is also possible
to use the algorithm to solve the following decision problem:

Given a linear codeC and a positive integerL, is it true that the minimum weight
of C is greater than or equal to L?

In order to solve this problem, the only modification required to the algorithm
outlined in Sect. 3.1 is that the algorithm will terminate with output “yes” as soon
as the inequalities d � L and d � L are both satisfied. If the algorithm ever comes
across a codeword of weight less than L, then it will terminate with output “no.”
This mode of operation of BZ algorithm is available in Magma via the command
VerifyMinimumDistanceLowerBound.

If the algorithm outputs “no,” then it is in general impossible to predict the time
at which the algorithm comes across a codeword of weight less than L. We will
analyze the work factor in the case when the algorithm outputs “yes.” Hence we
are analyzing the complexity of using the BZ algorithm to prove a lower bound on
the minimum weight of a linear code. In this case, the inequality d � L holds true
throughout the execution of the algorithm. Hence we only need to analyze the work
needed to obtain the inequality d � L.

Given C andL as above, the algorithm starts by determining the information sets
T1; : : : ; T` and the corresponding relative ranks r1; : : : ; r`. Afterwards, the algorithm
will consider in turn all possible values D D 1; 2; : : : ; `. For each such D the
algorithm will determine the earliest (in the order of execution) pair .w; j / such
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that the right-hand side of (4) is greater than or equal to L, and it will compute the
corresponding work factorW.D;w; j / using (5). The valueD D D0 that minimizes
the work factor required will be found, and the BZ algorithm will be invoked at this
optimal depth D0 to deliver the proof that L is a lower bound on the minimum
weight of C .

4 Construction of Information Sets

The issue of finding information sets T1; : : : ; T` that yield a favourable sequence of
relative ranks r1; : : : ; r` is a problem of its own. We address it in this section, and
we will make our final comments about it in the next section.

It is intuitively clear from (4) that larger values of ri should make the lower bound
d grow faster, which means a faster completion of the algorithm. (Note that ri � k
for all i .) This motivates the following definition.

Definition 1 An ˛-partition of an Œn; k�q linear code C is a partition of its set of
coordinates into bn=kc linearly independent sets of size k and, in case that k does
not divide n, one linearly independent set of size n mod k.

Note that C has an ˛-partition if and only if there exists a sequence of
information sets for C such that the corresponding sequence of relative ranks is

.k; : : : ; k; n mod k/ (6)

where the last term is omitted if k divides n. It is easy to convert one object into the
other one.

Proposition 2 Let C be an Œn; k�q linear code. There exists an algorithm with time
complexity O.n3k3/ that decides whether C has an ˛-partition, and it outputs an
˛-partition of C if it exists.

Proof Let G be a generator matrix for C . Let E D f1; : : : ; ng and let r WD dn=ke.
For 1 � i � r consider matroids Mi D .E; Ii / defined as follows. Each set Ii
consists of precisely those subsets F � E such that the columns of G indexed
by F are a linearly independent set in F

k
q . Apply Edmonds’ algorithm (Sect. 2) to

M1; : : : ;Mr . The existence of an ˛-partition of C is equivalent to the existence of
a matroid partition S1; : : : ; Sr such that .jS1j; : : : ; jSr j/ D .k; : : : ; k/ if k divides n,
or .jS1j; : : : ; jSr j/ D .k; : : : ; k; n mod k/ if k does not divide n. In either case this
is the lexicographically maximal matroid partition possible, thus it will be found by
Edmonds’ algorithm in case that it exists.

For the conclusion about the running time, recall from Sect. 2 that Edmonds’
algorithm runs in timeO.m3t/ wherem D jEj and t is the maximum time required
for testing whether F 2 Ii , where F is some subset of E and i is some number
between 1 and r . In our case m D jEj D n. Let Z be an arbitrary subset of E D
f1; : : : ; ng and suppose that we want to test whether Z 2 Ii . (Recall that all sets
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Ii are equal, hence the value of i is of no consequence.) If jZj > k, then Z 62 Ii .
If jZj � k, then let Q denote the submatrix of G consisting of those columns of
G indexed by Z. Then Z 2 Ii if and only if rank.Q/ D jZj. This can be decided
by Gauss-Jordan elimination in time O.k3/. Overall testing whether Z 2 Ii can be
done in time O.k3/. Hence Edmonds’ algorithm will run in time O.n3k3/. ut

In [2, Section 1.8] it is noted that the BZ algorithm works efficiently if the code
under consideration has many information sets which are pairwise disjoint. We now
show that this objective can be achieved deterministically in polynomial time.

Proposition 3 Let C be an Œn; k�q linear code. There exists an algorithm with time
complexity O.n3k3/ that determines N , the maximum number of pairwise disjoint
information sets for C , and it finds a set of N pairwise disjoint information sets
for C .

Proof As in the proof of Proposition 2 we form the matroids Mi from the code
C , except that we now take r D n, and we apply Edmonds’ algorithm to them.
Since Edmonds’ algorithm delivers a matroid partition S1; : : : ; Sr such that the
sequence .jS1j; : : : ; jSr j/ is lexicographically maximal among all matroid partitions,
in particular the sequence S1; : : : ; Sr will contain the maximum possible number of
pairwise disjoint information sets for C . These will be the sets S1; : : : ; SN whereN
is the largest number i such that jSi j D k. ut

Our next statement shows that if an ˛-partition of C exists, then it is the optimal
choice for the mode of the BZ algorithm that we study. The proof is skipped in this
version due to the page limit; it will be included in the journal version of the paper.

Proposition 4 If R is a sequence of relative ranks corresponding to an ˛-partition
of C , then the work factor of the BZ algorithm for proving a lower bound on the
minimum weight of C using R is less than or equal to the work factor when using
any other sequence of relative ranks for C .

5 Conclusion

The BZ algorithm starts its execution by finding information sets T1; : : : ; T` that
yield the sequence of relative ranks r1; : : : ; r`. It is clear from (4) that the sequence
.ri / has a serious impact on the operation of the algorithm, hence spending some
effort on making a choice among available sequences .ri / appears to be well
justified.

In [2] the issue of choosing among different sequences .ri / is not considered.
The information sets are produced by one sweep of the generator matrix from left to
right, by a sequence of Gaussian eliminations performed on rectangular matrices of
decreasing size. This method guarantees r1 D k but not much can be inferred about
the sequence .ri / as a whole.
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In [6] the choice among different sequences .ri / is considered. The generator
matrix is swept from left to right as in [2]. If the first pass fails to produce the
sequence of relative ranks (6), then a random permutation is applied to the columns
of the generator matrix, and the process is repeated over and over. The Magma
implementation of the BZ algorithm uses this heuristic [6].

In this paper we present a deterministic algorithm running in time polynomial in
n and k that finds information sets yielding the relative rank sequence (6), which has
been deemed to be the most favourable situation for the BZ algorithm [6, p. 293],
or it proves that this relative rank sequence can not be achieved for the code under
investigation. We make some assumptions about the mode of operation of the BZ
algorithm that allow us to assert that the sequence (6) is optimal in cases when
it is achievable. We note that the same algorithm also always finds the maximum
number of pairwise disjoint information sets for the given code, which is another
objective that can be pursued [2]. Our timings show that the extra computation time
required is negligible, hence we believe that we have proposed a useful extension to
the Brouwer-Zimmermann algorithm.
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On the Design of Storage Orbit Codes

Shiqiu Liu and Frédérique Oggier

Abstract We propose the use of orbit codes to design storage codes, that is,
subspace codes obtained from orbits of the action of subgroups of GLn.Fq/ on
m-dimensional subspaces of Fnq . We translate the storage code parameters into those
of the algebraic objects involved, and construct a simple family of storage orbit
codes.

Keywords Orbit codes • Storage codes • Group action

1 Introduction

Let Fq be the finite field with q elements, with q a prime power. The set of
all subspaces of F

n
q of dimension m is called Grassmannian and is denoted by

Gq.m; n/:

Gq.m; n/ D fU subspace of Fnq; dim.U / D mg:

We denote by GLn.Fq/ the set of n � n invertible matrices with coefficients in
Fq . Multiplication by elements of GLn.Fq/ defines a group action from the right on
Gq.m; n/ by

Gq.m; n/ �GLn.Fq/ �! Gq.m; n/

.U ; A/ 7�! U A D fuA; u 2 U g

since any element of GLn.Fq/ maps an m-dimensional subspace to an
m-dimensional subspace. In fact, as pointed out in [6], since any twom-dimensional
subspaces can be mapped onto each other by an element ofGLn.Fq/, GLn.Fq/ acts
transitively on Gq.m; n/.
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Codes whose codewords are elements of Gq.m; n/ are popular for error correc-
tion in network coding [1], where the distance of interest between codewords is the
subspace distance. They are sometimes referred to as constant dimension codes.
Constant dimension codes have been obtained from orbits of a cyclic group of
GLn.Fq/ in [6], together with a decoding algorithm for a subclass of such codes. In
this paper, we will consider the problem of designing codes for distributed storage
systems.

Many methods have been proposed to construct storage codes, see e.g. [4] for a
survey of different code designs and constructions. Here is an example to illustrate
how codes are used in the context of distributed storage.

Example 1 Suppose a data object .u0; u1/ 2 F
2
2 of size 2 needs to be stored across

a set of 4 nodes. Use for example a (4,2)-binary cyclic with generator polynomial
x2 C 1 (note that x4 � 1 D .x2 C 1/.x2 � 1/). Then a codeword is of the form

Œu0; u1�

�
1 0 1 0

0 1 0 1

�
D Œu0; u1u0; u1�:

Then node 1 stores u0, node 2 u1, node 3 u0 and node 4 u1, that is every codeword
coefficient is assigned to be stored by one node. This code protects the data object
against one node failure: if any one node fails, it is still possible to recover the data
object. Furthermore, any one node failure can be repaired by contacting one node.

We are interested in storage codes whose codewords are elements of Gq.m; n/,
but whose design criterion varies from that of constant dimension codes. In [3],
such storage codes were built from cliques within the Grassmannian graph. We will
present in Sect. 2 another approach to the design of storage codes, that of orbit codes,
following the terminology of [6]. In Sect. 3, we propose a family of cyclic orbit
codes suitable for collaborative repair (the meaning of collaborative repair will be
explain below).

2 Storage Codes

Fix U 2 Gq.m; n/, letG be a subgroup of GLn.Fq/, and let U G D fU g; g 2 Gg
be the orbit of U under the right action ofG. We will refer to U G as an orbit code.

In order to represent an m-dimensional subspace U of the vector space F
n
q , we

fix a basis of U , and use an m � n matrix U whose row space fvU; v 2 F
m
q g is U .

A storage code C , in the context of networked distributed storage [4], aims at
encoding a data object o 2 F

n
q into N network nodes, such that the object can

be retrieved from a subset of live nodes in case of node failures. In the case of
linear codes, every node stores the inner products of o 2 F

n
q with some (say m,

m � 1) vectors in F
n
q , thus the node may compute linear combinations of these

inner products, and thus is seen as storing an m-dimensional vector space, the span
of these m vectors which are assumed to be linearly independent, without loss of
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generality. The main difference between a storage code and an erasure code is that
a storage code should be amenable to repair, namely, the code should be such that
the data stored at one node can be computed from a (small) subset of other nodes,
without (necessarily) having to decode the object first. Alternatively, in the case of
collaborative repair, a subset of nodes can be computed from another subset of repair
nodes, allowing these repair nodes to exchange data among each other [4].

Let us translate these storage parameters for an orbit code U G:

1. The number of storage nodes is the cardinality jU Gj of the orbit, and it is well
known that

jU Gj D jGj
jStabG.U /j ;

where StabG.U / D fg 2 G; U g D U g is a subgroup of G called the stabilizer
of U ,

2. The storage capacity (or number of stored symbols in Fq) for every node is m,
3. The size of the object to be stored is n.

Remark 2 Note that nodes are storing the inner product of the object o with basis
vectors, thus we associate to a basis vector v the inner product between o and v.
Consequently, we say that a node stores v instead of saying that it stores voT , which
makes it easier to translate storage codes in terms of group action. However, in terms
of storage, voT is one element of Fq , not n.

A standard way to evaluate the performance of a storage code is to compare it
with the optimal trade-off curve between the amount of storage per node, and the
repair bandwidth. This trade-off curve is usually computed from a min-cut bound.
We recall what is the min-cut bound for the most general setting, where the level
of collaboration varies, going from no collaboration to full collaboration, and any
regime in between. This min-cut bound is [2], keeping the original notation of the
trade-off curve:

M � min
u2P .

X

i2I
ui minf˛; .d �

i�1X

jD0
uj /ˇ C .t � s C 1 � ui /ˇ

0g

C
X

i2 NI
ui minf˛; .d �

i�1X

jD0
uj /ˇg/ (1)

where

I D fi; t � s C 1 � ui � 0g; NI D fi; t � s C 1 � ui < 0g
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and

P D fu D .u0; : : : ; ug�1/; 1 � ui � t and
g�1X

iD0
ui D kg:

Parameters in the above bound are:

M W the size of an object
k W any choice of k nodes should allow the object retrieval
˛ W storag capacity per node
� W repair bandwidth per node
ˇ W the download repair bandwidth
ˇ0 W the collaboration repair bandwidth
d W number of live nodes contacted
t W the threshold at which a repair process is triggered
t � s W the number ofother repair nodes involved in collaboration

At the two extreme regimes, the Minimum Storage Repair (MSR) and the Minimum
Repair Bandwidth Repair (MBR), we have:

MSR W ˛ D M
k
; � D M

k
dCt�s

d�kCt�sC1 ;
ˇ D ˇ0 D M

k
1

d�kCt�sC1 :

MBR W ˛ D � D M
k

2dCt�s
2d�kCt�sC1 ;

ˇ D M
k

2
2d�kCt�sC1 ; ˇ

0 D M
k

1
2d�kCt�sC1 :

When s D 1, we get full collaboration case, while s D t corresponds to the situation
with no collaboration.

Example 3 Let G D hgi be the subgroup of GL5.F2/ generated by

g D

2

6
6
66
6
4

0 0 1 0 0

0 0 0 0 1

1 1 1 1 1

1 0 0 0 0

0 1 0 0 0

3

7
7
77
7
5

Consider the orbit code U G, where U has for basis

U D
2

4
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

3

5 :
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Since g has order 4 and StabG.U / is trivial, the orbit code U G is

U;

2

4
0 0 1 0 0

0 0 0 0 1

1 1 1 1 1

3

5 ;

2

4
1 1 1 1 1

0 1 0 0 0

0 0 0 1 0

3

5 ;

2

4
0 0 0 1 0

1 0 0 0 0

0 0 0 0 1

3

5 :

This corresponds to a storage code C where the size of the object o is n D 5,
every storage node stores m D 3 symbols (e.g., the first node corresponding to the
subspace U stores .1; 0; 0; 0; 0/oT D o1, .0; 1; 0; 0; 0/oT D o2, .0; 0; 1; 0; 0/oT D
o3 for o D .o1; : : : ; o5/ 2 F

5
q). The data object o may be retrieved out of any two

nodes, since dim.U gi CU gj / D 5 for all i ¤ j . In case of one node failure, the
subspace U gi may be computed from the knowledge of a subspace of dimension
1 from each of the other U gj , j ¤ i , or in other words dim.U gi \ U gj / D 1

for all i ¤ j . This code instance has been reported in [5], which is an MBR code
corresponding to the no collaboration scenario, with parameters (keeping the min-
cut bound notation): the file size M D 5, the storage capacity ˛ D m D 3, k D 2,
d D 3, t D 2, ˇ D 1.

3 A Simple Instance of Cyclic Orbit Codes

We next propose a family of cyclic orbit codes and compute the parameters of the
corresponding storage codes.

Lemma 4 LetG D hgi be the subgroup ofGLn.Fq/ generated by the n�n matrix

g D

2

6
6
66
6
4

0 1 0 0

0 0 1 0

: : :

0 0 0 : : : 1

1 1 1 : : : 1

3

7
7
77
7
5
;

and let U contain a canonical basis ofG2.n� 1; n/. Then any two distinct elements
U gi and U gj of the orbit U G of U under the right action of G intersect in a
subspace of dimension n � 2. Furthermore, the size of the orbit is nC 1.

Proof The size of the orbit U G is the order of g which is nC 1 since the stabilizer
is trivial. Since

dim.U gi CU gj / D 2.n� 1/� dim.U gi \U gj / � n;
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it must be that

n � 2 � dim.U gi \U gj /

which concludes the proof, since U gi and U gj are distinct for i ¤ j . ut
Proposition 5 The orbit U G forms a code C such that

1. The object is retrieved by contacting any two nodes,
2. The repair of two failures is done by downloading n� 2 elements of Fq from one

node for each failure, and exchanging one element of Fq between the two repair
nodes.

Recall Remark 2 for counting the size of elements downloaded/repaired.

Proof Label the nC1 storage nodes from 0 to n. By assumption, the i th node stores
the element U gi of the orbit U G of U under the right action ofG, i D 0; 1; : : : ; n.

When contacting any two nodes, we get two elements of the orbit U G, say U gi

and U gj , i ¤ j , and we have

dim.U gi [U gj / D dim.U gi /C dim.U gj /� dim.U gi \U gj /

D .n � 1/C .n � 1/� .n� 2/ D n;

hence we can retrieve the object.
Suppose two nodes have failed, say node s and node t , download from node i

the subspace A D U gi \U gs of dimension n � 2, and from node j the subspace
B D U gj \U gt also of dimension n�2, by the above lemma. If dim.A[B/ D n,
the repair process can be completed by collaboration, by exchanging the missing
basis vector at each repair node. Indeed, since dim.A [ B/ D n, write the missing
basis vector a at node s in a basis fv1; : : : ; vng of A [ B as a D Pn

iD1 aivi . If
v1; : : : ; vl 2 A, ask the symbol

Pn
iDlC1 ai vi from B . Iterate this process for the

missing basis vector at node t .
We are left to show that dim.A [ B/ D n, or in fact, since

dim.A [ B/ D dim.A/C dim.B/ � dim.A \ B/ D 2.n� 2/� dim.A \ B/;

to show that dim.A\ B/ D n � 4.
Write U gi D hg1; : : : ; gn�2; gi0i, U gj D hg1; : : : ; gn�2; gj0i. Then A D

U gs \ U gi D hg1; : : : gs0�1; gs0C1; : : : ; gn�2; gi0i, otherwise the nodes i , j
and s would intersect in the same subspace of dimension n � 2, which is not
possible by definition of G, and for the same reason B D U gt \ U gj D
hg1; : : : gt0�1; gt0C1; : : : ; gn�2; gj0i. Without loss of generality, suppose that s0 < t0.
Then

A\ B D hg1; : : : ; gs0�1; gs0C1; : : : ; gt0�1; gt0C1; : : : gn�2i

which has dimension n � 4. ut
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From the code construction above, we can see that

M D n; d D 1; k D 2; t D 2; t � s D 1;
˛ D n � 1; � D n � 1; ˇ D n � 2; ˇ0 D 1:

This code satisfies (1), and is optimal when n D 4.

Example 6 Consider G2.3; 4/, and the subspace U , with basis

U D
2

4
1 0 0 0

0 1 0 0

0 0 1 0

3

5 :

Let G D hgi be the cyclic subgroup of GL4.Fq/ generated by

g D

2

66
4

0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 1

3

77
5 :

The order of g is 5. The orbit of U 2 G2.3; 4/ is by definition

U G WD fU gi ; 0 � i � 4g:

The elements of the orbit are explicitly given by

U;

2

4
0 1 0 0

0 0 1 0

0 0 0 1

3

5 ;

2

4
0 0 1 0

0 0 0 1

1 1 1 1

3

5 ;

2

4
0 0 0 1

1 1 1 1

1 0 0 0

3

5 ;

2

4
1 1 1 1

1 0 0 0

0 1 0 0

3

5 :

We store them in node 0 to 4. Assume that node 1 and node 4 failed. To repair
node 1, download f.0010/; .0001/g from node 2, to repair node 4, download
f.1000/; .0100/g from node 0, then during collaboration, the node repairing node
1 can compute .0011/ and send it, and the node repairing node 4 sends .0100/ in
exchange (Fig. 1). Note that the strategy is not unique. To repair node 1, download
alternatively f.0001/; .0110/g from node 3, to repair node 4, get f.1100/; .1111/g
from node 2, then the node repairing node 1 can get .0011/ and the one repairing
node 4 can get .0111/ from the collaboration.

To compare with Example 1, consider G2.1; 2/, and the subspace U , with basis
U D Œ1 0�. Let G D hgi be the cyclic subgroup of GL2.Fq/ generated by

g D
�
0 1

1 1

�
: The order of g is 3. The orbit of U 2 G2.1; 2/ is by definition

U G WD fU gi ; i D 0; 1; 2g. The elements of the orbit are explicitly given by
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Fig. 1 A data object o D .o1; : : : ; o4/ is stored in 5 nodes node 0 to node 4. Node 1 and node
4 failed. The two nodes that repair them connect to node 2 and node 0 to download 2 pieces of
data, and exchange 1 piece of data among each other: ˛ D � D 3. This strategy satisfies the full
collaboration scenario with parameters at MBR point

Œ1 0�; Œ0 1�; Œ1 1�: Comparing with Example 1, our method also stores an object of
size 2, however we only need 3 nodes to store the data object, thus improving the
storage overhead, while still being able to tolerate one failure. When repairing only
one node, our approach needs to connect 2 nodes, which is not as efficient as the
code in Example 1.

Note finally that the main difference of our approach with respect to the use of
classical erasure codes is that it gives a way to handle several symbols at each node
(instead of 1, as in Example 1).

4 Future Work

In this paper, we translated the parameters of storage codes into those of orbit codes,
illustrated how one known instance of storage code be seen as an orbit code, and
constructed a family of storage codes suitable for collaborative repair.

Future research directions naturally include:

• The construction of other storage codes, using other cyclic groups, but also other
finite groups,

• The analysis and comparison of the code parameters with both the codes
available in the literature, but also the known bounds.
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Hadamard Z2Z4Q8-Codes: Rank and Kernel

Pere Montolio and Josep Rifà

Abstract Hadamard Z2Z4Q8-codes are Hadamard binary codes coming from
a subgroup of the direct product of Z2, Z4 and Q8 groups, where Q8 is the
quaternionic group. We characterize Hadamard Z2Z4Q8-codes as a quotient of a
semidirect product of Z2Z4-linear codes and we show that all these codes can be
represented in a standard form, from a set of generators. On the other hand, we
show that there exist Hadamard Z2Z4Q8-codes with any given pair of allowable
parameters for the rank and dimension of the kernel.

Keywords Dimension of the kernel • Error-correcting codes • Hadamard codes •
Rank • Z2Z4-linear codes • Z2Z4Q8-codes

1 Introduction

Non-linear codes with a group structure (like Z2Z4-linear codes andZ2Z4Q8-codes)
have received a great deal of attention since [2]. The codes in this paper can be
characterized as the image of a subgroup, by a suitable Gray map, of the direct
product of Z2, Z4 and Q8, the quaternionic group of order 8 [6, 8].

Hadamard matrices with a subjacent algebraic structure have been deeply
studied, as well as the links with other topics in algebraic combinatorics or
applications [3]. We quote just a few papers about this subject [1, 4, 7], where we
can find beautiful equivalences between Hadamard groups, 2-cocyclic matrices and
relative difference sets. On the other hand, from a coding theory point of view, it is
desirable that the algebraic structures we are dealing with preserves the Hamming
distance. This is the case, for example, of the Z2Z4-linear codes which has been
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intensively studied during the last years [2]. More generally, the propelinear codes
and, specially those which are translation invariant, are particularly interesting
because the subjacent group structure has the property that both, left and right
product, preserve the Hamming distance. Translation invariant propelinear codes
has been characterized as the image of a subgroup by a suitable Gray map of a
direct product of Z2, Z4 and Q8 [6].

In this paper we analyze codes that have both properties, being Hadamard and
Z2Z4Q8-codes. These codes were previously studied and classified [8] in five
shapes. The aim of this paper is to go further. First of all by giving an standard
form for a set of generators of the code, depending on the parameters, which helps
to understand of the characteristics of each shape and then by putting the focus in
an exact computation of the values of the rank and dimension of the kernel. One of
the main results of this paper is to characterize the Z2Z4Q8-codes as a quotient of
a semidirect product of Hadamard Z2Z4-linear codes. The second main result is to
construct, using the above characterization, Hadamard Z2Z4Q8-codes whose values
for the rank and dimension of the kernel are any allowable pair previously chosen.

The structure of the paper is as follows. Section 2 introduces the notation and
preliminary concepts; Sect. 3 shows the standard form of generators that allows
to represent any Hadamard Z2Z4Q8-code in a unique way, this section finishes
with two important theorems which characterizes a Hadamard Z2Z4Q8-code as a
quotient of a semidirect product of Z2Z4-linear codes (Theorems 2 and 3). Finally,
in Sect. 4 we give the constructions of Z2Z4Q8-codes fulfilling the requirements for
the prefixed values of the dimension of the kernel and rank. We finish the last section
with a couple of examples about the constructions and achievement of codes with
each allowable pair of values for the rank and dimension of the kernel.

2 Preliminaries

Let Z2 and Z4 denote the binary field and the ring of integers modulo 4, respectively.
Any non-empty subset of Zn2 is called a binary code and a linear subspace of Zn2 is
called a binary linear code or a Z2-linear code. Let wt.v/ denote the Hamming
weight of a vector v 2 Z

n
2 (i.e., the number of its nonzero components), and let

d.v; u/ D wt.vC u/, the Hamming distance between two vectors v; u 2 Z
n
2 .

Let Q8 be the quaternionic group on eight elements. The following equalities
provides a presentation and the list of elements of Q8:

Q8 Dha;b W a4 D a2b2 D 1;bab�1 D a�1i D f1; a; a2; a3;b; ab; a2b; a3bg:

Given three non-negative integers k1, k2 and k3, denote as G the group Z
k1
2 �

Z
k2
4 � Qk3

8 . Any element of G can be represented as a vector where the first k1
components belong to Z2, the next k2 components belong to Z4 and the last k3
components belong to Q8.
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We use the multiplicative notation for G and we denote by e the identity element
of the group and by u the element with all components of order two. Hence,
e D .0; k1Ck2: : : ; 0; 1; k3: : :; 1/ and u D .1; k1: : :; 1; 2; k2: : :; 2; a2; k3: : :; a2/.

We call Gray map the function ˚ :

˚ W Zk12 � Z
k2
4 �Qk3

8 �! Z
k1C2k2C4k3
2 ;

acting componentwise in such a way that over the binary part is the identity, over
the quaternary part acts as the usual Gray map, so 0 ! .00/, 1 ! .01/, 2 !
.11/, 3 ! .10/ and over the quaternionic part acts in the following way [8]: 1 !
.0; 0; 0; 0/, b ! .0; 1; 1; 0/, a ! .0; 1; 0; 1/, ab ! .1; 1; 0; 0/, a2 ! .1; 1; 1; 1/,
a2b! .1; 0; 0; 1/, a3 ! .1; 0; 1; 0/, a3b! .0; 0; 1; 1/.

Note that ˚.e/ is the all-zeros vector and ˚.u/ is the all-ones vector.
Let C be a subgroup of Zk12 � Z

k2
4 � Qk3

8 . Binary codes C D ˚.C / are called
Z2Z4Q8-codes. In the specific case k3 D 0, code C is called Z2Z4-linear. In this
last case, note that C is isomorphic to D Z

�
2 � Z

ı
4 	 Z

k1
2 � Z

k2
4 . We will say that C

is of type 2�4ı [2].
We are interested in Hadamard binary codes C D ˚.C / where C is a subgroup

of G D Z
k1
2 �Zk24 �Qk3

8 of length n D 2m. All through the paper we are assuming it.
The kernel of a binary code C of length n is K.C/ D fz 2 Z

n
2 W C C z D C g.

The dimension ofK.C/ is denoted by k.C / or simply k. The rank of a binary code
C is the dimension of the linear span of C . It is denoted by r.C / or simply r .

A Hadamard matrix of order n is a matrix of size n � n with entries ˙1, such
thatHHT D nI . Any two rows (columns) of a Hadamard matrix agree in precisely
n=2 components. If n > 2 then any three rows (columns) agree in precisely n=4
components. Thus, if n > 2 and there is a Hadamard matrix of order n then n is
multiple of 4.

Two Hadamard matrices are equivalent if one can be obtained from the other
by permuting rows and/or columns and multiplying rows and/or columns by �1.
With the last operations we can change the first row and column of H into C1’s
and we obtain an equivalent Hadamard matrix which is called normalized. If C1’s
are replaced by 0’s and �1’s by 1’s, the initial Hadamard matrix is changed into a
(binary) Hadamard matrix and, from now on, we will refer to it when we deal with
Hadamard matrices. The binary code consisting of the rows of a (binary) Hadamard
matrix and their complements is called a (binary) Hadamard code, which is of length
n, with 2n codewords, and minimum distance n=2.

Let C D ˚.C / be a Hadamard Z2Z4Q8-code of length 2m. Set jT .C /j D 2	 ,
jZ.C /=T .C /j D 2ı and jC =Z.C /j D 2�, where T .C / is the subgroup of elements
of order two,Z.C / is the center of C . HadamardZ2Z4Q8-codes were studied in [8]
and classified in five different shapes based on the parameters 	; ı; �.

There are two important tools that has been used in the technical proofs of the
statements throughout this paper, the commutator and the swapper.

Two elements a and b of C commutes if and only if ab D ba. As an extension
of this concept, the commutator of a and b is defined as the element Œa; b� such that
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ab D Œa; b�ba. Note that all commutators belong to T .C / and any element of T .C /
commutes with all elements of C .

We say that two elements a and b ofC swap if and only if˚.ab/ D ˚.a/C˚.b/.
As an extension of this concept, define the swapper of a and b as the element .aWb/
such that ˚..aWb/ab/ D ˚.a/ C ˚.b/. Note that all swappers belong to T .G / but
they can be out of C . In other words, for any element a of C we have ˚.a/ 2 K.C/
if and only if .aWb/ 2 C , for every b 2 C . Moreover, the linear span of C can be
seen as ˚.hC [S.C /i/, where hC [S.C /i is the group generated by C and S.C /,
the set of swappers of the elements in C .

3 The Standard Form for the Generator Set of a Hadamard
Z2Z4Q8-Code

In this section, starting from a given a Z2Z4Q8-code we construct a standard
generator set, which allow to characterize it.

Proposition 1 Let C be a subgroup of Zk12 � Z
k2
4 �Qk3

8 such that C D ˚.C / is a
Hadamard code. We can always construct a standard set of generators {x1; : : : ; x	 ;
r1; : : : ; r� ; s1; s� } of C such that:

• The elements xi are of order two and generate T .C /.
• The elements ri are of order four and commute with each other, Œri ; rj � D e for

every 1 � i; j � � . When u 2 hr1 : : : r�i we will take u D r21 and we have
r21 D u 62 hr22 : : : r2� i.

• The cardinal � of the set fs1; s�g is in f0; 1; 2g and when � D 2 we have s21 D
u ¤ s22 , and Œs1; s2� D e. Moreover, when r21 D s21 D u then Œr1; s1� D u.

• Any element c 2 C can be written in a unique way as

c D
	Y

iD1
x
ai
i

�Y

jD1
r
bj
j

�Y

kD1
s
ck
k ; where ai ; bj ; ck 2 f0; 1g:

The next theorem shows that a subgroup C , such that �.C / is a Hadamard
Z2Z4Q8-code, has an abelian maximal subgroupA which is normal in C andC =A
is an abelian group of order 2a, for a 2 f0; 1; 2g.
Theorem 2 Let C be a subgroup of Zk12 � Z

k2
4 � Qk3

8 such that �.C / D C is a
Hadamard Z2Z4Q8-code. Then C has an abelian maximal subgroup A which is
normal in C and jC =A j 2 f1; 2; 4g. Further, C may be expressed as a quotient of
a semidirect product of A .

The next result characterizes the maximal abelian subgroup A and, since Hada-
mard Z2Z4-linear codes are well known [5], it will make possible the construction
of all Hadamard Z2Z4Q8-codes.
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Table 1 Existence conditions and parameters k1; k2; k3 depending on the shape of Hadamard
Z2Z4Q8-codes of length n D 2m, where m D 	 C � C � � 1. For all starred shapes
r21 D u; � D � � 1 and for all non-starred shapes r21 6D u; � D �

Z
k1
2 � Z

k2
4 �Qk3

8

Shape k1 k2 k3 C Existence

1� 0 2	C��2 0 A 8� � bmC1
2
cI

	 D m� � C 1
1 2	�1 .2� � 1/2	�2 0 A 8� � bm

2
cI

	 D m� � C 1
2 0 0 2	C��2 A Ì Z4

ıh.u; s21/i 8� � bm
2
cI

	 D m� �
3 0 2	�1 .2� � 1/2	�2 A Ì Z4

ıh.u; s21/i 8� � bm�1
2
cI

	 D m� �
4 2	�1 0 2	�3 A Ì Z4

ıh.r21 ; s21/i m even; � D 1I
	 D m

2
C 1

4� 0 2	 2	�1 A Ì Z4

ıh.r22 ; s21/i m even; � D 2I
	 D m

2
� 1

5 0 0 2	C1 A Ì .Z4 � Z4/
ıh.r21 ; s21/.r22 ; s22/i � D 2I

	 D m� 3

Theorem 3 Let C be a subgroup of Zk12 � Z
k2
4 � Qk3

8 such that �.C / D C is a
Hadamard Z2Z4Q8-code and A the abelian maximal subgroup in C . Then �.A /

can be described as a duplication of a Hadamard Z2Z4-linear code when � D 1 or
as a quadruplication of a Hadamard Z4-linear code, if � D 2.

Depending on the values of the parameters 	; �; � the Hadamard Z2Z4Q8-codes
are classified in several shapes, as we can see in Table 1. In fact there are two big
classes of Hadamard Z2Z4Q8-codes. Despite all codes contains the all one vector
u, there are codes where there exist an element r1 such that r21 D u (codes of shape
1�, 2, 4� and 5) and there are codes where u is not the square of any other element
(codes of shape 1, 3 and 4). We will define the new parameter � D � � 1 in the first
case (r21 D u) and � D � in the second case (r21 6D u). The existence conditions for
Hadamard Z2Z4Q8-codes easily come from Theorem 3 and [5], where it was stated
the existence conditions for Hadamard Z2Z4-linear codes.

Table 1 summarizes what we have done in this section.

4 Construction of Hadamard Z2Z4Q8-Codes

In this section we deal with the construction of Hadamard Z2Z4Q8-codes with any
allowable pair of values for the rank and the dimension of the kernel. We do not
include all the constructions but, as a summary, we include Theorem 4, where it is
described what are the allowable parameters for the dimension of the kernel and,
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for each one of these values, it is said what is the range of values for the rank. For
each one of the possible pair of allowable values for the dimension of the kernel and
rank, we construct a Hadamard Z2Z4Q8-code fulfilling it. As an illustration of the
constructions we include two examples at the end of the section.

Let C a Hadamard Z2Z4Q8-code of length 2m; let T .C / be the subgroup of
elements in C of order two; let A .C / D hx1; : : : ; x	 ; r1; : : : ; r� i and let R.C / be
defined by

�
R.C / D hx1 : : : x	 ; r2 : : : r� iI if r21 D u
R.C / D A .C /I if r21 6D u

Theorem 4 Let C a Hadamard Z2Z4Q8-code of length 2m and jT .C /j D 2	 ;
jC =A .C /j D 2�; jA .C /=T .C /j D 2� ; jR.C /=T .C /j D 2� ; jC =T .C /j D 2�C�
and mC 1 D 	 C � C � . Then the rank r and the dimension of the kernel k of C
satisfy the following conditions.

1. The values of the dimension of the kernel are 1 6D mC1�k 2 f0; 4; ��1; �; �C
1g. The specific casemC1�k D 0 is obtained in codes where � � 1 or in codes
of shape 5. The specific case mC 1 � k D 4 is obtained in codes of shape 5.

2.(a) If mC 1 � k D 0 then r � .mC 1/ D 0,
(b) If mC 1 � k D 4 and � D 2 then r � .mC 1/ D 2,
(c) If mC 1 � k D � � 1 � 2 then r � .mC 1/ D 
��1

2

�
,

(d) If mC 1 � k D � � 2 then r � .mC 1/ D 
�
2

�
,

(e) If mC 1 � k D � C 1 and � <D 1 then r � .mC 1/ D � .
(f) IfmC1�k D �C1 and � D ��1 � 2 then r�.mC1/ 2 f
��1

2

�
; : : :



�
2

�C1g.
(g) If mC 1� k D � C 1 and � D � � 2 then r � .mC 1/ 2 f
�

2

�C 1; : : : 
�C1
2

�g.
Example 5 The following example shows constructions of codes of length n D
2m D 26 D 64, with � D 3 � � D 2 � 2; � D 1 and 	 D 3. The resulting codes
are of shape 2 and, before the Gray map, subgroups ofQ16

8 .

r1 D .a a a a a a a a a a a a a a a a/
r2 D .a a a3 a3 a a a3 a3 1 1 a2 a2 1 1 a2 a2/
r3 D .a a3 a a3 1 a2 1 a2 a a3 a a3 1 a2 1 a2/

The codes with all possible pairs of values rank,dimension of the kernel are
generated by r1; r2; r3 and s1. We show the vector s1 and the values of the pair
rank, dimension of the kernel.

s1 D .b b b b b b b b b b b b b b b b/ .k; r/ D .5; 8/
s1 D .b b b ab b b b ab b b b ab b b b ab/ .k; r/ D .3; 11/
s1 D .b b b b b b b b b b b ab b b b ab/ .k; r/ D .3; 10/
s1 D .b b b b b b b b b b b b b b b ab .k; r/ D .3; 9/
s1 D .b b b b b b b b b b b b ab ab ab ab/ .k; r/ D .3; 8/
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Example 6 The following example shows constructions of codes of length 64, with
� D � D 2, � D 1 and 	 D 4. The resulting codes are of shape 3 and, before
the Gray map, subgroups of Z84Q

12
8 . All possible pairs of rank and dimension of the

kernel are presented.
Take the following vectors in Z

8
4Q

16
8 :

r1 D .0 2 0 2 0 2 0 2 1 a2 a a a a 1 a2 a a a a/
r2 D .0 0 2 2 0 0 2 2 a a 1 a2 a a3 a a 1 a2 a a3/

The codes with all possible pairs of values rank, dimension of the kernel are
generated by r1; r2 and s1. We show the vector s1 and the values of the pair rank,
dimension of the kernel.

s1 D .1 1 1 1 1 1 1 1 b b b b b b b b b b b b/ .k; r/ D .5; 8/
s1 D .1 1 1 1 1 1 1 1 b ab b ab b ab b ab b ab b ab/ .k; r/ D .4; 10/
s1 D .1 1 1 1 1 1 1 1 b ab b b b b b ab b b b b/ .k; r/ D .4; 9/
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2-Designs and Codes from Simple Groups L3.q/
and Higman-Sims Sporadic Simple Group HS

Jamshid Moori and Georges F. Randriafanomezantsoa Radohery

Abstract We discuss the methods used in constructing designs and codes from the
fixed points of the Sylow p-subgroups of the 2 points stabilizers in the 2-transitive
permutation representation of finite groups. To illustrate the methods we apply
them to the simple groups L3.q/ .q � 3/ and Higman-Sims sporadic simple group
HS . This talked is based on the results included in an article entitled “2-designs
and codes from 2-transitive simple groups” which is appearing in the Utilitas
Mathematica.

Keywords Designs • Codes • 2-transitive simple groups • Sylow subgroups •
Maximal subgroups

1 Introduction

In 1937, Ernst Witt developed a method to construct a Steiner system from a
t-transitive group (See [16] and [15]). In 1965, D.R. Hughes generalized Witt’s
method to construct not only a Steiner system but a t-design in general [9].

In our work we have explored designs and codes that can be constructed by
applying Witt’s and Hughes’s methods on various finite simple groups, such as
L3.q/ .q � 3/, L2.11/, U3.4/, U3.9/, An (n � 6), S6.2/, S8.2/ and HS . Some
of these structures are well known and have been constructed elsewhere using other
methods. In this talk to illustrate the methods we apply them to the simple groups
L3.q/ .q � 3/ and Higman-Sims sporadic simple group HS . This talked is based
on the results included in an article entitled “2-designs and codes from 2-transitive
simple groups” which is appearing in the Utilitas Mathematica. Section 2 provides
the notation that we are following. Section 3 presents some background results and
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the details on the Witt’s and Hughes’s methods. In Sect. 4 we will apply Witt’s
method to the group L3.q/ (q � 3) and hence we will construct a 2-design which
is a projective plane of order q. The code from a projective plane have been fully
studied and it is a generalized Reed-Muller code.

We will see that Witt’s method does not apply to alternating groups An (n � 6)
acting naturally on n points, the Higman-Sims group HS and the symplectic groups.
In Sect. 5 using Hughes’s method on HS, we will construct a new 2-(176,6,36)
design which admits HS itself as the full automorphism group. From that design
we will construct a Œ176; 115; 6�2 code and its dual Œ175; 21; 56�2, both admit HS as
full automorphism group.

2 Terminologies and Notations

For the structure of groups and their maximal subgroups we follow the ATLAS

notation [7]. The groups GWH and G:H denote a split extension and a non-split
extension, respectively. For a prime p, pn denotes the elementary abelian group of
order pn. Suppose thatG is a finite group acting on a finite set˝ , the action ofG on
˝ gives a permutation representation � with corresponding permutation character
�� denoted by �.Gj˝/. Let U be a subgroup of G, if ˝ is the set of all conjugates
of U in G then we denote �.Gj˝/ by �U . The fixed points of U is the set F .U /

defined by F .U / D fx 2 X Wxg D x for all g 2 U g. The normalizer of U in G is
denoted by NG.U /. Let’s consider a subgroupH of G such that U < H < G. The
group U is called a S-subgroup of H if for any g 2 G such that Ug < H then we
can find h 2 H such that Ug D Uh.

An incidence structure is a triple I D .P;B;I /, P is called the point set, B
is called the block set and I is an incidence relation between P and B. A t-design
or more precisely a t-.v;k; –/ design is an incidence structure D D .P;B;I /

such that jPj D v, every block B 2 B is incident with precisely k points and
every t distinct points are together incident with precisely � blocks. We will say
that the design is symmetric if it has the same number of points and blocks. Let
D D .P;B;I / be a t-.v; k; �/ design with b blocks and let the points be labeled
fp1; p2; : : : ; pvg and the blocks fB1;B2; : : : ; Bbg. The incidence matrix of D is a
v � b matrix D D .dij / .1 � i � v; 1 � j � b/ such that dij D 1 if .xi ; Bj / 2
I and dij D 0 otherwise. Two designs D1 and D2 are isomorphic if there is an
incidence-preserving bijection sending the point set of D1 to the point set D2 and
sending the block set of D1 to the block set of D2. An automorphism of a design D is
an isomorphism from D to D . A S.t;k; v/ Steiner System is a t-.v; k; 1/ design. A
Steiner triple system is a 2-.v; 3; 1/ design, v is called the order of the Steiner triple
system. A necessary and sufficient condition for the existence of such a design is
v 
 1 or 3 mod 6 (see [11]).

If q is a prime power and F D Fq the finite field of order q, then a q-ary
linear block code C of length n and dimension k is a subspace of dimension k
of the n-dimensional vector space F n. The elements of C are called codewords.
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In this work all codes are linear block codes. The dual code C? of a code C is
its orthogonal space with respect to the standard inner product of F n. The hull of
a code C is the intersection C \ C?. We endow the vector space F n with the
Hamming distance defined by d.x; y/ D jfi jxi ¤ yi gj for x D .x1; x2; : : : ; xn/,
y D .y1; y2; : : : ; yn/ 2 F n. The weight of a code word x is defined by w.x/ D
d.x; 0/. The all one vector will be denoted by j, and is the constant vector of
weight the length of the code. The minimum weight d of a code C is defined by
d D minx2C;x¤0 w.x/. A Œn;k;d�q code C is a q-ary linear block code of length
n, dimension k and minimum weight d . The code CF of the t-design D over F is
the space spanned by the rows of the incidence matrix of D over the field F . The
length of CF is the size of the point set of D and the dimension of CF is the rank of
the incidence matrix of D over F . Two codes with the same length and dimension
are said to be isomorphic if one can be obtained from the other by permuting the
coordinate positions. The automorphism group of CF is the group of isomorphisms
from CF to CF .

3 Preliminary Results

The method of constructions of the designs are based on the following results

Theorem 1 (Witt’s method) Let X be a faithful t-transitive G-set, where t � 2.
Let H be the stabilizer of t points x1; x2; : : : ; xt in X , and let U be a Sylow
p-subgroup of H for some prime p.

(i) NG.U / acts t-transitively on F .U /.
(ii) If k D jF .U /j > t and U is a nontrivial normal subgroup of H , then .X;B/

is a Steiner system of type S.t; k; v/, where jX j D v and

B D fF .U g/Wg 2 Gg:

Proof [14, Therorem 9.66] ut
Theorem 2 (Hughes’s method) Let G be a t-transitive permutation group on a
set of v points X , H the stabilizer of t points and U an S-subgroup of H such that
k D jF .U /j > t then

(i) NG.U / acts t-transitively on F .U /.
(ii) .X;B/ is a t-.v; k; �/ design, where � D ŒH W HF .U /�, B D fF .U g/W

g 2 Gg. Furthermore G is t-flag-transitive on this design.

Proof [9, Theorem 3.3] ut
Remark 3 • In Theorem 1, G is t-flag-transitive on the Steiner system.
• In Theorem 2, the Sylow p-subgroups of H are S-subgroups of H . If U is the

unique Sylow p-subgroup of H then NG.U / D GF .U /. Indeed if g 2 GF .U /
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then F .U g/ D F .U / that is Ug fixes the t points fixed by H and Ug < H ,
therefore Ug D U that is g 2 NG.U / and GF .U / � NG.U /. In any case
NG.U / � GF .U /. NowHF .U / D H \GF .U / D H \NG.U / D NH.U / D H ,
thus if U is a normal Sylow p-subgroup of H then � D 1 and we get back to
Theorem 1.

Theorems 1 and 2 will be applied to some 2-transitive simple groups to construct
2-designs. For the list of all 2-transitive simple groups the readers are referred
to [6]. All symmetric 2-designs with 2-transitive automorphism groups have been
classified by William M. Kantor :

Theorem 4 ([10]) Let D be a symmetric design with v > 2k such that Aut.D/ is
2-transitive on points. Then D is one of the following:

(i) A projective space;
(ii) The unique Hadamard design with v D 11, and k D 5;

(iii) A unique design with v D 176, k D 50 and � D 14; or
(iv) A design with v D 22m, k D 2m�1.2m � 1/ and � D 2m�1.2m�1 � 1/, of which

there is exactly one for eachm � 2.

We will see that the designs in (i) can be explicitly constructed from Theorem 1,
the design in (iii) can be constructed indirectly from Theorem 2 and (ii) can be
constructed from a modification of the method described in Theorem 2.

4 Some Designs and Codes from L3.q/

In this section we examine the general parameters of the designs and codes that are
built by applying Witt’s method to G D L3.q/.
Theorem 5 Let q be some power of a prime numberp. ConsiderL3.q/ as a faithful
2-transitive group on a set˝ with j˝j D q2CqC1. LetH . L3.q/ be the stabilizer
of two points.

(i) If q D pn thenH is a subgroup of order q2.q�1/2=.3; q�1/ having a normal
Abelian Sylow p-subgroup U of order p2n.

(ii) jF .U /j D q C 1.

Proof According to [3] any 2-transitive permutation representation of L3.q/ on a
set of size q2CqC1 is isomorphic to the action ofG on the points of the projective
space PG.2; q/.

(i) We have jL3.q/j D q3.q3 � 1/.q2 � 1/=.3; q � 1/ and jH j D jL3.q/j=q.q C
1/.q2 C q C 1/ D q2.q � 1/2=.3; q � 1/. According to [13], H is a subgroup
of a line stabilizer K which is a maximal subgroup of order .q � 1/2q3.q C
1/=.3; q � 1/ of L3.q/. Let’s consider the line ` D Œ1W0W0�. The stabilizer of `
are the 3 � 3 matrices of the form


 ˛ v2
0 M2

�
with ˛ 2 Fq , v2 a vector of length 2

with entries in Fq andM2 a 2�2 matrix over Fq such that ˛ �det.M2/ D 1. The
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set U of matrices of the form

 ˛ v2

0 I2

�
is an Abelian normal subgroup of order q2

of K and it is the Sylow p-subgroup of H .
(ii) Consequence of the fact that U<K and each line of PG.2; q/ has qC1 points.

ut
Hence we can apply Witt’s method to G D L3.q/ and we have the following result:

Corollary 6 From the simple groupG D L3.q/ we obtain a 2-.q2CqC1; qC1; 1/
design D on which G acts 2-transitively on points and transitively on blocks.

Proof Direct application of Theorem 1 to L3.q/. ut
Remark 7 If B is a block in B then jBj D ŒG W GB�. Since a block is just a line
of PG.2; q/, jGB j D .q � 1/2q3.q C 1/=.3; q � 1/, jBj D q2 C q C 1 and D is
symmetric. We have G . Aut.D/. The question is whether Aut.G/ . Aut.D/
or not. In [8] we can find the list of the maximal subgroups of G D L3.q/.
The group G has a maximal subgroup of the form q2WGL.2; q/ which is of index
q2 C q C 1, the action of G on the cosets of that maximal subgroup gives us a
permutation representation of degree q2 C q C 1 of G. The subgroup q2WGL.2; q/
is the point stabilizer in that representation and H<q2WGL.2; q/. Considering that
the set of subgroups of L3.q/ isomorphic to q2WGL.2; q/ split into two conjugacy
classes, if the outer automorphism of G contains an involution which fuses these
two conjugacy classes then Aut.G/ – Aut.D/. In general it suffices to remove that
involution from Aut.G/ to get the automorphism group of D .

Theorem 8 Let p be a prime number and C the Fp-code of a symmetric design
2-.m2 CmC 1;mC 1; 1/.

(i) If pjm, then 2 � dimC � 1
2
.m2 CmC 2/.

(ii) If p−m and pjmC 1, then dimC D m.mC 1/.
(iii) If p−m and p−mC 1, then dimC D m2 CmC 1.

Proof Direct application of [12, Proposition 2.6]. ut
Remark 9 We see that from L3.q/ using Theorem 1, we can obtain a Fp-code C
with dim.C / < m.mC 1/ only for the prime p such that q D pn.

Theorem 10 Let p be any prime, q D pn, and D a 2 � .q2 C q C 1; q C 1; 1/
symmetric design. Then the linear codeCp over Fp derived from D is a generalized
Reed-Muller code and has dimension



pC1
2

�nC1. The minimum-weight words of Cp
are the scalar multiples of the incidence vectors of the blocks. Further, Hullp.D/
has minimum weight 2q with the minimum-weight vectors the scalar multiples of
the differences of the incidence vectors of two distinct blocks of D . The minimum
weight d of C?p satisfies q C p � d � 2q, with equality at the lower bound if
p D 2.

Proof [2] and [1, Theorem 6.3.1 and Theorem 6.4.2] ut
Remark 11 Table 1 gives the result that we obtained by computation using
MAGMA [4] for different values of q.
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5 Some Designs and Codes from the Higman-Sims Group HS

According to ATLAS [7], HS has a 2-transitive permutation representation of
degree 176. In that representation Theorem 1 does not apply to HS. Indeed, the
point stabilizer is the group U3.5/W2 and the two points stabilizer H is A6:22 and
none of the Sylow p-subgroups of H is normal. More precisely,H has only Sylow
2-subgroups, Sylow 3-subgroups and Sylow 5-subgroups. A Sylow 3-subgroup or
a Sylow 5-subgroup of H cannot obviously be normal since they are subgroups of
A6. We can easily show that (using MAGMA) H has 45 Sylow 2-subgroups and
hence a Sylow 2-subgroup of H cannot be normal in H .

Now we apply Theorem 2 to HS. A Sylow 2-subgroup of H is isomorphic to
.2 � D8/W2 and it fixes exactly 2 points. Hence by applying Theorem 2 to HS
with a Sylow 2-subgroup of H we obtain a trivial 2-(176,2,1) 2-design. A Sylow
3-subgroup of H is isomorphic to 32 and it fixes exactly 2 points and by applying
Theorem 2 in this case we obtain a trivial 2-(176,2,1) 2-design isomorphic to the
previous design. A Sylow 5-subgroup of H is a cyclic group of order 5 which fixes
6 points and we have the following result.

Proposition 12 From HS we can construct a 2-(176,6,36) design D with
Aut.D/ D HS.

Proof We apply Theorem 2 to HS with a Sylow 5-subgroup of H to construct
the design D . Computation with MAGMA shows that jAut.D/j D jHS j so
Aut.D/ Š HS . ut
Remark 13 The code C associated to the design D is a Œ176; 155; 6�2 code with
Aut.C / DHS. The dual C? is a Œ176; 21; 56�2 code. In [5], C? is presented as
a subspace of a linear code Œ176; 22; 50�2 which is constructed from a monomial
representation of HS.

Now a word of weight i is denoted by wi and the set of words of weight i is
denoted by Wi . By acting HS on Wi , the orbits form the blocks of a 2-.176; i; ki/
design Dwi where ki D j.wi /HSj � i=176. The number of blocks of Dwi is ŒHS W
.HS/wi �. Table 2 gives the parameters of the design Dwi , and the structure of HSwi
for the words of minimum weight of C . Table 3 gives the same results for the weight
distribution of C?.

Remark 14 Under the action of HS the words of weight 6 ofC split into 2 orbitsW61

and W62 of length 36,960 and 92,400, respectively. The code words in W61 form a
2-(176,6,36) design Dw61

and the generators of the code C belong to W61 . The code

Table 2 2-design Dwi from C and the stabilizer in HS of a word wi of C

i Dwi No. of blocks .HS/wi Maximality

61 2-(176,6,36) 36,960 .5W4/�A5 Yes

62 2-(176,6,90) 92,400 .SL2.5/W2/W2 No
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Table 3 2-design Dwi from C? and the stabilizer in HS of a word wi of C?

i Dwi No. of blocks .HS/wi Maximality

56 2-(176,56,110) 1,100 L3.4/W21 Yes

64 2-(176,64,540) 4,125 23:.23:L2.7// No

72 2-(176,72,2556) 15,400 2�A6 � 22 Yes

.80/1 2-(176,80,790) 3,850 24:S6 Yes

.80/2 2-(176,80,47400) 231,000 ...2�D8/W2/W3/W2 No

.80/3 2-(176,80,75840) 369,600 S5 No

.88/1 2-(176,88,38280) 154,000 .A4�A4/W2 No

.88/2 2-(176,88,172260) 693,000 ..Z4 � Z4/W2/W2 No

.96/1 2-(176,96,1140) 3,850 24:S6 Yes

.96/2 2-(176,96,68400) 231,000 ...2 �D8/W2/W3/W2 No

.96/3 2-(176,96,109440) 369,600 S5 No

104 2-(176,104,5356) 15,400 2�A6 � 22 Yes

112 2-(176,112,1665) 4,125 23:.23:L2.7// No

120 2-(176,120,510) 1,100 L3.4/W21 Yes

words in W62 form a 2-(176,6,90) design Dw62
with corresponding Œ176; 154; 6�2

code C 0. The dual of C 0 is a Œ176; 22; 50�2 code and with its words of weight 50
we can construct the unique symmetric 2-(176,50,14) design admitting HS as full
automorphism group mentioned in Theorem 4.
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New Variant of the McEliece Cryptosystem

Hamza Moufek and Kenza Guenda

Abstract The purpose of this paper is to present a new version of the McEliece
cryptosystem based on punctured convolutional codes and the pseudo-random
generators. We use the modified self-shrinking generator to fill the punctured
pattern. More precisely we propose to fill out the pattern punctured by the bits
generated using a pseudo random generator LFSR.

Keywords Punctured convolutional code • McEliece cryptosystem • Self shrink-
ing generator

1 Introduction

In 1978 Robert J. McEliece invented the first cryptosystem based on algebraic
coding theory [10]. Since then different variants have been proposed [1, 2, 5].

Different attacks were made against these schemes. Among them, we mention
the attack on the original McEliece system by Canteaut and Sendrier [6] and the
attack on the cryptosystem based on convolutional codes by Landais and Tillich [7].

The purpose of this paper is to present a new version of the McEliece cryptosys-
tem based on punctured convolutional codes and the pseudo-random generators.
Instead of using time-varying convolutional codes as it was given in [8] and broken
by [7], we use the modified self-shrinking generator to fill the punctured pattern.
More precisely we propose to fill out the pattern punctured by the bits generated
using a pseudo random generator LFSR.
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2 Our New Variant

In this section we will give the description of our new variant McEliece Cryp-
tosystem. To hide the structure of the convolutional code, we follow the method
of puncturing described in [9]. Starting from a convolutional code of parameters
.n; k;K/, we construct an equivalent code of parameters .Mn;Mk;Kp/, called
grouped code. With the puncturing pattern T , whose the number of its coefficient
corresponds to the number of columns of the grouped matrix, we obtain the
generator matrix of punctured code with parameters .N

0

;Mk;Kp/.
Since we use the modified self-shrinking generator to fill the punctured pattern,

in the next paragraph we describe the modified self shrinking generator given by
Kanso [6].

2.1 The Modified Self Shrinking Generator

In [6] Kanso modified the method of Meier and Staffelbach [11] by using one LFSR
of length s which operates as follows:

Let A be an LFSR that generates the sequence at D a0; a1; a2; : : :
At time i , we consider the triplet .a3i ; a3iC1; a3iC2/. If the bit a3i

L
a3iC1 D 1,

the output of the LFSR is a3iC2. Else no output is produced.
The puncturing pattern is of size n � M . So we proceed so that the modified

self-shrinking generator product an output sequences of period greater or equal than
n �M .

2.2 Description of Our Cryptosystem

Algorithm 1: Key Generation

1. Choose a generator matrixG for a convolutional code of parameters: its length n
and its dimension k.

2. Write the polyphase decomposition of elements of G and then forming the
polycyclic pseudocirculant matrix.

3. Replace the polynomials gi;j .D/ ofG by theirM th PCPC matrix and interlacing
the lines and columns at depthM .

4. Generate a random sequence of bits in a modified self-shrinking generator, and
fill the matrix T by the n �M output elements.

5. Apply the function � to the matrix GŒM�.D/ to get the secret matrix Gp .
6. Choose randomly tow matrix: P the permutation matrix and S an invertible

matrix.
7. Compute the public matrix G

0 D SGpP .
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Algorithm 2: Encryption
For sending a message x to someone, we calculate: c D xG 0 C e
Algorithm 3: Decryption
To decrypt the message, you must:

1. Compute z D cP�1
2. Determining z

0

by correcting errors of u.
3. Compute x D z

0

S�1

To correct errors of z, the Viterbi decoding algorithm is used, because an algorithm
which decodes the parent code, it also decodes the punctured code.

3 Security of Our Scheme

There are several ways to attack the McEliece encryption system. Among them we
find algebraic methods and probabilistic methods.

In this section we give a proof that our scheme is secure against the structural
and decoding attacks.

3.1 Structural Attacks

The objective of a structural attack is to find an equivalent code to the public code
whose a polynomial decoding algorithm is known. For this, we used a puncturing
pattern to hide the structure of the code, whose the attacker cannot imagine.
Moreover, the equivalence of punctured codes is an NP-complete problem [12].
This makes impossible the cryptanalysis of the system.

The authors have described an algorithm that is used to find an equivalent
generator matrix to the secret matrix ([7], section 3). By applying this method to
our public matrix we will obtain a matrix of the form (Fig. 1):
which is not equivalent to the matrix Gp

Fig. 1 The generator matrix
obtained by the attack of G.
Landais and J. Tillich
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3.1.1 Exhaustive Search Attack

In our scheme, the private key .Gp; S; P; T / is obtained randomly. In this section
we will show that our scheme is secure against the exhaustive search attack. This
is equivalent to show that it is a difficult task to find the private key. For that we
start by showing that the choice of the matrices S and P is very large. Namely,
since the number of invertible matrices in Fq is

Qk
iD1.qk � qi�1/ and the number of

permutation matrices of size n is equal to nŠ. Then in order to find the two selected
matrices we have to try nŠ

Qk
iD1.qk � qi�1/ matrices.

Now, we will show that the complexity of finding the matrix Gp is very large.
For that, let A be an r-sequence generated by a primitive LFSR of length s and let L
be the set of positions of the columns removed during the puncturing step from the
matrix G. To find a subset L

0 � L, it is necessary to know a part of the sequence
generated by the LFSR.

3.2 Information Set Decoding

For security level around 280 measured by Canteaut-Chabaud’s algorithm [4], we
propose the following set of parameters.

Let C be an .400; 343/-convolutional code. After a puncturing of depth 7 in 56
positions, we obtain a punctured code of length 2744 and dimension 2401.

For a code of rateR D 3=4, we propose a puncturing of depth 3 for an .570; 421/
– convolutional code in 26 positions. Thereafter we will have an .1684; 1263/-
punctured code.

In Table 1 we give examples of different .n; k/ – convolutional code and their
.N

0

; k
0

/-punctured code associated with different security level.

Table 1 Suggested parameters of our cryptosystem for different security levels

Security level n k M Number of deleted columns k
0 D kM N

0

Rate

80 305 150 4 20 600 1200 1/2

284 71 5 30 355 1420 1/4

570 421 3 26 1263 1684 3/4

125 1050 2 100 250 2000 1/8

100 316 154 5 40 770 1540 1/2

625 155 3 15 465 1860 1/4

730 540 3 30 1620 2160 3/4

68 550 5 30 340 2720 1/8
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Fig. 2 Probability of guessing k ungarbled columns from those indexed by L0 depending on the
number of errors

3.3 Message-Resent Attack

The message-resent attack was given in [3] and is described as follow:
Suppose now that, through some accident, or as a result of action in the part of

the cryptanalyst, both c1 D mSGPC e1 and c2 D mSGPC e2 with e1 ¤ e2 are sent.
We call this a message-resent condition.

Using an .1684; 1263/-punctured code with a free distance dfree D 131. We
compare the effect of this attack on our system and the McEliece cryptosystem, we
get the following graph (Fig. 2):

These results are better than the result obtained by attacking Mceliece crptosys-
tem.

We remark that whenever we increase the number of errors, the probability of
avoiding this attack increases.
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Power Decoding of Reed–Solomon Codes
Revisited

Johan S.R. Nielsen

Abstract Power decoding, or “decoding by virtual interleaving”, of Reed–
Solomon codes is a method for unique decoding beyond half the minimum distance.
We give a new variant of the Power decoding scheme, building upon the key
equation of Gao. We show various interesting properties such as behavioural
equivalence to the classical scheme using syndromes, as well as a new bound on the
failure probability when the powering degree is 3.

Keywords Reed-Solomon code • Algebraic decoding • Power decoding

1 Introduction

Power decoding was originally developed by Schmidt, Sidorenko and Bossert for
low-rate Reed–Solomon codes (RS) [5], and is usually capable of decoding almost
as many errors as the Sudan decoder [8] though it is a unique decoder. If an answer
is found, this is always the closest codeword, but in some cases the method will
fail; in particular, this happens if two codewords are equally close to the received.
With random errors this seems to happen exceedingly rarely, though a bound for the
probability has only been shown for the simplest case of powering degree 2 [5, 10].

The algorithm rests on the surprising fact that a received word coming from a
low-rate RS code can be “powered” to give received words of higher-rate RS codes
having the same error positions. For each of these received words, one constructs a
classical key equation by calculating the corresponding syndromes and solves them
simultaneously for the same error locator polynomial.

Gao gave a variant of unique decoding up to half the minimum distance [1]:
in essence, his algorithm uses a different key equation and with this finds the
information polynomial directly. We here show how to easily derive a variant of
Power decoding for Generalised RS (GRS) codes, Power Gao, where we obtain
multiple of Gao’s type of key equation, and we solve these simultaneously.
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We then show that Power Gao is equivalent to Power syndromes in the sense
that they will either both fail or both succeed for a given received word. Power Gao
has some “practical” advantages, though: it extends Power decoding to the case of
using 0 as an evaluation point (which Power syndromes does not support); and the
information is obtained directly when solving the key equations, so finding roots of
the error locator and Forney’s formula is not necessary.

The main theoretical advantage is that Power Gao seems easier to analyse: in
particular, we show two new properties of Power decoding: (1) that whether Power
decoding fails or not depends only on the error and not on the sent codeword; and
(2) a new bound on the failure probability when the powering degree is 3.

We briefly sketched Power Gao already in [2], but its behaviour was not well
analysed and its relation to Power syndromes not examined. In Sect. 2 we derive
the powered Gao key equations, and in Sect. 3 we describe the complete algorithm
and discuss computational complexity issues. In Sect. 4 we show the behavioural
equivalence to Power syndromes as well as the new properties on Power decoding.
Section 5 describes an explicit family of errors for which Power decoding will fail.

2 The Key Equations

Consider some finite field F. The Œn; k; d � Generalised Reed-Solomon (GRS) code
is the set

C D ˚
ˇ1f .˛1/; : : : ; ˇnf .˛n/
� j f 2 FŒx� ^ degf < k




where ˛1; : : : ; ˛n 2 F are distinct, and the ˇ1; : : : ; ˇn 2 F are non-zero (not
necessarily distinct). The ˛i are called evaluation points and the ˇi column
multipliers. C has minimum distance d D n � k C 1 and the code is therefore
MDS.

Consider now that some c D .c1; : : : ; cn/ was sent, resulting from evaluating
some f 2 FŒx�, and that r D .ˇ1r1; : : : ; ˇnrn/ D c C .ˇ1e1; : : : ; ˇnen/ was the
received word with (normalised) error e D .e1; : : : ; en/. Let E D fi j ei ¤ 0g and

 D jE j. In failure probability considerations, we consider the jFj-ary symmetric
channel.

Introduce G ,
Qn
iD1.x � ˛i /, and for any integer t � 1, let R.t/ be

the Lagrangian polynomial through the “powered” r, i.e. the minimal degree
polynomial satisfying R.t/.˛i / D rti for i D 1; : : : ; n. Naturally, we have
degR.t/ � n � 1 and R.t/ can be directly calculated by the receiver. As usual for
key equation decoders, the algorithm will revolve around the notion of error locator:
� D Q

j2E .x � ˛j /. Choose now some ` 2 N subject to `.k � 1/ < n. Then we
easily derive the powered Gao key equations:
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Proposition 1 �R.t/ 
 �f t mod G

Proof Polynomials are equivalent modulo G if and only if they have the same
evaluation at ˛1; : : : ; ˛n. For ˛i where ei ¤ 0, both sides of the above evaluate
to zero, while for the remaining ˛i they give �.˛i /ri t D �.˛i /f .˛i /t . ut

3 The Decoding Algorithm

The key equations of Proposition 1 are non-linear in � and f , so the approach for
solving them is to relax the equations into a linear system, similarly to classical key
equation decoding. We will ignore the structure of the right hand-sides and therefore
seek polynomials � and  .1/; : : : ;  .`/ such that �R.t/ 
  .t/ mod G as well as
deg�C t.k � 1/ � deg .t/ for t D 1; : : : ; `. We will call such .�;  .1/; : : : ;  .`//
a solution to the key equations.

Clearly .�;�f; : : : ; �f `/ is a solution. There are, however, infinitely many
more, so the strategy is to find a solution such that deg� is minimal; we will call this
the minimal solution. Thus decoding can only succeed when � has minimal degree
of all solutions. The probability of this occurring will be discussed in Sect. 4.

Conceptually, Power Gao decoding is then straightforward: pre-calculate G and
from the received word, calculate R.1/; : : : ; R.`/. Find then a minimal solution
.�;  1; : : : ;  `/ with � monic. If this has the valid structure of .�;�f; : : : ; �f `/,
then return f . Otherwise, declare decoding failure.

For Power syndromes, the key equations are similar to ours except that the
modulo polynomials are just powers of x. In this case, finding a minimal solution is
known as multi-sequence shift-register synthesis, and the fastest known algorithm
is an extension of the Berlekamp–Massey algorithm [5] or the Divide-&-Conquer
variant of this [6]. These can not handle the modulusG that we need, however.

A generalised form of multi-sequence shift-register synthesis was considered
in [2], and several algorithms for finding a minimal solution were presented. The
key equations for our case fit into this framework. We refer the reader to [2] for
the details on these algorithms, but the asymptotic complexities when applied to
Power Gao decoding are given in Table 1. The same complexities would apply to
Power syndromes and also match the algorithms [5, 6] mentioned before. The other

Table 1 Complexities of
solving the key equations for
the three approaches
discussed in [2]

Algorithm O-complexity

Mulders–Storjohann `2n2

Alekhnovich `3n log2 n log logn

Demand–Drivena `n2Œlogn log logn�
aIf C is cyclic, then G D xn � 1 since the
˛i form a multiplicative group, and in this
case the log-factors in square brackets can
be removed.



300 J.S.R. Nielsen

steps of the decoding are easily seen to be cheaper than this; e.g. the calculation of
R.1/; : : : ; R.`/ by Lagrangian interpolation can be done trivially in O.`n2/ or using
fast Fourier techniques in O.`n log2 n/ [9, p. 231]. Thus Power Gao decoding is
asymptotically as fast as Power syndromes.

4 Properties of the Algorithm

Power Gao will fail if .�;�f; : : : ; �f `/ is not the found minimal solution, so the
question is when one can expect this to occur. Since the algorithm returns at most
one codeword, it must fail for some received words whenever 
 � d=2. Whenever
an answer is found, however, this must correspond to a closest codeword: any
closer codeword would have its own corresponding error locator and information
polynomial, and these would yield a smaller solution to the key equations.

We first show that Power syndromes is behaviourally equivalent to Power Gao.
We will need to assume that the evaluation points ˛i ¤ 0 for all i , which is a
condition for Power syndromes decoding. This implies x − G. We will use a
“coefficient reversal” operator defined for any p 2 FŒx� as p D xdegpp.x�1/.

In Power syndromes decoding, one considers r.t/ D .ˇ1r
t
1; : : : ; ˇnr

t
n/ for t D

1; : : : ; ` as received words of GRS codes with parameters Œn; t.k�1/C1; n� t.k�
1/�, resulting from evaluating f t ; these “virtual” codes have the same evaluation
points and column multipliers as C . The r .t/ will therefore have the same error
positions as r , so the same error locator applies. For each t , we can calculate the
syndrome S.t/ corresponding to r .t/, which can be written as

S.t/ D
� nX

iD1

r ti �i

1 � x˛i mod xn�t .k�1/C1
�

where �i DQj¤i .˛i � ˛j /�1; see e.g. [4, p. 185]. By insertion one sees that

�S.t/ 
 ˝.t/ mod xn�t .k�1/C1; t D 1; : : : ; `

where ˝.t/ is a certain polynomial satisfying deg˝.t/ < deg�. Note that we are
using � reversed; indeed, one often defines error-locator as

Q
i2E .1 � x˛i / D �

when considering the syndrome key equation. The decoding algorithm follows
simply from finding a minimal degree polynomial � such that !.t/ D .�S.t/ mod
xn�t .k�1/C1/ satisfies deg� > deg!.t/ for all t . The decoding method fails if
� ¤ ��;8� 2 F. We now have:

Proposition 2 Decoding using Power Gao fails if and only if decoding using Power
syndromes fails.

Proof Note first that R.t/ D Pn
iD1 r ti �i

Q
j¤i .x � ˛j /. By insertion we get

S.t/ 
 R
.t/
G
�1

mod xn�t .k�1/C1 (since x − G). Power Gao fails if there is
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some � 2 FŒx� which is not a constant times � and such that deg� � deg� and
 .t/ D .�R.t/ mod G/ has deg .t/ < deg�C t.k � 1/C 1 for each t D 1; : : : ; `.
This means there must be some !.t/ with deg!.t/ � deg� � 1 such that

�R.t/ � !.t/G D  ”
�R

.t/ � !.t/G D  .t/
xdegGCdeg��1�.deg�Ct .k�1// H)

�R
.t/ 
 !.t/G mod xn�t .k�1/�1

Dividing by G, we see that � and the !.t/ satisfy the congruences necessary to form
a solution to the Power syndromes key equation, and they also satisfy the degree
bounds. Showing the proposition in the other direction runs analogously. ut
Corollary 3 (Combining [5] and Proposition 2) Power Gao decoding succeeds if

 < d=2. Let

�.`/ D `
`C1n � 1

2
`.k � 1/� `

`C1

Then decoding will fail with high probability if 
 > �. Ò/, where 1 � Ò � ` is chosen
to maximise �.`/.1

Between the above two bounds, Power decoding will sometimes succeed and
sometimes fail. Simulations indicate that failure occurs with quite small probability.
The only proven bound so far is for ` D 2 where for exactly 
 errors occurring, we
have Pf .
/ < .q=q�1/
q3.
��.2//=.q � 1/, [5, 10].

We will give a new bound for Pf .
/ when ` D 3, but we will first show a
property which allows a major simplification in all subsequent analyses.

Proposition 4 Power Gao decoding fails for some received word r if and only if it
fails for r C Oc where Oc is any codeword.

Proof We will show that Power Gao decoding fails for r D c C e if and only if it
fails for e as received word; since c was arbitrary, that implies the proposition.

Let R.t/e be the power Lagrangians for e as received word, i.e. R.t/e .˛i / D eti for
each i and t , and letRe D R.1/e . Consider a solution to the corresponding Power Gao
key equations .�;  1; : : : ;  `/; i.e. �R.t/e 
  t mod G and deg�C t.k � 1/C 1 >
deg t . Let as usual R.t/ be the power Lagrangians for r as received word and
R D R.1/. Note now that R.t/ 
 Rt mod G since both sides of the congruence
evaluate to the same at all ˛i ; similarly R.t/e 
 Rte mod G. Since ri D f .˛i /C ei
linearity implies that R D f CRe . Define  0 D � and note that then also for t D 0
we have deg� C t.k � 1/ C 1 > deg t . We then have the chain of congruences
moduloG:

�R.t/ 
 �Rt 
 �.f CRe/t 
 �Pt
sD0



t
s

�
f sRt�se 
Pt

sD0


t
s

�
f s t�s mod G

1Decoding may succeed in certain degenerate cases, see [3, Proposition 2.39]. Failure is certain
when using the method of [5] since what it considers “solutions” are subtly different than here.
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Each term in the last sum has degree s degf C deg t�s < s.k � 1/C deg�C .t �
s/.k � 1/C 1 D deg�C t.k � 1/C 1, which means that

�
�;
P1

sD0


1
s

�
f s 1�s ; : : : ;

P`
sD0



`
s

�
f s `�s

�

is a solution to the Power Gao key equations with r as a received word. The same
argument holds in the other direction, so any solution to one of the key equations
induces a solution to the other with the same first component; obviously then, their
minimal solutions must be in bijection, which directly implies that they either both
fail or neither of them fail. ut

For the new bound on the failure probability, we first need a technical lemma:

Lemma 5 Let U 2 FŒx� of degreeN , and let K1 < K2 < K3 < N be integers. Let
S D f.f1; f2; f3/ j f1f3 
 f 2

2 mod U; f2 monic ; 8t: degft < Kt g. Then

jS j � 3K2�1qK2 if K1 CK3 � 2 < N
jS j � 2K1CK3�2qK1CK2CK3�N�2 if K1 CK3 � 2 � N

Proof If K1 CK3 � 2 < N , then f1f3 
 f 2
2 mod U implies f1f3 D f 2

2 . We can
choose a monic f2 in .qK2 � 1/=.q � 1/ ways. For each choice, then f2 has at most
K2 � 1 prime factors, so the factors of f 2

2 can be distributed among f1 and f3 in at
most 3K2�1 ways. Lastly, the leading coefficient of f1 can be chosen in q � 1 ways.

If K1CK3 � 2 � N , then for each choice of f2, the product f1f3 can be among
ff 22 CgU j degg � K1CK3�2�N g. This yields at most qK1CK2CK3�N�2=.q�1/
candidates for f1f3; each of these has at most K1 C K3 � 2 unique prime factors,
which can then be distributed among f1 and f3 in at most 2K1CK3�2 ways. Again,
the leading coefficient of f1 leads to a factor q � 1 more. ut
Proposition 6 For ` D 3, the probability that Power decoding (Gao or Syndrome)
fails when 
 > d=2 is at most

.q=.q�1//
.3=q/2
�.n�2kC1/q3.
��.2//Ck�1 if 
 < �.2/ � 1
3
k C 1

.q=.q�1//
22.2
�d/C2.k�1/q4.
��.3//�2 if 
 � �.2/� 1
3
k C 1

Proof By Proposition 4, we can assume that c D 0, i.e. that r D e. That means
R.t/.˛i / D 0 for i … E , so we can writeR.t/ D E.t/$ for someE.t/ with degE.t/ <


, where $ D G=� is the “truth-locator”. Power Gao decoding fails if and only if
there exists .�;  1;  2;  3/ such that � ¤ �, deg� � deg�, deg�C t.k�1/C1 >
deg t for t D 1; 2; 3 as well as

�R.t/ 
  t mod G ” �E.t/ 
 O t mod �

where O t D  t=$ . Note that  t must be divisible by $ since both the modulus and
the left-hand side of the first congruence is.
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Denote by E the unique polynomial with degree less than 
 having E.˛i / D
ei for i 2 E . For any i 2 E then .�E.t//.˛i / D �.˛i /$ .˛i /

�1eti , which means
�E.t/ 
 O�Et mod � for some polynomial O�.

After having chosen error positions, drawing error values uniformly at random
is the same as drawing uniformly at random from possible E . So given the error
positions, the probability that Power decoding will fail is T�=.q � 1/
, where T� is
the number of choices of E such that there exist O�; O 1; O 2; O 3 having

O�Et 
 O t mod �; t D 1; 2; 3

as well as deg O t < deg�C t.k � 1/C 1� .n� deg�/ D 2
� .n� t.k � 1/� 1/.
Note that these congruences imply O 1 O 3 
 O 22 mod �. Denote by OT� the

number of triples . O 1; O 2; O 3/ 2 FŒx�3 satisfying just this congruence as well as the
above degree bounds. Then OT� � T�: for if gcd. O�;�/ D 1 then two different values
ofE could not yield the same triple sinceE 
 O 2= O 1 mod � uniquely determines
E . Alternatively, if gcd. O�;�/ D g ¤ 1 then the congruences imply g j O t for all
t , so that E 
 . O 2=g/=. O 1=g/ mod �=g. This leaves a potential qdeg g possible
other choices of E yielding the same triple; but all these possibilities are counted
in the triples since .t 1=g; t 2=g; t 3=g/ will be counted for any t 2 FŒx� with
deg t < degg.

In fact, we have OT� � .q � 1/T�, since whenever . O 1; O 2; O 3/ is counted, so is
.ˇ O 1; ˇ O 2; O 3/, and this doesn’t change the fraction O 1= O 2. Thus, we over-estimate
instead OT�=.q � 1/ by counting the number of triples where O 2 is monic. Lemma 5
gives an upper bound for exactly this number, setting N D 
 and Kt D 2
 �
.n � t.k � 1/ � 1/. Divided by .q � 1/
 , this is then an upper bound on the failure
probability given the error positions. But since this probability is independent of the
choice of �, it is also the failure probability over all errors vectors of weight 
. ut

By experimentation, one can demonstrate that the bound is not tight: for instance,
for a Œ250; 30; 221� GRS code, the bound is greater than 1 for 
 > 143, while
simulation indicate almost flawless decoding up to 147 errors. However, in a relative
and asymptotic sense the above bound is strong enough to show that up to �.3/
errors can be corrected with arbitrary low failure probability:

Corollary 7 Having ` D 3, then for any ı > 0, with n ! 1 while keeping q=n,
k=n and 
=n constant, the probability that Power decoding fails goes to 0 when

=n < �.3/=n� ı.
Proof (Proof sketch) We consider only the high-error failure probability of Propo-
sition 6. For n!1, the failure probability bound will approach

22.2
�d/C2.k�1/q4.
��.3// � .qn/4.
=n��.3/=n/C.2.2
=n�d=n/C2k=n/= log q

The contribution .2.2
=n � d=n/ C 2k=n/= logq goes to 0 as n ! 1, leaving
.qn/a for a D 4.
=n� �.3/=n/ < �4ı. ut
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5 A Family of Bad Errors

Power decoding will usually fail when the powered key equations are linearly
dependent; in particular, it will fail if one of the key equations is trivially satisfied.

An anonymous reviewer of this paper suggested the following construction of
errors where, for a given sent codeword, the second key equation will be trivial: let
F be a non-binary field, and let Oc 2 C be some non-zero codeword, obtained as
the evaluation of Of with deg Of < k. Choose d=2 � 
 � �.2/ positions for which
Oc is non-zero. Let then e D .e1; : : : ; en/ be given by ei D �2 Oci when i is one
of the chosen position, and ei D 0 otherwise. If Or D Oc C e is received, then the
second Lagrangian OR.2/ equals Of 2, i.e. deg OR.2/ < 2k � 1 (in other words, we have
Or.2/ D Oc.2/ so the squared received word is a codeword in the “squared” GRS code).
That means that for any � 2 FŒx�, then deg.� OR.2/ mod G/ � deg�C 2k � 1, and
so the second key equation is useless.

Clearly then, if Or is received, then almost surely2 Power decoding will fail when
` D 2, and it is easy to show that it will also fail when ` > 2.

From Proposition 4 it follows that decoding will also fail when receiving c C e

for any sent codeword c 2 C ; in particular when sending 0 and receiving e. This
might at first seem counter-intuitive since the second LagrangianE.2/ when e is the
received word does not have low degree (i.e. e.2/ is not in the squared GRS code).
However, in this case the key equation involvingE.2/ will be linearly dependent on
that involvingE D E.1/, and so will not add further requirements. This can be seen
directly as follows: since e D Or� Oc then e.2/ D Or .2/C Oc.2/�2 Oc? Or D 2 Oc.2/�2 Oc? Or ,
where ? is the component-wise product. Thus E.2/ 
 2 Of 2 � 2 Of R mod G. So if
� 2 FŒx� satisfies the first key equation, i.e. deg.�E mod G/ � deg�C k � 1, then
we get

deg.�E.2/ mod G/ D deg.� Of 2 C �E Of mod G/ � deg�C 2.k � 1/

So � satisfies the second key equation.
The “bad error” construction can easily be generalised for higher ` whenever F

has `’th roots of unity different from 1: then ei can be chosen as .�i � 1/ Oci where
�i ¤ 1 is any of those roots of unity. Then for Or D Oc C e we get Or .`/ D Oc.`/ and so
degR.`/ � `.k � 1/.

A full Power Gao decoder has been implemented in Sage v5.13 [7] and is
available for download at http://jsrn.dk/code-for-articles. Also implemented is
randomly constructing “bad errors” e as above (for any `), and a demonstration
that Power decoding fails for Or , e and c C e for any random codeword c.

2As in Theorem 3, failure is not certain but extremely unlikely for just a few errors beyond d=2.

http://jsrn.dk/code-for-articles
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On Fibre Products of Kummer Curves
with Many Rational Points over Finite Fields

Ferruh Özbudak, Burcu Gülmez Temür, and Oğuz Yayla

Abstract We determined the number of rational points of fibre products of two
Kummer covers over a rational point of the projective line in a recent work of
F. Özbudak and B.G. Temür (Des Codes Cryptogr 70(3):385–404, 2014), where
we also constructed explicit examples, including a record and two new entries for
the current Table of Curves with Many Points (manYPoints: Table of curves with
many points. http://www.manypoints.org (2014). Accessed 30 Sep 2014). Using the
methods given in Özbudak and Gülmez Temür (Des Codes Cryptogr 70(3):385–404,
2014), we made an exhaustive computer search over F5 and F7 by the contributions
of O. Yayla and at the end of this search we obtained 12 records and 6 new entries
for the current table; in particular, we observed that the fibre product with genus 7
and 36 rational points coincides with the Ihara bound, thus we concluded that the
maximum number N7.7/ of F7-rational points among all curves of genus 7 is 36
(Özbudak et al., Turkish J Math 37(6):908–913, 2013). Recently, we made another
exhaustive computer search over F11. In this paper we are representing the results
as three records and three new entries for the current table.
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e-mail: burcu.temur@atilim.edu.tr

O. Yayla
Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy
of Sciences, Altenberger Strasse 69, A-4040 Linz, Austria

Department of Mathematics, Hacettepe University, Beytepe, 06800 Ankara, Turkey
e-mail: oguz.yayla@hacettepe.edu.tr

© Springer International Publishing Switzerland 2015
R. Pinto et al. (eds.), Coding Theory and Applications, CIM Series
in Mathematical Sciences 3, DOI 10.1007/978-3-319-17296-5_33

307

http://www.manypoints.org
mailto:ozbudak@metu.edu.tr
mailto:burcu.temur@atilim.edu.tr
mailto:oguz.yayla@hacettepe.edu.tr


308 F. Özbudak et al.

1 Introduction

Let Fq be a finite field with q D pn elements, where p is a prime number. For an
absolutely irreducible, nonsingular and projective curve � defined over Fq , let N
be the number of Fq-rational points of � and g.�/ be its genus. The number N is
bounded by the Hasse-Weil bound

N � q C 1C 2g.�/pq: (1)

If the bound in (1) is attained then � is called a maximal curve. There are some
improvements on (1) especially when g.�/ is large [4, 5, 8, 12, 14]. Let Nq.g/
denote the maximum number of Fq-rational points among the absolutely irreducible,
nonsingular and projective curves of genus g defined over Fq . It is an important
problem to determine Nq.g/ and to construct explicit curves with many rational
points (see [3], and [7] for the current tables). There are many applications to areas
including coding theory, cryptography and quasi-random points [5, 8, 9, 13, 14].
Some types of fibre products of Kummer covers of the projective line were studied
and such explicit curves with many points were found [2, 6] and [12].

The theory of algebraic curves is essentially equivalent to the theory of algebraic
function fields. Throughout this paper we will use the language of function fields
[12]. We will call a degree one place of an algebraic function field a rational place
of the function field. Consider the fibre product

y
n1
1 D h1.x/;
y
n2
2 D h2.x/;

(2)

where n1; n2 � 2 are integers and h1.x/; h2.x/ 2 Fq.x/. Let E be the algebraic
function field E D Fq.x; y1; y2/ with the system of equations in (2). If the number
of rational places ofE is greater thanNmax;q;g=

p
2, whereNmax;q;g is the best known

upper bound for Nq.g/ (Hasse-Weil, Serre, Ihara, Oesterlé etc.) – this is the case if
there is no entry for the lower bound in the tables [7] – then we call it a new entry.
If the number of rational places of E is greater than the existing lower bound in the
tables [7], then we call it a record. We have given explicit examples of fibre products
of Kummer covers with many rational points in [10], in particular Examples 4 and 5
(in Sect. 3) were new entries for the table [7].

We made an exhaustive computer search on n1; n2; h1 and h2 to find such
function fields E D Fq.x; y1; y2/ with many rational places over the finite fields
F5, F7, at the end of that search, we obtained 12 records and 6 new entries for
the current tables [7] presented in Tables 1–3 (see [11]). Recently, we made another
exhaustive computer search over F11 and in this paper we are representing these new
results in Tables 4 and 5. In all the exhaustive computer searches mentioned above
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Table 1 Algebraic function fields with many rational places over F5 (records)

n1 n2 h1.x/D h1;1.x/

h1;2.x/
h2.x/ D h2;1.x/

h2;2.x/
g N Nmin;q;g

2 2 3x3C2x2C2xC1
x2C2xC4

2x3C4x2C1
x2C2xC4

6 22 21

4 4 .x/.x2CxC2/

xC4

.xC4/.x2C2xC4/

x
25 56 52

4 4 .xC4/.x2C4xC2/

xC3

4.xC4/.x2C3xC4/

.xC3/2
27 56 52

4 4 x6C3x4C4x3Cx2C2xC2
xC2

3x4C4x3C2x2CxC1
1

29 64 52

Table 2 Algebraic function fields with many rational places over F7 (records)

n1 n2 h1.x/D h1;1.x/

h1;2.x/
h2.x/ D h2;1.x/

h2;2.x/
g N Nmin;q;g

3 2 4x2C4xC5
1

2.x2CxC3/.x2C3xC1/

1
5 26 24

2 3 6.xC6/.x2C1/

1

4.xC5/.x2C1/2

1
6 27 25

3 3 5.xC2/.xC5/

x

3x2.xC5/

xC3
7 36 30

3 3 x2C1
x

x2C4
1

10 39 36

3 6 6.x2C1/

1

.xC1/.xC6/2

xC5
16 54 45

2 6 6.xC3/.x2CxC3/

1

4.xC3/2.x2C3xC6/

xC2
18 52 51

3 6 x.xC1/

xC4

.xC4/3

x.xC5/
19 63 54

6 6 3x2.xC1/

xC3

2x.xC1/.xC3/

xC1
22 72 63

Table 3 Algebraic function fields with many rational places over F7 (new entries)

n1 n2 h1.x/D h1;1.x/

h1;2.x/
h2.x/D h2;1.x/

h2;2.x/
g N dNmax;q;g

p

2
e

2 6 6.xC3/.x2CxC3/

1

4x2.x2CxC3/

xC5
14 44 41

2 6 2.xC3/.xC4/.xC6/

1

3.xC3/2.x2C2xC3/

xC4
15 52 43

2 6 4.xC2/.x2C4/

1

2.xC2/2.xC5/.x2CxC3/

1
20 54 53

3 6 6.xC6/.x2C6xC4/

xC4

3.xC6/2.x2C5xC5/

1
28 72 68

6 6 3x.xC2/.xC3/

1

6x2.xC4/

.xC3/2
40 108 90

6 6 4.xC1/.xC5/.xC6/

1

3.xC6/2.x2C4xC5/

xC1
49 114 107

Table 4 Algebraic function fields with many rational places over F11 (records)

n1 n2 h1.x/D h1;1.x/

h1;2.x/
h2.x/ D h2;1.x/

h2;2.x/
g N Nmin;q;g

2 5 2x2C7xC2
xC7

6x2C9xC2
xC2

6 41 40

10 2 6x2CxC1
7x3C1

x2 C 9 � x C 4 8 44 42

2 5 2x2C1
xC2

10x3 C 5x2 C x C 7 13 62 60
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Table 5 Algebraic function fields with many rational places over F11 (new entries)

n1 n2 h1.x/D h1;1.x/

h1;2.x/
h2.x/ D h2;1.x/

h2;2.x/
g N dNmax;q;gp

2
e

5 5 2x2 C x 5x2C3xC3
x2

16 75 64

2 10 8x2C6xC9
xC2

2x4 C 8x3 C 10x2 C 4x 22 84 81

10 5 9x3 C 7x2 C 3x C 5 6x4 C 6x3 C 4x C 1 36 150 119

we used the method given in [10] in order to determine the number of rational places
of E over Fq .

2 Fibre Products of Kummer Covers

Before Theorem 2 we need to develop some tools that we use in its proof.

Proposition 1 ([10]) Let C1; C2 be subgroups of F�q with jC1j D Nn1, jC2j D Nn2.
Let m be a positive integer with m j .q � 1/ and N be an arbitrary integer. Let
S D f.x1; x2/ 2 C1 � C2 W there exists s 2 F

�
q such that xN1 x2 D smg. Then the

cardinality jS j of S is

jS j D gcd. Nn1;N / gcd

� Nn1
gcd. Nn1;N / ; Nn2

�
gcd

�
lcm

� Nn1
gcd. Nn1;N / ; Nn2

�
;
q � 1
m

�
:

Moreover let C be the subset of F�q defined as

C D
n
y 2 F

�
q Wthere exists .x1; x2/2C1 � C2 and s 2 F

�
q such that y D xN1 x2sm

o
:

Then C is a subgroup of F�q with the cardinality

jC j D lcm

�
lcm

� Nn1
gcd. Nn1;N / ; Nn2

�
;
q � 1
m

�
:

Proof (see Proposition 1 in [10]) ut
The following theorem was one of our main results (see Theorem 4 and Corollary 1
in [10]).

Theorem 2 Under the notations and assumptions of Proposition 1 we further

define Om D gcd
�
q�1
A
;m
�

, where A D lcm

� Nn1
gcd. Nn1;N / ; Nn2

�
. Then we have that
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jS j D Nn1 Nn2
m
Om. Moreover, let m2 D gcd.n02; n01/ and E D Fq.x; y1; y2/ be the

algebraic function field with

y
n1
1 D h1.x/;
y
n2
2 D h2.x/:

(3)

Assume that the full constant field of E is Fq and ŒE W Fq.x/� D n1n2 and assume
that Nn1 j .q � 1/; Nn2 j .q � 1/ and m2 j .q � 1/. Let Nni D gcd.ni ; ai /; n0i D
niNni ; and a0i D aiNni for i D 1; 2. As gcd.n01; a01/ D 1, we choose integers A1 and B1
such that A1n01 C B1a01 D 1. Let

A D lcm

� Nn1
gcd.�a02B1; Nn1/

; Nn2
�
:

Let Om2 D gcd
�
q�1
A
;m2

�
. Then there exist either no or exactly . Nn1 Nn2 Om2/ rational

places of E over P0. For 1 � i � 2, the evaluation of fi .x/ 2 Fq.x/ at P0 is
denoted by fi .u/. Furthermore, there exists a rational place of E over P0 if and
only if all of the following conditions hold:

C1: f1.u/ is an Nn1-power in Fq .

C2: f2.u/ is an Nn2-power in Fq .

C3: Assume that the conditions in items C1, C2 above hold and let ˛1; ˛2 2 F
�
q

such that ˛ Nn11 D f1.u/ and ˛ Nn22 D f2.u/. Let

B D lcm

�
A;
q � 1
m2

�
:

Then

�
˛
�a0

2B1
1 ˛2

�B D 1:

Proof (see [10]) ut
Remark 3 Figures 1–3 below representing the ramification and inertia indices of
degree one places lying over P0 on some intermediate fields in between Fq.x/ and
E may give an idea about the proof of Theorem 2.
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E2

n̄2

K1

n1
n̄1

= n′
1

E1

n̄1

K0 = Fq(x)

P3

�
� · · · e(P3 | P2) = 1

f (P3 | P2) = 1

P2

e(P2 | P1) = n′
1

f (P2 | P1) = 1

P1

�
� · · ·

e(P1 | P0) = 1

f (P1 | P0) = 1
P0

Fig. 1 E2 extension over Fq.x/

F2

m2

E2

e(P4 | P3,1) = 1

f (P4 | P3,1) = 1

e(P′
4 | P3,2) = 1

f (P′
4 | P3,2)> 1

P′
4

�
� · · ·

P4

�
� · · ·

n̄1n̄2m̂2

m2
many

︷ ︸︸ ︷· · · · · · · · · · · · · · ·
P3,1 P3,2
︸ ︷︷ ︸

n̄1n̄2 many

Fig. 2 F2 extension over E2

E = K2

n2
n̄2m2

=
n′
2

m2

F2

P5

e(P5 | P4) = n′
2

m2

f (P5 | P4) = 1

P4

Fig. 3 K2 extension over F2
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3 Examples

In this section, we present explicit examples of fibre products of Kummer extensions
with many rational places obtained by using Theorem 2 (see Section 5 in [10], in
particular Examples 4 and 5 below were new entries for the tables in [7]).

Example 4 Let E D F53.x; y1; y2/ be the function field over F53 given by the
following equations:

y21 D x3 C x
y22 D x3 C x C 2

The genus of E is g.E/ D 4 and N.E/ D 170.

Example 5 Let E D F112.x; y1; y2/ be the function field over F112 given by the
following equations:

y21 D x3 C x
y122 D x2.1 � x2/

The genus of E is g.E/ D 31 and N.E/ D 612.

Example 6 Let E D F132.x; y1; y2/ be the function field over F132 given by the
following equations:

y21 D x7 C 1
y72 D �x7 � 1

The genus of E is g.E/ D 36 and N.E/ D 1106. This function field is maximal.

4 Search for Curves with Many Points

First we represent the genus computation for fibre products of two Kummer covers
over finite fields Fq .

Proposition 7 ([11]) Let F1 D Fq.x; y1/ and F2 D Fq.x; y2/ be the algebraic

function fields with y
n1
1 D h1.x/ D h1;1.x/

h1;2.x/
and y

n2
2 D h2.x/ D h2;1.x/

h2;2.x/

respectively, where h1;1.x/; h1;2.x/; h2;1.x/; h2;2.x/ 2 FqŒx� then the compositum
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F1F2 D E D Fq.x; y1; y2/ and the genus g.E/ of E is equal to:

g.E/ D 1 � n1n2 C 1
2
n1n2

0

@1 � 1

lcm
�

n1
gcd.n1;jd1j/ ;

n2
gcd.n2;jd2j/

�

1

A

C 1
2
n1n2

X

p.x/2R

0

@1 � 1

lcm
�

n1
gcd.n1;ap;1/

; n2
gcd.n2;ap;2/

�

1

A deg.p.x//:

where d1 D degh1;2.x/�degh1;1.x/, d2 D degh2;2.x/�degh2;1.x/, R is the set of
all irreducible polynomials in the polynomial ring FqŒx� and ap;i is the multiplicity
of p.x/ 2 R as a zero or pole of hi .x/ for i D 1; 2. If p.x/ 2 R is neither a zero
nor a pole of hi .x/ then obviously ap;i D 0 and the summation is finite as each
rational function has finitely many zeros and poles.

Remark 8 The proposition above can be proved using Proposition 3.7.3 in [12] on
Kummer extensions and Abhyankar’s lemma (see Proposition 3.8.9 in [12]).

We made an exhaustive computer search for finding new curves with many points
over F5, F7 (see [11]) and F11 (with the help of Magma [1]), totally we have
15 records and 9 new entries for the current tables [7]. We represent our latest
contributions in Tables 4 and 5 above to the current Table of Curves with Many
Points [7].
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Hyperbolic Lattices with Complete Labeling
Derived from f4g; 4gg Tessellations

Cátia Quilles Queiroz, Cintya Benedito, José Carmelo Interlando,
and Reginaldo Palazzo Jr.

Abstract Hyperbolic lattices O are the basic entities used in the design of signal
constellations in the hyperbolic plane. Once the identification of the arithmetic
Fuchsian group in a quaternion order is made, the next step is to present the
codewords of a code over a graph, or a signal constellation (quotient of an order
by a proper ideal). However, in order for the algebraic labeling to be complete, it
is necessary that the corresponding order be maximal. An order M in a quaternion
algebra A is called maximal if M is not contained in any other order in A (Reiner,
Maximal Orders. Academic, London, 1975). The main objective of this work is to
describe the maximal orders derived from f4g; 4gg tessellations, for which we have
hyperbolic lattices with complete labeling.

Keywords Hyperbolic geometry • Fuchsian group • Quaternion algebra •
Quaternion order • Tessellation of the hyperbolic plane

1 Introduction

The theory of lattices in the context of designing signal constellations for power and
bandwidth efficient digital communication systems was strongly stimulated by the
connection with number theory, group theory and coding theory. As a consequence,
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the theory of lattices proved to be a tool of great importance for the problem of
sphere packing and for the problem of constructing codes with larger codeword
lengths within the context of the work of Nyquist and Shannon, [5]. However,
these lattices belong to surfaces with genus g D 1 (or equivalently, surfaces with
constant curvature zero). Going one step farther, that is, to surfaces with genus
g > 1, it is known that due to the large number of isometries in spaces with
negative constant curvature, it is always possible to construct a covering (tiling,
tessellation) of such spaces, [10] and [11]. These tessellations, denoted by fp; qg, are
characterized by p-sided regular polygons, where each vertex is covered by q such
regular polygons. As an example, consider the tessellation f6; 3g. This tessellation
covers the Euclidean plane with regular hexagons, where each vertex has three
hexagons as neighbors. Interesting approaches regarding the fp; qg tessellations in
spaces with constant curvature can be seen in [6] and [4]. In a pioneering work in the
context of communication theory [2] considers the self-dual tessellations fp; pg in
the design of communication systems in the hyperbolic plane. Such tessellations
are an important subset of the fp; qg tessellations due to the fact that they are
characterized as geometrically uniform tessellations, [7].

The arithmetic Fuchsian groups, �4g , obtained in [3], for g D 2; 3, were
extended to g D 2n; 3:2n; 5:2n in [16], where g denotes the genus of an oriented
compact surface and n a positive integer. As a consequence, the generators of
the corresponding groups �4g consisting of the side-pairing transformations of the
fundamental hyperbolic polygon P4g were determined. A fundamental polygonP4g
covering the hyperbolic plane D

2 is associated with a corresponding quaternion
order. Thus, knowing the quaternion order, in [13] geometrically uniform codes
derived from graphs over the quotient of these orders by proper ideals were
constructed in the hyperbolic plane. However, to have a complete labeling of each
one of these codes, the quaternion order necessarily has to be maximal. This is the
reason of our interest in maximal orders.

The aim of this paper is to provide a procedure to determine the maximal
quaternion orders associated with the self-dual f4g; 4gg tessellations, for which a
complete labeling may be obtained.

This paper is organized as follows. In Sect. 2, some basic concepts which are
necessary to define quaternion orders, tessellations and Fuchsian groups are pre-
sented. In addition, the generators of the arithmetic Fuchsian groups are considered.
In Sect. 3, the identification of the Fuchsian groups �4g derived from a quaternion
algebra A over a number field K are established. In Sect. 4 the main results are
presented. Finally, in Sect. 5 some conclusions are drawn.

2 Preliminary Results

In this section some basic and important concepts to the development of this paper
such as quaternion algebras, quaternion orders, hyperbolic lattices and arithmetic
Fuchsian groups are presented. For a detailed description of these concepts we refer
the reader to [8, 9] and [14].
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Let K be a field. A quaternion algebraA overK is a K-vector space of dimension
4 with a K-base B D f1; i; j; kg; where i 2 D a, j 2 D b, ij D �j i D k, a; b 2
K � f0g, and denoted by A D .a; b/K.

Let ˛ 2 A be given by ˛ D a0 C a1i C a2j C a3ij , where a0; a1; a2; a3 2 K.
The conjugate of ˛, denoted by N̨ , is defined by N̨ D a0 � a1i � a2j � a3ij: Thus,
the reduced norm of ˛ 2 A , denoted by NrdA .˛/, or simply Nrd.˛/ when there is
no confusion, is defined by

Nrd.˛/ D ˛: N̨ D a20 � aa21 � ba22 C aba23; (1)

and the reduced trace of ˛ by

Trd.˛/ D ˛ C N̨ D 2a0: (2)

Let A D .a; b/K be a quaternion algebra over a field K and ' W K �! F a field
homomorphism. Define

A ' D .'.a/; '.b//'.K/ and A ' ˝ F D .'.a/; '.b//F; (3)

where A ' ˝ F denotes the tensor product of the algebra A ' by the field F, [12].
Each homomorphism ' in the algebra A ' D .'.a/; '.b//'.K/ is called place of the
quaternion algebra A .

Let K be a totally real algebraic number field of degree n. This means that the n
monomorphisms 'i , i D 1; : : : ; n are all real, that is, 'i .K/ 	 R. Therefore, the n
distinct places are defined by R-isomorphisms

�1 W A '1 ˝ R �!M2.R/ and �i W A 'i ˝R �!H ; (4)

where '1 is the identity, 'i an embedding of K on R, for i D 1; : : : ; n, and H a
division subalgebra of M2.K.

p
a//. Hence, A is not ramified at the place '1 and

ramified at the places 'i , for 2 � i � n.
Let NrdH and TrdH be the reduced norm and the reduced trace in H ,

respectively. Given ˛ 2 A , it is easy to verify that

NrdH .˛/ D det.�1.˛// and TrdH .˛/ D t r.�1.˛//: (5)

Given A , a quaternion algebra overK, andR a ring of K, anR-orderO in A is a
subring with unity of A which is a finitely generatedR-module such that A D KO .
Hence, if A D .a; b/K and IK, the integer ring of K, where a; b 2 IK � f0g, then
O D fa0 C a1i C a2j C a3ij W a0; a1; a2; a3 2 IKg, is an order in A denoted by
O D .a; b/IK .

Let A D .a; b/
K

be a quaternion algebra over K, R a ring of K, and O an
R-order in A . We also call O a hyperbolic lattice due to its identification with an
arithmetic Fuchsian group.
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The lattices O are used as the basic entity in generating the signals of a signal
constellation in the hyperbolic plane. Since O is an order in A , then there exists a
basis fe1; e2; e3; e4g of A and an R-ideal a such that, O D ae1˚Re2˚Re3˚Re4,
where ˚ denotes direct sum. Note that by definition, given x; y 2 O , we have
x � y 2 O . Furthermore, since every x 2 O is integral over R, [14], it follows that
Nrd.x/;Trd.x/ 2 R, [8], as we can see in the next result.

Proposition 1 ([8]) Given a R-quaternion order O in a quaternion algebra A . If
x 2 O , then Trd.x/;Nrd.x/ 2 R.

One of the main objectives of this paper is to identify the maximal orders. An
order M in a quaternion algebra A is called maximal if M is not contained in any
other order in A , [14].

The arithmetic Fuchsian groups were considered in the construction of geomet-
rically uniform signal constellations in the hyperbolic plane, where the arithmetic
and geometric concepts, inherent to these groups, are merged in this process.

A Fuchsian group � is a discrete subgroup of PSL.2;R/, that is, � consists
of the orientation preserving isometries T W H

2 ! H
2, acting on H

2 by
homeomorphisms. Analogously, the discrete group �p consisting of the orientation
preserving isometries T W D

2 ! D
2 is also a Fuchsian group, given by the

transformations Tp 2 �p < PSL.2;C/ such that

Tp.z/ D azC c
NczC Na ; a; b 2 C; jaj2 � jcj2 D 1:

For each order O in A , consider O1 as the set O1 D f˛ 2 O W NrdH .˛/ D 1g:
Note that O1 is a multiplicative group. Now, the Fuchsian groups may be obtained
by the isomorphism �1 in (4). In fact, from (5) we have NrdH .˛/ D det.�1.˛//.
Furthermore, we know thatO1 is a multiplicative group, and so �1.O1/ is a subgroup
of SL.2;R/, that is, �1.O1/ < SL.2;R/. Therefore, the group derived from a
quaternion algebra A D .a; b/K and whose order is O , denoted by � .A ;O/, is
given by

� .A ;O/ D �1.O
1/

f˙Id2g <
SL.2;R/

f˙Id2g Š PSL.2;R/: (6)

As a consequence,

Theorem 2 ([15]) � .A ;O/ is a Fuchsian group.

These previous concepts and results lead to the concept of arithmetic Fuchsian
groups. Since every Fuchsian group may be obtained in this way, we say that a
Fuchsian group is derived from a quaternion algebra if there exists a quaternion
algebra A and an order O 	 A such that � has finite index in � .A ;O/. The
group � is called an arithmetic Fuchsian group.
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Theorem 3 establishes the necessary and sufficient conditions for arithmecity of
Fuchsian groups and its characterization makes use of the set consisting of the traces
of its elements, that is, T r.� / D f˙T r.T / W T 2 � g.
Theorem 3 ([9, 15]) Let � be a Fuchsian group where the fundamental region has
finite area, that is, �.H2=� / < 1. Then � is derived from a quaternion algebra
A over a totally real number field K, if and only if, the following conditions are
satisfied by � :

1. If K1 D Q.T r.T / W T 2 � /, then K1 is an algebraic number field of finite
degree, and T r.� / is contained in IK1 , the ring of integers of K1;

2. If ' is an embedding of K1 in C such that ' ¤ Id , then '.T r.� // is bounded
in C.

3 Identification of the Fuchsian Groups �4g

from the Quaternion Orders

In this section we identify the arithmetic Fuchsian groups �4g derived from a
quaternion algebra A over a number field K, where g D 2:2n; 3:2n, 5:2n and 3:5:2n,
for n � 0, denotes the genus of the surface D2=�4g in a quaternion order.

Theorem 4 ([1, 3, 16]) For each value of g and n � 0, the arithmetic Fuchsian
group �4g is derived from a quaternion algebra A over a totally real number field
K D Q.�/ and the elements of �4g are identified, by an isomorphism, with the
elements of the order O D .�;�1/IK , where IK denotes the integer ring of K and �
is given by:

1. � D
s

2C

r

2C : : :C

q
2C

p

2, containing nC 1 roots, for g D 2:2n;
2. � D

s

2C

r

2C : : :C

q
2C

p

3, containing nC 1 roots, for g D 3:2nC1;
3. � D

vuu
u
t
2C

vu
u
t
2C : : :C

s

2C

q
10C2

p

5

2 , containing nC 2 roots, for g D 5:2nC1;
4. � D

vuu
u
t
2C

vu
u
t
2C : : :C

s

7C

p

5C

q
30C6

p

5

2 , containing nC 4 roots, for g D 3:5:2n.
We are going to verify that the Fuchsian groups associated with the orders

established in Theorem 4 are in fact arithmetic. For that, it suffices to show that the
quaternion algebra is not ramified at '1 and it is ramified at the remaining places.

Given the Fuchsian group �4g and the quaternion algebra A D .�;�1/K, the
elements of T 2 � are given by:

T D 1

2s

�
xl C yl

p
� zl C wl

p
�

�zl C wl
p
� xl � yl

p
�

�
;
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where s 2 N, xl ; yl ; zl ;wl 2 ZŒ�� and � is given by Theorem 4. Since '1 is the
identity, it follows that A ' M2.K/ is not ramified at '1. Now, observe that �
is square-free for K D Q.�/, that is, there is no t 2 K � f0g such that t2 D � .
Therefore, A is ramified at all places 'i , except at '1.

Now, the order O D .�;�1/IK is not a maximal order in the quaternion algebra
A D .�;�1/K. Since we are interested in realizing a complete algebraic labeling,
we have to find an order that contains the order O in A and that it is maximal.

4 Maximal Quaternion Orders Derived from f4g; 4gg
Tessellations

In this section the characterization of maximal quaternion orders is considered.
The interest of this structure derives from the fact that with these orders we have
hyperbolic lattices with complete labeling.

Let the Fuchsian group �4g, where g D 2:2n, 3:2nC1, 5:2nC1 or 3:5:2n, for
n � 0, by Theorem 4 we have that �4g is derived from a quaternion algebra
A D .�;�1/Q.�/. Given pm the minimal polynomial of degree m of � , where
pm.x/ D xm C am�1xm�1 C : : :C a1x C a0; it follows that the discriminant of the
maximal order M in A depends on the a0 coefficient of the minimal polynomial.
Thus, the basis of the maximal order in A that containsO D .�;�1/ZŒ� � is obtained,
as shown in the next results. We observed that in the cases g D 3 and 5, the basis
has not the same form of its generalizations g D 3:2n or 5:2n, respectively, and we
do not deal with these cases in this work. Due to space limitation the proofs will be
omitted.

Theorem 5 Given n D 0 and g D 2, the Fuchsian group �8 is derived from the
quaternion algebra A D .�;�1/Q.�/, where � D p2. The minimal polynomial of
� has degree 2 and a basis B of the maximal order M in A is given by:

�
1; i;

1

2

�
.
p
2C 1/Cp2i C j

�
;
1

2

�
.
p
2C 1/i C k

�	
:

Theorem 6 Given n > 0 and g D 2:2n, the Fuchsian group �4g is derived from the

quaternion algebra A D .�;�1/Q.�/, where � D
s

2C

r

2C : : :C

q
2C

p

2 contains n C 1
roots, and the minimal polynomial of � has degree m D 2nC1. If M � .�;�1/ZŒ� �
with a basis B given by

�
1; i;

1

2

�
.�m�1 C �m�2 C : : :C � m

2 C 1 � �m�3/C �m�1i C j
�
;

�1
2�

�
2C .�m�1 C �m�2 C : : :C � m

2 � 1 � �m�3/i C k
�	
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is such that Nrd.˛/ 2 ZŒ�� for all ˛ 2 B, then M is a maximal quaternion order
in A .

Theorem 7 Given n � 0 and g D 3:2nC1, the Fuchsian group �4g is derived from

the quaternion algebraA D .�;�1/Q.�/, where � D
s

2C

r

2C : : :C

q
2C

p

3 contains nC1
roots and the minimal polynomial has order m D 2nC1. If M � O D .�;�1/ZŒ� �
with a basis B given by

�
1;
�1
�
i;
1

2



.�m�1 C �m�2 C : : :C � C 1� � m

2 /C .�m�1 C �m�2 C : : :C � C 1/i C j � ;

1

2



.�m�1 C �m�2 C : : :C � C 1/C .�m�1 C �m�2 C : : :C � C 1� � m

2 /i C k�
	

is such that Nrd.˛/ 2 ZŒ� � for all ˛ 2 B, then M is a maximal quaternion order in
A .

Theorem 8 Given n � 0 and g D 5:2nC1, the Fuchsian group �4g is derived from

the quaternion algebraA D .�;�1/Q.�/, where � D
vu
u
u
t
2C

vu
u
t
2C : : :C

s

2C

q
10C2

p

5

2 contains

nC 2 roots and the minimal polynomial has order m D 2nC2. If M � .�;�1/ZŒ� �
with a basis B given by

�
1;
�1
�
i;
1

2
.�3:2

n C j /; 1
2
.�3:2

n

i C k/
	

is such that Nrd.˛/ 2 ZŒ�� for all ˛ 2 B, then M is a maximal quaternion order
in A .

Example 9 Let g D 10 D 5 � 2. By Theorem 4, the quaternion order associated is

O D .�;�1/ZŒ� �, where � D
r

2C
p
10C2p5
2

. The minimal polynomial is

p8.x/ D x8 � 8x6 C 19x4 � 12x2 C 1;

then a0 D 1. Thus, by Theorem 8, the basis of the maximal order M in the
quaternion algebra A D .�;�1/Q.�/ is given by

�
1;� i

�
;
.�6 C j /

2
;
.�6i C k/

2

	
:

Theorem 10 Given n � 0 and g D 3:5:2n, the Fuchsian group �4g is derived

from the quaternion algebra A D .�;�1/Q.�/, where � D
vu
u
u
t
2C

vu
u
t
2C : : :C

r

7C
p

5C

q
30C6

p

5

2
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contains nC 4 roots, n � 0 and the minimal polynomial has degree m D 2nC3. If
M � .�;�1/ZŒ� � with a basis B given by

�
1;
�1
�
i;
1

2

�
.�5:2

n C �3:2n C �2n/C j
�
;
1

2

�
.�5:2

n C �3:2n C �2n/i C k
�	

is such that Nrd.˛/ 2 ZŒ�� for all ˛ 2 B, then M is a maximal quaternion order
in A .

Example 11 Let g D 15 D 3:5:20, by Theorem 4 the quaternion order associated

is O D .�;�1/ZŒ� �, where � D
q
7Cp5C

p
30C6p5

2
. The minimal polynomial is

p8.x/ D x8 � 7x6 C 14x4 � 8x2 C 1, then the free coefficient is a0 D 1.
Thus, by Theorem 10, the basis of the maximal order M in the quaternion algebra
A D .�;�1/Q.�/ is given by

�
1;
�1
�
i;
1

2



.�5 C �3 C �/C j � ; 1

2



.�5 C �3 C �/i C k�

	
:

5 Conclusions

In this paper we have identified maximal quaternion orders derived from f4g; 4gg
tessellations for which hyperbolic lattices with complete labeling were obtained.
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On Quasi-symmetric 2-.64; 24; 46/ Designs
Derived from Codes

Bernardo G. Rodrigues and Vladimir D. Tonchev

Abstract The paper studies quasi-symmetric 2-.64; 24; 46/ designs supported by
minimum weight codewords in the dual code of the binary code spanned by the
lines of AG.3; 22/. We classify up to isomorphism all designs invariant under
automorphisms of odd prime order in the full automorphism group G of the
code, being of order jGj D 213 � 34 � 5 � 7. We show that there is exactly one
isomorphism class of designs invariant under an automorphisms of order 7, 15
isomorphism classes of designs with an automorphism of order 5, and no designs
with an automorphism of order 3. Any design in the code that does not admit an
automorphism of odd prime order has full group of order 2m for some m � 13, and
there is exactly one isomorphism class of designs with full automorphism group of
order 213.

Keywords Quasi-symmetric designs • Automorphism groups • Linear codes

1 Introduction

We assume familiarity with the basic concepts and notation from combinatorial
design theory and coding theory [1, 2, 6, 11]. For properties of quasi-symmetric
designs we refer the reader to [10].

This paper summarizes computational results concerning quasi-symmetric
designs with parameters 2-.64; 24; 46/ and block intersection numbers 8 and 12,
whose blocks are supports of codewords of weight 24 in the dual code of the
binary code spanned by the incidence vectors of the lines in the 3-dimensional
affine geometry AG.3; 22/. Our main computational tools were Magma [4] and
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Cliquer [8]. We note that a somewhat similar approach for finding quasi-symmetric
designs in codes was used in [7]. The main difference is that here we search
for designs in a well known affine geometry code, while the code used in [7] was
spanned by the incidence matrix of a previously known quasi-symmetric design. Our
study is motivated by a previously known design with parameters 2-.64; 24; 46/,
being a member of an infinite family of quasi-symmetric designs discovered by
Blokhuis and Haemers [3].

2 Designs in the Dual Code of the Code of Lines of AG.3; 2t/

In [3], Blokhuis and Haemers, inspired by a method for constructing balanced
incomplete block designs based on resolvable designs due to Shrikhande and
Raghavarao [9] gave an elegant construction of a quasi-symmetric design D D
D.q/ with parameters 2-.q3; q2.q� 1/=2; q.q3� q2 � 2/=4/ and block intersection
numbers q2.q � 2/=4 and q2.q � 1/=4, where q is a power of 2.

Any block U of D.q/ can be viewed as the union of q.q � 1/=2 parallel lines
in the 3-dimensional affine geometry AG.3; q/ belonging to a parallel class P , and
the q2 blocks of D.q/ associated with P correspond to a symmetric 2-.q2; q.q �
1/=2; q.q�2/=4/ designD0 with points labeled by the lines of P , and blocks being
maximal arcs in AG.2; q/.

A crucial property of the blocks of D.q/ is that for any q > 2 every block U
meets every line L of AG.3; q/ in an even number of points [3]. This implies the
following.

Lemma 1 If q > 2, then every block U of D.q/ is the support of a codeword of
weight q2.q � 1/=2 in the dual code C? of the binary code C of length q3 spanned
by the incidence vectors of the lines in AG.3; q/.

The dimension of the code C (hence of C?) can be computed easily using
Hamada’s formula [5] for the 2-rank of the incidence matrix of the lines of
AG.3; 2t /.

In this paper, we study quasi-symmetric designs arising in this manner from
the code related to AG.3; 22/, namely, quasi-symmetric 2-.64; 24; 46/ designs with
intersection numbers 8 and 12, supported by codewords of weight 24 in the dual
code C? of the binary code C spanned by the block by point incidence matrix of
the 2-.64; 4; 1/ design D, having as blocks the lines of AG.3; 22/. By Hamada’s
rank formula [5], the dimension of C is 51, hence C? is a binary Œ64; 13� code. The
weight distribution fAig64iD0 of C? is given in Table 1.

We define a graph � having as vertices the 1008 codewords of C? of weight 24,
where two codewords are adjacent in � whenever they share exactly 8 or 12 nonzero
positions. Any quasi-symmetric 2-.64; 24; 46/ design with intersection numbers 8
or 12, whose 336 blocks are supports of codewords of C?, corresponds to a clique
of � of size 336. A search for 336-cliques in � performed on a personal computer
using the Cliquer program [8] indicates that � contains a huge number of cliques
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Table 1 Weight distribution
of C?

Weight i Ai

0 1

24 1008

32 6174

40 1008

64 1

of this size. After running the Cliquer non-stop for several days, millions of 336-
cliques were found with no indication that the search is coming to an end. Because
of that, we restricted our search to finding designs in C? which are invariant under
various subgroups of the automorphism group of C?. The results of this search are
described in the following sections.

3 Designs with an Automorphism of Order 3

The automorphism group G of the code C , which is also the automorphism group
of the dual code C?, coincides with the group of the affine space AG.3; 22/, being
of order

jGj D 23224320D 2 � 43.43 � 1/.43 � 4/.44 � 42/ D 213 � 34 � 5 � 7: (1)

The groupG contains five conjugacy classes of subgroups of order 3: two classes,
3a1 and 3b1 , fixing one point and having 21 cycles of length 3 on the set of 64 code
coordinates; two classes, 3a4 and 3b4 fixing 4 points; and one class 316 fixing 16 points.
We used Magma [4] to find representatives of these conjugacy classes.

A subgroup Ha
1 from the class 3a1 partitions the 1008 vertices of � into 336

orbits of length 3 (that is, Ha
1 does not fix any codeword of C? of weight 24). A

total of 210 out of these 336 orbits are 3-cliques. We call these 210 orbits “good”
orbits, because any 336-clique of � which is stabilized by Ha

1 must be a union
of 112 such (good) orbits. We define a new graph �210 having as vertices the 210
good orbits, where two vertices are adjacent in �210 if the corresponding orbits are
compatible, that is, the six vertices of � belonging to these two orbits form a 6-
clique in � . A quick search with Cliquer establishes that �210 contains no 112-
cliques (the maximum clique size of �210 turned out to be 84).

A subgroup Hb
1 from the class 3b1 partitions the 1008 vertices of � into 346

orbits: 331 of length 3, and 15 fixed vertices. Out of the 331 orbits of length 3, 325
are good. The maximum clique size in the graph �325 of the 325 good orbits of
length 3 is 109, and any such 109-clique gives a 327-clique in � . The 15 vertices of
� which are fixed by Hb

1 form a 15-clique in � . Thus, if � contains a 336-clique
Q invariant underHb

1 , Q must consist of 107 3-orbits plus 15 fixed vertices, or 108
3-orbits plus 12 fixed vertices, or 109 3-orbits plus 9 fixed vertices.
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We define now a graph �340 on 340 vertices, being the 325 good orbits of length
3 plus the 15 vertices of � fixed by Hb

1 .
A 336-clique in � invariant under Hb

1 consisting of 109 3-orbits plus 9 fixed
vertices corresponds to a 118-clique in �340. Similarly, a 336-clique in � invariant
under Hb

1 consisting of 108 3-orbits plus 12 fixed vertices corresponds to a 120-
clique in �340, and a 336-clique in � invariant under Hb

1 consisting of 107 3-orbits
plus 15 fixed vertices corresponds to a 122-clique in �340. A Cliquer search shows
that �340 does not contain any cliques of size 118.

Consequently, the code C? does not contain any quasi-symmetric designs with
an automorphism of order 3 fixing exactly one point.

A subgroup Ha
4 from the class 3a4 partitions the 1008 vertices of � into 336

orbits of length 3, 330 out of these 336 orbits being “good”, that is, 3-cliques of � .
The graph having as vertices these 330 good orbits does not contain any 112-clique,
hence C? does not support any quasi-symmetric design invariant under a subgroup
of order 3 from class 3a4 .

A subgroup Hb
4 from the class 3b4 partitions the 1008 vertices of � into 338

orbits: 335 orbits of length 3, and 3 fixed vertices. All 335 orbits of length 3 turned
out to be good. Clearly, a 336-clique of � which is preserved by Hb

4 has to consist
of either 111 orbits of length 3 plus three fixed vertices, or 112 orbits of length 3.
However, the graph �335 of the 335 orbits of length 3 does not contain any cliques of
size 111. Consequently, C? does not contain any quasi-symmetric design invariant
underHb

4 .
Finally, a subgroup H16 of order 3 from the class 316, fixing 16 of the 64 code

positions, partitions the vertices of � into 368 orbits: 320 orbits of length 3, and
48 fixed vertices. All 320 orbits of length 3 are good. The maximum clique size in
the graph defined on the 320 orbits of length 3 is 100, while the maximum size of
a clique in the subgraph of � on the 48 vertices fixed by H16 is 16. Therefore, C?
does not contain any quasi-symmetric design invariant underH16.

The following statement summarizes our findings concerning automorphisms of
order 3.

Theorem 2 The code C? does not contain any quasi-symmetric 2-.64; 24; 46/
design that admits an automorphism of order 3.

We note that the groupG is transitive on the set of all 1008 codewords of C? of
weight 24, hence the code C? does not contain any quasi-symmetric 2-.64; 24; 46/
design invariant underG. The groupG contains seven conjugacy classes of maximal
subgroups. The orders of these maximal subgroups are: 27 �33 �7, 27 �34 �5 �7, 210 �34,
213 � 33 � 5, 213 � 33 � 5, 213 � 33 � 5 � 7, and 212 � 34 � 5 � 7. Since all these orders are
divisible by 3, we have the following.

Corollary 3 The code C? does not contain any quasi-symmetric 2-.64; 24; 46/
design invariant under a maximal subgroup of G.
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4 Designs with an Automorphism of Order 5

It is clear from (1) that the group G has only one conjugacy class of subgroups
of order 5. A subgroup H5 of order 5 partitions the vertices of � into 204 orbits:
there are 201 orbits of length 5, and 3 fixed vertices. All 201 orbits of length 5 are
good. We define a graph�204 having as vertices the 204 orbits. Any quasi-symmetric
design invariant under H5 corresponds to a 68-clique of �204 (67 orbits of length 5
plus one fixed vertex of � ). Cliquer returns 243 68-cliques in �204, each such clique
yielding a quasi-symmetric 2-.64; 24; 46/ design with an automorphism of order 5.

Using Magma, we computed the normalizer N.H5/ of H5 in G. The order of
N.H5/ is 720 D 24 � 32 � 5. The set of 243 336-cliques is partitioned into 15 orbits
under the action of N.H5/: there are three orbits of length 9, and 12 orbits of length
18. This implies that there are at most 15 nonisomorphic quasi-symmetric designs
with an automorphism of order 5 supported by codewords of weight 24 in C?.

Further computations with Magma show that there are exactly 15 nonisomorphic
classes of designs invariant under an automorphism of order 5. Some data concern-
ing these designs is given in Table 2.

We note that the block graphs of designs no. 5 and 9 are isomorphic, and so are
those of designs 4 and 15 respectively.

The following statement summarizes our findings concerning automorphisms of
order 5.

Theorem 4 The code C? contains exactly fifteen isomorphism classes of quasi-
symmetric 2-.64; 24; 46/ designs admitting an automorphism of order 5. The full
automorphism groups of these designs have orders 20480 (two designs), 1280 (one
design), and 640 (12 designs).

Table 2 Non-isomorphic designs invariant under an automorphism of order 5

Di jAut.Di /j 2-rank .Di / # of cliques of size 5 in the block graph.

1 20480 12 78592

2 20480 13 116480

3 1280 13 97280

4 640 13 91136

5 640 13 92032

6 640 13 90432

7 640 13 83456

8 640 13 86400

9 640 13 92032

10 640 13 76672

11 640 13 89600

12 640 13 98496

13 640 13 84416

14 640 13 93376

15 640 13 91136
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5 Designs with an Automorphism of Order 7

The groupG contains one conjugacy class of subgroups of order 7. A subgroupH7

of order 7 partitions the 1008 vertices of � into 144 orbits of length 7. Cliquer finds
exactly 27 48-cliques in the graph defined on the 144 orbits, each such clique giving
a quasi-symmetric design.

The normalizerN.H7/ ofH7 in G is a group of order 378 D 2 � 33 � 7. It follows
from Theorem 2 that the subgroup of order 27 of N.H7/ is transitive on the set of
27 48-cliques. Consequently, the 27 quasi-symmetric designs corresponding to the
27 cliques are isomorphic, and we have the following result.

Theorem 5 The code C? contains exactly one isomorphism class of quasi-
symmetric 2-.64; 24; 46/ designs admitting an automorphism of order 7. The full
automorphism group of a design from this isomorphism class is of order 896 D 27 �7.

6 Designs Invariant Under 2-Subgroups of G

According to the results of the preceding sections, any quasi-symmetric
2-.64; 24; 46/ design supported by the dual code of AG.3; 22/ which does not
have an automorphism of odd prime order must have a full automorphism group of
order 2m for some m � 13.

A computation with Magma shows that a Sylow 2-subgroup of G (of order
213, cf. (1)) partitions the set of 1008 codewords of weight 24 into six orbits of
lengths 16, 32, 64, 128, 256, and 512 respectively. There is only one union of orbits
containing exactly 336 codewords: 336 D 16 C 64 C 256. A quick computation
shows that this union is indeed the incidence matrix of a quasi-symmetric 2-
.64; 24; 46/ design. Thus we have the following.

Theorem 6 The code C? contains exactly one isomorphism class of quasi-
symmetric 2-.64; 24; 46/ designs admitting a Sylow 2-subgroup of G as its full
automorphism group.

The 2-rank of a design admitting a Sylow 2-subgroup of G as a full automor-
phism group is 12, and the weight distribution of the binary Œ64; 12� codeC 0 spanned
by its blocks is

a0 D 1; a24 D 496; a32 D 3102; a40 D 496; a64 D 1: (2)

The full automorphism group of the code C 0 is of order 213 � 32 � 5.
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Fractional Repetition and Erasure Batch Codes

Natalia Silberstein

Abstract Batch codes are a family of codes that represent a distributed storage
system (DSS) of n nodes so that any batch of t data symbols can be retrieved
by reading at most one symbol from each node. Fractional repetition codes are a
family of codes for DSS that enable efficient uncoded repairs of failed nodes. In this
work these two families of codes are combined to obtain fractional repetition batch
(FRB) codes which provide both uncoded repairs and parallel reads of subsets of
stored symbols. In addition, new batch codes which can tolerate node failures are
considered. This new family of batch codes is called erasure combinatorial batch
codes (ECBCs). Some properties of FRB codes and ECBCs and examples of their
constructions based on transversal designs and affine planes are presented.

Keywords Fractional repetition codes • Batch codes • Transversal designs •
Affine planes

1 Introduction

In distributed storage systems (DSS) information is stored across a network of nodes
in such a way that a user (data collector) can retrieve the stored data even if some
system nodes fail. To provide reliability against node failures, data redundancy
based on different types of erasure codes is introduced in such systems. Moreover,
to provide an efficient repair of a single failed node (the most common case in
DSS), a new family of erasure codes for DSS, called regenerating codes, was
presented in [4]. Two types of regenerating codes, minimum storage regenerating
(MSR) and minimum bandwidth regenerating (MBR) [4] codes, were introduced to
optimize the storage overhead and repair bandwidth, respectively (for constructions
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see [4, 5, 12, 13] and references therein). In particular, a regenerating codeC is used
to store a file on n nodes, where each node stores ˛ symbols from a finite field Fq ,
such that a data collector can recover the stored file from any set of k < n nodes. A
single failed node can be repaired by downloading ˇ � ˛ symbols from any node
in a set of size d , k � d � n � 1, of surviving nodes. Note that any random set of
d nodes can be used to repair a failed node.

Fractional repetition (FR) codes [6] are a family of codes for DSS which allow
for uncoded repairs (no decoding is needed), while relaxing the requirement of
random d -set for repairs by making it table based instead. This relaxation allows for
increasing the amount of data that can be stored by using FR codes when compared
to MBR codes, while having the same repair bandwidth. When an .n; k; ˛; �/ FR
code C is used to store a file f 2 F

M
q of size M , f is first encoded to a codeword cf

of a .�;M/ maximum distance separable (MDS) code [8], with � D n˛=�. Next, �
symbols of the MDS codeword cf are placed on n nodes, each of size ˛, as follows.
Let N1; : : : ; Nn be a collection of subsets of size ˛ of the set Œ�� WD f1; 2; : : : ; �g,
such that every element in Œ�� appears in exactly � subsets. Then node i stores the
symbols of cf indexed by the subset Ni . An FR code should satisfy the requirement
that from any set of k nodes it is possible to reconstruct the stored file, that is,
M D minjI jDk j [i2I Ni j. Note that for FR codes it holds that ˛ D d and ˇ D 1,
since when some node i fails, it can be repaired by using ˛ other nodes which store
common symbols with node i . Constructions of FR codes based on different types
of regular graphs and combinatorial designs can be found in [6, 9, 11, 14].

Batch codes [7] are a family of codes for DSS which store � (encoded) data
symbols on n system nodes in such a way that any batch of t data symbols can be
decoded by reading at most one symbol from each node, while keeping the total
storage over all n nodes equal to N . A �-uniform combinatorial batch code (CBC),
denoted by �� .�;N D ��; t; n/, is a batch code where each node stores a subset of
data symbols, that is decoding is performed only by reading items from the nodes,
and each symbol is stored in exactly � nodes [7, 10]. These codes were studied
in [2, 3, 7, 10, 15].

In this work, we consider two new families of codes for DSS. The first family,
called fractional repetition batch (FRB) codes, is based on the combination of
FR and combinatorial batch codes and hence has the properties of both FR and
batch codes simultaneously: FRB codes allow for uncoded efficient repairs and
load balancing in partial data reconstruction which can be performed by several
users independently and in parallel. The second family of codes, called erasure
combinatorial batch codes (ECBCs), allow for recovery of any batch of t data
symbols even in presence of nodes failures, by reading at most one symbol from the
remaining available nodes. ECBCs generalize the original batch codes [7, 10] which
require all the nodes in a system to be always available for accessing their stored
data. We analyze the properties of incidence matrices of FRB codes and ECBCs and
present the necessary and sufficient conditions on the structure of these codes. We
provide constructions for FRB codes and ECBCs based on transversal designs and
affine planes.
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The rest of this paper is organized as follows. In Sect. 2 we define FRB codes,
consider properties of their incidence matrices and provide some examples of their
constructions. In Sect. 3 we define ECBCs, discuss their properties and describe
codes based on affine planes and transversal designs. Conclusions and problems for
future research are given in Sect. 4.

2 Fractional Repetition Batch Codes

In this section we consider a new family of codes for DSS, called FRB codes, which
combine the properties of both FR and combinatorial batch codes.

Let f 2 F
M
q be a file of size M and let cf 2 F

�
q be a codeword of an .�;M/ MDS

code which encodes the data f. Let fN1; : : : ; Nng be a collection of ˛-subsets of a
set Œ��. A � � .n;M; k; ˛; t/ fractional repetition batch (FRB) code C represents a
system of n nodes with the following properties:

1. Every node i , 1 � i � n, stores ˛ symbols of cf indexed by Ni ;
2. Every symbol of cf is stored on � nodes;
3. From any set of k nodes it is possible to reconstruct the stored file f, in other

words, M D minjI jDk j [i2I Ni j;
4. Any batch of t symbols from cf can be retrieved by downloading at most one

symbol from each node.

Note that the total storage over all n nodes needed to store a file f equals to
n˛ D ��. The general coding scheme for an FRB code is shown in Fig. 1.

, -MDS

file

codeword of 

Node 1

Node 2

Node n

filebatch 
of size 

1
1

1
1

Fig. 1 The coding scheme for an FRB code
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Remark 1 Note that while in a classical batch code any t data symbols can be
retrieved, in a FRB code any batch of t coded symbols can be retrieved. In particular,
when a systematic MDS code is chosen for an FRB code, the data symbols can be
easily retrieved.

Now we consider the matrix representation of FRB codes which follows from the
matrix representation of FR and combinatorial batch codes. The incidence matrix
of a � � .n;M; k; ˛; t/ FRB code C , denoted by I.C /, is a binary n � � matrix
with rows and columns indexed by the nodes and symbols of an MDS codeword,
respectively, such that .I.C //i;j D 1 if and only if node i contains symbol j of cf.
In other words, the i th row of I.C / is the incidence vector of the set Ni . Note that
the number of ones in each row is ˛ and the number of ones in each column is � in
this matrix.

In the following, we obtain the necessary and sufficient conditions on a binary
matrix to be the incidence matrix of an FRB code. Let A be a binary matrix, and
let S and T be some subsets of rows and columns of A, respectively. Let AS;T
be a submatrix of A with rows and columns indexed by S and T . We say that
a set T of columns covers a set S of rows if there is no all-zero row in AS;T .
Similarly, a set S of rows covers a set T of columns if there is no all-zero column
in AS;T .

The next theorem follows from the properties of incidence matrices for combi-
natorial batch and FR codes (see [2, 10, 14] for details).

Theorem 2 An n � � binary matrix A with ˛ ones in each row and � ones in each
column is the incidence matrix of a � � .n;M; k; ˛; t/ FRB code if and only if the
following two conditions hold:

1. Any i columns of A, 1 � i � t , cover at least i rows;
2. Any k rows of A cover at leastM columns.

If we consider the incidence matrix of an FRB code as the biadjacency matrix of a
bipartite graph, where the left vertex set L corresponds to the rows (nodes) and the
right vertex set R corresponds to the columns (codeword symbols) of the matrix,
then the conditions of Theorem 2 can be formulated as follows.

Corollary 3 A biadjacency matrix of a bipartite graph G D .L [R;E/, jLj D n,
jRj D � , with the left degree ˛ and right degree �, is the incidence matrix of a
� � .n;M; k; ˛; t/ FRB code if and only if the following two conditions hold:

1. Any subset T � R of at most t vertices has at least jT j neighbours in L;
2. Any subset S � L of k vertices has at least M neighbours in R.

Remark 4 The construction of batch codes based on unbalanced expander graphs
was proposed in [7]. To construct an FRB code, we need a bipartite expander with
two different expansion factors, 1 and M=k, for two sides R and L of a graph,
respectively.
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2.1 Constructions of FRB Codes

In this subsection, we consider constructions of FRB codes based on optimal FR
codes and optimal uniform CBCs. We say that an FR code is an optimal code if it
can store a file of maximum size, i.e. it maximizes M D M.n; k; ˛; �/ (see [6, 14]
for details). We say that a uniform combinatorial batch code is an optimal code if it
stores the maximum number of symbols, i.e., it maximizes � D �.n; �; t/ (see [2,
10, 15]).

It was proved recently [15] that combinatorial batch codes based on some
transversal designs are (near) optimal CBCs. Moreover, it was shown that FR codes
based on transversal designs are optimal FR codes [14]. Therefore, it is natural to
consider FRB codes based on transversal designs.

A transversal design (TD) of group size h and block size `, denoted by TD.`; h/,
is a triple .P;G ;B/, where

1. P is a set of `h points;
2. G is a partition of P into ` sets (groups), each one of size h;
3. B is a collection of `-subsets of P (blocks);
4. Each block meets each group in exactly one point;
5. Any pair of points from different groups is contained in exactly one block.

It follows from the definition of TD that the number of blocks in TD.`; h/ is h2 and
the number of blocks that contain a given point is h [1]. The incidence matrix ITD
of TD.`; h/ is the `h � h2 binary matrix where columns are incidence vectors of
the blocks. A TD.`; h/ is called resolvable if the set B can be partitioned into sets
B1; : : : ;Bh, each one contains h blocks, such that each element of P is contained
in exactly one block of each Bi . Resolvable TD.`; h/ is known to exist for any
` � h and prime power h [1].

Next we consider an FRB codeCTD such that its incidence matrix is the incidence
matrix of TD. Based on the properties of uniform CBCs and FR codes constructed
from different TDs [14, 15], we obtain the following result.

Theorem 5 1. Let TD.2; ˛/ be a TD with ˛ > 2. Then CTD is a 2�.2˛;M; k; ˛; 5/
FRB code with M D k˛ �

j
k2

4

k
.

2. Let TD.˛ � 1; ˛/ be a resolvable TD, for a prime power ˛. Then CTD is a
.˛ � 1/� .˛2 � ˛;M; k; ˛; ˛2 � ˛ � 1/ FRB code with M � k˛ � 
k

2

�C .˛ �
1/


x
2

� C xy, where x; y � 0 are integers which satisfy k D x.˛ � 1/ C y,
y � ˛ � 2.

Example 6 We consider the FRB code based on TD.3; 4/. By Theorem 5, for k D 4
we have a 3 � .12; 11; 4; 4; 11/ FRB code, which stores a file of size 11 and which
allows for parallel reads of any (coded) 11 symbols.

In general, when a given FR code is considered as a batch code, determining its
parameter t (the number of symbols that can be read in parallel) is a nontrivial task.
Similarly, for a given batch code it is difficult to find the parameterM (the file size)
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for any k. In the following, we consider an FRB code based on TD.3; ˛/, where
every symbol is replicated 3 times. For this code, the parameterM is given in [14].
We obtain the upper and lower bounds on t in the following theorem.

Theorem 7 The FRB code based on TD.3; ˛/ is a 3� .3˛;M; k; ˛; t/ code, where
6 � t � 2˛ C 1 for ˛ � 7 and t D 12 for ˛ D 5. The file size is given by
M D k˛ � 
k

2

�C 3
x
2

�C xy, for x; y � 0 such that k D 3x C y and y � 2.

Proof The parameters n; � and M follow from the properties of TD.3; ˛/ and FR
codes based on TDs [14]. The lower bound on t follows from Theorem 5.1. To prove
the upper bound on t one can consider a specific structure of an incidence matrix
for TD and show that there are 2˛C 2 columns that cover only 2˛C 1 rows. ut

In the rest of this section we consider FRB codes obtained from affine planes.
The optimality of uniform combinatorial batch codes based on affine planes was
proved in [15].

An affine plane of order s, denoted by A.s/, is a set system .X;B/, where X
is a set of jX j D s2 points, B is a collection of s-subsets (blocks) of X of size
jBj D s.s C 1/, such that each pair of points in X occur together in exactly one
block of B. An affine plane is called resolvable, if the set B can be partitioned into
sC1 sets of size s, called parallel classes, such that every element ofX is contained
in exactly one block of each class. It is well known [1] that if q is a prime power,
then there exists a resolvable affine plane A.q/.

Theorem 8 Let A.q/ be an affine plane and let I.A/ be its q2 � .q2C q/ incidence
matrix. Then the FRB code CA with the incidence matrix equal to I.A/ is a q �
.q2; k.q C 1/� 
k

2

�
; k; q C 1; q2/ FRB code.

Proof The parameters �; n; ˛ and t follow from the properties of the batch code
based on A.q/ [15]. Since any two points of A.q/ belong to exactly one block and
hence any two rows of I.A/ intersect, it follows that the file size is k.q C 1/� 
k

2

�
.
ut

3 Erasure Combinatorial Batch Codes

In this section we consider uniform combinatorial batch codes which can tolerate
node failures (erasures). We call such batch codes erasure batch codes. Specifically,
we define a � � .�;N D ��; t; n;�/ uniform erasure combinatorial batch code
(ECBC) to be a code which stores � data symbols on n nodes, such that each symbol
is stored on � nodes and for any given set of� failed nodes, any batch of t symbols
can be retrieved by reading at most one symbol from each one of n � � available
nodes, while keeping the total storage equal to N . Note that it should hold that
� � � � 1.
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Remark 9 Note that if any set of� nodes contains at most t different symbols, then
it is possible to correct any � erasures, i.e., to repair � failed nodes by reading at
most one symbol from every available node.

Similarly to Theorem 2, we provide the necessary and sufficient conditions on a
binary matrix to be the incidence matrix of a uniform ECBC.

Theorem 10 An n�� binary matrix A with � ones in each column is the incidence
matrix of a � � .�;N; t; n;�/ uniform ECBC if and only if any i columns of A,
1 � i � t , cover at least i C� rows.

Based on Theorem 10 and resolvability of A.q/ [1] we have the following result.

Theorem 11 LetA.q/ be an affine plane and let I.A/ be its q2�.q2Cq/ incidence
matrix. Then the code CE

A with the incidence matrix equal to I.A/ is a q � .q2 C
q; q3 C q2; t; q2; q � 1/ uniform ECBC, where q2�qC2

2
� t � q2 � q.

Proof The parameters �; �;N; n follow from the properties of A.q/, and � is the
largest possible. To prove the upper bound on t we consider a set of erased nodes
which correspond to q�1 points of a block b of A.q/. Let p 2 b be the point which
was not erased. If we take one block in the parallel class which contains b and q� 1
blocks which do not contain p in each one of q other parallel classes, then the corre-
sponding q2�qC1 columns of I.A/ cover at most q2�1 rows, thus by Theorem 10,
t � q2�q. To prove the lower bound on t we note that any q columns of I.A/ cover
at least q2 � 
q

2

�
rows (since there are q blocks of A.q/ which pairwise intersect).

Then since q2�qC2
2
� q for q � 2, any i columns, where q � i � q2�qC2

2
, cover at

least q2�
q
2

� D q2�qC2
2
C .q�1/ � iC .q�1/ rows. For i � q�1 it holds that any

i columns cover at least iq�
i
2

� � iC.q�1/ rows, which completes the proof. ut
Now we consider a uniform ECBC CE

TD based on a transversal design, i.e., the
code with the incidence matrix equal to the incidence matrix of TD. Similarly to
Theorems 5 and 7 one can prove the following result.

Theorem 12

• Let TD.2; ˛/ be a TD with ˛ > 2. Then the code CE
TD is a 2 � .˛2; 2˛2; 3; 2˛; 1/

uniform ECBC.
• Let TD.3; ˛/ be a TD with ˛ > 3. Then the code CE

TD is a 3 � .˛2; 3˛2; t; 3˛; 2/
uniform ECBC, where 4 � t � 2˛ � 2 for ˛ � 6, t D 9 for ˛ D 5, and t D 8

for ˛ D 4.

4 Conclusion and Future Work

This paper introduces two new families of erasure codes for distributed storage
systems, namely fractional repetition batch codes and uniform erasure combinatorial
batch codes. FRB codes have the properties of both FR and batch codes allowing
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for uncoded repairs of failed system nodes and parallel reads of subsets of data
symbols. Uniform ECBCs have the properties of combinatorial batch codes even in
presence of system nodes failures. We provide the matrix description of these codes
and present constructions based on transversal designs and affine planes.

We conclude with a list of open problems for future research.

1. Find an upper bound on t and M given other parameters fn; �; ˛; kg for an FRB
code;

2. Given the set of parameters fn; �; ˛; kg, construct a �� .n;M; k; ˛; t/ FRB code
with the maximumM and t ;

3. Find the exact values of t for FRB codes and ECBCs based on transversal designs
and affine planes.
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Idempotents Generators for Minimal Cyclic
Codes of Length pnq

Gustavo Terra Bastos and Marinês Guerreiro

Abstract Let p and q be distinct positive prime numbers and ` a positive integer
such that gcd.`; pq/ D 1. For a natural number n � 1, let Cpnq be a cyclic group of
orderpnq and F` a finite field with ` elements. In this paper we explicitly present the
primitive idempotents of the group algebra F`Cpnq under some further restrictions
on `; p and q. These idempotents generate the minimal ideals of F`Cpnq , hence
the minimal cyclic codes of length pnq. Our computation is based on techniques
developed by Bakshi and Raka (Finite Fields Appl 9(4):432–448, 2003) and Ferraz
and Polcino Milies (Finite Fields Appl 13:382–393, 2007). A particular example for
codes of length 245 is computed and we believe that this points out some mistakes
in current literature on this subject.

Keywords Minimal cyclic codes • Primitive idempotents

1 Introduction

Cyclic codes are usually characterized as ideals in quotient rings of polynomials
which are easily proved to be isomorphic to ideals in group algebras of cyclic
groups. There are advantages in both approaches but the last one has been quite
useful lately, mainly on the problem of explicitly (and correctly) compute the
primitive idempotents that generate minimal codes (see [2] and [4]).
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For a natural number n � 1, p and q distinct positive prime numbers and ` a
positive integer such that gcd.`; pq/ D 1, let Cpnq be a cyclic group of order pnq
and F` a finite field with ` elements. In this paper we use a mix of both polynomial
and group algebra techniques to compute a complete set of primitive idempotents
of the group algebra F`Cpnq , under some further restrictions which are stated below
in (1).

In Sect. 2 we summarize an argument for the number of simple components of
a semisimple abelian group algebra and apply it to our study case. In Sect. 3, we
present a method to construct the primitive idempotents of the group algebra F`Cpn ,
for Cpn a cyclic group of order pn such that gcd.`; p/ D 1. This is the main tool
which is used in Sect. 4 to finally compute the primitive idempotents that generate
the minimal codes of F`Cpnq .

2 The Number of Simple Components of F`Cpnq

Let F` be a finite field with ` elements and G a finite abelian group such that
gcd .`; jGj/ D 1. In [3] Ferraz established the conditions under which the number
of simple components of F`G is equal to the number of cyclic subgroups of G and
presented a method to compute the number of simple components of a semisimple
group algebra. Here we summarize the important results from [3] and [4] that we
apply in the case of our interest.

Definition 1 Let G be a finite abelian group and g 2 G. The `-cyclotomic class

of g in G is the set Cg D
n
g`

j

=0 � j � tg � 1
o
, where tg is the smallest positive

integer number such that `tg 
 1.mod o.g// and o.g/ denotes the order of g in G,
that is, the least positive integer t such that gt D 1.

Theorem 2 ([4], Theorem 2.1) If gcd .`; jGj/ D 1, then the number of simple
components of F`G is equal to the number of `-cyclotomic classes of G.

Given positive integers r e m, denote by r 2 Zm the image of r in Zm, the
ring of integers modulo m and U .Zm/ the group of the units of Zm. Then Gg D˚
gr jr 2 U 
Zo.g/

�

:

Theorem 3 Let F` be a finite field with ` elements and G a finite abelian group
with exponent e such that gcd .`; jGj/ D 1. Then Cg D Gg , for all g 2 G, if only if
U.Ze/ is a cyclic group generated by ` 2 Ze .

The following theorem gives us the conditions on the exponent e of the groupG
and the size ` of the finite field that satisfies the necessary part of Theorem 3.

Corollary 4 ([6], Teorema 7.10) Let F` be a finite field with ` elements and G a
finite abelian group with exponent e such that gcd .`; jGj/ D 1. Then Cg D Gg,
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for all g 2 G, if only if one of following conditions holds, where � denotes Euler’s
totient function:

(a) e D 2 and ` is odd;
(b) e D 4 and ` 
 3.mod 4/;
(c) e D pn and o.`/ D �.pn/ in U



Zpn

�
;

(d) e D 2pn and o.`/ D �.pn/ in U


Z2pn

�
.

Theorem 5 Let n � 1 be a natural number, p and q distinct positive prime
numbers, ` a positive integer such that gcd.`; pq/ D 1 and

gcd.p � 1; q � 1/ D 2
` generates both unit groups U.Zpn/ and U.Zq/ (1)

gcd.p � 1; q/ D gcd.p; q � 1/ D 1:

Let Cpnq be a cyclic group of order pnq and F` a finite field with ` elements. Then
the number of the simple components of F`Cpnq is 3n C 2 and the `-cyclotomic
classes of Cpnq are:

C1; Cgpn ; Cgpt ; Cgpt q ; and Cgdpt ; (2)

where 0 � t � n � 1 and d is a fixed integer satisfying gcd.d; pq`/ D 1, 1 < d <
pq, d 6
 `k.modpq/ for any k; 0 � k � �.pq/

2
� 1.

Proof It follows from combinatorial and counting arguments. A more general proof
for finite cyclic groups can be read in [5]. ut

3 Primitive Idempotents in F`Cpn

In this section, we present a method to construct the primitive idempotents of the
group algebra F`G, for G a cyclic group of order pn. The main references for this
section are [4] and [8].

Let H be a finite subgroup of G. If gcd .`; jH j/ D 1, define OH D 1

jH j
X

g2H
g.

The element OH is an idempotent in F`G, according to [7, Lemma 3.6.6]. For H D
hhi (the cyclic subgroup generated by h), sometimes we shall use Oh to denote OH . In
particular, OG is called principal idempotent of F`G.

Theorem 6 ([4], Lemma 3) Let G D hgi be a cyclic group with order pn and F`

a finite field with ` elements such that ` generates U


Zpn

�
. Consider

G D G0 � G1 � : : : � Gn D f1g
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a descending chain on all subgroups of G. Then a complete set of primitive
idempotents in F`G is:

e0 D 1

pn

X

g2G
g and ei DcGi � bGi�1; for 1 � i � n:

A direct computation shows us that the expressions for the primitive idempotents
of F`G given in Theorem 6 are the same as the ones given polinomially by Arora
and Pruthi in [8].

4 Primitive Idempotents in F`Cpnq

In this section we combine two different techniques to compute all primitive
idempotents of the group algebra F`Cpnq , under the restrictions stated in (1).
Considering the isomorphism of group algebras F`Cpnq Š F`.Cpn � Cq/ Š
F`Cpn˝F`Cq , the main idea is to compute the products of all primitive idempotents
in F`Cpn with all primitive idempotents in F`Cq , using the expressions obtained in
Sect. 3.

We shall prove that a product of a primitive idempotent in F`Cpn with the
principal idempotent in F`Cq (and vice-versa) gives us a primitive idempotent in
F`Cpnq: If the idempotents e 2 F`Cpn and f 2 F`Cq that we multiply are both no
principal, then their product in F`Cpnq is not a primitive idempotent and we use the
expressions obtained by Bakshi and Raka in [1], with our notation of group algebra,
to write this product as a sum of two primitive idempotents in F`Cpnq . Here is where
the condition gcd.p � 1; q � 1/ D 2 of (1) comes into play. If we did not suppose
this, the product of these two no principal idempotents could split into a sum of
more than two primitive idempotents in F`Cpnq , which is much harder to compute.

For an element x in a finite abelian group G, denote by Sx D
X

h2Cx
h the sum of

all elements belonging to the `-cyclotomic class of x in G. We need the following
technical results.

Lemma 7 Let G D hgi be a finite cyclic group of order pnq. Then

(a)
pjC1�1X

iD1

�
gqp

n�j�1
�i D

pj�1X

iD1

�
gqp

n�j
�i CS

gqp
n�j�1 .

(b)
pj�1X

iD1

�
gqp

n�j
�i D

n�1X

iDn�j
S
gp

i q .

(c)
q�1X

kD1

�
gp

n
�k p

j�1X

iD1

�
gqp

n�j
�i D

n�1X

iDn�j
S
gp

i C
n�1X

iDn�j
S
gdp

i ;

where d is like in Theorem 5.
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Proof We omit the proofs of (a) and (b). For (c), is easy to prove that
q�1X

kD1

�
gp

n
�k D Sgp

n . Thus, by (ii), we have

q�1X

kD1

�
gp

n
�k p

j�1X

iD1

�
gqp

n�j
�i D Sgp

n

n�1X

iDn�j
S
gp

i q : (3)

For an arbitrary element S
gp

n�.j�w/ , for 0 � w � j � 1, we prove

Sgp
nS

gqp
n�.j�w/ D S

gp
n�.j�w/ CS

gdp
n�.j�w/ ; (4)

Indeed, the product

�
gp

n C glpn C : : :C g`�.q/�1pn
� �
gp

n�.j�w/q C glpn�.j�w/q C : : :

Cg`�.p
j�w/�1

pn�.j�w/q

�
(5)

may be rewritten as

gp
n�.j�w/.pj�wCq/C gpn�.j�w/.pj�wClq/ C : : :C gp

n�.j�w/

�
`�.q/�1pj�wC`�.pj�w/�1

q

�

;

(6)

where we are summing exactly � .q/ �


pj�w

� D �


qpj�w

�
distinct elements and

this is the same number of distinct elements that appear in the sum S
gp

n�.j�w/ C
S
gdp

n�.j�w/ . The remaining of the proof is given by an exclusion argument.
We recall from the proof of Theorem 5 that the cyclic group Cpnq can be

partitioned in the following `-cyclotomic classes: C1; Cgpn ; Cgpt ; Cgpt q ; and Cgdpt ;
where 0 � t � n � 1.

We first note that no element in (6) is equal to g, hence no element of the
`-cyclotomic class C1 appears in (6). Now we claim that no element in (6) belongs
to the following `-cyclotomic classes: Cgpn , Cgpt q , Cgpt and Cgdpt , with t ¤ j � w.

Indeed, otherwise, the numbers written as


`rpj�w C `sq�, for 0 � r � �.q/ � 1

and 0 � s � � 
pj�w
� � 1, appearing as powers in (6), would have to be multiples

of p or q. This would contradict the hypothesis gcd.`; pq/ D 1. Therefore, all
elements appearing in (6) must belong exactly to the `-cyclotomic classesC

gp
n�.j�w/

and C
gdp

n�.j�w/ . This proves (4). ut
Now we are ready to prove the main result. The proof given here is an adaptation

of the proof of [2, Theorem III.1] (` ¤ 2), jointly with [1, Theorem 3].
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Theorem 8 Under the same hypothesis of Theorem 5, let Cpnq D hgi be a cyclic
group of order pnq, Cpn D hai D hgqi and Cq D hbi D

˝
gp

n ˛
. Then

�
Oa � Ob; Oa � .1 � Ob/;

�
1

ap
n�j �3apn�.jC1/

�
� Ob; en�j� ; e

n�j�� ; for 0 � j � n � 1
	

(7)

is a complete set of primitive orthogonal idempotents of F`Cpnq Š F`



Cpn � Cq

�
,

with

en�j D
�
1

ap
n�j �3apn�.jC1/

��
1 � Ob

�
D en�j� C en�j�� ; for all 0 � j � n � 1;

where

e
n�j
� D .p � 1/.q � 1/

2pjC1q

2

41C
n�1X

iDn�j
S
gp

i q

3

5C An�1
pnCj q

S
gp

n�j�1C Bn�1
pnCj q

S
gdp

n�j�1

� .p � 1/
2pjC1q

2

4
nX

iDn�j
S
gp

i C
n�1X

iDn�j
S
gdp

i

3

5 � .q � 1/
2pjC1q

S
gp

n�j�1q (8)

e
n�j�� D .p � 1/.q � 1/

2pjC1q

2

41C
n�1X

iDn�j
S
gp

i q

3

5C Bn�1
pnCj q

S
gp

n�j�1C An�1
pnCj q

S
gdp

n�j�1

� .p � 1/
2pjC1q

2

4
nX

iDn�j
S
gp

i C
n�1X

iDn�j
S
gdp

i

3

5 � .q � 1/
2pjC1q

S
gp

n�j�1q ; (9)

and the constants An�1 e Bn�1 are given as in [1, Theorem 3]:

Proof Let G D Cpnq . Consider the following decomposition

F`G Š F`Cpn ˝ F`Cq

Š
�
F`Cpn Oa˚ : : :˚ F`Cpn

�
1 �1apn�1

��
˝
h
F`Cq Ob ˚ F`Cq

�
1 � Ob

�i

Š F`G Oa Ob ˚ : : :˚ F`G

�
1

ap
n�j �3apn�.jC1/

�
.1 � Ob/˚ : : :˚ F`G

�
1 �1apn�1

�
.1 � Ob/

The principal idempotent Og D Oa Ob is always primitive.
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Moreover,

�
1

ap
n�j �3apn�.jC1/

�
Ob and Oa

�
1 � Ob

�
are also primitive idempotents.

Indeed,

��
1

ap
n�j �3apn�.jC1/

�
Ob
�2
D
�
1

ap
n�j�3apn�.jC1/

�2 � Ob
�2D

�
1

ap
n�j�3apn�.jC1/

�
Ob:

(10)

Furthermore, F`G Ob
�
1

ap
n�j �3apn�.jC1/

�
Š 


F`Cpn
� �
1

ap
n�j �3apn�.jC1/

�
is a

simple ideal, according to Theorem 6. Hence

�
1

ap
n�j �3apn�.jC1/

�
Ob is a primitive

idempotent of F`G. Using a similar argument, we verify that Oa
�
1 � Ob

�
is also a

primitive idempotent of F`G.

Finally, we shall prove that en�j D
�
1

ap
n�j �3apn�.jC1/

��
1 � Ob

�
decomposes

as a sum of two primitive idempotents in F`G. We use [1] to present two primitive
idempotents en�j� and en�j�� such that en�j� C en�j�� D en�j . Indeed,

en�j D bapn�j � bapn�j Ob �2apn�.jC1/ C2apn�.jC1/ Ob

D 1

pj

pj�1X

iD0

�
gqp

n�j
�i � 1

pj q

pj�1X

iD0

�
gqp

n�j
�i q�1X

kD0



gp

n�k � 1

pjC1

pjC1
�1X

tD0

�
gqp

n�j�1
�t

C 1

pjC1q

pjC1
�1X

tD0

�
gqp

n�j�1
�t q�1X

kD0



gp

n �k

D 1

pjC1q

8
<

:
.p � 1/.q � 1/

2

41C
nX

iDn�j

S
gp

i q

3

5� .q � 1/S
gqp

n�j�1

C
q�1X

kD1



gp

n �k
2

4�.p � 1/C
pjC1

�1X

tD1

�
gqp

n�j�1
�t � p

pj�1X

iD1

�
gqp

n�j
�i
3

5

9
=

;

D 1

pjC1q

8
<

:
.p � 1/.q � 1/

2

41C
nX

iDn�j

S
gp

i q

3

5� .q � 1/S
gqp

n�j�1

� .p � 1/
2

4
nX

iDn�j

S
gp

i C
n�1X

iDn�j

S
gdp

i

3

5C
nX

iDn�j

S
gp

n�j�1 C
nX

iDn�j

S
gdp

n�j�1

9
=

;
:

Now, with an easy computation, we verify the equality en�j� C en�j�� D en�j .
Therefore, we explicitly presented all primitive idempotents of the group algebra
F`G. ut
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As an example, we explicitly compute all primitive idempotents of
F3 .C49 � C5/. This particular example allowed us to identify some possible errors
that appeared in the computation of idempotents in [5] and made us to develop the
general setting of the previous section.

For p D 7, q D 5 and ` D 3, we have h3i D U .Z49/ and h3i D U .Z5/.
Moreover, the other hypothesis of (1) are also satisfied. Hence, by Theorem 8, the
primitive idempotents of F3 .C49 � C5/ are

e0 D 2SC1 C 2SCg C 2SCg2 C 2SCg7 C 2SCg14 C 2SCg49 C 2SCg5 C 2SCg35
e1 D 2SC1 C SCg C SCg2 C SCg7 C SCg14 C SCg49 C 2SCg5 C 2SCg35

e2 D SCg C SCg2 C SCg5 e3 D SCg7 C SCg14 C SCg35
e�4 D 2SCg C 2SCg5 e��4 D 2SCg2 C 2SCg5
e�5 D 2SCg7 C 2SCg35 e��5 D 2SCg14 C 2SCg35 :
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Reconstruction of Eigenfunctions of q-ary
n-Dimensional Hypercube

Anastasia Vasil’eva

Abstract We investigate eigenfunctions on the graph of n-dimensional q-ary
Hamming space. First, we mention the formula of the interdependence for local
weight enumerators of an eigenfunction in two orthogonal faces. Then we develop
methods to reconstruct an eigenfunction in a ball by its values in the corresponding
sphere. We use as an example the simplest case and obtain numerical conditions for
reconstructing in this case.

Keywords q-ary Hamming scheme • Eigenfunctions • Reconstruction •
Krawtchouk polynomials

1 Introduction

We study eigenfunctions of n-dimensional q-ary hypercube. We apply an explicit
formula for local distributions in two orthogonal faces [10]. The local distributions
were considered in [5, 7–9] for 1-error correcting perfect codes, perfect colorings
and eigenfunctions of the hypercube in binary case (q D 2). In case q > 2 they are
investigated in [2] for 1-error-correcting codes. In [6] more general case of direct
product of graphs is studied; however, the formula is not extended for classes of
graphs. The reconstruction problems in binary case were studied, for example, in
[4, 9]. Earlier it was obtained in [1] that any perfect code of length n is uniquely
determined by its codewords of weight .n � 1/=2.

The paper is organized as follows: in Sect. 2 we give some necessary notations
and facts; in Sect. 3 we mention the formula for local weight enumerators of
eigenfunctions in a pair of orthogonal faces and prove some necessary lemmas;
using results of Sect. 3 we obtain in Sect. 4 the main Theorem 5 on reconstruction of
eigenfunctions and compare it (Theorem 7) with the previously obtained Theorem 6
for binary case.
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2 Preliminaries

Let q > 2 be a positive integer, not necessary prime power.
Consider the set Fq D f0; 1; : : : ; q � 1g as the group by modulo q and the

hypercube Fnq as the abelian group Fq�: : :�Fq . We investigate functions on vertices
of the graph Fnq of n-dimensional q-ary hypercube, in this graph two vertices are
adjacent if the Hamming distance between them equals 1.

Here and elsewhere I denotes a subset of f1; : : : ; ng and I D f1; : : : ; ngnI . Take
a vertex ˛ 2 Fnq . Denote by s.˛/ the support of a vertex ˛, i.e. the set of nonzero
positions of ˛; the cardinality of the support is equal to the Hamming weight of ˛.
Write Wi.˛/ for the set of all vertices ˇ that differ from ˛ in i positions; i.e., the
Hamming distance �.˛; ˇ/ between vertices ˛ and ˇ is equal to i . By definition, put

�I .˛/ D fˇ 2 Fnq W ˇi D ˛i 8 i … I g;

then �I .˛/ is said to be a jI j-dimensional face, it has a structure of FjI jq . Write
simply Wi and �I instead of Wi.˛/ and �I .˛/ in case ˛ is all-zero vertex. We say
that two faces �I .˛/ and �J .ˇ/ are orthogonal if J D I . It is easy to see that
orthogonal faces have exactly one common vertex.

The Hamming association scheme (the introduction can be find in [3]) consists
of the set Fnq with n C 1 associations R0; : : : ; Rn and for any ˛; ˇ 2 Fnq .˛; ˇ/ 2
Ri ; i D 0; : : : ; n; iff the Hamming distance �.˛; ˇ/ between ˛ and ˇ equals i .

Let Di D D
q;n
i be the matrix of i -th association Ri , i.e. .qn � qn/-matrix with

the entries

.D
q;n
i /˛;ˇ D

�
1; �.˛; ˇ/ D i
0; �.˛; ˇ/ ¤ i

Obviously, D D D
q;n
1 is the adjacency matrix of the hypercube Fnq . We will say

that � is an eigenvalue of the graph if it is an eigenvalue of its adjacency matrix.
In particular, � is called an eigenvalue of the hypercube Fnq if it is an eigenvalue of
Dq;n. It is known [3] that the eigenvalues of Dq;n are equal to .q � 1/n � qi; i D
0; 1; : : : ; n. The corresponding eigenfunctions (we call them �-functions) satisfy an
equation

X

ˇ2W1.˛/
f .ˇ/ D ..q � 1/n � qi/f .˛/; ˛ 2 Fnq: (1)

Rewrite this equations in a matrix form:

Df D �f;

here f is a vector of values of the function. Furthermore, all matrices Dq;n
i ; i D

0; : : : ; n; have the same eigensubspaces Vh; h D 0; : : : ; n; and the eigenvalues of
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D
q;n
i on Vh is equal to P .q/

i .hIn/, where

P .q/
m .t IN/ D

mX

jD0
.�1/j .q � 1/m�j

�
t

j

��
N � t
m � j

�

is the Krawtchouk polynomial in t . The values of Krawtchouk polynomials can be
described as coefficients of a polynomial in x and y:

.x � y/t .x C .q � 1/y/N�t D
NX

mD0
P .q/
m .t IN/ymxN�m:

3 Local Distributions

Consider the space of all complex functions on the q-ary n-dimensional hypercube:

V D
n
f W Fnq �! C

o
:

The functions can be considered as qn-dimensional vectors:

f $ .f .0; : : : ; 0/; f .0; : : : ; 0; 1/; : : : ; f .q � 1; : : : ; q � 1//T

Introduce the concept of a local distribution. By definition, put

vI;fj .˛/ D
X

ˇ2�I .˛/TWj .˛/

f .ˇ/;

the vector vI;f .˛/ D .vI;f0 .˛/; : : : ; vI;fjI j .˛// is called the local distribution of the
function f in the face �I .˛/ with respect to the vertex ˛, or shortly .I; ˛/-local
distribution of f . We say that the polynomial gI;˛f in variables x; y is a .I; ˛/-local
weight enumerator of the function f if

g
I;˛
f .x; y/ D

jI jX

jD0
vI;fj .˛/yj xjI j�j D

X

ˇ2�I .˛/
f .ˇ/yjs.ˇ�˛/jxjI j�js.ˇ�˛/j:

To simplify notations we omit ˛ if it is the all-zero vertex and f if obvious.
We describe the interdependence between the local weight enumerators of an
eigenfunction of the hypercube in two orthogonal faces.
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Theorem 1 ([10]) Let � be an eigenvalue of Fnq , f be a �-function, h D .q�1/n��
q

and ˛ 2 Fnq . Then

.x C .q � 1/y/h�jI jgI ;˛f .x; y/ D .x0 C .q � 1/y0/h�jI jgI;˛f .x0; y0/;

where x0 D x C .q � 2/y; y0 D �y.

Present .I ; ˛/-local weight enumerator in terms of .I; ˛/-local weight
enumerator:

gI ;˛.x; y/ D .x � y/h�jI j.x C .q � 1/y/jI j�hgI;˛.x C .q � 2/y;�y/ (2)

If the set I is not “too large” then it is possible to represent the components of
.I ; ˛/-local distribution of f in terms of the components of .I; ˛/-local distribution
of f . Specify the size of the set I that is not “too large”: the right hand side
expression of (2) should be a polynomial. In this case the components of the
.I ; ˛/-local distribution can be represented in terms of components of .I; ˛/-local
distribution. More precisely, let

h D h.�/ D .q � 1/n � �
q

; l.�/ D minfh; n� hg:

We get the following lemma from the formula (2).

Lemma 2 If jI j D k � l.�/ then for any �-function f

vIj .˛/ D
jX

iD0
rij vIi .˛/; (3)

where

rij D .�1/i
j�iX

lD0
P
.q/

j�i�l .h� kIn � 2k/.q � 2/l
�
k � i
l

�
(4)

Proof The formula is obtained from (2) by direct calculations. ut
In conclusion of this section we give a simple technical lemma. Let ˛ 2 F n

q be
a vertex of weight k. Put I D s.˛/ and consider the face �I .˛/. This face has the
dimension k and contains the all-zero vertex. The following lemma says that any
component vIi .˛/ can be decomposed into the sum 	C over vertices of weight k
and the sum 	� over vertices of weight less than k:

Lemma 3 For any i � k

vIi .˛/ D 	�i .˛/C 	Ci .˛/;
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where

	Ci .˛/ D
X

ˇ2Wk T�I .˛/
T
Wi .˛/

f .ˇ/

and the value of 	�i .˛/ does not depend on the values f .ˇ/; ˇ 2 Wk , and depends
only on values f .ˇ/; ˇ 2 W0

S
: : :
S
Wk�1.

Proof By definition,

vIi .˛/ D
X

ˇ2�I .˛/TWi .˛/

f .ˇ/ D

D
k�1X

sDk�i

X

ˇ2Ws T�I .˛/
T
Wi .˛/

f .ˇ/C
X

ˇ2Wk T�I .˛/
T
Wi .˛/

f .ˇ/ D 	�i .˛/C 	Ci .˛/:

ut

4 Reconstruction

Let � be an eigenvalue of the hypercube Fnq and d � l.�/ and f be a �-function.
We deal with the following question: we know the values f .˛/ for all ˛ with

Hamming weight d , whether it is possible to determine uniquely the values f .˛/
for all ˛ with Hamming weight less than d or not. We consider the first case, where
d � l.�/. In cases l.�/ � d � n � l.�/ and d � n � l.�/ the formulae and the
evaluations are more sophisticated.

At first, we note that

X

˛2Wd
f .˛/ D P .q/

d .hIn/f .0/;

this formula follows from one of the basic properties of Hamming association
scheme (see, for example, [3]):

D
q;n

d f D P .q/

d .hIn/f:

It means that we know the value at the vertex of weight 0:

f .0/ D
P

˛2Wd f .˛/
P
.q/

d .hIn/
(5)
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if it holds

P
.q/

d .hIn/ ¤ 0: (6)

Then, try to reconstruct the values of our function at the vertices with weight
1, 2, 3 etc. Use induction upon the weight of the vertices. We already have the
base of induction. Then suppose that for an arbitrary k < d the values f .˛/; ˛ 2
W0

S
: : :
S
Wk�1 are uniquely determined under some conditions. Define all values

f .˛/; ˛ 2 Wk and some additional condition for determining these values.

Lemma 4 Let I � f1; : : : ; ng; jI j D k; U I be the set of all vertices with the
support I and ˚I be the vector of all f .˛/; ˛ 2 U I . Then

kX

iD0
ri;d�kDq�1;k

i ˚I D &I ; (7)

where Dq�1;k
i are incidence matrices of .q � 1/-ary k-dimensional Hamming

scheme, and the vector &I does not depend on ˚I .

Proof Take an arbitrary vertex ˛ 2 U I . Using Lemmas 2 and 3 get:

vId�k.˛/ D
d�kX

iD0
ri;d�k



	�i .˛/C 	Ci .˛/

�
:

It means that

 .˛/ D
d�kX

iD0
ri;d�k

X

ˇ2WkT�I .˛/
T
Wi .˛/

f .ˇ/;

where

 .˛/ D vId�k.˛/ �
d�kX

iD0
ri;d�k	�i .˛/:

The set U I with distance associations has the structure of the .q � 1/-ary
k-dimensional Hamming scheme. So in vector form we obtain (7). ut

We are ready to state the main theorem and give a sketch of proof. This
theorem allows us reconstructing a �-function into the ball by its values into the
corresponding sphere under some conditions.
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Theorem 5 Let � be an eigenvalue of Fnq , d � l.�/ and ' W Wd �! C be a
function. Suppose that f is a �-function such that for any ˛ 2 Wd

f .˛/ D '.˛/:

Then for any ˛ with Hamming weight less than d the value f .˛/ is uniquely
determined if for all k D 0; : : : ; d and l D 0; : : : ; k

kX

iD0
ri;d�kP .q�1/

i .l I k/ ¤ 0; (8)

where rij are defined as in (4).

Proof The proof is done by induction upon Hamming weight of vertices. The base
of induction is given by (5) and (6).

Suppose that (8) holds and the values of f at all vertices of weight no more than
k�1 are uniquely determined. For any k-subset I of f1; : : : ; ng write the system (7)
of equations. We are interested in ˚I and the vector &I depends only on values of
f at the vertices of weight no more than k�1 and values of function '. The system
has the unique solution iff its matrix

kX

iD0
ri;d�kDq�1;k

i (9)

has full rank. (Note that a solution exists by virtue of the hypothesis of the Theorem.)
Represent incidence matrices in terms of primitive idempotents J q�1;kl of Hamming
association scheme:

D
q�1;k
i D

kX

lD0
P
.q�1/
i .l I k/J q�1;kl

and substitute in (7).
The matrix (9) has full rank iff all coefficients at primitive idempotents are

nonzero. These coefficients are presented in (8). ut
The approach of the proof allows us representing the main Theorem by analogy

with the binary case [9]. In the binary case put

md.�/ D �1Cmin

�
k � l.�/ W P .2/

d�k
�
n � �
2
� kIn � 2k

�
D 0

	
:



360 A. Vasil’eva

Theorem 6 ([9]) Let � be an eigenvalue of Fn2 , d � l.�/ and ' W Wd �! C be an
arbitrary function. Suppose that f is a �-function such that for any ˛ 2 Wd

f .˛/ D '.˛/:

Then for any ˛ with Hamming weight less than md.�/ (and more than n �md.�/)
the value f .˛/ is uniquely determined.

In general case, where q > 2, the main Theorem 5 gives us the following. Put

m
q

d.�/ D �1Cmin

(

k � l.�/ W 9l 2 f0; : : : ; kg
kX

iD0
ri;d�kP .q�1/

i .l I k/ D 0
)

:

Theorem 7 Let � be an eigenvalue of Fn2 , d � l.�/ and ' W Wd �! C be an
arbitrary function. Suppose that f is a �-function such that for any ˛ 2 Wd

f .˛/ D '.˛/:

Then for any ˛ with Hamming weight less than mq

d .�/ the value f .˛/ is uniquely
determined.

In conclusion we can say that in this paper we develop methods to study cases
l.�/ � d � n � l.�/ and d � n � l.�/ using the case d � l.�/ as an example.
These remaining cases seem to be more sophisticated but more interesting. They
include the hypotheses of the complete reconstruction of an q-ary 1-perfect code by
its vertices of Hamming weight d D h D .q�1/nC1

q
.
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