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Preface

This book contains the somewhat extended lecture notes of an introductory
course in proof theory I gave during the winter term 1987/88 at the University
of Miinster, FRG. The decision to publish these notes in the Springer series has
grown out of the demand for an introductory text on proof theory. The books
by K.Schiitte and G.Takeuti are commonly considered to be quite advanced and
J.Y.Girard's brilliant book also, is too broad to serve as an introduction.

I tried, therefore, to write a book which needs no previous knowledge of proof
theory at all and only little knowledge in logic. This is of course impossible,
so the book runs on two levels - a very basic one, at which the book is
self-contained, and a more advanced one (chiefly in the exercises) with some
cross-references to definability theory. The beginner in logic should neglect
these cross-references .

In the presentation I have tried not to use the 'cabal language' of proof theory
but a language familiar to students in mathematical logic.

Since proof theory is a very inhomogeneous area of mathematical logic, a choice
had to been made about the parts to be presented here. I have decided to opt
for what 1 consider to be the heart of proof theory - the ordinal analysis of
axiom systems. Emphasis is given to the ordinal analysis of the axiom system
of the impredicative theory of elementary inductive definitions on the natural
numbers. A rough sketch of the 'constructive' consequences of ordinal analysis
is given in the epilogue.

Many people helped me to write this book. J.Columbus suggested and checked
nearly all the exercises. A.Weiermann made a lot of valuable suggestions
especially in the section about alternative interpretations for Q. A.Schliiter did
the proof-reading, drew up the subject index and the index of notations and
suggested many corrections especially in the part about the autonomous ordinals
of Z.

I am also indebted to the students of the workshop on proof theory in
Miinster who suggested many more corrections. Last but not least I want to
thank all the students attending my course of lectures during the winter term
1987/88. It was their interest in the topic that encouraged me to write this
book.

A first version of the typescript was typed by my secretary Mrs. J.Probsting
using the Signum text system. She also wrote the table of contents. Many
thanks to all these persons.

July 19, 1989 W. P.
Miinster
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INTRODUCTION

The history of proof theory begins with the foundational crisis in the first
decades of our century. At the turn of the century, as a reaction to the
explosion of mathematical knowledge in the last two centuries, endeavours
began to provide the growing body of mathematics with a firm foundation.
Some of the notions used then seemed to be quite problematic. This was especially
true of those which somehow depended upon that of infinity. On the one hand
there was the notion of infinitesimals which embodied ‘infinity in the small'.
The elimination of infinitesimals by the introduction of limit processes repre-
sented a great progress in foundational work (although one may again find a
justification for infinitesimals as it is done today in the field of nonstandard
analysis). But on the other hand there were also notions which, at least implicitly,
depended on 'infinity in the large'. G.Cantor in his research about trigono-
metrical series was repeatedly confronted with such notions. This led him to
develop a completely new mathematical theory of infinity, namely set theory.
The main feature of set theory is the comprehension principle which allows
to form collection of possibly infinitely many objects (of the mathematical
universe) as a single object. Cantor called the objects of the mathematical
universe ‘'Mengen' usually translated by 'sets'. Set theory, however, soon
turned out to be a source of doubt itself. Since Cantor's comprehension
principle allows the collection of all sets x sharing an arbitrary property E(x)
into the set {x: E(x)} one easily runs into contradictions.)) For instance if we
form the set M := {x: x ¢ x}, then we obtain the well-known Russellian antinomy:
MeM if and only if M¢M. It is easy to construct further antinomies of a

1) Cantor himself was well aware of the distinction between sets and other
collections which may lead to contradictions. See his letter to Dedekind from
27.7.1899 [Purkert et al. 1987]
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similar sort. Another annoying fact was that the plausible looking axiom of
choice

(AC) For any family (Sy)y . of non empty sets there is a choice function
f: 1= U{Sy: kel} such that f(k)eS, for all kel
had as a consequence the apparently paradoxical possibility of wellordering any
set. Nobody could imagine what a wellordering of the reals could look like and
D.Hilbert, in his famous list of mathematical problems presented in Paris in
1900, stated in his remarks concerning problem one (the Continuum Hypothesis)
that it would be extremely desirable to have a direct proof of this mysterious
statement.
Today we know that there is no elementary construction of a wellordering of
the reals. Any wellordering of the reals has the same degree of constructiveness
as the choice function itself. The existence of a choice function, however, is
not even provable from the Zermelo Fraenkel axioms for set theory.
All these facts contributed to a feeling of uncertainty among members of the
mathematical society about the notion of a set that they were opposed to set
theory in general. But it was of course not possible to simply ignore Cantor's
discoveries. Hermann Weyl in his paper 'liber die neue Grundlagenkrise der
Mathematik' [Weyl 1921] tried to convince his contemporaries that the founda-
tional problems arising in set theory were not just exotic phenomena of an
isolated branch of mathematics but also concerned analysis, the very heart of
mathematics. It was he who introduced the term 'foundational crisis’ into the
discussion. In his book 'Das Kontinuum' [Weyl 1918] he had already suggested a
development of mathematics which avoided the use of unrestricted set construc-
tions. In more modern terms one could say that he proposed a predicative
development of mathematics. Others, like L.E.J.Brouwer, already doubted the
logical basis of mathematics. Their point of attack was the law of the excluded
middle. With the help of the law of the excluded middle it becomes possible
to prove the existence of objects without constructing them explicitly. Brouwer
suggested developing mathematics on the basis of alternative intuitive principles
which excluded the law of the excluded middle. Their formalization - due to
Heyting — now is known as intuitionistic logic. Both approaches, Weyl's as well
as Brouwer's, meant rigid restrictions on mathematics. D.Hilbert, then one of
the most prominent mathematicians, was not willing to accept any foundation
of mathematics which would mutilate existing mathematics. To him the founda-
tional crisis was a nightmare haunting mathematics. In his opinion mathematics
was the science, the model for all sciences, whose 'truths had been proven on
the basis of definitions via infallible inferences' and therefore were 'valid overall
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in reality'. He felt that this position of mathematics was in danger and therefore
wanted to preserve it as it was. He was especially unwilling to give up Cantor's
set theory, a paradise from which no one would expel him. In his opinion Cantor's
treatment of transfinite ordinals was one of the supreme achievements of human
thought. Therefore he planned a program to save mathematics in its existing
form. He charted his program in a couple of writings and debated it in several
talks (cf. [Hilbert 1932-1935}). Therefore it would be inadequate to try to sketch
Hilbert's program in only a few sentences. For a serious evaluation of the status
of Hilbert's program today deeper considerations are necessary (cf. JSL 53 (1988)).
The part of Hilbert's program, however, which was essential for the development
of the kind of proof theory we want to give an introduction to in this lecture
may be roughly characterized by the following steps:

I. Axiomatize the whole of mathematics

II. Prove that the axioms obtained in step I are consistent.

Hilbert proposed that step 11 of his program, the consistency proof, should be
carried out within a new mathematical theory which he called 'Beweistheorie',
i.e. Proof Theory. According to Hilbert, proof theory should use contentual
reasoning in contrast to the formal inferences of mathematics. Hilbert himself
was aware of the fact that the reasoning of proof theory must itself not become
the subject of criticism. He therefore required proof theory to obtain its
results by methods beyond the shadow of a doubt. He suggested using only
finitistic methods. By finitistic methods he understood those methods 'without
which neither reasoning nor scientific action are possible'. In my personal
opinion, finitistic reasoning may be interpreted as combinatorial reasoning over
finite domains. Some of Hilbert's students (e.g. Ackermann, J.v.Neumann,
P.Bernays) soon obtained concrete results. Following Hilbert's maxim of first
developing the mathematical tools necessary for the solution of a general problem
by studying special cases of the problem they first tackled subsystems of
elementary arithmetic. In fact they succeeded in obtaining consistency proofs
for subsystems not containing the scheme of complete induction. It thus seemed
to be just a matter of technical refinement to extend these consistency proofs
to systems containing the full induction scheme. However, the systems containing
complete induction stubbornly resisted all attempts to prove their consistency.
That this failure was neither an accident nor was due to the incompetence of
the researchers, became clear after the publication of Kurt Gddel's paper
'Uiber formal unentscheidbare Sitze der Principia Mathematica und verwandter
Systeme' [Gddel 1931]. In this paper Godel proved his famous theorems which,
roughly speaking, say the following:



Introduction

L In any formal system, satisfying certain natural requirements, it is possible
to formulate sentences which are true in the intended structure but are also
undecidable within the formal system (i.e. neither the sentence nor its negation
are provable in the formal system).

II. The consistency proof for any formal system, again satisfying canonical
requirements, may not be formalized in the system itself.

One might think that Gédel's theorems meant a sudden end to Hilbert's
program. The first theorem shows that step I in Hilbert's program is indeed
impossible. This, however, might be remedied by the oberservation that in fact
it is not necessary to formalize all possible mathematics. It would suffice just
to axiomatize existing mathematics. Today we know that nearly everything in
everyday's mathematics (and, except for the Continuum Hypothesis, probably all
which Hilbert may have thought of) is formalizable in one single formal
system, namely Zermelo Fraenkel set theory with the axiom of choice (ZFC).
Most parts are even formalizable in much weaker systems. Godel 11, however,
is a lethal blow to Hilbert's program. Since the methods 'without which neither
reasoning nor scientific action are possible' (combinatorial reasoning over finite
domains, in our interpretation) should itself be available in mathematics, any
reasonable axiomatization of mathematics should allow the formalization of
Hilbert's finitistic methods. Therefore there is no finitistic consistency proof
for an axiomatization of stronger fragments of mathematics (i.e. essentially
those containing the scheme of complete induction). Luckily for the development
of proof theory, the researchers in the thirties did not interpret these results
als having such drastic consequences. It is hard to say why. Gédel's results
were known to the Hilbert school. For instance Bernays mentions them in
[Bernays 1935a] but although he expresses doubts about the feasibility of
finitistic consistency proofs he denies that Gédel's results imply their impossi-
bility. I conjecture that the true reasons were Hilbert's authority as well as the
vagueness of his program. Since he gave no precise definition of what he
meant by finitistic methods one could hope that these methods comprised a
kind of contentual reasoning which cannot be mathematically formalized. As a
matter of fact mathematicians did not stop searching for consistency proofs
and in 1936 Gerhard Gentzen succeeded in proving the consistency of elementary
number theory. According to Godel's second theorem Gentzen's proof had to
use nonfinitistic means. Gentzen succeeded in concentrating all nonfinitistic
means in one single point — induction along a wellordering of transfinite ordertype.
This result confirmed the Hilbert school's opinion that just a slight modification
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of the finitistic standpoint (i.e. accepting a weak form of transfinite induction)
woutld suffice to make the whole program feasible. In §16 we will discuss the
consequences of this 'slight modification' for Hilbert's program. There we will
try to argue, in the spirit of Hilbert's program, that Gentzen's proof is of
little help. This, however, does not mean that Gentzen's proof and his results
are of no importance. Quite on the contrary, in our opinion Gentzen's proof is

one of the deepest results in logic. To see why, we propose a reinterpretation
of his results.

In point of fact it is very easy to prove the consistency of pure number
theory. One simply has to show that there exists a model for it. So what is the
advantage of Gentzen's consistency proof? The construction of the model
itself needs a certain framework, e.g. set theory. Thus what is obtained by
a consistency proof via a model construction in set theory (or some even
weaker theory) is that the consistency of set theory also entails the consistency
of pure number theory. Gentzen's proof, however, gives much more information.
it has already been mentioned that Gentzen's proof is finitistic apart from his
use of induction along a wellordering of transfinite ordertype. In our opinion
this is the essential contribution of Gentzen's proof. Its consequences are
twofold:

1. The induction in Gentzen's proof need only be applied to formulas of a
very restricted complexity. In addition the consistency proof never uses the law of
the excluded middle. Thus it may be formalized within a system T based on
intuitionistic logic with induction along a wellordering of transfinite ordertype
where this induction scheme is restricted to formulas of a very low complexity.
So the problem of the consistency of pure number theory may be decided within
the system T. Although the wellordering is of transfinite order type it can
easily be visualized. So it seems to be completely plain that the system T is
consistent. By Gédel's second theorem the proof theoretic strength of the
system T, as it will be defined later in this lecture, has to exceed that of
pure number theory. But the subsystem T, of T which is obtained from T by
restricting induction to initial segments of the wellordering only can be shown
to be equiconsistent with elementary number theory. Thus Gentzen's proof
provides a reduction of the consistency problem for elementary number theory
to that of a theory T,, which from a conceptual point of view may be regarded
as 'safer' than elementary number theory itself.

This is an example of reductive proof theory. In reductive proof theory one
generally tries to reduce the consistency problem of a theory T, to that of a
theory T,. For a clever choice of T, both systems will have the same proof
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theoretic strength. The principles used in T,, however, may be easier to visualize
and therefore a justification of the system T, seems more plausible. This type
of proof theory is of great foundational importance (cf. the introduction to
[BFPS] by S.Feferman). One important feature of Hilbert's program we did
not mention is the 'elimination of ideal elements'. In this sense reductive
proof theory contributes to Hilbert's program by eliminating complicated
unperspicuous principles. Since both systems (T, and T, in the above example}
are of the same proof theoretical strength reductive proof theory is in full
accordance with Gddel’s second theorem.

2. The fact that induction along the wellordering is the only nonfinitistic
means in Gentzen's proof also suggests using this wellordering as a measure
for the transfinite content of pure number theory. Pursuing this idea one had
defined the proof theoretic ordinal of a formal theory T as the ordertype of
the smallest wellordering which is needed for a consistency proof of T. This
definition, however, is somehow vague since it says nothing about the means
used besides the induction along this wellordering (one tacitly has to assume
that these at least have to be formalizable in T). To obtain a more precise
definition one calls an ordinal « provable in T if there is a primitive recursively
definable wellordering <{of ordertype a such that the wellordering of £ is
provable in T. It is a consequence of Gidel's second theorem, that the proof
theoretic ordinal of T (in the previous sense) cannot be a provable ordinal of
T. Therefore one may define the proof theoretic ordinal of T as the least
ordinal which is not provable in T. This is the common definition today. The
computation of the proof theoretic ordinal of T is called the ordinal analyis
of T. Gentzen's paper Beweisbarkeit und Unbeweisbarkeit von Anfangs-
fillen der transfiniten Induktion in der reinen Zahlentheorie' [Gentzen 1943]
indicates that he himself already interpreted his result as an ordinal analysis
(and not just as a consistency proof).

The intention of this lecture is to give an introduction to the techniques of
ordinal analysis. We suppress the aspects of reductive proof theory. Only in the
epilogue it will be indicated how the results and methods of ordinal analysis
may be used in reductive proof theory. To get acquainted with the basic notions
and techniques we reprove Gentzen's result in the first chapter. The second
chapter will discuss the limits of Gentzen's methods. There we will reprove
S.Feferman's and K.Schiitte's results on the limits of predicativity. The emphasis,
however, is on the ordinal analysis of impredicative formal systems. To demon-

strate this method we will give in chapter 1Il an ordinal analysis for one of
the simplest impredicative formal systems, the system ID, for noniterated
inductive definitions by the method of local predicativity. A discussion on the
foundational significance of ordinal analysis will be added in the epilogue.

6



CHAPTER 1

ORDINAL ANALYSIS OF PURE NUMBER THEORY

To begin with we follow Hilbert's program and, in a first step, try to axiomatize
- if not the whole of mathematics - but the theory of natural numbers. To
obtain a feeling how this might be done we start by some heuristic considera-
tions.

The aim of the 'working' mathematician interested in the theory of a certain
structure is to discover the 'mathematical facts' which hold in this structure.
In order to do this he first has to be able to formulate the 'mathematical
facts'. This means that he needs a language in which he may talk about this
structure. The mathematical facts which possibly may hold in the structure
will then be expressed by sentences in this language. The problem then is to
figure out which of the sentences are the true ones. This may be done by
pure intuition. But to be really sure about the truth of a sentence it needs a
proof. The only way to prove a sentence, however, is to show that it is a logical
consequence of some other sentences which already are known to be true in
the structure. Tracking back this procedure we finally end up with a set of
sentences, the mathematical axioms of the structure, which cannot be proved
themselves but either are true by definition or by common agreement. Showing
that a sentence is a logical consequence of other sentences usually is done by
deriving the sentence from those others through a series of inferences. A set
of inference rules will be called a proof procedure. Some of the inferences in
a proof procedure may have no premises. Those inferences will be called the
logical axioms of the proof procedure. The choice of the axioms and of the
proof procedure is of course not arbitrary. As a first requirement the truth of
every mathematical axiom really has to be indubitable and it also must be
clear that the truth of the premises of an inference undoubtedly entails the



truth of its conclusion (if there is no premise, then the conclusion must be
true in every structure, i.e. logically valid.). This will guarantee that all proven
sentences really are true. But the 'working' mathematician does not only want
to ensure himself about his theorem but he also wants to convince his colleagues
about its truth. Therefore there must be a way of checking a proof. Thus the
second requirement is, that it must be decidable whether a given sentence is
an axiom or not, and it also has to be decidable whether an inference is a
correct application of an inference rule or not. Otherwise we had no possibility
to check the correctness of a given proof. A proof procedure meeting these
requirements will be called decidable.

This little heuristic teaches us the following facts about axiomatization:

In order to axiomatize the theory of a structure we

- first need a formalization of the language of the structure. The formal
language of the structure has to be given in such a way that it becomes decidable
whether a symbol string is a wellformed expression or not;

- second need a decidable set of sentences in this language which undoubtedly
are true. The sentences in this set are the axioms of the structure;

- third need a decidable proof procedure which produces logical consequences
of the axioms.

A decidable formal language together with a decidable set of mathematical
axioms and a decidable proof procedure will be called a formal system or
sometimes also a formal theory for the structure. From this it immediately
follows that the set of sentences which are provable in one formal system
always is a recursively enumerable set.

By results of mathematical logic there are complete proof procedures for first
order languages, i.e. there are proof procedures which produce all logical
consequences of a given set of mathematical axioms. This of course must not
be mistaken in that way that the proof procedure together with the mathematical
axioms produce all true first order sentences of the structure. In general the
set of true sentences of a structure is not recursively enumerable but of
higher complexity. Thus in general we cannot expect a complete axiomatization
even for the first order theory of a structure. Since we have to abandon com-
pleteness anyway we may as well regard the second order language of the
structure although there is not even a complete proof procedure for second
order logic. The only important thing is that there are sound proof procedures. It
will then be the task of proof theoretical research to determine the limits of a
formal system.



§1. The language of pure number theory

In the present lecture we will not use full second order logic but first order
logic with free set variables. We will introduce the notion of a Il}i-sentence and
then examine the power of formal systems with respect to their provable II}-
sentences.

In the first sections of the following chapter we are going to develop a quite
simple formal system for the structure of natural numbers which in the later
sections will be analyzed proof theoretically.

§1. The language % of pure number theory

A structure usually is given by a non void set together with collections of
constants, of functions and of relations on that set. In order to obtain a formal
language for the structure of natural numbers we first need to specify our
picture of this structure. The set of natural numbers is characterized by the
facts that every natural number either is zero or the successor of another
natural number and that every natural number possesses a uniquely determined
successor. Using this characterization we obtain a name (or constant as we
are going to call it) for every natural number. We start with Q0 as a name for
the natural number zero and a symbol S for the successor function. Then a
constant for every natural number is obtained by successively applying the
successor function to the symbol 0. So it should be clear that we at least
need a constant for zero and the successor function in our language (and then
as well may assume that we already have a constant n for every natural
number n). The next question to be answered is which functions and relations
besides the successor function on the natural numbers we should consider. The
most general answer is of course "all possible functions and relations on the
set of natural numbers”. Since there are uncountably many such functions and
relations this already would lead to a language with uncountably many basic
symbols. In a formal system only those constants for which there are defining
axioms contribute to the power of the formal system. Therefore we would
need an uncountable set of axioms which is outside the scope of a formal
system since every decidable set already is countable, If we dispense with
defining axioms for function or relation constants we may as well treat them
as variables. In fact we will introduce a language which has such second order
variables. In our framework it will suffice just to introduce set variables. The
introduction of bare set variables (or function variables) will in general also



§1. The language of pure number theory

not raise the power of a formal system (cf. exercise 3.15.4). But if we add the
defining axioms for set variables, i.e. the comprehension scheme, we will
obtain a system which is so strong that up to now we have not been able to
do its proof theoretic analysis. Therefore we will be more modest and in a
first step will restrict ourselves to a system which we are going to call the
system of pure number theory. The most important functions in number
theory are 'plus’ and 'times’. 'Plus' and ‘'times' are primitive recursive functions
and it is possible to obtain all primitive recursive functions from 'plus’' and
‘times' (cf. remark 3.12.). Therefore we are going to introduce a seemingly
stronger system in which we have a constant for every primitive recursive
function and relation. In order to do this we first will introduce names for all
primitive recursive functions. In definition 1.1. we will give the syntactical
definition of the primitive recursive function terms, while the meaning of
those terms becomes clear from definition 1.2. in which we define the evaluation
of an n-ary primitive recursive function term f on an n-tuple t,..t, of
natural numbers.

i.1. Primitive recursive function terms

(i) S (the symbol for the successor function)is an unary primitive recursive
function term.

(ii) P (the symbol for the k-th projection of an n-tuple) and C} ( the
symbol for the n—-ary constant function with value k) are n-ary primitive
recursive function terms, where in the case of P’;{ we require I<ks<n.

(iii) If hy,..h  are n-ary primitive recursive function terms and g is an
m-ary primitive recursive function term, then Sub(gh,....,h ) is an n-ary
primitive recursive function term. {Substitution of functions).

{iv) If g is an n-ary and h an n+2-ary primitive recursive function term,
then Rec(g,h) is an n+l-ary primitive recursive function term. {Primitive recur-

sion).

1.2. Inductive definition of fit,,...,t,,) = t for an n-ary primitive recursive function
term f and natural numbers t,,....t,,t

(i) S(ty)=t if t is the successor of t,,

(i) Cp(t,,....t,) = t if t=k,

(iii) Pp(ty,....tn) =t if t=ty ,

(iv) Sub(g,h,,....h ) (t,,...tn) =t if there are natural numbers uy,...,u,, such
that hilty,...t,) = u; and glug,..,u ) =t.

10



§1. The language of pure number theory

(iv) Reci{g,h){t;,...t k) = t holds if k=0 and g(t,...t,) = t or if k is the
successor of kg and h(t,,....t,, ko,Rec(g,h)(ty,. ...t ko)) = t.

f(t,,...,tn) = t is to be read as: "The evaluation of the n-ary primitive recursive
function f on the n-tuple t,,....t,, of natural numbers yields the value t".

1.3. Definition
The graph of an n-ary primitive recursive function term f is the n+l-ary
relation {f} given by {f} (...t .t) == flty...t,) = t.

1.4. Definition

An n-ary relation R on N is primitive recursive if its characteristic function
deefined by
1, if Rity,....t,}
Xrltyenty) =
0, otherwise

is primitive recursive.

We do not want to go deeper into the theory of primitive recursive functions.
This is the topic of another lecture. The aim of the preceeding definitions was
to emphasize that it is possibie to name every primitive recursive function by
a term. This also means that, via its characteristic function, we have a name
for every primitive recursive relation. We now are prepared to introduce the
formal language & for the structure of natural numbers.

1.5 Basic symbols of the language ¥
1. Logical symbols
(i) Countably many number variables denoted by u,v,w,x,y,z,...
(ii) Countably many set variables denoted by U,V,W.X.Y,Z,...
(iii) The sentential connectives 1, a,v, the quantifiers ¥,3 and the member-
ship relation symbole.
2. Nonlogical symbols
(i) A constant n for every natural number n.

(ii) An n-ary function constant f for every n—ary primitive recursive function
term f.

(iii) An n-ary relation symbol R for every primitive recursive relation R.

11



§1. The language of pure number theory

When no confusion is to be feared we often will omit the underlining.

3. Brackets serve as auxiliary symbols.

1.6 Inductive definition of the terms of the language &
(i) Every number constant n is a term and it is FV,(n)=#.
(ii) Every number variable x is a term and it is FV (x)={x}.
(iii) If t,,....t, are terms and f is an n-ary function constant, then (ft,,....tn)
is a term and it is FV (ft,....ty) = FV (t)u...u FV,(ty).
We call FV,(t) the set of number variables occuring free in t.

1.7 Inductive definition of the formulas of &

(i) If t,,...tn are terms and P is an n-ary relation symbol, then (Pt,..t,)
is a formula and it is FV (Pt,...t;) = FV (t,)U..UFV,(t,)) and BV,(Pt,.t,) =
FV,(Pt,...t,)) = BVy(Pt,...t,) = 8.

(ii) If t is a term and X a set variable, then te X is a formula and it is
FVi{te X) = FV,(t), FV,(te X) = {X}, BV {teX) = BVy(te X) = 4.

(iit) If A and B are formulas, then (71A), {A AB) and {Av B) are formulas and
it is FV,(7 A) = FV{A), FV,(A { B) = FV,(A)UFV,(B) for i=1,2 and BV;{1A) = BV,{(A)},
BV,(A{ B)= BV,(A)JUBV,(B) for i=1.2.

(iv) If A is a formula such that x ¢ BV (A), then Vx A and 3x A are formulas and
we define FV;(QxA)=FV,(A)\{x}, FV,(QxA)=FV,(A), BV{(QxA)=BV,(A)u{x}
and BV,(QxA)=BV,(A) for Qe{V,3}

Formulas which are built according to (i) or (ii) are called atomic.

FV,(F) is the set of free number variables occuring in F, FV,(F) the set of
free set variables occuring in F. We call BV (F) the set of number variables
occurring bound in F. By FV(F) we denote the set FV{(F)u FV,(F) of free variables
of F and by BV(F) the set BV,(F)u BV,(F) of bound variables of F

Sentences are formulas F without free variables, i.e formulas F such that
FV (FYUFV,(F) = 8.

H:—sentences are formulas F such that FV,(F) = #, ie. formulas without free
number variables.

Up to now we have BV,(F)=# for all formulas F. That means that F does not
contain bound set variables or bound second order variables as they often are
synonymized. One therefore calls them first order formulas. We usually refer
to first order formulas as #y—formulas. The second order formulas or &5~
formulas are obtained by adding the clause
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(v) If F is a formula and X ¢BV,(F}, then (YXF) and (3IXF} are formulas
such that FV (QXF) = FV,(F), BV,(QXF) = BV,(F), FV,(QXF) = FV,(F)\{X} and
BV,(QXF) = BV,(F)u{X]} for Qe{Y,3}.

1.8 Notational conventions

As syntactical variables for number variables we use the letters u,v,w,x.y,z.
Terms are denoted by r,s,t,a,b,c and number constants by m.n.kl UV WX)Y,Z
are syntactical variables for set variables. All these symbols will also occur
with indices.

By Alxy,....x,] we indicate that the variables x,,...x, really do occur in A, ie.
FV (A) = {x,,....x5} . Alx,,...,x,,) just means that x,,...,x,, may occur in A. We use
analogous conventions for set variables.

Ax(s) or ty(s) are obtained from A or t respectively by replacing all occurences
of x by s. If there is no danger of confusion we omit the subscript x.

Class terms of the form {x:A(x)}} do not belong to the language but will be
used as defined objects. s¢{x:A(x)} then stands for Ay(s). We often write
Ax(B) instead of Ay({x:B(x)}) and omit the subscript X whenever there is no
danger of confusion.

The sentential connectives — and — are defined as usual by 1..v___ and
(.= .. )Ia{___—>..) respectively.

1.9 Exercises
1. Suppose that t, s are ¥-terms.
(i) Give an inductive definition of t_(s).
(ii) Show that t_(s) again is an £-term.
2. Suppose that s is an #-term and F is an &¥-formula.
(i) Give an inductive definition of F_(s).
(ii) Show that F_(s) again is an #-formula.
3. Suppose that F and B are #-formulas.
(i) Give an inductive definition of Fy({x:B(x)}).
(ii) Find formulas F,B such that F,({x:B(x)}}) is not an ¥-formula.

iii) What prerequisites are needed for F and B in order to obtain Fy ({x:B(x)})
to be an ¥-formula?

13



§2. Semantics for &
§ 2. Semantics for &

Hitherto we defined terms and formulas of & as mere syntactical objects. To
give them a mathematical meaning we need an interpretation for the formal
language &. The development of such a semantics is the goal of the present
section. We will, however, not develop a general theory of semantics for &
but, according to our intention, will restrict ourselves to the so called standard
interpretation of & in the structure N of natural numbers.

2.1. Definition
An assignment for & is a mapping ® which assigns a number ®{x)eN to every
number variable x and a set ®{(X}cN to every set variable X.

2.2. Inductive Definition of the value t® of an #-term t with respect to an
assignment ¢

(i} n® = n

(i) x®= @(x)

(i) (ft,..t)®=n if F(t2,.t®) = n according to 1.2.

As an immediate consequence of definition 2.2. we obtain tPeN.

2.3. Inductive definition of N EA®
Suppose that ® is an assignment for .
() N E Rty t )P i x (6 L t3) =1
i.e., we have NE (Pt,..t, )% iff P(tf ,..t2) is true where P is the primitive
recursive predicate denoted by P
() N E (teX)® < t®e a(X)
(i) N F (1A)® < N £ A®
(iv) N E (AAB)® < Nk A® and N k B®
(M NE((AVB® < NEA® or N E B?
(vi) N E ¥xA® < N £ Ay (n)® for all neN
(vii) N E 3xA® « N k£ A (0)?® for some neN
This gives the semantics for & ~formulas. We obtain the semantics for £,-
formulas by adding the clauses

(viii) N E YXA? & N E AY for any assignment ¥ which at most differs in
the value of ¥(X) from ¢.

(ix) N | 3XA® <= There is an assignment ¥ which at most differs in the
value of ¥(X) from & such that N  AY.

14
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If FV,(t)=8 we have t®=t¥ for all assignments ® and ¥. For closed terms t,
i.e. terms t such that FV,{t) = 8, we therefore define tN:=t? for an arbitrary
assignment ®. Two closed terms s and t such that sN= N are called equivalent.
Two formulas F; and F, are said to be equivalent if they only differ in equivalent
terms.

The value of t® and the relation N k£ A® obviously only depend upon ®!FV(t)
or ®}FV(A) respectively. If FV(t) = {x,....xp} or FV{A) = {x4,...X0. Xpsee0s Xy}, We
often write tlki,....k,] or N E Alk,,....k,,S;.....S:m] repectively instead of "t® or
N A® for an assignment & such that &(x;) =k, and ®(X;) =S; hold for
i=1...,nand j=1_..m".

If F is a sentence we obviously have N FeN E FY for all assignments ¢
and ¥. In this case we write N k F and say that the sentence F is valid in N.
For Mi-sentences A[X;,....X,] we have N VX,..¥X_ A if and only if Nk A®
holds for any assignment &. This is the reason for calling them Il}-sentences
although they prima facie are ¥,—formulas. For Ilj-sentences we always write
N E A instead of N F VX,..YX_A. This notation sometimes will also be used
for arbitrary formulas A. So, for a formula A, NE A means 'NE A?® for all
assignments @',

2.4. Exerclse
Suppose that L is a first order language which is given by a set € of individual
constants, a set F of function constants and a set P of predicate constants.
We define L, and L, analogously to &, or &, respectively. The semantics for
L, and L, is defined in the following way.
(i) A structure & for L, is a quadruple (1€, F, P) which satisfies the
following conditions:
(a) 149 is a set.
(b) We have €c1 such that for every ceC there is a c¥¢%.
(c) F is a set of function on 1, such that for any n-ary function symbol
feF there is a function £¥: I" > 1 in F.
{d) P is a set of predicates on 1 such that there is a PZci™ in P for every
n-ary predicate symbol PeP.
(i) A structure & for L, is a quintuple (LM,%,F.,9) such that (1,%,.7.9)
is a structure for L, and Mc Power(l) (the power set of I).
(iii) If & is a structure for L, or L, then an $-assignment for £ (i=12) is
a mapping ® which assigns to any x an element ®(x)¢I and to any set variable
X a set ®(X)cl or ®(X)eM respectively. ’

15
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For L-terms t and L-formulas F and an $-assignment ® we define t® and
SEF?® analogously to 2.2 and 2.3 respectively. We write £EF for an L,-formula
F if $EF® holds for any &-assignment ® and kEF if $EF holds for all
L ,-structures &.
Prove the following claims:

(i) EA—-F = $EA— VxF if x ¢FV(A)

(it) YEF— A = $EIxF-— A if x ¢ FV(A)

(i) EVXF — F, (Y)

(iv) FF(Y) — IXF

(v) FA—F = ¥EA > VXF if X¢FV(A)

(vi) EF— A = LEIXF— A if X¢FV(A)

§3. A formal system for pure number theory

Still in the spirit of Hilbert's program we are trying to establish a formal
system which derives as much valid sentences of N as possible. In a first
step we are going to deal with those sentences which are valid because of their
logical structure. Every formula of & carries a sentential and a quantifier
structure. To clarify the sentential structure of an ¥-formula which is given by
the logical connectives 1,A and v we introduce the sentential subformulas of
an Z-formula.

3.1 Inductive definition of the set AT(F) of sentential subformulas of an £-
formula F

(i) If F is atomic or a formula QxA or QXA respectively where Qe{V.3},
then AT(F) = {F}.

(ii) If F is a formula 1A, then AT{(F) = {F}u AT(A).

(iii) If F is a formula (AAB) or (AvB), then AT(F) = {F} U AT(A) v AT(B).
Formulas A such that AT(A) = {A} are called sentential atoms. By AE we denote
the set of all sentential atoms of &. We define AE(F) :=AE n AT(F).

3.2. Definition
(i) A sentential assignment is a mapping B : AE — {t f}.
(i) The truth value A® of a formula A under a given sentential assign-

ment B is given by the usual interpretation of the logical connectives as truth
functions (cf. 2.3.(ii)-(v) and 10.12. below).

16



§3. A formal systern for pure number theory

One should notice that only the values of B restricted to AE(A) are needed in
the computation of AB.

(iii)} A formula A is sententially valid if A® - t holds for all sentential
assignments B.

3.3. Lemma
If Ae AT(F), then FVi(A)c FV(F) for i=1.2.

The proof is an easy induction on the definition of A¢ AT(F).

An assignment ¢ canonically induces a sentential assignment Bg by defining
AB® _ (=N E A® for all sentential atoms A. For these assignments we have
the following lemma,

3.4. Lemma
N E A® holds if and only if AB® = t.

Proof by induction on the length of the formula A

1. If AcAE, then we have Nk A%< AB® - ¢ by definition.

2.If A is a formula 1B, then we have NF A® &N £ B® <« BB® - f = AB® - ¢,
3. If A is a formula (B C C), then we have N E A if and only if NF B and/or

N E C By the induction hypothesis this holds if and only if B®® - t and/or
CcB® _ ¢ But this is equivalent to (B ’\) C)B® - ¢

As a corollary to 3.4. we obtain the following theorem.

3.5. Theorem
If F is sententially valid, then N E F.

Concerning the quantifier structure of an #~-formula we just need the following
observation.

3.6 Lemma
If F is a formula 1Ax(t)v IXA or 1VxAv Ay(t), then N E F.

17
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Proof

From N E Ax(t)q’ we have to conclude Nk 3xA®. By induction on the length
of A we easily obtain Nk Ay(t)® <= N E A (t®)?. Hence N F 3xA®. In the
second case we have to show that N = ¥xA® implies N & Ax(t)q’. But N | VxA®
implies N F Ax(‘g‘b)@ and therefore also N k Ax(t)m'.

In the proof of 3.6. the careful reader will have noticed that the proof needs
the additional hypothesis that the term t is substitutable for x in A, Le. none
of the free variables occurring in t must be bound in A. Here and in future we
will tacitly assume that this prerequisit always Is satisfied. This means no
restriction since by renaming the bound variables in A we may always obtain
that t is substitutable in A.

Now we are prepared to formulate the axioms and inference rules of the formal
system Z; of pure number theory. The language of Z,; is the first order
language %;.

3.7. Logical axioms of the formal system Z;
(i) Every sententially valid formula is a logical axiom of Z,.

(ii) Every formula of the form 1VxA v Ay(t) and 1Ax(t) v3IxA is a logical
axiom of Z,.

3.8. Logical inferences of the formal system Z;

{mp) A,7Av B+ B (modus ponens)
(v) 1AV BF 1AviB} if x¢EV,(A)  (Y-rule)
(3) 1Bv AF13xBv A {3-rule)

The variable x of a quantifier inference is called its eigenvariable.

3.9. Equality axioms of the formal system Z,
Among the constants for the primitive recursive relations we have a constant =
for the equality relation. Although we could derive the properties of the equality
relation from its defining axioms (contained in 3.10.) we prefer to formulate
them explicitly as a separate group of axioms. This is in coincidence with the
usual treatment of formal systems where the equality symbol often is regarded
as a logical symbol.

(i) ¥x{x = x)

(if) VxVy (x =y = y = x)

(iil) Vx, Vx VX3 (X = Xg A Xy = X3 — Xy = X3)

(iv) VxV¥y(x =y > t =t (y)

(v) VxV¥y(x =y — (F = F (y))).

18
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3.10. Mathematical axioms of the formal system Z,
(i) The successor axioms
Vvx{10=Sx)
¥xVy(Sx=Sy—=x=y)
Sn=Sn for all neN.
(ii) The defining axioms for primitive recursive functions are given by the
universal closures of the following formulas
(Cp XgoonXp) = k
(B2 XqpersXp) = Xy
(Sub(g,hy,....,h; ) x5...xn ) = (g lhyxp... %) ... (hpy,X..%0))
(x =0 — ((Rgh) xy..x,x) = gX1..Xxu) A
(x = Sy — ((Rgh)x,...x ,x) = hx;..x, y ((Rgh) x4...x,,¥))
Rxy...Xp «* XRX1--Xp =1
(iii) The induction axiom is given by the scheme
(IND) Ay (0) A Yy (Ayly) — Ay(Sy)) — ¥xA

3.11. Inductive definition of Z; |- F
We are going to define the formal derivation predicate for Z;. Z; i~ F should
be read as 'F is formaily derivable in Z,'.

(i) If A is one of the axioms 3.7.,3.9. or 3.10, then Z; I A.

(i) If Z, - Aj (i=1or i= 12) holds for the premise(s) of an interference
according to 3.8. whose conclusion is A, then we also have Z; |- A.

3.12. Remark
The system Z, is an extension by definitions of the better known system PA
of Peano arithmetic. PA is formulated in a first order logic with equality. The
only nonlogical symbols of PA are the binary function symbols '+' for
addition and ' ' for multiplication, the unary function symbol S for the
sucessor function and a constant 0 for the natural number 0. (The equality
symbol is counted among the logical symbols). The axioms of the group 3.10.(ii)
are then replaced by the defining axioms for 0, S, '+' and ', i.e. by the uni-
versal closure of the following formulas

x+0 = xand x-0=20

x+8y = S(x+y} x-Sy =(x-y)+x
Here as usual we have written (x+y) instead of {+xy) and (x-y) instead of (xy}.
Apparently PA is a subsystem of Z,, i.e. we have
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(i) PA-F=1Z F for every formula ¥ in the language of PA.
We also have the opposite direction of (i) which means that Z, is a conservative
extension of PA But we may even prove:

(ii) For every &, -formula F there is a formula F,in the language of PA
such that Z; - F — Fp.
This means that every symbol of Z, can be defined in PA. For this reason Z,
is called an extension of PA by definitions. The proofs of (i) and (ii), however,
require methods from the theory of recursive functions and will not be given
here.

3.13. Soundness theorem for Z,
If Z, |-F, then N EF.

Proof

By induction on the definition of Z, -F we show that Z; I F implies N [ F®
for any assignment ®. If F is a logical axiom then we obtain N k& F® by 35.
or 3.6 respectively. The claim is obvious for the equality axioms and the mathe-
matical axioms. We only should check the induction scheme. Here we have to
show that N E A(0)® and Nk Vy(Aly) - A(SyD® imply N E A(n)® for all
nelN. But N E Vy(Aly) — A(Sy)® and N F A(n)® imply N E A(Sn)®. Since we
have N E A(0)® and every natural number is obtained from O by finite applica-
tions of the successor function we easily obtain by metainduction on n that
N E A(n)?® for all neN. In a last step we show that the validity in N is con-
served by the inference rules. From N F A® and N E (A — B)® we immediately
obtain IN  B®. If F is the conclusion of an instance of the V-rule then F must
be a formula A — YxB and we obtain by the induction hypothesis N k& (A — B)}®
for all assignments ®. It remains to show that N = A® implies N kE By(n)® for
all nelN. For an arbitrary n<IN we obtain an assignment ¥ by defining ¥(x) := n,
¥(y} := ®ly) for all y+x and P(X) := $(X). Since x¢FV,{A) we have N F AY.
N k= (A — B)Y therefore also implies N = B¥. But this implies N B, (¥x)®
since in B,(¥x) all occurences of x are replaced by the constant ¥x. Hence
N = By(n)?® for all neN.

The case of an 3-inference is treated analogously.
3.14. Remark

The soundness theorem assures that Z, only derives II}-theorems of N, ie. Nli-
sentences which are valid in the structure N. On the other hand we know that
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Z; cannot derive all theorems of N by Godel's theorem. As already mentioned
in the beginning of this chapter, there is a tremendous gap between the set
of formulas which are derivable in Z; or any other formal system and the
formulas which are valid in N. The latter is a Ili-complete set while the set
of formally derivable formulas always is I}. This naturally arises the question
if there is a classification of the formulas which are outside the scope of Z,;
(or of any other formal system). We are going to give such a characterization
by defining a norm for the Ili-sentences of % and then showing that only
sentences whose norm is not too large may be derived in Z;. The definition of
this norm function is the aim of the following sections.

3.15. Exercises

1. Let F,A be & -formulas such that (BV{(A)JUFV{(A)INBV(F) = 8.

Prove that Z,F already implies Z,-Fy ({x: A(x)}).

2. Suppose that L is a language such that £c<L and let " ! be an arithmetization
of L. Assume that T is a consistent theory for L such that an L-formula sb(x,y)
exists which satisfies FV(sb(x,y)) = {x,y} and T |- sb(F'y) « y =F, (F')'. Show
that there is no L-formula Tr{x) such that T Tr("F') — Fholds for all L-
formulas F.

A formal theory T for a language L(T) (i=12) is a set of formulas of L(T).
The relation THF is defined inductively by:

(i) If FeT or if F is a logical axiom according to 3.7 or a formula of the
shape VXF — Fy(Y) or Fy(Y) — IXF, then THF.

(ii) If F is the conclusion of a logical inference according to 3.8. whose
premises are F, or F ,F, respectively and if 'I'}-—Fj holds for j=0 or j=0,1
respectively, then ThF.

(iii) If i=2 and THA —= F or THF — A, then THFA = ¥XF or THF3XF— A
repectively provided that X ¢FV(A).

Suppose that T, T, are formal theories for L(T)) or L(T,). We say that T, is
a conservative extension of T, (written as T<T,) if L(T)<L(T)) and
Ty -F <> T, -F holds for all L(T,)-formulas F.

3. Suppose that T, is a subtheory of the formal theory T,. Assume that for
any L(T )-structure ¥ and any A-assignment & such that A }=T!¢ there is a
L(T,)-structure B and a B-assignment ¥ which satisfies B 5=T2‘*' and
U EF® < B EFY for all L(T,)-formulas F . Show that T<T,.

[Hint: Use the completeness theorem for first order logic.]
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4. Let the formal theory Z, for &, be given by the axioms of Z, with the
scheme (IND) of complete induction expanded to all &, -formulas. Show that
Z, - F implies Z; - F for all £;~formulas F satisfying FV,(F) = #.
5. The formal theory ACA, for &, is given by the axioms of Z,, with the
axiom (Ind) ¥X{0eXAVx(xeX — SxeX) — ¥x{xe X)) instead of the scheme
(IND) of complete induction together with the scheme of arithmetical compre-
hension, i.e. 3IXVx{xe X « F) for any &¥;~formula F such that X¢FV,(F).
Show that Z;{ACA,,.
6. The formal theory I3-IND for &, is given by the axioms of Z, with the
scheme (IND) of complete induction restricted to £p~formulas.
Z2-INDR results from Z, by replacing the scheme (IND} by the rule
(Z3-INDR) A—>FJ(0), HA—F—F(8x) == A — VxF
for every Zg-formula F and every & -formula A such that x¢FV(A).
We obtain the formal theory IS-INDR' by restricting the rule (ZJ-INDR) to
formulas F of the shape Ix;¥x,...Qx,({xxy,....x> € X} only.
Show that for every & —formula F the following are equivalent:
(i) Zp-IND - F
(ii) Z3-INDR |- F
(iii) Z9-INDR' |- F.

§ 4. The infinitary language Lo

We have already mentioned that it is impossible to obtain all Tlj-theorems of N
by a finitary formal system. Therefore we are trying to (at least successfully)
derive them by an infinitary system. For this purpose we reformulate the IIj-
sentences of N in an infinitary language & for which there is a canonical
infinite derivation procedure. As far as we know W. Tait was the first one who
used exactly this approach. The use of infinitary systems in proof theory,
however, was already implicitly suggested by D. Hilbert. K. Schiitte was the first
one who systematically used infinitary systems in proof theoretic research. The
term 'semiformal system' is due to him.

4.1. Basic symbols of the language &,
1. Logical symbols
{i) Countably many set variables
(ii) The logical symbols A,V ,¢,¢.
2. The nonlogical symbols of ¥, are the same as those of £.
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4.2. Inductive definition of the terms of &
(i) Every number constant is a term.

(ii) If t,,...,t, are terms and if f is a constant for an n-ary primitive
recursive function, then (ft,...ty) is a term.

4.3. Inductive definition of the formulas of £,

() If t,,...t, are terms and R is an n-ary relation constant, then
(Rt,...tn) is a formula.

(ii) If t is a term and X a set variable, then (teX) and (t¢X) are formulas.
(i) If 1 is a nonvoid index set and (A;), ; a sequence of formulas, then
A{A;:iel} and V{A;:iel} are formulas.
We often write l/e\lA‘ and 1\5/1A‘ instead of A{A,:iel}or V{A; : iel} respectively.

As usual we write AjA ..A A, or AV ...v A, instead of A{A,...AL} or VIALAL)
respectively.

Formulas built according to one of the clauses (i) or (ii) are called atomic.

The Janguage ¥ is the sublanguage of &, which is obtained by restricting
the index set I in clause (iii} to countable sets only.

For technical reasons we do not count the negation symbol 71 among the basic
symbols of the language. This, however, does not mean any restriction since
we may define it in the following way.

4.4. Inductive definition of 1A
(i) 1Rty ..ty is the formula Rt ...t, where R means the primive recursive
relation complementary to R
(i) 1{teX) = (teX), {teX)=(teX),
(iid) 11/5\1 A; = ‘\{lmi, 11\{1 A; Ei/e\l'lAj.

45. Lemma
1T1A = A

The proof is an easy induction on the definition of JA.

4.6. Remark

Sometimes we will be forced to extend the language &, by number variables.
We usually will only need finitely many number variables xy,...,x,. We denote
this extended language by £ (x,,...,x,). The terms of the extended language
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are then defined by adding the clause
(0) Every number variable is a term
to definition 4.2.

§ 5. Semantics for &y,

In £, we do not have any number variables and therefore do not need an assign-
ment for them. An assignment for & _ is a mapping ® from the set of variables
into the power set of N. We define t® for & ~terms t as in 2.2. Since there
are no free number variables in t we always have t® = tiN,

5.1. Inductive definition of N  F®
() N E (Pt;..t,)®% <  xp(t,.  tN) =1
(i) NE (teX)® <  tNe@(X)
NE@eX)® = N¢ad(X)
i) NEAA® < NEA® forall icl
(iv) N k‘\{lA{"’ < NEA® for some icl

As in the semantics for? we denote by N = A that N E A® holds for all
assignments &.

Our first goal is to obtain a more syntactical description of the validity relation
for the language % . For this reason we are going to introduce a concept of
infinitary derivations which completely characterizes the validity of & ,~formulas
in N. Again for technical reasons we will not solely derive single formulas but
rather finite sets of formulas. These finite formula sets are to be interpreted
as the disjunction of their members. As syntactical variables for finite sets of
formulas we use capital greek letters such as A A,.. We always will write
AF instead of AU{F}.

5.2. Inductive definition of |k A
(AxD) If xp(t,™, . t;N) =1 and (Pt,...tp) €A, then g A
(Ax2) If tN = s then k A, teX, s¢ X
(AN)YIf kg A, Aj for all icl, then i A, A{Aj:icl}
(V) If | A, Aj for some icl, then | A, V{A;:icl}
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5.3. Soundness theorem for k
If i A, then NEV {F: FeAl.

Proof

We prove the claim by induction on the definition of k A.

(Ax1) Then A contains an atomic formula (Pt, ...t,;) such that Xp (t,",.. tN) =1
and by 5.1.(i) we obtain NE(V {F : FeAD® for every assignment ®.

(Ax2) For any assignment & and term s and t such that sN = t™N we either
have N E(te X)® or N E(s¢X)®. Hence NE(VA v (teX) v (seX)®.

(/A\) By the induction hypothesis we have N E(\VAv A))?® for all icl. If N EVA®,
then also N E(VAv/\A; )®. If NEVA®, then NEA® for all icl. Hence
N i=i/€\IAi° which implies N E(V Avi/e\rAi}"’.

(V) This case is dual to the case of (A).

5.4. Completeness theorem for i
If Fis an &L -formula such that N = F, then kg F.

Due to the presence of free set variables the proof of the completeness
theorem is not trivial. We need some preparations for the proof. In this section
we briefly write formula instead of &£ -formula.

5.5. Definition
(i) We call a finite formula sequence A = (A,...,A}) reducible if it contains
a formula of the form i/E\[Ai or 1\e/1Ai' These formulas are the redexes of A.
(ii) Suppose that A = (A,,...,A;) is reducible. A redex Ap¢A is distinguished
in A if there is no redex A; in A such that O<i<k.

(iii) If A is reducible we obtain A" from A by cancelling the distinguished
redex.

5.6. Definition

For a finite sequence A of formulas we define a tree B, together with a label-
function & : By — {I': T is a finite sequence of formulas}. We call Bp the quasi-
deductiontree of A,

(i) <> eBy and 8(< >) =4

(i) If ceBp and 3(c) is not reducible or an axiom according to (Axl) or
(Ax2), then it is ¢ *<j>¢B, for all j<o (ie. ¢ is a top node of the tree).

(iii) If oe By and &(o) reducible with distinguished redexlé\}\i, then o*<i>e¢ By
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for all iel and 8(o*<i>) = §(0)7, A

(iv) If ceBp and 8(c) is reducible with distinguished redex \/ Aj and there
is a minimal kg €I (in a fixed enumeration of I) such that Ay does not occur in
By, := W{8(1) : 1e By A Tco), then o%<ky>e Bp and 3 (0% <k, >) = 8(o)", Ay, VAi
Otherw1se we put c*<0>¢Bp and define 3(c*<0>) = 5(5)", A,
A path through the quasideductiontree (Bj,5) is called a quasideductionpath
of A.

We sometimes will not distinguish between A a sequence and A as a finite set.
As in the following lemma, however, the context always makes clear which
meaning is to be taken.

5.7. Syntactical mainlemma
If every quasideductionpath of A contains an axiom, then kg A.

Proof

By the hypothesis that every quasideductionpath of A contains an axiom we have
that every path in Bp is finite. Hence By is wellfounded and we show k4 3(o)
for ce By by induction on Bj.

L. If 8(c) is an axiom we trivially have Kk $(o).

Otherwise we know that 8(c) is reducible.

2. If the distinguished redex of 8(o) is /\]A,, then we have o#*<i>¢Bp for all
iel and obtain kg 3(c*<i>) by the induction hypothesis, i.e. k 8(c)T,A; for all
iel. By an inference (/\) this implies k 8(o)T, /\A], i.e. | 8(o).

3. If the distinguished redex is VlAi' then there is a kg €1 such that c*<ky> ¢ Bp.

VAi and this implies

By the induction hypothesis we have k5 5(0)", Ako Y

k 8(c) by an (\V)-inference.

5.8. Semantical mainlemma

Suppose that a finite sequence A of formulas has a quasideductionpath which
does not contain an axiom. Then there is an assignment ® such that N E F®
for all FeA.

Proof
Pick a path f in By which does not contain an axiom. Then f has the following
properties:

(1) If cef and Ped(c) is atomic, then Ped(t) holds for all o ct¢f.

26



§5. Semantics for &,

This is obvious since P is no redex and therefore never will be cancelled.

(2} If oef and Red{o) is a redex, then there is a tef such that o <1 and R

is distinguished in 3(1).
The proof of (2) is by induction on the number of redexes which have a smaller
index than R. If this number is 0, then R is already distinguished in 3{c).
Otherwise let R, be distinguished in §(o). Then there is a j such that o*<j>ef
and Ry either is cancelled or is the redex with maximal index in 8(o*<j>) (cf.
5.6.(iv)). By the induction hypothesis we then have a tef such that cc c*<j>c1
and R is distinguished in $(1).

(3) If o¢f and (/\A;)eé(o) then there is an iel and tef such that Ajed(t).
By (2) we have a 15¢f such that ( /\IAi} is the distinguished redex in 3(1,).
By definition 5.6.(iii) we then have 15 *<i>eBp for all icl. Since f is a path
through Bp there is an iel such that 13 *<i>¢f and we have A;ed{1; ¥<i>).
We define 1 := 145 #<i>,

(4) If gef and (MIA‘ ) €8(c), then for every i¢l there is a t1,¢f such that
Ajed(y).
Assume that there is an i<l such that A,¢5(1) for all tef. Choose i, minimal
with this property. This means Vj<i, 3tjefAjed(1)). Let 7 be the union of al
those 1; (as finite sequences). Then t; ¢f and by definition 5.6. we have
(1\5/1 A;) € 8(1y ). By (2) there is a op e f such that 1, < oy and ([\‘/!Ai) is distinguished
in 3(cp). By definition 5.6.(iv)] we then have 1; *<i,>e¢f and AioeB(tio*<io>).
Contradiction.
Now we define an assignment ¢ by:

P(X) ={neN:3ttN =nA Qoe ) ((teX)ed(o)))}

Then we have

(5) NEF® for all cef and Fe3{o).
(5) is proved by induction on the length of F.
1. If F=(Pt, ..t,), then NE(Pt, ..t,)® because otherwise 8(c) was an
axiom.
2. Assume F = (te X). If tNe®(X), then there is a term s equivalent to t and
a 1o¢ f such that (s¢X)ed(r,). But then by (1) {teX,s¢X}c8(1) where
1 = max{o,1p) ¢ f and we obtain an axiom in f. Hence t®™N¢®(X) which entails
NE(eX)®
3. F=(t¢X). Then tNe®(X) and N £ (t¢X)P.
4. F=( /\ A ). By (3) there is a j eI and 1< f such that A; ¢3(1}. By the induction
hypothes;s we therefore obtain N#A} and this entails N £ ( /\ )"\;)'1>
5. F ——(j\e/]Aj) By (4) there is a tjef such that A;ed(t)) for every jel and we
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obtain by the induction hypothesis lN)‘-'A,“’ for all jel and this implies
Nk (J\G/IA,)‘P.

Proof of 5.4.

If & F, then by the syntactical mainlemma there is a quasideductionpath of F
which does not contain an axiom. By the semantical mainlemma we then obtain
an assignment & such that N £F®, ie. N EF.

5.9. Exercises
Show that NEF implies |k F for every & —formula F not containing free set
variables without using 5.4.

§ 6. Ordinals

The relation i A is more syntactically defined than the relation N F F in that
sense that its definition does not refer to assignments. For finite sets of
sentences both definitions essentially coincide. The question is now if there
really is more information in the relation k; than we already had in the relation
. A derivation |5 A may be visualized as an infinite branching wellfounded
tree. This was the imagination we had in the definition of the quasideduction-
trees. The complexity of this wellfounded tree then is a measure for the
complexity of the validity of the formula set A. Trees, however, are not easy
to compare. Therefore we are looking for a characteristic magnitude of a
wellfounded tree in which the essential information of the tree is incorporated.
Such a magnitude will be given by the depth of the tree. We then may call a
tree more complicated than another if it has a larger depth.

In a wellfounded tree every path is finite. We therefore may define the depth
of a tree as the length of its maximal path. Our derivation trees, however, are
w-branching infinite trees. If we look for example at the following tree

4

3 3 .

2 2 2 .

1t 11 1.

0 0 0 0 0.
<>
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we immediately see that every path is finite so the tree is wellfounded but it
obviously does not possess a maximal path. This shows that natural numbers
will not suffice for the description of the depth of infinitely branching trees.
Therefore we have to improve our concept of numbers.

A natural number n has two different aspects. On the one side the quantity
aspect which describes that an object of magnitude n has just n elements and
on the other hand an order aspect which describes that the elements of a set
of n elements may be ordered as O,1,..,n-1. The difference between both
aspects of a natural number, however, is a bit hazy since, modulo permutations,
there is only one way to order a finite set. The situation changes in the case
of an infinite set. As an example we regard the set of all natural numbers. In
their usual order they look like 0,1,2,... but we may order them as 1,2,3,...,0 or
0,2,4.6,...,1,3,5,7.9,..., where the order relation is given by the convention that
the elements on the left are smaller than those on the right. Since in all
orderings we used the same set the quantity aspect will not change while the
order aspect did.

If we try to extend counting into the transfinite it is exactly the order aspect
of a number we are interested in. We first want to count all natural numbers
and, having completed them, go on counting. Such a counting into the transfinite
is for instance given by the order 1,2,3,...,0 where we may first complete the
counting of all natural numbers and then count one more element.

Of course not every ordering allows counting. If, for example, we regard the
ordering of the non negative rational numbers, then we just may count 0 and
then do not know how to continue since there is no next element following
the element 0. Only those orderings will allow counting which have the property
that, after taking away arbitrarily many elements, the remaining set of elements
always has a least element provided it is not empty. Such orderings are called
wellorderings and their formal definition runs as follows.

A binary relation < is called an ordering of a set A if it satisfies the following
conditions

Vxe A(1x<x) (irreflexivity)
VxeAVyeAVze Alx<y A y<z— x<z2) {transitivity)
Vxe AVye Alx <y vy<x v x=y) (linearity)

We denote an ordering by (A,<) and call A the field of <.

An ordering (A {) is called a wellordering of A if it also satisfies the additional
condition

VX cA(Xt0 — JyeXVteX(y+t = y< t). (wellfoundedness)
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Two orderings are equivalent if there is an order preserving map from the field
of the first ordering onto the field of the second. An ordertype is an equivalence
class of an ordering. As we have seen we need the ordertypes of wellorderings
for extending counting into the transfinite. These ordertypes are called ordinals.
Our hitherto described concept of ordinal is based on a completely naive under-
standing of the universe of sets. If one tries to make this precise within the
framework of an axiomatic set theory one immediately runs into troubles
since the equivalence class of an ordering will not be a set. But of course we
want the ordinals to be elements of the universe, i.e. to be sets. The problem
may be solved by selecting a characteristic representative for an ordinal. The
question then is which one to take. In the language of set theory one usually
has the symbol ¢ as the only nonlogical symbol. So it seems to be reasonable
to take as representatives those sets which are wellordered by the relation e
itself. That this in fact is a canonical choice becomes even clearer by pursuing
the naive theory of ordinals a bit further.

Suppose that (A,{) is a wellordering. (U,{) is called a segment of (A<} if
UcA and a<becU already implies acU. A segment (U,{) is proper if UtA.
It is obvious that (U,<)} is a proper segment if and only if there is a beA
such that U ={acA:a<b}.

On the wellorderings we define an orderrelation < by

(A,{p )<(B,{g) : < There is a proper segment of (B,{g ) which is equivalent
to (A,{,).

It is not very hard to prove that this relation in fact is a wellordering. But
since all these considerations only serve as heuristics we will omit the proof.
If we look at a representative {A,<) of an ordinal B we notice that the ordertype
of the set {{ B{g ) : (B,{g)<(A<)} is exactly the ordinal B, i.e. B={x:a<f}
and this implies that o< 8 holds if and only if a¢B. Therefore the sets well-
ordered by the ¢-relation are in fact canonical representatives for ordinals.
We are now going to develop the theory of ordinals on the basis of a set
theory which needs not to be specified here. The experienced reader may
think of ZFC. Since there usually is an axiom of foundation in a set theory it
suffices to define ordinals as hereditarily transitive sets. We denote the class
of ordinals by On. Facts about On which only can be proved on the basis of
the set theory will be stated here as basic properties without proof. These
basic properties may be taken as axioms for On. But we want to emphasize
that it is not our aim to give a complete axiomatization of the class On.
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6.1. Basic properties of the class On
{O1) On is a transitive class which is wellordered by ¢. As usual we write
o< B instead of oeB.

{O2) On is unbounded, i.e. Yae On3pe On{a < B).

{03) If M cOn and if there is an x¢On and an 1-1 mapping from M onto
a, then M is bounded in On (i.e. 3B¢On VE« M{E <B)).
(04) JaloeOn).

6.2. Theorem (Transfinite induction)
If VE<a A(E) > Ala) holds for all o ¢On, then Y ¢ On A(E).

Proof

Assume that {£¢On:1A(£)} + # and define o := min{€¢ On: 1A(E)}. Then we have
VE< a A(E) and by hypothesis we obtain A(a). Contradiction.

6.3. Theorem
(i) There is a least ordinal which will be denoted by 0.

(ii) For every ordinal « there is a least ordinal B such that a < B.
We call this ordinal the successor of o and denote it by a'.

Proof
(i) is obvious because of On##.
(ii) is an immediate consequence of (0O1) and (02).

6.4. Lemma
(i) a<o
(ii) a<B=>uo <B
(iii) a<B=>a'<B

{iv) w<f' = a<B

Proof

(i) holds by definition.

(ii) If a< B, then Be {E:x < £} which implies o' := min{E: a<E}<B<B’'. From this
we obtain by contraposition «' <p’ => a<B. Since o = B entails o' = 8' we have
that o'< p' already implies o < B.

(iii) is obvious by definition.
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(iv) If a<PB', then by (iii) a'<B’ which implies a <f.

6.5. Definition
An ordinal A which neither is 0 nor the successor of another ordinal is called
a limit ordinal. The class of limit ordinals is denoted by Lim.

6.6. Lemma
X eLlim and x< X imply o' < X.

Proof
o< ) implies o' <Xh. Since X e¢Lim we have Ata' which entails a' < ).

As a consequence of lemma 6.6 we obtain Youe A3Ec A (a< &) for limit ordinals
A. This shows that limit ordinals reflect the basic property (O2) of the class
On of ordinals. The existence of limit ordinals cannot be proved. In an axiomatic
set theory we therefore need an infinity axiom which requires the existence
of at least one limit ordinal. In our notation this axiom would just be 3Ix (A e Lim).
We will, however, need a stronger form of the axiom of infinity which in the
framework of ZFC follows from the weaker one. Since set theory is not the
topic of this lecture we may as well take the stronger form of the axiom of
infinity as basic property.

6.7. Definition
An ordinal x is regular if it satisfies

{(R1) x ¢ Lim

(R2) Every M c x for which there is an 1-1 mapping from M onto some o< x
is bounded in x , i.e.. If<xVEe M(E<n).

A regular ordinal reflects the property (O3) of the ordinal universe On. By R

we denote the class of regular ordinals. The axiom of infinity which we need
here is the following basic property

(05) R is unbounded in On, ie. YEe OnIne R(E<n).
6.8. Theorem

If McOn is bounded in On, then there is a least upper bound for M. We
denote this bound by supM.
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Proof
The class M={E e On: Vne M(n<£)} is not empty and we define supM :=min M.

6.9. Lemma
If xe R, M c x and there is an 1-1 mapping of M onto some o < x, then supM < x.

Proof
By (R2) M is bounded in ». Hence supM < x.

6.10. Lemma
If B<supM, then there is an n¢M such that B<n.

Proof
Using the terminology of 6.8. we have B< supM=>8¢M = Ine M(B< 7).

6.13. Theorem
If M+ is bounded in On, then we either have supMeM or supMeLim.

Proof

If supM =0 then M+ entails M ={0}, ie. supM = maxM. If supM =o' then
by 6.10. there is an ne M such that a<n <o'. Hence n=«o', ie. «' ¢ M and
supM = max M.

6.12. Definition
(DN=N{McOn:0eMAa VEec M(E' ¢ M)}
(i1) o := supN

6.13. Lemma
(i) 0eINAVE(EcIN — E'e¢ N).
(ii) w ¢N and there is no limit ordinal in N.
(iii) N is a segment of On.
(iv) @ is the least limit ordinal and it is N = o.

Proof

DefineM ={McOn:0e¢ MA YEc M(E'c M)}. For any limit ordinal « we have o e M
by 6.6. So M is not empty and N is bounded which implies that © is defined.
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(i) Since 0¢ M for all Mec M we obtain 0e MM =N. If Ec¢ N s0 £E¢ M for all MeM
which entails £'¢e M for all McMM. Hence £'e MW = N.
(ii) Assume that © ¢ N. But then by (i) ©'¢N and it is v < o' in contradiction to
© = supN. Assume that there is an a¢ NnLim. Then we have OcanN and by
(i} and 6.6. Ec a n N implies £' e anIN. Hence anIN ¢ M and therefore Ncan N cN.
This, however, contradicts ae N.
(iii) In a first step we prove

(1) B'e N=>BecNN.
Assume B¢N. We have 0¢B'nIN. If Ec B'nIN we obtain E<p and from B¢NN
even £ < B. Then F' < B' and it follows £'¢ 8'nIN. Hence B'nINe¢ W and therefore
NcB'AnNcN in contradiction to B'e¢N.
From (1) we obtain

(2) a<PeN=>aelN
by induction on 8.
For § =0 (2) holds trivially. For B+0 there is a B, such that f = By’ by (ii.
By (1) we have B,cN. Now a< B implies a<B, If a=8,, then a¢ N and for
o< B, we obtain ¢ N from the induction hypothesis.
{iv) N is a segment of On which does not contain a limit ordinal. By (OS5},
however, there are regular ordinals and thus also limit ordinals. So N is
bounded in On and supN exists. By (ii) and 6.11. we have supNelim, ie.
we Lim. Since N does not contain limit ordinals w has to be the least limit
ordinal. To show N = w we notice that we already have N ¢ ». For « < » we obtain
by 6.10. an ne N such that « < n. By (iii) we have a¢IN. Hence also wcN.

6.14. Deflinition

We define & g = min{xeR : w< x}. A set M is countable if there is an 1-1 mapping
from M onto some «<R,. This definition of countability coincides with the
notion of countability which we already used intuitively in §4. Instead of R,
we frequently write (), or even shorter 1.

6.15 Lemma
(i) If M is a proper segment of On, then there is a Be On such that M = .
(ii) If M is a proper segment of a regular ordinal x, then there is an ordinal
B< x such that M = B.
(iii) if M € is a segment, then M is countable.
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Proof

(i) Define M= {5cOn:E¢M} +8 and B := min M. Then <M. We show that
E e M entails E< B. If not we had £¢ M A B <E which would imply Be¢M since M
is a segment. This, however, contradicts fe M.

(ii) Define M :={£<x : £¢ M} and B := min M < x. Then B possesses all the required
properties.

(iii) is an immediate consequence of (ii).

6.16. Transfinite Induction (second version)
Suppose we have
(i) F(0},
{(ii) VE(F(€) — F('))
and
Gii) Ve Lim(Vn< A F{(n) — F(\)).
Then it follows YEe On F(E).

Proof

Assume that M = {£¢ On: 1F(£}} #6. Put o := min M. Then we have a+0 by (i).
If « =8 we had B¢ M. But this means F(B) which by (ii} entails F{«) in
contradiction to ae¢M. If aeLim we had ¥n< a F{n) and by (iii) also F(a)
producing the same contradiction. Hence M = #§ and the theorem is proved.

In the following we will be forced also to deal with partial functions from the
ordinals into the ordinals. As in recursion theory partial functions arise in
regarding minima of sets which possibly are empty. The reader who does not
like partial functions may imagine a set « ¢ On, define minf = o and expand the
<-relation by a<w for all ac¢On.

As in recursion theory we define

flay~gla) o> (ax e dom{(Flndomig) A fla)=g(a)) v{xedom{f) A x ¢ domlg)),
where dom(f) :={aec¢On : f(x)eOn}.

6.17. Definition
Suppose that M < On. We recursively define a partial function OD,, : On > M
by

(i) OD,(0) ~minM

(ii) OD,,(a') ~«min{Ee M:OD, (o) < E}

(iii) ODp(2) ~ min{ Ee M:sup{OD\(n): n<X}<E&} for XeLim.
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6.18. Lemma
The function OD,, is uniquely defined by (i), (ii) and (iii). domOD,, is a
segment of On and OD,, is order preserving.

Proof
Assume that f, and f, are partial functions from On to M which satisfy (i), (ii)
and (iii}). By induction on o we show

(1) x edomf;=> o e domfy, A fla) = fy(a)
and

(2) aedom fy A B<a— Bedomfy A f(B) <fi(a).
For o = 0 (2) holds trivially. If ae domf|, then M#8 and it follows f{(a)~minM
~fo(a) which implies we domf, and f, (o) = fg(a).
If « =B, and ae domf,, then f,{«) = min{EeM : f;(B,) <E}. This implies that
{EcM: f,(B,)<E} 8. Hence Byedom(f,). B<o entails B<B, If B=8§, then
Bedomf, and f(B) < fi{a). If B<B,, then Bedomf; and f(B)< fi(B,)<f ()
by the induction hypothesis for (2). This proves (2). (1) now follows from the
induction hypothesis B,c¢ domf, and from f,(x)>min{Ec¢M : f,(B,) < E} Lh-
min{£e M : fo(Bg) <E}xfy (o).
For a¢Lim we have f;{(u«) = min{ne M : sup{ f;(E) : E<a}<n}. Since ae domf,,
sup{fi(£) : E<a} has to be defined. Hence a c domf;. If B< a, then there is a
Bo < o such that B< B,. By the induction hypothesis we then obtain f,(8) < f{{(B,)
<fi{a). This proves (2). From the induction hypothesis for (1) we obtain
acdomf,(E) and f,}a = f,} o. Hence sup{f;(¥) : E<a}=sup{f,(£) :E<a} and
it immediately follows ae¢ domf, and f,(«) = f; ().

6.19. Remark

The definition of the function OD,, is a special case of the principle of definition
by transfinite recursion. This principle is a generalization of the principle of
definition by primitive recursion which we already know from 1.2.(iv). Within a
framework of axiomatic set theory such as ZFC the existence and the uniqueness
of the function defined by transfinite recursion becomes provable.

6.20. Definition

For M c On the function OD,, and therefore also dom OD,, are uniquely deter-
mined. We call domOD,, the ordertype of M and denote it by Otyp(M).
According to 6.15. we either have Otyp(M) = On or the existence of an ordinal
f such that Otyp(M) = B. We define ordy, := ODMfOtyp(M) and call ord,, the
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enumerating function of M. By 6.18. ord,, is uniquely determined by M.

6.21. Lemma

ord,, is an order preserving function from Otyp(M) onto M.

Proof
In 6.18. we have already shown that ord,, is order preserving. All there remains
to show is thatordy, is onto. Therefore we prove

(1) ne M — 3xe Otyp(M)(ordy,(a) = 1)
by induction on 7.
Put B := Otyp(Mnq).
1. B =0. Then 3 = minM and therefore 1 = ord,, (0).
2. =8 Then ord,(B)= min{Ee¢ M : ordM(Bo) <E}). Since B,<B we have
ordps(B,)<n and therefore ordy(B)<n. If we assume ord,,(B) < n, then we have
ordp,(B) e MNn and by the induction hypothesis obtain an ordinal v< such that
ordyg(B) =ordp4(v) in contradiction to the fact that ordy, is order preserving.
Hence ord,,(B) = 1.
3. BeLim. Then ordy,(8)=min{EcM : sup{ord,, (D) : [<B)<E} and by
sup{ordM(C) : {<B}<n we obtain ordpy(B)<n. The assumption ordpg(B)<n then
leads to the same contradiction as above.

6.22. Theorem
IfFMcOn is a segment of On and f: M — On is an order preserving function,
then £ < f(E) holds for all Ee¢ M.

Proof

Assume that S:={EeM: f(E)<E} is not empty and define §, := minS. Then
f(E,) <E, and since M is a segment also f(E)eM. Hence f(f(E;))<f(E;)
in contradiction to the minimality of &,.

6.23. Theorem
Suppose that x is a regular ordinal. M cx is bounded in x if and only if
Otyp{M}<x. McOn is bounded if and only if Otyp(M})eOn.

Proof

Since ord,, : Otyp(M) — M is an 1-1 mapping onto M Otyp(M) e x or Otyp(M) e On
respectively imply that M is bounded in x or On respectively. If on the other
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hand M is bounded or even bounded in x, then we obtain supMe¢ On or sup M < x.
But 6.22. then implies Otyp{M) < supM.

6.24. Deflinition
Let M < On and x be a regular ordinal > w.

(i} M is closed (x-closed) if supUeM holds for every non empty set
U cM which is bounded (in ).

(ii) An order preserving mapping f : M — On is continuous (x~continuous)
if M is (x-)closed and f(supU) = sup{f(£):E< U} holds for every non empty set
Uc M which is bounded (in x).

The notions "closed” and "continuous” stem from the fact that the ordinals
together with the order topology form a topological space.

6.25. Lemma
The enumerating function of a set Mc On is (w-)continuous if and only if M
is {x~)J)closed.

Proof

=> : Suppose that ord,, is (x-)continuous. Then Otyp(M) is (x-)closed. Assume
that U#8, UcM and U is bounded (in x). Let B:=ordy'(U). For EcB we
have £ <ord,,(£) e U. Hence B is also bounded (in x). So supBe Otyp(M) exists
and we have ord,,(supB) ¢ M. By the continuity of ord,, we obtain ord,,(supB) =
supf{ord,, (E) : E¢ B} = sup U.

<=: Let M be (x-)closed. If Mcx, then also Otyp(M)cx. Assume that
U < Otyp(M), U +# and U is bounded (in x). But then ord,, (U) is bounded (in x)
too. Hence supord,,(U)eM and there is an o¢ Otyp(M) such that ord,,(a) =
sup ordy,(U). For £ e¢U we have ord,,(£) <ord,,(a). Hence sup U<a. If we
assume sup U< a we obtain ord,,(sup U) < ord,, (a) = sup(ord,,(U)). Therefore
there exists a EeU such that ord,,(sup U)<ordy,(£), ie. sup U<E which
contradicts the definition of sup U.

6.26. Definition

(i) A continuous order preserving function f : On — On is called a normal-
function.

(ii) We call a mapping f: x — x where x is a regular ordinal >0 a x-
normal-function if f is order preserving and continuous.
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6.27. Theorem

(i) ordy, is a normal function if and only if M is closed unbounded.

lii) ord,, is a x—normal function if and only if M is closed unbounded in x.
Proof
(i) «=: If M is unbounded we obtain dom(ord,,) = On by 6.23. If M is also
closed we obtain the continuity of ord M by 6.25. Since ord,, is order preserving
by 6.21. it is a normal-function.
=>: Suppose that ord,, is a normal function. Then M is closed by 6.25. Since
dom (ord,,) = On it follows by 6.23. that M is unbounded.. \
(ii) <= Otyp(M) cannot be bounded in x because ordys maps Otyp(M) 1-1 onto
M. Hence x < Otyp(M} <supM <x, i.e. Otyp{M) = x. Since M is x-closed we
also obtain the x—continuity of f. So ordy, is a x—normal-function,
=>: If ord,, is a x—normal-function we obtain by 6.25. that M is x~closed. Since
Otyp(M) = x M has to be unbounded in x .

6.28. Exercise

1. The open intervals (o,B) :={ye¢On: a<y<B} form a basis of a topology on On.
This topology is called the order topology on On. This topology also induces
a topology on every regular ordinal ».

Prove the following claims:

(i) A set M is closed (in x) in the sense of definition 6.24. if and only M
is closed in the order topology on On (on x).

(ii) Let M be closed (in x). An order preserving mapping f: M — On (f: M — x)
is continuous in the sense of definition 6.24. if and only if it is continuous in
the order topology on On {on x).

(iii) Let M be closed. Characterize those functions f: M — On which satisfy
f(sup U) = sup{f(£): E< U} for all nonvoid sets Uc M which are bounded in M.
2. An ordinal x is a cardinal if x cannot be mapped by an 1-1 mapping onto an
ordinal a<x. Prove:

(i) Every regular ordinal is a cardinal.

(ii) There are cardinals which are not regular.

(iii) The class of cardinals is closed unbounded.

(iv) If »,» are cardinals such that x<) and there is no cardinal pe(x,\),
then X\ is regular.
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7.1. Definition of the ordinal sum
a+0:=«
a+B i={a+B)
e+ A :=sup{a+E:E< A} for limit ordinals A.
The function AE.o+E is defined by transfinite recursion on £ (cf. 6.19.).

7.2 Lemma

ME.a+E is the enumerating function of the class {n: «a<n}. Since this class is
closed unbounded (in every regular ordinal x) we have that M\E. a+E is a (x-)
normal function (for all regular ordinals »).

Proof

Define M : = {1 : e <n}. We show ord,(£) = « + £ by induction on §. It is ordy,(0) =
minM = « = a+0 and ord,,(B') = min{E¢M : ord,,(B) <E)} i'=h'min{<‘,eM :oa+B<E)
= (a+B)' = a+B'. If XeLim it is ordy, (1) = min{E¢ M : sup{ordy,(n) : n< AlsE}
tLh min{EeM : sup{a+n:n<A}<E}=minfEeM: a+XA<E} = a+)h.

By (02) the class M is unbounded and trivially it is closed.

7.3. Lemma (Elementary properties of the ordinal sum)
(i) 0+B =8
(ii) (a+B)+y = a+{B+v) (associativity )
(iii) B <Yy => a+B<a+y (strong monotonicity in the right argument)

(iv) w<B => a+y sB+y (weak monotonicity in the left argument)

Proof

(i) follows from the fact that AE.0+E is the enumerating function of the class
On which obviously is the identity on On.

(ii) is easily proved by induction on ¥.

(iii) ME.x+E is order preserving since it is an enumerating function,

(iv) If < B, then there is an n such that o«+n=p. Hence o+y<oa+(n+y) =
(x+n)+y =B+y.

7.4. Definition

An ordinal « is an additive principal ordinal or briefly principal ordinal if a*0
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and E,n<a also imply E+n<oa. By H (for German Hauptzahl) we denote the
class of principal ordinals.

7.5. Lemma
If a¢H, then there are E,n<wa such that o = E+n.

Proof
a¢H implies the existence of ordinals En,<a such that asE+n, By 7.2. there
is an 1 such that £+n = a<E+n,. But then we have n<yy<a.

7.6. Lemma
He Limu{o0'}

Proof

If «¢Limu{0’}, then either a = 0 or there is an ordinal «, such that o =a'y =
(ag+0)" = 0y +0'. Since x#0' we obtain 0'<a and o< o in the second case.
So in both cases a is not principal.

As usual we will denote 0' by the symbol 1, 1' by the symbol 2 etc.

7.7. Lemma
{1, @} c . There are no further principal ordinals between 1 and o.

Proof

If E<1=0", then £ =0 and 0+0 = 0 <1. Hence 1eH. By 6.13. there are no limit
ordinals below w. So by 7.6. the only principal ordinal below w is 1.

If E,n<w, then £ ,nelN. We show by induction on n that this implies E+nelN,
ie. E+n<w. We have £+0 =EcN. For n=1j it is E+n=E+ny = (E+ny)'. By the
induction hypothesis we have £+7 oeN and by the definition of N this implies
(E+ny)' €N, ie. E+nelN.

7.8. Theorem
The class H is closed unbounded in every regular ordinal x> o.

Proof
Let « < x. Define oy := o', &, :=o +a and M:={a_ :n< w}. Then Mcx by 7.2

and we have an 1-1 mapping from M onto w< x. Hence M is bounded in » and
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we obtain a<oy<supM=:B<x. For £y < B there is an n<w such that
g < o and we obtain £+ <oa +n<o +o = <P Hence BeHn x and H is
unbounded in x.

Now let U< H be bounded in x. Then supU<x. For E,n< supU there is a peU
such that E,n<p. Hence E+n<p <supU which entails supUeH. This shows
that H is closed in x.

By 7.8. it follows that H is closed unbounded in On. Hence the enumerating
function of H is a normal function. Its restriction to any regular x> always
is a x~normal function. We define

Wt = ord (E).
In the exercises we will show that % really has the properties of an exponential
function.

7.9. Lemma (Elementary properties of w*)
(1) )\E.wE is a normal function and M\E< x.m‘E is a w—normal function for
any regular x> w.
(i) 0<o®
(i) 0¥ =1, o' =0
(iv) o <B=> 0% <P

(v) IfFE<w™, then E+u™ =%, ie BeH and E<B imply E+8 = B.

Proof

(i)-(iv) are obvious.

{v) For £< ™ and a = 0 we have £ = 0. Hence E+ 0% = 0%, If %0 we have ©®¢Lim
and obtain £+ = nsgga(i‘i-n) < w* since w*eH. Hence w*<E+0* < w* , ie.

E+ 0% = o,

7.10. Theorem (Additive normal form for ordinals)
For every oc On which is different from O there are uniquely determined or-
dinals a,....,0 ¢H such that o« = oa+...+a  and a>.>u,. This is denoted by

a= gt tay and we define Hlo) = f{ay,... 000}

Proof

a) We prove the existency of ay,...,x, by induction on a.
We are done if a¢H. Otherwise there are B,,B, <« such that o =B, +B,. By the
induction hypothesis we have By =0 ot and By =, b, such that
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o, 2.2, and o, >..2a, . But then a =8 +B, =(a +. . +a )I+la, +. 4o, )
=o tota,ta, to+o,  where o, is the last element in the list « ...
which is larger or equal to «,. The latter equation holds since by 7.9. o<y,

always implies « +o, =o, such that all ordinals less than ay are swallowed

)}
by o,

b) In a second step we prove the uniqueness.

Assume that « = yga +..+to and o = ygB,+...+B, .. We prove n = m and o, = B, by
Induction on n. Since «y,B, ¢ H there are ordinals §; and ; such that «, = o' and
B, = ©°2 Hence 0%< a<w*2 and ©52< a<o®'. This entails E <&, and ,<§, and
we have £, =&, and therefore also o, = B,. If n=1 we are done. Otherwise it
follows o,+...+a = B,+...+B_ which by the induction hypothesis implies n=m

and o, = B, for i= 2,....n.

7.11. Corollary (Cantor normal form to basis ©)

For every ordinal «%0 there are uniquely determined ordinals «, >...>a, such that
a = 0¥+ +o*",

7.12. Definitlon of the natural sum of ordinals
If a=gpoy+.ta and B = Npoty,  * -t p,, We define a®B = +ovo o,
where meS, .., is a permutation of the integers 1....ntm such that i<j always

implies a_,, 20 5y

7.13. Lemma
{i) anB = Bua.
{ii) «<B implies asy < By and ysa<ysf.
(iii) If YeH, a<y and B<y, then anB<y.
(ivl an(fry) = (anB)ny.

7.14. Definition
We recursively define the exponentiation to the basis 2 by
i 2°=0

(i) 2% = 2% 2
(iii) 2> = sup{28: <)} if AeLim.

This exponentiation has the following properties
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7.15. Lemma
(i) as2®
(ii) a<B implies 2%<2® and 2%+2%<2B,

(iii) For all we On we have 2% < w™.
All proofs are easy exercises.

7.16. Exercises
1. Prove or disprove the following claims

(i) (a+B)+y = a+(B+y)

(ii) o+B =B+u

(iii} If «$0 and B+oa = o for all B<«a, then aeH.
2. Prove 7.13.

We define the multiplication of ordinals by the following recursion
o-0=0
aB'=o-P+o
o -h = sup{a-E:E<r} for AeLim.
3. Prove or disprove the following claims
(i) a<BAY>0<= y-a<y B
(i) a<B = a-y<B-vy
(iii) o-{B+y) = a-B+a vy
Giv) o-(B-v) = (- B) -y
(v} (a+B)-y=oa-vy+B v
4. Define the enumerating function of those ordinals which are not successor
ordinals. Prove your claim.

The general exponentiation of ordinals is defined by

expl(a,0) =1

expla,B') = exp(e,B) -«

explo, ) = sup{exp(o,E) [E<A} for A eLim
5. Prove the following claims

(i) B<yA a>1=> explo,B)<expla,y)

(ii) a<B = expla,y)<exp(B,y)

(iii) exp(o,B+y) = exp(a,B) -expla,y)

(iv) exp(o,B-v) = explexp(a,B),y)
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(v) Va explw,a)eH

(vi) Vo explw,a) = 0%

(vii) ¥Xx (Lim(}) = exp(2,)) ¢ H)
(viii) Yo (2% = exp(2,a))

(ix) Ya>0 (0% = 29°%)

An ordinal a>1 is a multiplicative principal ordinal if it is closed under ordinal
multiplication ie. if §,n<a imply E-n<a.

6. Show the following properties.
(D If «>2 Is multiplicative principal, then o is a limit ordinal.
(ii) An ordinal «>1 is multiplicative principal if and only if it is £-a = a for
all 1cE<o.
(iii) An ordinal «>1 is multiplicative principal if and only if « =2 or if
there is an ordinal § such that o = o'

§ 8. A notation system for a segment of the ordinals

8.1. Definition
(i) g5 := min{¥ : @S =E}
(ii) wo(B) = B, Wy, (B) := @*n®) w, () := sup{wg(B): E<A} for XeLim.

8.2. Lemma

€ = ©,(0).

Proof

By induction on n we immediately obtain ©,(0)<w, (0). Therefore the set
{0,(0) : n< 0} has no maximum. By 6.11. it follows that ,(0)¢Lim. Hence
029 _ supfeb : E< w,(0)} = supl®n(® ne1(0) s n<l} = ©,(0).
This shows that e;<0,(0). £,< 0,(0) is excluded because otherwise we had an
n<o such that o _(0)<eg,<w_, (0). But from this we would obtain o, (0) <w®®

:n<w} = suplow

=g9<w,,,(0) which is impossible.

8.3 Theorem
€< Q.
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Proof

We have w_(0)< (1 for all n because )\E.&)E is an (O-normal function. Since there
is a 1-1 mapping from {o_(0) : n<w} onto w<( this set is bounded in (). Hence
gq = sup{e,_(0) : ncwl< .

8.4. Inductive definition of the ordinal set E
(i) 0¢E
(ii) If a,BeE, then a+BcE
(iii) If acE, then w*<¢E

8.5. Theorem

The ordinal set E exactly is the segment of ordinals below g,, i.e. E = g,.

Proof
We show
(1) acE=>a<g,
by induction on the definition of E.
O<¢, is obvious. a,B<eg, imply a+B<e, since eqeH. If a<egy, then
0%< = Eor
For the opposite inclusion we prove
(2) a<egy=>acE
by induction on o.
For a = 0 this again is obvious.
If aeH, then there is a E<a such that a = 0. a< go implies <. By the induction
hypothesis we then have £¢E which by 8.4.(iii) entails o = wteE.

If « ¢+H, then there are ordinals o <a such that a+a, = a. By the induction

o
%2
hypothesis we obtain «,<E for i=12, and by 8.4.(ii) it follows o = &+, ¢E.

8.5. enables us to denote every ordinal less than g; by an element in E. This
notation, however, is not unique. To obtain uniqueness we have to refer to

normal forms.

8.6. Theorem
For every ordinal a¢E different from O there are uniquely determined ordinals

- 0y %Y
o,...,0 € Ena such that o =g @ et
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Proof
By the normal form theorem there are uniquely determined ordinals o,,...,0
such that o =NFm°“ +.+0%" o ¢ E implies a<gy and we obtain a,,....0 <aceg,=E.

8.7. Deflnition (arithmetization of E)
We define a mapping "' : E —> N by:
(0'=0

(ii) If o =g 0%1+...+0%n then "o’ := <1,"a,",..., "2, ">

"E':= {o': acE}
n<m :<> JaeEIPecE('a' =nA8 =ma a<p)

n=m:<>JacEPecE{fd =nAB =mnra=8)

8.8. Theorem

The set 'E' and the relations { and = are primitive recursive.

Proof
We have
neE'e>n =0v Seq(n)a(n), =1 A Vx<lh(n) (0<x = (n),¢'E")
A Vx<lh{n)-1(0<x = (n) 4 < (n)).
and
n<ny, <> n e E'Any e E'Al(n; = 0An, £ 0)
v (3x<min{lh(n,),lh(ny) }{{n), < (ny), ) A Vy< x (O<y = (ny)y = (ny)y))
v (1h(ny) < Ih(ny) A ¥x< 1h{n){(ny), = (ny), 1.
Thus the set 'E' and the relation < are definable by simultaneous course of
value recursion. Hence both are primitive recursive.

The following corollary then is an immediate consequence of 8.8.

8.9. Corollary

CK
go<w,CK.
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9.1. Inductive definition of £ A
(Ax) If £ A holds according to (Ax1) or (Ax2), then i§ A.
(/\) If 51 A, A, holds for all i¢l and « = sup {a+1 :iel), then B A,l/e\lA,.
(V) If 2o A \A, holds for some icl, then §° A, XIAi.

9.2. Lemma

Let AF be a finite set of ¥n~formulas.
(i) It holds k A if and only if there is an a<Q such that IZA.
(ii) We have NEF if and only if there is an «<Q such that§ F.

Proof

{i) We prove %A = <} by induction on the definition of }'—2‘ A. In the case of
(Ax) this is obvious. In the case of an inference (V) we have o, <Q by the
induction hypothesis which entails «; < since QeLim. In the case of an in-
ference (/\) we have by the induction hypothesis a;< Q for all icl. Since A is
a set of £ ~formulas the index set | and therefore also the set {a;:icl} has
to be countable. Hence o = sup{o;: ic1}<.

The opposite direction is trivial since the definition of i‘%‘ A immediately implies
E A

(ii) By the soundness and the completeness theorem we have N  F if and only
if EF and the claim follows from (i).

9.3. Definition
For an £ -formula F we define

min{a : B F} if this is defined
|Fi:=
0 otherwise

We call |F| the norm of the ¥n~formula F.

9.4. Definition of the translation * which maps Il-sentences of &, to formulas
of L,

(i) If F is an atomic formula, then F* := F.
(ii) (71A)* := 1A*

48



§9. A norm function for Ili-sentences

(iii) (A A B)* := A {A* B*}

(iv) (Av B)* := VV{A* B*}

(v) (¥xA)* := A{A_(n)*: n<ow}

(vi) (AxAY* := V{A,(n)* :n<owl.
A formula of &, which is the *-translation of a Ilj-formula of &; often is
called a Mj-sentence of ¥,.

For a Ili-sentence F of & we define |F| := |[F*l.
By an easy induction on the definition of the £;-formula F we obtain

9.5. Lemma
For a Ili-sentence F of & we have N E F if and only if N | F*.

9.6. Theorem
For an #-formula F we have NEF if and only if |Fl<Q.

Proof
If NEF, then by 9.2. there is an a<() such that B F. Hence |[Fl<a<(.

INEF implies £F by the soundness theorem. But then {a: %‘F} =0 by 9.2.
Hence {F| = Q.

The following corollary is an immediate consequence of 9.5. and 9.6.

9.7. Corollary
For a Ili-sentence F in & we have N E F if and only if |Fl<Q.

The claim of 9.7. may be sharpened to
NEF < [F](Q)‘(:K.
Here it is even possible to show that
sup{|F| : NEF} = o,CK.
Both proofs use methods of recursion theory and are outside the scope of this
lecture.

9.8. Ecercise
Show that |Fl<w holds for true &, -sentences.
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After having introduced a norm for the Il'-sentences of the language of pure
number theory it is a natural question to ask which norms are accessed by
Il{-sentences provable in Z,. In order to answer this question we will introduce
an infinitary system Z,, whose cut free derivations may be interpreted as }=a
derivations and so obtain an upper bound for the norms of the derivable formulas.

In a first step we define the rank of an £ ~formula.

10.1. Definition of the rank rk(F) of an & _-formula F
(i) If F is atomic, then rk(F) := 0.

(ii) If Fis a formula A{F;:iel} or a formula V{F;:i¢lI} we define
rk(F) := sup{rk(F)+1 : iel}.

As an immediate consequence we obtain

10.2. Lemma
If Fe &, then rk(F) = rk(1F)< Q.

For the following definition we presuppose that M is a subclass of the ordinals
and that A is a finite set of % ~formulas whose ranks all belong to M.

10.3. Inductive definition of Z, > A

(Ax) If i A holds by (Ax1) or (Ax2), then we have ZMP; A for all o,pe M.

(A) If we have Z,, F;—“ A, Ajand oyean M for all iel, then we also have
Zyls A AlAjiel}

V) iIf ZM%" AA; and oy e Mna holds for some icl and e M, then we also
have ZM% ANVIA, :1el)

{cut) If ZM{%‘ ALA and ZMi—gz A,1A and rk{A)eMnp, then we have ZM% A
for all ¢ M such that «,,x,<a. We call rk(A) the rank of the cut.

The underlined formulas in the conclusion of the inferences (/\) and (V) are
characteristic for the inference. We call it the mainformula of the inference.
We often interpret an axiom as an inference without premises. The mainformula
of an axiom according to (Ax1) (cf5.2) is Pt;.t,. An axiom according to
(Ax2) has two mainformulas, te¢ X and s¢ X.
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If M is a recursive set of ordinals, then Zy, is called a semiformal system.

10.4. Lemma
If M is a segment of the ordinals and a¢M, a comparison of the definitions
of I and Zy | shows that there are the following connections.
ZuiZ A = aeMAFE<aliEA).
This immediately entails Zyst3 F = |Fl<a.

Instead of Z,  we usually write Z,, First of all we will only regard such
Mc On which are segments of Q. For a segment M = < () we just write Zg }% A
or shortly % A instead of ZM%A whenever it is clear from the context which
set M we are talking about.

10.5 Lemma
If I% A, <P and p<o, then lg A.

The proof is an easy induction on a.

10.6. Theorem (structural rule)
lf}%A and Ac T, then }%I‘.

Proof by induction on o

(Ax) If A is an axiom !% AP t,...t or t% A,teX, s¢X, then I' is an axiom
of the same kind. Hence also }gl‘ .

(/\) From the premises }%i Ag.A, for all icl we have l—g‘ I,A; for all iel by
the induction hypothesis. Because of (1/e\lAi)€Acr we obtain i-% I' by an \-
inference.

{V) From the premise %"A A, for some icl we first obtain }g" I,A; by the
induction hypothesis. By an V -inference it then follows }% T.

(cut) From I-E‘ A,A and %z A,7A it follows I—g—‘ I', A and lgz T',17A by the induction
hypothesis. Using a cut we then obtain F’é r.

10.7. Theorem (/\-inversion rule)
}%‘ A, N{A,: icl} entails }-‘;—‘L&;,Ai for all iel.
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Proof
1 If }95 A, /\ A, is an axiom, then /\IA, cannot be its main formula. But then
5% A, A for ali 1el is an axiom of the same kind.
2. If 1/\A is not the main formula of the last inference

() 1 a5 AA = A NA;.
then we have };iA A, for all iel by the induction hypothesis. By the same
inference (S) we thus obtain P‘- A, A, for all iel.

3. If /\A is the main formula of the last inference, then this inference is a /\~
inference whose premises are I-— 8y, A, for all iel. By the structural rule we
obtain F— AA,, /\A, and by the 1nductxon hypothesis }—‘A A, for all icl. This
implies }- A, A for all iel by 10.5.

10.8. \/-lmportation and \/ -exportation
(i) | 8,A,....A, implies %:.’.1 AAV..VA
(ii) I— AA V. vA implies % AA. A,
Proof
(i) By iterated application of \/ -inferences we obtain I% AAL LA, =
B8, Ag e An Ay v Ap = 12728, Ag, Ap A vV A == R ALAV LV A,
(ii) The proof is by induction on o.
1. If Ajv..vA_  is not the main formula of the last inference, then either A is
an axiom and so is A,A,,..,A_ or we have the premises t—g’ A p A,v..VA_. But
then we have I%J AJ, A,,..,A by the induction hypothesis and obtain }‘;A,A,,...,A
by the same inference.

n

2. If Ajv..vA, is the main formula of the last inference, then it is an V-
mference whose premise is I— A,ALA v ...vA . By the induction hypothesis it
follows l—°A A,i..A L and by 10 5. I— AA,. AL

10.9. Tautology lemma

Suppose that F is an L (x,.....x,) formula.t=(t,,...t ) and 8=(s,....s ) are n-
tuples of ¥ ,,~terms such that s, and t, are equivalent for i=1,..,n. Now if
F, = Fx(t), F, = Fx(8) and a = rk(F), then we have I%“A,Fl,'le for all finite
formula sets A.

Proof by induction on rk(F))
1. If F, is an atomic formula Rt,. , then we have F, =Rs, ...5 . If Re,..t  is

valid , we obtain by (Ax1) I3 A F, ‘lF Otherwise 1Rs ..8,, is valid and we
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again by (Axt)obtain }% AF,,7F,.
2. If F =t ¢X, then 1F, = s, ¢ X. But then I§ A,F,,7F, holds by (Ax2).

3. If F, /\ A then 1F, = \/ '1A2 and by the induction hypothe51s we have
I&;‘A A 1A for all iel. Usmg an V inference we obtain }——i——'-A A ,1F, for
all iel Since a =supla,+1:iel} we have 20+1< 2(x;+1) < 20 and it follows
%“A,Fl,ﬂ:z. by an /\-inference.

10.10. Inductive definition of the set AT(F) of sentential subformulas of a
& —formula F.

(i) If F is a formula Pt,,...t , teX, teX, AlA :iel) or V{A:iel}
with infinite index set I, then AT(F) = {F}.

(i) If F is a formula /\{A, : i<n<w} or a formula V{A;i<n<w), then we
define AT(F) = {FJUU{AT(A)): i< n}.

As in §3 we call formulas F with AT(F) = {F} sentential atoms of £,,. By AE
we denote the set of all sentential atoms. We define AE(F) :=AT(F) n AE.

10.11. Definition

(i) Two sentential atoms Alt,,...t ) and Als,,....s ] are equivalent, if we
have t':q = sl;t fori=1,..n
It is completely obvious that this relation in fact is an equivalence relation.

{ii) Two sentential atoms A, and A, are dual, if there is a sentential atom
F such that A; is equivalent to F and A, equivalent to °F.

10.12. Definition
(i) A sentential assignment is a mapping B : AE — {t,f}, which assigns
different truth values to dual sentential atomic formulas and is compatible
with the equivalence of sentential atomic formulas.
(ii) Inductive definition of AB for Ae¢ AT(F).
1. A¢ AT(FINAE. Then AB = B(A).
2. (V{A:i<n<o)B =t < A® =+ for some i<n<o.
3. (AfA, :i<n<o})B =t< AB =t for all i<n<w.
{iii) A finite formula set {F,,...,Fn) is sententially valid, if for every
sentential assignment B there is an ic{l,...,n} such that F;B =t.
{iv) If A is a finite formula set we denote by A® the set of formulas which
comes up from A if we replace each occurence of a formula of the shape
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VA{F, : i<n<w} by {F,,...F__,} and iterate this process until all finite disjuctions
have disappeared. According to 10.12.(ii)2. A is sententially valid if and only if
A® is.

(v} A finite formula set A is sententially reducible if A® contains a
formula of the form /\{Ai :i<n<w). Otherwise A is sententially irreducible.

10.13. Lemma
A sententially irreducible formula set A is sententially valid if and only if A®
has the shape Ay,F,F, where F F, are dual sentential atoms.

Proof

<=: If A* has the shape Aj,F,F,, then we have F® =t or F¥ =t for any
sentential assignment B. Hence A® and consequently also A are sententially
valid.

=>: If A® does not have the shape A).F,,F,, then we assign the truth value f
to all sentential atoms in A2, This defines a correct sentential assignment
because by hypothesis A® does not contain dual sentential atoms. But A% only

contains sentential atoms since A is irreducible. So we have FB =f for all
Fe A2

10.14. Lemma
A finite formula set A,/\{F,:i<n<w} is sententially valid if and only if AF,
is sententially valid for all i<n.

Proof

=»: Let B a sentential assignment such that F® = f for all FeA and Fi'3= f for
some i<n. Then we have A{F, :i<n}® =f and therefore F® =f for all
FeA, N\ {F, :i<n}.

<=: For a sentential assignment B we always have /\{Fl:i<n}'B=Fi;B for

some iy<n. Since AF, is sententially valid for all i<n we obtain FB = t for all
FeA, A{F, :i<n}

10.15 Inductive definition of the degree GF of sentential reducibility of an &~
formula F
(i) for Fe¢ AE we define GF = 0.
(ii) G(V{F,: i<n<w}) := max{GF,: i<n}
(iit) GIA({F; : i<n<w}) := max{GF, : i<n}+1
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For a finite formula set A we define G(A) := F§A G(F). We obviously always
have F(A)<w.

10.16. Theorem (sentential completeness)

If A is a finite formula set which is sententially valid and « := max{rk(F): Fe A%},
then there is an m<w such that 52;':—'9 A.

Proof by induction on GA®.

1. If GA® =0, then A is irreducible. By 10.12. A® is of the shape Ao,F F, with
dual sentential atoms F, and F,. By the tautology lemma we therefore obtain
Iz';ﬁ‘ A% It is rkF <a and A may be obtained from A* by \/ -importation.
Hence there is an m<w® such that F‘l:““ A.

2. GA*>0. Then A® has the form 4,, /AIF, :i<n} for some n<w. By 10.13. the
set A),F, is sententially valid for all i<n. For i<n it is G(4,,F)<G(4) and we
obtain an my<w such that P*I=™ A F by the induction hypothesis. It is a, =
max{rkF : FeA ,F;} s max{rkF : FeA} = «. For m := max{m,+1 : i<n} we therefore
obtain f%LomAa by an /\-inference. Using V —importation we obtain the claim.

10.17. Induction lemma
o ' .
For n<w we have };" IF_(0), ‘Ik/<\ﬁf 1F (kv F_(k")),F (n) with a = 2(rkF (0)+n).

Proof by induction on n
For n = 0 we have I;ﬂ 1Fx(_Q).1k/<\m(1Fx(k)V F(k!),F_(0) by the tautology lemma
10.8.
For the induction step we have the induction hypothesis
) B 1FQ), 1 /A (AFKIVFE)),Fn).
By a structural inference (1) yields
(2) FF9F(0),7,/A (WF(K) v F(K')), Fn) F(n').
Using the tautology lemma we obtain
(3) £2 1F(0),7 A (1F(K)V F(K)), 7F(a') F(n').
From (2) and (3) it follows
(4) PEL4E(), L Y (F(K) A WF (k') Fin) A 7F(n'),F(n)).
using an /\ -inference.
By an V -inference we obtain from (4)
(5) F229F(Q), \V/ (F(k)A F(K)),F(n').
But it is o«,+2 = 2(rk(F(0))+n)+2 = 2(rk F(0)+n') = a,,,,. This completes the
induction step.
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10.18. Exercises

1. Suppose that A,T" are finite sets of & -formulas such that }% A,T holds.
Show the following claim.

There is an & -formula A with rk(A)<a which is an interpolation formula for
A and T. That means: every predicate constant different from = and every set
variable which occurs in A occurs both in A and I' and we have Izg“ AA as
well as 2% T,1A.

2. Show that for all valid sentences we have }g-‘Sifl F (cf. exercise 9.8.).

§ 11. Embedding of Z, into Z,

The *-translation of the &~ formulas into the & -formulas has already been
defined in §9. This translation has the following property.

11.1. Lemma

If Flx,,...x 1 is an & -formula which does not contain further free number
variables, then for every n—tuple k,...k  of natural numbers Fik,,..., Ln]’ is an
&~ formula of finite rank. This rank is independent from the choice of the n-
tuple.

Proof by induction on the length of the formula Flx,,....x_l.
1. The claim holds trivially for atomic formulas.

2. If Flxy,...x,] is no sentential atom, then we obtain the claim immediately
from the induction hypothesis.

3. Suppose that F(x] is a formula Vy Gly,x]. For any n+i-tuple (Lk,,...k ) the
formula G{l,k)* is an & _-formula of finite rank m, say, by the induction
hypothesis. Then ¥y Gly.kI* is the formula l/(\w(}[l,k,}"‘ whose rank obviously
is m+l.

The case that F(x] is a formula 3y Gly,x] is treated analogously.

In fact the *-translations of the ¥;~formulas form a fragment of ¥ in the
sense as it will be introduced in chapter III.
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11.2. Embedding lemma

If Flx,,...x, 1 is an &~ formula which contains only the indicated number variables
such that Z‘}- F(x,,....x ), then there is an ordinal a<w+w and an ordinal m<w
such that }%‘nF[_lg,,..., kn]"‘ holds for every n-tuple {(k,...k ) of natural numbers.

Proof
The proof is by induction on the length of the derivation Z,I-—F[x‘,....xn].
1. If Fix,,....x,] is a sentential axiom, then F[kl,...,kn]*‘ is a sententially valid
formula and we obtain )—‘,“-‘F[jgl,...‘kn}* for some m<w by 10.16. and 11.1. {Here
we have to check that the length of the derivation in 10.16. does not depend
upon the choice of the terms k,,....k . If we do not want to do that, then we
obtain }%’F[Li,...$n]* which is also sufficient for the proof of the lemmal.
2. Suppose that Fix,....x lis a formula 1V¥xAlx,..x_ 1v A (t)xy,....x ). If we
choose an n-tuple k = (k,.....k ), then tx(k) is a closed term t;, such that
t‘f =: k say. By the tautology lemma we have

=3 ‘\Ax(jg)[k]*. A (t)k1* for o :=2rk(A (K} [K)*<o.
By an V -inference this implies

Pt A A ALK R A (OTK*
which by V -importation entails

B2 A AR KV A () (BT
But this is the formula F{kI*.
Completely analogously we obtain I%(Ax(t) — IxA)*.
3. Logical inferences
(mp) By the induction hypothesis we obtain «;,ay<w+w and m;,m, < @ such that
|,—‘;; A* and }%‘—; 1A*v B*. By the structural rule and V -exportation it follows
=2 A*B* and |52 1A%B* for m := max{m;,my,rk(B¥) +1}. By a cut this implies
£ B* for o := max{a;,ay}+l < ota.
(¥} By the induction hypothesis there are ordinals og<w+w and m<w such that
i;ﬁn"(‘mv B)x{k_,]g]*'E holds for all kew. By V -exportation and the variable
condition x ¢ FVi(A) this entails F‘,f,‘,’-m[k]*, Bx(k)[k]* for all kew. Using an A-
inference we obtain lg""t,—:i'lA[k] * k/(\wa(k)[k]* and by V -importation finally
1022 (1A v YxB)IKI*.
4. Equality axioms
(i) According to (Ax1) we have ' n =n for all new. By an /\- inference this
implies K Vx(x = x)*.
(ii) 29n =m,m =n holds for all nmew by (Ax1). Using V -importation and

two /\-inferences we obtain }%VxVy(x =y -y = x)*
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(iii) The transitivity axiom is proved similarly.
(iv) P;— in=m, t (n) =t (m) holds by (Ax1) because we either have NEntm or
NEt (n) =t _{(m). By \/ -importation and two /\-inferences we again obtain
}%Vx Vylx =y = t =t _(y))*
(v) We have I—Eg*m,‘ll:x(g)*,Fx(_m_)* for a = 2rkF_(n)*<o since we either have
ntm and therefore an axiom according to (Ax1) or it is n=m and we may
derive the formula using the tautology lemma. By V -importation and two
/A -inferences it follows P%be’y(x: y = F—F_(yN*.
5. Mathematical axioms
I% 0+Sn holds for all new according to (Ax1). By an /\-inference this entails
}‘;Vx( 10 = Sx)*.
l% Sn+Sm, n = m holds according to (Ax1). Hence }—;— Vx Vy(Sx = Sy — x = y)*
as before.
ig&:_s_:; is an axiom according to (Axi).
We are going to treat the defining equations for primitive recursive functions
just in examples.
We have l(% _(_l‘;: k,.k,=k since this is an axiom according to (Axl). Hence
S Vx!...xn{_(;zxi...xﬂzk) by A-inferences. The case of the constants Py is
treated analogously.
|2 Sub(g,hy,...,h, ) (K) = g(hk)...(h, _K) is an axiom according to (Ax1). By A-
inferences we obtain the translation of the defining axiom for Sub.
We have };‘}1:_:9, (Rgh)kk = gk and I2k + S1,(Rgh)kk = hkl(Rgh k 1)) according
to (Ax1). Using V -importation and some /\-inferences we obtain the trans-
lation of the defining axiom for (Rgh).
It holds 12 Rk , Xk =1 and %katl, Rk by (Ax!). By V -importation and
/\-inferences this implies P52 Vx,... x (RX,..X, = XgX,..Xx, =¥
In a last step we have to show that (IND)* is provable in Z.
By the induction lemma 10.17. we have

2R 1A (0%, (AVy(A (y) — A_(SyD* A _(K)*
for all k<w and o, = 2(rkF_(0)+n). By an A\ -inference we obtain

(214, (0)%,1Vy (A, (y) — A_(SyD* (VX A)*
and by V -importation this yields l‘—":a (IND)*.
This terminates the proof of the embedding lemma. As a last remark we want
to emphasize that only the presence of the induction scheme (IND) forced us
to regard infinite derivations in Zn. In absence of (IND) the embedding lemma
would work with v instead of w+w and therefore yield finitary derivations.
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11.3. Exercises

1. Let the formal theory Z  be Z, without IND. Prove that for any & ,-formula
Flx,,....x,] such that Zo}—Fixl,...,xn] there are natural numbers i,j<w such
t:hat!jL Flk,,....k,] holds for every n-tuple (k,....k,) of natural numbers.

2. For every n<w we define an infinitary system 2,, for &, by the following
rules: (Ax), (A) and (V) are the same as in Z,.

(cut) If we have zn I5e I,A; zn 31 A,7A and rk(A)<n+l+p, then we also have
2, I2TA for all a>ay.

(IND,,) If we have Z,, 120 T\F,(0), Z, I%! T,7F,(k), F,(8K) for all keN, a> o4,
and rk(F,(0))<n, then we also have Z 1§ TF, (k) for all keN.

Prove the following claims:

(D) If Flx,,....x;] is an #-formula which contains only the indicated number
variables such that Z:—IND - F{x‘,...,xj], then there are natural numbers k.m
such that 2, X Fli;,....;7* holds for every j-tuple (i,....ij) of natural numbers.

(ii) For every finite set A of & ~formulas Z, 15 A implies Z, -5 8.

n+1+p

§12. Cut elimination for Zg,

We start this section by the remark that we also have a soundness theorem
for Zg .

12.1. Soundness theorem for Zn
If A is a finite set of £-formulas such that |5 A, then NEV (F : FeA}

The proof is essentially the proof of 5.3. In the induction which here may be
formulated as induction on « we only have to take into account the additional
case of a cut. There we have the induction hypothesises NEV{F: FeAlvA
and NEV{F: FeA}v 1A. But this entails NEV{F: FeAl}.

From the soundness and the completeness theorem for £ we can see that the
cut rule in fact is superfluous in the system Zg . From ZOI% F we obtain
NEF and thereof }%F with 8 = |F|. By 10.4,however, iog A entails I-E A. So we
may infer from %F that }EF holds for some B< Q. This shows that the cut
rule in Z is in principle eliminable. So we do have a cut elimation theorem
for Z, but we do not yet have much information about the size of the ordinal B.

Of course we know that the norm of the formula F suffices. But this is of
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little help since it is the aim of our consideration to obtain some information
about this norm. Therefore we have to prove the cut elimination theorem for
Z, in a different way. This proof must be done in such a way that we may
keep control over the length of the derivation trees during the elimination
procedure. The embedding of Z; into Z, produced derivation trees of lengths
below w+w and finite cut rank. We are going to show that the resulting cut
free derivations will have lengths less than g,.

12.2. Elimination lemma
If tk(F) = o, {2 AF and T, F, then 2R A, T.

Proof by induction on a%8
1. Assume that either F or 1F is not the mainformula of the last inference, where
again we regard axioms as inferences without premises. Because of the symmetry
of the claim without loss of generality we may assume this is the case for F.
1.1 If }- AF is an axiom so is }—A and we obtain l—“—"BA I' by the structural rule
10.5.
1.2. if P— AF is the conclusion of an inference S whose premises are }—‘ AL F,
then we obtain i'—B A,.T' by the induction hypothesis. Because of oclaB<ozaB the
same inference S yields l%& A,T.
2. Now we assume that F as well as F are the main formulas of the last
inference. We then have to distinguish the following cases.
2.1. rk(F) = 0, i.e. F is an atomic formula. Since axioms are the only inferences
whose main formulas are atomic we have that P’—; AF as well as I% I',7F are
axioms with mainformula F or 1F respectively. But then F or 1F must have the
form (teX). Otherwise F were a formula Pt,...t such that N E Pt ...t,, which
would contradict the fact that 4F, ie. 1gt,...t,, is the main formula of an
axiom too, which means N [ 1Pt...t,,.
Because of the symmetry of the claim we again may assume F = te¢ X without
loss of generality . But then A has to contain a formula s,¢X such that
sN =tN and T a formula s,e X such that sg“ =tN, Then Al too, is an axiom
according to (Ax2) and it follows }Q%BA,I‘.
2.2. rk(F)>0. By symmetry we again may assume that F = 14\\)1:‘ for some
v < &. Then we have the following inferences

() BAF, AF, for all icv =& A, AF,
and

(2) (8°r,aF, .V

0 i<wv

1F, = % I,V F,
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(If the formula /\F does not occur in the premise we may add it by an
application of the structural rule).

By the induction hypothesis we obtain MA I',E for all i<v and IL'-EQF A, 1Fio
Because of rk(F J<rk(F) = p and oy #B<aup as well as auB,<auB we obtain
1“8 T, by a cut of rank rk(F, )<p.

12.3. First elimination theorem
If %5 A, then B*A.

Proof by induction on «

1. In the case that the last inference is not a cut of rank p we either have an
axiom ’g ,A or the inference has the premises I—-+l A, lixv<w). In the case of
an axiom we have I—— A by definition and in the other case we obtain l—a‘ A,
for all i<v by the induction hypothesis. Since the inference in question is not
a cut of rank p - if it is a cut it must have cut rank <p - we may apply the
same inference to the premises %a‘Ai to obtain I%a A

2. If the last inference is a cut of rank p, then we have the premises F}% AA
and !g—ﬁ— A,7A and rk(A) = p. By the induction hypothesis we obtain %“‘A A
and 13 2A,7A. By an application of the elimination lemma it follows Mz A.
For «, := max{«,,a,}, we have a <« and 2%182%2< 2%0u2% =2%0 < 2% Hence }2— A.

12.4. Theorem (Ordinal analysis of Z,)
If F is a Tlj-sentence such that Z, -F, then we have }%F‘ for some B<czo.

Proof

If Z, - F holds for a Tlj-sentence F, then there is an a<w'2 and an m<w such
that |2, F* by the embedding lemma. If we define 24(a) := « and 2,,,,(a) : = 22n(®),
then m- fold application of the elimination theorem yields I—?‘-—‘(’)‘(—“-)F*. But we

have o+w<w? = w;(0) and this implies 2,,(o)< w3, (0) for all m<ow. Hence
2l < 6, (0) = g,

12.5. Corollary
If F is a Mj-sentence such that Z—F, then |Fl<g,.

The proof is obvious by 12.4. and 10.4.
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12.6. Deflnition

a) SPy(Z) :={|Fl: F is a Nl{-formula and ZF}.

b) |Zyl: = sup SPH(Z,).

We call SPy(Z,) the (basic-)spectrum of Z,, |1Z,| is the proof theoretic ordinal
of Z,.

As a consequence of 12.5. we obtain

12.7. Theorem
We have SPy(Z,) c g4 and |Z| < gq.

The question which now canonically arises is if these bound are the exact ones.
It will be answered in the following sections

12.8. Exercises
1. Prove that |Z <.
2. Show that the bound in the elimination lemma is the best possible one.
3. Prove the elimination lemma and the first elimination theorem for Z,,.
4. Prove the following special case of the elimination lemma:
Assume n<o, k<w and 0<iy< ... <ix<n and for i<n let P; be an atomic formula.
If i 8, A{P :i<n} and i§ TV {aP; :i<n}, WPy ... P; . then [3==*E- AT
5. Prove the following claims:
(i) {Z9-IND | < 0% = w4(0).
(ii) For n>1 we have |Zg-IND|<w,,.,(0).

§ 13. Formalization of transfinite induction

The following considerations hold for any language & which comprises the
language of pure number theory.

13.1. Definition

(iy A relation {cNxIN is &L-definable, if there is an ¥-formula A such
that FV(A) = {x.,y} and n{m <> NFA, (n.m).
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(ii} The field of a relation < is defined by field(<) = {x:3y{x<yv y <x) 1

(iii) Tran(<) is the formula ¥YxVyVz{x<{y Ay<z — x<z).

{iv) LO(<) is the formula

Vx(1x<x) A Tran (<) A ¥xVy(x ¢ field({) A y ¢ field({) — x<yvy<xvx = y).

Obviously we have

NELO({) <> < is a linear order relation on N.

(v) Prog(<,X) is the formula Vx(xefield({) AVy(y<{x — ye X) — xeX).
We have NFProg(<,5) if and only if the class S is progressive with respect to

the relation <, i.e., if all <-predecessors of x belong 8, then also x belongs to
S.

{vi) By Fund(<,X) we denote the formula
Tran({) A (Prog(£ ,X) — ¥x{x ¢ field({) — xe X))
NE Fund ({,X) then means that the relation < is transitive and wellfounded.
(vii} TIL,X) is the formula LO(£) A Fund{(<,X).
(viii) WO(<) is the formula ¥X TI(<,X).
We have N=TI({,8) if and only if tranfinite induction holds for S.

13.2. Definition

For a wellfounded transitive relation we define the {-norm for neN by:

{lm[<: m{n} if nefield)

1) Inlg :=
Q otherwise
2) jI<1l := {Inl¢: nefield (<)}
13.3. Lemma

If < is a wellfounded transitive relation and nefield(<), then |nl¢ and |Kllare
ordinals.

Proof

Since any transitive set of ordinals is itself an ordinal, it suffices to show
that inl¢ is a transitive set of ordinals. This will be done by induction along <.
If ae Inl¢, then a = ml¢ for some m<n. Hence a¢ On by the induction hypothesis.
So Inl¢ is a set of ordinals. If Beiml¢ elnl¢, thenB = Imyl¢ for some mg{m<n.
Since < is transitive we obtain my<{n and this implies Be|nlg.
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We hitherto have shown that X}l is a set of ordinals. It remains to show that
IKIl is transitive. For ae¢Beli{ll, however, there is an me field(<{) such that
B = Iml¢. Hence o =|m,| for some my<m which implies ae¢l<ll. Thus [KIl is
transitive.

13.4. Lemma
If { is a wellfounded transitive relation, then {{|l = sup{Inl¢+1: ne field({)}.

Proof
Define v := sup{iml¢ +1:me field(<)}. Then I{|l<y. For a<y there is an me field(<)
such that o<|ml< <li<]] which also shows y<iK|i.

13.5. Definition

(i) <o ={n:Inlg<a}

(i) <ta=< n<Z,le < } o is the relation < restricted to elements of <-norms
less than o.

13.6. Lemma
If { is wellfounded and o <|I{||, then it is I{lal| = a.

Proof
Since ne<, implies |nl¢<a we obviously have K toll < . If B<a then there is
an me<{, such that B = Iml¢. Hence also a<|< belf.

13.7. Definition

An & -formula F which has no occurence of X of the form t¢ X is an X-positive
formula.

13.8. Monotonicity lemma

Suppose that F is an X-positive &, ~formula and 5,TcN are classes such that
ScT. Then NEFx[S] entails NEFy[T]
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Proof by induction on rk(F)

1. The claim is trivial if X does not occur in F.

2. Suppose that F = teX. Then NEFy[S]1= tNe¢S = tNe T = NEFxIT]

3. F= A{A:icl). Then NEFy[S1= NEAS] for all iel'® NEA[T] for all
iel = NEFxIT].

4. F = V{Aj:icl}. Then NEFx[S]= NEA;[S] for some ie 1“2 NEA;LT] for
some iel = NEF[T]L

13.9. Boundedness lemma

Suppose that < is a transitive wellfounded & ~definable relation on N and A
is a finite set of X-positive & ~formulas. If I-: 1Prog(<.X), t ¢ X,....t, € X, 4,
then it follows NEV{Fy[< 1:FeA} where vy = +2% and B = max{lt]f”(,...,ltn: <}

Proof by induction on «

1. In the case of an axiom according to (Ax1) the set A contains a true atomic
formufa. Hence NV A,[<,). In the case of an axiom (Ax2) A contains a
formula se¢ X such that sN =tN holds for some ic{l,...n} If B;= [tN],, then
it is PxB<y and NE(t;e X)[{,] since 8;<y. Hence NEV A, {<+]

2. Assume that the mainformula of the last inference belongs to A. Then we

<v

have the premises f—g 1 9Prog (£ Xht e X,t ¢ X4, where A, again only contains
X-positive formulas. By the induction hypothesis it follows NEV AI<y, ] for
Y, = g+2%% Using the monotonicity lemma we first obtain NEVA K ~(] and
therefore also NEV A[X Y} since validity is preserved by all inferences.
3. Suppose that the mainformula of the last inference is
TProgl,X), ie. Ix(xefield(<) AVyly<x = ye X} A x ¢ X].
Then we have the premise
I%" 1Prog(<,X), te field(<)AVy (qy<tvyeX)ate X,t, ¢ X,...t ¢ X,A.
Thence we obtain by /\ -inversion
(1) 152 1Prog(<,X) te field(<) A Vy(ay<tvye X),t, ¢ X,...t ¢ X,A
and
(2) P2 1Prog(<,X),te X, t, ¢ X,....t ¢ X,A.
Assume that NE VALK T]. Applying the induction hypothesis to(1) we obtain
(3) NEV{F:Fea} v (tefield({)aVyly<t = ye X)) [{y,] for v, = B+2%0.
By the monotonicity lemma NEV A[<y] entails NEV A[<y_ ] and by (3) we
obtain ye<y, for all y<tN,ie. [tN| <y . If we define B := max{{tN| 8}, then we
have B <v,. Applying the induction hypothesis (2) we obtain NEV Al<g, 15,1
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§13. Formalization of transfinite induction

But it is Bo< 3*2% and 2%+ 2% <2% Hence BO+2u°s B+2a°+2a°s B+2% = v and
it follows NEV Al<y] by the monotonicity lemma. This shows that our assumption
was wrong.

13.10. Boundedness theorem
If [Fund({,XMsa, then it is |I<]]<2%.

Proof

[Fund(< . X)I<a by 10.4. implies F5 1Prog(<.X)v ¥xefield(<)(x¢X). Hence
K 9Prog(<,X).¥Yxe field(<)(x< X) and this implies NEVxe field(<)(ix|<2%) by
the boundedness lemma. Hence |I{|l<2%.

13.11. Corollary
If Z}Fund(<,X), then it is |Kll<e,. That means that all primitive recursive
orderings whose wellfoundedness is provable in L, are of ordertype less than s,.

13.12. Remark

By 13.11. it even follows that any &,~definable ordering < whose wellfoundedness
is provable in Z is of ordertype less than ¢

13.11. is the bridge to the more common definition of the proof theoretic ordinal
of a formal system. Usually one defines:

The proof theoretic ordinal of a formal system T is the supremum of the
ordertypes of all primitive recursive definable order relations whose wellfounded-
ness is provable in T.

3.11. shows that g, is also an upper bound for the proof theoretic ordinal of
Z, defined in the classical way.

13.13. Exercises

1. Prove that sup{{FI:NEFAF is a IIi-sentence} = w?
Hint: Show ">" using the boundedness theorem and prove that 1PI<@FK holds
for Tlj-sentences F which are valid in N by showing that the quasideductiontree
of F is recursive.

K

2. Prove the following claims.
(i) Z Fund(£,X) implies |Kll<w.
(i) IZOI = .



§14. On the consistency of formal and semi formal systems

3. Prove the following stronger versions of the boundedness lemma and the
boundedness theorem:
Let < be a &;-definable relation on N.
(i) Suppose that A is a finite set of X-positive & ,-formulas. If we have
i 1Prog({.X), t;¢ X, ... t,¢X , A, then NE V{Fx[{,]:FeA} where y =8 +2%
and 8 = max{[tN|,,.... It }.
(ii) If IF Fund(<,X), then Kll<2%.
4. Show that all primitive recursive orderings whose wellfoundedness is provable
in Z2-IND (n>1) are of ordertype less than w,.;(0).
5. Prove that lﬁ;“ 1Prog(<,X), te X where o := ItN|<+1 holds for all primitive
recursive wellorderings { and all terms t.
6. Let < be a primitive recursive wellordering. Let U be a new predicate constant.
The infinitary system Z, + ProgR(<,U) is the system Z, with the additional rule
(ProgR(<,U)) If 55 A, se U and ag<a for all s such that sN < tN, then % A tel.
Prove the following claims:
(i) Z, + ProgR(<,UW) & Prog(<,u).
(i) If Z o & 1Prog(<,U),A then Z, + ProgR({,U) BZarm A,
(iii) Prove the elimination lemma and theorem for Z_, + ProgR(<,U).
(iv) If Z, + ProgR({,l) & te U then tN|<a.

§ 14. On the consistency of formal and semi formal systems

Inspired by Hilbert's program and Gentzen's consistency proof for Z; one
formerly defined the proof theoretic ordinal of a formal theory T as the
ordertype of the least wellordering which is needed for the consistency proof
of T. This definition, however, is somewhat problematic since it depends on
the means which are allowed besides the induction along the wellordering.
Nevertheless we are going to convince ourselves that e, also in the sense of
that definiton —properly interpreted- is an upper bound for the proof theoretic
ordinal of Z,. In order to do that we will first sketch that our hitherto con-
siderations also comprehend a consistency proof for Z; which besides the trans-
finite induction along the ordering < defined in 8.7. only uses means which are
formalizable in Z; itself. Since the ordertype of { is g, we obtain that g, is an
upper bound in the above sense.

14.1. Definition

A (semi-)formal system T is semantically consistent, if there is no formula A

67



§14. On the consistency of formal and semi formal systems

such that THAA 1A,

It is easy to see that Z; is semantically consistent. We just have to look at the
soundness theorem 3.13. in order to conclude that there is no formula A such
that THAA 1A because otherwise we also had INEF AA 1A,

An inspection of this proof will show that the only induction we used there
is complete induction, i.e. induction along a wellordering (which also may be
defined primitve recursively) of ordertype w. Of course we cannot yet conclude
that @ is a candidate for the proof theoretic ordinal of Z,. The reason for
this short induction lies in the fact that this consistency proof is in no way
finitistic. We will not enter a discussion about finitistic means. For our purposes
it will suffice to call a proof finitistic if it may be formalized in Z; with the
scheme (IND) restricted to X7 -formulas. Now it is impossible to formalize the
notion of validity in IN even in Z;. To obtain a more finitistic consistency proof
it is necessary to describe the consistency of a formal theory in a more
syntactical way.

14.2. Definition

A (semi-)formal system T is syntactically consistent, if there is a formula
A such that TFA.

We are now going to show that for 'reasonable’ formal- and semiformal systems
the notion of semantical and syntactical consistency coincide.

14.3. Definition
(i) An inference Ax,...,!—An => -F is a sentential inference, if the formula
1A, v..v1IA_VF is sententially valid.

(ii) An inference A ,....,FA = |-F is a permitted inference of a formal
system T if T A,,...,TH A, entails T F.

(iii) A (semi~)formal system T is sententially closed, if every sentential
inference is a permitted inference of T.

14.4. Theorem

A sententially closed system is semantically consistent if and only if it is
syntactically consistent.
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§14. On the consistency of formal and semi formal systems

Proof

In a semantically consistent formal system no formula AA 1A is derivable. This
shows that it is syntactically consistent.

Now suppose that T is a semantically inconsistent formal system. Then there is
a formula A such that T} AA 71A. For every formula F, however, the formula
AA 7A — F is sententially valid. Since T is sententially closed we obtain T |- F
for every formula F which shows that T also is syntactically inconsistent.

By ZZ we denote the semiformal subsystem of Z, which contains only formulas
of rank below © and derivations of length below ¢, and cut rank strictly less
than .

14.5. Theorem

The semiformal system Lg, is syntactically consistent.

Proof

We show that there is a formula F of rank<g, for which we have ¥, F for all
a<e, and n<ow. Let F be a closed atomic formula such that N £ F. If we assume
I%‘F for some a<g, and n<w, then we obtain }w—:aF and ©_a is still less than e,.
But an easy induction on B shows that I-E F is impossible. F is neither an axiom
nor F may be inferred by an inference according to the /A- or V -rule since
it then had to contain a logical symbol.

14.6. Lemma

The semiformal system Zg, is sententially closed.

Proof
If 1A, v..v1A_VF is a sententially valid formula whose rank is less than &,
then by 10.16. there is an oc<2-max{rk(A,),....rk(Az),rk(F)}+w<e° such that

}% A,.....,7A F. If we assume that there are ordinals a,...,x,<g5and §,...5 <0

such that I%: A:""'l%: A, we obtain by cuts I-gF for some < max{o ,...,.a ,x}+o<eg,
and 3 :=max{8,,...,8n,rk(A1)+l,...,rk(An)+1]< .

From 14.5 and 14.6 we obtain
14.7. Lemma

There is no formula F such that rk(F)<e, and 5FA OF holds for some a<e,
and n<w. That means that the system I, is semantically consistent.
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§14. On the consistency of formal and semi formal systems

14.8. Theorem

The formal system 1L, is consistent.

Proof
If Z,-AA 1A, then we obtain by the embedding lemma F:‘;A*A 1A* with n<e
and a<w-2<¢, Since rk(A*)<w this contradicts 14.7.
Now we have to answer the question what it is gained by this consistency
proof in comparison to the consistency proof via the soundness theorem.
We may answer the question in so far that our consistency proof beside trans-
finite induction up to g, only used finitary means, i.e.means which are at least
formalizable in EP-IND (= Z,+ ZP-IND). Since our real concern will be the
impredicative system of chapter Il we did not tailor the cut elimination theorem
in such a way that we are able to obtain this result in an obvious way. But it
is quite easy to sketch how our consistency proof may be formalized in the
system Z; augmented by the scheme TI({,X). This at least will show that the
only means of the consistency proof which really exceeds that of Z; is transfinite
recursion along a primitive recursive wellordering of ordertype ¢,. Since the
exact proof is a bit cumbersome and in fact outside our real concern we just
will sketch its strategy.
First one observes that the proof trees resulting from the embedding lemma
are in fact recursive trees. Then one has to convince oneself that the cut
elimination procedure preserves the recursiveness of the trees. Recursive trees,
however, can be formalized in Z,. To assure the wellfoundedness of these
formalized derivation trees one has to assign (codes for) ordinals to the nodes
of the tree. As we have seen the ordinals below g, suffice for this purpose
and we may represent these ordinals in Z, by their codes developed in 8.7. So
we obtain a recursive function § such that

(A) Z+THLLX) - Proole(x,’—F’) — (f(xX)EF)
for a number variable x. Here Proofz, is the usual proof predicate for Z, and
(x i¥'F') formalizes the sentence
"x is the index of a recursive tree whose nodes are labeled with codes for £ -
formulas and ordinals increasing from top to bottom such that the tree is
locally correct with respect to the inference rules of Z, and whose bottom
node is labeled by the code for the formula F* and the ordinal o”
{cf. [Pohlers 1981]).
We easily obtain

(B) Z+TIKX) FVx(1x 50 =1D.
and conclude from (A)
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§15. The wellordering proof in Z,

(C) Zi+ THK,X) = 3x(Proofy, (xF)) — Ix (x {§F*).
From (B) and (C) we finally obtain

(D) Z,+TIK,X) - 13x(Proofy, (x,0 =1')
which gives the formalization of the syntactical consistency of Z,.
The above sketched formalization has some interesting consequences especially
for systems stronger than Z;. We do not have the time here to go into more
details. In the epilogue, however, we try to give a short review of these
results. A discussion about how this consistency proof fits into Hilbert's
program will be given at the end of this chapter.

§ 15. The wellordering proof in Z,

In the following section we are going to describe ordinals <g, by their arithme-
tizations as defined in 8.7. Since equality and the order relation between ordinals
are primitive recursive relations we may speak about those ordinals in the language
;. Nevertheless we are going to keep our familiar notations, i.e. o,B,Y,...now
denote codes for odinals in E and a =B as well a<B denote the primitive
recursive relations = and { respectively on the codes of the ordinals as defined
in 8.7.

15.1. Lemma (provable in Z;)

For u#0 and a<B+w® there is a natural number n and an ordinal $<y such
that a<p+w® n.

Proof

We informally work in Z, (cf. exercise 15.10.1). If a<8, then we are done choosing
§=0and n=1. So assume B<a. Then there is an o, such that a = B+ <B+wt.
We develop «, in Cantor normal form and obtain o, = 0 1+, .+0 k< ¥ Then we
have <y and a,<w*1-(k+1). Hence o = B+og< B+w™-(k+1) = B+w>-n for §:= «y,
n:=k+1.

15.2. Lemma

Z,-F implies Z,\Fx(G) for every class term {x:G(x)} which is given by a
&,~formula G.
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§15. The wellordering proof in Z,

Proof by induction on the definition of Z;F

If F is a logical or mathematical axiom of Z;, then obviously Fy(G) is an
axiom of the same kind.

If F is derived by an inference modus ponens or one of the quantifier inferences,
then the claim easily follows from the induction hypothesis. In the case of an
quantifier inference we have to ensure that the requirement for the eigenvariable
of the inference is not violated. This may easily be obtained by renaming the
variable.

By Fund(«,X) we abbreviate the formula Tran(<)A (Prog(<{,X) — ¥YE<a(Ee X)).
By THa,X) we denote the formula LO(<)A Fund(«,X). Essentially Fund(«,X)
says that the relation < lo is wellfounded and TI(«,X) that < ta is a wellordering.
The aim of the current section is to prove that transfinite induction along every
proper initial segment of the wellordering < is provable in Z;. It is quite easy to
see that Z; proves LO({) (Though easy, the proof in fact is a bit cumbersome.
Since not much can be learned by this proof we omit it and take it for granted
that Z; proves LO()). So it remains to show Fund(«,X) for all a<g, Since
Fund(0,X) holds trivially we are done if we succeed in proving the following
theorem.

15.3. Theorem
Z,I-Fund(«,X) implies Z;}-Fund (0™, X).

As a consequence of 15.3. we then obtain

15.4. Theorem
Z, proves the formula Fund(o,X) for all a<e,.

Proof
If a<g,, then there is an n<w such that a<w (0). Since Z;|-Vx(1x<{0) we have
Z |-Fund(0,X). n-fold application of 15.3. leads to Z,}-Fund (0 _(0),X), ie.
Z,}-Prog(<,X) = Vx<w,(0) (xeX). Because of Zi ¥x(x<a-— x<w,(0)) this
implies Z;}-Prog(<,X) — Vx<alxe X), ie. Z;}-Fund(a,X).
In order to prove 15.3. we define a jumpoperator Sp

Sp(X) ={a:VE(Eec X = E+w®c X)} [Ec X abbreviates ¥x{(x<E& — x¢X)],

which enables us to jump from a to o*.
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15.5. Lemma
The following formula is provable in Z;:
Fund{o,Sp(X)) — Fund (e*,X).

Proof
We have the suppositions
(1) Prog(£,Sp(X}) — uc Sp(X)
and
(2) Progi(<.,X)
and have to conclude w™*c¢ X. By (2) and lemma 15.6. below it follows
(3) Prog(<,Sp(X)).
From (3) and (1) we at first obtain ac SP(X) and this together with (3) implies
ae Sp{X). If we choose £ = 0 in the definition of SP(X) we obtain ©®c X.

15.3. now is an immediate consequence of 15.5. For if Z,-Fund(«,X), then we
obtain by 15.2.Z Fund(a,Sp(X)). This and 15.5. entail Z }-Fund (0%, X).

15.6. Lemma
Z |-Prog(<,X) — Prog(<,Sp(X)).

Proof
We have the presupposition
(1) Prog,X)
and want to show Prog(<,8p(X)), i.e. VB(Bc Sp(X) — BeSp(X)). To do that
we choose an arbitrary § and assume
(2) Bc Sp(X).
We then have to prove Be Sp(X), ie. YE(Ec X — E+wPc X).
Let £ be a (code for an) ordinal such that
(3) Ec X.
The claim is E+wPc X. Therefore assume n<f&+ef.

1. B=0. Then we have n<E. If 5n<E, then we have ne¢X by (3). E¢X follows
from (1) and (3).

2. B>0. Then by 15.1. there is a Bo<B and an n< such that n<§+ms°-n. We show
(4) E+wPo.nc X

by induction on n. For n =0 this is (3). For n=n, we have the induction

hypothesis
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(5) E+wPo-n_c X.
Since B <B we obtain by (2) B e Sp(X), ie. VE(Ec X — ‘c§+wa°c X). This especially
implies E+mB°-n°c X — E+wB°-no+wB°c X.
Together with (5} we therefore obtain

(6) E+wPonc X.

This finishes the inductionstep and the lemma is proved.

At this place we should notice that the essential means for the proof of theorem
15.3. is the scheme of complete induction. If T is any formal theory extending
Z,. then 15.3 holds for every wellordering { whose defining formula is admitted
in the scheme of complete induction on T and for which 15.1. is provable in T.

As a corollary of theorem 15.4. we obtain

15.7. Theorem

£q is the least upper bound of the ordertypes of the primitive recursively definable
order relations whose wellfoundedness is provable in Z,. Moreover we have
g0 = supf{|K|l: < is £y-definable and Z,-Fund ({,X}} = sup {|I<X[l: < is primitive
recursive and Z;Fund (£,X)}.

15.8. Theorem

For every u<eg, there is a Nli-sentence F such that Z F and «<|F|.

Proof
If a<e, , then it is 2%+1<g . By 15.4. we have Z,|-Fund(2%+1,X). But we have
o< |Fund (2*+1,X)| since by 13.10. |[Fund (2*+1,X)}|< o implies 2%+1< 2%

15.9. Corollary
SP(Z) =1Zl =¢,

15.10. Exercises

1. Suppose that «,8, u, 8 and n are ordinals as in 15.1. such that B+m“<so.
Sketch that 3! and n are primitive recursively computable from "o« 8 and Tu'.

2. Let Proofz‘(n,v) be an arithmetical proof predicate for Z . Define
udw:= (u<wA ¥x<wiProofz (x,0=1")) v (w<ua Ix <uProofz (x,0=1").
and a relation Rc NxN by:
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Rin,m) :e> NEn<{m.

(i) Show that R is a wellordering on N

{ii) Compute |IR}|

(iii) Show Z -LO(K)

(iv) Define F := Yz<x1Proofz (2,0 =1"). Show Z }-Prog(£,F)
(v) Show Z ¥ Fund (£{,X)

§ 16. The use of Gentzen's consistency proof for Hilbert's program.

Our proof theoretic analysis of the formal system Z; is essentially the same
as Gentzen's original analysis. But contrary to our motivation -ordinal analysis
of Z,~ Gentzen originally was guided by the idea to give a consistency proof
for Z, in the spirit of Hilbert's program. He therefore (in the later version)
avoided semiformal systems but showed the syntactic consistency of a formal
system which is equivalent to Z; by a partial cut elimination. In his proof it
becomes immediately plain that its only non finitistic means is transfinite
induction along a wellordering of ordertype ¢,. For this reason the Hilbert School
believed that only a tiny extension of the finitistic standpoint - here accepting
the intuitively plausible fact that the ordering in question really is wellordered -
would suffice to carry through Hilbert's program.

Now we want to examine if this extension really is just a tiny one. For this
purpose imagine an opponent who doubts the consistency of pure number theory.
Let us assume that our opponent is able to understand mathematical reasoning
and we are trying to convince him by Gentzen's proof. He really accepts all
steps of the proof but in the end begs for an explanation of transfinite
induction up to g, since this is beyond his finitistic understanding. We therefore
try to substantiate this induction as finitistic as possible. We avoid the notion
of an ordinal, only speak about orderings on the natural numbers and so will
necessarily end up with a proof which essentially is the same as that we gave
in the preceeding section.

Due to his mathematical abilities our opponent very quickly will notice that the
crucial point of the proof is lemma 15.5. If we define Sp,(X)=X and
Spy 4, (X) = Sp(Sp, (X)), then we have to start with Fund(0,Sp, (X)) and then
by iterated use of lemma 15.5. decrease the number of jumpoperators in order
to get to Fund(wi(0),X). But this also means that we need 15.6. in the form
Prog(<,Sp, _,(X)) — Prog(<,Sp, (X)). In the proof of 15.6, however, we proved
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the formula

(4) E+oPonc Sp,_ (X)
by complete induction. This shows that we need the induction scheme for
formulas of the complexity of Sp, _ (X). In our proof we did not pay attention
to a parsimonious definition of the jumpoperator. But even under the most
careful definition the jumpoperator increases the number of alternations of
quantifiers at least by one. That means that Sp(S) in the arithmetical hierachy
always is one level higher than S. In order to climb up to g, the constant k
has to run through all natural numbers. That means, however, that we cannot
restrict the complexity of the formulas in the induction scheme. At this place
our opponent will argue that by that we fully use the means of pure number
theory and even exceed it. But since he doubts the consistency of pure
number theory he cannot accept our proof. We cannot advance a mathematical
argument against his argumentation.
Being aware of Godel's second theorem this situation is not too astonishing.
If Godel's theorem is more than a mere formal triviality but has a genuine
meaning, then one cannot expect to bypass it by a tiny extension. Therefore
we cannot expect results which incorporate a real progress in the spirit of
Hilbert's program.
We want to emphasize, however, that this objections only meet the shortened
version of Hilbert's program as we presented it in the introduction. Hilbert
originally also spoke of the elimination of ideal elements in mathematics. This
subtle part of his program is in fact realisable in many directions. Nevertheless
we must be aware that a mathematical proof of the consistency of mathematics
is impossible.
Although Gentzen's result is of little help in the spirit of Hilbert's program
it has consequences which correspond better to Brouwer's intuitionistic point
of view, a standpoint opposed by Hilbert.
By sharpening the considerations in the end of section 14 Gentzen's proof may
be interpreted in the following way:
The consistency problem of pure number theory with the unrestricted scheme
of complete induction can be reduced to the question, if a system without
complete induction without the law of the excluded middle but with transfinite
induction along all initial segments of ¢, for formulas of very restricted com-
plexity is consistent. Since one has a very good picture of an order relation of
ordertype g, and the latter system does not allow indirect inferences it intuitively
is completely plain that the latter system is consistent although its proof
theoretic ordinal is the same as that of pure number theory. This kind of reductive
proof theory is in full coherence with Gidel's second theorem.
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CHAPTER II

The autonomous ordinal of the infinitary system Z,, and the limits of
predicativity

By the soundness theorem 12.1. for the infinitary system Zn and lemma 9.2. we
have
Zn l% F = |Fl<Q.

That means that the ordinal O has the following closure property: For o,pe()
and Zn I% F we also have |Fle(l. By Q) we usually denote the first uncountable
regular ordinal. Later on we are going to use () as a formal symbol, whose standard
interpretation is the first regular ordinal ®,. But we also will aiternatively
interpret () by other ordinals (cf. chapter III). By recursion theoretic methods
(cf. exercise 13.13) it can be shown that () keeps the above closure property
even in its recursive standard interpretation where Q is interpreted as oFK, the
first recursively regular ordinal. It is now obvious to ask if w,CK already is
the smallest ordinal above w having this closure property. By purely recursion
theoretic methods this question hardly is to answer. By proof theoretic methods,
however, we will establish that there are in fact smaller such ordinals. The
smallest one will be . But of course our real interest is the gquestion if there
are ordinals between v and X having this closure property. If there exist such
ordinals, then we already know that they have to be larger than g,. This follows
from the proof theoretic analysis of Z; where we noticed that for every ordinal
x<g, there is a Il}-sentence of norm a which is provable in Z; and therefore
provable with a derivation of length smaller than w2 and finite cut rank. It is
also easy to see that there also is a Ilj-sentence of norm ¢, provable with a
derivation of length smaller than ¢, and cut rank w. In order to tackle the
problem we therefore need notations for a segment of the ordinals which is
larger than gy. The following section will provide us with such a segment.
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§ 17. Continuation of the theory of ordinals

17.1. Definition

Let McOn and f:M — On. We define
(i) Fix(f) :={E:f(§) = £} and ' = ordg,, (¢
(ii) M’ := Fix(ord,,).

17.2. Lemma
Let nw>w be regular. If f is a («=)normal function, then Fix(f) is closed un-
bounded (in »). Hence f' again is a (x-)normal function.

Proof

By 6.27 we only have to show that Fix(f) is closed unbounded (in x). So let
oaeOn(o<x). Define By := a, By, 1= f(g,)and B := sup{B,:n<w}. For a x-normal
function f we immediately obtain B,<x by induction on n. Since there is a 1-1
mapping from the set {B :nec¢w} onto w<x we have B<x.If Be{B, :ncw}, then
there is a k<w such that B =8, < f(B,) < B. Otherwise we have BeLim by 6.11.
By hypothesis f is a normal function and therefore also continuous. Hence
f(B) = sup{f(Bn):x<(o} = sup{Bn+‘:n<w} = B. Hence a<PBeFix(f) and Fix(f) is
unbounded (in x). Now suppose that Uc Fix(f) is bounded (in x). If sup Ue U we
are done. Otherwise we have sup Ue¢Lim which implies f(supU) = sup{f(E):Ee U}
= sup{E:Ec¢ U} = supU . Hence supUeFix(f) and Fix(f) is closed.

17.3. Corollary
If Mc On is closed unbounded (in »), then M' is closed unbounded (in ) too.

Proof
If M is closed unbounded (in x), then ord,, is a (x-)normal function. By 17.2.
we then have that M’ = Fix(ord,,) is closed unbounded (in x).

17.4. Lemma

Let x> be regular. If 8 + Ic On is bounded (in x) and {CE:EEI} is a family of
sets which are closed unbounded (in x), then C = M{ CE:EG 1} is closed unbounded
(in x) too.
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Proof
Since all Cg are (x-)closed we immediately obtain that C is (x-)closed too.
The real problem is to show that C is unbounded (in x). Therefore choose
a € On(<x). We define a family (f ) __ of sequences (fn,g)&e! by

fo.r := min{ye Cg:asyn (Yne&nDfon<y)
and

fa+ie 1= min{ye Ce:¥nel) fan<y A (VneEnD fasin<Y}
Since all Cy are unbounded (in x) we conclude by induction on § that f,  always
is defined (and <x). By the induction hypothesis we may assume that f, ¢ is
defined (and <x) for all n. Since I is bounded (in x) we have sup{f, z: Ec[}¢On
(<x). By the unboundedness of C; we then obtain that f,,  is defined for
all E¢I and ne¢w. The sets {f, z:ncw} are bounded (in x) and it follows B, :=
supi fn,E : n<(.3}eCE for all Ecl. By construction we have BE = B’io for all E&yel.
Hence cstEoeC for arbitrary &,.

17.5. Definition
We define the classes Cr{a) by recursion on a.
(i) Cr(0) = H
Gi) Cr{a*) = (Cr{a})’
i) Cr(A) = M{Cr(E) : E<X} for XeLim.
We call Cr{a) the class of a—critical ordinals. By ¢ we denote the enumerating
function of Cr(u). We usually write ¢ af instead of ¢, (B).

17.6. Lemma

Cr(a) is closed unbounded in any regular »>max{a,w}. Hence Pulx is a x-
normal function for all »>max{a,0}.

Proof

By 7.8. we have that Cr(0) is closed unbounded in any x>w. Using 17.3. and 17.4.
we easily obtain by induction on o that all Cr{a) are closed unbounded in any
»>max{a,w}. Then it is immediate by 6.27 that ¢, lx is a x-normal function.

17.7. Lemma
(i) o0a = ™
(i) 10 = ¢

(iii) B<y implies paf<pay
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§ 17. Continuation of the theory of ordinals

(iv) B<opuB
(v) pax = suploaE:E<)} for AeLim
(vi) If u<B, then Cr(B)g Cr(a), pa(eBy) =By and pay<eBy.

Proof

(i) holds by definition.

(ii) We have ¢, = min{E:90E = £} = minCr(1) = ¢10.

(iii)~(v) follow from the fact that @, is a normal function for all a.

(vi) By induction on B we first obtain Cr(B)c Cr(a). If w<B, then we have
@RYeCr{B)ec Cr{a+t) = Cr{a)'. Hence @aleBy) = pBy. By y<@By we therefore
obtain pay<paleBy) = ¢By. Since 0¢Cr(0)>Cr(B) it follows O<¢B0 which
implies pa0<@al{pB0) = B0, i.e. eal ¢ Cr(B) and therefore Cria)3Cr(p).

17.8. Theorem
Suppose that o = ¢o,B; and B = puyBy. Then we have
(1) a =B if and only if one of the following conditions is satisfied:
(i) ay<ay and By = payby
(ii) oy =y and By = By
(iii}) og< oty and payBy = By,
(2) a<B if and only if one of the following conditions is satisfied:
(i) ay<ay and By<poyBy
(ii} ay = oty and B<By
(iii) ag<oy and ¢ oyBy<By.

Proof

We simultaneously prove the claims (1) and (2).

(i) If oy<oty, then we have po,{payBy) = payBy. Therefore payf, = payp, holds
if and only if B, =B and a<B holds if and only if B;<B.

(ii) If o; = oy, then (1) and (2) are obvious since ¢, is order preserving.

(iii) is a consequence of (i} and (ii).

Theorem 17.8. is basic for the following parts. Therefore we often will use it
without mentioning it explicitly.

17.9. Lemma
We have ¢uaO<9B0 if and only if a<B.
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§ 17. Continuation of the theory of ordinals

From 17.9. we obtain by 6.22. a<paO<oap for all « and B. Therefore we have
the following lemma.

17.10. Lemma
For all o,BeOn it is o,B<paf.

17.11. Theorem
For every ordinal a¢H there are uniquely determined ordinals B and Y such that
o =Py and y<a.

Proof

The uniqueness of B and vy Is an immediate consequence of 17.8. To show their
existence we define B := min{f:a<gfa}. The ordinal B is defined because of
x<paO<gpao. If =0, then we have x<pOu. Since ae¢H there is an n such
that o = pOn<¢Oa, ie. n<a. If 850, then we have o = gy for all n<B. Hence
aeCrin)' = Crin') for all n<B. This means xe/NMCrin'):n<Blc Cr(p). Therefore
there is a v such that « = pBy<ypBa which implies y<a.

17.12. Remark

The ordinals in Cr(«) have the following closure properties. First they are closed
under ordinal addition and yeCr(a) and E<a,n<y imply ¢En<y. To prove the
latter closure property we observe that if ye Cr{a), then there is a v, such that
Y = pay, and we obtain pEn<eay, =y. This means that the ordinals in Cr{o)
are inaccessible for the functions in {epE: E<a). For this reason we are going to
call them a-critical ordinals. Ordinals o which themselves are wa—critical are
even inaccessible for the 2-place function AEn.@En. This motivates the following
definition.

17.13. Definition

We call an ordinal « strongly critical if aeCr{n). By
SC:={aeOn:aeCria)}

we denote the class of strongly critical ordinals.

We define Iy := ordg(a).

17.14. Lemma

(i) We have aec SC if and only if it is a0 = a.
(ii) If e SC and B,y<«, then it Follows eBy<a.

81
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Proof

(i) a¢SC implies ae Cr{a).Therefore there is an n such that « = pan. Now we
have a<paQ<epurn =o. Hence n=0. If « = pa0, then xeCr(a) and we obtain
ae SC by definition.

{ii) By (i) a<SC implies o = pa0. But B<x and y<a=9px0 entail ¢By<gpaul =«
by 17.8.(2) i

17.15. Theorem

The class SC is closed unbounded in every regular w>w. Hence I' is a n—normal
function for all regular x> o.

Proof

Pick any a<x. Define B_: = a+l and B,  :=¢f, 0. Then we have B <x and by
induction on k it follows B, <x for all k<w<x. Hence B :=sup{B, :k<w}<x.
For E<B there is a k<w such that £<B, <8  for all m>k. Hence 9&8 . =
pElpB 0) =B 0=8_ forall m=>kand we have B<p&f = sup{pEf

meg im2kl=
sup{f ., :m2k}<B. This shows that B¢ {Cr(§)':E<B}c Cr{(B), i.e. Be SC. Because

of o<B<x we have that SC is unbounded in x. To show that SC also is
x—closed we assume that Uc SC ig bounded in x. Define f :=supU. If Bel,
then we are done. Otherwise we have B¢Lim and for £,n<p there is a yel
such that E,n<y. Hence ¢En<y<P by 17.14. This proves B<¢Epf = sup{pEn:n<Bj<B
and we have BeM{Cr(£)’:E<B}c Cr(B) which implies Be SC.

17.16. Theorem
For every ac¢H\SC there are uniquely determined ordinals B,y<a such that
o= @By.

Proof

By 17.11. we have a = By for B<a and y<x and B and y are uniquely determined.
If we assume B = o, then we obtain ae¢Cr{a) which contradicts «¢SC. Hence
Bea,

17.17. Definition
We define a =pp ¢BY :e> o = pByA B<any<a.

17.18. Definition
For aeOn we define af := min{yeSC:a<y}.
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§ 17. Continuation of the theory of ordinals

17.19. Inductive definition of the set PC(a) (Predicative closure of a).
(i) o'cPCla),
(ii) If v,8e¢PC(a), then also y+§¢PCl(a),
(iii) If v,58¢ PC(a), then also ¢v8e¢ PC(a).

17.20. Theorem

PC(a) = of
Proof
We show PC(a)cal by induction on the definition of PC(a).

(i) If n<a', then we have n<o<ol.

(ii) Here we obtain y,5<af by the induction hypothesis . Since SCcH this
implies y+é<al.

(iii) Again by the induction hypothesis we have v,5<al. Since al'¢ SC it follows
pyd<al by 17.14. (ii).

To prove the opposite direction we show E<al => E¢ PC(a) by induction on E.
If E<a, then we obtain E¢ PC(a) by 17.19.(i). If a<E<al, then we have E¢SC. If
E¢H, then there are Y,5<E such that £ = y+3. By the induction hypothesis we
have y,5¢ PC(a), and obtain £ = y+8e PC(a) by 17.19.(ii). If £<H, then by 17.16.
there are v,8<E such that £ = ¢y§ and we obtain E¢ PC{a) by 17.19.(iii) and the
induction hypothesis.

17.21. Theorem

If x>w is regular, then we have x¢SC and aU<x for all a<x.

Proof

If £,m<x , then by 17.15. there is a 6¢ SCnx such that ,n<c. By 17.14 (ii) it follows
pEn<o<x. Hence x< @Ex = sup{pEn:n<xj<x and we obtain xeN{Cr(E)': E<x]c
Cr(x). Since by 17.15. (x,x) n SC* 8 it follows al <x.

17.22. Theorem

If we define A («) = «' and A (a) = A («)O, then we have al = sup{a_(o):n<w}.

Proof

By induction on n it easily follows A (a)<4,, (a) for all n<w. We prove that for

n+1
all n<ow there is a £¢ PC(a) such that A (x)<E again by induction on n. If =0
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then o' < @00 ¢ PCla) by 17.19.(i), (iii}. If o« + O then a'<sa+ae PCla) by 17.19.(i),(ii).
For the induction step we have a £¢PC(a) such that A, (a)<E. Hence 4, (a)
= @4, («)0< @O ¢ PCla) by 17.19.(iii). This proves sup{A («):n<w}<al.

To prove the opposite direction we show by induction on the definition of 8¢ PC(a)
that there is an n<w such that B<A (a). In the case of (i) this holds for n=0.
In the case of (ii) we obtain the claim from the induction hypothesis and the
fact that 4 €¢H holds for all n>0. In the case of (iii) it is B = ¢y$ and by the
induction hypothesis we have n;,ny<w such that y< Ap (x),3<A, (o). We define
() 0= A, (a).

n:=max{n ,n_}, and obtain <ol (a)d {a)<pA | )

The following lemma is a special case of 17.20.

17.23. Lemma
T, = PC(O).

The ordinals in PC(0} are accessible from from 0 only using the functions +
and ¢. Therefore all ordinals in PC(0) are represented by terms built up from
{0,+,¢} according to the rules given in 17.19. These terms are called ordinal
terms. For ordinal terms a« in PC(0) we define the degree Ga as the number
of symbols 0,+ and ¢ which occur in «. So Gua is the length of the word « in
the formal language over the alphabet {0,+,¢}.
According to 17.23. every ordinal u<T, is represented by an ordinal term in
PC(0). This ordinal term, however, is in general not uniquely determined. In order
to obtain an unique representation of an ordinal by an ordinal term we define
the set PC (0} of terms in normal form. PCyg{0) is defined inductively by
the clauses

(i) 0e PC(0)

(i) If o = ypoy+...+a,, and {ay,...0,}c PCp(0), then also ae PCyp(0)

(i) If o = gpeoyap and {ay,0p}c PCp(0), then also ae PCy(0).
it is obvious that PCNF(O)C PC(0) and using 7.9, 17.16. and 17.13. we also obtain
PC(0) c PCy(0). Therefore every ordinal «<Iy is represented by an ordinal
term o in PCp(0) and it is easy to see that this ordinal term is uniquely
determined.
As the degree Ga of an ordinal a<Ty we define the degree Gu
The set PCyy (0) like the set E in §8 may now be arithmetized. E.g. by defining
0 = <00, To+p = A8 and Tpaf’ =<20' B, It is not to hard to see that
the set 'PC(0)’ = {'o':a e PCyz (0)} is again primitive recursive and using 17.8.
it follows that the relations defined by
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‘o' =8 :«> a =B and
fo'<"B" :e> a<B
are primitive recursive too. As a corollary to this sketch we obtain the following
theorem.

17.24. Theorem
CK

R AT
17.25. Exercises
1. Show that any cardinal x> is strongly critical.

2. Prove that for any oe PC(0) such that o = B it holds GBp<Ga. (This shows
that another possibility to define GB is GB := minfGa:ae PC(0) and a = B}).

§18. An upper bound for the autonomous ordinal of Z,

18.1. Definition
The infinitary system Z_ canonically induces the operator
Z:P(On) x P(On) — P(On)
which is given by
T(M.S) ={|Fl:3e M35¢S (F is Ilj-sentence such that rk(F}¢$§S A i%‘- F)L
The norm IFl of a N}-sentence F, however, depends a little bit on the syntactic
definition of the system Z,,. An alteration of the inference rules may alter the
norm by some finite ordinal. In order to obtain an operator which is not so
sensitive for such alterations we redefine the operator ¥ by
Z(M,S) ={|Fl:3xe M35¢ S (F is Tli-sentence such that rk(F)eS A |§“ F)lu
{o+t : we M),
Since every ordinal already is a subset of On we may turn the operator X into
an operator A : On x On — On by defining
Alo,B) = U Za,B).
By diagonalization we obtain an operator
[: On) — On,
defined by
Fla) = Alo, o).
We call an ordinal « closed under Z,, if T'(o)ca.
A short review of chapter I is then given by the statement
Mo2,0) = ¢,
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§18. An upper bound for the autonomous ordinal of Z,,

In chapter I we moreover have shown

Ale,0) = ¢,.
In the remarks preceeding chapter II we already mentioned that the ordinals
®, and w{K are closed under Z_,. In a next step we will see that also the ordinal
w is closed under Z,.

18.2. Theorem
w is closed under 1.

Proof
From n.m<ow and };’:‘F we obtain }—z-gn(—“-—) F by the first elimination theorem 12.3.
Hence [Fl<2 (n)<ow.

Since I is closed under successors, it follows by 18.2. that v is the least ordinal
which is closed under Z,,. So the least fixed point of I is rather uninteresting
(at least if one is interested in clarifying the role of nonfinitistic means in
mathematics). However, 18.2. may be interpreted as a mathematical proof for
the philosophical statement that is impossible to create an actual infinite domain
out of finiteness, The creation of an infinite domain from finite objects was
one of the attempts of logicism which tried to establish mathematics on the
basis of pure logic. 18.2. shows that this attempt must fail.

The infinitary system Z,, provides a tool to create ordinals autonomously.
Starting from a given ordinal ¢ we successively build the sets

T(w), T((w), T (), T, ...
and finally reach a set

Aut(y) = T () :n<o}.
Aut {g) may be interpreted as the set of ordinals which are autonomously
accessible from p. To see this we have to notice that Z, }ZL“. THa, X} holds
for some n<w. Hence ITI{o,X)I<a* where o* denotes the first limit ordinal larger
than «. From oe¢Aut{y) we obtain o*c Aut(y), since Aut(y) is closed under
successors. Hence ITHo,X)e Aut(y) and therefore lTl(oc,X)lel"(")(u) for some
n<w. Therefore we obtain an ordinal a*el‘("_')(u) such that 5= Tl(a,X). So a
is an ordinal whose wellfoundedness is provable from «,.So we may say that
a is accessible from «,. For B<u we define B, := B. Then we obtain a sequence
foay: kew} by o, := a and oy, = (o), which eventually becomes stationary at
some o, <i. Since accessibility is a transitive process «, is accessible from o,.
{This essentially is a sketch of the construction which will be carried out in
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§ 19). So we have justified « by assuming «,, as being given. If ¢ = 0, then we
call a autonomously justified. By 18.2., however, we have seen that it is impossible
to justify infinite ordinals autonomously. If we want to step into the transfinite
we already need the existence of an actual infinite set. For the moment it will
suffice to require the existence of the ordinal «. This motivates the following
definition.

18.3. Definition
The transfinite autonomous segment of the ordinals is the ordinal Aut(w+1).

We usually omit the adjective 'transfinite’ and talk of the autonomous segment
of the ordinals.

For the computation of Aut{w+1) we have to generalize the first elimination
theorem.

18.4. Second elimination theorem

}-B—i‘—;pA implies igggz\.

Proof by main induction on p and side induction on «

If the last inference is not a cut of rank >8, then the claim immediately follows
from the induction hypothesis. Therefore we may assume that the last inference

is a cut of rank 6 such that B<o<p+w® . For p = 0 we obtain P—é’aA, ie. Fe-g“ A,
by the first elimination theorem. If p+0, then by 15.1. there is a p <¢ and an
n<w such that Bzo<B+w®on. If the premises of the cut are !-g;‘—(;a-A,A and
oizw o»A,7A, then we obtain by the side induction hypothesis F—‘ifz’A,A and
}-‘Egﬂtzé.‘u\. We have rk(A) = c<B+wP®-n and obtain by a cut }B%T-nﬁ for
$ := max{ppa,, ppa, }+1. Now define (pp )° =3 and (pp )78 = pp ((9p,)"8). By
n-fold application of the main induction hypothesis we obtain }chgn)_“_s A and
show by induction on n that it is (pp )”s<ppa For n = 0 we have (pp )78 =38 =
max{(ppa,,eppctz}+1< ppo since ay<a and ppaeH. It is (cppo)"""‘S = pp (pppdl<
ppa, because of p <p and (pp])8<ppa which holds by the induction hypothesis.

0
So we have (pp )" <ppx and obtain FEEA from ( £ LY

18.5. Corollary
I% A implies F"—%"A.
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Proof
We have p<w®. So F—: A implies %PA and by 18.4. it follows Fﬁfﬂ‘-A.

18.6. Theorem
Aut(w+)cT,.

Proof

Assume o,p<T, and IZ F for a Il}-sentence F. By 18.5. this implies P’—;E‘F which
by 10.3. entails {Fl<ppa. Since [,¢SC we have gpa<I, by 17.14. Hence NI )< T
Because of w+lc I, we obtain Aut(w+l)<T.

18.7. Exercises

We are going to examinate two variants Zw and Z,, of the infinitary system
Z,, In these variants we are going to derive finite sequences of formulas in
which a double occurence of a formula is not automatically cancelled. We
identify finite formula-sequences I' and A whenever I' is a permutation of A.
We define the following calculi:

(Ax) If A is an axiom, then Z, FgA and Zm}‘g A holds for all o« and p.

(A If Z, B TLF, or %2 I2! IF, holds for all i<n<w, then we have
Z,, & T, \{F;: i<n} or Zy, I T, AlF,: i<n] respectively for all a> supf{o +1: i<n}.

(\/) If zmr-"r F, or Zwl—° T.F, holds for some i<n<o, then ZmP‘*I" V{F,: i<n}
or zx,f“ T, \/{F i<n) respectively holds for all a>o,

(cut) If Z,o}—-"l‘ A and Zm%—’ T,7A and rk{A)<p, then we have Z,,P‘ I for all
a>max{o, a} and if zm I, A and ZOOP-" A,7A and rk(A)<p, then we have
Z, }g I,A for all ¢x>maax{m0 a
1. Show the following facts:

(i) The weakening rule is a permitted inference of Z.,. ie., zx,}g A A
implies the existence of ordinals f,n such that z,o}ﬁn- I',A.
(i) 3o, p Zoo!-“ A<> Ja,pZ, I3 {F:Fep}
(i) Z,, does not allow cut ehmmatwn
2. (i) Formulate the elimination lemma for im and sketch the proof.
(ii) Prove the tautology lemma for im
(iii) Formulate the first elimination theorem for ioo and sketch its proof.
(iv) Formulate the second elimination theorem for ioo and sketch the proof.
(v) Pro:e or disprove the sentence: Ju,p 200% A<>3a,p Zy % {F:Feal
(vi) Is Z,, sententially complete?
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Definitions:

1. In the sequel we assume that the & -formulas are obtained from atomic and
negated atomic formulas by the connectives A and v and the quantifiers ¥V and 3.
Negation for formulas which are not atomic is then defined via the deMorgan
laws analogously to the definition for the language £,.

2. We define rk (F) for & -formulas F inductively by:
(i) rk,(P) :=rk (7P) := O for atomic formulas P

(ii) rk (AAB) :=rk (Av B) : = max{rk (A),rk (B) }+1

(iii) rk (YxA) :=rk (YXA) :=rk (3xA) := rk (3XA) := rk (A)+1
3. rk,(F) for & ,~formulas F is defined by:

(i) If F is an & ~formula, then rk,(F) =0

(i) If F= A(B is not an £ -formula, then rk (F) := maxirk {A),rk (B)}+

(iii) If F = QxA for Qe{V,3} is not an & -formula, then rk, (F) := rk,(A)+1

(iv) If F= QXA for Qe{V,3}, then rk(F) :=rk,(A)+1
4. We extend the interpretation * of & —formulas without free occurences of
free number variables by adding the following clauses

(VXF)* := A{Fy({x: AD*: A is a £, (x)-formula and rk(A)<w}
(AXF)* = V{F ({x: AD* : A is a £, (x)-formula and rk(A)<w}

5. Finally we define the following abbreviations for finite sets of & ,- or £ -
formulas respectively:
A* .= {F*: FeA}, Ax({x:A}) = {FX ({x:A}): FeA}
6. Inductive definition of ACA,, K A for finite sets A of & ,-formulas without
free number variables:
(Ax ) If A%is an axiom (for Z), then ACA,, IFA holds for all a and k.
(Ax,) ACAOO?;‘ A,C,C holds for all & ~formulas C, all formula-sets 4 and
all « and n<o.

(A\) If ACA B* A,A and ACA, ' A, B, then ACA,, £ A,AAB holds for all
a>max{a o}

(V) If ACA, K°AA, then ACA, K A,AvB and ACA, ¥ A,BvA hold for
all a>o .

(v,) If ACA,, K"A,F (n) for all neN, then ACAml-: A,¥xF holds for all
a>supf{o_+1: neN}

(3,) 1f ACA,K®° AF (n)for some nelN, then ACAIEA,3xF holds for all
0(>0(°

(v,) If ACA_KC°A.F and X¢FV,(A), then we have ACA, ¢ A,YXF for all

o> (!o.
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(3,) If ACA,15°4,F,(A) for some & ~formula A such that FV (A)c{x}, then
ACA_, [¥A,3XF holds for all a>a.
(cut) If ACAR® AA, ACA, B A, 1A and rk,(A) <k, then ACA, ¥ A holds for
all a>max{e,, o}
7. By ACA we denote the theory with language ¥, which is obtained from ACA
by adjoining the unrestricted scheme of complete induction.
(i) Let F be an &,-formula and A an & —formula. Show that rk,(F) =
rk, (Fy (A)).
(ii) Prove that if ACA~F and FV,(F)c{x,,...,xk}‘ then there are r.,s<w such
that ACA,, =7 F oy Bpeealy ) for all (n,,...n, ) e Nk
(iii) Show that ACA, £ A,A, ACA_ T, 1A and rk,(A) = k=1 imply ACA 158 A,
(iv) Prove that k>0 and ACA X A imply ACA, l‘ﬁ“A.
(v) Show that ACA, & A implies ACA,, }‘i’]“(a)A.
(vi) Let A be a set of &, ~formulas and A an & (x)-formula. Show that
Z, % A implies Zm}f,ﬁl{-%{?‘ Ay (A).
(vii) Let A be a set of &, ~formulas and n := max{rk,(F) : FeA}. Prove that
ACA, %A implies Z,, [{nti e p%,
(viii) Show that for a I1}-sentence F such that ACAFF it is |Fl< ple,.

§19. Autonomous ordinals of Z,

Our next aim is to show that I, in fact is the least ordinal which comprises w
and is closed under Z,,. In order to do this we have to show that every ordinal
less than T, is accessible from © by an autonomous process similar to that
which we have described after 18.2.

As sketched below 17.23. we have primitive recursive codes for all ordinals below
I, such that the equality relation = and order relation < between codes for
ordinals become primitive recursive. Therefore we have no problems in handling
ordinals below Iy in £_,. In order to simplify notation we are going to identify
ordinals and their codes. As in 8§15 we denote codes for ordinals by lower
case greek letters. The atomic formula x<B is only true if o <"PC(0)’, Be'PC(O)
and «<B. VaF(a) abbreviates the formula /A{F(a): xe'PC(0)'} and JaF(«) the
formula V{F(a): ae'PC(O)'}.

It is also comfortable to use class terms S of the form {x: F} in the language
Z - Since we have no number variables in the language &, the convention of
1.8. does not make sense. In order to obtain a reasonable definition we have
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to extend the language &, by additional number variables x,y,... to the language
Z oo, Terms of L, ., then are defined as the terms of &. Starting with
these terms one defines the formulas of &£, , in the same way as the formulas
of &£.,. In the definition, however, we have to pay attention to the fact that
there always are only finitely many variables free in one formula. The rank
rk(S) of a class term S = {x: F} then is the rank of the formula F. Now if F

is an &£, -formula such that FV((F) = {x]} and S is the class term {x: F},
then for any &,,—term t the formula t¢S (which 1S an abbreviation for the

formula F,(t)) again is a wellformed & —formula.
In detail we agree upon the following abbreviations and notations.

19.1. Definition
{i) For a class term S we denote by ac S the formula YE{7E<av EcS).
(ii) «c B denotes the formula VE{E<avE<B]}.
(iii) K, :={S: S is a class term such that rk(S)<o}.
(iv) Fund,(«) is the formula A {Fund(a,S): Se¢ &}

19.2. Lemma (Equality lemma)
If | F.(s) for 2-rkF<o and rkF<p, then we obtain %:_1 as=t,F,(t).

Proof
We have

(1) BEEF q5-t,9F, (s), F, (1),
because either it is sIN £ t&N and we have an axiom according to (Ax1) or it is
sN = tN and (1) follows from the tautology lemma by the structural rule. From
(1) and the hypothesis 5 F,(s) the claim follows by a cut.

19.3. Lemma (Conjunction lemma)

If F is a valid sentence such that rkFxzo and %A,A, then gﬂ AAAF.

Proof

By exercise 10.18 we have l{,ﬁg F. This implies }51‘—5 AF by the structural rule.
Together with the hypothesis [&A,A we obtain [%ﬂ AAAF by an /\ -inference.
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19.4. Lemma (Detachment lemma)

Suppose that we have % 1F,A and that F js a valid sentence such that rkFza
and rkF<p. Then F“—:,—l A. For rk{F) = 0 we even obtain %A.

Proof

By exercise 10.18. we have [EXF

F and the claim follows by the structural rule
and a cut. For rkF = 0 we obtain 5 A by the elimination lemma.

Hidden applications of the structural rule will no longer be mentioned. We freely
will apply the cut rule and /A- rule in the form - AA and T,7A = AT as
well as = AA and I'B=F Al A~ B respectively. Since applications of the
structural rule do not increase the length of the derivation this cannot do any
harm.

For the rest of the section X always will denote a limit ordinal. By A\* we denote
the first limit ordinal larger than A.

We define SP(S) :={n: YE(Ec S — E+nc S)}

19.5. Lemma
For all S¢ &, there are o< and p<X such that % n¢ SP(S),nc S holds for all y.

Proof

By the tautology lemma we have [0 n¢ SP(S), ne SP(S) for oy = 2:rk(SP(S)) <.
Hence

(1) X0 n¢ SP(S),10c S, ¢ $
by /A -inversion and V -exportation. On the other side we have ({-}1E<0,Ees
according to (Ax1). Using V -importation and an /\-inference this implies

2) Bocs.
From (1) and (2) we obtain the claim by a cut of cut rank p = rkS+3<X.

19.6. Lemma

For Se¢ &, there are o and ¢ less than ) such that % 1Prog(SP(S)),1nc SP(S),nc §
holds for all 7.

Proof
By the tautology lemma we have
(1) |5° 1Prog(SP(S)),Prog(SP(S)) for oy = 2:rk(Prog(SP(S)))<A.
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Hence by /\ -inversion and \ -exportation
(2) o Prog(SP(8)),1mc SP(S),ne SP(S).
From {(2) and lemma 19.5. we obtain by a cut
(3) |2 1Prog(SP(8)),1mc SP(S),nc §
for some p<X and o< A (we may choose p as the rank of SP(S) augmented by

some finite ordinal and «; as the successor of the maximum of o, and the
ordinal from lemma 19.5.}.

19.7. Lemmaea
For S¢ &, there is an a<) such that [§ 1Ec S,1me SP(S),E4nc S holds for all n
and E.

Proof

The claim follows by /\-inversion and V -exportation immediately from the
tautology lemma.

19.8. Lemma
For S¢ R, there are a,0<\ such that % 1Prog(S), Prog(SP(§)).

Proof
From the tautology lemma we obtain by /\ —inversion and V -exportation
(1) o 1Ec S,1(<E, LS for o = 2k(S)+4< X,
(2) B* 1mc SP(S),1my< 1, mp € SP(S) for oy = 2:rk(SP(S))+4< )
and
(3) 52 My e SP(S),1Ec S, E+n,c S for oay< .
By a cut it follows from (2) and (3)
(4) I-g'(‘;’ ne SP(S),18¢ S, ng< 0, E+ypc S
for oy = max{ay,ay}+1<X and p, e [rk(SP(S))+1, X). Again by the tautology lemma
/\ —~inversion and V -exportation we obtain
(5) [§* Prog(S),1E+nyc S,E+n,¢ S
for agq<Xi. By a cut it follows from (4) and (5)
6) !%‘f 1Prog(S),1mc SP(S),1Ec S,y < 0, E+1€ S for ag,p< ).
Furthermore we have
(1) B <B4, 0<E 30, (L=E+ngA ng< ).
This can be seen in the following way. If [<E+n and <, then there is some 3,
such that { = £+, and n,< 1 are true sentences. Then we have %1{‘3 E+n,L<E, {=E+7,
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and | {<E+n,[<En,<n by (Ax1) and obtain (7) by an V -and an /\ -inference.
From (6) and the equality lemma we obtain
%ﬁ’ “Prog(8),1mc SP(S),1Ec S,1 {=E+n5, Me< 1, (e S

for all {eIN and therefore by \ -importation and an /\ -inference

(8) %{ 1Prog(8),mc SP(S),1Ec S, 1In, (T=E+nyAmp<n),LeS.
From (7) and (8) we obtain by a cut

(9) B® -Prog(8),1mc SP(8).1€c S, W< E+n. (<E. LeS
for some p<X. Using an /\ -inference (9) and (1) imply

(10} 7 Prog(S). ne SP(S),1€c S, W[ <&+n,[<EA IL<E, (eS8,
From (10) and the detachment lemma we obtain

(11) 322 +Prog(8),nc SP(S),7Ec S, 1< E+n,Le S for all g, {e PC(O).
From (11) by V ~importation, an /\ -inference, again \V -importation and an /\-
inference it follows

(12) J3 <Prog($),me SP(S), ne SP(S).
The claim follows from (12) by \ -importation and an /\-inference.Since we
have X ¢ Lim by hypothesis it is obvious that we may choose ay, <) and therefore
also a<i. Likewise we obtain p<A since p may be chosen as the rank of S
augmented by some finite ordinal.

19.9. Lemma
If A<, then for every Se &, there is an a<) such that |5 "Fund,(E),"Prog(S),Ec S.

Proof
By the tautology lemma and \/ -exportation we obtain
(1) B 1Tran(£),79(1Prog(S)v Ec S), 71Prog(S),Ec S,
for oy = 2-rk(1Prog(S)v Ec S)< X . Since Asc we have &, < &,. By V ~importation

and an V —-inference we therefore obtain
(2) B—V{(Tran(<) A (1Prog{S)v Ec S)): Se K,},1Prog(S),Ec S for some a<h

which already is the claim.

19.10. Corollary
For y<\<o we have 7Fund,(n), Fund. (n).

Proof

This follows from lemma 19.9 by V -importation, the conjunction lemma and
an /\-inference.
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19.11. Lemma
We have }x} 7Fund, (£),1Fund, (1}, Fund ,(£+n).

Proof
Assume 5S¢ K, . Then we also have SP(S)¢K,. By lemma 19.9. it follows

(1) §5* 1Fund, (8),1Prog(8),Ec S
and

(2) 82 1Fund, (n),7Prog(SP(S)),nc SP(S)
for o05<h. By the tautology lemma, /\-inversion and V -exportation we
obtain [2* 1Prog(SP(S)),1mc SP(S), ¢ SP(S) for some az<X. This together with
(2) implies

(3) 5% 1Fund, (n),1Prog(SP(S)), ne SP(S)
for ay<X where we may choose p, := rk(£c SAne SP(S})+1<A. By a cut we obtain
from (3) and 19.8.

(4) £ “Fund, (n),1Prog(S), ne SP(S)
where p<) has to be sufficiently large. By (1) and (4) it follows by an A-
inference

(5) * 1Fund, (£),7Fund, (n),"Prog(S),Ec SA ne SP(S).
By a cut we obtain from (5} and 19.7.

(6) 17 7Fund, (E),"Fund, (), 1Prog(S),E+nec S.
Since Tran(<) is a valid sentence such that rk(Tran{{))<ws<X we obtain from
(6) by V -importation and the conjunction lemma

(7) B® 1Fund, (£),7Fund, (), Tran(<{)A (1Prog(S)v E+nc S) for all SeK,.
The ordinals ag and p depend upon the choice of the 8. However, they always
are less than .

The claim follows from (7) by an /\-inference.

19.12. Lemma
We have % 1Fund, (1), €< n, Fund,; (E).

Proof

For S¢ &, by lemma 19.9. there is an ;<) such that
(1) I8t 1Fund, (n),7Prog(S),nc S.

Hence by /\-inversion
(2) B* 7Fund, (1),7Prog(S),10<n,LeS.

Since £E<nAl<E — [«<n is a valid sentence we have
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(3) 82 1E<n,l<E, <y
for ag<w. By (2) and (3) and the elimination lemma we obtain

(4) |5 1Fund, (1),1Prog(8), 1E<n,<E, e S
where o = a;#ay,< ) for all Se&,. By \V -importation, an /\ -inference,
another \ -importation and the conjunction lemma it follows

(5) B* +Fund, (n),1E<n, Tran({) A (1Prog(S)v Ec S) for all SeK,,.
Here o, depends upon the choice of S but it always may be chosen to be less
than A. Using an /\ -inference we obtain the claim.

19.13. Definition
For 1 = gpny+...+n, we define h(n) := n;

19.14. Lemma
There are a,p<\* such that I} 1Fund, (h(n)),Fund; (n).

Proof
Let n = gMit---+0n- Then for k =1,....,n the sentence n <h(n) is valid. By 19.12.
and the detachment lemma it follows
(1)  1Fund, (h(n)), Fund, (n;) for k = 1,....n.
From (1) and lemma 19.11. we obtain
(2) I2* 1Fund, (h(n)), Fund, (ny+n,) A Fund, (n).
for «; and p less than A*. By (2) and lemma 19.11. it follows
(3) 2* 1Fund, (h(n)), Fund, (n;+nz+13),
where a3 is o, augmented by some finite ordinal. By iteration of this procedure
we finally obtain the claim.

19.15. Lemma
We have & Fund, (0).

Proof

By (Ax1) we have I3 +Prog(S),1£<0,£¢S for all S¢K,. From this we obtain
B 1Prog(S),0c S by \V -Importation and an /\-inference. Using \/ ~importation
and the conjunction lemma we obtain £ Tran(<{)A (7Prog(S)v 0c S). The claim
follows now immediately by an /\ -inference.
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To simplify the formulatioh of the next lemmata we agree upon the following
abbreviations.

A, (6) is the formula VE(1E<ov Vn(qFund, (n)v Fund, (9&n)))

By (0,1) is the formula ¥n(an<tv Fund, (gon))

Cy (u,0,1) is the formula Vuo (16U, <Guv 1y < potv Fund, (y,)).

19.16. Lemma

For every ordinal y and limit ordinal \there are ordinals a<)* and p<)* such
that we have
i 1A5(6),1Bal0,1),1C; (1.6,1), 1Fund, (1), 1< pot, Fund, (u).

Proof
If pot<y, then we have
(A) 1A, (6),1Bx(6,1),1C; (1,0,1),TFund, (1), e < ¢ot, Fund, ().
according to (Ax1). We therefore assume p<got. If y =0, then we obtain by
lemma 19.15 and the structural rule
(B) 1A, (0),71Bx(0,1),1C (11,0,1),1Fund, (1), Fund, (u)..
If ¢4 +0, then we distinguish the following cases.
1. y = pyits for yy<o and yy<pot.
From the tautology lemma we obtain by /A -inversions and V -exportations
(1 B* 1A, (o), < 05,17Fund, (u,), Fund, (@u,u,)
for a, = 2rk(A, {6))<2A*. By (1), the equality- and the detachment lemma it
follows
(2) * 1A, (0),7Fund, (o), Fund, (w)
where we may choose p = rk{Fund, (£))+1<)*. From the tautology lemma we
obtain by /\-inversions and \/ -exportations
(3) 2 1C, (1,6.1),1G up<G g, Wy < pot, Fund, ()
for ay = 2-rk(Cy (1,0,1))< A*. Since Guy<Gu and yp<pot are valid sentences we
obtain by the detachment lemma from (3)
(4) B2 1C, (u.0,1), Fund, (uy).
By (2) and (4) it follows by cut
(C) B® 1A, (6),1Cy (,0,7), Fund,, (1)
where again we may choose o3 and p to be less than A*.
2. Assume p = ¢l such that y; =0 and py<t.
From the tautology lemma we obtain by /\ -inversions and V -exportations
(1) * 1Balo,1),7,< 1, Fund, (poyy)
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where o4 = 2:rk Ba{o,1)<2*. By the detachment- and the equality lemma we
obtain from (1)

(D) 2L 1Bx(0,1), Fund, (1)

for o := rk(Fund, (u))+1<2*,

3. u = puuy and u<t.

By lemma 19.12. we have
n % Fund, (1), < 1, Fund, (p).

By the detachment lemma we obtain from (1)
(E) 12 1Fund, (1), Fund, (u).

4. @ = ypiyt.. iy, for n>1,

Then we have Gu<Gy, uj<pot and h(p) = y,.

From the tautology lemma we obtain by /\-inversions and V -exportations
(1) B 1C, (¢,06,1),7G h{p)<Gy, 1hip) < pot1, Fund, (hiu))

for oy = 21k (C; {1,6,1)) < A*. Using the detachment lemma we obtain from (1)
(2) ¥ 1C, (u,6,1), Fund, (h(y)).

By (2) and lemma 19.14. we obtain
(F) {5 1Cy (g,0,0), Fund, (),

where o« and p may be chosen below X\*.

From (A) - (F), however, we obtain the claim.

19.17. Lemma
For every u there is an «,<\* and a p<)\* such that
¥ 1A, (0),1Bx(0,1),7Fund, (1), < pot, Fund,, ().

Proof
We prove the lemma by metainduction on Gy. If Gu =0, then we have p=0
and the claim is a structural consequence of lemma 19.15. Therefore we assume
Gy # 0. Then we have

(N IgEO 1A, (6),1B0 (6,1),7Fund, (1), 1G u,<Gy, Tu, < o1, Fund, (u,)
for some Uy Po< X*, since it either is Gu<Gyu, and we have (1) according to
(Ax1) or it is Gy,<Gu and (1) holds according to the induction hypothesis. From
(1) we obtain by \/ -importation and an /\-inference

(2) 5122 44, (6),1Bx(0,1), 1Fundy (1), Cy (11,6,7)
where o, := maxia, : Guo<Gu). From (2) and lemma 19.16. by a cut we get

ty
(3) %‘i 1 A, (6),1Ba(6,1),1Fund, (1) , tu < got, Fund, (@)
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for o, := max{a;, o, +4}+1 and o := max{py, p;, rk(Fund, (1)} +1 where o, and o
are the ordinals from lemma 19.16.

We define 8Py (6) := {€: 1Fund; (£} v Fund, (poE)}. Then we have SP; (6} € &y«

19.18. Lemma
There are ordinals o and o less than )\* such that
[ 1Fund, (1),71< 8Py (6), Yy (An< 1v Fund, (pon)).

Proof
From the tautology lemma we obtain by V -exportation
(1) B 1(7Fund, () v Fund, (gon)),1Fund; (1), Fund, (pon),
i.e.
(2) £? ne SP, (6),9Fund, (3), Fund, (pon)
for o, := 2:rk (AFund, (n) v Fund, (pon)) < 2*. By 19.12. furthermore we have
(3) L),‘—1Fundx(t),1n<t,Fundx(n).
From (2) and (3) we obtain by a cut
(4) % e SPy (o), 1Fund, (1), 1m<1, Fund, (pon)
for oy, and p less than \*. Furthermore we have
(5) & n<t.1Fund, (1), 1n<1, Fund, (pon)
according to {Ax1). By (4) and (5) and an /\-inference we obtain
(6) B#L n<tame 8P, (0), Fund, (1), m<1, Fund, (pon)
which implies by an \/ -inference, \/ ~importation and an /A -inference
(7} %‘23’-5- q1¢ SP, (6),7Fund; (1), Y (< 1v Fund, {gon)).

19.19. Lemma
We have B Vi (u<ov Fund, (1)), Fund, (o).

Proof
By 19.9. for every S¢ &, there is an ay<X such that
(1) §* 1Fund, (¢),7Prog(S),uc S.
Since we have I u<o,1u<o and & 1Prog(S),1uc S,ue S for some ay<X and we
obtain from (1) by a cut and an /\~inference
(2) ? u<on 1Fund, (1), Prog(S),w<o,ucS
for az and p below A. By an V ~inference it follows

99



§19. Autonomous ordinals of Z_,

(3) B* Wulu<ov Fund, (1)), 1Prog(S),u<o,ueS.
By an /\ -inference, \/ ~importations and the conjunction lemma it finally follows
(4) % ¥u(qu<ov Fund, (1), Tran(<) A (1Prog(S)vcc S).
Here ag and p depend on the choice of § but always may be chosen below A.
Using an /\ -inference therefore we obtain
(5) B Wy (u<ov Fundy (g)), A{Tran(<) A (1Prog(S)voc S): Se &, }
which is the claim.

19.20. Lemma
There are ordinals @< \** and p<\* such that 5 1A, (0),7Fund;»(1), Fund, (¢o1).

Proof
By 19.17. there are «, and p below X* such that
B¥ 1A, (0),1Bx(0,1),7Fund, (1), e < ¢ot, Fund, (u)
for all u. By \V -importation and an /\ —inference this implies
(1) B 1A, (6),1Ba (5,1), Fund, (1), Vu( < gotv Fund, (u)).
By (1) and lemma 19.19. we obtain
(2) %.—*:'1 1A, (0),1Bx (5,1),7Fund, (1), Fund, (paot).
By lemma 19.18. we have
(3) ¥ 1Fund, (1),11¢ SPy (6}, Balo.1),
for a,<A*. From (2} and (3) we obtain by cut
(4) %f—tz—wA;\(o),ch SP, (o), 1Fund, (1), Fund, (¢o1)
where we tacitly assume that p<)\* is so large that it majorizes the rank of
By (0,1) (and of all cut formulas coming). By (4) we obtain by \V —importation
(5) %f:—@ 1A, (6),11< §Py (o), 1€ SP; {0).
Again by \V ~importation and an /\-inference we obtain from (5)
(6) P~*7 1A, (o), Prog(SP;, (o).
By the tautology lemma we have
(7) B 1A, (6),91¢ SP, (5),1c SP, (0)
for B = 2:rk (1< SPy(6))<A*. From (6) and (7) we obtain by an /\ -inference
if—“’ Ay (6}, Prog(SP, (6)) A 11< SP, (0), 1< 8P, {6), from which we obtain
(8) % 1A, (0),1(Tran(<) A 1Prog(SPy (6)) v 1c SPy (6)),1¢c SPy (o)
by the structural rule and V -importation. Because of SP,(c)e¢ &, we obtain
from (8) by an V -inference
(9) B 1A, (0),7Fund, «(1),7c SP, (o).
From the tautology lemma we obtain by /\ -inversion and V -exportation
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(10) * 1Prog(SP, (0)),71c SPy (), 1€ SP; (o)
for By := 2:rkProg(SPy(6)). From (6) and (10) it follows by cut
(1) % 1A, (0), 11e SPy (o), 1¢ 5P (o)
and from (9) and (11)
(12) B2 1A, (0),71Fund; (1), 1€ SP, (o).
This implies by \/ -exportation
(13) ¢ 1A, (o), 1Fund; #(1),1Fund, (1), Fund, (¢o1).
From (13) and 19.10. it follows
(14) ¥ 1A, (6),7Fund, =(1), Fund, (po1)

for o< A** and p<)*.

19.21. Lemma
Suppose that ) is a limit ordinal such that the set {u,:0<n} is unbounded in

X and we have 33 A,Fund (1) for all o<n for as<f and p,<p. Then it follows

£ A,Fund, (1).

Proof

Since {y,:6<7n} is unbounded in A we have for every Se¢&, a c<n such that
SeRy,. By /A -inversion we obtain %o A, Tran(<)A (1Prog(S)vtcS) from the
hypothesis. Since it is x,<pB for all c<n we obtain the claim by an /\ —inference.

19.22. Lemma
If neLim, then we have IS 7Fund,.,(1),Fund,., (¢01).

Proof
A,(0) is the formula VE(1E<Ov ¥n(qFund,(n)v Fund,(pEn)}. Therefore we
obtain from an axiom (Ax1) by an V —inference and an /\~inference

(1) A, (0).
For limit ordinals A we obtain from (1) and lemma 19.20. by a cut
(2) B 9Fund,«(1), Fund, (901),
for a;<A** and p<\*. By corollary 19.10. it follows
(3) By 1Fund,,., (1), Fund, +(1)
for all limit ordinals A*<w-n. By (2) and (3) for )\ = wf we obtain by a cut
(4) %E{ﬁ 1Fund,,., (1),Fund, g{001)
for all £<n such that ag<w-(£+2)<wn. Because of nelim the set {wE:E<n} is
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unbounded in w1 and by lemma 19.21. it follows
(5) fo"Fund,,.,, (1), Fund,,., (¢01).

19.23. Lemma (Euclidian division for ordinals)
For ordinals o and 1 $ 0 there are uniquely determined ordinals p<t and 3 such
that o = T+p.

Proof

Since ‘o< t-o<16' we have {E: o<1-E} + B. Define 7, := min{E: o<1-E}). Then it is
N, ¥ 0 and we have by definition that n, cannot be a limit ordinal. Hence there
is an 1 such that n, = v'. It follows tn<o<1tn' = 1n+1. Because of 1n<o there
is a p such that ¢ = tn+p. From vn+p = o<+t it follows p<1. The uniqueness
of n and ¢ is obvious.

19.24. Lemma
For o<wv*l.y there is an ordinal £ such that o<wV-E'<w™*D.q and for p<v
there is an ordinal { such that wV-E' = o+*D.Q

Proof

By Euclidian division we obtain ¢ = wv-E+p for some p<wv. Hence o<V E+wY =
oV-E'. By ovEso<o*D.q it follows E<wn and therefore also E'<wn. Hence
eV E'< vy and we obtain o< wV-E'< g Now if u<v, then there is a
$ such that v=p'+5 and it follows o<oV-E' = @U*1+3).E" = u+D.(03E'). The
lemma is proved by defining C := w3E&'.

19.25. Lemma
For all ordinals v and n + 0 we have

{(1+v+1).
%my,‘% 7Fund w (1+v+1) _n(t),Fund w"*V+1)‘n(<PVT) .

Proof by induction on v

For v = 0 this follows from lemma 19.22. Therefore let v ¥ 0. By lemma 19.24.
we obtain for o<wli+v+1).9. a £ £ 0 such that c<w!*V-E< 1+v+1) .- and for p<v
a [ such that ol*V.E = pl*#+1.l  Using the induction hypothesis we have

(1) EFn Fund ey g(u). Fund p, lou).
for all y<v. By VV -importation and an /\—inference this implies

2) pg-;{-:—gﬂ ¥u(1Fund ., ((L)V Fund .., (pu0)).
Therefore we have
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1 .
(3) Breu™ qucvv Vu(TFund g (v Fund gy g (@u0)

for all y because we either have y<v and (3) follows from (2) by an V -inference
or we have 1pu<v and (3) follows by an V -inference from an axiom according
to (Ax1). The formula Amlw.g(v). however, is of the form

Yu(p<vv Yu( 1Fundw1+\,_5(u)v Fundmh,\,,,E (puu)))
Therefore we obtain from (3) by an /\-inference

(4) Erag® Agtrvgv).
By lemma 19.20. there is an a<wl*V-E+w2 and a p<o!*V-E+w such that

(5 g 1A v V), TFund ey g, (0, Fund gey glov).
From (4) and (5) we obtain by a cut

{6) %&m "F““dml*\’-&m(")’Fu“dm”“-a“"‘”)
for some ay< w*V-E+w2. Since wl*V-E+wsw+v+.q jt follows from (6) and
lemma 19.10. by cut

{(7) %%ngr_,,—m 1Fundmu+v+1).n(t),Fundw;w_E{cpw).
Because of c<w!*V-E we obtain from (7) and 19.10.

(8) %&}%—ET‘D 1Fundm(1+\,+1).n(t),Funda(ep\n).
Now, we have a<o!*V-E+w2<oi+v*+iy as it is wl*v-E<e!*v*ly and 0-2<w?
[cf. lemma 24.7.] and therefore also oy+2< w{1*v*1.q. By lemma 19.21. we
finally obtain

(1+vu+1).
9) }&mﬁ 1Fundw(1+w,,)_n(1),Fundw(l_w.,.l),n(@vt).

19.26. Definition
We define {, = 910 and T, . = ¢C,,0.

19.27. Lemma
We have sup{l,: n<w} =T,

Proof

This is an immediate consequence of 17.22.

In a next step we are going to convince ourselves that all ordinals {,, are auto-
nomously accessible in Z,. In order to do that we prove the following lemmata.

19.28. Lemma
We have 125351 Fund ;3(3,).

w3+1
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§19. Autonomous ordinals of Z_,

Proof

By lemma 19.25. we have
(1) 2AFund 2(0), Fund s (¢10).

By lemma 19.15. and a cut this implies
(2) {237} Fund,slg,).

19.29. Lemma
For all n<o it is {250 Fundg, (Cavy):

Proof
We have w!*%n = [, for all n<w. By lemma 19.25. it holds
C -
(1) BR- Fundg, (0), Fund;_ (#0,0)-
From (1) and lemma 19.15. we obtain the claim by a cut.

19.30. Lemma

We have 227 7Fund,,2(C,,), Fund 2 (L0 +1).

Proof
By lemma 19.14. it is
(1) £ ~Fund,»(,,), Fund, . (T, +1)
for a, p<w?+w. By lemma 19.22. we have
(2) 12 1Fund (Cy+1), Fund o (@0(C,+1)).
It is p0(,+1) = 0&n*D) = [_-». Hence from (1) and (2) by cut
(3) B 1Fund,,»2(T,), Fund,,2 (@)
for «; and p less than w?2+w. Because of h{{,-0+1) = (& we obtain by 19.14.
(4) B# ~Fund,,z((,»), Fund 2 ({0 +1)

for ay and p below w2+w. From (3) and (4) and a cut we obtain the claim.

19.31. Lemma
For S¢ &, we have }g—'—(im 1Prog(<,S), VE(E<o — Ee S).

Proof

The proof is by induction on «. From the induction hypothesis we have
(1) BBl 3prog(<,S), VE(E<B — £ S) for all B<a.

By the tautology lemma it holds
(2) 22 p¢s, pes.
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§19. Autonomous ordinals of Z_,

From (1) and (2) we obtain by an /\-inference
(3) BLeBIY prog(<,S), VE(E<B — EcS)ABES, BeS
for all B<a. This implies
(4) P12 qprog(<,S), BeS
for all B<a by an V -inference. From (4) we obtain
(5) I%‘IProg(<,S), PB<o, BeS
for all 8 where § = 5-(c+B)+2 for P<a and & = 0 for a<B. By V —importation and
an /\-inference it finally follows
(6) P49 1prog(<,S), VE(E<o — Ee S).

19.32. Corollary
(Fund(ot, X < oc*.

Proof
From lemma 19.31. it follows
(1) E=Prog(< X)), VE(E<a — Ee X).
Hence
(2) 2% Fund(e,X)
for some ordinal m<w. Since 5-a+m<o* this implies the claim.

19.33. Lemma
a < |[Fund(w®,X)|.

Proof
We have 2%< o < 2[Fund(@.X)| by the boundedness theorem. Hence o< [Fund(w®,X)|.

19.34. Lemma
Lo © Aut{w+1).

Proof

By theorem 15.7 we have Z |- Fund(«,X) for all a<g,. Hence i;ﬂ’ Fund(«,X) for
all a<g, by the embedding lemma 11.2. Since we Aut(w+1) and Aut(w+1) is closed
under successors we obtain by 19.32. that o*c Aut{w+1).

19.35. Lemma
Aut(w+1) is closed under E. wE.
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§19. Autonomous ordinals of z,

Proof
We show

ae Aut{o+l) = w*e Aut{w+1).
For a<eg, this follows immediately from 19.34. Therefore assume gy<a. By 19.3L
we have E—(—‘*’—zjﬂ 1Prog(<,8), VE(E<x — £ S) for all Se& .. Since go<a it is
5{wf+a) =a+n for some n<w. Therefore we obtain FéFundmz(c:) for some
B<o*. Hence Be Aut(w+1). By 19.22. we have f— 1Fund_ »(a), Fund {w®) as well
as i—- FFund(s *), Fund(w*™). By two cuts it follows P&l Fund2{w=*} which
by /\ —inversion yields |E— Fund (w®*,X). Since B+2<a and wi<goca we have
B+2 ¢ Aut(w+1) as well as uﬁe Aut{w+1). Hence |Fund(w®*,X)|¢ Aut(w+1) which by
19.33. also implies w%¢ Aut(w+1).

19.36. Lemma
Cne Aut{ow+l) implies U, -o+le Aut(w+).

Proof

By 19.31. it holds }%" 1Progl<.S), YE(E<(, — E¢S) for all Se& ,. Therefore
there is an a<{, such that g Fundmz(in} This together with 19.30. implies
Bt Fund (G, 0+1). By 19.22. we have [22 1Fund,,»((y-0+1), Fund,z(o(Gn o).
By cut and /\-inversion it follows }ﬂ Fund(w(‘:n ‘w+1) X} Since Aut{w+l) is
closed under successors [, ¢ Aut(w+1} implies oz+2<Cn < Aut{w+1) and by 19.33.

we obtain [ -w+le Aut(w+1).

19.37.Lemma
Co€ Autlw+1)

Proof

By lemma 19.28. we have
(1) 1222 Fund,,a (2).

By /\-inversion this implies
2) 22 Fund(f,,X).

w3+1

Since w% =, we obtain { e Aut{w+1) by 19.33. and 19.34.

19.38. Lemma
Cne Aut(w+l) implies (€ Aut{o+1).
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§19. Autonomous ordinals of Z_,

Proof

Che Aut{w+1) implies [, -w+le Aut{w+1) by lemma 19.36. By lemma 19.29 we have
l%zz—:: Fundg_.,(Cqeq). By /A-inversion this implies }g;:’%: Fund ({,44,X). Since
wbn*1l = s we obtain [,,q€Aut(w+1) by lemma 19.33.

19.39. Corollary

For all n<w we have [, ¢ Aut{w+1).

Proof
This follows immediately from 19.37. and 19.38. by induction on n.

19.40. Theorem (K.Schiitte, S. Feferman)
It is Aut{e+l) = T,

Theorem 19.33. is the reason why I is known as the boundary ordinal of predi-
cativity. We are going to explain this in some more detail. We call a conception
P impredicative or circular if the definition of P refers to a totality to which
P itself belongs to. An example for an impredicative concept is the Russell set
M= {x:x¢x} which we already mentioned in the introduction. There we defined
M referring to a set universe V. More exactly the definition of M should be
M := {xeV:x¢x]). Since we wanted M to be a set itself we have MeV and
immediately obtain the contradiction from the fact that Me M < MeVAM¢M
and Me¢V.

That impredicative definitions need not necessarily lead to immediate contradic-
tions becomes clear by another example for an impredicative concept. Here we
look at a monotone operator I': PN — PIN. Monotonicity for I' here means that
S,< S also implies I'(S) < I'(S,). We obtain the least fixed point I. of T by the
definition I :=(\{S: T(S)cS}. However, it is easy to see that we also have
Fp)clp, ie. we defined I by referring to the set M={ScN:T'(S)c S} of I'-
closed sets to which I itself belongs. Operators of this kind are known as
{monotone) inductive definitions. Inductive definitions are ubiquitous in mathe-
matics in general and in mathematical logic especially and will therefore be
the research object of the following chapter. Alarmed by the Russellian antinomy
some mathematicians heavily doubted in impredicative definitions (and therefore
also in inductive definitions). Thenceforth there have been and still are sug-
gestions to construct mathematics by predicative means solely.

107



§19. Autonomous ordinals of Z

The most general approach to obtain a predicatively guaranteed segment of the
ordinals is given by an autonomous creation process as we described it in the
definition of Aut(w+1). There we started by a semiformal system Z__, and
therefore have all {codes for) ordinals which are provable in Z.4. This guaran-
tees the segment T'(w+1) of ordinals. But then we may argue in the system
Z 1(,+1) @nd therefore will obtain the segment I'*(w+1). Now we argue in Zrs oy’
obtain I®(w+1) and so on. This kind of justification becomes even more striking
if one regards infinitary systems for set theory as we will do it in a continuation
of this lecture. There S, denotes the subsystem which only allows formulas
of ranks <o and derivations of length <u«. An ordinal B is acceptable to §, if
{a code for) B and the proof of the fact that it is {a code for) an ordinal both
belong to S,. One may then prove that the autonomous closure of S, again
exactly is the ordinal Ty).

By theorem 18.2. we see that we in fact have to start with an infinite ordinal
in order to obtain more than just finite ordinals. From theorem 18.6. it then
follows that this autonomous creation process starting with an ordinal below
[y never will access the ordinal Iy. On the other hand lemma 19.27. together
with theorem 19.31. show that every ordinal below Iy is accessible from the
simplest infinite ordinal w. In this sense I'y is the least ordinal which is not
predicatively definable.

Any formal system T whose proof theoretic ordinal is less or equal than [y
may be embedded into the system Zp, in that sense that the Ilj-sentences
provable in T are also provable in Z, . It therefore allows a predicative inter-
pretation even if it looks impredicative at first glance. Therefore one usually
calls a formal system predicative whenever its proof theoretic ordinal is less or
equal than T

A simple example for a predicative system stronger than Z, is the system ACA
in the exercises. There are a ot of formal systems between pure number theory
an impredicative systems. The reader interested in predicativity should consult
Feferman's various papers on predicativity {(cf. the bibliography). The concern
of this lecture, however, is to demonstrate on the example of one of the simplest
impredicative systems by which means the boundary of predicativity may be
overcome. This will be done in the following chapter.
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CHAPTER Il1

Ordinal analysis of the formal theory for noniterated inductive definitions

§20. A summary of the theory of monotone inductive defintions over the
natural numbers

We already frequently used inductive definitions during this lecture. We used
it to define terms, formulas, derivations in formal and infinitary systems and
also other concepts. Inductive definitions, however, are not only used in
mathematical logic but are ubiquitous in mathematics. Whenever we define a
set as the least set which comprehends a given set and is closed under
certain operations, we use an inductive definition . One of the simplest examples
is the subspace {A> of a vector space V generated by a set AcV. {A) is
defined as the smallest set which comprehends A and itself is a vector space,
i.e. is closed under addition and scalar multiplication. This does not look like
an inductive definition as we are used to. But we also may put it into the
more familiar form of a definition by clauses:
{Li) acA = aclA>

(Lii) a,...8 e<AOAa ..o e K= a,a,+.. . +aa,e<A>

141
where K denotes the ground field.
A more complex example for an inductive definition is the c-algebra M induced
by a given set M over a domain Q. The inductive definition of M, by clauses is:

(2.1) McM_and {8,Q}c M,.

(2.ii) Viewla,e M) => i‘Ltjmale M, und lomaie M,

(2.iii) aeM_ => a¢M_, where a denotes the complement of a in (1.
But also here M, may be defined as the smallest set which comprehends M and
is closed under complements, countable unions and countable intersections. In
general any set inductively defined by clauses may be regarded as the least
fixed point of a certain operator T. In the case of the inductive definition of
<A> the operator I would be given by

T(S) = Au{Zaa;:o,eKnaeS}

In the case of the c-algebra the definition of T would look like
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§20. A summary of the theory of monotone inductive defintions over the
natural numbers

r(s) = {#,0}vMula:3If({f is a function and domf = )

AVn<o(f(n)eSA (a=U{f(n)in<wliva="{f(n):new})))vibeS(a=D)}
In both cases the operators are monotone, i.e. whenever we have Sc T it follows
T(S)c I'(T). The least fixed point of a monotone operator I' is the intersection
of all sets which are I'-closed. In §19 we already mentioned that fixed points
of monotone operators are in general impredicatively defined.
The present section is supposed to provide a condensed (and therefore very
rough) introduction to the theory of monotone inductive definitions on the
natural numbers. The reader who is interested in more details is adviced to
consult [Moschovakis 1974] and [Barwise 1975].
As a generalization of the above examples we obtain the following definition.

20.1. Definition
An inductive definition over the natural numbers is a monotone operator
I':PN — PN.

A set AcN is I'-closed if T(A)c A. We define
Ir:=N{A:T(A)c A}
and call I the fixed point of the inductive definition I

It is easy to see that I is the least fixed point of I'. For a I'closed set A
we always have I.c A and by the monotonicity of I' also I'(I)c I'(A)c A. This
shows T'(I)c ﬂ{A:F(A)CA}=Ir which means that I itself is I'-closed. By
monotonicity this implies [(I'(Ip))<I'(IL) which proves that T'(I.) is [-closed
too. Hence I.cT(I.) and we have I'(I.) = 1. So Iy is a fixed point of I' which
by definition must be minimal.

So we have proven the following theorem:

20.2. Theorem
We have Ty} = 1. and I'(S)c S implies IpcS.

We already did emphazise that the fixed point of a monotone operator is im-
predicatively defined. In the case of an inductive definition, however, this im-
predicativity is not as fatal as it was in the case of the Russellian antinomy.
By describing the least fixed point of an inductive definition T as the intersection
of all T-closed sets we did not yet pay attention to the fact that an inductive
definition is intended to build up its fixed point by successive application of
the induction clauses. Interpreting an inductive definition as a monotone operator
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§20. A summary of the theory of monotone Inductive defintions over the
natural numbers

this means that we construct its fixed point in stages. We start with I'(#),
then build T(T(8)), T3(@), I*(#),... etc. Hitherto we mostly regarded operators
whose fixed point already is completed after w-fold application of I' which means
that we obtained every element of the fixed point by finitely many applications
of T. Examples for such inductive definitions are the definition of terms and
& —-formulas. But there are also inductive definitions whose fixed points are
more complicated. Examples for such inductive definitions are the o—algebra M,
the definition of the &£, -formulas, the definition of the relation A etc. In
general we will have to apply the operator T a transfinite number of times in
order to construct the fixed point of T from below. That means that we will
need ordinals in the construction of the fixed point.
We define

I =T(g°) with the abbreviation I;o = UL @ n<ol.
From this definition we obtain

ID =T@), I.=T(e), I =@, I =TI{I@):n<o)) etc.
We call II? the o-th stage in the inductive definition I'. For o<t we have
by definition 1 ;3% < 17" which implies 172 < 11 by the monotonicity of I'. We defined
If_ for all E¢On. But there is a 6<() such that IZ = IZ° since otherwise we
obtain for every 6<() an n<w such that nell‘i\llic which gives us a 1-1 mapping
from () onto w in contradiction to the regularity of (). Therefore there is a least
ordinal o which has this property. It is called the closure ordinal of T. By
induction on £ we obtain I‘I{ cIy. By the induction hypothesis we have l[fE < Ip
which implies If_ = I‘(Ilfg)c I(Ip) =1 by the monotonicity of T. Hence N
and we also have ]rclgr because l;fr is T-closed by definition. So we have
I = II? I which shows that I can be obtained in stages from below.
If we assume that the operator T is definable by an £-formula A, ie. I'(S) =
{neN:NEAy [S.n]} for ScN, then we obtain 17 = {nelN:lN}zAx.x[l;c,’n]}. This
shows that the definition of of I]. is predicative relative to IR°. The definition
of 17 only refers to the previously constructed sets If, for E<o. Therefore the
definition of the fixed point Iy is at least locally predicative. Of course it
will only also be globally predicative if the closure ordinal of T' is an ordinal
below I'y (which in general is not the case). Later we will see that it is exac-
tly the local predicativity of the definition of I which makes the proof
theoretical analysis of the theory for noniterated inductive definitions feasible.
But before we may tackle the proof theoretical analysis of this theory we
have to work out a suitable formal system for it.
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natural numbers

20.3. Definition

An operator I':PIN — PN is called Q”rdef}'nable, if there is an & -formula A
such that FV(A) = {X,x} and F(S):{neN:N}:Ax‘x[S,n]}. In this case we
synonymously call T arithmetical or arithmetically definable.

Of course we may not expect that every arithmetical operator already is monotone.
To ensure that we will only obtain monotone operators we are going to restrict
ourselves to positive arithmetical operators. An operator is a positive arithmetical
operator if it is definable by an X-positive & ~formula and an &£;-formula
A is an X-positive formula if its &, translation A* is an X-positive formula
in the sense of definition 13.7.

20.4. Lemma

If T is a positive arithmetical operator, then T is monotone.

Proof

Let A be the defining formula of I' and assume ScT. Then we obtain I'(S) =
{neN:NEA[S,n])={neN:NEA*S,nl}c{neN:NEA*[T,nl}={neN:NEALT,n1}
=T(T) by lemma 9.5. and the monotonicity lemma 13.8.

20.5. Remark

By the positive arithmetical inductive definitions we, in fact, grasped the essential
part of all monotone arithmetical inductive definitions. They comprehend all those
monotone inductive definitions whose monotonicity is logically provable, ie. is
provable without using mathematical axioms. This is a consequence of the inter-
polation theorem by Lyndon and Craig.

Let A be the defining formula of I and assume that X< YA A — A_(Y) is provable
in first order predicate logic. Then by the Lyndon - Craig interpolation theorem
we obtain an interpolation formula B such that X< YAA — B and B — A_(Y).
Since Y occurs positively in X< YA A we know that Y has to occur positively
in B too and for the special case Y = X we obtain A — B. Hence A is logically
equivalent to an X-positive formula which shows that T is a positive operator.
It in fact is not easy to find canonical examples for monotone operators which
are not positive. We just marginally mention that the addition of monotone
operators instead of just positive operators would not increase the proof theo-
retical strength of the formal system. The formulation and therefore also the
analysis of the system, however, would become somewhat more complicated.
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§20. A summary of the theory of monotone inductive defintions over the
natural numbers

We are going to fix the following definitions.

20.6. Definitions

Let T be a positive arithmetical operator. We define:
(i) Iy = MH{S8cN : T(S)c §}
() I o= TUF%) I5°% = U{If: E<o)
(i) ITl: = minfo<Q:1% = 157}

() Inl min{o:nell }, if this exists
iv) Inlp =

r
O , otherwise

20.7. Lemma
IT| = sup{lnl+1:nel).

Proof

Define ¢ := sup{|n|r+1:nelr}. For E<o then there is an nely. such that E<Inip+1.
By definition we have 1;'“'1";[1'}1‘[‘_ Because of Ex|ni. we obtain IFEGIE.
Hence E<IT| which entails o<|I'|. On the other hand if n<|T|, then we have
I£"¢I] and there is an neIP\IT” which means |n|.=1n. Hence n<c and we
also have [Tl<o.

20.8. Remark

Without proving it we shall mention that for arithmetically definable monotone
inductive defintions I' it always holds T |sw1CK. On the other hand there are
positive arithmetical inductive definitions whose closure ordinal exactly is wFK.
The proof of these statements needs methods of generalized recursion theory

[e.g. cf. Moschovakis 1974, Barwise 1975, Hinman 1978].

20.9. Exercises
1. Let A be an arbitrary set, Mc P{A) and I': P(A) — P(A) the monotone operator
which inductively defines the c-algebra induced by M. Show [[l<® .

2. Closure properties of inductively defined sets.
We call a set Mc PN inductively defined if there is a positive arithmetical operator
and a tuple ceIN™ such that xe M < (x,c) el
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§21. The formal system ID, for noniterated inductive definitions

{i) Simultaneous inductive definitions
Suppose that F and G are X,Y-positive formulas. We define Af and AY by:
A% :={neN:NEF, o [A5%, a5 0]l 45 = U 48

T g
and
A% :={neN:NEGy o [A3*, A5 0]} A5 := gL 8%
Prove that AF 1= M_Lg)nA; as well as AG = aLEJOnA"(‘; are inductively defined.

{ii) Transitivity theorem

Let F be an X,Y-positive an G an X-positive formula. The operator I' : PN — PN
is defined by I'(S) :={neNINEF,  [I;.S.,n]}.

Show that I is inductively defined.

(iii) Stage comparison theorem
Let F and G be X-positive formulas. Define
nsg gmis> nelg A lnlp<imlg
n<;,c m == |nlg < Imlg
Prove that there are positive arithmetical operators whose least fixed points are
s*éc and <f - repectively.

3. Prove the following claims.
(i) If T is a positive arithmetical operator then for all aeOn I'* is inducti-
vely defined.
(it) If T is a positive arithmetical operator and a<©{X, then N - I'* is an induc-
tively defined set. (Use oFK = supl|l'| : T is a positive arithmetical operator}.)
(iii) The sets definable by a Tl{-formula are exactly the inductively definable
sets.

§21. The formal system ID, for noniterated inductive definitions

In a next step we introduce a formal theory which formalizes the existence of
inductively definable sets. Our intention is to enlarge the formal system Z; such
that we may not only talk about arithmetically definable classes (as we did in Z;)
but also about classes which are fixed points of positive arithmetical operators.
Since there is no canonical way to talk about ordinals in Z; we are going to
introduce fixed points of arithmetically definable operators I' according to 20.6.
as the intersection of all sets which are I'-closed.
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§21. The formal system ID1 for noniterated inductive definitions

21.1. Basic symbols of the language &, (cf. 1.5.)
(i) The logical symbols of & are those of the language &.
(ii) All nonlogical symbols of the language & are also nonlogical symbols
of &£..
I

(iit) If A is an X-positive & -formula such that FV(A) = {x,X}, then 1, is a
set constant.

21.2. Definition of the terms and formulas of £,

We define the terms &£ completely analogously to the £ —terms (cf. 1.6.).

The inductive definition of the #j~formulas is the same as the inductive definiton

of the ¥ -formulas but the clause (ii) in the definition 1.7.is extended by
(ii.1) If 1, is a set constant and t is a term, then tel, is a formula such

that BV(tel,) =FV (tel,) =@ and FV (tel,) =FV (t). tel, is an atomic

formula.

21.3. Semantics for &,
We obtain the semantics for the language & from the semantics for &, by

interpreting the set constant 1, by the fixed point 1, of the operator T,
given by T',(S) = {neN:NEA, _[S,nl}.

21.4. The formal system ID,
We are going to formulate the formal system ID; in the language &, . ID; extends
the system Z, which means that all axioms and inference rules of Z; (cf. §3)
are also axioms and rules of ID,. One should notice, however, that the extension
of the language also means a strengthening of all schemes. So for instance
arbitrary #;-formulas are allowed in the scheme (IND).
The group of mathematical axioms of Z, (cf. 3.10.) is extended by:

(iv) the fixed point axioms
consisting of the schemes

(ID)) Yx (A, x ) — xely)

(ID%) Vx(A(S,x) = xeS) = Vx(xel, — xe8S),
where S denotes an arbitrary class term of the language &,. We formalize by
the scheme ID' that | A is closed under the operator I',. By ID : it is formalized
that [ 5 is contained in every I' p-closed class.
The definition of the relation ID F is completely analogously to 3.11.
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21.5. Soundness theorem for ID,
If IDii—F, then NEF.

The proof of the soundness theorem for ID; is exactly the same as the proof
of the soundness theorem for Z;. We use induction on the definition of ID,F.
The only additional work is to check the axioms ID} and ID;. The validity of
these axioms, however, is obvious by 20.2.

Now once again we are in the situation to have a formal system which produces
theorems of N. Similar as in the case of pure number theory we want to obtain
an estimate for the norm of the provable Ilj-sentences of ID,. Therefore in a
next step we will have to examine how inductive definitions may be represented
in the language %,.

21.6. Bxercige
Let A be an X-positive & ~formula such that FV(A)c{X,x}.
We define Cl,(Y) := Vx(A, (Y) — xeY). Show the following statements:

(i) nel, < NECI,(X) = neX

(i) FVx(xeX — xeY) — Vx(A — A, (Y))

Giii) ID tel, — Cl(X) > teX

(iv) ID,i-tel, — Ax_x(lA,t)

(v) ID tel, < ID, F-Cl,(X) — teX

(vi) If < is an & —definable order relation and A(X,x) is the X-positive formula
Vy(y<x — yeX), then we have ID }Fund (<,X) <> ID Vx(xeFeld({) — xel,).

21.7. Note

The first one (as far as we know) who introduced a formal system for generalized
inductive definitions was G.Kreisel in [Kreisel 1963a]. Comprehensive studies on
formal systems for (also iterated) inductive definitions can be found in {Feferman
1970al and in the articles by Feferman and Feferman and Sieg in [BFPS].

§ 22. Inductive definitions in &,

Infinitary languages owe their power to the possibility of reflecting the proper-
ties of the ordinals of the real world by transfinitely long formulas. Here we
are going to use this fact to express the stages and the fixed point of an
inductive definition in the infinitary language £, . The language #, is too
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§ 22. Inductive definitions in £,

complex for an immediate proof theoretical analysis. For the interpretation of
ID,, however, we will only need a fragment .?L, of £e.

22.1. Definition

An & ,-formula is called arithmetical if it is the *-translation of an #,-formula.
A Ili-sentence of &, is the *-translation of a Ili-sentence of &,. In the
sequel we are going to identify %,-formulas and their *_translations. So we
regard &, as a sublanguage of &,,. Albeit there are no number variables in
&L we will speak of arithmetical £, -formulas A such that FV (A) = {x,...x,}.
In this context we mean the &,-formula A. Of course A will not become a

wellformed & -formula unless all number variables are replaced by closed terms.

22.2. Recursive definition the formula (tel %)
Suppose that a<( and let A be an X-positive arithmetical formula such that
FV(A) = {X,x}. Then we define:

(i) (telS°) is the formula (9 =1

<0
A

(i) (tel %) is the formula \/{Ax'x(lzg,t):&a}.
By telj‘\ we denote the formula Ay x(l;"‘,t). This notation coincides with the

{Since telj\o is the false formula ] will represent the empty set.)

intended interpretation (cf.20.6.ii)

Instead of 1(tel; ) we usually write (t¢]13*). However, we want to stress that
(t¢13 ™) is not an atomic formula but the formula /\hAx’x(_I_;E,t):&a}. We
also use the notation t¢1g instead of 'le,x(l;:“,t).

22.3. Definition of the formulas of £L

The formulas of £} are all of the shape Fxl,_‘_’xn(S,,.H,Sn) where F is a
Ili-sentence and for k = 1,...,n Sy is a set term {x: xc1{*} for some X-positive
arithmetical formula A and some ordinal o.

The conventions how to replace a set variable X by a class term S had been
defined in 1.8. In the sequel we will write 15* instead of {x: xeI5®} and 1Zx*
instead of {x: x¢Iz*}.

22.4. Deflnition
For an & -formula F we define the X-rank rk(F) inductively by:

(i} rky(F) = 0 if F is atomic

(1) rkyol/A{F : tel}) = rky (V {F, : tel}) = sup{rk (F) +1: 1e IA X e FV(F)}.
We obviously have rkX(F)srk(F). For a I}-formula F it even holds that rk(F) =
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§ 22. Inductive definitions in &,

rky(F)+n for some finite ordinal n.

22.5. Lemma

For a>w we have rk(telS®) = (rk yA+1)-«

Proof

Before showing the lemma we notice that in general it is rk(Fy(S))<rk(F)+rk(S).
With the additional hypothesis X ¢ FV(F) and rk{S) > rk(F), however, we even obtain
rk(Fy (S)) = rk(S)+rk(F) by induction on rk(F). For atomic F this is obvious.
For F = A{F: tel} or F = VV{F,: ¢} we have rk(F,(S)) = sup{rk(F , (§))+1: tel} =
sup{rk{FLx(S))ﬂ: teIAn XeFV(F )}, since for X¢FV(F) and X¢FV(F) we have
rk(F, y(S)) = rk(F ) <rk(F)<rk(S)<rk(F_,(S)). By the induction hypothesis it
follows rk(Fy(S)) = sup{rk(S)+rk, (F ) : te In X ¢ FV(F )} = rk(S)+sup{rk(F ) : teIn
XeFV(F)} = rk(S)+rk(F).

We show the lemma by induction on «.

For a =» we have rk(telZ™) = sup{rk(te_l_R)H :n<w} = w since all formulas
(te_l_;\') have a finite rank which at least is n. Let us assume that o> . Then we
have rk(te L;“):eu» rk(A) and may therefore use the introductory remark. Hence
rk(tel$*) = sup{rk(tel3)+1:E<a} = sup{rk(telSE)+rky (A)+1:E<a} Lh.
sup{(rky(A)+1)-E+rky (A)+1:E<a} = sup{{rky (A)+1)-(E+1) :E<a} =
supl{rk(A)+1)-E:E<a} = (rky (A)+1)-o.

22.6. Corollary
We have rk(tslg"‘k a+w and rk{telZ)<oata.

Proof

The claim is obvious for a<w. For w<a we have rk(tel':“) = (rky (A)+1) o
Since rky(A)<w we obtain rky(A)+1=n<w. Let a = ¢ 0*'+.. +”¥. For o0
it is n-0*! =w*!, Hence n-a<a+w. Furthermore we obtain rktely) = rk(tel$*)+
rky(A)<arw, since rk(tel<*) = a+n; for some n;<w and rky(A)<o.

22.7. Lemma
In%={neN:NEnel*}.

Proof by induction on «

For « =0 we have 1;™ =8 and {neN:NEnel ¥} ={neN:NEQ =1} =48.
For «a+0 we have neI;“ if and only if there is a E<a such that nali, i.e.
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NEA[IS & nl. By induction hypothesis this is equivalent to NE A(IA ,h) which
implies N#V{A(le,_tl).&oc}, ie. NEnel % On the other hand, if we have
INEnel;® then there is a E<a such that Nhgeli. By the induction hypothesis

this implies nel} which entails nelS*.

22.8. Corollary
—{ne]N NEnel s ay,

Proof

We have IIA = IIZ°° for some 6 <. But then II_A
from 22.7.

= 1.5 and the claim follows

22.9. Definition
If we augment the definition 9.4. by the additional clause

(vii) (telp)* :=tel 0,

then we obtain a translation F* for every &,-formula F.

22.10 Lemma

(i) If F is an & - formula, then F* is an P -formula such that rk(F*)<Q+n
for some n<uw.

(ii) We have NEF if and only if NEF*.

Proof

(i) An.Sf’ —formula F has the formF A)q Xn“B | )whereAtsaIl, sentence

Then we obtain F* = A*(IB. . £y which obvnously is an £ —formula. If
1

none of the set-variables Xy (k = l,...,n) occurs in A we have rk(F¥)< w<Q+n.
Otherwise it follows from 22.6 that there is an n<w such that rk(F*) = Q+n.
(ii) follows from definition 22.9. by 22.8.

We already mentioned that &, is a fragment of &, without defining the fragments
of £,. This will remedied by the following definition.

22.11. Definition

(i) A collection § of £, - formulas is closed under first order operations
if § is closed under the sentential conjunctives 1,vand A and if F(n)¢§ for
some neN implies A{F(n): n<w}ed as well as V{F(n): n<o}e§. § is closed
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§ 22. Inductive definitions in &£,

under substitutions if F(s)eJ for some term s implies F(t)e§ for all terms t.

(ii) The set SF(F) of subformulas of an & —formula F is inductively defined
by

(a) If F is atomic, then SF(F) := {F}

(b) If Fis a formula A{Ay: kel} or a formula V{Ay: kel}, then we define
SF(F) = {F}UU{SF(A) : kell.

(iii} A collection § of &L - formulas is closed under subformulas if Fe§
implies SF(F)c J.

(iv) A collection § of £~ formulas is called a fragment of &, if it satisfies
the following conditions:

{a) 3¢ R

{b) } is closed under first order operations and substitutions

(c) § is closed under subformulas.

The following lemma is an easy exercise.

22.12. Lemma
The language %! is a fragment of L.

In fact we could define &), as the fragment of &, which is induced by the
*—translation defined in 22.9.

For a fragment § of &, and a finite set A of J-formulas we define the relation
3 E A in analogy to 5.2

22.13. Inductive definition of 3 k A
(Ax1) If xp(t,N, . N) =1 and (Pt,...t)) €A c §, then §RA
(Ax2) We have § k5 A, teX, se X if A, teX, s¢X ¢ § and sN = tN
(AYIf KA, A for all iel and A{A;:icl}eF, then F K A, A{A;:icl}
(V) If 35 A, Aj for some icl and V{A;:icl}e§, then I A, V{A;:iel}

We will not have to redefine § i A. Its definition is as in 9.1. The relation § i A
informally says that there is an §~deduction tree of 4 whose length is exatcly a.

If § is a fragment of &, and A is a finite set of formulas in § for which we
have Z_, I% A, then an easy induction on o shows that all formulas of the
derivation tree belong to §. This is essentially due to the facts that fragments
are closed under subformulas and substitutions and cut free derivations do have
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§ 22. Inductive definitions in £,

the subformula property, i.e. all formulas in the premise of an inference are
subformulas of some formula in the conclusion. In analogy to 10.4. we therefore
obtain

22.14. Lemma
Let § be a fragment of ¥, A a finite set of formulas in § and M a segment
of the ordinals. Then we have
Ly 28 < xeMaJE<a (FE A).
This entails
acMAZEA= Zy A

No we are going to show that for countable fragments of &, we have a
completeness theorem similar to 5.4.

22.15. Soundness and completeness theorem for 3 k .

If § is a countable fragment and & is a finite set of §-formulas, then we
have N F \/{F: FeA} if and only if we have § k A.

The soundness of § £ follows as in 5.3. by induction on the definition of § k A.
In order to show the opposite direction we are going to copy the proof in 5.4.
All we have to do is to convince ourselves that the label function & in definition
5.6. only can take finite sets of §-formulas as values. But this follows from
the fact that § is closed under subformulas.

The completeness theorem, however, which we really are looking for is more
complicated. We desire the following theorem.

22.16. Soundness and completeness theorem for &! k&
For any & -formula F we have NEF if and only if £! E F*.

Proof

By 22.10. we have N  F <> N E F*. Therefore all we need is a theorem of the
form NE F* < 3’;0 ?g F*. This theorem, however, is not just a special case of
22.15., since .Q;o - as we defined it yet- is not a countable fragment of Z,.
The soundness of the infinitary calculus 5?;0#3 follows easily by induction on
the definition of $§0}—3 F. The problem is to show completeness. We will do
this in two different ways which, however, will yield two different theorems.
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§ 22. Inductive definitions in &

The first way uses remark 20.8. in which - without proof- we stated that the
stages of an inductive definition already become stationary at wf:K the first
recursively regular ordinal above w. Instead of interpreting () by x, -the first
uncountable regular ordinal - we may therefore as well interpret Q by wfK
without spoiling the soundness of the system 3’;0 E. (From 8§25 it will follow
that this alternative interpretation is also a sound interpretation for the ordinal
notations developed in §§ 23 and 24.) Since w{X is a countable ordinal we obtain
.:’{’;0 as a countable fragment of &, and theorem 22.16. is a special case of 22.15.
In the second approach we leave the interpretation of () as the first uncountable
regular ordinal but extend the calculus .S[’go E to a calculus .?g E by adding
a new rule

(Clg) L0 EAALRYD = £ Eancd 2
Because of N A(Lf\n.g) =NEkE 551;0 the addition of this rule will not spoil
the soundness of the calculus .5!’;: tg . To show its completeness we, in analogy
to 5.6., define quasideduction trees for the extended calculus ng,: E.
We adopt the clauses (i)-(iii) in the definition 5.6. Clause (iv), however, only
makes sense if the distinguished redex is a countable disjunction, i.e. if it is
not of the form gel‘f‘o . Otherwise it could happen that the quasideduction path
of ﬂelf\o will not become finite although we have N |=_1151§Q. Therefore we
only adopt clause (iv) for those cases in which the distinguished redex is a
disjunction of countable length, i.e. is not of the form gel‘f‘o. For this case
we introduce an additional clause

(v) If o6e¢B, and (o) reducible with distinguished redex gelzo, then
6*<0> ¢ B, and 5(6*<0>) := 5(0)", AL, n).
We call the resulting tree B, the extended quasideduction tree of A. Now we
have to check that the syntactical and the semantical main lemma also holds

for extended quasideduction trees.

22.17. Extended syntactical main lemma for 3’:: E.
Suppose that every path in the extended quasideduction tree of a finite set A
of ¥} -formulas contains an axiom. Then % g k& A.

The proof follows the proof of 5.7. We have only to consider one additional
case:
If the distinguished redex is of the form _rlelzo, then we have o*<{0> ¢ B,
and 8(c*<0>) = 8(c)r, A(15, n). By the induction hypothesis we obtain

Lo E o) AR n)
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§ 22. Inductive definitions in X

which by the Cln-rule implies
g E 8(a)", _n_slf\n.

22.18. Extended semantical main lemma for &5 E

Let A ¢ .9?; be a finite set of formulas such that there is a path in the quasi-
deduction tree of A which does not contain an axiom. Then there is an assign-
ment & such that N ¥k F® holds for all FeA.

The proof is mainly the same as that of 5.8. Again we choose a path f in By
which does not contain an axiom. The properties {1)-(4) of 5.8, for f are
conserved with the restriction, that 5.8.(4) only holds for countable disjunctions,
i.e. for disjunctions which do not have the form nel ;Q. As an additional property
for f we obtain

(4') If oef and p.ej_;oeS(o), then there is a t¢f such that A(l;Q,Q)GS(T).
The proof of (4') folilows from 5.8.(1) and the definition clause (v).
Now we are going to define an assignment & by:

®(X) :={neN:tN=na Foef) Ut e X)ed(c))}

For an ordinal £<Q) we denote by F% the &£ ;o-formula obtained from the formula
F by replacing all positive occurences of n elzﬁ by n elxg.
Then we obtain

(5"} N EF&® for all £<Q), s¢f and Feslo).
by induction on rk(F%). The cases in which F is not of the form Qelin are
treated as in 5.8.(5) 1.-4.
If F= p_elxn, then F& is the formula QELRE and by (4') there is a 1¢f such
that A(152, n)e8(1), ie. nelS ¢3(1). We have rk(gel}krk(gelxa) for all n<E
and therefore obtain N & neld for all n<E by the induction hypothesis. This,
however, implies N k& _n_e_l.;F'.
Since N £ F& for all £<() already implies N & F the extended semantical main
lemma is an immediate consequence of (5').

22.19. Soundness and completeness theorem for L5y E.
For any &,-formula F we have NEF if and only if 3‘:: E.

22.16. and 22.19. are of course different theorems because in 22.16. we have a
countable fragment whereas in 22.19. we are talking about an uncountable fragment.
A reinspection of the proof of 22.19., however, shows that we used the inter-
pretation of Q as the first uncountable regular ordinal only to assure the sound-
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§ 22. Inductive definitions in &£,

ness of the Clny-rule. Therefore 22.19. will hold for any interpretation of Q
satisfying the Cln-rule (especially for wFK). So, in the calculus y;:l—; the
symbol ) may be (and should be) viewed as a yet indetermined ordinal constant
whose defining axiom is the Cin-rule. 22.19. then establishes the soundness and

correctness of this calculus. By interpreting () as wFK in .5,”;: E we obtain from

22.16. and 22.19.

22.20. Corollary
For any & ,-formula F we have é”g EF if and only if 3’;, EF.

The next step in the ordinal analysis of the formal system ID, is the introduction
of a semiformal system for the fragment “?olo of £, It will be necessary to
introduce the Cln-rule into a semiformal system for 5”;0 as it was necessary
to introduce the cut into Z,. (More arguments for the necessity of the Clg-
rule in a semi formal system for 3(50 will be given at the beginning of §26).
22.20 is a semantical proof for the fact that the additional rule Cln-rule in
5[’:: E is eliminable. This resembles the beginning of 812 where we showed
the eliminability of the cut rule in the calculus Z, by a similar argument. But,
as in the situation of Z., the semantical proof will not be sufficient for an
ordinal analysis of ID,. In §26 we will therefore give a syntactical proof of the
eliminability of the Cln-rule in a semi formal system.

Before introducing a semiformal system for & Qlo we have to assure that there
is a sufficently strong ordinal notation system. It is quite easy to see that
the wellordering of the orderrelation of ordertype I, introduced in §17 may be
proved in the formal system ID,. We will not give the proof now since it will
follow as a corollary of a later theorem (29.8). The predicative segment of
the ordinals therefore cannot be sufficient for the ordinal analysis of ID;. In
order to obtain a semiformal system in which the provable Ilj-sentences of
ID; may be interpreted we need a larger recursive segment of the ordinals. The
development of such a segment will be the aim of the following sections.

22.21. Exercise
Let A[X,x] be an X-positive & ,~formula which only contains the indicated free
variables and let A be a finite set of £} ~formulas with only positive occurences
of Y. Prove the following statements:
(1) £, B 8,050 and nsusQ = LLE AL UZY
(ii) QC‘,O%ZAY(L;") =2 }2—‘ 8 (155)
(iii) £}, % nelsi = Inj, <o
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823. More about ordinals

§23. More about ordinals

In §17. we introduced the enumerating function I' of the strongly critical ordinals
and showed that T indeed is a normal function. Now it would be an obvious
idea to introduce T' as a new basic function for a notation system. This idea
(which as far as | know was performed by Veblen) in fact leads to a notation
system which extends T, but by no means is large enough for an ordinal ana-
lysis of ID,. Any notation system which is sufficient for the ordinal analysis
of ID; must have some essential impredicative feature. Of course it is impossible
to give a precise definition of what we mean by an essential impredicative feature.
Roughly speaking one could say that an ordinal notation system has an impre-
dicative feature if it cannot be defined autonomously but its definition needs
external points. The external point of the system presented below will be the
ordinal Q. The history of the development of this notation system is quite
involved and we are not going into the details of this history. The only facts
we want to mention are that the first system of a comparable strength has
been introduced by H.Bachmann in 1950. The system presented here is an
initial segment of a much stronger system which has been developed by
W.Buchholz. This system on its part is a simplification of the ©-systems
which go back to ideas of S.Feferman and have been worked out by P.Aczel,
J.Bridge (Kister) and W.Buchholz.

23.1. Inductive definition of the sets B{«) and the function ¢

(B1) {0,0}cBl(a).

(B2) If £,ne¢Bla), then also E+ne¢B(a) and ¢Ene Bla).

(B3) If £eB(a)nw, then $Ee Blo).

(W1 Qo := min{E:E¢B(a) ).
The sets B(a) and therefore also the function { are defined by recursion on
o. For fixed o the set B(a) is defined inductively. It is easy to see that in this
inductive definition every E¢ B(a) has a finite norm. This shows that there is a
1-1 mapping from B{a) onto w.
The reader should notice that the definition of the sets B(«) is very simple. In
the first step, i.e. in the definition of B(0), we just form a kind of Skolem hull
of the ordinals 0 and Q (as points) and the functions + and ¢. Then we denote
the first ordinal which does not belong to the segment contained in this Skolem
hull by 0 and form the Skolem hull of 0,Q,40 and + and ¢. Iterating this
process o times leads to the set B(a). Therefore we are going to cail Bla)
the a-th iterated Skolem hull of the ordinals 0 and () as points.
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23.2. Lemma
Yo is defined for all o ¢ On and we always have ae(0,0).

Proof

By (B1) and ($1) we have O<{a and Q#*Jo. Since there is a 1-1 mapping from
B(a) onto @ and Q is a regular ordinal we obtain that the set {£<Q : EeB(a)}
is bounded in Q. Therefore there is a £<(Q such that £¢ B(a). Hence Ja<Q.

23.3. Lemma
(i) If a<B, then Bla)c B(B) and Ju<ip.
(ii) ae B(R)nB implies ¢o<B.
Giii) If a<B and [«,83)n B(a) = 8, then B(a) = B(B).
{iv) For X ¢Lim we have B()) = {XB(¥): <)}

Proof

(i) By induction on the definition of £Ee B(a) we easily obtain that u<p and Ee B(a)
imply £¢ B(B). Hence B(«) ¢ B(B) and ¢ = min{E : £¢ B(a)}<min{E : E¢ B(B)} = ¢B.
(ii) By (i) we already have (a<{B. Because of ae¢B(B)nB we have $paeB(B) by
{B3). Hence {o*{pB.

(iii) B(x) < B(B) is obvious by (i). To prove the opposite direction we show
EeB(f) = Ee¢B(a) by induction on the definition of E¢B(B). The cases (B1)
and (B2) again are either trivial or immediate consequences of the induction
hypothesis. In the case of (B3) there is a £ ¢B(B)nB such that §={E,. By
the induction hypothesis we have £ ¢B(o). Because of [a,B)nB(x) =9 it is
Eo<a and by (B3) we obtain £ = $E ¢ Bla).

(iv) Define C := U{B(£): E<)}. Then we have Cc B()\) by (i). For the opposite
direction we again show £¢ B()) => E¢ C by induction on the definition of e B()).
The cases (B1) and (B2) are either trivial or immediate consequences of

the induction hypothesis. In the case of (B3) there is a £,e B(A\)n) such that
£ = ¢&,. By the induction hypothesis it is ;€ C. Therefore there is a p,<X such
that £,e B(p,). Defining p := max{g;.p,} we obtain £ ¢ B(p)ne and p<X. By (B3)
it follows Ee¢ B(p)c C.

It follows from 23.2. and 23.3. that ¢ is a monotone function from On into Q.
By a cardinality argument ¢ cannot be strictly monotone. We are going to examine
the segments on which ¢ is strictly monotone.
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23.4. Lemma
B< o implies B c Bla).

Proof

Assume that there is a E<B! such that £¢B(«) and let £ be minimal with this
property. Since B<{o we then have B<Et<BI. Hence E¢SC. But then there are
E..E,<Esuchthat§ = £, +%, or £ = pE £ . By the minimality of £ we have £ ,{_e B{a)
and obtain £¢ B(x) by (B2). A contradiction.

23.5. Theorem
For all weOn we have Yoe¢SC.

Proof

Assume that Qo ¢ SC for some «e¢ On. Then there is a B¢ SC such that B<Ppa<pl.
By 23.4, however, B<¢a implies Bl c Bla), i.e. Bl <{a. A contradiction.

23.6. Theorem
For all we¢On it is Bla)nQ = ¢a.

Proof
¢ c Bla)n Q) follows from ($1) and 23.2.

For the opposite direction we show EeB(a)n(Q = E<da by induction on the
definition of E¢ B(a). In the case of (B1) this follows from 23.2. In the case of
(B2) we obtain the claim from the induction hypothesis by 23.5. and SCcH.
In the case of (B3) we obtain E<¢a by 23.3.(ii).

Since Yo is not strictly increasing it cannot be a normal function. We shall
see, however, that it is at least continuous.

23.7. Theorem
For X e¢Lim we have P\ = sup{¢f : E<i .

Proof
Define p := suply¥: E< ) }. Since {§ is monotone we obtain p<¢i. By 23.3.(iv)
we have B{)\) = \{B(E) : E<)\}. For n<{ X we have ne BIA)n(2 by 23.6. Therefore
there is a E<X such that neB(E)nQ which implies n<d&<p by 23.6. Hence
PAr<op.
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23.8. Lemma
Gla+) < Ppla)T

Proof

It is P(a+1) = Bla+1)nQ and we show Ee Bla+1)n() = E<P(a)T by induction on
the definition of Ee Bla+1).

In the case of (B1) we have £ = 0 and the claim is obvious.

If £e Bla+1) holds according to (B2) we have £ =E +E, or £ =@EE, and § ¢ Bla+1)
for i =1,2. But then £,<, and £ ¢B(a+1)n () and we obtain from the induction
hypothesis £,<(¢a)?. Since (pa)T ¢ SC this also implies E< (¢o)T.

If EeB(a+1) holds by (B3) then there is a E,e Bla+1)n(a+1) such that § = ¢&
By 23.3.(i), however, it follows ¢E <{o<(ha)t.

23.9. Lemma
(i) weBla+1) implies $(a+1) = (o)l
(ii) a¢ B(a) implies B(a+1) = B(a) and therefore also P{o+1) = do.

Proof
(i) aeBlo+1) by 23.3. implies da<d(a+l). According to 23.5. it is Plat+1)eSC
which entails (o)< la+1). Together with 23.8. this implies ($a}l = glo+1).

(ii) is an immediate consequence of 23.3.{ii).

23.10. Theorem

Define ¢ := min{E : e = E). Then we have
(i) VE<o($E =T

and
(ii) VE<Q (o< E = QF = o).

Proof

We show (i) by induction on E<o. If £ = 0, then a comparison of the definitions
17.19. and 23.1. shows that ¢0 = B{0)n(Q =PC(0) =T .

For £ = £ +1 we obtain by the induction hypothesis § < F,;u =& . Hence E ¢ B(E,)
< B(E) and we obtain (E) = ($E )" =T by 23.9.

For EcLim we have ¢F = sup{{m : n<E} i'=h'sup{f‘1,l : n<&} = I'g since according to
17.15. T is a normal function.

To prove (ii) we show Ee¢ {6,021 = B(E) = B(c) by induction on £. The claim is
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trivial for £ = ¢. For a limit ordinal £ we obtain B(F) = U{B(n) : n<E} = B(s) by
the induction hypothesis. For c<g +1<Q) we have B(E )} = B(c) by the induction
hypothesis. According to 23.9.(ii) it suffices to show g ¢ B(£ ). From the induction
hypothesis and (i) it follows ¢ =B({)nQ=Blc)nd=¢o=T_=0. Hence
pE, = 0<E <0, ie. E ¢B(§) by 23.6.

Theorem 23.10. shows the role of the ordinal 0 in the definition of the sets
Bl(«). As already mentioned in the introduction () is our external point. Without
the ordinal () in the definition clause {B1) the function ¢ would become stationary
at 6. Then the effect of definition clause (B3) would be equivalent to augmenting
the ordinal notation system of §17 by the function I'. But because of ¢ B(Q)+1)
we now have o = Qe B(N+1) and therefore also o = $(0+1). This shows that
the segment of the ordinals contained in B(a) is larger than just . We are
going to examine the size of this segment.

23.11. Lemma
For ae On we have Blo)c QF.

Proof
£e Bla) = E<QF follows by induction on the definition von £eBla). The claim
is obvious in the case of (B1). In the case of {(B2) it follows from induction

hypothesis since 0T ¢SC and in the case of (B3) the claim holds trivially
because of ¢§ <.

23.12. Theorem
For «cOn we have Bla)c B(OF) and pa<§(Ql).

Proof

We show EeBla) = Ee¢B(QF) by induction on the definition of EeB(w«). The
cases (B1) and (B2) do not cause any problem. In the case of (B3} we have
£ =¢E, for some £ ¢Bla)na. By the induction hypothesis and 23.11. it follows
g€ B(QF)~ OF which implies £ = PE e B(OT) by (B3).

From theorems 23.12. and 23.6. it follows that {(QF) is the largest segment of
the ordinals accessible by definition 23.1. All ordinals in B(QF) are represented
by terms built up from the constants 0,0 by the functions +, ¢ and ¢. In
order to see that this really induces a recursive or even primitive recursive
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notation system we, however, have to work a bit harder.
Up to now we have the following normal forms for ordinals:
1. The Cantor normal form

L AR L AL R L A {ozi,...,ocn}c HAaa>o >...2a for a¢H.
2. The normal form for principal ordinals which are not strongly critical.

® = gEPA, ®, <> o= o a, A a>a,,u, for ae H\SC.
This was completely sufficient for the ordinals below I, since there are no
strongly critical ordinals. In B(QF), however, there are strongly critical ordinals
of the form YE. For those ordinals we define a normal form in the following
way.

23.13. Definition
o = g€ = a = EA E¢B(E)

23.14. Lemma
Suppose that o= pbo, and B = 0B, Then we have a=p<> o, =8, and

o< <= A< 60.

Proof
From o <8, and o e Bla )c B(B)) we obtain ¢ <dB, by 23.3. On the other hand
By, and B ¢ B(B )c Bl ) also imply B <o,

23.15. Lemma
For every ordinal a<QU there is a uniquely determined ordinal o, € B(cxo)r\()r
such that ¢o =g Yo, We have o) = minif : a<€eBla)}.

Proof
By 23.14. the uniqueness of « is obvious. So we just have to prove the existence.
In a first step we convince ourselves that the set {E: u<ZeB(x)] is not empty.
If we define A, = O+1 and A, =94 0, then we have

(1) sup{a, : n<o}=0f
and

(2) A, ¢B(a) for all n<w and ae¢On.
(1) follows from 17.22. and (2) from the definition of B(a).
By (1) and (2) we obtain the existence of «, := min{f : x<EeB(a)}. For o, we
have a<a, and [o,o )" B(a) = 8. Hence B(a) = B(a,), and we obtain ¢o = o, as
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well as a e Bla ).

23.16. Theorem

For every ae¢ SCN{(QOF) there is a uniquely determined ordinal o€ B(QY) such
that o = pbo,.

Proof

o€ SCAYP(OT) implies e SCABINT) A Q. The only possibility for a strongly critical
ordinal « to get into the set B(O')AQ is clause (B3). Therefore there is an
aleB(()F) such that « = ¢, and by 23.15. there exists an ordinal «, such that

o = pde.

For technical reasons we will define certain subterm sets P(x) and N(a) for
ordinals ae B(QF). There are five different types of ordinals in the set B(QF):
1. The ordinal 0. We define H(0) = P(0) = N(0) = 8

2. Additively decomposable ordinals o = (o +...+a, such that n>1. We define
H(a) = ta,..,e } and Pla) = N(a) = #

3. Predicatively decomposable principal ordinals « = gea,a,. Here we define
Pla) = {a,a,}, H(a) ={a} and N(a) = 8

4. Strongly critical ordinals a<Q of the form « = gdua, Here we define
N(a) ={e } and H(a) = Pla) = {a}.

5. The regular ordinal Q. For 1 we define N(Q) = P(Q) = H(a) = {Q}.

We already mentioned that the ordinals in B(QF) may be represented by terms
built up from 0 and Q by the functions +,¢ and ¢. Of course there are
different terms which represent the same ordinal. The terms ¢({Q) and $Q
for instance are both representations for the ordinal o. To obtain a unique
representation we have to restrict ourselves to ordinal terms in normal form.
The set T of terms in normal form is inductively defined by the following
definition.

23.17. Inductive definition of the set T of ordinal terms in normal form.
(T1) {0,Q}cT.
(T2) If «,....o0 ¢T and a = NEY%, T, then aeT.
(T3) If a0, ¢T and o = Gppa o, then aeT.
(T4) If o eT and o = pdo, then aeT.
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The next lemma follows by an easy induction on the definition of T.

23.18. Lemma
Te B(OD)

The opposite direction, however, is much harder to prove. The idea is to show
() EeB(IOT) = EeT

by induction on the definition of Ee B(OV).

This induction, however, by no means is straightforward. If, for instance, we
have £¢ B(OF) according to clause (B2), then we have £ = £+, and obtain £ eT
by the induction hypothesis. But we are not allowed to apply clause {T2) since
we do not know if we also have £ = £ +E,. To overcome this difficulty we
prove (*)} by induction on the inductive norm of E. Since the closure ordinal of
the inductive definition of B(a) obviously is @ we only have to deal with finite
norms. If we denote by B™(«) the n-th stage in the inductive definition of B(a),
then we have to show that £ = ygf;+..+€ e B™(a) already implies Ex e B™ '{a)
for k = 1,....,m. Then we can use the induction hypothesis and apply (712). The
remaining cases may be treated in the same way. The original inductive definition
of the sets B(a), however, is not well suited for this rather technical strategy.
Therefore we are going to redefine the sets B(a) in a more technical way.

23.19. Deflnition
The set B'({a)and the function §' are inductively defined by the clauses
(B'1) {0.1,0}c B'(«)
(B'2) If H(E) + {Z} and H(E)c B'(a), then E¢ B'(a),
{B'3) If P(E) #+ {E} and P(E)c B'(o), then Ee B'{a),
{B'4) If £¢B'(a}na, then ¢'Ec B (a).
(P'1) P'o:= minf{E:E¢B' (a0) }.

By B'™(x) we denote the n-th stage in the inductive definition of B'(«x).

We need some more properties of the stages of B'(a).

23.20. Lemma
If aeB'™(B) then H{a)P(a)c B'(B).

Proof by induction on n.
For n = 0 we have H{a)uPla) < {0,1,(0}c B*{(B).
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If «eB'™PB) holds according to (B'2), then we have H(a)c B'™ *{u)c B'(a) and
Pla) = 8.

If aeB'™pB) holds according to (B'3), then we have H(o) ={a}eB'(a) and
Pla) e B'® " {a} c B{a).

If aeB'™B) holds according to (B'3) then we have H{a) = P{a) = {a} and the
claim is trivial.

23.21. Lemma
For all ordinals @ we have B{u) = B'(a) as well as ¢ =¢ a.

Proof

The proof is by induction on .

First we show Ee B{a) = £¢ B'(«) by side induction on the definition of £e Bla).
In the case of a clause (B} we obtain E¢B'(a) by a clause (B'l).

If E¢ B(o) according to (B2) then we have £ = £,+E, or E = @E;E, and {E;,E5}c Bla).
By the induction hypothesis it follows (£ E;}c B'(a). If = @Ei&y this already
implies £¢ B'(a) by (B'3). If £ = £, +E,, then we have H(E)c H(§)UH(E;). By 23.20.
it follows H(%;)UH(%,)c B'(«) and this implies £¢B'(x) either trivially or by a
clause (B'2).

If £¢Bla) according to (B2) then we have E = &, and £ ¢Bla)na. We have
£, B'(x)na by the side induction hypothesis and ¢, = ¢'§ by the main
induction hypothesis. Hence £¢B'(a) by a clause (B'3).

For the opposite direction we show Ee¢ B'™(a) = ¢ B(a) by side induction on n.
For n=0 we have £¢{0,Q} and are done by (B1) or £=1=¢00. But 1¢B(a)
follows from (B1) by an application of (B2).

If £¢B'™(a) by (B'2) then we have H(a)c B{a) by the induction hypothesis and
obtain Ee B(a) by iterated application of (B2).

If E¢ B'™(a) by (B'3) then we have P(x)c B(a) by the induction hypothesis and
obtain £¢ B(a) by iterated application of (B2).

If £E¢B'™a) by (B'4) then E={'E, and E,eB'™ "(a)na. By the side induction
hypothesis it follows E, ¢ B{a)nx and by the main induction hypothesis ¢'E, = $&,.
Hence E¢ B{a) by a clause (B3).

Now, since we have proven B(a) = B'(a), it also follows Qua = {'a.

Due to lemma 23.21. we may identify B'{a) and Bl(a) as well as § and ¢'. We
will therefore omit the superscript '. From now on we denote by B™(a) the
n—th stage in the definition of B'(«).

We may sharpen lemma 23.20 in the following way.
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23.22. Lemma
If «eB™B) and a = pa +..+o  for m>1 or l<o = poua, then we have
o, e BPYB) for iell,...m} or ie{1,2} respectively.

Proof

Since a>1 and «¢SC the only possibility for «¢B™(g) is by a clause (B2').
Then we have H{a)UP(a)c BP7UB). For o = jpoty+...+ 0y OF O = QU0 We
have H(a)uP(a) = {oy,...,0} Oor H(a)uP(a) = {3, 5} respectively which entails

the claim.

The proof of the fact that o = pda ¢ B™(B) implies o e B '(B) is essentially
harder although it is easy to see that o = o € B™(B) implies a eB(B). We
know that {o <Q, which together with dog,e B(B) implies ¢ <$p. Hence «,<B
and we obtain «,¢ B(B) since o = o, implies « eB(a ). But we do not yet
know that o already entered B(B) before o. On the other hand we know that
there is an o ¢ B"*(§) such that « = a, since this is the only way by which o
can get into B™(B). Then by 23.15. we have o = min{{ : a<&eBla)}

23.23. Lemma
For 5¢0On define (o) := min{E : a<Ee¢B(3)}. Then oae BMB) implies §{(a) ¢ B"(B).

Proof

The proof is by induction on n. As a preliminary remark we prove that ae¢H
implies 8(a) eH as well as oe SC implies (o) e SC. If we assume ae¢H and
3(a) ¢ H then there is an ne[a,8(x))nH(8(x)). Then by 23.22. it follows neB(3)
in contradiction to the minimality of &(«). The proof for SC runs completely
analogously. Trivially a,<a, always implies 8{o;)< 8(ocp).

If aeB(8), then it is 8(«) = « and the claim is obvious. If o¢B(8) and a<Q,
then we have by 23.6. B(§) nQc o which implies 3(a) = Qe B™B) for all n. So it
remains the case Q<a¢B(8). We distinguish the following subcases:

1o = g, *...+o for some m>1. Then we have o, ¢ B""*(8) by 23.22. and obtain
by the induction hypothesis &(o;)e B" 1 (B)nB(3). Since o;¢H and oy2..>0p,
imply 8(a))e H and 8(oy) 2...28e,)), it is as8(og)+...+8(am) and because of
3(ay) + .+ 8(a,) € B(3) even a<d(a,) +...+8{axm). Therefore there is an i<m such
that y:=o +..+a; = 8(e)+..+8(a)) and « )

<8(e;, ). This implies oa<y+8(a,, ).
Hence 8(a)<y+3(a, ). We claim 8(a) = y+8(a

i+1 i+
). If we assume &(u)<y+8(ax

)

i+1 i+1”
then we obtain an £ ¢ B(8) such that a<e<y+8(a,, ). But then y+o, <a<e<y+3(o;, )

and we obtain an £ such that & = y+¢, and «,  <¢c <3(o,, ). Since ee¢ B(3), 23.20.
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and (B'2) imply €, ¢B(8) and this contradicts the definition of 8oy, ).
2. a=gppa,a,. By 23.22. we have «,¢B"7!(B} and obtain by the induction
hypothesis (o) ¢ B®7'(B). There are the following cases:
2.1. «, = 8(a,). Then we obviously have 8(a) = pa 3(a,) and it follows 8(a) e BP(B).
2.2, o, <3(a,). If a<d(a,), then 8(a) <8lay) which together with 3(ay)<3(a) implies
3(a) = 8(ap) and we are done because of (a,) e B"7'(B)c B™(B).
Therefore we assume §(a,)<a. We define o, := min{f : a<p8(x,)E} and claim
(*) o e B H(B)NB(5) ’
From (#) it follows 8(a)< p8(a Yo . If we assume po o, <8(ot) < p&lax Jor,, then there
are ordinals £ and £, such that 8(a) =g £ E,. But then we have £, <3(o,), since
€ = 8a,) implies a<d(a) = ¢3(ay) &, and Ep<ay, and ;> 3(a,) implies $(a) <oy and
¢ 8o )3(a) = 3(a)> . Both consequences contradict the definition of «,. From
E,<8(oy) and E € B(3), however, we obtain g <o, which implies a<Z,e¢ B(8) in
contradiction to the definition of &(a). Hence &(x) = 98(x;)az which implies
&(a) e B™(B) by (B3').
It remains to show (*). If we assume o ¢ Lim, then we obtain o0, = o = pdlagog
because ¢&(a,) is continuous. Since o, <5{x;) this implies ay = pd(ay)oy in contra-
diction to ay<dlay)<a. So oz cannot be a limit ordinal. If o = 0, then we are
done. Therefore assume o, =71'. Then we have o,<8(o,)<a = pa a,<pan' and
p8la In< po o, <pdlo)n'. Because of o <8(a) it follows ¢d(an< a,<poa,,
ie. @dlaInca,<dlo)<poa,<pdlo)In’. Since 3(a,)eB(8)NnB" () we have
B (B)n (pdlo, In, @3l J(n+1)) #8 as well as B(8)n (@dla In, 93(x ) (n+1)) 8. Now
we prove the following auxiliary lemma.

23.24. Lemma
If BMBin{pan,pan') 8, then we have n+le¢ BP(g).

Proof by induction on n.

Define M™ : = BP(B)n (pan,pan') and assume o ¢ M™. Since (pon,pa(n+1)}nSC =6
o¢ SC the only possibility for ¢ to come into B™B) therefore is clause (B2') or
(B'3).

If 6= EO,+...+0y, such that o,¢ B"7'(B), then we have o clpuan,pan’) because
otherwise we had o,+...40,,<pan. If pan<o,, then we obtain n+1e¢ B '(B)c B™(p)
by the induction hypothesis. If ¢an = o,, then we have ne B" *(B). Since 1¢ B™(B)
for all m<w we obtain ' ¢ B™B) by (B’ 2).

If we assume o =yp 96,0, and o, BP7'(B), then we have pan<¢o,6,<pan’. But
then it is 6,<a since o = o, implies n<o,<n' and a<o, already n<o<n'. Hence
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pan<o,<n'span’ and we obtain by the induction hypothesis n'e B (B)c B™{B).
By the proof of lemma 23.24. the proof of lemma 23.23. is completed too.

23.25. Lemma
If o = \pdo,eB"(B), then we have n>0 and a ¢ B" ' (B)nB.

Proof
In the remark foregoing 23.23. we already mentioned that if o = Qo eB™(B),

then it is o <B and there is an cxieB“"(B) such that o = ¢o,. Then we have
o, = min{E : o« <EeBla,)} and it follows « ¢ B"7'() by 23.23.

23.26. Theorem
T = B(Q)Y)

Proof

T<B(QF) holds by 23.18. For the opposite direction we show B™Q")cT by
induction on n. B®(QF) only contains the ordinals 0,1,0.{0,Q}c T holds by (T1)
1T follows from (T1) by (T3). If = o, +...*o, e BP*HOD) or o= powq,
eB™HQr), then by 23.22. we obtain o e BHOD) for all iefl,...m} or i=12,

respectively.
By the induction hypothesis we have o ¢ T for all i and obtain aeT by (T2) or

(T3). If a = g, then we have a, e B"7'(B) by 23.25. and obtain aeT by the
induction hypothesis and (T4).

It is of course easy to define codes for the elements of T. Therefore we may
regard T as a set of natural numbers. Our aim is to obtain T as primitive
recursive set. This, however, in not an immediate consequence of definition
23.17. The stumblingblocks are the normal form requirements in the premisses
of clauses (T2)-(T4). This is not so harmful in the case of the clauses (T2)
and (T3) since the normal form conditions there only need checking the
<-relation between formerly defined terms and we may define T and the <-
relation in the approved manner by simultaneous course of value recursion.

More irritating is the case of a clause (T4) since there « = pdx means that
o = oy A o € Bla,). We could manage this case in the same way if we succeeded
in defining a primitive recursive function K, say, such that o, € B((xo) holds if
and only if Ko <o . Then again we could define T and < ( and possibly also
K) by simultaneous course of values recursion. We will not be able to define
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Koy as a function that takes a single ordinal term as value but as a finite set
of subterms of oy which will be primitive recursively computable from T. The
degree Gao of an ordinal term a¢T is the norm of « in the inductive definition
of T. In order to define Ka we recapitulate the conditions which are necessary
and sufficient for oe B(B).

23.27. Lemma
e B(B) holds if and only if one of the fellowing conditions is satisfied:
(1) c{0,0}
(2) o = ypo,+...ta and {a,,.. o }cB(B),
(3) a = poo,a, and la,,a,}c B(B),
(4) o = $og,, a <B and o € B(B).

According to 23.27. we define the finite set Ko of subterms of an ordinal term
a by:

23.28. Inductive definition of K«
(Ki) KO=KQ=#8

{K2) Ka = Ko v uKe , if o= po+oto

NF™
(K3) Ka = chivKaz , if o= NEP XX,
(K4) Ko ={o JuKe, , if a=da,

We call Ka the set of components of a and write Ka<B instead of VEe¢ Ka(£<B).

23.29. Lemma
It is ae B(B) if and only if Ka<B .

Proof

This follows immediately from 23.27. by induction on Gua.

23.30. Lemma
For o,Be T we have u<B if and only if one of the following conditions is satisfied:
(1) « =0 and B#0,
(2} o= ypototo , B= B+ . +B . n,m>1and Jisn Vj_«;i(ocj = Bj/\ o, <Bi )
where we define w,,, =0 and B,,,,, =... =B, =0 if m<n

(3) o = NE® tto, BeH and o <B,
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{(4) aecH, B = NEP B, n>1 and a< B,s

(5) a = poxa,, B=yrpB B, and a<f according to 17.8.(2),
(6) o = ypopo,a,, BeSC and a,,0,<B,

(7) eSC, B= ~NEP B, B, and a<B, or asB,,

(8) o = NFtboco,B = nr¥Bo and ®,< By,

(9) o« = pbo, and B =Q.

It is obvious that aeH or «e SC, respectively, are primitive recursively decidable
since this can be read off the syntactical form of a. All terms in H are of the

shape po a,, while all terms in SC have the form Ju, or Q.

21
Now we are going to replace the clause (T4) in 23.17. by

(T4") o e TAKa <o, = do T,
and define simultaneously the set T, the 'function’ Ko according to 23.28. and

for «,BeT the relation a<B according to 23.30. by course of values recursion.
Then we obtain:

23.31. Theorem

The set T is primitive recursive and < is a primitive recursive order relation
on T.

23.32. Corollary
PN < wlCK

23.33. Exercises
1. Vo ,B(Be Bla) = (-8¢ B(a))
2. Define ¢ := min{p: p>¢(Q-E) A I’P = p}. Prove that under the assumptions
(Q-Ee B(Q-E) and )(Q-E) = F¢(O-E) we have:
(i) Vd<o QP(O-E+3) = FQJ(Q'&)*S
(ii) V3(os8<Q = P(Q-E+35) = 0)
3. Show the following statements:
(i) VE<T™O (I"E={Q-(1+E) A Q-Ee B(OQ-ED)
i) $Qz=T"0
(i) ¢(N2+1) = r"oT
4. Prove that for ae¢ B(QT) we have:
(i) a<l <> a<QAKa=0
(i) a<¢ <= Kavial<Q
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§24. Collapsing functions

Our goal is to use the ordinal terms of T for the introduction of a semiformal
system for the language £L.

The derivation trees of ¥} are in general ()-branching trees. Therefore we will
have to measure the length of the derivation trees of a semiformal system for
&L by ordinals above Q. In order to obtain bounds for the norms of IIi-formulas,
which as we know are ordinals below (), we need a collapsing function, which
allows us to collapse the ordinals in T which are larger than Q into the ordinals
of T below (. The development of this collapsing function is the topic of the
current section. Since by 23.2. it is Qu<() we in principle already have a
collapsing function. The set T of ordinal terms in normal form, however, is not
closed under the function ¢. In order to obtain ¢aeT we need aeBla) which
is wrong in general. Therefore we will carefully enlarge o to an ordinal term
ha such that hoe¢B(ha) is always true and, vaguely speaking, ha essentially
carries the same information as «. After having succeeded in doing this we
may collapse the ordinals terms greater or equal than ) by the collapsing
function Da := ¢(ha).

We start with a rather technical lemma.

24.1. Lemma
(i) xc KB implies Kac K§,
(ii) If ac¢ KB, then it is Gu<GB,
(iii) o ¢ Kot

Proof

The statements in (i) and (ii} are proved by induction on GB. If =0 or B =10,
then we have KB = # and both claims are trivial.

If B=,gpB,*...*B, and «eKp, then it is oeKp, for some ie{l,..n}. By the
induction hypothesis for (i) we obtain Koc KB,c KB which proves (i). By the
induction hypothesis for (ii) it follows Gu<GB,<GB which also proves (ii).

If B=,peB,B, and xecKB, so then we obtain e KB, for some ie{1,2} and we
have the same proof as above.

If B = \(g¥B, and xe KB, then we have a = B or ae KB . In the first case it follows
Ka = KB, c KB and Ga = GB <GB and in the second case with the corresponding
induction hypothesis Kac KB < KB or Ga<GB <GB.

(iii) is an immediate consequence of (ii).
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24.2. Definition
ko := max Kaw {0}

24.3. Lemma
Kka<ka

Proof

We either have Ko =@, and therefore Kko = KO =8, or kaeKa. In the latter
case we obtain Kkoac Ka, ie. Kka<ka by 24.1.(i). Since we have ka¢Kka by
24.1.(iii) it follows Kko<ka.

In the formation of ku, however, we loose too much information about o. So
we cannot define ha to be just ka. To keep all the information about a we
define:

24 .4. Definition

ha = ka+u®

24.5. Lemma
Ko = Kha<ha

Proof
It is Kha = KkauvKoa = Kacka<koa+o* = ha.

24.6. Definition
o= NEY, +--+o, then we define r(a) := o« . We call r(a) the (additive) remainder
of o.

24.7. Lemma
If a<y and B<r(y), then it follows x+B<¥.

Proof

If a= po+.+a, and vy = NpYs Yy then there is an i<n such that o=
for all j<i and o
implies o+ = oo ¥... 40 +B<oy o F o HBHY L Fo Y = Ot Y P Y = Y

<Yyep I Ber(y)<y,, , then we obtain o, +..+a < Y4+, Which

i+
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24.8. Lemma
a<B and Ka<hB imply ha<hB.

Proof

< B implies ©®<wP. Ka<hp implies ka<hp = kB+wB. Hence w*<r(hp). By 24.7.
this entails ko+o*<kp+oP.

24.9, Inductive definition of the set SCla} of the strongly critical subterms of
an ordinal term o.

{i) SC(0) := 8 and SC{Q) ={Q}
(ii) If x¢H, then we define SCla) := U{SC(y): ye Hla)}
(iii} If a¢SC, then we define SCla) := U{SCly): ye Pla)}}
(iv) If aeSC, then SCla} := {at}

By SCnhla) we denote the set SCla}n().

As an immediate consequence we obtain by induction on Guo:

24.10. Lemma
We have «eB(B) <> SClo) c B(B). Since SCla) ¢ SCla)u{Qd} and we always
have QeBla) this may be sharpened to ae B{B) <> SCnlu) c B(B)

24.11. Lemma
We have Ka<hB if and only if SCnla)<$hp.

Proof

By 23.29. we have Ka<hp if and only if «e¢ B(hg). By 24.10. this is equivalent to
SCqla) ¢ B(hR)nQ = ¢hB.

24.12. Definition

o, if a<(}
(i) Du=
$ha if  Qco,

{ii) o«B <> a<BADu<DB.
We call the function D: B(QF) — Q the collapsing function for B(QI).

We read the relation o< B as "o is essentially less than B'.
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24.13. Lemma
(i) For aeT it is DaeT and Da< (.
(ii} For Be Tn() we have a« B if and only if «x<B.
(iii} o« B implies Da« DB.

24.14. Lemma
(i) SCqla)<Da.
(ii} ¢ SC or Q<o imply SCrla)<Da.

Proof

If a<{), then we have SChla)<a = Da. If x¢ SC, then we even obtain SCqla) <«
= Da. Therefore assume Q<a. Because of ka<hax we always have oeB(ha). By
24.10. this implies SCla)c Blha)n () = ¢ha, ie. SChla)<Dla).

24.15. Theorem {Characterization of the « -relation)
It holds a«<B if and only if we have a<f and SCpnla)<DB.

Proof

We start with the direction from left to right. Assume a<«p. This implies
a<B. If B<(), then we immediately obtain SCnla)<a<p =DB. If <P and a<(},
then it follows SCnla)<a = Da<DB. If finally Q<a<B, then ¢ha = Da<DB = ¢hB
already implies ha<hf. Because of Ka<ha<hp it follows by 24.11. SC{a)<¢hB
= DB.

For the opposite direction we assume o< and SCnh(a)<DB. If <, then a«B
already follows from o<B. So assume (Q<B. Then we have DB = $hBe SC. If a< 0},
then SCr{a)< DB e SC immediately implies o< DB. Therefore assume Q<ou<§. Since
SCrla)<¢hp we have SCn(a)c B(hB) which by 24.10. and 23.29. implies Ka<hg.
By 24.8. we then obtain ha<hB. Hence D« = ¢ha< ¢hp = DB.

24.16. Lemma
(i) a«Bxy imply nxy.
(i) It is a<Q+o and B+0 implies ax<anp.
(iii) If a;<gpoy0,, then we have ay« oo, for i =12,
(iv) If axB, then any«<PBuy and Q+oxQ+B.
(v) If axB and p¢SC, then ppo< ppp.
{vi) ay«<ay and By ouyB, imply o, B« @ugBs.
(vii) If oy, 09« B and BeH, then o;#oy«p.
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(viii) Do« an().

Proof

(i} is obvious.

(ii) x<(Q+ o is again obvious. By 24.14. it is SCrla) = §CH(Q+a)<D(O+a). Hence
o () + o

8 +0 implies a<a#B. If a =0, then we obtain the claim because SCh{0) =#.
Otherwise we have a#f¢SC and obtain SChla)c SCrlasB)<D{anf) by 24.14.
Hence a<a#p by 24.15.

(iii) It suffices to show SCnrlu)<Deoga,. If ¢oya,¢SC, then we obtain
SCnhlo) € SCrlpagory) < Dpoyay. If paryory € SC, then it follows SClo) s aj<{payoy} =
SCrlpuias) < Dooya,.

{iv} asy<Buy follows from o<B. We have SCnlany) = SCula)uSChlY). axB
implies SCr{a)<DB<D(B#vy) by (il) and, since B + 0, also SCn{y)<Dy<D{(Bsy).
Hence SCHlasy)<D(B#y) and it follows asy«<Bsy. This proves the first part
of (iv). For the second part we have (0+u<{1+B since a<B and obtain by (ii)
S5CH(Q+a)= SCrla)<DB< D(O+8). Hence N+ax}+f.

(v} From a<f we obtain ppa<¢pB. It is SChlepa) = SCr{p)uSChla). Since axB
we have SCn{a)<DBsD(ppB) and p¢ SC implies SCpr{p)<Dps DlgppB).

(vi) payBy< payB, follows from 17.8. It is SC{payBy) = 8Cla ) SCH(B)). By oy« oy
we have SCloy)<Days D(poyBy) and by By« payB, it follows SCriBy)< DipayBy,).
Pulling these resuits together we obtain SCpn(poyBy)<DlpayB,) and it follows
oy By< Poegfs.

It should be noted that for the proof of (vi) it would suffice to have the
assumption a;<ay and SCnloy) < D{payh,) instead of oy« oy.

(vii) oty oty < B Follows from oy,05<BeH. Since SCplay#oy)=SCqla,)USChHloy) < DB
we also obtain o # oy« B.

(viii) is obvious since Da<an() and SCnla)c SChlan()).

The « ~relation will be crucial for the definition of the semiformal system ID,,.
As already mentioned the derivation trees of ID,, will in general be ()-branching
trees whose nodes are labeled by ordinals in T. The derivation of a Il}-formula,
however, will just be a Z_-derivation, i.e. an w-branching tree. To obtain an
ordinal analysis of ID; we therefore will have to collapse the (-branching
derivation trees for Ilj-sentences in ID,, into w—branching derivation trees of Z,.
The effect of the collapsing procedure on the derivation trees and the assigned
ordinals will be controlled by the collapsing function D on the ordinals of T.
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So in order to obtain an ordinal assignment to the nodes of the derivations in
ID_, which still is a correct assignment after the collapsing procedure (i.e. an
assignment which is increasing in the direction from the top nodes to the bottom
node) it will not suffice just to assign ordinals which are increasing but we
will have to assign ordinals which are essentially increasing i.e. increasing in
the sense of «. This of course causes problems in the case of an inference
with Q-many premises since for no ordinal we¢T there are Q-many different
ordinals az« a. To meet this difficulty we imagine a partial function f: On — On
which enumerates the ordinals of an inference with infinitely many premises.
The domain of f then corresponds to the ‘number’' of the premises of the
inference. For such functions f and an ordinal @ we are going to define a
relation f«a which will be sufficient for the collapsing property.

24 17. Definition

Let f: On — On be a partial function such that domf is a segment of On and
a be an ordinal. We say that f is essentially less than o, in symbols f«a, if
the following conditions are satisfied:

(1) VEedomf (fE<a)
(2) VBVEedomf (ax BAfxB = fExf)

24.18. Lemma
(i) f«a and ax B imply f«B.
(ii) If fE< o for all Ecdomf, then we have f« .

Proof

(i) We have fE<a<B for all Ecdomf. If By and E«y, then by axp we also
have oy and obtain fE«y by 24.17.(2).

(ii) fFE«< o immediately implies fE<a for all Ecdomf. Now if «x B, then we obtain
fE«<ax B which shows that 24.17.(2) is satisfied.

It follows from 24.18.(ii) that the relation f« o in fact is a generalization of
the relation f(§)«« for all £edomf. It will therefore suffice to secure ap«a
for the premises of an infinitary inference in order to obtain a correct ordinal
assignment. The details of the definition will be given in §26.

24.19. Lemma

Suppose f«a. Then we have
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(i) A QO+ ffxc+a,
{ii) M. (fEnylxany
and

(iii) v ¢ SC = AL, ¢y {fB)« pyor.

Proof

(i) It is domAE. Q+fE = domf. For Eedomf it is Q+fE<Q+o. If Ot+toagP and
Eedomf such that E« B, then we obtain assf by 24.16.(ii). By 24.17.(2) it follows
ff« B and we obtain SCH(Q+fE) = SCH(fE)<DB. Hence 3+ ff«B.

We prove (ii) and (iii) simultanecusly. To do so we define g := AL (fEsv)} or
g = M. eY(ff) and oy :=asy or ag = pya respectively. Then in any case we
have domg = domf, axay and y«o,. For £edomg we obviously always have
gE<og. Now if g P and E«P for some E¢ domg, then it follows asp which
first proves fE«B. We have SCn(gE) = SC(fE)USCn(y)and obtain SCh(fE)<DB
from ft«B. Because of Yxugxp we also obtain SCn(y)<DB. Altogether we
have gf«B. Hence g« B.

24.20. Remark

The reasons we gave for the definition of the relation f« o were purely technical.
Of course it were the technical necessities of the proof of the cut elimination
theorem which led us to the above definition. There is, however, another aspect
under which this relation seems to be interesting. The ordinal () relativized to
the notation system T (i.e. the term interpretation of Q as we will call it in the
following section) looses its regularity. We have TAQ = $(QF) = suplda, : n<o}
which shows that () relativized to T has cofinality . But OnT should in some
relativized sense reflect the regularity of (). We shall see in what sense. It is
easy to see that a regular ordinal may be characterized in the following way:
x is regular <> Yf(Fun(f) = Vn<x (sup{ff: E<nl<x))
It is now obvious that ONT cannot be a model of the sentence ‘() is regular'
if f still ranges over all functions. But perhaps it should be possible to restrict
the range of the quantifier ¥f. If for instance we restrict the quantifier to
functions which are x-recursive, then we obtain the notion of a recursively regular
ordinal. The question is if there also is a class F of functions such that QrT
becomes regular relative to that class of functions, i.e. such that
(T,<}T.F) E'Q is regular’.

To obtain such a class we call a function f an admissible function for T if
rgfc(} and there is some oeT such that f«o. We then have the following
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lemma.

24.21. Lemma
Let M be a subset of T which, relative to T, is bounded in ) and f is a
function which is admissible for T, then sup{ff:teM}eTnQ.

Proof

There is an xe TN such that E<a holds for all E¢ M. On the other hand there
is a B¢T such that f«B. Now E<ua<(} implies ExagonfeT. Since also Bxasp
we obtain from f«B already fE«ouB. Hence fE<D(unB) for all £¢ M and the
proof of the lemma is completed.

As a consequence of lemma 24.21. we obtain that (T,<M. %) E 'Q) is regular’
holds if F is the class of functions which are admissibie for the notation system
T. One easily checks that Idy « (). Hence Id is a function which is admissibe
for T. Together with 24.19. this provides us with a wide class of functions
which are admissible for T. It is exactly this class which will be relevant for
the cut elimination procedure in §27.

24.21 Exercises
1. Prove the following statements:
(i) BeSC(a)AB200=>8=0Q
(ii) SCL(a)c B(B) <= ae B(B)
(iii) a<Q=> SC,(a)<a
2. Compute:
(i) DO
(i) D(e,, )
(iii) D(Q+e,)
(iv) D(Q+¢Q)
3. Compute the following sets:
(i) {a: ax0}
(i) {a:axQ-w}
4. Let f,g : On —» On be functions such that domf = domg ¢ On. Show:
(i) idln«n for all neT

(ii) fxo,gearaeH= f+g « «
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§25. Alternative interpretations for Q)

Hitherto we always assumed that () denotes the first regular ordinal above w.
But we already indicated that there might be alternative interpretations for Q.
In the first version of the proof of 22.16..the completeness theorem for £1,
we already did interpret QO by wFK, the first recursive regular ordinal above w.
For the treatment of the theory of arithmetically definable inductive definitions
this interpretation is in fact the natural one. In the present section we will
show that this and further interpretations of Q are consistent with the develop-
ment of the ordinal notation system in 8§ 23 and 24.
In a first remark we notice that in the definition of ordinal addition and of
the ¢-function the ordinal Q is of no importance. We therefore may presume
that + and ¢ with all their properties developed in 8§ 7 and 17 are independent
from the interpretation of Q.
In the case of the {¢~function the situation is completely different. Since we
defined the function ¢ and the sets B(a) simultaneously the ordinal ) enters
via clause (B1). Theorem 23.10. shows the importance of the ordinal Q in the
development of the ordinal notation system. It is now an obvious question to
ask to what extend the notation system will be changed, when in clause (B1)
we replace the first uncountable regular, which from now on will be denoted
by Ry, by some other ordinal.
To tackle this question we are going to take () as a symbol or variable for an
ordinal without further information. When we try to develop the theory of §§ 23
and 24 with a free variable (1, then already the proof of lemma 23.2. becomes
impossible. The regularity of Q played a crucial role for the proof. A further
inspection of §§ 23 and 24, however, shows that this in fact was the only place
where we used the regularity of ). In later applications we always used lemma
23.2. Therefore it is an obvious idea to use lemma 23.2. as a defining axiom for
). We introduce the axiom

(Axn) Valga<Q)..
By assuming (Ax) we may develop the theory of 88 23 and 24 for ordinal terms
built up from the functions +,9,0 and the variable O without serious problems.
Some places, however, need some caution. So for instance lemma 23.22., where
we need o + ). These and more silly difficulties are easily avoided by the
additional requirement ¢ SC. This requirement, however, is not essential but
just for convenience (cf. exercise). We leave it to the reader to convince
himself that (Axp) and Qe SC are in fact sufficient to obtain §§ 23 and 24. In
order to distinguish ordinals from ordinal-terms we will, for the moment,

147



§25. Alternative interpretations for Q

denote ordinal-terms by lower case latin letters. After the identification of
ordinal terms and their standard interpretations we will be able to drop again
this distinction,

An assignment V{(() ¢ SC for the variable (1 will be called an interpretation V
for 0. If V is an interpretation for (), then we define sets BY(a) and a function
¢V in the following way:

25.1. Inductive definition of the sets BY{(x) and the function ¢V
(BVD) {0, VOlcBVin).
(BV2) If = \gfi+..+E, and {,...E }c BV(a), then also E¢ BV{a),
(BV3) If £ = ypoEiE, and {E,,E,}c BV(a), then also Ee BV(a),
(BV4) If £eBV{alnx and E¢ BV(F), then ¢VEeBla).
(PV1) $Va := min{E:E¢ BV (a) ).

If we define n = pp{/VE <> n = §VEAE¢ BV(E) then clause (BV4) takes the form
(BV4') If n=pnpdVEAEeBVY(a)na, then e BY(a).

The only essential difference to definition 23.1. or rather to the variation of

23.1. given in 23.19. is the fact that in clause (BV3) we have built in the normal

form condition for §VE,

Since according to theorem 23.26. all ordinal-terms in the set B(QT) are uniquely
represented by terms of the set T, we may extend the interpretation V to the
terms in B(QT) as in definition 25.2. below. The value of an ordinal-term a in
the extended interpretation V will be denoted by aV.

25.2. Definition of aV for ae B{OT)
(i) 6V := 0, OV = V(Q).

(ii) If a = ypa;*...+a,, then a¥ = aY+..+a.
(iii) If a = yppaay, then a¥i= paVa,’.

(iv) If a = \ypda,, then a¥ := Va¥.

The degree Ga of an ordinal term a is defined analogously to the degree of an
ordinal aeT, i.e. Ga is the stage of the term a in the inductive definition of
the set T of ordinal terms.

We call the interpretation St{Q)) := 8, the standard interpretation for Q. In §§
23 and 24 we developed the theory of the standard interpretation for 0. It follows
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from lemma 23.25. that the sets B{a) and BS*(a) and therefore also the functions
¢ and ¢St coincide. Theorem 23.26. may be interpreted as the statement that
every ordinal w¢B(R]) is the standard interpretation of an uniquely determined
ordinal term a,e¢B(OT). Now let V be an interpretation for (). By defining
aY := a¥ we obtain by 25.2. a mapping Y:B(X{) — On. For Mc B(x") we denote
by MV the image of M under V. The mapping S* then obviously is the identity
on B(R,r). Therefore we are going to drop again the distinction between
ordinals and ordinal terms and identify ordinal terms and their standard
interpretations.

25.3 Definition

An interpretation V for Q is good relative to an ordinal B if $¥aV<V(Q) holds
for all ae B(B)n(B+1). An interpretation which is good relative to ¥, I is a good
interpretation.

The result of lemma 23.2. may now be reformulated as:

25.4 Theorem

The standard interpretation for (1 is a good interpretation.

25.5. Lemma

Let V be an interpretation. Then we have for all ae B(r,")
(i) aeH= o' ecH,
(ii) xe SC => o € SC.

Proof

If « = R,, then we have & = V(1 and obtain VQ2¢ SCc H since V is an interpretation.
If « = qpeo oz, then we have o = paYa,Y which implies o e H.

If o = o, then it is o = (VoY and by 23.5. (whose proof does not need (Axg))
we obtain oY ¢ SC.

It is T'(0) = min{E: FE=E}. By theorem 23.10. it follows that the function ¢
restricted to I'"(0) coincides with the function AE.T. Since the definition of the
function A{.Tg does not depend upon the value of V(} we have that ¢V and ¢
coincide below I'{0) for every interpretation for which we have I'{0)<VQ.
{Otherwise ¢V could be shifted a litte bit at the place where V() comes into
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BV(B)). But we have to be careful. In order to use the above argument we have
to know that theorem 23.10 holds for all interpretations, i.e. we have to convince
ourselves that we do not need (Axg) in the proof of 23.10. The facts we need
in the proof of 23.10. are the following:

(1) BV(0O)NVQ = P(0O).

(2) E<n=> BV{E}c BV(n). Hence E<n = ¢VE<{Vn.

(3) If E<I"(0), then Ee BV(E+D ATz = VE => ¢V(E+D = (PVE)T.

(4) $VII'(0) is continuous.
Since T,<T'(0)<VQ (1) again follows from a comparison of the definitions of
P(0) and BV(0). (2) holds trivially. What we really need to prove is (3) and (4).
(3) is lemma 23.9. (i) and (4) is lemma 23.7. and in both proofs we used (Axp).
We therefore have to reprove (3) and (4) without using (Axpn). To prove (3)
we observe that £¢ BV(E+1) implies $VE<QV(E+1) e SC. So it remains to show

(5) PVEHD < (HVEIT.
Assume that ($VE) < ¢V(£+1). Then (PVE)TeBV(£+1). Since (PVE) ¢SC and
BV(E+1)nSC only contains ordinals of the form ¢Vn<{¢VE or V() we obtain
(WVET =VQ. But then we have V0 = (VEN =Tp,y. E<I'(0), however, also
implies T'g.y<I'(0)<VQ. A contradiction.
To show (4) we simultaneously prove sup{¢Vn: n<f} = ¢VE for EeI"(0)nLim and

(6) E<T'(0) = JVE =T
by induction on E.
Define p := sup{¢Vn: n<E}. Then p<¢VE by (2). Assume p<{VE. Then pe BV(E). We
obviously have p¢ SC. All strongly critical ordinals in BV(E) different from V()
are of the form ¢Vy for some n<E. Hence ¢ = VQ and using the induction hypo-
thesis for (6) we obtain VQ = p = supl{Ty: n<&} = Tg<I"'(0)< VQ. Contradiction.
This proves (4). For the proof of (6) we distinguish the following cases:
£ =0. Then ¢VO0 =T, by (1).
E=E+l Then E<Tg ={VEc BV(E)c BV(£+1) and by (3) and the induction
hypothesis it follows ¢VE = (GVE)NT = (I“Eo)r =T

If £¢ Lim we immediately obtain the claim from (4) and the induction hypothesis.

25.6. Lemma
Let V be an interpretation such that I"(0)<V(Q). Then we have ¢VE =Ty and

EV = E for all £<I'(0).
Proof
We already have shown Vg = I’y for all £<T'(0). We prove EV = £ by induction
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on GE If £ is not of the form ¢Vn we obtain the claim immediately from the
induction hypothesis. If I"(0)>E =g ¢n then we have n<I'(0) and, using the
induction hypothesis, obtain £V = ¢VnV l='l"'q)Vn =Tp=¢n=¢

Another property which is provable without using (Axg) is the following:
{7} E¢ BV(E)nn = ¢VE< V.

To prove (7) we assume Ee¢BV{(E})nn and observe that by (2) we then have

Ee BV(n) and ¢VE< V. By (BV4) it follows ¢VEe BV(n) which implies ¢VE + ¢Vn.

In order to have lemma 25.6. we from now on tacitly assume that for all inter-
pretations we have T'{0)<VQ.

Now let © be an ordinal and suppose that V is an interpretation which is
good relative to ©.

25.7. Lemma
(i) For all ordinals o.p in B(©+1) we have u<B if and only if o¥ <Y,
(ii) For all ordinals  in B{©)n(©+1) we have that o< B(B) implies «¥ ¢ BY(8Y).
(iii) For all ordinals o.B in B(©+1) such that a < Cr(B) we also have «¥ ¢ crigV).

Proof

We prove claims (i) and (ii) simultaneously by induction on 26%+2G8

(i) In the proof of claim (i) we follow the distinction by cases of 23.30. It
suffices to show a<f=> oV <BY. The opposite direction then is an immediate
consequence.

If «=0 and B * 0, then we have also «¥= 0 and BY+ 0 which imply oV <gV.

If o = qpoyt.. 4oy, then it is 200 +28%ivt (9Gx 9Gx, 9GB 5 -1, n-1. By
23.22. we have {a,,...,0,}c B(©+1) and obtain by the induction hypothesis first
oY >...2ay and by 25.5. also oY ¢ H. Hence oV = \go +...+aY. For B = B+ *Bm
we analogously obtain BY = gY+..+8Y. Now if ay=B; for all j<i and ojry<Bisys
then we obtain by the induction hypothesis oY =8Y for all j<i and «¥,<BY,.
By 23.30.(2) (which does not depend upon (Axp) but only on the results of §7)
it then follows oY <gVY.

If BeH and o, <B, then we also have ¥ ¢H and obtain a <BY by the induction
hypothesis. Hence a¥Y <8Y by 23.30.(3).

If ceM, B = qpBy+...+B, and a<B,, then as before we obtain BY = \gBY+..+BY
and oV <BY by the induction hypothesis . By 23.30.(4) it follows a¥Y<8Y.
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If o = ppa oy and B = pePiPg, then we have {o,000,8,85)c B(O+1) by 23.22. and
obtain oY <BY by 17.8.(2) and the induction hypothesis.

If @ = yppoyy and Pe SC such that o,,x,<B, then we obtain oY = paYay and
a0y <BY by 23.22. and the induction hypothesis. By 25.5. it follows BY € SC
and by 17.14. we obtain oV <fY.

If aeSC and B = yrpPByB,. then we have <Py or a =By and B, + 0 or a<P,. By
23.22. and the induction hypothesis it follows aV<gY, o¥ =8 and By +0 or
aY < 32V . By 25.5. we also have oY € SC and obtain oV = tpaV{)( q;ﬁiv Og epB,V Bg}f =BY
in the first case. In the second case it follows a¥ = paV0 = ¢BY0<9BYBY = BY
and in the third case oY <BY <988y =B8V.

Now if o = gy and B = g, then we have 208%0 9 G0 _9Gx 9Gx, 9GP 4nd
analogously 2CBo, 9GBa, 9G% 9CB we have og € Blog) and by 23.25. a3<©. Hence
g ¢ B(©). Similarly we also obtain B,e B(Bp)nB(©). Therefore we may apply the
induction hypothesis for claim (ii) to «, and B, and obtain oy ¢ BV(nY) and
BY ¢BY(BY). This implies oY= p\pd¥Yay and BY= ypdVBy. By the induction
hypothesis for claim (i) we have o <BY and obtain oV <Y by (7).

If finally o = yp(o, and B = R, then we obtain as above age B(@)n©+1. Since V
is a good interpretation relative to © it follows oY = Ll)va;"< VO =8Y.

(ii) If o =0 or a = ®,, then we have oV e BY(BY) according to (B1).

If o = gpoy+... 4, OF o = jpP 0y, then we either obtain oV = e V+. . +a,V or
oV = yreoy Yo,V by the induction hypothesis for (i) and 25.5. By the induction
hypothesis for (ii) and (BV2) or (BV3) respectively we obtain «¥ ¢BY(BV).

If o = gpdo,, then by 23.25. we have o,¢ B(B)nfBc B(8)n(©+1). By the induction
hypothesis for claim (ii) and (i) we obtain oc(}' € Bv(oc(,v)r\Bv(BV)r\ BV. By a clause
(BV4), however, this implies oV = (p"cx;’ eBY(gY).

We prove (iii). If aeCr(B), then we either have a¢ SC and B<a or o =g P 0y
for some o;2B. In the first case we obtain aVeSC and BY<aV by (i). Hence
aVeCr(BY). In the second case it follows that «¥ = paYa,Y. By (i) it is oY>BY
which implies a¥ e Cr(gV).

25.8. Lemma

If Be BI®)NO+1, then for every we BY'"™(BY) there is an ne B(B) such that « =Y.
It is neH whenever aucH.

Proof
We prove the claim by main induction on B with side induction on n.

If =0 or o=V}, then we define n:=0 or n:=R,. In both cases we have
1€ B{B).
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I o= poyt..ta, or o= gppayoy, then by induction hypothesis there are
ordinals nq,...,n, Or 1,0y, respectively, which are in B(B)nB(8) such that o = ny
holds for k =1,...,n or k = 1,2 respectively. Now we define 1 := n+...+n, or n:=
pnMe respectively. Then it is neB(B). In the first case we have oype¢lH and
obtain 7, ¢ H by the induction hypothesis. nY>...> n,Y implies 0y2...2n, by 25.7.
In the second case we have 7ny,my<n. 1y =1 implies 1€ SC and n, = 0. Hence
oy =n"eSC by 25.5 and «, = 0. This, however, contradicts o =g Pxdp. If
Ny =7, then ny,eCrin+1). By 25.7. this implies nyY € Cr(n,Y+1) which entails
POy oLy = qzmvnzv = nzv = o in contradiction to o =\p @ayy. Hence ny,n,<n and we
have 1 = \zmy+...+1, as well as n = PNy and in both cases it follows nY =«
In the second case we obviously also have neH.

If a = NF(]JVO(O, then by the side induction hypothesis there is an n,e B(B)c B(©)
such that 1Y = a,. From the normal form condition we obtain 7y ¢ BY(ny). Since
ny = ay,< BV we obtain 7,<B by 25.7. Hence 1, € B(8)n(©+1) which implies 1, ¢ Bln,)
by the main induction hypothesis and 25.7. If we define 1 := {n,, then we have
n = npdn,. Hence ne SCAB(R) and 7Y = ¢V = o

25.9. Corollary
Assume Be B(O). Then we have B(g)Y = BV(gY).

Proof

o e B(B) implies oY e BY(8Y) by 25.7.(ii). If conversely aweBY(8Y), then by 25.8.
there is an n¢ B(B) such that o = 1Y. Hence xeB(B)VY.

As an immediate consequence of 25.9. we aiso obtain

25.10. Corollary
For every good interpretation V. we have BT}V = BY((vO)T).

Proof

Define the sequence A, as in the proof of 23.14. Then we have A, ¢B(4,) for all
n<o and B(&) = U{B(A,): n<w}. V is good relative to all A,,. Hence B(rJ)V =
U{B(A,)V: n<o} = LEBY(ALY): n<w} = BV(VQD) since sup{A,Y: n<w}=val

25.11 Theorem

(i) If V is good relative to © and Be B(®), then V is an isomorphism
from B(B) onto B(B)V.
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(ii) Assume that V is a good interpretation. Then V is an isomorphism
from B(x) onto BVU(VQ)T)

Proof
{i) follows from 25.7. and 25.9. while (ii) follows from 25.7. and 25.10.

The main concern of the present section is to show that the segment of the
notation system does not depend upon the interpretation of Q. For this purpose
we are going to show that the mapping V is the identity on the ordinal segment
in B(®). This is a consequence of the following lemma.

25.12. Lemma
IfV is good relative to ©, then we have BY (a¥)nVQ = ¢VaV for all a< B(©)n(O+1).

Proof
Since V is good relative to © we have ¢VaV<VQ for all aeB(®)N(O+1) and
prove BY(aVInVQ = ¢VaV as in 23.6.

25.13. Theorem

If V is a good interpretation relative to ©, then we have
(i) BV(«V)nVQ = Bla)nR, for all aeB(O)N(©+1)
and
(i) oV = o for all a<{(@®).

Proof
If V is a good interpretation relative to ©, then for all ae B(@)n(6+1) Vs an
order isomorphism from Bla) onto BY(aY) mapping 8, to VQ. According to
25.12 Bla)nr, and BY(aV)NV() are segments. Thus ¥V has to be the identity
map on Bla)ni,.

We prove the second part of the theorem by induction on Gua. For a =0 it is
oY = 0.

If o = qpoty+... 40, OF & = ypPo, oy, then we have a)Y = oy for k =1,...n or k =12
\%

respectively by the induction hypothesis. Hence aY = aY+..+aY = o+... 4o, =

or a¥ = paYay = oo =a respectively.
If a = pbo, then we have oy¢ B(8)N® and obtain Bv(aov)f\VQ = Blag)nR, by

the first part. Hence aV = ¢V = o, = a.
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25.14. Corollary
For a good interpretation V we have oV = a for all weB(RI)NR,.

Proof

Let {A,: n<w} be as above. For every aeB(X,J)nR, there is an n<w such that
e B(a,)nRy. Since V is good relative to A, we obtain oV = o« by 25.13.

Corollary 25.14. shows that the segment of the notation system below R, is
invariant under reinterpretations of (), provided they are good interpreta-
tions. This of course becomes wrong for the ordinals above ®,. These ordinals
will be moved by a reinterpretation of (. The moving of these ordinals is
characterized by the function a +— «¥. As we saw in 25.7. this function is order
preserving.

25.15. Theorem

Assume ©e¢B(O). If V is a good interpretation relative to ©, then we have
PO<VQ.

Proof

Assume that V is a good interpretation relative to ® such that VQ<{¢@®. By 25.13.
it follows that VQ<{® = §VOV in contradiction to the hypothesis that V is
good relative to ©.

25.16. Corollary
For any good interpretation V we have P(x ) <VQ.

Proof

Again we denote by {A,: n<w} the fundamental sequence for ¥I' (cf. 25.10 and
23.14.). Then V is good relative to all A,. Since A,¢B(A,) holds for all n<o
we obtain by 25.15. ¢(A,)<VQ for all n<w. Hence $(x,\)<VAQ.

Our hitherto only example of a good interpretation for (1 is the standard inter-
pretation. We are now going to show that there are much more good interpre-
ations. We will even be able to give a precise characterization of the good inter-
pretations.
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25.17. Lemma

Let V be an interpretation and © an ordinal such that ${(@)< VQ<R,. Then we have:
(i) BV<B holds for all peB(®)
(ii) V is a good interpretation relative to all B<®©.

Proof

We prove (i) and (ii) simultaneously by main induction on GB and side induction
on B. We first show (i).

1If B=0, then BY =B and if B =&, then BY = VOQ<R, = B.

If B = pNEByt... By ot B = peByBs, then we obtain the claim immediately from
the main induction hypothesis.

Let B = ygiBy. Then we have P,¢ B{8)~O and V is good relative to B, according
to the main induction hypothesis for (ii). But we also have Bge B(Bg)nBotl by
the normal form condition and obtain BY = $VByY = ¢Bg = B by 25.13.

To prove (ii) we have to show that Ee B(R)nB+1 implies ¢VEV<V (). So assume
Ee B{B}nB+1. Then we have $E<{B.

For 8 =0 it is £ = 0. Hence ¢VEY =T, = $0< @< V() by 25.6.

If Be Lim we distinguish the following cases.

1. 8 = £. Then we have E¢ B(E) which implies that $E is in normal form. If 8<{B
we have £ = B<{B<$Q = I''(0) which by 25.6. implies ¢VEV = ¢E = Ie<I"(0)<VQ.
Now assume §B<fB. We have $Be B(B)n© since Be B(O)NO. We may now apply
the side induction hypothesis for (i) and obtain ¢VBY = (¢B) V< Pp<PO< V.

2. E<B. Since B(B3) = U{B(n): n<B} there is an n<p such that £¢ B{n)ny+i. By side
induction hypothesis for (ii) we have that V is good relative to n which entails
PVEVVQ.

We finally assume B8 = By+1. If B<{B, then we again obtain E<B<{B<¢Q = ' (0).
Hence ¢VEV = TE<T"(0)< V() by 25.6. Now assume ($B<B. There is an ae B(R,F)
such that ¢€ = jpda and in the terminology of lemma 23.23. it is o = E(E)2E. If
E=8, then « =% as £¢B(B) and therefore E(E) = B(B) = min{n: B<ne B(B)} = B and
we obtain ¢f € B(O)NE from Be B(O)n© and ¢p<B. By the side induction hypothesis
for (i) it then follow QVEY = ¢VBV<YB <O<VQ. If E<B, then P = jgppo ¢ B(B)
which by 23.25. implic aeB{(B)nBcB(©). By the side induction hypothesis for
(ii) we know that V is ioo0d relative to By. So E<a by 25.7. implies EV<aV and
as Yo< PB<B we finally cotain $VEV<pVaVcPu<PB< PO < VQ by the side induction
hypothesis for (i).

25.18. Lemma

Suppose that © is a limit ordinal such that (© < V(. Then we have YVEV = (¢E)V =
VE<UO for all E¢ B(OING.
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Proof

If ®;<V(), then we prove as in 23.2. that V is a good interpretation.

If Vl<®; and E¢B(O)nO, then we have £¢B(n)nn+l for some n<®. By the
hypothesis §@< V() and 25.17. it follows that V is a good relative to 1. Hence
YVEY = ($B)V = YE by 25.13.

25.19. Theorem
An interpretation V is good if and only if ({8 )<VQ.

Proof

If V is good, then $(¢,/) <V Q. by 25.16. For the opposite direction assume PN <
VQ and E¢B(xTIn(xT+1) = BF)Ar,T. Then we obtain $VEY = gE<(r N< VO
by 25.18. So V is a good interpretation.

25.20. Theorem
The following interpretations are good interpretations:

(i) VO := »,. This is the standard interpretation denoted by St

(ii) VO := oF¥. We call this interpretation the recursive standard
interpretation and denote it by Rec.

(iii) VQ := P(&F). We call this interpretation the term interpretation
of 0.

Proof
(i) and (iii) are already proved. (ii) follows from 25.19. and corollary 23.32.

In a last remark we return to (Axp).

25.21. Definition ,
We call an interpretation V a global model of (Axg) if we have VE (§VE<VQ).
We call it a local model of (Axg) if it holds YEe BUVQ)T) (¢VE<V Q).

If Vis a global model of (Axp), then the theory of §823 and 24 holds for the
sets BV(x) and the function ¢V in the same way as it did for the sets B(o) and
the functions ¢. This shows that we may replace %, by any ordinal & which
satisfies (Ax) without changing the theory. Therefore it is worthwhile to obtain
a characterization of the interpretations which are global models of {Axp).
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25.22. Theorem
The following statements are equivalent:
(i) V is a global model for {Axg)
(ii) V is a good interpretation such that (rRF)<VQ
(iii} V is a local model for (Axg) and it is Y¥V(VOT)< VO

Proof
From (i) we trivially obtain that V is a good interpretation. But then we also have
P = suplP(a, (8,0 : n<w} = supl VA, (R,DV: n<w} = V(sup{A(®,)V: n<w))
= PV(suplA, (VD) : n<o}) = $V(VQT) < VQ by 25.13. and the continuity of ¢V (cf.
17.22 and 23.7.).
Assume (ii) and choose any Ee BY((VO)T) then by 25.10. there is an neB(&,r)
such that £ = nV. Hence YVE = yVnV<VQ. So V is a local model for (Axn). We
recursively define a sequence A by A,V :=VQ+l and AY,, :=¢(4Y)0 and
obtain sup{A,Y: n<w} = (V)T as well as AY ¢ BV(E)IN (V)T for all n<w and all
ordinals E. It is obvious that AY = (A,(8))V (cf. 17.22.) and we will also obtain
) YVIVOIT = supl{pVaY: n<wl.
From (%), 25.14. and 23.7. we obtain $V(VQ)T = sup{PA,(%)): n<wl = pr )< VQ.
We prove (*). ¢ := sup{¢VA,Y: n<ols ¢VIVOIL is obvious. By 25.13. it follows
o = sup{$ A (%)) : n<o} = PRTI<VQ. If we assume o<¢V(VQ)T, then we obtain
an me o such that 6e BY(A,Y)n V(). Hence $(#{) = 6<¢VAY = $A,,(R,), a contra-
diction.
Now assume (iii). We first observe that a<f and [o,B)nBV(B) = # imply BV(«)
= BV(B) and therefore also ¢V = ¢VB. This is the relativized form of 23.3.(iii)
whose proof does not use (Axn). We easily obtain BV-n(B)c BV(VQD)A(VQ)T
for all n<w and all ordinals § by induction on n. Hence BV(B) c BY(VQI)n(vVQ)L.
Now let £ be an arbitrary ordinal. If E<(VQ)T then A(E) := minf{n: E<ne BV(E)] is
defined because there is an n<o such that E<A,Y ¢ BV(E). But then $VE = YV(A(E))
< V0 since V locally satisfies (Axqg). If (VQ)T<E, then we obtain $VE = ¢V(VQ)T
<V0). So V is a global model of {Axg).

25.23. Corollary
If $(r5)<VQ, then V is a global model of (Axp).

Proof
This follows from 25.19. and 25.22.
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As an immediate consequence of 25.23. we obtain

25.24 . Theorem

The recursive standard interpretation is a global model of (Axq).

25.25. Remark

The term interpretation, however, is not a global model of (Axg). It is easy
to visualize why. If we interpret Q by ¢(x[F), then ¢(xT) comes into the set
BV(VQT) which enlarges the segment belonging to BV(VQTD). Hence VQ = ¢ )
<PV(VQD) = Otyp(B(x[)) .

25.26. Exercises

1. Prove the following statement.
If VOeT'(0\SC, then we have Iy = ¢ Vo

2. Describe the behaviour of ¢V for V(e SCNT'(0).

3. In this exercise we are going to drop the assumption VQe SC in the definition
of an interpretation. Such a generalized interpretation V for ) is called good
relative to 8, if $VoV< sup{AeSC: A<V} holds for all e B(BIN(B+1).

(i} Show that the theorems 25.19. and 25.22. still hold for this definition.
[Hint: Define HY := Hu{VQ}, SCV := SCuU{VQ} and modify the normal form
conditions by replacing H by HY and SC by SCV respectively. Then check all
lemmas and theorems of the preceeding section.]

(ii) Show that lemma 25.7.(i) does not hold if we weaken the definition of
an interpretation being good relative to B as follows: V is good relative to B,
if P¥aV<VQ holds for all aeB(B)N(B+1).

4. Assume VQ =yg o, then we have ¢a<dVoV.

5. Assume again VQe SC. Prove the equivalence of the following statements.
(i) V is a global model for (Axp).
(ii) It holds YVUVT) = ¢(,F) and $VEY = ¢E for all Ee Bx,).
(i) It holds ¢V (V) = ¢(x]) and (YE)V = ¢E for all EeBlR,).
Gv) Veva)h) = BVUVaYD) ~ VO
m pYavayh<va
(vi) ¢V is continuous and we have ¢V (E+1) = ($VEI.
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6. Let again be V(¢ SC. Show that the following statements are equivalent.
(i) V is a good interpretation.
(ii) For all E¢B(®,7) we have ¢VEY = (L.
(iii) For all E¢B(x,I) we have (¢8)V = (E.
(iv) For all ordinals £ it is BV(E)c (VQ)T,
(v) For all ordinals £ it holds ¢VE< (V).
(vi) For all £¢ B(x,1) it is BY(EV)c (VQIT.
(vii) For all E¢ B(x,T) it holds ¢VEV< (VY.
(viii) For all E¢ B(x,T) it holds ($E)V< (V).

7. Show that the following statements are false

(i) If ¢V is continuous, then V is a global model for (Axg).

(i) If ¢V (E+D < (YVE)T holds for all ordinals £, then V is a global model for
(AXQ)

8. Let V be the term interpretation. Show ¢Y((VQ)T) = Otyp(B(x,7)) = (¢, NT.

$26. The semiformal system 1D,

In chapter 1 we obtained an infinitary system Z by adding the cut rule to the
validity relation |§ for & . The ordinal analysis for the system Z, of pure number
theory then had been obtained by embedding Z, into a semiformal subsystem of
Z,. In a similar manner we will now construct an infinitary system 1D, from
the validity relation &L k5 for &£1,. It should be clear that, in analogy to the
situation in the case of Z,, we will need the cut rule. But this alone will not
suffice. Also the (Clg)-rule will be necessary. Since the cut rule as well as
the {Clp)-rule preserve validity the addition of both rules to the validity
relation £L! K will not disturb the soundness of the resulting infinitary
system ID,,. The necessity of the (Cly)-rule can be motivated in the following
ways.

Our aim is an ordinal analysis of ID,. To obtain an ordinal analysis it will not
suffice just to embed ID; into the infinitary system ID,. What we really need
is a semiformal subsystem of ID_,. A semiformal system is obtained from an
infinitary system by restricting the ordinals to a recursive ordinal notation
system. Now assume that the infinitary system ID_ is obtained from the
validity relation ﬁfn K just by adding the cut rule and try to obtain a semiformal
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subsystem by restricting the ordinals in ID,, to any recursive ordinal notation
system. In order to interpret the fixed points 15 of the language £; we need
class terms of the form {x: xeI5©). So the notation system has to contain a
symbol 0. In order to obtain a sound interpretation of the derivations of ID,
we in general will have to interpret () by the ordinal wCX. But there is no
recursive notation system which contains a segment of length wF%. The ordinal
Q) viewed from the notation system, however, merely represents the ordertype
of the ordinals below Q of the notation system and this must be an ordinal
less than mFK‘ This has the consequence that it will not longer be possible
to import the property 15 =14 from the real world into the semiformal
system as we did it in the completeness proof for ¥L k (where we interpreted
O by k), In order to prove 159 = IQ we therefore need the Cl,-rule in the
semiformal sytem. Another consequence is that a semiformal subsystem of ID,,
necessarily has to be unsound (cf. theorem 26.16).

There is also a more proof theoretical reason for the necessity of something
like the Cln-rule. If we anticipate the result of §29 that the wellordering of
the ordinal T, is provable in the formal theory ID, and take into account the
results of chapter 1l the necessity of a new 'infinity axiom' for any semiformal
system which allows an ordinal analysis for ID; is not surprising. Due to
chapter 11 the autonomous ordinal of any semiformal system whose only
infinity axiom is the existence of v is I'\>). Since ID, proves the wellordering
of I, there cannot be an ordinal analysis of ID in a semiformal system without
an additional infinity axiom. In the case of ID,, the new infinity axiom will be
given by the Cln-rule which may be taken as a defining rule for the ordinal
symbol Q.

Already in the case of the infinitary system Z., and its semiformal subsystems
there are important differences. We have proved that the infinitary system is
complete. Since all valid Ili-sentences have norms below mFK the system Z,
remains complete even when we interpret () by MFK. A semiformal system,
however, will always be incomplete. The reason for this incompleteness is the
fact that the segment covered by any recursive notation system for the ordinals
will always be an ordinal B<w{* while on the other side there is a [lj-sentence
F whose norm is an ordinal between B and X .This implies that F cannot be
provable in the semiformal system Zg since there are not enough ordinals in

3) Since every infinite recursive ordinal notation system contains the ordinal w
as a segment we can import all properties of © from the real world into every
semiformal subsystem of ZQ. Therefore we do not need an explicit infinitiy
axiom for w in Zgn.

161



§26. The semiformal system 1D,

the notation system. The difference between the complete infinitary system
and its semiformal system in the case of ID,, will become even more drastic.
We already mentioned that a semiformal system containing an infinity axiom
for Q1 necessarily is unsound. The reason for this unsoundness again is the
different meaning of the ordinal Q) in the real world and in the notation system
(cf. 26.17).

26.1. Definition
Recall that be I3* we always denote the class term {x: x¢JA%} and by I3
the class term {x: x¢I5%} We introduce the convention that A(I{*) always
denotes a positive occurence of IX* in one of the formulas of A while always
negative occurences are denoted by by A(1]X%).
According to definition 23.3. every .Qogo-formula F has the form
F = Ax, X Yy Yy TR S JA I IS P, 305 P).

where A is a Ili-formula whose only free variables are X,,...X,.Y,....Yy,. So
there are only finitely many occurences of class terms ﬂEB in F. For a
formula F we define

(i) stgA F ={B: w<f and 11§a occurs in F}.
By stg A F we measure the length of all essentially infinite conjunctions occuring
in F. We call stga F the set of /\-stages of F.

(ii) For a finite formula set A we define stga A := U{stga F: FeA}.

(iii) We shortly write Ax o instead of VE(Eestga A = Exa).

26.2. Inductive definition of ID,, I2 A for a finite set A of ¥ ~formulas.

(Ax) If we have k. A according to (Ax1) or {Ax2), then it holds ID, I3 A for
all o,pe B(QT), such that Axo.

(A\)If F,/\{AE: E<Xlc A and ID,, %& I',Ag for all E<X=domf< (), then it follows
ID,, 13 A for all aeB(OT) such that f«a and Axa.

(V) If I'V{Ag: E<ilc b and ID,, 3o I'Ag, for some E <), then we also have
ID,, 2 A for all aeB(QT) such that ay«a and Asa.

(Clg) If Tte]li®cA and ID, IEoT.te]lQ, then it follows IDKFA for all
ae B(OF) such that ey« a and Asca.

(cut) If TcA and we have ID,, [Z! T A as well as IDy, [52 T,9A for rk(A)<p,
then it follows ID_, %A for all aeB(NT) such that ay,a,«o and Ao

In the definition of the relation ID,, |¥ we restricted the ordinals to ordinals
in the set B(OT). Since B(NT) is a primitive recursive set of ordinals we have
introduced a semiformal system.
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The following lemmata are immediate consequences of the definition of ID % A.

26.3. Lemma
If ID, 3 A, then we have Asca.

26.4. Lemma
If 1Dy, % A, ax B and p<o, then ID,, }g A.

The proof of 26.4., which is by induction on «, uses 24.16.(i) and 24.19.(ii).

26.5. Lemma (structural rule)
(i) If ID,, 2 & and Ac T, then it follows 1D, Ig T.
(i) Dy, 1 & and T imply ID,, Z*B AT

Proof

(ii) is a consequence of (i) because IDml—g-A by 24.16.(ii) and 26.4. implies
ID, }g—fﬁA. Since '« B we have A, asf and obtain the claim by (i).

We prove (i) by induction on a.

If we have ID I3 A according to (Ax), then, by the hypothesis ', we also
have IDg, ¥ AT according to (Ax).

In the case of an /\-inference we have the premises ID, %& By, Ag for all E<)
together with AO'E/<\1AEC AcT and Ao . But since 'ssa we obtain the claim
by an /\ -inference.

In the case of an V- or (Cln)-inference we have the premise ID,, }%0 Ay.E, for
some £ < X and AO’EY)\AEC AcT as well as Axa. Because of I'ssa, A, §\</>~AEC AcT
and axy« a we obtain ID,, % T by an inference according to the \V -or (Clg)-rule.
In the case of a cut we have the premises ID,, I¥! A,,A and ID, I52 Aj,71A where
Byc AcT. Since we have o;«a for i = 1,2 and I'sse we obtain IDy, [5-A by a cut.

26.6. Deflinition
Let F be a Qf—,-formula. We define
0, if stg F<Q
SF := &
Q, if QcstgnF,
and call SF the level of the formula F. For a finite set A of formulas we define
SA = max{SF: FeA}.
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Formulas of level 0 do not contain (-branching conjunctions. é”‘}o—formulas of
level 0 play the role of Ilj-sentences (cf. the remark following lemma 26.15.).

26.7. Lemma (collapsing lemma)
If SA =0 and IDy, |5 A for some p<Q, then we already have ID,, }-Ip—)“ A.

Proof by induction on «
Introductory remark: The claim is obvious for a<(}. We therefore may assume
dsa. From Ao we obtain Es o and therefore also DExDa for all LestgaA.
If moreover SA = 0, then we have £E<Q for all £estga A and obtain § = DEx Da.
Hence A <Da.
An immediate consequence of the introductory remark is that for an axiom
ID, 5 A with SA = 0 we also have ID,, %’“ A as an axiom.
Now suppose that the last inference in the derivation of A is an inference

(S) ID, 137 A, = ID, IZA.
If (§) is an V- or Cl,~inference, then we have stgAald, cstga B, Ax « and
o <o But then we also obtain SA,,, =0, A< Da and Dcxn<< Doa. By the induction
hypothesis it then follows ID,, Ig—“—n An from which we obtain ID,, I?—“ A by an
inference (S).
If (S) is an /\-inference, then we have StgA D cstgal, Axa and )\n.an«a.
From S4 = 0 it follows X : =dom An.« <() since we either have A<w or Aestgn 8.
In both cases we have Asca. Together with £<A<Q it follows E« A a. Since
XE.«E«a this implies Xt Hence DaE«Da for all £E<}, ie. AE.DaE<<Doc by
24.19. By the induction hypothesis we have 1D }15) on Ay for all <)\, and obtain
ID,, %29‘ A by an A-inference.
If (S) is a cut, then we have the premises ID,, }%‘ I.F and ID,, %""F, 1F such that
rk(F) = rk(9F)< p< () and 'c A. Since p<(} F neither contains a term of the form
159 nor ﬂj\n. Hence S(F) = S(1F) = 0. Now we may apply the induction hypothesis
and obtain 1D, i—Dpz‘ I F and ID_, 6%9‘2 T, 1F. Since Do« Da for i=12 we obtain
ID_, }-gE‘A by a cut.

26.8. Lemma (persistency lemma)
<A <
If D, £ 8, (157) and Asu<Q, then IDg, 128, (13%).

Proof by induction on «

We first observe that we always have stga A(] f:‘ ) = stgA ALY ) If we have
IDOOI%AQ;)‘) according to (Ax) we therefore also have IDOOI%AQ;)‘) as an
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axiom. If the main formula of the last inference is different from te _Ij.f‘, then
we obtain the claim immediately from the induction hypothesis. Let telz)‘ be
the main formula of the last inference. Since we may assume that A<(), this
inference must be an V -inference with premise ID,, I&OA (I<)‘) te Ii for some
E<hzy. By the induction hypothe51s we obtain ID,, |—°A (l<“) telE and it
follows IDy, 1Z A, (1% ,teI 2 by an V -inference.

26.9, Lemma (boundedness lemma)
If 1D, }%‘ Ax(l;)‘) and a<{) , then we have ID, l— A (12%).

Proof

We already mentioned that we always have stgA(A(_LA )) = stga (AQ <*y). If
te _1 Mis not the main formula of the last inference, then the claim follows
lmmednately from the induction hypothesis and the persistency lemma. If
telz)‘ is the main formula of the last inference, then it is an V~ or Cl,-
inference. Then we have the premise ID_, }°—'°A ( I‘)‘) telay € for some E<). Recall
that te,{E is an abbreviation for A(l} A t). By the mductnon hypothesis we
therefore obtain ID }—p*" A IR, ALY, 1), ie. ID,, }-5°A0(1 A0),tell®, for some
a,<a. By persistency and an \ -inference it follows ID, I3 A(JR), tel.

As Corollary we then obtain

26.10. Lemma
If ID,, I—g A holds for some u<(), then we may eliminate all Cl-inferences in
this derivation.

Proof by induction on a.
If the last inference is not an inference according to the Cl,-rule, then the
claim is immediate from the induction hypothesis. Therefore suppose that it is
an Cln~inference

ID,, 20 Ay, tell) and A tel;%cT = ID, Fg r.
By the boundedness lemma we obtain 1D §—- 1‘:‘" for a <a<Q. By an V-
inference it then follows ID,, I T.

If Ais a set of the form A[I‘O 1‘0] without further occurences of class
terms of the form lj\“ then we denote by A* the set A[l“:‘ SIS ‘;]
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26.11. Theorem
(i) If IDy, 13 A for p<Q and SA =0, then it follows Zg 2% AD*,
(ii) From Zq I3 A for « and p in B(OY), we obtain also IDy, i A.

Proof

(i): first we obtain ID,, B*A by the collapsing lemma and then l%“ AP* by
the boundedness lemma. Because of SA = 0 the set A does not contain class
terms of the shape 117\“ which implies that all formulas in AP* are & o-formulas.
By 26.10. we may eliminate all Clo-inferences in this derivation. Since p<Q) an
easy induction on Da now shows that this derivation only contains formulas
of £,

(ii): This claim is trivial since Zp, is a subsystem of ID,,.

26.12. Corollary (Soundness for ID)
If we denote by ID,, the subsystem of 1D which only contains derivations
of the form IDy |5 A where a,p<Q and SA =0, then IDg |EF implies NFF.

Proof
The proof is immediate from 26.11. and 12.1.

26.13. Corollary (Boundedness theorem)
If ID, & ge_l_jf’, then we have |nfp<Da.

Proof
It is S(nel$®) = 0. By 26.11. and 26.12. it therefore follows N F nel5P®. By
22.7. this implies nelj P*, ie. In,<Da.

26.14. Lemma

If F is an % - sentence F such that rk(F)<{{Q") and NEF, then we have
oo .

Proof

The proof is by induction on rk(F).

If F is atomic, then F is of the shape Pt,..t, since F is an &L -sentence.
From NEF we then obtain ID_ {2 F by (Ax1).

If F has the shape A\XAE and we have N = F, then we obtain N = Ag for all E<).
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By the induction hypothesis this implies ID_ F'lk(AE) Ag for all E<)\. Because of
rk(Ag)<rk(F)<¥(Q) it follows rk(Ag)«rk(F) for all E<x which implies
AE.rk(Ag)<«rk(F). By an /\-inference it follows ID,, Fk(F) F.

If F is a sentence E\/ Ag with N EF, then there is a E<) such that Nk Ag.
By the induction hypothesis it follows ID, l—k(AE) Ag. Since rk(AE)« rk(F) this
implies ID, EX® F by an \/ -inference.

An inspection of the proof of 26.14. shows that the proof does not depend upon
the fact that the ordinals in the derivation belong to a recursive notation system.
It makes the proof even clumsier. We easily may simplify it in order to obtain
the result that for true gg)-sentences F we have &1 }%HF) F. So we obtain
as a corollary the following theorem.

26.15. Theorem
For any true £}, -sentence F of level 0 we have |Fl<rk(F).

Theorem 26.15. has an interesting consequence. As shown in exercise 26.18.2 for
any I1}-sentence F there is an .Sl’f,o —sentence F,, of level 0 such that N F F « F_.
The problem to find the shortest sentence F,, which has this property is by
26.15. closely connected to the problem of ordinal analysis. For Il}-sentences F
whose validity is provable in ID, it can be shown that the coresponding .ngo -
formula F,, always has a rank below ¥{tq,4) {(cf. exercises).

As a further consequence of 26.15. we obtain the unsoundness of the system
ID,,.

26.16. Theorem
The semi formal system ID,, is unsound.

Proof

The proof needs a result of recursion theory. There one may prove the existence
of an arithmetically definable inductive definition T such that Tl = ‘CK Since
PO <wEK there is an nelp such that Inl = $(Qp), ie. nel“"mr’ By lemma
26.14. we have ID,, |22 n ¢ I%. for all £¢ B{NT)NQ, where we defined % = rk(n¢If)
< (m+1)-f+m and m := rk(l‘)«,) Since M\E.(m+1)-E+m« O we obtain ID }—- n(l‘0
On the other hand, however, it holds NEn el"‘ﬂ.
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26.17. Remark

The proof of lemma 26.16. shows that the reason for the unsoundness of ID
is the fact that the segment of the notation system is bounded below oK.
But then the unsoundness of ID_, only can be remedied by allowing the whole
segment of ordinals up to oK. Since this is impossible for any recursive
notation system all semiformal systems which are strong enough to allow the

embedding of the formal system ID; necessarily have to be unsound.

26.18. Exercises

L. Assume that F[X,,....,X,] is a [lj-formula without further occurences of set
variables. Show that X,..,X, occur positively in F[X,,..,,X_,] if and only if
Fx,,...,x,,{li"v--f ] is a formula of level 0.

2. Show that for every Ilj-sentence F in the language % there is a sentence
F,, (not containing set parameters) of level 0 in the language Q}, such that
N EF — F,, and vice versa. [Hint: Use exercises 20.9.].

§ 27. Cut elimination for 1D g;“’

27.1. Lemma
If Dy, IZ A and SA =0, then it follows ID,, |52 A.

Proof by induction on o
If the last inference is not a cut, then we obtain the claim immediately from
the lemmata 24.16. (iv) and 24.19(i) and the induction hypothesis. We therefore
assume that the last inference is a cut

D, %, ILA and ID, if‘f I,1A= ID 1 A
where I'c 4 and a0y« a. By the induction hypothesis we obtain 1D, }9?‘ A
and ID_, i—%ty I, 1A. Because of rk{A) <2 we also have S(A) = S(71A) = 0. By 26.11.
and the persistency lemma it follows Z, lR(%—)i"—"-) I'®,A and Z, |_12_(.£.Z:';Ez) T8, 1A,
for some B<( such that D(Q+o;)<B holds for i=12.
For o := rk(A) we obtain Z, |[R(Q+c)aD(Qvaz) B by the elimination lemma and

then Z, }£o(R(+x)aD(Ova2)) 18 1y 18 5. the corollary to the second elimination
%cpc(D(ﬂ+cx1)uD(Q+aL)) AB
£ )

theorem. By 26.11. and the structural rule it follows ID_,
Now it is SC{@o(D(Q+a,)eD(Q+a,))) = SC, (o) U { D(O+a,), D(Q+a,) ). Since ¢« a
we have D(Q+a,)<D{Q+x) for i=12. From stgn Ao «a and stga Ao, <o
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and ¢ = A+n for some hestga (A)uUstga (1A)U {0} we obtain SCr(c)<D(Q+a).
Hence ¢ o(D(Q+a })8D(Q+a ))«< Q+a and it follows ID,, MA by the persistency
lemma.

We learn from lemma 27.1. that our next aim must be to decrease the cut rank
of 1D, ~derivations to Q. The first step is the following lemma.

27.2.Lemma (Predicative elimination lemma for ID )
If ID,, I%‘ AA, IDOO% T',7A and rk(A) = p + Q, then it follows ID,, }“—35— AT

Using the lemmata 24.16. and 24.19. we may proof 27.2. literally as 12.2.
Crucial for the proof is the hypothesis rk(A)*( since this assures that A
cannot be the main formula of a (Cl,)-inference.

As a consequence of 27.2. we obtain

27.3. Lemma
If ID,, '%T;A holds for some p+Q, then it follows 1D }-‘C‘}-aA

Using 27.2. and 24.16. the proof of 27.3. is literally the proof of 12.3.

By 27.3. we already may decrease the cut rank of ID,, - derivations to Q+1. The
last and crucial step is the elimination of a cut of rank Q. This step will be
achieved by the following impredicative elimination lemma. To prepare this lemma
we first need an inversion lemma of the following kind.

27.4. Lemma (Inversion lemma)

From 1D, /\A it follows 1D, }“—5 8,A; for all E<) and 1D, }-— 8,A; for
all B« .

Proof

We show both claims by induction on a. If !;/<\XAE is not the main formula of
the last inference, then the claim either — in the case of an axiom - is trivial
or an immediate consequence of the induction hypothesis. We therefore assume
that AE is the main formula of the last inference. Then we have the
prem:ses ID,, l—gf Ag for all §<)\ with f«o such that T, Ag <A and obtain
ID,, }LE—EF A or ID,, l'f- r, AE respectively from the mductlon hypothesis. Since
a+0 we have E«OME for all E<) and obtain SC, (fE)<D(a#E). Hence SC(fExE) =
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SCL(FE)USC,(E)<D(ark). Since also fEsE<asf this implies fE#f«a#f. Hence
1D, P%E A’AE by 26.4. and the structural rule. For the second claim we assume
E« A. Either we have )\estg/\(A,EA Aa)ﬁoc or Asw. In the first case we obtain
E« o and since f«a also fE«a. In the second case we either have a<w or again
E«o. In both cases it follows fE«<a. From the induction hypothesis ID_, }EE I'.Ag
we therefore obtain ID, 12 4, Ag by 26.4. and the structural rule.

27.5. Lemma (Impredicative elimination lemma)

Let A be a finite set of formulas of level 0. Then 1D, % Aty 11‘;},..,&“( lj&, tel ;\n
andIDg, B A.t, ¢ 152 ...t ¢ 150 el 5O imply SBEQR ¢ o] <0 ¢ (120
Proof

We introduce the following abbreviations. For I<ksn let A, be the set
A, t,¢15 f’,...,tkd‘A“;’. If E=(E,,...E,) is any k-tuple, then we denote by AEthe
set At 41;‘5‘,...,1’,( ‘17‘\Ekk' ZE is a shorthand for £ #..8E, .
Now let £ be an arbitrary n—tuple of ordinals <. From the hypothesis

(1) ID, 1} A, tel0
we obtain by the inversion lemma

z

(2) ID, IP=EE A% el
Since S(Ai,te lj\n) =0 we obtain by (2), the collapsing and the boundedness
lemma

(3) ID,, PRUXEER) AR ¢ [ <DlomZE)
From the hypothesis

< )

(4) ID, 1B A el

we obtain by the inversion lemma
s TEn

(5) ID, [B=EE=0 A% ¢ o1
for atl n<D(a#ZE). Since An.pulEun«BuLEsD(auXE) we obtain by (5) and
an /\-inference

ZExD(anX

(6) ID,, [BoER2DIXRER AR ¢ ¢ DI Z0),
Now we have D{asZE)xBaZEsD{anXf)«< anBfu (&« XE and obtain

(7) ID,, [==R5O=EE A8
from (3) and (6) by a cut.
If we define §; := (,,....5,,_;), then we have M. anBs(3isXE nfconBs ()-(i+1)8ZE,
From (7) we therefore obtain

(8) ID,, %"_EM;! Ai‘-ptn‘lﬁ?

by an /\-inference. By iteration we then have
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(9) D, |=2R=QUDeER 8 ¢ IR ey tn€IRS
for all ic{1,...,n}. For i =n this is

(10) ID,, [X=BAEntD) A ¢ (120 ¢ ¢1Z2

27.6. Theorem (lmpredicative elimination theorem)
w+o

ID, [5m 8.t ¢ IR0, .. tn ¢ IAD implies D 18 Aty ¢ IR0, ta ¢ IR for all
finite sets A of Q{} —formulas of level 0.

Proof by induction on o.
If the last inference is not a cut of rank ), then the claim follows immediately
from the induction hypothesis, 24.16. and 24.19. Now assume that the last infe-
rence is a cut
ID,, 1Bt TLteli® and ID 18 Tt e 15D = ID, iG55 An

of rank 3, where A, is the abbreviation defined in the proof of 27.5. By the
induction hypothesis it follows

(1) ID, I T eI and ID, S22 I e e I50.

From (1) we obtain by the impredicative elimination lemma
(2) ID, IOtz 80 (n+D

Since s p0+aza () (n+)«<w?*+> and A, cT we obtain from(2) by 26.4. and
the structural rule

(3) ID, 2% 4.

27.7. Lemma
If SA =0 and ID,, k=t A, then it follows ID,, 222 5,

Proof
From ID, Iff=r 8 and SA = 0 we obtain Ith""-,&'—g A by the impredicative elimi-
nation theorem. By lemma 27.1. this implies IDOD%°~9-2‘ A.

By IDE we will denote the semiformal system whose language only contains
formulas of ranks «o and in which only derivations of lengths «o and cut
ranks <B are allowed. IDE |- A means that there are ordinals £« a and p<f such
that 1D, |5 A

27.8. Theorem (Cut elimination for IDOF”)
If SA = 0 and ID, 5 A, then we already have IDOOM)A,
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Proof by induction on n.
For n = 0 this is obvious from 27.1. by the collapsing lemma. Now we assume
n =ng'. If ny = 0, then we obtain fom ID_ If5 A by 27.7. ID, %QE A and by 27.1.
and the collapsing lemma ID_, %D«M) A. If n, # 0, then ID Ksgosy A implies
D, %’% A by 27.3. By the induction hypothesis it then follows

(») 1D ’(I’)(wno(0+w°¢)) A.
Since v, (Q+0%¥)K 0,(0+x) we obtain D(w, (O+0*))x D(w,(Q+a)) which together
with (*) implies the claim.
27.9. Corollary (Elimination theorem for ID?(;_‘:;)
If IDC*® — F holds for a formula F of level 0, then there is some a<$eqy

E0+1
such that 1D 15 F.

Proof \
ID?[;:_‘; b~ F implies the existence of some ordinal B«¢n,q and n<w such that
ID,, I2-—F. By the cut elimination theorem 27.8. it then follows ID,, ?(‘" (Q+8)) g,

co '+n
B« g,y implies w, (Q+B)«en,q and this entails D(w (Q+B))<Dleq,q) = deqyy.

27.10. Exercise
Show the following soundness theorem.
S(F) = 0 and ID,, {5+ F imply N F.

§28. Embedding of 1D, into IDZ%,

28.1 Lemma (\/ -importation and V -exportation for IDy )
(i) D, I3 A, Ay,..., A, implies ID, 127" A AV...vA,
(i) IDy, ¥ A A v ...V A, implies ID, 1 A A,,... A,

Proof.

The proofs are literally the same as those of 10.8.

28.2. Lemma

If ID, }%‘ A (s) and t is a term which is equivalent to s, then we also have
D, (5 A, (t).

Proof

The proof is straightforward by induction on o.
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28.3.Definition
For a finite set M := {,... .k} of ordinals we define Z#M =Ew. wE .
(i) For an £}, -formula F it is no(F) :=1 +Z¢{E: Ecstga Fustga 1Fle2rkF.
(ii) For a finite set A of formulas we put no(4) := Zﬁ{no(F): FeAl

28.4. Lemma (Monotonicity lemma for ID_,)
Suppose that 1D i% A,F (n),G,(n) holds for all neN.Then we also obtain
1D };:a_ng_(A) A, 1A (F), By (G) for all equivalent X-positive formulas A and B.

Proof

The proof is by induction on rkA. First we recall that two formulas A and B
are equivalent if there are a formula F and terms sy,...,54, t4....,t, such that
s, and t; are equivalent for kef{l,....n} and it is A=F, . [s,...,5,] as
well as B= F,, . [t,....t,].

If A is an atomic formula without occurrences of X, then we have 1Ay (F) = 1A
and By {G) = B. It holds k5 A, 1A, B either according to (Ax1) or to {Ax2). Because
of ID,, 5 A,7F,(n), G,(n) we have A« and therefore also A,7A,Bsa. Hence
ID_, 12 A, 1A, B by (Ax).

If A is the atomic formula te X, then we have Ay (F) = F_{t) and By (G) = G,(s)
where t and s are equivalent. From the hypothesis 1D I% AAF, (), G, (n) we
obtain by lemma 28.2. D, IS A, 1F,(t),G,(s), i.e. ID, |2 A, 1Ax(F), Bx(G).

If A is not atomic, then without loss of generality we may assume that A is
of the shape E\ZXAE' The other case is symmetric. But then each of the
formulas 1A5) again is X-positive. By the induction hypothesis it now follows
IDmi-g—f'M A, Ag(F),Bg(G) for all E<X and by an V-inference we obtain
ID,, [X2RtAR) +1 4 JA(F), Be(G) for all E<A. We now claim that A.x#no(Ag)+1
« a#no(A) and infer ID,, [Z=R{A)) qA(F), B(G) by an /\-inference.

It remains to show that Af.x#no(Ag) +1 « auno(A). Since A is an &1 -formula
we only have to consider the following two cases.

First assume that A = te§ > for w<\. Then we have stga A = 0 and stg 1A = {1}
and for E<) it is stgaAg =0 and stga 1Ag = {E}. Hence amnol(Ag)+l=
anEu2rk(Ag) +1 = aufs 2:(rk(F)H)E+ rki(F)+1 < « # A= 2:(rk(F)+1) - (E+1) <
oasr# 2(rk(F)+1)-A = a#no(A). We have SCqla#no(Ag)) = SChrla)uSCn(E) and
SChlaano(A)) = SCrla)uSCh(2). Now if amno(A)xp and E«B, then we obtain
SChH{a)<DB from the first and SCH(E)<DB from the second hypothesis. Hence
SCala)uSCnH(E)<DB and it follows AL.a#no(Ag)+1 « asnol(A)

173



. Q-+
§28. Embedding of ID, into IDg 7

If A is not of the shape telX™ for some wzw, then it is A= E\</>\AE for some
Asw. For E<) and cestgn Agustga 1Ay we then either have cestga Austga 1A
or o<w. But this implies no(Ag)+1 < no(A) for all §<X. According to 24.16. and
24.18. it then follows A .a#no(Ag) +1 « a#no(A).

28.5. Lemma (Tautology lemma)

If ¥, and F, are equivalent formulas and A is a finite set of &L, - formulas.
then we have ID,, 1B2&E) A qp g

Proof

Assume that X is a set variable which does not occur in Fy (and therefore also
not in F, ). Without loss of generality we may assume that neither 1F; nor F,
are elements of A. According to (Ax2) we have ID,, }:,‘—0(—‘3)13,_1_13 X,ne¢ X. By the
monotonicity lemma this implies ID,, }g"—(—AM‘) A,9E ,F, and because of

{1F,F2)nA = 8 we have no(A)sno(F,) = no(AF).

28.6. Lemma

If A is a sententially valid finite set of formulas, then there is an m<w such
that 1D, 12947 ™ 3,

Proof
The lemma follows from the tautology lemma by induction on the degree of
sentential reduciblity of the set A. It is literally the same proof as for 10.16.

28.7. Lemma
Assume that a finite set A of formulas contains a quantifier axiom. Then there

is an m<w such that 1D, %O(A""m A.

Proof

This lemma too is an immediate consequence of the tautology lemma. Its proof
runs as case 2 in the proof of the embedding lemma 11.2.

For an X-positive arithmetical formula A we denote by CIA(F) the formula
D JAx (F.m) — F(m). Then we have stga CIA(F) < stgs Fustga 1F which

implies stga Cla(F) < no(F). Obviously the formula Cl4(F) expresses that the
class {x: F} is closed under the monotone operator induced by A.
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28.8. Lemma (Closure lemma)
lDoo ;(012 +2-rk(A)+4 CIAURQ)

Proof

It is no(JY) = 0:2+2-rk xA. Since rkyxAsrkA we have by the tautology lemma
(1) ID, IQ2*27kA 110 1 [Q.

From (1) we obtain by an Cln-inference
(2) ID,, IE222rkAT 1 1Q ne] 3O

By V -importation and an /\-inference this implies
(3) ID,, Kr2=2rkA*d oy (159).

28.9. Lemma (Generalized induction lemma)

Let A be an X-positive arithmetical formula. Then we have
ID,, |22EIZE ey (F) kel F (k).

Proof by transfinite inducution on &
For £ = 0 it holds

(F)+1
(0) Dy, 2" 1C1A(F).k¢I5°.F, (k) by (Ax1).
For £ + 0 we obtain from the induction hypothesis
() D, 12O o) (B 1 F (k) for all n<k.
By an /\-inference this implies
(F)
(2) D, 222284 o, (F) ke 158, Folk).

From (0) or (2) respectively, the monotonicity lemma and the structural rule we
obtain

(3) D, B Re2rk (AN 11 ey, (F), k€15, Ay x(F,K) (k).
since for arithmetical A we have no(A) = 1+2rk{A)<o.

From the tautology lemma it follows
{F)
(4) ID B2 01 (F).k¢ 15 . WF,(K), E, (k).

From {3) and (4) we obtain

(5) ID, [P0 "Bu2rk(A) 22 0y (F), Ay (F.K) A TF(K) k1§ ,Fylk)
by an /\-inference. Using an V —inference we therefrom infer

(6) I, 1222 P28 o) (F), kel Fy (k).

This, however, is the claim.
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The translation of the axiom ID3 is an immediate consequence of the lemma.
Nevertheless we formulate this as a theorem.

28.10. Theorem (Generalized induction theorem}

For any X-positive arithmetical formula A we have
jero® 20 +5 (o (F) — Vx(xely — FN*

Proof

By the generalized induction lemma we have
D, 2 T8 e (F) k615, Folk)
for all £<0. By an A -inference this implies
ID [2neB20 S0 (F).keI52,F, (k).
By \/ -Importation an /\~ inference and again V -importation it finally follows

D, (22222045 (0 (F) — Vx(xela—F)*

As a side remark we will justify the name generalized induction lemma for lemma
28.9. by showing that transfinite induction along a wellordering in fact is a
consequence of the lemma.

We start with an arithmetically definable order relation { and regard the
formula xefield(<)AVy(y{x — yeX). Let us abbreviate this formula by A<.
A< then obviously is an X-positive arithmetical formula. We denote its fixed-
point 1A< by Acc(<). Acc({) represents the accessible part of the relation <.
If we treat a fixed relation < we just write Acc instead of Acc(<). The formula
CIA< (F) then coincides with the formula Prog(<,F) defined in §13. For ke field({)
we obtain ke Acc'*! by induction on |k|, the order type of k in the ordering <
as defined in 13.2. Namely for m<k we have Jml< k] and obtain me Accimlc Acc< Ikl
from the induction hypothesis. Hence A (Acc<lkl k) which means keAcclkl.
We define n := rk(A }+1. Then it is n<o and rk(k ¢ field({)v ke Acc(<)8) < n-(E+1)+1.
By 26.14. we now obtain the following lemma.

28.11. Lemma

Let |kl be the ordertype of k in the wellordering { of ordertype <$QF. Then
we have 1D, [2UKIPD*L 4 ¢ fie)d(<), ke Acc(<) k!,

28.12. Lemma (Transfinite induction)
whO(F)8E +1

If K|l = E<(QT), then we have ID, };T——— 1Prog(<,F), k ¢ field(<),F, (k) for
all keN.
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Proof

Using the cut rule we obtain from 28.11. and the generalized induction lemma
ID,, (oot ket e n UKIY L Sprop(< F) k¢ field(<),F (k) for all keN. Since
ki« £ this immediately implies the claim.

The (translation of) the formula which expresses transfinite induction along the
wellordering < is now easily obtained from the transfinite induction lemma by
\/ —importation, an /\ ~inference and repeated \/ —importation. But of course one
can do better than 28.12. There is of course an canonical cut free derivation of
transfinite induction. The canonical infinite proof for transfinite induction is a
generalization of the proof given in 10.17. for complete induction. By translating
the proof of 10.17. into the system ID,, we also obtain the following theorem.

28.13. Theorem {(Complete induction)
(F)
ID,, 52 (¥x(Vy (y < x — F,{y)) — F) — VxF)*

28.14. Theorem (Embedding of ID,)

Suppose that F is an ¥ \-formula such that FV,(F) ={x,...,x,} and ID, - F.
Then there are ordinals a« ()3 w» and m<w such that IDg 1&ss, Fx(k)Y* holds
for any n-tuple k = (k,,... kp).

Proof

The proof runs similar as the proof of the embedding theorem 11.2. for the
formal system Z,. It is by induction on the length of the derivation in IDy. The
embedding of the logical axioms is obtained from lemmata 28.6. and 28.7. The
derivability of the equality axioms and those mathematical axioms which also
are mathematical axioms of Z; follows as in the proof of 11.2. The provability
of the scheme of complete induction in the semiformal system follows from
28.13., that of ID} follows from 28.8. and that of ID} from 28.10. Therefore
all axioms of ID,; are provable in the semiformal system. The induction step is
then proved as in 11.2.

28.15. Theorem (Ordinal analysis of ID,)

For any formula F of level 0 which is provable in 1D, and does not contain
free numbervariables we have |Fl<{eq_,.

177



§28. Embedding of ID, into Ipi*e

£0+1
Proof
From ID, - F and SF* = 0 we obtain by the embedding theorem IDZY® |- F*.
Using the elimination theorem for IDQQ"\:"1 it follows ID, IS F* for some

a<eqn, ;- By 26.11, however, this implies Zn I F* which means [Flsa<{en .,y

The ordinal analysis of ID, immediately gives us the following corollaries.

28.16. Corollary
(i} SPo(lbl) < 4)8 Q+1:
(i) 1D, 1< V€ ouy.

28.17. Corollary
If< is an order relation for which we have ID, |- Fund(<,X), then it is [Kll<{e .y

As a further corollary we obtain

28.18. Theorem
If ID, - nela, then it is Inla< b

Proof

From ID; - ne], we obtain by the embedding theorem 28.14. and the cut elimi-
nation theorem 27.9. ID ¥ ne¢l3x® for some a< $eq,y. By the boundedness
theorem 26.13. it then follows |nls < o< Qe

22.19. Exercise
1. Assume that A is a finite set of .Sf’('x, — formulas possibly containing the set
variable X. Show that ID, [ A implies ID,, [Z=2 A, [15 1.
2.Assume that F[X] is an X-positive [l}-formula of &) without further occuren-
ces of set variables. Prove the following claims.

(i) ID, &= Fx(1X?) implies ID,, [52%*% C},(X) — F for some k<Q.

(i) ID, [* Cl1,(X) — F implies ID, [Z¥*2 F (J3?) for some k<.
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§ 29. The wellordering proof in ID,

We showed in §23. that the ordinals in B{QF) may be represented by a primitive
recursive wellordering on the natural numbers. Therefore we may talk about
the ordinals in B(QT) - via codes - in ID,. Again we will identify ordinals and
their codes. In this section we will denote by < the order relation on (the
codes of) the ordinals. The goal of the section is the proof that the wellordering
of every proper segment of the segment contained in Bleqn,;) is provable in ID;.
Before we start the proof we will sketch its strategy.

We are going to define two order relations < and <, on the ordinals of
Bleq.q). <4 is the usual order relation restricted to ordinals below (O whereas
<g is a order relation which no longer is arithmetically definable but only by a
formula of level O (i.e. by a Nj-formula). The definition of <. is done in
such a way that TI(<o!Q,X) holds trivially. Since we have the full scheme of
complete induction available in ID; we may now copy the wellordering proof
of 8§16 and obtain TH<qlw,(Q+1),X) for all n<w. Then we will show that in
ID; every transfinite induction along <, up to an ordinal « = ) may be condensed
into a transfinite induction along <, up to Ya. Since the segment contained in
Blepy, ) is den.g = sup{dle,(Q+1)): new} we obtain the transfinite induction
along all its proper segments as a theorem of ID,.

29.1. Definitions
(i) a< B :e> a<B<.
(ii) xc X denotes the formula e field(< ) aVn(n< a — neX).
ac X then is an X-positive arithmetical formula. We denote its fixed point by
Acc. Acc then represents the accessible part of <.
(iti) M := {a: SCla)c Accl.

(v) a<nB = acMAa<h.

If A(X,x) is an X-positive arithmetical formula and I, the operator induced by
A, then the axiom ID) says

M) T, d)ecly
an the axiom ID? may be read as

(2) T,({x:FP e {x:F} > 1, <{x:F}.
The monotonicity of a positive operator is already provable in pure logic and
therefore also in IDy. So

B) TA(T U Nl ,)
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is by (1) a theorem of ID,. By (3) and (2) we obtain
(4) 1,cT\(1,)

and by (1) and (4) finally
(8) ID, T 1) =1,

For the special case that 1, = Acc we therefore have:

29.2. Lemma
VYoloe Acc — a<Q A Vy<ulneAce)) is a theorem of ID;.

By Prog;(F) we are going to abbreviate the formula
VEe field(< ) ((Vn<,E F(n)) — F(E)
for i¢{0,Q}.
TI;(o,F) then denotes the formula
oe field{<;) A Prog,{F) — VE{E<;o — F{(E)).
Using these abbreviations the axioms for Acc can be formulated in the following
way:
(ID:\CC) Prog (Acc)
and
(ID?

Acc

) Prog (F) — Acce{x:F}

29.3. Lemma
Acce ) is a theorem of ID,.

Proof

We have Field (< ) = {«a:a<Q}. Since Prog (Field(<)) holds trivially we obtain
Acc c Field(< )} by (IDF ).

29.4. Lemma

Prog(< ,F) — YEe Acc F(§) is a theorem of ID,.

Proof
For a<() we have E<a « E< o. Therefore V&< a(F(E)) also implies VE<a F(E).
Together with Prog(<.F) this yields F(a). Hence Prog (F), and we obtain the
claim by ID?

Acc’
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29.5. Lemma (provable in ID,)
The class Acc is closed under ordinal addition.

Proof
Define Acc, :={a:¥peAcclptacAcc)). We claim

(1) Prog (Acc,).
To prove this we may assume the hypothesis a<( and ¥n<a{neAcc,}) and have
to show aeAcc,, i.e. Ype Acclp+ae Acc). By 29.2. it suffices to show e Acc for
all E<p+a. For E<p we obtain £¢ Acc from pe Acc and 29.2. If p<E<p+a, then
there is an n<o« such that £ = p+1n. By hypothesis we then have neAcc, which
implies p+neAcc. This proves (1). By (1) and ID%__. we obtain Acce Acc,
which means that for o,B¢ Acc we also have Be Acc, and therefore a+Be Acc.

29.6. Lemma
The formula Progqn(F) — Prog, (F) is provable in ID,.

Proof
We have the hypothesis
(1) Progn(F)
(2) a<}
and
(3) ¥n< o F(y)
and have to show F(a).
From n<g o we obtain by (2) n< o« and by (3) F(n). Hence F(ax) by (1).

29.7. Lemma (provable in IDy)

The class Acc is closed under the ¢ - function.

Proof
We define Acc, := {a:VEe Acclpage Acc) vaeM v Ox o}
and show
(1) Progg(Acc,).
From
(2) ¥n<goalneAcc,)
we have to conclude o¢ Acc ~ This is trivial for a¢M or Q<a. We therefore
may assume xe¢M A x<(). Then it remains to prove
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{3) YEeAcclopuEe Acc).
We show (3) according to 29.4. by induction on £. If we choose any £¢ Acc we
then have the induction hypothesis

(4) Vn<E(pane Acc).
In order to obtain ¢uEe Acc it by 29.2. suffices to prove

(5) p<pak — peAcc.
This will be done by side induction on Gp. If p¢H, then we have H{(p)<c Acc by
the side induction hypothesis . By 29.5. this implies pe Acc.
If peSC, then we have p<a or p<k. If p<E we obtain pe Acc immediately from
EeAcc. If psa, then there is a ve SC(a) such that p<v. Because of aeM we
have ve Acc and it again follows pe Acc.
Now assume p¢ H\SC. Then there are p ,»0, such that p = ppp,0,- We now have
to distinguish the following cases:
1. p, =« and p,<E Then we obtain @pp,€Acc from (4).
2. a<p, and p<E. Then peAcc follows from EeAcc by 29.2.
3. p,<x and p,<pak. Then for every veSCn,lp,) there is a weSC,{a)c Acc such
that v<yu. Hence SC,(p,)c Acc which implies p < qo. By (2) it therefore follows
p,€Acc . By the side induction hypothesis we have o, ¢ Acc. Since p e MNQ this
implies 9p,p, € Acc. This finishes the proof of {D.
We now have to show that «,BeAcc also imply pufeAcc. o,BeAcc imply
o,B<() since Accc(). Since SC(x)<a, we have SCn(a)cAcc, ie. aeM. From
(1) we obtain Prog (Acc (p) by 29.6. Using ID% __ this implies Accc Acc, Hence
aeAcc ol M. Together with Be Acc this implies paBe Acc.

29.8. Theorem
ID, + TI(T,,X).

Proof

If we define A, = 900 and A, = @A 0, then by 17.21. we have I = sup{A : n<o}.
From 0¢ Acc and 29.7 we obtain by induction on n ID;;-¥n (A e€Acc). For every
E<I, there is an n<w such that ID|-E<A . Hence ID|-T c Acc. Together with
29.4. this implies ID|-Prog(<,X) —» VE<I (Ee X), ie. ID}-TIHIX).

Already in §22. we referred to theorem 29.8. It shows that ID, is not predicati-
vely interpretable. We soon will see, however, that the wellordering proved in
29.8 by no means exhausts the power of ID,.
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29.9. Definition
Accq = {a: ¢ M v a<Kav Poe Acc)

29.10. Lemma (provable in ID,)
Progn{Accy)

Proof
Assume e Field{<qg) and Vn<qalne Accn). We have to show aeAccn. If a¢M
or a< Ka, then we are done. We therefore assume a¢I and Ka<a and have to
show (ae Acc. In order to do that it suffices to prove

(1) p< o —+ pe Acc.
We show (1) by induction on Gp. If p¢SC, then we obtain the claim from 29.5.
or 29.7. and the induction hypothesis. We therefore assume p¢ SC. Then there
Is an po<a such that p = dp,. Hence Kpg<po<a. If E€SCn{pp), then there is
an 1 such that £ =g $1. Thus ¢ KE ¢ Kgg<a which implies £ = ¢ n<¢o. Hence
SC(pg) <. Since we always have GE<Gp,<Gp for EeSC,(p,) we obtain
SC(py)c Acc by the induction hypothesis. This implies p <« and therefore
also p € Accy. But this implies pe Acc.

29.11. Lemma (Condensation lemma)

From ID - TI(a,X) A ae M A Ka<a it follows IDy b Qo Acc and therefore also
ID, - TH(a,X).

Proof

From ID,TIn(x,X) we especially obtain
(1) ID,Tip(e, Accg).

By 29.10. we have
(2) ID-Prog(Accq).

From (1) and (2) it follows
(3) ID,-YE(E< qoe — Ee Accq)

and from (2) and (3)
(4) IDj} ae Accq.

Because of ae and Ka<o we obtain from (4)
(5) ID{} dae Acc.

From (5) we obtain by 29.2. and 29.4.
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(6) ID)}- Prog(<,X) = VE<oa({Ee X)
and this means ID;~ TI{{a,X).

29.12. Lemma
Il)l}- TIQ{OQ+H1) A Q+1eMA KIQ+1) <O+

Proof

Because of SC,(Q2+1) = # and K(()+1) = # we trivially have Q+1e MAK(O+1)<OQ+1.
Now we assume Progn(X) and have to show YEz(0{Ee X). From E<(), however,
we obtain E<() and SC,(£) c Acc. Since Acc is closed under + and ¢ this already
implies £¢ Acc. By 29.6. Progn(X) also implies Prog,(X) and we obtain Ee X by
D2 Hence YE<o({(Ee X). This together with the hypothesis Progn(X) also

Acc’

implies Qe X.

29.13. Lemma

ID,FoeMA K(x)<AATIn(a,X) also implies ID -~ 0 e M A Kla) <an TIg(e*,X).
Proof

Because of SC,(w*) = SC,(x) and K(w*) = K(a) we obtain w*e¢WA Klot)<a im-
mediately from a¢M. Since Z, is a subsystem of ID, the second part of the
claim follows as in 15.3.

We now define a sequence by
Lo=0+1,0 , =0n.
Then we have

(1) ¥n {{_eB(0)c B(T,)), ie. Vn(K{, <L)
by an easy induction on n and

(2) deg,, = supldl).
To prove (2) we observe that { <e,, holds for all n<w. By (1) this implies
$T,<de, ., for all n<w. On the other hand if n<{¢e,,  , then we show by in-
duction on Gn, that there is an n<o such that n<¢{ . For n¢SC this is imme-
diate from the induction hypothesis. If ne¢SC, then there is an 7, such that
n = ge¥n, <¥eqs,<Q. But then Ny<En+, and we obtain an n<w such that
Ny<C,,. Hence n<¢ .

29.14. Theorem
For all §<{e,,, we have ID,TI(E,X).
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Proof

For E<{e,, there is an n<ow auch that E<¢{_. By 29.12. and 29.13. we obtain
ID,\FC e MAKE,<CuA TIG(L . X) for all n<w. By the condensation lemma this
implies ID,FTI{(${ ,X). Hence also ID, TI(E,X).

29.15. Theorem
For every a<te,,, there is a lli-sentence F such that a<|F| and ID,|-F.

Proof
Literally as the proof of 15.8.

29.16. Theorem
Sp,(ID)) = |ID,| = e,

Proof
This is obvious from 29.15. and 28.16.

In a last step we are going to convince ourselves that the bound given in 28.18.
is in fact an exact one. That means that we have to show that for every
a<e, , there are an X-positive formula A and an neow such that IDlI—nelA
and a<|n|, hold.

To show this we choose an arithmetically definable wellordering { and regard
the fixed point of the operator I, which is given by

I (8):={n:vm(m<n— meS)}.

By Inl. we now denote the norm of the element n in the inductive definition I’
and by Inl, the norm of n in the wellordering < as defined in 13.2. Then we

obtain:

29.17. Lemma
For all ne¢Field(<) it is Inlp = Inl_.

Proof

We first show neAccinl< by < -induction. By the induction hypothesis we have
me Acc!™< for all m<n. Since Iml<< }n!< this implies Ym<ni{me Acc< k). Hence
ne Accl?l< which proves Inlrs Inl<. For the other direction we show Inl< slnlr by
induction on |n|<. If E< |n|,< :{lml<: m<n}, then there is an m<n such that
£ = |ml, l=v|m|r. But since meAcc< Il it follows iml.<In{.. Hence Inl, <Inl .
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29.18. Theorem

For every a<{e,,, there is an X-positive arithmetical formula A and an
new such that o<|nls and ID/l-nel,.

Proof

For every u<{gen,y there is an n<w such that a<@4,. In the proof of 29.14 we
have shown that ID; I~ TI4(4,,,X) holds for all n<w. By the condensation
lemma this implies ID; - ¢A, ¢ Acc for all n<w. By lemma 29.17., however, it is
I‘I"AnlAcc = (.
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The main goal of this lecture was to introduce to the techniques of impredicative
ordinal analysis. The axiom system for noniterated inductive definitions served
as an simple example for an impredicative theory. Of course, this is just a first
step into the world of impredicativity. The most straightforward way to obtain
more complicated axiom systems is to consider iterated inductive definitions.
These theories are treated in [BFPS]. There it is also shown how these theories
are connected to subsystems of classical analysis, i.e. second order number
theory with comprehension. The real fascination of impredicative systems, however,
becomes not visible till one considers subsystems of set theory. Pitily there are
no text books in this area. The best references here are the papers [1979] and
[1986] of G.Jdger. An impressing variety of subsystems of set theory is presentend
by M.Rathjen [1989]. This paper is a good example for the interplay between
recursion theoretical, set theoretical, model theoretical and proof theoretical
methods in the ordinal analysis of subsystems of set theory. A survey of these
methods is given in Pohlers [1990]. A text book with the title "Admissible Proof
Theory” is in preparation and will appear in the Springer series "Ergebnisse der
Mathematik und ihrer Grenzgebiete".
We will close this book by giving some comments on the 'constructive'
meaning of ordinal analysis. In §14 we already indicated that it is sufficient for
an ordinal analysis to regard only recursive proof trees of the semiformal system.
This can be used to show

MDTHF & Z + TU<IT,X)FF
for all Ilj-sentences F. Here TI(<|T|,X) means that we allow induction along
all initial segments of the primitive recursive wellordering < of ordertype |T|
which has been obtained from the notation system used in the ordinal analysis
of T. A detailed proof is in Pohlers [BFPS]. The axiom system PRA for 'primitive
recursive analysis' is essentially the system Zf - INDR of exercise 3.15.6.
(often considered as second order theory but without strong comprehen-
sions). By the (formal) reflection principle (REF(T}) for an axiom system T one
denotes the principle

{REF(T)) Bew.r(rF’) — F
where Bew.;. is a provability predicate for T. (H‘z) - REF(T)) is the scheme (REF(T})
with F restricted to II‘Z) - sentences, i.e. sentences of the form VX 3y G(¥,y) with
G quantifier free. For a primitive recursive order relation < on the natural
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numbers we denote by PRWO(<) that there are no primitive recursive infinitely
4 —-descending sequences. Then we have
@ PRA |- PRWO({) — (IIJ - REF(Z,+TI{<,X)).
This is considered to be a folklore result of proof theory. Its proof needs a
principle known as 'continuous cut elimination' originally developed by G.E.Mints.
The most beautiful proof has been given by W.Buchholz in {1988a]. From (1)
and (2) it already follows that PRA + PRWO(< ) proves the consistency of T.
Moreover the theory PRA has a beautiful computational aspect. It has primitive
recursive Hg~ Skolem functions, i.e. if PRAF Y% 3y G(X, y) for a quantifier
free formula G(X,y}), then there is a primitive recursive function f such that
N E G(%,f(RX)). This result can be extended to PRA + PRWO(X) in so far that
this theory has Skolem functions which can be obtained from the basic functions
Cg. P} and S by substitution, primitive recursion (cf. 1.1.) and the <-descending
u—operator which for a given n+l-ary function f searches for the value
(g £)(X) = minly: (X, y+ 1L F(Ry))}
ie. p¢f(X) computes the length of a <{-descendent sequence f(%,0)> f(X,1)>
> f(*, 2)>. . .. The class of these functions, the < -descendent functions, can also
be obtained by <-recursion, i. e. using the scheme
h(¥ f(X,g(X, y) if g(X,yKy
flX,y) =
k(X.,y) otherwise

in addition to substitution and primitive recursion. The functions can also be
characterized using the Hardy hierarchy of computable functions which is
given by
Hylx) = x
H,,, (x) = H_(x+1)
H, (x) = H, 13(x) for limit ordinals X

where {A[n]: n<w} is a fundamental sequence for X, ie. sup{iln]:n<w}=2x
and Aln]<A[n+1] for all n<w. It can be shown that the <-descending functions,
where < is an initial segment of <., are all majorizable by the function Hy,.

From (1) and (2) we obtain a characterization of the Hg — Skolem functions of
the theory T. If T |- ¥¥3y G(R,y), then we obtain Z, + T, X} - V¥ 3y G(R,y)
for an initial segment < of < by (1). This entails

PRA |- Bew (7 . 1y<.xn( VX 3y GEy))

which by (2) implies PRA + PRWO(<) I~ ¥¥ 3y G(¥,y). Hence T has Hg —Skolem
functions which are <{- descendent for initial segments of <y A recursive
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function f with index e is provably recursive in T, if T I Y% 3y T(e,¥,y), where
T denotes the Kleene predicate), l.e. if T proves f to be total. The provably
recursive functions of T are thus Hg ~ Skolem functions and therefore majorizable
by Hyy.

Since (1} is a side result of the method of local predicativity (cf. [BFPS]} we
obtain as as a corollary of the {proof of the) ordinal analysis for T a characteri-
zation of the Hg ~ Skolem functions, and thus also of the provable recursive
functions of T. This characterization may be considered as a very constructive
one since the wellorderings <y obtained from the ordinal analysis are so simple
that it causes no problems to implement them on a computer. (For the system
obtained in chapter III this has been done by K.Stroetmann in Miinster). Therefore
there is a program, implementable on a real computer, computing the provably
recursive functions of T. As a matter of fact, however, these functions increase
so incredibly fast that they only are computable for very small arguments.
The above stated facts are scattered in the literature. The best reference here is
Takeuti's book [1987 CH.2 §12] where he proves similar results for the case of
pure number theory.
A textbook treating this material systematically is still a challenge.
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Abbreviations:

AMLG
APAL

BFPS

HB
HF

IPT

JSL
LMPS 111

LMPS Vi

LNM
MA
NH
SDBA

SR
ZML
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