
Discrete Mathematics Using a Computer

Springer-Verlag London Ltd. Springer-Verlag London Ltd.

Cordelia Hall and John O'Donnell

Discrete Mathematics
Using aComputer

, Springer

CordeliaHall, PhD
John O'Donnell, BS, MS, PhD
Department of ComputingScience, University of Glasgow,
17Lilybank Gardens. Glasgow G128QQ, UK

ISBN 978-1-85233-089-7 ISBN 978-1-4471-3657-6 (eBook)
DOI 10.1007/978-1-4471-3657-6

British Library Cataloguing in Publication Data
Hall, Cordelia

Discrete mathematics using a computer
1. Computer science - Mathematics
I. Title II. O'Donnell.John T.
004'.0151

Library ofCongress Cataloging-in-Publication Data
Hall, Cordelia, 1955-

Discrete mathematics using a computer / Cordelia Hall and [ohn
O'Donnell.

p. em.
Includes bibliographical references and index.

1. Mathematics-Data processing.
II. Title.
QA76.95.H35 2000
5lO'.285-dc2I

I. O'Donnell.John, 1952-

99-26380
CIP

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of repro graphic reproduction in accordance with the terms of licences issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the
publishers.

e Springer-Verlag London 2000
Originally published by Springer-Verlag London Limited in 2000.

The use of registered names, trademarks etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt Cromthe relevant laws and regulations and therefore Cree
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Typesetting: Camera ready by authors

34/3830-543210 Printed on acid-free paper SPIN 10696861

This book is dedicated to our parents:
David Hall, Patricia Hall, Estelle 0 'Donnell,

and to the memory of John A. 0 'Donnell.

Preface

Several areas of mathematics find application throughout computer science,
and all students of computer science need a practical working understanding
of them. These core subjects are centred on logic, sets, recursion, induction ,
relations and functions. The material is often called discrete mathematics, to
distinguish it from the traditional topics of continuous mathematics such as
integration and differential equations.

Th e central theme of this book is the connection between computing and
discrete mathemati cs. This connection is useful in both directions:

• Mathematics is used in many branches of computer science, in applica­
tions including program specification, da ta structures, design and analysis
of algorithms, database systems, hardware design , reasoning about the
correctness of implementations, and much more;

• Computers can help to make the mathemati cs easier to learn and use, by
making mathematical terms executable, making abstrac t concepts more
concrete, and through the use of software tools such as proof checkers.

These connections are emphasised throughout the book. Software tools (see
Appendix A) enabl e the computer to serve as a calculato r, but instead of just
doing ari thm etic and trigonom etri c functions, it will be used to calculate with
sets, relations, functions , predicates and inferences. There are also special
software tools, for example a proof checker for logical proofs using natural
deduction.

The software for the book uses Haskell, a mathematically-oriented program­
ming language which is particularly well suited for discret e mathematics. It is
assumed that the reader has no prior knowledge of Haskell; everything needed
is covered in Chapter 1. A further discussion of the role of computing in the
textbook, and the reasons for the choice of Haskell, is given below.

Chapter 1 introdu ces all the basic notations of Haskell that are used in the
book . It is not necessary to read all of Chapter 1 before embarking on the rest
of the book; it would be reasonabl e to start with Chapter 2, and to refer back to
Chapter 1 as needed. However, it is useful to begin with a quick skim through
Chapter 1 in order to get an overall impression of what is covered there. Only
basic expressions and functions are needed in this book, and more advan ced

vii

viii Preface

parts of Haskell are not covered here. The Further Reading section of Chapter
1 refers you to books that cover the full language.

Chapter 2 covers propositional logic, which is one of the foundations for
formal reasoning in computer science. First the language of propositional logic
is introduced, including a discussion about translating between English and
formal propositions. Then thr ee major systems for logical reasoning are intro­
duced: truth tables , natural deduction with logical inference rules, and Boolean
algebra.

Chapter 3 adds predicates and quantifiers to propositional logic, producing
predicate logic. This system is frequently used to state properties of computer
programs and to prove correctness of algorithms. Again, three methods of
reasoning about predicates are presented: expanding formulas into equivalent
propositions, logical inference and equational laws.

The basic concepts of set theory are covered in Chapter 4. The operations
on sets are defined, and then demonstrated with simple software tools. The
most important theorems about set operations are stated as equational laws,
and applications to computing are used as examples.

Many structures in computer science are defined recursively. Chapter 5
introduces recursion as a technique for writing function definitions, and it is
applied to lists and trees . Chapter 6 then develops a closely related technique,
inductive definition of sets. Induction is the mathematical technique for proving
properties of functions and sets that are defined recursively, and this is the
subject of Chapter 7.

Chapter 8 defines relations, which are essential for many applications. It
explains the basic properties of relations , and defines order relations and equiv­
alence relations. Functions are a special kind of relation, and Chapter 9 covers
this topic.

Many examples of the application of discrete mathematics to computing
are given throughout the book, but these examples must necessarily be kept
small. To give a realistic picture of how mathematics is used in large scale
practical applications, Chapter 10 is devoted to one in-depth case study: the
design of combinational digital circuits . Basic logic gates and circuits are de­
scribed, and Boolean algebra is used to describe their behaviour. A larger scale
problem-the specification and correctness proof of a general n-bit binary ad­
dition circuit-is then introduced and solved. This case study brings together
many of the topics of the book, including Boolean algebra, functions, recur­
sion, higher order functions and induction, in order to solve an interesting and
practical computing problem.

Software Tools for Discrete Mathematics

A central part of this book is the use of the computer to help learn the discrete
mathematics. The software (which is free; see below) provides many facilities
that aid the student in learning the material:

Preface ix

• Logic and set theory have many operators that are used to build mathe­
matical expressions . The software allows the user to type in such expres­
sions interactively and experiment with them.

• Predicate logic expressions with quantifiers can be expanded into propo­
sitionallogic expressions, as long as the universe is finite and reasonably
small. This makes the meaning of the quantifiers more concrete and helps
the development of intuition.

• Students frequently misuse expressions in logic and set theory; a typical
error that arises frequently is to write an expression that treats A ~ B
as a set rather than a Boolean value. The software tools will immedi­
ately flag such mistakes as type errors. Teaching experience shows that
many students will have long-lasting misconceptions about basic nota­
tions without immediate feedback.

• A formal proof checker for natural deduction is provided. This allows
students to find errors in their proofs before handing in exercises, and
it also provides a quick and effective way for the instructor to check the
validity of large numbers of proofs. Furthermore, the automated proof
checker underscores the nature of formal proof; vague or ill-formed proofs
are not acceptable.

• Using a proof checker gives a deeper appreciation of the relationship be­
tween discrete mathematics and computer science. The experience of
debugging a proof is much like debugging a computer program; the proof
checker is itself a computer program (which the students can read if they
wish to); proof checking software makes formal proof feasible for larger
scale problems.

• The techniques of recursion and induction are applied directly and for­
mally to function definitions which the student can execute.

The programming language used in the book is Haskell 98 (which will be
called simply Haskell). This is a standard pure functional language with ex­
cellent support. Several implementations are freely available and they are sup­
ported on most major computers and operating systems. Students can install
the software on their own machines, as well as using the university's computers.

The Software Tools for Discrete Mathematics package is a library of defini­
tions that are loaded into Haskell. This package is available on the book web
page (see Appendix B).

Haskell is the ideal language for teaching discrete mathematics. It offers a
powerful and concise expression language; many problems that would require
writing a complete program on the order of 10 to 100 lines of code in a language
such as Pascal, C++ or Java can be written as a simple expression in Haskell
which is only a few lines long. This makes it possible to use Haskell interactively

x Preface

to experiment with the mathematical expressions of propos itional logic, pred­
icate logic, set theory and relations. Such lightweight interactive exploration
is infeasible in traditional imperative or object-oriented languages. Haskell is
also well suited for complex applications, such as the proof checker used in
Chapters 2 and 3, and the hardware description language used in Chapter 10.

It is assumed that the reader of the book has no knowledge in advance about
Haskell or functional programming; everything that is needed is covered here.
Since it is self-contained , this book can be used in any curriculum, regardless
of what programming languages happen to be in use.

To the Student

It's best to read this book actively with pencil and paper at hand. As you
read, tryout the examples yourself. It is especially important to try some of
the exercises, and solutions to many of them appear in Appendix C. Don't just
read the exercise and then the solution-the benefit comes from trying to solve
an exercise yourself, even if you don't get it right. When you find your own
solution, or if you get stuck, then compare your solution with the one in the
book.

The web page for this book has additional information that will be useful
as you study discrete mathematics:

http://www.dcs.gla.ac.uk/
-jtod/discrete-mathematics/

Many of the exercises require the use of a computer with Haskell installed.
The software is free, and it's straightforward to download it and install on your
own machine . See the book web page for information on obtaining the software.

A good way to improve your understanding of the material is to read about
it at a more advanced level, and also to learn about its application to real
problems . The Bibliography near the end of the book lists many good sources
of information, and each chapter ends with some suggestions for further reading.

We wish you success with your studies in mathematics and computer sci­
ence!

To the Instructor

This book is primarily intended for students of computer science, and appli­
cations of the mathematics to computing are stressed. No specific topics in
computing are prerequisites, but some familiarity with elementary computer
programming is assumed. The level is appropriate for courses in the first or
second year of study. The contents of this book can be covered in a course of
one semester.

Preface xi

The Instructor's Guide gives suggestions for organising the course, solu­
tions to the exercises, additional problems with solutions and other teaching
resources . It is available online:

http ://www.dcs .gla.ac.uk/-jtod
/discrete-mathematics/instructors-guide/

Notation

Standard mathematical notation is used in this book when discussing mathe­
matics: A ~ B . A typewriter font is used for notations that are intended to be
input to a computer: a I subset I b. For example, a general discussion in En­
glish might say that a theorem is true; that theorem might make a statement
about the proposition True, and a Haskell program would use the constant
True. The end of a proof is marked by a square box O.

Acknowledgements

We would like to thank the following colleagues for their helpful feedback and
encouragement during the process of writing this book: Tony Davie, Bill Find­
lay, Joy Goodman, Mark Harman, Greg Michaelson, Genesio Gomes da Cruz
Neto, Thomas Rauber, Richard Reid, Gudula Riinger and Noel Winstanley.
We would also like to thank the students at the University of Glasgow and the
University of Michigan who gave both of us experience teaching with prelim­
inary versions of this material, and our editor, Karen Barker, for her help in
producing this book. All remaining errors are ours alone.

Cordelia Hall and John O'Donnell
Glasgow

September, 1999

Contents

1 Introduction to Haskell .
1.1 Obtaining and Running Haskell .
1.2 Expressions

1.2.1 Integer and Int
1.2.2 Rational and Floating Point Numbers
1.2.3 Booleans .
1.2.4 Characters .
1.2.5 Strings .

1.3 Basic Data Structures: Tuples and Lists
1.3.1 Tuples .

1.3.2 Lists
1.3.3 List Notation and (:)
1.3.4 List Comprehensions .

1.4 Functions
1.4 .1 Function Application .
1.4.2 Function Typ es
1.4.3 Operators and Functions
1.4.4 Function Definitions .
1.4.5 Pattern Matching. . . .
1.4.6 Equational Reasoning .
1.4.7 Higher Order Functions

1.5 Conditional Expressions
1.6 Local Variables: let Expressions
1.7 Type Variables
1.8 Common Functions on Lists . .
1.9 Data Typ e Definitions
1.10 Type Classes and Overloading .
1.11 Suggestions for Further Reading
1.12 Review Exercises

xiii

1
2

4
4

6

6

7

8
8
8
9

10
10
12
13
13
13
14
14
17
18

19

19

20
21
26
29
31
31

xiv

2 Propositional Logic
2.1 The Need for Formalism . . .
2.2 The Basic Logical Operators

2.2.1 Logical And (1\) ...
2.2.2 Inclusive Logical Or (V)
2.2.3 Exclusive Logical Or (e)
2.2.4 Logical Not (-,) .
2.2.5 Logical Implication (-t) .
2.2.6 Logical Equivalence (t+) .

2.3 The Language of Propositional Logic .
2.3.1 The Syntax of Well-Formed Formulas
2.3.2 Precedence of Logical Operators . . .
2.3.3 Object Language and Meta-Language
2.3.4 Computing with Boolean Expressions

2.4 Truth Tables: Semantic Reasoning
2.4.1 Truth Table Calculations and Proofs .
2.4.2 Limitations of Truth Tables . . .
2.4.3 Computing Truth Tables

2.5 Natural Dedu ction: Inference Reasoning
2.5.1 Definitions of True, -, and t+ . .
2.5.2 And Introduction {I\I}
2.5.3 And Elimination {I\EL}, {I\ER}
2.5.4 Impl y Elimination {-t E} . . .
2.5.5 Imply Introduction {-t I} . . .
2.5.6 Or Introduction {VIL} , {VIR}
2.5.7 Or Elimin ation {VE}
2.5.8 Identity {ID} .
2.5.9 Contradi ction {CTR} .
2.5.10 Reductio ad Absurdum {RAA}
2.5.11 Inferring the Operator Truth Tables

2.6 Proof Checking by Computer . . .
2.6.1 Example of Proof Checking
2.6.2 Representation of WFFs . .
2.6.3 Representing Proofs

2.7 Boolean Algebra: Equational Reasoning
2.7.1 Th e Laws of Boolean Algebra.
2.7.2 Operations with Constants .
2.7.3 Basic Properties of 1\ and V .

2.7.4 Distributive and DeMorgan 's Laws.
2.7.5 Laws on Negation .
2.7.6 Laws on Implication
2.7.7 Equivalence

2.8 Logic in Computer Science .
2.9 Metalogic .

CONTENTS

35
37
38
39
40
41
41
41
43
44
44
46
46
47
48
48
49
50
50
52
54
56
57
58

· 61
62
63
63
65
66
67
68
72
73
74
76
76
78
79
80
80
81
81
83

CONTENTS

2.10 Suggestions for Further Reading
2.11 Review Exercises

3 Predicate Logic . ,
3.1 The Language of Predicate Logic

3.1.1 Predicates
3.1.2 Quantifiers
3.1.3 Expanding Quantified Expressions
3.1.4 The Scope of Variable Bindings . .
3.1.5 Translating Between English and Logic

3.2 Computing with Quantifiers
3.3 Logical Inference with Predicates . .

3.3.1 Universal Introduction {VI} .
3.3.2 Universal Elimination {VE} .
3.3.3 Existential Introduction {3I}
3.3.4 Existential Elimination {3E}

3.4 Algebraic Laws of Predi cate Logic
3.5 Suggestions for Further Reading
3.6 Review Exercises

4 Set Theory
4.1 Notations for Describing Sets
4.2 Basic Operations on Sets ..

4.2.1 Subsets and Set Equality
4.2.2 Union, Intersection and Difference
4.2.3 Complement and Power

4.3 Finite Sets with Equality ..
4.3.1 Computing with Sets . .

4.4 Set Laws .
4.4.1 Associative and Commutative Set Operations
4.4.2 Distributive Laws .
4.4.3 DeMorgan's Laws for Sets .

4.5 Suggestions for Further Reading
4.6 Review Exercises

5 Recursion
5.1 Recursion Over Lists
5.2 Higher Order Recursive Functions
5.3 Recursion Over Trees.
5.4 Peano Arithmetic
5.5 Data Recursion
5.6 Suggestions for Further Reading
5.7 Review Exercises

xv

84
86

89
89
89
90
92
94
95
98

100
101
103
104
105
106
109
109

111
111
114
114
114
116
117
119
122
123
124
124
125
125

129
130
136
139
142
143
144
144

xvi CONTENTS

6 Inductively Defined Sets . 147
6.1 The Idea Behind Induction 147

6.1.1 The Induction Rule 150
6.2 How to Define a Set Using Induction 152

6.2.1 Inductive Definition of the Set of Natural Numbers . 153
6.2.2 The Set of Binary Machine Words 154

6.3 Defining the Set of Integers 155
6.3.1 First Attempt . . 155
6.3.2 Second Att empt 156
6.3.3 Third Attempt . 156
6.3.4 Fourth Attempt 158
6.3.5 Fifth Attempt . 159

6.4 Suggestions for Further Reading 159
6.5 Review Exercises 159

7 Induction 163
7.1 The Principle of Mathematical Induction 164
7.2 Indu ction on Natural Numbers 165
7.3 Induction and Recursion. . . 168
7.4 Induction on Peano Naturals 169
7.5 Induction on Lists . 172
7.6 Functional Equality 177
7.7 Induction on Trees 179
7.8 Pitfalls and Common Mistakes 181

7.8.1 A Horse of Another Colour 181
7.9 Limitations of Induction 181
7.10 Suggestions for Further Reading 183
7.11 Review Exercises 183

8 Relations 185
8.1 Binary Relations 185
8.2 Representing Relations with Digraphs 187
8.3 Computing with Binary Relations 188
8.4 Properties of Relations . . . 190

8.4.1 Reflexive Relations . . 190
8.4.2 Irreflexive Relations . 191
8.4.3 Symmetric Relations . 193
8.4.4 Antisymmetric Relations 195
8.4.5 Transitive Relations 197

8.5 Relational Composition 199
8.6 Powers of Relations 202
8.7 Closure Properties of Relations 207

8.7.1 Reflexive Closure . . 208
8.7.2 Symmetric Closure . 210
8.7.3 Transitive Closure . 211

CONTENTS xvii

8.8 Order Relations . . . 214
8.8.1 Partial Order 214
8.8.2 Quasi Order. 219
8.8.3 Linear Order 220
8.8.4 Well Order . 221
8.8 .5 Topological Sort 222

8.9 Equivalence Relations . 223
8.10 Suggestions for Further Reading 226
8.11 Review Exercises 226

9 Functions 229
9.1 The Graph of a Function 230
9.2 Functions in Programming . 233

9.2.1 Inductively Defined Functions. 234
9.2.2 Primitive Recursion 235
9.2.3 Computational Complexity 236
9.2.4 State.. 237

9.3 Higher Order Functions 238
9.3.1 Functions that Take Functions as Arguments 239
9.3.2 Functions that Return Functions 240
9.3.3 Multiple Arguments as Tuples 242
9.3.4 Multiple Results as a Tuple 243
9.3.5 Multiple Arguments with Higher Order Functions 243

9.4 Total and Partial Functions 244
9.5 Function Composition . . . 249
9.6 Properties of Functions " 253

9.6.1 Surjective Functions 253
9.6.2 Injective Functions . 255
9.6.3 The Pigeonhole Principle 258

9.7 Bijective Functions 258
9.7.1 Permutations. . . 259
9.7.2 Inverse Functions. 261

9.8 Cardinality of Sets 261
9.8.1 The Rational Numbers are Countable 264
9.8.2 The Real Numbers are Uncountable 264

9.9 Suggestions for Further Reading 266
9.10 Review Exercises 266

10 Discrete Mathematics in Circuit Design . 273
10.1 Boolean Logic Gates 274
10.2 Functional Circuit Specification. 275

10.2.1 Circuit Simulation 276
10.2.2 Circuit Synthesis from Truth Tables 277
10.2.3 Multiplexors . 280
10.2.4 Bit Arithmetic 281

xviii

10.2.5 Binary Representation
10.3 Ripple Carry Addition

10.3.1 Circuit Patterns .. .
10.3.2 The n-Bit Ripple Carry Adder
10.3.3 Correctness of the Ripple Carry Adder .
10.3.4 Binary Comparison. . . .

10.4 Suggestions for Further Reading
10.5 Review Exercises .

A Software Tools for Discrete Mathematics

B Resources on the Web

C Solutions to Selected Exercises .
C.1 Introduction to Haskell .
C.2 Propositional Logic .
C.3 Predicate Logic .
C.4 Set Theory .
C.5 Recursion .
e.6 Inductively Defined Sets
e.7 Induction
C.8 Relations .
e.9 Functions .
C.lO Discrete Mathematics in Circuit Design

Bibliography

Index

CONTENTS

284
285
286
288
289
290
292
292

295

297

299
299
302
308
310
312
316
318
323
325
327

331

333

Chapter 1

Introduction to Haskell

The topic of this book is discrete mathematics with an emphasis on its connec­
tions with computers:

• The computer can help you to learn and understand mathematics. As
various mathematical objects are defined, software tools will enable you
to perform calculations with those objects. Exploring and experimenting
with mathematical ideas gives a practical intuition.

• The mathematics has widespread applications in computing. We will focus
on the topics of discrete mathematics that are most important in modern
computing, and will look at many examples .

• Software tools make it possible to use the mathematics more effectively.
Mathematical structures are frequently large and complex, and computers
are often necessary to bring out their full potential.

In order to achieve these goals, it won't be enough to provide the occasional
pseudo-code program. We need to work with real programs throughout the
book. The programming language that will be used is Haskell, which is a
modern standard functional programming language.

It is not assumed that you know anything about Haskell, or about functional
programming. Everything you need to know about it is covered in this book.
You will need only a small part of the language for this book, and that part
is introduced in this chapter. If you would like to learn more about Haskell
or functional programming, Section 1.11 recommends a number of sources for
further reading.

Why use a functional language, and why Haskell in particular? Because:

• Haskell allows you to compute directly with the fundamental objects of
discrete mathematics.

• It is a powerful language, allowing programs that would be long and
complicated in other languages to be expressed simply and concisely.

1

C. Hall et al., Discrete Mathematics Using a Computer
© Springer-Verlag London 2000

2 CHAPTER 1. INTRODUCTION TO HASKELL

• You can reason mathematically about Haskell programs in the same way
you do in elementary algebra .

• The language provides a strong type system that allows the compiler to
catch a large fraction of errors ; it is rare for a Haskell program to crash.

• Haskell is an excellent language for rapid prototyping (i.e. implementing
a program quickly and with minimal effort in order to experiment with
it) .

• There is a stable, standard and well-documented definition of Haskell.

• A variety of implementations are available which are free and which run
on most computers and operating systems.

• Haskell can be used interactively, like a calculator; you don't need a
heavy-weight compiler.

1.1 0 btaining and Running Haskell

Appendix A gives a pointer to the web page for this book. On that page you
can find pointers to the most up-to-date implementations of Haskell as well as
the software tools used in this book. There is an active Haskell development
community, and new tools are constantly emerging, so you should check the
book web page for current information. The book web page also contains
additional documentation for the software.

.We will use the computer interactively, like a desk calculator. Haskell itself
provides a powerful set of built-in operations, but others that you will need are
defined in the Software Tools for Discrete Mathematics file stdm.hs which you
can download from the book web page.

To give an idea of what it 's like to use the computer with this book, here is a
typical interactive session, using the stdm file and the Hugs98 implementation.

First we start the Hugs98 program, and it will give an introductory screen
followed by a prompt ">'. Haskell is now acting like an interactive calculator;
you enter an expression after the> prompt, and it will evaluate the expression ,
print it and give another prompt:

... the introductory message from Haskell system ...
Type :? for help
> 1 + 2
3
> 3*4
12
>

1.1. OBTAINING AND RUNNING HASKELL 3

You have just typed in an expression, and it was evaluated. An expression
is a combination of operators and values that are defined by the programming
language. For example, 1 + 2 * x is an expression in Haskell. We write 1+2
=> 3, meaning that when the expression 1+2 is evaluated, the result is 3.

Now you should load the software tools file, which defines the programs
used in the examples and exercises in this book :

> :load stdm

Notice the colon in the : load stdm. If the first character after a prompt
is : then the rest of the line is a command to the interpreter, rather than an
expression. One good command to remember is :?, which prints a help screen
listing all the other commands you can enter.

At this point, you are ready to start writing and testing definitions. These
should be saved in a file, so that you don't have to enter them in again and
again. To do this, create a file with a name like mydef s . hs. The extension .hs
stands for Haskell script. Store the following two lines in your file:

y = x+1
x = 2*3

The equations in your script file really are mathematical equations; they
aren't assignment statements. One consequence of this is that you can write
the equations in whatever order seems easiest to understand; there is no need,
for example, to put the equation defining x before the equation defining y.
Another consequence is that the same method of 'substituting equals for equals'
used in mathematics can also be applied to Haskell. For example, the equation
says y = x+l, and we have another equation that says x = 2*3; substituting
2*3 for x yields y = (2*3)+1. This ease of reasoning mathematically about
Haskell programs is one of the central reasons that Haskell is such a suitable
language in which to write mathematical software.

Now enter the command: load mydefs , which tells Hugs to read your file.
The effect of this is to define all the names that appear on the left hand sides of
the equations in the file. From now on, the expressions you enter interactively
can make use of the variables x and y:

:load mydefs
> :load mydefs
Reading f He "mydefs .hs II :

mydefs.hs
> x
6

> Y
7
> x*y
42
>

4 CHAPTER 1. INTRODUCTION TO HASKELL

You can always edit the file and save it, and then reload the file into Haskell.
This will replace all the old definitions with the ones in the edited file. For
example, if you modify the file so that it says x = 4*5 and reload it, then x
=} 20 and y =} 21.

When you would like to leave Hugs, you can enter the quit command : quit,
and with some operating systems you can also quit by entering control D.

1.2 Expressions

You can do a lot just by writing simple expressions in Haskell-far more than
just basic arithmetic (although that can be interesting, too). In the following
sections, we will show some of the most useful kinds of expression, organised
according to the type of value.

As you will see later, types are of fundamental importance, both in Haskell
and in discrete mathematics. For now, however, you can just think of a type
as being something like Integer, Float, Char, etc. The essential point is that
an operator is defined for a specific type. For example, the + operator specifies
addition, which makes sense only for number types, while the length operation
gives the length of a list, but makes no sense for other types.

1.2.1 Integer and Int

Integer constants are written as a sequence of digits . For example, 2, 0, 12345
and -72 are all integer constants.

Like most programming languages, Haskell provides operators for addition
(+), subtraction (-) and multiplication (*). There is also an exponentiation
operator ~ ; for example, 2~3 means '2 raised to the power 3', or 23 .

For the time being, don't use / for division; instead, write x 'div ' y in
order to divide x by y. This is an integer division, and any remainder is thrown
away. For example, 5 'div' 2 =} 2,17 'dive 3 =}5 and -100 'dive 20 =}
-5. You can get the remainder or modulus with the 'mod' operator: 8 'mod'
3 => 2.

Notice how 'dive and 'mod' are operators (an operator is written in be­
tween its two arguments), but these operators are names made up of letters.
Haskell has many named operators like this, and they are always enclosed in
back-quote characters: 'opname' .

There are functions that find the larger and smaller of two numbers: max 3
8 => 8, and min 3 8 =} 3. There is a further discussion about operators like
'dive and functions like max in Section 1.4.3.

Computers store numbers in words, and the word size of modern processors
is 64 bits long. Whatever the word size on your computer, however, there is a
limit to how large an integer it will hold . Fortunately, Haskell does not limit
you to numbers that fit into a word. It provides two distinct integer types:

1.2. EXPRESSIONS 5

• Int is the type of integers that fit into a word on the computer (naturally
this will vary from one computer to another);

• Integer is the type of mathematical integers.

Since there are two different integer types, we need a way of saying which
type we want an expression to have. The:: operator (read it as has type) is
used in Haskell to specify what type an expression has. Thus 2: : Int says '2 has
type Int', and its representation in the computer is different from 2: : Integer.

Here is an example that will illustrate the difference between Int and
Integer. First, evaluate 2-2, which means 2 squared and gives 4:

Now, 2-20 presents no problem to most computers, as the word size will be
well above 20:

However, most computers have a word size much less than 200 bits, and the
expression 2-200 will not give the right answer if it 's evaluated with the default
Int type:

Therefore we say explicitly that we want the unlimited Integer type to be
used instead; now we are guaranteed to get the right answer :

> (2-200): : Integer
1606938044258990275541962092341162602522202993782792835301376

One might wonder just how large an Integer number can be. When it
performs arithmetic on these numbers, Haskell allocates enough memory dy­
namically in order to store the result. There is of course a limit to the size of
number that can be stored, but a modern machine with a large memory can
easily accommodate numbers that contain millions of digits.

Besides actually needing large numbers, there is a theoretical benefit from
using Integer: the arithmetic operations on this type satisfy the algebraic
laws. For example, we know from algebra that (x + y) - y = x, but this is not
always true in a computer, if the arithmetic is performed with the Int type,
or in a language that offers only fixed-word arithmetic. It might happen that
x and y fit in a machine word, but the intermediate result x + y does not. In
contrast, if the arithmetic is performed on the Integer type then the computer
program will definitely satisfy the mathematical law.

6 CHAPTER 1. INTRODUCTION TO HASKELL

1.2.2 Rational and Floating Point Numbers

Single-precision floating point numbers have type Float, and double-precision
numbers have type Double . Besides the operators +, - and *, you can divide
floating point numbers with the / operator. The floating point exponentiation
operation is **. For example, 2**0 .5 ::} 1.41421.

There are also a number of functions that can be applied to floating point
numbers. A function application in Haskell requires no parentheses; you just
write the name of the function, followed by a space, followed by the argument.
For example, the square root function is sqrt, and a typical application is sqrt
9 ::} 3 .0 .

Floating point representations are approximations, and they are not guar­
anteed to satisfy the algebraic laws as Integer numbers do. Try evaluating
the following expressions on your computer:

0 .11-0.10
2.11 - 2.10

If the arithmetic were performed exactly, these would both give the same
result , but they do not on some computers. This is a property of floating
point representation, not Haskell. It is possible to round the numbers so that
they look the same when printed, but the internal representations will still
be different. It is important to remember that when you use mathematics to
reason about real numbers, the results may not apply exactly to a program that
uses floating point. It is particularly important to be careful when comparing
floating point numbers: the right way to compare them is to determine whether
the absolute value of their difference falls within an acceptable error tolerance.

Haskell supports exact arithmetic on rational numbers , allowing you to
work with fractions as well as with their decimal equivalents (approxima­
tions). Ratio Integer is the type of rational numbers; these are numbers in
the form of a fraction, where the numerator and denominator are represented
with the Integer type. A rational constant is written in the form numera­
tor'/,denominator. You can divide two integers using the / operator, and the
result is an exact rational number. Haskell automatically reduces fractions; for
example:

2/3
2/3 :: Ratio Integer
2'/,3 + 1'/,6
(1/3 + 1/4) :: Ratio Integer

1.2.3 Booleans

::}

::}

::}

::}

0.66667
2'/,3 ::
5'/,6 : :
7'/,12

. . Double
Ratio Integer
Ratio Int

The Bool type is used to represent the result of comparisons, and similar op­
erations, where the result must be either True or False. These are the only
two values with type Bool.

1.2. EXPRESSIONS 7

The following operators can be used to compare two numbers, and they
produce a result of type Bool:

-- equality
/= not equal
< less than
<= less than or equal
> greater than
>= greater than or equal

For example , 9>3 =>True, and 5<=5 =>True.
There are also some operators that take arguments of type Bo01, again

returning a Bool result:

&& Boolean and
I I Boolean or
not Boolean not

The expression x&&y evaluates to True if both x and yare True; x I Iy evaluates
to True if eith er of the arguments is True . Finally, not x is True if x is False,
and vice versa.

Exercise 1. Evaluate these expressions , and check with the computer:

True && False
True I I False
not False
3 <= 5 && 5 <= 10
3 <= 20 && 20 <= 10
False == True
1 -- 1
1 /= 2
1 /= 1

1.2.4 Characters

A character has type Char, and a constant is written as the character sur­
rounded by single-quote characters; for example , 'a' and '*'. Recall that the
back-quote character is used for operators, not for characters. Thus '?' is a
character and I div I is an operator.

The: type command in Hugs will tell you the type of an expression. As you
experiment with the language by evaluating expressions , it is also a good idea
to use : type to be sure that they have the same type you think they should.
Often you will see a type with => in it; the meaning of this is explained in
Section 1.10.

The comparison operators can be used on characters. Two useful built-in
functions are toUpper and toLower, which take a character and convert it from
one case to another. For example:

8

'c' < 'Z'
toUpper 'w' => 'W'
toLower 'Q' => 'q '

CHAPTER 1. INTRODUCTION TO HASKELL

There is a special character called newline which causes a line break when
it is printed. This character is written' \n' .

1.2.5 Strings

A String is a sequence of zero or more characters. A string constant is written
inside double-quote marks. For example, "tree": :String.

There is a difference between 'a' : :Char and "a": :String. The first is the
character a, while the second is a string that contains the character a . A string
can have any length , unlike a character.

The length function can be used to determine how many characters are
in a string. For example, length "dog" => 3, and length "a" => 1. You
cannot apply length to a character.

Two strings can be concatenated together with the operator ++ to form
a larger string: "abc" ++ "defg" => "abcdefg". A common example is to
place a newline character at the end of a line: "Here is a line" ++ "\n" .

The length function and ++ operator are actually more general than de­
scribed here; this will be discussed later.

1.3 Basic Data Structures: Tuples and Lists

The most commonly used data structures in Haskell are tuples and lists. Both
of them are used to gather several data values together into one data structure.

1.3.1 Tuples

Tuples package up several values into one. They are written as a sequence of
data values, separated by commas, inside parentheses. For example, (2, "dog")
is a tuple with two components; the first is 2 and the second is "dog" . Its type
is written (Int , "dog") . In general, if x: : A and y: :B, then (x .y) : : (A ,B) . For
example:

("dog","cat") :: (String, String)
(True,5) : : (Bool,lnt)
('a' ,"b") :: (Char ,String)
("bat", (3.14,False» : : (String, (DoubIeBooL)

The usual way to extract the components from a tuple is pattern matching,
which will be covered later. For tuples with 2 components, the function fst
returns the first component and snd returns the second. These functions have
the following types :

1.3. BASIC DATA STRUCTURES: TUPLES AND LISTS 9

fst :: (a,b) -> a
snd :: (a,b) -> b

This says that fst is a function; its argument has a tuple type of the form
(a, b), and the result it returns has type a.

A tuple can have any number of components. If it contains n components, it
is called an n-tuple, but 2-tuples are often just called pairs. You can even have
a O-tuple which contains nothing, written 0; this is often used as a dummy
value. (But you cannot have a l-tuple, as that would conflict with the use of
parentheses to control precedence of operators.)

Tuples have two important characteristics that distinguish them from lists.
First, a tuple has a fixed number of components. If you have a 3-tuple (a, b, c),
and you add an extra data value to obtain (a, b, c, d) , the new tuple has a
different type from the old one. Second, there is no restriction on the type of
any component: it is common for a tuple to contain data values with different
types.

1.3.2 Lists

Lists are the most commonly used data structure in functional languages. A
list is written as a sequence of elements, separated by commas, surrounded by
square brackets: for example, [1,2,3] is a list of integers.

A list may contain any number of elements, but all of the elements must
have the same type. The type of a list is written [A] , where A is the element
type. For example:

[13,9,-2,100] : : [lnt]
["cat", "dog"] :: [String]
[[1,2] , [3,7,1] , [] ,[900]] : : [[lnt]]

Expressions can appear in a list expression; all the elements of a list are eval­
uated. If your script file contains an equation defining x, then [13,2+2, 5*x]
is a list as well.

A String is actually just a list of characters. The constant "abc" is exactly
equivalent to writing l ' a' , ,b' , , c '] .

You can easily specify a list which is a sequence of numbers. For example,
the Haskell notation [1. .10] means the list [1,2,3,4,5,6,7,8,9,10], and
the .. is filled in with the missing numbers. Normally the numbers are incre­
mented by 1, but if you give two numbers before the .. any increment can be
used. For example, [1,3 .. 10] counts up by 2, and its value is [1,3,5,7,9].
Sequences of characters can be created in the same way. Here are some exam­
ples:

['a' .. 'z'] => "abcdefghijklmnopqrstuvwxyz" :: String
['0' .. '9'] => "0123456789" : : String
[0 .. 9] => [0,1,2,3,4,5,6,7,8,9] :: [lnt]
[10,9 . . 0] => [10,9,8,7,6,5,4,3,2,1,0] :: [lnt]

10 CHAPTER 1. INTRODUCTION TO HASKELL

Haskell has a large number of features to make lists easy to use. Some of
these are presented in Section 1.8.

1.3.3 List Notation and (:)

A new element can be added to the front of a list using the operator (:), which
is usually pronounced 'cons' (because it constructs a list). This function takes
a value and a list and inserts the value at the front of the list:

(r) :: a -> [a] -> [a]

1:[2,3) => [1,2,3]
1: [] => [1]

Every list is built up with the (:) operator, starting from the empty list
[J. Thus 1: [] is a list containing one element, the number 1. This list can be
written just as [1]; in fact, the usual notation for lists is merely a nicer syntax
for an expression that builds the list. This notational convention allows the
following equations to be written:

[1,2,3,4] = 1 : (2
"abc" = ,a' (, b'

(3 : (4 : [))))

('e' : [J))

The parentheses can be omitted, so the equations could be written more simply:

(1,2,3,4] = 1 : 2
"abc" = 'a' 'b'

3 : 4 : (]

'e' [J

1.3.4 List Comprehensions

The list structure has been so useful and influential in functional languages that
Haskell offers a variety of features to make them convenient to use. The list
comprehension is a simple but powerful syntax that lets you define many lists
directly, without needing to write a program to build them. List comprehen­
sions are based on the standard set comprehension notation in mathematics.
For example, the set comprehension {x2 I XES} describes the set of squares
of elements of another set S .

The basic form of list comprehension is a list in which an expression appears
first, followed by a vertical bar (read 'such that'), followed by a generator:

[expression I generator]

The generator specifies a sequence of values that a variable takes on; this
is written in the form var (- list, and it means that the variable var will
take on each of the values in list, one by one. For each of those values, the
expression to the left of the bar is evaluated, and the result goes into the list.

1.3. BASIC DATA STRUCTURES: TUPLES AND LISTS 11

For example, the following list comprehension says that x should take on the
values 1, 2 and 3; for each of these the value of 10*x goes into the result list,
which is [10,20,30]:

[10*x I x (- [1,2,3]]
=> [10,20,30]

Often a sequence with the .. notation is used to define the list from which
the variable draws its values. For example:

[x~2 I x (- [1 .. 5]]
=> [1,4,9,16,25]

[y 'mod' 3 I y (- [1 .. 6]]
=> [1,2,0,1,2,0]

[toLower c I c (- "Too Many CAPITALs"]
=> "too many capitals"

If the list to the right of the (- is actually a list of tuples, then the variable
can be replaced by a tuple of variables. In the following example, the tuple
(a, b) takes on the values (1,2), (10,20) and (6,6) . For each of these list
elements, the expression a*b multiplies the components of the tuple:

[a*b I (a,b) (- [(1,2), (10,20), (6,6)]]
=> [2,200,36]

List comprehensions can have more than one generator. For each value of
the first generator taken by the first .variable , the second variable gets all of
the values in its generator. This is similar to a nested loop, where the first
generator is the outer loop and the second generator is the inner one. For
example,

[(x,y) I x (- [1,2,3], y (- ['a','b']]
=> [(1, , a') , (1, , b') , (2, 'a') , (2, , b ") , (3, 'a') , (3, 'b')]

In the examples so far, all of the elements of the generator list cause a
corresponding value to appear in the result. Sometimes we want to throw out
some of the elements of the generator. This is performed by using a filter.
A filter is an expression of type Baal, which (normally) uses the generator
variable. After the variable takes on a value of the generator, the filter is
evaluated, and if it is False then the value is thrown out. For example, the
following list comprehension makes a list of all the integers from 0 to 100 which
are multiples of both 2 and 7:

[x I x (- [0 .. 100], x 'mod' 2 -- 0 && x 'mod' 7 -- 0]
=> [0,14,28,42,56,70,84,98]

12 CHAPTER 1. INTRODUCTION TO HASKELL

The next comprehension produces a list of all of the factors of 12. It works
by considering all combinations of x and y between 0 and 12; the value of x is
retained if the product is exactly 12. If you replace 12 with any other number,
it will make a list of the factors of that number:

[x I x <- [1 . . 12], y <- [1 .. 12], 12 == x*y]

List comprehensions provide an easy way to implement database queries .
For example, db is a database represented as a list of tuples. Each tuple contains
a person's name, their street address, age, and annual income:

db = [("Ann Smith", "29 Byres Road", 30, 48000),
("Alan Jones", "36 High Street", 25, 17000),

]

Now we can use a list comprehension to make a mailing label for every
employee under 30 who is making at least £15000 per year:

[name ++ "\n" ++ addr ++ "\n"
I (name,addr,age,sal) <- db, age<30, sal>=15000]

Exercise 2. Work out the values of the following list comprehensions; then
check your results by evaluating them with the computer:

[x I x <- [1,2,3], False]

[not (x && y) I x <- [False, True],
y <- [False, True]]

[x I I y I x <- [False, True],
y <- [False, True],
x /= y]

[[x,y,zJ I x <- [1 .. 50J, y <- [1 .. 50J, z <- [1 .. 50J,
x ** 2 + Y ** 2 -- z ** 2]

1.4 Functions

Functions are, unsurprisingly, central to functional programming languages like
Haskell. We have already seen a few brief examples. Now we take a closer look
at functions: how to use them, their types, and how to define them.

1.4. FUNCTIONS

1.4.1 Function Application

13

An expression using a function to perform a computation is called a function
application, and we say that a function is applied to its arguments. For example,
we might apply the function sqrt to the argument 9, obtaining the result 3. O.

The notation for a function application consists of the function name, fol­
lowed by a space, followed by the function argument(s). If there are several
arguments, they should be separated by spaces. Unlike some other languages,
you do not put parentheses around the arguments of a function .

sqrt 9.0
3.4 + sqrt 25 * 100
2 * sqrt (pi * 5 * 5) + 10

1.4.2 Function Types

Just as data values have types, so do functions . Function types are important
because they say what type of argument a function requires, and what type of
result it will return.

A function that takes an argument of type a and returns a result of type
b has a funct ion type which is written a -t b (read a arrow b). To say that f
has this type, we write f :: a -t b. In Haskell, the -t symbol is written as ->.
For example , some of the Haskell functions that we have already seen have the
following types:

sqrt :: Double -> Double
max : : Integer -> Integer -> Integer
not : : Baal - > Baal
toUpper :: Char -> Char

1.4.3 Operators and Functions

An operator is a function in Haskell, but an operator must take exactly two
arguments, and it is written between the arguments. For example, the + oper­
ator takes two numbers and adds them, and is written between the numbers :
2+3 . Since an operator is a function , it has a function type. When you use
the operator by itself, for example to state its type, it must be enclosed in
parentheses:

(+) :: Integer -> Integer -> Integer
(ll) : : 8001 -> 8001 -> 8001

Since an operator is just a function, you can do everything with an operator
that you can do with a function, but it must be enclosed in parentheses if it does
not appear between its arguments. For example, an alternative way to write
2+3 is (+) 2 3, which says that the (+) function is applied to two arguments,

14 CHAPTER 1. INTRODUCTION TO HASKELL

2 and 3. Later in this book you will see a number of examples where it is useful
to do this .

Just as you can treat an operator as a function by putting parentheses
around it, you can treat a function as an operator by putting single-quote
characters around it. For example, the function max can be applied to two
arguments in a function application: max 4 7. If you prefer, you can use it as
an operator, like this: 4 t max t 7.

1.4.4 Function Definitions

You can define new functions by giving the type declaration followed by the
defining equation. The type declaration has the form:

junciioti.ncme : : argType1 -t argType2 -t . .. -t argTypen -t resultType

The arrows are written as -t in mathematical notation, and they are written
as -> in Haskell programs. The defining equation has the form:

function.name arg1 arg2 . .. argn =expression that can use the arguments

The function definition should be inserted in a Haskell script file. When you
load the file, you will then be able to use your functions . For example , suppose
we want a function square that takes an Integer and squares it. Here is the
function definition:

square : : Integer -> Integer
square x = x*x

If you just evaluate the expression x at the top level, Haskell will give an
error message because x is not defined:

> x
ERROR : Undefined variable "x"

However, when a function is applied to an argument, the value of the argument
is available to the expression on the right hand side of the function 's defining
equation. For example , if we evaluate square 5, then x is temporarily defined
to be 5, and the right hand side x*x is evaluated, producing the result 25.

1.4.5 Pattern Matching

As we have seen, the left hand side of the defining equation has the form of an
application. If the argument in that application is a name (for example x in the
defining equation square x = x*x) then when an application is evaluated, the
name will take on the argument value, and the right hand side of the function
is evaluated .

104. FUNCTIONS 15

There is another option: if the argument on the left hand side is a constant,
then the right hand side will be used only if the function is applied to that
value. This makes it possible for a function definition to consist of several
defining equations. For example, here is a definition of f with three defining
equations, each with a constant argument :

f :: Integer -) String
f 1 = "one"
f 2 "two"
f 3 = "three"

When the application f 2 is evaluated, the computer begins by checking
the first defining equation, and it discovers that the application f 2 does not
match the left hand side of the first line, f 1. Therefore the next equation is
tried; this one does match, so the corresponding right hand side is evaluated
and returned. If f is applied to an argument like 4, which does not match
any of the defining equations, an error message is printed and the program is
terminated.

The following function tests its value, returning True if the value is a 3, and
False otherwise. It has two defining equations. If the argument pattern 3 in
the first defining equation matches the argument, then that equation is used.
If the argument is not 3, then the second equation is checked; the argument x
will match any argument, so the corresponding value False is returned.

is_three : : Int -) Bool
is_three 3 = True
is_three x = False

For example, given the application is_three (1+1), the argument is eval­
uated to 2; since this does not match 3, the second defining equation is used.

A function may have more than one argument . If this is the case, then
each argument in a given defining equation is checked, from left to right. For
example, here is the nor function , which returns True if and only if both of the
arguments are False:

nor :: Bool -) 8001 -) 8001
nor False False = True
nor a b = False

Consider the evaluation of the application nor False True. The first defin­
ing equation is checked from left to right at runtime. The first pattern matches,
so the second argument on that line is also checked. It does not match, so the
second defining equation is checked; its left hand side matches both arguments.

Pattern matching is commonly used when the argument to a function is
a tuple. For example, suppose we want a function fst which takes a pair
and returns its first element , and a similar function snd to return the second
element. These functions are easily defined with pattern matching:

16

fst ; ; (a vb) -> a
fst (x,y) = x

CHAPTER 1. INTRODUCTION TO HASKELL

snd :: (a,b) -> b
snd (x,y) = y

When fst (5,6) is evaluated, the argument value (5,6) is matched against
the argument pattern (x ,y) in the defining equation; this causes x to be defined
as 5 and y as 6. Then the right hand side x is returned, giving the result 5.
The fst and snd functions are very useful, so they are already defined in the
standard Haskell library.

An argument pattern may also be a list . Since a list is either [] or else it
is constructed with the cons operator :, the patterns take the forms [] and
x : xs . For example, the following function determines whether a list is empty:

isEmpty :: [a] -> Bool
isEmpty [] = True
isEmpty (x :xs) =False

The parentheses around the pattern x : xs in the left hand side are required
because otherwise the compiler would parse it incorrectly.

When isEmpty [] is evaluated, the argument matches the pattern in the
first defining equation, so True is returned. However, when the application
isEmpty (L: 2: 3: []) is evaluated, the argument fails to match [] and the
second equation is tried. Here the match succeeds , with x defined as 1 and
xs defined as 2: 3 : [], and False is returned. It makes no difference if the
argument is written with the simpler syntax [1,2,3] ; since this is merely an
abbreviation for 1 ;2 :3: [] , the evaluation is identical.

The following functions, which are defined in the standard Haskell libraries,
can be used to return the first element of a list (the head), or everything except
the first element (the tail) :

head .. [aJ -> a
head (x:xs) = x

tail .. [a] -> [a]
tail (x :xs) = xs

Exercise 3. Write a function that takes a character and returns True if the
character is 'a' and False otherwise.

Exercise 4. Write a function that takes a string and returns True if the string
is "hello" and False otherwise. This can be done by specifying each
element of the string in the list pattern (e.g. ' h ' : ' i ' : H) .

Exercise 5. Write a function that takes a string and removes a leading space
if it exists.

1.4. FUNCTIONS

1.4.6 Equational Reasoning

17

The equations that appear in a Haskell script are genuine mathematical equa­
tions, stating that the left and right hand sides have the same value. They are
not commands, and they do not cause the value of a variable to change. Imper­
ative programming languages are based on the assignment statement; thus n
: = x*y means that x*y is evaluated, and the result is stored in the variable n,
erasing its previous value. For example , the imperative assignment statement
n := n+l increases the value of n, while the Haskell equation n = n+l defines
n to be the solution to the mathematical equation. Since this equation has no
solution, the result is that n is undefined. If the program ever uses an undefined
value like n, the computer will either give an error message, or else go into an
infinite loop.

The fact that Haskell uses only equations leads to a powerful technique for
reasoning about functional programs, called equational reasoning. This is the
same kind of reasoning used in algebra, often called 'substituting equals for
equals'. For example, suppose we have the following script file:

a = 3
b = 4
c = 5
z =a-2 + b-2 + c-2

f : : Integer -> Integer -> Integer
f x y = 2*x + Y

Now the expression f a (f z 2) can be evaluated by equational reasoning .
We use the convention in this book that Haskell definitions are in.t ypewr i ter
font while mathematical reasoning is in mathematical italic notation.

j a (J z 2)
j a (J (a * a + b *b + C *C) 2)

= ja(J(3*3+4*4+5*5)2)
= j a (J 50 2)
= j a (2 * 50 + 2)
= j a 102

j 3102
= 2 *3 + 102
= 108

At each step, the previous expression is rewritten using ordinary mathe­
maticallaws and the Haskell definitions, all of which are equations. Equations
are timeless, since there is no notion of changing the value of a variable. If
assignment statements were part of the language, this simplification technique
could not be used.

18 CHAPTER 1. INTRODUCTION TO HASKELL

1.4.7 Higher Order Functions

Functions in Haskell are 'first class objects'; that is, you can store them in
data structures, pass them as arguments to functions , and create new ones.
A function is called first order if its arguments and results are ordinary data
values, and it is called higher order if it takes another function as an argument,
or if it returns a function as its result. Higher order functions make possible a
variety of powerful programming techniques .

The twice function takes another function f as its first argument, and it
applies f two times to its second argument x:

twice : : (a->a) -> a -> a
twice f x = f (f x)

We can work out an application using equational reasoning. For example,
twice sqrt 81 is evaluated as follows:

twice sqrt 81
= sqri (sqrt 81)
= sqrt 9

= 3

Let's examine the type of twice in detail. Assuming the second argument
has type a, then the argument function has to accept an argument of type a and
also return a value of the same type (because the result of the inner application
becomes the argument to the outer application) . Hence the function argument
must have type a->a.

In Haskell, functions receive their arguments one at a time . That is, if
a function takes two arguments but you apply it to just one argument, the
evaluation gives a new function which is ready to take the second argument
and finish the computation. For example, the following function takes two
arguments and returns their product :

prod :: Integer -> Integer -> Integer
prod x y = x*y

A full application is an expression giving prod all of its arguments: for
example, prod 4 5 :::} 20. However, the partial application prod 4 supplies
just one argument, and the result of this is a new function which takes a number
and multiplies it by 4. For example, suppose the followingequations are defined
in the script file:

g prod 4
p = g 6
q twice g 3

Then p :::} 24, and q :::} 48.

1.5. CONDITIONAL EXPRESSIONS

1.5 Conditional Expressions

19

A conditional expression uses a Bool value to make a choice. Its general form
is:

if boolean.expression then expl else exp2.

The boolean expression is first evaluated; if it is True then the entire conditional
expression has the value of expl; if it is False the whole expression has the
value of exp2.

A conditional expression must always have both a then expression and an
else expression. Both of these expressions must have the same type , which is
the type of the entire conditional expression . For example ,

if 2<3 then "bird" else "fish"

has type String and its value is "bird". However, the following expressions
are incorrect:

if 2<3 then 10
if 2+2 then 1 else 2
if True then "bird" else 7

no else expression
must be Bool after if
different types

The abs function returns the absolute value of its argument, and it uses a
conditional expression since the result depends on the sign of the argument:

abs :: Integer -) Integer
abs x = if x<O then -x else x

1.6 Local Variables: let Expressions

There are many times when we need to use computed values more than once.
Instead of repeating the expression several times , it is better to give it a local
name which can be reused . Th is can be done with a let expression. The
general form is:

let equation
equation

equation
in expression

This entire construct is just one big expression, and it can be used anywhere
an expression would be valid. When it is evaluated, the local equations give
temporary values to the variables in their left hand sides; the final expression

20 CHAPTER 1. INTRODUCTION TO HASKELL

after in is the value of the ent ire let expression. Each of the local definitions
can refer to the others.

For example , consider the following function definition which defines the
two real solutions (Xl, X2) of the quadratic formula a x x2 + b x X + c = 0:

quadratic :: Double -) Double -) Double -) (Double,Double)
quadratic abc

= let d = sqrt (b-2 - 4*a*c)
xi = (-b + d) / (2*a)
x2 = (-b - d) / (2*a)

in (xi ,x2)

The let expression gives the three variables d, xi and x2 values which can
be used locally. For example, the value of d is used in the equations for xi and
x2. Outside of this let expression, the names d, xi and x2 are not defined by
these equations (although they might be defined by equations in some enclosing
let expression).

Let expressions are expressions! For example, this is not a block of state­
ments that gets executed; it is an expression that uses a local definition :

2 + let x = sqrt 9 in (x+i)*(x-i)

1.7 Type Variables

Recall the functions fst and snd, which return the first and second component
of a pair. There is actually an infinite number of different typ es these functions
could be applied to, including :

(Integer ,Float)
([Char], [Integer])
(Double, (Int,Char))

It would not be good to give fst a restrictive type , like (Integer,Float)
-) Integer; this would work for the first example above, but not the others.
We really want to say that fst takes a pair whose components may have any
type, and its result has the same type as the first component. This is done by
using type variables:

fst :: (a,b) -) a
snd : : (a,b) -) b

Type variables must begin with a lower case letter, and it is a common
convention to use a , b and so on.

A function with a type variable in its type signature is said to be polymor­
phic, because its type can take many forms. Many important Haskell functions
are polymorphic, enabling them to be used in a wide variety of circumstances.
Polymorphism is a very important invention because it makes it easier to reuse
programs.

1.8. COMMON FUNCTIONS ON LISTS

1.8 Common Functions on Lists

21

Haskell provides a number of operations on lists. A few of the most important
ones are presented in this section. We will have more to say about these
functions later in the book, where we will use them in a variety of practical
applications, show how they are implemented, and prove theorems stating some
of their mathematical properties.

The length function

The length function returns the number of elements in a list:

length :: [a] -> lnt

length [2,8,1] => 3
length [] => 0
length "hello" => 5
length [l .. n] => n
length [1 ..] => <infinite loop>

The!! (index) operator

The (! !) operator lets you access a list element by its index . Indices start
from O.

(! l) .. [a] -> lnt -> a

[1,2,3] !! 0 => 1
"abede" !! 2 => 'e'

The take function

This function takes the first n elements from a list:

take :: lnt - > [a] -> [a]

take 2 [1,2,3] => [1,2]
take 0 [1,2,3] => []
take 4 [1,2,3] => [1,2,3]

The drop function

The drop function drops the first n elements from a list; it removes exactly the
same elements that take would return:

22 CHAPTER 1. INTRODUCTION TO HASKELL

drop:: rnt -> [a] -> [a]

drop 2 [1,2,3] => [3]
drop 0 [1,2,3] => [1,2,3]
drop 4 [1,2,3] => []

The ++ (append) operator

Two lists can be joined together using the append (also called concatenation)
(++) operation. All of the elements in the resulting list must have the same
type, so the two lists must also have the same type.

(++) :: [a] -> [a] -> [a]

[1,2] ++ [3,4,5] => [1,2,3,4,5]
[] ++ "abc" => "abc"

The map function

Often, we want to apply a function to each element in a list . For example, we
may have a string of lower case letters and want them to be upper case letters.
To do this, we use map, which takes a function of one argument and a list. It
applies the function to each element of the list.

map :: (a -> b) -> [aJ -> [b)

map toUpper "the cat and dog" => "THE CAT AND DOG"
map (** 2) [1,2,3] => [1,4,9]

Exercise 6. Write a function that uses map and takes a list of Ints and converts
them into Boolean (e.g. 0 becomes False and 1 becomes True). .

Exercise 7. The function or takes a list of Boolean values and returns True
if at least one of them is True and False otherwise. Write a function that
uses map and takes a list of Char values, returning True if at least one of
them is '0' and False otherwise .

The zip function

The function zip pairs up the elements of two lists .

zip:: [a] -> [b] -> [(a, b)]

zip [1,2,3] "abc" => [(1,'a'),(2,'b'),(3,'c')]
zip [1,2,3] "ab" => [(1,'a'),(2,'b')]
zip [1,2] "abc" => [(1,'a'),(2,'b')]

If the lists are not of the same length, then the longer one's extra elements
do not appear in the result.

1.8. COMMON FUNCTIONS ON LISTS 23

The zipWi th function

The function zipWi th is a funct ion like map except that it takes two lists. Like
zip, the longer list 's extra elements ar e ignored.

zipWith :: (a -> b -> c) -> [a] -> [b] -) [c]

zipWith (+) [2,4 .. 10] [1,3 . . 10] => [3,7,11,15,19]
zipWith (*) [1,2,3] [1,2,3] => [1,4,9]

Exercise 8. Write a function that t akes two lists of typ e [Maybe Int] and
examines the pair of list heads before looking at the rest of th e lists . It
returns a list in which the Ints of each pair have been added if both are of
the form Just n, preserving any Just n value oth erwise. For exampl e,

addJust [Just 2, Nothing, Just 3]
[Nothing, Nothing, Just 5]

=> [Just 2, Nothing, Just 8]

The foldr function

Finall y, there are two very powerful functions on lists that require some ex­
perience before you are really comfort able with t hem. Both make use of an
accumulator , a value that becomes more and more like the final result of the
computation.

Let 's look at an accumulator more closely. Suppose that we apply (+) to
the elements of the list [1,2,3] in this way:

(+) 1

«+) 2
«+) 3 0))

On the third line, there is an expression which forms the second argument of
the function application that appears on the second line. That application in
turn forms the second argument of the appli cation appea ring on the first line.
In each case, the second argument of th e (+) function is the result of a previous
computation, handed on to the next applicat ion. Thi s second argument is an
accumulator.

The order in which the list elements are used is from right to left . First
the 3 is added to 0, then the result of that addition is added to 2, the second
element of the list. Finally 1, the first element of the list , is added to the result
of th e previous addi tion.

The foldr function does something very similar. It takes a function of
two argument s, and the second argument is an accumulator. Initially, the
accumulator has to have a value, so foldr receives an initial value as well. Its
last argument is a list of values, and it returns the accumulated value. If we
were to use foldr to implement the example above , we would write :

24

foldr (+) 0 (1,2 ,3]

CHAPTER 1. INTRODUCTION TO HASKELL

The type of foldr is complex. Its function argument takes two values and
returns the accumulator, so the type of this argument is a -> b -> b . The
first value of the accumulator is the initial value, so its type is b. The type of
the list argument is [a], and the result type is b , the final accumulator value.

foldr :: (a -> b -> b) -> b -> [a] -> b

The accumulator makes it possible to do a surprising variety of things with
foldr . For example, the sum function sums the numbers in its list argument.
We can implement sum with foldr like this :

foldr (+) 0 [1,2,3,4,5]
=> (+) 1 «+) 2 «+) 3 «+) 4 «+) 5 0»»
=> 15

We can also implement (++) with foldr:

foldr (:) [3,4,5] [1,2]
=> (:) 1 «» 2 [3,4,5])
=> [1,2,3,4,5]

Other functions such as and, which returns True if its list argument contains
only True values, and or (which is similar) can also be implemented using
foldr:

foldr (&&) True [True, False, True] => False

foldr (I I) False [True , False, True] => True

The . (composition) operator

Nowlet's take a look for just a moment at some more notation. The composition
operator (.) allows us to create a pipeline of function applications, each of
which is waiting for an argument. For example,

(toUpper.toLower) 'A' => 'A'

(toLower.toUpper) '2' => 'z'

In each case, the first (rightmost) function receives its argument, then gives
its result to the function on the left. That function returns the final result of
the application.

This notation also allows us to form function applications like this :

« :).toUpper) 'a' "be" => "Abc"

1.8. COMMON FUNCTIONS ON LISTS 25

Again , the first function receives the 'a' and returns 'A'. Then the cons
function receives the'A' and the string, and creates a new string.

With this in mind, new possibilities for using foldr become available . We
can write map, or elem, a function that returns True if its first argument is in
its list argument:

map toUpper "abc"
foldr «:).toUpper) [] "abc"
=> "ABC"

elem 3 [1,2,3,4,5]
= foldr «11) .(== 3» False [1,2,3,4,5)

=> True

The foldl function

The foldl function also uses an accumulator, but it processes the list elements
from left to right . We look again at applying (+) to the elements of the list
[1,2,3):

(+)

« +)
«+) 0 1)

2)
3

As you can see, the first argument is the accumulator, and the first element of
the list, not the last, is given to the accumulator initially.

In many cases, this makes no difference, and foldl returns the same result
as foldr . For example, the following two expressions produce the same result
because the multiplication operation is associative, and 1 is an identity for
multiplication:

foldl (*) 1 [1,2,-3]
foldr (*) 1 [1,2,-3]

However, these expressions do not give the same result because subtraction is
not associative:

foldl (-) 0 [1,2,3,4]

foldr (-) 0 [1,2,3,4]

It can be challenging to write applications of foldr and foldl. The best
way to do this effectively is to do an example by hand until you get used to writ­
ing applications that work. This process is called 'expanding' an application.
Here are some examples of expanding applications of foldr and foldl :

26 CHAPTER 1. INTRODUCTION TO HASKELL

foldr (++) (J [[1],[2],[3]]
=> (++) [1] «++) [2] «++) [3] (J))

=> (++) [1] «++) [2] [3])
=> (++) [1] [2,3]
=> [1,2,3]

foldr (&&) False [True,False]
=> (&&) True «&&) False False)
=> (&&) True False
=> False

foldl (-) 0 [1,2,3]
=> (-) «-) «-) 0 1) 2) 3
=> (-) «-) -1 2) 3
=> (-) -3 3
=> -6

foldl max 0 [1,2,3]
=> max (max (max 0 1) 2) 3
=> max (max 1 2) 3
=> max 2 3
=> 3

Exercise 9. Expand the following applications:

foldr (•• 2) 0 [1,2,3]

foldr seen False [3,2,1,4]

foldr spaces (J ["this" "is" "a" "sentence"]

1.9 Data Type Definitions

Tuples and lists are very useful, but there comes a point when you would
like to define the shape of your data so that it fits the problem being solved.
Haskell is particularly good at doing this because it supports algebraic data
types, a flexible form of user-defined data structure. Furthermore, pattern
matching, which we have already used for tuples and lists, can be used with
the algebraic data types. Together, these allow you to define and use made-to­
order structures.

Suppose that you wanted to specify an enumerated type in Haskell. For
example, you would like a type that enumerates colours:

data Colour = Red I Orange
I Green I Blue

Yellow
Violet

1.9. DATA TYPE DEFINITIONS 27

This declaration states that the Colour type contains each of the values
Red, Orange, and so on. If these appeared in a list , as in [Red, Yellow,
Green], the type of the list would be [Colour]. Each of these values is a
constructor, and constructors are the only Haskell values that start with an
upper case letter.

The Bool type which we have been using throughout is not actually a built­
in type; it is defined as follows in the standard library:

data Bool = False I True

Now suppose that you would like values that contain fields, because infor­
mation of some kind must be associated with each of the values. We might
define an Animal type in which each value indicates an animal species and
some additional information about a particular animal , such as its breed. The
type would contain entries for dogs and cats, and a string for each of these
which could be used to store their breed, but our entry for rats would not need
a string for the breed because we are not particularly interested in rat breeding.

data Animal = Cat String I Dog String I Rat

Here are some values with type Animals:

Cat "Siamese"
Cat "Tabby"
Dog "Spaniel"
Dog "big and hungry"
Rat

As you can see, there is a field next to the Cat constructor, which can be
accessed by a function defined on the type, using pattern matching.

Sometimes a more flexible approach is needed. Instead of storing a string
with each cat or dog, we might want to store some arbitrary information. This
can be accommodated by letting Animal take two type variables, a and b, which
can stand for any data type :

data Animal a b
= Cat a I Dog b I Rat

Type variables must start with lowercase letters. It is a common convention,
but not required, to use a, b and so on for type variables. Type variables allow
Animal to be used with arbitrary annotations, for example:

data BreedOfCat = Siamese I Persian I Moggie

BreedOfCat b
BreedOfCat b
String b
a Integer
a b

. . Animal

.. Animal
Animal

.. Animal
Animal

Cat Siamese
Cat Persian
Cat "moggie" . .
Dog 15
Rat

28 CHAPTER 1. INTRODUCTION TO HASKELL

Data types with type variables can be very useful. Suppose that you are
writing a function that may succeed in computing its result, which has type
a, but may also fail to get a result . A common example is a search function,
which is looking for a value in a table, and which might fail. Instead of letting
the program crash, it is better to return a value that says either 'I succeeded,
and the result is x' or else 'I failed to get a result' . The Maybe type is just what
we need:

data Maybe a = Nothing I Just a

Suppose we are writing a function to look up someone's telephone number ,
using a database represented as a list of pairs. The first component of each
pair is a person's name, and the second component is their telephone number
(an integer) . It isn't a good idea to have this function simply return an integer;
a search might be made for a person not in the database. The solution is to
use Maybe:

phone_lookup : : [(String,Integer)] -> String -> Maybe Integer

Now the lookup function can be defined so that it always returns something
sensible.

You may have tried some examples by this time, and noticed that Haskell
will not print values of your new type . This is because it uses a function. called
show to convert a data value to a string that can be printed, and you have not
constructed a version of show that it can use.

Fortunately, you do not have to define show yourself. Haskell will do it
automatically for you when you end a data type definition with the words
deriving Show, as in:

data Colour = Red I Orange
I Green I Blue
deriving Show

Yellow
Violet

Pattern matching can take place over values of any types, including alge­
braic data types defined by the user. For example, let's define a function that
takes the result of a phone number search and produces a comprehensible string
to be printed.

phone_message :: Maybe Integer -> String
phone_message Nothing = "Telephone number not found"
phone_message (Just x) = "The number is " ++ show x

Exercise 10. Define a data type that represents six different metals, and au­
tomatically creates versions of (==) and show.

Exercise 11. Suppose that you have some coins that have been sorted into
piles, each of which contains only one kind of coin. Define a data type
that can be used to represent the piles of coins.

1.10. TYPE CLASSES AND OVERLOADING 29

Exercise 12. A universal type is one in which any type can be represented.
Each different type is identified by its own constructor, which serves as a
distinguishing tag . For example, here is a universal type that represents
three different types of number:

data Number = INT Int I INTEGER Integer I FLOAT Float
deriving (Eq, Show)

Define a universal type that contains booleans , characters and integers
(lnts) .

Exercise 13. Define a type that contains tuples of up to four elements .

Exercise 14. The quadratic equation a . x2 + b · x + c = 0 has two roots, given
by the formula

x=
-b ± Vb2 - 4 . a . c

2·a

as long as the discriminant (the expression under the square root sign)
is non-negative. If the discriminant is negative the roots are complex.
Define a function that finds the real solutions of the quadratic equation,
and reports failur e if they don't exist.

1.10 Type Classes and Overloading

There are some operations which can be used on several different types , but
not on all types . For example, the (+) function can be applied to integers or
floating point numbers (as well as several other kinds of number). This means
that there are two completely different implementations of this function, one
for integers and another for floating point. And that raises a question: what is
the type of (+) ? It would be too restrictive to specify

(+) : : Integer -> Integer -> Integer

because then it would be illegal to write 3.14+2.7. On the other hand, it
would be too general to specify

(+) : : a -> a -> a

because this says that any type can be added, allowing nonsensical expressions
like True+False and "cat"+"mouse". What we need to say is that (+) can be
used to add two values of any type, provided that type is numeric . The (+)
function actually has the following type:

(+) :: Num a => a -> a -> a

30 CHAPTER 1. INTRODUCTION TO HASKELL

Num is the name of a type class, a set of types sharing a property. The
members of the set Num include Int, Integer, Float , Double, and many others,
and their essential property is that arithmetic makes sense on these types.
However, types like Bool and String, where addition is meaningless, are not
members of the class Num. In the type of (+), the notation Num a => is called
a class constraint or a context, and it means that (+) can only be applied to
arguments with types that belong to the Num set .

Haskell allows you to define new type classes, and to specify that a type is a
member of a class. This is a powerful corner of the language, but we will not go
into it in detail; see the references in Section 1.11 for a complete explanation.

To read this book, you don't need to be able to define new type classes or
instances, but error messages sometimes mention type class constraints, so it
is helpful to know what they mean.

There are a few commonly used type classes that are ubiquitous in Haskell;
the most important are Num, Show and Eq. Show is the class of types that can
be converted in a meaningful way into a character string. Most ordinary data
values are in Show, but functions are not. Eq is the class of types that can be
compared for equality.

When you are faced with a type error in a program, it is good to realise
that values (with their class constraints) can migrate from a long way away.
For example, if we have the definition

fun abc = if a then b == c else False

then the type of fun has to reflect the fact that band c have to be in the Eq
class. This means that the fun function also has a type constrained by the Eq
class, so the definition should be written as:

fun : : Eq b => a -> b -> b -> Bool
fun abc = if a then b == c else False

If you forget to include the class constraint Eq b => in the type signature,
the Haskell compiler will give an error message. The context on the type of fun
declares that whatever calls fun and supplies it with arguments must ensure
that there is a meaningful way to compare them .

You will inevitably come up against functions that have contexts in their
types. The common sense rule is: if your function definition uses an overloaded
operator (one with a type that has a context) , then its type must contain that
context as well. If your function has more than one such operator and the
operator types have different contexts, then each new context must appear in
the type of the function .

For example, suppose you want to write a function that checks whether a
value appears in a list , and returns a corresponding error message. Here's a
definition:

detect .. (Eq a, Show a) => a -> [aJ -> String

1.11. SUGGESTIONS FOR FURTHER READING

detect v list =
if elem v list

then "List contains " ++ show a
else "List does not contain" ++ show a

31

The function elem has a type that contains the context Eq a because it uses
the overloaded operator ==. The type of detect now has to have this context,
and it also needs the Show a context, because it uses the overloaded operator
show.

1.11 Suggestions for Further Reading

A good source of information on the web about Haskell, and functional pro­
gramming in general , is the Haskell Home Page: www .haskell .org.This con­
tains pointers to a variety of relevant books and papers, as well as the language
reference manuals.

Several good textbooks on Haskell are available: Introduction to Functional
Programming using Haskell, by Bird [3] ; An Introduction to Functional Pro­
gramming Systems Using Haskell, by Davie [7] ; and Haskell: The Craft of
Functional Programming, by Thompson [30] .

The book by Hudak , The Haskell School of Expression: Learning Functional
Programming through Multimedia [17], shows how to use Haskell through a
series of applications to graphics, animations and music.

The use of equations rather than assignments gives functional programming
a very different style from imperative programming. Purely Functional Data
Structures [22], by Okasaki, explores this topic in depth, and is an excellent
intermediate level text on functional programming.

1.12 Review Exercises

Exercise 15. Define a function

showMaybe : : Show a => Maybe a -> String

that takes a Maybe value and prints it .

Exercise 16. A Bit is an integer that is either 0 or 1. A Word is a list of bits
that represents a binary number. Here are some binary values that can
be represented by Words:

[1,0] => 2
[1 ,0 , 0 , 1] => 9
[1,1,1] => 7

We can define functions that are the Bit equivalent of or and and as
follows:

32 CHAPTER 1. INTRODUCTION TO HASKELL

bitOr :: Int -> Int -> Int
bitOr 0 0 = 0
bitOr x y = 1

bitAnd :: Int -> Int -> Int
bitAnd 1 1 1
bitAnd x y = 0

Now it is possible to take the 'bitwise' and of two words as follows:

bitwiseAnd [1,0,0] [1,0,1]
=> [bitAnd 1 1, bitAnd 0 0, bitAnd 0 1]
=> [1,0,0]

bitwiseAnd [0,0,0] [1,1,0]
=> [0,0,0]

Write a function bitwiseAnd that takes two Words and creates a third
Word that is the bitwise and of the two Words.

Exercise 17. Suppose that you are to define a type that contains lists of any
type, but only up to a depth of three. The proposed solution is:

data Lists1 a = L1 [a]
deriving (Eq, Show)

data Lists2 a L2 [Lists! a]
deriving (Eq, Show)

data Lists3 a L3 [Lists2 a]
deriving (Eq, Show)

Is it possible to represent a list of depth greater than three with these
definitions?

Exercise 18. Each of the following expressions has a type error. Change the
expression so that the type error no longer occurs .

[1, False]
[(3,True), (False,9)]
'a' > "b"

'2' ++ 'a'
2 == False

[[1], [2], [[3]]]

Exercise 19 . What caused the type error in this definition and application?

f :: Num a => (a,a) -> a
f (x,y) = x + y

f (True,4)

1.12. REVIEW EXERCISES

Exercise 20. Why does this definition produce an error when used?

f :: Maybe a -> [a]
f Nothing = []

f (Just 3)

33

Exercise 21. Write a list comprehension that takes a list of Maybe values and
returns a list of the Just constructor arguments. For example,

[Just 3, Nothing, Just 4] => [3,4]

Exercise 22. Using a list comprehension, write a function that takes a list of
lnt values and an lnt value n and returns those elements in the list that
are greater than n.

Exercise 23. Write a function

f :: [lnt] -> lnt -> [lnt]

that takes a list of lnt values and an lnt and returns a list of indexes at
which that lnt appears.

Exercise 24. Write a list comprehension that produces a list giving all of the
positive integers that are not squares in the range 1 to 20.

Exercise 25. Write a function that uses foldr to count the number of times
a letter occurs in a string.

Exercise 26. Write a function using foldr that takes a list and removes each
instance of a given letter.

Exercise 27. Using foldl , write a function

rev: : [a] -> [a]

that reverses its list argument.

Exercise 28. Using foldl, write a function

maybeLast :: [a] -> Maybe a

that takes a list and returns the last element in it if there is one, otherwise
it returns Nothing.

Chapter 2

Propositional Logic

Logic provides a powerful tool for reasoning correctly about mathematics, al­
gorithms and computers. It is used extensively throughout computer science,
and you need to understand its basic concepts in order to study many of the
more advanced subjects in computing. Here are just a few examples, spanning
the entire range of computing applications, from practical commercial software
to esoteric theory:

• In software engineering it is good practice to specify what a system should
do before starting to code it. Logic is frequently used for software speci­
fications.

• In safety-critical applications, it is essential to establish that a program is
correct. Conventional debugging isn't enough-what we want is a proof
of correctness. Formal logic is the foundation of program correctness
proofs.

• In information retrieval, including Web sear ch engines, logical proposi­
tions are used to specify the properties that should (or should not) be
present in a piece of information in order for it to be considered relevant.

• In artificial intelligence, formal logic is sometimes used to simulate intel­
ligent thought processes. People don't do their ordinary reasoning using
mathematical logic, but logic is a convenient tool for implementing cer­
tain forms of reasoning.

• In digital circuit design and computer architecture, logic is the language
used to describe the signal values that are produced by components. A
common problem is that a first-draft circuit design written by an engineer
is too slow, so it has to be transformed into an equivalent circuit which
is more efficient. This process is often quite tricky, and logic provides the
framework for doing it.

35

C. Hall et al., Discrete Mathematics Using a Computer
© Springer-Verlag London 2000

36 CHAPTER 2. PROPOSITIONAL LOGIC

• In database systems, complex queries are built up from simpler compo­
nents. It's essential to have a clear, precise way to express such queries,
so that users of the database can be sure they 're getting the right infor­
mation. Logic is the key to expressing such queries.

• In compiler construction, the typechecking phase must determine whether
the program being translated uses any variables or functions inconsis­
tently. It turns out that the method for doing this is similar to the
method for performing logical inference. As a result, algorithms that
were designed originally to perform calculations in mathematical logic
are now embedded in modern compilers.

• In programming language design, one of the most commonly used meth ­
ods for specifying the meaning of a computer program is the lambda
calculus, which is actually a formal logical system originally invented by
a mathematician for purely theoretical research.

• In computability theory, logic is used both to specify abstract machine
models and to reason about their capabilities. There has been an ex­
tremely close interaction between mathematical logicians and theoretical
computer scientists in developing a variety of machine models.

In this chapter, we discuss the difficulties with informal logical reasoning in
English, and we show how to avoid those difficulties with formal logic. There
are several different kinds of formal logic, and for now we will consider just the
simplest one, called propositional logic. After looking at the language of propo­
sitional logic, we will consider in detail three completely different mathematical
systems for reasoning formally about propositions: truth tables, natural deduc­
tion and Boolean algebra.

Truth tables define the meanings of the logical operators, and they can be
used to calculate the values of expressions and prove that two propositions
are logically equivalent . Since truth tables directly express the underlying
meaning of propositions, they are a semantic technique. Truth tables are easy
to understand for small problems, but they become impossibly large for most
realistic problems.

Natural deduction is a formalisation of the basic principles of reasoning. It
provides a set of inference rules that specify exactly what new facts you are
allowed to deduce from some given facts. There is no notion of the 'value' of
propositions; everything in this system is encapsulated in the inference rules.
Since the rules are based on the forms of propositions, and we don't work
with truth values, inference is a purely syntactic approach to logic. Many
recently developed techniques in programming language theory are based on
more advanced logical systems that are related to natural deduction.

Boolean algebra is another syntactic formalisation of logic, using a set of
equations-the laws of Boolean algebra-to specify that certain propositions
are equal to each other. Boolean algebra is an axiomatic approach, similar

2.1. THE NEED FOR FORMALISM 37

to elementary algebra and geometry. It provides an effective set of laws for
manipulating propositions, and is an essential tool for digital circuit design.

2.1 The Need for Formalism

Formal logic was first developed by the ancient Greeks, who wanted to be able
to reason carefully about statements in natural language. They were fascinated
by the idea of statements which are known to be true with absolutely no doubt
whatsoever. However, they quickly realised that logical reasoning is difficult
and unreliable when using a natural language like Greek (or English!). All sorts
of ambiguities arise and it's hard to keep sight of the main line of reasoning
without getting confused. We will begin by looking at some of these difficulties,
and how to get around them using propositional variables.

Suppose a friend says 'The sun is shining and I feel happy' . At first sight
the meaning is obvious, but when you think about the sentence more carefully
it isn't so clear. Perhaps your friend likes sunny days and feels happy because
the sun is shining. It sounds like there is some connection between the two
parts of the sentence , so in this context and means and therefore. But this
reasoning depends on our experience with bright weather and happiness, and
it has nothing to do with the logical structure of the sentence. Now consider
another example : 'Cats are furry and elephants are heavy' . This has exactly
the same structure as the preceding example , but nobody would assume that
elephants are heavy because of the furriness of cats. In this case, and means
and also. The word and has several subtly-different meanings, and we choose
the appropriate meaning using our knowledge of the world. Unfortunately, this
means we can't even rely on a simple word like and while reasoning in English.

Furthermore, there are many other problems in working out the precise
meanings of English sentences. For example , 'The sun is shining' is true some
days and false other days. The meaning of 'That cloud looks like a motor bike'
depends on who says it, and which cloud they are pointing at. The list of
such problems seems to be endless, and you can read about them in books on
linguistics and philosophy.

There is no way to solve all the ambiguities of English. Who would want
to do that anyway? The subtle nuances in natural language are not necessarily
bad: they lead to much of the richness and expressiveness of literature. Yet
they certainly can get in the way of logical thinking.

Instead of attempting the impossible-totally reliable reasoning in natural
language-we need to separate the logical structure of an argument from all
the connotations of the English. We do this using propositions.

A proposition is just a symbolic variable whose value must be either True
or False, and which stands for an English statement which could be either true
or false. The crucial point here is that a proposition must be either True or
False; there is no room for shades of meaning or interpretation. Usually we'll
use A, B , C, D etc . as propositional variables , but any variable name would

38 CHAPTER 2. PROPOSITIONAL LOGIC

do. For example, we can define some propositional variables to stand for the
following English statements:

A = The sun is shining.
B = I feel happy.
C = Cats are furry.
D = Elephants are heavy.

The next step is to translate a complete English sentence into a mathemat­
ical statement which contains nothing but propositional variables (A, B etc.)
and logical operators (and, or, not, implies) .

The sun is shining and I feel happy.
Cats are furry and elephants are heavy.

===} A and B
===} C and D

The translation step is absolutely crucial, because it removes all the am­
biguities of English and all our knowledge and experience of the world (like
sunlight bringing happiness) , and it leaves us with nothing but propositional
variables and logical operators.

Sometimes it isn't clear how to translate an English statement into propo­
sitionallogic. What about the sentence, 'It is raining but Jim is happy'-does
this mean the same thing as 'It is raining and Jim is happy', or does the use
of but indicate a different meaning? Such questions fall outside the realm of
mathematics, and you just have to figure out what the English means, or ask
for a clarification . At least there is only one time when we need to worry about
the subtleties of natural language-during the translation process-and we can
forget about it thereafter.

A proposition must be either true or false; it cannot be 'maybe' or 'some­
times' or 'yes, but . . . '. If you translate an opinion like 'Cats are better than
dogs because they purr' into a propositional variable P, then within the math­
ematics you'll just have to accept P as being true or false, and you won't be
able to get at anything inside P, such as the reason that cats are better than
dogs (indeed, you can' t even get inside P to find out that it is about cats and
dogs, not about turtles and rabbits) .

There are many statements that cannot be represented by propositions
because they require context in order to make their meaning clear. For example,
if we define A to represent 'That cloud looks like a motor bike', then it must be
clearly established in the English which cloud looks like a motor bike, and who
thinks that. There are more complex logical systems that incorporate time,
but propositional logic doesn't do that.

2.2 The Basic Logical Operators

Logical operators correspond to English words like and, or, not and therefore,
providing a way to build complex propositions from simpler ones. This section

2.2. THE BASIC LOGICAL OPERATORS 39

defines the exact meaning of the logical operators, and shows how to translate
between English statements and mathematical propositions.

2.2.1 Logical And (1\)

The logical and operator corresponds to the English conjunction 'and': it is
used to claim that two statements are both true . Sometimes it is called 'logical
conjunction', and its mathematical symbol is r;

The proposition A /\ B is simply a statement that A is True and also B is
True. It doesn't have any subtle connotations; in particular, it doesn't mean
that there is any connection between A and B.

It 's vitally important to remember that people can say things that are
untrue! If someone tells you' A /\ B' , you have to bear in mind two possibilities:

• Their statement was correct .

• They lied to you.

If their statement was true, then both A and B are indeed true. However, if
they lied to you! then you don't actually know about the truth of A or B.

Since we can't simply accept every statement as being true, we need a way
to calculate whether a statement is true based on its constituent parts. For
example if you already know that A is true and B is true, then the statement
'A and B' is certainly true. But if you know that A is false (or that B is false),
then you know that the statement 'A /\ B' is false.

The mathematical symbol for logical and is /\. This symbol is shorter than
'and', and it is clearly a mathematical operator-there is no danger of confusing
/\ with the various vague meanings of the English word 'and,.2

Think of and as an operator over logical propositions, just as + is an oper­
ator over numbers . We can define the meaning of and by considering whether
'A /\ B' is true for all possible values of A and all possible values of B . Such a
listing is called a truth table, and here is the definition of logical and:

A B A/\B
False False False
False True False
True False False
True True True

1 A Los Angeles car salesman famous for his flamboyant television advertisements once ran
a commercial claiming, 'We lose money on every car we sell, but we make it up on volume .'

2In the elderly (but still popular!) programming language Cobol, you do arithmetic with
statements like Add a to b giving x instead of the more usual x := a+b. The designers of
Cobol believed that + is mathematical, and therefore difficult , while 'Add .. . giving . .. ' is
English, and therefore easy. The Cobol notation is at least partly readable by nonprograrn­
mers, which may be valuable in comm ercial applications, but it becomes unwieldy for large
scale calculations. Once you get used to it, mathematical notation is easier than English!

40 CHAPTER 2. PROPOSITIONAL LOGIC

Each time False is an argument value, /\ returns False. Only when both argu­
ments are True does it return True.

Various notations are used for the two truth values . Here we have used the
full names True and False, but those become tedious to write when there are a
lot of entries in the table. Another common notation is to use T and F. The
usual notation in digital circuit design is to use 1 for True and 0 for False. Apart
from being concise, this has the great advantage that 0 and 1 are more easily
distinguishable than T and F, making the truth tables more readable. You
may use any of these notations. However, if you use 0 and 1 as your notation
for the truth values, be sure to remember that these are not numbers. For the
sake of comparison, here is how the preceding truth table looks like with the
0, 1 notation.

A B A/\B
0 0 0
0 1 0
1 0 0
1 1 1

Given any two propositions, you can build a bigger one by connecting them
with /\. For example, from the propositional variables A, Band C we can build
an endless list of more complex propositions, including the following:

A/\B
A /\ (B 1\ B)
(A /\ B) /\ C
(A 1\ B) 1\ (B 1\ C)

2.2.2 Inclusive Logical Or (V)

The logical or operator corresponds to the most common usage of the English
word or. It takes two arguments and returns True if either argument (or both)
is True; otherwise it returns False. Other commonly used names for this oper­
ation are logical disjunction and inclusive or, and the symbol for the operation
is V. Here is the truth table defining V:

P Q PVQ
False False False
False True True
True False True
True True True

The English word 'or' has several different meanings. The inclusive or
function corresponds to the simplest of these: if A V B is true, then perhaps
A is true, perhaps B is true, perhaps both are true, but you know they can't
both be false. However, this is all that A V B means . It does not indicate any
connection between A and B.

2.2. THE BASIC LOGICAL OPERATORS

2.2.3 Exclusive Logical Or (0)

41

In English, we often think of 'A or B' as meaning 'either A or B-one or the
other, but not both', excluding the possibility that A is true at the same time
as B. A typical example is 'It will be bright and sunny at the picnic, or I will
go home.' This meaning of the word 'or' is called exclusive or because if one
of the alternatives is true, this excludes the possibility that the other is also
true. Often the 'either . .. or' construction indicates that the exclusive or is
intended; for example: 'Either you pay me, or I will sue you.' However, you
can't always rely on the presence of 'either'. The symbol for exclusive or is 0.
Its truth table differs from the V truth table only in the last line.

p Q P0Q
False False False
False True True
True False True
True True False

Since the English word 'or' sometimes means inclusive or and sometimes
exclusive or, you have to be particularly careful when translating English sen­
tences containing 'or' into propositions.

In many applications of mathematical logic, inclusive or plays a central role
while exclusive or isn't too important. In many books and papers, the word
'or' is taken to mean inclusive or , and the exclusive variety isn't mentioned at
all . When logic is applied to digital circuit design, both kinds of or are used
heavily.

2.2.4 Logical Not (-.)

The English word 'not' is used to assert that a statement is false. It corresponds
to the logical not (also called logical negation) operator, whose symbol is -' . It
takes one argument and returns the opposite truth value :

A -.A
False True
True False

2.2.5 Logical Implication (~)

The logical implication operator -t corresponds to conditional phrases in En­
glish. For example, an English sentence in the form 'If A is true, then B is
true.' would be translated into the proposition A -t B. Logical implication
is also closely related to the if . .. then.. . then construct in programming
languages. As usual, the precise definition is given by a truth table:

42 CHAPTER 2. PROPOSITIONAL LOGIC

A B A~B

False False True
False True True
True False False
True True True

Suppose you know that a proposition A ~ B is true. This says that if
A is true, then B must also be true. But that's all it means-in particular,
it doesn't tell you whether A is actually true. A common pitfall in informal
English debate is to jump to the conclusion that A is true, when the speaker
has merely said 'if A is true, then B is also true .' In the following example ,
A ~ B does not tell you what the weather will be like today!

A
B
A~B

It is sunny today.
There will be a picnic.
If it is sunny today, then there will be a picnic.

There is a subtle but crucial difference between ~ and the corresponding
English sentences. The last English sentence in the example above suggests a
cause-and-effect relationship between the weather and the picnic: the picnic
might be cancelled because of the rain. In contrast, A ~ B says nothing at all
about any connection between A and B; it means nothing more than what the
truth table says. Consider the following example:

A
B
A~B

The moon orbits the earth.
The sun is hot.
If the moon orbits the earth, then the sun is hot.

These statements are all true! Logically, this is identical to the previous ex­
ample. Since A and B are both true, the definition of ~ says that A ~ B
is also true . However, the English translation sounds strange: it is true that
the moon orbits the earth, and the sun is surely hot, but the reason the sun is
hot has nothing to do with the moon. The English sentence is misleading, and
you wouldn't want to use it in a debate, but there isn't anything wrong with
the logical proposition. Logical implication says nothing about cause-and-effect
relationships.

Another point about implication sometimes causes confusion: many people
find the first line of the implication truth table surprising. If A is false, then
why should A ~ B be true, when B is actually untrue? Let's see how this
might translate into English, picking an example where A and B are both false:

A
B
A~B

The sun is cold.
The moon is made of green cheese.
If the sun is cold, then the moon is made of green cheese.

Here, A and B are both false, but the definition says that A ~ B is true. Yet
why should the English translation of A ~ B be true?

2.2. THE BASIC LOGICAL OPERATORS 43

Even though it may seem strange to you to define False -7 False to be True,
you probably already understand the idea underlying the definition : it reflects
a colourful way to express skepticism . Suppose, for example , that your friend
claims 'Fifty people came to my party last night', but you're sure there were
only twenty. You might retort , 'If fifty people went to your party, then I'm
the king of China'. Your reply has the form A -7 False, where A means fifty
people went to the party, since you aren 't the king of China. Furthermore, the
statement you are making is true. Thus you are asserting A -7 False = True,
and a quick study of the truth table for -7 shows that A must be False.

English sentences contain all sorts of connotations but logical propositions
mean nothing more than what the defining truth tables say. The truth table for
-7 is just a definition . It is meaningless to argue about whether the definition
given above is 'correct' ; definitions aren't either right or wrong, they are just
definitions.

The pertinent question to ask is why is it convenient to define -7 so that
False -7 False is true? Perhaps the most honest answer is just to say that
logicians have been refining their definitions for hundreds of years, and based
on their experience, they feel this is the best way to define -7. However, here's
a more computer-oriented way to think about it: consider the programming
language statement if A then B. If A turns out to be true, then the statement
B will be executed, but if A is false, then the machine won't even look at B.
It makes no difference at all what B says. The definition of -7 captures this
indifference to B in the cases where A is false.

2.2.6 Logical Equivalence (+-+)

The logical equivalence operator H is used to claim that two propositions have
the same value-either both are true, or both are false. The proposition A H B
might be translated into an English sentence like 'saying A is just the same as
saying B.' The definition of H is

A B AHB
False False True
False True False
True False False
True True True

The statement A H B could also be expressed by writing (A -7 B) 1\ (B -7

A). Sometimes H is simply considered to be an abbreviation for conjunction
of two ordinary implications, rather than a fundamental logical operator.

There are two distinct mathematical ways to claim that th e propositions A
and B have the same value. One way is to write the equation A = B , and the
other way is to claim that the proposition A H B has the value True. Logical
equivalence is similar to but not the same as ordinary equality. The difference
between them is important, and we'll say more about it later.

44 CHAPTER 2. PROPOSITIONAL LOGIC

2.3 The Language of Propositional Logic

Before spending a lot of effort arguing about a statement somebody claims to
be true, it's prudent to make sure the statement actually makes sense, and to
check that all the participants in the debate agree about what it means. It
might be fun to discuss 'International trade creates jobs ', but there's no point
wasting time on 'Quickly raspberries running green'. That one isn't either true
or false-it's just gibberish.

A big advantage of using logic rather than English is that we can define the
language of propositional logic formally, precisely and unambiguously. This
allows us to check that a proposition makes sense before expending any further
work deciding whether it 's true. Since there is no formal definition of natural
languages, it's fundamentally impossible to do that for English. It isn't even
possible in all cases to decide definitively whether a statement in a natural
language is grammatical: English has no formal grammar.

A proposition which 'makes sense' is called a well-formed formula , which is
often abbreviated WFF (pronounced 'woof'). Every WFF has a well-defined
meaning, and you can work out whether it's true or false given the values of
the propositional variables. For example, (A -+ (B /\ (-,A))) is a well-formed
formula, so we can calculate what it means, and it 's worth spending a little
time to decide whether there are any possible values of A and B for which it's
true. (It's True if A is False.) On the other hand , what about vAB-.C? This
isn't a WFF. It's just nonsense, so it has no truth value.

Many programming languages (including Fortran, Pascal , Ada, Haskell and
many others) provide a Boolean data type 3 for use with control statements such
as if statements, while loops and so on. A variable of type Boolean has just
two values, Trueand False, so it corresponds exactly to a propositional variable.
These programming languages also provide some or all of the /\, V, -., -+ and
H operators. Saying that a logical proposition is well-formed is just like saying
that a Boolean expression in a programming language is syntactically valid.

There are also many programming languages (C, Lisp and others) which
lack a Boolean type, using numbers instead. This is a loose approach to syn­
tax, quite different from the precise rules for WFFs in logic. It is sometimes
convenient, but it also leads to problematical definitions about whether expres­
sions like vsin x are true or false, and it prevents the compiler from producing
helpful type error messages if you accidentally use a non-Boolean expression
where only a Boolean would make sense.

2.3.1 The Syntax of Well-Formed Formulas

A term in propositional logic is sometimes called a formula, and a term that
is constructed correctly, following all the syntax rules, is called a well-formed
formula , abbreviated WFF.

3Different languages use different names for the Boolean type; common choices include
Bool, Boolean and Logical.

2.3. THE LANGUAGE OF PROPOSITIONAL LOGIC 45

Soon we will study in detail how to reason about the meanings of WFFs.
However, we will never consider the meaning of ill-formed formulas; these are
simply considered to be meaningless. For example, the formula (P 1\ (-.P)) is
well-formed; this means that we can go on to consider its meaning (this WFF
happens to be False) . However, the formula PV -+ Q violates the syntax rules
of the language , so we refuse to be drawn into debates about whether it is True
or False. The situation is similar to that of programming languages : we can
talk about the behaviour of a program that is syntactically correct (and the
behaviour might be correct or incorrect), but we never talk about the behaviour
of a program with syntax errors-the compiler would refuse to translate the
program, so there is no run-time behaviour.

The set of well-formed formulas (WFFs) is defined by saying precisely how
you can construct them .

• The constants False and True are WFFs.
The only examples are: False, True.

• Any propositional variable is a WFF.
Examples: P, Q, R.

• If a is a WFF, then (-.a) is a WFF.
Examples: (-.P), (-.Q), (-.(-,P» .

• If a and bare WFFs, then (a 1\ b) is a WFF.
Examples : (P 1\ Q), «-.P) 1\ (P 1\ Q» .

• If a and b are WFFs, then (a V b) is a WFF.
Examples: (P V Q), «P 1\ Q) V (-.Q».

• If a and bare WFFs, then (a -+ b) is a WFF.
Examples : (P -+ Q), «P 1\ Q) -+ (P V Q» .

• If a and bare WFFs, then (a H b) is a WFF.
Examples : (P H Q), «P 1\ Q) H (Q 1\ P».

• Any formula that cannot be constructed using these rules is not a WFF.
Examples: (P V I\Q), P -+ -'.

The rules may be used repeatedly to build nested formulas . This process is
called recursion, and is the subject of Chapters 5 and 6. For example, here is
a demonstration, using recursion, that (P -+ (Q 1\ R» is a WFF:

1. P, Q and R are propositional variables, so they are all WFFs.

2. Since Q and Rare WFFs, (Q 1\ R) is also a WFF.

3. Since P and (Q 1\ R) are both WFFs, so is (P -+ (Q 1\ R» .

46 CHAPTER 2. PROPOSITIONAL LOGIC

2.3.2 Precedence of Logical Operators

Well formed formulas are fully parenthesised, so there is no ambiguity in their
interpretation. Often, however, it's more convenient to omit some ofthe paren­
theses for the sake of readability. For example, we would prefer to write
P ~ ...,Q /\ R rather than (P ~ ((...,Q) /\ R)) .

The syntax rules given below define what an expression means when some
of the parentheses are omitted. These conventions are analogous to those of
elementary algebra, as well as most programming languages, where there is a
precedence rule that says a + b x c means a + (b x c) rather than (a + b) x c.
The syntax rules for propositional logic are straightforward:

1. The most tightly binding operator is...,. For example , ...,p /\ Q means
(...,P) /\ Q. Furthermore, ...,...,p means ...,(...,P).

2. The second highest precedence is the /\ operator. In expressions combin­
ing /\ and V, the /\ operations come first. For example , P V Q /\ R means
P V(Q /\ R). If there are several A operations in a sequence, they are per­
formed left to right; for example, P /\ Q /\R/\S means (((P /\Q) /\R) /\ S).
This property is described by saying '/\ associates to the left.'

3. The V operator has the next level of precedence, and it associates to the
left. For example, P /\QVRVU /\ V means (((P /\Q)V R)V(U /\ V)). This
example would be more readable if a few of the parentheses are retained:
(P /\ Q) V R V (U /\ V) .

4. The ~ operator has the next lower level of precedence. For example ,
P /\ Q ~ P V Q means (P /\ Q) ~ (P V Q). The ~ operator associates
to the right; thus P ~ Q ~ R ~ S means (P ~ (Q~ (R ~ S))).

5. The B operator has the lowest level of precedence, and it associates to
the right, but we recommend that you use parentheses rather than relying
on the associativity.

In general it 's a good idea to omit parentheses that are clearly redundant,
but to include parentheses that improve readability. Too much reliance on
these syntax conventions leads to inscrutable expressions.

2.3.3 Object Language and Meta-Language

Propositional logic is a precisely defined language of well-formed formulas. We
need another richer language to use when we are reasoning about well-formed
formulas. This means we will be working simultaneously with two distinct
languages which must be kept separate. The WFFs of propositional logic will
be called the object language because the objects we will be talking about are
sentences in propositional logic. The algebraic language of equations, substitu­
tions and justifications is essentially just ordinary mathematics; we will call it

2.3. THE LANGUAGE OF PROPOSITIONAL LOGIC 47

the metalanguage because it 'surrounds' the object language and can be used
to talk about propositions.

This distinction between object language and meta language is common in
computer science. For example, there are many programming languages, and
we need both to write programs in them and also to make statements about
them.

We have already seen all the operators in the propositional logic object
language; these are ..." 1\, V, -t and f-t . Later we will use several operators
that belong to the meta language; these are 1= (which will be used in Section
2.4 on truth tables); f- (which will be used in Section 2.5 on natural deduction):
and = (which will be used in Section 2.7 on Boolean algebra) . After studying
each of those three major systems, we will look briefly at some of the meta
logical properties of 1=, f- and = in Section 2.9 on metalogic .

2.3.4 Computing with Boolean Expressions

It's quicker and more reliable to compute large logical expressions with a com­
puter than doing it by hand . In Haskell, logical variables have type Bool , and
there are two constants of type Bool, namely True and False. Haskell con­
tains built-in operators for a few of the logical operations, and the software
tools provided with this book define the rest:

• ...,x is written in Haskell as not Xj

• a 1\ b is written either as a && b or as a /\ b:

• a Vb is written either as a II b or as a \I b;

• a -t b is written as a ==> b;

• a f-t b is written as a <=> b.

Exercise 1. Check your understanding of or, and and not by deciding what
value each of these expressions has, and then evaluating it with the com­
puter:

(a) False /\ True

(b) True \/ (not True)

(c) not (False \/ True)

(d) (not (False /\ True» \/ False

(e) (not True) ==> True

(f) True \/ False ==> True

(g) True ==> (True /\ False)

(h) False ==> False

48 CHAPTER 2. PROPOSITIONAL LOGIC

(i) (not False) <=> True

(j) True <=> (False ==> False)

(k) False <=> (True /\ (False ==> True))

(1) (not (True \/ False)) <=> False /\ True

2.4 Truth Tables: Semantic Reasoning

Truth tables provide an easy method for reasoning about propositions (as long
as they don't contain too many variables). The truth table approach treats
propositions as expressions to be evaluated. All the expressions have type
Bool, the constants are True and False, and the variables A, B, . . . stand for
unknowns that must be either True or False.

When you write out truth tables by hand, it's really too tedious to keep
writing True and False. We recommend abbreviating True as 1 and False as 0;
as pointed out earlier, T and F are also common abbreviations but are harder
to read. However, it should be stressed that 0 and 1 are just abbreviations for
the logical constants, whose type is Bool. Truth tables don't contain numbers.
Only a few truth tables will appear below, so we will forgo the abbreviations,
and stick safely with True and False. (However, when truth tables are used for
reasoning about digital circuits, it is standard practice to use 0 and 1.)

2.4.1 Truth Table Calculations and Proofs

We have already been using truth tables to define the logical operators, so the
format should be clear by now. Nothing could be simpler than using a truth
table to evaluate a propositional expression : you just calculate the proposition
for all possible values of the variables, write down the results in a table, and see
what happens. Generally it's useful to give several of the intermediate results in
the truth table, not just the final value of the entire proposition. For example,
let's consider the proposition ((A -t B) 1\ -.B) -t -.A and find out when it's
true. On the left side of the table we list all the possible values of A and B,
on the right side we give the value of the full proposition, and in the middle
(separated by double vertical lines) we give the values of the subexpressions.

A B A-tB -.B (A -t B) -.A ((A -t B) 1\ -.B)
1\ -.B -t -.A

False False True True True True True
False True True False False True True
True False False True False False True
True True True False False False True

Many propositions may be either True or False, depending on the values of
their variables; all of the propositions between the double vertical lines in the

2.4. TRUTH TABLES: SEMANTIC REASONING 49

table above are like that . Special names are given to propositions where this is
not the case:

Definition 1. A tautology is a proposition that is always True, regardless of
the values of its variables.

Definition 2. A contradiction is a proposition that is always False, regardless
of the values of its variables .

You can find out whether a proposition is a tautology or a contradiction
(or neither) by writing down its truth table. If a column contains nothing
but True, the proposition is a tautology; if there is nothing but False it 's a
contradiction, and if there is a mixture of True and False the proposition is
neither. For example , P V -.P is a tautology, but P 1\ -.P is a contradiction,
and the following truth table proves it :

P -.p Pv-.P P I\-.P
False True True False
True False True False

There is a special notation for expressing statements about propositions.
Since it's used to make statements about propositions, this notation belongs to
the meta-language, and it uses the meta operator F, which is often pronounced
'double-turnstile ' (to distinguish it from 1-, which you'll see later, and which is
pronounced 'turnstile').

Definition 3. The notation Pi, P2 , • " . P; F Q means that if all of the propo­
sitions Pi, P2 , • . • ,Pn are true then the proposition Q is also true.

The F meta-operator makes a statement about the actual meanings of
the propositions; it's concerned with which propositions are True and which
are False. Truth tables can be used to prove statements containing F. The
meaning of a proposition is called its semantics. The set of basic truth values
(True and False), along with a method for calculating the meaning of any well­
formed formula, is called a model of the logical system.

There may be any number 11 of propositions Pi, P2 , .• . ,Pn in the list of
assumptions. If 11 = 1 then the statement looks like P F Q. A particularly
important case is when n = 0, so there are no assumptions at all, and the
statement becomes simply F Q. This means that Q is always true, regardless
of the values of the propositional variables inside it; in other words, Q is a
tautology.

2.4.2 Limitations of Truth Tables

The truth table method is straightforward to use; it just requires some brute­
force calculation. You don't need any insight into why the proposition you're
working on is true (or false, or sometimes true) . This is both a strength and a

50 CHAPTER 2. PROPOSITIONAL LOGIC

weakness of the method. It's comforting to know that you can reliably crank
out a proof, given enough time . However, a big advantage of the other two
logical systems we will study, natural deduction and Boolean algebra, is that
they give much better insight into why a theorem is true.

The truth table method requires one line for each combination of variable
values. If there are k variables, this means there are 2k lines in the table.
For one variable, you get 21 = 2 lines (for example, the truth table for the ..,
operator) . For two variables, there are 22 = 4 lines (like the definitions of V, /\,
-t and f-t) . For three variables, there are 23 = 8 lines which is about as much
as anybody can handle.

Since the number of lines in the table grows exponentially in the number
of variables, the truth table method becomes unwieldy for most interesting
problems. In Chapter 10 we will prove a theorem whose truth table has 2129

lines. That number is larger than the number of atoms in the known universe,
so you'll be relieved to know that we will skip the truth table, and use more
powerful methods.

2.4.3 Computing Truth Tables

The software tools for this book contain functions that make it easy to compute
truth tables automatically; see the online documentation.

Exercise 2. Use the truth table functions to determine which of the following
formulas are tautologies.

(a) (True /\ P) V Q

(b) (PVQ)-t(P/\Q)

(c) (P/\Q)-t(PVQ)

(d) (PVQ)-t(QVP)

(e) ((PVQ)/\(PVR»t-+(P/\(QVR»

2.5 Natural Deduction: Inference Reasoning

Natural deduction is a formal logical system which allows you to reason directly
with logical propositions using inference, without having to substitute truth
values for variables or evaluate expressions. Natural deduction provides a solid
theoretical foundation for logic, and it helps focus attention on why logical
propositions are true or false. Furthermore, natural deduction is well suited
for automatic proof checking by computer, and it has (along with some closely
related systems) a variety of applications in computer science .

In normal English usage, the verb infer means to reason about some state­
ments in order to reach a conclusion . This is an informal process, and it can run

2.5. NATURAL DEDUCTION: INFERENCE REASONING 51

into problems due to the ambiguities of English, but the intent is to establish
that the conclusion is definitely true.

Logical inference means reasoning formally about a set of statements in
order to decide, beyond all shadow of doubt, what is true. In order to make
the reasoning absolutely clear cut, we need to do several things:

• The set of statements we're reasoning about must be defined. This is
called the object language, and a typical choice would be propositional
expressions.

• The methods for inferring new facts from given information must be
specified precisely. These are called the inference rules.

• The form of argument must be defined precisely, so that if anybody claims
to have an argument that proves a fact, we can determine whether it
actually is a valid argument. This defines a metalanguage in which proofs
of statements in the object language can be written. Every step in the
reasoning must be justified by an inference rule.

There are several standard ways to write down formal proofs. In this book
we'll use the form which is most commonly used in computer science.

Definition 4. The notation PI, P2 , . .• , Pn f- Q is called a sequent, and it
means that if all of the propositions PI, P2 , • • • , P; are known, then the propo­
sition Q can be inferred formally using the inference rules of natural deduction.

We have seen two similar notations: with truth tables, we had metalogical
statements with the F operator, like P F Q ~ P. This statement means that
if P is True, then the proposition Q ~ P is also True. It says nothing about
how we know that to be the case. In contrast, the notation P f-- Q ~ P, which
will be used in this section, means there is a proof of Q ~ P , and the proof
assumes P. Both F and f- are used to state theorems; the distinction is that F
is concerned with the ultimate truth of the propositions, while f-- is concerned
with whether we have a proof. We will return to the relationship between F=
and f-- in Section 2.9.

In formal logic, you can't just make intuitive arguments and hope they are
convincing. Every step of reasoning you make has to be backed up by an in­
ference rule. Intuitively, an inference rule says, 'If you know that StatementJ
and Statement2 are established (either assumed or proven), then you may infer
Statement3,' and furthermore, the inference constitutes a proof. StatementJ
and Statement2 are called the assumptions of the inference rule, and State­
ment3 is called the conclusion. (There may be any number of assumptions­
there don 't have to be just two of them.) Here's an example of an inference
rule about the 1\ operator, written informally in English:

If you know some proposition a, and also the proposition b, then
you are allowed to infer the proposition a 1\ b.

52 CHAPTER 2. PROPOSITIONAL LOGIC

In this example, there are two assumptions-a and lr-and the conclusion is
a 1\ b. Note that we have expressed this inference using metavariables a and
b. These metavariables could stand for any WFF; thus a might be P, Q -+ R,
etc. The variables P, Q etc , are propositional variables, belonging to the
object language, and their values are True or False. We will adopt the following
convention:

• Metavariables belong to the metalanguage, and are written as lower case
letters a, b, C, • • • • The value of a metavariable is a WFF. For example a
might have the value P 1\ Q.

• Propositional variables belong to the object language, and are written
as upper case letters A, B, . . . , P,Q,R, The value of a propositional
variable is either True or False.

Formally, an inference rule is expressed by writing down the assumptions
above a horizontal line, and writing the conclusion below the line:

Statement! Statement2

Statement3

This says that if you can somehow establish the truth of Statement! and State­
ment2, then Statement3 is guaranteed (by the inference rule) to be true. The
inference about 1\ would be written formally as

a b

al\b

An inference rule works in only one direction-for example, if you know
that P is true, you cannot use the rule above to infer P 1\ Q. After all, you
don't know the value of Q, which might be False.

Figure 2.1 summarises all the inference rules of propositional logic. In the
next several sections we will work systematically through them all. It would
be a good idea to refer back frequently to Figure 2.1.

Many of the rules fall into two categories . The introduction rules have a
conclusion into which a new logical operator has been introduced; they serve
to build up more complex expressions from simpler ones. In contrast, the elim­
ination rules require an assumption that contains a logical operator which is
eliminated from the conclusion; these are used to break down complex expres­
sions into simpler ones. Introduction rules tell you what you need to know in
order to introduce a logical operator; elimination rules tell you what you can
infer from a proposition containing a particular operator.

2.5.1 Definitions of True, -, and H

Natural deduction works with a very minimal set of basic operators. In fact, the
only primitive built-in objects are the constant False, and the three operators

2.5. NATURAL DED UCTION: INFERENCE REASONING 53

a b
---{/\/}

al\b

al\b
--{AEr.}

a

a b avb al-c bl-c
--{vIr.} --{VIR} {vEl
aVb a V b c

al-b a a-tb

a-tb
{ -t I }

b
{-t El

a False ,a I- False
-{ID} --{GTR} {RAA}
a a a

Figure 2.1: Inference Rules of Propositional Logic.

1\, V and -to Everything else is an abbreviation! It 's par ticularly intriguing
that False is the only primitive logic value in the natural deduction system.

Definition 5. Th e constant True and the operators, and H are abbreviations
defined as follows:

True = False -t False

,a = a -t False

a H b (a -t b) 1\ (b -t a)

You can check all of these definitions semantically, using truth tables. In
natural deduction, however , we will manipulate them only using the inference
rules, and it will gradually become clear that the abbreviations work perfectly
with the inference rules. The definition of H should be clear , but let's look at
, and True more closely.

Notice that ,False is defined to be False -t False, which happens to be the
definit ion of True. In other words, ,False = True. Going the other direction,
,True becomes True -t False when the , abbreviat ion is expanded out, and
that becomes (False -t False) -t False when the True is expanded out . Later
we will see an inference rule (called Reductio ad Absurdum) which will allow
us to infer False from (False -t False) -t False. The result is that , True = False
and ,False = True.

We will write prop ositions with True, ' and H just as usual, but sometimes
to make a proof go through it will be necessary to expand out the abbreviat ions
and work jus t with the primitives.

54 CHAPTER 2. PROPOSITIONAL LOGIC

2.5.2 And Introduction {AI}

The And Introduction inference rule says that if you know that some proposi­
tion a is true, and you also know that b is true, then you may infer that the
proposition a /\ b is true. As the name 'And Introduction' suggests, the rule
specifies what you have to know in order to infer a proposition with a new
occurrence of r:

When we write an inference, the horizontal line will be annotated with the
name of the inference rule that was used. The abbreviation {/\I} stands for
'And Introduction', so the rule is written as follows:

a b
---{I\l}

a/\b

We will now work through several examples, starting with a theorem saying
that the conclusion P /\ Q can be inferred from the assumptions P and Q.

Theorem 1. P,Q ~ P /\ Q

Proof. The theorem is proved by just one application of the {/\I} inference;
it's the simplest possible example of how to use the {/\I} inference rule.

P Q
--{I\l}
P/\Q

o
Notice that the theorem above involves two specific propositional variables ,

P and Q. The {/\I} rule does not require any particular propositions. It uses
the meta variables a and b, which can stand for any well-formed formula. For
example, the following theorem has the same structure as the previous one,
and is also proved with just one application of the {/\I} rule, but this time the
meta variable a stands for R -t Sand b stands for -,P.

Theorem 2. (R -t S), »P ~ (R -t S) /\ -,p

Proof.

(R -t S) -,p
------{I\l}
(R -t S) /\ -,p

o
Usually you need several steps to prove a theorem, and each step requires

explicit use of an inference rule. You can build up a proof in one diagram.
When a subproof results in a conclusion that serves as an assumption for a
larger proof, the entire subproof diagram appears above the line for the main
inference in the large proof. Here is an example:

2.5. NATURAL DEDUCTION: INFERENCE REASONING

Theorem 3. P,Q,R \- (P/\Q)/\R

55

Proof. The main inference here has two assumptions: P /\ Q and R. However,
the first assumption P /\ Q is not one of the assumptions of the entire theorem ;
it is the conclusion of another {/\I} inference with assumptions P and Q. The
entire proof is written in a single diagram. Notice how the conclusion P /\ Q
of the first inference is sitting in exactly the right place above the longer line
(the line belonging to the main inference).

P Q
P /\ Q {i\/} R

(P /\ Q) /\ R {i\/}

o

Inference proofs have a natural tree structure: assumptions of the theorem
are like the leaves of a tree, and subproofs are like the nodes (forks) of a tree .
The method we are using here for writing proofs makes this tree structure
explicit.

There is an alternative format for writing logical inference proofs, where
each inference is written on a numbered line. When the conclusion of one
inference is required as an assumption to another one, this is indicated by
explicit references to the line numbers . This format looks like a flat list of
statements (much like an assembly language program), while the tree format
we are using has a nested structure (much like a program in a block structured
language).

Logical inference has many important applications in computer science. The
tree format is normally used for computing applications, so we will use that
notation in this book in order to help prepare you for more advanced studies.
A clear exposition of the line-number format , which won't appear in this book,
appears in Lemmon's book Beginning Logic [20).

Exercise 3. Prove P, Q,R \- P /\ (Q /\ R).

Exercise 4. Consider the following two propositions:

x = A/\(B/\(C/\D))
y = (A/\B)/\(CI\D)

Describe the shapes of the proofs for x and y. Suppose each proposition
has 2n propositional variables. What then would be the heights of the
proof trees?

56 CHAPTER 2. PROPOSITIONAL LOGIC

2.5.3 And Elimination {AEL } , {AER }

There are two inference rules that allow the elimination of an And operation.
These rules say that if a 1\ b is known to be true, then a must be true, and
also b must be true . The 'And Elimination Left' {I\EL} rule retains the left
argument of a 1\ b in the result, while the'And Elimination Right' {I\ER} rule
retains the right argument.

al\b
--{"Ed

a

al\b
--{"ER}

b

Here is a simple example using And Elimination:

Theorem 4. P, Q 1\ R f- P 1\ Q

Proof. Two inferences are required. First the 'Left ' form of the And Elimi­
nation rule {I\EL} is used to obtain the intermediate result Q, and the And
Introduction rule is then used to combine this with P to obtain the result P I\Q.

P

QI\R
---{AEd

Q
PI\Q

o
The next example contains several applications of And Elimination, includ­

ing both the Left and Right forms of the rule. As these two examples show,
the three rules {I\I}, {I\EL} and {I\ER} can be used systematically to deduce
consequences of logical conjunctions.

Theorem 5. (P 1\ Q) 1\ R f- R 1\ Q

Proof.

(P 1\ Q) 1\ R
-----{AER}

R

(P 1\ Q) 1\ R
-----{AEd

PI\Q

Q

RI\Q
-------------------{A/}

o
One of the most fundamental properties of the 1\ operator is that it is

commutative: the proposition P 1\ Q is equivalent to Q1\ P. Later we will prove
that, but for now we just consider the following simpler theorem.

Theorem 6. P 1\ Q f- Q 1\ P

2.5. NATURAL DEDUCTION: INFERENCE REASONING 57

Proof. The idea behind this proof is to infer Q and P-in that order, with Q
to the left of P-above the main line, so {I\I} can be used to infer Q 1\ P. The
intermediate results Q and P are obtained by And Elimination.

PI\Q
---{I\EL}

P

QI\P

o
Inference proof trees can become quite large, but you can always work

through them systematically, one inference at a time, until you see how all the
parts of the proof fit together. You can check the individual inferences in any
order you like, either top-down or bottom-up or any other order you like. We
will give one more example of a theorem proved with the And Introduction and
Elimination rules, with a larger proof.

Theorem 7. For any well formed propositions a, band c,

a r. (bl\c) f- (al\b) I\c

Proof.

c

a 1\ (b 1\ c)
----{I\ER}

bl\cb

al\b

a 1\ (b 1\ c)
----{I\ER}

bl\ca 1\ (b1\ c)
----{I\EL} -------{I\EL}

a
----------------{I\l}

(al\b)l\c
---------------------------{I\l}

o
Exercise 5. Prove (P 1\ Q) 1\ R f- P 1\ (Q 1\ R).

2.5.4 Imply Elimination {-+ E}

As we work through the inference rules, you should refer back frequently to
Figure 2.1. This will help build up a coherent picture of the complete system
of natural deduction. Although the rules relating to V come next in the figure,
we will first study the rules for ~, which are slightly simpler.

The Imply Elimination rule {~ E} says that if you know a is true, and also
that it implies b, then you can infer b. The traditional Latin name for the rule
is Modus Ponens.

I
a a~ b I

. b {-+E}

58 CHAPTER 2. PROPOSITIONAL LOGIC

The following theorem provides a simple example of the application of {-+
E} .

Theorem 8. Q /\ P, P /\ Q -+ R f- R.

Proof.

R

Q/\P
---{AEL}

Q

p/\Q P/\Q-+R
------------------{-tE}

o

Often we have chains of implication of the form a -+ b, b -+ c and so on.
The following theorem says that given a and these linked implications, you can
infer c.

Theorem 9. For all propositions a, band c, a,a -+ b,b -+ c f- c.

Proof.

b

a a -+ b
----{-tE}

b-+c
---------{-tE}

c

o

Exercise 6. Prove P, P -+ Q, (P /\ Q) -+ (R /\ S) f- S.

Exercise 7. Prove P -+ Q, R -+ S, P /\ R f- S /\ R.

2.5.5 Imply Introduction {-t I}

The Imply Introduction rule {-+ I} says that, in order to infer the logical
implication a -+ b, you must have a proof of b using a as an assumption.

af-b
----{-tJ}

a-+b

We will first give a simple example of Imply Introduction, and then discuss
the important issue of keeping track of the assumptions that have been made.

Theorem 10. f- (P /\ Q) -+ P.

2.5. NATURAL DEDUCTION: INFERENCE REASONING 59

Proof. First consider the sequent P 1\ Q f- Q, which is proved by the following
And Elimination inference:

Now we can use the sequent (that is, the theorem established by the inference)
and the {-t I} rule:

PI\Q f- Q
PI\Q-tQ{-t1}

o
It is crucially important to be careful about what we are assuming. In fact,

the reason for having the sequent notation with the f- operator is to write down
the assumptions of a theorem just as precisely as the conclusion.

In the {I\ER} inference we assumed P 1\ Qj without that assumption we
could not have inferred Q. Therefore this assumption appears in the sequent to
the left of the f-. However, the entire sequent P 1\ Q f- Q does not rely on any
further assumptions; it is independently true . Therefore we can put it above
the line of the {-t I} rule 'for free,' without actually making any assumptions.
Since nothing at all needed to be assumed to support the application of the
{-t I} rule, we end up with a theorem that doesn't require any assumptions.
The sequent that expresses the theorem, f- P 1\ Q -t P, has nothing to the left
of the f- operator.

It is customary to write the entire proof as a single tree, where a complete
proof tree appears above the line of the {-t I} rule. That allows us to prove
f- P 1\ Q -t P with just one diagram:

PI\Q
---{AEn}

P

PI\Q-tP

From this diagram, it looks like there is an assumption P 1\ Q. However,
that was a temporary, local assumption whose only purpose was to establish
P 1\ Q f- P. Once that result is obtained the assumption P 1\ Q can be thrown
away. An assumption that is made temporarily only in order to establish a
sequent, and which is then thrown away, is said to be discharged. A discharged
assumption does not need to appear to the left of the f- of the main theorem. In
our example, the proposition P 1\ Q -t P is always true, and it doesn't matter
whether P 1\ Q is true or false.

In big proof trees it may be tricky to keep track of which assumptions
have been discharged and which have not . We will indicate the discharged
assumptions by putting a box around them . (A more common notation is to

60 CHAPTER 2. PROPOSITIONAL LOGIC

b

draw a line through the discharged assumption , but for certain propositions
that leads to a highly unreadable result .) Following this convention, the proof
becomes:

------{..... I}
PI\Q-tP

Recall the proof of Theorem 9, which used the chain of implications a -t b
and b -t C to infer c, given also that a is true. A more satisfactory theorem
would just focus on the chain of implications, without relying on a actually
being true. The following theorem gives this purified chain property: it says
that if a -t band b -t c, then a -t c.

Theorem 11 (Implication chain rule). For all propositions a, band c,

a -t b, b -t c I- a -t c

Proof. Since we are proving an implication a -t c, we need to use the {-t I}
rule-there is no other way to introduce the -t operator! That rule requires a
proof of c given the assumption a, which is essentially the same proof tree used
before in Theorem 9. The important point, however, is that the assumption a
is discharged when we apply {-t I}. The other two assumptions, (a -t band
b -t c), are not discharged. Consequently a doesn't appear to the left of the I­
in the theorem; instead it appears to the left of the -t in the conclusion of the
theorem.

b-tc
----------{.....E}

c
-------------{..... I}

a-tc

o
Sometimes in large proofs it can be confusing to see just where an assump­

tion has been discharged . You may have an assumption P with a box around
it, but there could be all sorts of implications P -t .. . which came from some­
where else. In such cases it's probably clearer to build up the proof in stages,
with several separate proof tree diagrams.

A corollary of this implication chain rule is the following theorem, which
says that if a -t b but you know that b is false, than a must also be false. This
is an important theorem which is widely used to prove other theorems, and its
traditional Latin name is Modus Tollens.

Theorem 12 (Modus Tollens). For all propositions a and b,

a -t b, -,b I- -'u

2.5. NATURAL DEDUCTION: INFERENCE REASONING 61

Proof. First we need to expand out the abbreviations, using the definition
that -,a means a -7 False. This results in the following sequent to be proved:
a -7 b, b -7 False I- a -7 False. This is an instance of Theorem 11. 0

Exercise 8 . Prove P I-- Q -7 P 1\ Q.

Exercise 9. Prove I-- P 1\ Q -7 Q 1\ P.

2.5.6 Or Introduction {Vh}, {VIR}

Like all the introduction rules, Or Introduction specifies what you have to
establish in order to infer a proposition containing a new V operator. If the
proposition a is true, then both a V band b V a must also be true (you can see
this by checking the truth table definition of V). Or Introduction comes in two
forms, Left and Right.

a
--{VIL}
avb

Theorem 13. P 1\ Q I-- P V Q

Proof. The proof requires the use of Or Introduction. There are two equally
valid ways to organise the proof. One method begins by establishing P, and
then uses {VIL} to put the P to the left of V:

PI\Q
---{I\EL}

P

PvQ

An alternative proof first establishes Q and then uses {VIR} to put the Q to
the right of V:

PI\Q
---{I\En }

Q

PvQ

Normally, of course, you would choose one of these proofs randomly; there is
no reason to give both. 0

Exercise 10. Prove P -7 False V P .

Exercise 11 . Prove P, Q I-- (P 1\ Q) V (Q V R).

62 CHAPTER 2. PROPOSITIONAL LOGIC

2.5.7 Or Elimination {VE}

The Or Elimination rule specifies what you can conclude if you know that a
proposition of the form a V b is true. We can't conclude anything about either a
or b, since either of those might be false even if a V b is true. However, suppose
we know a V b is true, and also suppose there is some conclusion e that can be
inferred from a and can also be inferred from b. Then e must also be true.

e

al-e
bl-e I---------{VE}

Or Elimination is a formal version of proof by case analysis. It amounts to
the following argument: 'There are two cases: (1) if a is true, then e holds; (2)
if b is true then e holds. Therefore e is true'. Here is an example :

Theorem 14. (P I\. Q) V (P I\. R) I- P

Proof. There are two proofs above the line. The first proof assumes P I\. Q in
order to infer P. However, that inference is all that we need; P I\.Q is discharged
and is not an assumption of the main theorem. For the same reason, P I\. R is
also discharged. The only undischarged assumption is (P I\.Q)V (PV R), which
therefore must appear to the left of the I- in the main theorem.

(P I\. Q) V (P I\. R)
Ip I\. QI{t-Ed

P

P

o

Finally, here is a slightly more complex example :

Theorem 15. (a I\. b) V (a I\. e) I- bV e

Proof.

bVe
-----{VIR}

bVe
-----{vIL}

(a I\. b) V (a I\. e)

bVe

o

2.5. NATURAL DEDUCTION: INFERENCE REASONING

2.5.8 Identity {ID}

63

The Identity rule {ID} says, rather obviously, that if you know a is true, then
you know a is true.

Although the Identity rule seems trivial, it is also necessary. Without it,
for example, there would be no way to prove the following theorem, which we
would certainly want to be true.

Theorem 16. P f- P

Proof.

P
-{ID}
P

o

An interesting consequence of the Identity rule is that True is true, as the
following theorem states.

Theorem 17. f- True

Proof. Recall that True is an abbreviation for False -t False. We need to infer
this implication using the {-t I} rule, and that in turn requires a proof of False
given the assumption False. This can be done with the {ID} rule; it could also
be done with the Contradiction rul e, which we'll study shortly.

IFalse I
...c=~':;"{ID}

False
-----{~I}

False -t False

Notice that we had to assume False in order to prove this theorem, but fortu­
nately that assumption was discharged when we inferred False -t False. The
assumption of False was just temporary, and it doesn't appear as an assump­
tion of the theorem. That 's a relief; it would never do if we had to assume that
False is true in order to prove that True is true! 0

2.5.9 Contradiction {CTR}

The Contradiction rule says that you can infer anything at all given the as­
sumption that False is true.

64 CHAPTER 2. PROPOSITIONAL LOGIC

False
--{CTR}

a

In effect, this rule says that False is untrue, and it expresses that fact purely
through the mechanism of logical inference. It would be disappointing if we
had to describe the fundamental falseness of False by making a meaningless
statement outside the system, such as 'False is wrong.' After all, the whole point
of natural deduction is to describe the process of logical reasoning formally,
using a small set of clearly specified inference rules . It would also be a bad
idea to try to define False as equal to -.True. Since True is already defined to
be -.False, that would be a meaningless and useless circular definition.

The Contradiction rule describes the untruthfulness of False indirectly, by
saying that everything would become provable if False is ever assumed or in­
ferred.

Theorem 18. P, -.P I- Q

Proof. Recall that -.P is just an abbreviation for P ~ False. That means we
can use the {-t E} rule to infer False, and once that happens we can use {CTR}
to support any conclusion we feel like-even Q, which isn't even mentioned in
the theorem's assumptions!

False

P P -t False
-------{-+E}

Q
---------{CTR}

o

The Identity and Contradiction rules often turn up in larger proofs . A
typical example occurs in the following theorem, which states an important
property of the logical Or operator V. This theorem says that if a V b is true,
but a is false, then b has to be true. It should be intuitively obvious, but the
proof is subtle and merits careful study.

Theorem 19. For all propositions a and b,

a V b, -.a I- b

Proof. As usual, the -.a abbreviation should be expanded to a ~ False. Since
we're given a V b, the basic structure will be an Or Elimination, and there will
be two smaller proof trees corresponding to the two cases for a V b. In the
first case, when a is assumed temporarily, we obtain a contradiction with the
theorem's assumption of -.a: False is inferred, from which we can infer anything
else (and here we want b). In the second case, when b is assumed temporarily,

2.5. NATURAL DEDUCTION: INFERENCE REASONING 65

the desired result of b is an immediate consequence of the {ID} rule.

b

False
--------{CTR}

avb

b

Note that there are two undischarged assumptions, a V b and a -+ False, and
there are two temporary assumptions that are discharged by the {VE} rule. 0

2.5.10 Reductio ad Absurdum {RAA}

The Reductio ad Absurdum (reduce to absurdity) rule says that if you can
infer False from an assumption ,a, then a must be true. This rule underpins
the proof by contradiction strategy: if you want to prove a, first assume the
contradiction ,a and infer False; the {RAA} rule then allows you to infer a.

,a I- False
------{RAA}

a

Theorem 20 (Double negation). "a I- a

Proof. Our strategy is to use a proof by contradiction. That is, if we can
assume ,a and infer False, the {RAA} rule would then yield the inference a.
Since we are given "a, the contradiction will have the following general form:

False

To make this go through, we need to replace the abbreviations by their
full defined values. Recall that ,a is an abbreviation for a -+ False, so "a
actually means (a -+ False) -+ False. Once we expand out these definitions, the
inference becomes much clearer: it is just a simple application of {-+ E}:

Ia -+ FalseI
----------------{RAA}

a

Both requirements for the {RAA} rule have now been provided, and the
{RAA} gives the final result a. 0

66 CHAPTER 2. PROPOSITIONAL LOGIC

2.5.11 Inferring the Operator Truth Tables

The inference rules of natural deduction are intended to serve as a formal
foundation for logical reasoning. This raises two fundamental questions: Are
the inference rules actually powerful enough? Will they ever allow us to make
mistakes? These are profound and difficult questions. Modern research in
mathematical logic addresses such questions , and has led to some astonishing
results. In this section we start with an easy version of the first question: Are
the inference rules powerful enough to calculate the truth tables of the logical
operators?

Answering this question will provide some good practice in using the in­
ference rules. A deeper point is that it 's philosophically satisfying to know
that the inference rules provide a complete foundation for propositional logic.
Nothing else is required: the truth tables given earlier in the chapter are the
most intuitive place to start learning logic, and we treated them like defini­
tions at the beginning of the chapter, but it isn't necessary to accept them as
the fundamental definitions of the operators. If we take instead the inference
rules as the foundation of mathematical logic, then truth tables are no longer
definitions ; they merely summarise a lot of calculations using the rules.

To illustrate the idea, let 's use the inference rules to calculate the value of
Truet\ False. To answer this fully, we need to prove that Truet\ False is logically
equivalent to False, and also that it is not logically equivalent to True. Recall
that False is a primitive constant, but True is defined as False -t False. First,
here is a proof of the sequent I- True t\ False -t False:

(False -t False) t\ False
---------{f\ER}

False
-------------{-+l}
((False -t False) t\ False) -t False

Next, we prove the sequent I- False -t ((False -t False) t\ False):

False
--------{CTR}
(False -t False) t\ False

-------------{-+/}
False -t ((False -t False) t\ False)

Putting these results together, and reintroducing the abbreviations, we get

True t\ False H False

We have thereby calculated one of the lines of the truth table definition of t\ .

The complete truth tables for all the logical operators can be inferred using
similar calculations.

Exercise 12. Use the inference rules to calculate the value of True t\ True.

Exercise 13. Use the inference rules to calculate the value of TrueV False.

2.6. PROOF CHECKING BY COMPUTER 67

Exercise 14. Notice that in the proof of f- True/False -t Falsewe used {AEn}
to obtain False from (False -t False) A False, and everything worked fine.
However, we could have used {AEd instead to infer False -t False, which
is True. What would happen if that choice is made? Would it result in
calculating the wrong value of True A False? Is it possible to show that
True A False is not logically equivalent to True?

2.6 Proof Checking by Computer

One of the great benefits of formal logic is the possibility of using computer
software to check proofs automatically. Informal arguments in English are full
of imprecision and ambiguity, so there is no hope of writing a computer program
to determine whether one is valid. People don't always agree as to whether an
argument holds water! Formal proofs, however, are totally precise and unam­
biguous. Formal arguments may become long and involved, but computers are
good at long and involved calculations.

Formal proofs are intended to provide the utmost confidence that a theorem
is correct. The language of propositional logic, along with the natural deduc­
tion inference system, are solid foundations for accurate reasoning. However,
everyone makes mistakes, and even a tiny error would make a large proof com­
pletely untrustworthy. To get the full benefit of formal logic, we need computers
to help with the proofs.

A proof checker is a computer program that reads in a theorem and a proof,
and determines whether the proof is valid and actually establishes the theorem.
A theorem prover is a computer program that reads in a theorem and attempts
to generate a proof from scratch. The generic term proof tools refers to any
computer software that helps with formal proofs, including proof checkers and
theorem provers.

The advantage of a theorem prover is that it can sometimes save the user
a lot of work. However, theorem provers don't always succeed, since there
are plenty of true theorems whose proofs are too difficult for them to find. A
theorem prover may stop with the message 'I cannot prove it', or it may go into
an infinite loop and never stop at all. The main advantage of a proof checker
is that it can always determine whether a purported proof is valid or invalid.
Proof checkers are also suitable when you want to write a proof by hand, and
you also want to be sure it's correct .

Proof tools are the subject of active current research, but they are not lim­
ited to research: they are also becoming practical for real applications. There
are a number of 'industrial strength' proof tools for various logical systems (see
Section 2.10 for references). Proof tools have already been applied successfully
to some very difficult and important real-world problems. A recent example is
the proof that the floating point hardware in the Intel Pentium Pro processor
is correct [23J. An active current research topic is to find methods for making
proof checkers easier to use and more helpful in real applications.

68 CHAPTER 2. PROPOSITIONAL LOGIC

As proof checkers become more widely used, it will become increasingly
important for computing professionals to have a good working understanding
of logic.

We'll now look at a simple proof checking system implemented in Haskell,
which is part of the software that accompanies this book. You can obtain the
software and its documentation from this book's web page; see the Preface for
the web address.

Studying the proof checker will introduce you to a technology that is likely
to become increasingly important in the near future . You can also use the
software to check your own proofs; it's nice to be sure your exercises are correct
before handing them in! Furthermore, you may find it interesting to study the
implementation of the checker.

Documentation of the proof checker is available on the book web page.
The program is written in Haskell. Although it uses some advanced features
of Haskell that aren't covered in Chapter 1, most of it isn't too difficult to
understand. Haskell is well suited for writing proof checkers; indeed, most of
the industrial strength proof tools are implemented in functional programming
languages, since conventional languages just aren't powerful enough.

2.6.1 Example of Proof Checking

Before getting into picky details, let's start by checking a real theorem :

Theorem 21. I- Q -t ((P /\ R) -t (R /\ Q))

Proof. See Figure 2.3. o

In order to process this theorem with a Haskell program, we have to repre­
sent it in a form that can be typed into a file. Figure 2.2 gives the theorem in
both forms, with the mathematical notation and the proof checker's notation
shown side by side. The value named example_theorem has type Theorem,
and it consists of three parts: (1) a constructor Theorem that starts the data
structure; (2) a list of assumptions (i.e. propositions to the left of the 1-) which
is [J for this example; and (3) the proposition to be proved. As you can see,
the computer-readable proposition is expressed with prefix operators; the name
And represents /\ , while the name Imp represents -to

Figure 2.3 shows the proof of Theorem 21. The conventional mathematical
notation is given alongside the Haskell representation, so you can compare them
easily. The Haskell representation of the proof is a value named proof 1, and its
type is Proof. Notice that the mathematical notation has a tree structure, and
the proof is also represented as a tree structure in Haskell. The only differenceis
that the mathematical notation uses lines and positioning on the page to show
the structure, while the Haskell notation uses punctuation. The computer
representation uses prefix operators to indicate inferences; for example, the
name AndI indicates the beginning of an And-Introduction {/\I} inference.
The proof is a value named proof 1, and it has type Proof.

2.6. PROOF CHECKING BY COMPUTER

Theorem 21. I- Q -+ ((P AR) -+ (R AQ))

example_theorem :: Theorem
example_theorem =

Theorem
[]
(Imp Q (Imp (And P R) (And R Q»)

Figure 2.2: Theorem 21 and its Haskell Representation

69

The proof checker is a Haskell function named check.proof which takes two
arguments: a Theorem and a Proof . The function checks to see whether the
proof is valid, and also whether it serves to establish the truth of the theorem.
You might expect the checker to return a result of type Bool, where True means
the proof is valid and False means the proof is incorrect. However, it's much
better for the checker to give a detailed explanation if something is wrong with
the proof, and to do that it needs to perform some Input/Output. Because
of this , the function returns a Haskell value of type 10 0 instead of a simple
Bool. You do not need to know how the Input/Output works. The function's
type signature is:

check_proof :: Theorem -> Proof -> 10 ()

The proof given in Figure 2.3 is valid: all of the inferences are sound; the
conclusion of the main inference matches the result to the right of the I- in the
theorem, and there are no undischarged assumptions that fail to appear to the
left of the I- in the statement of the theorem.

To check the proof, we must first start an interactive session with Haskell
and load the software tools (see the Appendix for instructions on how to do
this). Here is the output produ ced by running the proof checker on the example:

> check_proof example_theorem proof!
The proof is valid

In order to see what happens when something goes wrong with a proof,
let's introduce a small mistake into the previous example . Figure 2.4 gives the
modified proof, along with its Haskell representation. The error is that the
two subproofs above the line of the And Introduction step now appear in the
wrong order : on the left is the assumption Q, and on the right is the proof of
R. Because of th is, the {AI} rule infers the proposition QAR, but we still have
R AQ below the line. Here is the result of running the incorrect proof through
the proof checker:

> check_proof example_theorem proof2
Invalid And-Introduction: the conclusion

70 CHAPTER 2. PROPOSITIONAL LOGIC

Ip t\RI
{AER} [2]

R Q {Al}

Rt\Q
---------{~I}

(P t\ R) --+ (R r. Q)

Q --+ «P t\ R) --+ (R t\ Q))

proof 1 :: Proof
proofl =

ImpI
(ImpI

(AndI
((AndER

(Assume (And P R))
R) ,

Assume Q)
(And R Q))

(Imp (And P R) (And R Q)))
(Imp Q (Imp (And P R) (And R Q)))

Figure 2.3: A Valid Proof of Theorem 21 and its Haskell Representation

2.6. PROOF CHECKING BY COMPUTER

Ip 1\ RI
rnl {I\ER}
L2J R
-==--------{A1}

RI\Q

(P 1\ R) -+ (R 1\ Q)

Q -+ ((P 1\ R) -+ (R 1\ Q))

f-- Wrong!

71

proof2 :: Proof
proof2 =

ImpI
(ImpI

(AndI
(Assume Q.

(AndER
(Assume (And P R))
R))

(And R Q))

(Imp (And P R) (And R Q)))

(Imp Q (Imp (And P R) (And R Q)))

Figure 2.4: An Invalid Proof of Theorem 21 and its Haskell Representation

And R Q
must be the logical And of the assumption

Q
with the assumption

R
The proof is invalid

To use the proof checker on your own, you will need to know how to repre­
sent propositions (WFFs) and how to represent proofs. The following sections
describe these issues briefly, but you should also read the online documentation
on the book's web page.

Exercise 15. Suppose we simply replace R 1\ Q below the {AI} line with
QI\R. This fixes the Invalid And-Introduction error, but it introduces
another error into the proof.

(a) Edit proof2 to reflect this change; call the result proof3.

(b) Decide exactly what is wrong with proof3.

(c) Run the proof checker on proof3, and see whether it reports the
same error that you predicted.

72 CHAPTER 2. PROPOSITIONAL LOGIC

2.6.2 Representation of WFFs

The well-formed formulas of propositional logic can be represented in Haskell
as an algebraic data type. This representation allows us to use the compiler
to check that a formula is indeed well-formed, and it also provides a way to
express terms that appear in logical proofs-later in this chapter we will exploit
that in order to support a program that checks logical proofs for correctness.

The Boolean constants are represented by FALSE and TRUE. Intuitively, these
correspond in meaning to the familiar Boolean constants False and True. Use
False (or True) when you want to write Boolean expressions to be evaluated;
use FALSE (or TRUE) when you want to write a WFF and reason about it. We
will come back to this subtle but important distinction at the end of the section .

The traditional names used for propositional variables are upper case letters
P, Q, R We allow every upper case letter to be used as a propositional
variable, except that F and T are disallowed because someone reading the code
might wonder whether these are supposed to be variables or the constants false
and true. In addition, you can make any string into a propositional variable
by writing Pvar "name".

The logical expression P I\Q is written And P Q. If the arguments to the And
are themselves logical expressions, they should be surrounded by parentheses,
for example: And (And P Q) R. In a similar way, P V Q is written Or P Q,

and P -+ Q is written Imp P Q, and the negation ..,p is written Not P. In
all cases, arguments that are not simple logical variables should be enclosed in
parentheses.

WFFs are defined directly as a Haskell data type Prop . It is common in
mathematics to define structures recursively, as WFFs were defined in the pre­
vious section. Haskell's algebraic data types allow such standard mathematical
definitions to be turned directly into a computer program. The definition is:

data Prop
= FALSE
I TRUE
I A I B I c I DIE G H
I N I 0 I P I Q IRS U

I Pvar String
I And Prop Prop
I Or Prop Prop
I Not Prop
I Imp Prop Prop
I Equ Prop Prop
deriving (Eq,Show)

I J
V W

K
X

L
Y

M
Z

Exercise 16. Define each of the following well-formed formulas as a Haskell
value of type WFF.

(a) P

2.6. PROOF CHECKING BY COMPUTER

(b) QV False

(c) Q -+ (P -+ (P A Q»

(d) P A (-.Q)

(e) -.P -+ Q

(f) (P A -.Q) V (-.p A Q) -+ (P V Q)

73

Exercise 17. Translate each of the following Haskell expressions into the con­
ventional mathematical notation.

(a) And P Q

(b) Imply (Not P) (Or R S)

(c) Equ (Imply P Q) (Or (Not P) Q)

2.6.3 Representing Proofs

A proof is represented by another Haskell algebraic data type. Technically,
a proof is a data structure which contains a proposition along with a formal
argument for the truth of the proposition. There is a separate constructor for
every kind of proof:

• Assume Prop. Th e simplest way to establish that a proposition is true is
to assume it. No further justification is necessary, and any proposition
at all may be assumed. See proof 1 above for an example. Note that
assumptions may be discharged by the Imply Introduction rule {-+ I} ,
so there is a limited and well-defined scope for all assumptions. Unfortu­
nately, however , it isn' t easy to see what the scope of an assumption is
just by looking at it ; you need to study what it means to discharge .

• AndI (Proof, Proof) Prop. The And Introduction inference rule {AI}
requires two separate proofs above the line, as well as the claimed con­
clusion (which is a proposition).

• AndEL Proof Prop. The And Elimination Left inference rule {AEL} has
just one proof above the line; like all the inference rules it has exactly
one conclusion, which is a proposi tion .

• AndER Proof Prop. The And Elimination Right rule {AER}' This is the
Right version of And Elimination {AER}

• OrIL Proof Prop. The Or Introduction Left rule {VIL};

• OrIR Proof Prop. The Or Introduction Right rule {VIR} ;

74 CHAPTER 2. PROPOSITIONAL LOGIC

• OrE (Proof ,Proof ,Proof) Prop. The Or Elimination rule {VE} re­
quires three proofs above the line. The first one is an application of the
form a V b, the second is a proof of some conclusion c given a, and the
third is a proof of the same conclusion c given b. The conclusion of the
rule must be the proposition c.

• ImpI Proof Prop. The Imply Introduction rule {~ I}.

• ImpE (Proof, Proof) Prop. The Imply Elimination rule {~ E}.

• ID Proof Prop. The Identity rule {ID}.

• eTR Proof Prop. The Contradiction rule {CTR} .

• RAA Proof Prop. The Reductio ad Absurdum rule {RAA}.

The best way to understand how to represent proofs is to look at some
examples, and then try your own. Start by studying proof 1 and proof2 above.

The representation of a theorem is very simple: it just contains a list of
assumptions of type [Prop] and a single conclusion of type Prop.

data Theorem = Theorem [Prop] Prop

To represent a theorem of the form

you would write

Theorem [al, a2, aa] c.

The proof checker function takes two arguments: a theorem of type Theorem
and a proof of type Proof. The easiest way to use it is to give a name to
the theorem and the proof, write a defining equation for each, and save the
definitions in a file. Don't try to type in proofs interactively! Follow the
defining equations above for example_theorem and proof! as a model.

There are many things that can go wrong with a proof. The proof checker
tries to give the best messages possible, but sometimes it is hard to debug a
proof. Actually, proof debugging has much in common with program debug­
ging. See the book's web page for hints on debugging proofs.

2.7 Boolean Algebra: Equational Reasoning

We have already looked at two major approaches to propositional logic: the
semantic approach with truth tables, and the syntactic approach with the
inference rules of natural deduction. We now look at the third major system,
Boolean algebra, which is an axiomatic approach to logic.

2.7. BOOLEAN ALGEBRA: EQUATIONAL REASONING 75

The earliest attempts to develop a formal logic system were based on in­
ference. The most famous of these was Aristotle's Theory of Syllogisms, which
profoundly affected the entire development of logic and philosophy for more
than two thousand years.

During the last several centuries, however, a completely different style of
mathematical reasoning appeared: algebra. Algebraic techniques were enor­
mously successful for reasoning about numbers, polynomials and functions .
One of the most appealing benefits of algebra is that many problems can be
expressed as an equation involving an unknown quantity x that you would
like to determine; you can then use algebraic laws to manipulate the equation
systematically in order to solve for x.

A natural question is: can the power of algebraic techniques be applied
to other areas of mathematics? Perhaps the most famous such application is
Descartes' analytical geometry. George Boole, a nineteenth century British
mathematician, saw that algebraic methods might also be applied to make
formal logical reasoning easier, and he attempted to develop such a system.
Boole's approach had some technical flaws, and is no longer in use. However, a
successful modern algebraic approach to logic has been developed and is named
in his honour .

Boolean algebra is a form of equational reasoning. There are two crucial
ideas: (1) you show that two values are the same by building up chains of
equalities, and (2) you can substitute equals for equals in order to add a new
link to the chain .

A chain of equalities relies on the fact that if you know a = b and also b = c,
then you can deduce formally that a = c. For example, the following chain of
equations allows us to conclude that a = e:

a. = b

c

d

e

Substituting equals for equals means that if you know x = y, and if you
have a big expression which contains x , then you can replace x by y without
changing the value of the big expression. For example, suppose you're given
that x = 2 + P and y = 5 x x + 3. Then you replace x by 2 + p, resulting in
y = 5 x (2 + p) + 3.

There is a minor but important point to observe in the example above: you
have to use parentheses properly to ensure that the value you substitute into
the expression sticks together as one value. In this example, we had to put
parentheses around the value 2 + p, because otherwise we would have written
the incorrect equation y = 5 x 2 + P + 3, which has a quite different meaning .

When we build a chain of equations using Boolean algebra, it's good practice
to give a justification for each step in the chain. The justifications help a reader
to understand the proof, and they also make it easier to check that the proof

76 CHAPTER 2. PROPOSITIONAL LOGIC

is actually valid. A standard way to write chains of equations is to start each
line (except the first) with an = sign, followed by the next expression in our
chain , followed by the justification which explains how we obtained it from the
previous expression . You'll see plenty of examples as we work through the laws
of Boolean algebra.

2.7.1 The Laws of Boolean Algebra

Modern Boolean algebra is based on a set of equations that describe the basic
algebraic properties of propositions. These equations are called laws; a law is
a proposition that is always true, for every possible assignment of truth values
to the logical variables.

The laws of Boolean Algebra are analogous to ordinary algebraic laws. For
example, elementary algebra has commutative equations for addition and mul­
tiplication, x + y =y + x and x x y =y x x. There are analogous commutative
laws for V and 1\, saying that x V y = y V x and x 1\ y = Y 1\ x. It can be
enlightening to compare the laws of Boolean algebra with those of elementary
algebra, but don't get carried away: there are differences as well as similarities.

There is one particularly dangerous trap. In many ways, logical And (1\)

behaves like multiplication (x) while logical Or (V) behaves like addition (+).
In fact, these similarities have tempted many people to use the + symbol for
Or and the x symbol (or .) for And. George Boole carried similar analogies
very far-much too far-in his original work.

However, 1\ does not behave like x in all respects , and V does not behave like
+ in all respects (see, for example Section 2.7.4). Reading too much significance
into the similarities between laws on numeric and Boolean operations can lead
you astray.

The essence of algebra is not that there are fundamental addition and mul­
tiplication operators that appear everywhere . The essential idea is that we can
use equations to state axioms on a set of operators, and then use equational
reasoning to explore the properties of the resulting system. Some algebraic sys­
tems have addition and multiplication operators, and some algebraic systems
don't. Boolean algebra doesn't .

Table 2.1 summarises the laws of Boolean Algebra, and we'll discuss them
in more detail in the following sections . If we were mainly concerned with
the foundations of algebra, our aim would be to take the smallest possible set
of equations as axioms, and to derive other ones as theorems. However, we
are more concerned here with the practical application of Boolean algebra in
computer science, so Table 2.1 gives a richer set of laws that are easier to use
for practical calculation than a minimal set of axioms would be.

2.7.2 Operations with Constants

These simple laws describe how 1\ and V interact with the Boolean constants
True and False.

2.7. BOOLEAN ALGEBRA: EQUATIONAL REASONING

Table 2.1: Laws of Boolean Algebra

a /\ False = False {/\ null}
a V True = True {V null}
a /\ True = a {/\ identity}
a V False a {V identity}

a -t avb {disjunctive implication}
a/\b -t a {conjunctive implication}
a/\a = a {/\ idempotent}
aVa = a {V idempotent}
a/\b b/\a {/\ commutative}
aVb = bVa {V commutative}

(a/\b)/\c a/\(b/\c) {/\ associative}
(a V b) V c = aV(bVc) {V associative}

a/\(bVc) (a /\ b) V (a /\ c) {/\ distributes over V}
a V (b /\ c) (a V b) /\ (a Vc) {V distributes over /\}

-,(a /\ b) -,a v-,b {DeMorgan's law}
-,(aVb) = -,a /\ -,b {DeMorgan's law}

-,True False {negate True}
-,False True {negate False}
a /\-,a = False {/\ complement}
a V-,a True {V complement}
,(-,a) = a {double negation}

a /\ (a -t b) -t b {Modus Ponens}
(a -t b) /\ -,b -t -,a {Modus Tollens}
(aVb)/\,a -t b {disjunctive syllogism}

(a -t b) /\ (b -t c) -t a-tc {implication chain}
(a -t b) /\ (c -t d) -t (a /\ c) -t (b /\ d) {implication combination}

(a /\ b) -t c = a -t (b -t c) {Currying}
a-tb = -,a V b {implication}
a-tb ,b -t ,a {contrapositive}

(a -t b) /\ (a -t ,b) ,a {absurdity}

aHb = (a -t b) /\ (b -t a) {equivalence}

77

78 CHAPTER 2. PROPOSITIONAL LOGIC

a 1\ False = False {I\ null}
a V True = True {V null}
a 1\ True = a {I\ identity}
a V False = a {V identity}

Often it's possible to simplify Boolean expressions with equational reasoning
using the constant laws. If you already know what the final simplified result will
be, then the equational reasoning serves as a proof of the equation. Here, for
example, is a simplification of the expression (P 1\ True) V False. Alternatively,
the following reasoning is a proof of the equation (P 1\ True) V False = P.

(P 1\ True) V False
= P 1\ True
=P

{V identity}
{I\ identity}

Note the form of the proof. We are trying to prove an equation, and the
proof consists of a chain of equations. The chain begins with the left hand side
of the theorem and ends with the right hand side of the theorem . Each step of
the chain is justified by one of the laws of Boolean algebra, and the name of
the law is written to the right .

Exercise 18. Simplify (P 1\ False) V (Q 1\ True).

Exercise 19. Prove the equation (P 1\ False) 1\ True = False.

2.7.3 Basic Properties of /\ and V

The following laws describe the basic properties of the 1\ and V operators. An
idempotent property allows you to collapse expressions like al\al\a down to just
a. Commutativity means that the order of the operands can be reversed , and
associativity means that the grouping of parentheses can be changed without
affecting the meaning .

a -+ aVb {disjunctive implication}
al\b -+ a {conjunctive implication}
al\a = a {I\ idempotent}
aVa = a {V idempotent}
al\b = bl\a {I\ commutative}
aVb = bVa {V commutative}

(al\b)l\c = a 1\ (b 1\ c) {I\ associative}
(a V b) V c = a V (b V c) {V associative}

Commutative operators take two operands, but the order doesn 't matter.
The commutative properties are often needed to put an expression into a form
where you can use another of the identities. Although we don't have a law

2.7. BOOLEAN ALGEBRA: EQUATIONAL REASONING 79

{t\ commutative}
{t\ null}
{V commutative}
{V identity}

saying that Falset\a = False, the commutativity of t\ can be applied to rearrange
an expression so that the law we do have, a t\ False = False, becomes usable.
As an example, here is a proof of the equation (False t\ P) V Q = Q:

(False t\ P) V Q
= (P t\ False) V Q
= False V Q
= Q V False
=Q

An associative operator gives the same result regardless of grouping. For
example, ordinary addition is associative, so 2 + (3 + 4) = (2 + 3) + 4. In a
similar way, t\ and V are both associative.

Since the parentheses don't actually affect the result in an expression where
an associative operator is repeated, you can safely omit them. For example,
we commonly write expressions like 2 + x + y, without insisting on 2 + (x + y)
or (2 + x) + y. The same thing happens in Boolean algebra: the propositions
P t\ Qt\ R and A VB VC VDare unambigous because the t\ and V operators are
associative, and it makes no difference what order the operations are performed.
When you mix different operators, however, parentheses are important: P t\

(Q V R) is not the same thing as (P t\ Q) V R.

Exercise 20. Prove (P t\ ((Q V R) V Q)) t\ S = S t\ ((R VQ) t\ P) .

Exercise 21. Prove P t\ (Q t\ (R t\ S)) = ((P t\ Q) t\ R) t\ S.

2.7.4 Distributive and DeMorgan's Laws

The laws in this section describe some important properties of expressions that
contain both the V and t\ operators.

at\(bVc)
aV(bt\c)

-.(a t\ b)
-.(a V b)

(a t\ b) V (a t\ c)
= (a V b) t\ (a V c)
= -.a v-.b
= -.a t\ -.b

{t\ distributes over V}
{V distributes over t\}

{DeMorgan's law}
{DeMorgan's law}

The distributive laws are analogous to the way multiplication distributes
over addition in elementary algebra: a x (b+c) = (a x b)+(a x c). However, it is
not the case that addition distributes over multiplication, because a + (b x c) f.
(a + b) x (a + c). Here is a significant reason that you should not think of V
and t\ as being addition and multiplication.

There is an intuitive reading for both of DeMorgan's laws. The proposition
-.(a t\ b) says 'a and b aren 't both true'. An equivalent way to say this is 'either
a or b must be false,' which corresponds to -.a V -.b.

Exercise 22. Give an intuitive explanation of the second DeMorgan's law.

80 CHAPTER 2. PROPOSITIONAL LOGIC

2.7.5 Laws on Negation

The following laws state some simple properties of logical negation (-,). We'll
see some more subtle properties in the following section, where negation is
mixed with implication.

-,True = False {negate True}
-False = True {negate False}
a /\-,a - False {/\ complement}-
a v r-a = True {V complement}
-,(-,a) = a {double negation}

The following example shows how equational reasoning can be used to sim­
plify P /\ -,(Q V P):

P/\-,(QVP)
= P /\ (-,Q /\ -,P)
= P /\ (-,P /\ -,Q)
=(P /\ -,P) /\ -,Q
= False /\-,Q
=-,Q /\ False
= False

2.7.6 Laws on Implication

{DeMorgan's law}
{/\ commutative}
{/\ associative}
{/\ complement}
{/\ commutative}
{/\ null}

The laws on implication are frequently useful for solving problems, and they are
also subtle enough to warrant careful study-especially the ones that combine
the ~ and -, operators. Note that some of these laws are implications, and
others are equations. A good way to understand an implication law is to find
a counterexample demonstrating that it would not be valid as an equation.
For example, the conjunctive implication law says that the conjunction a /\ b
implies a. However, it is not valid to write the implication in the other direction:
a ~ (a /\ b) is False when a = True and b = False.

a /\ (a ~ b) ~ b {Modus Ponens}
(a ~ b) /\-,b ~ -,a {Modus Tollens}
(a V b) /\-,a ~ b {disjunctive syllogism}

(a ~ b) /\ (b ~ c) ~ a~c {implication chain}
(a ~ b) /\ (c ~ d) ~ (a /\ c) ~ (b /\ d) {implication combination}

(a/\b) ~ c = a ~ (b ~ c) {Currying}
a~b -,a V b {implication}
a~b = -,b~ -,a {contrapositive}

(a ~ b) /\ (a ~ -,b) = -,a {absurdity}

2.8. LOGIC IN COMPUTER SCIENCE 81

Consider the Currying law, which is a logical form of Curried function
arguments (which will be covered in Chapter 9). Suppose two conditions a and
b are sufficient to ensure that c must be true. The Currying law says, in effect,
that there are two equivalent ways to establish that a and b both hold: either
we can require that a 1\ b is true, or we can require that an implication on a is
satisfied and also an implication on b. If either a or b is false, then a 1\ b will
be false, so the implication (a 1\ b) -+ C is vacuous. Furthermore at least one of
the implications in a -+ (b -+ c) will also be vacuous.

The second law, a -+ b = ..,a V b, often provides the easiest way to prove
implications in Boolean algebra. Notice that one side of the equation contains
the -+ operator and the other doesn't; therefore you can use this equation to
introduce a -+ where none was present before. Boolean algebra doesn't have
any notion of inference, so you can't prove a proposition containing a -+ with
an introduction rule.

The contrapositive law lets you turn around an implication. Suppose you
know that a -+ b; then if b is false it can't be the case that a is true.

The absurdity law is quite powerful, because it allows us to deduce the
value of a just from implications on a. This is worth thinking about: you
might expect that an implication a -+ b tells you something about b if you
know a, but it can't tell you whether a is true. Suppose , however, we know
both a -+ b and also a -+ ..,b. Then a can't be true because b 1\ ..,b can't be
true.

2.7.7 Equivalence

Strictly speaking, we don't need the logical equivalence operator +-t at all. The
proposition a +-t b is simply an abbreviation for (a -+ b) 1\ (b -+ a), as stated
by the following equation.

I a +-t b = (a -+ b) 1\ (b -+ a) {equivalence} I
Logical equivalence is essentially similar to equality, but there is a subtle

distinction. The well-formed formula P 1\ P +-t P is a single proposition, which
happens to have the value True. In contrast, the equation P 1\ P = P is not
a proposition. It is an equation , whose left and right hand sides are propo­
sitions. The equation is a statement in the metalanguage about propositions
which are expressed in the object language . You can say that two propositions
have the same value in either language; if you're in the metalanguage, talking
about propositions, use =, but if you're in the object language, trying to write
propositions that express properties of other propositions, use +-t.

2.8 Logic in Computer Science

Logic and computer science are strongly connected subjects. Each one has a
major influence on the other. The proof checking software described in Section

82 CHAPTER 2. PROPOSITIONAL LOGIC

2.6 is a typical example of the application of computing to logic. In this section
we're concerned with the other direction: the benefits of logic to computing.
There are far too many applications of logic to computing to mention them all
here. This section describes just a few examples in order to help put the topics
in this chapter into perspective. Section 2.10 gives references that will tell you
more about these topics.

Formal correctness of software. Many large programming projects have
been devastated by ineradicable bugs. There has been much discussion of
the 'Software Crisis': how can we write software that works correctly? One
approach to this problem is to use mathematics to specify what the software is
supposed to do, and to prove its correctness. There are many different methods
for doing this, but ultimately they are all based on formal logical reasoning.

In general it doesn't work very well to take a poorly-written program and try
to prove it correct . Even if the program contains no bugs, the sloppy structure
will make the logical correctness proof impossibly difficult. However, there has
been considerable success in using the formal logical reasoning to help derive
the software from a mathematical specification.

The Curry-Howard Isomorphism and type systems. Many modern
programming languages-especially functional languages like Haskell-have
powerful and expressive type systems. We need effective methods to help deal
with type systems : to help programmers understand them, to help compiler
writers implement them, and to help language designers to specify them .

There is a remarkable connection between the inference rules of logic and
the typing rules of programming languages; in fact, they are essentially the
same! This connection was observed in the 1950s by the logicians Curry and
Howard, and has ultimately resulted in great improvements in programming
languages.

Linear Logic and access control. Often in computing we are concerned
with controlling the access to some resource . One example arises in functional
programming, where array operations can be implemented more efficiently if
the compiler can guarantee that the program observes certain constraints on
the way the array is accessed.

There is a logical system called Linear Logic which keeps track of where each
intermediate result in an inference proof is used. The inference rules of linear
logic are careful to discharge every assumption exactly once, and intermediate
results must also be discharged . The system is able to express certain kinds
of resource utilisation through the inference rules. There is significant current
research on the application of linear logic to language design and compilers.

Digital hardware design. Computers are built out of digital hardware.
These circuits are very complex, containing enormous numbers of components.

2.9. METALOGIC 83

Discrete mathematics is an essential tool for designing digital circuits. Using
the mathematics makes the design process easier, and also makes it possible to
prove that a circuit is correct. In Chapter 10 we will return to this application
in more detail.

2.9 Metalogic

Metalogic is concerned with stepping outside the language of logic, so that
we can make general statements about the properties of the logical system
itself. Metalogic enables us to talk about logic rather than just saying things in
logic. Within the logical system , the only elements of our vocabulary are the
propositional variables and logical operators; we can say things like A 1\ B -t

A V B but that's all. The purpose of metalogic is to enable us to think about
deeper questions.

At this point we have covered three quite different methods for reasoning
about propositions: truth tables, logical inference and Boolean algebra. These
methods have completely different styles :

• Truth tables enable us to calculate the values (or meanings) of proposi­
tions, given the values of their variables . The basic technique is calcu­
lation, and it results in a logical value (True or False) . The meaning of
an expression is called its semantics, so calculation with truth tables is a
form of semantic reasoning.

• Inference rules enable us to prove theorems . The basic technique involves
matching the structures of propositions with the structure of the formulas
in the inference rules. The structure of an expression is called its syntax,
so logical inference is a form of syntactic reasoning .

• Boolean algebra allows the use of equational reasoning to prove the equal­
ity of two expressions , or to calculate the values of expressions. It applies
the power of algebra to the subject of logic.

Just as propositional logic needs a vocabulary for talking about truth values
(1\, V etc .), metalogic needs a vocabulary for talking about logical reasoning
itself. There are two fundamental operator symbols in metalogic, F and f-,
which correspond to semantic and syntactic reasoning respectively. We have
already defined these operators. Recall that:

• PI, P2 , . .• ,Pn f- Q means that there is a proof which infers the conclu­
sion Q from the assumptions PI, . . . ,Pn using the formal inference rules
of natural deduction;

• P l , P2 , .. • .r; F Q means that Q must be True if PI ,r; are all
True , but it says nothing about whether we have a proof, or indeed even
whether a proof is possible.

84 CHAPTER 2. PROPOSITIONAL LOGIC

The 1= and the r operators are describing two different notions of truth,
and it 's important to know whether they are in fact equivalent. Is it possible
to prove a theorem which is false? Is there a true theorem for which no proof
exists?

Definition 6. A formal system is consistent if the following statement is true
for all well-formed formulas a and b:

If arb then a 1= b.

In other words, the system is consistent if each proposition provable using
the inference rules is actually true.

Definition 7. A formal system is complete if the following statement is true
for all well formed formulas a and b:

If a 1= b then arb.

In other words, the system is complete if the inference rules are powerful
enough to prove every proposition which is true.

Fortunately it turns out that propositional logic is both consistent and
complete. This means that you can't prove false theorems and if a theorem is
true it has a proof.

Theorem 22. Propositional logic is consistent and complete.

You can find the proof of Theorem 22 in some of the books suggested in
the next section. It is interesting to note , however, that this is a (metalogical)
theorem which is proved mathematically; it isn't just an assumption.

There are many logical systems, and some of them are much richer and
more expressive than propositional logic. In the next chapter we will look at
a more powerful logical system called predicate logic, which is also consistent
and complete .

It turns out that any logical system that is powerful enough to express
ordinary arithmetic must be either inconsistent or incomplete. This means it's
impossible to capture all of mathematics in a safe logical system. This result,
the famous Godei's Theorem, has had a profound impact on the philosophy of
mathematics, and is also relevant to theoretical computer science.

2.10 Suggestions for Further Reading

Logic plays an increasingly important role in computer science, and there are
many books and papers where you can learn more about the connections be­
tween these two subjects. There is a regular international conference , Logic in
Computer Science (LIeS), devoted to current research . A number of recom­
mendations for further reading are given below; the complete citations appear
in the Bibliography.

2.10. SUGGESTIONS FOR FURTHER READING 85

• Forever Undecided: A Puzzle Guide to Giidel; by Raymond Smullyan [26] .
This is a collection of puzzles set on an island of Knights and Knaves.
Knights are always truthful, and knaves always lie. The tricky problem
is that you can't tell whether someone is a knight or a knave simply
by looking at them. A typical problem is to think of a question to ask
someone which will enable you to figure out what you want to know,
regardless of whether the person you ask happens to be a knight or a
knave . Smullyan manages to capture the essence of several metalogical
problems, including the famous Incompleteness Theorem of G6del, and to
express deep problems in terms of entertaining and relatively elementary
puzzles. This book is a classic of logic and philosophy. Don't miss it!

• Giidel, Escher, Bach: An Eternal Golden Braid , by Douglas R. Hofstadter
[16] is 'A metaphorical fugue on minds and machines in the spirit of Lewis
Carroll.' The themes of the book are drawn from mathematics, art, music,
cognitive science and computer science. Another unmissable classic.

• How To Prove It : A Structured Approach, by Daniel J . Velleman [31], is
a systematic presentation of the standard methods for logical reasoning
in carrying out proofs . This is a good source for hints on technique, and
it contains lots of examples.

• Logic for Mathematics and Computer Science, by Stanley N. Burris [5] is
a more advanced coverage of mathematical logic. It gives detailed presen­
tations of some important proof techniques that are useful for automated
systems. There is also a good explanation of some interesting historical
topics, including syllogisms and Boole's original attempt to apply algebra
to logic.

• A Mathematical Introduction to Logic, by Herbert B. Enderton [9] gives a
standard presentation of logic from a mathematical perspective, includ­
ing advanced topics such as models, soundness and completeness, and
undecidability.

• Type Theory and Functional Programming, by Simon Thompson [29] gives
a detailed development of the relationship between the inference rules of
natural deduction and the rules used to define type systems for program­
ming languages.

• Logic and Declarative Language, by Michael Downward [8] covers the re­
lationship between logic and declarative languages, especially logic pro­
gramming languages like Prolog.

• Proofs and Types, by Girard, Lafont and Taylor [12] presents the rela­
tionship between inference proofs and type systems at a research level.

86 CHAPTER 2. PROPOSITIONAL LOGIC

2.11 Review Exercises

Exercise 23. Prove P,Q,R, Sf- (P /\ Q) /\ (R /\ S).

Exercise 24. Prove P -t R f- P /\ Q -t R.

Exercise 25. Use the inference rules to calculate the value of TrueVTrue.

Exercise 26. Use the inference rules to calculate the value of False -t True.
Many people find the truth table definition False -t True = True to be
highly counterintuitive. Back in Section 2.4, this was just an arbitrary
definition. Now, however, you can see the real reason behind the truth
table definition of -t : it's necessary in order to make the semantic truth
table definition behave consistently with the formal inference rules of
propositional logic.

Exercise 27. Suppose that you were given the following code:

10gicExprl :: 8001 -> 8001 -> 8001
10gicExprl a b = a /\ b \/ a <=> a

10gicExpr2 : : 8001 -> 8001 -> 8001
10gicExpr2 a b = (a \/ b) /\ b <=> a /\ b

Each of these functions specifies a Boolean expression. What are the truth
values of these expressions? How would you write a list comprehension
that can calculate the values for you to check your work?

Exercise 28 . Work out the values of these expressions, then check with a list
comprehension:

10gicExpr3 :: 8001 -> 8001 -> 8001 -> 8001
10gicExpr3 abc

= (a /\ b) \/ (a /\ c) ==> a \/ b

10gicExpr4 :: 8001 -> 8001 -> 8001 -> 8001
10gicExpr4 abc

= (a /\ (b \/ c» \/ (a \/ c) ==> a \/ c

Exercise 29. Suppose that you are told to calculate the truth value of the
following expression:

(a /\ b \/ c /\ d) /\
(e \/ f /\ (g /\ h»

<=>
(i ==> j /\ (k ==> i \/ b»

Would it be better to use a truth table or simplification using laws?

2.11. REVIEW EXERCISES

Exercise 30. Define a data type that represents logical expressions.

87

Exercise 31. Using the Logic data type given in the previous question, de­
fine a function distribute that implements the distributive law, and
a function deMorgan that implements DeMorgan 's law. Why doesn't
distribute have four lines, instead of two?

Exercise 32. A proof of an implication requires that the left-hand side, called
the premise, be assumed . If it is possible to use laws to derive the right
hand side, called the consequent, then the derivation is the proof. Prove
that

C /\ A /\ B V C --+ C /\ (C V (A /\ B))

is a tautology.

Exercise 33 . Prove that

C V A /\ (B V C) --+ ((C V A) /\ C) V A /\ B

is a tautology.

Chapter 3

Predicate Logic

It is frequently necessary to reason logically about statements of the form ev­
erything has the property p or something has the property p. One of the oldest
and most famous pieces of logical reasoning, which was known to the ancient
Greeks, is an exampl e:

All men are mortal. Socrates is a man . Therefore Socrates is mortal.

In general , proposi tional logic is not expressive enough to support such reason­
ing. We could define a proposition P to mean 'all men are mortal', but P is
an atomic symbol-it has no internal structure-so we cannot do any formal
reasoning that makes use of the meaning of 'all' .

Predicate logic, also called first order logic, is an extension to propositional
logic which adds two quantifiers that allow statements like the examples above
to be expressed. Everything in proposi tional logic is also in predicate logic: all
the definitions, inference rules, theorems , algebrai c laws, etc ., still hold.

3.1 The Language of Predicate Logic

The formal language of predicate logic consists of propositional logic, aug­
mented with variables, predicates and quantifi ers.

3.1.1 Predicates

A predicate is a statement that an object x has a certain property. Such
statements may be either true or false. For example, the statement 'x > 5'
is a predicate, and its truth depends on the value of x . A predicate can be
extended to several variables; for example, 'x > y' is a predicate about x and
y.

The conditional expressions used to control execution of computer programs
are predicates. For example, the Haskell expression if x<O then -x else x
uses the predicate x<O to make a decision.

89

C. Hall et al., Discrete Mathematics Using a Computer
© Springer-Verlag London 2000

90 CHAPTER 3. PREDICATE LOGIC

In predicate logic it is traditional to write predicates concisely in the form
F(x), where F is the predicate and x is the variable it is applied to. A predicate
containing two variables could be written G(x, y). A predicate is essentially a
function that returns a Boolean result . Often in this book we will use Haskell
notation for function applications, which does not require parentheses: for
example f x is the application of f to x . For predicate logic, we will use the
traditional notation with parentheses, F(x).

Definition 8. Any term in the form F(x), where F is a predicate name and
x is a variable name, is a well-formed formula . Similarly, F(Xl,X2, ... ,Xk) is
a well-formed formula; this is a predicate containing k variables.

When predicate logic is used to solve a reasoning problem, the first step is to
translate from English (or mathematics) into the formal language of predicate
logic. This means the predicates are defined; for example we might define:

F(x) _ x> 0

G(x,y) _ x>y

The un iverse of discourse, often simply called the universe or abbreviated
U, is the set of possible values that the variables can have. Usually the universe
is specified just once, at the beginning of a piece of logical reasoning, but this
specification cannot be omitted. For example, consider the statement 'For
every x there exists a y such that x = 2 X y' . If the universe is the set of even
integers, or the set of real numbers , then the statement is true. However, if
the universe is the set of natural numbers then the statement is false (let x
be any odd number). If the universe doesn't contain numbers at all, then the
statement is not true or false; it is meaningless.

Several notational conventions are very common in predicate logic, although
some authors do not follow them . These standard notations will, however, be
used in this book. The universe is called U, and its constants are written as
lower case letters, typically c and p (to suggest a constant value, or a particular
value). Variables are also lower case letters, typically x, y, z. Predicates are
upper case letters F, G, H, For example, F(x) is a valid expression in the
language of predicate logic, and its intuitive meaning is 'the variable x has the
property F'. Generic expressions are written with a lower case predicate; for
example f(x) could stand for any predicate f applied to a variable x.

3.1.2 Quantifiers

There are two quantifiers in predicate logic; these are the special symbols V
and 3.

Definition 9. If F(x) is a well-formed formula containing the variable x, then
Vx. F(x) is a well-formed formula called a universal quantification. This is a
statement that everything in the universe has a certain property: 'For all x in

3.1. THE LANGUAGE OF PREDICATE LOGIC 91

the universe, the predicate F(x) holds'. An alternative reading is 'Every x has
the property F'.

Universal quantifications are often used to state required properties. For
example, if you want to say formally that a computer program will give the
correct output for all inputs, you would use \I. The upside-down A symbol is
intended to remind you of All.

Example 1. Let U be the set of even numbers. Let E(x) mean x is even.
Then \Ix. E(x) is a well-formed formula, and its value is true.

Example 2. Let U be the set of natural numbers. Let E(x) mean x is even.
Then \Ix. E(x) is a well-formed formula, and its value is false.

Definition 10. If F(x) is a well-formed formula containing the variable x, then
3x. F(x) is a well-formed formula called an existential quantification. This is a
statement that something in the universe has a certain property: 'There exists
an x in the universe for which the predicate F(x) holds'. An alternative reading
is 'Some x has the property F'.

Existential quantifications are used to state properties that must occur at
least once. For example, we might want to state that a database contains
a record for a certain person ; this would be done with 3. The backwards E
symbol is reminiscent of Exists.

Example 3. Let U be the set of natural numbers . Let F(x, y) be defined as
2 x x = y. Then 3x.F(x,6) is a well-formed formula ; it says that there is a
natural number x which gives 6 when doubled; 3 satisfies the predicate, so the
formula is true. However, 3x. F(x,7) is false.

Quantified expressions can be nested . Let the universe be the set of inte­
gers, and define F(x) = 3y. x < y; thus F(x) means 'There is some number
larger than x'. Now we can say that every integer has this property by stating
\lx.F(x). An equivalent way to write this is \Ix. (3y. x < y). The parentheses
are not required, since there is no ambiguity in writing \Ix. 3y. x < y . All the
quantified variables must be members of the universe.

In the example above, both x and yare integers . However, it is often useful
to have several variables that are members of different sets. For example,
suppose we are reasoning about people who live in cities, and want to make
statements like 'There is at least one person living in every city'. It is natural
to define L(x, y) to mean 'The person x lives in the city y', and the expression
\lx.3y.L(y, x) then means 'Every city has somebody living in it'. But what is
the universe?

The way to handle this problem is to define a separate set of possible values
for each variable. For example, let C = {London, Paris, Los Angeles, Miinchen]
be the set of cities, and let P = {Smith, Jones, . . . } be the set of persons.
Now we can let the universe contain all the possible variable values: U =

92 CHAPTER 3. PREDICATE LOGIC

CUP. Quantified expressions need to restrict each variable to the set of
relevant values, since it is no longer intended that a variable x could be any
element of U. This is expressed by writing 'IIx E S. F(x) or 3x E S. F(x) ,
which say that x must be an element of S (and therefore also a member of the
universe) . Now the statement 'There is at least one person living in every city '
is written

'IIx E C. 3y E P. L(y, x).

Universal quantification over an empty set is vacuously true, and existential
quantification over an empty set is vacuously false. Often we require that the
universe is non-empty, so quantifications over the universe are not automati­
cally true or false.

3.1.3 Expanding Quantified Expressions

If the universe is finite (or if the variables are restricted to a finite set), ex­
pressions with quantifiers can be interpreted as ordinary terms in propositional
logic. Suppose U = {el, e2,... ,cn } , where the size of the universe is n. Then
quantified expressions can be expanded as follows:

'IIx. F(x) = F(ed /\ F(C2) /\ /\ F(cn)

3x . F(x) = F(ed V F(C2) V V F(cn)

(3.1)

(3.2)

With a finite universe, therefore, the quantifiers are just syntactic abbrevi­
ations. With a small universe it is perfectly feasible to reason directly with the
expanded expressions. In many computing applications the universe is finite
but may contain millions of elements; in this case the quantifiers are needed to
make logical reasoning practical, although they are not needed in principle.

If the variables are not restricted to a finite set, it is impossible even in
principle to expand a quantified expression. It may be intuitively clear to write
F(ed /\ F(e2) /\ F(C3) /\ ... , but this is not a well-formed formula . Every well­
formed formula has a finite size, although there is no bound on how large a
formula may be. This means that in the presence of an infinite universe, quan­
tifiers make the language of predicate logic more expressive than propositional
logic.

The expansion formulas, Equations 3.1 and 3.2, are useful for computing
with predicates.

Example 4. Let the universe U = {I, 2, 3}, and define the predicates even
and odd as follows:

even x _ (x mod 2 = 0)

odd x = (x mod 2 = 1)

3.1. THE LANGUAGE OF PREDICATE LOGIC 93

Two quantified expressions will be expanded and evaluated using these defini­
tions:

"Ix. (even x ~ -,(odd x))
(even 1 ~ -,(odd 1)) /\ (even 2 ~ -,(odd 2)) /\ (even 3 ~ -,(odd 3))

= (False~ -,True) /\ (True~ -,False) /\ (False ~ -,True)
= True /\ True/\ True
= True

3x. (even x /\ odd x)
(even 1/\ odd 1) V (even 2/\ odd 2) V (even 3/\ odd 3)

= (False /\ True) V(True/\ False) V(False /\ True)
False V False V False

= False

Example 5. Let S = {0,2,4,6} and R = {O, 1,2,3}. Then we can state that
every element of S is twice some element of R as follows:

"Ix E S. 3y E R . x = 2 x y

This can be expanded into a quantifier-free expression in two steps. The first
step is to expand the outer quantifier:

(3y E R. 0 = 2 x y)
/\ (3y E R . 2 = 2 x y)
/\ (3y E R . 4 = 2 x y)
/\ (3y E R . 6 = 2 x y)

The second step is to expand all four of the remaining quantifiers:

((0 = 2 x 0) V (0 = 2 x l) V (0 = 2 x 2) V (0 = 2 x 3)j
/\ ((2 = 2 x 0) V (2 = 2 xl) V (2 = 2 x 2) V (2 = 2 x 3)
/\ ((4 = 2 x 0) V (4 = 2 x 1) V (4 = 2 x 2) V (4 = 2 x 3)
/\ ((6 = 2 x 0) V (6 = 2 x 1) V (6 = 2 x 2) V (6 = 2 x 3))

Two short cuts have been taken in the notation here. (1) Since every quantified
variable is restricted to a set, the universe was not stated explicitly; however
we can define U = SUR. (2) Instead of defining F(x,y) to mean x = 2 x y
and writing "Ix E S. 3y E R. F(x, y), we simply wrote the expression x = 2 x y
inside the expression. Both short cuts are frequently used in practice.

Exercise 1. Let the universe U = {I, 2, 3}. Expand the following expressions
into propositional term (i.e. remove the quantifiers) :

(a) "Ix. F(x)

(b) 3x. F(x)

(c) 3x. Vy. G(x,y)

Exercise 2. Let the universe be the set of integers. Expand the following
expression: "Ix E {1,2 ,3,4} . 3y E {5,6}. F(x,y)

94 CHAPTER 3. PREDICATE LOGIC

3.1.4 The Scope of Variable Bindings

Quantifiers bind variables by assigning them values from a universe. A dangling
expression without explicit quantification, such as x+2, has no explicit variable
binding. If such an expression appears, x is assumed implicitly to be an element
of the universe, and the author should have told you explicitly somewhere what
the universe is.

The extent of a variable binding is called its scope. For example, the scope
of x in the expression 3x. F(x) is the subexpression F(x). For "Ix E S. 3y E
R. F(x, y) , the scope of x is 3y E R. F(x , y), and the scope of y is F(x, V).

It is good practice to use parentheses to make expressions clear and readable.
The expression

vx.p(x) V q(x)

is not clear: it can be read in two different ways. It could mean either

"Ix. (p(x) V q(x))

or

('v'x.p(x)) V q(x) .

It is probably best to use parentheses in case of doubt, but there is a convention
which resolves unclear expressions: the quantifier extends over the smallest
subexpression possible unless parentheses indicate otherwise . In other words,
the scope of a variable binding is the smallest possible. So, in the assertion
given above, the variable x in q(x) is not bound by the 'v', so it must have been
bound at some outer level (i.e. this expression has to be embedded inside a
bigger one).

Often the same quantifier is used several times in a row to define several
variables:

"Ix. Vy. F(x,y)

It is common to write this in an abbreviated form, with just one use of the V
operator followed by several variables separated by commas. For example, the
previous expression would be abbreviated as follows:

'v'x, y. F(x, y)

This abbreviation may be used for any number of variables, and it can also be
used if the variables are restricted to be in a set, as long as they all have the
same restriction. For example, the abbreviated expression

'v'x,y,z E S. F(x,y,z)

is equivalent to the full expression

"Ix E S. Vy E S. 'v'z E S. F(x,y,z) .

3.1. THE LANGUAGE OF PREDICATE LOGIC 95

3.1.5 Translating Between English and Logic

Sometimes it is straightforward to translate an English statement into logic. If
an English statement has no internal structure that is relevant to the reasoning ,
it can be repres ented by an ordinary propositional variabl e:

A = Elephants are big.
B _ Cats are furry.
C _ Cats are good pets.

An English statement built up with words like and, or, not, therefore and so
on, where the meaning corresponds to the logical operators, can be represented
by a propositional expression.

-,A
AI\B
B-tC

Elephants are small.
Elephants are big and cats are furry.
If cats are furry then they make good pets.

Notice in the exampl es above that no use has been made of the internal
structure of the English st atements. (The sentence 'elephants are small ' may
appear to violate this , but it could just as easily have been written 'it is untrue
that elephants are big', which corresponds exactly to -,A.)

When general statements are made about classes of objects, then predicates
and quantifiers are needed in order to draw conclusions. For example, suppose
we try these definitions in propositional logic, without using predicates:

A
C
S

Small animals are good pets.
Cats are animal s.
Cats are small.

In ordinary conversation , it would be natural to conclude that cats are good
pets, but this cannot be concluded with propositional logic. All we have are
three propositions: A , C and S are known, but nothing else, and the only
conclusions that can be drawn are uninteresting ones like A 1\ C, S V A, and the
like. The substantive conclusion, that cats are good pets, requires reasoning
about the internal structure of the English statements. The solution is to use
predicates to give a more refined translation of the sentences:

A(x) - x is an animal.
C(x) - x is a cat.
S(x) - x is small.
GP(x) - x is a good pet .

Now a much richer kind of English sentence can be translated into predicate
logic:

"Ix. C(x) -t A(x)
"Ix . C(x) -t Sex)
"Ix. C(x) -t S(x) 1\ A(x)
"Ix. Sex) 1\ A(x) -t GP(x)

=

=

Cats are animals.
Cats are small. '
Cats are small animals.
Small animals are good pets.

96 CHAPTER 3. PREDICATE LOGIC

It is generally straightforward to translate from formal predicate logic into
English, since you can just turn each logical operator directly into an English
word or phrase. For example,

\Ix . S(x) A A(x) ~ GP(x)

could be translated into English literally :

(1) For every thing, if that thing is small and that thing is an animal,
then that thing is a good pet .

This is graceless English, but at least it's comprehensible and correct. The
style can be improved:

(2) Everything which is small and which is an animal is a good pet .

Even better would be:

(3) Small animals make good pets.

Such stylistic improvements in the English are optional. It is important to be
sure that the effort to improve the literary style doesn't affect the meaning,
but this is a question of proper usage of natural language , not of formal logic.

It is sometimes trickier to translate from English into formal logic, precisely
because the English usually does not correspond obviously to the logical quan­
tifiers and operators. Sentence (1) above can be translated straightforwardly
into logic, sentence (3) is harder. The difficulty is not really in the logic; it is
in figuring out exactly what the English sentence says.

Often the real difficulty in translating English into logic is in figuring out
what the English says, or what the speaker meant to say. For example, many
people make statements like 'All people are not rich' . What this statement
actually says is

\lx.-.R(x),

where the universe is the set of people and R(x) means 'x is rich'. What is
usually meant, however, by such a statement is

-.\lx . R(x) ,

which is quite different from the real meaning . This intended meaning is equiv­
alent to

3x. -.R(x).

Such problems of ambiguity or incorrect grammar in English cannot be solved
mathematically, but they do illustrate one of the benefits of mathematics: sim­
ply translating a problem from English into formal logic may expose confusion
or misunderstanding.

3.1. THE LANGUAGE OF PREDICATE LOGIC 97

Example 6. Consider the translation of the sentence 'Some birds can fly' into
logic. Let the universe be a set that contains all birds (it is all right if it contains
other things too , such as frogs and other animals) . Let B(x) mean 'x is a bird'
and F(x) mean 'x can fly'. Then 'Some birds can fly ' is translated as

3x. B(x) /\ F(x)

WaNling! A common pitfall is to translate 'Some birds can fly' as

3x. B(x) -1 F(x) Wrong translation!

To see why this is wrong, let p be a frog that somehow got into the universe.
Now B(p) is false, so B(p) -1 F(p) is true (remember False -1 False = True).
This is just saying 'If that frog were a bird then it would be able to fly', which
is true; it doesn't mean the frog actually is a bird, or that it actually can
fly. However, we have now found a value of x-namely the frog p--for which
B(x) -1 F(x) is true, and that is enough to satisfy 3x . B(x) -1 F(x), even if
all the birds in the universe happen to be chickens (which cannot fly).

Exercise 3. Express the following statements formally, using the universe
of natural numbers, and the predicates E(x) == x is even and O(x) ==
x is odd.

• There is an even number.

• Every number is either even or odd.

• No number is both even and odd.

• The sum of two odd numbers is even.

• The sum of an odd number and an even number is odd.

Exercise 4. Let the universe be the set of all animals, and define the following
predicates:

B(x) = x is a bird.
D(x) - x is a dove .
C(x) - x is a chicken.
P(x) - x is a pig.
F(x) - x can fly.
W(x) - x has wings.
M(x,y) - x has more feathers than y does.

Translate the following sentences into logic. There are generally several
correct answers. Some of the English sentences are fairly close to logic,
while others require more interpretation before they can be rendered in
logic.

• Chickens are birds.

• Some doves can fly.

98 CHAPTER 3. PREDICATE LOGIC

• Pigs are not birds.

• Some birds can fly, and some can't.

• An animal needs wings in order to fly.

• If a chicken can fly, then pigs have wings.

• Chickens have more feathers than pigs do.

• An animal with more feathers than any chicken can fly.

Exercise 5. Translate the following into English.

• "Ix. (3y . wantsToDanceWith (x,y))

• 3x. (Vy. wantsToPhone (y,x))

• 3x. (tired (x) 1\Vy . helpsMoveHouse (x,y))

3.2 Computing with Quantifiers

As long as the universe is finite, a computer is useful for evaluating logical ex­
pressions with quantifiers. This provides a good way to check your understand­
ing of expressions in predicate logic. Even more importantly, many software
applications are expressed in terms of finite sets of data that are manipulated
using predicate logic expressions.

The software tools file provides several Haskell functions that are helpful for
computing with predicate logic, and this section explains how to use them . To
keep things simple, we assume that the universe is a set of numbers represented
as a list. In programming terminology, a predicate is a function that returns a
Boolean value; this is the same meaning that predicate has in logic.

The function foraH takes a list of numbers forming the universe and a
predicate, applies the predicate to each value in the list , and returns the con­
junction of the results :

forall :: [lnt] -> (lnt -> Bool) -> Bool

For example, foraH [1,2] (>5) means "Ix. x > 5 where the universe U =
{I,2}. The implementation of foraH simply expands the quantified expres­
sion, using Equation 3.1, and then evaluates it . The expansion uses the Haskell
function and :: [Bool] -> Bool; thus F(cd 1\ F(C2) 1\ F(C3) would be ex­
pressed in Haskell as and [f cl , f c2, f c3] .

Exercise 6. Write the predicate logic expressions corresponding to the follow­
ing Haskell expressions. Then decide whether the value is True or False,
and evaluate using the computer. Note that (== 2) is a function that
takes a number and compares it with 2, while « 4) is a function that
takes a number and returns True if it is less than 4.

forall [1,2,3] (== 2)
forall [1,2,3] « 4)

3.2. COMPUTING WITH QUANTIFIERS 99

Like foraH, the function exists applies its second argument to all of the
elements in its first argument:

exists :: [lnt] -> (lnt -> 8001) -> Boo1

Exercise 7. Again, rewrite the followingin predicate logic, work out the values
by hand and evaluate on the computer:

exists [0,1,2] (== 2)
exists [1,2,3] (> 5)

The functions exists and foraH can be nested in the same way as quan­
tifiers can be nested in predicate logic. It's convenient to make inner calls into
separate functions .

Example 7. "Ix E {l,2}. (3y E {l, 2}. x = y) has an inner assertion that can
be implemented as follows:

inner_fun :: lnt -> lnt -> 8001
inner_fun x = exists [1,2] (== x)

Now consider the evaluation of:

fora11 [1,2] inner_fun

The evaluation can be calculated step by step . The function and takes a list of
Boolean values and combines them all using the 1\ operation:

fora11 [1,2] inner_fun
= and [inner_fun 1, inner_fun 2]
= and [exists [1,2] (== 1),

exists [1,2] (== 2)]
= and [or [1==1,2==1],

or [1==2, 2==2]]
and [True, True]

= True

Example 8. Define:

inner_fun x = exists [1,2,3] (== x+2)
exists [1,2,3] inner_fun

Here is the evaluation:

exists [1,2,3] inner_fun
= or [inner_fun 1, inner_fun 2, inner_fun 3]
= or [exists [1,2,3] (== 1+2),

exists [1,2,3] (== 2+2),
exists [1,2,3] (== 3+2)]

100 CHAPTER 3. PREDICATE LOGIC

F(x) {x arbitrary}
--------{vI}

Vx.F(x)

Vx.F(x)
F(p) {VEl

3x.F(x) F(x) I- A {x arbitrary}
--------------{3E}

A

F(p)
---{3/}
3x .F(x)

Figure 3.1: Inference Rules of Predicate Logic

= or [or [1 == 1+2.2 == 1+2, 3 =~ 1+2].
or [1 == 2+2.2 == 2+2,3 == 2+2].
or [1 == 3+2. 2 == 3+2, 3 == 3+2]]

= or [or [False, False. True],
or [False. False. False].
or [False, False. False]]

= or [True, False, False]
= True

An important distinction between mathematical quantification and the Has­
kell functions exists and foraH is that quantification is defined over both
finite and infinite universes, whereas these Haskell functions do not always
terminate when applied to infinite universes.

Exercise 8. Define the predicate p x y to mean x = y +1, and let the universe
be {1,2} . Calculate the value of each of the following expressions, and
then check your solution using Haskell.

(a) 'Ix. (3y . p(x ,y»

(b) 3x,y. p(x,y)

(c) 3x. (Vy. p(x,y»

(d) Vx,y. p(x,y)

3.3 Logical Inference with Predicates

The inference rules for propositional logic can be extended to handle predicate
logic as well. Four additional rules are required (Figure 3.1): an introduction
rule and an elimination rule for both of the quantifiers 'land 3.

A good way to understand the inference rules of predicate logic is to view
them as generalisations of the corresponding rules of propositional logic. For
example, there is a similarity between inferring F(P) A F(Q) in propositional
logic, and inferring Vx.F(x) in predicate logic. If the universe is finite, then the

3.3. LOGICAL INFERENCE WITH PREDICATES 101

predicate logic is not, in principle, even necessary. We could express Vx.F(x)
by F(pd 1\ F~) 1\ . . . 1\ F(pn), where n is the size of the universe . If the
universe is infinite, however, then the inference rules of predicate logic allow
deductions that would be impossible using just the propositional logic rules.
We will always assume that the universe is non-empty.

3.3.1 Universal Introduction {'VI}

A standard proof technique, which is used frequently in mathematics and com­
puter science, is to state and prove a property about an arbitrary value x,
which is an element of the universe, and then to interpret this as a statement
about all elements of the universe. A typical example is the following simple
theorem about Haskell lists, which says that there are two equivalent methods
for attaching a singleton x in front of a list XS:

Theorem 23. Let x :: a and xs :: [a] . Then x : xs = [x]++xs.

It is important to realise that this theorem is stating a property about
arbitrary x and zs. It really means that the property holds for all values of the
variables, and this could be stated more formally with an explicit quantifier:

Theorem 24. "Ix :: a. VXS :: [a] . x : zs = [x]++XS

These two theorems have exactly the same meaning ; the only difference is
the style! in which they are expressed : the first is a little more like English,
and the second is a little more formal. Both styles are common. For a theorem
in the first style, the use of arbitrary variables means an implicit V is meant .
Now, consider the proof of this theorem; the following proof could be used for
either the formal or the informal statement of the theorem:

Proof.

[x]++XS
= (x: [])++XS
= x: ([J++XS)
= x: xs

def. of notation
(++).2
(++).1

o
Again, there is a significant point about this proof: it consists of formal

reasoning about one value x and one value XS, but these values are arbitrary,
and the conclusion we reach at the end of the proof is that the theorem is true
for all values of the variables. In other words, if we can prove a theorem for an
arbitrary variable, then we infer that the theorem is true for all possible values
of that variable .

1 For a discussion about good style in mathematics, see the pointer to Mathematical Writ ­
ing in Section 3.5.

102 CHAPTER 3. PREDICATE LOGIC

These ideas are expressed formally by the following inference rule, which
says that if the expression a (which may contain a variable x) can be proved for
arbitrary x, then we may infer the proposition "Ix. a . Since this rule specifies
what we need to know in order to infer an expression containing V, its name is
{VI} .

F(x) {x arbitrary}
--------{VI}

Vx.F(x)

To clarify exactly what this rule means, we will compare two examples: one
where it can be used, and one where it cannot. Let the universe be the set of
natural numbers N, and let E(x) be the proposition 'x is even'. First, consider
the following theorem:

Theorem 25. I- "Ix . E(x) -t (E(x) V -,E(x))

The proof uses the V introduction rule . The important point is that this
inference does not depend on the particular value of Pi thus the value of P is
arbitrary, and the {VI} rule allows us to infer Vx.F(x) V -,F (x).

Proof.

IE(P) I
--===--·{Vld
E(P) V -,E(p)

--------{-+I}
E(p) -t E(p) V -,E(p)

"Ix. E(x) -t E(x) V -,E(x)

o

Now consider the following incorrect proof, which purports to show that all
natural numbers are even:

E(2)
---{vI} Wrong!
Vx.E(x)

The theorem E(2) is established for a particular value, 2. However, 2 is not
arbitrary: the proof that 2 is even relies on its value, and we could not substitute
3 without invalidating it. Since we have not proved E(x) for an arbitrary value,
the requirements of the {VI} inference rule are not satisfied, and we cannot
conclude Vx.E(x) .

3.3. LOGICAL INFERENCE WITH PREDICATES 103

3.3.2 Universal Elimination {VE}

The universal elimination rule says that if you have established Vx.F(x) , and
p is a particular element of the universe, then you can infer F(p) .

Vx.F(x)
F(p) {'tEl

The following theorem allows you to apply a universal implication, in the
form Vx.F(x) -t G(x), to a particular propositionF'[p}, and its proof illustrates
the {VE} inference rule.

Theorem 26. F(p), Vx .F(x) -t G(x) f- G(p)

Proof

F(p)

Vx.F(x) -t G(x)
------{'tE}

F(p) -t G(p)

G(p)

o
In the previous chapter the implication chain theorem was proved; this

says that from a -t band b -t c you can infer a -t c. The {VI} inference
rule can be used to prove the corresponding theorem on universal implications:
from Vx.F(x) -t G(x) and Vx.G(x) -t H(x), you can infer Vx.F(x) -t H(x).
However, in order to use {VI} we have to establi sh first , for an arbitrary p in
the universe , that F(p) -t H(p) , and the proof of that proposition requires
using the {VEl rule twice to prove the particular propositions F(p) -t G(p)
and G(p) -t H(p).

Theorem 27 . Vx.F(x) -t G(x) ,Vx.G(x) -t H(x) f- Vx.F(x) -t H(x)

Proof

Vx.F(x) -t G(x) Vx.G(x) -t H(x)
------{'tE} {'tEl

F(p) -t G(p) G(p) -t H(p)

F(p) -t H(p)
------{'tf}
Vx.F(x) -t H(x)

o

The following theorem says that you can change the order in which the
variables are bound in Vx. Vy. F(x,y). This theorem is simple, but extremely
important.

Theorem 28 . Vx. vu. F(x,y) f- Vy. Vx. F(x,y)

104

Proof.

CHAPTER 3. PREDICATE LOGIC

Vx. Vy. F(x, y)
- - - - - {VE }

Vy. F(p,y)

F(p,q)

Vx. F(x,q)
-----{VI}
Vy. VX. F(x, y)

o

This theorem says that if, for all x, a proposition P implies f(x), then P
implies Vx.f(x) . This allows you to pull a proposition P, which does not use
x, out of an implication bound by V.

Theorem 29. Vx. P -t f(x) I- P -t Vx. f(x)

Proof.

Vx. P -t f(x)
-----{VE}

P -t f(c) (c arbitrary)
f(c) {-+E}

Vx. f(x)

P -t Vx. f(x)

o

Exercise 9. Prove 3x. 3y. F(x,y) I- 3y. 3x. F(x,y) .

Exercise 10. Prove Vx.F(x),Vx.F(x) -t G(x) I- 'v'x.G(x) .

3.3.3 Existential Introduction {3I}

The {3I} rule says that if f(p) has been established for a particular p, then
you can infer 3x .f(x) .

f(p)
---{3I}
3x·f(x)

The following theorem says that if F(x) holds for all elements of the uni­
verse, then it must hold for one of them. Recall that we require the universe
of discourse to be non-empty; otherwise this theorem would not hold.

Theorem 30. Vx.F(x) I- 3x .F(x)

3.3. LOGICAL INFERENCE WITH PREDICATES

Proof.

105

\lx.F(x)
F(p) rv'E}

3x .F(x)
{3I}

o

3.3.4 Existential Elimination {:3E}

Recall the {vE} inference rule of propositional logic; this says that if you know
a V b, and also that c follows from a and c follows from b, then you can infer c.

If the universe is finite, then 3x.F(x) can be expressed in the form F(Pd V
. .. V F(Pn), where the universe is {PI, . .. ,Pn}. We could extend the {VE} rule
so that if we know that F(pi) holds for some i, and furthermore that A must
hold if F(x) holds for arbitrary x , then A can be inferred.

The existential elimination rule {3E} captures this idea, and it provides a
much more convenient tool for reasoning than repeated applications of {VE}.
Its fundamental importance, however, is that {3E} may also be used if the
universe is infinite . This means it is more powerful than {VE}, since that can
be used only for an V expression with a finite number of terms. (Recall that a
proof must have a finite length .)

3x .F(x)

The following theorem gives an example of {3E} . It says that if P(x) always
implies Q(x) , and also that P(x) holds for some X, then Q(x) also holds for
some x.

Theorem 31. 3x . P(x) , \Ix. P(x) -7 Q(x) f- 3x . Q(x)

Proof.

3x . P(x)

\Ix. P(x) -7 Q(x)
-------{ItE}

P(c) -7 Q(c)

Q(c)

Q(c)

3x . Q(x)

o
The following theorem says that a \I directl y inside an 3 can be brought

outside the 3.

106 CHAPTER 3. PREDICATE LOGIC

Theorem 32. 3x. Vy. F(x ,y) f- Vy. 3x. F(x,y)

Proof.

o
Exercise 11. The converse of Theorem 32 is the following:

Vy.3x.F(x,y) f- 3x.Vy.F(x,y) Wrong!

Give a counterexample that demonstrates that this statement is not valid.

Exercise 12. Prove Vx.(F(x) /\ G(x)) f- (Vx.F(x)) /\ (Vx.G(x)) .

3.4 Algebraic Laws of Predicate Logic

The previous section presented predicate logic as a natural deduction inference
system. An alternative style of reasoning is based on a set of algebraic laws
about propositions with predicates, listed in Table 3.1.

This is not the minimal possible set of laws; some of them correspond to
inference rules, and others are provable as theorems. The focus in this section,
however, is on practical calculations using the laws, rather than on theoretical
foundations.

The following two laws express, in algebraic form, the {VEl and {3I} in­
ference rules. Since they correspond to inference rules, these laws are logical
implications, not equations.

Vx. f(x) -t f(c)

f(c) -t 3x. f(x)

(3.3)

(3.4)

In both of these laws, x is bound by the quantifier, and it may be any
element of the universe. The element c is any fixed element of the universe.
Thus the first law says that if the predicate f holds for all elements of the
universe, it must hold for a particular one c, and the second law says that if f
holds for an arbitrarily chosen element c then it must hold for all elements of
the universe.

The following theorem combines these two laws, and is often useful in prov­
ing other theorems. Its proof uses the line-by-line style which is standard when
reasoning about predicate logic with algebraic laws.

3.4. ALGEBRAIC LAWS OF PREDICATE LOGIC

Table 3.1: Algebraic Laws of Predicate Logic

"Ix. f(x) -t fCc) (3.3)
fCc) -t 3x. f(x) (3.4)

Vx·-.f(x) = -.3 x. f(x) (3.5)
3x·-.f(x) = -.'1x . f(x) (3.6)

Vx·f(x)l\q = "Ix . (I(x) 1\ q) (3.7)
Vx·f(x)vq = "Ix. (I(x) V q) (3.8)
3x·f(x)l\q = 3x. (I(x) 1\ q) (3.9)
3x·f(x)vq = 3x.(I(x)Vq) (3.10)

Vx .f(x) 1\Vx.g(x) = "Ix. (I(x) 1\ g(x)) (3.11)
Vx.f(x) VVx .g(x) -t "Ix. (I(x) V g(x)) (3.12)

3x. (I(x) 1\ g(x)) -t 3x.f(x) 1\ 3x.g(x) (3.13)
3x.f(x) V 3x.g(x) = 3x. (I(x) V g(x)) (3.14

Theorem33.Vx.f(x) -t 3x.f(x)

Proof.

"Ix. f(x)
-t fCc) {3.3}
-t 3x. f(x) {3.4}

107

o
The next two laws state how the quantifiers combine with logical negation.

The first one says that if f(x) is always false, then it is never true; the second
says that if f(x) is ever untrue, then it is not always true.

Vx··f(x) = .3x.f(x)

3x·-.f(x) = -.Vx.f(x)

(3.5)

(3.6)

The following four laws show how a predicate f(x) combines with a propo­
sition q that does not contain x . These are useful for bringing constant terms
into or out of quantified expressions.

Vx·f(x)l\q

Vx·f(x)vq

3x·f(x)l\q
3x. f(x) V q

= "Ix. (I(x) 1\ q)

= "Ix. (I(x) V q)

= 3x. (I(x) 1\ q)

= 3x. (I(x) V q)

(3.7)

(3.8)

(3.9)

(3.10)

108 CHAPTER 3. PREDICATE LOGIC

The final group of laws concerns the combination of quantifiers with A
and V. It is important to note that two of them are equations (or double
implications), while the other two are implications and can be used in only one
direction .

Vx./(x) AVx.g(x) = "Ix. (I(x) Ag(x)) (3.11)
Vx./(x) VVx.g(x) -t "Ix. (J(x) V g(x)) (3.12)

3x. (J(x) A g(x)) -t 3x./(x) A 3x.g(x) (3.13)

3x·/(x) V 3x.g(x) = 3x. (I(x) V g(x)) (3.14)

Example 9. The following equation can be proved algebraically :

"Ix . (J(x) A -,g(x)) = Vx./(x) A -,3x. g(x)

This is established through a sequence of steps. Each step should be justified
by one of the algebraic laws, or by another equation that has already been
proved. When the purpose is actually to prove a theorem, the justifications
should be written explicitly. Often this kind of reasoning is used informally,
like a straightforward algebraic calculation, and the formal justifications are
sometimes omitted.

Vx. (J(x) A -'g(x))
= Vx . f(x) A Vx. -,g(x) {3.11}
= Vx./(x) A -ax. g(x) {3.5}

Example 10. The following equation says that if I(x) sometimes implies g(x),
and I(x) is always true, then g(x) is sometimes true.

3x. (I(x) -t g(x)) A (Vx . I(x)) = 3x . g(x)

The first step of the proof replaces the local variable x by y in the Vexpression.
This is not actually necessary, but it may help to avoid confusion; whenever
the same variable is playing different roles in different expressions, and there
seems to be a danger of getting them mixed up, it is safest just to change the
local variable. In the next step, the Vexpression is brought inside the 3; in the
following step it is now possible to pick a particular value for y: namely the x
bound by 3.

3x . (J(x) -+ g(x)) A (Vx./(x))
= (3x. (l(x) -+ g(x))) A (Vy. fey))
= 3x . ((l(x) -+g(x)) A (Vy. fey)))
= 3x. ((J(x) -+ g(x)) A f(x))
= 3x. g(x)

change of variable
{3.9}
{3.3}
{Modus Ponens}

3.5. SUGGESTIONS FOR FURTHER READING

3.5 Suggestions for Further Reading

109

The books on logic recommended at the end of Chapter 2 also cover predicate
logic. Those citations are not repeated here; instead , two excellent books on
style and elegance in mathematical proofs are suggested.

Mathematical Writing, by Knuth, Larrabee and Roberts [19J, is filled with
good advice about how to write mathematics in a style which is clear, rigorous
and lively. This short book is based on a course on mathematical writing given
by the authors at Stanford.

A rigorous proof is careful, and it covers scrupulously all the relevant aspects
of the problem . Routine, straightforward issues may be treated lightly in a
rigorous proof, but they really must be sound . In contrast, a formal proof takes
no short cuts at all; it does everything using the rules of some formal system,
such as the logical inference rules. Formal proofs are good for machine checking,
and generally fit well with computing applications. Proofs that are informal
but rigorous should be written in a clear, elegant style that is convincing to a
knowledgeable reader.

Proofs from THE BOOK, by Aigner and Ziegler [2], is an outstanding col­
lection of elegant and rigorous proofs written in normal (but particularly good)
mathematical style. It is worth looking at for its beauty, although some of its
contents are rather advanced. The book was inspired by an idea of Paul Erdos,
one of the leading mathematicians of the twentieth century. Erdos imagined
The Book, which contains the most elegant proofs of the most interesting the­
orems. The Book doesn't actually exist ; it is an ideal to which real people can
only aspire, but it is nevertheless inspiring to mathematicians to find the best
approximation to it which they can. Proofs from THE BOOK is such an effort,
and it is likely to become a mathematical classic.

3.6 Review Exercises

Exercise 13. Suppose the universe contains 10 elements. How many times
will F occur when "Ix . 3y.Vz. F(x, y, z) is expanded into quantifier-free
form? How large in general are expanded expressions?

Exercise 14. Prove (3x . f(x)) V (3x . g(x)) f- 3x . (j(x) V g(x) .

Exercise 15. Prove ("Ix . f(x)) V (Yx. g(x)) f- "Ix. (j(x) V g(x)) .

Exercise 16. Prove the converse of Theorem 29.

Exercise 17. Find counterexamples which show that Laws 3.12 and 3.13,
which are implications, would not be valid as equations.

Exercise 18 . Prove the following implication :

("Ix . f(x) -t h(x) 1\ "Ix. g(x) -t h(x))
-t "Ix . (J(x) V g(x) -t h(x))

Chapter 4

Set Theory

Set theory is one of the most fundamental branches of mathematics. Many
profound advances in mathematics over the last century have taken place in
set theory, and there is a deep connection between set theory and logic. More
importantly for computer science, it has turned out that the notation and ter­
minology of elementary set theory is extremely useful for describing algorithms,
and nearly every branch of computing uses sets from time to time .

This chapter introduces the concepts from set theory that you will need for
computer science. Section 4.1 begins by describing what sets are and giving
several notations for describing them. There are many useful operations that
can be performed on sets , and these are presented in Section 4.2. In Section
4.3 we consider a particular kind of set that is particularly well suited for
computing applications, the finite sets with equality. Next, in Section 4.4 we
study a variety of mathematical laws that describe properties of sets that are
useful in computing. The chapter concludes with a summary of the notations
and ,the main theorems of set theory.

4. 1 Notat ions for D escribing Sets

We will not define formally what a set is. The reason for this is that set
theory was intended originally to serve as the foundation for all of mathematics:
everything else in mathematics is to be defined-at least in principle-in terms
of sets . Since sets are the lowest level concept, there is nothing more primitive
that could be used to define them formally.

Informally, a set is just a collection of objects called members or elements.
You can think of a set as a group of members, or a collection, or a class,
etc. However, these words are just synonyms-they don't constitute a precise
definition of a set. One way to describe a set is to write down all its members
inside braces { }. Here are some examples:

111

C. Hall et al., Discrete Mathematics Using a Computer
© Springer-Verlag London 2000

112 CHAPTER 4. SET THEORY

A = {dog, cat, horse}

B = {canary, eagle}

C = {0,1,2,3,4}

D = {O, 1, ... ,10O}

E = {}
N = {0,1,2,3, .. . }

Z = {3, {dog,7}, horse}

Any particular thing can appear only once in a set; this means that it makes
sense to ask whether x is a member of a set S-the answer must be yes or no-­
but it doesn't make sense to ask how many times x occurs in S . It is bad
notation to write a set with some element appearing several times, because the
extra occurrences of the element are meaningless, and they might be confusing.
You can always remove the redundant copies of an element without changing
the set.

A set can have any number of elements. For example, A has three elements,
E has zero elements, and N has an infinite number of elements.

It is common to use lower case letters (a,b, . . .) to refer to members of a
set , and to use upper case letters (A, B, ...) as names for sets themselves. This
is just a convention, not an ironclad rule, and of course it breaks down when
one set is a member of another set.

An important special case is the empty set { }. Often the special symbol 0
is used to denote the empty set .

Suppose we are given some value x and a set S, and we want to know
whether x is a member of S . There is a notation for this question: the expres­
sion xES is true if x is a member of S and otherwise false. The expression
xES is pronounced as 'x is a member of S', or 'x is an element of S' , or simply
as 'x is in S '. For example:

dog E A = True

bat E A = False

Another useful notation is x rf. S, which is True if and only if xES is False:

dog rf. A = False

bat rf. A = True

When a set has a few elements, you can just write them out inside braces.
This is how the sets A, Band C were defined above . However, when a set has
many elements this becomes tedious, and if the set has an infinite number of
elements it is impossible. The set D has 101 elements, but it is more readable
to use the . .. notation and omit most of them. Set N , the natural numbers,
has an infinite number of elements and we cannot write them all inside braces.

4.1. NOTATIONS FOR DESCRIBING SETS 113

There is an interesting point about the . . . notation. One of the reasons we
use mathematics in computing is to be precise and formal, to be absolutely sure
there is no ambiguity in what we are defining. The . .. notation is informal ,
and it relies on the intuition of the reader to understand and fill in the dots . It
is easy to construct cases where different people might interpret a set defined
with .. . differently. For example, does {2, 3, ... ,7} mean the set of numbers
from 2 through 7, {2,3, 4, 5, 6, 7}, or does it mean the set of prime numbers
{2, 3, 5, 7}? If you are aware of such a problem when describing a set, you can
overcome it, but how can you ever be sure that your set is really well-defined­
that there is one way, and only one way, to interpret it? The problem is not
so serious for finite sets, because you could-in principle-write out all the
elements, and for large sets you could provide an algorithm that produces all
of them. The problem is more fundamental for infinite sets .

Another standard way to define sets is the set comprehension. In its simplest
form, a set comprehension is written as

{x I px},

where p x is simply an expression containing x which is either true or false;
such an expression is called a predicate. The expression is pronounced 'the set
of x such that p x', and it means that the set consists of exactly those objects
x of which p x is true. For example, we could define the set of even numbers
as

{x I x E N 1\ even x}.

The predicate here is

p x = x E N 1\ even x,

and it is true if and only if x is a natural number that is even. In English, we
would call this 'the set of all x such that x is a natural number and x is even' ,
or simply 'the set of even natural numbers' .

A more general form of the set comprehension is

{/xlpx} .

In this case, the set consists not of the values x that satisfy the predicate, but
of the results of applying the function f to those values. This form of the set
comprehension is sometimes easier to use than the simpler form. For example

{vx I x E {1,2 ,3,4}}

defines the set {1.0, 1.41,1.73,2.0}.
It is important to state the set from which a variable derives its value. If

this set is not stated explicitly, then we assume that it is U, the universe of
discourse.

114 CHAPTER 4. SET THEORY

4.2 Basic Operations on Sets

There is a large number of operations that can be performed on sets, in order
to compare them, define new sets and so on. This section defines the basic set
operations. In the next section we will see how to implement these operations
on a computer.

4.2.1 Subsets and Set Equality

There are several important relationships between two sets that are determined
by the elements they share. The first of these is the subset relation. The
expression A ~ B, pronounced 'A is a subset of B', is true if each element of A
also appears in B . This idea is expressed formally by the following definition.

Definition 11 (Subset). Let A and B be sets. Then A ~ B if and only if

't/x.x E A -t x E B .

Two sets are equal if they contain exactly the same elements. We can define
this formally using the subset relation , since if A and B contain exactly the
same elements, then everything in A is also in B and vice versa. This leads to
the definition of set equality.

Definition 12 (Set equality). Let A and B be sets . Then A = B if and
only if A ~ Band B ~ A.

If A is a subset of B but A =I B, then all the elements of A are in B but
there must be some element of B that is not in A. In this case we say that A is
a proper subset of B, which is written as A c B . The notations are designed to
help you remember them. Think of A c B as saying that the set A is contained
within B , and it is smaller than B, while A ~ B means that possibly A = B;
the symbols c and ~ are reminiscent of < and :'S.

Definition 13 (Proper subset). Let A and B be sets . Then A C B if and
only if A ~ B and A =I B.

4.2.2 Union, Intersection and Difference

There are several operators that take two sets and return a set as a result; the
most important of these are union, intersection and difference.

• The union of two sets A and B, written A U B , is the set that contains
all the elements that are in either A or B (or both). Every element of
Au B must be in A or B (or both) .

• The intersection of A and B , written A n B, is the set consisting of all
the elements that are in both A and B .

4.2. BASIC OPERATIONS ON SETS 115

• The difference of A and B, writ ten A - B, is the set of all the elements
that are in A but not in B.

Definition 14. Let A and B be sets . Then

AuB =

A n B

A-B =

{x I x E A V x E B},

{x I x E A t\ x E B} ,

{x I x E A t\ x ~ B}.

(4.1)

(4.2)

(4.3)

Example 11. Let A = {I ,2 ,3} and B ={3,4 , 5}. Then

AUB =
AnB =
A-B =

{I ,2 ,3 ,4 ,5} ,

{3},

{I,2} .

Example 12. Let

I =
N =
H =
W

{.. . , - 2, - I, 0, 1, 2, .. . },

{0,1 ,2 , },

{_215
, , - 2, - 1, 0, 1, 2, , 215 -I},

{_231
, , -2, -1 ,0 ,1 ,2 , ,2 31 - I} .

Thus I is the set of integers , N is the set of natural numbers, H is the set
of integers that are representable on a computer with a 16 bit word using
2's complement number representation , and W is the set of integers that are
representable in a 32 bit word . We can use these definitions to create new sets.
For example, I - W is the set of integers that are not representable in a word.

We can calculate the union of several sets using the U operator. For exam­
ple, th e union of three sets A, Band C can be written as

A U B UC,

and it contains all the elements that appear in one or more of the sets A, Band
C. This expression is unambiguous because the U opera tor is associative (see
Section 4.4), which means that it makes no difference wheth er you interpret
AU B u C as (A UB) UC or as Au (B UC) . In the same way, we can calculate
the intersection of four sets with the expression

AnBnCnD.

Sometimes it is necessary to compute the union (or intersection) of several
sets in a more general way, using operato rs that give the union (or intersection)
of an arbitrary number of sets, ra ther than just two of them. Th ese operations
are often called big union and big int ersection, because their operators, U and
n,are larger versions of the ordinary U and n operators.

116 CHAPTER 4. SET THEORY

Definition 15. Let C be a non-empty collection (set) of subsets of the universe
U. Let I be a non-empty set, and for each i E I let Ai ~ C. Then

UAi = {x /3i E I . x E Ad,
iEI

nAi = {x IVi E I . z E Ai} '
iEI

Another way to say this is that if C is a set containing some sets, then the
set of all elements of the sets in C is UAEC A and the set of elements which
these sets in C have in common is nAEC A.

UA = {x 13A E C . x E A}
AECnA = {xIVA E C . x E A}
AEC

Two sets are disjoint if they have no elements in common.

Definition 16. For any two sets A and B, if An B = 0 then A and Bare
disjoint sets.

Exercise 1. Given the sets A = {1,2,3,4,5} and B = {2,4,6}, calculate the
following sets :

(a) AuBnA

(b) (A n B) U B

(c) A - B

(d) (B-A)nB

(e) AU(B-A)

4.2.3 Complement and Power

In many applications there is a universe of all the objects that might possibly
appear in any of our sets. For example, we might be working with various sets
of numbers, but none of the sets will contain anything that is not a number .
In this kind of situation it is often convenient to define the universe explicitly
as a set U, which can then be used in set expressions.

The universe is needed to define the complement of a set . The intuitive
idea is that the complement of a set A is the set of everything that is not
in A. However, what does 'everything' mean? There are both practical and
theoretical problems if we don't define 'everything' . A practical problem is
that we could get nonsensical results; for example, if we are talking about
sets of people, then the complement of the set of tall people should be the set

4.3. FINITE SETS WITH EQUALITY 117

that includes short people-but not numbers, cars and toasters, all of which
appear in the set of 'everything' . The solution to these problems is to define the
universe U to consist of the elements we are interested in, and then to define
the complement of A to consist of the elements of U that are not in A.

Definition 17. Let U be the universe of discourse and A be a set. The com­
plement of A, written A', is the set U - A.

If you see a set complement defined in a book or paper, look back several
pages and you should find the definition of U. When you're using sets, be sure
to define the universe explicitly if you are going to use complements.

Example 13. Given the universe of alphanumeric characters, the complement
of the set of digits is the set of letters.

Example 14. If the universe is {l,2,3,4 ,5}, then {1,2}' = {3,4 ,5} .

A set that contains lots of elements will have an even larger number of
subsets. These subsets are themselves objects, and it is often useful to define a
new set containing all of them . The set of all subsets of A is called the powerset
of A. (In contrast, the set of all elements of A is just A itself.)

Definition 18. Let A be a set. The powerset of A, written P(A) , is the set
of all subsets of A:

P(A) = {S IS ~ A}

Example 15. (Powersets)

• P({}) = {0} = {O}

• P({a}) = {0,{a}}

• P({a,b}) = {0,{a},{b},{a,b}}

• P({a,b,c}) = {0,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}

Notice that if A contains n elements , then its powerset P(A) contains 2n

elements . If A is the empty set 0, then there is one element of P(A)-namely
0-and the number of elements of P(A) is indeed 1 = 2°. The example above
shows that sets with 0, 1, 2 and 3 elements have powersets respectively con­
taining 1, 2, 4 and 8 elements.

4 .3 Finite Sets with Equality

A class of sets that is particularly important for computing are the finite sets
with equality-that is, sets with a finite number of elements, and where we have
an equality function that can be used to determine whether any two elements
of the universe are the same.

118 CHAPTER 4. SET THEORY

It is possible to perform some computations with infinite sets, but there is
ample opportunity for a program to go into an infinite loop. Usually we want
to ensure that our programs will terminate, and this is more straightforward
with finite sets.

We will use lists to represent sets; thus a set whose elements are of type a
will be represented by a list of type [a]. A finite set will be represented by a
finite list. There are several differences between lists and sets which will require
care: (1) lists may have duplicate elements, (2) there is a fixed order of the
elements of a list, and (3) all the elements of a list must have the same type.

In order to do any practical computing with sets, we need to be able to
determine whether a given value is an element of a set. This requires, in turn,
the ability to determine whether two values x and yare the same. Therefore
we need an operator == so that x == y will give either True or False, for any
values of x and y. This is a strong requirement, because there are some values
where equality is not computable. For all the elementary data types , such as
integers, booleans, characters, and so on, there is no problem with determining
equality. However, functions are also values that can be included in sets, and
it is in general impossible to compare two functions to determine whether they
are equal.

There is a special notation in Haskell to express the fact that it must be
possible to compare two set elements for equality. If we say simply that a set
is represented by a list of type [a] , it might turn out that a is one of those
types whose values cannot be compared. What is needed is a way to restrict
the element type a. This is done by saying that a list has type

Eq a => [a] .

This denotes the type 'For every type a which can be compared for Equality,
the type [c]'.

A set A will be represented by a list containing all the elements of A. We
need to be careful in computing with such lists because of two factors : the
possibility of duplicate elements and the ordering of the elements.

A set contains just one instance of each of its elements ; thus the sets {I, 2, 3}
and {I, 2,1 ,3} are identical (and the second way of writing it is bad notation
because 1 appears only once in the set; it should appear only once in the
notation) . However, the lists [1,2,3] and [1,2,1,3] are different. The first one
has three elements and the second has four elements. We will assume that a
list represents the set of distinct values that appear in the list: for example,
the list [1,2,1,3] represents the set {I, 2, 3}. However, the normal form for a
list representing a set will contain each element only once. The operations on
set-representing-lists will all produce their result in normal form. This makes
some of the operations easier to implement, and also makes them more efficient.

There is no concept of ordering of the elements of a set . Thus {I , 2, 3}
and {3, 2, I} are the same set. If you print a set, there is no particular order
in which the elements will appear. Lists, however, have a specific ordering of

4.3. FINITE SETS WITH EQUALITY 119

their elements ; thus [1,2 ,3] and [3,2 ,1] are different lists and their elements
will be printed in different orders . This does not cause any difficulties for
implementing the set operations. In a computer program, however, it may be
a good idea to define an ordering on the elements of a set in order to make the
output more readable. This can be achieved by sorting the elements of the list
that represents the set. However, sorting a list requires more than the ability
to compare two elements for equality: we must also be able to compare them
for ordering (c, =, >). If a program uses sorted lists to represent sets , then a
stronger type constraint is needed:

Ord a => [a] .

This says that there must be an ordering on the element type a, which can be
used to determine the relations <, ~, =, :f, >, 2: .

The methods for defining lists can also be used to define sets. Three methods
are especially common: enumerated sets , sequences, and comprehensions. We
will look at each of these methods in turn, and the following section defines
functions corresponding to the set operators we have already covered.

An enumerated set (or list) is defined just by giving its elements , like
{I, 2, 3} and [1,2,3) .

A sequence is used when it would be too tedious to write an enumerated set
or list. For example, the set of natural numbers up to 5 is {O, 1,2,3 ,4 , 5}, but
it would be painful to write the set of natural numbers up to 1,000. Instead,
the ' . . . ' notation is used in mathematics: {O, 1,2, . . . ,1000} . We can use a
similar notation to define the corresponding list: [0,1..1000] .

Sets are often described in mathematics using set comprehensions, expres­
sions like

{x2 I X E {0, 1, . . . ,n}},

which is the set of numbers of the form x 2 where x is a natural number between
oand n. Haskell provides an almost identical notation, the list comprehension.
A list comprehension that expresses the set just given is:

[x-2 I x (- [0 . .n]]

Here are some other examples :

[x I x (- [0 .. n], x 'mod' 2 == 0]
[x + 3 I x (- [O . .n], x (10]

4.3.1 Computing with Sets

This section describes a collection of functions and operators that you can use
on finite sets with equality. Each of these functions will accept a representation
with duplicated elements, but they always return results in normal form; that
is, they remove any duplicated elements from their result.

We begin by defining the type of set representations.

120

type Set a = [a]

CHAPTER 4. SET THEORY

The function normalForm determines whether there are any duplicate ele­
ments within its argument, while normalizeSet takes a list and removes any
duplicate elements.

normalForm : : (Eq a, Show a) => [a] -> Bool
normalizeSet : : Eq a => Set a -> Set a

Example 16. normalForm [1,2,3) is True, but normalForm [1,2,1,3) is
False because there is a repeated element, and normalizeSet [1,2,1,3] re­
moves the repeated element, returning [1,2,3J.

We define symbolic operators for the set operations that take two argu­
ments:

A+++B = AUB (union)

A***B = AnB (intersection)

A'"'"'"B = A-B (difference)

The types of these operators are :

(+++) ·. (Eq a, Show a) => Set a -> Set a -> Set a
(u*) ·. (Eq a, Show a) => Set a -> Set a -> Set a
(---) ·. (Eq a, Show a) => Set a -> Set a -> Set a

The function subset takes two sets A and B, and returns True if A ~ B,
while properSubset A B returns True if A is a proper subset of B; that is, it
returns the value of A C B. Their type signatures are :

subset, properSubset ::
(Eq a, Show a) => Set a -> Set a -> Bool

A special function setEq is needed to determine whether two sets are the
same. The built-in Haskell operator == should not be used for this purpose,
since two lists may be different even though they represent the same set.

setEq :: (Eq a, Show a) => Set a -> Set a -> Bool

The complement of a set is defined with respect to the universe of discourse .
It is convenient to define a global variable universe to be the universe of
discourse; then we can define the set complement function as follows:

complement s = universe --- s

Complement with respect to a specific universe is defined as ! !! in Haskell
rather than complement.

(!!!) : : (Eq a, Show a) => Set a -> Set a -> Set a

4.3. FINITE SETS WITH EQUALITY 121

Exercise 2. Work out the values of the following set expressions, and then
check your answer using the Haskell expression that follows.

(a) [1,2,3] +++ [3]

(b) [4,2] +++ [2,4]

(c) [1,2,3] *** [3]

(d) [] *** [1,3,5]

(e) [1,2,3] --- [3]

(f) [2,3] --- [1,2,3]

(g) [1,2,3] *** [1,2]

(h) [1,2,3] +++ [4,5,6]

(i) ([4,3] --- [5,4]) *** [1,2]

U) ([3,2,4] +++ [4,2]) --- [2,3]

(k) subset [3,4] [4,5,6]

(D subset [1,3] [4,1,3,6]

(m) subset [] [1,2,3]

(n) setEq [1,2] [2,1]

(0) setEq [3,4,6] [2,3,5]

(p) [1,2,3] !!! [1]

(q) [] !!! [1,2]

Exercise 3. The function

powerset :: (Eq a, Show a) => Set a -> Set (Set a)

takes a set and returns its power set . Work out the values of the following
expressions:

powerset [3,2,4]
powerset [2]

Exercise 4. The function

crossproduct :: (Eq a, Show a, Eq b, Show b) =>
Set a -> Set b -> Set (a,b)

takes two sets and returns their cross product. Evaluate these expressions:

crossproduct [1,2,3] ['a','b']
crossproduct [1] ['a','b']

122 CHAPTER 4. SET THEORY

Exercise 5. In the following exercise, let u be [l, 2,3,4,5,6,7,8,9,10], a
be [2,3,4], b be [5,6,7] and c be [1,2] . Give the elements of each set:

a +++ b
u! !!a *** (b +++ c)
c --- b
(a +++ b) +++ c

u!! !a

u! ! ! (b *** c)

Exercise 6. What are the elements of the set {x+vlx E {1,2,3}t\V E {4,5}}?

Exercise 7. Write and evaluate a list comprehension that expresses the set
{x Ix E {1, 2, 3, 4,5} t\ x < O}

Exercise 8. Write and evaluate a list comprehension that expresses the set
{x+vlx E {1,2,3}t\V E {4,5}}

Exercise 9. Write and evaluate a list comprehension that expresses the set
{x Ix E {l, 2, 3, 4, 5, 6, 7,8,9, 1O} t\ even x}

Exercise 10. What is the value of each of the following expressions?

subset [1,3,4] [4,3]
subset [] [2,3,4]

setEq [2,3] [4,5,6]
setEq [1,2] [1,2,3]

4.4 Set Laws

The operations on sets that we have been covering are often used for describing
properties of algorithms, so weoften need to be able to understand and calculate
with expressions that contain several such operations. Fortunately, the set
operations satisfy a number of simple laws that greatly simplify their use, just
as the basic properties of ordinary addition, multiplication, etc. are helpful in
ordinary algebra. In this section westate and prove some of the most useful laws
about set operations. The proofs have a standard form in which an assertion
appears, followed by its justification, which may depend on previous lines in
the proof and cite their line numbers. As justifications take many forms in
practice, these will be more terse than those in previous proofs.

The following law says that the ~ operation is transitive:

Theorem 34 . Let A, B , and C be sets. If A ~ Band B ~ C, then A ~ C.

Proof Let x be any element of the universe of discourse.

4.4. SET LAWS

1. A<;B
2. x E A 4 X E B
3. B <; C
4. x E B 4 X E C
5. X E A 4 X E C
6. "Ix . (x E A 4 X E C)
7. A <; C

Premise
Def. <;
Premise
Def. <;
Hypothetical syllogism, (2),(4)
V introduction
Def. <;

123

o

Exercise 11. Let A, B, and C be sets. Prove that if A C Band B C C, then
ACC.

Exercise 12. Consider the following two claims . For each one, if it is true
give a proof, but if it is false give a counterexample.

(a) If A <; Band B <; C, then A C C.

(b) If A C Band B C C, then A <; C.

4.4.1 Associative and Commutative Set Operations

The set union and intersection operators are commutative and associative.

Theorem 35. For all sets A, Band C,

1. AUB=BUA

2. AnB = BnA

3. AU (B U C) = (A U B) U C

4. An (B n C) = (A n B) n C

5. A - B = AnB'

Proof. We prove the second equation. Let x be any element of U. Then:

1. xEAnB
2. x E A 1\ x E B
3. x E B 1\ x E A
4. x E BnA
5. "Ix E U.

xEAnBt-txEBnA
6. AnB = BnA.

Premise
Def. n
Comm . 1\

Def. n

Pred. logic abstraction
Def. set equality

o
The proofs of the other equations are similar.

124 CHAPTER 4. SET THEORY

4.4.2 Distributive Laws

The following theorem states that the union and intersection operators dis­
tribute over each other.

Theorem 36. An (B U C) = (A n B) U (A n C)

Proof. Let x be an arbitrary element of the universe U. Then:

1. x E A n (B U C) Premise
2. x E A r; (x E B U C) Def. n
3. x E A t\ (x E B Vx E C) Def. U
4. (x E A t\ x E B) V (x E A t\ x E C) Distr. t\ over V
5. (x E A n B) V (x E A n C) Def. n
6. x E (A n B) U (A n C) Def. U
7. "Ix E U.

x E An (B U C) H X E (A n B) U (A n C) Pred. logic abstraction
8. An (B U C) = (A n B) U (A n C). Def. set equality

o
Theorem 37. Au (B n C) = (A U B) n (A U C)

Proof. Exercise for the reader.

4.4.3 DeMorgan's Laws for Sets

Theorem 38. Let A and B be arbitrary sets. Then

(A U B)' = A' n B'

and
(A nB)' = A' U B' .

Proof. We prove that (A U B)' = A' n B'. Let x be any element of U. Then:

1. x E (A U B)' Premise
2. x E U t\ .(x E A U B) Def. comp
3. x E U t\ .(x E A V x E B) Def. U
4. x E U t\ (.(x E A) t\ .(x E B)) DeMorgan
5. x E U t\ x E U t\ (.(x E A) t\ .(x E B)) idemp. of t\
6. (x E U t\ .(x E A)) t\ (x E U t\ .(x E B)) comm. of t\

7. x E U - A t\ x E U - B Def. of diff.
8. x E (U - A) n (U - B) Def. U
9. (x E A' n B') Def. of comp.
10. "Ix. x E (A U B)' H X E (A' n B') V introduction
11. (AUB)' = A'nB'

o

o

4.5. SUGGESTIONS FOR FURTHER READING

Table 4.1: Summary of Set Notation

125

Elements
Sets
Empty set
Enumerated set
Set comprehension
Cardinality
Member
Not member
Subset
Not subset
Proper subset
Not proper subset
Union
Intersection
Set difference
Cross product

a,b ,c, .
A,B,C, .
{}, ¢
{el ' e2, ... }
{x I· ··}
IAI
xEA
x¢A
A~B

A~B

AcB
AiB
AUB
AnB
A-B
AxB

4.5 Suggestions for Further Reading

Mathematics from the Birth of Numbers , by Gullberg [15J, is an interesting
general survey of mathematics. It covers many of the topics in this book,
including an excellent survey of elementary set theory.

Classic Set Theory [13], by Derek Goldrei , is a self-study textbook telling
the full story of set theor y, including construction of the real numbers, the
Axiom of Choice, cardinal and ordinal numbers, and more. This book is chal­
lenging, but it conveys the sense of excitement that surrounded set theory as
it was developed.

4.6 Review Exercises

Exercise 13. For the following questions, give a proof using set laws, or find
a counterexample.

(a) (A' U B)' n C' = An (B U C)'

(b) A - (B U C)' = An (B U C)

(c) (A n B) U (A n B') = A

(d) Au (B - A) = Au B

(e) A-B=B'-A'

126 CHAPTER 4. SET THEORY

Table 4.2: Set Laws

Idempotent
A=AuA
A=AnA

Domination
AUU=U
An0=0

Identity
Au0= A
AnU=A

Double Complement
A = A"

DeMorgan's Laws
(A U B)' = A' n B'
(A n B)' =A' u B'

Commutative Laws
AUB=BUA
AnB=BnA

Associative Laws
(AU B) u C = AU (B U C)
(A n B) n C =An (B n C)

Distributive Laws
An (B U C) = (A n B) U (A n C)
Au (B n C) = (A U B) n (A U C)

Absorption Laws
AU(AnB) = A
An (AUB) = A

4.6. REVIEW EXERCISES

(f) An (B - C) = (A n B) - (A n C)

(g) A - (B U C) = (A - B) n (A - C)

(h) A n (A' U B) = An B

(i) (A - B') U (A - C') = An (B n C)

127

Exercise 14. Show why a function that finds the simplest form of a set ex­
pression might not terminate.

Exercise 15. Simplify the set Au (C n A) .

Exercise 16. Simplify the set Au (C n A') .

Exercise 17. The function

smaller : : Ord a => a -> [a] -> Bool

takes a value and a list of values and returns True if the value is smaller
than the first element in the list . Using this function, write a function
that takes a set and returns its powerset . Use foldr.

Exercise 18. Prove that (A U B)' = «A U A') n A'} n «B UB') n B'}.

Exercise 19 . Using a list comprehension, write a funct ion that takes two sets
and returns True if the first is a subset of the other.

Exercise 20. What is wrong with this definition of diff, a function that takes
two sets and returns their difference?

diff :: Eq a => [a] -> [a] - > [a]
diff set1 set2 = [e I e <- set2, not (elem e set1)]

Exercise 21. What is wrong with this definition of intersection, a function
that takes two sets and returns their intersection?

intersection : : [a] -> [a] -> [a]
intersection set1 set2 = [e I e <- set1, e <- set2]

Exercise 22. Write a function using a list comprehension that takes two sets
and returns their union.

Exercise 23. Is it ever the case that A U (B - C) = B?

Exercise 24. Give an example in which (A U C) n (B U C) = 0.

Chapter 5

Recursion

Recursion is a self referential style of definition commonly used in both math­
ematics and computer science. It is a fundamental programming tool , partic­
ularly important for manipulating data structures.

The next three chapters will look at recursion from several points of view.
This chapter introduces the idea by showing how to write recursive functions
in computer programs. Chapter 6 applies the same idea to mathematics, where
recursion is used to define sets inductively. Finally, Chapter 7 introduces induc­
tion , the mathematical technique for proving properties about recursive defi­
nitions . You will find examples of recursion and induction throughout many
branches of computer science. In addition to the examples given through these
three chapters, we will study a larger case study in Chapter 10, where recursion
and induction are applied to the problem of digital circuit design.

The idea in recursion is to break a problem down into two cases: if the
problem is 'easy ' a direct solution is specified, but if it is 'hard' we proceed
through several steps: first the problem is redefined in terms of an easier prob­
lem; then we set aside the current problem temporarily, and go solve the easier
problem; and finally we use the solution to the easier problem to calculate the
final result. The idea of splitting a hard problem into easier ones is called the
divide and conquer strategy, and it is frequently useful in algorithm design.

The factorial function provides a good illustration of the process . Often the
factorial function is defined using the clear but informal ' .. . ' notation:

n! = 1 x 2 x .. , x n

This definition is fine, but the ' . .. ' notation relies on the reader's understanding
to see what it means. An informal definition like this isn't well suited for
proving theorems, and it isn't an executable program in most programming
languages! . A more precise recursive definition of factorial consists of the

1 Haskell is a very high level programming language, and it actually allows this style :
in Haskell you can define factorial n .. product [1. .n] . Most programming languages,

129

C. Hall et al., Discrete Mathematics Using a Computer
© Springer-Verlag London 2000

130

following pair of equations:

CHAPTER 5. RECURSION

O! = 1

(n + I)! = (n + 1) x n !

In Haskell, this would be written as:

factorial :: lnt -) lnt
factorial 0 = 1
factorial (n+l) = (n+l) * factorial n

The first equation specifies the easy case, where the argument is 0 and the
answer 1 can be supplied directly. The second equation handles the hard case,
where the argument is of the form n + 1. First the function chooses a slightly
easier problem to solve, which is of size n; then it solves for n! by evaluating
factorial n, and it multiplies the value of n! by n + 1 to get the final result.

Recursive definitions consist of a collection of equations that state proper­
ties of the function being defined. There are a number of algebraic properties
of the factorial function, and one of them is used as the second equation of
the recursive definition. In fact, the definition doesn't consist of a set of com­
mands to be obeyed; it consists of a set of true equations describing the salient
properties of the function being defined.

Programming languages that allow this style of definition are often called
declarative languages, because a program consists of a set of declarations of
properties . The programmer must find a suitable set of properties to declare,
usually via recursive equations, and the programming language implementation
then finds a way to solve the equations. The opposite of a declarative language
is an imperative language, where you give a sequence of commands which, when
obeyed, will result in the computation of the result.

5.1 Recursion Over Lists

For recursive functions on lists, the 'easy' case is the empty list [] and the
'hard' case is a non-empty list, which can be written in the form (x: xs). A
recursive function over lists has the following general form:

f .. [a] -> type of result
f [] = result for empty list
f (x:xs) = result defined using (J es) and e

A simple example is the length function, which counts the elements in a
list; for example, length [1,2,3] is 3.

however, do not allow this, and even Haskell treats the [1 . .nJ notation as a high level
abbreviation which is executed internally using recursion.

5.1. RECURSION OVER LISTS

length :: [a] - > rnt
length [] = 0
length (x:xs) = 1 + length xs

131

An empty list contains no elements, so length [] returns O. When the
list contains at least one element, the function calculates the length of the
rest of the list by evaluating length xs, and then adds one to get the length
of the full list . We can work out the evaluation of length [1,2,3] using
equational reasoning. This process is similar to solving an algebra problem,
and the Haskell program performs essentially the same calculation when it
executes . Simplifying an expression by equational reasoning is the right way to
'hand-execute' a functional program. In working through this example, recall
that [1,2,3] is a shorthand notation for 1: (2: (3: []» .

length [1,2,3]
= 1 + length [2,3]
= 1 + (1 + length [3])
= 1 + (1 + (1 + length []»
= 1 + (1 + (1 + 0»
= 3

It is better to think of recursion as a systematic calculation, as above, than
to try to imagine low-level subroutine operations inside the computer. Text­
books on imperative programming languages sometimes explain recursion by
resorting to the underlying machine language implementation. In a functional
language, recursion should be viewed at a high level, as an equational technique ,
and the low level details should be left to the compiler.

The function sum provides a similar example of recursion . This function
adds up the elements of its list; for example, sum [1,2,3] returns 1 +2+3 = 6.
The type of sum reflects the fact that the elements of a list must be numbers if
you want to add them up. The type context 'Num a =>' says that a can stand
for any type provided that the numeric operations are defined. Thus sumcould
be applied to a list of 32-bit integers, or a list of unbounded integers, or a list
of floating point numbers, or a list of complex numbers, and so on.

The definition has the same form as the previous example. We define the
sum of an empty list to be 0; this is required to make the recursion work, and it
makes sense anyway. It is common to define the base case of functions so that
recursions work properly. This also usually gives good algebraic properties to
the function. (This is the reason that O! is defined to be 1.) For the recursive
case, we add the head of the list x to the sum of the rest of the elements,
computed by the recursive call sum xs.

sum : : Num a => [a] -> a
sum [] = 0
sum (x:xs) = x + sum xs

132 CHAPTER 5. RECUR~ON

The value of sum [1,2,3] can be calculated using equational reasoning:

sum [1,2,3]
= 1 + sum [2,3]
= 1 + (2 + sum [3])
= 1 + (2 + (3 + sum []»
= 1 + (2 + (3 + 0»
= 6

So far, the functions we have written receive a list and return a number.
Now we consider functions that return lists. A typical example is the (++)
function (its name is often pronounced either as 'append' or as 'plus plus') .
This function takes two lists and appends them together into one bigger list.
For example, [1,2,3] ++ [9,8,7,6] returns [1,2,3,9,8,7,6] .

Notice that this function has two list arguments. The definition uses recur­
sion over the first argument . It's easy to figure out the value of [] ++ [a, b , c] j

the first list contributes nothing, so the result is simply [a , b , c}. This obser­
vation provides a base case, which is essential to make recursion work: we can
define [] ++ ys = Y8. For the recursive case we have to consider an expres­
sion of the form (x: xs) ++ Y8. The first element of the result must be the
value x. Then comes a list consisting of all the elements of X8, followed by
all the elements of Y8; that list is simply X8++yS. This suggests the following
definition:

(++) :: [aJ -> [aJ -> [aJ
[] ++ ys = y8
(x:xs) ++ ys = x : (xs ++ ys)

Working out an example is a good way to check your understanding of the
definition:

[1,2,3] ++ [9 ,8 ,7 ,6]
= 1 ([2,3] ++ [9,8,7,6])
= 1 (2 ([3] +~ [9,8,7,6]»
= 1 (2 (3 : ([] ++ [9,8,7,6]»)
= 1 (2 (3 : [9,8,7,6]»
= 1 (2 [3,9,8,7,6])
= 1 [2,3,9,8,7,6]
= [1,2,3,9,8,7,6]

Once we know the structure of the definition-a recursion over xs-it is
straightforward to work out the equations . The trickiest aspect of writing the
definition of (++) is deciding over which list to perform the recursion. No­
tice that the definition just treats y8 as an ordinary value, and never checks
whether it is empty or non-empty. But you can't always assume that if there

5.1. RECURSION OVER LISTS 133

are several list arguments, the recursion will go over the first one. Some func­
tions perform recursion over the second argument but not the first, and some
functions perform a recursion simultaneously over several list arguments.

The zip function is a typical example of a function that takes two list argu­
ments and performs a recursion simultaneously over both of them. This func­
tion takes two lists, and returns a list of pairs of elements. Within a pair, the
first value comes from the first list , and the second value comes from the second
list. For example, zip [1,2,3,4J ['A', '*', 'q', 'x'J returns [(1, 'A'),
(2, '*'), (3, 'q'), (4, 'x')J . There is a special point to watch out for: the
two argument lists might have different lengths . In this case, the result will
have the same length as the shorter argument. For example, zip [1,2,3,4J
['A', '*', 'q'J returns just [(l,'A'), (2,'*'), (3 ,'q')J because there
isn't anything to pair up with the 4.

The definition of zip must do a recursion over both of the argument lists,
because the two lists have to stay synchronised with each other. There are two
base cases, because it's possible for either of the argument lists to be empty.
There is no need to write a third base case zip [J [J = [J, since the first
base case will handle that situation as well.

zip : : raJ -) [bJ -) [(a, b) J
zip [] ys = []
zip xs [J = [J
zip (x:xs) (y:ys) = (x,y) : zip xs ys

Here is a calculation of the example above. The recursion terminates when the
second list becomes empty; the second base case equation defines the result of
zip [4J [J to be [J even though the first argument is non-empty.

zip [1,2,3,4J ['A', ' *' , 'q'J
= u , 'A') zip [2,3,4J ['*', 'q']
= (l,' A') «2, ,*') zip [3,4] [, q'])
= (l,'A') «2,'*') «3,'q'): zip [4J [J))
= (l,'A') «2,'*') «3,'q'): [J))
= (l,'A') «2,'*') [(3,'q')])
= (l,'A') [(2,'*'), (3,'q')J

[(l,'A'), (2,'*'), (3,'q ')]

The concat function takes a list of lists and flattens it into a list of elements.
For example, concat [[lJ, [2, 3J, [4,5, 6J J returns one list consisting of all
the elements in the argument lists; thus the result is [1,2,3,4,5, 6J .

concat :: [[a]] -) [a]
concat [J = [J
concat (xs:xss) = xs ++ concat xss

In working out the example calculation, wejust simplify all the applications
of ++ directly. Of course each of those applications entails another recursion,
which is similar to the examples of (++) given above.

134

concat [[1], [2,3], [4,5,6]]
[1] ++ concat [[2,3], [4,5,6]]

= [1] ++ ([2,3] ++ concat [[4,5,6]])
[1] ++ ([2,3] ++ [4,5,6])
[1] ++ [2,3,4,5,6]

= [l,2,3,4,5,6J

CHAPTER 5. RECUR~ON

The base case for a function that builds a list must return a list , and this
is often simply []. The recursive case builds a list by attaching a value onto
the result returned by the recursive call.

In defining a recursive function f, it is important for the recursion to work
on a list which is shorter than the original argument to f. For example, in the
application swn [1,2,3] , the recursion calculates swn [2,3], whose argument
is one element shorter than the original argument [1,2,3]. If a function were
defined incorrectly, with a recursion that is bigger than the original problem ,
then it could just go into an infinite loop.

All of the examples we have seen so far perform a recursion on a list which is
one element shorter than the argument. However, provided that the recursion
is solving a smaller problem than the original one, the recursive case can be
anything-it doesn't necessarily have to work on the tail of the original list.
Often a good approach is to try to cut the problem size in half, rather than
reducing it by one. Th is organisation often leads to highly efficient algorithms,
so it appears frequently in books on the design and analysis of algorithms. We
will look at the quicksort function , a good example of th is technique.

Quicksort is a fast recurs ive sorting algorithm. The base case is simple:
quicksort [] = [] . For a non-empty list of the form (x :xs} , we will first pick
one element called the splitter. For convenience that will be x, the first element
in the list . We will then take all the elements of the rest of the list, xs, which are
less than or equal to the splitter. We will call this list the small elements, and
define it as a list comprehension [y I y <- xs, y<=splitter] . In a similar
way we define the list of large elements, which are greater than the splitter, as
[y I y <- xs, y>splitter]. Now the complete sorted list consists first of
the small elements (in sorted order), followed by the splitter, followed by the
large elements (in sorted order) .

quicksort :: Ord a => [a] -> [a]
quicksort [] = []
quicksort (splitter:xs) =

quicksort [y I y <- xs, y<=splitter]
++ [splitter]
++ quicksort [y I y <- xs, y>splitter]

It is interesting to compare this definition with a conventional one in an
imperative language; see any standard book on algorithms.

Exercise 1. Write a recursive function copy :: [a] -> [a] that copies its
list argument. For example, copy [2] ::}[2] .

5.1. RECURSION OVER LISTS 135

Exercise 2. Write a function inverse that takes a list of pairs and swaps the
pair elements. For example,

inverse [(1,2),(3,4)] ==> [(2,1),(4,3)]

Exercise 3. Write a function

merge :: Ord a => [a] -> [a] -> [a]

which takes two sorted lists and returns a sorted list containing the ele­
ments of each.

Exercise 4. Write (! !), a function that takes a natural number n and a list
and selects the nth element of the list. List elements are indexed from
0, not 1, and since the type of the incoming number does not prevent it
from being out of range, the result should be a Maybe type. For example,

[l,2,3]!!0 ==> Just 1
[1,2,3]!!2 ==> Just 3
[1,2,3]!!5 ==> Nothing

Exercise 5. Write a function lookup that takes a value and a list of pairs,
and returns the second element of the pair that has the value as its first
element. For example,

lookup 5 [(1,2),(5,3)] ==> Just 3

Exercise 6. Write a function that counts the number of times an element
appears in a list.

Exercise 7. Write a function that takes a value e and a list of values xs and
removes all occurrences of e from xs .

Exercise 8. Write a function

f :: [a] -> [a]

that removes alternating elements of its list argument, starting with the
first one. For examples, f [1,2,3,4,5,6,7] returns [2,4,6] .

Exercise 9. Write a function that takes a list of Maybe values and returns the
elements they contain.

Exercise 10. Write a function

f :: String -> String -> Maybe lnt

that takes two strings. If the second string appears within the first, it
returns the index identifying where it starts. Indexes start from O. For
example,

f "abede" "be" ==> Just 1
f "abede" "fg" ==> Nothing

136 CHAPTER 5. RECURSION

5.2 Higher Order Recursive Functions

Many of the recursive definitions from the previous section are quite similar to
each other. An elegant idea is to write a function that expresses the general
computation pattern once and for all. This general function could then be
reused to define a large number of more specific functions, without needing
to write out the complete recursive definitions. In order to allow the general
function to know exactly what computation to perform, we need to supply it
with an extra argument which is itself a function. Such a general function is
called a higher order function or a combinator.

Several of the functions defined in the previous section take a list argument,
and return a list result, where each element of the result is computed from the
corresponding element of the input. We can write a general function, called
map, which expresses all particular functions of that form. The first argument
to map is another function, of type a->b , which takes a single value of type
a and returns a single result of type b. The purpose of map is to apply that
auxiliary function to all the elements of the list argument.

map :: (a->b) -> [a] -> [b]
map f [J = []
map f (x:xs) = f x : map f xs

Here is an example of the use of map. Suppose the function we define is
to multiply every list element by 5. We could write a special function to do
just that, using recursion . A simpler method is to specify the 'multiply by 5'
function (*5) as an argument to map. Here is an example:

map (*5) [1,2,3]
= 1*5 map (*5) [2,3]
= 1*5 (2*5 map (*5) [3])
= 1*5 (2*5: (3*5 : map (*5) []))
= 1*5 (2*5: (3*5 : [J))
= 5 : (10 : (15 : []))
= [5,10,15]

The map function takes an auxiliary function requiring one argument, and
one list argument. Sometimes we have an auxiliary function that takes two
arguments, and want to apply it to all the corresponding elements of two lists .
If the argument lists are of different sizes, the result will have the length of
the shorter one, This is performed by the zipWith function, which performs a
recursion simultaneously over both list arguments:

zipWith : : (a->b->c) -> [a] -> [b] -> [c]
zipWith f [] ys = []
zipWith f xs [] = []
zipWith f (x :xs) (y:ys) = f x Y zipWith f xs ys

5.2. HIGHER ORDER RECURSIVE FUNCTIONS 137

Some of the recursive functions from the previous section, such as length
and sum, have a structure which is slightly different from that of map. These
functions take a list but return a singleton result which is calculated by com­
bining elements from the list. A general function for this is foldr, which is
defined as follows:

foldr :: (a->b->b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

Here is an example where foldr is used to add up the elements of a list.
The singleton argument z can be thought of as an initial value for the sum, so
we specify 0 for its value.

foldr (+) 0 [1,2,3]
= 1 + foldr (+) 0 [2,3]
= 1 + (2 + foldr (+) 0 [3])

1 + (2 + (3 + foldr (+) 0 [J))

= 1 + (2 + (3 + 0»
= 6

The function's name suggests that a list is folded into a singleton value.
The recursion produces a sequence of applications of the f function, starting
from the right end of the list (hence the name, which stands for fold from the
right). The singleton argument z serves to initialise the accumulator, and it
also provides a result in case the entire list argument is empty.

Now we can define all the functions which follow this general pattern with
a single equation; there is no need to keep writing out separate recursive defi­
nitions. Here is a collection of useful functions, all definable with foldr:

sum xs foldr (+) 0 xs
product xs foldr (*) 1 xs
and xs foldr (&:&:) True xs
or xs = foldr (I I) False xs
factorial n = foldr (*) 1 [1. .n]

We now have two definitions of sum, a recursive one and one using foldr.
These two definitions ought to produce the same result , and it is interesting to
consider in more detail how this comes about. The recursive definition , which
we saw in the previous section, is:

sum [] = 0
sum (x:xs) = x + sum xs

The definition using foldr is:

sum xs = foldr (+) 0 xs

138 CHAPTER 5. RECUR~ON

First, consider sum [] . The recursive definition says directly that this has
the value O. We can calculate what the foldr definition says:

sum (]
= foldr (+) 0 []
= 0

The two definitions give the same result for the base case, as they should. Now
consider the recursive case, where the argument has the structure (x: xs). The
recursive definition returns x + sum xs. The result produced by the definition
with foldr is calculated:

sum (x:xs)
= foldr (+) 0 (x :xs)
= x + foldr (+) 0 xs
= x + sum xs

We have just proved that the two definitions of sum always produce the same
result, since every list must either be [] or have the form (x: xa) ,

Often there is a choice between using a recursive definition , or using one of
the existing higher order functions like map, foldr etc . For example, consider
the problem of writing a function firsts, which should take a list of pairs and
returns a list of the first elements . For example,

firsts [(1,3),(2,4)] ==> [1,2]

Here is a recursive definition:

firsts : : [(a,b)] -> [a]
firsts [] = []
firsts «a,b):ps) = a : firsts ps

And here is an alternative definition using map:

firsts : : [(a,b)] -> [a]
firsts xs = map fst xs

The definition using map is generally considered better style . It is shorter
and more readable, but its real advantage is modularity: the definition of map
expresses a specific form of recursion, and the definition of firsts with map
makes it explicitly clear that this form of recursion is being used.

Exercise 11. Write foldrWith, a function that behaves like foldr except
that it takes a function of three arguments and two lists.

Exercise 12. Using foldr, write a function mappend such that

mappend f xs = coneat (map f xs)

Exercise 13. Write removeDuplicates, a function that takes a list and re­
moves all of its duplicate elements .

Exercise 14. Write a recursive function that takes a value and a list of values
and returns True if the value is in the list and False otherwise.

5.3. RECURSION OVER TREES

5.3 Recursion Over Trees

139

Recursion really comes into its own when more complex data structures are
used, such as trees or graphs. The recursions we used over lists may not obvi­
ously be better than ordinary iterations, such as for or while loops. However,
recursion is almost always far superior to ordinary loops for trees . The use of re­
cursion is not restricted to functional languages; you will also use it for working
with complex data structures in imperative and object-oriented languages.

There are many different ways to define trees. For this reason there is no
single standard built-in tree data structure in Haskell. In contrast there is just
one sensible way to define lists, so you don't have to define them yourself; the list
type is built-in . The particular definition we give below, and the functions that
operate on it, are flexible and commonly used, but it is also straightforward to
modify these definitions in order to tailor the trees for a particular application.

A tree (as defined in this section) has type Tree a, where a is the type of
data values that may be stored in the tree nodes. A tree may be one of two
things:

• A Tip contains no information, and is analogous to the empty list [] j

• A Node contains a piece of data with type a, and two subtrees of type
Tree a.

The data structure is defined as an algebraic data type , with the construc­
tors Tip and Node. The clause at the end, deriving Show, tells the Haskell
compiler to produce code automatically that can convert a tree to a character
string for printing; you don't have to do this yourself.

data Tree a
= Tip
I Node a (Tree a) (Tree a)
deriving Show

We can define a tree simply using the constructors Tip and Node as functions
that construct a particular tree (that is why they are called constructors) . Here
are some examples, and Figure 5.1 shows their corresponding diagrams.

t1, t2 : : Tree lnt
t1 = Node 6 Tip Tip
t2 = Node 5

(Node 3 Tip Tip)
(Node 8 (Node 6 Tip Tip) (Node 12 Tip Tip))

Now we consider several functions that perform operations on trees, and
which are defined using recursion. The nodeCount function takes a tree and
determines how many nodes are in it; this is also the number of data values
stored in the tree. The base case is an empty tree, a Tip, where the number of

140 CHAPTER 5. RECURSION

Figure 5.1: Tree Diagrams

nodes is O. The recursive case is a tree consisting of a Node, with a data value
x and two subtrees t1 and t2. There are two recursive calls, since there are
two trees inside the Node.

nodeCount :: Tree a -> lnt
nodeCount Tip = 0
nodeCount (Node x tl t2) = 1 + nodeCount tl + nodeCount t2

The next function reflects a tree around a vertical axis; the left and right
subtrees are interchanged and the same reflection happens recursively within
the subtrees.

reflect :: Tree a -> Tree a
reflect Tip = Tip
reflect (Node a tl t2) = Node a (reflect t2) (reflect tl)

The mapTree function is analogous to map, which operates over lists.

mapTree :: (a->b) -) Tree a -> Tree b
mapTree f Tip = Tip
mapTree f (Node a tl t2) =

Node (f a) (mapTree f tl) (mapTree f t2)

Trees are commonly used in efficient algorithms that perform searching
quickly. In a binary search tree, all the data values that are smaller than the
data in the node are stored in the left subtree, while the right subtree holds all
the larger values.

The binary search tree is efficient because , if it is balanced (i.e, its left and
right subtrees have the same height) then every step in the recursion cuts out
half of the remaining possible data values. A binary search zeros in quickly on
the desired value, instead of creeping toward it one value at a time as with list
searches.

A common technique is to store a (key, value) pair in each node, and
to use the key fields to organise the structure of the binary search tree ; for
example:

5.3. RECURSION OVER TREES 141

(1,1) Tip Tip)
(4,8) Tip Tip))
(6,12) Tip Tip)
(8,16) Tip Tip))

(Node
(Node
(Node
(Node

(Node (7,14)

tree :: Tree (Int,Int)
tree =

Node (5,10)
(Node (3,6)

Now, suppose that we want to find the node that contains the key 6, so
that the corresponding value, 12, can be obtained. The search function will
compare the desired key 6 with the root node's key; since that is 5 it the search
will consider only the right subtree, inspect 7 then choose its left subtree. The
find function, implementing a binary search over a tree, is defined as follows:

find:: Int -> Tree (Int,a) -> Maybe a
find n Tip = Nothing
find n (Node (m,d) t1 t2) =

if n==m then Just d
else if n<m then find n t1

else find n t2

Exercise 15. Write appendTree, a function that takes a tree and a list and
appends the contents of the tree (traversed from left to right) to the front
of the list. For example,

appendTree (Node 1 (Node 2 Tip Tip)
(Node 3 Tip Tip))

[4,5]
==> [2, 1,3,4,5]

Exercise 16. Write concatTree, a function that takes a tree of lists and con­
catenates the lists in order from left to right. For example,

concatTree (Node [2] (Node [3,4] Tip Tip)
(Node [5] Tip Tip))

==> [3,4,2,5]

Exercise 17. Write zipTree, a function that takes two trees and pairs each of
the corresponding elements in a list. Your function should return Nothing
if the two trees do not have the same shape. For example,

zipTree (Node 2 (Node 1 Tip Tip) (Node 3 Tip Tip))
(Node 5 (Node 4 Tip Tip) (Node 6 Tip Tip))

==> Just [(1,4),(2,5),(3,6)]

Exercise 18. Write zipWi thTree,a function that is like zipWi th except that
it takes trees instead of lists. It returns a list. You can assume that the
two arguments will have the same shape.

142 CHAPTER 5. RECURSION

5.4 Peano Arithmetic

We turn now to the implementation of arithmetic operations over a simple data
structure representing the natural numbers . The reason for working with this
representation is that it provides a good introduction to recursion over general
algebraic data types.

data Peano = Zero I Succ Peano deriving Shay

For example,

1 Succ Zero
3 = Succ (Succ (Succ Zero»

As you can see, the Peano data type is recursive. In this case, the recursion
builds up a series of constructor applications, somewhat like the list data type:

data List a = Empty I Cons a (List a)

[lJ = Cons 1 Empty
[l,2,3J = Cons 1 (Cons 2 (Cons 3 Empty»

The simplest Peano function is decrement, which removes a Succ construc­
tor if possible, returning Zero otherwise:

decrement : : Peano -> Peano
decrement Zero Zero
decrement (Succ a) =a

The definition of add is:

add :: Peano -> Peano -> Peano
add Zero b b
add (Succ a) b = Succ (add a b)

This definition looks a lot like that of (++)!

However, sub is more complex. If the second argument is Zero, then sub
returns the first argument. Negative numbers cannot be represented in this
scheme, so they are approximated by Zero. Otherwise sub must decrement
both numbers, as follows :

sub .. Peano -> Peano -> Peano
sub a Zero = a
sub Zero b = Zero
sub (Succ a) (Succ b) = sub a b

We can do more with recursion and Peano numbers. Here are two predi­
cates , equals and It:

5.5. DATA RECURSION

equals :: Peano -) Peano -)
equals Zero Zero
equals Zero b
equals a Zero
equals (Succ a) (Succ b)

Bool
True
False

= False
= equals a b

143

It
It
It
It

.. Peano -) Peano -) Bool
a Zero = False
Zero (Succ b) True
(Succ a) (Succ b) It a b

5.5 Data Recursion

So far we have always used recursion to define functions . Recursive functions
are useful in nearly all programming languages, and they are especially im­
portant for programming with data structures like trees and graphs. There is
another important programming technique based on recursion, however, which
can be used only in nonstrict programming languages such as Haskell. This
technique is called data recursion.

The idea is to define circular data structures. Here is one way to define an
infinitely long list where every element is 1:

f :: a -) [a]
f x = x : f x
ones = f 1

Each time the recursive function f is applied, it uses (:) to construct a new
list element containing x. As a result, there is no bound on how much computer
memory will be required to represent ones; this depends on how much of the
computation is actually demanded by the rest of the program.

However, it's possible to represent ones very compactly with a circular list,
defined with recursion in the data rather than in a function :

twos = 2 : twos

Figure 5.2 shows the internal representations of ones and twos. Mathemat­
ically, the value of both is a list which is infinitely long. However, the circular
definition requires far less memory.

A data structure consisting of nodes connected by links is called a graph .
Graphs can be constructed by defining each node with an equation in a let
expression; this means that each node can be referred to by any other node
(including even itself). For example, the following Haskell definition creates a
circular data structure, where the internal names a, band c are used to set up
the links:

144 CHAPTER 5. RECUR~ON

ones-QJ3-QJ3-QJ3-

Figure 5.2: Circular and Non-circular Infinite Lists

object = let a = l :b
b = 2:c
c = [3] ++ a

in a

5.6 Suggestions for Further Reading

Most programming languages have a variety of control constructs for looping,
but recursion is general enough to encompass all of them. The textbooks on
Haskell (see Chapter 1) give many examples, and Abelson and Sussman [1]
use recursion to provide a variety of control abstractions in the programming
language Scheme.

Systems with self-reference, including especially recursion, are one of the
major themes of Hofstadter's book Giidel, Escher, Bach [16] .

Recursion is central to the theory of computation; one of the main theoreti­
cal subjects in computer science is called recursive function theory. This is one
of the standard topics in computer science, and many textbooks are available.

5.7 Review Exercises

Exercise 19. Write a function that uses recursion to take the intersection of
two sets.

Exercise 20. Using recursion, write a function that takes two sets and returns
True if the first is a subset of the other.

Exercise 21. Write a recursive function that determines whether a list is
sorted .

Exercise 22. Show that the definition of factorial using foldr always pro­
duces the same result as the recursive definition given in the previous
section.

Exercise 23. Using recursion, define last, a function that takes a list and
returns a Maybe type that is Nothing if the list is empty.

5.7. REVIEW EXERCISES 145

Exercise 24. Using recursion, write two functions that expect a string con­
taining a real number . The first returns the whole part of the number, to
the left of the decimal point, and the second returns the fractional part
to the right of the decimal point.

Chapter 6

Inductively Defined Sets

In this chapter, we explore the construction of sets using induction. To un­
derstand why induction is useful, consider the problem of defining a set. The
simplest method is to define a set by naming each of its elements, one by one.
This is called enumeration. It works only for finite sets and is impractical for
large sets . Another approach is to use ellipses (' . .. ') to indicate that the set
continues, but this is imprecise, and so can be ambiguous. For example, what
is meant by {I, 2, 3, . .. }? Is the next element 4 or 5? Even if you think the
answer is obvious, how do you know everyone else will consider the same thing
to be obvious? If we are enumerating the positive integers, the next element is
4, but if we are adding the two previous numbers in the series , it is 5.

6.1 The Idea Behind Induction

Induction is rather like a mathematical 'program' that calculates a proof when
needed. The proof asserts that an element is a member of the set defined by
induction. For example, here are two propositions:

a E S
nES-tn+lES

Together, they let us show that any natural number is in set S. To see how
they do this, consider an example: we show that 2 is an element of set S. Using
the propositions above, we can construct a chain that looks like this:

a E S
OES-tlES
IE S-t2E S

We then use the first assertion and Modus Ponens to deduce that 1 is in set
S, and from that, using Modus Ponens, we deduce that 2 is in set S . In fact,

147

C. Hall et al., Discrete Mathematics Using a Computer
© Springer-Verlag London 2000

148 CHAPTER 6. INDUCTIVELY DEFINED SETS

we can use the two propositions to build a chain that is as long as needed to
reach any natural number.

Of course, if any of the links in the chain were missing, for example the
proposition 0 E S ~ 1 E S, then we could not reach the number required.
This is because we could not use Modus Ponens to get to the next link.

When we use an inductive definition to show that a set contains a given
value v, we enumerate, or count, the values that must first be shown to be
in the set before v. These values form a sequence, which is a set with an
ordering. Computers can enumerate elements of sets in the order in which
they are generated from a description of the set . We can use a computer to
calculate a sequence that represents an infinite set, although we will only see a
finite prefix of the entire sequence.

Let 's implement what we have seen using Haskell. A set of numbers can
be represented by a list; for example, the set with the numbers 1,2 and 3 is
[1,2,3], and the empty set is [].

How do we implement the implications? An implication of the form 1 E
s ~ 2 E s can be implemented as a function that takes 1 and returns the next
element , 2. If it is applied to anything other than 1, then an error message is
returned:

imp1 :: lnt -> lnt
imp1 1 = 2
impl other = error "premise does not match"

We can implement a chain using function application. The argument of the
function imp1 is an element of s. If that element matches the pattern of imp1,
then imp1 can be applied to it and produce a new element of s. This is just
like what we do when deciding whether we can use Modus Ponens: we match
the premise of the implication with elements of the set ; if there is a match,
then we can use modus ponens, otherwise the match fails and we cannot. For
example, consider the following assertions:

1 E S
1ES~2ES

2ES~3ES

This can be implemented by the following Haskell definitions:

imp1 .. lnt -> lnt
imp1 1 = 2
imp1 x = error "premise does not match"

imp2 .. lnt -> lnt
imp2 2 = 3
imp2 x = error "premise does not match"

6.1 . THE IDEA BEHIND INDUCTION

s :: [lnt]
s = [1, impl (s !! 0), imp2 (s !! 1)]

149

The function application s! !0 returns the first element of s , indexing from
0; the result is 1. The function impl1 is applied to this. Since the argument
matches the pattern, the application succeeds, adding 2 to s. Then the function
imp12 is applied to 2. Since the argument matches the pattern, the application
succeeds, adding 3 to s. The value of s is [1,2,3].

There is a difference between matching the premise of the implication with
all of the elements of the set and applying impl to the most recently added
member of s . However, in the form of induction that we are studying, it doesn't
matter. The only value that could possibly match the premise is the one
generated by the previous implication. But consider now this set of assertions:

1 E S
2ES-+3ES

This is implemented as:

impl :: lnt -> lnt
impl 2 = 3
impl x = error "premise does not match"

s .. [Lnt]

s = [1, impl (s !! 0)]

In this case, we cannot use modus ponens to conclude that 3 is in the list,
because nothing states that 2 is in it.

Exercise 1. Is the following a chain? You can test your conclusions by eval­
uating s in each case.

imp1 :: lnt -> lnt
imp1 1 2
imp1 x = error "imp1: premise does not apply"

imp2 :: lnt -> lnt
imp2 2 3
imp2 x = error "imp2: premise does not apply"

imp3 :: lnt -> lnt
imp3 3 = 4
imp3 x = error "imp3: premise does not apply"
s .. [Ent]

s = [1, imp1 (s !! 0), imp2 (s !! 1), imp3 (s !! 2)J

150 CHAPTER 6. INDUCTIVELY DEFINED SETS

Exercise 2. Is the following a chain?

imp1 : : lnt -> lnt
imp1 1 = 2
imp1 x = error "imp1: premise does not apply"

imp2 :: lnt -> lnt
imp2 3 = 4
imp2 x = error "imp2: premise does not apply"

s .. [Jut]
s = [0, imp1 (s !! 0), imp2 (s !! 1)]

Exercise 3. Is the following a chain?

imp1 :: lnt -> lnt
imp1 ° 1
imp1 x = error "imp1: premise does not apply"

imp2 : : lnt -> lnt
imp2 3 4
imp2 x = error "imp2: premise does not apply"

s . . [lnt]
s = [0, imp1 (s !! 0), imp2 (s!! 1)]

Exercise 4. Is the following a chain?

imp1 :: lnt -> lnt
imp1 ° = 1
imp1 x = error "imp1: premise does not apply"

imp2 :: lnt -> lnt
imp2 1 = 2
imp2 x = error "imp2: premise does not apply"

s .. [lnt]
s = [0, imp1 (s !! 1), imp2 (s !! 0)]

6.1.1 The Induction Rule

Recall the two propositions we used in the first section:

o E S
nES~n+1ES

6.1. THE IDEA BEHIND INDUCTION 151

The first one is called the base case, and the second is called the induction
case, or the induction rule.. It is the induction case that generates the links of
the chain which will allow us to reach any number in the set being defined.

So far, the induction has had a fixed form because we were defining a
particular set . However, we could have a rule

n E 5 -t n + 2 E 5.

Together with the base case 1 E 5, this would define the odd natural numbers.
Alternatively, our induction rule might be

n E 5 -t n *5 E 5.

Together with the base case, this would define the set of powers of 5.
As we will see, it can sometimes be hard to construct the correct rule, and

it is necessary to debug rules to get them right.
Suppose we have a set defined by the following assertions:

°E s
xEs-tx+1Es

First, we want to find out whether 2 is in the set, and will use the computer
to help. (Of course, we could solve this by hand, but if the induction rule is
complicated, or if we want to find out whether 1,000,000 is in the set, software
tools are invaluable .) We can implement the induction rule as the increment
function:

increment :: lnt -> lnt
increment x = x + 1

s :: [lnt]
s = [0, increment (s !! 0), increment (s !! 1)]

We can load this definition and evaluate s; the last element of s is 2.
Now suppose that we want to know whether 50 is in the set . It would

be very tedious to write out each element as we have been doing. The same
function is applied to each element of s, so we can have the following definition
of s instead:

s :: [lnt]
s = 0 : map increment s

The function map proceeds down s, creating each value it needs and then using
it. We can then get at the fiftieth element by typing s! !50.

Now we have a new format for implementing inductive definitions. We first
specify the induction rule, then recursively define a list in which the base case
appears first, and then the rule is mapped down the list.

152 CHAPTER 6. INDUCTIVELY DEFINED SETS

Exercise 5. Given the base case a E n and the induction rule x E n -t x+ 1 E
n , fix the following calculation so that 3 is in set n:

fun :: lnt -> lnt
fun x = x - 1

n :: [lnt]
n = 0 : map fun n

Exercise 6. Use the following definitions, determine whether 4 is in set S,

given 1 E s and the induction rule xEs -t x + 2 E s.

fun :: lnt -> lnt
fun x = x + 2

5 :: [lnt]
5 = 1 : map fun 5

Exercise 7. Fix this calculation of the positive integers :

fun :: lnt -> lnt
fun x = 0

p :: [lnt]
p = 0 : map fun p

Exercise 8. Fix this calculation of the positive multiples of 3:

fun : : lnt -> lnt
fun x = x * 3

p :: [lnt]
p = map fun p

6.2 How to Define a Set Using Induction

We have seen that an inductive set definition has a base case and an induction
rule (or induction case). There is one more clause that needs to be specified in
an inductive set definition . Suppose that we have defined a set 5 by saying that
the numbers 1, 2 and 3 are in 5. How do we know that something else isn't also
in 5? If we don't say explicitly that nothing else is in 5, then the specification
could be satisfied by lots of different sets. It could be the set {I , 2,4.5, -78, 3},
for example.

We want to exclude all elements that aren't introduced by the base case, or
instantiations of the induction case, so we include a clause (called the extremal
clause) in a set definition that states Nothing is an element of the set unless it
can be constructed by a finite number of uses of the first two clauses.

6.2. HOW TO DEFINE A SET USING INDUCTION 153

To summarise, an inductive definition of a set consists of three parts: a base
case, an induction case and an extremal clause:

• The base case is a simple statement of some mathematical fact, such as
1 E S;

• The induction case is an implication in a general form, such as the propo­
sition that

\Ix : U,xES ~ x + 1 E S.

• The extremal clause says that nothing is in the set being defined unless
it got there by a finite number of uses of the first two cases.

6.2.1 Inductive Definition of the Set of Natural Numbers

We will illustrate the method by writing an inductive definition of the natural
numbers.

Definition 19. The set N of natural numbers is defined as follows:

• Base case: 0 E N

• Induction case: x E N ~ x + 1 E N

• Extremal clause: nothing is an element of the set N unless it can be
constructed with a finite number of uses of the base and induction cases.

Now we can use the base and induction cases to show formally that an
arbitrary number above and including 0 is a natural number. Let's choose the
number 2.

1. 0 E N
2. 0 E N ~ 1 EN
3. 1 E N
4. 1 E N ~ 2 EN
5. 2 E N

Base case
instantiation rule, induction case
1, 2, Modus Ponens
instantiation rule, induction case
3,4, Modus Ponens

Exercise 9. Here is a Haskell equation that defines the set 5 inductively. Is
82 an element of 5?

5 :: [Lnt]
s = 0 : map «+) 2) s

Exercise 10. What set is defined by the following?

5 :: [Ent.]
5 = 1 : map «*) 3) 5

Exercise 11. Do we need to implement the extremal clause in a Haskell spec­
ification? If so, how can this be done? If not, why not?

154 CHAPTER 6. INDUCTIVELY DEFINED SETS

6.2.2 The Set of Binary Machine Words

Now we define a set BinWords, each of which is a machine word represented in
binary notation. In general, a machine word can be of any length.

The base case says that the elements of another set (the set of binary digits)
are also elements of BinWords. The induction case uses concatenation to create
a new value from one already in the set. We represent the concatenation of a
character to a string by placing them one after the other: e.g. '1' '01' is the
string '101'.

Definition 20. Let BinDigit be the set {a,I} . The set BinWords of machine
words in binary is defined as follows:

• Base case:

x E BinDigit -+ x E BinWords

• Induction case: if x is a binary digit and y is a binary word, then their
concatenation xy is also a binary word:

(x E BinDigit 1\ Y E BinWords) -+ x y E BinWords

• Extremal clause: nothing is an element of BinWords unless it can be
constructed with a finite number of uses of the base and induction cases.

A set based on another set S in this way is given the name S+, indicating
that it is the set of all possible non-empty strings over S. The expression S*
is the same as S+ except that S* also includes the empty string. Thus our set
BinWords could be written BinDigit+ .

We can write a Haskell funct ion to calculate the set of binary words, using
the inductive definition just presented . The induction function takes a binary
word. It creates a new one from that number and each binary digit in turn.
For example, if it is given [1,0], it returns [0,1,0] and [1,1,0] .

The induction rule takes a binary word and creates two new ones, so we
define the function newBinaryWords to do just that:

newBinaryWords :: [rnt] -> [[Int]]
newBinaryWords ys = [0 : ys, 1 : ys]

Finally, we define the set of binary words as follows:

mappend :: (a -) [b]) -) [aJ -> [b]
mappend f [] = []
mappend f (x:xs) = f x ++ mappend f xs

binWords = [0] : [1]
(mappend newBinaryWords binWords)

Exercise 12. Alter the definition of newBinaryWords and binWords so that
they produce all of the octal numbers . An octal number is one that
contains only the digits athrough 7.

6.3. DEFINING THE SET OF INTEGERS

6.3 Defining the Set of Integers

155

Now we come to a more subtle problem : defining the set I of integers. Instead
of jus t giving the final answer , we will think through the problem the way you
might in real life. Each time we have a trial solution , we will examin e it to see
if it works, and whether it can be improved.

The sets we have been defining are well-founded; that is, they are infinite
only in one direction, and they have a least element . The set N of natural
numbers is a good example of a well-founded set ; in fact, a coun table set is one
that can be counted using the natural numbers (see Chapter 9).

Are the integers countable? They don't have a least element, and they
are infinite in two directions , so they aren 't well-founded. But we could use a
trick: start from 0 and count first n then -no If we th ink of the integers as
a measuring tape that is infinitely long in two directions , we could still count
the inches (or centimetres) on the tape by thinking of the tape as being folded
at O. Now the positive numbers touch the negative numbers, and each element
i of the naturals counts both the positive and the negative numbers; that is, i
counts (i, -i).

We have just devised a way of enumerating the integers so that every el­
ement is eventually counted. This forms an excellent basis for an inductive
definition of the integers. We will now work through several attempts to define
the integers using induction. Some of these have problems, and we discuss how
to debug them.

6.3.1 First Attempt

Attempt 1. The set I is defined as follows:

• Base case: 0 E I

• Induction case: x E I -+ -x E I

• Extremal clause: nothing is in I unless its presence is justified by a finite
number of uses of the base and induction cases.

We will now define some functions that will make our inductive definitions
easier to understand, and also make it possible to use the computer to help
carry out experiments with the definition . Each of these is designed to take
the base and induction cases as arguments and construct the data recursion
automatically. The first uses map and the second uses mappend.

build :: a -> (a -> a) -> Set a
build a f = set

where set = a : map f set

builds : : a -> (a -> [a]) -> Set a
builds a f = set

156 CHAPTER 6. mDUCTIVELYDEnNEDSE~

where set = a : mappend f set

Here is an implementation of the first definition :

nextlnteger1 :: lnt -> lnt
nextlnteger1 x = -x

integers1 . . [lnt]
integers1 = build 0 nextlnteger1

Exercise 13. Use take 10 integers1 to evaluate the first 10 integers ac­
cording to this definition . Describe the set which is actually defined by
Attempt 1.

6.3.2 Second Attempt

Attempt 1 doesn't work. It was based on our intuitive method making the
integers countable. The problem is that according to this definition, only 0 is a
member of I. When the natural numbers were defined, there was a mechanism
for including new numbers by adding 1 to the integer in the premise. Something
similar is needed here to include the other integers.

Attempt 2. The set I is defined as follows:

• Base case: 0 E I

• Induction case: x E I -t (x + 1 E I /\ x-I E I)

• Extremal clause: Nothing is in I unless its presence is justified by a finite
number of uses of the base and induction cases.

Here is an implementation of Attempt 2:

nextlntegers2 :: lnt -> [lnt]
nextlntegers2 x = [x + 1, x - 1]

integers2 :: [lnt]
integers2 = builds 0 nextlntegers2

Exercise 14. Use take 20 integers2 to evaluate the first 20 integers ac­
cording to this definition. Describe the set which is actually defined by
Attempt 2.

6.3.3 Third Attempt

The previous attempt gave a correct inductive definitio n of the integers, but
there is still a problem with it, as can be seen by a simple example. Consider
proving that -2 is in I:

6.3. DEFINING THE SET OF INTEGERS 157

1. OEI
2. 0 E 1-+ (1 E 11\ -1 E I)
3. 1 E I 1\ -1 E I
4. -lEI-+(OEII\-2EI)
5. 0 E 11\ -2 E I

base case
instantiation, induction case
1,2, Modus Ponens
instantiation, induction case
3,4, Modus Ponens

We can be sure that this definition is correct because the induction step
brings both the positive and negative numbers into 1. Each element of I is
incremented, guaranteeing that the naturals will be included as 1 and its suc­
cessors are added. Each element of I is also decremented, ensuring that all of
the negative numbers will be included as -1 and its predecessors are added .

A drawback, however, is that there are two ways for 0 to become a member
of I. The base case puts it there, and step 5 does it again . In fact , the real
defects of this definition are graphically illustrated by the fact that

take 20 integers2
= [0,1,-1,2,0,0,-2,3,1,1,-1,1,-1,-1,-3,4,2,2,0,2]

It is more elegant if the definition introduces each element only once. Fur­
thermore, practical software based in an inductively defined set would be inef­
ficient (and possibly even incorrect) if the elements were introduced more than
once. Here is one way to try to fix the problem:

Attempt 3. The set I is defined as follows :

• Base case: 0 E I

• Induction case: x E I -+ (x + 1 E I 1\ -(x + 1) E I)

• Extremal clause: nothing is in I unless its presence is justified by a finite
number of uses of the base and induction cases.

Here is an implementation of the third definition:

nextIntegers3 :: Int -> [Int]
nextlntegers3 x = [x + 1, -(x + 1)]

integers3 :: [Int]
integers3 = builds 0 nextlntegers3

Exercise 15. Use the computer to examine the first 10 integers generated by
this definition, and describe the set that is defined.

158 CHAPTER 6. INDUCTIVELY DEFINED SETS

6.3.4 Fourth Attempt

This third attempt is a correct definition of the set of integers, and it is much
closer to our intuition. What we want to do is say that if x is in I, then -x is
also in I. However, we also have to increment and decrement x somehow , so
that all the integers can be included. Consider what happens when we attempt
to show that -2 is in I :

1. OEI
2. 0 E I -+ (1 E II\ -1 E 1)
3. 1 E I 1\ -1 E I
4. 1 E I -+ (2 E I 1\ - 2 E 1)
5. 2 E I 1\ -2 E I

base case
instantiation, induction case
1,2, Modus Ponens
instantiation, induction case
3,4, and, Modus Ponens

This is almost what we want , except that when the induction rule is instan­
tiated with -1 it places 0 in I again. And ,

take 10 integers3 =
[0,1, -1,2,-2,0,0,3,-3,-1] .

Therefore Attempt 3 doesn't introduce each element precisely once.

Attempt 4. The set I of integers is defined as follows:

• Base case: 0 E I

• Induction case:

1. (x E I 1\ x ? 0) -+ x + 1 E I

2. (x E I 1\ x < 0) -+ x - 1 E I

• Extremal clause: nothing is in I unless its presence is justified by a finite
number of uses of the base and induction cases.

Here is an implementation of the fourth definition:

nextlnteger4 :: lnt -> lnt
nextlnteger4 x = if x < 0 then x - 1 else x + 1

integers4 :: [lnt]
integers4 = build 0 nextlnteger4

Exercise 16. Use the computer to generate some elements of the set defined
by Attempt 4, and describe the result.

6.4. SUGGESTIONS FOR FURTHER READING

6.3.5 Fifth Attempt

159

Attempt 4 does not work, because the numbers generated from 0 must al­
ways be positive. It is necessary to go back to Attempt 4 and improve that.
Furthermore, it would be better to have only one inductive case, if possible.

Attempt 5. The set I of integers is defined as follows:

• Base case: 0 E I

• Induction case: (x E 11\ x ~ 0) -t x + 1 E 11\ -(x + 1) E I

• Extremal clause: nothing is in I unless its presence is justified by a finite
number of uses of the base and induction cases.

This definition is exactly what the original method of counting the integers
suggested. It is implemented by the following Haskell program:

nextlntegers5 :: Int -> [Int]
nextlntegers5 x

= if x > 0 \/ x == 0
then [x + 1, -(x + 1)]
else []

integers5 :: [Int]
integers5 = builds 0 nextlntegers5

Exercise 17. Use the computer to evaluate the first 10 elements of the set,
and describe the result.

6.4 Suggestions for Further Reading

Many of the references on set theory cited in Chapter 4 also deal with inductive
definitions of sets. Elements of Set Theory, by Enderton [10], gives some good
examples of inductively defined sets. A more advanced treatment appears in
Axiomatic Set Theory, by Suppes [28].

6.5 Review Exercises

Exercise 18. Does ints , using the following definition, enumerate the inte­
gers? If it does, then you should be able to pick any integer and see it
eventually in the output produced by ints . Will you ever see the value
-I?

nats : : [Int]
nats = build 0 (1 +)

160 CHAPTER 6. INDUCTIVELY DEFINED SETS

nags :: [Int]
nags = build (-1) (1 -)

ints :: [Int]
ints = nats ++ nags

Exercise 19. Does twos enumerate the set of even natural numbers?

twos : : [Int]
twos = build 0 (2 *)

Exercise 20. What is wrong with the following definition of the stream of
natural numbers?

nats = map (+ 1) nats ++ [0]

Exercise 21. What is the problem with the following definition of the natu­
rals?

naturals :: [Int] -) [Int]
naturals (i:acc) = naturals (i + l:i:acc)

nats : : [Int]
nats = naturals [0]

Exercise 22. Using induction, for any set S, define the powerset of S.

Exercise 23. Can we write a function that will take a stream of the naturals
(appearing in any order) and give the index of a particular number?

Exercise 24. Using induction, define the set of roots of a given number n .

Exercise 25. Given the following definition, prove that n3 is in set P of powers
ofn.

Definition 21. Given a number n, the set P of powers of n is defined
as follows:

• nO E P
• n m E P -t n m

+1 E P

• Nothing else is in P unless it can be shown to be in P by a finite
number of uses of the base and induction rules .

Exercise 26. When is 0 in the set defined below?

Definition 22. Given a number n, the set N is defined as follows:

• n E N
.mEN-tm-2EN

6.5. REVIEW EXERCISES 161

• Nothing is in N unless it can be shown to be in N by a finite number
of uses of the previous rules.

Exercise 27. What set is defined by the following definition?

Definition 23. The set S is defined as follows:

• 1 E S
.nESAnm~2=O~n+1ES

.nESAnm~2=1~n+2ES

• Nothing else is in S unless it can be shown to be in S by a finite
number of uses of the previous rules.

Exercise 28. Prove that 4 is in the set defined as follows:

Definition 24. The set S is defined as follows:

1. 0 E S

2. n E S A nmod2 = 0 ~ n + 2 E S

3. n E S A nmod2 = 1 ~ n + 1 E S

4. Nothing is in S unless it can be shown to be in S by a finite number
of uses of the previous rules.

Exercise 29. Given the following definition, prove that the string 'yyyy' is in
YYS. The symbol II here may mean concatenate or cons.

Definition 25. The set YYS of strings containing pairs of the letter 'y'
is defined as follows:

1. "" E YYS

2. s E YYS ~ "yy" lis E YYS

3. Nothing else is in YYS unless it can be shown to be in YYS by a
finite number of uses of rules (1) and (2).

Exercise 30. Using data recursion, define the set of strings containing the
letter Cz I.

Exercise 31. Using induction, define the set of strings of spaces of length less
than or equal to some positive integer n.

Exercise 32. Using recursion, define the set of strings of spaces of length less
than or equal to length n, where n is a positive integer.

Exercise 33. Using induction, define the set of sets of integers SS1, each of
which is missing a distinct natural number.

162 CHAPTER 6. INDUCTIVELY DEFINED SETS

Exercise 34. Given the following definition , show that the set I - {-3} E
SSI-.
The set of sets of integers SSI, each of which is missing a distinct negative
integer, is defined inductively as follows:

1. I - {-I} E SSI-

2. 1- in} ---+ 1- {n-l} E SSI-

3. Nothing else is in SSI- unless it can be shown to be in SSI- by a
finite number of uses of rules (1) and (2).

Exercise 35. Given the following definition, prove that -7 is in ONI. The set
ONI of odd negative integers is defined as follows :

1. -1 E ONI

2. nEONI ---+ n - 2 E ONI

3. Nothing is in ONI unless it can be shown to be in ONI by a finite
number of uses of the previous rules.

Exercise 36. Using data recursion in Haskell, define the set ni of negative
integers .

Exercise 37. If you print the elements of

[(a,b) I a <- [O. . J, b <- [0 .. JJ

will you ever see the element (1,2)?

Exercise 38. What set is given by the following definition?

Definition 26. The set S is defined as follows:

1. 1 E S

2. n E S ---+ n - n E S

3. Nothing is in S unless it can be shown to be in S by a finite number
of uses of the previous rules.

Chapter 7

Induction

A common type of problem is to prove that an object x has some property
P . The mathematical notation for this is P(x), where P stands for predicate
(or property). For example, if x is 6 and P(x) is the predicate 'x is an even
number', then we could express the statement '6 is an even number ' with the
shorthand mathematical statement P(6).

Many computer science applications require us to prove that all the ele­
ments of a set S have a certain property P. This can be written as

"Ix E S . P(x).

Statements like this can be used to assert properties of data: for example, we
could state that every item in a database has a certain property. They can also
be used to describe the behaviour of computer programs. For example, P(n)
might be a statement that a loop computes the correct result if it terminates
after n iterations, and the statement "In EN . P(n) says that the loop is correct
if it terminates after any number of iterations.

One approach to proving an assertion about all the elements of a set is to
write out a separate direct proof for each element of the set. That would be
all right if the set were small. For example, to prove that all the elements of
the set {4,6} are even, you could just prove that 4 is even and also that 6 is
even. However, this direct approach quickly becomes tedious for large sets : to
prove that all the elements of {2, 4, 6, . .. , lOOO} are even, you would need 500
separate proofs! Even worse, the brute-force method doesn 't work at all-even
in principle-for infinite sets, because proofs are always required to be finitely
long.

Induction is a powerful method for proving that every element of a set has
a certain property, and it is used frequently in computer science applications.
This chapter shows you how inductive proofs work, and gives many examples,
including both mathematical and computing applications.

163

C. Hall et al., Discrete Mathematics Using a Computer
© Springer-Verlag London 2000

164 CHAPTER 7. INDUCTION

7.1 The Principle of Mathematical Induction

Induction is used to prove that a property P(x) holds for every element of
a set S . Instead of proving P(x) separately for every x, induction relies on
a systematic procedure: you just have to prove a few facts about the set S
and the property P, and then a theorem called the Principle of Mathematical
Induction allows you to conclude Vx E S . P(x) .

The basic idea is to define a systematic procedure for proving that P holds
for an arbitrary element. To do this, all the elements of the set must first be
organised into a chain. A chain is a sequence of elements with two properties:
there is a starting point called the base element, and each element of the chain
has exactly one successor element. In effect, this simply means that it is possible
to enumerate all the elements of S as a sequence of indexed elements

S = {Xo, Xl, X2, . . . },

where Xo is the base element and the successor of Xi is Xi+} , This is not a trivial
restriction: for instance, it is impossible to enumerate all the real numbers in
this way, so mathematical induction cannot be used to prove properties of the
real numbers. However, the natural numbers and most of the objects that we
use in computing applications can easily he organised into a chain.

Once the set is organised as a chain, we must prove two statements:

1. The base case P(xo) says that the property P holds for the base element
Xo·

2. The inductive case P(Xi) -+ P(Xi+t} says that if P holds for an arbitrary
element Xi of the set, then it must also hold for the successor element
Xi+} ,

Since every element of the set is in the chain, this means you can establish that
P holds for a particular element using a finite sequence of logical inferences.
For example, P(X4) can be proved using the following steps:

Conclusion Justification
P(xo) the base case
P(xd P(xo) -+ P(xt} /\ P(xo)
P(X2) P(Xl) -+ P(X2) /\ P(xt}
P(X3) P(X2) -+ P(X3) /\ P(X2)
P(X4) P(X3) -+ P(X4) /\ P(X3)

Given any element Xk of S, you can prove P(Xk) using this strategy, and
the proof will be k + 1 lines long. We have not yet used the Principle of
Mathematical Induction; we have just used ordinary propositional calculus.
However, proving P(Xk) for an arbitrary k is not the same as proving Vk E
N . P(Xk), because there may be an infinite number of values of k, so the proof
would be infinitely long. The size of a proof must always be finite.

7.2. INDUCTION ON NATURAL NUMBERS 165

What the Principle of Mathematical Induction allows us to conclude is that
P holds for all the elements of S, even if there is an infinite number of them.
Thus it introduces something new-it isn't just a macro that expands out into
a long proof.

Theorem 39 (Principle of Mathematical Induction). Let the set S be
a chain xo,Xl, . . . with base element Xo, and let P(x) be a predicate which
is either true or false for every element of S . If P(xo) is true and P(xn) -t
P(Xn+l) holds for all n ~ 0, then "Ix E S . P(x) is true.

This theorem can be proved using axiomatic set theory, which is beyond the
scope of this book. For most applications in computer science it is sufficient
to have an intuitive understanding of what the theorem says, and to have a
working understanding of how to use it in proving other theorems.

There is a strong similarity between an inductive definition of a set and
an inductive proof. Each element of a set defined by induction is shown to be
in the set by a finite number of applications of the induction and base steps;
inductive proofs have a similar structure, with a base case and an induction
step.

7.2 Induction on Natural Numbers

There is a traditional story about Gauss, one of the greatest mathematicians
in history. In school one day the teacher told the class to work out the sum
1+ 2 + ... + 100. After a short time thinking, Gauss gave the correct answer­
5050-long before it would have been possible to work out all the additions.
He had noticed that the sum can be arranged into pairs of numbers, like this :

(1 + 100) + (2 + 99) + (3 + 98) + ... + (50 + 51)

The total of each pair is 101, and there are 50 of the pairs, so the result is
50 x 101 = 5050.

Methods like this can often be used to save time in computing, so it is
worthwhile to find a solution to the general case of this problem, which is the
sum

nI> = 1 + 2 + ... + n.
i = l

Ifn is even, then we get ~ pairs that all total to n+ 1, so the result is ~ x (n+ 1) =
nX(;+l) If n is odd, we can start from 0 instead of 1; for example,

7

L> = (0 + 7) + (1 + 6) + (2 + 5) + (3 + 4) .
i=O

166 CHAPTER 7. INDUCTION

.. *

. * *
* * *

* * * *
Figure 7.1: Geometric Interpretation of Sum

In this case there are ~ pairs each of which totals to n, so the result is again
nX(;+l). For any natural number n, we end up with the result

t i = n x (n + 1).
i=O 2

This formula is useful because it reduces the computation time required. For
example, if n is 1000 then it would take 1000 additions to work out the sum­
mation by brute force, but the formula always requires just one addition, one
multiplication and one division.

Figure 7.1 shows another way to understand the formula. The rectangle is
covered half by dots and half by stars. The number of stars is 1+2+3+4, and
the area of the rectangle is 4 x (4 + 1), so the total number of stars is 4X(~+I).

SO far we have only guessed the general formula for L:~=o i, and we have
considered two ways of understanding it. The next step is to prove that this
formula always gives the right answer, and induction provides the way to do it.

Theorem 40.

V N ~. n x (n + 1)
nE .~l= 2

Proof. Define the property P as follows:

Thus the aim is to prove that

Vn EN. P(n)

and we proceed by induction on n.

Base case. We need to prove P(O).

o
Li = 0
i=O

=
Ox(O+l)

2

7.2. INDUCTION ON NATURAL NUMBERS

Thus we have established the property P(O).

Induction case. Assume for a particular n that

i: i = n x (; + 1) .

;=0

The aim is to show (for this particular value of n) that

I:i = (n + 1) ; (n + 2) .

;=0

167

We do this by starting with the left hand side of the equation and using algebra
to transform it into the right hand side. The first step uses the assumption
given above . This is called the induction hypothesis.

;=0

=

=

=

n

Li + (n + 1)
;= 0

n x (n + 1) (1)
2 + n+

n x (n + 1) 2 x (n + 1)
2 + 2

n x (n + 1) + 2 x (n + 1)
2

(n + 1) x (n + 2)

2

Use the principle of induction. Now we have established that

which means that

P(n) -t P(n + 1).

According to the principle of induction, the base case , P(O), and this logical
implication together imply that the theorem is true. 0

Exercise 1. Let a be an arbitrary real number. Prove, for all natural numbers
m and n, that am x n = (c'")":

Exercise 2. Prove that the sum of the first n odd positive numbers is n 2 •

168 CHAPTER 7. INDUCTION

7.3 Induction and Recursion

Induction is a common method for proving properties of recursively defined
functions. The factorial function, which is defined recursively, provides a good
example of an induction proof.

factorial :: Natural-t Natural
factorial 0 = 1
factorial (n + 1) = (n + 1) * factorial n

A common problem in computer science is to prove that a program com­
putes the correct answer. Such a theorem requires an abstract mathematical
specification of the problem, and it has to show that for all inputs, the pro­
gram produces the same result that is defined by the specification. The value
of n! (factorial of n) is defined as the product of all the natural numbers from
1 through n; the standard notation for this is n~=1 i. The following theorem
says that the factorial function as defined above actually computes the value
of nL

Theorem 41. For all natural numbers n, factorial n = n~=1 i ,

Proof. Induction on n .

factorial 0
=1

no .= 1 t

For the induction case, it is necessary to prove that

factorial.1
def. of Il

This is done by assuming the left side as the inductive hypothesis: for a par­
ticular n, the hypothesis is factorial n = n~=1 i. Given this assumption, we
must prove that factorial (n + 1) = n~;/ i.

factorial (n + 1)
= (n + 1) x factorial n
= (n + 1) x n~=1 i

nn + 1 .= ;=1 t

factorial.2
hypothesis
def. Il

o

7.4. INDUCTION ON PEANO NATURALS

7.4 Induction on Peano Naturals

169

The Peano representation of natural numbers is a rich source of examples for
induction. Actually, it's hard to do anything at all in Peano arithmetic without
induction. For example, how do we even know that a natural number is equal
to itself? The following theorem says so, and its proof requires induction.

Theorem 42 (Self equality) . "Ix:: Nat. equals x x = 1hLe

Proof. Base case:

equals Zero Zero
= True

For the inductive case, assume that equals x x =
equals (Succ x) (Succ x) = True .

equals (Succ x) (Succ x)
=equals x x
= True

equals.1

True. We must prove that

equals.2
hypothesis

o

This proof illustrates a subtle issue. When we are using the languages of
English and mathematics to talk about natural numbers, we can assume that
anything is equal to itself. We don't normally prove theorems like x = x .
However, that is not what we have just proved: the theorem above says that
x is the same as itself according to equals, which is defined inside the Peano
system. Therefore the proof also needs to work inside the Peano system; hence
the induction.

We'll look at a few more typical Peano arithmetic theorems, both to see how
the Peano natural numbers work and to get more practice with induction. The
following theorem says, in effect, that (x + y) - x = y. In elementary algebra,
we would prove this by calculating (x + y) - x = (x - x) + Y = 0 + Y = y. The
point here, however, is that the addition and subtraction are being performed
by the recursive add and sub functions, and we can use those to prove the
theorem directly.

Theorem 43 . sub (add x y) x = y

Proof. Induction over x . The base case is

sub (add Zero y) Zero
= sub y Zero
= y

For the inductive case, assume sub (add x y) x =
sub (add (Succ x) y) (Succ x) = y.

add.]:
sub.!

y; the aim is to prove

170

sub (add (Suee x) y) (Suee x)
=sub (Suee (add x y» (Suee x)
=sub (add x y) x
=y

CHAPTER 7. INDUCTION

add.2
sub.3
hypothesis

o
The proof above happens to go through directly and easily, but many simple

theorems do not . For example, it is considerably harder to prove (x+y) -y = x
than to prove (x + y) - x = y. Even worse, there is no end to such theorems.
Instead of continuing to choose theorems based on their ease of proof, it is better
to proceed systematically by developing the standard properties of natural
numbers, such as associativity and commutativity. The attractive feature of
the Peano definitions is that all these laws are theorems; the only definitions
we need are the basic ones given already. It is straightforward to prove that
addition is associative, so we begin with that property.

Theorem 44 (add is associative). add x (add y z) = add (add x y) z

= add (add x y) z. Then

Proof. Induction over x. The Base case is

add Zero (add y z)
= add y z
= add (add Zero y) z

Inductive case. Assume add x (add y z)

add (Suee x) (add y z)
= Succ (add x (add y z]
= Succ (add (add x y) z)
= add (Suee (add x y» z
= add (add (Suee x) y) z

add.1
add.1

add.2
hypothesis
add.2
add.2

o

Next, it would be good to prove that addition is commutative: x + y =
y + x. To prove this, however, a sequence of simpler theorems is needed-each
providing yet another example of induction.

First we need to be able to simplify additions where the second argument is
Zero. We know already that add Zero x = x; in fact, this is one of the Peano
axioms. It is not an axiom that add x Zero = x; that is a theorem requiring
proof.

Theorem 45. add x Zero = x

Proof. Induction over x . The base case is

add Zero Zero
=Zero add.1

7.4. INDUCTION ON PEANO NATURALS

For the inductive case, we assume add x Zero

add (StlCC x) Zero
=StlCC (add x Zero)
=StlCC X

= x. Then

add.2
hypothesis

171

o

The next theorem allows us to move a Succ from one argument of an addi­
tion to the other. It says, in effect, that (x + 1) + Y = x + (y + 1). That may
not sound very dramatic, but many proofs require the ability to take a little
off one argument and add it onto the other.

Theorem 46. add (StlCC x) y = add x (StlCC y)

Proof. Induction over x . Base case:

add (StlCC Zero) y
= StlCC (add Zero y)
=StlCC Y
= add Zero (StlCC y)

Inductive case:

add (StlCC (StlCC x)) y
=StlCC (add (StlCC x) y)
=StlCC (add x (StlCC y))
=add (StlCC z) (Succ y)

add.2
add.1
add.1

add.2
hypothesis
add.2

o
Now we can prove that Peano addition is commutative.

Theorem 47 (add is commutative). add x y = add y x

Proof. Induction over x . Base case:

add Zero y
=y
= add y Zero

Inductive case: assume that add x y =
add (StlCC x) y

= StlCC (add x y)
=StlCC (add y x)
=add (StlCC y) x
=add y (Succ x)

add y x. Then

add.l
Theorem 45

add.2
hypothesis
add.2
Theorem 46

o

172 CHAPTER 7. INDUCTION

7.5 Induction on Lists

Lists are one of the most commonly used data structures in computing, and
there is a large family of functions to manipulate them . These functions are
typically defined recursively, with a base case for empty lists [] and a recursive
case for non-empty lists of the form (x : xs). Induction is the most common
method for proving properties of such functions .

Before going on, we discuss some practical techniques that help in coping
with theorems. If you aren't familiar with them , mathematical statements
sometimes look confusing, and it is easy to develop a bad habit of skipping
over the mathematics when reading a book. Here is some advice on better
approaches ; we will try to illustrate the advice in a concrete way in this section,
but these methods will payoff throughout your work in computer science, not
just in the section you're reading right now.

• When you are faced with a new theorem, try to understand what it means
before trying to prove it. Restate the main idea in English.

• Think about what applications the theorem might have. If it says that
two expressions are the same, can you think of situations where there
might be a practical advantage in replacing the left hand side by the
right hand side, or vice versa? (A common situation is that one side of
the equation is more natural to write, and the other side is more efficient.)

• Tryout the theorem on some small examples. Theorems are often stated
as equations; make up some suitable input data and evaluate both sides
of the equation, to see that they are the same.

• Check what happens in boundary cases. If the equation says something
about lists, what happens if the list is empty? What happens if the list
is infinite?

• Does the theorem seem related to other ones? Small theorems about
functions-the kind that are usually proved by induction-tend to fit
together in families. Noticing these relationships helps in understanding,
remembering and applying the results.

Now, bearing these ideas in mind, we will work through a series of examples
where induction is used to prove theorems about the properties of recursive
functions over lists.

Induction over lists is used to prove that a proposition P(xs) holds for every
list xs (such that P(xs) has a valid type) . The base case is to prove that P
holds for the empty list: P([]). The inductive case is to prove that if P holds
for a list xs, then it must also hold for any list of the form x : xs. When the
base and inductive case are established, then the principle of induction allows
us to conclude that P(xs) holds for every list xs which has finite length . (We
discuss infinite lists in Section 7.9).

7.5. INDUCTION ON LISTS 173

The sum function takes a list of numbers and adds them up. It defines the
sum of an empty list to be 0, and the sum of a non-empty list is computed by
adding the first number onto the sum of all the rest.

sum :: Num a => [aJ -> a
sum (] = 0
sum (x:xs) = x + sum xs

The following theorem states a useful fact about the relationship between
two functions: sum and -t+. It says that if you have two lists, say xs and
ys, then there are two different ways to compute the combined total of all the
elements. You can either append the lists together with -t+, and then apply
sum, or you can apply sum independently to the two lists, and add the two
resulting numbers.

Theorems of this sort are often useful for transforming programs to make
them more efficient. For example, suppose that you have a very long list to
sum up, and two computers are available . We could use parallelism to cut the
execution time almost in half. The idea is to split up the long list into two
shorter ones, which can be summed in parallel. One quick addition will then
suffice to get the final result. This technique is an example of the divide and
conquer strategy for improving the efficiency of algorithms. Obviously there
is more to parallel computing and program optimisation than we have covered
in this paragraph, but theorems like the one we are considering really do have
practical applications.

Theorem 48. sum (xs-t+ys) = sum xs + sum ys

The proof of this theorem is a typical induction over lists, and it provides
a good model to follow for future problems.

Proof. Induction over xs. The base case is

sum ([] -t+ ys)
= sum ys
= 0 + sum ys
=sum [] + sum ys

The inductive case is

sum «x : xs)-t+ys)
=sum (x : (xs-t+ys))
=x + sum (xs-t+ys)
=x + (sum xs + sum ys)
= (x + sum xs) + sum ys
=sum (x : xs) + sum ys

(-t+).1
O+x=x
sum.1

append.2
sum.2
hypothesis
+. is associative
sum.2

o

174 CHAPTER 7. INDUCTION

Many theorems describe a relationship between two functions; the previous
one is about the combination of sum and (-t+), while this one combines length
with (-t+). Its proof is left as an exercise.

Theorem 49. length (xs-t+ys) = length xs + length ys

We now consider several theorems that state crucial properties of the map
function. These theorems are important in their own right, and they are com­
monly used in program transformation and compiler implementation. They
are also frequently used to justify steps in proofs of more complex theorems.

The followingtheorem says that map is 'length preserving': when you apply
map to a list, the result has the same length as the input list.

Theorem 50. length (map f xs) = length xs

Proof. Induction over xs. The base case is

length (map f [])
=length [] map.1

map.2
length.2
hypothesis
length.2

For the inductive case, assume length (map f xs) = length zs. Then

length (map f (x : xs))
=length (f x : map f xs)
= 1 + length (map f xs)
= 1 + length xs
=length (x : xs)

o
The next theorem is reminiscent of Theorem 48; it says you can get the

same result by either of two methods: (1) mapping a function over two lists
and then appending the results together, and (2) appending the input lists and
then performing one longer map over the result. Its proof is yet another good
example of induction, and is left as an exercise.

Theorem 51. map f (xs-t+vs) = map f xs -t+ map f ys

One of the most important properties of map is expressed precisely by the
following theorem. Suppose that you have two computations to perform on
all the elements of a list. First you want to apply g to an element, getting
an intermediate result to which you want to apply f. There are two methods
for doing the computation. The first method uses two separate loops, one to
perform g on every element and the second loop to perform f on the list of
intermediate results. The second method is to use just one loop, and each
iteration performs the g and f applications in sequence. This theorem is used
commonly by optimising compilers, program transformations (both manual and
automatic), and it's also vitally important in parallel programming. Again, we
leave the proof as an exercise.

7.5. INDUCTION ON LISTS

Theorem 52. (map f . map g) xs = map (f.g) xs

175

For a change of pace, we now consider an intriguing theorem. Once you
understand what it says, however, it becomes perfectly intuitive.

Theorem 53. sum (map (1+) xs) = length xs + sum xs

Proof. Induction over xs. The base case is

sum (map (1+) [])
=sum []
= 0 + sum f]
= length [] + sum f]

map. 1
O+x=x
length.1

For the inductive case, assume sum (map (1+) xs) = length xs + sum zs.
Then

sum (map (1+) (x : xs))
= sum ((1 + x) : map (1+) xs)
= (1 + x) + sum (map (1+) xs)
= (1 + x) + (length xs + sum xs)
= (1 + length xs) + (x + sum xs)
=length (x : xs) + sum (x : xs)

map.2
sum.2
hypothesis
(+).algebra
length.2, sum.2

o

The foldr function is important because it expresses a basic looping pattern.
There are many important properties of foldr and related functions . Here is
one of them:

Theorem 54. foldr (:) f] xs = xs

Some of the earlier theorems may be easy to understand at a glance, but
that is unlikely to be true for this one! Recall that the foldr function takes
apart a list, and combines their elements using an operator. For example,

foldr (+) 0 [1,2 ,3] = 1 + (2 + (3 + 0)

Now, what happens if we combine the elements of the list using the cons oper­
ator (:) instead of addition, and if we use [J as the initial value for the recursion
instead of O? The previous equation then becomes

[oldr (:) [] [1,2 ,3] 1 : (2 : (3 [J)
= [1,2,3] .

We ended up with the same list we started out with , and the theorem says this
will always happen, not just with the example [1,2,3] used here .

Proof Induction over xs. The base case is

176 CHAPTER 7. INDUCTION

foldr (:) [] []
= [] foldr.!

Now assume that foldr (:) [] zs =

foldr (:) [] (x: xs)
=x : foldr (:) [] xs
= x: xs

xs; then the inductive case is

foldr.2
hypothesis

o

Suppose you have a list of lists, of the form xss = [xSQ, XSl, . •• ,xsn]. All
of the lists XSi must have the same type [a], and the type of xss is [[a]]. We
might want to apply a function f :: a -+ b to all the elements of all the lists,
and build up a list of all the results. There are two different ways to organise
this computation:

• Use the concat function to make a single flat list of type [a] containing
all the values, and then apply map I to produce the result with type [b] .

• Apply map I separately to each XSi, by computing map (map f) xss,
producing a list of type [[b]]. Then use concat to flatten them into a
single list of type [b].

The following theorem guarantees that both approaches produce the same re­
sult. This is significant because there are many practical situations where it
is more convenient to write an algorithm using one approach, yet the other is
more efficient.

Theorem 55. map I (concat xss) = concat (map (map f) xss)

concat.1
map.!
concat.!
map.!

= concat (map (map f) xss). The inductive

Proof. Proof by induction over xss. The base case is

map I (concat [])
=map I []
= []
= concat [J
= concat (map (map f) [])

Assume that map I (concat xss)
case is

map I (concat (xs : xss))
=map I (xs +f- concat xss)
= map I xs +f- map I (concat xss)
=map f xs +f- concat (map (map f) xss)
= concat (map I xs : map (map f) xss)
=concat (map (map f) (xs : xss))

concat.2
Theorem 51
hypothesis
concat.2
map.2

o

7.6. FUNCTIONAL EQUALITY 177

Sometimes you don't need to perform an induction, because a simpler proof
technique is already available . Here is a typical example:

Theorem 56. length (xs++(y : ys)) = 1 + length xs + length ys

This theorem could certainly be proved by induction (and that might be
good practice for you!) but we already have a similar theorem which says that
length (xs++ys) = length xs + length ys. Instead of starting a new induction
completely afresh, it's more elegant to carry out a few steps that enable us to
apply the existing theorem. Just as reuse of software is a good idea, reuse of
theorems is good style in theoretical computer science.

length (xs ++ (y : ys))
=length xs + length (y : ys)
= length xs + (1+ length ys)
= 1 + length xs + length ys

Exercise 3. Prove Theorem 49.

Exercise 4. Prove Theorem 51.

Exercise 5. Prove Theorem 52.

7.6 Functional Equality

Many theorems used in computer science (including most of the ones in this
chapter) say that two different algorithms are always guaranteed to produce
the same result. The algorithms are defined as functions, and the theorem says
that when you apply two different functions to the same argument, they give
the same result.

It is simpler and more direct simply to say that the two functions are equal.
However, this raises an interesting question : what does it mean to say f = 9
when f and 9 are functions? (This issue will be revisited in Chapter 9.) There
are at least two standard notions of functional equality that are completely
different from each other, so it pays to be careful!

• Intensional equality. Two functions f and 9 are intensionally equal if
their definitions are identical. This means, of course , that the functions
are not equal if their types are different. If they are computer programs,
testing for intensional equality involves comparing the source programs,
character by character. The functions are intensionally equal if their
definitions look the same.

178 CHAPTER 7. INDUCTION

• Extensional equality. Two functions f and 9 are extensionally equal if
they have the same type a --+ band f x = 9 x for all well typed arguments
x :: a. More precisely, f =9 if and only if

\Ix :: a . f x = 9 x.

The functions are extensionally equal if their definitions behave the same.

In computer science we are almost always interested in extensional equality.
A typical situation is that we have an algorithm, expressed as a function f,
and the aim is to replace it by a more efficient function g. This will not affect
the correctness of the program as long as f and 9 are extensionally equal, but
they are obviously not intensionally equal.

Some of the theorems given in the previous section can be stated in a simpler
fashion using extensional equality. For example, recall Theorem 50, which says
that map doesn't change the length of its argument:

length (map f xs) = length xs

A more direct way to state the same fact is to omit the irrelevant argument xs,
and just say that these two functions are equal:

length . (map J) = length

To prove such a theorem of the form f = g, we need only prove that
\Ix :: a. f x = 9 z , and this can be achieved by choosing an arbitrary x :: a,
and proving the equation f x = 9 x .

Theorem 57. foldr (:) [] = id

Proof. The equation states that two functions are equal: the right hand side, id,
is a function , and the left hand side is a partial application (foldr takes three
arguments, but it has been applied to only two), so that is also a function.
Therefore we use the definition of extensional equality of functions ; thus we
choose an arbitrary list xs, and we must prove that foldr (:) [] xs = id xs = xs.
Now the right hand side is just xs, by the definition of id, so the equation is
proved by Theorem 54. 0

Theorem 58. map f . concat = concat (map (map J)) .

Exercise 6. Prove Theorem 58.

Exercise 7. Prove that the +t operator is associative .

7.7. INDUCTION ON TREES

7.7 Induction on Trees

179

Induction can be generalised to work for tree structures. The method is similar
to lists, except that the base case is used for leaves, and the inductive case is
used for nodes. There is only one list data structure, so all the list functions
are well standardised. However, there are many different ways to define trees.
It is common for a new software project to require a slightly different kind of
tree, and reasoning about the software will therefore require new theorems to
be proved by induction.

To illustrate how to write induction proofs for theorems about trees, we will
use a data type definition where the leaf nodes have no locally stored data­
they are simply indicated by the Tip constant-and a Node contains an integer
and two subtrees.

data Tree = Tip I Node Int Tree Tree

The reflect function takes a tree and returns its mirror image, where every­
thing is reversed left-to-right.

reflect : : Tree -> Tree
reflect Tip = Tip
reflect (Node n 1 r) = Node n (reflect r) (reflect 1)

The following theorem says that if you reflect a finite tree twice, you get
the same tree back.

Theorem 59. reflect (reflect t) = t

Proof. Let the proposition P(t) = (reflect (reflect t) = t). The theorem is
proved by induction over t. The base case is P(Tip):

reflect (reflect Tip)
=reflect Tip
= Tip

Inductive case . Let I, r :: Tree be trees, and assume P(l) and P(r) . The aim is
to prove P(Node xl r) for arbitrary x :: Int .

reflect (reflect (Node x I r))
=reflect (Node x (reflect r) (reflect l))
= Node x (reflect (reflect l))(reflect (reflect r))
=Node x I r

o
Some of the most important properties of trees are concerned with the num­

bers of nodes in the two branches, and with the heights of trees and subtrees.
The time required by many algorithms depends on the heights of trees, so the
science of algorithmics is often concerned with these properties.

180 CHAPTER 7. INDUCTION

height : : Tree -> Int
height Tip = 0
height (Node x 1 r) = 1 + max (height 1) (height r)

balanced : : Tree -> 8001
balanced Tip = True
balanced (Node x 1 r) =

balanced 1 && balanced r && (height 1 == height r)
node count :: Tree -> Int
nodecount Tip = 0
nodecount (Node x 1 r) = 1 + node count 1 + node count r

The following theorem gives the number of nodes in a tree, provided that
tree is balanced.

Theorem 60. Let h = height t. If balanced t, then nodecountt = 2h - 1.

Proof. Let P(t) = balanced t -t nodecount t = 2h - 1. We prove P(t) by
induction over the tree structure. For the base case, we need to prove that the
theorem holds for a Tip.

balanced Tip = True
height Tip = 0
2h -1 = 0
nodecount Tip = 0

For the inductive case, let t = Node x 1 r , and let hi = height land hr =
height r , Assume P{l) and P(r); the aim is to prove P(t) . There are two cases
to consider. If t is not balanced , then the implication balanced t -t P(t) is
vacuously true. If t is balanced, however, then the implication is true if and
only if P(t) is true. Therefore we need to prove P(t) given the following three
assumptions: (1) P(l) (inductive hypothesis), (2) P(r) (inductive hypothesis),
and balanced t (premise of implication to be proved).

h = height (Node x I r)
= 1+ max (height I) (height r)
= 1 + height 1
= 1 + hi

nodecount t
=nodecount (Node x I r)
= 1 + nodecount I + nodecount r

= 1 + 2hl
- 1 + 2hr

- 1
=2hl + 2hr

- 1
=2h l + 2h l

- 1
= 2 X 2h l

- 1
= 2hl+1 - 1
= 2h - 1

height.2
assumption
def hi

def t
nodecount.2
hypothesis
arithmetic
hl= hr
algebra
algebra
def h

7.8. PITFALLS AND COMMON MISTAKES

7.8 Pitfalls and Common Mistakes

181

o

After a bit of practice, induction can come to seem almost too easy. You just
set up the base and inductive cases, crank the handle, and out comes a proof.

There are many kinds of bad inductive proofs. Their flaws are often due to
suspicious base cases, although there are a variety of dubious ways in which to
prove the induction cases too. Here is an interesting example.

7.8.1 A Horse of Another Colour

The following theorem is a famous classic.

Theorem 61. All horses are the same colour.

Proof. Define P(n) to mean 'in any set containing n horses, all of them have
the same colour' . We proceed by induction over n .

Base case. Every horse has the same colour as itself, so P(I) is true.

Inductive case. Assume P(n), and consider a set containing n + 1 horses;
call them hi, ba, .. . ,hn+l ' We can define two subsets A = hi,'" , hn and
B = b«, . .. hn+l ' Both sets A and B contain n horses , so all the horses in A
are the same colour (call it CA), and all the horses in B are the same colour (call
it CB)' Pick one of the horses that is an element of both A and B. Clearly this
horse has the same colour as itself; call it Ci; Thus CA =Ch =CB . Therefore
all the horses hi, . . . ,hn+l have the same colour.

Since we have proved P(n) --+ P(n+ 1), it follows by mathematical induction
that "In E Nat. P(n) . Thus all horses are the same colour. 0

Exercise 8. What is the flaw in the proof given above? (Please try to work
this out yourself, and then check the answer in the Appendix.)

7.9 Limitations of Induction

Induction can be used to prove that every element of a set satisfies a certain
property. The set may be finite or infinite . When the theorem states a prop­
erty of an arbitrary natural number, or an arbitrary list, the inductive proof
establishes that an infinite number of values satisfy the theorem.

Nevertheless , there are some limits on what can be proved using mathemat­
ical induction. One such limit is that if the set is infinite, it must be countable
(that is, it must be possible to enumerate its elements, so that each one is asso­
ciated with a unique natural number) . Another limitation, which is particularly
important for computing applications , is that ordinary indu ction cannot prove

182 CHAPTER 7. INDUCTION

properties of infinite objects; it just proves properties of an infinite number of
finite objects, which is not the same thing at all!

An example will clarify this issue. Suppose we define a function

reverse :: [a] --+ [a]

which takes a list and returns a new list with the same elements, but in reverse
order. For example, reverse [1,2,3] = [3,2 ,1]. Now, we want to state a
theorem which says that if we reverse a list twice, we get the same list back.
The following equation is one attempt to say that:

reverse (reverse xs) = xs

Alternatively, we might use extensional equality of functions, and just write

reverse . reverse = id.

It is straightforward to prove the first equation using induction, and the sec­
ond equation follows immediately using the extensional definition of functional
equality.

Theorem 62. reverse. reverse = id

Unfortunately, this theorem is untrue!
To see the problem, let's consider a concrete example. We will choose xs

to be [1..], which is the Haskell notation for the infinite list [1,2 ,3, ...]. Now
consider the following two expressions:

• head (reverse (reverse [1 ..J))

• head [1 . .]

Now the first of these expressions will go into an infinite loop, because the
second (outermost) application of reverse needs to find the last element of
its argument before it can return anything, and it will never find the last
element of an infinite list. The second expression, however, does not go into an
infinite loop; it returns the result 1 immediately. Yet, according to the dubious
equations stated above, we should be able to replace reverse (reverse [1 . .J) by
[l ..J without changing the value! What has gone wrong?

The problem is that mathematical induction only establishes that the the­
orem is valid for every element of the chain that is connected to the base case
by a finite number of steps. It does not establish that the theorem is true for
infinite lists, which are not reachable from the base case in a finite number of
steps. This means that all of our theorems over lists that were proved using
induction have actually been proved only for finite lists . Note that there are
an infinite number of lists of finite length; thus the induction is proving that
a property holds for an infinite number of values, but it does not establish
whether the property holds for values that are infinite in size.

7.10. SUGGESTIONS FOR FURTHER READING 183

There is a related point about natural numbers that sometimes confuses
people. When we use induction over natural numbers, using 0 as the base
case and P(n) -+ P(n + 1) for the inductive case, we have established that
the theorem holds for every natural number , and there is an infinite number
of naturals. However , this does not prove that the theorem holds for infinity
itself. There is an infinite number of naturals, but infinity is not itself a natural
number.

Exercise 9. Check that Theorem 62 holds for the argument [1,2 ,3].

Exercise 10. Prove the following theorem, using induction:

reverse (xs+tys) = reverse ys+t reverse xs

Then decide wheth er this theorem happens to be tru e for infinite lists like
[1. .]. Try to give a good argument for your conclusion, but you don't
have to prove it.

Exercise 11. Use induction to prove Theorem 62. reverse (reverse xs) = xs

Exercise 12. Give a careful proof that Theorem 62 does not hold for infinite
lists .

7.10 Suggestions for Further Reading

Concrete Math ematics, by Graham, Knuth and Patashnik [14] covers the more
advanced mathematical techniques used in the ana lysis of algorithms. They
include a number of problems on induction, and also cover in depth the related
topic of recurrences.

Many mathematics books contain more advanced examples of induction
proofs. An ent ire chapter is devoted to induction in Engel 's book, Problem­
Solving Strategi es [11] , which is a good general source book for mathematical
problems.

The textbooks on Haskell cited in Chapter 1 give examples of inductive
proofs about recursive programs. The Bird-Meert ens calculus [4] develops an
extensive theory of programming, including many good applications of induc­
tion .

7.11 Review Exercises

Exercise 13. (This problem is from [11], where you can find many more.) The
nth Fibonacci number is defined as follows:

fib :: Integer -> Integer
fib 0 = 0
fib 1 = 1
fib (n+2) fib n + fib (n+1)

184 CHAPTER 7. INDUCTION

The first few numbers in this famous sequence are 0, 1, 1,2,3,5, Prove
the following:

n

'LJib i = fib (n + 2) - 1
;=1

Exercise 14 . Recall Theorem 53, which says

sum (map (1+) xs) = length xs + sum zs.

Explain in English what this theorem says. Using the definitions of the
functions involved (sum, length and map), calculate the values of the left
and right hand sides of the equation using xs = [1,2 ,3, 4J .

Exercise 15. Invent a new theorem similar to Theorem 53, where (1+) is
replaced by (k+). Test it on one or two small examples. Then prove your
theorem.

Exercise 16. Prove sum . map length = length. concat.

Chapter 8

Relations

There are many kinds of relationship that occur in everyday life. Some of these
describe how the members of a family are related to each other: parent, child,
brother, sister, sibling. We could also have a relation called is in for cities and
countries: for example, London is in Great Britain, and Paris is in France. Or
we could have a relation that describes which make of car is produced by which
manufacturer. Relations are used in mathematics to describe how two numbers
are related to each other; for example expressions like x < y and p 2: q use the
relations < and 2:.

Similar examples abound in computing, and many branches of computer
science use the terminology of relations to describe concepts precisely. Relations
are naturally at the heart of relational databases; they are used heavily in the
description of programming language syntax; they provide a good notation for
representing the internal information required for web search engines, and so
on.

Since relations are ubiquitous and important, it is useful to define them
as mathematical objects, and to describe their properties. In this chapter we
will see how to define relations using set theory, and how to perform various
calculations with them.

8.1 Binary Relations

A binary relation is used to describe the relationship between two objects.
The word binary here means simply that there are two objects involved; it
has nothing at all to do with binary number representations, or binary files.
General relationships among any number n of objects are called n-ary relations,
but binary relations are the most important in computing, and we will restrict
ourselves to those for the time being.

Definition 27. A binary relation R with type R :: A x B is a subset of Ax B,
where A is the domain and B is the codomain of R. For x E A and y E B, the

185

C. Hall et al., Discrete Mathematics Using a Computer
© Springer-Verlag London 2000

186 CHAPTER 8. RELATIONS

notation x Ry means (x, y) E R.

Example 17. Let P be the set of people {Bill, Sue , Pat}, and let A be the set
of animals {dog, cat} . The relation has :: P x A describes which person has
which kind of animal. Suppose that Bill and Sue both have a dog, and Sue and
Pat have a cat . We would represent this information by writing the following
relational expressions:

Bill has dog
Sue has cat

Sue has dog
Pat has cat

but the statement'Bill has cat ' is false. Written out in full, the relation is

has = {(Bill, dog), (Sue, dog) , (Sue, cat), (Pat, cat)} .

Example 18. Let R be the set of real numbers. Then (x) C (R x R) is the
'less than' relation and consists of the set of all ordered pairs (x , y) such that
x < y. Since «) has an infinite number of elements, we can write it out only
partially; for example,

(c) = { .. . ,(-35.2,-12.1),(-1,2.7), .. . }.

Example 19. Many databases use relations to represent the data, since this
is a good way to associate different pieces of information with each other. For
example, a relation can be used to specify that a person's name is related to
that person's address. These are called relational databases.

Suppose that you are building a relational database which maintains ge­
nealogical data about the families in a town. One of the relations in your
database might be the IsFatherOf relation. If John is the father of Mary
and Peter, then two pairs in the relation have John as their first component:
{(John, Mary), (John, Peter)}. This relation states two facts: John IsFatherO/
Mary and John IsFatherO/ Peter.

We could also represent the relationship between John and his children
using a single tuple: {(John, Mary , Peter)} . This is not a binary relation; it is
a more general form of relation called an n-ary relation .

Example 20. What would have happened if the pairs had been written as
(Mary, John) and (Peter, John)? Then they would have had an entirely dif­
ferent meaning, asserting Mary IsFatherOf John and Peter IsFatherOf John,
which is not what was intended. It is important to remember that the pairs
in a relation are ordered pairs. The pairs (1,2) and (2,1) are not equal to each
other, nor are the pairs (1,2) and (1,3). However, (2,1) is equal to (2,1).

Example 21. Let's consider two sets, Children and Adults. The set Children
includes Joe, Anne and Susan, and the set Adults includes Ray, John and
Dinah. We would like to create a relation SmallFamilies that pairs each child
with every possible adult. This is done by taking each child in the first set and

8.2. REPRESENTING RELATIONS WITH DIGRAPHS

John Jacqui
• •

l~
• • Peter

Mary

Figure 8.1: The Digraph of the IsFatherOf Relation

187

pairing it in turn with each adult in the second set; that is, we are taking the
cross product of the two sets, denoted Children x Adults:

SmaliFamilies=
{(Joe, Ray), (Joe, John), (Joe, Dinah),
(Anne, Ray), (Anne, John), (Anne , Dinah),
(Susan, Ray), (Susan, John), (Susan, Dinah)}

8.2 Representing Relations with Digraphs

Sometimes a diagram provides a good way to visualise a relation. There is
a representation of binary relations called a digraph which is convenient for
computing, and which also is well suited for diagrams. Every element of the
domain and codomain in a digraph diagram is represented by a labelled dot
(called an element or node) in the graph, and every pair (x ,y) in the relation
is represented by an arrow going from x to y (which may be called an arrow
or arc).

Example 22. Figure 8.1 shows a graph illustrating the IsFatherOf relation .
There is a node for each of John, Mary, Peter, and Jacqui. There are two
arrows , from John to Mary and John to Peter.

Many graphs contain some nodes that have no arrows: for example, the
node Jacqui in Figure 8.1. This means that we need to specify the graph by
giving both the set of nodes and the set of arcs.

Some relations have the same set as their domain and codomain, so the
relation has a type of the form R :: A x A. In such cases, you draw the graph
by writing (and labelling) a dot for every element of A, and then draw in the
arrows. Sometimes the domain and codomain are disjoint, which means that
no element appears in both the domain and codomain . When this happens, it is
helpful to keep the dots representing the domain together in the graph diagram,
and separate from the dots representing the codomain . Figure 8.2 shows the
graph for the relation R :: A x A = {(1, 4), (2,6)} where A = {1, 2, 4, 6}.

188 CHAPTER 8. RELATIONS

• 2

• 6

Figure 8.2: The Digraph ({1,2,4,6},{(1,4),(2,6n)

It is important to remember that a relation is more than just a set of ordered
pairs; the domain and codomain must be specified, too. In drawing the graph
of a relation, you should either draw a dot (or node) for every element of the
domain and codomain, and use the layout to indicate exactly what these sets
are, or you should specify them explicitly.

Definition 28. Let A be a set, and let R be a binary relation R :: A x A. The
digraph D of R is the ordered pair D = (A, R).

Example 23. The digraph of the relation R :: A x A, where R = {(I, 2), (2,3)}
and A = {I ,2 ,3}, is ({I,2,3} , {(I ,2),(2,3n) .

Example 24. The digraph of the relation R :: A x A, where R = {(I ; 2), (2,3)}
and A = {I , 2,3,4,5, 6}, is ({l, 2, 3,4, 5,6}, {(I, 2), (2, 3)}). Note that this is a
different relation than in the previous example, although the set of ordered pairs
is identical. The digraph representation records the domain and codomain ,
giving a precise and complete description of the relation.

This has some interesting implications . For example, two graphs may show
an empty relation that contains no arrows (no ordered pairs) , but the relations
are not equivalent unless their domains and codomains are equal.

Many relations have arcs that are connected to each other in a special way.
For example, a set of arcs connected in a sequence is called a (directed) path.

Definition 29. A directed path is a set of arcs which can be arranged in a
sequence, so that the end point of one arc in the sequence is the start point of
the next.

Example 25. The sets {(I, 2), (2,3), (3, 4n and {(I, 3), (3, In are both paths,
but the set {(I, 2), (5,6n is not .

8.3 Computing with Binary Relations

It is common to compute directly with relations. Throughout this chapter we
will use the computer as a calculator for expressions on relations; this is a good
way to become accustomed to all the operations on relations since they are

8.3. COMPUTING WITH BINAR}" RELATIONS 189

used to specify computations formally in many specialised areas of compu ter
science.

A relation R:: A x B , with domain A and codomain B , can be represented
as a list of type [(A, B)]. Each element of the list has type (A, B) , and is a pair
of the form (x ,y) where x: : A is in the domain and y: :B is in t he codomain.

Often we impose two rest rictions on a relation in order to make it easier to
compute with it: (1) there is a finite numb er of elements in the relation, and
(2) the types of the domain and codomain must be in the classes Eq and Show,
so that we can compare and print elements of the relation.

Example 26. The relation of colour complements can be represented as fol­
lows:

data Colour = Red I Blue I Green I Orange I Yellow I Violet
deriving (Eq, Show)

colourComplement : : Digraph Colour
colourComplement =

([Red,Blue,Green,Orange,Yellow,Violet] ,
[(Red,Green) , (Green,Red) ,
(Blue ,Orange) , (Orange ,Blue) ,
(Yellow, Violet) , (Violet,Yellow)])

To say 'the colour complement of red is green' , we would writ e either of the
following:

Red colourCompleme nt Green
(R ed, Green) E colourCompleme nt

In the example above, we must include both (Red, Green) and (Green,
R ed) in colourComplem ent. If we omit ted either one of th ese, we would have a
different relation.

The function domain takes a relation and returns its domain:

domain: :
(Eq a, Show a, Eq b, Show b) => Set (a,b) -> Set a

For example, domain colourComplement returns the set of colours in the do­
main of the relation, which is

{Red, Green, Blue , Orange, Yellow, Violet}.

Th e set is represented as a list , but there is no significance to the order of
elements in the list.

The codomain function is similar:

codomain : :
(Eq a. Show a. Eq b. Show b) => Set (a,b) -> Set b

190 CHAPTER 8. RELATIONS

Many of the operations and functions on sets that we defined in Chapter 4
are useful for working on relations, including crossproduct and setEq.

Exercise 1. Work out the values of the following expressions , and then check
your answer by evaluating the expressions with the computer.

domain [(1,100),(2,200),(3,300)]
codomain [(1,100),(2,200),(3,300)]
crossproduct [1,2,3] [4]

Exercise 2. The following list comprehensions define a list of ordered pairs.
What relations are represented by these lists? Give the domain and the
codomain, as well as the pairs themselves.

(a) [(a,b) I a <- [1 ,2],
b <- [3,4]]

(b) [(aj b) I a <- [1,2,3],
b (- [1,2,3],
a == b]

(c) [(aj b) I a <- [1,2,3],
b (- [1,2,3],
a (b]

8.4 Properties of Relations

Many relations share interesting and useful properties. For example, we know
that if person a is a sibling of person band b is a sibling of c, then a is also
a sibling of c. In a similar way, if x , y and z are numbers, and we know that
x < y and y < z, then it must also be the case that x < z . These two examples
show that the sibling relation and the «) relation have essentially the same
property (which is called 'transitivity'). In this section we define a variety of
such relational properties.

8.4.1 Reflexive Relations

In a reflexive relation, every element of the domain is related to itself.

Definition 30. A binary relation R over A is reflexive if xRx for every element
x of the domain A.

When a reflexive relation is shown in a graph diagram, there must be an
arrow from every dot in the domain back to itself.

Example 27. The relation R :: A x A, where A = {I , 2} and

R = {(I, 1), (1, 2), (2, 2)} ,

is reflexive.

8.4. PROPERTIES OF RELATIONS 191

Example 28. Let R :: A x A be a relation, where A = {I , 2, 3} and R =
{(I, 1), (2,2)}. R is not reflexive, but if we added (3,3) to R then it would be
reflexive.

Example 29. A relation SameFamily, such that x SameFamilyy for any two
people x and y who are in the same family, is reflexive (because you are in the
same family as yourself).

Example 30. The following relations on numbers are reflexive: equality (=),
greater than or equal (~) and less than or equal (~).

Example 31. The following relations on numbers are not reflexive: inequality
(;i), less than (c) and greater than (».

The Haskell software tools include many functions that test relations for
their properties. The function isReflexive returns a Boolean which is True
if the relation is reflexive:

isReflexive ::
(Eq a, Show a) => Digraph a -> 8001

Example 32. Consider the following digraphs:

a = [1,2,3]
digraph1 = (a,[O,l), 0,2), (2,2), (2,3), (3,3)])
digraph2 = (a,[(1,2), (2,3), (3,1)])
digraph3 = (a,[(l,l), (1,2), (2,2), (2,3)])

The first one, in digraph1 , is reflexive, since a contains 1, 2 and 3, and
all the pairs (1,1) , (2,2) and (3,3) appear in digraph!. However, 2 is not
reflexive because (1,1) doesn 't appear in its set of ordered pairs. (An equally
good argument is that (2,2) doesn't appear, or (3,3) doesn 't appear-all you
have to do to show that a relation is not reflexive is to show that there is
some element x of the domain where (x , x) doesn't appear in the set of ordered
pairs.) Finally, digraph3 is also not reflexive, because (3,3) is not in the set
of ordered pairs.

8.4.2 Irreflexive Relations

A relation is irreftexive if no element of its domain is related to itself.

Definition 31. A binary relation R over A is irrefiexive if, for every x E A, it
is not the case that xRx.

Example 33. The greater than (c) and less than (» relations over numbers
are irreflexive, since x < x and x > x are always false.

192 CHAPTER 8. RELATIONS

._.---Cathedral OldMarketPlace
•

.---_..
Museum HouseOfFamousWriter

Figure 8.3: The ByBus Relation

As long as the domain A of a relation R :: A x A is non-empty, then it
is impossible for R to be both reflexive and irreflexive. To see this, consider
some element x of the domain (such an x must exist, since the domain is not
empty) . If R is reflexive then (x,x) E R, but if R is irreflexive then (x,x) ¢ R,
and both cannot be true.

Example 34. The empty relation R :: if; x if; is reflexive and also irreflexive.
In both cases the conditions are met vacuously.

Example 35. Many relations among people are irreflexive. For example, the
relations IsMamedTo and IsChildO/ are irreflexive relations, because no one
can marry them self, or be their own child.

It often happens that a relation is not reflexive and it is also not irreflexive.
For example, let A = {I, 2, 3, 4, 5} be the domain and codomain of the relation
R = {(I, 3), (2,4), (3,3), (3, 5)}. Then R is not reflexive (for example, (1,1) is
not in R) but it is also not irreflexive (because (3,3) is in R) .

Suppose that we are visiting a city in France, and want to see several build­
ings by bus. We can get a bus schedule and look at it, note down the buildings
and draw an arrow between each pair of nodes that the bus will visit (Figure
8.3).

{(Cathedral, Museum) ,(Museum, HouseOfFamousWriter),
(HouseOfFamousWriter, OldMarketPlace),
(OldMarketPlace, Cathedral)}

The bus is travelling in a cycle, a path that starts and stops at the same
node. However, the ByBus relation is not reflexive: the bus isn't going to waste
time cycling around one place and returning to it without going anywhere else.
The ByBus relation is irreftexive.

The following Haskell function determines whether a binary relation is ir­
reflexive:

8.4. PROPERTIES OF RELATIONS

islrreflexive ::
(Eq a, Show a) => Digraph a -> Bool

193

lessThanOrEq_Nl00,
greaterThanOrEq_Nl00,
notEq_Nl00

Exercise 3. For each of the following Digraph representations of a relation,
draw a graph of the relation, work out whether it is reflexive and whether
it is irreflexive, and then check your conclusion using the isReflexive
and islrreflexive functions:

([1,2,3], [0,2)])
([1,2], [(1,2), (2,2),0,1)])
([1,2], [(2,1)])
([1,2,3],[(1,2),(1,1)])

Exercise 4. Determine whether each of the following relations on real numbers
is reflexive and whether it is irreflexive. Justify your conclusions.

(a) less than «)
(b) less than or equal to (~)

(c) greater than (»

(d) greater than or equal to (~)

(e) equal (=)

(f) not equal (f.)

We can't use the isReflexive and islrreflexive functions on relations
with an infinite domain. However, if we restrict the domain to the nat­
ural numbers from 0 through 100, it's possible to represent the relations
completely and check them with the software tools. The following binary
relation representations, with domain NIOO = {O, ... , IOO}, are defined
in the software tools:

lessThan_Nl00,
greaterThan_Nl00,
equals_Nl00,

:: Digraph lnt

Using these finite relations, use the computer to check your results. Note
that a partial check like this does not prove anything about the infinite
relations, but it is guaranteed to give the correct result for a finite relation
on the first hundred natural numbers.

8.4.3 Symmetric Relations

Some relations have the property that the order of two related objects does not
matter; that is, if xRy it must also be true that yRx. Such a relation is called
a symmetric relation .

194

Amanda Ginger

CHAPTER 8. RELATIONS

._.--_..

._.---" .
John Harry

Figure 8.4: The IsSiblingOf Relation

Definition 32. Let R :: A x A be a binary relation. Then R is symmetric if
'<Ix, YEA. xRy ~ yRx.

Example 36. Equality on real numbers (=) is symmetric, because if x = y
then also y = x. The equality relation is commonly defined for sets, and it is
always symmetric; in fact, one of the essential properties of an abstract equality
relation is that it must be symmetric.

Example 37. The family relation IsSiblingOf is symmetric.

Example 38. The family relations IsBrotherOf and IsSisterOf are not sym­
metric: for example, the term 'Robert IsBrotherOf Mary ' is true, but 'Mary
IsBrotherOf Robert' is false.

When you draw the graph diagram for a symmetric relation, every arc from
a to bwill have a matching arc from b back to a. The notation can be simplified
by putting an arrowhead on both sides of every arc.

Example 39. Here is a possible definition of the IsSiblingOf relation, shown
in Figure 8.4:

{(John, Harry), (Harry, John) ,
(Amanda, Ginger), (Ginger, Amanda)}

Example 40. The relation R = {(I, 2), (2, 1), (2,3), (3, 2)} is symmetric.

Example 41. The relation R = {(I, 2), (1,3), (3, I)} is not symmetric, because
(1,2) E R but (2,1) f/. R.

Exercise 5. Is the family relation !sChildOf symmetric?

Exercise 6. Suppose a relation R :: A x A, where A is non-empty and reflexive,
but it has only the arcs required in order to be reflexive. Is R symmetric?

Exercise 7. In the definition of a symmetric relation, can the variables x and
y can be instantiated by a single node?

8.4. PROPERTIES OF RELATIONS

Sam
•x
•Joan

Anna
•

•Jeanne

195

Figure 8.5: The !sChildO/ Relation

8.4.4 Antisymmetric Relations

An antisymmetric relation is one where for all distinct values a and b, it is
never the case that both aRb and bRa.

Example 42. The less-than relation (c) is antisymmetric, since it cannot be
true that x < y and also y < x.

Example 43. The family relation !sCh ildO/ is antisymmetric; if x is a child
of y, than y must be the parent-not the child-of z. For example, suppose
the !sChildO/ relation contains the following ordered pairs (Figure 8.5):

{(Joan, Sam) , (Jeanne , Sam), (Joan, Anna), (Jeanne, Anna)}

Notice that this relation never has both a pair (x,y) and also a pair (y,x).

The antisymmetric property is defined formally as follows:

Definition 33. A binary relation R :: A x A is antisymmetric if

Vx,y E A. xRy 1\ yRx -t x = y .

The graph of an antisymmetric relation may contain some cycles; for ex­
ample the relation R = {(1,2), (2,3) , (3, I)} has a cycle from 1 to 2 to 3 and
back to 1, and the relation R2 = {(I, I)} has a trivial cycle containing just 1.
However, if an antisymmetric relation does have a cycle, then the length of the
cycle cannot be 2, although it may be 1, or greater than 2. In other words,
this graph will have no cycles of length 2, but it can have cycles of any other
length .

Example 44. Given the set A = {I, 2, 3}, the relation

R :: A x A = {(I, 2), (2, 1), (2, 3), (3, I)}

is not anti-symmetric because both (1,2) and (2,1) appear in the set of ordered
pairs .

196 CHAPTER 8. RELATIONS

Example 45. Given the set A = {I, 2,3}, the relation

R :: A x A = {(I, 1), (1, 2), (2, 3), (3, I)}

is anti-symmetric.

Example 46. Given the set A = {1,2 ,3,4}, and R1,R2 ,R3 •• A x A, the
relations

R1 = {(I, 2), (2,3), (4,1)}

and

R2 = {(I, 1), (2, 2)}

are both antisymmetric, but

R3 = {(I, 3), (3, 1), (2,3), (3,2)}

is not antisymmetric.

If a relation R :: A x A is antisymmetric, both of the following statements
must be true:

Vx,y E A. x:/= y -+ -,(xRy /I. yRx)
"Ix,yEA. x:/= y -+ -,xRy V -,yRx

Both propositions say that for two distinct elements of the domain, the graph
diagram of R contains at most one arrow connecting them.

Example 47. Suppose that we were misanthropic and thought people didn 't
treat each other well in general. When told that a Helps band b Helps a, we
might retort that a and b must therefore be the same person! We could express
this gloomy view of the world as

"Ix,y E WorldPopulation. x Helps y /I. Y Helps x -+ x = y.

The software tools define the following functions, which determine whether
a finite binary relation is symmetric or antisymmetric:

isSymmetric, isAntisymmetric ::
(Eq a, Show a) => Digraph a -> Boo1

Exercise 8. First work out whether the relations in the following expressions
are symmetric and whether they are antisymmetric, and then check your
conclusions by evaluating the expressions with Haskell:

8.4. PROPERTIES OF RELATIONS

isSymmetric ([1,2,3],[(1,2),(2,3)])
isSymmetric ([1,2],[(2,2),(1,1)])
isAntisymmetric ([1,2,3],[(2,1),(1,2)])
isAntisymmetric ([1,2,3],[(1,2),(2,3),(3,1)])

197

Exercise 9. Which of the following relations are symmetric? Antisymmet­
ric?

(a) The empty binary relation over a set with four nodes;

(b) The = relation;

(c) The ~ relation;

(d) The < relation.

8.4.5 Transitive Relations

If x, y and z are three people, and you know that x is a sister of y and y is a
sister of z, then x must also be a sister of z , Similarly, if you know that x < y
and also that y < Z, it must also be the case that x < z, Relations that have
this property are called transitive relations.

Definition 34. A binary relation R :: A x B is transitive if

"Ix, y, Z E A . xRy 1\ yRz -t xRz.

Example 48. The relation R = {(I, 2), (2,3) , (1, 3)} is transitive because it
contains (1,3), which is required by the presence of (1,2) and (2,3).

Example 49. The relation R = {(I, 2), (2, 3)} is not transitive because there
are pairs (1,2) and (2,3) but there is no pair (1,3) .

The (=) relation is transitive, as is the IsAncestorOj relation.

Example 50. Perhaps surprisingly, the IsMarriedTo relation is not transitive.
It is certainly symmetric, since if x IsMarriedTo y then it must also be the case
that y IsMarriedTox. Suppose, however, that x and yare two married people.
Then (x,y) and (y,x) are both in the relation, so, if it were transitive, then
(x, x) would also need to be in the relation. Nobody is married to themself, so
this cannot be, and the relation is not transitive.

Example 51. Suppose we are flying from one city to another. The relation
FlightTo describes the point-to-point flights that are available : for example,
(London, Paris) E FlightTo because there is a direct flight from London to
Paris. This relation is not transitive, because there are flights from many
small cities to London, but those small cities don't have direct flights to Paris.
However, the ReachableByAir relation is transitive. In effect, the airlines define
the FlightTo relation, and the travel agents extend this to the more general
ReachableByAir relation, which may involve several connecting flights.

198

Cathedral

CHAPTER 8. RELATIONS

Museum0/0
• • •

Market Airport

Figure 8.6: The CityMap Relation

Cathedral Museum·------- .
"X' ': :
I I

, , ', '
• I,, ,.-----....

Market Airport

Figure 8.7: The Transitive CityMap Relation

As the previous example suggests, a binary relation R can be extended
to make a new binary relation RT , such that R ~ RT and RT is transitive.
This often entails adding several new ordered pairs . For example, suppose
we have a relation CityMap which defines direct street connections, so that
(x, y) E CityMap if there is a street connecting x directly with y (Figure 8.6).
The relat ion could be defined (for a small city) as

{(Cathedral, Museum), (Museum, Market), (Market, Airport)}.

The CityMap relation is not transitive, because there is a street path from
Cathedral to Market, but no street connects them directly. Just adding the
pair (Cathedral, Market) is not enough to make the relation transitive; a total
of three ordered pairs must be added . These are shown as dashed arrows in
Figure 8.7. The new pairs that we added to the relation are

{(Cathedral, Market), (Cathedral, Airport), (Museum, Airport)}.

A transitive relation provides a short cut for every path of length 2 or more.
To make a relation transitive, we must continue adding new pairs until the new
relation is transitive. This process is called taking the transitive closure of the
relation.

The software tools contain a definition of the following function, which
determines whether a finite binary relation is transitive:

8.5. RELATIONAL COMPOSITION 199

isTransitive ::
(Eq a, Shoy a) => Digraph a -> Bool

Exercise 10 . Determine by hand whether the following relations are transi­
tive, and then check your conclusion using the computer:

isTransitive ([1,2],[(1,2),(2,1),(2,2)])
isTransitive ([1,2,3], [(1,2)])

Exercise 11. Determine which of the following relations on real numbers are
transitive: (=), (;t), «), (~), (», (:?:) .

Exercise 12. Which of the following relations are transitive?

(a) The empty relation;

(b) The IsSiblingOf relation;

(c) An irreflexive relation;

(d) The IsAncestorOf relation.

8.5 Relational Composition

We can think of a relation R :: A x B as taking us from a point x E A to a
point y E B, assuming that (x, y) E R. Now suppose there is another relation
S :: B x C, and suppose that (y , z) E S, where z E C. Using first R and then
S, we get from x to z, via the intermediate point y.

We could define a new relation that describes the effect of doing first Rand
then S. This is called the composition of Rand S , and the notation for it is
R ;S.

Example 52. Suppose that we have a relation Flight over the set City, where
(a, b) E Flight if there is an airline flight from a to b. There is also a relation
BusTrip over City, and (c, d) E BusTrip if there is a bus connection from c
to d. Now, we are interested in a relation that describes where we can go,
starting from a city with an airport. The relation Flight ; BusTrip consists of
the set of pairs (x , y) such that you can get from x to y by flying first to some
intermediate city y , and then taking the bus from y on to z .

The use of a semicolon (;) as the operator for relational composition is com­
mon, but not completely standard. Many older mathematics books omit the
relational composition operator, using RS to mean the relational composition
of Rand S. Computer scientists often prefer to make all operators explicit .
The use of a semicolon is intended to suggest sequencing: just as statement! ;
statement2 in an imperative programming language means 'First execute state­
mentl and then execute statement2', the relational composition R; S means
'First apply the relation R and then apply the relation 5'.

Relational composition is defined formally as follows:

200

Paris
•

CHAPTER 8. RELATIONS

Birmingham
...-.

•London

Figure 8.8: The Route1; Routet Relation

Definition 35. Let R1 : : A x B be a relation from set A to set B, and R2 : :

B x C be a relation from set B to set C. Their relational composition is defined
as follows:

=

AxC

{(a, c) Ia E A 1\ c E C 1\ (3b E B. (a,b) E R1 1\ (b, c) E R2)}

The definition just says formally that R 1 ; R2 consists of all the pairs (a,c),
such that there is an intermediate connecting point b. This means that (a, b) E
R1 and (b,c) E R2 •

Example 53. When we compose two relations, any two links between a and b
in the first relation and band c in the second produce a new link between a and
c. Suppose we have a relation Route! linking Paris and London and Route2
linking London and Birmingham. The composition of Route! and Route2
yields a new route relation which shows that it is possible to travel taking
first Route! and then Route2, starting from Paris and ending at Birmingham
(Figure 8.8). In our diagram, the arcs are of three different patterns because
they belong to three separate relations.

Sometimes it is useful to compose a relation with itself. A common situa­
tion is to start with a relation like Flight, which represents trips consisting of
just one flight, starting from one city and ending in another one. The compo­
sition Flight; Flight describes all the trips that can be made using exactly two
connecting flights.

Another example arises in databases, where queries often cause the database
to derive new information from the facts already available. If the system can
predict the requirements of some common queries, then some of this new in­
formation can be represented as facts, represented as a new relation, speeding
up the execution of future queries.

Suppose that we need to know whether a, who died of a hereditary disease,
was a blood relative of b. This could mean calculating all of the descendants
of a, then checking to see whether b is among them. It might be better to save
some of the work done (space permitting) in calculating the descendants of a ,

8.5. RELATIONAL COMPOSITION

4 •

.\ ::,:./'/
" ",,-

Figure 8.9: The R1 ; R1 Relation

201

so that when we need to know whether a was a blood relative of c, some of the
work need not be repeated.

As an example, when determining whether Joseph and Jane are blood re­
lations, we discover that Joseph IsBloodRelationO! Sarah, Sarah IsBloodRela­
tionO! Jane and Jane IsBloodRelationO! Joel. During this process, we add the
newly-discovered fact to the database: Joseph IsBloodRelationO! Jane. Now,
when we have a query asking whether Joseph is a blood relation of Joel, the
new link represents the two links between Joseph and Jane. This reduces the
number of links to be traversed.

In creating the composition of two relations, we look for arcs in the first
relation that have terminal nodes matching the starting nodes of arcs in the
second relation. This operation requires that we systematically check all arcs
in R1 against all arcs in R2.

Example 54. Let 's calculate a relational composition by hand. Let

R 1 = {(1,2),(2 ,3) ,(3,4)} .

The composition R1 ; R1 is worked out by deducing all the ordered pairs that
correspond to an application of R1 followed by an application of RI.

First we find all the ordered pairs of the form (1, x) . R1 has only one ordered
pair starting with 1; this is (1,2) . This means the first application of R1 goes
from 1 to 2, and the (2,3) pair means that the second application goes to 3.
Therefore the composition R1; R1 should contain a pair (1,3). Next , consider
what happens starting with 2: the (2,3) pair goes from 2 to 3, and looking at
all the available pairs {(I , 2), (2,3) , (3, 4)} shows that 3 then goes to 4. Finally,
we see what happens when we start with 3: the first application of R1 goes
from 3 to 4, but there is no pair of the form (4,x). This means that there
cannot be any pair of the form (3, x) in the composition R1 ; R 1• The result of
all these comparisons is R1 ; R 1 = {(I , 3), (2, 4)} (Figur e 8.9). In our diagram,
the new relation is indicated by arrows with dashes .

The calculation in Example 54 is straightforward and tedious-well suited
for computers. The software tools define a function relationalComposition

202 CHAPTER 8. RELATIONS

that implements this calculation: it defines a new relation giving two existing
ones, by working out all the ordered pairs in their relational composition.

relationalComposition ::
(Eq a, Show a, Eq b, Show b, Eq c, Show c) =>

Set (a,b) -> Set (b,c) -> Set (a,c)

Exercise 13. First work out by hand the ordered pairs in the following rela­
tional compositions, and then check your results using the computer:

relationalComposition [(1,2),(2,3)] [(3,4)]
relationalComposition [(1,2)] [(1,3)]

Exercise 14. (a) Find the composition of the following relations:

{(Alice, Bernard), (Carol, DanieQ} and {(Bernard, CaroQ}.

(b) {(a, b), (aa, bb)} and {(b, e), (ee, bb)}

(c) R;R, where the relation R is defined as

R = {(I , 2), (2,3), (3,4) , (4, I)} .

(d) {(1,2)} and {(3,4)}

(e) The empty set and any other relation.

8.6 Powers of Relations

As we saw in the previous section, the composition Flight; Flight defines the
relation describing all possible trips that consist of two connected flights. More
generally, we might want to define a relation defining all possible trips that
consist of n connected flights, where n is a natural number. This is called the
n-th power of the relation. For a relation R, the nth power is the composi­
tion R; R; . .. j R, where R appears n times, and its notation is H" , Notice in
particular that R2 = R; R, and R1 = R.

When a relation R is composed with itself n times, producing H", a path
of length n in R from a to b causes there to be a single link (a, b) in the power
relation H",

Suppose that we have to calculate the relationships between several people
in our database, and that the original facts are these (Figure 8.10):

Andrew IsParentO/ Beth

Beth IsParentO/ Ian

Beth IsParentO/ Joanna

Ian IsParentO/ William

William IsParentO/ Tina

8.6. POWERS OF RELATIONS

Tina
William• • •

Andrew
•

\ Joanna
•

• • •
Beth Ian

203

Andrew

Figure 8.10: The IsParentOf Relation

T~na•• • William

,
,

.\,:,-,~- -----------~'{
" .: ,----- -__ Joanna

"-. ,' \
...... ,,' I,

>, ,
_, I " '.. \. ". , ,

" ", .
Beth • • Ian

Figure 8.11: The Relation IsParentOf2

Now, we will calculate the powers of this relation. The O'th power is just
the identity relation, and the first power IsParentOfl is simply the IsParentOf
relation. The higher powers will tell us the grandparents, great grandparents,
and great great grandparents. You should expect to see that each of the new
relations IsParentOF , IsParentOp, and IsParentOr connect up the starting
and ending points of a path 2, 3, and 4 arcs long within the original IsParentO/
relation. In the following diagrams, the arrows with dashes indicate relations
defined as a power, while all other arrows belong to the IsParentOf relation.

If we compose the IsParentOf relation with itself (i.e. IsParentOF) , we
have the grandparent relation (Figure 8.11):

Andrew Is GrandParentO/ Ian

Andrew IsGrandParentO/ Joanna

Beth IsGrandParentOf William

Ian IsGrandParent0/ Tina

204 CHAPTER 8. RELATIONS

Tina
• -.---.P' • William

"
An.d~~W ,, " '" :?

Bet~ -----

Figure 8.12: The IsParentOf3 Relation

•

Tina,. _.---.
Andrew.>:

\
• • •

Beth Ian

William

Joanna
•

Figure 8.13: The IsParentOf4 Relation

Now if we compose the IsGrandParentOf relation with the original relat ion,
we obtain the great grand parent relation (Figure 8.12):

Andrew IsGreatGrandParentOf William

Beth IsGreatGrandParentOf Tina

Figure 8.13 shows the composition of the IsGreatGrandParentOf relation
with IsParentOf ; thus we have just calculated the fourth power of the IsPar­
entOf relation .

Andrew IsGreatGreatGrandParentOf Tina

We will now give the formal definition of relational powers. The definition
is recursive, since we have to define the meaning of R" for all n . The base case
of the recursion will be RO , which is just the identity relation (it 's like taking
zero flights from a city, which leaves you where you started) . The . recursive
case defines Rn+l using the value of R" ,

8.6. POWERS OF RELATIONS 205

Definition 36. Let A be a set and let R :: A x A be a relation defined over
A. The nth power of R, denoted R", is defined as follows :

RO = {(a, a) Ia E A}
Rn+l = Rn;R

Example 55. Using the formal definition, we calculate R4 , where

R = {(2, 3), (3,2), (3, 3)}.

RO is just the identity (equality) relation, which contains a reflexive loop
for every node. By the definition, R1 =RO; R =R, since the identity relation
composed with R just gives R. The first nontrivial calculation is to find R2 =
R1 j R = R;R. We have to take each pair (a, b) in R, and see whether there
is a pair (b, e); if so, we need to put the pair (a,e) into R2

. The result of this
calculation is R2 = {(2, 2), (2,3) , (3,2), (3, 3)}.

Now we have to calculate R3 = R2 j R. We compose

{(2,2) , (2,3) ,(3,2),(3,3)}

with

{(2,3),(3,2),(3,3)},

which yields

{(2,2) ,(2,3),(3,2),(3,3)} .

At this point, it's helpful to notice that R3 = R2
• In other words, composing

R2 with R just gives R2 back, and we can do this any number of times . This
means that any further powers will be the same as R2- so we have found R4

without needing to do lots of calculations with ordered pairs.

Since relational composition is associative , the powers of a relation follow
the usual algebraic laws for powers on numbers : for example, R(a+b) = R"; Rb•

A relation whose domain is {xo, . .. , xn-d is cyclic if it contains a cycle of
ordered pairs of the form (xo,xd , (Xl ,X2), (X2,X3), (X3,X4), . . . , (Xn-l,XO) .
That is, the relation is cyclic if there is a cycle comprising all the elements of
its domain.

Consider what happens to a cyclic relation as we calculate its powers. The
relation is defined as

R= {(a,b),(b,e),(e,a)} .

The first power R1 is just R. The second power R2 is calculated by working
out the ordered pairs in R; R; the result is

R 2 = {(a, b), (b, e), (e,a)}; {(a, b), (b, e), (e, a)}

= {(a,e),(b,a),(e,b)} .

206 CHAPTER 8. RELATIONS

a a
• •

l~ 1~
b· •• • • •

0 R1 C b R2 c
a
•

a

j~0 0 • • •
b

R3
C b R4 C

Figure 8.14: Four Powers of a Cyclic Relation

This contains only paths between the start and end points of all the paths of
length two in th e original relation. Now the third power is

R3 = {(a,c), (b, a), (c,b)} ; {(a, b) , (b,c), (c,a)}

{(a,a) , (b,b), (c,c)}.

This result contains only arcs connecting the origin and destination points of
paths of length three in the original relation. What will happen next?

R4 = {(a,a) ,(b,b),(c,c)} i{(a,b),(b,c),(c,a)}

= {(a,b) , (b ,C), (c,a)}

Just what we might have expected: each of these arcs represents a path of
length 4, so we have started round the cycle again. What can we now say
about the powers of this relation? They repeat in a cycle. R4 =R1 , R5 =R2

and in general Rn+3 = H" (Figure 8.14) .
The software tools file defines the following function, which takes a set and

returns the equality relation on that set .

equalityRelation ::
(Eq a, Show a) => Set a -> Relation a

There is also a function that calculates the power of a relati on:

relationalPower : :
(Eq a, Show a) => Digraph a - > lnt -> Relation a

Exercise 15 . Work out the values of these expressions, and then evaluate
them using the computer:

8.7. CLOSURE PROPERTIES OF RELATIONS

equalityRelation [1,2,3]
equalityRelation ([]::[Int])

207

Exercise 16. Calculate the following relational powers by hand, and then eval­
uate them using the computer.

relationalPower ([1,2,3,4] ,[(1,2),(2,3),(3,4)]) 1
relationalPower ([1,2,3,4] ,[(1,2),(2,3),(3,4)]) 2
relationalPower ([1,2,3,4] ,[(1,2),(2,3),(3,4)]) 3
relationalPower ([1,2,3,4], [(1,2),(2,3),(3,4)]) 4

Exercise 17. Why do we not need to check the ordered pairs in R while
calculating RO; R ?

Exercise 18. Why can we stop calculating powers after finding that two suc­
cessive powers are the same relation?

Exercise 19. What is R4 where R is {(2,2),(4,4)}?

Exercise 20. What is the relationship between adding new ordered pairs to
make a relation transitive and taking the power of a relation?

Exercise 21. Suppose a set A contains n elements. How many possible rela­
tions with type R :: A x A are there?

Exercise 22. Given the relation {(a, b),(b, c), (c,d), (d,e)} , how many times
would we have to compose this relation with itself before the empty re­
lation is produced?

Exercise 23 . Given the set A = {I, 2, 3} and the relation R :: A x A where
R = {(3, 1), (1,2), (2, 3)}, what is the value of R2? R3?

8.7 Closure Properties of Relations

In computing applications, we normally want to keep the specification of a rela­
tion as small and readable as possible, so that it can be defined and maintained
accurately. On the other hand , some computations may require the relation
to have some special properties (for exampl e, symmetric or transitive) . These
special properties would requir e adding a large number of ordered pairs to the
relation, making it harder to maintain. There is a standard technique used in
such situations-we define two relations:

1. A basic relation, containing just the essential information, is specified;

2. A larger relation is derived from the basic one by adding the ordered pairs
required to give it the special properties that are needed.

208 CHAPTER 8. RELATIONS

When circumstances change, only the basic relation is edited by hand. The
derived relation is recalculated using a computer.

Example 56. An airline keeps a set of all the flights they offer. This is rep­
resented by a relation Flight, where (a, b) E Flight if the airline has a di­
rect flight from a to b. However, when a customer asks a question like 'Do
you fly from Glasgow to Seattle?', the airline needs a transitive relation: if
(Glasgow, New York) E Flight and also (New York, Seattle) E Flight, the an­
swer should be yes. Thus the airline's flight-planning staff define the basic
relation Flight, but the sales staff work with a derived relation which is similar
to Flight, but which is transitive.

A relation derived in this way is called the closure of the basic relation:

Definition 31. The closure of a relation R with respect to a given property
is the smallest possible relation that contains R and has that property.

Closure is suitable for adding properties that require the presence of certain
ordered pairs. For example, you can take the symmetric closure of a relation by
checking every existing pair (x, y), and adding the pair (y, x) if it isn't already
present. However, closure is not suitable for properties that require the absence
of certain ordered pairs. For example, the relation R = {(I, 1), (1, 2), (2, 3)}
does not have an irreflexive closure, since that would need to contain (1,1)
(since the closure must contain the basic relation), yet it must not contain
(1,1) (in order to be irreflexive) .

You can give a relation a property such as reflexivity, or transitivity, by cre­
ating its reflexive or transitive closure. Notice, however, that the new relation
may no longer have all of the properties of the original relation. For example,
suppose that a relation is irreflexive , as in {(I, 2), (2, I)} . The smallest possible
transitive relation containing this one also has the arcs (1,1) and (2,2), which
means that it is no longer irreflexive.

8.7.1 Reflexive Closure

The reflexive closure of a relation contains all of the arcs in the relation together
with an arc from each node to itself. For example, consider the set

{Red, Orange, Yellow, Green, Blue, Violet} .

The relation ContainsPrimaryColour is given in Figure 8.15 by the solid arcs .
It is not reflexive, because the colours that are not primary colours do not
contain reflexive arcs . However, the relation ContainsColour is reflexive (given
by all the arcs in Figure 8.15), and is in fact the reflexive closure of Contains­
PrimaryColour.

The formal definition that follows defines the reflexive closure of a relation
R as the smallest reflexive relation containing the arcs of R.

8.7. CLOSURE PROPERTIES OF RELATIONS

". e 'L----..1.0
81U'\

Greeb. e i

209

Figure 8.15: The Contains Colour and ContainsPrimaryColour Relations

Definition 38. Let A be a set, and let R:: A x A be a binary relation over A .
The reflexive closure of R is the relation R' such that R' is reflexive, R' is a
superset of R, and for any reflexive relation R", if R" is a superset of R, then
R" is a superset of R'. The notation r(R) denotes the reflexive closure of R.

Example 57. The reflexive closure of the relation {(I , 2), (2,3)} over the set
{I, 2, 3} is {(I, 1), (2,2) , (3,3) , (1,2), (2, 3)}.

Example 58. The relation {(I , 1), (1,2), (3,3) , (2,3)} is not the reflexive clo­
sure of {(I, 2), (2, 3)} , since it is missing the reflexive arc (2,2).

The following theorem provides a straightforward method for calculating
the reflexive closure of a relation:

Theorem 63. Let A be a set, let E be the equality relation on A, and let R
be a binary relation defined over A. Then r(R) = RUE.

All we have to do to calculate the reflexive closure R :: A x A is to add
self-loops (x, x) for all of the nodes x in the set A over which the relation R is
defined.

The software tools file provides the following function, which automates the
calculation of reflexive closures:

reflexiveClosure : :
(Eq a, Show a) => Digraph a -> Digraph a

Exercise 24. Work out the following reflexive closures by hand, and then
check your results using the computer:

reflexiveClosure ([1.2.3] .[(1.2).(2.3)])
reflexiveClosure ([1.2] ,[(1,2).(2.1)])

Exercise 25. What is the reflexive closure of the relation R; R, where R is
defined as {(I,2) , (2, I)} ?

210 CHAPTER 8. RELATIONS

8.7.2 Symmetric Closure

In maintaining a genealogical database, we might enter an ordered pair (a,b)
stating that person a IsMarriedTo person b, but we don't want to enter another
pair saying explicitly that person b IsMarriedTo person a, in order to save time
typing. However, the IsMarriedTo relation should certainly be symmetric. In
order to derive this information, the database must calculate the symmetric
closure of the basic relation that was typed in. It does this by adding only
those arcs which are needed to make the relation symmetric.

The formal definition of symmetric closure is very similar to the definition
of reflexive closure:1

Definition 39. Let A be a set , and let R :: A x A be a binary relation over A.
The symmetric closure of R is the relation R' such that R' is symmetric, R' is
a superset of R, and for any symmetric relation R", if R" is a superset of R,
then R" is a superset of R'. The notation s(R) denotes the symmetric closure
of R.

Sometimes it is useful to turn around a relation and use its ordered pairs
in reverse. This is called the converse of the relation:

Definition 40. Let A and B be sets, and let R :: A x B be a binary relation
from A to B . The converse of R, written R C, is the binary relation from B to
A defined as follows:

RC = {(b,a)l(a,b) E R}.

This definition says that if you reverse the order of the components in a
relation 's arcs, you create its converse. The symmetric closure of a relation is
the union of the relation and its converse.

The converse operation provides an alternative way to calculate the sym­
metric closure of a relation. The idea is that we take the original relation R,
and add to it the set of reversed ordered pairs, which is RC

• The following
theorem states this formally:

Theorem 64. Let A be a set and let R :: A x A be a binary relation over A.
Then the symmetric closure s(R) = R u RC.

Example 59. Suppose that we had a relation {(I, 1), (2, 2)} and wanted to
create its symmetric closure. How many arcs would need to be added? None,
because the relation is already symmetric.

Example 60. On the other hand, suppose that we had the relation {(I,2)}.
It is not symmetric, so when creating its symmetric closure, we add the arc
(2,1) (Figure 8.16).

The following Haskell function calculates the symmetric closure of a binary
relation:

I A useful tip for learning to read mathematics: many definitions follow standard forms,
and this makes it easier to read and understand new ones.

8.7. CLOSURE PROPERTIES OF RELATIONS

Figure 8.16: The Symmetric Closure of {(1,2)}

symmetricClosure ::
(Eq a, Show a) => Digraph a -> Digraph a

211

Exercise 26 . Work out the following symmetric closures by hand, and then
calculate them using the computer window:

symmetricClosure ([1,2], [(1,1),(1,2)])
symmetricClosure ([1,2,3] ,[(1,2),(2,3)])

Exercise 27. What is the symmetric reflexive closure of the relation

{(a,b), (b ,e)}?

Hint: take the reflexive closure first , followed by the symmetric closure
of the result .

Exercise 28. Find the reflexive symmetric closure of the relation {(a, c)}.

8.7.3 Transitive Closure

The transitive closure is one of the most important operations on relations.
You can define a relation that describes one step ; the transitive closure of the
relation then describes the effect of taking n steps , for any n.

Example 61. Suppose that Flight is the relation where (a, b) E Flight if there
is a direct flight from city a to city b. Then the transitive closure of Flight is
the relation consisting of pairs (a, b) where b is reachable by air from a.

Consider now how to calculate the transitive closure of a relation. As an
example , suppose that you need to define the IsDescendantOf relation in a
database of people. The database contains records for Zoe, Bruce, Gina,
Annabel, Dirk, Kay and Don. We start with the IsChildOf relation, defined as
follows:

{(Zoe, Bruce), (Gina , Zoe),
(Bru ce, Annabel) , (Dirk , Kay),
(Kay, Don), (Annabel, Kay)}

Observe that the relation IsDescendantOf should have all these arcs , and
many more. For example , Gina is a descendant of Bruce.

212 CHAPTER 8. RELATIONS

___ ~ay

~•
Dirk

•
~--- Annabel

Figure 8.17: The IsDescendantOf Relation

How many more arcs need to be added? There should be an arc between the
origin and destination points of each path of length 2 or more in the IsChildOf
relation. In other words, we need the transitive closure of IsChildOf

The powers of the IsChildOf relation are as follows:

Is_Child_Of2 = {(Zoe, Annabel), (Gina, Bruce),

(Bruce, Kay), (Dirk, Don), (Annabel, Don)}

Is_Child_Of3 = {(Zoe, Kay), (Gina, Annabel), (Bruce, Don)}

Is_Child_Of 4 = {(Zoe , Don), (Gina, Kay)}

u.cuu.ot» = {(Gina, Don)}

The IsDescendantOf relation contains the union of all of these powers (Fig­
ure8.I?) :

IsDescendantOf=
{(Zoe, Bruce), (Gina, Zoe), (Bruce,Annabe~ , (Dirk, Kay),
(Kay, Don), (Annabel, Kay), (Zoe,Annabe~, (Gina, Bruce),
(Bruce,Kay), (Dirk, Don), (Annabel, Don), (Zoe, Kay),
(Gina, Annabe~ , (Bruce, Don), (Zoe,Don), (Gina, Kay),
(Gina, Don)}

The calculations we have just gone through suggest an algorithm for calcu­
lating the transitive closure of any relation: calculate all the powers R1 , R2 and
so on, up to R" , and take their union. There are n nodes in the digraph, so the
longest possible path (ignoring cycles) must be no more than n - 1 elements
long. The transitive closure must provide a short cut for each path, which is
why we must include a power of the relation for each possible path length. This
leads also to a way to define the transitive closure formally:

8.7. CLOSURE PROPERTIES OF RELATIONS 213

Definition 41. Let A be a set of n elements, and let R :: A x A be a binary
relation over A. The transitive closure of R is defined as

n

t(R) = URi .
i=1

For example, if a set A has four elements, then the transitive closure of a
relation R :: A x A would be

R1 U R2 U R3 U R4
•

The IsDescendantOf relation is the union of as many powers of the IsChildOf
relation as there are people in the IsChildOf relation 's domain.

Example 62. Using the definition, we calculate the transitive closure of R =
{(I, 2), (2,3), (3,2), (3, 4), (4, 4)}. There are four elements in the set over which
the relation is defined (we haven't specified otherwise) , so we shall need to
calculate the union of the relations R, R2 , R 3 and R4 (Figure 8.18). First, we
calculate:

R2 = {(1,3),(2,2),(2,4),(3,3),(3,4) ,(4,4)}

R3 = {(1,2),(1,4),(2,3),(2,4),(3,2),(3,4),(4,4)}

R4 = {(I, 3), (1, 4), (2,2) , (2,4), (3, 3), (3,4), (4, 4)}

The union of all of these relations is the transitive closure of R:

{(1,2),(1,3),(1,4) ,(2,2),(2,3),(2,4),(3,2),(3,3) ,(3,4) ,(4,4)}

The following function calculates the transitive closure of a relation, using
the definition:

transitiveClosure ::
(Eq a, Show a) => Digraph a -> Digraph a

Exercise 29. Work out the following transitive closures by hand, and then
evaluate them using the computer:

transitiveClosure ([1,2,3J, [(1,2) ,(2,3)J)
transitiveClosure ([1,2,3J ,[(1,2),(2,1)J)

Exercise 30. Given a digraph ({I, 2, 3, 4}, {(I, 2)}), what can we do to speed
up the transitive closure algorithm, which requires that we take as many
powers of this relation as there are nodes in the digraph?

Exercise 31. Find the transitive symmetric closure and the symmetric tran­
sitive closure of the following relations:

(a) {(a,b),(a ,c)}

(b) {(a,b)}

(c) {(I, 1), (1,2), (1,3), (2,3)}

(d) {(1,2),(2,1),(1,3)}

•

214 CHAPTER 8. RELATIONS

c:t; . c:t

._"..L.
2 • 3 2 • 3

R' R3

• [41 • .[41

~eX1

Figure 8.18: The Powers of {(I, 2), (2,3), (3,2), (3,4), (4, 4)}

8.8 Order Relations

An order relation specifies an ordering which can be used to create a sequence
from the elements of its domain . Order relations are extremely important
in computing, because data values often need to be placed in a well-defined
sequence for processing. The standard mathematical relations less-than «)
and less-than-or-equal (:=;) are examples of order relations, but there are many
more.

One of the most fundamental properties of an order relation is transitivity:
if a precedes b in the ordering, and b precedes c, then we surely want a also to
precede c. However, some of the other properties of relations may be present or
absent, so there are several different kinds of order relation. We will examine
these in turn, starting with partial orders.

8.8.1 Partial Order

A partial order puts at least some of the elements in its domain into sequence,
but not necessarily all of them . There could also be several sequences within
a partial order , without any ordering between elements belonging to different
subsequences.

Example 63. Suppose that a database of people contains records that specify
the breed of dog owned-for those people who have a dog. The records of
dog owners could be ordered alphabetically using the breed name, producing a
sequence of dog owners. However, this ordering would not include the people

8.8. ORDER RELATIONS

Edward

Figure 8.19: The Is YoungerOrSameAgeAs Partial Order

215

who don't have dogs, so it is only a partial order. Of course, it might happen
that everyone (or no one) owns a dog, in which case we would still technically
have a partial order. That is, it is possible that the entire partial order is sorted
using some ordering; the point is just that this is not required .

Example 64. Consider the problem of ordering all the records in the database
by people's names. Some names are common, so there might be more than one
record per name. Therefore this is a partial order .

Example 65. We are programming with a data structure that contains or­
dered pairs (x, y) , and we define an ordering such that the pair (Xl , yd precedes
the pair (X2 ,Y2) if Xl:::; X2 /\ YI :::; Y2 . This is a partial order, because it doesn't
specify the ordering between (1,4) and (2,3) .

The formal definition of partial orders is stated using the properties of
relations that we have already defined:

Definition 42. A binary relation R over a set A is a partial order if it is
reflexive, antisymmetric and transitive.

Example 66. Suppose that we used age to order our database records . Our
Is YoungerOrSameAgeAs relation is reflexive, antisymmetric, and transitive, so
it is a partial order. Figure 8.19 gives its digraph.

Poset diagrams

The purpose of drawing the graph diagram for a relation is to make it easier
to understand. It often defeats the purpose to include all of the relation's arcs
in the diagram, since there are so many of them . For a partial order, there
is no point in drawing the reflexive and transitive arcs , because we know they
must be there anyway and they clutter the diagram and make it hard to see
the important arcs that tell us about the ordering.

216

Harry

Edward

Patrick
Bill

Anne

Sam

Martha

CHAPTER 8. RELATIONS

Figure 8.20: A Poset Diagram of the Is YoungerOrSameAgeAs Relation

A poset (partially-ordered set) diagram is a relation diagram for partial
orders, where the distracting transitive and reflexive arcs are omitted. It is
important to state explicitly that the diagram shows a partial order (or a
poset); without knowing this fact, a reader would not know that the relation
also contains the reflexive and transitive arcs .

When drawing a poset diagram, we position it so that all of the arcs point
upwards. All of the arcs of the partial order that are not implied by the reflexive
or transitive properties must be drawn explicitly. We remove the reflexive and
transitive arcs , and the arrowheads of the remaining arcs.

If there is a directed path between two nodes in a poset diagram, then those
nodes are comparable. An element of a partial order may be comparable to
some of the elements, but not to the others.

Example 67. We redraw Figure 8.19 so that it is a poset diagram (Figure
8.20). Now, it is easy to see the record ordering.

Weakest and greatest elements of a poset

The following definitions give the standard terminology used to describe how
two elements of a partial order are related to each other:

Definition 43. If there is a directed path from x to y in a partial order (i.e. if
x precedes y in the partial order) , then x is weaker than y. The mathematical
notation for this x ~ y. If x ~ Y is false, then we write x Il y.

Definition 44. Two nodes x and y in a partial order are incomparable if x Il
y 1\ Y Il x. That is, x and yare incomparable if there is no directed path from
x to y, and there is also no directed path from y to x.

In a finite set of numbers, there must be a unique smallest element and a
unique greatest element . However, a poset might have several least elements.
For example, if x and yare incomparable, but they are both weaker than all

8.8. ORDER RELATIONS

a
•

f

e
•

217

Figure 8.21: A Poset Diagram

the other elements of the poset, then both are least elements . Similarly, there
may be several greatest elements . The following definitions define the sets of
least and greatest elements formally:

Definition 45. The set of least elements of a poset P is

{x E P IVy E P. (x!;; yV (x g yAy g x))}.

That is, the least elements of P are the elements that are either incomparable
to or weaker than any other element .

Definition 46. The set of greatest elements of a poset P is

{x E P IVy E P. (y !;; x V (x g v r.» g x))}.

That is, the greatest elements of P are the elements that are either incompa­
rable to or greater than any other element.

Example 68. Suppose that a family in our database has the following chil­
dren : Ray, aged 17, Tom, aged 6 and the twins Belle and Eunice, aged 5. We
can define a partial order (~) based on age, such that x ~ y if x is younger than
or the same age as y. Even though there are twins, there are no incomparable
elements of this poset, since Belle ~ Eunice and also Eunice ~ Belle. However,
both of the twins satisfy the requirements for the least element. The set of
greatest nodes is {Ray} and the set of weakest nodes is {Belle, Eunice} .

Example 69 . Figure 8.21 shows a poset where the set of weakest elements is
{c}, and the set of greatest elements is {a, f, e] .

The following Haskell function, defined in the software tools file, takes a
digraph and returns True if the digraph represents a partial order and False
otherwise.

isPartialOrder ..
(Eq a, Shov a) => Digraph a -> Boo1

218 CHAPTER 8. RELATIONS

The following two functions each take a relation and an element . Th e first
one returns True if the second argument is a least element in the relation, and
False otherwise. The second function returns True if the element is a greatest
element in the relation and False otherwise .

isWeakest, isGreatest ::
(Eq a, Show a) => Relation a -> a -> Baal

These functions each take a digraph; the first function returns the set of
weakest elements while the second function returns the set of greatest elements:

weakestSet:: (Eq a, Show a) => Digraph a - > Set a
greatestSet :: (Eq a, Show a) => Digraph a -> Set a

Exercise 32. Work out by hand whether the following digraphs are partial
orders , and then check your results using the computer:

isPartialOrder ([1,2,3], [(1,2),(2,3)])
isPartialOrder

([1,2,3], [(1,2),(2,3),(1,3),(1,1),(2,2),(3,3)])

Exercise 33. Calculate the following by hand , and then evaluate using the
computer:

isWeakest [(1,2),(2,3),(1,3),(1,1),(2,2),(3,3)] 2
isWeakest [(1,2),(1,3),(1,1),(2,2),(3,3)] 3

isGreatest [(1 , 2) , (2 ,3) , (1 ,3) , (1, 1), (2 ,2) , (3 ,3)] 3
i sGr eat es t [(1,2),(1,3),(1,1),(2 ,2),(3,3)] 1

Exercise 34. Calculate the following by hand, and then evaluate using the
computer:

weakestSet ([1,2,3,4],
[(1,4),(1,3),(1,2),(1,1),
(2,3),(2,4),(2,2),(3,4),
(3,3),(4,4)])

weakestSet ([1,2,3,4],
[(1,4),(1,2),(1,1),(2,4),
(2,2),(3,4),(3,3),(4,4)])

greatestSet ([1,2,3,4],
[(1,2),(3,4),(1,1),(2,2),(3,3),(4,4)])

greatestSet ([1,2,3,4],
[(2,3),(3,4),(2,4),(1,1),(2,2),(3,3),(4,4)])

Exercise 35. What are the great est and weakest elements in a poset diagram
that contains the following arcs:

(a) {(a ,b) ,(a,e)}
(b) {(a ,b) ,(e,dn
(c) {(a , b), (a ,d), (b,en

8.8. ORDER RELATIONS

I 4.- - - - - _..
x.-----_..

2 3

Figure 8.22: A Quasi Order

8.8.2 Quasi Order

A quasi order is similar to a partial order, except that it is irreflexive:

219

Definition 47. A binary relation R over a set A is a quasi order if it is ir­
reflexive and transitive.

Example 70. The relation «: on numbers is a quasi order, but (:S) is not.

Notice that the definition of a quasi order doesn't mention symmetry. Can
a quasi order be symmetric? Suppose there are two elements x and y, such that
x ~ y. If the quasi order were symmetric, then we would also have y ~ x , and
since it is also transitive, we then have x ~ x , which violates the requirement
that a quasi order be irreftexive. This argument would not apply, of course, in
a trivial quasi order where no two elements are related by!;, but non-trivial
quasi orders cannot be symmetric.

We should also inquire whether a quasi order can be (or must be) antisym­
metric. By definition, it is antisymmetric if x ~ y 1\ Y ~ x -+ x = y for any two
elements x and y. Now, if we choose x and y to be the same, then x !:;;; y 1\Y !:;;; x
is false, because the quasi order is irreftexive. This means the logical implica­
tion is vacuously true. If we choose x and y to be different , then x !; y 1\ Y ~ x
is again false (as we have just shown while discussing symmetry). In all cases,
therefore, the definition of antisymmetry is satisfied, but vacuously.

The conclusion is that quasi orders may be symmetric, but only if they
are trivial, and they are always antisymmetric, but only because they satisfy
the definition vacuously. The properties of symmetry and antisymmetry are
uninteresting for quasi orders.

Example 71. Figure 8.22 gives the graph diagram for the quasi order (c) on
the set {1,2,3,4}.

The following function takes a digraph and returns True if the relation it
represents is a quasi order, and False otherwise:

isQuasiOrder : :
(Eq a, Show a) => Digraph a -> Bool

220 CHAPTER 8. RELATIONS

• Violet
I
• Blue
I
• Green
I
• Yellow
! Orange

! Red

Figure 8.23: A Chain of the Rainbow Colours

Exercise 36. Work out the following expressions, and evaluate them with the
computer:

isQuasiOrder ([1,2,3,4],[(1,2),(2,3),(3,4)])
isQuasiOrder ([1,2,3,4] ,[(1,2)])

8.8.3 Linear Order

A linear order or total order is like a partial order, except that it requires that
all of the relation 's elements must be related to each other.

Example 72. The (~) and (~) relations on real numbers are total orders: any
two numbers x and y can be compared with each other, and it is guaranteed
that either x ::; y or y ::; x will be true (and both are true if x = y).

Definition 48. A linear order is a partial order defined over a set A in which
for each element a and b in A, either a ~ b or b ~ a .

Example 73. Suppose that the database recorded the exact time at which
each child was born . We could then use a form of ::; to order the children within
the families. This information could be useful in a study of the influence of
primogeniture on the medical history of an aristocracy.

The elements of a linear order can be said to form a chain. When we
draw the graph diagram for a chain, we omit the arcs that are implied by
transitivity and reflexivity. Without these extra arcs, and because no element
can be incomparable to the others, the diagram looks like a real chain. For
example, the colours of the rainbow are often given as a chain starting with Red
and ending with Violet. As Red light has the longest wavelength and Violet the
shortest, the relation that imposes this chain ordering on the set of six colours
is the::; relation on the wave frequency (Figure 8.23).

The isLinearOrder function takes a digraph and returns True if it represents
a linear order, and False otherwise.

isLinearOrder :: Eq a => Digraph a -> Bool

8.8. ORDER RELATIONS 221

Exercise 37. Evaluate the following expressions, by hand and using the com­
puter:

isLinearOrder
([1,2,3],[(1,2),(2,3),(1,3),(1,1),(2,2),(3,3)])

isLinearOrder
([1,2,3] ,[(1,2),(1,3),(1,1),(2,2),(3,3)])

8.8.4 Well Order

A well order is a total (or linear) order that has a least element ; furthermore,
every subset of a well order must have a least element.

The existence of a least element is significant because it provides a base
case for recursive functions and for inductive proofs. Note that any total order
which has a finite number of elements must have a least element . Some total
orders with an infinite number of elements have a least element, and others do
not.

Example 74 . The (~) relation on the set N = {O, 1,2, . . . } of natural numbers
is a total order. Furthermore, N has a least element, because Vx E N. °~ x.
Therefore (~) on N is a well order.

Example 75. The (~) relation on the set Z = {. . . , - 2, - 1, 0, 1, 2, .. . } of
integers is a total order. However, Z does not have a least element , because

Vx E Z.3y E Z.(y ~ x 1\ Y :/; x) .

Therefore (~) on Z is only a total order, and not a well order.

Definition 49 . Given a set 5 and a binary relation Rover 5, R is a well order
if R is a linear order and every subset of 5 that is not empty contains a least
element.

Well orders are important because they are countable. Informally, a count­
able set is a set in which an arbitrary item can eventually be processed by a
computer. The set could be infinite: for example, the set of natural numbers
is infinite, but every element of that set would eventually be reached if we just
work on 0, 1,2, . . . in sequence. For example, if a computer started printing the
natural numbers, we would eventually see the number 4058000023. However,
if it started printing an uncountable set such as the irrational numbers, then it
might get stuck printing an infinite number of irrationals without reaching the
number we are interested in.

Example 76. In our database, each record is given a numeric key that is
unique. As there are a finite number of keys in the database, the ~ relation
over these keys is a well order.

Exercise 38. We have been watching a computer terminal. Is the order in
which people come and use the terminal a total order?

222 CHAPTER 8. RELATIONS

Exercise 39. Is it always possible to count the elements of a linear order?

Exercise 40. Can a set that is not a well order be countable?

8.8.5 Topological Sort

Computers are good at doing one task at a time, in sequence. When an algo­
rithm is working on a data structure, it needs to know which element of the
data structure to work on next . Often there is an order relation that must
be followed (for example, we might want to output the items in a database in
alphabetical order) . If we have a total order on the elements of the data struc­
ture, the algorithm can use that to find the next piece of work. If, however,
we have only a partial order on the data items, then there are several possible
orders in which items could be processed while still respecting the order rela­
tion . Often we don't care which order is used-we just want the algorithm to
find one and proceed with the work.

The process of taking a partial order and putting its elements into a total
order is called topological sorting.

Example 77. Some compilers analyse the order in which procedures call each
other. Such a compiler could construct a 'dependency graph' for the program
it is translating, where each node corresponds to a procedure, and arcs in the
graph correspond to procedure calls. The dependency graph is a partial order.
Now, suppose the compiler generates object code for the procedures in the
order of their appearance in the call graph, so that the lowest-level procedures
are processed first and the highest-level ones are done last, in order to make as
many procedure calls as possible into forward references. The compiler uses a
topological sort to produce the total order in which it prints the information.
The first name in the total order will be a procedure that doesn't call any other
procedure, while the last is the top-level procedure with which the program
starts execution.

There is a simple and general algorithm for topological sorting. Choose x,
one of the elements that is greatest in the set A, and make it the first in the
sequence. Now do the same for the set A - {x}, and continue until A is empty.

Example 78 . Suppose that we have a relation that expresses the call graph:

{('A','B'), ('B', 'B'), ('B','C'), ('B', 'D'), ('C', 'D')}

What would the topological sort of this graph be? First, the functions that
call no other function would appear, followed by the functions that call them,
followed by the functions calling them, etc. The result would be ' D', ' C' ,
'8', 'A' (Figure 8.24).

Example 79. What is the topological sort of {(I, 2), (1, 3)} given the nodes
1,2,3? The sequence 3,2, 1 or 2,3, 1.

8.9. EQUIVALENCE RELATIONS

o

-\roc
B

1
•
A

Figure 8.24: A Call Graph

223

The following function takes a digraph and returns a topological sort of its
relation.

topsort ..
(Eq a, Show a) =) Digraph a -) Set a

Exercise 41. Check to see that the following partial orders are not, in fact, to­
tal orders. Use the computer to generate a total order, using a topological
sort.

topsort ([1,2,3,4] ,[(1,2),(1,3),(2,3),(1,4),(2,4),
(1,1),(2,2),(3,3),(4,4)])

topsort ([1,2,3], [(1,2),(1,3),(1,4),(1,1),(2,2),(3,3)])

8.9 Equivalence Relations

Some relations can be used to break a set up into several categories or 'parti­
tions ', where each element of the set belongs to just one of the categories. Such
a relation is called an equivalence relation.

Example 80. In organising a personal telephone list, it is convenient to or­
ganise the set S of people's names into 26 sets corresponding to the first letter
in the name. In other words, we are making a section of the telephone list for
each letter of the alphabet.

Example 81. Given a genealogy database, we would expect to see many
queries about membership in families. We might assume that persons a and b
are in the same family if they have the same last name, or there might be some
other way to define what a family is (but it needs to have the property that
every person belongs to exactly one family). One common query might be 'Is
a in the same family as b?'. Once the InSameFamilyAs relation is defined, it
provides all the information needed to organise all people into families.

224 CHAPTER 8. RELATIONS

These examples suggest that a relation we are using in this way needs to
be reflexive (everything belongs in the same category as itself), symmetric (if
a is in the same category as b, then obviously b must be in the same as a), and
transitive (if a and b are in the same category, and so are band c, then a and
c must also be in the same category) . These observations lead to the formal
definition of an equivalence relation :

Definition 50. A binary relation R over a set A is an equivalence relation if
it is reflexive, symmetric and transitive.

Example 82. Suppose that everyone in the database lives in a real location
somewhere in the world. We can represent the world as a map, and then
partition the map into small areas by using a Livesln SameLocationAs relation .

The equivalence classes of a non-empty equivalence relation can be thought
of as a partition of the set into disjoint subsets . Now we define this term
formally:

Definition 51. A partition P of a non-empty set A is a set of non-empty
subsets of A such that

• For each subset S1 and S2 of P , either 51 =52 or 51 n 52 =0;

• A =USEP5.

Example 83. For example, let's consider the set of people's last names and
the relation HasNameStartingWithSameLetterAs. This relation divides the set
into 26 subsets. There can be no overlaps between the subsets , and the set of
names is the union of the subsets .

Example 84. Computer keyboards can generate several characters from most
of the keys, depending on whether the Control , Shift or Meta keys are already
down. We could define a relation IsOnSameKeyAs, which would partition the
set of ASCII characters into equivalence classes, one for each key.

A good example of an equivalence relation, which is frequently used in com­
puting applications, comes from the mathematical modulus (mod) operation on
integers. The expression emodk gives the remainder produced when dividing
e by k; and the value of emodk is a number between 0 and k - 1. Now, every
number x which is a multiple of k will have the property that xmodk = 0, and
we can build a set of all these numbers. Similarly, there is a set of numbers
that have the same remainder when divided by 1, by 2, and so on when divided
by k. To do this , we define the congruence relation as follows:

Definition 52. Let k be a positive integer, and let a and b be integers. If
there is an integer n such that

(a - b) = n x k,

8.9. EQUIVALENCE RELATIONS

o - I - 2 -3 - 4 - 5 -6 - 7 - 8 -
9 - lO- ll-
12- 13- 14-
15- 16- 17-

Figure 8.25: A Congruence Equivalence Relation

225

then a is congruent to b (modulo k). The mathematical notation for this
statement is

a == b(modk).

It is necessary to ensure that k is a positive integer-positive means greater
than O-in order to avoid dividing by O. We can define a relation, called the
congruence relation, for all k:

Definition 53 . The congruence relation Ck is defined for all natural k such
that k > 0, as follows : aOkb if and only if a == b(modk) .

The congruence relation is useful because it is an equivalence relation:

Theorem 65. For all natural k > 0, the congruence relation Ck is an equiva­
lence relation.

Example 85. Consider partitioning the integers by congruence (03) (see Fig­
ure 8.25). This gives rise to three sets : all the integers that are of the form
n x 3 (this is just the set of multiples of 3), the integers of the form n x 3 + 1,
and the integers of the form n x 3 + 2.

The following functions in the software tools file create the smallest possible
equivalence relation from a digraph, and determine whether a given relation is
an equivalence relation. They do this by taking a digraph and calculating its
transitive symmetric reflexive closure.

equivalenceRelation ::
CEq a, Show a) => Digraph a -> Digraph a

isEquivalenceRelation : :
(Eq a, Show a) => Digraph a -> 8001

Exercise 42. Evaluate the following expressions using the computer:

equivalenceRelation ([1,2] ,[(1,1),(2,2),(1,2),(2,1)])
equivalenceRelation ([1,2,3],[(1,1),(2,2)])

226 CHAPTER 8. RELATIONS

isEquivalenceRelation ([1,2] ,[(1,1),(2,2),(1,2),(2,1)])
isEquivalenceRelation ([1],[])

Exercise 43. Does the topological sort require that the graph's relation is a
partial order?

Exercise 44. Can the graph given to a topological sort have cycles?

8.10 Suggestions for Further Reading

Extensive discussions of relations can be found in Discrete Mathematics in
Computer Science , by Stanat and McAllister [27] and Discrete Mathematics,
by Ross and Wright [24J.

Relations are a basic tool used for a wide variety of applications. Two good
examples are relational data bases [6] and circuit design [18J .

8.11 Review Exercises

Exercise 45. Which of the following relations is an equivalence relation?

(a) InTheSameRoomAs

(b) IsARelativeOf

(c) IsBiggerThan

(d) The equality relation

Exercise 46. Given a non-empty antisymmetric relation , does its transitive
closure ever contain symmetric arcs?

Exercise 47. What relation is both a quasi order and an equivalence relation?

Exercise 48. Write a function that takes a relation and returns True if that
relation has a power that is the given relation.

Exercise 49. A quasi order is transitive and irreflexive. Can it have any
symmetric loops in it?

Exercise 50. Given an antisymmetric irreflexive relation, could its transitive
closure contain reflexive arcs?

Exercise 51. Write a function that takes a relation and returns True if all of
its powers have fewer arcs than it does.

Exercise 52. Write a function that takes a relation and returns True if the
relation is smaller than its symmetric closure.

8.11. REVIEW EXERCISES

Exercise 53. Given the partial order

{(A, B), (B,C), (A, D)},

which of the following is not a topological sort?

[D,C,B,A]
[C,B,D,A]
[D,C,A,B]

227

Exercise 54. Is a reflexive and symmetric relation ever antisymmetric as well?

Exercise 55. Write a function that takes a relation containing a single path
and calculates the transitive arcs added by its transitive closure. The
length of a path is the number of arcs in it.

Exercise 56. Given a relation containing only a single path of length n, how
many arcs can be added by its symmetric transitive closure?

Exercise 57 . Given a relation containing only a cycle of length n containing
all of the nodes in the domain , which power will be reflexive?

Exercise 58. Can we write a function that determines whether the equality
relation over the positive integers is reflexive?

Exercise 59. Why can't partial orders have cycles of length greater than I?

Exercise 60. Is the last power of a relation always the empty set?

Exercise 61. The following list comprehension gives the arcs of a poset dia­
gram. What kind of order relation does the diagram represent?

[(a,a+l) I a <- [1. .]]

Exercise 62. Is the composition of a relation containing only a single cycle
with its converse the equality relation?

Exercise 63. Give examples of partial orders in which the set of greatest ele­
ments is the same as the set of weakest elements.

Chapter 9

Functions

A function is an abstract model of computation: you give it some input, and
it produces a result . The essential aspect is that the result is completely de­
termined by the input: if you repeatedly apply the same function to the same
argument, you will always obtain the same result . Examples of functions in­
clude:

• An inquiry to a telephone directory service: you supply a person's name,
and the service provides the corresponding telephone number;

• The mathematical sin function : you give it an angle, and the function
returns the sin of that angle;

• An addition circuit in a computer's processor; you give it a pair of binary
numbers, and it returns the binary representation of their sum.

In contrast, a weather prediction service would not be modelled as a function,
since the answer to 'What will the weather be tomorrow?' changes from day
to day.

Functions are an important tool, both in mathematics and in computing,
because they provide a mechanism for abstraction. A function is a 'black box':
to use it , you need to know the interface , but not the internal details about
how the function is defined.

There are many ways to formalise the function concept. This chapter looks
at the ones that are most important for computer science. We start with one of
the most common mathematical approaches, which treats a function as a special
kind of relation, and then we will consider a more algorithmic way of defining
functions. It is good to remember, however, that the concept of 'function' is
abstract , and there are many different formalisms that can be used to define
it .

229

C. Hall et al., Discrete Mathematics Using a Computer
© Springer-Verlag London 2000

230 CHAPTER 9. FUNCTIONS

9.1 The Graph of a Function

In this section we examine one of the most common mathematical techniques
for defining functions. This approach uses a set of ordered pairs, and it brings
out a close connection between functions and relations .

A function specifies, for any particular input value x, the value Y of the
result. This can be represented as an ordered pair (x,y), and the entire function
is represented as a set of ordered pairs . This representation of a function
is called a function graph, and it is similar to the digraph used to represent
relations.

A function is a relation , but some additional properties are required. A
relation digraph is a set of ordered pairs, with no restrictions: thus, a relation
R might contain two ordered pairs (x, yd and (x ,Y2), and we would write x RYI
and also x R Y2 . This would not be acceptable for a function, though, since it
would mean that given the argument x there are two possible results YI and
Y2 . A function must return a unique result for any argument. Accordingly,
we define a function to be a relation with an extra requirement that only one
result may be specified for each argument:

Definition 54. Let A and B be sets. A function f with type A -t B is a
relation with domain A and codomain B, such that

A is called the argument type and B is called the result type of the function .

The definition says that a function is a set of ordered pairs, just like a
relation. The set of ordered pairs is called the graph of the function. If an
ordered pair (x,y) is a member of the function, then x E A and Y E B .
Furthermore, the definition states formally that if the result of applying a
function to an argument x could be Yi but it could alternatively be Y2, then it
must be that Yi = Y2 . This is just a way of saying that there is a unique result
corresponding to each argument.

Example 86. The set {(I, 4), (1, 5)} cannot be the graph of a function, be­
cause it contains two pairs with the same first element but different second
elements: (1,4) and (1,5) (Figure 9.1). A function must return just one result
for any argument; it can't choose among several alternatives.

Example 87. The set of ordered pairs ((1,2) , (2,2), (3,4)} is the graph of a
function. It doesn't matter that several arguments, 1 and 2, produce the same
result 2.

An expression denoting the result produced by a function when presented
with an input x is called a function application. For example, sin(2 x 1l') is an
application of the sin function to the argument 2 x it , The following definition
specifies the syntax, type and value of a function application:

9.1. THE GRAPH OF A FUNCTION

Figure 9.1: A Relation that is Not a Function

231

Definition 55. An application of the function f to the argument x, provided
that f :: A -+ B and x :: A, is written as either f x or as f(x), and its value is
y if the ordered pair (x, y) is in the graph of I, otherwise the application of f
to x is undefined:

fx=y t+ (x,y)Ef

A type can be thought of as the set of possible values that a variable might
have. Thus the statement 'x :: A', which is pronounced 'x has type A', is
equivalent to x E A. The type of the function is written as A -+ B , which
suggests that the function takes an argument of type A and transforms it to a
result of type B. This notation is a clue to an important intuition: the function
is a black box (you can think of it as a machine) that turns arguments into
results.

If x E A and there is a pair (x, y) E f , then we say that 'f x is defined to be
y'. However, if x E A but there is no pair (x,y) E f , we say 'f x is undefined'.
A shorthand mathematical notation for saying 'f x is undefined' is 'f x = 1.' ,
where the symbol 1. denotes an undefined value.

It often turns out that some of the elements of A and B don't actually
appear in any of the ordered pairs belonging to a function graph. The subset
of A consisting of arguments for which the function is actually defined is called
the domain of the function . Similarly, the subset of B consisting just of the
results that actually can be returned by the function is called the image. These
sets are defined formally as follows:

Definition 56. The domain and the image of a function f are defined as:

domain f =
image f =

{x I 3y. (x,y) E J}
{y I 3x. (x,y) E J}

This definition says that the domain of a function is the set of all x such that
(x,y) appears in its graph, while its image is the set of all y such that (x ,y)
appears. Thus a function must be defined for every element of its domain,
and it must be able to produce every element of its image (given the right

232 CHAPTER 9. FUNCTIONS

domain image

Figure 9.2: Domain and Image of a Function

Figure 9.3: Function Type

argument). However, the argument type and the result type may contain extra
elements that do not appear in the function graph (Figure 9.3).

Unfortunately, the terminology for functions is not entirely standard. Many
authors use 'codomain' to refer to a function's argument type, but others define
the codomain of a function differently. Many authors define the range of a
function to be its image; others define it to be the result type . Whenever you
·are reading a document that uses any of these terms, you need to check the
definitions given in that document.

Example 88. The set {(I, 4), (2,5), (3, 6)} is the graph of a function (Figure
9.2). The domain is {I ,2 ,3} and the image is {4,5,6}. The function can have
any type of the form A -+ B , provided that {I, 2, 3} ~ A and {4,5, 6} ~ B .

Example 89. Let function f :: Integer -+ Integer be defined as

f = {(0,I),(1 ,2) ,(2,4) ,(3,8)}.

The argument type of f is Integer = {.. . ,-2, -I ,O,I ,2 , .. . }, and its domain

9.2. FUNCTIONS IN PROGRAMMING 233

Relation Function

Figure 9.4: Two Relations and Two Functions

is {O, 1,2, 3}. The result type is Integer = {... , -2, -1 ,0,1 ,2, .. . }, and the
image is {I, 2, 4, 8}.

Example 90. Figure 9.4 shows the graph diagrams for two relations and two
functions.

9.2 Functions in Programming

The 'function as a graph' idea used to model a function mathematically is not
exactly the same as a function written in a programming language, although
both are realisations of the same idea. The difference is that a set of ordered
pairs specifies only what result should be produced for each input; there is no
concept of an algorithm that can be used to obtain the result. The function
graph approach 'pulls the result out of a hat' . In contrast, a function in a pro­
gramming language is represented solely by the algorithm, and the only way to
determine the value of f x is to execute the algorithm on input x . A program­
ming language function is a method for computing results; a mathematical
function is a set of answers .

Besides providing a method for obtaining the result , a programming lan­
guage function has a behaviour: it consumes memory and time in order to
compute the result of an application. For example, we might write two sorting
functions , one that takes very little time to run on a given test sample and
one that takes a long time. We would regard them as different algorithms,
and would focus on that difference as being important . The graph model of a

234 CHAPTER 9. FUNCTIONS

function lacks any notion of speed, and would make no distinction between the
two algorithms as long as they always produce the same results.

There are several important classes of functions defined by algorithms,
which we will examine in the next few sections. The essential questions we
are interested in are the termination and execution speed of the function .

9.2.1 Inductively Defined Functions

As its name suggests, inductively defined functions use a computation structure
that is similar to induction , which can be used to prove properties of these
functions.

Definition 57. A function defined in the following form, where h is a non­
recursive function , is inductively defined :

fO = k
f n = h(J (n - 1))

When the argument is 0, the function returns a constant k, and when the
argument n is positive, it calls itself recursively on a smaller argument n - 1;
the function can then use h to perform further calculations with the result of
the recursive call.

As long as h always returns a result, an inductively defined function will
always produce a result when applied to any nonnegative argument.

Example 91. The function defined below the sum L~=o i, counting backwards
from n down to O. It is written in the form required for inductively defined
functions, letting k = aand h x = n + x.

f 0 = 0
f n = n + f (n-l)

Example 92. The add function, defined below, is inductively defined over the
second argument.

add : : lnt -> lnt -> lnt
add n 0 = a
add 0 k = n + add 0 (k - 1)

Example 93. The '91' function is recursive, but is not inductively defined:
it calls itself recursively on a larger argument, and it performs yet another
recursion on the result (f91 (x+ll)) of the first recursion . When applied to
n, this function returns 91 if a~ n ~ 100, and otherwise it returns n - 10.

f91 :: lnt -> lot
f91 x = if x > 100

then x - 10
else f91 (f91 (x + 11))

9.2. FUNCTIONS IN PROGRAMMING

9.2.2 Primitive Recursion

235

Computability theory is the branch of computer science that studies the prop­
erties of functions viewed as algorithms. One of the most important classes of
algorithm is the set of primitive recursive functions, which are defined with a
more flexible pattern than inductively defined functions. Primitive recursive
functions are essentially equivalent to algorithms that can be expressed with
looping structures, such as for loops, that are guaranteed to terminate.

Definition 58. A function f is primitive recursive if its definition has the
following form, where 9 and h are primitive recursive functions.

fOx
f (k + 1) x

gx

= h (f k x) k x

This definition specifies the standard form for a primitive recursive function.
Any function which can be transformed into this form is primitive recursive,
even if its definition doesn't obviously match the definition .

Example 94. The sqr function, which takes a natural number x and returns
x2 , is primitive recursive, as shown by the following definition. This function
satisfies the requirements vacuously, since it does not actually use recursion.
All 'basic functions' that do not require recursion can be handled the same
way, so they are all primitive recursive.

sqr x = fOx
vhere fOx = g x

g x x*x

Example 95. The factorial function can be written in the standard primi­
tive recursive form:

factorial k = f k undefined
vhere fOx = 1

f (k+l) x = (k+l) * (f k x)

The function f performs a recursion over k, starting from the argument to
factorial and counting down to O. Since factorial can be calculated simply
by multiplying together all the numbers in this countdown, the x argument is
not actually required, and f ignores the value of x. The definition of factorial
could pick any arbitrary value for x, and undefined = .1 is as good as any.
Since x is not used, factorial doesn't make full use of the power of primitive
recursion . The following calculation shows how the application factorial 4

236 CHAPTER 9. FUNCTIONS

can be reduced to 24 (notice that 1. is repeatedly copied but never used):

factorial 4

= f41.

= 4xf31.

= 4 x (3 x f 2 1.)

= 4 x (3 x (2 x f 1 1.))

= 4 x (3 x (2 x (I x f 0 1.)))

= 4 x (3 x (2 x (1 x 1)))

= 4 x (3 x (2 xl))

= 4 x (3 x 2)

= 4x6

= 24

Example 96. The following function is not primitive recursive, because if the
argument is odd (except for 1) it calls itself recursively with the same ar­
guments. However, if the argument is a power of 2 then the recursion will
terminate with f 1, and the function will return the logarithm (base 2) of its
argument.

f 0 = 0
f 1 =0
f x =

if even x
then 1 + f (x 'dive 2)
else f x

9.2.3 Computational Complexity

The computational complexity of a function is a measure of how costly it is
to evaluate. The memory consumption and the time required are common
measures of the cost of a function.

Recursion can create some very expensive computations. A famous example
is Ackermann's function :

Definition 59. Ackermann's function is:

ack 0 y = y+1
ack x 0 = ack (x-1) 1
ack x y = ack (x-1) (ack x (y-1))

The ack function is easy to evaluate for small arguments, but the time it takes
grows extremely quickly as x and y increase. Books on computability theory
and algorithmic complexity show why this happens, but it is interesting to
make a table for yourself of ack x y for small values of the arguments.

9.2. FUNCTIONS IN PROGRAMMING

9.2.4 State

237

A function always returns the same result, given the same argument. This kind
of repeatability is essential: if J4 =2 today, then J4 =2 also tomorrow. Some
computations do not have this property. For example, many programming
languages provide a 'function' that returns the current date and time of day,
and the result returned from such a query will definitely be different tomorrow.
The entire set of circumstances that can affect the result of a computation is
called the state.

Example 97 . The state of a computer system includes the current date and
time of day, as well as the contents of the file system. Thus a 'function' that
queries the date, or the amount of free space on disk, will not return the
same result every time it is called. These are not true functions, although
some programming languages use the keyword function erroneously to refer
to them .

Example 98. As consumers, we expect to have to trade money for products.
The interface between us and those that sell these products is a functional one.
However, we also have to take into consideration things like depreciation over
time, or wear and tear, or product expiration dates. These issues concern the
state of the items for which we trade money.

Example 99. Some programming languages allow a 'function' to modify the
value of a global variable. Even if such a 'function' always returns the same
result for each argument value, its behaviour is not in principle describable by
a function graph. A 'function' in a program that modifies the global state is
not a mathematical function.

Notwithstanding these examples, it is possible to describe computations
with state using pure mathematical functions . The idea is to include the state
of the system as an extra argument to the function . For example , suppose we
need a function f that takes an integer and returns an integer, but the result
might also depend on the state of the computer system (perhaps the time of
day, or the contents of the file system) . We can handle this by defining a new
type State that represents all the relevant aspects of the system state, and
then providing the current state to f:

f : : State -) lnt -) lnt

Now f can return a result that depends on the time of day, even though it is a
mathematical function. Given the same system state and the same argument,
it will always return the same result.

Programs that need to manipulate the state can be written as pure func­
tions , with the state made explicit and passed as an argument to each function
that uses it. When a program needs to use the state frequently, however, it be­
comes awkward to use explicit State arguments; this clutters up the program
and errors in keeping track of the state can be hard to find.

238 CHAPTER 9. FUNCTIONS

Imperative languages solve this problem by making the state implicit, and
allowing side effects to modify the state. This is a simple way to allow algo­
rithms to use the system state. The cost of this approach is that reasoning
about the program is more difficult. In mathematics, if you have an equation
of the form x = y, you can replace x by y, or vice versa. This is called sub­
stituting equals for equals or equational reasoning. Unfortunately, equational
reasoning doesn't work in general in imperative languages. If a function f de­
pends on the system state, it is not even true that f x = f x. It is still possible
to reason formally about imperative programs, for example using the weakest
precondition method, but this is more complex than equational reasoning.

Haskell takes a different approach: it provides a mechanism allowing you
to define operations that use the state implicitly. The mechanism is called a
monad, and it is used with do expressions in Haskell. The technique is explained
in [30].

9.3 Higher Order Functions

A distinction is often made between data (numbers, characters, etc.) and
algorithms (code to be executed on a computer) . For example, 23 and [1,2,3]
are data values, while the length function is code to be executed. Many
programming languages treat functions as code, and disallow their use as data.
This means that the arguments and result of a function application must be
data; functions themselves cannot be used as arguments or results.

In both mathematics and functional programming languages, this restric­
tion is removed: computer code-in the form of functions-can be used as
ordinary data values. This means, for example, that you can store functions
in data structures. You can also pass a function like length to some other
function, which might use it; you can also write a function that does some
computation, and then produces a brand new function which it returns. Func­
tions like this are called higher order functions.

Definition 60. A first order function has ordinary (non-function) arguments
and result . A higher order function is one that either takes a function as an
argument, or returns a function as its value, or both .

Example 100. The Haskell function map is a higher order function, because
its first argument is a function which map will apply to each element of the
second argument, which is a list. The type of map is:

map :: (a->b) -> [a) -> [b)

This type reveals that the function is higher order, since the first argument has
a type that contains an arrow, indicating that this argument is a function.

Example 101. The length function is not higher order. As its type makes
plain, the argument is a list type and the result is an integer:

9.3. HIGHER ORDER FUNCTIONS

length :: [a] -) Int

239

We will now look in detail at the various kinds of higher order functions:
functions that take other functions as argum ents and functions that return
functi ons as results. We will also compare two methods for allowing a func­
tion to take several arguments: building a tuple so that all the arguments are
packaged in a data structure, and using higher order functions to take the
arguments one at a time.

9.3.1 Functions that Take Functions as Arguments

Any function that takes another function as an argument is higher order. This
kind of higher order function will have a type something like the following:

f :: (...~ ...) ~ ...

We have already seen many examples of such functions in Haskell; map and
foldr are typical. Generally, this variety of higher order function will also take
a data argument , and it will apply its function argument to its data argument
in a special way.

Example 102. As we have already seen, the map function takes a data st ruc­
ture (which must be a list of data values) and applies its function argument to
each element of the list .

map :: (a->b) -) [a] -) [b]
map f [] = []
map f (x:xs) = f x : map f xs

Example 103. The following function performs an operation twice on the
data argument x. Th e operation to be performed is specified by the first argu­
ment f, which is a function.

twice :: (a -) a) -) a -> a
twice f x = f (f x)

Notice th at the type of f is more restri cted in twice than it is in map. The
reason for this is that nothing in map constrains either the argument type or
the result typ e of f , so the function can have the general function type a->b.
In twice, however , the result returned by f is used as the argument to another
appli cat ion of f. This means that f must have the less general function type
a->a,

Higher order functions provide a flexible and powerful approach to user­
defined control st ructures. A control structure is a programming language
const ruct that specifies a sequence of computations. Examples of cont rol struc­
tures in imperative programming languages include for loops, while loops, the
if statement, and the like.

240 CHAPTER 9. FUNCTIONS

It is often possible to define a higher order function which implements a
control structure. For example, let ys be a list of length n. Then the Haskell
equation

ys = map f xs

is similar to the following for loop (written in a common imperative style) :

for i = 1 to n
y[iJ := f (x [iJ) j

Thus map describes an iteration that computes a list of values, where the ith
element of the result is computed from the ith element of the argument by
applying the function f . Similarly,

y = foldl faxs

is similar to the following imperative loop:

y := aj

for i := 1 to n do
y := f y x[iJ

9.3.2 Functions that Return Functions

Any function that returns another function as its result is higher order, and its
type will have the following form:

f :: .. . -+ (.. . -+ ...)

To understand this kind of higher order function, it is helpful to study the
function graph in detail. First, we define some first order functions 'to be used
in the examples:

ident, double, triple, quadruple :: lnt -> lnt

ident 1 = 1
ident 2 = 2
ident 3 = 3

double 1 = 2
double 2 = 4
double 3 = 6

triple 1 3
triple 2 = 6
triple 3 = 9

9.3. HIGHER ORDER FUNCTIONS

quadruple 1 = 4
quadruple 2 =8
quadruple 3 = 12

241

These simple functions perform multiplication on small arguments. For
example, double takes a number x (which must be 1, 2 or 3) and it returns
2 x x . The graph of a first order function is a straightforward set of ordered
pairs; the functions just defined have the following graphs:

ident = {(I,I),(2,2) ,(3,3)}

double = {(I ,2),(2,4),(3,6)}

triple = {(I,3),(2,6),(3,9)}

quadruple = {(1. 4), (2,8) , (3,I2)}

Now we define a higher order function, multby, which takes one argument
of type lnt and returns a function with type lnt->lnt:

multby :: lnt -> (lnt->lnt)
multby 1 = ident
multby 2 = double
mUltby 3 = triple
multby 4 = quadruple

This function simply looks at its first argument x, an integer which must
be in {I,2,3,4}, and it returns another function . Now consider the value of
multby 3 2. This is syntactically equivalent to (multby 3) 2, and we can
evaluate the expression using the function definitions. Notice that multby 3
returns a function which multiplies things by 3, so multby 3 2 evaluates to 6:

multby 3 2
= (multby 3) 2
= triple 2
= 6

syntax rule of Haskell
definition of multby (third equation)
definition of triple (second equation)

If a function returns another function as its result, then its graph will be
a set of ordered pairs (z, y) where x is the argument to the function and y is
another function graph. Figure 9.5 shows the graph of multby:

multby = {(I, {(I,I), (2,2) , (3,3)})
(2, ((I ,2), (2,4), (3, 6)})
(3, ((I ,3), (2,6) , (3, 9)})
(4, {(I, 4), (2,8) , (3, 12)})}

242

le----

CHAPTER 9. FUNCTIONS

Ie ---e 1]
2e---e 2,
3 e --- e 3

le---e 2
2e---- 2e---e 4

(3 e - . e6

1e ---e 3)
3e---- 2e---e 6

3e---e 9

1 e---e 4
4e---- 2 e---e 81

3 e---el2

Figure 9.5: Graph of the multby Higher Order Function

9.3.3 Multiple Arguments as Tuples

Technically, a function (in either mathematics or Haskell) takes exactly one
argument and returns exactly one result. There are two ways to get around
this restriction. One method is to package multiple arguments (or multiple
results) in a tuple. Suppose that a function needs two data values , x and y.
The caller of the function can build a pair (x, y) containing these values, and
that pair is now a single object which can be passed to the function.

Example 104. The following function takes two numbers and adds them to­
gether:

add :: (Integer,Integer) -> Integer
add (x,y) = x+y

The function is called using an application that builds a suitable tuple. Thus
f (3,4) applies add to the pair (3,4); when (x,y) is matched with (3,4),
the effect is to define x to be 3 and y to be 4 in the body of the function . The
graph of the function is an infinite set, since Integer is a type with an infinite
number of values. The graph has the following form:

add =
{ ... ,

... ,

. . . ,

... ,

}

((0,-2),-2), ((0,-1),-1), ((0,0),0) , ((0,1) ,1),
((1, -2), -1), ((1, -1) ,0) , ((1,0), 1), ((1,1),2),
((2, - 2), 0), ((2, -1), -1), (2,0),2), ((2,1) ,3),

9.3. HIGHER ORDER FUNCTIONS 243

9.3.4 Multiple Results as a Tuple

A function must return exactly one result, but sometimes in practice we want
one to return several pieces of information. In such cases, the multiple pieces
can be packaged into a tuple, and the function can return that as a single result.
This technique is analogous to passing several arguments as a tuple.

Example 105. The following Haskell function takes an integer x, and returns
two results x-I and x + 1 packaged in a pair (i.e, a 2-tuple):

addsubl :: Integer -> (Integer,Integer)
addsubl x = (x-l, x+l)

The function graph is:

,
(-2,(-3,-1)), (-1,(-2,0)) , (0,(-1,1)) , (1,(0 ,2)),
(2,(1 ,3)), (3,(2,4)), (4,(3,5)), (5,(4,6)),

addsubl =
{

}

9.3.5 Multiple Arguments with Higher Order Functions

Higher order functions provide another method for passing several arguments
to a function. Suppose that a function needs to receive two arguments, x :: a
and y :: b, and it will return a result of type c. The idea is to define the function
with type

f :: a -t (b -t c).

Thus f takes only one argument, which has type a, and it returns a function
with type b -t c. The result function is ready to be applied to the second
argument, of type b, whereupon it will return the result with type c. This
method is called Currying, in honour of the logician Haskell B. Curry (for
whom the programming language Haskell is also named).

The graph of f is a set of ordered pairs; the first element of each pair is
a data value of type a, while the second element is the function graph for the
result function. That function graph contains, in effect, the information that
f obtained from the first argument.

Example 106. The following function , mult, is similar to add (see example
104); apart from using * rather than +, the only difference is that mult is higher
order, and takes its arguments one at a time:

mult : : Integer -> (Integer->Integer)
mult x y = x*y

244 CHAPTER 9. FUNCTIONS

The graph of mult is a set of ordered pairs of the form (k,lk), where k is the
value of the first argument to mult , and Ik is the graph of a function that takes
a number and multiplies it by k:

mult =
{ . . . ,

(-1 , {.. . , (-1 ,1) , (0,0), (1, -1), (2, -2), ... }),
(0, { ... , (-1,0) , (0,0), (1,0), (2,0), .. , }),
(1, {... , (-1,-1), (0,0), (1,1), (2,2) , .. . }),
(2, {... , (-1,-2), (0,0), (1,2), (2,4), .. , }),
(3, {... , (-1,-3), (0,0), (1,3), (2,6), ... }),

}

9.4 Total and Partial Functions

Recall that the domain of a function 1 :: A -? B is a subset of A consisting of
all the elements of A for which 1 is defined. There are two sets that can be
used to describe the possible arguments of f. The argument type A is generally
thought of as a constraint: if you apply 1 to x, then it is required that x E A
(alternatively, x :: A). If this constraint is violated then the application 1 x
is meaningless. The domain of 1 is the set of arguments for which 1 will
produce a result . Naturally, domain 1 must be a subset of A. However, there
is an important distinction between functions where the domain is the same as
the argument type, and functions where the domain is a proper subset of the
argument type.

Definition 61. Let J :: A -? B be a function . If domain J = A then J is a
total function. If domain J C A then 1 is a partial function .

If I is a partial function, and x E domain I, then we say that I x is defined.
There are several standard ways to describe an application I y where y :: A
but y rt domain I · It is common, especially in mathematics, to write 'I y is
undefined'. Another approach, frequently used in theoretical computer science,
is to introduce a special symbol .L (pronounced bottom) which stands for an
undefined value. This allows us to write 1 y = .L.

Example 107. The following function has argument type Integer, but its
domain is {I, 2, 3}:

f :: Integer -> Char
f 1 = 'a'
f 2 = 'b'
f 3 = 'e'

The expression f 1 is defined, and its value is the character' a ' . The expression
f 4 is undefined, and it has no value. Another way to say this is that f 1 = ' a '
and f 4 =.L. The graph of f is {(I, 'a'), (2, 'b'), (3, 'e')} .

9.4. TOTAL AND PARTIAL FUNCTIONS 245

Partial functions are useful when describing the behaviour of programs.
Generally, the type of a function can be used for compile-time analysis by the
compiler, but the domain may be difficult or impossible to work out from the
function's definition .

Example 108. The function sqrt :: Float->Float takes the square root
of its argument. The argument type is Float, and the compiler uses that
constraint to detect errors in the program. Thus if a program contains an
application like sqrt "cat" the compiler will produce an error message, since
a character string is not an element of the type Float . However, the compiler
cannot determine whether a numeric argument to sqrt will be positive or
negative .

Example 109. The following function can be applied to any integer , but it is
defined only for 1:

justone :: lnt -> lnt
justone 1 = 3

If this function is applied to anything that isn't an integer , the compiler will
produce a type error message, and the program cannot be executed. If it is
applied to 2, no error is detected at compile time but a runtime error message
will be produced, for example:

> justone 2

Program error : {justone 2}

Many programming languages have the property that some type errors are
not detectable by the compiler, and the application of a function to an argument
of the wrong type is likely to crash the program. The Haskell type system is
designed carefully so that the compiler guarantees that all type errors will be
detected at compile time ; it is impossible for the program to crash at runtime
due to a type error. Unix programmers using C are accustomed to running
a program and getting the message segmentation fault; this is caused by a
type error (for example , if an integer value is used as an address) . Such errors
are rare in Haskell; even though the compiler knows nothing about the domains
of functions, it is able to catch most errors just by checking their types.

If a function is applied to a value which has the right type, but which is
not in the function's domain, then a runtime error occurs . Sometimes the
program, or the system , is able to detect this and produce an error message.
For example, if the sqrt function is applied to -2, an error message will be
produced explaining what happened.

Some runtime error messages are generated automatically, but Haskell also
allows you to implement such error messages yourself. The function error
takes a string argument, which is an error message; if an application of error
is evaluated, the string is printed and the program execution is terminated.

246 CHAPTER 9. FUNCTIONS

Example 110. The argument type of the following function is Integer, but
its domain is the set of non-negative integers. Suppose that it would be a
runtime error to evaluate an application of f to a negative number, but suppose
also that we would like an informative error message if this happens. The error
function can be used to terminate the execution with a tailor-made message.
A common technique , illustrated here, is to construct the error message string,
including pertinent information about the argument. In this case, we simply
convert x to a string, with show x, and include that in the message.

f :: Integer -> Integer
f x =

if x >= 0
then 10*x
else error (llf was applied to a negative number II

++ show x ++ ". Don't do it again! II)

Here are the results of evaluating two applications of f . The argument is in
the domain of f in the first application, but not in the second.

> f (2+2)
40
> f (2-5)

Program error: f was applied to a negative
number -3 . Don't do it again!

Unfortunately, it is not possible to dete ct all errors at runtime, and when
an undetectable error occurs it is impossible to print a useful error message.
Sometimes a recursive function goes into an infinite loop, and there is simply
no output at all.

Example 111. The infinite.J.oop function takes an argument and calls itself
with the same argument. Since it makes no progress toward a termination
condition, any application of this function will run forever. The user must
interrupt the execution, typically by typing CTRL-C or by clicking on Stop.

infinite_loop :: a -> a
infinite_loop x = infinite_loop x

An application of a total function will always terminate and produce a
result. There are three possible outcomes from evaluating an application of a
partial function to an argument: the application could terminate with a result ;
it could produce a runtime error message; or it could go into an infinite loop.
For example, the following function will terminate if its argument is even, but
it will go into an infinite loop if the argument is odd :

halt HEven x
if even x

9.4. TOTAL AND PARTIAL F UN CTIONS 247

then x
else infinite_loop x

If we try applying haltlfEven to some arguments, we might quickly dis­
cover that haltlfEven 6 => 6. However, when we at tempt to evaluate the
expression haltlfEven 7 there will not be any out put at all; the computation
will just go on and on. When a computer is running a program but not produc­
ing any output , it would be useful to know whether it just needs more time, or
whether it is stuck in an infinite loop. For this particular example it is obvious
when the function will terminate and when it will loop forever , but what ab out
more complicated functions where this is not obvious?

It would be extremely useful to have a function called wouldHalt that takes
an arbitrary funct ion f and an argument value x, and which returns True if
and only if f would halt if we actually evaluat e f x:

wouldHalt :: (Integer->Integer) -> Integer -> Bool

This is called the Halt ing Problem.
Obviously we cannot implement wouldHalt by actually evaluating f . Sup­

pose we write it somet hing like this:

wouldHalt : : (Integer->Integer) -> Integer -> Bool
wouldHalt f x

if f x == f x
then True
else False

The problem is th at if f x goes into an infinite loop , then wouldHalt will never
get the opportunity to return False. It will always return True if the result
should be True, bu t it will go into an infinit e loop if the result should be False.

Since wouldHalt cannot actually evaluate f x, it must instead analyse the
definition of f , somehow figure out how it works, and then decide whether f
x would halt . We could easily define a simplified wouldHalt that can handle
haltIfEven and similar functions. Could we extend it , with enough effort , so
that our function solves the Halting Problem? Unfortunately thi s is impossible:

Theorem 66 . Th ere does not exist a functi on wouldHalt such that for all f
and x,

{
Tr ue, if f x terminates

wouldHal t f x =
False, if f x does not te rminate

Proof. Define the function paradox as follows:

paradox :: Integer -> Integer
paradox x =

if wouldHalt paradox x
then paradox x
else 1

248 CHAPTER 9. FUNCTIONS

Now consider the expression paradox x. One of the following two cases must
hold:

• Suppose paradox x halts and produces a result . Then

wouldHalt paradox x => True;

therefore the definition reduces to paradox x = paradox x, so paradox
x does not halt. This is a contradiction; therefore it is impossible that
paradox x halts .

• Suppose paradox x does not halt. Then

wouldHalt paradox x => False.

The definition then simplifies to paradox x = 1, and it halts.

To summarise, if paradox x halts then it does not halt, and if it does not halt
then it halts! There is no possibility which avoids contradiction. Therefore the
function wouldHal t does not exist. 0

The proof that the Halting Problem is unsolvable was discovered in the
1930s by Alan Turing. This is one of the earliest and most important results
of computability theory. One of the commonest methods for proving that a
function does not exist is to show how it could be used to solve the Halting
Problem, which is unsolvable. This theorem also has major practical implica­
tions: it means that some software tools which would be very useful cannot
actually be implemented .

A consequence of the unsolvability of the Halting Problem is that it is
impossible to write a Haskell function that determines whether another Haskell
function is total or partial. However, we can introduce data structures to
represent the graphs of partial functions, with an explicit value that represents
..L. The software tools file takes this approach, as described below.

The definition of a function requires that every element of the domain be
mapped to some element of the result type , which can be the undefined value.
This means that we need to use a new type to represent the result returned by
a function, called FunVals . This type has two kinds of element. The first is
Undefined, which means that the result value is .L. The other is called Value ,
and takes an argument which is the actual value returned by the function.

Now we can define a predicate that returns True if its argument is a partial
function (in other words if some member of its result type is undefined), and
False otherwise:

isPartialFunction
.. (Eq a, Show a, Eq b, Show b)
=> Set a -> Set b -> Set (a,FunVals b) -> Bool

9.5. FUNCTION COMPOSITION 249

There is also a function isFun that takes a relation, and determines whether
the relation is also a function:

isFun : : (Eq a, Show a, Eq b, Show b) =)

Set a -) Set b -) Set (a,FunVals b) -) Bool

Exercise 1. Decide whether the following functions are partial or total, and
then run the tests on the computer:

(a) isPartialFunction
[1,2,3] [2,3]
[(l,Value 2) • (2,Value 3),(3,Undefined)]

(b) isPartialFunction
[1,2] [2,3]
[(l,Value 2),(2,Value 3)]

Exercise 2. Work out the following expressions, by hand and using the com­
puter:

isFun [1,2,3] [1,2] [(l,Value 2), (2,Value 2)]
isFun [1,2,3] [1,2] [(l,Value 2), (2,Value 2),

(3,Value 2),(3,Value 1)]
isFun [1,2,3] [1,2] [(t, Value 2),

(2,Value 2),(3,Value 2)]

Exercise 3. What is the value of mystery x where mystery is defined as:

mystery:: lnt -) lnt
mystery x = if mystery x == 2 then 1 else 3

Exercise 4. What is the value of mystery2 x where mystery2 is defined as:

mystery2 : : lnt -) lnt
mystery2 x = if x == 20 then 2 + mystery2 x else 3

9.5 Function Composition

It is often possible to structure a computation as a sequence of function ap­
plications organised as a pipeline : the output from one function becomes the
input to the next, and so on. In the simplest case there are just two functions
in the pipeline : the input x goes into the first function, g, whose output goes
into the second function f (Figure 9.6).

Definition 62 . Let 9 :: a -t band f ::b -t C be functions. Then the composi­
tion of f with g, written fog , is a function such that:

(f 0 g)

(f 0 g) x =
a-tc

f (g x)

250 CHAPTER 9. FUNCTIONS

Figure 9.6: Functional Composition (J 0 g) x = I (g x)

When you think of composition as a pipeline, the input x goes into the first
function g; this produces an intermediate result 9 x which is the input to the
second function I, and the final result is I (g x). Notice, however, that in
the notation log, the functions are written in backwards order . This may be
unfortunate, but this is the standard definition of function composition, and
you need to be familiar with it. Just remember that log means first apply g,
then I .

The 0 symbol is an operator that takes two functions and produces a new
function, just as + is an operator that takes two numbers and produces a new
number. The first argument to 0 is I :: b -t c, and the second argument is
9 :: a -t b, and the entire composition takes an input x :: a and returns a result
(J (g x)) :: c. Therefore the 0 operator has the following type:

(0) :: (b -t c) -t (a -t b) -t (a -t c)

Haskell has a built-in operator for function composition. Since 0 is unfor­
tunately not an ASCII character, the full stop character ' .' is used instead to
denote function composition.

Definition 63. The Haskell function composition operator is:

(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f.g) x = f (g x)

Example 112. Suppose that you wish to increment the second elements of a
list of pairs called lstpairs. You could write this as

map increment (map snd lstpairs)

but it is often clearer to write it as

map (increment.snd) lstpairs

This helps the reader to see that several operations are going to be applied in
turn to each element of the list.

Composition is often used to define a processing pipeline, as shown in Figure
9.6, but weoften need more than two functions in the pipeline. Figure 9.7 shows
a typical example, where four functions are connected together using o. The
following theorem states an extremely important property of the 0 operator
which makes it easier to define such pipelines:

9.5. FUNCTION COMPOSITION 251

Theorem 67. Functional composition (0) is associative. That is, for all func­
tions h:: a -t b,g :: b -t c,/:: c -t d,

lo(goh) = (fog)oh,

and both the left and right hand sides of the equation have type a -t d.

Proof. We need to prove that the two functions 1 0 (g 0 h) and (f 0 g) 0 hare
extensionally equal. To do this we need to choose an arbitrary x :: a, and show
that both functions give the same result when applied to x. That is, we need
to prove that the following equation holds:

(f 0 (g 0 h)) x = ((f 0 g) 0 h) x.

This is done by straightforward equational reasoning, repeatedly using the
definition of 0:

((fog)oh) x
= (fog)(hx)

I (g (h x))
= I ((g 0 h) x)
= (f 0 (g 0 h)) x

o
The significance of this theorem is that we can consider a complete pipeline

as a single black box; there is no need to structure it two functions at a time.
Similarly, you can omit the redundant parentheses in the mathematical nota­
tion . The following compositions are all identical :

(lI o h) 0 (fJ o / 4)
11 0 (12 0 (fJ 0 14))
((lI o h) o h) O/ 4
lIo((h ofJ)o/4)

(II 0 (12 0 h)) 0 /4

The parentheses in all of these expressions have no effect on the meaning of
the expression, and they make the notation harder to read, so it is customary
to omit them and write simply

II oh ofJ o /4.

Notice, however, that you must put parentheses around an expression denoting
a function when you apply it to an argument. For example ,

is the correct way to apply the pipeline to the argument x. It would be incorrect
to omit the outer parentheses, as in

II 0 h 0 h 0 /4 x,

252 CHAPTER 9. FUNCTIONS

I-G-[]-G-G-I
Figure 9.7: A Pipeline Defined via Functional Composition 14 0 h 0 h 0 II

because function application takes precedence over all other operations, and
the meaning would be equivalent to

which is not what was intended. In functional programming it is common to
see a pipeline of functions connected with the 0 operator (written as '.' in
Haskell); if this expression is applied to an argument then there is just one
pair of parentheses around the whole pipeline, but otherwise no parentheses
are needed. For example, here are two Haskell equations, defining a function g
and a data value y:

g = f1 . f2 . f3 . f4
Y = (f1 . f2 . f3 . f4) x

The software tools contain an implementation of the following function; its
two arguments are functions represented as graphs, and it returns the compo­
sition, also represented as a graph.

functionalComposition
. . (Eq a, Show a, Eq b, Show b, Eq c, Show c)
=> Set (a,FunVals b) -> Set (b,FunVals c)

-> Set (a,FunVals c)

Exercise 5. Work out the values of the following expressions, and then check
your result by evaluating them with the computer:

map (increment.increment.increment) [1,2,3]
map «+ 2).(* 2» [1,2,3]

Exercise 6. Using the definitions below, work out the type and graph of f .g,
and check using the computer.

f lnt -> String
f 1 = "cat"
f 2 = "dog"
f 3 = "mouse"

g Char -> lnt
g 'a' = 1

9.6. PROPERTIES OF FUNCTIONS

g 'b' = 2
g 'e' = 2
g 'd' = 3

253

Exercise 7. Functions are often composed with each other in order to form a
pipeline that processes some data. What does the following expression
do?

«map (+ l)).(map snd)) xs

Exercise 8. Sometimes access to deeply nested constructor expressions is per­
formed by function composition. What is the value of this expression?

(fst.snd.fst) «(1,(2,3)),4).

9.6 Properties of Functions

We have used four sets to characterise a function: the argument type , the
domain, the result type , and the image. There are several useful properties
of functions that concern these four sets, and we will examine them in this
section .

9.6.1 Surjective Functions

A surjective function has an image which is the same as its result type (some­
times called the range). Thus the function can, given suitable input, produce
any of the elements of the result type .

Definition 64. A function f :: A -t B is surjective if

VbEB.(3aEA.fa = b).

Example 113. The function even :: Integer -> Bool has a result type
with only two elements, True and False. Both of these values are in the
function's image, as demonstrated by the applications even 2 = True and
even 3 = False. Therefore every element of the result type is also an element
of the image, and even is surjective.

Example 114. The t tmes .tvo function takes an integer and doubles it:

times_two :: Int -> Int
times_two n = 2 * n

The image of the function is the set of even integers ; this is a proper subset of
the result type, so times_two is not surjective.

254

Surjective
functions

I
•

CHAPTER 9. FUNCTIONS

Non-surjective
functions

Figure 9.8: Two Surjective Functions and Two that are Not Surjective

Example 115. The increment function takes an integer argument and adds
1 to it. The result type is Integer, and the image is also Integer, since every
integer is 1 greater than its predecessor. Thus the image set is the same as the
result type , and the function is surjective.

Example 116. Let A = {1,2,3} and B = {4,5}. Define f :: A ~ Bas
{(I , 4), (2,5), (3, 4)}. Then f is surjective, since there is an ordered pair whose
second component is 4, and the same is also true of 5.

Example 117. Figure 9.8 shows two surjective functions and two that are not
surjective. The domain and image of each function is circled.

If the result type of a function is larger than its domain, then the function
cannot be surjective.

Example 118. Let A ={2,3} and B = {4, 5, 6}. If f :: A ~ B then it is not
surjective, since it is not possible for it to contain three ordered pairs (Xl,4),
(x2,5) and (x3,6) such that XI , X2 and X3 are all elements of A and are all
distinct.

Example 119. The following Haskell functions are surjective:

not :: Boo1 -) Boo1
member v :: [Int] -) Boo1
increment :: rnt -) rnt
id :: a -) a

All of these functions have result types that are no larger than their domain
types.

9.6. PROPERTIES OF FUNCTIONS 255

Example 120. The following Haskell functions are not surjective. The length
function returns only zero or a positive integer, and abs returns the absolute
value of its argument, so both functions can never return a negative number.
The times_two function may be applied to an odd or an even number, but it
always returns an even result .

length :: [a] -) lnt
abs : : lnt -) lnt
times_two :: lnt -) lnt

The software tools file defines the following function, which takes a graph
representation of a function and determines whether it is surjective:

isSurjective
. . (Eq a, Show a, Eq b, Show b)
=) Set a -) Set b -) Set (a,FunVals b) -) 8001

Exercise 9. Decide whether the functions represented by the graphs in the
following examples are surjective, and then check using the computer:

isSurjective [1,2,3] [4,5]
[(1, Value 4), (2, Value 5), (3, Value 4)]

isSurjective [1,2,3] [4,5]
[(1, Value 4), (2, Value 4), (3, Value 4)]

Exercise 10. Which of the following functions are surjective?

(a) J:: A ~ B, where A = {I, 2}, B = {2,3, 4} and J = {(I, 2), (2,3)} .

(b) g :: C ~ D, where C = {I, 2, 3}, D = {I, 2} and
9 = {(I, 1), (2,1), (3,2)}.

Exercise 11. Which of the following functions are not surjective, and why?

(a) map increment :: [lnt] -) [lnt]

(b) take 0 .. [a] -) [a]

(c) drop 0 •. [a] -) [a]

(d) (++) xs : : [a] -) [a]

9.6.2 Injective Functions

The essential requirement that a relation must satisfy in order to be a function
is that it maps each element of its domain to exactly one element of the image.
An injective function has a similar property: each element of the image is the
result of applying the function to exactly one element of the domain.

256

Injective
functions

CHAPTER 9. FUNCTIONS

Non-injective
functions

Figure 9.9: Two Injective Functions and Two that are Not Injective

Definition 65. The function f :: A ~ B is injective if

Va, a' E A. a =/: a' ~ fa=/: f a'

Example 121. Let A = {I,2} and B = {3,4, 5}. Define f :: A ~ B as
{(I, 3), (2, 5)}. Then f is injective, because 3 appears in only one ordered pair,
(1,3), and 5 appears in only one ordered pair, (2,5) .

Example 122. Let A = {I,2,3} and B = {4,5}. Define g :: A ~ B as
{(I, 4), (2,5), (3, 5)}. Then g is not injective because it contains the ordered
pairs (2,5) and (3,5), which have different argument values but the same result
value.

Example 123. Figure 9.9 shows four functions , two of which are injective .

Example 124. The following Haskell functions are injective:

(/\) True : : Bool -> Bool
increment :: lnt -> lnt
id :: a -> a
times_two :: lnt -> lnt

Example 125. The following Haskell functions are not injective . The length
function is not injective, because it will map both [1 ,2,3] and [3,2, 1] to
the same number, 3. There are infinitely many other examples that would
suffice to show that length is not injective, but you only have to give one. The
function take n is not injective because it will map both [al , a2 , . . . , an,x] and
[at,a2,· .· ,an, y] to the same result [at,a2, . . . , an], even if x=/: y .

9.6. PROPERTIES OF FUNCTIONS

length .. [a] -> lnt
take n . . [a] -> [a]

257

The software tools file defines the following function, which determines
whether a function (specified by its graph) is injective. The first argument
is the function's domain, represented as a set ; the second argument is its result
type, also represented as a set; and the third argument is its graph.

islnjective
. . (Eq a, Show a, Eq b, Show b)
=> Set a -> Set b -> Set (a, FunVals b) -> Bool

Example 126. Let A = {I ,2,3} and B = {4,5 ,6} . Define three functions as
follows:

lI ,h,h ..
II =

h =

h =

A-.tB

{(I,4),(2,6),(3,5)}

{(I,4),(2,4),(3,5)}

{(I, 4), (3, 5)}

We can use the software tools to explore the properties of various compositions
of these functions. First we need to represent the function graphs in Haskell:

fun_domain = [1,2,3]
fun_codomain = [4,5,6]

funl = [(1, Value 4), (2, Value 6), (3, Value 5)]
fun2 = [(1, Value 4), (2, Value 4), (3, Value 5)]
fun3 = [(1, Value 4), (2, Undefined), (3, Value 5)]

Now we can try various experiments:

islnjective fun_domain fun_codomain
(functionalComposition funl fun2)

islnjective fun_domain fun_codomain
(functionalComposition funl fun3)

islnjective fun_domain fun_codomain
(functionalComposition fun2 fun3)

Exercise 12. Determine whether the functions in these examples are injective,
and check your conclusions using the computer:

(a) islnjective [1,2,3] [2,4]
[(l,Value 2),(2,Value 4),(3,Value 2)]

(b) islnjective [1,2,3] [2,3,4]
[(l,Value 2),(2,Value 4),(3,Undefined)]

258 CHAPTER 9. FUNCTIONS

Exercise 13. Which of the following functions are injective?

(a) f :: A -t B, where A = {I, 2}, B = {I, 2, 3} and f = {(I, 2), (2, 3)}.

(b) g:: C -t D, where C = {I, 2, 3}, D = {I,2} and 9 = {(I, 1), (2, 2)}.

Exercise 14. Suppose that f :: A -t B and A has more elements than B.
Can f be injective?

9.6.3 The Pigeonhole Principle

The Pigeonhole Principle is a common-sense form of reasoning about the rela­
tionship between two finite sets. It says that if A and B are finite sets, where
IAI > IBI then no injection exists from A to B. In other words, since each
element of the domain must be assigned a pigeonhole in the image, and the
domain is bigger than the image, then there must be an element left over, since
at most one pigeon fits in a pigeonhole. This principle is frequently used in
set theory proofs, especially proofs of theorems about functions. There are a
variety of ways in which to state the pigeonhole principle formally.

Theorem 68 (Pigeonhole Principle). Let A and B be finite sets, such that
IAI > IBI and IAI > 1. Let f ::A-t B. Then

3al,a2 EA. (al i- a2) /\ if a, = f a2)'

9.7 Bijective Functions

Definition 66. A function is bijective if it is both surjective and injective. An
alternative name for 'bijective' is one-to-one and onto. A bijective function is
sometimes called a one-to-one correspondence.

Example 127. Figure 9.10 shows some bijective functions and some that are
not bijective.

The domain and image of a bijective function must have the same number
of elements. This is stated formally in the following theorem:

Theorem 69. Let f :: A -t B be a bijective function. Then [domain fl =
[image fl.

Proof. Suppose that the domain A is larger than the image B . Then f cannot
be injective, by the Pigeonhole Principle. Now suppose that B is larger than
A. Then not every element of B can be paired with an element of A: there are
too many of them, so f cannot be surjective. Thus a function is bijective only
when its domain and image are the same size. 0

A bijective function must have a domain and image that are the same
size, and it must also be surjective and injective. As before, we assume that

9.7. BIJECTIVE FUNCTIONS

Bijective
functions

Non-bijective
functions

259

I•
2•
3•

Figure 9.10: Two Bijective Functions and Two that are Not Bijective

these functions are finite. The following function, defined in the software tools
file, takes a domain, codomain and a function, and it determines whether the
function is bijective.

isBijective
.. (Eq a, Show a, Eq b, Show b)
=> Set a -> Set b

-> Set (a,FunVa1s b) -> Boo1

Exercise 15. Determine whether the following functions are bijective, and
check your conclusions using the computer:

isBijective [1,2] [3,4] [(l,Va1ue 3),(2,Va1ue 4)]
isBijective [1,2] [3,4] [(l,Va1ue 3),(2,Va1ue 3)]

9.1.1 Permutations

Definition 67. A permutation is a bijective function f :: A -t A; i.e. it must
have the same domain and image.

Example 128. The identity function is a permutation.

The only thing a permutation function can do is to shuffle its input; it
cannot produce any results that do not appear in its input.

Example 129. Let A = {I, 2, 3} and let f :: A ~ A be defined by the graph
{(I, 2), (2, 3), (3, I)} . Then f is a permutation.

260 CHAPTER 9. FUNCTIONS

Example 130. Let X = [Xl, X2, • . • , xn] be an array of values, and let Y =
[Yl, Y2 , ,Yn] be the result of sorting X into ascending order . Define A =
{I, 2, ,n} to be the set of indices of the arrays X and Y . We can define a
function 1 :: A ~ A which takes the index of a data value in X and returns
the location of that same data value in Y. Then 1 is a permutation.

Sometimes it is convenient to think of a permutation as a function that
reorders the elements of a list; this is often simpler and more direct than defining
a function on the indices. For example, it is natural to say that a sorting
function has type [a] ~ [a]. Technically, the function 1 used in Example 130 is
a permutation. The following definition provides a convenient way to represent
a permutation as a function that reorders the elements of a list:

Definition 68. A list permutation function is a function 1 :: [a] ~ [a] which
takes a list of values and rearranges them using a permutation g, such that

" . (I) "(.)xs .. t = xs .. 9 t .

Example 131. The functions sort and reverse are list permutation func­
tions.

If you rearrange a list of values and then rearrange them again, you sim­
ply end up with a new rearrangement of the original list, and that could be
described directly as a permutation. This idea is stated formally as follows:

Theorem 70. Let I,9 :: A ~ A be permutations. Then their composition
log is also a permutation.

The following function, defined in the software tools file, determines whether
a function is a permutation. The first two arguments are the domain and result
type, which must be finite sets with equality, and the third argument is the
function graph .

i sPermutat ion
• • (Eq a, Show a)
=> Set a -> Set a

-> Set (a,FunVals a) -> Bool

Exercise 16. Let A = {I, 2,3} and 1 :: A ~ A, where
1 = ((1,3), (2,1), (3,2)} . Is 1 bijective? Is it a permutation?

Exercise 17. Determine whether the following functions are permutations,
and check using the computer:

isPermutation
[1.2,3] [1,2,3]
[(l.Value 2).(2. Value 3).(3. Undefined)]

isPermutation
[1,2,3] [1.2,3]

[(l.Value 2).(2. Value 3),(3, Value l)J

9.8. CARDINALITY OF SETS

Exercise 18. Is f, defined below, a permutation?

f :: Integer -> Integer
f x = x+1

261

Exercise 19. Suppose we know that the composition log of the functions I
and 9 is surjective. Show that I is surjective.

9.7.2 Inverse Functions

A function I :: A -+ B takes an argument x :: A and gives the result (J x) :: B.
The inverse of the function goes the opposite direction: given a result y :: B ,
it produces the argument x :: A which would cause I to yield the result y.

Not all functions have an inverse. For example , if both (1,5) and (2,5) are
in the graph of a function, then there is no unique argument that yields 5.
Therefore the definition of inverse requires the function to be a bijection.

Definition 69. Let I :: A -+ B be a bijection. Then the inverse of I, denoted
1-1, has type I-I :: B -+ A, and its graph is

{(y,x) I 3x,y. (x,y) E J}.

Example 132. Let A = {1,2,3} , B = {4,5,6} and let I :: A -+ A have the
graph
{(I, 4), (2,5), (3, 6)}. Then its inverse is /-1 = {(4, 1), (5,2), (6, 3)}.

Example 133. The Haskell function decrement is the inverse of increment.
Similarly, increment is the inverse of decrement.

increment, decrement : : Integer -> Integer
increment x = x+1
decrement x = x-1

Exercise 20. Suppose that I :: A -+ A is a permutation. What can you say
about I-I?

9.8 Cardinality of Sets

One of the most fundamental properties of a set is its size, and this must
be defined carefully because of the subtleties of infinite sets . Bijections are a
crucial tool for reasoning about the sizes of sets .

A bijection is often called a one-to-one correspondence, which is a good
description: if there is a bijection / :: A -+ B, then it is possible to associate
each element of A with exactly one element of B, and vice versa. This is really
what you are doing when you count a set of objects: you associate 1 with
one of them, 2 with the second, and so on. When you have associated all the
objects with a number, then the number n associated with the last one is the

262 CHAPTER 9. FUNCTION8

number of objects. Thus the number of objects in 8 is n, if there is a bijection
f :: {1,2, .. . ,n } -t 8 . This idea is used formally to define the size of a set ,
which is called its cardinality:

Definition 70. A set 8 is finite if and only if there is a natural number n such
that there is a bijection mapping the natural numbers {O, 1, . . , , n - I} to 8 .
The cardinality of 8 is n, and it is written as 181.

In other words, if 8 is finite then it can be counted, and the result of the
count is its cardinality (i.e. the number of elements it contains).

We would also like to define what it means to say that a set is infinite.
It would be meaningless to say 'a set is infinite if the number of elements is
infinity' , because infinity is not a natural number. We need to find a more
fundamental property that distinguishes infinite sets from finite ones.

A relevant observation is that we can make a one-to-one correspondence
between the set N of natural numbers and the set E of even numbers, and yet
there are natural numbers which are not even.

o 1 2 3 4
02468

Now, we can calculate the ith element of the second row by applying f to the
ith element of the first row, where f :: N -t E is defined by f x = 2 x x.
Furthermore, f is an injective function, and E is a proper subset of N. It would
certainly be impossible to find an f with these properties for a finite set. This
suggests a method for defining infinite sets :

Definition 71. A set A is infinite if there exists an injective function f :: A -t
B such that B is a proper subset of A.

We can use the properties of a function over a finite domain A and result
type B to determine their relative cardinalities:

• If f is a surjection then IAI ~ IBI .

• If f is an injection then IAI ~ lEI.

• If f is a bijection then IAI = IBI·

Earlier we discussed counting the elements of a finite set , placing its ele­
ments in a one-to-one correspondence with the elements of {I, 2, . . . ,n}. Even
though there is no natural number n which is the size of an infinite set, we can
use a similar idea to define what it means to say that two sets have the same
size, even if they are infinite:

Definition 72. Two sets A and B have the same cardinality if there is a
bijection f :: A -t B.

9.8. CARDINALITY OF SETS 263

Example 134. Let A = {1,2,3} and B = {cat, mouse, rabbit}. Define f ::
A~Bas

f = {(I, cat), (2, mouse), (3, rabbit)} .

Now f is surjective and injective (you should check this), so it is a bijection .
Hence the cardinality of B is

IBI = 3.

The previous example may look unduly complicated, but the point is that
exactly the same technique can be used to investigate the sizes of infinite sets .

Example 135. We can place the set I of integers into one-to-one correspon­
dence with the set N of natural numbers:

N = 0 1 2
1= 0 -1 1

3 4 5 6
-2 2 -3 3

This is done with the function f :: I ~ N, defined as:

f x _ { 2 x x, if x ~ a
-2 x x-I, if x < a

Now f is a bijection (you sho';lld check that it is), so I has the same cardinality
as N .

We have already established that the cardinality of the set of even numbers
is the same as the cardinality of N, so this is also the same as the cardinality
of I. The size of the set of integers is the same as the size of the set of integers
that are non-negative and even!

Definition 73. A set S is countable if and only if there is a bijection f :: N ~

S.

A set is countable if it has the same cardinality as the set of natural num­
bers . In daily life, we use the word counting to describe the process of enumer­
ating a set with 1,2,3, .. . , so it is natural to call a set countable if it can be
enumerated-even if the set is infinite.

Exercise 21. Explain why there cannot be a finite set that satisfies Definition
71.

Exercise 22. Suppose that your manager gave you the task of writing a pro­
gram that determined whether an arbitrary set was finite or infinite.
Would you accept it? Explain why or why not .

Exercise 23. Suppose that your manager asked you to write a program that
decided whether a function was a bijection. How would you respond?

264 CHAPTER 9. FUNCTIONS

9.8.1 The Rational Numbers are Countable

It turns out that some infinite sets are countable and others are not, as we
will see shortly. In computer science applications it is particularly important
to know whether an infinite set is countable, since a computer performs a
sequence of operations which is countable . It is often possible for a computer
to print out the elements of a countable set; it will never finish printing the
entire set, but any specific element will eventually be printed . However, if a
set is not countable, then the computer will not even be able to ensure that a
given element will eventually be printed.

A rational number is a fraction of the form x/y, where x and yare integers.
We can represent a ratio as a pair of integers, the first being the numerator
and the second the denominator .

Now suppose that we want to enumerate all of these ratios: we need to put
them into one-to-one correspondence with N. Our goal is to create a series
of columns, each of which has an index n indicating its place in the series. A
column gives all possible fractions with n as the numerator.

(1,1)
(1,2) (2,1)
(1,3) (2,2)
(1,4) (2,3)
(1,5) (2,4)

(3,1)
(3,2)
(3,3)

(4,1)
(4,2) (5,1)

Every line in this sequence is finite, so it can be printed completely before
the next line is started. Each time a line is printed, progress is made on all of
the columns and a new one is added. Every ratio will eventually appear in the
enumeration. Thus the set Q of rational numbers can be placed in one-to-one
correspondence with N, and Q is countable.

Exercise 24. The software tools file contains a definition of a list named
rationals, which uses the enumeration illustrated above. Try evalu­
ating the following expressions with the computer:

take 3 rationals
take 15 rationals

9.8.2 The Real Numbers are Uncountable

Obviously, if A ~ B we cannot say that set B is larger than set A, since they
might be equal. Surprisingly, even if we know that A is a proper subset of B,
A C B, we still cannot say that B has more elements: as the previous section
demonstrated, it is possible that both are infinite but countable. For example,
the set of even numbers is a proper subset of the set of natural numbers, yet
both sets have the same cardinality!

9.8. CARDINALITY OF SETS 265

It turns out that some infinite sets are not countable. Such a set is so
much bigger than the set of natural numbers that there is no possible way to
make a one-to-one correspondence between it and the naturals. The set of real
numbers has this property. In this section we will explain why, and introduce
a technique called diagonalisation which is useful for showing that one infinite
set has a larger cardinality than another.

We will not give a formal definition of the set of real numbers, but will
simply consider a real number to be a string of digits. Consider just the real
numbers x such that 0 $ x < 1; these can be written in the form .dodl d2d3 •• ••

There is no limit to the length of this string of digits.
Now, suppose that there is some clever way to place the set of real numbers

into a one-to-one correspondence with the set of natural numbers (that is,
suppose the set of reals is countable) . Then we can make a table, where the ith
row contains the ith real number Xi, and it contains the list of digits comprising
Xi. Let us name the digits in that list di,odi,ldi,2 ••• • Thus di,i means the jth
digit in the decimal representation of the ith real number Xi. Here, then, is the
table which-it is alleged-contains a complete enumeration of the set of real
numbers:

.doo dOl

.dlO dll

.d20 d21

d02 do3
dvz dl 3

d22 d23

Now we are going to show that this list is incomplete by constructing a
new real number y which is definitely not in the list . This number y also has
a decimal representation, which we will call .dyodYIdY2 Now we have to
ensure that y is different from Xo , and it is sufficient to make the Oth digit of
y (i.e. dyo) different from the corresponding digit of Xo (i.e. doo). We can do
this by defining a function different :: Digit -+ Digit. There are many ways to
define this function; here is one:

{
o ifxiO

different X = '
1, if X = 0

It doesn't matter exactly how different is defined, as long as it returns a digit
which is different from its argument.

We need to ensure that y is different from Xi for every i EN, not just for
xo. This is straightforward: just make the ith digit of y different from the ith
digit of Xi:

dYi = different Xii .

Now we have defined a new number y ; it is real, since it is defined by
a sequence of digits, and it is different from Xi for any i. Furthermore, our
construction of y did not depend on knowing how the enumeration of Xi worked:

266 CHAPTER 9. FUNCTIONS

for any alleged enumeration whatsoever of the real numbers, our construction
will give a new real number which is not in that list. The conclusion, therefore,
is that it is impossible to set up a one-to-one correspondence between the set
R of reals and the set N of naturals. R is infinite and uncountable.

9.9 Suggestions for Further Reading

The books on set theory cited in Chapter 4 also explain the basic properties of
functions.

In Section 9.4 we proved that the Halting Problem is unsolvable. This result
has connections to undecidability (see the readings suggested for Chapter 2) and
it is fundamental to computability theory, which is covered in many standard
textbooks.

An interesting class of function is cryptography algorithms. These range
from simple ciphers, which provide interesting applications of the basic prop­
erties of functions, all the way to modern public key systems. A history of the
subject is given by Singh [25J .

9.10 Review Exercises

Exercise 25. A program contains the expression (f. g) x.

(a) Suppose that when this is evaluated, the g function goes into an
infinite loop. Does this mean that the entire expression is ..L?

(b) Now, suppose that the application of f goes into an infinite loop.
Does this mean that the entire expression is .L?

Exercise 26. Each part of this exercise is a statement that might be correct
or incorrect. Write Haskell programs to help you experiment, so that you
can find the answer.

(a) Let fog be a function. If f and 9 are surjective then fog is surjective.

(b) Let fog be a function. If f and 9 are injective then fog is injective.

(c) If fog is bijective then f is surjective and 9 is injective.

(d) If f and 9 are bijective then fog is bijective.

Exercise 27. The argument and result types given here are sets, not expres­
sions or types in Haskell. Given the functions

f {1,2,3} -> {4,5,6}
f 1 = 4
f 2 = 6
f 3 = 5

9.10. REVIEW EXERCISES

g : {4,5,6} -) {1,2,3}
g 4 = 1
g 5 = 1
g 6 = 2

what is

(g 0 f) 1
(g 0 f) 3
(f 0 g) 4
(f 0 g) 5

Exercise 28. State the properties of the following functions:

f : {3,4,5} -) {3,4,5}
f 3 = 4
f 4 = 5
f 5 = 3

g : {0,1,2} -) {0,1,2}
g 0 = 0
g 1 = 1
g 2 = 2

h : {3,4,5} -) {3,4.5}
h 4 = 3
h 5 = 4
h 3 = 5

Exercise 29. Given the functions

f : {x,y,z} -) {7,8,9,10}
f x = 8
f Y = 10
f z = 7

g : {7,8,9,10} -) {x,y,z}
g 7 = x
g 8 = x
g 9 = x
g 10 = x

h : {7,8,9,10} -) {7,8,9.10}
h 7 = 10
h 8 = 7
h 9 = 8
h 10 = 9

267

268

describe the following functions:

CHAPTER 9. FUNCTIONS

g 0 f
h 0 f
g 0 h

Exercise 30. Given the domain and codomain {I, 2, 3, 4, 5}, which of the fol­
lowing are functions?

f 1 = 2
f 2 = 3
f 3 = 3
f 3 = 4
f 4 = 4
f 5 = 5

g 1 = 2
g 2 = 1
g 3 = 4
g 4 = 4
g 5 = 3

h 1 =2
h 2 = 3
h 3 = 4
h 4 = 1

Exercise 31. Determine which of the following definitions are partial func­
tions over the set {I,2,3}.

f 1 = undefined
f 2 = 1
f 3 = 2

g 1 = 3
g 2 = 2
g 3 = 1

h 1 = undefined
h 2 = undefined
h 3 = undefined

Exercise 32. The following functions are defined over the sets {I, 2, 3} and
{7,8, 9, lO}.

f 1 = 7
f 2 = 8

9.10. REVIEW EXERCISES

f 3 = 9

g 7 = 1
g 8 = 2
g 9 = 3
g 10 = 1

h 1 = 3
h 2 = 2
h 3 = 1

which of the following are surjections?

h 0 h
fog
g 0 f
h 0 f

g 0 h

269

Exercise 33. The functions f, g and h are defined over the sets {1,2,3} and
{4, 5, 6}; which of them are injections?

f 1 = 4
f 2 = 5
f 3 = 5

g 4 = 1
g 5 = 2
g 6 =3

h 4 = 1
h 5 = 1
h 6 = 1

Exercise 34. Consider the following functions defined over the sets {l, 2, 3}
and {6, 7, 8, 9}; which of them are bijections?

f 6 = 1
f 7 = 2
f 8 = 3
f 9 = 3

g 1 =3
g 2 = 2
g 3 = 1

h 1 = 6

270

h 2 = 7
h 3 = 8

gog
h 0 f
f 0 h

CHAPTER 9. FUNCTIONS

Exercise 35. Which of these functions is a partial function?

function! True = False
function! False = function! False

function2 True = True
function2 False = True

Exercise 36. Using normalForm and map, write a function that takes a list
of pairs and determines whether the list represents a function. You can
assume in this and the following questions that the domain is the set of
first elements of the pairs and the image is the set of second pair elements.

Exercise 37. Using normalForm and map, define a function islnjection so
that it returns True if the argument represents an injective function and
False otherwise.

Exercise 38. Is it possible to write a function that determines whether a list
of pairs represents a surjective function without passing in the codomain
of the function?

Exercise 39. How much information would you need to know about a Haskell
function in order to be able to tell that it is not the identity function?

Exercise 40. Write a function with type

compare
.. (Eq a, Eq b, Eq c, Show a, Show b, Show c)
=) (a -) b)

-) (b -) c) -) (a -) c) -) a -) Bool

that takes three functions f, g and h and determines whether fog h
for some value of type a.

Exercise 41. Is this definition of isEven inductive?

isEven :: Int -> Bool
isEven 0 = True
isEven 1 False
isEven n isEven (n-2)

9.10. REVIEW EXERCISES

Exercise 42 . Is this definition of isOdd indu ctive?

isOdd 0 = False
isOdd 1 = True
isOdd n =

if (n < 0) then isOdd (n+2) else isOdd (n-2)

271

Chapter 10

Discrete Mathematics
Circuit Design

•In

The techniques of discrete mathematics which you have been studying in this
book are used throughout computer science. So far we have seen many small
examples of the application of mathematics to computing, and we have also
used programming to help with the mathematics.

This chapter is a complete change of pace: there won't be any new mathe­
matics, but instead we explore in depth one typical and important application
to computing: the use of discrete mathematics to help with the process of
designing digital circuits. The aim of this chapter is to show a substantive
example of the practical application of discrete mathematics. In order to do
this, it will be necessary to go into some depth in the subject of digital circuits ,
but hardware design is not the real subject and we do not give a thorough
presentation of it here.

In addition to applying discrete mathematics, we will use Haskell to specify
and simulate circuits. The combination of discrete mathematics and Haskell
makes it possible to carry out several useful tasks: precise specification of
circuits, simulation, correctness proofs, and circuit derivations.

Digital circuit design is a vast subject area , and there is not space here to
cover all of it. Therefore we will consider only one class of digital circuits (com­
binational circuits, which don't contain flip flops). However, that restriction
is made only to keep the chapter short; discrete mathematics is used heavily
throughout the entire subjects of digital circuit design and computer architec­
ture.

You do not need to have any prior knowledge about hardware in order to
read this chapter; everything you need to know is covered here . We will begin
by defining the basic hardware components, Boolean logic gates, and then will
look at how to specify and simulate simple circuits using Haskell. Then we
apply the methods of Propositional Logic to circuit design, including reasoning

273

C. Hall et al., Discrete Mathematics Using a Computer
© Springer-Verlag London 2000

274 CHAPTER 10. DISCRETE MATHEMATICS IN CIRCUIT DESIGN

Figure 10.1: Symbol for the Inverter

with truth tables and algebraic reasoning about circuits .
One of the principal problems in designing circuits is ensuring that they

are correct . It is extremely expensive to debug circuit designs by building and
testing them, so getting the design right in the first place is crucial. The last
sections in this chapter address this issue: we use mathematics to state precisely
what it means for an addition circuit to be correct . We use recursion and higher
order functions to design an adder, and we use induction to prove that it works
correctly. In the course of solving this eminently practical problem, we will use
more than half of the mathematical topics covered in this book.

10.1 Boolean Logic Gates

Digital circuits are constructed with primitive circuits called logic gates. There
are logic gate that implement the basic operations of propositional logic, /\ , V,
..." as well as a few other similar operations.

The simplest logic gate is the inverter , which implements the logical not
(...,) operation. It takes one input and produces one output; Figure 10.1 shows
the standard symbol for the inverter with input a and output x. Instead of
using the r- symbol to specify an inverter, we will use the name inv; thus inva
means the output of an inverter whose input is a. The inverter's truth table is
identical to the truth table for the logical not (...,) operator. It is traditional in
circuit design to use a and 1 rather than False and True.

a inva
0 1
1 a

Some of the most commonly used logic gates take two inputs. The logical
1\ operation is performed by the and2 gate, whose symbol is shown in Figure
10.2. This gate is named and2 because it takes two inputs; there are similar
gates and3, and4 that take 3 and 4 inputs respect ively. The inclusive logical
or operation V is produced by the or2 gate (Figure 10.3), and the exclusive or
operation, which produces 1 if either argument is 1 but not both, is provided
by the xor gate (Figure lOA). The following table defines the outputs of these
logic gates .

10.2. FUNCTIONAL CIR CUIT SPECIFICATION

Figure 10.2: And Gate

Figure 10.3: Or Gate

a b and2 a b or2 a b xor a b
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

275

10.2 Functional Circuit Specification

Since a digital circuit produces outputs that depend on its inputs, a circuit
can be modelled by a mathematical function . Furth ermore, we can implement
such functions dir ectly with Haskell functions. Thi s provides several valuable
benefits, includi ng erro r checking, powerful specification techniques and too ls
for circuit simulation.

A circuit can be specified in two ways: using a Haskell function definition , or
using a schematic diagr am. Most of the time we will use both forms, and later
in the chapter you will see some of th e advantages of each kind of specification .
Meanwhile , we will look at how to write functional circuit specifications and
what the corresponding schematic diagrams look like.

A circuit's function is applied to its inputs, and the result is the output.
For example, to specify that a and b should be connected to the inputs of an

Figure 10.4: Exclusive Or Gate

276 CHAPTER 10. DISCRETE MATHEMATICS IN CIRCUIT DESIGN

Figure 10.5: The Circuit y = inv (and2 a b)

and2 gate, and the output should be named x, we would write the Haskell
specification:

x = and2 a b

Function applications are also used to make connections between several
components. The following specification says that the output of the and2 gate
should be inverted, and the inverted output is named y. Figure 10.5 shows the
corresponding circuit diagram.

y = inv (and2 a b)

The type of a circuit indicates what its inputs and outputs are. The value
carried by a wire is called a signal, and there is a class Signal of Haskell types
that can be used to represent such a value. Obviously Bool is a member of the
Signal class, since we could use True and False to represent the values of logic
signals. There are other types as well which are useful in various circumstances.
The logic gates have the following types:

inv :: Signal a => a -> a
and2, or2, xor : : Signal a => a -> a -> a

For every type in the Signal class, there are constants zero and one that
represent the basic logic values; these correspond to False and True. In the
examples that follow, specialised constants False (for logical 0 or False) and
True (for logical 1 or True) will be used; the advantage of False and True is
that the system knows which signal type to use for them, so you can omit type
signatures when evaluating expressions.

10.2.1 Circuit Simulation

A circuit simulator is a computer program that predicts the behaviour of a cir­
cuit, without requiring that the circuit be constructed physically. The program
behaves just like the circuit would: it reads in a set of inputs to the circuit,
and it produces the same outputs that the real circuit would.

Simulation is important because it is much easier, cheaper and faster to
test a design by simulating it with a computer than by constructing it. Just as
programs have to be debugged, complex circuit designs also contain errors and
must go through an extensive testing and debugging process. With a circuit

10.2. FUNCTIONAL CIRCUIT SPECIFICATION 277

simulator, it is possible to test the correctness of a design immediately; in
contrast, it may take days or weeks to fabricate a physical prototype circuit.

You can simulate any circuit by applying it to suitable signal inputs. For
example , we can simulate an and2 gate by applying it to each of the four
possible sets of input values(False is 0 and True is 1). Compare the results of
the following execution with the truth table for and2:

> and2 False False
False
> and2 False True
False
> and2 True False
False
> and2 True True
True

A useful technique is to put a set of test cases in the circuit specification file,
right after the circuit itself. This serves as documentation, a set of examples to
help a reader to understand what is going on, and it's also useful to check that
the circuit is still working when other parts of the system have been modified.

Here is a complete set of test cases for simulating the and2 gate. It is
organised just like a truth table: each line consists of a test for particular data
values of the inputs. On each line there is a -- symbol which indicates that
the rest of the line is a comment, and after the -- we give the expected result.

and2 False False
and2 False True
and2 True False
and2 True True

-- False
- - False
-- False

-- True

A convenient way to execute the test cases is to put up two windows on the
screen: a text editor containing this file, and an interactive session with Haskell.
Use the mouse to copy and paste the first line of the test into the Haskell
window, and compare the actual result with the expected result. Repeat this
for each line in the test suite.

10.2.2 Circuit Synthesis from Truth Tables

Hardware design is not a random process (at least, it shouldn't be) . There are
many systematic techniques for designing robust circuits. A common situation
is that you have the specification in the form of a truth table, and you need
to design a circuit which implements that truth table. This section presents a
systematic method for solving this problem . It has two great advantages: the
method is simple, and it always works. Sometimes the method doesn't produce
the most efficient solution, but that may not be so important, and if it is, there
are also systematic methods for optimising circuits.

278 CHAPTER 10. DISCRETE MATHEMATICS IN CIRCUIT DESIGN

Every truth table can be written in a general form, where there is one
line for every possible combination of input values, and a variable p, q, r , s . . .
specifies the value of the result . For example, here is the general truth table
for a circuit f that takes two inputs:

x y fxy

0 0 p
0 1 q
1 0 r

1 1 s

A truth table with k input variables will have 2k lines. To illustrate how
to synthesise a logic function , let 's consider the following example with three
input variables:

a b c fa be
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

The idea is simple: the output f abc should be 1 whenever the inputs
correspond to any of the lines where the rightmost column contains 01. All we
need is a logical expression which is True for each such line and False for the
others; the value of Jab c is then just the logical or of all those expressions.

Since there happen to be four lines with a result of 1, we will need four ex­
pressions, one for each of these lines: we don't yet know what these expressions
are, so we just call them exprl, expr2 and so on. The required expression has
the form

f abc = expr, V expr2 V expr3 V expr4'

The next step is to figure out what these four expressions are . The first one,
exprl, should be 1 if the inputs specify the first line of the table where the
output is 1. This happens when a = 0, b = 0 and c = 1; equivalently, it
happens when -.a, -.b and c are all true. Therefore the expression is simply
expr, = -,a /\ -,b /\ c. The other expressions are worked out the same way:

10.2. FUNCTIONAL CIRCUIT SPECIFICATION

a b c x expr
0 0 0 0
0 0 1 1 -,a /\ -,b /\ c
0 1 0 0
0 1 1 1 -,a /\ b /\ c
1 0 0 1 a /\ -,b /\ -,c
1 0 1 0
1 1 0 1 a /\ b /\ -,c
1 1 1 0

Now we just plug the expressions into the equation for f abc:

279

There are several useful refinements of this technique, but those are strictly
optional. The important point is that we have a simple method that can be used
to synthesise a logical expression-and hence a digital circuit-to implement
any truth table.

Often there is a straightforward but inefficient way to design a circuit; an
efficient implementation should be used in the final product, but this may be
difficult to design. Furthermore, debugging is quicker for easy designs. Because
of this, a useful approach is to begin by specifying the simple circuit, and
then transform it to a more efficient one. The transformation consists of a
logical proof that the two circuits have implement exactly the same function.
Boolean algebra is a powerful tool for circuit transformation; we can start with
a specification expressed as a logical expression, and transform it through a
sequence of steps until a circuit with satisfactory performance is found.

Exercise 1. Design a circuit that implements the following truth table:

a b c fabc
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Modern digital circuits can be very large and complex; current processor
chips contain several million components. Such circuits cannot be designed
as one giant diagram, with every component inserted individually. The key to
design is abstraction. The circuit is organised in a series of levels of abstraction.

At the lowest level are the logic gates and other primitive components.
These are used to design the next level up, including circuits like multiplexors,

280 CHAPTER 10. DISCRETE MATHEMATICS IN CIRCUIT DESIGN

X--f--------j

a

y----------j

Figure 10.6: Multiplexor

z

demultiplexors, half and full adders, etc . Such circuits contain around 5 to 10
lower level components, so their specifications are not too complicated. The
next level up of the design comprises basic circuits, not primitive logic gates:
a design containing 5 or 10 circuits at the level of a multiplexor, for example,
would actually contain on the order of 100 logic gates. The same process
continues for many levels of abstraction, but at all stages the design is kept
reasonably simple through the use of sufficiently high level building blocks.

This section shows just a few simple circuit designs , in order to give some
feeling for how abstraction is used. We will be concerned with just three lev­
els: the primitive logic gates; the simplest circuits, including multiplexors and
adders for individual bits, and the next level up where binary numbers are
added.

10.2.3 Multiplexors

A multiplexor is the hardware equivalent of a conditional (if-then-else) ex­
pression. It takes a control input a and two data inputs, x and y. There is one
output; if a is 0 then the output is x, but if a is 1 then the output is y. The
circuit is implemented using the standard logic gates (see Figure 10.6) :

muxl :: Signal a => a -> a -> a -> a
muxl a x y = or2 (and2 (inv a) x) (and2 a y)

A demultiplexor is the opposite of a multiplexor. It has a single data input
x , and a control input a. The circuit produces two outputs (zo, Zl). The x
input is sent to whichever output is selected by a, and the other output is 0
regardless of the value of x . Figure 10.7 shows the circuit, which is specified as
follows:

demuxl :: Signal a => a -> a -> (a,a)
demuxl a x = (and2 (inv a) x, and2 a x)

10.2. FUNCTIONAL CIRCUIT SPECIFICATION

a-,-----j

x------'--------I

Figure 10.7: Demultiplexor

Figure 10.8: Half Adder Black Box

281

Exercise 2. Recall the informal description of the multiplexor: if a is 0 then
the output is x, but if a is 1 then the output is y . Write a truth table 'that
states this formally, and then use the procedure from Section 10.2.2 to
design a multiplexor circuit. Compare your solution with the definition
of muxl given above.

10.2.4 Bit Arithmetic

It 's natural to use bits to represent Boolean values and to perform logical
calculations with them. An even more common application is to use bits to
represent numbers, for example using the binary number system. In fact, the
word 'bit ' reflects this usage: it originated as an acronym for Binary Digit.
In this section we will look at digital circuits for adding individual bits; the
following sections extend this to words representing binary numbers.

The most basic addition circuit is the half adder, which takes two bits a and
b to be added together, and produces a two-bit result (c,s) where c is the carry
and s is the sum. Figure 10.8 gives the black box diagram for a half adder , and
here is its truth table:

a b c s
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

A circuit implementing the half adder could be synthesised using the method
given in Section 10.2.2, but we could also just observe that the carry output

282 CHAPTER 10. DISCRETE MATHEMATICS IN CIRCUIT DESIGN

a [)-- c

I>-sb

Figure 10.9: Half Adder Circuit

c has the same truth table as the standard and2 logic gate , while the sum
output s is the same as the exclusive or (xor). Therefore a half adder can be
implemented with just two logic gates (Figure 1O.9).

halfAdd :: Signal a => a -> a -> (a,a)
halfAdd a b = (and2 a b, xor a b)

It is important to be sure that a circuit design is correct before actually
fabricating the hardware. One method for improving confidence in correctness
is to simulate the circuit. This approach works wellfor circuits that have a small
number of inputs (and no internal state), like halfAdd, because it's possible to
check every possible combination of input values. Most real-world circuits are
too complex for exhaustive testing, and a good approach is to perform some
testing and also to carry out a correctness proof. This provides two independent
methods for checking the circuit, greatly reducing the likelihood that errors will
go unnoticed .

Although halfAdd is simple enough to allow complete testing on all possible
inputs, we will also consider how to prove its correctness. In order to do this,
it's useful to define a bitValue function that converts a bit signal into an integer,
either 0 or 1. This function requires that the signal arguments be members of
the Static class, which ensures that they have fixed numeric values. (There
are non-static signals used in circuits with flip flops, but those details need not
concern us here.)

bitValue :: Static a => a -> Int
bitvalue x = if x==zero then 0 else 1

The following theorem says that the half adder circuit produces the correct
result; that is, if we interpret the output (c,s) as a binary number, then this is
actually the sum of the numeric values of the inputs.

Theorem 71. Let (c, s) = hal/Add a b. Then

2 x bitValue c + bitValue s = bitValue a + bitValue b.

10.2. F UNCTION AL CIRCUIT SPECIFICATION

! !
a b

c'- Full c ----
Add

l
s

Figure 10.10: Full Adder Black Box

283

Proof. This th eorem is easily proved by checking the equation for each of the
four possible combinati ons of input values. Thi s is essentially the same as using
Haskell to simulate th e circuit for all the input combinations; the only difference
is notational. (Correctness proofs for larger circuits are not essentially the same
as simulation.) The det ails of this proof are left to you to work out . 0

In order to add words representing binary numbers , it will be necessary to
add three bits: one da ta bit from each of th e words, and a carry input bit.
This function is provid ed by the f ull add er circuit (Figure 10.10); as with the
half add er, there is a two-bit result (c',s) , where c' is the carry out put and s
is the sum.

a b c c' s
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

There are many ways to implement the full adder circuit. The traditional
method, given below, uses two half adders. This is an example of the use of
abstraction in circuit design: the specification of the full adder is simplified
by the use of the halfAdd circuit. In general, larger circuits are implemented
using a handful of somewhat-smaller circui ts , and designers don 't implement
everything directly using logic gat es.

fullAdd : : Signal a => (a,a) -> a -> (a,a)
fullAdd (a,b) c = (or2 w y, s)

where (w,x) = halfAdd a b
(y,s) = halfAdd x c

284 CHAPTER 10. DISCRETE MATHEMATICS IN CIRCUIT DESIGN

C------l

[>-c.
I-- s

Figure 10.11: Implementation of Full Adder

The following theorem says that the full adder produces the correct result ;
it will be needed later to prove the correctness of adders for general binary
numbers.

Theorem 72 (Correctness of full adder). Let (c', s) = fullAdd (a, b) c, so
that c' is the carry output and s is the sum output. Then

bitValue c' x 2+ bitValue s = bitValue a + bitValue b+ bitValue c.

Exercise 3. Use Haskell to test the half adder on the followingtest cases, and
check that it produces the correct results.

Test cases for half
halfAdd False False
halfAdd False True
halfAdd True False
half Add True True

adder, with predicted results
o 0
o 1
1 0
1 1

Exercise 4. Prove Theorem 71 using truth tables.

10.2.5 Binary Representation

Binary numbers consist of a sequence of bits called a word. This is represented
as a list. For example, if you have four individual signals named w, x, y
and z, you can treat them as a word by writing [w, x, y, z], and its type is
Static a :::} [a] .

There are, unfortunately, two traditional schemes for numbering the bits in
a word: [xO,Xt,X2,X3] and [X3,X2,Xt,XO]. We will use the first scheme, where
the leftmost bit of a word has index 0 and the rightmost has index k -1, where
k is the number of bits in the word. The binary value of the word [xo, Xt, X2,X3]
is

Xo X 23 + Xt x 22 + X2 X 2t + X3 X 20
•

In general , the value of a k-bit word x = [Xo, . . . , xk-d is

k-tL Xi x 2k - (i+l) .

i=O

10.3. RIPPLE CARRY ADDITION

x y

' - ~­CLf-jC
s

Figure 10.12: 4-Bit Ripple Adder Black Box

This value is calculated by the wordValue function:

wordValue :: Static a => [a] -> Integer
wordValue [] = 0
wordValue (x:xs) = 2-k * bitValue x + wordValue xs

where k = length xs

285

Notice that in the binar y number system the smallest value that can be
represented in k bits is 0, and the largest value is 2k - 1. Negative numbers are
not representable at all in the binary system. Most modern computers represent
integers using the two's complement number system , which allows for negative
numbers. One nice propert y of two' s complement is that an ordinary binar y
addition circuit can be used to perform addition on two's complement numbers.
Consequently we won't worry about negative numbers here , but will proceed
to the addition of binary numbers.

Exercise 5. Work out the numeric value of the word [1,0,0,1 ,0]. Then check
your result by using the computer to evaluate:

wordValue [True,False,False,True,False]

10.3 Ripple Carry Addition

A ripple carry add er (Figure 10.12) is used to calculate the sum of two words.
When the word size is four bits, the binary arguments are words containing
the bits [XO,Xl,X2,X3] and [YO ,Yl ,Y2,Y3]. The most significant bits are Xo and
Yo, and appear on the left of the word; the least significant bits are X3 and Y3 ,
and they appear at the right of the word. The ripple carry adder also takes
a carry input c (this makes it possible to add larger numbers by performing a
sequence of additions). The output produced by the circuit is a single carry
output bit, and a word of sum bits. We require that the two input words and
the sum word all contain the same number of bits .

The following specification (Figure 10.13) uses four full adders to construct
a 4-bit ripple carry add er. In bit position i, th e data inputs are X i and Y i , and

286 CHAPTER 10. DISCRETE MATHEMATICS IN CIRCUIT DESIGN

c

Figure 10.13: 4-Bit Ripple Carry Adder

the carry input is CHI . The sum produced by position i is si, and the carry
output Ci will be sent to the bit position to the left (position i-I).

add4 :: Signal a => a -> [(a,a)] -> (a, [a])
add4 c [(xO,yO),(xl,yl),(x2,y2),(x3,y3)]

(cO, [sO,sl,s2,s3])
where (cO,sO) = fullAdd (xO,yO) cl

(cl,sl) = fullAdd (xl,yl) c2
(c2,s2) = fullAdd (x2,y2) c3
(c3,s3) = fullAdd (x3,y3) c

To use the adder, we must convert the input numbers into 4-bit binary
representations. For example, here is the addition of 3 + 8.

Example: addition of 3 + 8
3 + 8
= 0011 (2+1 = 3)

+ 1000 (8 = 8)
= 1011 (8+2+1 = 11)

Calculate this by evaluating
add4 False [(False,True),(False,False),

(True,False),(True,False)]
The expected result is

(False, [True,False,True,True])

Exercise 6. Use Haskell to evaluate the example above , and check that the
result matches the expected result.

10.3.1 Circuit Patterns

The add4 specification in the previous section is not too complicated, but it
would be awfully tedious to extend it to handle words containing 32 or 64 bits
(which are the sizes most commonly used with current generation processors).

10.3. RIPPLE CARRY ADDITION

:: b

:: c

Figure 10.14: Building Block Circuit for mscanr

287

a'

Yo-.

Figure 10.15: Structure of mscanr Pattern

The analogous specifications would contain 32 or 64 local equations, and there
would be a correspondingly large number of indexed names. Besides the sheer
size, such specifications would be highly error-prone. Furthermore, it would be
better to define the family of all ripple carry adders, rather than to keep on
defining new ones at various different word sizes.

A much better approach is to define the general k-bit ripple carry adder
once and for all, so that it works for arbitrary k. To do this, we can't name the
individual bits explicitly, like xo, Xl and so on. Instead, we need to use a method
that works for any word size without referring explicitly to the individual bits.
The most intuitive description of the adder would say 'each full adder has its
carry input connected to the carry output of its right neighbour,' and this is
exactly the idea that needs to be formalised with a function.

A higher order function can be used to express the abstract structure of
circuits like add4 . The idea is to write a function whose argument is a circuit
specification; the higher order function connects up as many copies as required
of the circuit it is given. Figure 10.14 shows the sort of building block needed
for the ripple carry adder; it matches the black box structure of the full adder.

The mscanr function takes a building-block circuit with an appropriate
type. It creates as many copies of the building block as are required, and
makes all the internal connections that are needed. Figure 10.15 depicts the
structure of the resulting circuit, and Figure 10.16 shows the circuit defined by
mscanr as a black box.

288 CHAPTER 10. DISCRETE MATHEMATICS IN CIRCUIT DESIGN

:: [b]

I
:: a---I mscanr 1--- ::a

!
:: [c]

Figure 10.16: Black Box for mscanr Pattern

mscanr :: (b->a->(a,c)) -> a -> [b] -> (a,[c])
mscanr f a [] = (a,[])
mscanr f a (x:xs) =

let (a',ys) = mscanr faxs
(a",y) = f x a'

in (a", y:ys)

Exercise 7. Let f :: b -t a -t (a, c) be a black box circuit. Draw a diagram
showing the structure of the circuit specified by

mscanr fa [(xo,Yo),(xl,yd ,(X2,Y2)].

10.3.2 The n-Bit Ripple Carry Adder

Now we can use the higher order function mscanr to define a general ripple
carry adder that works for any word size. The definition is much more intuitive
than brute-force definitions like add4, once you understand the idea of using
higher order functions to express regular circuit patterns.

The mscanr function expresses the pattern of the ripple carry adder. It
simply says that a ripple carry adder consists of a row of full adders, one for
every bit position . The carry input to each full adder is connected to the carry
output from the full adder to the right, and the carry input to the rightmost
(least significant) bit position is the carry input to the entire addition.

The first argument is a circuit specification with type b -t a -t (a, c) . Recall
that a full adder has type

Signal a => (a, a) -t a -t (a , a) .

This fits the mscanr pattern, and a ripple carry adder consists of a row of full
adders with the carry input of each connected to the carry output of its right
neighbour .

rippleAdd :: Signal a => a -> [(a,a)] -> (a, [a])
rippleAdd c zs = mscanr fullAdd c zs

10.3. RIPPLE CARRY ADDITION 289

This definition works for arbitrary word size. The size of a particular circuit
is determined by the size of the input data word. Th e definition itself doesn 't
get longer if the words become longer! It 's now easy to specify a 6-bit adder ,
as the following test case demonstrates.

Example: addition of 23+11
23 + 11
= 010111 (16+4+2+1 = 23)

+ 001011 (8+2+1 = 11) with carry input = 0
= 100010 (32+2 34) with carry output = 0

Calculate with the circuit by evaluating
rippleAdd False [(False,False),(True,False) ,(False,True) ,

(True,False),(True,True),(True,True)]
The expected result is

(False, [True,False,False,False,True,False])

Exercise 8. Work out a test case using the ripple carry adder to calculate
13+41=54, using 6-bit words. Test it using the computer.

10.3.3 Correctness of the Ripple Carry Adder

Theorem 73. Let xs and ys be k-bit words, so xs, ys :: Signal a => [a] . Define
(c, sum) = rippleAdd zero (zip xs ys); thus c :: a is the carry output and ss :: [a]
is the sum word. Then

bitValue c x 2k + wordValue ss = wordValue xs+ wordValue ys.

The left hand side of the equation is the numeric value of the output of the
ripple carry adder circuit, and the right hand side is the numeric value of its
inputs. Thus the equation says that the circuit produces the correct answer .

Proof. Induction over zs. For the base case, k = 0, zs = xs = ys = O. First we
simplify:

(c, ss) = rippleAdd zero []
=mscanr fuliAdd zero []
= (zero, [])
c = zero
ss = 0
wordValue [] + wordValue []

=0+0
=0

bitValue c x 2k + wordValue ss
= a x 2° + a
= 0 x 2° + wordValue [I

290 CHAPTER 10. DISCRETE MATHEMATICS IN CIRCUIT DESIGN

For the inductive case, let k = length xs = length ys, and assume

bitValue e x 2k + wordValue ss = wordValue xs+ wordValue ys,

where (e, ss) = rippleAdd zero (zip xs ys). The aim is to prove that

bitValue e x 2k+l + wordValue ss =
wordValue (x : xs) + wordValue (y : ys),

where (e, ss) = rippleAdd zero (zip (x : xs) (y : ys)).
First we simplify:

(e, ss) = mseanr fullAdd zero (zip (x: xs) (y : ys))
= mseanr fullAdd zero ((x, y) : zip xs ys)
= let (e', ss) = mseanr fullAdd zero (zip xs ys)

=rippleAdd zero (zip xs ys)
(c", s) = fullAdd (x, y) d
in (e", s : ss)

Now the left hand side of the equation can be transformed into the right hand
sied, using equational reasoning:

lhs (numeric value of output from the adder)
=bitValue e x 2k+l + wordValue S8

= bitValue e" x 2k+l + wordValue (s : ss)
=bitValue c" x 2k+l + bitValue s X 2k + wordValue ss
= (bitValue e" x 2 + bitValue s) x 2k + wordValue ss
= (bitValue x + bitValue y + bitValue e') x 2k + wordValue ss
= (bitValue x + bitValue y) x 2k + (bit Value c') x 2k + wordValue ss)
= (bit Value x + bitValue y) x 2k + wordValue xs + wordValue ys
=(bbitValue x x 2k + wordValue xs) + (bitValue y x 2k + wordValue ys)
= wordValue (x : xs) + wordValue (y : ys)
= rhs (numeric value of inputs to the adder)

o

10.3.4 Binary Comparison

Comparison of binary numbers is just as important as adding them. It is
particularly interesting to consider how to implement a comparison circuit,
since this problem has some strong similarities and also some strong differences
to the ripple carry adder.

First, let's consider the comparison of two bits. This is analogous to starting
out with a half adder. The problem is to design a circuit halfCmp that compares
two one-bit numbers x and y. The result of the comparison should be a triple
of bits of the form (It, eq, gt), where It is true if x < y, eq is true if x = y, and

10.3. RIPPLE CARRY ADDITION 291

gt is true if x > y. The problem is pretty simple, since x and yare both just
one bit! The type should be

haljCmp :: Signal a ::} (a, a) ~ (a, a, a),

where the input bits x and yare provided as a pair (x,y), and the result
triple consists of the result bits (tt, eq,gt) :: (a,a,a). Finding a solution is
straightforward:

halfCmp .. Signal a
halfCmp (x,y) =

(and2 (inv x) y,
inv (xor x y),
and2 x (inv y»

=> (a,a) -> (a,a,a)

x<y when x=O,y=l
x=y when x=O,y=O or x=l,y=l
x>y when x=l,y=O

The next problem to consider is that of designing a ripple comparator that
takes two words representing binary numbers (the words must have the same
size), and returns a triple of three bits (tt , eq, gt) which indicate the result of
comparing x and y. The meanings of the output bits are just the same as in the
previous problem; the only difference is that now the inputs to the comparator
are words rather than bits .

Just as you compare two numbers by looking first at the most significant
digits, a binary comparison is performed by moving from left to right through
the word. Initially we assume the two words are equal ; represent this by
(tt, eq, gt) = (0,1,0) . If the next bit position has x = 1 and y = 0 then we
know that the final result must be (0,0, 1) regardless of any bits to the right ;
conversely if x =0 and y =1 then the final result must be (1,0,0) regardless
of the bit values to the right . However, if x and y have the same value in this
bit position, then as far as we know the result is still (0,1,0) but that result
might be changed later.

The calculation in each bit position requires the two local bits (that is, for
position i we need the ith bit of both of the input words). It also requires the
result of the comparison for all the bits to the left. The task is performed by a
full comparison circuit, which is analogous to the full adder.

fullCmp : : Signal a => (a,a,a) -> (a,a) -> (a,a,a)
fullCmp (It,eq,gt) (x,y) =

(or2 It (and3 eq (inv x) y), -- <
and2 eq (inv (xor x y», =
or2 gt (and3 eq x (inv y») -- >

Now we can define the ripple comparison circuit , which compares two binary
numbers. Its definition is similar to the ripple carry adder, but there are several
differences in the circuit pattern required. In the first place, the information
flow is left to right for comparison, rather than the right to left order used in
addition. Another difference is that for comparison we are interested only in

292 CHAPTER 10. DISCRETE MATHEMATICS IN CIRCUIT DESIGN

the final horizontally moving value; this would be analogous to wanting the
carry output from an addition, but we do not need a result analogous to the
sum bits. The standard /oldl higher order function specifies exactly the circuit
pattern needed here. A final difference is that the comparator just takes the
two numbers to be compared; it generates the initial horizontal value locally.
In contrast, the ripple carry adder takes a carry input. The reason for that is
that many applications of adders, such as the ALU of a computer's processor,
use carry inputs to provide the ability to add long numbers comprising several
words.

rippleCmp : : Signal a => [(a,a)] -> (a,a,a)
rippleCmp z = foldl fullCmp (False ,True ,False) z

Exercise 9. Define a full set of test cases for the circuit hal/Cmp, which com­
pares two bits, and execute them using the computer.

Exercise 10. Define three test cases for the rippleCmp circuit, with a word
size of three bits, demonstrating each of the three possible results. Run
your test cases on the computer.

10.4 Suggestions for Further Reading

The application of discrete mathematics to digital circuit design is a large
subject. Most of the publications that address this area are aimed more at
researchers than students, so some of the references cited here may be difficult
to read, but it's interesting to see real applications of discrete mathematics.

A paper on the use of functional programming for specifying circuits is [21].
Unfortunately that paper uses an obsolete functional language, which is less
readable than Haskell.

10.5 Review Exercises

Exercise 11. Show that the and4 logic gate, which takes four inputs a, b, c
and d and outputs a 1\ b 1\ c 1\ d, can be implemented using only and2
gates.

Exercise 12. Work out a complete set of test cases for the full adder, and
calculate the expected results. Then simulate the test cases and compare
with the predicted results.

Exercise 13. Prove Theorem 72.

Exercise 14. Suppose that a computer has 8 memory locations, with ad­
dresses 0,1,2, ... 7. Notice that we can represent an address with 3 bits,
and the size of the memory is 23 locations. We name the address bits

10.5. REVIEW EXERCISES 293

aOa1a2, where ao is the most significant bit and a2 is the least significant.
When a memory location is accessed, the hardware needs to send a signal
to each location, telling it whether it is the one selected by the address
aoa1a2. Thus there are 8 select signals, one for each location, named
so, S1, • . . ,87 . Design a circuit that takes as inputs the three address bits
aOa1a2, and which outputs the select signals 8081 . . . 87 ' Hint: use de­
multiplexors, arranged in a tree-like structure. (Note: modern computers
have an address size from 32 to 64 bits, allowing for a large number of
locations, but a 3-bit address makes this exercise more tractable!)

Exercise 15. Does the definition of rippleAdd allow the word size to be O? If
not , what prevents it? If so, what does it mean?

Exercise 16 . Does the definition of rippleAdd allow the word size to be neg­
ative? If not, what prevents it? If so, what does it mean?

Exercise 17. Note that for the half adder and full adder, we did thorough
testing-we checked the output of the circuit for every possible input.
Note also that we did not do this for the ripple carry adder, where wejust
tried out a few particular examples. The task: Explain why it is infeasible
to do thorough testing of a ripple carry adder circuit, and estimate how
long it would take to test all possible input values for the binary adder
in a modern processor where the words are 64 bits wide.

Exercise 18. Computer programs sometimes need to perform arithmetic, in­
cluding additions and comparisons, on big integers consisting of many
words. Most computer processor architectures provide hardware support
for this, and part of that hardware support consists of the ability to per­
form an addition where the carry input is supplied externally, and is not
assumed to be O. Explain why the carry input to the rippleAdd circuit
helps to implement multiword addition, but we don't need an analogous
horizontal input to rippleCmp for multiword comparisons.

Appendix A

Software Tools
for Discrete Mathematics

The Haskell programming language provides excellent support for mathemat­
ical computing in general. This book uses programs in Haskell 98, which is
standardised, stable and well-supported. The book also requires a library of
definitions that give additional support for the topics of discrete mathematics.
The library is called Software Tools for Discrete Mathematics, and it consists
of a single file called stdm. hs. You need, therefore, two pieces of software to
use a computer along with the book:

• An interactive implementation of Haskell;

• The file stdm.hs.

Both items are free, and they run on most major computer platforms. All of the
software can be downloaded from the web. The web home page for this book
(see Appendix B) contains the stdm.hs file along with full documentation, and
it also tells you how to download various implementations of Haskell .

295

Appendix B

Resources on the Web

Home page for Discrete Mathematics Using a Computer. The book's
web page contains a variety of useful information, and is an integral part of the
book:

• You can download the Software Tools for Discrete Mathematics, along
with complete documentation;

• There are additional practice problems, solutions and explanations;

• There are up-to-date pointers to many other relevant web pages.

http://www.dcs.gla .ac.uk/-jtod/discrete-mathematics/

Instructor's Guide for Discrete Mathematics Using a Computer.
The Instructor's Guide is entirely online. A password is required to read it ;
please contact the authors to obtain access. See the book home page for the
current contact address.

http://www.dcs.gla .ac.uk/-jtod
/discrete-mathematics/instructors-guide/

Home page for Haskell. This page contains complete and current informa­
tion on the Haskell language, including free (and open source) compilers and
interpreters which you can download, up-to-date pointers to the home pages
for all the Haskell compilers and interpreters, the official Haskell language def­
inition, the complete specification for the standard libraries, pointers to books
and articles on Haskell and functional programming, and more .

Ihttp://www.haskell.org/I

297

Appendix C

Solutions to Selected
Exercises

C.l Introduction to Haskell

3.

isA :: Char -) Bool
isA 'a' = True
isA c = False

4.

isHello :: String -) Bool
isHello ('h': 'e' : '1': ' 1 ' : '0': []) = True
isHello str = False

5.

removeSpace ..
removeSpace []
removeSpace ('
removeSpace xs

String -) String
= []

':xs) xs
= xs

6.

error "t oBool : funny value"

Int -) Bool
True
False

toBool "
toBool 1
toBool 0 =
toBool other =

convert :: [Int] -) [Bool]
convert 1st = map toBool 1st

299

300

7.

8.

9.

10.

APPENDIX C. SOLUTIONS TO SELECTED EXERCISES

memberO :: String -> Bool
memberO string = or (map (== '0') string)

addJust :: Maybe Int -> Maybe Int -> Maybe Int
addJust (Just a) (Just b) = Just (a + b)
addJust (Just a) Nothing = Just a
addJust Nothing (Just a) = Just a
addJust Nothing Nothing = Nothing

addMaybe :: [Maybe Int] -> [Maybe Int] -> [Maybe Int]
addMaybe Ist1 Ist2 = zipWith addJust Ist1 Ist2

(** 2) 1 ((** 2) 2 ((** 2) 3 0))

seen 3 (seen 2 (seen 1 (seen 4 False)))

spaces "this" (spaces "is"
(spaces "a" (spaces "sentence" [])))

data Metals = Copper I Silver I Gold
I Tin I Platinum I Bronze
deriving (Eq, Show)

11. The coins can be represented by a list containing one or more elements of
the following type:

data Coins = OneP Int I TwoP Int I FiveP Int
I TenP Int I TwentyP Int
I FiftyP Int I HundredP Int
deriving (Eq, Show)

12.

data Universal = BOOL Bool lINT Int I CHAR Char
deriving (Eq, Show)

13.

data Tuples abc d = TupleO I Tuple1 a I Tuple2 a b
I Tuple3 abc I Tuple4 abc d
deriving (Eq, Show)

C.l . INTRODUCTION TO HASKELL

15.

showMaybe : : Show a => Maybe a -> String
showMaybe Nothing = []
showMaybe (Just a) = show a

16 .

bitwiseAnd :: [Int] -> [Int] -> [Int]
bitwiseAnd word1 word2 = zipWith bitAnd word1 word2

301

17. Yes, because there is no way to control the depth of the type represented
by the type variable a.

18.

[True, False]
[(3,True), (9,False)]
'a' > 'b'

"2" ++ "a"
2 == 3
[[1] , [2] , [3]]

19. The types of the two paired elements must be the same, according to the
type signature given. In addition, the type of the first component of the pair
was defined as being of the Num class, while the function f was applied to a
pair with a Boolean as its first element.

20. There are two possible constructors in the type, and the function definition
handles only one of them . If the other is used, an error occurs.

21.

[a I (Just a) <- xs]

22.

largerThanN :: [Int] -> Int -> [Int]
largerThanN 1st n = [e I e <- 1st, e > n]

23.

f : : [Int] -> Int -) [Int]
f 1st v = [n I n <- [O .. length 1st - 1], lst!!n == v]

24.

[e I e <- [1. .20],
[x I x <- [1 . . e], x * x == e] - - []]

302

25.

26.

27.

28.

APPENDIX C. SOLUTIONS TO SELECTED EXERCISES

count :: (Eq a, Num b) => a -> a -> b -> b
count letter x ace
= if letter == x then ace + 1 else ace

countLetters : : Char -> String -> Int
countLetters c 1st = fo1dr (count c) 0 1st

remove : : Char -> Char -> [Char] -> [Char]
remove ch x ace
= if x == ch then ace else x:acc

removeEachLetter :: Char -> [Char] -> [Char]
removeEachLetter ch 1st
= foldr (remove ch) [] 1st

rearrange :: [a] -> a -> [a]
rearrange 1st x = x:1st

rev :: [a] -> [a]
rev 1st = foldl rearrange [] 1st

takeLast :: Maybe a -> a -> Maybe a
takeLast Nothing x = Just x
takeLast (Just y) x = Just x

maybeLast :: [a] -> Maybe a
maybeLast 1st = fold1 takeLast Nothing 1st

C.2 Propositional Logic

3.

Q R
---{Al}

R QAR

PA(Q/\R)

C.2. PROPOSITIONAL LOGIC 303

4. The proof of y will have a symmetrical shape, but the proof of x will appear
triangular, with more inference on the right side than on the left . In the general
case, x with 2n variables will have height proportional to 2n

, since every extra
variable will require one extra inference above everything else. In contrast, y
with 2n variables will have height proportional to n .

5.

QI\R

P 1\ (Q 1\ R)

---------------{I\l}

(P 1\ Q) 1\ R
{I\Ed

PI\Q
---{I\Ed

P

6.

P P-+ Q
----{--+E}

P Q
PI\Q

RI\S

S

8.

p@]
@] P 1\ Q {I\l}

Q-+PI\Q
{ --+1}

11.

P Q
---{/\I}
PI\Q

-------{vld
(PI\Q)v(QvR)

304 APPENDIX C. SOLUTIONS TO SELECTED EXERCISES

False
--{CTR}
True

12. We prove that True /\ True -+ True and then that True -+ True /\ True,
without translating True into False -+ False.

True /\ True
----{AER}

True
-------{-./}
True /\ True -+ True

True True
----{Al}
True /\ True

-------{-.I}
True -+ True /\ True

13. We prove that True V False -+ True and then that True -+ False V True.

True
--{ID}

True V False True

True

True V False -+ True

True
----{v/L}
True V False

-------{-.I}
True -+ True V False

16.

• P is represented by P

• Q V FALSE is represented by Or Q FALSE

• Q -+ (P -+ (P /\ Q)) is represented by Imp Q (Imp P (And P Q»

18.

(P /\ False) V (Q /\ True)
= False V (Q /\ True)
= False V Q
=Q

{/\ null}
{/\ identity}
{V identity}

C.2. PROPOSITIONAL LOGIC 305

20.

(P A ((Q V R) V Q)) AS

= SA (P A ((Q V R) V Q))
= SA (((Q V R) V Q) A P)
=SA ((Q V (R V Q)) A P)
= S A ((Q V (Q V R)) A P)
=SA (((Q V Q) V R) A P)
=SA((QVR)AP)
= SA ((R V Q) A P)

{A commutative}
{A commutative}
{V associative}
{V commutative}
{V associative}
{V idempotent}
{V commutative}

23.

P Q R S
--{Al} --{Al}
PAQ RAS

(P A Q) A (R A S)

24.

R

PAQ-tR

P-tR
--------{-tE}

25. We prove that True V True -t True and then that True -t True V True.

True
--{ID}
True

True
--{ID}

True V True True

True

True V True -t True

True
----{vIL}
True V True

-------{-tI}
True -t True V True

306 APPENDIX C. SOLUTIONS TO SELECTED EXERCISES

27. A list comprehension can generate a truth table for you.

logicExprValuel = [«a,b),logicExprl a b)
a <- [False ,True] ,
b <- [False,True]

]

logicExprValue2 = [«a,b),logicExpr2 a b)
a <- [False ,True] ,
b <- [False,True]

]

28.

logicExprValue3 = [«a,b,c),logicExpr3 a b c) I
a <- [False ,True] ,
b <- [False ,True] ,
c <- [False,True]

]

logicExprValue4 = [«a,b,c),logicExpr4 a b c) I
a <- [False ,True] ,
b <- [False ,True] ,
c <- [False,True]

]

29. There are 11 different variables, so a truth table would have 2048 entries
in it . On the other hand, a simplification does not help because the expression
cannot be simplified very much. It seems best to use Haskell to calculate a
truth table , then gather and report some statistics.

gatherStats :: String
gatherStats

= let expr abc d e f g h i j k
= (a /\ b \/ c /\ d) /\

(e \/ f /\ (g /\ h))
<=>
(i ==> j /\ (k ==> i \/ b))

bools = [False,True]
table

= [«a,b,c,d,e,f,g,h,i,j,k),
expr abc d e f g h i j k)

a <- boals, b <- boals, c <- boals,
d <- boals, e <- bools, f <- bools,
g <- boals, h <- boals, i <- boals,
j <- boals, k <- bools]

C.2. PROPOSITIONAL LOGIC

trues
= [(vs,val) I (vs,val) (- table, val == True]

in "There are " ++ show (length trues) ++
II lines for which the expression is True"

30.

data Logic = A I B I c
I And Logic Logic
I Or Logic Logic
I Not Logic
I Imply Logic Logic
I Equiv Logic Logic
deriving (Eq, Show)

31.

distribute :: Logic -) Logic
distribute (And a (Or be)) = Or (And a b) (And a c)
distribute (Or a (And be)) = And (Or a b) (Or a c)

deMorgan :: Logic -) Logic
deMorgan (Not (Or a b)) = And (Not a) (Not b)
deMorgan (Not (And a b)) = Or (Not a) (Not b)
deMorgan (And (Not a) (Not b)) = Not (Or a b)
deMorgan (Or (Not a) (Not b)) = Not (And a b)

32.

307

33.

C/\A/\BVC
=CvC/\A/\B
= (C V C) /\ (C V A) /\ (C V B)
= C /\ (C V A) /\ (C V B)
= C /\ ((C V A) /\ (C V B))
=C/\(CV(A/\B))

CV A/\ (BVC)
= C V ((A /\ B) V (A /\ C))
= C V ((A /\ C) V (A /\ B))
= (C V (A /\ C)) V (A /\ B)
=((C V A) /\ (C V C)) V (A /\ B))
= ((C V A) /\ C) V A /\ B

{V commutative}
{V distributes over /\}
{V idempotent}
{/\ associative}
{V distributes over /\}

{/\ distributes over V}
{V commutative}
{V associative}
{V distributes over I\}
{v idempotent}

308 APPENDIX C. SOLUTIONS TO SELECTED EXERCISES

C.3 Predicate Logic

1.

(u) F(l) /\ F(2) /\ F(3)
(b) F(l) v F(2) V F(3)
(c) (G(l, 1) /\ G(l, 2) r; G(l, 3)j

V (G(2, 1) /\ G(2, 2) /\ G(2,3)
V (G(3, 1) /\ G(3, 2) r; G(3, 3)

2.

(F(l, 5) V F(l,6»)
/\ !F(2, 5) V F(2, 6»)
/\ F(3,5) v F(3, 6»)
/\ F(4,5) V F(4,6»)

3.

• There is an even number.
3x. E(x)

• Every number is either even or odd .
"Ix. (E(x) V O(x»

• No number is both even and odd .
"Ix. ...,(E(x) /\ O(x»

• The sum of two odd numbers is even.
"Ix. Vy. (O(x) /\ O(y) ~ E(x + y»)

• The sum of an odd number and an even number is odd.
"Ix. Vy. (E(x) /\ O(y) ~ O(x + y»)

4.

• Chickens are birds .
"Ix. C(x) ~ B(x)

• Some doves can fly.
3x. D(x) /\ F(x)

• Pigs are not birds .
"Ix. P(x) ~ -.B(x)

• Some birds can fly, and some can't.
(3x. B(x) /\ F(x») /\ (3x. B(x) /\ ...,F(x»)

C.3. PREDICATE LOGIC

• An animal needs wings in order to fly.
"Ix. (-.W{x) -t -.F(x))

• If a chicken can fly, then pigs have wings.
(3x. C{x) 1\ F(x)) -t ("Ix. P(x) -t W(x))

• Chickens have more feathers than pigs do.
"Ix. Vy. (C{x) 1\ P{y)) -t M(x, y)

• An animal with more feathers than any chicken can fly.

"Ix. ((A(x) 1\ (Vy. (C{y) 1\ M{x,y)))) -t F(x))

5.

• "Ix . {3y. wantsToDanceWith (x,y))
Everybody has someone they want to dance with.

• 3 x. (Vy. wantsToPhone (y, x))
There is someone whom everybody wants to call.

309

• 3x. (tired (x) 1\ Vy. helpsMoveHouse (x ,y))
There is a person who is tired, and who helps everyone to move house.

10.

Theorem 74. Vx.F{x) ,Vx.F(x) -t G{x) t- Vx.G(x)

Proof.

'Vx.F(x) Vx.F(x) -t G(x)
F(p) {"IE} F(p) -t G(p) {"IE}

G{p)
---{'<II}
Vx.G{x)

{-tEl

o

12.

Theorem 75. Vx.{F(x) 1\ G(x)) t- (Vx.F(x)) 1\ ('Vx.G{x))

Proof.

Vx.F(x) 1\ G(x)
-----{VE}

F{p) 1\ G(p)

F(p)
---{vI}
Vx.F{x)

o

310 APPENDIX C. SOLUTIONS TO SELECTED EXERCISES

13. There will be 1000 terms containing F. In general, if the quantifiers are
nested k deep, and the universe contains n elements, then the innermost term
will occur nk times .

C.4 Set Theory

13.

(A' U B)' n G'
= A"nB' ric'
=AnB'nG'
= An (BUG)'

A - (BUG)'
= An (BUG)"
= An (BUG)

(A n B) U (A n B')
= An (BUB')
=AnU
=A

AU(B - A)
= AU (BnA')
= (A U B) n (A U A')
= (AUB) nU
=AuB

A-B
=AnB'
=B'nA
= B' n A"
=B'-A'

(AnB) - (AnG)
= (A n B) n (A n G)'
=(A n B) n (A' U G')
= «A n B) n A') U ((A n B) n G')
= (A n B n A') U (A n B n G')
= 0U (A n B n G')
=AnBnG'
= An (B - G)

A- (BUG)
=An(BUG)'
= An (B'nG')

GA. SET THEORY

= AnAnB'nG'
= (A n B') n (A n G')
= (A - B) n (A - G)

An(A'uB)
= (A n A') u (A n B)
= 0u (AnB)
=AnB

(A - B') u (A - G')
= (A n B") U (A n Gil)
= (A n B) U (A n G)
=An(BUG)

311

14. Consider the expression An (B U G). It can be transformed as follows:
An (B U C) = (A n B) U (A n C) = An (B U C). The function would have
to note any previous steps taken in order to avoid loops like this .

15. It is in simplest form.

16. AU(CnA') = (AUC)n(AUA') = (AUC)nU =AuC

17.

smaller :: Ord a => a -> [a] -> 8001
smaller x [] = True
smaller x (y:xs) = x < y

powerSet :: (Ord a, Eq a) => [aJ -> [[aJ]
powerSet set = normalizeSet (foldr g [E)] set)

where g x ace =
[x:epset I epset <- ace,

not (elem x epset) && smaller x epset]
++ ace

18. (A U B)' = A' n B'
= (U - A) n (U - B)
= ((A U A') - A) n ((B U B') - B)
= ((A U A') n A') n ((B U B') n B')

19.

isSubset :: Eq a => [aJ -> raJ -> 8001
isSubset set! set2 = null [e I e <- set!, not (elem e set2)J

20. The arguments are in the wrong order.

312 APPENDIX C. SOLUTIONS TO SELECTED EXERCISES

21. The second definition of e shadows the first, so the result is the second
set.

22.

union :: Eq a => [a] -> [a] -> [a]
union setl set2
= setl ++ [e I e <- set2, not (elem e set1)]

23. Yes, when A equals B and B and C are disjoint.

24. Both unions contain C, so C must appear in the intersection, unless C is
empty and A and B are disjoint. Here is an example:

A = [1,2,3]
B = [4,5,6]
C = []

C.5 Recursion

1.

copy :: [a] -> [a]
copy [] = []
copy (x:xs) = x : copy xs

2.

inverse :: [(a,b)] -> [(b,a)]
inverse [] = []
inverse «a,b):xs) = (b,a) : inverse xs

3.

merge :: Ord a => [a] -> [a] -> [a]
merge [] bs =bs
merge as [] = as
merge (a :as) (b :bs) =

if a < b

then a merge as (b:bs)
else b merge (a:as) bs

4.

(I!) : : lnt -> [a] -> Maybe a
(II) n [] = Nothing
(II) 0 (x :xs) = Just x
(! I) n (x :xs) = (!!) (n-1) xs

C.5. RECURSION

5.

lookup :: Eq a => a -> [(a,b)] -> Maybe b
lookup a [] = Nothing
lookup a «a',b):ps)
= if a==a' then Just b else lookup a ps

6.

countElts :: Eq a => a -> [a] -> Int
countElts e [] = 0
countElts e (x:xs) =

if e == x
then 1 + countElts e xs
else countElts e xs

7.

removeAll :: Eq a => a -> [a] -> [a]
removeAll e [] = []
removeAll e (x:xs) =

if e == x
then removeAll e xs
else x : removeAll e xs

8.

f :: [a] -> [a]
f [] = []
f (x:xs) = g xs

g :: [a] -> [a]
g [] = []
g (x:xs) = x:f xs

9.

extract .. [Maybe a] -> [a]
extract [] []

extract (Nothing:xs) = extract xs
extract (Just x:xs) = x : extract xs

10.

loop :: String -> String -> Int -> Maybe Int
loop [] 52 n = Nothing
loop (x:xs) 52 n

313

314

11.

12.

13.

APPENDIX C. SOLUTIONS TO SELECTED EXERCISES

= if length s2) length (x:xs)
then Nothing
else if take (length s2) (x:xs) -- s2

then Just n
else loop xs s2 (n+l)

f . . String -) String -) Maybe Int
f strl str2 = loop strl str2 0

foldrWith ::
(a -) b -) e -) c) -) e -) [a] -) [b] -) e

foldrWith f z [] bs = z
foldrWith f z as [] = z
foldrWith f z (a :as) (b:bs) =

f a b (foldrWith f z as bs)

mappend :: (a -) [b]) -) [a] -) [b]
mappend f xs = foldr fun [] xs

where fun x ace = f x ++ ace

14.

15.

removeDuplicates : : Eq a =) [a] -) [a]
removeDuplicates [] = []
removeDuplicates (x:xs)

if elem x xs
then removeDuplicates xs
else x : removeDuplieates xs

member : : Eq a =) a -) [a] -) 8001
member a [] = False
member a (x:xs) = a == x I I member a xs

appendTree : : Tree a -) [a] -) [a]
appendTree Tip bs = bs
appendTree (Node a tl t2) bs =

appendTree tl (a : appendTree t2 bs)

C.5. RECURSION

16.

concatTree :: Tree [a] -> [a]
concatTree Tip = []
concatTree (Node as tl t2) =

concatTree tl ++ as ++ concatTree t2

17.

zipTree :: Tree a -> Tree b -> Maybe [(a,b)]
zipTree Tip t2 Nothing
zipTree tl Tip = Nothing
zipTree (Node a tl t2) (Node b t3 t4)

= case (zipTree tl t3) of
Nothing -> Nothing
Just 1stl -)

case (zipTree t2 t4) of
Nothing -> Nothing
Just 1st2 -) Just (1stl ++ [(a,b)] ++ lst2)

18.

zipWithTree ::
(a -) b -> c) -) Tree a -) Tree b -) [c]

zipWithTree f Tip t2 = []
zipWithTree f tl Tip = []
zipWithTree f (Node a tl t2) (Node b t3 t4)

zipWithTree f tl t3
++ [f a b]

++ zipWithTree f t2 t4

19.

intersection :: Eq a => [a] -> [a] -> [a]
intersection [] set2 = []
intersection (x:setl) set2

= if (elem x set2)
then x : intersection setl set2
else intersection setl set2

20.

isSubset :: Eq a => [a] -> [a] -) Bool
isSubset [] set2 True
isSubset (x :xs) set2 = elem x set2 /\ isSubset xs set2

315

316

21.

APPENDIX C. SOLUTIONS TO SELECTED EXERCISES

isSorted :: Ord a => [a] -> Bo01
isSorted [] = True
isSorted (x: [J) = True
isSorted (x:y:xs) = x < Y kk isSorted (y:xs)

C.6 Inductively Defined Sets

20 . The base case appears at the end of the stream, so cannot be used to start
the inductive process of calculating successive elements. So, the stream does
not have a printable value.

21. It will never terminate and return the accumulator in which the stream of
naturals is constructed.

22. The powerset P(S) is defined as follows:

• {} E P

• xES /I. T E P -t T U {x} E P

• Nothing is in P unless it can be shown to be in P by a finite number of
uses of the base and induction rules.

Notice that each use of the induction case causes more than one set to be
added to P. This is still inductive (we can order these sets by their sizes and
so enumerate them).

23. No. The problem is that the stream may present an infinite number of
naturals before the one we are interested in can be reached. For example, in
[1,3 . .] ++ [2,4 . .] all the odd naturals appear before any even number.

24. Given a number n, the set R of roots of n is defined as follows:

• n
1

E R

• n 1/ rn E R -t n1/rn+l E R

• Nothing is in R unless it can be shown to be in R by a finite number of
uses of the base and induction rules.

25.

1. nO E P by the base case

2. By the induction rule, nO E P -t n 1 E P and so by Modus Ponens,
n 1 E P.

C.6. INDUCTIVELY DEFINED SETS 317

3. By the induction rule, n 1 E P -+ n2 E P and so by Modus Ponens,
n2 E P.

4. By the induction rule , n 2 E P -+ n3 E P and so by Modus Ponens,
n3 E P .

26. If n is a positive multiple of 2 then yes, otherwise no.

27. The odd positive integers.

28. By rule (1), 0 E S
By rule (2) 0 E S -+ 2 E S and so by modus ponens 2 E S.
By rule (2) 2 E S -+ 4 E S and so by modus ponens 4 E S.

29.

1. '''' E YYS

2. '''' E YYS -+ "yy" E YYS and so by Modus Ponens, "yy" E YYS.

3. "yy" E YYS -+ "yyyy" E YYS and so by Modus Ponens, "yyyy" E
YYS.

30.

Z5 = "" : map (, z ' :) Z5

31. The set SS of strings of spaces of length less than or equal to n is defined
as follows:

1. "" E SS

2. ss E S8 /\ length ss < n -+' '[iss E SS

3. Nothing is in SS unless it can be shown to be in SS by a finite number of
uses of rules (1) and (2).

32.

55 :: Int -> [String]
55 0 = []
55 n = take n (repeat' ') : 55 (n-i)

33. The set of sets of integers SSI each of which is missing a distinct natural
number is defined inductively as follows:

1. I - {O} E SSI

2. I - {n} -+ I - {n + I} E SSI

3. Nothing is in SSI unless it can be shown to be in SSI by a finite number
of uses of rules (1) and (2).

318

34.

APPENDIX C. SOLUTIONS TO SELECTED EXERCISES

1. 1- {-1} E SSI-

2. 1- {-1} -t 1- {-2} E 551-

3. I - {-2} -t I - {-3} E 551-

4. By Modus Ponens, I - {-3} E 551- .

35.

1. -1 E ONI

2. -1 E ONI -t -3 E ONI so -3 E ONI.

3. -3 E ONI -t -5 E ONI so -5 E ONI.

4. -5 E ONI -t -7 E ONI so -7 E ONI.

36.

decrement :: Int -) Int
decrement x = x - 1

ni = -1 : map decrement ni

37. No, because 0 will be paired first with every element in [O.. J, which is
infinitely long.

38. The setis {O,1}.

C.7 Induction

2. The sum of the first n odd numbers can be written as L~=l (2i -1) , and we
want to prove that this is equal to n2 • It 's possible to prove this by induction,
but a more elegant method is to reuse the theorem we already have, as follows:
",n (2 ' 1) - 2 ",n . ",n 1 - 2 n (n +l) - (1) _ 2
L.J i=O Z - - L.Ji=O Z - L.Ji=O - 2 - n - n n + - n - n .

3.

Proof. Induction over xs. The base case is:

length ([]*ys)
=length ys
= 0 + length ys
=length [] + length ys

Assume that length (xs*ys) =

(*).1
O+x=x
length.!

length xs + length ys. The inductive case is:

C.7. INDUCTION

length «x : xs)-++ys)
=length (x : (xs-++ys»
= 1 + length (xs-++ys)
= 1 + (length xs + length ys)
= (1+ length xs) + length ys
=length (x : xs) + length ys

4.

Proo]. Induction over zs. The base case is:

map I ([] -++ ys)
=map I ys
= [] -++ map I ys
=map I [] -++ map I ys

(-++) .2
length.2
hypothesis
(+) is associative
length.2

(-++) .1
(-++).1
map.l

319

o

For the inductive case, assume map I (xs-++ys) = map I zs -++ map I ys. Then

5.

map I «x: xs) -++ ys)
=map I (x: (xs-++ys»
=I x : map I (xs-++ys)
=I x : (map I xs -++ map I ys)
=(f x : map I xs) -++ map I ys
=map I (x : xs) -++ map I ys

(-++).2
map.2
hypothesis
(-++) .2
map.2

o

Proof. Using the definition of composition, we can rewrite the equation to be
proved as :

map I (map g xs) = map (f. g) xs

We prove this by induction over xs. The base case is:

map I (map g [])
=map f []
=[]
=map (f.g) []

Assume that map f (map g xs)

map.l
map.1
map.l

= map (J.g) xs. The inductive case is:

320 APPENDIX C. SOLUTIONS TO SELECTED EXERCISES

1.

map f (map 9 (x: xs))
=map f (g x : map 9 xs)
= f (g x) : map f (map 9 xs)
=f (g x) : map (f.g) xs
=«(f.g) x) : map (f.g) xs
= map (f.g) (x : xs)

map.2
map.2
hypothesis
(.)
map.2

o

Theorem 16 <* is associative). (xs+t-ys)+t-zs = xs+t-(ys+t-zs)

Proof. Induction over zs. The base case is:

([]+t-ys)+t-zs
= ys+t-zs
=[]+t-(ys+t-zs)

Inductive case

((x: xs)+t-ys)+t-zs
= (x : (xs+t-ys))+t-zs
=x : «(xs+t-ys)+t-zs)
= x : (xs+t-(ys+t-zs))
= (x: xs)+t-(ys+t-zs)

o

8. The first line of the inductive case says 'Assume P(n), and consider a set
containing n + 1 horses; call them hI, h2 , ••• ,hn+t .' Consider what happens
when n = 1. Our set of n + 1 horses contains only two of them, hI and h2 •

Thus the two subsets turn out to be A = {hI} and B = {h2 } . All the horses in
A have the same colour, and all the horses in B have the same colour. So far,
so good-but the next sentence says 'Pick one of the horses that is an element
of both A and B,' and it is impossible to do this because when n = 1 the sets
A and B are disjoint. The rest of the proof is invalid because it relies on this
non-existent horse.

There are two useful lessons to learn from this .

• Whenever a proof says to 'pick an x such that . . . " it is essential to make
sure that such an x exists.

• It is helpful to work through the details using a concrete example.

By the way: the flaw explained above is the only error in this proof. If the proof
worked for the case n = I-if all pairs of horses had the same colour-then it
would indeed be true that all horses are the same colour.

C.7. INDUCTION

9.

reverse (reverse [1,2,3])
= reverse [3,2, I]
= [1,2,3J

10.

Proof. Induction over zs. The base case:

reverse(O-t+ys)
=reverse ys
=reverse ys-t+[J
=reverse ys-t+reverse [J

Inductive case:

reverse ((x: xs)-t+ys)
= reverse (x : (xs-t+ys))
= reverse (xs-t+ys)-t+[xJ
= (reverse ys-t+reverse xs)-t+[x]
=reverse ys-t+(reverse xs-t+[x])
=reverse ys-t+(reverse(x : xs))

11.

Proof. Induction over xs. The base case is:

reverse (reverse [))
=reverse []
=[J

321

o

For the inductive case, assume for some xs that reverse(reverse xs) = zs. Then

reverse (reverse (x : xs))
= reverse (reverse xs-t+[x])
=reverse [xJ-t+reverse (reverse xs)
=[xJ-t+xs
=x: xs

o

322 APPENDIX C. SOLUTIONS TO SELECTED EXERCISES

12. Consider, for example, the infinite list nats = [0,1,2,3, .. .]. This is
easily defined in Haskell, with the expression [0 .. J. Notice that nats is not an
infinite loop; a computation requiring only a finite portion of it will terminate.
On the other hand, any computation requiring all of nats will go into an infinite
loop; thus length nats will never terminate, and we can express this by saying
length nats = .L.

Now consider the equation reverse (reverse nats) = nats. The left hand side
of the equation is not just a vague, intuitive statement that might be interpreted
as leaving a list unchanged. It has a specific meaning which can (and must) be
determined by equational reasoning using the definition of reverse.

The outermost application of reverse must begin by determining which of
the two defining equations is relevant; it does this by performing a case analysis
on its argument (which is reverse nats) to decide whether this is the empty list
oor a non-empty list in the form x:xs.

reverse (reverse (nats 0))
= case reverse (nats 0) of

[] -t []
x : zs -t reverse xs-t+[xj

Now the computer must evaluate reverse (nats 0) far enough to decide
whether it is the empty list, or a cons expression. This evaluation proceeds as
follows:

reverse (nats 0)
=reverse (0 : nats 1)
=reverse (nats 1)-t+[0]
=reverse (1 : nats 2)-t+[Oj
= (reverse (nats 2)-t+[1])-t+[0]

This evaluation is never going to terminate. The computer will just keep gener­
ating larger and larger natural numbers, constructing ever bigger expressions,
but it will never actually figure out whether the original value reverse (nats 0)
is empty! Hence no information at all can be obtained from evaluating

reverse (reverse (nats 0».
To summarise, we know that:

reverse (reverse (nats 0)) = 1.

nats 0 i: 1.

A consequence of this , which might be surprising, is that

reverse . reverse i: id.

C.8. RELATIONS

C.8 Relations

45.

323

• (a) Yes.

• (b) This depends upon whether the relationship is defined by DNA, in
which case all of us are somewhat related to each other, or last name,
in which case some people named Smith are not actually closely related
physically. 'No' seems a reasonable answer.

• (c) No, because equivalence relations are reflexive, and you cannot be
bigger than yourself.

• (d) Yes.

46. Yes. Here is an example:

[(1,2),(2,3),(3,1)]

47. The empty relation.

48.

checkPowers :: (Eq a, Show a) => Digraph a -> 8001
checkPowers (set,relation)
= any (setEq relation)

[relationalPower (set,relation) n
I n <- [2 .. length (domain relation)]]

49. No. If it did, then the end of each loop would have to have a reflexive
loop , since the relation is transitive. Thus it would not be irreflexive.

50. Yes. For example

[(1,2),(2,3),(3,1)]

has a transitive closure that is reflexive and symmetric.

51.

fewerArcs :: (Eq a, Show a) => Digraph a -> 8001
fewerArcs (set,relation)

all
« (length relation»

[length (relationalPower (set,relation) n)
I n <- [2 . . length (domain relation)]]

324

52.

APPENDIX C. SOLUTIONS TO SELECTED EXERCISES

isSmaller : : (Ord a, Show a) => Digraph a -) Bool
isSmaller (set,relation)

= let (symset,symrelation) =
symmetricClosure (set,relation)

in length relation < length symrelation

53 . The last is not a topological sort.

54. Yes, for example this is reflexive, symmetric and antisymmetric:

[(1,1),(2,2),(3,3)]

55.

numTransArcs : : Digraph a -> rnt
numTransArcs (set,relation)

sum [1 . .1ength relation - 1]

56. The number of arcs the transitive closure will add is 1+ 2+ ... + n - 1. The
symmetric closure will double each of these, so the total is 2{1+2+ ...+n-1) .

51. Power n.

58. No, because the function could not examine every arc in the relation.

59. Given a partial order, assume that it has a cycle of length n. Since it is
transitive, it also has cycles of lengths 1 to n - 1. But that means that it has
a cycle of length 2, which cannot be because a partial order is anti-symmetric.
So it cannot both be a partial order and have cycles greater than 1.

60. No. Some have powers that repeat, such as the relation

[(1,2),(2,1)]

61. A linear order.

62. Yes. For example, the composition of these two relations

[(Red,Blue) ,(Blue,Green),(Green,Yellow) ,(Yellow,Red)]

[(Blue,Red),(Green,Blue),(Yellow,Green),(Red,Yellow)]

yields

[(Red,Red) ,(Blue,Blue),(Green,Green) ,(Yellow,Yellow)]

63. The empty relation and the equality relation.

C.9. FUNCTIONS 325

C.9 Functions

26. The functions surjExp, injExp, and bijExp each take two domains and
images and test the corresponding hypothesis.

surjectiveExperiment : : (Eq a, Show a) =>
Set a -> Set a -> Set (a, FunVals a) ->
Set a -> Set a -> Set (a, FunVals a) -> Bool

surjectiveExperiment dom_f co_f f dom_g co_g g
= isSurjective dom_f co f f /\

isSurjective dom_g co_g g
==>

isSurjective dom_g co_f
(functionalComposition f g)

surjExp :: Set Int -> Set Int - >
Set Int -> Set Int -> Bool

surjExp domain_f image_f domain_g image _g
let f = [(x,Value y) I x <- domain_f, y <- image_f]

g = [(x,Value y) I x <- domain_g, y <- image_g]
in
surjectiveExperiment [1 .. 10] [1 . . 10] f

[1. .10] [1. .10] g

injectiveExperiment :: (Eq a, Show a) =>
Set a -> Set a -> Set (a, FunVals a) ->
Set a -> Set a -> Set (a, FunVals a) -> Bool

injectiveExperiment dom_f co_f f dom_g co_g g
= islnjective dom_f co f f /\

islnjective dom_g co_g g
==>

islnjective dom_g co_f
(functionalComposition f g)

injExp :: Set Int -> Set Int ->
Set Int -> Set Int -> Bool

injExp domain_f image_f domain_g image_g
= let f = [(x,Value y) I x <- domain_f, y <- image_f)

g = [(x,Value y) I x <- domain_g, y <- image_g)
in injectiveExperiment [1 . . 10] [1 .. 10] f

[1. . 10] [1..10] g

bijectiveExperiment :: (Eq a, Show a) =>
Set a -> Set a -> Set (a, FunVals a) ->
Set a -> Set a -> Set (a, FunVals a) -> Bool

bijectiveExperiment dom_f co_f f dom_g co_g g

326 APPENDIX C. SOLUTIONS TO SELECTED EXERCISES

isBijective dom_g co_f
(functionalComposition f g)
==>

isSurjective dom_f co_f f /\
islnjective dom_g co_g g

bijExp :: Set lnt -> Set lnt ->
Set lnt -> Set lnt -> Bool

bijExp domain_f image_f domain_g image_g
= let f = [(x,Value y) I x <- domain_f, y <- image_f]

g = [(x,Value y) I x <- domain_g, y <- image_g]
in bijectiveExperiment [1 . . 10] [1 .. 10] f

[1. .10] [1. .10] g

27. 1,1,4,4

28. The function f is a permutation, g is an identity function and h is the
inverse of f .

29. constant function, injection, constant function.

30. Only g is a function. f maps 3 to two values, and g does not map 5 to any
value.

31. g is a total function, and the other two are partial functions.

32.

h o h yes
f o g no
g 0 f yes
h o f domains don't match
g o h domains don't match

33.

fog no
g 0 f yes
h 0 f no

34.

gog yes
h 0 f no
f 0 h yes

C.lO. DISCRETE MATHEMATICS IN CIRCUIT DESIGN 327

35. The first function is partial, because it does not terminate when given
False, and so does not produce a result given that domain value. The second
function is total .

36.

isFun :: (Eq a, Show a) => Set (a,b) -> Bool
isFun ps = normalForm (map fst ps)

37 .

islnjection :: (Eq a, Eq b, Show a, Show b)
=> Set (a,b) -> Bool

islnjection ps
= normalForm (map fst ps) /\ normalForm (map snd ps)

39. You only need to know its type. If the domain type is the same as that
of the codomain, then it might be the identity function , otherwise it certainly
isn't. There are many properties of functions that can be deduced solely from
the function type.

40.

compare f g h = ((g.f) a) == (h a)

41. Yes, for natural numbers. If it receives a negative integer, it will loop
indefinitely.

42. Yes, for all integers .

C.IO Discrete Mathematics in Circuit Design

1.

Jab c =
(-.a 1\ -.b 1\ --,c)

V (-.a 1\ --,b 1\ c)
V (a 1\ -.b 1\ c)
V (a 1\ b 1\ --,c)
V (al\bl\c)

328 APPENDIX C. SOLUTIONS TO SELECTED EXERCISES

8.

Example: addition of 13+41=54 using 6-bit words
13 = 001101
41 = 101001

sum = 110110 = 54, with carry out = 0
rippleAdd False [(False,True),(False,False),(True,True),

(True ,False) , (False ,False) , (True ,True)]
The expected result is

(False, [True,True,False,True,True,False])

9.

since x=y
since x<y
since x>y

since x=y

Test cases for halfCmp
halfCmp (False,False) -- (False,True,False)
halfCmp (False,True) -- (True,False,False)
halfCmp (True,False) -- (False ,False ,True)
halfCmp (True,True) -- (False ,True ,False)

10.

Test cases for rippleCmp
rippleCmp [(False,False),(False,True),(True,False)]

- - (True ,False ,Fal se) since x<y
rippleCmp [(False,False),(True,True),(False,False)]

-- (False,True,False) since x=y
rippleCmp [(False,False),(True,False),(False,True)]

-- (False ,False ,Tr ue) since x>y

12.

with expected results
-- 0 0

-- 0 1
-- 0 1

-- 1 0
-- 0 1

-- 1 0
-- 1 0

-- 1 1

Test cases for the full adder,
fullAdd (False,False) False
fullAdd (False,True) False
fullAdd (True,False) False
fullAdd (True,True) False
fullAdd (False,False) True
fullAdd (False,True) True
fullAdd (True,False) True
fullAdd (True,True) True

17. You can't test an adder thoroughly because there is an exponential growth
in the size of the truth table as the word size grows. For an n-bit word, there
are 2 X 22n lines in the truth table. The exponent is 2n because there are two
bits for each position, and the init ial factor of 2 accounts for the possibility
that the carry input is either 0 or 1. For a current generation processor, where

C.lO. DISCRETE MATHEMATICS IN DIGITAL CIRCUIT DESIGN 329

the word size is 64, the truth table would have 2129 lines, which is larger than
the size of the known universe (it hardly matters what unit of measurement
you choose!)

Bibliography

[1] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and
Interpretation of Computer Programs. The MIT Press, 1985.

[2] Martin Aigner and Gunter M. Ziegler. Proofs from THE BOOK. Springer,
1998.

[3] Richard Bird. Introduction to Functional Programming using Haskell.
Prentice Hall, second edition, 1998.

[4] Richard Bird and Oege de Moor. Algebra of Programming. Prentice Hall,
1997.

[5] Stanley N. Burris. Logic for Mathematics and Computer Science. Prentice
Hall, 1998.

[6] C. J . Date. An Introdu ction to Database Systems. Addison Wesley Long­
man, 1999.

[7] Antony Davie. An Introduction to Functional Programming Systems Using
Haskell. Cambridge University Press, 1992.

[8] Michael Downward. Logic and Declarative Language. Taylor & Francis,
1998.

[9] Herbert B. Enderton. A Mathematical Introduction to Logic. Academic
Press , 1972.

[10] Herbert B. Enderton. Elements of Set Theory. Academic Press, 1977.

[11] Arthur Engel. Problem-Solving Strategies . Springer, 1998.

[12] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types, vol­
ume 7 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 1989.

[13] Derek Goldrei. Classic Set Theory. Chapman & Hall, 1996.

[14] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete
Mathematics. Addison-Wesley, 1989.

331

332 BIBLIOGRAPHY

[15] Jan Gullberg. Mathematics from the Birth of Numbers. Norton, 1997.

[16J Douglas R. Hofstadter. Giidel, Escher, Bach: An Eternal Golden Braid.
Penguin, 1979.

[17] Paul Hudak . The Haskell School of Expression: Learning Functional Pro­
gramming through Multimedia . Cambridge University Press , 2000.

[18J Geraint Jones and Mary Sheeran . Relations and refinement in circuit
design. In Srd Refinement Workshop, Workshops in Computing. Springer,
1991.

[19] Donald E. Knuth, Tracy Larrabee, and Paul M. Roberts. Mathematical
Writing. Number 14 in MAA Notes. The Mathematical Association of
America, 1989.

[201 E. J . Lemmon. Beginning Logic. Chapman & Hall, 1965.

[21] John O'Donnell. From transistors to computer architecture: Teaching
functional circuit specification in hydra. In FPLE'95: Symposium on Func­
tional Programming Languages in Education, volume 1022of LNCS, pages
195-214. Springer, December 1995.

[22] Chris Okasaki. Purely Functional Data Structures. Cambridge University
Press, 1998.

[23] John O'Leary, Xudong Zhao, Rob Gerth, and Carl-Johan Seger. Formally
verifying IEEE compliance of floating-point hardware. Intel Technology
Journal, 1999.

[24J Kenneth A. Ross and ChaIres R. B. Wright. Discrete Mathematics. Pren­
tice Hall, 1999.

[25] Simon Singh. The Code Book: The Science of Secrecy from Ancient Egypt
to Quantum Cryptography. Fourth Estate, 1999.

[26] Raymond Smullyan. Forever Undecided: A Puzzle Guide to Giidel. Oxford
University Press, 1987.

[27] Donald F. Stanat and David F. McAllister. Discrete Mathematics in Com­
puter Science . Prentice Hall, 1977.

[28] Patrick Suppes . Axiomatic Set Theory. Dover, 1972.

[29] Simon Thompson. Type Theory and Functional Programming. Addison­
Wesley Publishing Company, 1991.

[30] Simon Thompson. Haskell: The Craft of Functional Programming.
Addison-Wesley, second edition, 1999.

[31] Daniel J. Velleman. How To Prove It : A Structured Approach. Cambridge
University Press, 1994.

Index

=,47, 114, 117
{AEL},73
{AER}, 73
{AI}, 73
{CTR},74
{ID}, 74
{-t E } , 74
{-t I}, 74
{VE} ,74
{Vh},73
{VIR} ,73
{RAA} ,74
+t-, 173, 174, 177
n ,115
U,115
1-, 231, 248
n,114
0, 250
U,114
0,112
3, 91, 99
V, 90, 91, 98, 163
-t , 41 , 45, 47, 68, 72, 80
E,112
000, 147
~ , 43, 45-47,52, 81
~,47,49, 51,83,84
~, 41,45-47,52, 72, 80
tt,112
!;,216
~, 114
~, 47, 49, 51, 59, 83, 84
V, 40,45-47, 72
A, 39, 45-47, 72
0,41
exists, 90

333

forall, 96
0' 174,249
:type command, 7
Modus Ponens, 147
\1,47
***, 120
**, 6
*,4
H+, 120
H , 22, 24, 132
+,4
->, 13
-, 4
... notation, 129
.. , 9
. ,24
/\, 47
/=, 7
: , 10,175
<-,10
<=>, 47
<=, 7
<, 7
==>, 47
==, 7
=>, 29
>=, 7
>,7
&&, 7, 47
11,7
O-tuple, 9

abbreviation, 53
absurdity, 80, 81
accumulator, 23
algebra, 36, 75

334

algebraic data type , 26
algebraic laws

predicate logic, 106
algorithm, 111
ambiguity, 96
and, 24, 38, 39,68, 72, 95,137
and gate, 274
antisymmetric, 195
append, 22, 132
argument, 12, 18

pattern, 14
arithmetic, 281
artificial intelligence, 35
associate

to the left, 46
to the right, 46

associative, 78, 79, 123
Assume, 73
assumption, 51,52
axiom, 36, 76

base case, 151, 153
big

intersection, 115
union, 115

binary
comparison, 290
number , 284
relation, 185
search tree, 140

bit, 284
numbering , 284

bitValue, 282
Bool,48
Boole, George, 75
Boolean, 90, 98
Boolean algebra, 36, 74-81,83

calculation , 83
carry, 285, 288
case analysis, 62
cause and effect, 42
chain, 147, 151, 164, 220

of equalities, 75
Char, 8

INDEX

check.proof, 69
circuit

design, 82
simulation, 275, 276

class, 29
closure, 207
codomain, 185
combinational circuit, 273
combinator, 136
commutative, 76, 78, 123
compiler, 36
complement, 80, 116, 120
complete, 84
complexity, 236
compose, 24, 174
composition, 199
comprehension, 10, 113
computability, 36
computational complexity, 236
computer architecture, 35
concat , 133, 176
conclusion, 51, 52
conditional expression, 19
conjunction, 39
cons, 10, 175
consistent, 84
constructor, 27
context, 30
contradiction, 49, 63
contrapositive, 80, 81
control structure, 239
converse, 210
correctness, 82
countable, 221
counting, 262
Curry-Howard isomorphism, 82
Currying, 80,81,243
cycle, 192

data, 26
recursion, 143
type, 26

database, 36
declarative language, 85, 130
deduction, see inference

INDEX

DeMorgan 's laws, 79, 124
deriving, 28
design methodology, 277
detect, 30
diagonalisation , 265
difference, 114
digital circuit , 82

design, 35
digraph, 188
directed path, 188
discharged assumption, 59
disjoint, 116
disjunction, 40
distributive, 79, 124
div, 4
divide and conquer, 129, 173
domain, 185
Double, 6
double negation, 65, 80
drop, 21

element, Ill, 112
elimination

existential, 105
universal, 103

ellipses, 147
empty set, 112
enumerated type, 26
enumeration, 147
Eq, 30, 118
equation, 17, 76, 81
equational reasoning, 17, 75
equivalence, 43, 81

relation, 223
error, 245
evaluation, 3
exclusive

or gate, 274
exclusive or, 41
existential

elimination, 105
introduction, 104

exists, 99
expression, 3

conditional, 19, 89

335

expansion, 92
let , 19
nested, 91
quantified, 91

extremal clause, 152, 153

factorial , 129, 130, 137, 235
False, 6, 45, 48, 49, 63, 76
filter, 11
find, 141
first order, 18
Float, 6
floating point , 6
foldl, 25, 240, 292
fuldr, 23, 137, 175, 178
for loop, 139
forall , 98
formal

logic, 35
reasoning, 51

formula , 44
abbreviated, 94
expansion, 92
translat ion, 95, 96

fst , 15
full adder, 283, 285
function, 12, 229, 275

application, 230, 276
argument type, 230
bijective , 258
codomain, 230, 232
composit ion, 24, 249
domain, 230, 231
equality, 177
extensional equality, 177
first order, 18
functional argument , 239
functional result , 240
graph, 230
higher order, 18, 136, 238-240
image, 231
indu ctively defined, 234
injective, 255
intensional equality, 177
inverse, 261

336

multiple arguments, 242
partial, 244, 248
predicate, 90, 98
primitive recursive, 235
program, 233
range, 232
result type, 230
state, 237
surjective, 253
total, 244, 248
type, 13, 18, 231
undefined, 231, 244

functional
circuit specification, 275
language, 68
programming, 85

Godel, 84, 85
generator, 10
graph, 139,230
greatest element, 216

half adder, 281, 290
half comparator, 291
halting problem, 247, 248
hardware design, 82
Haskell,47
head, 16
higher order, 18

function, 136, 286

id, 178
idempotent, 78
identity, 76
if,41
Imp, 72
implication, 41, 80

chain rule, 60
imply, 38, 41, 42, 46, 80
inclusive or, 40
index (list) , 21
induction , 147, 152, 164

and recursion, 168
base case, 164
case, 153

INDEX

inductive case, 164
infinite lists, 181
on lists, 172
on Peano naturals, 169
on trees, 179

induction case, 151
induction rule, 151
infer, 50
inference, 36, 50-74, 83

rvE}, 103
{VI}, 101, 102
{AEL},56-57
{AER},56-57
{AI}, 54-55
{CTR},63-65
{3E},105
{3I}, 104
{ID},63
{-t E}, 57-58
{-t I}, 58-61
{VE} ,62
{ViL},61
{VIR},61
{RAA},65
assumption, 51, 52
conclusion, 51, 52
elimination rule, 52
introduction rule, 52
predicate, 100
quantifier, 100
Reductio ad Absurdum, 53, 65
rule, 51, 52

infinite loop, 246
information retrieval, 35
integer, 155
intersection, 114
introduction

existential, 104
univeral, 101

inverter, 274
irreflexive, 191

Just, 28
justification, 75

INDEX

language
meta, 52
object, 52

law, 37, 76-81
identity, 76
null, 76

length, 21, 130, 137, 174, 177, 238
let , 19

expression, 19
linear

logic, 82
order, 220

list, 9
comprehension, 10, 119
construction, 10
notation, 10

logic gate, 274
logical

equivalence, 43
inference, see inference
negation, 41, 80

map , 22, 136, 174-176,238,239
Maybe , 28
meaning, 49, 83
member , 111, 112
metalanguage, 47, 51, 52, 81
metalogic, 66, 83-84
metavariable, 52
mod,4
model,49
modulus, 224
Modus Ponens, 57
Modus Tollens, 60
mscanr, 287, 288

n-tuple,8
natural

deduction, 36, 50-74
number, 153

Node, 139, 179
nonstrict, 143
nor, 15
normalForm, 120
normalizeSet, 120

not, 7, 38, 41,47,72,95
Nothing, 28
null, 76

value, 9
Num, 29
number

natural, 164, 165
Peano, 169
real, 164

object language, 46, 51, 52, 81
one-to-one correspondence, 261
ones, 143
operator, 3, 46
or, 38, 40, 41, 72, 95, 137

gate, 274
order relation, 214
ordered pair, 230
overload, 29

pair, 8
partial order, 214
partially ordered set, 215
pattern, 14, 286
permutation, 259
pi, 13
pigeonhole principle, 258
pipeline, 250
poset , 215

greatest element, 216
weakest element, 216

power (of relation), 202
powerset, 117
precedence, 46
preciate, 89
predicate, 89, 98, 113, 163
product, 137
programming language, 36
proof, 68, 69, 83, 85

checker, 67-74
correctness, 168
representation, 73-74
tools, 67

proper subset, 114
prop erSubset , 120

337

338

proposition, 37, 83
propositional

expression, 51
logic, 36
variable , 37, 45, 48, 52

Pvar,72

quadratic, 20
quantifier, 89, 90

computing, 98
existential, 91, 92
expansion, 92
expansion formula, 92
universal, 90, 92

quasi order, 219
quicksort, 134

Ratio, 6
rational number, 6
rational number, 264
real number, 264
reasoning, 17
recursion, 45, 129, 168

data, 143
primitive, 235

Reductio ad Absurdum, 53, 65, 74
reflect, 140, 179
reflexive, 190

closure, 208
relation, 185-227

antisymmetric, 195
closure, 207
composition, 199
converse, 210
cycle, 192
equivalence, 223
function, 230
irreflexive, 191
linear order, 220
order, 214
partial order, 214
poset , 215
power, 202
quasi order, 219
reflexive, 190

INDEX

reflexive closure, 208
symmetric, 193
symmetric closure, 210
transitive, 197
transitive closure, 211
well order, 221

relational database, 186
ripple carry, 285

adder, 285, 288
ripple comparator, 291

safety-critical, 35
schematic diagram, 275
self reference, 129
semantics, 36, 49, 83
sequence, 9, 148
sequent, 51, 59
set, 111-127

associative, 123
big intersection, 115
big union, 115
cardinality, 261, 262
commutative, 123
complement , 116
comprehension, 10, 113
countable, 221, 263, 264
definition , 147, 152
DeMorgan 's laws, 124
difference, 114
distributive, 124
empty, 92
equality, 114, 117, 120
finite, 262
infinite, 163, 262
integers, 155
intersection, 114
natural number, 153
powerset, 117
subset, 114

proper, 114
uncountable, 264
union, 114

setEq, 120
show, 28
sigma, 137

INDEX

signal,276
snd , 15
software

crisis, 82
engineering, 35

some, 97
specification, 277
splitter, 134
sqrt, 13
square, 14
state, 237
strictness, 143
String, 8
subscript, 21
subset, 114, 120
substitute equals for equals, 75
sum, 131, 137, 173
syllogism, 75
symmetric, 193

closure , 210
syntax, 36, 83

tail , 16
take , 21
tautology, 49
theorem, 68, 69, 83

prover, 67
therefore, 38, 41, 95
Tip, 139, 179
toLower, 7
topological sort , 222
toUpper, 7
transformation, 279
transitive, 197

closure, 211
tree, 139, 179

height, 179
triple, 8
True , 6,45, 48, 49, 52, 76
truth table, 36, 48-50, 66, 83, 277
tuple, 8, 242

339

Turing, Alan , 248
turnstile, 49
twice, 18
twos, 143
type, 85, 231

class, 29
Eq,30
Num,29

context, 30
enumerated, 26
Maybe, 28
overloaded, 29

type system, 2, 82
typechecking, 36

Undefined, 248
union , 114
universal

elimination, 103
universe, 90, 113, 116, 120

finite, 92, 98
infinite , 92
of discourse , 90

vacuous, 81
value, 3
variable, 48, 89

binding, 94
meta, 52
propositional, 52
scope, 94

weakest element, 216
well order, 221
well-formed formula, 44, 72-73,90
VVFF, 44,46, 52, 72-73
while loop, 139
word, 284

zip, 133
zipVVith , 23, 136

