

Wojciech Penczek, Agata Półrola

Advances in Verification of Time Petri Nets and Timed Automata

Studies in Computational Intelligence, Volume 20

Editor-in-chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series
can be found on our homepage:
springer.com

Vol. 5. Da Ruan, Guoqing Chen, Etienne E.
Kerre, Geert Wets (Eds.)
Intelligent Data Mining, 2005
ISBN 3-540-26256-3

Vol. 6. Tsau Young Lin, Setsuo Ohsuga,
Churn-Jung Liau, Xiaohua Hu, Shusaku
Tsumoto (Eds.)
Foundations of Data Mining and Knowledge
Discovery, 2005
ISBN 3-540-26257-1

Vol. 7. Bruno Apolloni, Ashish Ghosh, Ferda
Alpaslan, Lakhmi C. Jain, Srikanta Patnaik
(Eds.)
Machine Learning and Robot Perception,
2005
ISBN 3-540-26549-X

Vol. 8. Srikanta Patnaik, Lakhmi C. Jain,
Spyros G. Tzafestas, Germano Resconi,
Amit Konar (Eds.)
Innovations in Robot Mobility and Control,
2005
ISBN 3-540-26892-8

Vol. 9. Tsau Young Lin, Setsuo Ohsuga,
Churn-Jung Liau, Xiaohua Hu (Eds.)
Foundations and Novel Approaches in Data
Mining, 2005
ISBN 3-540-28315-3

Vol. 10. Andrzej P. Wierzbicki, Yoshiteru
Nakamori
Creative Space, 2005
ISBN 3-540-28458-3

Vol. 11. Antoni Ligęza
Logical Foundations for Rule-Based
Systems, 2006
ISBN 3-540-29117-2

Vol. 12. Jonathan Lawry
Modelling and Reasoning with Vague Con-
cepts, 2006
ISBN 0-387-29056-7

Vol. 13. Nadia Nedjah, Ajith Abraham,
Luiza de Macedo Mourelle (Eds.)
Genetic Systems Programming, 2006
ISBN 3-540-29849-5

Vol. 14. Spiros Sirmakessis (Ed.)
Adaptive and Personalized Semantic Web,
2006
ISBN 3-540-30605-6

Vol. 15. Lei Zhi Chen, Sing Kiong Nguang,
Xiao Dong Chen
Modelling and Optimization of
Biotechnological Processes, 2006
ISBN 3-540-30634-X

Vol. 16. Yaochu Jin (Ed.)
Multi-Objective Machine Learning, 2006
ISBN 3-540-30676-5

Vol. 17. Te-Ming Huang, Vojislav Kecman,
Ivica Kopriva
Kernel Based Algorithms for Mining Huge
Data Sets, 2006
ISBN 3-540-31681-7

Vol. 18. Chang Wook Ahn
Advances in Evolutionary Algorithms, 2006
ISBN 3-540-31758-9

Vol. 19. Ajita Ichalkaranje, Nikhil
Ichalkaranje, Lakhmi C. Jain (Eds.)
Intelligent Paradigms for Assistive and
Preventive Healthcare, 2006
ISBN 3-540-31762-7

Vol. 20. Wojciech Penczek, Agata Półrola
Advances in Verification of Time Petri Nets
and Timed Automata, 2006
ISBN 3-540-32869-6

Wojciech Penczek
Agata Półrola

A Temporal Logic Approach

Advances in
Verification of Time
Petri Nets and Timed
Automata

ABC

With 124 Figures

Doc. dr. hab. Wojciech Penczek Dr. Agata Półrola
Institute of Computer Science Faculty of Mathematics
Polish Academy of Sciences University of Łódz
ul. Ordona 21 ul. Banacha 22
01-237 Warsaw 90-238 Łódz
Poland Poland
and E-mail: polrola@math.uni.lodz.pl
Institute of Informatics
Podlasie Academy
ul. Sienkiewicza 51
08-110 Siedlce
Poland
E-mail: penczek@ipipan.waw.pl

ISSN print edition: 1860-949X
ISSN electronic edition: 1860-9503

This work is subject to copyright. All rights are reserved, whether the whole or part of the mate-
rial is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recita-
tion, broadcasting, reproduction on microfilm or in any other way, and storage in data banks.
Duplication of this publication or parts thereof is permitted only under the provisions of the
German Copyright Law of September 9, 1965, in its current version, and permission for use
must always be obtained from Springer-Verlag. Violations are liable to prosecution under the
German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
© Springer-Verlag Berlin Heidelberg 2006

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Printed on acid-free paper SPIN: 11599357 5 4 3 2 1 0 89/SPI

ISBN-10 3-540-32869-6 Springer Berlin Heidelberg New York

Library of Congress Control Number: 2006925476

Printed in the Netherlands

Cover design: deblik, Berlin
Typesetting by the authors and SPI Publisher Services

ISBN-13 978-3-540-32869-8 Springer Berlin Heidelberg New York

To our families

Introduction

Verification of real-time systems is an important subject of research. This is
highly motivated by an increasing demand to verify safety critical systems,
i.e., time-dependent distributed systems, failure of which could cause dramatic
consequences for both people and hardware.

Temporal logic methods have been used for verification over the last twenty
years, proving their usefulness for such an application. Whereas infinite state
systems still require deductive proof methods, systems of finite abstract mod-
els can be verified using algorithmic approaches. This means that the veri-
fication process can be fully automated. One of the most promising sets of
techniques for verification is known as model checking. Essentially, in this for-
malism verifying that a property follows from a system specification amounts
to checking whether or not a temporal formula is valid on a model representing
all the possible computations of the system.

Several models of real-time systems are usually considered in the litera-
ture, but timed automata (TA) [10] and time Petri nets (TPNs) [106] be-
long to the most widely used. For these models, one is, usually, interested in
checking reachability or more involved temporal properties that are typically
expressed either in a standard temporal logic like LTL and CTL∗, or in a
timed extension of CTL, called TCTL [7]. Unfortunately, practical applica-
bility of model checking methods is strongly limited by the state explosion
problem, which makes models grow exponentially in the number of the con-
current processes of a system. For real-time systems, this problem occurs
with a particular strength, which follows from infinity of the dense time do-
main. Therefore, existing verification techniques frequently apply symbolic
representations of state spaces using either operations on Difference Bound
Matrices [68] or similar structures [32] for representing states of abstract mod-
els, or variations of Boolean Decision Diagrams like Clock Decision Diagrams
(CDDs) [24, 166], Numeric Decision Diagrams (NDDs) [18], Difference Deci-
sion Diagrams (DDDs) [107,108], or Clock Restriction Diagrams (CRDs) [168].

Quite recently, a new approach to verification of real time systems, based
on SAT-related algorithms, has been suggested. The reason for this is a dra-

VIII Introduction

matic increase in efficiency of SAT-solvers over the last few years. The SAT-
based approach can exploit either a sequence of translations starting from
a timed system and a timed temporal property, going via (quantified) sep-
aration logic to quantified propositional logic and further to propositional
logic [20, 110, 140] or a direct translation from a timed system and a timed
temporal property to propositional logic [120,171,177].

Finite state models for timed systems, preserving properties to be checked,
are usually built using the detailed region graph approach or (possibly mini-
mal) abstract models, based on state classes or regions. Algorithms for gen-
erating such models have been defined for time Petri nets [32,35,73,102,111,
117,163,174], as well as for timed automata [7, 8, 41,66,125,159].

It seems that in spite of the same underlying timed structure, model check-
ing methods for time Petri nets and timed automata have been developed
independently of each other. However, several attempts to combine the two
approaches were made, concerning both a structural translation of one model
into the other [52, 60, 78, 89, 103, 124, 144] or an adaptation of existing verifi-
cation techniques [73,111,163].

The aim of this monograph is to present a recent progress in the devel-
opment of two model checking methods, based on either building abstract
state spaces or application of SAT-based symbolic techniques. The latter is
achieved indirectly for time Petri nets, namely via a translation to timed au-
tomata. Our special emphasis is put not only on the verification methods, but
also on specification languages and their semantics.

Structure of the book

Chapter 1 of this book introduces Petri nets, discusses their time extensions,
and provides a definition of time Petri nets. Our attention is focused on a spe-
cial kind of TPNs – distributed time Petri nets, which, in a sense, correspond
to networks of timed automata introduced in Chapter 2. Two main alterna-
tive approaches to the semantics of time Petri nets are considered. The first
of them consists in assigning clocks to various components of the net, i.e.,
the transitions, the places, or the processes, whereas the second exploits the
so-called firing intervals of the transitions. The chapter ends with comparing
the above semantics as well as their dense and discrete versions.

Chapter 2 considers timed automata, which were introduced by Alur
and Dill [10]. Timed automata are extensions of finite state automata. We give
semantics of timed automata and show how to define their product. Typically,
we consider networks of timed automata, consisting of several concurrent TA
running in parallel and communicating with each other. Concrete models are
defined and progressiveness is discussed.

Chapter 3 deals with various structural translations from TPNs to TA.
They enable an application of specific verification methods for timed automata
to time Petri nets. Several methods of translating time Petri nets to timed
automata have been already developed. However, in most cases translations

Introduction IX

produce automata which extend timed automata. We sketch some of the ex-
isting approaches, but focus mainly on the translations that correspond to the
semantics of time Petri nets, associating clocks with various components of
the nets, like the places, the transitions, or the processes.

Chapter 4 introduces temporal specification languages. We start our pre-
sentation with the standard branching time logic CTL∗, its extension modal µ-
calculus, and then discuss timed temporal logics: TCTL and timed µ-calculus.
It is important to mention that we consider two versions of syntax of TCTL
interpreted over either weakly or strongly monotonic runs.

Chapter 5 gives model abstraction methods based on state classes ap-
proaches for TPNs and on partition refinement for TA. For time Petri nets
we discuss different abstract models like state class graphs, geometric re-
gion graphs, atomic state class graphs, pseudo-atomic state class graphs, and
strong state class graphs. For timed automata we concentrate on detailed re-
gion graphs, (pseudo-)bisimulating models, (pseudo-)simulating models, and
forward-reachability graphs. The last section of this chapter gives an overview
of difference bound matrices (DBMs), which are used for representing states
of abstract models.

Chapter 6 deals with model checking methods for CTL. These methods
include a standard state labelling algorithm as well as an automata-theoretic
approach. Moreover, we show that model checking for TCTL over timed au-
tomata can be reduced to model checking for CTL.

Chapter 7 discusses SAT-based verification techniques, like bounded
(BMC) and unbounded model checking (UMC). The main idea behind BMC
[120,171] consists in translating the model checking problem for an existential
fragment of some branching-time temporal logic (like CTL or TCTL) on a
fraction of a model into a test of propositional satisfiability, for which refined
tools already exist [109]. Unlike BMC, UMC [105,140] deals with unrestricted
temporal logics checked on complete models at the price of a decrease in
efficiency.

Each chapter of our book is accompanied with pointers to the literature,
where descriptions of complementary methods or formalisms can be found.

Acknowledgement. The authors would like to thank the following people for com-
menting on this monograph: Bernard Berthomieu, Franck Cassez, Piotr Dembiński,
Magdalena Kacprzak, S�lawomir Lasota, Oded Maler, Olivier H. Roux, Maciej
Szreter, Stavros Tripakis, Bożena Woźna, Tomohiro Yoneda and Andrzej Zbrzezny.
All the comments from the above experts have greatly helped to improve the book.

The authors acknowledge support from Ministry of Science and Education (grant
No. 3T11C 011 28).

Warsaw, Poland, Wojciech Penczek
December 2005 Agata Pó�lrola

Contents

List of Figures . XV

List of Symbols .XXI

Part I Specifying Timed Systems and Their Properties

1 Petri Nets with Time . 3
1.1 Incorporating Time into Petri Nets . 6
1.2 Time Petri Nets . 7

1.2.1 Distributed Time Petri Nets . 8
1.2.2 Semantics: The Clock Approach . 11

Clocks Assigned to the Transitions 11
Clocks Assigned to the Places . 12
Clocks Assigned to the Processes . 14

1.2.3 Semantics: Firing Intervals . 15
1.3 Reasoning about Time Petri Nets . 17

1.3.1 Comparison of the Semantics . 17
1.3.2 Dense versus Discrete Semantics . 18

Alternative (Discrete) Semantics . 21
1.3.3 Concrete Models for TPNs . 23
1.3.4 Progressiveness in Time Petri Nets 23
1.3.5 The Case of “General” TPNs . 27

2 Timed Automata . 29
2.1 Time Zones . 29
2.2 Networks of Timed Automata . 33
2.3 Semantics of Timed Automata . 38

2.3.1 Alternative (Discrete) Semantics . 40
2.4 Concrete Models for TA . 41
2.5 Checking Progressiveness . 42

XII Contents

2.5.1 A Static Technique . 44
2.5.2 Applying Verification Methods . 46
2.5.3 A Solution for Strongly Monotonic Semantics 48

3 From Time Petri Nets to Timed Automata 51
3.1 Translations to Extended Timed Automata 51
3.2 Translation for “Clocks Assigned to the Transitions” 53
3.3 Translation for “Clocks Assigned to the Places” 55

3.3.1 Supplementary Algorithms . 57
Obtaining General TA . 57
Obtaining Diagonal-Free TA . 58

3.4 Translation for Distributed Nets . 59
3.5 Comparing Expressiveness of TPNs and TA 62

4 Main Formalisms for Expressing Temporal Properties 63
4.1 Non-temporal Logics . 63

4.1.1 Propositional Logic (PL) . 63
Syntax of PL . 63
Semantics of PL . 64

4.1.2 Quantified Propositional Logic (QPL) 65
Syntax of QPL . 65
Semantics of QPL . 65

4.1.3 (Quantified) Separation Logic ((Q)SL) 65
Syntax of (Q)SL . 65
Semantics of (Q)SL . 66

4.2 Untimed Temporal Logics . 66
4.2.1 Computation Tree Logic* (CTL∗) 67

Syntax of CTL∗ . 67
Sublogics of CTL∗ . 67
Semantics of CTL∗ . 69

4.2.2 Modal µ-Calculus . 71
Syntax of Modal µ-Calculus . 71
Semantics of Modal µ-Calculus . 72

4.2.3 Interpretation of Temporal Logics over Timed Systems
Models . 74

4.3 Timed Temporal Logics . 75
4.3.1 Timed Computation Tree Logic (TCTL) 75

Syntax of TCTL . 75
Semantics of TCTL over Timed Systems 76

Strongly Monotonic Interval Semantics 76
Weakly Monotonic Interval Semantics 78

4.3.2 Timed µ-Calculus (Tµ) . 80
Syntax of Tµ . 80
Semantics of Tµ . 80

4.3.3 Syntax and Semantics of TCTLC . 82

Contents XIII

Part II Model Generation and Verification

5 Abstract Models . 89
5.1 Model Generation for Time Petri Nets . 96

5.1.1 State Class Approaches . 96
State Class Graph . 96
Geometric Region Graph . 103
Atomic State Class Graph . 107
Pseudo-atomic State Class Graph 111
Strong State Class Graph . 112
Strong Atomic State Class Graph 115

5.1.2 Other Approaches – an Overview . 115
5.2 Model Generation for Timed Automata . 115

5.2.1 Detailed Region Graphs . 116
5.2.2 Partition Refinement . 122

Bisimulating Models . 124
The Algorithm of Bouajjani et al. 124
A Convexity-Preserving Technique 127
The Lee–Yannakakis Algorithm 130

Simulating Models . 133
Pseudo-bisimulating Models . 135

A Convexity-Preserving Technique 137
Pseudo-simulating Models . 137
Other Minimization Techniques . 138

5.2.3 Forward-reachability Graphs . 138
Abstractions for Forward-reachability Graphs 140

Inclusion Abstraction . 140
Extrapolation Abstraction 142
Other Abstractions . 145

5.3 Difference Bounds Matrices . 146
5.3.1 Operations on Zones Using DBMs 148

Intersection . 148
Clock Resets . 148
Time Successor . 150
Time Predecessor . 150
Immediate Time Predecessor . 150
Zone Difference . 153

6 Explicit Verification . 155
6.1 Model Checking for CTL . 155

6.1.1 State Labelling . 155
6.1.2 Automata-Theoretic Approach . 158

Alternating Automata . 158
Translation from CTL to WAA . 164

XIV Contents

Model Checking with WAA . 166
Product Automaton . 167
Checking Non-emptiness of 1-Letter Word WAA 170

6.2 Model Checking for TCTL over Timed Automata 171
6.2.1 Verification Using Translation from TCTL to CTL 171

Model Checking over Region Graph Models 172
Model Checking over (Bi)simulating Models 178

6.2.2 Overview of Other Approaches to TCTL Verification . . 178
6.3 Selected Tools . 178

6.3.1 Tools for TPNs . 179
6.3.2 Tools for TA . 179

7 Verification Based on Satisfiability Checking 181
7.1 Bounded Model Checking Using Direct Translation to SAT . . . 182

7.1.1 Discretization of TA . 182
Discretized Model for (Un)reachability Verification 185
Discretized Model for TCTL Verification 188

7.1.2 Bounded Model Checking for ECTLr
−X 191

7.1.3 Checking Reachability with BMC 201
7.1.4 Checking Unreachability with BMC. 201

7.2 Bounded Model Checking via Translation to SL 203
7.2.1 Encoding k-Paths . 203
7.2.2 Product Encoding . 204
7.2.3 Encoding of LTL Formulas . 205

No loop case . 205
Loop case . 207

7.2.4 Optimizations of the Encoding . 207
7.3 Unbounded Model Checking for Tµ . 207

7.3.1 From Real to Boolean Quantification 211
7.3.2 From QSL Formulas Without Real-Time

Quantification to Equivalent Boolean Formulas 212
7.4 Deciding Separation Logic (MATH-SAT) 212

7.4.1 From SL to Propositional Logic . 212
Propositional Encoding . 213
Building the Inequality Graph . 213
Transitivity Constraints . 214
Complexity and Optimization . 216

7.4.2 Other Approaches to Deciding SL 217
7.5 Deciding Propositional Formulas (SAT) . 218

7.5.1 Boolean Constrain Propagation . 220
7.5.2 Conflict-Based Learning . 222
7.5.3 Variable Selection (VS) . 224

7.6 From a Fragment of QPL to PL . 225
7.7 Remaining Symbolic Approaches - Overview 229
7.8 Selected Tools . 229

List of Figures XV

Concluding Remarks and Future Research Directions 231

References . 233

Index . 245

Author Index . 251

List of Figures

1.1 A Petri net . 4
1.2 A bounded Petri net . 6
1.3 A time Petri net . 8
1.4 A distributed time Petri net with disjoint processes 9
1.5 A distributed time Petri net with communicating processes

(Fischer’s mutual exclusion protocol for n = 2) 10
1.6 The time Petri net used in Example 1.13 . 21
1.7 A time Petri net with structural deadlock 24
1.8 A deadlock-free time Petri net with a structural deadlock 24
1.9 A time Petri net with deadlock (only non-zero time steps

allowed) . 25
1.10 A time Petri net with a non-progressive run 26

2.1 Polyhedra in IR2
0+. 31

2.2 Zones Z,Z ′ ∈ Z(2) and examples of operations on them 32
2.3 A timed automaton . 34
2.4 Fischer’s mutual exclusion protocol for two processes 34
2.5 Composition of timed automata . 35
2.6 Train–Gate–Controller example . 36
2.7 The product automaton for the Train–Gate–Controller example 37
2.8 A timed automaton with timelocks . 42
2.9 A timed automaton with a deadlock in the strongly monotonic

semantics . 43
2.10 A timed automaton with strongly progressive structural loops . . 44
2.11 The timed automaton considered in Example 2.17 45
2.12 The timed automaton considered in Example 2.19 47
2.13 A timed automaton for testing deadlocks in the TA of Fig. 2.12 48
2.14 The automaton Am used to test progressiveness of the

automaton of Fig. 2.11 in the strongly monotonic semantics . . . 49

XVIII List of Figures

3.1 The timed automaton for the net of Fig. 1.3 resulting from
the translation for “clocks assigned to the transitions” 55

3.2 Partitioning [[invN (m34)]] into disjoint zones – the algorithm
for non-diagonal-free TA . 58

3.3 Partitioning [[invN (m34)]] into disjoint zones – the algorithm
for diagonal-free TA . 58

3.4 The timed automaton for the net in Fig. 1.3 resulting from
the translation for “clocks assigned to the places” 59

3.5 The timed automaton for the net in Fig. 1.3 resulting from
the translation for “clocks assigned to the processes” 61

4.1 Examples of CTL∗ formulas . 70
4.2 Relations between sublogics of CTL∗ . 71
4.3 A sequence of approximations for computing E(℘1U℘2) 73
4.4 Examples of TCTL formulas . 77
4.5 Weakly monotonic interval semantics for TCTL 79
4.6 Examples of Tµ formulas . 82
4.7 Some examples of TCTLC formulas . 84

5.1 The conditions EE, EA, AE and U in abstract state spaces 91
5.2 Conditions on transition relation in pseudo-bisimulating and

pseudo-simulating models . 93
5.3 Various abstract models built for the same underlying concrete

one . 94
5.4 Time-abstracted and discrete successor relations 95
5.5 The time Petri net considered in Example 5.3 98
5.6 An algorithm for generating state class graph of a time

Petri net . 100
5.7 The time Petri net considered in Example 5.6 101
5.8 Constructing the state class graph for the net in Fig. 5.7 101
5.9 Constructing the geometric region graph for the net in Fig. 5.7 . 105
5.10 The geometric region graph of the modified equivalence

relation, built for the net in Fig. 5.7 . 107
5.11 An algorithm for generating atomic state class graph of a

(1-safe) time Petri net . 108
5.12 The atomic state class graph for the net in Fig. 5.7 111
5.13 The strong state class graph for the net in Fig. 5.7 114
5.14 Detailed zones for cmax(A, ϕ) = 1 . 117
5.15 Time- and action successor relation for detailed regions 119
5.16 Time- and action successor relation for detailed regions when

boundary regions are distinguished . 120
5.17 The timed automaton of Example 5.14 . 121
5.18 The reachable part of the detailed region graph for the

automaton of Fig. 5.17 and a formula ϕ s.t. cmax(A, ϕ) = 1 121

List of Figures XIX

5.19 The reachable part of the boundary-distinguishing detailed
region graph for the automaton of Fig. 5.17 and a formula ϕ
such that cmax(A, ϕ) = 1 . 122

5.20 A generic minimization algorithm . 124
5.21 Partitioning of the classes to preserve AE. 125
5.22 A partitioning process for bisimulating models 126
5.23 A minimization algorithm for building strong ta-bisimulating

models for TA without computing differences 128
5.24 The functions TimeSplit and ActionSplit 129
5.25 A generic minimization algorithm by Lee and Yannakakis 130
5.26 Partitioning of a class in the Lee-Yannakakis algorithm 132
5.27 Partitioning of the classes to preserve U . 134
5.28 A minimization algorithm for testing reachability on

pseudo-bisimulating models . 136
5.29 A general reachability algorithm. 139
5.30 The timed automaton used in Example 5.17 140
5.31 The forward-reachability graph for the automaton of Fig. 5.30 . 140
5.32 A forward-reachability graph with the inclusion abstraction

built for the automaton of Fig. 5.30 . 141
5.33 A timed automaton whose forward-reachability graph with

the inclusion abstraction is infinite . 141
5.34 Extrapolations of zones for cmax(A) = 2 (diagonal-free TA) 142
5.35 A forward-reachability graph with the extrapolation

abstraction built for the automaton of Fig. 5.30 143
5.36 A timed automaton with clock differences 144
5.37 The forward-reachability graph for the automaton of Fig. 5.36 . 144
5.38 Convex hulls for zones Z1, Z2 . 146
5.39 A graphical interpretation of bounds of the canonical DBM 148
5.40 A non-canonical DBM for intersection of two zones represented

by canonical DBMs . 149
5.41 The steps of computing [{x1} := 0]Z . 149
5.42 (a) A correct time-successor of the zone represented by a

canonical DBM, (b) an incorrect time-successor of the zone
represented by a non-canonical DBM . 150

5.43 A non-canonical result of computing Z ↙ in spite of the
canonical input . 151

5.44 Examples of borders of two zones . 152
5.45 An algorithm for computing difference of zones 154

6.1 The model M considered in Example 6.1 . 157
6.2 The stages of labelling M with subformulas of

ϕ = E(℘1U(EG℘2)) . 157
6.3 A tree . 159
6.4 The transition function of the automaton A of Example 6.4 161

XX List of Figures

6.5 A run r = (Tr, Vr) of the automaton A of Example 6.4 on a
tree (T, VT) . 162

6.6 The model M considered in Example 6.8 . 168
6.7 A part of the and/or graph of the automaton AM×ϕ for the

model of Fig. 6.6 and ϕ = E(℘1U(EG℘2)) 169
6.8 Labelling the states while testing non-emptiness of

the automaton AM×ϕ for the model of Fig. 6.6 and
ϕ = E(℘1U(EG℘2)) . 171

6.9 The timed automaton Aϕ augmenting that of Fig. 5.17 to
verify TCTL formulas with one timing interval 173

6.10 The reachable part if the boundary-distinguishing detailed
region graph for the automaton of Fig. 5.17
and cmax(A, ϕ) = 1 . 175

6.11 Testing whether q |= γ . 175
6.12 Testing γ translated to CTLr

−X . 176

7.1 Discretizing [0, 1)2 . 184
7.2 Time- and action successor relation vs. discretization. 184
7.3 The timed automaton used in Example 7.3 186
7.4 The reachable part of the detailed region graph for the

automaton of Fig. 7.3 and cmax(A, ϕ) = 1 187
7.5 The sequence of transitions considered in Example 7.3 in the

reachable part of the discretized model for the automaton in
Fig. 7.3 . 187

7.6 Sequences of transitions in the reachable part of the discretized
rg-model for the automaton in Fig. 7.3 and cmax(A, ϕ) = 1 189

7.7 Sequences of transitions in the reachable part of the discretized
rgb-model for the automaton in Fig. 7.3 and cmax(A, ϕ) = 1 . . . 191

7.8 Elements of the k-model for k = 2 . 192
7.9 Two kinds of k-paths . 192
7.10 Examples of ECTLr

−X formulas . 193
7.11 Sets P ′

k of submodels of Mk (k = 2). 194
7.12 An intuition behind the number of k-paths in fk(E(αUyβ)) 195
7.13 An intuition behind the number of k-paths in fk(E(αRyβ)) 195
7.14 An intuition behind the translations of TCTL formulas into

ECTLr
−X formulas . 199

7.15 An intuition behind the translation of Xzi
α 199

7.16 A BMC algorithm for TECTL . 200
7.17 Examples of ECTLr

−X formulas . 200
7.18 A special k-path . 201
7.19 A free special k-path . 202
7.20 An intuition behind the translations of ϕ = αUβ and ϕ = αRβ

when the k-path is not a loop . 206
7.21 An intuition behind the translations of ϕ = αUβ and ϕ = αRβ

when the k-path is a loop . 206

List of Symbols XXI

7.22 An algorithm computing the characteristic state predicate for
a Tµ formula . 210

7.23 An inequality graph for Example 7.16 . 215
7.24 The structure of a graph with exponentially many

simple cycles . 216
7.25 An accumulating chord. 216
7.26 A generic SAT algorithm . 221
7.27 An implication graph for ϕ . 223
7.28 A generic equCNF algorithm. 226
7.29 A dag for the formula ϕ = ℘1 ∨ (℘2 ∧ ℘3 ∧ (℘4 ⇔ ℘5)) 227
7.30 Identifying the blocking clause ℘1 ∨ ℘2 . 227
7.31 Identifying the blocking clause ℘1 ∨ ℘3 . 228

List of Symbols

· concatenation, page 159
→ successor relation of M , page 69
→Π successor relation of Π, page 123
→ΠL successor relation between classes of Π (Lee-Yannakakis al-

gorithm, relates marked classes), page 132
→a abstract transition relation, page 90
→c concrete successor relation in C(T), page 89
→c transition relation of Cc(A), page 38
→d1 discrete successor relation of A, page 40
→d2 discrete successor relation of A, page 40
→d transition relation of DMDRG(A), page 188
→dA part of →d where transitions are labelled with elements of

A ∪ {τ}, page 191
→dc

transition relation of DM(A), page 185
→dy

part of →d where transitions are labelled with ay, page 191
→Fc timed consecution relation in CF

c (N), page 16
→Nc timed consecution relation in CN

c (N), page 14
→Pc timed consecution relation in CP

c (N), page 13
→Tc timed consecution relation of CT

c (N), page 11
→� successor relation in DRG(A), page 118
→�b successor relation in DRGb(A), page 119
→�bA page 173
→�byi

page 173
| → | the number of transitions of M , page 70
≡G equivalence of classes in geometric region graph, page 104
≡S equivalence of classes in SCG, page 98
|= page 70
|= satisfaction relation for C�

X+ , page 30
|= satisfaction relation for C�

X , page 29
	 ordering of bounds, page 146

XXIV List of Symbols

CA,ϕ
equivalence of clock valuations, page 116

�δ� integral part of δ, page 116
δ negation of the variable δ, page 208
∆ discretization step, page 183
∆ transition function of A, page 160
ε label of adjust transitions in DM(A), page 185
ε empty sequence of transitions (state class methods), page 104
ε empty sequence, page 159
η sequence of transitions, element of C in some state class

methods, page 103
η node of a tree, page 159
ν fictitious transition denoting start of N , page 104
ξi,j path from xi to xj in Gϕ, page 216
π path (of a tree), page 159
π path, page 191
π path in a CTL∗ model, page 70
πi page 70
π(i) page 191
Π partition of a state space, page 122
Πps pseudoclasses of Π, page 127
Π0 initial partition (minimization algorithms), page 122
Πk(s) set of all the k-paths starting at s, page 191
ρ run of timed automaton, page 38
σF concrete state in the firing interval semantics of N , page 15
(σF)0 initial state in CF

c (N), page 16
σN concrete state in the semantics assigning clocks to the processes

of N , page 14
(σN)0 initial state in CN

c (N), page 14
σP concrete state in the semantics assigning clocks to the places

of N , page 12
(σP)0 initial state in CP

c (N), page 13
σT concrete state in the semantics assigning clocks to the tran-

sitions of N , page 11
(σT)0 initial state of CT

c (N), page 11
ΣF set of the concrete states in CF

c (N), page 16
ΣN set of the concrete states in CN

c (N), page 14
ΣP set of the concrete states in CP

c (N), page 13
ΣT set of the concrete states of CT

c (N), page 11
τ label for time steps in time-abstracted models, page 94
| ϕ | the length (or size) of ϕ, page 69
[ϕ]k page 205
[ϕ]0k page 205
h[ϕ]0k page 205
[[ψ]] page 207
ψ[A] page 208

List of Symbols XXV

ψa
bool page 211

ψa
cons page 211

[ψ]Mk
conjunct of [M,ψ]k, page 195

ψ1 � ψ2 page 208
ψ[a ← b] substitution (a is substituted with b in ψ)
a element of A, page 159
a page 203
ayi

label of Aϕ, page 172
A universal quantifier of CTL∗, page 67
A set of the actions of A, page 33
A assignment, page 219
A timed automaton, page 33
A alternating automaton over infinite trees, page 160
A labels (of a tree), finite alphabet, page 159
A′ set of actions of Aϕ, page 172
Aϕ A extended to verify a TCTL formula ϕ, page 172
AN page 54, 56, 60
Ar labels of r, page 161
AD,ϕ page 164
AM×ϕ page 166
A(a) indices of the components containing the action a, page 35
Ai1 ‖ . . . ‖ AinI

product of timed automata, page 35
AA alternating automata, page 158
ACTL Universal Computation Tree Logic, page 68
ACTL∗ universal CTL∗, page 68
AE condition AE, page 91
AMN set of the markings of N , page 8
AMn

N set of the markings bounded by n of N , page 8
AMP set of the markings of P, page 4
AMn

P set of the markings of P bounded by m, page 4
b(q) set of the b-successors of q, page 123
b−1(q) set of the states for which q is b-successor, page 123
B set of labels of successor relation →c in T , page 89
B+(Y) set of the positive boolean formulas over Y , page 159
cmax(A, ϕ) the largest constant in CA and time intervals in ϕ of TCTL

or in clock constraints in ϕ of TCTLC , page 116
cmax(A) the largest constant appearing in CA, page 116
C simple cycle, page 214
C state class
C0 initial state class
C� union of C�

X and C�
X+ , page 30

CA clock constraints appearing in enabling conditions and in-
variants of A, page 116

CX set of the clock constraints without clock differences (over
X), page 29

XXVI List of Symbols

C�
X set of the clock constraints over X , page 29

C�
X+ set of the normalised clock constraints, page 30

C(T) concrete state space of a system T , page 89
Cc(A) concrete dense state space of A, page 38
CF

c (N) concrete state space in the firing interval semantics of N ,
page 16

CN
c (N) concrete state space in the semantics assigning clocks to the

processes of N , page 14
CP

c (N) concrete state space in the semantics assigning clocks to the
places of N , page 13

CR
dr

(N) concrete (discrete) state space, page 22
CT

c (N) concrete state space in the semantics assigning clocks to the
transitions of N , page 11

cc clock constraint, page 29
[[cc]] set of the clock valuations satisfying cc, page 30
cf(D) canonical form of DBM D, page 147
clockN function returning the time elapsed since the marked place

of the process became marked most recently in N , page 14
clockP function returning the time since a place became marked

most recently in N , page 12
clockT function returning the time elapsed since a transition be-

came enabled most recently in N , page 11
Closure page 151
CNF conjunctive normal form, page 218
toCNF (ψ) page 219
cor(w) core of the state w, page 91
cr(ϕ) ϕ translated to CTLr

−X, page 172
CTL Computation Tree Logic, page 68
CTL∗ Computation Tree Logic*, page 67
CTLz page 177
CTLr

−X modified CTL−X, page 172
dij element of difference bound matrix, page 147
d(η) degree of η, page 159
D set of degrees, page 159
D discretized clock space, page 183
[[D]] zone defined by DBM D, page 147
DBM difference bound matrix, page 147
DM(A) discretized (concrete) model for A, page 185
DMDRG(A) discretized region graph model for A, page 188
DMDRGb

(A) discretized boundary-distinguishing region graph model for
A, page 190

dom(A) domain of A, page 219
dpt auxiliary function in minimization algorithm for simulating

models, page 135
dpt(w) depth of state w, page 92

List of Symbols XXVII

DRG detailed region graph, page 118
DRG(A) detailed region graph for A (weakly monotonic semantics),

page 118
DRGb(A) boundary-distinguishing detailed region graph for A (DRG

for strongly monotonic semantics), page 119
DZ(nX) set of all the detailed zones for X , page 117
e page 203
eδ page 203
ei

null page 203
E existential quantifier of CTL∗, page 67
E page 183
E transition relation of A, page 33
E′ transition relation of Aϕ, page 172
EN page 54, 57
EA condition EA, page 91
ECTL Existential Computation Tree Logic, page 68
ECTL∗ existential CTL∗, page 68
EE condition EE, page 90
EE1 condition EE1, page 90
EE2 condition EE2, page 90
Eft the earliest firing time function of N , page 8
en(m) set of the transitions enabled at m in P, page 5
encPL(l) page 209
extr(Z) extrapolation of zone Z, page 142
extrd(Z) extrapolation of zone Z (diagonal constraints case), page 144
fA(q) set of the progressive (weakly monotonic) q-runs of A,

page 39
f+
A (q) set of the (progressive) strongly monotonic q-runs of A,

page 39
fk function determining the number of k-paths of a submodel

sufficient to check a formula, page 194
fN (σ) set of the progressive weakly monotonic σ-runs of N , page 20
f+
N (σ) set of the progressive strongly monotonic σ-runs of N ,

page 20
F eventually operator of CTL∗, page 67
F flow function of P, page 3
F acceptance condition for A, page 160
fi firing interval in N , page 15
Fill page 151
frac(δ) fractional part of δ, page 116
free(l) condition to check deadlock-freedom of A, page 45
FV fixed-point variables of µ-calculus, page 71
Gϕ inequality graph for ϕ, page 213
G always operator of CTL∗, page 67
guardN page 54, 56, 60

XXVIII List of Symbols

H(w,w′) page 197
HAA hesitant alternating automata, page 158
I location invariant of A, page 33
I set of inequalities, page 96
IA page 209
Im page 56, 57, 58
IN page 54, 56
Is(w) page 197
I1, . . . , Ir intervals in ϕ, page 172
invN page 56, 60
Iqs(V) set of all the inequalities over V, page 96
IqSets(V) set of all the subsets of Iqs(V), page 96
l0 initial location of A, page 33
lψ page 219
lb length of a vector of global state variable, page 196
L locations of A, page 33
Lµ modal µ-calculus, page 71
Lm page 56
LN page 54, 56
L−X logic L without the next-step operator X, page 68
L(A) language of A, page 163
L(k, h) page 205
Lj(k, h) page 197
Lft the latest firing time function of N , page 8
lit() page 196
loop page 192
LTL Linear-Time Temporal Logic, page 68
m marking of P, page 4
m0 initial marking of P, page 3
m[t〉 t enabled at m in P, page 5
M CTL model, page 69
Mk k-model, page 193
[M]k page 205
| M | size of M , page 70
[Mψ,s0

]k conjunct of [M,ψ]k, page 195
[M,ψ]k propositional formula to be tested to check ψ over Mk,

page 195
Ma(T) abstract model for T , page 89
Mc(A) concrete dense model for A, page 183
Mc(N) concrete model of N , page 23
Mc(T) concrete model of a given system T , page 89
MDRGb

(Aϕ) modified bd-region graph model for Aϕ, page 173
M ′

DRGb
(Aϕ) extended MDRGb

(Aϕ), page 174
IN set of natural numbers, page 3
N family of 1-safe sequential TPNs, page 9

List of Symbols XXIX

N time Petri net, page 7
IN+ set of positive natural numbers, page 3
IN∗ set of all the finite sequences of natural numbers, page 159
newly en(m, t) set of the transitions newly enabled after firing t, page 5
O page 161
ox page 203
℘b page 173
℘yi∈Ii

new proposition for interval Ii, page 173
℘(w) page 197
P Petri net, page 3
P set of places of P, page 3
Pk set of all the k-paths of a discretized rg(b) model, page 192
Py set of all the pairs of states (s, s[y := 0]) of a discretized

rg(b) model, page 192
pAE condition pAE, page 92
parent(vt, C) variable for the parent of t in C, page 104
PL propositional logic, page 63
PostΠ(Y) successors of Y in Π, page 123
postb(Y, Y ′) page 123
PreΠ(Y) predecessors of Y in Π, page 123
preA(ψ) page 209
preb(Y, Y ′) page 123
pree(ψ) page 209
pU condition pU, page 92
PV propositional variables of PL, page 64
PV ′ extended PV , page 173
PVϕ set of the new propositions for intervals in ϕ, page 173
PVP set of the propositional variables corresponding to P of N ,

page 23
PV (ϕ) set of propositions occurring in ϕ, page 67
q0 inital state of A, page 160
q0 initial state of Cc(A), page 38
Q states of A, page 160
Q set of the concrete states of Cc(A), page 38
Q+ set of positive rational numbers, page 3
Q0+ set of non-negative rational numbers, page 3
QPL quantified propositional logic, page 65
QSL quantified separation logic, page 66
r run of A, page 161
r number of the intervals in ϕ, page 172
rY representative of the class Y of Π, page 130
R release operator of CTL∗, page 67
R bisimulation of concrete state spaces of TPNs, page 17
IR set of rational numbers, page 3
IR set of real numbers, page 3

XXX List of Symbols

R region, page 123
IR+ set of positive real numbers, page 3
IR0+ set of non-negative real numbers, page 3
R(nX , L) set of the regions over X and L, page 123
R(w,w′) page 197
Rx(w,w′) page 197
R \ R′ difference of regions R,R′, page 123
ReachA set of the reachable states of A, page 39
Reach+

A set of the reachable states on the strongly monotonic q0-runs
of A, page 39

Reachdr

A reachable states on the discrete runs of A, page 40
ReachR

N set of the reachable states of N , page 19
Reach+R

N set of the states reachable on the strongly monotonic runs
of N (R ∈ {F, P,N, T} and corresponds to the semantics
considered), page 20

ReachRdr

N set of the reachable states on the discrete runs of N , page 21
Reach(T) set of all the states reachable in a given concrete state space

C(T) for T , page 89
Reach(U) set of all the reachable elements of the set family U , page 89
resetN page 54, 57, 60
restrict page 153
Rlx(C) page 113
RMN set of the reachable markings of N , page 19
RM+

N set of the reachable markings on the strongly monotonic runs
of N , page 20

RMkP
P set of all the reachable markings of P for the capacity kP ,

page 5
s0 initial state of M , page 69
s[y := 0] page 191
S set of states of M , page 69
S

D
set of the states of DM(A), page 185

| S | the number of states of M , page 70
SC specification clock variables, page 80
SF (ϕ) set of the subformulas of ϕ, page 69
SL separation logic or difference logic, page 65
sol(I) set of the solutions of I, page 96
Sps auxiliary function to split classes in minimization algorithm

for simulating models, page 133
Succa page 138
succ(s) page 166
t• postset of transition t, page 4
•t preset of transition t, page 4
T tree, page 159
T timed system, page 89
T set of transitions of P, page 3

List of Symbols XXXI

T ∗ set of all the finite sequences of transitions of T , page 103
Tr tree of a run r, page 161
Tµ timed µ-calculus, page 80
TCTL timed CTL, page 75
TCTLC alternative timed CTL, page 82
U Until operator of CTL∗, page 67
U condition U, page 91
U

nX valuations to represent detailed zones in discretized model,
page 183

v clock valuation, page 29
vt variable corresponding to transition t (state class approaches),

page 97
vj

t variable for j-th firing of t (state class methods)
v(i) value of clock xi in v, page 29
v(xi) value of clock xi in v, page 29
v[X := 0] valuation like v where the clocks of X are set to 0, page 29
V valuation function of PL, page 64
Vϕ function labelling states of MDRGb

(Aϕ) with propositions
from PVϕ and with ℘b, page 173

Va valuation function in Ma(T), page 90
VA valuation function for A, page 41
Vc valuation function for a concrete state space of A, page 41
VC valuation function in Mc(T), page 89
VD valuation function of DMDRG(A), page 188
VDc

valuation function in DM(A), page 185
VN valuation function for N , page 23
Vr valuation function of Tr, page 161
VT valuation function (a tree), page 159
V ′

a extended Va, page 173
VAN page 54, 57, 61
(V, v) model for (Q)SL, page 66
V [℘ ← b] substitution in QPL, page 65
var(I) set of the variables appearing in I, page 96
w abstract state
w global state variable (vector encoding a state), page 196
w0 initial state of abstract model, page 90
w[i] state variable, page 196
W states of abstract model, page 90
WAA weak alternating automata, page 158
x0 fictitious clock representing constant 0, page 30
X set of clocks, page 29
X next-step operator of CTL∗, page 67
X ′ set of clocks of Aϕ, page 172
X + set of clocks together with x0, page 30
Ryi

release operator of CTLr
−X, page 174

XXXII List of Symbols

Uyi
until operator of CTLr

−X, page 174
Xzi

next-step operator of CTLz, page 177
XN page 54, 56, 60
[X := 0]Z page 32
yi auxiliary clock in Aϕ, page 172
Y class of Π, page 122
z absolute time reference, page 203
ZZ set of integers, page 3
Z0 initial detailed zone, page 118
Z0 page 138
ZZ+ set of positive integers, page 3
Z ↗ page 31
Z ↙ page 32
ZZ0+ set of non-negative integers, page 3
Z(nX) zones for X , page 31
Z ⇑ Z ′ page 32
Z[X := 0] page 32

Part I

Specifying Timed Systems and Their
Properties

1

Petri Nets with Time

We consider two main models of real-time systems: Petri nets with time and
timed automata. First, we define Petri nets, discuss their time extensions, and
provide a definition of time Petri nets. Our attention is focused on a special
kind of TPNs – distributed time Petri nets, which correspond to networks of
timed automata considered in Chap. 2.

The following abbreviations are used in the definitions of both TA and
TPNs. Let IR denote the set of real numbers, Q – the set of rational numbers,
ZZ – the set of integers, and IN – the set of naturals (including 0). For each
S ∈ {IR,Q,ZZ} by S0+ (S+) we denote a subset of S consisting of all its non-
negative (respectively positive) elements. Moreover, by IN+ we mean the set
of positive natural numbers. When we deal with elements of IR0+ ∪ {∞}, by
the notations “≤ b” and “[a, b]” we mean “< b” and “[a, b)” if a ∈ IR0+ and
b = ∞. We assume also ∞ + a = ∞ − a = ∞.

We start with the standard notion of Petri nets.

Definition 1.1. A Petri net is a four-element tuple

P = (P, T,F ,m0),

where

• P = {p1, . . . , pnP
} is a finite set of places,

• T = {t1, . . . , tnT
} is a finite set of transitions, where P ∩ T = ∅,

• F : (P × T) ∪ (T × P) −→ IN is the flow function, and
• m0 : P −→ IN is the initial marking of P.

Intuitively, Petri nets are directed weighted graphs of two types of nodes:
places (representing conditions) and transitions (representing events), whose
arcs correspond to these elements in the domain of the flow function, for which
the value of this function is positive. The arcs are assigned positive weights
according to the values of F .

W. Penczek and A. Pó�lrola: Petri Nets with Time, Studies in Computational Intelligence (SCI)

20, 3–27 (2006)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006

4 1 Petri Nets with Time

p7

t5t2

p6p4 p8

p5

t3

p2

p3p1 t4t1

11

2

1

1 11

1

3

11 t6
1

1

1

1

2

Fig. 1.1. A Petri net

Example 1.2. An example of a Petri net is shown in Fig. 1.1. The set of
places of this net is given by P = {p1, . . . , p8}, the set of transitions by
T = {t1, . . . , t5}, and the initial marking is m0(p1) = 3, m0(p2) = 1, and
m0(pi) = 0 for i = 3, . . . , 8. The flow function is defined1 by

F (z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3 for z = (t3, p5)
2 for z ∈ {(p1, t1), (t2, p2)}
1 for z ∈ {(t1, p3), (p2, t2), (t2, p4), (p3, t3), (p4, t3), (t3, p6),

(p5, t4), (t4, p7), (p6, t5), (t5, p8), (p8, t6), (t6, p8)}
0 otherwise.

�

For each transition t ∈ T we define its preset

•t = {p ∈ P | F (p, t) > 0}

and its postset
t• = {p ∈ P | F (t, p) > 0}

(e.g., for the transition t2 of the net in Fig. 1.1 we have •t2 = {p2} and t2• =
{p2, p4}). The elements of •t (t•) are called the input (output, respectively)
places of the transition t.

In order to simplify some consequent notions, we consider only the nets,
for which •t and t• are non-empty for each transition t. We use the following
auxiliary notations and definitions:

• A marking of P is any function m : P −→ IN; a place p ∈ P is called
marked in m if m(p) > 0 (e.g., p1 and p2 are marked in m0 in Fig. 1.1).
The value of m(p) is also said to be the number of tokens placed in p in the
marking m. The set of all the markings of P is denoted by AMP . Given a
number n ∈ IN+ ∪ {∞}, the subset of AMP consisting of all the markings
of P with m(p) ≤ n for each p ∈ P (i.e., bounded by n) is denoted by
AMn

P ;

1 In what follows, we usually identify the notation F (s, t) with F ((s, t)).

1 Petri Nets with Time 5

• Given a number kP ∈ IN+∪{∞} denoting a maximal capacity of the places
of P (i.e., a bound on the number of tokens in its places). A transition
t ∈ T is (safely) enabled at a marking m (m[t〉 for short) if

(∀p ∈ •t) m(p) ≥ F (p, t) and (∀p ∈ t•) m(p) − F (p, t) + F (t, p) ≤ kP

(e.g., for the net in Fig. 1.1 and kP = 3 the transitions t1 and t2 are
enabled at m0). Clearly, we assume that the initial marking m0 conforms
with the maximal capacity kP of the places. It is worth noticing that in
most cases kP = ∞ or kP = 1 is considered;

• A transition t ∈ T leads from a marking m to m′ if t is enabled at m, and

m′(p) = m(p) − F (p, t) + F (t, p) for each p ∈ P

(e.g., in the net in Fig. 1.1 for each kP ≥ 3 the transition t2 leads from
m0 to the marking m′ given by m′(p1) = 3, m′(p2) = 2, m′(p4) = 1 and
m′(pi) = 0 for i = 3, 5, . . . , 8).
The marking m′ is denoted by m[t〉 as well, if this does not lead to mis-
understanding;

• By
en(m) = {t ∈ T | m[t〉}

we denote the set of the transitions enabled at m (e.g., in Fig. 1.1 for each
kP ≥ 3, en(m0) = {t1, t2});

• For t ∈ en(m),

newly en(m, t) = {u ∈ T | u ∈ en(m[t〉) ∧ u �∈ en(m′)
with m′(p) = m(p) − F (p, t) for each p ∈ P}

is the set of transitions newly enabled after firing t (e.g., for the net in
Fig. 1.1 we have newly en(m0, t2) = {t2} for kP ≥ 3);

• A marking m is reachable if there exists a sequence of transitions t1, . . . , tl ∈
T and a sequence of markings m0, . . . ,ml such that m0 = m0, ml = m,
and ti ∈ en(mi−1), mi = mi−1[ti〉 for each i ∈ {1, . . . , l} (e.g., in the net
in Fig. 1.1 for k ≥ 3 the marking m′ given by m′(p1) = 1, m′(p2) = 3,
m′(p3) = 1, m′(p4) = 2 and m′(pi) = 0 for i = 5, . . . , 8 is reachable from
m0 via the sequence of transitions t2, t1, t2). The set of all the reachable
markings of P for a given capacity kP of the places is denoted by RMkP

P
(notice that RMkP

P ⊆ AMkP
P);

• A net P is said to be bounded if there is a bound on all its reachable
markings assuming unlimited capacity of the places, i.e., there is a bound
for each p ∈ P and m ∈ RM∞

P (e.g., the net in Fig. 1.2 is bounded, whereas
that in Fig. 1.1 is not since each firing of t2 adds a token to the place p2,
and therefore there is no bound on the number of the tokens in this place);

• A marking m concurrently enables two transitions t, t′ ∈ T if t ∈ en(m)
and t′ ∈ en(m′) with m′(p) = m(p) − F (p, t) for each p ∈ P (e.g., t1 and
t2 are concurrently enabled in m0 in the net in Fig. 1.2);

6 1 Petri Nets with Time

p7

t5t2

p6p4 p8

p5

t3

p2

p3p1 t4t1

11

1

11

1 11

1

1 1

11 t6
1

1

Fig. 1.2. A bounded Petri net

• A net P is sequential if none of its reachable markings concurrently enables
two transitions;

• A net P is ordinary if the flow function F maps onto {0, 1};
• A net P is 1-safe if it is ordinary and m(p) ≤ 1, for each p ∈ P and

each m ∈ RM∞
P (an example of such a net is in Fig. 1.2). However, in

this book we will use an alternative definition saying that a net P is 1-
safe if it is ordinary and the capacity of its places is set to 1. Such a
definition ensures that for each reachable marking m and each p ∈ P we
have m(p) ≤ 1 without analysing the reachable markings of the net.

The theory of Petri nets provides a general framework for modelling dis-
tributed and concurrent systems. Since for many of them timing dependencies
play an important role, a variety of extensions to the main formalism, enabling
to reason about temporal properties, has been introduced. In what follows,
we present a brief survey of such approaches, based on [46,138].

1.1 Incorporating Time into Petri Nets

Petri nets with timing dependencies can be classified according to the way
of specifying timing constraints (these can be timing intervals [106, 165] or
single numbers [133]), or elements of the net these constraints are associated
with (i.e., places [59], transitions [106, 133] or arcs [3, 80, 147, 165]). The next
criterion is an interpretation of the timing constraints. When associated with
a transition, the constraint can be viewed as

• its firing time (a transition consumes the input tokens when it becomes
enabled, but does not create the output ones until the delay time associated
with it has elapsed [133]),

• holding time (when the transition fires, the actions of removing and creat-
ing tokens are performed instantaneously, but the tokens created are not
available to enable new transitions until they have been in their output
places for the time specified as the duration time of the transition which
created them [1]), or

1.2 Time Petri Nets 7

• enabling time (a transition is forced to be enabled for a specified period of
time before it can fire, and tokens are removed and created in the same
instant [106]).

A time associated with a place usually refers to the period the tokens must
spend in the place before becoming available to enable a transition [59]. A
timing interval on an input arc usually expresses the conditions under which
tokens can potentially leave the place using this arc [80,147], whereas a timing
interval on an output arc denotes the time when tokens produced on this arc
become available [165].

Nets can be also classified according to firing rules:

• the weak firing rule means that the time which passes between enabling of
the transition and its firing is not determined [161],

• the strong earliest firing rule requires the transition to be fired as soon as
it is enabled and the appropriate timing conditions are met [80], whereas

• the strong latest firing rule means that the transition can be fired in a
specified period of time, but no later than after certain time from its
enabling, unless it becomes disabled by firing of another one [106].

The best known timed extensions of Petri nets are timed Petri nets by Ram-
chandani [133] and time Petri nets by Merlin and Farber [106]. In this book,
we focus on the latter in order to provide also verification methods via trans-
lations to timed automata.

Timed extensions are known also for high-level Petri nets. One of them
are timed coloured Petri nets [92], in which the time concept is based on intro-
ducing a global clock used to represent the model time. Tokens are equipped
with time stamps, which describe the earliest model times at which they can
be used to fire a transition. Stamps are modified according to expressions as-
sociated either with transitions, or with their output arcs. Timing intervals
can be interpreted as periods of non-activity of tokens, and the transitions are
fired according to the strong earliest firing rule.

1.2 Time Petri Nets

Time Petri nets by Merlin and Farber [106] are considered in many papers
[32, 33, 35, 37, 39, 43, 73, 78, 102, 103, 111, 117, 124, 127, 130, 163, 174]. In what
follows, we introduce the definition and some alternative semantics of time
Petri nets, used in the literature.

Definition 1.3. A time Petri net (TPN, for short) is a six-element tuple

N = (P, T,F ,m0, Eft, Lft),

where

8 1 Petri Nets with Time

• (P, T,F ,m0) is a Petri net, and
• Eft : T −→ IN, Lft : T −→ IN∪{∞} are functions describing respectively

the earliest and the latest firing times of the transitions, where clearly
Eft(t) ≤ Lft(t) for each t ∈ T .

Example 1.4. An example of a time Petri net is shown in Fig. 1.3. Its underly-
ing Petri net is depicted in Fig. 1.2. The values of the functions Eft and Lft
are given by Eft(t) = 1 and Lft(t) = 2 for t ∈ {t1, t3, t5, t6}, Eft(t2) = 0,
Lft(t2) = 3 and Eft(t4) = Lft(t4) = 1.

�

p7

t5t2

p6p4 p8

p5

t3

p2

p3p1 t4t1

11 1
1 1

1 1

11

11

11

t6
1

1

[1,2]

[0,3]

[1,2]

[1,1]

[1,2]

[1,2]

Fig. 1.3. A time Petri net

The earliest and latest firing times of a transition t specify the timing interval
in which the transition t can be fired. If the time passed since the transition
t has become enabled reaches the value Lft(t), the transition has to be fired,
unless disabled by a firing of another transition2.

A time Petri net N = (P, T,F ,m0, Eft, Lft) is said to be sequential if the
net PN = (P, T,F ,m0) is so. Moreover, by a 1-safe time Petri net we mean a
time Petri net whose underlying net is so3.

Unless otherwise stated, in what follows 1-safe TPNs are considered only.
Moreover, by AMN we denote the set AMPN of all the markings of the net
PN , whereas AMn

N , for n ∈ IN+ ∪ {∞}, denotes the set AMn
PN

of all the
markings of PN whose values do not exceed n for any p ∈ P .

1.2.1 Distributed Time Petri Nets

In order to benefit from a distributed representation of a system, we define
a notion of a distributed time Petri net, which is an adaptation of the one
from [88], and provide an alternative semantics for these nets in Sect. 1.2.2.
2 There exists also an alternative approach in which inequalities constraining the

time, a transition can be fired at, are allowed to be strict [35]. However, this is
not discussed in our book.

3 Here, we assume a definition which allows to reason about a net without analysing
its time-dependent behaviour. An alternative definition is provided on p. 27.

1.2 Time Petri Nets 9

Definition 1.5. Let I = {i1, . . . , inI
} be a finite ordered set of indices, and let

N = {Ni | i ∈ I}, where Ni = (Pi, Ti,Fi,m
0
i , Efti, Lfti) be a family of 1-safe,

sequential time Petri nets (called processes), indexed with I, with the pairwise
disjoint sets Pi of places, and satisfying the condition

(∀i1, i2 ∈ I)(∀t ∈ Ti1 ∩ Ti2) (Efti1(t) = Efti2(t) ∧ Lfti1(t) = Lfti2(t)).

A distributed time Petri net N = (P, T,F ,m0, Eft, Lft) is the union of the
processes Ni, i.e.,

• P =
⋃

i∈I Pi,
• T =

⋃
i∈I Ti,

• F =
⋃

i∈I Fi,
• m0 =

⋃
i∈I m0

i ,
• Eft =

⋃
i∈I Efti, and

• Lft =
⋃

i∈I Lfti.

Notice that the function Efti1 (Lfti1) coincides with Efti2 (Lfti2 , respec-
tively) for the joint transitions of each two processes i1 and i2.

t4

p1 p2 p3

p7p6

p4t2 t3t1

ta

[0,0]

[5,6]

[0,1]

[3,3]

[0,1]

Fig. 1.4. A distributed time Petri net with disjoint processes

Example 1.6. Examples of (distributed) time Petri net are shown4 in Fig. 1.4,
Fig. 1.3 and Fig. 1.5. The net in Fig. 1.4 consists of two disjoint processes
with the sets of places P1 = {p1, p2, p3, p4} and P2 = {p6, p7}. The net
in Fig. 1.3, considered in the previous example, consists of two processes
with the sets of places P1 = {p1, p3, p5, p7} and P2 = {p2, p4, p6, p8}, com-
municating via the joint transition t3. The net in Fig. 1.5 (Fischer’s mu-
tual exclusion protocol) is composed of three communicating processes with
the sets of places: Pi = {idlei, tryingi, waitingi, criticali} with i = 1, 2, and
P3 = {place0, place1, place2}. All the transitions of the process 1 are joint
with the process 3, and similarly all the transitions of the process 2 are joint
with the process 3.

�
4 From now on, the annotation of the edges with the value of the flow function

equal to 1 is omitted.

10 1 Petri Nets with Time

waiting2

place 0

place 1

place 2

idle1 trying1

waiting1

critical1

idle2 trying2 critical2

start2

setx2

enter2

setx1

start1 setx1copy1
enter1

setx0_1

setx0_2

setx2copy2

setx1copy2

setx2copy1
[0, ∞) [0, ∆]

[0, ∆]

[0, ∆]
[δ, ∞)

[0, ∆]

[0, ∆]

[δ, ∞)

[0, ∆]

[0, ∞)

[0, ∞)

[0, ∞)

Fig. 1.5. A distributed time Petri net with communicating processes (Fischer’s
mutual exclusion protocol for n = 2)

It is easy to notice that a distributed net is 1-safe. The interpretation of such
a net is a collection of sequential, non-deterministic processes with communi-
cation capabilities (via joint transitions). In what follows, for simplicity, we
consider distributed nets whose all the processes are state machines (i.e., for
each Ni and each t ∈ Ti, | • t| = |t • | = 1), which implies that for each i ∈ I

there is exactly one p ∈ Pi with m0
i (p) > 0 (and, in fact, with m0

i (p) = 1),
and that in any reachable marking m of N there is exactly one place p of
each process with m(p) = 1. It is important to mention that a large class of
distributed nets can be decomposed to satisfy the above requirement [91].

Two main alternative approaches to the semantics of time Petri nets are
typically considered in the literature. The first of them consists in assigning
clocks to various components of the net, i.e., the transitions, the places or
the processes, whereas the second one exploits the so-called firing intervals of
the transitions. Below, we provide a brief description of both of them. In the
description, we focus on 1-safe TPNs only. Semantics for other kinds of time
Petri nets are then discussed in Sect. 1.3.5.

1.2 Time Petri Nets 11

1.2.2 Semantics: The Clock Approach

In this section we consider semantics based on assigning clocks to various
components of the net, i.e., the transitions, the places or the processes.

Clocks Assigned to the Transitions

One of the approaches to the concrete (dense) semantics of time Petri nets,
widely used in the literature [103, 111, 117, 163, 174], consists in associating
clocks with the transitions of the net. A concrete state σT of N is then an
ordered pair

(m, clockT),

where

• m is a marking, and
• clockT : T −→ IR0+ is a function which for each transition t ∈ en(m) gives

the time elapsed since t became enabled most recently5.

For δ ∈ IR0+, by clockT + δ we denote the function given by (clockT + δ)(t) =
clockT (t)+δ for all t ∈ T . Moreover, let (m, clockT)+δ denote (m, clockT +δ).
The (dense) concrete state space of a time Petri net N is a transition system

CT
c (N) = (ΣT , (σT)0, →Tc),

where

• ΣT is the set of all the concrete states of N ,
• (σT)0 = (m0, clockT

0), with clockT
0 (t) = 0 for each t ∈ T , is the initial

state, and
• a timed consecution relation →Tc ⊆ ΣT × (T ∪ IR0+) × ΣT is defined by

action- and time successors as follows:
– for δ ∈ IR0+, (m, clockT) δ→Tc (m, clockT + δ) iff6

· (clockT + δ)(t) ≤ Lft(t) for all t ∈ en(m)
(time successor),

– for t ∈ T , (m, clockT) t→Tc (m1, clock
T
1) iff

· t ∈ en(m),
· Eft(t) ≤ clockT (t) ≤ Lft(t),
· m1 = m[t〉, and
· for all u ∈ T we have clockT

1 (u) = 0 for u ∈ newly en(m, t), and
clockT

1 (u) = clockT (u) otherwise
(action successor).

5 In fact, the enabled transitions are of our interest only. The clocks associated with
the transitions that are not enabled can be either assigned a fixed value (e.g., 0),
or be undefined, or can “uselessly” count the time. We follow the third of these
approaches to comply with the literature [52,174].

6 We use the term “iff” as a shorthand for “if and only if”.

12 1 Petri Nets with Time

Intuitively, a time successor does not change the marking m of a concrete
state, but it increases the clocks assigned to each transition, provided all
of these corresponding to the transitions t enabled at m would not exceed
Lft(t). An action successor corresponding to a transition t which is enabled
at m can be executed when the clock corresponding to t belongs to the interval
[Eft(t), Lft(t)]. Then, the marking m is modified, the clocks corresponding
to the newly enabled transitions are set to 0, whereas the other clocks remain
unchanged.

Example 1.7. Consider the net shown in Fig. 1.3. In the initial state (σT)0,
m0(p1) = m0(p2) = 1 and m0(pi) = 0 for i = 3, . . . , 8, whereas clockT

0 (t) = 0
for all t ∈ T . Passing of two time units results in changing the state into
σT

1 = (m0, clockT
1), with clockT

1 (t) = 2 for all t ∈ T . At the state σT
1 , firing of

both the transitions t1 and t2 is possible. Firing of t1 leads to the state σT
2 =

(m2, clock
T
2), with m2(p2) = m2(p3) = 1 and m2(pi) = 0 for i = 1, 4, 5, 6, 7, 8,

and with clockT
2 (t) = clockT

1 (t) for all t ∈ T . Firing of t2 at the state σT
2 leads

to the state σT
3 = (m3, clock

T
3), with m3(p3) = m3(p4) = 1 and m3(pi) = 0

for i = 1, 2, 5, 6, 7, 8, and with clockT
3 (t3) = 0 and clockT

3 (t) = clockT
2 (t) for

all t ∈ T \ {t3}. Then, passing one unit of time results in the state σT
4 =

(m3, clock
T
4), with clockT

4 (t3) = 1 and clockT
4 (t) = 3 for all t ∈ T \{t3}. Firing

of t3 at σT
4 leads to the state σT

5 = (m5, clock
T
5), with m5(p5) = m5(p6) = 1

and m5(pi) = 0 for i = 1, 2, 3, 4, 7, 8, and with clockT
5 (t4) = clockT

5 (t5) = 0
and clockT

5 (t) = clockT
4 (t) for all t ∈ T \ {t4, t5}.

�

Clocks Assigned to the Places

Another approach consists in assigning clocks to the places of a net7. A con-
crete state σP of N is then an ordered pair

(m, clockP),

where

• m is a marking, and
• clockP : P −→ IR0+ is a function which for each place p ∈ P gives the

time elapsed since p became marked most recently8.

For δ ∈ IR0+, by clockP +δ we denote the function given by (clockP +δ)(p) =
clockP (p)+δ for all p ∈ P . Moreover, let (m, clockP)+δ denote (m, clockP +δ).
The (dense) concrete state space of N is now a transition system

7 Recall that we consider 1-safe time Petri nets only.
8 Only the marked places influence the behaviour of the net, so the clocks assigned

to the non-marked ones can be treated in various ways, i.e., be assigned a fixed
value, be undefined or “uselessly” count the time. Here we follow the third of these
approaches, similarly as in the semantics associating clocks with the transitions.

1.2 Time Petri Nets 13

CP
c (N) = (ΣP , (σP)0, →Pc),

where

• ΣP is the set of all the concrete states of N ,
• (σP)0 = (m0, clockP

0), with clockP
0 (p) = 0 for each p ∈ P , is the initial

state, and
• a timed consecution relation →Pc⊆ ΣP × (T ∪ IR0+) × ΣP is defined by

action- and time successors as follows:
– for δ ∈ IR0+, (m, clockP) δ→Pc (m, clockP + δ) iff

· for each t ∈ en(m) there exists a place p ∈ •t such that (clockP +
δ)(p) ≤ Lft(t)

(time successor),
– for t ∈ T , (m, clockP) t→Pc (m1, clock

P
1) iff

· t ∈ en(m),
· for each p ∈ •t we have clockP (p) ≥ Eft(t),
· there is p ∈ •t such that clockP (p) ≤ Lft(t),
· m1 = m[t〉, and
· for all p ∈ P we have clockP

1 (p) = 0 for p ∈ t• and clockP
1 (p) =

clockP (p) otherwise
(action successor).

Intuitively, a time successor does not change the marking m of a concrete state,
but it increases the value of the clock assigned to each place, provided for each
transition t enabled at m at least one of the clocks corresponding to the input
places of t would not exceed Lft(t). An action successor corresponding to
a transition t enabled at m can be executed when the values of the clocks
corresponding to each input place p of t are greater than Eft(t), and at least
one of them is smaller than Lft(t). Then, the marking m is modified, the
clocks corresponding to the output places of t are set to 0, and the other
clocks remain unchanged.

Example 1.8. Consider the net shown in Fig. 1.3. In the initial state (σP)0,
m0(p1) = m0(p2) = 1 and m0(pi) = 0 for i = 3, . . . , 8, whereas clockP

0 (p) = 0
for all p ∈ P . Passing of two time units results in changing the state into
σP

1 = (m0, clockP
1), with clockP

1 (p) = 2 for all p ∈ P . At the state σP
1 ,

firing of both the transitions t1 and t2 is possible. Firing of t1 leads to the
state σP

2 = (m2, clock
P
2), with m2(p2) = m2(p3) = 1 and m2(pi) = 0 for

i = 1, 4, 5, 6, 7, 8, and with clockP
2 (p3) = 0 and clockP

2 (p) = clockP
1 (p) for all

p ∈ P \{p3}. Firing of t2 at the state σP
2 leads to the state σP

3 = (m3, clock
P
3),

with m3(p3) = m3(p4) = 1 and m3(pi) = 0 for i = 1, 2, 5, 6, 7, 8, and with
clockP

3 (p4) = 0 and clockP
3 (p) = clockP

2 (p) for all p ∈ P \ {p4}. Then, passing
one unit of time results in the state σP

4 = (m3, clock
P
4), with clockP

4 (p3) =
clockP

4 (p4) = 1 and clockP
4 (p) = 3 for all p ∈ P \ {p3, p4}. Firing of t3 at

σP
4 leads to the state σP

5 = (m5, clock
P
5), with m5(p5) = m5(p6) = 1 and

m5(pi) = 0 for i = 1, 2, 3, 4, 7, 8, and with clockP
5 (p5) = clockP

5 (p6) = 0 and
clockP

5 (p) = clockP
4 (p) for all p ∈ P \ {p5, p6}. �

14 1 Petri Nets with Time

Clocks Assigned to the Processes

If N is a distributed net, another approach to the concrete semantics is pos-
sible. In this case, clocks correspond to the processes of the net. This fol-
lows from the fact that for the processes which are state machines, in each
marking exactly one place of each process is marked, so the clock associated
with this process can be considered as associated with the marked place. Let
I = {i1, . . . , inI

} be the set indexing the processes of N . A concrete state σN

of N is defined as an ordered pair

(m, clockN),

where

• m is a marking, and
• clockN : I −→ IR0+ is a function which for each index i ∈ I gives the

time elapsed since the marked place p ∈ Pi of the process Ni of N became
marked most recently.

For δ ∈ IR0+, by clockN +δ we denote the function given by (clockN +δ)(i) =
clockN (i)+δ for all i ∈ I. Moreover, let (m, clockN)+δ denote (m, clockN +δ).
The (dense) concrete state space of N is now a transition system

CN
c (N) = (ΣN , (σN)0, →Nc),

where

• ΣN is the set of all the concrete states of N ,
• (σN)0 = (m0, clockN

0) with clockN
0 (i) = 0 for each i ∈ I is the initial state,

and
• a timed consecution relation →Nc⊆ ΣN × (T ∪ IR0+) × ΣN is defined by

action- and time successors as follows:
– for δ ∈ IR0+, (m, clockN) δ→Nc (m, clockN + δ) iff

· for each t ∈ en(m) there exists i ∈ I with •t ∩ Pi �= ∅ such that
(clockN + δ)(i) ≤ Lft(t)

(time successor),
– for t ∈ T , (m, clockN) t→Nc (m1, clock

N
1) iff

· t ∈ en(m),
· for each i ∈ I with •t ∩ Pi �= ∅ we have clockN (i) ≥ Eft(t),
· there is i ∈ I with •t ∩ Pi �= ∅ such that clockN (i) ≤ Lft(t),
· m1 = m[t〉, and
· for all i ∈ I we have clockN

1 (i) = 0 if •t ∩ Pi �= ∅ and clockN
1 (i) =

clockN (i) otherwise
(action successor).

Intuitively, a time successor does not change the marking m of a concrete
state, but it increases the value of the clock assigned to each process, provided
for each transition t enabled at m, at least one of the clocks corresponding

1.2 Time Petri Nets 15

to a process containing an input place of t would not exceed Lft(t). An
action successor, corresponding to a transition t which is enabled at m, can
be executed when the values of all the clocks corresponding to the processes
containing an input place of t are greater than Eft(t) and at least one of
them is smaller than Lft(t). Then, the marking m is modified, the clocks
corresponding to the processes containing input places of t are set to 0, and
the other clocks remain unchanged. Notice that a process contains an input
place of t iff it contains an output place of t, as we are dealing with state
machines.

Example 1.9. Again, consider the (distributed) net shown in Fig. 1.3, whose
processes are indexed by the set I = {1, 2}, and the sets of places of these
processes are P1 = {p1, p3, p5, p7} and P2 = {p2, p4, p6, p8}. In the initial
state (σN)0, m0(p1) = m0(p2) = 1 and m0(pi) = 0 for i = 3, . . . , 8, whereas
clockN

0 (i) = 0 for all i ∈ I. Passing of two time units results in changing the
state into σN

1 = (m0, clockN
1), with clockN

1 (i) = 2 for all i ∈ I. At the state
σP

1 , firing of both the transitions t1 and t2 is possible. Firing of t1 leads to
the state σN

2 = (m2, clock
N
2), with m2(p2) = m2(p3) = 1 and m2(pi) = 0 for

i = 1, 4, 5, 6, 7, 8, and with clockN
2 (1) = 0 and clockN

2 (2) = clockN
1 (2). Firing

of t2 at the state σN
2 leads to the state σN

3 = (m3, clock
N
3), with m3(p3) =

m3(p4) = 1 and m3(pi) = 0 for i = 1, 2, 5, 6, 7, 8, and with clockN
3 (2) = 0 and

clockN
3 (1) = clockN

2 (1) = 0. Then, passing one unit of time results in the state
σN

4 = (m3, clock
N
4), with clockN

4 (1) = clockN
4 (2) = 1. Firing of t3 at σN

4 leads
to the state σN

5 = (m5, clock
N
5), with m5(p5) = m5(p6) = 1 and m5(pi) = 0

for i = 1, 2, 3, 4, 7, 8, and with clockN
5 (1) = clockN

5 (2) = 0.
�

1.2.3 Semantics: Firing Intervals

There is one more approach to the semantics of time Petri nets. Instead of
associating clocks with the places, the transitions, or the processes, one can
assign to each transition enabled at a given marking a firing interval, i.e., a
time interval within which the transition is supposed to fire.

Formally, let II be the set of all the intervals in IR0+, and let [] denote the
empty interval. For a non-empty interval I ∈ II, by lb(I) and ub(I) we denote,
respectively, the lower and the upper bound of I. In this approach, described
in the papers [32, 33, 35], a concrete state σF of N is defined as an ordered
pair

(m, fi),

where

• m is a marking, and
• fi : T −→ II is a function which for each transition t ∈ en(m) gives the

firing interval, i.e., a timing interval in which t is (individually) allowed to
fire.

16 1 Petri Nets with Time

Intuitively, when a transition t becomes enabled, its firing interval is initialised
to its static firing interval [Eft(t), Lft(t)]. The bounds of the interval decrease
synchronously while the time passes until t is fired or disabled by firing of
another transition. The transition can be fired if the lower bound of its firing
interval reaches 0, and must be fired without any additional delay if the upper
bound of its firing interval reaches 0.

In what follows, by fi + δ, where δ ∈ IR0+, we denote the function given
by (fi+ δ)(t) = [max(0, lb(fi(t)) − δ),max(0, ub(fi(t)) − δ)] if t ∈ en(m), and
(fi + δ)(t) = [] otherwise. Moreover, let (m, fi) + δ denote (m, fi + δ). The
(dense) concrete state space of N is a transition system

CF
c (N) = (ΣF , (σF)0, →Fc),

where

• ΣF is the set of all the concrete states of N , whereas
• (σF)0 = (m0, fi0) is the initial state with fi0(t) = [Eft(t), Lft(t)] for

t ∈ en(m0) and fi0(t) = [] otherwise.
• the timed consecution relation →Fc ⊆ ΣF × (T ∪ IR0+) × ΣF is defined

by action- and time successors as follows:
– for δ ∈ IR0+, (m, fi) δ→Fc (m, fi + δ) iff

· δ ∈ [0,min{ub(fi(t)) | t ∈ en(m)}]
(time successor),

– for t ∈ T , (m, fi) t→Fc (m1, fi1) iff
· t ∈ en(m),
· lb(fi(t)) = 0,
· m1 = m[t〉 and
· for all u ∈ T we have fi1(u) = [] if u �∈ en(m1), fi1(u) =

[Eft(u), Lft(u)] if u ∈ newly en(m, t), and fi1(u) = fi(u) oth-
erwise

(action successor).

Notice that when an action successor corresponding to t is executed and the
marking m1 is reached, the firing intervals of all the transitions that are not
enabled at m1 are set to [], the firing interval of each newly enabled transition
u is set to [Eft(u), Lft(u)], whereas the firing intervals of the other transitions
remain unchanged.

Example 1.10. Consider the net in Fig. 1.3. In the initial state (σF)0, m0(p1) =
m0(p2) = 1 and m0(pi) = 0 for i = 3, . . . , 8, whereas fi0(t1) = [1, 2], fi0(t2) =
[0, 3] and fi0(ti) = [] for i = 3, 4, 5, 6. Passing of two time units results in
changing the state into σF

1 = (m0, fi1), with fi1(t1) = [0, 0], fi1(t2) = [0, 1]
and fi1(ti) = [] for i = 3, 4, 5, 6. At the state σT

1 , firing of both the transitions
t1 and t2 is possible, since lb(fi(t1)) = 0 and lb(fi(t2)) = 0. Firing of t1 leads
to the state σF

2 = (m2, fi2), with m2(p2) = m2(p3) = 1 and m2(pi) = 0
for i = 1, 4, 5, 6, 7, 8, and with fi2(t2) = fi1(t2) and fi2(ti) = [] for i =

1.3 Reasoning about Time Petri Nets 17

1, 3, 4, 5, 6. Firing of t2 at the state σF
2 leads to the state σF

3 = (m3, fi3),
with m3(p3) = m3(p4) = 1 and m3(pi) = 0 for i = 1, 2, 5, 6, 7, 8, and with
fi3(t3) = [1, 2] and fi3(t) = [] for all t ∈ T \ {t3}. Then, passing one unit of
time results in the state σF

4 = (m3, fi4) with fi4(t3) = [0, 1] and fi4(t) = []
for all t ∈ T \ {t3}. Firing of t3 at σF

4 leads to the state σF
5 = (m5, fi5),

with m5(p5) = m5(p6) = 1 and m5(pi) = 0 for i = 1, 2, 3, 4, 7, 8, and with
fi5(t4) = [1, 1], fi5(t5) = [1, 2] and fi5(t) = [] for all t ∈ T \ {t4, t5}.

�

1.3 Reasoning about Time Petri Nets

In this section we show that there is a clear relationship between the seman-
tics defined above as long as we consider the transitions enabled at a given
marking. However, such a connection does not exist for the other transitions.
Next, we compare dense and discrete semantics for time Petri nets as well as
define concrete models for them.

1.3.1 Comparison of the Semantics

Given a state σP = (m, clockP) ∈ ΣP , it is easy to see that it corresponds to
a state σT = (m, clockT) ∈ ΣT which satisfies the condition

(∀t ∈ en(m)) clockT (t) = min{clockP (p) | p ∈ •t}.

On the other hand, given σN = (m, clockN) ∈ ΣN , the corresponding state
σP = (m, clockP) ∈ ΣP satisfies

(∀t ∈ en(m)) min{clockP (p) | p ∈ •t} = min{clockN (i) | •t ∩ Pi �= ∅}.

Notice, however, that it is impossible to establish a relationship for the tran-
sitions which are not enabled.

It can be proven that the concrete state spaces CT
c (N), CP

c (N) and CN
c (N)

are equivalent w.r.t. branching time temporal properties considered in Chap. 4
[124]. This is obtained by showing that for each pair of the above concrete state
spaces there exists a symmetric relation R (called a bisimulation) connecting
their states such that the initial states are related by R, and the condition
σRσ′ implies that if one of the related states has an a-successor9 for any
a ∈ T ∪ IR0+, then also its counterpart does, and these successors are related
by R. The state spaces for which such a relation exists are called bisimilar.

Considering the firing interval approach, it is easy to see that a state
(m, clockT) ∈ ΣT corresponds to such a state (m, fi) ∈ ΣF for which

9 For a set S and a successor relation →⊆ S × B × S, where B is a set of labels,
by an a-successor of s ∈ S we mean each s′ ∈ S such that s

a→ s′.

18 1 Petri Nets with Time

fi(t) = [max(0, Eft(t) − clockT (t)),max(Lft(t) − clockT (t), 0)]

for each t ∈ en(m), and
fi(t) = []

for t �∈ en(m). The bounds of the firing interval for a transition t ∈ en(m) are,
respectively, the minimal and maximal time remaining before firing this tran-
sition. Notice, however, that this is not necessarily the one-to-one correspon-
dence. On the one hand, the states (m, clockT), (m, clockT

1) ∈ ΣT satisfying
(∀t ∈ en(m)) clockT (t) = clockT

1 (t) correspond to the same state σF ∈ ΣF .
On the other hand, in the case when t ∈ en(m) and Lft(t) = ∞, for all the
states with clockT (t) ≥ Eft(t) the corresponding firing interval is given by
fi(t) = [0, ∞). However, it can be proven that the state spaces CF

c (N) and
CT

c (N) are equivalent w.r.t. branching time temporal properties considered
in Sect. 4 bisimilar)10.

1.3.2 Dense versus Discrete Semantics

So far we have been looking at the four types of concrete state spaces. De-
pending on the notion of a run we can distinguish between dense and discrete
semantics for time Petri nets. Notice that when defining discrete semantics we
do not depart from the dense notion of the time domain, but rather combine
time steps with action steps calling this a discrete view. Alternatively, one
could restrict the time domain to integers [127, 129], so that passing of time
could be measured only using integer numbers. We do not discuss such an
approach in this book.

In what follows we define dense runs in which action- and time successors
are not combined. We give an example of such a run for the net N shown in
Fig. 1.3. Next, we define discrete runs by combining time- and action succes-
sors. Similarly, we show an example of a discrete run, and compare reachability
sets for both the dense and discrete semantics.

Let CR
c (N) = (ΣR, (σR)0, →Rc), where R ∈ {T, P,N, F}, be one of the

above-defined concrete state spaces of a time Petri net N (recall that T , P
and N refer to the semantics where the clocks are assigned respectively to the
transitions, places and processes of a distributed net, whereas F corresponds
to the firing interval semantics). Concatenation of two time steps σR δ→Rc

σR + δ and σR + δ
δ′
→Rc σR + δ + δ′ is the time step σR δ+δ′

−→
Rc

σR + δ + δ′.

Similarly, if σR δ→Rc σR +δ, then for any k ∈ IN+ there exist δ1, . . . , δk ∈ IR0+

10 It should be noticed that if the semantics is redefined such that for each
(m, clockT) ∈ ΣT and each t �∈ en(m) the value of clockT (t) is equal to some
fixed value, then there is a bijection between the states of ΣT and ΣF if the
values of Lft are finite only. However, if some of the latest firing times is infinite,
there is only a surjection, since possibly many concrete states of ΣT correspond
to the same state of ΣF [31].

1.3 Reasoning about Time Petri Nets 19

such that δ1+ . . .+δk = δ and σR δ1→Rc σR +δ1
δ2→Rc . . .

δk→Rc σR +δ (i.e., each
time step can be split into an arbitrary number of consecutive time successors).
A (dense) σR

0 -run ρ of N is a maximal (i.e., non-extendable) sequence

ρR = σR
0

δ0→Rc σR
0 + δ0

t0→Rc σR
1

δ1→Rc σR
1 + δ1

t1→Rc σR
2

δ2→Rc . . . ,

where ti ∈ T and δi ∈ IR0+, for all i ∈ IN (notice that due to the fact that
δ can be equal to 0, two subsequent firings of transitions without any time
passing in between are allowed as well, and that consecutive time passings are
concatenated). Such runs are called weakly monotonic in order to distinguish
them from strongly monotonic runs defined later.

Example 1.11. Consider the net N shown in Fig. 1.3 and its concrete state
space CT

c (N). For simplicity of the description below, let ((m(p1), . . . , m(p8)),
(clockT (t1), . . . , clockT (t6))) denote the concrete state (m, clockT) ∈ ΣT . One
of the possible (σT)0-runs is

((1, 1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0)) 2→Tc ((1, 1, 0, 0, 0, 0, 0, 0), (2, 2, 2, 2, 2, 2))
t1→Tc ((0, 1, 1, 0, 0, 0, 0, 0), (2, 2, 2, 2, 2, 2)) 0→Tc ((0, 1, 1, 0, 0, 0, 0, 0), (2, 2, 2, 2,

2, 2)) t2→Tc ((0, 0, 1, 1, 0, 0, 0, 0), (2, 2, 0, 2, 2, 2)) 1→Tc ((0, 0, 1, 1, 0, 0, 0, 0), (3,

3, 1, 3, 3, 3)) t3→Tc ((0, 0, 0, 0, 1, 1, 0, 0), (3, 3, 1, 0, 0, 3)) 1→Tc ((0, 0, 0, 0, 1, 1, 0,

0), (4, 4, 2, 1, 1, 4)) t4→Tc ((0, 0, 0, 0, 0, 1, 1, 0), (4, 4, 2, 1, 1, 4)) 0→Tc ((0, 0, 0, 0,

0, 1, 1, 0), (4, 4, 2, 1, 1, 4)) t5→Tc ((0, 0, 0, 0, 0, 0, 1, 1), (4, 4, 2, 1, 1, 0)) 1.5→Tc

((0, 0, 0, 0, 0, 0, 1, 1), (5.5, 5.5, 3.5, 2.5, 2.5, 1.5)) t6→Tc ((0, 0, 0, 0, 0, 0, 1, 1), (5.5,

5.5, 3.5, 2.5, 2.5, 0)) 1.5→Tc . . .
�

A state σR ∈ ΣR is reachable if there exists a (σR)0-run ρR and i ∈ IN
such that σR = σR

i +δ for some 0 ≤ δ ≤ δi, where σR
i +δi is an element of ρR.

The set of all the reachable states of N is denoted by ReachR
N . A marking m

is reachable if there is a state (m, ·) ∈ ReachR
N . The set of all the reachable

markings of N is denoted by RMN (it is easy to see that this set does not
depend on the way the concrete states of the net are defined).

Given a run ρR = σR
0

δ0→Rc σR
0 + δ0

t0→Rc σR
1

δ1→Rc σR
1 + δ1

t1→Rc . . ., we

say that a run (ρR)′ = (σR
0)′

δ′
0→Rc (σR

0)′ + δ′0
t′0→Rc . . . is a suffix of ρR if there

exists i ∈ IN and 0 ≤ δ ≤ δi such that (σR
0)′ = σR

i + δ, δi = δ + δ′0, and
tj = ti+j and δj+1 = δi+j+1 for each j ∈ IN (notice that a suffix of ρ can start
at a state which results from splitting a time step occurring in the run). A
run ρR is said to be progressive iff Σi∈INδi is unbounded. Note that a run is
progressive iff all its suffixes are so.

20 1 Petri Nets with Time

A time Petri net is called progressive if all its runs starting at the initial
state are progressive. This means that they are infinite11 and time divergent.
It is possible to formulate sufficient conditions ensuring progressiveness of a
net (we discuss this subject in Sect. 1.3.4). In what follows, progressive time
Petri nets are considered only.

Independently of the approach to the concrete semantics, for any con-
crete state σ, the set of all the progressive weakly monotonic σ-runs of N is
denoted by fN (σ). The above notion of a run can be used for interpreting
untimed branching time temporal logics [111] or for checking reachability. It
can be also applied to interpreting timed languages like Timed Computation
Tree Logic (TCTL) or timed µ-calculus. However, for interpreting TCTL it is
sometimes more convenient to restrict the runs to contain non-zero time pass-
ings only (i.e., δi > 0 for all i ∈ IN), which prevents firings of two transitions
immediately one after the other, i.e., at the same time. Such runs are called
strongly monotonic. By f+

N (σ) we denote the set of all the progressive strongly
monotonic σ-runs of N . The set of all the states of N which are reachable
on the (progressive12) strongly monotonic σ0-runs is denoted by Reach+R

N ,
where R ∈ {T, P,N, F} refers to the semantics. A marking m is reachable (on
strongly monotonic runs) if there is a state (m, ·) ∈ Reach+R

N . The set of all
the reachable markings of N is denoted by RM+

N (again, this set does not
depend on the definition of the concrete states applied). It is clear that we
have RM+

N ⊆ RMN , but there are nets for which the inclusion is strict (see
Example 1.13). The semantics based on weakly (strongly) monotonic runs
is called weakly (strongly, respectively) monotonic. The reason for the above
distinction will become clear in Sect. 4.3.

Example 1.12. Consider the net N shown in Fig. 1.3 and its concrete state
space CT

c (N). Notice that the run shown in Example 1.11 is not permitted
in the strongly monotonic semantics. Notice, moreover, that the sets of states
ReachT

N and Reach+T
N are different: the state (m0[t2〉, clockT

0), which can be
obtained only by the immediate firing of t2 at the state (σT)0, belongs to
ReachT

N , but it does not belong to Reach+T
N .

�

Example 1.13. Consider the net shown in Fig. 1.6. The marking m with
m(p3) = 1, m(p4) = 1 and m(pi) = 0 for i = 1, 2 is reachable when the
weakly monotonic semantics is assumed, but is not when the time is strongly
monotonic. The sets RMN and RM+

N are therefore not equal.
�

11 This can be checked by applying algorithms looking for deadlocks (i.e., states
which prevent firing of any transition in the future, see Sect. 1.3.4).

12 Notice that this requirement is in fact redundant as we assume that N is pro-
gressive.

1.3 Reasoning about Time Petri Nets 21

t1p1 p3

p4p2

t2

t3
[1,2]

[1,1]

[1,1]

[1,2]
t4

Fig. 1.6. The time Petri net used in Example 1.13

Alternative (Discrete) Semantics

Alternatively, the runs can be defined such that passing some time and firing
a transition (and then, possibly, passing some time again) are combined into a
single step. Such an approach, called sometimes discrete, enables verification of
untimed temporal properties as well as reachability checking, and is very popu-
lar in the literature [32,33,35,117,174]. Thus, let CR

c (N) = (ΣR, (σR)0, →Rc),
where R ∈ {T, P,N, F}, be a concrete state space of a time Petri net N . We
can define the following modifications of the successor relation →Rc:

• →Rd1⊆ ΣR × T × ΣR, where
σ

t→Rd1 σ′ iff (∃σ1 ∈ ΣR)(∃δ ∈ IR0+) σ
δ→Rc σ1

t→Rc σ′;
• →Rd2⊆ ΣR × T × ΣR; where

σ
t→Rd2 σ′ iff (∃σ1, σ2 ∈ ΣR)(∃δ, δ′ ∈ IR0+) σ

δ→Rc σ1
t→Rc σ2

δ′
→Rc σ′.

The relation →Rd2 includes →Rd1 (due to the possibility of the δ’s to be equal
to zero), but usually in the literature →Rd1 is used. It is important to notice
that the above inclusion does not need to hold if the relations are redefined
to contain non-zero time passings only. This follows from the fact that in this
case the relation →Rd1 can have as its last component only states resulting
from firing of a transition, whereas the relation →Rd2 – only states resulting
from passing some positive time from the states mentioned above.

For each of the above relations we can define a notion of a (discrete) σR
0 -run

of N , which is a sequence

ρR
r = σR

0
t0→Rdr

σR
1

t1→Rdr
σR

2
t2→Rdr

. . . ,

where R ∈ {T, P,N, F}, r ∈ {1, 2} and ti ∈ T for all i ∈ IN. A state σR ∈ ΣR

is reachable if there exists a (σR)0-run ρR
r and i ∈ IN such that σR = σR

i , where
σR

i is an element of ρR
r . The set of all the reachable states of N is denoted by

ReachRdr

N (notice that this set can vary depending on the transition relation).
It can be proven that for each R ∈ {T, P,N, F} and for the weakly monotonic
semantics we have ReachRd1

N ⊆ ReachRd2
N ⊆ ReachR

N . Notice, however, that
the set of all the reachable markings is always the same and equal to RMN

22 1 Petri Nets with Time

(RM+
N , respectively, if non-zero time passings are allowed only). Concrete

(discrete) state spaces of N are now defined as

CR
dr

(N) = (ΣR, (σR)0, →Rdr
),

where R ∈ {T, P,N, F} and r ∈ {1, 2}.

Example 1.14. Consider the net N shown in Fig. 1.3. For simplicity of the
presentation, let ((m(p1), . . . , m(p8)), (clockT (t1), . . . , clockT (t6))) denote the
concrete state (m, clockT) ∈ ΣT . In the case of the concrete state space
CT

d1
(N), one of the possible (σT)0-runs, obtained from the one shown in Ex-

ample 1.11 by combining together time- and action steps, is

((1, 1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0)) t1→Td1 ((0, 1, 1, 0, 0, 0, 0, 0), (2, 2, 2, 2, 2, 2))
t2→Td1 ((0, 0, 1, 1, 0, 0, 0, 0), (2, 2, 0, 2, 2, 2)) t3→Td1 ((0, 0, 0, 0, 1, 1, 0, 0), (3, 3, 1,

0, 0, 3)) t4→Td1 ((0, 0, 0, 0, 0, 1, 1, 0), (4, 4, 2, 1, 1, 4)) t5→Td1 ((0, 0, 0, 0, 0, 0, 1, 1),
(4, 4, 2, 1, 1, 0)) t6→Td1 ((0, 0, 0, 0, 0, 0, 1, 1), (5.5, 5.5, 3.5, 2.5, 2.5, 0)) t6→Td1 . . .

Considering the concrete state space CT
d2

(N), we can obtain, for instance,
the (σT)0-run

((1, 1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0)) t1→Td2 ((0, 1, 1, 0, 0, 0, 0, 0), (2.5, 2.5, 2.5,

2.5, 2.5, 2.5)) t2→Td2 ((0, 0, 1, 1, 0, 0, 0, 0), (2.5, 2.5, 0, 2.5, 2.5, 2.5)) t3→Td2 ((0,

0, 0, 0, 1, 1, 0, 0), (3.5, 3.5, 1, 0, 0, 3.5)) t4→Td2 ((0, 0, 0, 0, 0, 1, 1, 0), (5, 5, 2.5, 1.5,

1.5, 5)) t5→Td2 ((0, 0, 0, 0, 0, 0, 1, 1), (5, 5, 2.5, 1.5, 1.5, 0)) t6→Td2 ((0, 0, 0, 0, 0,

0, 1, 1), (6.5, 6.5, 4, 3, 3, 0.5)) t6→Td2

The first transition of the run corresponds to passing of two units of time,
firing t1 and then passing 0.5 time unit. The second one is an immediate fir-
ing of t2 with no time passing after that. The third corresponds to passing one
unit of time and then firing t3, with no further time delay, whereas the next
one consists of passing one time unit, firing t4 and then passing 0.5 time unit
again. The fifth transition is equivalent to firing of t5 with zero-time delays
before and after that, whereas the sixth one consists of passing one unit of
time, firing t6 and then passing 0.5 unit of time again.

Notice that the sets ReachTd1
N and ReachTd2

N differ (e.g., the state (m0[t1〉,
clockT

1) with clock1
T (t) = 2.5 for all t ∈ T , which can be obtained from the

initial state by passing two units of time, then firing t1, and then passing 0.5
unit of time, belongs to ReachTd2

N , but does not belong to ReachTd1
N , since it

cannot be obtained from the initial state by firing the transition without any
further passage of time). Notice, moreover, that the above sets are different
from the set ReachT

N , since the state (m0, clockT
1) ∈ ReachT

N with clockT
1 (t) =

0.5 for each t ∈ T does belong neither to ReachTd1
N nor to ReachTd2

N .
�

1.3 Reasoning about Time Petri Nets 23

1.3.3 Concrete Models for TPNs

In order to reason about systems represented by TPNs, we define a set of
propositional variables

PVP = {℘p | p ∈ P},

which correspond to the places of N , and a valuation function VN : P → PVP

assigning propositions to the places of N , given by

VN (p) = ℘p for each p ∈ P.

Let C(N) = (Σ, σ0, →), where C(N) ∈ {CR
c (N) | R ∈ {T, P,N, F}} ∪

{CR
dr

(N) | R ∈ {T, P,N, F} ∧ r ∈ {1, 2}}}, be a concrete state space of a time
Petri net N . Let VC : Σ −→ 2PV be a valuation function such that

VC((m, ·)) =
⋃

{p∈P |m(p)>0}
VN (p),

i.e., VC assigns the propositions corresponding to the places marked in m. The
ordered pair

Mc(N) = (C(N), VC)

is called a concrete model of N (based on the state space C(N)). The concrete
model is called dense (discrete) if C(N) is so.

1.3.4 Progressiveness in Time Petri Nets

As it has been already stated (see p. 20), we consider only nets whose all
the runs starting at the initial state are progressive. However, for a given N
one cannot say without any prior analysis whether or not N does satisfy this
condition. Below, we discuss this problem more thoroughly.

The first case in which runs of a net are non-progressive can occur if the net
contains no loop, and therefore is of finite runs only (consider, for instance, the
net like in Fig. 1.3 but without the transition t6). Such a situation, however,
can be easily avoided, since if the system S modelled by a net NS can finish
a sequence of its actions in a certain “desired” state, one can add to a place,
which becomes marked when that state is reached, a fictitious loop transition
with arbitrary non-zero values of the earliest and the latest firing time.

Another case, when a net N is non-progressive, occurs if it is not deadlock-
free. A deadlock-free TPN N is a net whose all the reachable states are not
deadlocks, where by a deadlock we mean such a concrete state of N which
occurs in a finite run starting at the initial state, that no further passage of
time at that state can enable firing of any transition. Later, we show that a
net, which is deadlock-free in the weakly monotonic semantics, does not need
to be so in the strongly monotonic one (see Example 1.16).

24 1 Petri Nets with Time

p1

p2

p3
t1

t2
[0,3]

[1,2]

Fig. 1.7. A time Petri net with structural deadlock

A deadlock can be structural, i.e., independent on the timing parameters
(an example of a net with such a deadlock is shown in Fig. 1.7). Since such a
deadlock occurs also in the underlying Petri net PN , it can be found using an
algorithm for untimed nets (see, e.g., [16,21,58,162]). Since the set of all the
reachable markings of a given time Petri net N is a subset of the set of all the
reachable markings of its underlying Petri net PN , and the firings possible
in N in the weakly monotonic semantics are possible also in the underlying
untimed net, it is easy to see that if PN is deadlock-free, then also N is so,
for time to be weakly monotonic. However, timing conditions can sometimes
prevent deadlocks (see below).

Example 1.15. Consider the time Petri net N shown in Fig. 1.8. The net
contains a structural deadlock (if the transition t2 is fired, no further firings
are possible). However, when p3 becomes marked, the timing intervals of the
transitions t2 and t3 force t3 to be fired before t2, which prevents firing of t2
and deadlocks.

�

p2

t1

t2

p1

t3

p3

[0,1]

[1,2]

[3,4]

Fig. 1.8. A deadlock-free time Petri net with a structural deadlock

The structural analysis of the untimed net can therefore exclude a deadlock
for the weakly monotonic semantics, but to check whether it occurs, or to deal
with the strongly monotonic case, another method needs to be applied. Thus,
one can also look for deadlocks, for instance, by building a bisimulating model
for the net (see, e.g., [32,35] and Sect. 5.1), and checking whether it contains a

1.3 Reasoning about Time Petri Nets 25

reachable abstract state with no successors. This method is applicable mainly
to the weakly monotonic semantics, for which these models are usually built13.
However, detailed region graphs (see Sect. 5.2.114) can be used for both the
(weakly and strongly monotonic) semantics.

Notice also that dealing with the strongly monotonic semantics introduces
an additional complexity. First of all, in order to prevent some deadlocks we
restrict the nets to contain no transition with both the earliest and the latest
firing time equal to zero, since such a transition is never fired according to
this semantics. However, in spite of this restriction, deadlocks still can occur,
even in the case when the underlying untimed net is deadlock-free. Such a
situation can be illustrated by the following example:

Example 1.16. Consider the net in Fig. 1.9. If the transition t2 fires in time
1, then t1 should be fired without any additional delay. This, however, is
impossible for the strongly monotonic semantics. The corresponding concrete
state is thus a deadlock.

t1p1 p3

p4p2

t2

t3

[1,4]

[1,1]

[1,2]

Fig. 1.9. A time Petri net with deadlock (only non-zero time steps allowed)

Another example of a net with a deadlock in the strongly monotonic semantics
is shown in Fig. 1.6. Notice that both the states obtained by firing t1 or t2
at the initial marking are deadlocks, since no further firings of transitions are
possible.

�

Deadlocks of this kind are difficult to predict and analyse. Since their occur-
rence follows from the specificity of the successor relation of time Petri nets
(i.e., from the fact that transitions cannot be disabled by passage of time),
and since the class of nets considered (i.e., these without transitions of the

13 More precisely, the models are generated for a discrete semantics, in which passage
of time “inside” the transition relation is not restricted to be non-zero. It is,
however, easy to see that these models are sufficient to check the existence of
deadlocks for the semantics in which time- and action steps are separated.

14 The section defines detailed region graphs for timed automata. Such models for
TPNs can be built in a similar way [111,163], or result from translating a net to
a timed automaton (see Chap. 3).

26 1 Petri Nets with Time

earliest and the latest firing times both equal to zero) seems too restricted,
the semantics with non-zero time steps is usually not considered in practice.
In this book, we provide it only for compatibility with the timed automata
approach, and do not consider unless stated otherwise.

Moreover, notice that the absence of deadlocks in the net does not guar-
antee that all its runs are progressive, which is shown in Example 1.17.

Example 1.17. Consider the net N shown in Fig. 1.10 and its concrete state
space CT

c (N). For simplicity of the below description, let ((m(p1),m(p2)),

p2p1

t1
t2
[0,2]

[1,4]

Fig. 1.10. A time Petri net with a non-progressive run

(clockT (t1), clockT (t2))) denote the concrete state (m, clockT) ∈ ΣT . Al-
though all the runs of N are infinite, some of them are not progressive. An
example of such a run is

ρ = ((1, 0), (0, 0)) 1→Tc ((1, 0), (1, 1)) t1−→Tc ((0, 1), (1, 0))
1/2−→Tc ((0, 1), (1.5,

0.5)) t2→Tc ((0, 1), (1.5, 0))
1/4−→Tc ((0, 1), (1.75, 0)) t2→Tc . . .

It is easy to see that the example applies to both the weakly and strongly
monotonic semantics.

�

However, one can formulate a sufficient condition for a TPN to be progressive.
To do this, we introduce a notion of a structural loop.

Definition 1.18. A structural loop of a time Petri net N = (P, T,F ,m0, Eft,
Lft) is a sequence of distinct transitions t1, . . . , tn ∈ T such that firing of ti
enables ti+1 mod n for all i = 1, . . . , n.

Now, progressiveness can be ensured by restricting the nets to satisfy the
following two conditions: deadlock-freedom, and containing no structural loop
of transitions whose all the earliest firing times are equal to 0. Notice that the
second condition means that in each structural loop there is a transition t ∈ T
such that Eft(t) ≥ 1, and therefore at least one unit of time has to pass in
every loop.

1.3 Reasoning about Time Petri Nets 27

1.3.5 The Case of “General” TPNs

In the previous subsections, we considered 1-safe time Petri nets only. How-
ever, it is worth noticing that the semantics of the clocks assigned to the tran-
sitions, as well as the firing interval semantics, are applicable also to the case
of unrestricted TPNs. The corresponding definitions of monotonicity, discrete
semantics, runs, reachability, as well as of a set of all the reachable mark-
ings (in this case denoted by RMkN

N to reflect the maximal capacity kN of the
places assumed or by RMkN+

N , respectively, if the time is strongly monotonic),
can be easily adapted to this case. But then one should comment on the case
of multiple enabledness of transitions. Such an enabledness happens when in
a given marking a transition is enabled “several times”. Formally, this occurs
when for some marking m and t ∈ en(m) we have

(∀p ∈ •t) m(p) ≥ 2×F (p, t).

One should decide what the firing interval or the value of the clock assigned
to t is. Many strategies can be exploited (the ”oldest” one, anyone randomly
chosen etc.); however, what seems to be most natural is that the transitions
which are enabled several times simultaneously are considered as independent
occurrences of the same transition.

Consider now unrestricted TPNs, for which one can define the notion of
boundedness as well. Thus, a time Petri net N is bounded if there is a bound
on all the reachable markings of N , i.e., there is a bound on m(p) for each
p ∈ P and m ∈ RM∞

N (m ∈ RM∞+
N , depending on the semantics assumed).

Similarly, we can define a time Petri net to be 1-safe if for each p ∈ P and
each m ∈ RM∞

N (m ∈ RM∞+
N , respectively) we have m(p) ≤ 1. The methods

provided in the book for 1-safe TPNs do not depend on which of the two
definitions15 of these nets is used. However, it is important to notice that
reachability and boundedness problems for unrestricted time Petri nets are
undecidable [93].

Further Reading

For an introduction to Petri nets the reader is referred to the books by
W. Reisig [135] and P. Starke [148]. Surveys on incorporating time into Petri
nets can be found in [46, 47]. Several books dealing with Petri nets with
time [54, 169] have been published recently. The interval semantics for TPNs
is discussed in [32], whereas a description of all the clock-related semantics
can be found in [124].

15 The first definition is given in Sect. 1.2.

2

Timed Automata

In this chapter we consider timed automata, which were introduced by Alur
and Dill [10]. Timed automata are extensions of finite state automata with
constraints on timing behaviour. The underlying finite state automata are
augmented with a set of real time variables. We start with formalising the
above notions.

2.1 Time Zones

Let X = {x1, . . . , xnX } be a finite set of real-valued variables, called clocks.
The set of clock constraints over X is defined by the following grammar:

cc := true | xi ∼ c | xi − xj ∼ c | cc ∧ cc,

where xi, xj ∈ X , c ∈ IN, and ∼ ∈ {≤, <,=, >, ≥}. The constraints of the
form true, xi ∼ c and xi − xj ∼ c are called atomic. The set of all the clock
constraints over X is denoted by C�

X , whereas its restriction, where inequalities
involving differences of clocks are not allowed, is denoted by CX .

A clock valuation on X is a nX -tuple v ∈ IRnX
0+ . For simplicity, we assume

a fixed ordering on X . The value of the clock xi in v can be then denoted by
v(xi) or v(i), depending on the context.

• For a valuation v and δ ∈ IR0+, v + δ denotes the valuation v′ s.t.1 for all
x ∈ X , v′(x) = v(x) + δ.

• Moreover, for a subset of clocks X ⊆ X , v[X := 0] denotes the valuation
v′ such that v′(x) = 0 for all x ∈ X, and v′(x) = v(x) for all x ∈ X \ X.

The satisfaction relation |= for a clock constraint cc ∈ C�
X is defined induc-

tively as follows:

• v |= true,

1 The abbreviation ”s.t.” stands for “such that”.

W. Penczek and A. Pó�lrola: Timed Automata, Studies in Computational Intelligence (SCI) 20,

29–49 (2006)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006

30 2 Timed Automata

• v |= (xi ∼ c) iff v(xi) ∼ c,
• v |= (xi − xj ∼ c) iff v(xi) − v(xj) ∼ c, and
• v |= (cc ∧ cc′) iff v |= cc and v |= cc′.

Unless otherwise stated, we shall use the clock constraints defined by the
grammar above. However, for some applications (to be seen in the further part
of the book) it is convenient to use the atomic clock constraints described in
a more unified manner. To this aim, we augment the set X with an additional
fictitious clock x0 �∈ X , which represents the constant 0. The set X ∪ {x0} is
denoted by X +. Then, without loss of generality we can assume that the set
of all the clock constraints for X is defined by the grammar

cc := xi − xj ∼ c | xi − xj < ∞ | xi − xj < −∞ | cc ∧ cc,

where xi, xj ∈ X +, c ∈ ZZ, and ∼ ∈ {<, ≤}. The idea is to normalise every
atomic clock constraint of C�

X in the following steps (see also Example 2.1):

• the constraints of the form xi ∼ c with xi ∈ X , ∼ ∈ {<, ≤, ≥, >} and
c ∈ IN are expressed by xi − x0 ∼ c,

• these of the form xi = c or xi − xj = c – by the conjunctions xi − x0 ≤
c ∧ x0 − xi ≤ −c and xi − xj ≤ c ∧ xj − xi ≤ −c, respectively,

• true is expressed by x0 − x0 < ∞, and
• all the constraints of the form xi − xj > c with xi, xj ∈ X + and c ∈ IN

are replaced by xj − xi < −c, whereas these of the form xi − xj ≥ c – by
xj − xi ≤ −c.

The constraints of the form xi − xj < −∞ are introduced to express con-
straints which are never satisfied. The modified set of the clock constraints,
consisting of the above-defined normalised atomic clock constraints and their
conjunctions, is denoted by C�

X+ . It will be used in Sect. 5.3.

Example 2.1. Consider the clock constraint x1 > 2. Firstly, it is converted to
x1 − x0 > 2, and then to its normal form x0 − x1 < −2.

�

The satisfaction relation |= for a clock constraint cc ∈ C�
X+ is defined

inductively as follows:

• v |= (x0 − x0 ∼ c) iff 0 ∼ c,
• v |= (xi − x0 ∼ c) iff v(xi) ∼ c,
• v |= (x0 − xi ∼ c) iff −v(xi) ∼ c,
• the definitions for the other clock constraints follow these given before for

the elements of C�
X .

Let C� = C�
X ∪ C�

X+ . For a constraint cc ∈ C�, let [[cc]] denote the set of all
the clock valuations satisfying cc, i.e.,

[[cc]] = {v ∈ IRnX
0+ | v |= cc}.

2.1 Time Zones 31

By a (time) zone in IRnX
0+ we mean each convex polyhedron Z ⊆ IRnX

0+ defined
by a clock constraint, i.e.,

Z = [[cc]] for some cc ∈ C�

(for simplicity, we identify the zones with the clock constraints which define
them). The set of all the zones for X is denoted by Z(nX).

Example 2.2. The left-hand side of Fig. 2.2 presents some examples of time
zones of Z(2).

3

6

643

1

1 2 5 7 8 9 10 11 12

5

2

4

Z1

Z2

Z3

x2

x1

3

6

643

1

1 2 5 7 8 9 10 11

2

4

12

5

H1
H2

H3

x2

x1

Fig. 2.1. Polyhedra in IR2
0+. Only these in the left-hand side (i.e., Z1, Z2, Z3) are

time zones of Z(2)

The zone Z1 is given by the clock constraint x1 ≥ 0 ∧ x1 ≤ 4 ∧x2 ≥ 1 ∧ x2 ≤
5 ∧ x2−x1 ≤ 3. Moreover, we have Z2 = [[x1 > 5 ∧x1 < 8 ∧ x2 < 6 ∧ x1−x2 <
4]] and Z3 = [[x1 ≥ 9 ∧ x1 ≤ 12 ∧ x2 ≥ 1 ∧ x1 − x2 > 6 ∧ x1 − x2 < 11]].
On the other hand, polyhedra on the right (denoted by H1,H2,H3) are not
time zones, since there is no clock constraint in C� which can describe any of
them.

�

Given v, v′ ∈ IRnX
0+ and Z,Z ′ ∈ Z(nX), we use the following operations:

• v ≤ v′ iff ∃δ ∈ IR0+ s.t. v′ = v + δ;
• Z \ Z ′ is a finite set of disjoint zones2 s.t. {Z ′} ∪ (Z \ Z ′) is a partition3 of

Z,
• Z ↗ := {v′ ∈ IRnX

0+ | (∃v ∈ Z) v ≤ v′},

2 Obviously, an alternative definition of zone difference is also possible, i.e., one
could find a finite family of zones Z ⊆ 2Z(nX) s.t. Z =

⋃
Z1∈Z Z1 ∪ Z′, and define

Z \ Z′ =
⋃

Z1∈Z Z1 (i.e., define zone difference as a union of zones). However,

we follow the approach of [8]. In our book, this operation is used mainly by the
partitioning algorithms (see Chap. 5) and such a definition corresponds to what
these algorithms produce in practice.

3 By a partition of a set B we mean a family of its disjoint subsets B such that⋃
B′∈B B′ = B.

32 2 Timed Automata

• Z ↙ := {v′ ∈ IRnX
0+ | (∃v ∈ Z) v′ ≤ v},

• Z ⇑ Z ′ = {v ∈ Z | (∃v′ ∈ Z ′) v ≤ v′ ∧ (∀v ≤ v′′ ≤ v′) v′′ ∈ Z ∪ Z ′},
• Z[X := 0] = {v[X := 0] | v ∈ Z},
• [X := 0]Z = {v ∈ IRnX

0+ | v[X := 0] ∈ Z}.

Notice that the operations ↗, ↙, clock reset and its inverse (i.e., Z[X := 0]
and [X := 0]Z) and the standard intersection preserve zones [8, 159]. A de-
scription of the implementation of Z\Z ′, following [8], is given also in Sect. 5.3.
Some examples of the operations are presented in Fig. 2.2.

3

5

7
6

643

1

x2

x1

Z
Z ′

3

6

643

1

5

x2

x1

Z1

Z2

Z \ Z ′ = {Z1, Z2}

3

6

643

1

5

x2

x1

Z3

Z1

Z \ Z ′ = {Z1, Z2, Z3}

Z2

3

6

43

x2

x1

Z ∩ Z ′

6

3

1

x2

x1

Z ↗

3

6

62

x2

x1

Z ↙

3

6

43

x2

x1

Z ⇑ Z ′

3

6

4

x2

x1

Z ′ ⇑ Z

6

1

x2

x1

Z[x1 := 0]

3

7

x2

x1

Z ′[x1 := 0]

3

5

x2

x1

[x1 := 0]Z ′

x2

x1

[x1 := 0]Z = ∅

Fig. 2.2. Zones Z, Z′ ∈ Z(2) and examples of operations on them

2.2 Networks of Timed Automata 33

2.2 Networks of Timed Automata

In this section we define timed automata, give their semantics, and show how
to define a product of timed automata. Typically, we consider networks of
timed automata, consisting of several timed automata running in parallel and
communicating with each other.

Definition 2.3. A timed automaton (TA, for short) is a six-element tuple

A = (A,L, l0, E, X , I),

where

• A is a finite set of actions, where A ∩ IR0+ = ∅,
• L is a finite set of locations,
• l0 ∈ L is an initial location,
• X is a finite set of clocks,
• E ⊆ L × A × C�

X × 2X × L is a transition relation,
• I : L −→ C�

X is a (location) invariant.

Each element e of E is denoted by l
a,cc,X−→ l′, which represents a transition

from the location l to the location l′, executing the action a, with the set
X ⊆ X of clocks to be reset, and with the clock constraint cc defining the
enabling condition for e. The function I assigns to each location l ∈ L a clock
constraint defining the conditions under which A can stay in l.

If the enabling conditions and the values of the location invariant are in the
set CX only, then the automaton is called diagonal-free. Given a transition
e := l

a,cc,X−→ l′, we write source(e), target(e), action(e), guard(e) and reset(e)
for l, l′, a, cc and X, respectively. The clocks of a timed automaton allow to
express the timing properties. An enabling condition constrains the execution
of a transition without forcing it to be taken. An invariant condition permits
an automaton to stay at the location l only as long as the clock constraint
I(l) is satisfied.

Example 2.4. Figure 2.3 shows a timed automaton A of four locations, num-
bered from 0 to 3, one clock x and the set of actions A = {approach, in,
out, exit}. The initial location is coloured. The invariant of the location 0 is
true4, whereas for all the other locations is given by x ≤ 500. The transition

relation of A consists of the elements 0
approach,true,{x}−→ 1, 1

in,x≥300,∅−→ 2,

2
out,true,∅−→ 3, and 3

exit,x≤500,∅−→ 0. The location 2 is annotated by the
proposition is inside, which holds true at this location (a valuation of the
locations is discussed in Sect. 2.4).

�
4 In the pictures we omit the invariants and the guards equal to true as well as the

empty sets of clocks to be reset.

34 2 Timed Automata

10

3 2out

approach

exit

is_inside

in

x1 := 0

x1 ≤ 500x1 ≤ 500

x1 ≤ 500

x1 ≤ 500 x1 ≥ 300

Fig. 2.3. A timed automaton

Real-time systems are usually represented by networks (sets) of timed au-
tomata. An example of such a system, widely considered in the literature, is
the Fischer’s mutual exclusion protocol (see below). Another system, mod-
elling an automated railroad crossing (known as the Train–Gate–Controller
example) is considered in Example 2.8.

Example 2.5. In Fig. 2.4, a network of TA for Fischer’s mutual exclusion pro-
tocol with two processes is depicted5. The protocol is parameterised by the
number of processes involved. In the general case, the network consists of
n automata of processes, together with one automaton modelling a global
variable V , used to coordinate the processes’ access to their critical sections.

�

10

3 2

start1

enter1

waiting1

trying1

critical1

idle1

setv1setv01

x1 := 0

x1 > δ

x1 := 0
x1 < ∆

10

3 2

start2
idle2 trying2

waiting2

enter2

critical2

setv02 setv2

x2 := 0

x2 > δ

x2 < ∆
x2 := 0

0

2 1
setv1

setv2

enter1
setv1setv2

enter2

start1 start2

setv2 setv1

se
tv
02

setv01

Process 1 Process 2 Variable V

Fig. 2.4. Fischer’s mutual exclusion protocol for two processes

A set of timed automata can be composed into a global (product) timed au-
tomaton as follows: the transitions of the timed automata that do not cor-
respond to a shared action are interleaved, whereas the transitions labelled

5 Two clocks are denoted by x1 and x2, whereas ∆ and δ are parameters. The
initial locations are numbered by 0.

2.2 Networks of Timed Automata 35

with a shared action are synchronized. There are many different definitions
of a parallel composition. Our definition determines the multi-way synchro-
nization, i.e., it requires that each component that contains a communication
transition (labelled with a shared action) has to perform this action.

Definition 2.6. Let I = {i1, . . . , inI
} be a finite ordered set of indices, and

A = {Ai | i ∈ I}, where Ai = (Ai, Li, l
0
i , Ei, Xi, Ii), be a set (network) of

timed automata indexed with I. The automata in A are called components. Let
A(a) = {i ∈ I | a ∈ Ai} be a set of the indices of the components containing
the action a ∈

⋃
i∈I Ai. A composition (product) of the timed automata Ai1 ‖

. . . ‖ AinI
is a timed automaton A = (A,L, l0, E, X , I), where

• A =
⋃

i∈I Ai,
• L =

∏
i∈I Li,

• l0 = (l0i1 , . . . , l
0
inI

),
• X =

⋃
i∈I Xi,

• I((li1 , . . . , linI
)) =

∧
i∈I Ii(li),

and the transition relation is given by

• ((li1 , . . . , linI
), a,

∧
i∈A(a) cci,

⋃
i∈A(a) Xi, (l′i1 , . . . , l

′
inI

)) ∈ E ⇐⇒
(∀i ∈ A(a)) (li, a, cci,Xi, l

′
i) ∈ Ei and (∀i ∈ I \ A(a)) l′i = li.

a b

cc

a

b

a

bc

d

timed automaton Btimed automaton A

c

e

the product automaton

d e

d
d

e

e

0, 1 2, 0

2, 1

1, 2

0, 2

1, 0

x2 = 1

x2 > 1

x3 < 1 x3 := 0

x3 < 1
x2 := 0

x1 := 0

0, 0 1, 1 2, 2

1

2

0x2 > 1

x2 = 1x1 := 0

0 1

2

x2 < 4x3 < 1
x3 := 0

x3 < 1
x2 := 0

x1 ≥ 1
x1 := 0

x3 < 1

x1 ≥ 1
x2 := 0

x3 < 1

x2 := 0

x2 > 1
x2 := 0

x3 < 1

x2 > 1

x2 := 0

x2 := 0
x1 ≥ 1

x1 := 0
x3 < 1

x1 ≥ 1
x1 := 0

x1 := 0

Fig. 2.5. Two timed automata and their composition

36 2 Timed Automata

Example 2.7. In Fig. 2.5, a network of timed automata, consisting of two au-
tomata A and B, and the product automaton A ‖ B of A and B are pre-
sented. The initial locations of all the automata are coloured. The automaton
A, over two clocks x1, x2, can execute the actions a, b, c, d and e with the

transitions 0
a,true,{x2}−→ 1, 1

b,x2=1,∅−→ 2, 1
d,x2>1,{x2}−→ 1, 2

c,true,{x1}−→ 0

and 2
e,x1≥1,{x1}−→ 2. The possible transitions of the automaton B of two clocks

x2, x3 (notice that the automata have a common clock x2) are 0
a,x3<1,∅−→ 1,

1
b,x2<4,∅−→ 2, and 2

c,x3<1,{x3}−→ 0. Both the components execute in parallel
and synchronize through the actions a, b, c. The locations of the product au-
tomaton are given as pairs jA, jB whose elements corresponds to the numbers
of locations of the components (notice that only three of them are reachable).

�

The next example shows the railroad crossing system (known also as a
Train–Gate–Controller example), often considered in the literature:

Example 2.8. Figure 2.6 depicts the timed automata of the train, gate and
controller, modelling the behaviour of the automatic railroad crossing system.
The component Train can execute the actions approach, in, out and exit la-

belling the transitions 0
approach,true,{x1}−→ 1, 1

in,x1≥300,∅−→ 2, 2
out,true,∅−→ 3,

3
exit,x1≤500,∅−→ 0. Similarly, the actions of the component Gate are

lower, down, raise and up labelling the transitions 0
lower,true,{x2}−→

1, 1
down,x2≤100,∅−→ 2, 2

raise,true,{x2}−→ 3, 3
up,100≤x2≤200,∅−→ 0.

The component Controller executes the actions approach, lower, exit and

raise labelling the transitions 0
approach,true,{x3}−→ 1, 1

lower,x3=100,∅−→ 2,

2
exit,true,{x3}−→ 3, 3

raise,x3≤100,∅−→ 0.

10

3 2

0 1

23

0 1

23

Train Gate Controller

out

approach

up

lower

raise

raise

exit

exit

approach

lowerdownin

x3 ≤ 100

x1 := 0

x1 ≤ 500x1 ≤ 500

x2 := 0

x2 := 0
x2 ≤ 200

x3 := 0

x3 := 0

x1 ≤ 500 x2 ≤ 100 x3 ≤ 100

x3 ≤ 100x1 ≤ 500 100 ≤ x2 ≤ 200 x3 = 100x2 ≤ 100x1 ≥ 300

Fig. 2.6. Train–Gate–Controller example

All the components execute in parallel and synchronize through the actions
approach, exit, lower and down. When Train approaches the crossing, it sends

2.2 Networks of Timed Automata 37

an approach signal to Controller and enters the crossing at least 300 seconds
later. When Train leaves the crossing, it sends an exit signal to Controller.
The exit signal is sent within 500 seconds after the approach signal. Controller
sends a signal lower to Gate exactly 100 seconds after the approach signal and
sends a raise signal within 100 seconds after exit. Gate responds to lower by
moving down within 100 seconds, and responds to raise by moving up between
100 and 200 seconds.

The product automaton for the above example is depicted in Fig. 2.7.

0,0,0

out

3,3,1

3,0,1

3,2,2

1,2,2

2,1,2

1,0,1

in

3,1,2

lower
1,1,2

in

in
down

out

down

0,1,3

down

approach

0,3,0

approach

exit
lower

up
2,3,1

up
out

lower

in
1,3,1

out

up

up

2,0,1

2,2,2

raise

exit

0,2,3

down

x1 ≥ 300

x1 ≤ 500

x1 ≤ 500

x1 ≤ 500

x2 := 0
x3 = 100

x1 ≥ 300
x3 ≤ 100

∧
x1 ≤ 500

x1 ≥ 300

∧ x2 ≤ 100

∧ x3 ≤ 100
x2 ≤ 100

∧
x1 ≤ 500

x2 ≤ 100

x2 ≤ 100

∧ x3 ≤ 100
x2 ≤ 100

x2 ≤ 100

x1 ≤ 500

x3 := 0
x1 := 0

x2 ≤ 200

x3 := 0
x1 := 0

100 ≤ x2 ≤ 200

∧
x3 ≤ 100

x1 ≤ 500

x1 ≤ 500
x3 := 0

x2 := 0

x3 = 100

∧
x1 ≤ 500

x2 ≤ 200
∧

x3 ≤ 100

x2 := 0

x3 = 100

x1 ≥ 300

x1 ≤ 500 ∧

x3 ≤ 100
x2 ≤ 200 ∧

x1 ≤ 500

∧ x2 ≤ 100
x1 ≤ 500

100 ≤ x2 ≤ 200

100 ≤ x2 ≤ 200

100 ≤ x2 ≤ 200

x3 ≤ 100

x1 ≤ 500
x3 := 0

x3 ≤ 100

x1 ≤ 500
∧

x2 ≤ 200
∧

x3 ≤ 100

x2 ≤ 100

x2 := 0

Fig. 2.7. The product automaton for the Train–Gate–Controller example

�

In what follows we assume that all the transitions of A labelled with the
same action reset the same clocks6.

6 Such an assumption is made in order to efficiently encode the transition relation
in the bounded model checking method for timed automata (see Sect. 7.1).

38 2 Timed Automata

2.3 Semantics of Timed Automata

Let A = (A,L, l0, E, X , I) be a timed automaton. A concrete state of A is
defined as an ordered pair

(l, v),

where l ∈ L and v ∈ IRnX
0+ is a valuation. The concrete (dense) state space of

A is a transition system

Cc(A) = (Q, q0, →c),

where

• Q = L × IRnX
0+ is the set of all the concrete states,

• q0 = (l0, v0) with v0(x) = 0 for all x ∈ X is the initial state, and
• →c⊆ Q × (E ∪ IR0+) × Q is the transition relation, defined by action- and

time successors as follows:
– for δ ∈ IR0+, (l, v) δ→c (l, v + δ) iff

· v, v + δ ∈ [[I(l)]]
(time successor),

– for a ∈ A, (l, v) a→c (l′, v′) iff (∃cc ∈ CX)(∃X ⊆ X) such that

· l
a,cc,X−→ l′ ∈ E,

· v ∈ [[cc]],
· v ∈ [[I(l)]],
· v′ = v[X := 0], and
· v′ ∈ [[I(l′)]]
(action successor).

Intuitively, a time successor does not change the location l of a concrete state,
but it increases the clocks, provided their values still satisfy the invariant of
l. Since the invariants are zones, if v and v′ satisfy I(l), then all the clock
valuations between v and v′ satisfy I(l). An action successor corresponding
to an action a is executed when the guard cc holds for v and the valuation v′

obtained after resetting the clocks in X satisfies the invariant of l′.

For (l, v) ∈ Q and δ ∈ IR0+, let (l, v) + δ denote (l, v + δ). Concatenation

of two time steps q
δ→c q + δ and q + δ

δ′
→c q + δ + δ′ is the time step

q
δ+δ′
−→

c
q + δ + δ′. Similarly, if q

δ→c q + δ, then for any k ∈ IN+ there exist

δ1, . . . , δk ∈ IR0+ such that δ1 + . . . + δk = δ and q
δ1→c q + δ1

δ2→c . . .
δk→c q + δ

(i.e., each time step can be split into an arbitrary number of consecutive
time successors). A (dense) q0-run ρ of A is a maximal (i.e., non-extendable)
sequence

ρ = q0
δ0→c q0 + δ0

a0→c q1
δ1→c q1 + δ1

a1→c q2
δ2→c . . . ,

where ai ∈ A and δi ∈ IR0+, for each i ≥ IN (notice that due to the fact that δ
can be equal to 0 two consecutive transitions can be executed without any time

2.3 Semantics of Timed Automata 39

passing in between, and that consecutive time passings are concatenated).
Such runs are called weakly monotonic.

Example 2.9. Given the product automaton shown in Fig. 2.5, let ((jA, jB),
(v(x1), v(x2), v(x3))) denote the state (l, v) of the automaton, where l is a pair
jA, jB . One of the possible q0-runs is

((0, 0), (0, 0, 0)) 0.5−→c ((0, 0), (0.5, 0.5, 0.5)) a−→c ((1, 1), (0.5, 0, 0.5)) 1−→c ((1,

1), (1.5, 1, 1.5)) b−→c ((2, 2), (1.5, 1, 1.5)) 0.5−→c ((2, 2), (2, 1.5, 2)) e−→c ((2, 2),
(0, 1.5, 2)) 1.5−→c . . .

�

A state q ∈ Q is reachable if there exists a q0-run ρ and i ∈ IN such that
q = qi + δ for some 0 ≤ δ ≤ δi, where qi + δi is an element of ρ. The set of
all the reachable states of A is denoted by ReachA. Given a run ρ = q0

δ0→c

q0 + δ0
a0→c q1

δ1→c q1 + δ1
a1→c . . ., we say that a run ρ′ = q′0

δ′
0→c q′0 + δ′0

a′
0→c . . .

is a suffix of ρ if there exists i ∈ IN and 0 ≤ δ ≤ δi such that q′0 = qi + δ,
δi = δ+δ′0, and aj = ai+j and δj+1 = δi+j+1 for each j ∈ IN (note that a suffix
of ρ can start at a state which results from splitting a time step occurring in
the run). A run ρ is said to be progressive iff Σi∈INδi is unbounded. Notice that
a run is progressive iff all its suffixes are so. A timed automaton is progressive7

iff all its runs starting at the initial state are progressive. For simplicity of the
presentation, we restrict our considerations to progressive timed automata
only. Note that progressiveness can be checked using for example sufficient
conditions of [159], which we discuss in detail in Sect. 2.5. The set of all the
progressive (weakly monotonic) q-runs of A is denoted by fA(q).

Like for time Petri nets, weakly monotonic runs can be easily used for
interpreting untimed temporal logics as well as for checking reachability. In
fact, they can be also applied to interpreting timed languages like TCTL or
timed µ-calculus. But, it is sometimes more convenient to restrict the runs to
contain non-zero time passings only (i.e., δi > 0 for all i ∈ IN), which prevents
firings of two transitions immediately one after the other. Such runs are called
strongly monotonic. In what follows, f+

A (q) is used to denote the set of all the
progressive strongly monotonic q-runs of A. By Reach+

A we denote the set
of all the states of A which are reachable assuming the above definition of
q0-runs.

We refer to the semantics over weakly monotonic runs as to weakly
monotonic, whereas to the semantics over strongly monotonic runs as to
strongly monotonic.

Example 2.10. Notice that the run given in Example 2.9 is valid also when
time steps are restricted to be non-zero only. However, the sets ReachA and

7 Progressiveness is also called a non-zeno property.

40 2 Timed Automata

Reach+
A are not equal. The state ((1, 1), (0, 0, 0)), resulting from executing the

action a at the initial state, belongs to ReachA, but not to Reach+
A.

�

2.3.1 Alternative (Discrete) Semantics

Similarly to the case of time Petri nets, discrete runs of timed automata can
be defined by combining action- and time steps. Again, we do not change
the domain IR0+ of the clock valuations. Alternatively, one could restrict the
time domain to integers [18] getting discrete-time models, so that passing of
time would be measured only using integer numbers. It is known that such
an approach could be used for modelling accurately synchronous systems,
where all the components are driven by one common global clock, but we do
not discuss this approach in this book. However, for modelling asynchronous
systems it is necessary to use continuous time [7].

In our alternative approach, runs of timed automata are defined such that
passing some time and then executing an action (and then, possibly, passing
some time again) are combined into a single step. Such an approach, called
a discrete semantics, is sometimes used for verification of untimed temporal
properties or reachability checking [126]. Similarly to the case of time Petri
nets, we introduce the following modifications of the successor relation →c:

• →d1⊆ Q × A × Q, where
q

a→d1 q′ iff (∃q1 ∈ Q)(∃δ ∈ IR0+) q
δ→c q1

a→c q′;
• →d2⊆ Q × A × Q, where

q
a→d2 q′ iff (∃q1, q2 ∈ Q)(∃δ, δ′ ∈ IR0+) q

δ→c q1
a→c q2

δ′
→c q′.

Clearly the relation →d2 includes →d1 (due to the possibility of the δ’s to be
equal to 0), but to keep compatibility with the TPNs approaches we define
both of them. Notice that it is also possible to redefine the relations →d1

and →d2 by restricting the values of δ, δ′ to be non-zero only, but in this
case, similarly to the TPNs case, the above inclusion does not need to hold
anymore.

For each of the above relations we introduce a notion of a (discrete) q0-run
of A, which is a maximal sequence of concrete states

ρr = q0
a0→dr

q1
a1→dr

q2
a2→dr

. . . ,

where r ∈ {1, 2}, and ai ∈ A for all i ∈ IN. A state q ∈ Q is reachable (w.r.t. dr)
if there exists a q0-run ρr and i ∈ IN such that q = qi, where qi is an element of
ρr. The set of all the reachable states (w.r.t. dr) is denoted by Reachdr

A (notice
that the set can vary depending on the successor relation →dr

). Concrete
(discrete) state space of A is now a transition system Cdr

(A) = (Q, q0, →dr
),

where r ∈ {1, 2}.

2.4 Concrete Models for TA 41

Example 2.11. Consider the product automaton A shown in Fig. 2.5. For the
concrete state space Cd1(A), one of the possible q0-runs is

((0, 0), (0, 0, 0)) a−→d1 ((1, 1), (0.5, 0, 0.5)) b−→d1 ((2, 2), (1.5, 1, 1.5)) e−→d1

((2, 2), (0, 1.5, 2)) e−→d1

In the case of the concrete state space Cd2(A), we can obtain, for example,
the q0-run

((0, 0), (0, 0, 0)) a−→d2 ((1, 1), (1, 0.5, 1)) b−→d2 ((2, 2), (1.5, 1, 1.5)) e−→d2 ((2,

2), (0.5, 1.5, 2)) e−→d2

Its first step corresponds to passing 0.5 unit of time, executing the action
a and then passing 0.5 time unit again, whereas the second consists in passing
0.5 unit of time and then executing b with no time delay after that. In the
third step, the action e is executed without any previous delay, and then 0.5
unit of time passes.

Notice that the sets Reachd1
A and Reachd2

A differ (e.g., the state ((1, 1), (1,
0.5, 1)), obtained from q0 by passing 0.5 unit of time, executing a and then
passing 0.5 time unit again, belongs to Reachd2

A , but is not an element of
Reachd1

A). Moreover, both these sets are different from ReachA, since the
state ((0, 0), (0.5, 0.5, 0.5)) ∈ ReachA does belong neither to Reachd1

A nor to
Reachd2

A .
�

Similarly as for time Petri nets, it can be proven that for the weakly
monotonic semantics we have Reachd1

A ⊆ Reachd2
A ⊆ ReachA.

2.4 Concrete Models for TA

Let PV be a set of propositional variables. In order to reason about systems
represented by timed automata, we define a valuation function VA : L −→
2PV , which assigns a subset of PV to each location. Then, in order to reason
about systems represented by networks of timed automata8, given a network
of timed automata A = {Ai | i ∈ I} indexed with I = {i1, . . . , inI

}, and
functions VAi

: Li −→ 2PVi , where PVi ∩ PVj = ∅ for all i, j ∈ I with i �= j,
we define a valuation function VC : Q −→ 2PV , where Q is the set of all the
concrete states of the product automaton for A and PV =

⋃nI

i=1 PVi, such
that

VC(((li1 , . . . , linI
), ·)) =

⋃

i∈I

VAi
(li)

8 In particular, a network can consist of a single automaton only.

42 2 Timed Automata

(i.e., VC assigns the same propositions to the states with the same locations).

Let C(A) ∈ {Cc(A), Cd1(A), Cd2(A)} be a concrete state space of the
timed automaton A. The transition system

Mc(A) = (C(A), VC)

is called a concrete model for A (based on the state space C(A)). The concrete
model is called dense (discrete) if C(A) is so.

2.5 Checking Progressiveness

Similarly to the case of time Petri nets, we have also restricted our consid-
erations to a class of progressive timed automata. But, in order to deal with
such automata, we need to check whether a given timed automaton A falls
into this class. Unfortunately, this cannot be easily decided without any prior
analysis. Our discussion of this problem below is based on [156,159,160].

Consider first a timed automaton which is non-progressive because it
contains some “terminal” locations (see for example the automaton like in
Fig. 2.3, but without the action labelled with exit), which can make some
of its runs finite. This, however, can be easily avoided, since if a system S
modelled by an automaton AS can terminate its execution in some legal end
state, which means that there is a location with no outgoing transitions in
AS , one can add a fictitious loop transition with an appropriate guard and a
set of clocks to be reset, which can be executed infinitely many times.

Another possibility for a given automaton A to be non-progressive is when
some of its reachable states are deadlocks or timelocks. Formally, a concrete
state of A is a deadlock if it occurs in a finite q0-run of A and no passage of
time at this state can enable an action, and is a timelock if all infinite runs
starting from this state are not progressive. Notice that a deadlock is not
necessarily a timelock, neither the reverse:

Example 2.12. Consider the automaton A over one clock x, shown in Fig. 2.8.

b

a c

l1l0

x < 2

x ≤ 1

Fig. 2.8. A timed automaton with timelocks

It is easy to see that irrespectively on the definition of runs no state of A
is a deadlock. However, all the concrete states (l0, v) with v(x) ∈ (1, 2) are

2.5 Checking Progressiveness 43

timelocks, since in all the runs starting at them the action a is executed
infinitely many times, but the value of the clock x does not exceed two units.
On the other hand, if the transition labelled with a was missing, then these
states would be deadlocks, but not timelocks, since there would not be infinite
runs starting from them at all.

�

A timed automaton is deadlock-free (timelock-free) if none of its reachable
states is a deadlock (timelock, respectively). It should be mentioned that some
concrete states are deadlocks only when the strongly monotonic semantics is
considered. An example of such a state is (l1, (1)) in the automaton depicted
in Fig. 2.9. Notice that different definitions of runs influence also the existence
of timelocks: in the automaton in Fig. 2.9 the state (l0, (1)) is a timelock only
in the weakly monotonic semantics.

ba

c

l0 l1
x = 1 x = 1

l2

x > 2

x < 4x ≤ 1 x ≤ 1

Fig. 2.9. A timed automaton with a deadlock in the strongly monotonic semantics

Unfortunately, the absence of deadlocks and timelocks does not guarantee
progressiveness of the automaton. This can be easily derived from the example
below, where the state (l0, (0)) is neither deadlock nor timelock, but there are
both progressive and non-progressive runs starting at it:

Example 2.13. Consider the automaton which is like that in Fig. 2.8, but
with I(l0) = true. Although all its runs are infinite, some of them are non-
progressive. An example of such a run is

ρ = (l0, (0)) 1→c (l0, (1)) b→c (l1, (1)) 0.5−→c (l1, (1.5)) c→c (l1, (1.5)) 0.25−→c

(l1, (1.75)) c→c . . .,

where the time delays decrease geometrically as follows: 1, 0.5, 0.25, 0.125,
So, their sum is bounded by 2. Notice that the same state is also a beginning
of a progressive run, e.g.,

(l0, (0)) 1→c (l0, (1)) b→c (l1, (1)) 1→c (l1, (2)) c→c (l1, (2)) 1→c (l1, (3)) c→c
�

It is also easy to see that the above fact holds irrespectively on the semantics
assumed.

In principle there are two methods of checking that a system is progressive.
Firstly, one can formulate a sufficient condition on the structure of a timed

44 2 Timed Automata

automaton itself which guarantees this property. Secondly, it is possible to
apply verification techniques to establish whether an automaton is progressive.

2.5.1 A Static Technique

One of the possible static (i.e., structural) conditions which can be verified
in order to ensure progressiveness of timed automata exploits the notion of
strongly progressive structural loops:

Definition 2.14. A structural loop in a timed automaton A = (A,L, l0, E,
X , I) is a sequence of distinct transitions e1, . . . en such that target(ei) =
source(ei+1) for all i = 1, .., n (where the addition is modulo n). A structural
loop is strongly progressive if there exists a clock x ∈ X and some 1 ≤ i, j ≤ n
such that:

1) x is a clock that is reset by the transition ei,
2) x is bounded from below by at least 1 in the guard of the transition ej, i.e.,

(x < 1 ∧ guard(ej)) evaluates to false.

Intuitively, 1) and 2) mean that at least one unit of time elapses in every loop
of A. An example of an automaton whose all the structural loops are strongly
progressive is shown in Fig. 2.10. Notice that this would not be the case if any
of the guards x ≥ 1 was missing.

b

a c

l1l0

x ≤ 2

x ≥ 1
x := 0 x := 0

x ≥ 1

Fig. 2.10. A timed automaton with strongly progressive structural loops

Next, we give a sufficient condition for a timed automaton to be progressive
[159]:

Lemma 2.15. A is progressive if the following conditions hold:

1. every structural loop of A is strongly progressive, and
2. A is deadlock-free.

Notice that if A satisfies the above conditions, then each of its q0-runs is
infinite as it is deadlock-free, and is progressive as it is ”contained” in some
structural loop.

In order to apply the above lemma, we need a method for testing absence of
deadlocks in an automaton, for the concrete semantics assumed. A static suf-
ficient condition for checking that a timed automaton A = (A,L, l0, E, X , I)

2.5 Checking Progressiveness 45

is deadlock-free can be formulated using a local condition on the reachable
states of A. To do that, for l ∈ L we define

free(l) = [[I(l)]] ∩
⋃

{e∈E|source(e)=l}
([[guard(e)]] ∩ [[I(l)]] ∩

[reset(e) := 0][[I(target(e))]]) ↙ .

Intuitively, the set free(l) ⊆ IRnX
0+ consists of the timed parts of all these

concrete states (l, ·) of A from which it is possible to exit l by executing some
transition, after passing some (possibly zero) period of time first. It is easy
to see that if zero time steps are allowed, then A is deadlock-free iff for each
(l, v) ∈ ReachA we have v ∈ free(l) [156]. A sufficient static condition for
deadlock-freedom in the weakly monotonic dense semantics is given by the
following lemma [156]:

Lemma 2.16. For the weakly monotonic semantics A is deadlock-free if for
each location l ∈ L and each e ∈ E with target(e) = l we have

([[guard(e)]][reset(e) := 0]) ↗ ∩ [[I(l)]] ⊆ free(l),

and the initial location l0 ∈ L satisfies the condition

{v0} ↗ ∩ [[I(l0)]] ⊆ free(l0).

The below example illustrates the application of the above lemma:

Example 2.17. Consider the automaton A shown in Fig. 2.11.

b

a c

l1l0

x ≤ 4 x > 5

x ≥ 4
x := 0 x := 0

x > 1

Fig. 2.11. The timed automaton considered in Example 2.17

If the transition labelled with a was missing, then we would have free(l0) =
[[x ≤ 4]] ∩ ([[true]] ∩ [[x ≤ 4]] ∩ [[x > 5]]) ↙= ∅. If the initial location had no
ingoing transitions, then the first condition of Lemma 2.16 would be satisfied,
but the second would not hold due to {v0} ↗ ∩[[I(l0)]] = [[x ≤ 4]]. There-
fore, the static test of Lemma 2.16 would return that A does not satisfy the
condition guaranteeing deadlock-freedom in the weakly monotonic semantics.
Indeed, it is easy to see that all the states (l0, ·) of the modified automaton
are deadlocks, since the invariants of the locations l0 and l1 prevent executing
the transition labelled with b.

If we consider the automaton as shown in the picture, then free(l0) =
∅∪([[x ≤ 4]]∩ ([[x ≥ 4]] ∩ [[x ≤ 4]]∩ [{x} := 0][[x ≤ 4]]) ↙) = [[x ≤ 4]] ∩ ([[x =

46 2 Timed Automata

4]]∩ IR0+) ↙= [[x ≤ 4]]. For the transition labelled with a (the only one whose
target location is l0) we compute [[x ≥ 4]][{x} := 0] ↗ ∩ [[x ≤ 4]] = [[x =
0]] ↗ ∩ [[x ≤ 4]] = [[x ≤ 4]]. Moreover, we have {v0} ↗ ∩[[I(l0)]] = [[x ≤ 4]].
The sufficient condition for all the reachable states (l0, ·) not to be deadlocks
in the weakly monotonic semantics is then satisfied.

Considering the location l1, we compute free(l1) = [[x > 5]] ∩ ([[x >
1]] ∩ [[x > 5]] ∩ ∅) ↙= ∅. While testing the conditions of the lemma, for the
transition labelled with b we obtain IR0+ ∩ [[x > 5]] = [[x > 5]] �⊆ free(l1).
Similarly, for the transition labelled with c we get [[x > 1]][{x} := 0] ↗
∩ [[x > 5]] = IR0+ ∩ [[x > 5]] = [[x > 5]] �⊆ free(l1). Thus, the first condition
of Lemma 2.16 does not hold, and therefore one cannot reason that A is
deadlock-free. In fact, all the states (l1, ·) could have been deadlocks, since
the invariant of the location prevents executing the transition labelled with c.
Notice, however, that all of them are unreachable, and therefore they do not
influence the deadlock-freedom of A.

�

In order to ensure deadlock-freedom of A for the strongly monotonic se-
mantics, one could require that the conditions of Lemma 2.16 hold and the
enabling conditions and invariants of A are built from strict inequalities only.
In the below example, we show that the conditions of Lemma 2.16 only are
not sufficient.

Example 2.18. Consider again the automaton A shown in Fig. 2.9. For the
locations of A we compute respectively free(l0) = [[x ≤ 1]], free(l1) = [[x ≤ 1]]
and free(l2) = [[x < 4]]. Consequently, it is easy to check that the conditions
of Lemma 2.16 hold for A. However, the state (l1, (1)) of A is a deadlock in
the strongly monotonic semantics.

�

The condition for all the structural loops to be strongly progressive is compo-
sitional (i.e., if two TA satisfy the condition, then their composition does so as
well), whereas the condition given in Lemma 2.16 is not [157,159]. Therefore,
the above structural analysis cannot be applied to component automata in
order to reason about properties of their product.

2.5.2 Applying Verification Methods

The static tests described before can be obviously combined with verifica-
tion techniques applicable to checking progressiveness. Thus, in order to state
whether a given automaton A is deadlock-free (i.e., to test whether the second
condition of Lemma 2.15 holds for A) one can built a bisimulating abstract
model for TA (see Sect. 5.2) and check whether it contains a reachable ab-
stract state with no successors (time self-loops, if exist, are not taken into
account). Obviously, the semantics for which deadlocks are searched for has
to correspond to the semantics for which a given model is generated. Due to

2.5 Checking Progressiveness 47

that, the detailed region graphs (see Sect. 5.2) allow for tests for both the dense
semantics considered, whereas coarser abstract models have been applied so
far only to the weakly monotonic semantics.

Another method for checking deadlock-freedom, described in [156], consists
in testing reachability of a state (ld, ·), where ld is a special location corre-
sponding to a deadlock in A. More precisely, given a timed automaton A =
(A,L, l0, E, X , I), we construct a new automaton A′ = (A′, L′, l0, E′, X , I ′),
which is like A besides that

• A′ = A ∪ {ad}, where ad �∈ A,
• L′ = L ∪ {ld} with ld �∈ L,
• I ′ : L′ −→ C�

X is given by I ′(l) = I(l) for l ∈ L, and I ′(ld) = true, and

• E′ = E ∪ {l
ad,cc,∅−→ ld | l ∈ L ∧ [[cc]] ∈ (IRnX

0+ \ free(l))}.

Intuitively, the construction adds to each location of A a number of outgoing
transitions9 leading to ld, which serve as “escape” actions, i.e., can be taken
whenever the automaton A reaches a deadlock state. It is easy to see that from
unreachability of (ld, ·) in A′ it follows that A is deadlock-free. Reachability
of such a state is checked using an arbitrary method from these described in
the further part of this book. Because of the definition of free(l), the method
is applicable to the weakly monotonic semantics.

Example 2.19. Figure 2.13 depicts a timed automaton A′ built for testing
deadlocks in the automaton A shown in Fig. 2.12 (the automaton A, consid-

b

c

l1l0

x ≤ 4 x > 5

x := 0
x > 1

Fig. 2.12. The timed automaton considered in Example 2.19

ered already in Example 2.17, is like that in Fig. 2.11, but without the transi-
tion labelled with a). Due to free(l0) = ∅, the transition relation of A is in A′

extended by e : l0
ad,true,∅−→ ld. Similarly, since free(l1) = [[x > 5]] ∩ ([[x >

1]] ∩ [[x > 5]] ∩ [{x} := 0][[x > 5]]) ↙= [[x > 5]] ∩([[x > 1]] ∩ [[x > 5]] ∩ ∅) ↙= ∅,

the transition relation of A′ contains an element l1
ad,true,∅−→ ld. Thus, it is

easy to see that all the states (l0, ·) of A are deadlocks, since the transition
labelled with ad can be executed at all of the states (l0, ·) of A′.

�

9 The number of the transitions for a location l is equal to the number of the
elements of IRnX

0+ \ free(l).

48 2 Timed Automata

b

c

l1l0

x := 0
x > 1

ld

ad

x > 5

ad

x ≤ 4

Fig. 2.13. A timed automaton for testing deadlocks in the TA of Fig. 2.12

In the case when not all the structural loops of a given automaton A are pro-
gressive (i.e., if the first condition of Lemma 2.15 is not satisfied) we can check
whether the TCTL10 formula ϕ = AG(EF[1,∞)true∧AF[1,∞)true) holds in an
appropriate model of A [84,175] (this can be done using a method described in
the further part of the book). Intuitively, ϕ expresses that every state reach-
able from the initial state can let time pass at least one unit. This ensures that
in all the infinite runs time can pass without bound. Notice, however, that
this does not guarantee that after entering an arbitrary state an action can
be eventually taken, so in order to ensure progressiveness, deadlock-freedom
needs to be checked as well. Checking whether the above formula holds can
be replaced by testing reachability of an auxiliary location in an augmented
automaton A′′, similarly to the above-described deadlock detection. The au-
tomaton A′′ = (A′′, L′′, l0, E′′, X ′′, I ′′) is like A, besides the fact that

• X ′′ = X ∪ {xz} with xz �∈ X ,
• L′′ = L ∪ {lp} with lp �∈ L,
• A′′ = A ∪ {ap} with ap �∈ A,
• I ′′(l) = I(l) for l ∈ L and I ′′(lp) = true, and

• E′′ = E ∪ {l
ap,xz≥1,∅−→ lp | l ∈ L}.

Intuitively, A′′ has an “escape” transition from each location of A, which
leads to the auxiliary location lp. This transition can be taken if the value
of the additional clock xz is at least one. However, instead of the standard
reachability analysis, it is checked whether there exists a reachable state q of
A such that in A′′ no state (lp, ·) can be reached from a state q′ of A′′ which
is like q, but with the clock xz set to zero. This is a two-step procedure. A
detailed description can be found in [156].

2.5.3 A Solution for Strongly Monotonic Semantics

As it could be seen from the above description, methods for checking pro-
gressiveness of TA apply mainly to the weakly monotonic semantics. In or-
der to check progressiveness of an automaton A = (A,L, l0, E, X , I) in the
10 Timed Computation Tree Logic, see Chap. 4.

2.5 Checking Progressiveness 49

strongly monotonic case, one can use, for instance, the method suggested by
F. Cassez [51]. This method consists in building an automaton Am whose
progressiveness in the weakly monotonic semantics implies the same for A in
the strongly monotonic one. Am is defined like A except for the clocks and
transitions, which are extended in the following way. The set of clocks of A is
extended by the clock xs. For each transition e of A, guard(e) is extended by
xs > 0, and reset(e) – by xs.

The weakly monotonic q0-runs of Am correspond to the strongly monotonic
q0-runs of A. Thus, in order to test whether these runs of A are progressive,
one can apply to Am a method for testing progressiveness for the weakly
monotonic case.

Example 2.20. Figure 2.14 shows the automaton Am built for the automaton
A of Fig. 2.11.

b

a c

x ≤ 4 x > 5

xs > 0
xs := 0

x := 0
xs := 0 x := 0

xs := 0
x ≥ 4 ∧ xs > 0 x > 1 ∧ xs > 0

l0 l1

Am

Fig. 2.14. The automaton Am used to test progressiveness of A in Fig. 2.11 in the
strongly monotonic semantics

�

Further Reading

Timed automata are discussed in [4, 5, 11]. The notion of progressiveness for
timed automata is investigated also in [2, 13,74].

3

From Time Petri Nets to Timed Automata

There are two approaches to verifying properties of time Petri nets. Either
specific algorithms are used, or nets are translated to timed automata in order
to exploit verification methods designed for automata. Usually, the concrete
state spaces of both the models are required to be bisimilar (see [114] or
an explanation on p. 17) which ensures preservation of branching temporal
properties [49]. Therefore, in the further part of the book we first consider
translations from TPNs to TA, and then review the most recent verification
methods for both the formalisms.

Several methods for translating time Petri nets to timed automata have
been already developed. However, in most cases translations produce au-
tomata which extend timed automata. Some of the existing approaches are
sketched below.

3.1 Translations to Extended Timed Automata

Sifakis and Yovine [144] presented a translation of a subclass of time stream
Petri nets [139] to automata whose invariants can be disjunctions of clock
constraints. In these nets, each of the arcs (p, t) is assigned a timing inter-
val which specifies when tokens in the place p become available to fire the
transition t. An enabled transition t can be fired if

(a) all the places in •t have been marked at least as long as the lower bounds
of the corresponding intervals, and

(b) there is at least one place in •t marked no longer than the upper bound
of the corresponding interval. (1-safe) time Petri nets can be seen as a
subclass of these nets.

In order to translate a net N to a timed automaton, we define a location for
each marking of N , and associate a clock with each of its places. The actions
are labelled by the transitions of N . Executing an action labelled by t ∈ T

W. Penczek and A. Pó�lrola: From Time Petri Nets to Timed Automata, Studies in

Computational Intelligence (SCI) 20, 51–62 (2006)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006

52 3 From Time Petri Nets to Timed Automata

resets the clocks of the places in t•, whereas its enabling condition corresponds
to (a) given above. The invariant of a marking m states that (b) holds for each
t ∈ en(m).

Lime and Roux [103] proposed a method of translating a (general1) time
Petri net to a timed automaton, using an algorithm of building a state class
graph G [32] (see Sect. 5.1.1). The nodes of G are state classes, i.e., pairs
(m, I), where m is a marking, and I is a set of inequalities describing timing
constraints under which the transitions of en(m) can be fired. The transla-
tion produces an automaton whose locations are the nodes of G, and the
transitions, labelled by the names of transitions of the net, correspond to its
successor relation (i.e., to the edges of G). Each class (m, I) of G is assigned a
set of clocks, each of which corresponds to all the transitions in en(m) which
became enabled at the same time. The union of all these sets gives the set of
clocks of the automaton. A transition e of the automaton, labelled by a tran-
sition t of the net, and with source(e) = (m, I) and target(e) = (m[t〉, I ′),
resets all these clocks which in (m[t〉, I ′) are associated with the elements of
newly en(m, t). It is also possible to assign a value of one clock to another (this
goes beyond our standard definition of TA). The invariants and the enabling
conditions describe, respectively, when the net can be in a given marking, or
when a transition can be fired at a class. Since the number of state classes is
finite only if the net is bounded [32], a condition for an on-line checking for
unboundedness is provided.

In [52, 77], translations of (general) TPNs to automata equipped with
shared variables and urgency modelling mechanisms are provided. The meth-
od of [52] generates a product of TA obtained from a network containing the
automaton At with one clock for each t ∈ T , and the supervisor automaton
As. The locations of At correspond to the possible states of t (i.e., enabled,
disabled, and being fired). The automaton As with committed locations (i.e.,
locations that have to be left as soon as they are entered) forces the other
automata to change synchronously their states when a transition of the net is
fired. Shared variables are used to model the number of tokens in the places.
In the approach of [77], the transitions are classified according to their num-
ber of input, output, and inhibitor2 places. One automaton with the locations
disabled and enabled is built for each of the classes obtained. Similarly to [52],
an additional automaton (with an urgent transition, i.e., a transition which
has to be taken as soon as it is enabled) ensures a synchronous behaviour of
the whole system when a transition is fired, whereas shared variables store
the marking of the net.

1 This means that there are no restrictions on the functions F , Eft, and Lft of a
TPN.

2 Informally, an inhibitor place is a place in a preset of a transition which, when
marked, can disable the transition. We do not consider time Petri nets extended
with inhibitor places in the book.

3.2 Translation for “Clocks Assigned to the Transitions” 53

Cortés et al. [60] developed a method of translating slightly extended3 1-
safe time Petri nets, where the function Lft takes only finite values (called
PRES+ models) to a set of extended timed automata. When applied to a non-
extended net, the translation produces a network of standard TA augmented
with variables. The translation of a net is a two-stage procedure. In its first
step, an automaton At with one clock is built for each transition t of the net.
The locations of At represent the numbers of places in •t which are marked,
whereas the transition relation corresponds to firing of the transitions of the
net. The clock of At is used to express that t is fired between its earliest and
latest firing time. For storing the markings of the net, the variables correspond-
ing to the places are applied. The second stage of the translation consists in
reducing the number of clocks to improve on efficiency of verification. To this
aim, transitions which cannot be concurrently enabled are grouped together,
and the automata corresponding to each group are replaced by the product
automaton with one clock renaming these of the components. The product of
the system obtained corresponds to the behaviour of the net.

In many cases, the extended automata resulting from the above transla-
tions can be further transformed to standard ones (this can be done, e.g., by
adding extra clocks or automata to model urgency or shared variables). How-
ever, another set of translations from time Petri nets to timed automata results
in obtaining standard automata immediately. These translations correspond
to the semantics of time Petri nets associating clocks with various components
of TPNs. As a result of each of the translations we get one (global) timed au-
tomaton rather than a network of timed automata. However, it is important
to notice that for efficient verification of time Petri nets we do not need to per-
form the translation first, but can use directly the transition relation defined
by the translation [118], or translate the net in parallel with the verification
process, similarly as the product of a network of TA is usually built.

3.2 Translation for “Clocks Assigned to the Transitions”

The first translation [111,163], which besides 1-safe time Petri nets is correct
also for TPNs in which there is a bound on the values of all the reachable
markings4, is defined for the semantics assigning clocks to the transitions of
the net. Let N = (P, T, F,m0, Eft, Lft) be a time Petri net. In order to
translate it into a timed automaton AN = (AN , LN , l0, EN , XN , IN), it is
straightforward to define locations of AN to correspond to the (reachable)
markings of the net. However, since a set of all the reachable markings can be
found only by analysing the behaviour of the net, the translation sets
3 The tokens are considered as pairs (token value, token type) and the remaining

elements of the definition of the net are adapted to this notion.
4 Notice that this can result either from a finite maximal capacity of all the places

assumed, or from boundedness of the net.

54 3 From Time Petri Nets to Timed Automata

LN = AMk
N

with k = 1 if the net is 1-safe, whereas otherwise k is equal to the bound
on the number of tokens in the markings. This means that all the markings
whose values for all the places do not exceed k are taken as the locations. The
initial location is

l0 = m0,

whereas the set of actions is defined as

AN = T,

i.e., the actions of the automaton correspond to the transitions of the net.
The set of clocks is given by

XN = {xt | t ∈ T},

i.e., a new clock is defined for each of the transitions5 of N . An invariant of a
location m ∈ AMN is then given by

IN (m) =

⎧
⎪⎪⎨

⎪⎪⎩

∧
{t∈T |t∈en(m)∧Lft(t)<∞} xt ≤ Lft(t)

if {t ∈ T | t ∈ en(m) ∧ Lft(t) < ∞} �= ∅,

true otherwise.

The set of transitions of AN is defined as

EN = {et,m | t ∈ en(m) ∧ m ∈ AMk
N }.

For a given transition et,m ∈ EN , corresponding to firing a transition t ∈
en(m) at a marking m, the enabling condition is given by

guardN (et,m) = (xt ≥ Eft(t))

(notice that this is sufficient since the invariant for m implies that xt ≤
Lft(t)), and the set of clocks to be reset is

resetN (t,m) = {xu ∈ XN | u ∈ newly en(m, t)}.

The transitions of AN are then of the form et,m := m
t,cc,X−→ m[t〉, where

cc = guardN (et,m) and X = resetN (t,m).
Next, the propositional variables of PVP are defined to correspond to the

places of the net. This allows to define the valuation function VAN : LN −→
2PVP as

5 In the case of nets which are not 1-safe, multiple enabledness of a transition
are treated separately, i.e., as different transitions. This, obviously, increases the
number of clocks.

3.3 Translation for “Clocks Assigned to the Places” 55

VAN (m) =
⋃

{p∈P |m(p)>0}
VN (p).

The concrete models Mc(N) = (CT
c (N), VC) and Mc(AN) = (Cc(AN), V ′

C),
where V ′

C extends VAN as described in Sect. 2.4, are bisimilar [124]. The above
approach was used to define detailed region graphs for TPNs [111,163].

Example 3.1. Consider again the net in Fig. 1.3. It depicts the timed automa-
ton AN , which is the result of the above translation, restricted to the reachable
markings of N . Each of the locations l of AN , corresponding to a marking
m, is annotated by the set of propositions true in l (i.e., by the set of these
elements of PVP which correspond to the places of N whose values of the
function m are non-zero). The initial location is coloured.

�

t2

t1

t2

t3

t5

t1 t4
t4

t6

t6

t5

p7

[1,1]

t5t2

[0,3] [1,2]p6p4 p8

p5

t3

p2

p3

[1,2]

p1

[1,2]

t4t1

t6
[1,2]

xt5 ≤ 2

xt6 ≥ 1
xt6 := 0

xt5 ≥ 1

℘p6 , ℘p7 ℘p7 , ℘p8xt6 := 0
l67 l78

xt6 ≤ 2

xt4 ≥ 1
xt4 ≥ 1℘p2 , ℘p3

xt1 ≤ 2 ∧ xt2 ≤ 3 xt2 ≤ 3

l23

xt1 ≥ 1℘p1 , ℘p2

l12

℘p1 , ℘p4

l14

xt1 ≤ 2

xt3 ≤ 2

℘p3 , ℘p4

xt3 := 0
xt1 ≥ 1

xt3 := 0

xt4 := 0
xt3 ≥ 1 ℘p5 , ℘p6

l34

xt5 := 0 xt4 ≤ 1
∧

xt5 ≤ 2
℘p5 , ℘p8

xt5 ≥ 1
xt6 := 0

l56

l58
xt4 ≤ 1

∧
xt6 ≤ 2

xt6 ≥ 1
xt6 := 0

Fig. 3.1. The timed automaton for the net of Fig. 1.3 resulting from the translation
for “clocks assigned to the transitions”

3.3 Translation for “Clocks Assigned to the Places”

Let N = (P, T, F,m0, Eft, Lft) be a (1-safe) time Petri net. The translation
for the semantics assigning clocks to the places of the net N into a timed
automaton AN = (AN , LN , l0, EN , XN , IN), derived from the approach of
[144], is more involved. Similarly to the previous approach, the locations of
AN correspond to the (reachable) markings of the net, but in this case this
is not a one-to-one correspondence. Since a set of all the reachable markings

56 3 From Time Petri Nets to Timed Automata

can be found only by analysing the behaviour of N , the translation deals with
the set of all the markings of N whose value for any place is not greater than
1 (i.e., with AM1

N) instead. The actions of the automaton correspond to the
transitions of the net, i.e.,

AN = T.

The set of clocks is
XN = {xp | p ∈ P},

i.e., one clock is defined for each of the places of N . The net can stay in the
marking m as long as it satisfies the condition

invN (m) =

⎧
⎪⎪⎨

⎪⎪⎩

∧
{t∈T |t∈en(m)∧Lft(t)<∞}

∨
p∈•t xp ≤ Lft(t)

if {t ∈ T | t ∈ en(m) ∧ Lft(t) < ∞} �= ∅,

true otherwise.

Let [[invN (m)]] denote the set of all the clock valuations satisfying the above
condition. Since invN (m) is not necessarily a clock constraint (due to disjunc-
tion over p ∈ •t), in order to obtain proper invariants of the timed automaton
AN we need to define a finite set Im ⊆ C�

XN
of clock constraints such that⋃

cc∈Im
[[cc]] = [[invN (m)]] and

⋂
cc∈Im

[[cc]] = ∅ (this is obtained by partitioning
[[invN (m)]] into disjoint time zones). Then, we introduce the set

Lm = {mcc | cc ∈ Im}

of locations corresponding to the same marking m, but with different invari-
ants, and the function IN ,m : Lm −→ C�

XN
, given by

IN ,m(mcc) = cc,

which assigns to each element of Lm the corresponding element of Im. Con-
sequently, define

LN =
⋃

m∈AM1
N

Lm

and the function IN : LN −→ C�
XN

whose value for a given location l ∈ LN
corresponding to the marking m is given by

IN (l) = IN ,m(l).

As the initial location we assume such a location l ∈ Lm0 for which (0, . . . , 0) ∈
[[IN (l)]]. The transition relation is obtained in the following way: given a
marking m of N and a transition t ∈ en(m), for each l ∈ Lm and each

l′ ∈ Lm[t〉 we define el,t,l′ = l
t,cc,X−→ l′ ∈ EN , with the enabling condition

cc = guardN (el,t,l′) given by

guardN (el,t,l′) =
∧

p∈•t

xp ≥ Eft(t)

3.3 Translation for “Clocks Assigned to the Places” 57

(notice that this is sufficient, since the invariant for l implies that at least one
of the places in •t has the value of its clock not greater than Lft(t)), and with
the set of clocks to be reset X = resetN (t,m) defined as

resetN (t,m) = {xp ∈ XN | p ∈ t•}.

Then, we define

EN =
⋃

m∈AM1
N

{el,t,l′ | l ∈ Lm ∧ t ∈ en(m) ∧ l′ ∈ Lm[t〉}.

Again, the propositional variables of PVP are defined to correspond to the
places of the net. The valuation function VAN : LN −→ 2PVP is given by

VAN (lm) =
⋃

{p∈P |m(p)>0}
VN (p),

where lm is a location of AN corresponding to a given marking m. The con-
crete models Mc(N) = (CP

c (N), VC) and Mc(AN) = (Cc(AN), V ′
C), where V ′

C

extends VAN as described in Sect. 2.4, are bisimilar [124].

3.3.1 Supplementary Algorithms

The precise definition of AN depends on the algorithm used to construct the
set Im. Many algorithms for this task can be defined. Below, we present two of
them introduced in [124]. The first one computes non-diagonal-free automata,
whereas the second one is tuned to output diagonal free automata only.

Obtaining General TA

Consider a marking m of a time Petri net N and a transition t ∈ en(m).
The set Im is computed in the following way: if for all t ∈ en(m) we have
Lft(t) = ∞, then invN (m) = true, which is already a clock constraint, and
therefore Im = {invN (m)}. Otherwise assume a fixed ordering on the set of
places P of N . For a transition t ∈ {t′ ∈ T | t′ ∈ en(m) ∧ Lft(t′) < ∞},
let pjt

1
, . . . , pjt

kt
be a subsequence of the places of P such that kt = | • t| and

pjt
1
, . . . , pjt

kt
∈ •t. Then, we set

Im = {
∧

t∈en(m) s.t. Lft(t)<∞ cct
i | i ∈ {1, . . . , kt} ∧

cct
i = (xpjt

i

≤ Lft(t) ∧
∧

1≤r<i xpjt
r

≥ xpjt
i

∧
∧

i<r≤kt
xpjt

r
> xpjt

i

)}.

Example 3.2. Consider the net in Fig. 3.2, and assume the lexicographical or-
dering on the set of its places. For the marking m34 with m34(p3) = m34(p4) =
1 and m34(pi) = 0 for i = 1, 2, 5, 6, 7, 8, the set Im34 consists of

cc1 = (0 ≤ xp3 ≤ 2 ∧ xp4 > xp3) and cc2 = (0 ≤ xp4 ≤ 2 ∧ xp3 ≥ xp4).

58 3 From Time Petri Nets to Timed Automata

p7

[1,1]

t5t2

[0,3] [1,2]p6p4 p8

p5

t3

p2

p3

[1,2]

p1

[1,2]

t4t1

t6
[1,2]

2

2

xp3

xp4

Fig. 3.2. Partitioning [[invN (m34)]] into disjoint zones – the algorithm for non-
diagonal-free TA

The zones partitioning invN (m34) = (xp3 ≤ 2 ∨ xp4 ≤ 2), described by the
above constraints, are shown in the right-hand side of Fig. 3.2. The set of
clock valuations satisfying invN (m34) is coloured.

�

Obtaining Diagonal-Free TA

Consider a marking m of a time Petri net N and a transition t ∈ en(m). The
following method is used to define Im such that Im ⊆ CXN (i.e., Im does
not contain clock constraints with differences of clocks). Notice that again
if for all t ∈ en(m) it holds Lft(t) = ∞, then invN (m) = true (i.e., is a
clock constraint), and therefore Im = {invN (m)}. Otherwise assume a fixed
ordering on the set of places P of N . For a transition t ∈ {t′ ∈ T | t′ ∈
en(m) ∧ Lft(t′) < ∞}, let pjt

1
, . . . , pjt

kt
be a subsequence of the places of P

such that kt = | • t| and pjt
1
, . . . , pjt

kt
∈ •t. Then, we set

Im = {
∧

t∈en(m) s.t. Lft(t)<∞ cct
i | i ∈ {1, . . . , kt} ∧

cct
i = (

∧
1≤r<i xpjt

r
> Lft(t) ∧ xpjt

i

≤ Lft(t))}.

Example 3.3. Consider the net in Fig. 3.3, and assume the lexicographical or-
dering on the set of its places. For the marking m34 with m34(p3) = m34(p4) =
1 and m34(pi) = 0 for i = 1, 2, 5, 6, 7, 8, the set Im consists of

cc1 = (xp3 ≤ 2) and cc2 = (xp3 > 2 ∧ xp4 ≤ 2).

p7

[1,1]

t5t2

[0,3] [1,2]p6p4 p8

p5

t3

p2

p3

[1,2]

p1

[1,2]

t4t1

t6
[1,2]

2

2

xp3

xp4

Fig. 3.3. Partitioning [[invN (m34)]] into disjoint zones – the algorithm for diagonal-
free TA

3.4 Translation for Distributed Nets 59

The zones partitioning invN (m34) = (xp3 ≤ 2 ∨ xp4 ≤ 2), described by the
above constraints, are shown in the right-hand side of Fig. 3.3. The set of
clock valuations satisfying invN (m34) is coloured.

�

Example 3.4. Consider again the net N of Fig. 1.3. Fig. 3.4 shows a timed
automaton AN , obtained from N by the translation for the semantics associ-
ating clocks with the places of the net, in which for defining clock constraints
used in the enabling conditions and the invariants the above-described algo-
rithm for diagonal-free TA was applied. The set of markings considered was
restricted to RMN . Similarly to Example 3.1, the locations are annotated with
the sets of propositions true in them (i.e., with the sets of elements of PVP

corresponding to the places of N for which the values of the given marking
are non-zero). The initial location is coloured. Notice that the locations l134
and l234 correspond to the same marking of N , but their invariants differ.

�

t2

t2

t1

t4

t4

t6

t5

t6

t5

t1

t3

t3

t2t1

p7

[1,1]

t5t2

[0,3] [1,2]p6p4 p8

p5

t3

p2

p3

[1,2]

p1

[1,2]

t4t1

t6
[1,2]

xp8 := 0

xp7 := 0

xp6 ≤ 2

xp6 ≥ 1

xp8 ≤ 2
∧

xp5 ≤ 1

∧

∧

xp8 ≤ 2

xp6 ≤ 2

xp3 ≤ 2xp2 ≤ 3

xp3 := 0

l12

l23

xp3 := 0

l23

l56l56

l78

l58

xp5 ≤ 1

xp4 := 0

xp4 := 0

xp5 ≥ 1

xp5 ≥ 1
xp7 := 0

xp8 ≥ 1
xp8 := 0

xp1 ≥ 1

xp1 ≥ 1

xp4 := 0xp3 := 0
xp1 ≥ 1

xp2 ≤ 3
∧

xp1 ≤ 2

xp8 ≥ 1

xp8 := 0

xp6 := 0
xp5 := 0

xp3 ≥ 1 ∧ xp4 ≥ 1

xp5 := 0
xp6 := 0

xp3 ≥ 1 ∧ xp4 ≥ 1

℘p2 , ℘p3

℘p1 , ℘p2

xp1 ≤ 2

l14
℘p3 , ℘p4

℘p3 , ℘p4

l234

l134

℘p5 , ℘p6

℘p5 , ℘p8

xp3 > 2
∧ xp4 ≤ 2

℘p1 , ℘p4

xp6 ≥ 1
xp8 := 0l67

℘p6 , ℘p7 ℘p7 , ℘p8

Fig. 3.4. The timed automaton for the net in Fig. 1.3 resulting from the translation
for “clocks assigned to the places”

3.4 Translation for Distributed Nets

The next translation is applicable only to distributed time Petri nets, and
makes use of the semantics which associates clocks with all their processes.

60 3 From Time Petri Nets to Timed Automata

However, many of its elements are analogous to the translation for the seman-
tics assigning clocks to the places of the net. Due to this, we shall refer to the
latter in the description below.

Let N = (P, T, F,m0, Eft, Lft) be a distributed time Petri net whose
processes are labelled with a finite set of indices I = {i1, . . . , inI

}. For
i ∈ I, let Pi denote the set of places of the process Ni. Similarly to
the previous approaches, we translate N into a timed automaton AN =
(AN , LN , l0, EN , XN , IN). The locations of AN correspond in principle to
the (reachable) markings of the net, but again this is not a one-to-one map-
ping. However, for the same reason as before, instead of reachable markings,
the set AM1

N of all the markings of N with the upper bound on the number
of tokens in the place equal to 1 is considered. The actions of the automaton
correspond to the transitions of the net, i.e.,

AN = T,

whereas the set of clocks is given by

XN = {xi | i ∈ I},

i.e., one clock is defined for each process of the net. The net can stay in the
marking m as long as it satisfies the condition

invN (m) =

⎧
⎪⎪⎨

⎪⎪⎩

∧
{t∈T |t∈en(m)∧Lft(t)<∞}

∨
i∈I s.t. •t∩Pi
=∅ xi ≤ Lft(t)

if {t ∈ T | t ∈ en(m) ∧ Lft(t) < ∞} �= ∅,

true otherwise.

Since invN (m) is not necessarily a clock constraint (due to a disjunction),
in order to define proper invariants for the automaton we need to define a
finite set Im ⊆ C�

XN
of clock constraints such that

⋃
cc∈Im

[[cc]] = [[invN (m)]]
and

⋂
cc∈Im

[[cc]] = ∅, where [[invN (m)]] is the set of all the clock valuations
satisfying invN (m). This is done by partitioning [[invN (m)]] into disjoint time
zones (to this aim, an adaptation of one of the algorithms described in the
previous section can be applied). Then, we define Lm, IN ,m, LN , l0 and IN
analogously to the translation for clocks assigned to the places. Similarly, the
definition of the transition relation EN follows the same pattern as that for
the previous translation, but now the functions guardN and resetN are given
by

guardN (el,t,l′) =
∧

i∈I s.t. •t∩Pi
=∅
xi ≥ Eft(t)

(notice that this is sufficient, since the invariant for l implies that at least one
of the processes which contains a place of •t has the valued of its clock not
greater than Lft(t)), and

resetN (t,m) = {xi ∈ XN | •t ∩ Pi �= ∅}.

3.4 Translation for Distributed Nets 61

Again, the definition of locations allows for introducing the valuation function
VAN : LN −→ 2PVP , with the set PVP defined as in the previous cases, given
by

VAN (lm) =
⋃

{p∈P |m(p)>0}
VN (p),

where lm is a location of AN corresponding to the marking m. Similarly to
the before-described translations, the concrete models Mc(N) = (CN

c (N), VC)
and Mc(AN) = (Cc(AN), V ′

C), where V ′
C extends VAN as described in Sect. 2.4,

are bisimilar [124].

Example 3.5. Consider again the (distributed) net N of Fig. 1.3 consisting
of two processes with the sets of places P1 = {p1, p3, p5, p7} and P2 =
{p2, p4, p6, p8}, indexed by I = {1, 2}. Fig. 3.5 shows a timed automaton
AN , obtained from N by the translation for the semantics associating clocks
with the processes of the net, in which for defining clock constraints used in
enabling conditions and invariants the above-described algorithm for diagonal-
free TA was applied. Similarly to the previous examples, the set of markings
considered was restricted to RMN . The locations are annotated with the sets
of propositions true in them, and the initial location is coloured. Similarly
to the previous example, the locations l134 and l234 correspond to the same
marking of N , but their invariants differ.

�

t2

t3

t6

t5

t6

t4

t5

t4

t1

t1

t1

t3

t2

t2

p7

[1,1]

t5t2

[0,3] [1,2]p6p4 p8

p5

t3

p2

p3

[1,2]

p1

[1,2]

t4t1

t6
[1,2]

x1 ≤ 1

x2 := 0

x1 := 0

l12

l14

l12l12

l23

l58

l78

x2 ≤ 2

x2 := 0

x1 := 0

x2 := 0

x2 ≤ 2

∧

x1 ≤ 1
∧

x2 ≤ 2

x2 := 0

x2 ≤ 2
x2 > 2

∧
x1 ≤ 2

x1 := 0

x1 := 0

x1 := 0
x2 := 0

x2 := 0

x2 ≤ 3 x1 ≤ 2

x1 := 0

x1 ≤ 2

x2 ≤ 3
∧

x1 ≤ 2

x2 ≥ 1

x2 ≥ 1

x1 ≥ 1

x1 ≥ 1

x2 ≥ 1

x2 ≥ 1

x1 := 0
x2 := 0

x1 ≥ 1 ∧ x2 ≥ 1

x1 ≥ 1 ∧ x2 ≥ 1

x2 := 0

x1 ≥ 1

x1 ≥ 1

x2 := 0

x1 ≥ 1

℘p1 , ℘p2

℘p2 , ℘p3

℘p1 , ℘p4

℘p7 , ℘p8

℘p5 , ℘p8

℘p6 , ℘p7

℘p5 , ℘p6

l56

l67

l234
℘p3 , ℘p4

l134
℘p3 , ℘p4

Fig. 3.5. The timed automaton for the net in Fig. 1.3 resulting from the translation
for “clocks assigned to the processes”

62 3 From Time Petri Nets to Timed Automata

3.5 Comparing Expressiveness of TPNs and TA

There are several results known about expressiveness of TPNs versus TA.
First of all, TPNs form a subclass of TA as for each TPN one can construct a
TA such that their state spaces are weak (timed) bisimilar [52,103]. Moreover,
there is a TA for which there is no TPN whose state space is weakly (timed)
bisimilar [29]. Considering weaker equivalences like timed language accep-
tance6, TA and TPNs are equally expressive. In [29], a syntactical subclass of
TA is defined which is equally expressive to TPNs w.r.t. (timed) bisimilarity.

Further Reading

We have not dealt with efficiency of the translations in this chapter, but it
is obviously interesting to compare the sizes of the resulting timed automata.
Partial results concerning this subject are available from [103,124], but a full
comparison, in particular between the classes of translations, have not been
done so far (to our knowledge at least).

Moreover, in this book we do not consider methods for translating timed
automata to time Petri nets. Some descriptions of such techniques can be
found in [29, 78]. Translations between TA and timed-arcs Petri nets are in-
vestigated in [147].

6 This is an equivalence defined via equality of timed words, i.e., sequences of
actions and time delays, generated by timed systems.

4

Main Formalisms
for Expressing Temporal Properties

Properties of timed systems are usually expressed using (timed) temporal
logics. In this chapter our focus is on the logics that are most commonly
used. However, we start with introducing non-temporal logics that are then
extended to (timed) temporal logics.

4.1 Non-temporal Logics

In this section we define propositional logic (PL) and its quantified version
quantified propositional logic1 (QPL), as well as (quantified) separation logic
(Q)SL.

4.1.1 Propositional Logic (PL)

Propositional logic (PL) is briefly recapitulated for two reasons. Firstly, all
logics that are discussed are extensions of propositional logic. Secondly, the
model checking problem for the discussed temporal logics will be translated
to the satisfiability problem of propositional formulas.

Propositional logic formalises reasoning with not, and, and or about the
state (world) at the level of propositions, i.e., atomic assertions that can be
true or false. The definition of the language consists of two parts. The syntax
fixes the set of formulas, whereas the semantics provides the meaning for each
formula.

Syntax of PL

Formal names for propositions and symbols for not, and, and or are provided.
Inductive rules enable to form expressions using these symbols.

The language contains as symbols:
1 This logic is known also as quantified boolean logic (QBL) or quantified boolean

formulas (QBF).

W. Penczek and A. Pó�lrola: Main Formalisms for Expressing Temporal Properties, Studies in

Computational Intelligence (SCI) 20, 63–85 (2006)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006

64 4 Main Formalisms for Expressing Temporal Properties

• a countable set of propositional variables PV = {℘1, ℘2, . . .};
• logical connectives: ¬ (logical not), ∧ (logical and), and ∨ (logical or);
• auxiliary symbols: (and) (the brackets).

The set of formulas is defined inductively as follows:

ϕ := ℘ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ,

where ℘ ∈ PV .
Where no confusion is likely, parentheses are omitted. Derived connectives
are:

ϕ ⇒ ψ
def
= ¬ϕ ∨ ψ (logical “if ... then”);

ϕ ⇐⇒ ψ
def
= (ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ) (logical “if and only if”).

Semantics of PL

The situation in the state, i.e., the semantics of the propositional variables, is
modelled as the truth values of the propositional variables. As only one state
is considered, this state is not mentioned explicitly in the semantics.

Definition 4.1. A model for PL is a valuation function

V : PV −→ {true, false}

from the set of propositional variables to the set containing the logical values
true and false.

The reasoning with not, and, and or, i.e., the semantics of ¬, ∧, and ∨ is given
as how the truth of a formula follows from the interpretation of the logical
connectives.

A formula ϕ holds in a model V (denoted V |= ϕ) is defined inductively:

V |= ℘ iff V (℘) = true, for ℘ ∈ PV
V |= ¬ϕ iff not (V |= ϕ) (denoted as V �|= ϕ),
V |= ϕ ∧ ψ iff V |= ϕ and V |= ψ,
V |= ϕ ∨ ψ iff V |= ϕ or V |= ψ.

A formula ϕ is valid if it holds in all the models (denoted |= ϕ). A formula ϕ
is satisfiable if it holds in some model.

Example 4.2. Interpreting the formulas in the example with all the possible
combinations of truth values immediately yields the following results:

i) ℘1 ∨ ¬℘1 is valid.
ii) ℘1 ∧ ℘2 is satisfiable.
iii) ℘1 ∧ ¬℘1 is not satisfiable.

�

4.1 Non-temporal Logics 65

4.1.2 Quantified Propositional Logic (QPL)

In order to have a more succinct notation for complex operations on proposi-
tional formulas, we introduce quantified propositional logic (QPL), an exten-
sion of propositional logic by means of quantifiers ranging over propositions.

Syntax of QPL

The syntax of QPL is defined as follows:

ϕ := ℘ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃℘.ϕ | ∀℘.ϕ,

where ℘ ∈ PV .

Semantics of QPL

A model V and the semantics of the formulas without quantifiers is defined
like for PL. The semantics of the quantified formulas is given below:

V |= ∃℘.ϕ iff V [℘ ← true] |= ϕ or V [℘ ← false] |= ϕ,
V |= ∀℘.ϕ iff V [℘ ← true] |= ϕ and V [℘ ← false] |= ϕ,

where ϕ ∈ QPL, ℘ ∈ PV , and V [℘ ← b] denotes the model V ′ which is like
V except for the value of ℘ equal to b, for b ∈ {true, false}.

4.1.3 (Quantified) Separation Logic ((Q)SL)

Separation logic (SL), known also as difference logic, is a quantifier-free frag-
ment of first-order logic. An SL formula is a boolean combination of proposi-
tional variables and clock constraints2, defined in Sect. 2, involving real-valued
variables (clocks) from the set X .

Syntax of (Q)SL

Syntax of SL is as follows:

ϕ := ℘ | xi ∼ c | xi − xj ∼ c | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ,

where ℘ ∈ PV , xi, xj ∈ X , c ∈ IN, and ∼ ∈ {≤, <,=, >, ≥}.

In some cases (an example can be found in Sect. 7.4.1) the so-called >-
normalised SL formulas are more convenient than these generated by the
grammar presented above. Notice that the formulas of the form xi ∼ c and
xi − xj ∼ c are atomic clock constraints of C�

X , defined in Chap. 2. Thus,

2 The clock constraints are called also separation predicates.

66 4 Main Formalisms for Expressing Temporal Properties

it is possible to augment the set X by an additional clock x0 �∈ X , and to
replace the atomic clock constraints of the form above by the normalised clock
constraints of C�

X+ as shown in Sect. 2.1. In order to obtain >-normalised SL
formulas, each inequality xi −xj < c (xi −xj ≤ c) with xi, xj ∈ X + and c ∈ ZZ
is rewritten as xj > xi − c (xj ≥ xi − c, respectively). Thus, all the separation
predicates in these formulas are of the form xi ∼ xj + c, where xi, xj ∈ X +,
∼ ∈ {>, ≥} and c ∈ ZZ.

Quantified Separation Logic (QSL) is an extension of SL and QPL, where
quantification over both propositional and real-valued clock variables is al-
lowed.

Semantics of (Q)SL

A model for (Q)SL is defined as an ordered pair

(V, v)

consisting of two valuation functions, one for the propositions (V : PV −→
{true, false}) and one for the real-valued variables (v : X −→ IR). Note that
the values of X here are from the set of all the real numbers, whereas in some
applications, especially when we interpret real-valued variables as clocks, their
values can be restricted to non-negative reals. The semantics of the formulas
without real-valued quantifiers is like for QPL and the clock constraints. The
semantics of the real-valued quantified formulas is given below:

(V, v) |= ∃x.ϕ iff there is y ∈ IR such that (V, v[x ← y]) |= ϕ,
(V, v) |= ∀x.ϕ iff for all y ∈ IR (V, v[x ← y]) |= ϕ,

where ϕ ∈ QSL, x ∈ X , and v[x ← y] denotes the valuation v′ which is like v
except for the value of x equal to y.

In the following section we consider untimed formalisms, which are later
extended with time constraints.

4.2 Untimed Temporal Logics

All the untimed logics we consider are subsets of CTL∗ or modal µ-calculus.
In fact, CTL∗ can be considered as a subset of modal µ-calculus, but for
simplicity we give semantics for both the logics. We begin with syntax and
semantics of CTL∗. Next, we define other logics as its restrictions and finally
present modal µ-calculus.

4.2 Untimed Temporal Logics 67

4.2.1 Computation Tree Logic* (CTL∗)

Syntax of CTL∗

Let PV = {℘1, ℘2 . . .} be a set of propositional variables. The language of
CTL∗ is given as the set of all the state formulas ϕs (interpreted at states of
a model), defined using path formulas ϕp (interpreted at paths of a model),
by the following grammar:

ϕs := ℘ | ¬ϕs | ϕs ∧ ϕs | ϕs ∨ ϕs | Aϕp | Eϕp

ϕp := ϕs | ϕp ∧ ϕp | ϕp ∨ ϕp | Xϕp | ϕpUϕp | ϕpRϕp .

In the above ℘ ∈ PV , A (’for All paths’) and E (’there Exists a path’) are
path quantifiers, whereas X (’neXt’), U (’Until’), and R (’Release’) are state
operators. Intuitively, the formula Xϕp specifies that ϕp holds in the next state
of the path, whereas ϕpUψp expresses that ψp eventually occurs and that ϕp

holds continuously until then. The operator R is dual to U. So, the formula
ϕpRψp says that either ψp holds always or it is released when ϕp eventually
occurs. Derived boolean and path operators are defined as follows:

ϕp ⇒ ψp
def
= ¬ϕp ∨ ψp,

ϕp ⇐⇒ ψp
def
= (ϕp ⇒ ψp) ∧ (ψp ⇒ ϕp),

Gϕp
def
= falseRϕp , and

Fϕp
def
= trueUϕp , where

true
def
= ℘ ∨ ¬℘, and

false
def
= ℘ ∧ ¬℘, for an arbitrary ℘ ∈ PV.

Intuitively, the formula Fϕp specifies that ϕp occurs in some state of the path
(’Finally’), whereas Gϕp expresses that ϕp holds in all the states of the path
(’Globally’).

It is important to mention that the restriction of the language of CTL∗

such that the negation is applied to propositions only3 does not change its
expressiveness.

Let ϕ be a state- or path formula of CTL∗. By PV (ϕ) we mean a set of
all the propositions occurring in ϕ.

Sublogics of CTL∗

In this section we consider restrictions of CTL∗ resulting in either branching-
time logics or linear-time logic. The distinction between branching and linear
time consists in how the logic handles branching in the underlying computa-
tion tree. In branching-time temporal logic the path quantifiers are used to

3 This is called a positive normal form of CTL∗.

68 4 Main Formalisms for Expressing Temporal Properties

quantify over the paths starting from a given state. In linear-time temporal
logic, the modalities quantify over states of a single path.

ACTL∗ (Universal CTL∗): the syntax of state formulas is restricted such that
negation can be applied to propositions only, and the existential quantifier
is not allowed. This is given by the following grammar:

ϕs := ℘ | ¬℘ | ϕs ∧ ϕs | ϕs ∨ ϕs | Aϕp

ϕp := ϕs | ϕp ∧ ϕp | ϕp ∨ ϕp | Xϕp | ϕpUϕp | ϕpRϕp .

ECTL∗ (Existential CTL∗): the syntax of state formulas is restricted such
that negation can be applied to propositions only, and the universal quan-
tifier is not allowed. This is given by the following grammar:

ϕs := ℘ | ¬℘ | ϕs ∧ ϕs | ϕs ∨ ϕs | Eϕp

ϕp := ϕs | ϕp ∧ ϕp | ϕp ∨ ϕp | Xϕp | ϕpUϕp | ϕpRϕp .

CTL (Computation Tree Logic): the syntax of path formulas is restricted such
that each of state operators must be preceded by a path quantifier, which
is given by the following grammar:

ϕs := ℘ | ¬ϕs | ϕs ∧ ϕs | ϕs ∨ ϕs | Aϕp | Eϕp

ϕp := Xϕs | ϕsUϕs | ϕsRϕs .

Notice that each temporal CTL formula is a boolean combination of
A(ϕUψ),A(ϕRψ), AXϕ, and E(ϕUψ), E(ϕRψ), EXϕ only. Moreover, a
restriction of the language of CTL, such that negation is applied to propo-
sitions only, does not change its expressiveness.

ACTL (Universal Computation Tree Logic): the temporal formulas of CTL
are restricted to positive boolean combinations of A(ϕUψ),A(ϕRψ), and
AXϕ only. Negation can be applied to propositions only.

ECTL (Existential Computation Tree Logic): the temporal formulas of CTL
are restricted to positive boolean combinations of E(ϕUψ),E(ϕRψ), and
EXϕ only. Negation can be applied to propositions only.

LTL (Linear-Time Temporal Logic): the formulas of the form Aϕp are al-
lowed only, where ϕp is a path formula which does not contain the path
quantifiers A,E. More precisely, the LTL path formulas are defined by the
following grammar:

ϕp := ℘ | ¬ϕp | ϕp ∧ ϕp | ϕp ∨ ϕp | Xϕp | ϕpUϕp | ϕpRϕp .

L−X denotes the logic L without the next-step operator X.

For example, AFG(℘1 ∨ ℘2) is an LTL formula, whereas AFAG(℘1 ∨ ℘2) is an
ACTL formula. Each of the above logics can be extended by time constraints
(defined later).

4.2 Untimed Temporal Logics 69

For a CTL formula ϕ we will use a notion of the length (or size) of ϕ, denoted
|ϕ|, which is defined inductively as follows:

• if ϕ = ℘ where ℘ ∈ PV , then |ϕ| = 1,
• if ϕ = ¬ϕ′, then |ϕ| = |ϕ′| + 1,
• if ϕ = ϕ′ ∨ ϕ′′ or ϕ = ϕ′ ∧ ϕ′′, then |ϕ| = |ϕ′| + |ϕ′′| + 1,
• if ϕ ∈ {EGϕ′,AGϕ′,EFϕ′,AFϕ′,EXϕ′,AXϕ′}, then |ϕ| = |ϕ′| + 1,
• if ϕ ∈ {E(ϕ′Uϕ′′),E(ϕ′Rϕ′′),A(ϕ′Uϕ′′),A(ϕ′Rϕ′′)}, then |ϕ| = |ϕ′| +

|ϕ′′| + 1.

Example 4.3. Consider the CTL formula ϕ = E(℘1U(EG℘2)). Then, we have
|ϕ| = 4.

�

Moreover, for a CTL formula in a positive normal form we will need a notion
of a set of the subformulas to be used in automata-theoretic model checking
in Sect. 6.1.2. So, let ϕ be a CTL formula in a positive normal form. The set
SF (ϕ) of the subformulas of ϕ is defined inductively as follows:

• if ϕ = ℘ where ℘ ∈ PV , then SF (ϕ) = {℘},
• if ϕ = ¬℘, then SF (ϕ) = {℘, ¬℘},
• if ϕ = ϕ′ ∨ ϕ′′ or ϕ = ϕ′ ∧ ϕ′′, then SF (ϕ) = SF (ϕ′) ∪ SF (ϕ′′) ∪ {ϕ},
• if ϕ = EXϕ′ or ϕ = AXϕ′, then SF (ϕ) = SF (ϕ′) ∪ {ϕ},
• if ϕ = E(ϕ′Uϕ′′) or ϕ = A(ϕ′Uϕ′′), then SF (ϕ) = SF (ϕ′)∪SF (ϕ′′)∪{ϕ},
• if ϕ = E(ϕ′Rϕ′′) or ϕ = A(ϕ′Rϕ′′), then SF (ϕ) = SF (ϕ′)∪SF (ϕ′′)∪{ϕ}.

Example 4.4. Consider the CTL formula ϕ = E(℘1U(EX℘2)). Then, SF (ϕ) =
{℘1, ℘2,EX℘2,E(℘1U(EX℘2))}. Notice that ℘1U(EX℘2) and X℘2 are not sub-
formulas of ϕ, since they do not belong to the language of CTL. Moreover,
we have |ϕ| = 4.

�

Semantics of CTL∗

Semantics of CTL∗ uses standard Kripke models as defined below.

Definition 4.5. A model is a tuple

M = ((S, s0, →), V),

where

• S is a set of states
• s0 ∈ S is the initial state,
• → ⊆ S × S is a total successor relation4, and

4 Totality means that (∀s ∈ S)(∃s′ ∈ S) s→s′. Sometimes a total relation is called
serial.

70 4 Main Formalisms for Expressing Temporal Properties

• V : S −→ 2PV is a valuation function.

Given a model M = ((S, s0, →), V), by |S| and |→| we denote, respectively,
the number of states of S and the number of transitions of M . The size of the
model M , denoted |M |, is given by |S| + |→|.

For s0 ∈ S a path
π = (s0, s1, . . .)

is an infinite sequence of states in S starting at s0, where si→si+1 for all
i ≥ 0, and

πi = (si, si+1, . . .)

is the i-th suffix of π.
Given a model M , a state s, and a path π of M , by M, s |= ϕ (M,π |= ϕ)

we mean that ϕ holds in the state s (along the path π, respectively) of the
model M . However, in what follows the model is sometimes omitted if it is
clear from the context. The relation |= is defined inductively below.

M, s |= ℘ iff ℘ ∈ V (s), for ℘ ∈ PV,
M, s |= ¬ϕ iff M, s �|= ϕ,
M, x |= ϕ ∧ ψ iff M,x |= ϕ and M,x |= ψ, for x ∈ {s, π},

M, x |= ϕ ∨ ψ iff M,x |= ϕ or M,x |= ψ, for x ∈ {s, π},
M, s |= Aϕ iff M,π |= ϕ for each path π starting at s,
M, s |= Eϕ iff M,π |= ϕ for some path π starting at s,
M, π |= ϕ iff M, s0 |= ϕ, for a state formula ϕ,
M, π |= Xϕ iff M,π1 |= ϕ,
M, π |= ϕUψ iff (∃j ≥ 0)

(
M,πj |= ψ and (∀0 ≤ i < j) M,πi |= ϕ

)
,

M, π |= ϕRψ iff (∀j ≥ 0)
(
M,πj |= ψ or (∃0 ≤ i < j) M,πi |= ϕ

)
.

. . .

s

s |= AXϕ

. . .
s |= A(ϕUψ)

s

. . .

s

s |= A(ϕRψ)

. . .

s

s |= EFϕ

. . .

s

s |= EG(ϕ ∨ ψ)

. . .

s

s |= EXXϕ

ϕ ∧ ψ

¬ϕ ∧ ¬ψ

ϕ

ψ

Fig. 4.1. Examples of CTL∗ formulas which hold in the state s of the model

4.2 Untimed Temporal Logics 71

We adopt the initialised notion of validity in a model:

M |= ϕ iff M, s0 |= ϕ,

where s0 is the initial state of M . Some examples of CTL∗ formulas holding
in the state s of a given model are presented in Fig. 4.1.

Notice that LTL and CTL are of not comparable expressive power. The
LTL formula AFG℘ does not have a counterpart in CTL, whereas the CTL
formula AG(EF℘) is not expressible in LTL. Moreover, the CTL∗ formula
AFG℘ ∨ AG(EF℘) does not have a counterpart in either LTL or CTL. The
relations between sublogics of CTL∗ are depicted in Fig. 4.2. An arrow from
a logic L1 to L2 means that L2 is less expressive than L1, whereas the logics
of the diagram that are not connected with arrows are incomparable.

CTL∗

CTL ACTL∗

ACTL LTL

Fig. 4.2. Relations between sublogics of CTL∗

When discussing CTL model checking, the following equivalences are used:

• A(ϕUψ) ≡ ¬(E(¬ψU(¬ϕ ∧ ¬ψ)) ∨ EG(¬ψ)),
• A(ϕRψ) ≡ ¬E(¬ϕU¬ψ),
• E(ϕRψ) ≡ ¬A(¬ϕU¬ψ).

4.2.2 Modal µ-Calculus

Propositional modal µ-calculus Lµ was introduced by D. Kozen [95]. In this
section we define syntax and semantics of Lµ.

Syntax of Modal µ-Calculus

Let PV be a set of propositional variables and FV be a set of fixed-point
variables. The language of modal µ-calculus Lµ is defined by the following
grammar:

ϕ := ℘ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | AXϕ | EXϕ | Z | µZ.ϕ(Z) | νZ.ϕ(Z),

where ℘ ranges over PV , Z – over FV , and ϕ(Z) is a modal µ-calculus formula
syntactically monotone in the fixed-point variable Z, i.e., all free occurrences
of Z in ϕ(Z) fall under an even number of negations.

72 4 Main Formalisms for Expressing Temporal Properties

Semantics of Modal µ-Calculus

Let
M = ((S, s0, →), V)

be a model as given in Definition 4.5. Notice that the set 2S of all subsets of S
forms a lattice under the set inclusion ordering. Each element S′ of the lattice
can also be thought of as a predicate on S, where this predicate is viewed as
being true for exactly the states in S′. The least element in the lattice is the
empty set, which we also refer to as false, and the greatest element in the
lattice is the set S, which we sometimes write as true. A function ζ mapping
2S to 2S is called a predicate transformer. A set S′ ⊆ S is a fixed point of a
function ζ : 2S −→ 2S if

ζ(S′) = S′.

Whenever ζ is monotonic, i.e., S1 ⊆ S2 implies ζ(S1) ⊆ ζ(S2), where
S1, S2 ⊆ S, it has the least fixed point denoted µZ.ζ(Z) and the greatest fixed
point denoted νZ.ζ(Z). When ζ(Z) is also

⋃
-continuous, i.e., S1 ⊆ S2 ⊆ . . .

implies ζ(
⋃

i≥0 Si) =
⋃

i≥0 ζ(Si), then

µZ.ζ(Z) =
⋃

i≥0

ζi(false).

When ζ(Z) is also
⋂

-continuous, i.e., S1 ⊇ S2 ⊇ . . . implies ζ(
⋂

i≥0 Si) =⋂
i≥0 ζ(Si), then

νZ.ζ(Z) =
⋂

i≥0

ζi(true)

(see [155]).

The semantics of Lµ is given inductively for each formula ϕ of Lµ, a
model M , a valuation E : FV −→ 2S of the fixed-point variables (called an
environment), and a state s ∈ S:

M, E , s |= ℘ iff ℘ ∈ V (s), for ℘ ∈ PV,
M, E , s |= ¬ϕ iff M, E , s �|= ϕ,
M, E , s |= ϕ ∧ ψ iff M, E , s |= ϕ and M, E , s |= ψ,
M, E , s |= ϕ ∨ ψ iff M, E , s |= ϕ or M, E , s |= ψ,
M, E , s |= AXϕ iff (∀s′ ∈ S)((s→s′) ⇒ (M, E , s′ |= ϕ)),
M, E , s |= EXϕ iff (∃s′ ∈ S)((s→s′) ∧ M, E , s′ |= ϕ),
M, E , s |= Z iff s ∈ E(Z), for Z ∈ FV ,
M, E , s |= µZ.ϕ(Z) iff s ∈

⋂
{U ⊆ S |

{s′ ∈ S | M, E [Z ← U], s′ |= ϕ} ⊆ U},
M, E , s |= νZ.ϕ(Z) iff s ∈

⋃
{U ⊆ S |

U ⊆ {s′ ∈ S | M, E [Z ← U], s′ |= ϕ}},

where ϕ,ψ ∈ Lµ, and E [Z ← U] is like E except that it maps Z to U . Similarly
as before we adopt the initialised notion of validity, i.e.,

4.2 Untimed Temporal Logics 73

M |= ϕ iff M, E , s0 |= ϕ

for each environment E .

It is known that both CTL and CTL∗ can be translated into modal µ-calculus
[95]. For example, we give characterisations of basic CTL modalities in terms
of modal µ-calculus formulas:

• A(ϕUψ) ≡ µZ.(ψ ∨ (ϕ ∧ AXZ)),
• E(ϕUψ) ≡ µZ.(ψ ∨ (ϕ ∧ EXZ)),
• AGϕ ≡ νZ.(ϕ ∧ AXZ),
• EGϕ ≡ νZ.(ϕ ∧ EXZ).

The translation of CTL∗ to modal µ-calculus is more involved and can be
found in [70]. It is worth noticing that the translations are important in prac-
tice because correctness specifications written in logics such as CTL or CTL∗

are often much more readable than specifications written directly in modal
µ-calculus.

Example 4.6. Consider the formula ϕ = E(℘1U℘2), and the set of concrete
states together with the successor relation, shown in Fig. 4.3(a). Different
colours denote valuations of the states as shown in the upper part of the
figure.

The formula ϕ can be expressed as ϕ′ = µZ.℘2 ∨ (℘1 ∧ EXZ). It is easy to
prove that ζ(Z) = ℘2 ∨ (℘1 ∧EXZ) is monotonic: given S1 ⊆ S2 ⊆ S, we shall
show that ζ(S1) ⊆ ζ(S2). Consider a state s ∈ ζ(S1), from the semantics we
have that s |= ℘2, or s |= ℘1 ∧ (∃s′ ∈ S) (s→s′ ∧ s′ ∈ S1). As S1 ⊆ S2, we
have that s′ ∈ S2. Thus, s ∈ ζ(S2) and ζ is monotonic. Since S is finite, ζ is
also

⋃
-continuous (see [57]), and therefore the least fixed point for ζ(Z) can

be computed as
⋃

i≥0 ζi(false).

℘1 ℘2

s0 s0 s0 s0

ζ0(false) ζ1(false) ζ2(false) ζ3(false)
(a) (b) (c) (d)

Fig. 4.3. A sequence of approximations for computing E(℘1U℘2)

Parts (a)-(d) of the figure illustrate the process of approximating the set
of states of S satisfying the formula ϕ. The states marked by the grey squares
belong to ζi(false) for i = 0, . . . , 3. Notice that in part (a) no states are

74 4 Main Formalisms for Expressing Temporal Properties

marked, since ζ0(false) = false (the empty set; ζ0(·) is an identity). In the
next step we compute ζ1(false), which returns the set of states satisfying ℘2∨
(℘1 ∧ EXfalse). Thus, in part (b) all the states at which ℘2 holds are marked
with squares. The next approximation follows from ζ2(false) = ζ(ζ(false)) =
℘2 ∨ (℘1 ∧ EXζ(false)), and therefore in (c) we mark the states which either
satisfy ℘2, or satisfy ℘1 and have a successor which belongs to ζ(false) (i.e.,
satisfies ℘2). ζ3(false) is computed in a similar way. The sets ζi(false) for
i ≥ 3 coincide, so

⋃
i≥0 ζi(false) = ζ3(false).

�

4.2.3 Interpretation of Temporal Logics over Timed Systems
Models

For timed systems, untimed temporal logics are typically interpreted over
concrete (or abstract) models, where the paths are defined to correspond to
either weakly or strongly monotonic runs. In both the cases, we can deal with
either a dense or a discrete semantics. When necessary logics are restricted
not to use the next-step operator.

The model checking problem for CTL∗ or modal µ-calculus over timed
systems is defined as follows: given a CTL∗ (modal µ-calculus) formula ϕ
and a timed system T (i.e., a TPN N or a TA A) together with a valuation
function VT , determine whether Mc(T) |= ϕ for a selected concrete model
Mc(T).

It is known that most of the untimed properties of systems can be ex-
pressed in CTL∗, but there are several interesting properties which can be
formulated also in CTL:

• EF(℘1 ∧ ¬℘2) – it is possible to reach a state where ℘1 holds but ℘2 does
not hold.
One can think of ℘1, ℘2 as expressing for example start, readiness of a
system.

• AG(℘1 ⇒ AF℘2) – always when ℘1 holds, ℘2 will eventually hold.
One can think of ℘1, ℘2 as expressing for example request, granted of a
resource of a system.

• AG(AF℘1) - ℘1 holds infinitely often on each path.
One can think of ℘1 as expressing for example enabledness of a system
action.

• AG(EF℘1) – it is always possible to reach a state satisfying ℘1.
One can think of ℘1 as expressing for example restart of a system.

Besides untimed properties of timed systems, which are directly expressed
using the above-defined temporal logics, reachability in these systems is usually
checked. Given a propositional formula p, the reachability problem for a timed
system T consists in testing whether there is a reachable state satisfying p in
a selected concrete model Mc(T). This problem can be obviously translated

4.3 Timed Temporal Logics 75

to the model checking problem for the CTL formula EFp. However, in spite of
that, several efficient solutions, aimed at reachability checking only, exist as
well (see Sect. 5.2.3). Recall that the timed systems considered in this book
are restricted to these, whose runs starting at the initial states are progressive.
However, it is also reasonable to check reachability for systems which do not
satisfy that property.

Example 4.7. Consider first Fischer’s mutual exclusion example of Fig. 2.4.
The most interesting property of this system is mutual exclusion, specified by
the formula AG(¬(critical1∧critical2)). One could also verify that the system
does not satisfy the property guaranteeing each process to eventually enter the
critical section from its waiting section, which is expressed by AG(waiting1 ⇒
AFcritical1). But, clearly, a weaker property saying that entering the critical
section from the waiting section is possible AG(waiting1 ⇒ EFcritical1)
holds.

Consider now Train, Gate and Controller example of Fig. 2.6. This system
guarantees that if the gate is down, then it will eventually be moved back up
AG(down ⇒ AFup).

�

4.3 Timed Temporal Logics

Timed temporal logics can be interpreted over either discrete5 or dense models
of time [18]. We consider the latter option. Since the model checking problem
for TCTL∗ is undecidable [6], we focus on TCTL [7] and its subsets: TACTL
and TECTL, defined analogously to the corresponding fragments of CTL.
Next, we discuss timed µ-calculus [84], an extension of TCTL, for which the
model checking problem is still decidable.

4.3.1 Timed Computation Tree Logic (TCTL)

Syntax of TCTL

The logic TCTL is an extension of CTL−X obtained by subscribing the modal-
ities with time intervals specifying time restrictions on formulas.

Formally, syntax of TCTL is defined inductively by the following grammar:

ϕ := ℘ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | A(ϕUIϕ) | E(ϕUIϕ) | A(ϕRIϕ) | E(ϕRIϕ),

where ℘ ∈ PV and I is an interval in IR0+ with integer bounds of the form
[n, n′], [n, n′), (n, n′], (n, n′), (n, ∞), and [n, ∞), for n, n′ ∈ IN. The derived
boolean and temporal operators are defined like for CTL in Sect. 4.2.1.

For example, A(false R[0,∞)(℘1 ⇒ A(true U[0,5] ℘2))) expresses that for
all the runs, always when ℘1 holds, ℘2 holds within 5 units of time.
5 In a discrete model of time, it is assumed that the flow of time is not continuous.

76 4 Main Formalisms for Expressing Temporal Properties

Semantics of TCTL over Timed Systems

Let T be a timed system, i.e., either a TPN N or a TA A, and let

Mc(T) = (Cc(T), VC),

where Cc(T) = (S, s0, →c) and the relation →c is labelled by the elements of a
set B∪IR0+ (where B = T for time Petri nets and B = A for timed automata),
be its concrete dense model defined for a semantics in which concrete states
are described by valuations of clocks6. The semantics of TCTL over timed
systems can be defined in two ways, depending on the underlying definition
of the run. Below, we provide both the definitions. We start with the strongly
monotonic interval semantics.

Strongly Monotonic Interval Semantics

Let ρ = s0
δ0→c s0 + δ0

b0→c s1
δ1→c s1 + δ1

b1→c s2
δ2→c . . ., where s0 ∈ Reach+

T ,
δi ∈ IR0+ and bi ∈ B for i ∈ IN, be an s0-run of T such that ρ ∈ f+

T (s0). Recall
that for a concrete state s ∈ Reach+

T , the set f+
T (s) contains all the progressive

strongly monotonic runs of T starting at s. Notice that this implies that in ρ
we have δi > 0 for each i ∈ IN. In order to interpret TCTL formulas along a
run, we introduce the notion of a dense path corresponding to ρ, denoted by
πρ, which is a mapping from IR0+ to a set of states7, given by

πρ(r) = si + δ

for r = Σi−1
j=0 δj + δ, with i ≥ 0 and 0 ≤ δ < δi.

Example 4.8. Consider a run ρ = s0
1→c s0+1 b0→c s1

0.5→c s1+0.5 b1→c s1
2→c

We have, e.g., πρ(0) = s0, πρ(0.99) = s0 + 0.99, πρ(1) = s1 etc. Notice that
after passing r = Σi

j=0δj units of time πρ(r) corresponds to the state si+1

obtained by executing bi at the state si + δi, whereas the state si + δi is not
represented at the path.

�

Next, for s0 ∈ Reach+
T we define semantics of TCTL formulas in the

following way:

Mc(T), s0 |= ℘ iff ℘ ∈ VC(s0), for ℘ ∈ PV,
Mc(T), s0 |= ¬ϕ iff Mc(T), s0 �|= ϕ,
Mc(T), s0 |= ϕ ∧ ψ iff Mc(T), s0 |= ϕ and Mc(T), s0 |= ψ,
Mc(T), s0 |= ϕ ∨ ψ iff Mc(T), s0 |= ϕ or Mc(T), s0 |= ψ,

6 This excludes the firing interval semantics for time Petri nets.
7 This can be defined thanks to the assumption about δ > 0.

4.3 Timed Temporal Logics 77

Mc(T), s0 |= A(ϕUIψ) iff (∀ ρ ∈ f+
T (s0))(∃r ∈ I)[

Mc(T), πρ(r) |= ψ ∧
(∀r′ < r) Mc(T), πρ(r′) |= ϕ

]
,

Mc(T), s0 |= E(ϕUIψ) iff (∃ ρ ∈ f+
T (s0))(∃r ∈ I)[

Mc(T), πρ(r) |= ψ ∧
(∀r′ < r) Mc(T), πρ(r′) |= ϕ

]
,

Mc(T), s0 |= A(ϕRIψ) iff (∀ ρ ∈ f+
T (s0))(∀r ∈ I)[

Mc(T), πρ(r) |= ψ ∨
(∃r′ < r) Mc(T), πρ(r′) |= ϕ

]
,

Mc(T), s0 |= E(ϕRIψ) iff (∃ ρ ∈ f+
T (s0))(∀r ∈ I)[

Mc(T), πρ(r) |= ψ ∨
(∃r′ < r) Mc(T), πρ(r′) |= ϕ

]
.

Again, we adopt the initialised notion of validity in a model:

Mc(T) |= ϕ iff Mc(T), s0 |= ϕ,

where s0 is the initial state in Mc(T). Some examples of TCTL formulas
holding in a (reachable) state s0 of the given model are presented in Fig. 4.4.

time31 20

ψϕ

[2, 3]

s0 |= E(ϕU[2,3]ψ)
s0 s0

time31 20

ψ ∧ ϕ

[2, 3]

ψs0s0
s0 |= E(ϕR[2,3]ψ)

time31 20 [2, 3]

ψs0s0
s0 |= E(ϕR[2,3]ψ)

Fig. 4.4. Examples of TCTL formulas which hold in the state s0 of the model

It is important to mention that there is an alternative semantics for sublog-
ics of CTL−X, which can be interpreted over dense models by assuming that
the semantics of each untimed modality O is like the semantics of the cor-
responding TCTL modality O[0,∞). The model checking problem for TCTL
over a timed system T is defined as usual, i.e., given a TCTL formula ϕ and

78 4 Main Formalisms for Expressing Temporal Properties

a timed system together with a valuation function VT , determine whether
Mc(T) |= ϕ.

Weakly Monotonic Interval Semantics

An alternative semantics of TCTL over timed systems, called weakly monotonic
interval one, is defined over weakly monotonic runs. Let ρ = s0

δ0→c s0 +δ0
b0→c

s1
δ1→ s1 + δ1

b1→c s2
δ2→ . . . be an s0-run of T , where s0 ∈ S, δi ∈ IR0+ and

bi ∈ B for i ∈ IN. Recall that for a concrete state s ∈ S, the set of all the
progressive runs of T starting at s is now denoted by fT (s). Given a run
ρ ∈ fT (s), i ∈ IN and δ ∈ IR0+, let

r(i, δ) = Σj<iδj + δ.

In this case, we interpret formulas of TCTL along the runs of T in the following
way:

Mc(T), s0 |= ℘ iff ℘ ∈ VC(s0), for ℘ ∈ PV,
Mc(T), s0 |= ¬ϕ iff Mc(T), s0 �|= ϕ,
Mc(T), s0 |= ϕ ∧ ψ iff Mc(T), s0 |= ϕ and Mc(T), s0 |= ψ,
Mc(T), s0 |= ϕ ∨ ψ iff Mc(T), s0 |= ϕ or Mc(T), s0 |= ψ,
Mc(T), s0 |= A(ϕUIψ) iff (∀ρ ∈ fT (s0))

(∃i ≥ 0)(∃δ ≤ δi) [r(i, δ) ∈ I ∧
(Mc(T), si + δ |= ψ ∧
(∀δ′ < δ)Mc(T), si + δ′ |= ϕ ∧
(∀k < i)(∀δ′ ≤ δk)Mc(T), sk +δ′ |= ϕ)],

Mc(T), s0 |= E(ϕUIψ) iff (∃ρ ∈ fT (s0))
(∃i ≥ 0)(∃δ ≤ δi) [r(i, δ) ∈ I ∧
(Mc(T), si + δ |= ψ ∧
(∀δ′ < δ)Mc(T), si + δ′ |= ϕ ∧
(∀k < i)(∀δ′ ≤ δk)Mc(T), sk +δ′ |= ϕ)],

Mc(T), s0 |= A(ϕRIψ) iff (∀ρ ∈ fT (s0))
(∀i ≥ 0)(∀δ ≤ δi) [r(i, δ) ∈ I ⇒
(Mc(T), si + δ |= ψ ∨
(∃k ≤ i)(∃δ′ ≤ δk)(r(k, δ′) < r(i, δ) ∧

Mc(T), sk +δ′ |= ϕ)],
Mc(T), s0 |= E(ϕRIψ) iff (∃ρ ∈ fT (s0))

(∀i ≥ 0)(∀δ ≤ δi) [r(i, δ) ∈ I ⇒
(Mc(T), si + δ |= ψ ∨
(∃k ≤ i)(∃δ′ ≤ δk)(r(k, δ′) < r(i, δ) ∧

Mc(T), sk +δ′ |= ϕ)].

Analogously as before,

Mc(T) |= ϕ iff Mc(T), s0 |= ϕ,

4.3 Timed Temporal Logics 79

where s0 is the initial state in Mc(T). Moreover, the above semantics enables
to introduce an alternative (weakly monotonic) semantics of CTL−X, defined
as in the previous case. Similarly, the model checking problem is stated as
before. Some examples of the TCTL formulas holding in the state s0 of a
given model are shown in Fig. 4.5. Notice that the states si + δi and si+1

correspond to the same time passed from the beginning of the run.

. . .

. . .

time1 2 30

. . .

s0 s0 + δ0 s2 s4

s1 s1 + δ1 s3 s3 + δ3

s2 + δ2

ψ
ϕ ∧ ψ

s0 |= E(ϕR[2,3]ψ)

s0 |= E(ϕR[2,3]ψ)

s0 s0 + δ0 s2 s4

s1 s1 + δ1 s3 s3 + δ3

s2 + δ2

ψ

s0 |= E(ϕU[2,3]ψ)

s0 s0 + δ0 s2 s4

s1 s1 + δ1 s3 s3 + δ3

s2 + δ2

ϕ
ψ

Fig. 4.5. Weakly monotonic interval semantics for TCTL

Example 4.9. Consider first Fischer’s mutual exclusion example of Fig. 2.4.
The most interesting property for this system is mutual exclusion, specified
now by the formula AG[0,∞)(¬(critical1 ∧ critical2)). One could also ver-
ify that this system does not satify the property guaranteeing each process
to eventually enter the critical section from its waiting section, which is
expressed by AG[0,∞)(waiting1 ⇒ AF[0,∞)critical1). A weaker property
AG[0,∞)(waiting1 ⇒ EF[0,c)critical1), for some c ∈ IN+, holds.

Consider now Train, Gate and Controller example of Fig. 2.6. This system
guarantees that if the gate is down, then it will eventually by moved back up
within K seconds, for some K ∈ IN+: AG[0,∞)(down ⇒ AF[0,K)up).

�

80 4 Main Formalisms for Expressing Temporal Properties

4.3.2 Timed µ-Calculus (Tµ)

Timed µ-calculus (Tµ) can be viewed as an extension of modal µ-calculus [95]
defined in Sect. 4.2.2.

Syntax of Tµ

The formulas of Tµ are built from propositional variables by boolean connec-
tives, a reset quantifier for clocks, a least fixed point quantifier, and a temporal
next operator �. The binary next operator �, which can be best viewed as a
”single step until”, is introduced since there is no notion of ”next step” when
time is dense. Intuitively, the formula p � q specifies that p holds until some
transition is taken, and this transition makes q true.

The formulas of Tµ contain four sets of variables: propositional variables
PV , free clock variables X , specification clock variables SC that are bound
by reset quantifiers, and fixed-point variables FV that are bound by fixpoint
quantifiers. The formulas are generated by the following grammar:

ϕ := ℘ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | xi ∼ c | xi − xj ∼ c | ϕ�ϕ | z.ϕ | Z | µZ.ϕ | νZ.ϕ,

where ℘ ∈ PV , xi, xj ∈ X ∪ SC, z ∈ SC, Z ∈ FV , ∼ ∈ {≤, <,=, >, ≥}, and
c ∈ IN. It is required that every occurrence of a fixed-point variable Z ∈ FV
in ϕ is bound by a fixpoint quantifier, and moreover it appears within an
even number of negations from the quantifier binding it, which is a standard
condition guaranteeing the existence of fixed points.

Semantics of Tµ

Let T be a timed system, i.e., either a TPN N or a TA A, and let

Mc(T) = (Cc(T), VC),

where Cc(T) = (S, s0, →c) and the relation →c is labelled by the elements of
a set B ∪ IR0+, be its concrete dense model defined for a semantics in which
concrete states are described by valuations of clocks8.

Assume that the concrete states of T are represented by pairs (·, vX), where
vX is a valuation of clocks9. The formulas of Tµ are interpreted over the states
of a given concrete model over the weakly monotonic semantics. To this aim,
we need to define the environment to provide values for both specification
clocks and fixed-point variables. So, in addition to clocks’ valuation vX and
propositions’ valuations VC we define a two-component function

E = (E1, E2)
8 This, again, excludes the firing interval semantics for time Petri nets.
9 This can be either a function like in TPNs, or a tuple as in the case of TA.

4.3 Timed Temporal Logics 81

such that E1 : SC −→ IR0+ is a partial function and E2 : FV −→ 2S , where
for all specification clocks z ∈ SC either E1(z) ∈ IR0+, or E1(z) is undefined.
The environment E is empty when its clock component is empty. By E + δ,
for δ ∈ IR0+, we denote E ′ = (E ′

1, E2), where E ′
1 = E1 + δ, i.e., such that

the value of each specification clock is increased by δ. We write E [e ← a] for
the environment that agrees with the environment E on all specification and
fixed-point variables except for e ∈ SC ∪ FV , which is mapped to a. Given
a model Mc(T), a state s = (·, vX) ∈ S and an environment E , we define the
semantics of Tµ formulas in the following way:

Mc(T), E , s |= ℘ iff ℘ ∈ VC(s), for ℘ ∈ PV,
Mc(T), E , s |= ¬ϕ iff Mc(T), E , s �|= ϕ,
Mc(T), E , s |= ϕ ∧ ψ iff Mc(T), E , s |= ϕ and Mc(T), E , s |= ψ,
Mc(T), E , s |= ϕ ∨ ψ iff Mc(T), E , s |= ϕ or Mc(T), E , s |= ψ,
Mc(T), E , s |= xi ∼ c iff vX (xi) ∼ c,
Mc(T), E , s |= xi − xj ∼ c iff vX (xi) − vX (xj) ∼ c,
Mc(T), E , s |= ϕ � ψ iff (∃s′ ∈ S)(∃δ ∈ IR0+)(∃b ∈ B)

((s δ→c s+δ
b→c s′ ∧ Mc(T), E+δ, s′ |= ψ)

∧ (∀0 ≤ δ′ ≤ δ)
Mc(T), E + δ′, s + δ′ |= ϕ ∨ ψ),

Mc(T), E , s |= z.ϕ iff Mc(T), E [z ← 0], s |= ϕ,
Mc(T), E , s |= Z iff s ∈ E(Z),
Mc(T), E , s |= µZ.ϕ iff s ∈

⋂
{U ⊆ S | {s′ ∈ S |
Mc(T), E [Z ← U], s′ |= ϕ} ⊆ U},

Mc(T), E , s |= νZ.ϕ iff s ∈
⋃

{U ⊆ S | U ⊆ {s′ ∈ S |
Mc(T), E [Z ← U], s′ |= ϕ}}.

A state s ∈ S satisfies the formula ϕ, which is denoted by Mc(T), s |= ϕ, if
Mc(T), E , s |= ϕ for all empty Tµ-environments10 E . A formula ϕ holds in a
model Mc(T) (Mc(T) |= ϕ) if

Mc(T), s0 |= ϕ.

Some examples of Tµ formulas are shown in Fig. 4.6.

The logic Tµ is more expressive than TCTL, defined over progressive runs
(see Sect. 4.3.1), where time is weakly monotonic [84]. Clearly, the logics
defined over different semantics, i.e., weakly and strongly monotonic, are not
comparable.

10 This means that the specification clocks are assigned no values. In fact, equiva-
lently, validity could have been defined for all Tµ-environments.

82 4 Main Formalisms for Expressing Temporal Properties

. . .

1 20 time

s s + δ

ψ

ϕ ∨ ψ s |= E(ϕ � ψ)

s′
s′

ϕ

x1

x2

s′ |= x2.ϕ

s |= x2.ϕs

Fig. 4.6. Examples of Tµ formulas

In order to show how TCTL basic operators are definable in Tµ we first give
an alternative syntax of TCTL, called TCTLC

11. Next, we show a translation
from TCTL to TCTLC , and finally a translation from TCTLC to Tµ.

4.3.3 Syntax and Semantics of TCTLC

The formulas of TCTLC are built over three sets of variables: clock variables
X , specification clock variables SC and propositional variables PV . They are
generated by the following grammar:

ϕ := ℘ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | xi ∼ c | xi − xj ∼ c |
A(ϕUϕ) | E(ϕUϕ) | A(ϕRϕ) | E(ϕRϕ) | z.ϕ,

where ℘ ∈ PV , xi, xj ∈ X ∪SC, z ∈ SC, ∼ ∈ {≤, <,=, >, ≥}, and c ∈ IN. The
derived boolean and temporal operators are defined like for CTL in Sect. 4.2.1.

Let T be a timed system, i.e., either a TPN N or a TA A, and let

Mc(T) = (Cc(T), VC),

where Cc(T) = (S, s0, →c) and the relation →c is labelled by the elements
of a set B ∪ IR0+, be its concrete dense model defined for a semantics in
which concrete states are described by valuations of clocks12. Let ρ = s0

δ0→c

s0 + δ0
b0→c s1

δ1→c s1 + δ1
b1→c s2

δ2→c . . . be an s0-run of T , where s0 ∈ S,
δi ∈ IR and bi ∈ B for i ∈ IN. Notice that here δi can be equal 0, which allows
for a run having two consecutive action transitions that are not separated by
any time delay. Recall that fT (s), for a concrete state s, denotes the set of all
the progressive runs of T starting at s, and assume that the concrete states
of T are represented by pairs (·, vX), where vX is a valuation of clocks13.

11 In order to distinguish between the logic TCTL introduced previously and that
introduced in [84], we denote the latter by TCTLC , where the index refers to
clock constrains.

12 This, again, excludes the firing interval semantics for time Petri nets.
13 This can be either a function like in TPNs or a tuple as in the case of TA.

4.3 Timed Temporal Logics 83

The formulas of TCTLC are interpreted over the states S of a given con-
crete model. In addition to clocks’ valuation vX and propositions’ valuations
VC we use a partial function

E : SC −→ IR0+,

where for all specification clocks z ∈ SC, either E(z) ∈ IR or E(z) is undefined.
The environment E is empty when it is undefined for all specification clocks.
By E + δ for δ ∈ IR0+, we denote E ′ such that the value of each specification
clock is increased by δ. We write E [z ← a] for the environment that agrees
with the environment E on all specification variables except for z, which is
mapped to a. Moreover, given a run ρ ∈ fT (s) for some s ∈ S, i ∈ IN and
δ ∈ IR0+, let

r(i, δ) = Σj<iδj + δ.

Given a model Mc(T), a state s0 = (·, vX) ∈ S and an environment E , we
define the semantics of TCTLC formulas in the following way:

Mc(T), E , s0 |= ℘ iff ℘ ∈ VC(s0), for ℘ ∈ PV,
Mc(T), E , s0 |= ¬ϕ iff Mc(T), E , s0 �|= ϕ,
Mc(T), E , s0 |= ϕ ∧ ψ iff Mc(T), E , s0 |= ϕ and Mc(T), E , s0 |= ψ,
Mc(T), E , s0 |= ϕ ∨ ψ iff Mc(T), E , s0 |= ϕ or Mc(T), E , s0 |= ψ,
Mc(T), E , s0 |= xi ∼ c iff vX (xi) ∼ c,
Mc(T), E , s0 |= xi − xj ∼ c iff vX (xi) − vX (xj) ∼ c,
Mc(T), E , s0 |= A(ϕUψ) iff (∀ρ ∈ fT (s0))(∃i ≥ 0)(∃δ ≤ δi)

[Mc(T), E + r(i, δ), si + δ |= ψ ∧
(∀k ≤ i)(∀δ′ ≤ δk)

(r(k, δ′) ≤ r(i, δ) ⇒
Mc(T), E + r(k, δ′), sk + δ′ |= ϕ ∨ ψ)],

Mc(T), E , s0 |= E(ϕUψ) iff (∃ρ ∈ fT (s0))(∃i ≥ 0)(∃δ ≤ δi)
[Mc(T), E + r(i, δ), si + δ |= ψ ∧
(∀k ≤ i)(∀δ′ ≤ δk)
(r(k, δ′) ≤ r(i, δ) ⇒

Mc(T), E + r(k, δ′), sk + δ′ |= ϕ ∨ ψ)],
Mc(T), E , s0 |= A(ϕRψ) iff (∀ρ ∈ fT (s0))(∀i ≥ 0)(∀δ ≤ δi)

[Mc(T), E + r(i, δ), si + δ |= ψ ∨
(∃k ≤ i)(∃δ′ ≤ δk)
(r(k, δ′) ≤ r(i, δ) ∧

Mc(T), E + r(k, δ′), sk + δ′ |= ϕ ∧ ψ)],
Mc(T), E , s0 |= E(ϕRψ) iff (∃ρ ∈ fT (s0))(∀i ≥ 0)(∀δ ≤ δi)

[Mc(T), E + r(i, δ), si + δ |= ψ ∨
(∃k ≤ i)(∃δ′ ≤ δk)
(r(k, δ′) ≤ r(i, δ) ∧

Mc(T), E + r(k, δ′), sk + δ′ |= ϕ ∧ ψ)].
Mc(T), E , s0 |= z.ϕ iff Mc(T), E [z ← 0], s0 |= ϕ.

84 4 Main Formalisms for Expressing Temporal Properties

The state s satisfies the formula ϕ, denoted s |= ϕ, if Mc(T), E , s |= ϕ for
all empty TCTLC environments E . A formula ϕ holds in a model Mc(T)
(Mc(T) |= ϕ) if

Mc(T), s0 |= ϕ.

Some examples of TCTLC formulas which hold in the state s0 of a given model
are depicted in Fig. 4.7. Again, notice that unlike for the dense paths in the
strongly monotonic interval semantics, two states can correspond to the same
time point (i.e., to the same time period passed from the beginning of the
run).

time2 30 1

. . .

. . .

. . .
s0 |= E(ϕUψ)

s0 s0 + δ0 s2 s4

s1 s1 + δ1 s3 s3 + δ3

s2 + δ2

ϕ ∧ ψ

s0 s0 + δ0 s2 s4

s1 s1 + δ1 s3 s3 + δ3

s2 + δ2

ψ

ψ

s0 |= E(ϕRψ)

s0 |= E(ϕRψ)

s0 s0 + δ0 s2 s4

s1 s1 + δ1 s3 s3 + δ3

s2 + δ2

ψ

ϕ ∨ ψ

Fig. 4.7. Some examples of TCTLC formulas

A few comments regarding the above logic TCTLC , a version of TCTL,
are in order. First of all, in order to make sure that the formulas of the form
z.A((z ≤ c)U(z > c)), where c ∈ IN, hold in each state of every model, we
require that in the semantics of ϕUψ the disjunction ϕ∨ψ – rather than ϕ only
– is true in all the states before ψ holds. Secondly, the formulas are interpreted
over weakly monotonic runs rather than over strong monotonic ones. Thirdly,
the time-bounded temporal operators used in TCTL are definable in TCTLC .
For instance, the time-bounded response property

AG[0,∞](℘1 ⇒ AF[c1,c2]℘2)

4.3 Timed Temporal Logics 85

that says every request ℘1 must be answered (℘2) within the time interval
[c1, c2], is expressible in TCTLC by the formula

AGz.(℘1 ⇒ AF(℘2 ∧ c1 ≤ z ∧ z ≤ c2).

Similarly, the time-bounded possibility property

AG[0,∞)(℘1 ⇒ EF[c1,c2]℘2)

is expressible in TCTLC by the formula

AGz.(℘1 ⇒ EF(℘2 ∧ c1 ≤ z ∧ z ≤ c2).

Our next step consists in showing that TCTLC is definable in Tµ. This result,
which is proven in [84], is however much more subtle than it seems to be at the
first sight. We showed in Sect. 4.2.2 that in the untimed case, the logic CTL
is strictly less expressive than the propositional modal µ-calculus over all our
models. It turns out that Tµ is as expressive as TCTLC over the class of real-
time systems, which allows us to compute the characteristic sets of TCTLC
formulas as fixpoints. In our case this requires to consider only progressive
time Petri nets and timed automata, which has already been assumed. Then,
we can translate every TCTLC formula ϕ into a Tµ formula ϕ′ using the
following algorithm:

a) Replace each subformula of the form A(ϕUψ) with the formula

µZ.(ψ ∨ ¬z.(E((¬Z)U(¬(ϕ ∨ Z) ∨ z > c))),

for any positive constant c > 0, and then
b) Replace each subformula of the form E(ϕUψ) with the formula

µZ.(ψ ∨ (ϕ � Z)).

Recall that the remaining subformulas (A(ϕRψ), E(ϕRψ)) are expressible
with the above ones (see p. 71).

Further Reading

For an introduction to modal and temporal logic the reader is referred to
[75, 86, 87]. Semantics of TCTL are discussed in [6, 7, 9]. The logics TCTLC
as well as Tµ are introduced in [83]. A survey of other real-time logics can
be found in [12, 81]. Some comparisons of temporal logics can be found also
in [69,116,142].

Part II

Model Generation and Verification

5

Abstract Models

In this chapter we define abstract models for timed systems and show how to
generate them. Unlike concrete models, abstract ones are (usually) finite and
possibly minimal w.r.t. the properties they preserve. Therefore, these models
are typically used for verifying properties by means of model checking. In
what follows, abstract models for time Petri nets are considered in Sect. 5.1,
whereas these for timed automata – in Sect. 5.2.

Let C(T) = (S, s0, →c) be a concrete state space of a timed system T ,
where →c is a B-labelled transition relation for a given set of labels B,1 and let
Mc(T) = (C(T), VC) be a concrete model for T based on the state space C(T)
and defined over a set of propositional variables PV . Denote by Reach(T)
the set of all the states reachable in C(T). In order to give definitions of
some abstract models, and to define some others in a more efficient way, we
introduce a notion of reachability of a set of concrete states. A set U ⊆ S is
then called reachable if U ∩ Reach(T) �= ∅.2 Moreover, given a family of sets
U ⊆ 2S , let Reach(U) denote the set of all the reachable elements of U , i.e.,

Reach(U) = {U ∈ U | U ∩ Reach(T) �= ∅}.

Then, we introduce the following definition:

Definition 5.1. An abstract model of a timed system T over a set of propo-
sitional variables PV is a structure

Ma(T) = ((W,w0, →a), Va),

where
1 B = A ∪ IR0+ in case of timed automata and B = T ∪ IR0+ in case of time Petri

nets.
2 Such a definition is essential for introducing pseudo-bisimulating and pseudo-

simulating models, whereas in the case of bisimulating, simulating and surjective
models it allows to restrict the requirements put on them to a part of the state
space only.

W. Penczek and A. Pó�lrola: Abstract Models, Studies in Computational Intelligence (SCI) 20,

89–154 (2006)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006

90 5 Abstract Models

• W ⊆ 2S is a set of abstract states, which are sets of concrete states of S,
• →a ⊆ W × B × W is an abstract transition relation,
• Va : W −→ 2PV is a valuation function, and
• w0 ∈ W is the initial abstract state,

satisfying the following conditions:

• s0 ∈ w0,
• Va(w) = VC(s) for each w ∈ W and s ∈ w.

Unless otherwise stated, we consider abstract models such that

Reach(T) ⊆
⋃

w∈W

w,

i.e., such that for each reachable concrete state of T there is an abstract state
the concrete one belongs to.

Usually, besides the conditions listed above, we specify also some addi-
tional requirements on →a, which depend on the properties to be preserved
by Ma(T). The following two belong to the most widely used:

EE1) for every w1, w2 ∈ Reach(W) and each b ∈ B

EE1(w1, w2) : if w1
b→a w2 then (∃s1 ∈ w1)(∃s2 ∈ w2) s1

b→c s2;

EE2) for every s1, s2 ∈ S and each b ∈ B

EE2(s1, s2) : if s1
b→c s2 then (∀w1 ∈ Reach(W) s.t. s1 ∈ w1)

(∃w2 ∈ W)(s2 ∈ w2 ∧ w1
b→a w2).

Both the conditions are typically used together. EE1 guarantees that each
two reachable abstract states related by b→a contain representatives related
by b→c. EE2 ensures that each reachable abstract state containing a repre-
sentative with a concrete b-successor has a b→a-successor, which gives us that
all the transitions which can be taken at the elements of an abstract state
have their counterparts in the abstract successor relation. It should be no-
ticed, however, that these conditions are formulated such that they apply to
the case when the elements of W are not disjoint (e.g., W is an arbitrary
covering3 of S, or of some S′ ⊆ S satisfying Reach(T) ⊆ S′). In the case
when W consists of disjoint elements, EE1 and EE2 are usually reformulated
to the one joint condition:

EE) for every w1, w2 ∈ Reach(W) and each b ∈ B

EE(w1, w2) : w1
b→a w2 iff (∃s1 ∈ w1)(∃s2 ∈ w2) s1

b→c s2.

3 By a covering of a set D we mean a family of its subsets D such that
⋃

D′∈D D′ =
D. Elements of D do not need to be disjoint.

5 Abstract Models 91

An example of state spaces satisfying this condition are shown in Fig. 5.1.

Other conditions of our interest are listed below:

EA) for every w1, w2 ∈ Reach(W) and each b ∈ B

EA(w1, w2) : if w1
b→a w2 then (∀s2 ∈ w2)(∃s1 ∈ w1) s1

b→c s2;

AE) for every w1, w2 ∈ Reach(W) and each b ∈ B

AE(w1, w2) : if w1
b→a w2 then (∀s1 ∈ w1)(∃s2 ∈ w2) s1

b→c s2;

U) for every w1, w2 ∈ Reach(W) and each b ∈ B

U(w1, w2) : if w1
b→a w2 then

(∀s1 ∈ cor(w1))(∃s2 ∈ cor(w2)) s1
b→c s2,

for a function cor : W −→ 2S s.t. cor(w) ⊆ w, and s0 ∈ cor(w0).

Again, EA, AE and U are formulated such that they apply to the general
case, but if the elements of W are disjoint, the conditions are often modified
by replacing implications by “if and only if”. In what follows, both the versions
of EA, AE and U are used.

a bb
a b

a bb
a

ba
b

a bb
ba ba

a bb
aa b

EE EA AE U

Fig. 5.1. The conditions EE, EA, AE and U in four abstract state spaces. The black
dots represent concrete states and the straight lines denote the concrete successor
relation, whereas the ellipses and the arcs – the abstract states and the abstract
transition relation. The cores of abstract states are coloured

Examples of abstract state spaces satisfying the above conditions are
shown in Fig. 5.1. The condition EA restricts the abstract transition relation
(on the reachable part of W) to the pairs of states such that for each pair the
elements of the successor state have an →−1

c -related4 element in the predeces-
sor state. This condition, together with the requirement that w0 consists of s0

and possibly some successors of the initial state, and the requirement of either
EE1 and EE2 or EE, is put on abstract models to preserve LTL [32,44,150]5.
The resulting models are sometimes referred to as surjective. The condition
AE, specifying the symmetric property w.r.t. the successor and the predeces-
sor of each pair of states in the abstract transition relation, is known as a
4 For the relation R, by R−1 we denote its inverse.
5 In some of these papers the proofs are given under the assumption that w0 = {s0}.

92 5 Abstract Models

bisimulation one. So, it is used (together with EE1 and EE2, or with EE) to
ensure preservation of CTL∗ or TCTL [9,49]. The condition U is a weakening
of AE, which puts the same restriction as the latter, but only on a subset
(called a core) of each abstract state. It is known as a simulation condition.
Similarly, U (again, combined with EE1 and EE2, or with EE) is applied to
preserve ACTL∗ or TACTL [117]. The models whose all the reachable states
satisfy AE (U) are called bisimulating (simulating, respectively).

Obviously, both the surjective and (bi)simulating abstract models preserve
reachability properties. However, for reachability verification, models with
weaker requirements6 on →a are also sufficient. Some of them (mainly these re-
laxing the condition EA) are introduced for specific timed systems [45,63,98],
whereas the others (e.g., pseudo-bisimulating models [125]) are defined for
the general case. The main idea behind the definition of pseudo-bisimulating
models consists in relaxing the condition on the transition relation on bisim-
ulating models, formulated for all the predecessors of each reachable abstract
state, such that it applies only to one of them, reachable from w0 in the min-
imal number of steps. Let dpt(w) denote the depth of w ∈ W , i.e., the mini-
mal i ∈ IN such that w = wi for some path (w0, w1, . . .) in (W,w0, →a) with
w0 = w0. Formally, pseudo-bisimulating models are abstract models satisfying
EE1 and EE2 (or EE) together with the following condition (see also Fig. 5.2):

pAE) for every w1, w2 ∈ Reach(W) and each b ∈ B

pAE(w1, w2) : if w1
b→a w2 then there exists w ∈ Reach(W) such

that

• w
b′→a w2 for some b′ ∈ B,

• the depth of w is minimal in the set

{dpt(w′) | w′ b′′→a w2 for some b′′ ∈ B},

and
• (∀s ∈ w)(∃s2 ∈ w2) s

b′→c s2.

Another example of reachability-preserving models are pseudo-simulating
models [126], combining the definitions of simulating and pseudo-bisimulating
ones. Formally, they satisfy either EE1 and EE2 or EE, together with the
condition below:

pU) for every w1, w2 ∈ Reach(W) and each b ∈ B

pU(w1, w2) : if w1
b→a w2 then there exists w ∈ Reach(W) such

that

• w
b′→a w2 for some b′ ∈ B,

6 Clearly, weaker conditions give rise to smaller abstract models.

5 Abstract Models 93

• the depth of w is minimal in the set

{dpt(w′) | w′ b′′→a w2 for some b′′ ∈ B},

and
• (∀s ∈ cor(w))(∃s2 ∈ cor(w2)) s

b′→c s2,
for a function cor : W −→ 2S s.t. cor(w) ⊆ w
and s0 ∈ cor(w0).

Again, in the case when the elements of W are disjoint, pAE and pU can
be reformulated by replacing the implication by the equivalence. Examples
of abstract state spaces satisfying the above conditions are shown in Fig. 5.2.
Notice that in both the cases the condition EE1(w1, w2) (or EE(w1, w2)) holds
only (but neither AE(w1, w2), (nor U(w1, w2), respectively), since there is
another predecessor of w2 of a depth smaller than w1 for which the condition
AE(w1, w2) (U(w1, w2), respectively) holds.

a bb
bba a

c

c

w0

w2w1

a bb
aa b
c

c

w0

w1 w2

pAE pU

Fig. 5.2. Conditions on transition relation in pseudo-bisimulating and pseudo-si-
mulating models

The next example illustrates the differences between the above-defined
abstract models.

Example 5.2. Consider the concrete model shown in Fig. 5.3(a). The dots
represent concrete states, and the straight lines denote the concrete successor
relation. The set of labels of →c is given by B = {a, b, c, d, e, f, g, h}. Assume
that for each b′ ∈ B the valuations of all the states reached by executing a
b′-labelled transition (i.e., the values of the function VC for the b′-successor
states) are the same. Moreover, the states obtained by b- and e-labelled tran-
sitions share the valuations (this is marked by the light-coloured dots in the
picture), whereas for all the other pairs of labels the valuations differ. The
figure displays the differences between various kinds of abstract models built
for the above-mentioned concrete one. The ellipses and the arcs represent
the abstract states and the abstract transition relation. The cores of abstract
states are coloured.

�

94 5 Abstract Models

a a

c

a

b c c

dd e f f f

g g h h

s0

gg

a

c

e fd

b

e f f f

a a a

b c c c

d dd

hg g h
h

w0

(a): concrete model (b): surjective model

a

ed d f

cb c

a

f

a a

c

e

a

b c c

fffdd

ggg h
hh

w0

a

c

e fd d

b

a a a

f f f

b c c c

dd e

ggg h h
h

w0

(c): bisimulating model (d): simulating model

a

c

e fd

a

b c

a aa

b c c c

d d e f f f

ggg h h
h

w0

a a

c

a

b c c

dd e f f f

a

c

e fd

b

g g g h h
h

w0

(e): pseudo-bisimulating model (f): pseudo-simulating model

Fig. 5.3. Various abstract models built for the same underlying concrete one

It is important to mention that the concrete models underlying the ab-
stract ones can be not only discrete or dense, but also time-abstracted dense,
i.e., obtained from concrete dense models by a simplification of the successor
relation resulting from treating the time transitions in a special way:

• The typical approach consists in abstracting away the exact amount of time
passed between any two time-related states and replacing all the labels
δ ∈ IR0+ in the time successor relation by the common label τ �∈ B. This

5 Abstract Models 95

gives us a strong time-abstracted (strong ta-) concrete successor relation
and a strong time-abstracted (strong ta-) concrete model.

Other simplifications introduce also some modifications to the action successor
relation:

• The first of them, resulting in a delay time-abstracted (delay ta-) successor
relation and a delay time-abstracted (delay ta-) model, besides abstracting
away the amount of time as described above, combines together passing
some time and then an action step, analogously to the relations →Rd1 and
→d1 (see pp. 21, 40).

• Another solution, besides abstracting away the exact amount of time
passed, considers as action steps combinations of passing some time, an
action step, and then possibly passing some time again, analogously to the
relations →Rd2 and →d2 (see pp. 21, 40). The resulting successor relation
and model are called observational time-abstracted (observational ta-).

Figure 5.4 illustrates the differences between the time-abstracted and discrete
successor relations. In each of the pictures (a)-(e) its left-hand part depicts
the states related by the concrete dense successor relation →c, whereas the
right-hand part shows the states which are in the successor relation under
consideration. The discrete successor relations →d1 and →d2 are presented,
respectively, in the pictures (d) and (e). The subfigures (a), (b) and (c) il-
lustrate, respectively, the time-abstracted, time-abstracted delay and time-
abstracted observational successor relation. Notice that, unlike the discrete
ones, all these relations involve time steps.

(a)

a a

a a

no time steps

(e)(b)

a

a

(c)

a a a

a

no time steps

(d)

τδ

δ

δδ

τδ τδ

δ

δ δ

Fig. 5.4. Time-abstracted (a-c) and discrete (d-e) successor relations

In what follows, we adopt the convention that abstract models inherit the
names of their underlying concrete ones (e.g., we obtain strong ta-bisimulating

96 5 Abstract Models

models, discrete pseudo-simulating models etc.). It is also important to men-
tion that the kind of the underlying concrete model influences the properties
preserved by a given abstract one (e.g., neither delay nor observational ta-
bisimulating models preserve CTL∗

−X [159], but both the models preserve
reachability). On the other hand, abstract models preserving the same prop-
erties (e.g., reachability) built for different underlying concrete models can be
of different sizes. This justifies variety of their kinds.

Next, we present the main approaches to generating various types of ab-
stract models for timed systems.

5.1 Model Generation for Time Petri Nets

We start with discussing state class approaches for generating abstract models.
Then, we review some remaining approaches to defining these models for time
Petri nets.

5.1.1 State Class Approaches

The methods of building abstract models for time Petri nets are usually based
on the state class approach, which consists in representing an abstract state
by a marking and a set of linear inequalities. The algorithms for building such
models differ w.r.t. approaches to their concrete semantics (which, however,
is usually discrete) and various restrictions on the definition of TPNs. For
each of the given approaches, we follow the same pattern of the presentation.
Thus, we discuss a semantics applied, a notion of a state class, and a condition
on firability of a transition at a class together with a method of computing
its successor resulting from this firing. Moreover, in order to obtain a finite
abstract model, an equivalence relation on state classes is provided7. In all the
descriptions, we use the following notation. For a given set of inequalities I,
sol(I) denotes the set of its solutions, and var(I) – the set of all the variables
appearing in I. Moreover, for a set of variables V, by Iqs(V) we denote the
set of all the inequalities built over V, and by IqSets(V) – the set 2Iqs(V).

State Class Graph

The method of building this basic model of the state class approach (denoted
by SCG, and called also linear state class graph, LSCG in [35]) was defined
by Berthomieu at al. [32, 33] for unrestricted TPNs (see Definition 1.3) with
infinite capacity of the places, and is based on the discrete firing intervals
semantics →Fd1 (see pp. 15, 21). A state class is defined as a pair

7 Notice, however, that the equivalence relation does not guarantee finiteness of the
model; see e.g. Lemma 5.4.

5.1 Model Generation for Time Petri Nets 97

C = (m, I),

where m is a marking, and I is a set of inequalities built over the set of
variables

var(I) = {vt | t ∈ en(m)}.

All the possible values of a variable vt in the set sol(I) (called the firing domain
of C) form the timing interval, relative to the time when C was entered, in
which t can be fired (or, in other words, specify the minimal and the maximal
period of time to be spent in the class before firing t). Intuitively, a class can
be seen as a set of concrete states, the union of the firing intervals of which
is equal to the firing domain of the class. However, given a concrete state
σF = (m′, fi) and a class C = (m, I), we are only able to say whether σF can
potentially belong to C. This can happen if m′ = m and for each t ∈ en(m)
the firing interval of t (i.e., fi(t)) is included in sol(I)|vt

. In order to determine
whether σF ∈ C we have to consider also the sequence of transitions η ∈ T ∗

whose firing at the initial marking resulted in creating C: we have that σF ∈ C
if it can be obtained from (σF)0 by firing η. Notice also that given a pair (m, I)
only, we cannot determine which concrete states belong to a class this pair
describes (this can be seen from Example 5.3). Thus, the pairs (m, I) define
in fact equivalence classes of sets of concrete states [31].

The initial class of the state class graph is given by

C0 = (m0, {“Eft(t) ≤ vt ≤ Lft(t)“ | t ∈ en(m0)}).

A transition t ∈ en(m) is firable at a class C = (m, I) if the set of inequalities

I1 = I ∪ {“vt ≤ vt∗“ | t∗ ∈ en(m) \ {t}}

is consistent (i.e., sol(I1) �= ∅), which intuitively means that t can fire earlier
than any other enabled transition. For the class C ′ = (m′, I ′), resulting from
firing t at C, the marking is m′ = m[t〉, whereas I ′ is obtained from I in the
following four steps:

1. the set I ′ is initialized to I1 given above (i.e., to the set obtained from I
by adding the firability condition for t),

2. all the variables in I ′ are substituted by new ones reflecting the fact of
firing t at the time given by vt (i.e., v′

t∗ = vt∗ − vt for all t∗ �= t with
t∗ ∈ en(m)), which relates the values of the variables to the time the class
C ′ was entered,

3. the variables corresponding to the transitions disabled by firing of t are
eliminated, and

4. the system is extended by the set of inequalities

{“Eft(t∗) ≤ vt∗ ≤ Lft(t∗)“ | t∗ ∈ newly en(m, t)},

which adds also the new variables corresponding to the transitions in
newly en(m, t) (see p. 5 for the definition).

98 5 Abstract Models

Two classes C,C ′ are considered as equivalent (denoted C ≡S C ′) if their
markings and firing domains are equal. Equivalent classes have the same de-
scendant trees in the state class graph, but can correspond to different sets of
concrete states (see Example 5.3).

Example 5.3. Consider the net8 N shown in Fig. 5.5. Below, we show a part of

t1p1

[1,1]

p2

p3

t2
[0,10]

t3 p4

[0,2]

t4
[0,3]

Fig. 5.5. The time Petri net considered in Example 5.3

the state class graph for this net. For simplicity of the presentation, a marking
m is displayed as a vector (m(p1), m(p2), m(p3),m(p4)), the set of inequalities
of a class (m, I) as the conjunction of its elements, and the function fi of a
concrete state (m, fi) – as a vector (fi(t1), fi(t2), fi(t3), fi(t4)) (see p. 15 for
the definition of concrete states).

• The initial class of the SCG for N is given by
C0 = ((1, 0, 0, 0), 1 ≤ vt1 ≤ 1),

and corresponds to the concrete state (σF)0 = ((1, 0, 0, 0), ([1, 1], [], [], [])).
• Firing t1 at C0 results in the class

C1 = ((0, 1, 1, 0), 0 ≤ vt2 ≤ 10 ∧ 0 ≤ vt3 ≤ 2).
The class corresponds to the concrete state σF

1 = ((0, 1, 1), ([], [0, 10], [0, 2],
[])) obtained from (σF)0 by passing one time unit and then firing t1.

• Then, firing t3 at C1 gives us the class
C2 = ((0, 1, 0, 1), 0 ≤ vt2 ≤ 10 ∧ 0 ≤ vt4 ≤ 3).

The class contains all the concrete states obtained by firing t3 at σF
1 .

Notice that this firing can lead to different states, depending on how much
time passes before t3 fires. Thus, waiting two units of time leads to the
state σF

2 = ((0, 1, 0, 1), ([], [0, 8], [], [0, 3])), one unit of time – to σF
3 =

((0, 1, 0, 1), ([], [0, 9], [], [0, 2])), firing t3 immediately after its enabling
leads to σF

4 = ((0, 1, 0, 1), ([], [0, 10], [], [0, 2])) etc. In fact, C2 corresponds
to an infinite set of concrete states given by {((0, 1, 0, 1), ([], [0, a], [], [0,
2])) | a ∈ [8, 10]}.

8 The net in the figure is not progressive, but this does not influence the method of
building the state class graph. Such a net is considered in order to give a simple
example.

5.1 Model Generation for Time Petri Nets 99

• Firing t4 at C2 results in the class
C3 = ((0, 1, 1, 0), 0 ≤ vt2 ≤ 10 ∧ 0 ≤ vt3 ≤ 2),

which is equivalent to C1. However, C3 corresponds to the different set
of concrete states than C1. For example, immediate firing t4 at σF

2 gives
us the state σF

5 = ((0, 1, 1, 0)([], [0, 8], [0, 2], [])), and at σF
4 – the state

σF
6 = ((0, 1, 1, 0), ([], [0, 10], [], [0, 2])); if one unit of time passes before t4

fires, then from σF
2 we obtain σF

7 = ((0, 1, 1, 0), ([], [0, 7], [0, 2], [])), from
σF

4 - the state σF
8 = ((0, 1, 1, 0), ([], [0, 9], [0, 2], [])) etc.

The above shows that equivalent classes can contain different sets of concrete
states. Moreover, it is even possible that one of them is a singleton, whereas
another one corresponds to an infinite number of states.

�

The conditions on finiteness of a state class graph are given by the following
lemma [32]:

Lemma 5.4. The number of the state classes of a TPN is finite (up to the
equivalence) if and only if the net is bounded.

The intuition is that in a bounded net the number of reachable markings is
finite, and since the number of different firing domains of a net is finite as
well [32], the whole SCG is finite.

Although the boundedness problem for TPNs is undecidable [93], the paper
[32] provides some sufficient conditions. One of them, which can be checked
on-the-fly while generating the state class graph, is stated below. The notation
m > m′, where m,m′ are markings, means that (∀p ∈ P)(m(p) ≥ m′(p)) ∧
(∃p ∈ P)(m(p) > m′(p)).

Lemma 5.5. A TPN is bounded if no pair of state classes C = (m, I) and
C ′ = (m′, I ′) satisfying the conditions

• C ′ is reachable from C,
• m′ > m,
• sol(I) = sol(I ′),
• (∀p ∈ {p′ ∈ P | m′(p′) > m(p′)}) m(p) > maxt∈T (F (p, t))

is reachable from the initial class.

Intuitively, the first three conditions on C,C ′ express that there is a sequence
of transitions the firing of which (starting at the class C) leads to the class
C ′ with the same firing domain, but with a different marking such that C ′

contains at least the same number of tokens in any place as C does. Addition-
ally, the fourth condition requires that all the places, for which the number
of tokens increases in C ′, contain more tokens in C than can be consumed by
firing of any outgoing transition. The same sequence of transitions can thus
be fired infinitely many times, giving infinitely many non-equivalent classes
(with different markings).

100 5 Abstract Models

It should be noticed that the method for generating state class graphs is
correct also for nets whose maximal capacity of the places is finite. In this
case, however, the graph is always finite, which follows from Lemma 5.4 in a
straightforward way.

A pseudo-code of the algorithm for generating the state class graph for
a time Petri net N is given in Fig. 5.6. The classes of the graph are stored
in the variable classes, which is initially equal to the empty set. Calling
the recursive procedure dfs for the class C0 results in building the graph in
the depth first search order. The method consists in generating a maximal
path starting at a given node, then backtracking to the nearest “fork” (i.e.,

Input arguments:

a time Petri net N = (P, T, F, m0, Eft, Lft)
Global variables:

classes: 2RMN×IqSets({vt|t∈T})

Return values:

build SCG(), dfs(): a graph of nodes of RMN × IqSets({vt | t ∈ T})

1. procedure build SCG(N) is
2. begin
3. classes := ∅;
4. dfs(C0);
5. end build SCG;

6. procedure dfs(C′) is
7. begin
8. for each C ∈ classes do
9. if the conditions of Lemma 5.5 hold for C and C′ then
10. terminate; // the net is likely to be unbounded

11. end if;
12. end do;
13. if (∀C ∈ classes) C′ �≡S C then
14. classes := classes ∪ {C′};
15. for each t firable at C′ do
16. compute the t-successor C′′ of C′;
17. dfs(C′′);
18. end do;
19. else
20. handle equivalence of classes;
21. end if;
22. end dfs;

Fig. 5.6. An algorithm for generating state class graph of a time Petri net

5.1 Model Generation for Time Petri Nets 101

to a node on this path which is of a maximal depth of these which do not
have all the successors generated), generating a new maximal path starting
at this node etc. The process of building the graph includes also on-the-fly
checking of boundedness of the net (i.e., testing whether for a given class C ′

there is a predecessor C such that C,C ′ satisfy the conditions of Lemma 5.5)
and terminating if the net is likely to be unbounded (and therefore to be of
an infinite number of state classes). Moreover, the successors are generated
only for these classes which are not equivalent to some of these generated
previously. Otherwise, an equivalence-handling procedure is executed. Given
a class C ′ equivalent to an existing class C, the procedure redirects to C ′ the
edges previously incoming C, and then deletes C ′.

Example 5.6. Consider the time Petri net shown in Fig. 5.7.

t1p1 p3

p4p2

t2

t3

[1,4]

[1,1]

[1,2]

Fig. 5.7. The time Petri net considered in Example 5.6

The process of constructing the state class graph for this net is shown in
Fig. 5.8. The graph on the left is an “intermediate” structure, i.e., its classes
which are equivalent to others are still present. The right-hand side of the

t2t1

t2

t3

t3

t3

t2 t3

t2

t3

t3

t2

t1

C0

C1

C2

C3

C11

C7

C8 C9

C10

C5 C12

C4

C6

≡S C3

≡S C2

≡S C3

≡S C3

≡S C2

t2t1

t2

t3

t3
t3 t2

t3

t3

t2

t2

t1

C0

C1

C2

C3

C11

C7

C9

C5

Fig. 5.8. Constructing the state class graph for the net in Fig. 5.7

102 5 Abstract Models

figure depicts the graph obtained by deleting these classes and redirecting
their incoming edges to the appropriate representatives.

Given a class (m, I), for simplicity of the presentation we show the mark-
ing m as a vector of the form (m(p1),m(p2),m(p3),m(p4)), whereas the set
of inequalities I is given as the conjunction of its elements. The classes of the
above state class graph are listed below:

C0 = ((1, 1, 0, 0), 1 ≤ vt1 ≤ 1 ∧ 1 ≤ vt2 ≤ 4),
C1 = ((0, 1, 1, 0), 0 ≤ vt2 ≤ 3 ∧ 1 ≤ vt3 ≤ 2),
C2 = ((0, 0, 1, 1), 0 ≤ vt3 ≤ 2),
C3 = ((0, 0, 1, 1), 1 ≤ vt3 ≤ 2),
C4 = ((0, 0, 1, 1), 1 ≤ vt3 ≤ 2),
C5 = ((0, 1, 1, 0), 0 ≤ vt2 ≤ 2 ∧ 1 ≤ vt3 ≤ 2),
C6 = ((0, 0, 1, 1), 0 ≤ vt3 ≤ 2),
C7 = ((0, 1, 1, 0), 0 ≤ vt2 ≤ 1 ∧ 1 ≤ vt3 ≤ 2),
C8 = ((0, 0, 1, 1), 0 ≤ vt3 ≤ 2),
C9 = ((0, 1, 1, 0)), 0 ≤ vt2 ≤ 0 ∧ 1 ≤ vt3 ≤ 2,
C10 = ((0, 0, 1, 1), 1 ≤ vt3 ≤ 2),
C11 = ((1, 0, 0, 1), 0 ≤ vt1 ≤ 0),
C12 = ((0, 0, 1, 1), 1 ≤ vt3 ≤ 2).

The inequalities describing a class give timing intervals in which the enabled
transitions can be fired. For example, the inequalities of C0 express that the
transition t1 can be fired in one time unit, and t2 between one and four time
units after its enabling (i.e, after the net starts). Firing of t1 at C0 gives us
the class C1, at which t2 can fire either immediately after the class is entered
(this follows from passing one unit of time before firing t1 at C0), or after
some delay not exceeding three time units. The timing interval assigned to
t3 is equal to [1, 2], since t3 is newly enabled. Firing of t2 leads to the class
C2, at which t3 is enabled only, and can be fired either immediately (which is
possible if t2 was fired not earlier than one unit of time after firing t1) or after
a delay of at most two time units since C2 has been entered (where waiting
two time units is possible if t2 was fired immediately after t1). The rest of
the graph can be analysed in a similar way. Notice also that it can occur that
some transitions enabled at the marking of a class cannot by fired at this
class. This takes place e.g. in the case of C9, at which t2 and t3 are enabled,
but due to the previous firing of the sequence t1, t3, t3, t3 taking at least (and
in this case exactly) four time units, the transition t2 has to fire without any
additional delay, whereas for firing t3 in C9 a delay of one time unit would be
necessary.

�

Since the state class graph satisfies the conditions EE1, EE2 and EA up to
the equivalence (i.e., the conditions hold provided the equivalence-handling
procedure has not been executed), the model preserves the LTL formulas.

5.1 Model Generation for Time Petri Nets 103

Preservation of the conditions by the state class graph requires an additional
explanation. It is easy to see from the above description that the equivalence-
handling procedure, called for a class C ′ and a previously generated C, can
influence preservation of the conditions: EA(C,C1) is satisfied for each C1

which is a successor of C, but EA(C2, C) can obviously fail to hold for each
C2 which is a predecessor of C and was previously a predecessor of C ′, since
equivalent classes correspond to different sets of concrete states. Moreover, the
above operation on equivalent classes can possibly make even the condition
EE1 (or EE, if applies) fail when EA is not satisfied. A similar situation occurs
in most of the below-described constructions of graphs exploiting equivalences
of classes. However, violation of the conditions is strictly a technical problem,
and the models obtained preserve the same properties as these without the
equivalence of classes handled9.

It should be also mentioned that if we are not interested in preservation
of all the LTL formulas, the above method of building the state class graph
can be improved by checking whether a newly obtained class is included in an
existing one, and not generating its successors in this case [31]. The resulting
models preserve reachability properties.

Geometric Region Graph

In the terminology of abstract models for time Petri nets, by atomic we call
a class C such that the condition AE(C,C ′) holds for all its successors C ′. A
model is atomic if it satisfies EE1 and EE2 (or EE), and all its classes (before
combining equivalent ones) are atomic (i.e., the model satisfies AE). How-
ever, the information carried by firing domains of the classes of a state class
graph is not sufficient to check their atomicity. To this aim, some additional
information about the histories of firings needs to be added, which requires
a modification of the state class graph. Such a model for 1-safe nets with fi-
nite values of the function Lft, introduced by Yoneda and Ryuba in [174], is
called a geometric region graph. The construction exploits the discrete transi-
tion relation →Td1 and the semantics in which clocks are associated with the
transitions of the net (see pp. 11, 21). Now, the state classes are defined as
triples

C = (m, I, η),

where I is a set of inequalities, and m is a marking obtained by firing from
m0 the sequence η ∈ T ∗ of transitions. The variables in var(I) represent the
absolute firing times (i.e., counted since the net started) of the transitions in
η. Note that different firings of the same transition are then distinguished;
vj

t ∈ var(I) corresponds to the j-th firing of t ∈ T . Unlike in the construction

9 Recall that we check reachability of sets of places only. Reachability of a concrete
state obviously does not need to be preserved, since an equivalence of classes does
not necessarily mean their equality.

104 5 Abstract Models

of a state class graph, I can be viewed as describing the history of the states
of a given class rather than these states as such. Thus, the inequalities used in
the process of building the state class graph are modified in such a way that
they specify the timing conditions which were to hold to enter the class they
describe. Intuitively, a state class C = (m, I, η) represents a set of concrete
states which are obtained from (σT)0 by firing the sequence η of transitions,
satisfying the timing constraints represented by I.

The initial state class is given by

C0 = (m0, ∅, ε),

where ε is the empty sequence of transitions. Firing of t ∈ en(m) at a class
C = (m, I, η) is given in terms of the parents of the enabled transitions, i.e., the
transitions in η which most recently made the transitions in en(m) enabled
(or, more precisely, in terms of the variables corresponding to the times at
which these transitions were fired). As the parent of the transitions enabled
at m0 one assumes a fictitious transition ν, which denotes the start of the
net. The time it fires (often taken to be 0) is represented by the variable vν .
Let parent(vt, C) denote the variable corresponding to the parent of t. If t
appears k − 1 times in η, then it is firable at C iff it is enabled and for any
transition t∗ ∈ en(m) which appears l − 1 times in η the set

I ∪ {“parent(vk
t , C) + Eft(t) ≤ parent(vl

t∗ , C) + Lft(t∗)“}

is consistent, which intuitively means that t can be fired earlier than any other
enabled transition. If t is fired at C, then the class C ′ = (m′, I ′, η′) is reached,
where m′ = m[t〉, η = ηt, and the set of inequalities I ′ is equal to

I ∪ {“Eft(t) ≤ vk
t − parent(vk

t , C) ≤ Lft(t)“}
∪ {“vk

t ≤ parent(vl
t∗ , C) + Lft(t∗)“ | t∗ ∈ en(m)

and t∗ appears l − 1 times in η}.

The set I ′ describes timing conditions which need to hold for firing t at C
(i.e., the history of the class C ′).

Two classes C = (m, I, η), C ′ = (m′, I ′, η′) are equivalent (denoted
C ≡G C ′) if their markings are equal, the enabled transitions possess the
same parents10, and the sets sol(I) and sol(I ′) projected on the sets of the
parents of the transitions enabled at C and C ′, respectively, are equal (which
intuitively means that the constraints on differences between firing times of
the parents of the enabled transitions are the same in both the classes11).

10 This requirement is provided in [174] for technical reasons, but omitted in the
implementation used in that paper, since for the further behaviour of the net it
is meaningless whether the transitions which enabled a given one were the same
in both the classes. The modified equivalence relation is denoted by ≡′

G.
11 Such an interpretation agrees with the implementation of the method.

5.1 Model Generation for Time Petri Nets 105

The equivalent classes have the same descendant trees in the geometric re-
gion graph, but they can correspond to different sets of concrete states (see
Example 5.7).

The algorithm for generating the geometric region graph is like that in
Fig. 5.6 without the lines 8–12 (since the algorithm is applicable to 1-safe
nets only, the number of inequivalent classes is always finite). The geometric
region graph satisfies the conditions EE1, EE2 and EA before any operation
on equivalent classes is applied (see p. 102 for an explanation).

Example 5.7. Consider again the net used in Example 5.6. A geometric region
graph for this net is presented in Fig. 5.9. The left-hand part of the picture
displays the graph in which equivalent classes are still present, whereas in the
graph in the right-hand part the equivalent classes are merged into one.

t2t1

t2

t3

t3

t3

t2 t3

t2

t3

t3

t2

t1

C0

C1

C2

C3

C4

C5 C6

C7 C8

C9

C10

C11

C12 ≡G C3

≡G C3

≡G C2

≡G C3

≡G C3

t2t1

t2

t3

t3

t2 t3t3

t3

t1

t2

t2
t3

C0

C1

C2

C3

C4

C6

C8

C10

Fig. 5.9. Constructing the geometric region graph for the net in Fig. 5.7

The classes of the graph are listed below. Again, a marking m is given as
a vector (m(p1),m(p2),m(p3),m(p4)). The superscripts of the variables cor-
responding to transitions which cannot be fired more than once (i.e., t1 and
t2) are omitted for simplicity.

C0 = ((1, 1, 0, 0), I0, ε), where I0 = ∅,
C1 = ((0, 1, 1, 0), I1, t1), where I1 = {“1 ≤ vt1 − vν ≤ 1“,

“vt1 ≤ vν + 4“},
C2 = ((0, 0, 1, 1), I2, t1t2), where I2 = I1 ∪ {“1 ≤ vt2 − vν ≤ 4“,

“vt2 ≤ vt1 + 2“},

106 5 Abstract Models

C3 = ((0, 0, 1, 1), I3, t1t2t3), where I3 = I2 ∪
{“1 ≤ v1

t3 − vt2 ≤ 2“},
C12 = ((0, 0, 1, 1), I12, t1t2t3t3), where I12 = I3 ∪

{“1 ≤ v2
t3 − v1

t3 ≤ 2“},
C4 = ((0, 1, 1, 0), I4, t1t3), where I4 = I1 ∪ {“1 ≤ v1

t3 − vt1 ≤ 2“,
“v1

t3 ≤ vν + 4“},
C5 = ((0, 0, 1, 1), I5, t1t3t2), where I5 = I4 ∪ {“1 ≤ vt2 − vν ≤ 4“,

“vt2 ≤ v1
t3 + 2“},

C6 = ((0, 1, 1, 0), I6, t1t3t3), where I6 = I4 ∪ {“1 ≤ v2
t3 − v1

t3 ≤ 2“,
“v2

t3 ≤ vν + 4“},
C7 = ((0, 0, 1, 1), I7, t1t3t3t2), where I7 = I6 ∪ {“1 ≤ vt2 − vν ≤ 4“,

“vt2 ≤ v2
t3 + 2“},

C8 = ((0, 1, 1, 0), I8, t1t3t3t3), where I8 = I6 ∪ {“1 ≤ v3
t3 − v2

t3 ≤ 2“,
“v3

t3 ≤ vν + 4“},
C9 = ((0, 0, 1, 1), I9, t1t3t3t3t2), where I9 = I8 ∪ {“1 ≤ vt2 − vν ≤ 4“,

“vt2 ≤ v3
t3 + 2“},

C10 = ((1, 0, 0, 1), I10, t2), where I10 = {“1 ≤ vt2 − vν ≤ 4“,
“vt2 ≤ vν + 1“},

C11 = ((0, 0, 1, 1), I11, t2t1), where I11 = I10 ∪ {“1 ≤ vt1 − vν ≤ 1“,
“vt1 ≤ vν + 4“}.

The sets of inequalities of the classes specify their “histories”. For example,
the timing conditions given by the set I1 mean that t1 could have been fired
at the initial marking if one unit of time passed after the net started. The
history of the class C4, obtained by firing t3 at C1, says that besides passing
exactly one unit of time before firing t1, the passage of time between firing t1
and t3 was between one and two units (this was necessary to fire t3), but the
total time passed between the start of the net and firing t3 was not greater
that four units (which prevented disabling t2 by passage of time). Notice also
that C8 has no t3-successor in the graph, since the transition t3 is not firable
(it is easy to check that the set I8 ∪ {“v3

t3 + 1 ≤ vν + 4“} is inconsistent).

Some comments on the equivalence of classes are in order. Firstly, the
classes C4, C6 and C8 are not equivalent in spite of the same enabled transi-
tions (t2 and t3) whose parents are also the same (ν and t3, respectively). It is
easy to compute that in C4 the difference between the variables corresponding
to the parents of the enabled transitions is given by 2 ≤ v1

t3 − vν ≤ 3, in C6 –
by 3 ≤ v2

t3 − vν ≤ 4, and in C8 – by 4 ≤ v3
t3 − vν ≤ 4. Secondly, if only one

transition (here t3) is enabled at two classes, then these classes are equivalent
if the parent of this transition in both of them is the same (e.g., C2 ≡G C11

and C3 ≡G C12 ≡G C4 ≡G C7 ≡G C9). However, applying the less restricted
relation ≡′

G (see Footnote 10) can lead to smaller graphs (cf. Fig. 5.10, which
displays such a graph for the net considered above).

Let ((m(p1),m(p2),m(p3),m(p4)), (clockT (t1), clockT (t2), clockT (t3))) de-
note the state (m, clockT). It is easy to see from the above example that equiv-

5.1 Model Generation for Time Petri Nets 107

t2t1

t2

t3

t3

t2 t3

t2

t3

t3

t2

t1

C0

C1

C2

C3

C4

C5 C6

C7 C8

C9

C10

C11 ≡′
G C2

≡′
G C2

≡′
G C2

≡′
G C2

≡′
G C2

t2t1

t3t3

t3

t3

t3t2 t1

t2

t2

t2

C0

C1

C2 C4

C6

C8

C10

Fig. 5.10. The geometric region graph of the modified equivalence relation, built
for the net in Fig. 5.7

alent classes can contain different concrete states. For instance, the class C2

contains the state ((0, 0, 1, 1), (3, 3, 2)) obtained from (σT)0 = ((1, 1, 0, 0), (0, 0,
0)) by waiting one unit of time, firing t1, waiting two units of time and then
firing t2. However, the class C11 does not contain such a state, since all the
states which belong to this class satisfy clockT (t3) = 0 (the class is entered
by firing t1, which enables t3 and therefore sets the “clock” of t3 to 0).

�

Atomic State Class Graph

In order to obtain a CTL∗-preserving structure, a geometric region graph
needs to be refined to make all its classes atomic. The model obtained this
way is called an atomic state class graph (ASCG) [174]. If a class C = (m, I, η)
is not atomic, then there is some inequality ξ such that satisfaction of ξ is
necessary for the concrete states in C to have descendants in a successor C ′

of C, but the solution sets of both I ∪ ξ and I ∪ ¬ξ are non-empty. The class
C is then split into

C1 = (m, I ∪ ξ, η) and C2 = (m, I ∪ ¬ξ, η).

The descendants of C1 and C2 are computed from copies of the descendants
of C, by modifying their sets of inequalities adding ξ and ¬ξ, respectively.
As a result, the atomic state class graph satisfies (up to the equivalence, see
p. 102), besides EE1 and EE2, also both the conditions AE and EA.

A pseudo-code of the algorithm for building atomic state class graph is
shown in Fig. 5.11. In fact, building the geometric region graph and making

108 5 Abstract Models

Fig. 5.11. An algorithm for generating atomic state class graph of a (1-safe) time
Petri net (continued on the next page)

Input arguments:

a (1-safe) time Petri net N = (P, T, F, m0, Eft, Lft)
Global variables:

classes: 2RMN×IqSets({vi
t|t∈T∧i∈IN}∪{vν})

Return values:

build ASCG(), dfs a(), partitioning(): a graph of nodes of
RMN × IqSets({vi

t | t ∈ T ∧ i ∈ IN} ∪ {vν})
find ineqs(): IqSets({vi

t | t ∈ T ∧ i ∈ IN} ∪ {vν})
propagated ineq(): Iqs({vi

t | t ∈ T ∧ i ∈ IN} ∪ {vν})
parent class(), the class to be split():

RMN × IqSets({vi
t | t ∈ T ∧ i ∈ IN} ∪ {vν})

1. procedure build ASCG(N) is
2. begin
3. classes := ∅;
4. dfs a(C0);
5. end build ASCG;

6. procedure dfs a(C′) is
7. begin
8. if (∀C ∈ classes) C′ �≡G C then
9. classes := classes ∪ {C′};
10. for each t firable at C′ do
11. partitioning(C′,t); // C′ can be modified or deleted

12. if C′ deleted or became equivalent to another class then
13. break; // backtracking

14. end if;
15. if t is firable at C′ then
16. compute the t-successor C′′ of C′;
17. dfs a(C′′);
18. end if;
19. end do;
20. else
21. handle equivalence of classes;
22. end if;
23. end dfs a;

24. procedure partitioning(C′,t) is
25. begin
26. iqs := find ineqs(C′, t);
27. while (∃ξ ∈ iqs) do
28. C := the class to be split(ξ); // assume C = (m, I, η)

5.1 Model Generation for Time Petri Nets 109

29. if sol(I ∪ ξ) �= ∅ ∧ sol(I ∪ ¬ξ) �= ∅ then
30. C1 := (m, I ∪ ξ, η); C2 := (m, I ∪ ¬ξ, η);
31. ξ1 := propagated ineq(ξ); ξ2 := propagated ineq(¬ξ);
32. C′′ := parent class(C); // assume C′′ = (m′′, I′′, η′′)

33. if sol(I ′′ ∪ ξ1) �= ∅ then // C1 is a successor of C′′

34. make C1 the successor of C′′ in the graph;
35. if (∃C3 ∈ classes) C3 ≡G C1 then
36. handle equivalence of classes;
37. else
38. replace the edges from C by edges from C1 in the graph;
39. iqs := iqs ∪ {ξ1};
40. classes := classes \ {C} ∪ {C1};
41. C := C1; // this includes deleting C

42. use ξ to modify the subtree rooted at C1; // this involves

43. // handling (in)equivalence and possible emptiness of classes

44. end if;
45. else
46. delete C1;
47. end if;
48. if sol(I ′′ ∪ ξ2) �= ∅ then // C2 is a successor of C′′

49. make C2 the successor of C′′ in the graph;
50. iqs := iqs ∪ {ξ2};
51. classes := classes \ {C}; delete C;
52. dfs a(C2);
53. else
54. delete C2;
55. end if;
56. end if;
57. iqs := iqs \ {ξ};
58. end do;
59. end partitioning;

its classes atomic is performed in parallel: before firing a transition t at a
class C, it is checked whether t can be fired at all the concrete states of C,
and the class is split if necessary. Thanks to this, when the successors of C
are generated, the class is atomic w.r.t. them. The successors are computed
analogously as in the geometric region graph.

The partitioning process is a bit more involved. Firstly, when the procedure
partitioning is called for a class C ′ and a transition t, there is possibly more
than one inequality which can make the class non-atomic (in fact, each of these
inequalities expresses that t can fire earlier than another enabled transition).
They are computed in line 26 of the algorithm and stored in the set iqs
(each element of this set “remembers” also the class to be split w.r.t. it).
Moreover, splitting of C ′ can make some of its predecessors non-atomic. Due
to this, when a class C (which can be either C ′ or one of its predecessors) is

110 5 Abstract Models

partitioned, new inequalities ξ1, ξ2 that need to be satisfied for all the concrete
states in the “parent” C ′′ of C to have descendants respectively in C1 and
C2, can be added to iqs (see lines 31, 39, 50). Partitionings are performed as
long as the set iqs is non-empty. Notice, however, that an element of iqs does
not necessarily cause partitioning of the corresponding class. This is tested in
line 29.

Secondly, when C is partitioned, ξ1 and ξ2 are used to check whether C1

and C2 are successors of C ′′. One of the classes (i.e., the one the states of
which satisfy ξ) possibly replaces C in the graph (and in the procedure dfs a
called for C), whereas for the second the procedure dfs a can be run. Notice,
moreover, that since all the modifications, introduced to the graph by the pro-
cedure partitioning called for a class C ′ and a transition t, can potentially
cause that t is not firable at the class which replaces C ′, the algorithm tests
this firability after backtracking to dfs a (line 15).

Finally, the procedure partitioning needs to deal with the equivalence
of classes. The class C1 obtained by splitting C can occur to be equivalent to
another class. This is not tested after returning to dfs a (this procedure tests
equivalence only once, for the class for which it is called), and therefore needs
to be checked and handled in this procedure. Moreover, the subtree rooted at
C so far is modified by adding ξ to the sets of inequalities of its classes, and
the modified classes need to be checked w.r.t. the equivalence (notice that it
is also possible that the previous relations are broken). Empty classes (i.e.,
that whose sets of inequalities are inconsistent) are removed from the graph.

Example 5.8. Consider again the net N shown in Fig. 5.7 and the geometric
region graph for this net (see Example 5.7). In the process of generating an
atomic state class graph, the algorithm splits the class C6 of the geometric
region graph, using the inequality ξ = “v2

t3 −vν ≤ 3“. The explanation for this
is as follows: after firing the sequence of transitions η = t1t3t3, it is possible
to fire both t2 and t3. However, t3 can occur only if the preceding passage of
time does not disable t2, which implies that the previous firing of t3 (i.e., the
second one in η) could take place not later than three time units after the net
started. Thus, C6 is partitioned, which involves adding ξ to I6, and creating
a new class

C13 = ((0, 1, 1, 0), I13, t1t2t3), where I13 = I6 ∪ {“v2
t3 − vν > 3“},

at which the transition t2 is firable only. The successors of C6 are modified,
and these of C13 are generated.

In further steps of the algorithm partitionings are propagated towards the
root of the graph. So, the class C4 is split using the inequality ξ′ = “v1

t3 −vν ≤
2“. This, in turn, can be explained by the fact that if in the sequence η′ = t1t3
the transition t3 fires not later than two time units after the net starts, then no
further passage of time which allows for the next firing of t3 can disable t2, and
therefore the predecessors of concrete states belonging to the modified class
C6 have to satisfy the condition given by ξ′. Therefore, the sets of inequalities

5.1 Model Generation for Time Petri Nets 111

of C4 and its successors are modified by adding ξ′. Moreover, the algorithm
creates a new class

C15 = ((0, 1, 1, 0), I15, t1t3), where I15 = I4 ∪ {“v1
t3 − vν > 2“},

and generates its successors. The resulting graph is presented in Fig. 5.12.

t3

t3

t3 t3t2

t2 t3 t3

t2 t3

t2

t2

t3

t1

t1 t2

t2

C3

C12 ≡G C3

C15C�
4C2

C1

C�
5

≡G C3

C�
6 C13

C�
7 C�

8

≡G C3

C�
9 ≡G C3

C16 C17

C14

≡G C3

≡G C2 ≡G C13

C11

C10

≡G C2

C0

Fig. 5.12. The atomic state class graph for the net in Fig. 5.7

The classes Ci which appear both in the geometric region graph of Fig. 5.9
and in the ASCG, but in the latter their sets of inequalities are modified, are
marked with small stars.

�

Pseudo-atomic State Class Graph

The atomic state class graph’s construction can be further modified to gen-
erate pseudo-atomic state class graphs, which (up to the equivalence) satisfy,
besides EE1 and EE2, the condition U instead of AE [117]. The models are
built in a way similar to atomic state class graphs, but in some cases in-
stead of splitting the classes only their cores are refined. A pseudo-code of
the algorithm is similar to that in Fig. 5.11, but with a different procedure
partitioning. The successor of a class in dfs a is computed in the same way
as in the geometric region graph, and the core of the newly generated suc-
cessor is set to equal to the whole class. Moreover, two classes C and C ′ are
equivalent in the pseudo-atomic state class graph if C ≡G C ′ in the atomic
state class graph, and if their cores are equal.

112 5 Abstract Models

Strong State Class Graph

Berthomieu and Vernadat introduced another method of building abstract
models, applicable to the general class of TPNs with no restriction on the
capacity of the places (transitions with infinite latest firing times require,
however, a special treatment) [35]. The models, called strong state class graphs
(SSCGs), can be then further refined to satisfy the condition AE. The solution
can be seen as a combination of the state class graph and the geometric region
graph approach. The definition of concrete states, as well as the semantics
applied, follow the approach of state class graphs. The model consists of classes
of the form

C = (m, I),

where I is a set of inequalities built over the set of variables corresponding
to the transitions in en(m), similarly to [32, 33]. However, the value of the
variable vt corresponding to a transition t ∈ en(m) gives the time elapsed
since t has been last enabled, which, in turn, corresponds to the approach of
geometric region graphs. The set I and the marking m enable to compute the
set of the concrete states that belong to the class.

The initial class of the graph is given by

C0 = (m0, {“0 ≤ vt ≤ 0“ | t ∈ en(m0)}).

Firability of a transition t at a class, as well as the set of inequalities of the
successor, are defined in terms of the times elapsed since the transitions have
been enabled, using additional temporary variables denoting possible firing
times of t. More precisely, t ∈ en(m) is firable at a class C = (m, I) if the set
of inequalities

I1 = I ∪ {“θ ≥ 0“} ∪ {“Eft(t) ≤ vt + θ“} ∪ {“vt∗ + θ ≤ Lft(t∗)“ | t∗ ∈ en(m)}

is consistent. Intuitively, the variable θ represents possible firing times of the
transition t. For the class C ′ = (m′, I ′) resulting from firing t at C, we have
m′ = m[t〉, whereas I ′ is obtained from I in the following steps:

1. the set I ′ is initialized to I1 given above (i.e., to the set obtained from I
by adding the firability condition for t). This introduces the new variable
θ;

2. for each t∗ ∈ en(m′) a new variable v′
t∗ is introduced, and I ′ is augmented

by the inequalities:12

• v′
t∗ = vt + θ if t∗ �= t and m(p) − F (p, t) ≥ F (p, t∗) for each p ∈ •t∗

(this corresponds to passing θ time units since C has been entered);
• 0 ≤ v′

t∗ ≤ 0 otherwise;
3. the variables θ and vt∗ , for t∗ ∈ en(m), are eliminated.

12 Obviously, an equality is then treated as the conjunction of two inequalities.

5.1 Model Generation for Time Petri Nets 113

Two classes (m, I) and (m′, I ′) are equivalent if they describe the same sets
of concrete states. This is easily tested when the values of Lft are finite only:
then, the classes are equivalent if m = m′ and sol(I) = sol(I ′) (the opposite
case is explained below). Similarly to the previous approaches, all the classes
in the strong state class graph satisfy the conditions EE1, EE2 and EA. Thus,
the model preserves LTL, and so reachability properties.

In the case of a net without infinite latest firing times of the transitions, its
SSCG is finite iff the net is bounded [35]. However, if infinite Lfts are allowed,
boundedness of the net is not sufficient to ensure finiteness of the SSCG, as
the number of possible intervals specifying the time elapsed since a transition
t with Lft(t) = ∞ became enabled, can be infinite, which, in turn, can result
in an infinite number of the classes. However, these classes can correspond
to the same sets of concrete states13. To cope with this, the transitions with
infinite Lfts are treated in a special way: for a given class C = (m, I), let

en∞(m) = {t ∈ en(m) | Lft(t) = ∞}.

Moreover, for e ⊆ en∞(m) let Ie denote the set of inequalities obtained from
I by applying the following steps:

1. initializing Ie as

Ie = I ∪ {“vt < Eft(t)“ | t ∈ e} ∪ {“vt ≥ Eft(t)“ | t ∈ en∞(m) \ e};

2. eliminating all the variables vt for t ∈ en∞(m) \ e;
3. adding to Ie the set of inequalities {“vt ≥ Eft(t)“ | t ∈ en∞(m) \ e}.

The class C is replaced by

Rlx(C) = {(m, Ie) | e ⊆ en∞(m)}.

Intuitively, applying the first step of the above procedure corresponds to par-
titioning C into subsets consisting of the concrete states in which the same
groups of transitions of infinite latest firing times reached or exceeded their
Efts (which means that in these states the same transitions of infinite latest
firing times are assigned firing intervals [0, ∞)). Then, the steps 2 and 3 relax
the lower and upper bound of the intervals constraining all these variables vt

which correspond to a transition t that reached its earliest firing time, i.e., re-
place these bounds by Eft(t) and ∞, respectively. This is called relaxation of
the state class C. The operation requires redefining the equivalence of classes.
Two classes C = (m, I) and C ′ = (m′, I ′) are then equivalent iff the unions
of the elements obtained by the relaxation of each of them are equal (i.e., if
m = m′ and

⋃
(m∗,I∗)∈Rlx(C) sol(I∗) =

⋃
(m∗,I∗)∈Rlx(C′) sol(I∗)), which again

13 Recall that we are dealing with the firing interval semantics.

114 5 Abstract Models

means that C and C ′ correspond to the same set of concrete states14. Apply-
ing the relaxation while building the SSCG ensures finiteness of the graph if
the net is bounded.

Obviously, the method of building SSCGs is applicable also to the nets of
a finite capacity of the places. The results on finiteness of the graph for this
case come from the above considerations in a straightforward way.

Example 5.9. Consider again the net of Fig. 5.7. The strong state class graph
for this net is presented in Fig. 5.13. The classes of the graph are listed below
(the description used is analogous to the previous examples).

C0 = ((0, 0, 1, 1), 0 ≤ vt1 ≤ 0 ∧ 0 ≤ vt2 ≤ 0),
C1 = ((0, 1, 1, 0), 1 ≤ vt2 ≤ 1 ∧ 0 ≤ vt3 ≤ 0),
C2 = ((0, 0, 1, 1), 0 ≤ vt3 ≤ 2),
C3 = ((0, 0, 1, 1), 0 ≤ vt3 ≤ 0),
C4 = ((0, 1, 1, 0), 2 ≤ vt2 ≤ 3 ∧ 0 ≤ vt3 ≤ 0),
C5 = ((0, 1, 1, 0), 3 ≤ vt2 ≤ 4 ∧ 0 ≤ vt3 ≤ 0),
C6 = ((0, 0, 1, 1), 0 ≤ vt3 ≤ 1),
C7 = ((0, 1, 1, 0), 4 ≤ vt2 ≤ 4 ∧ 0 ≤ vt3 ≤ 0),
C8 = ((1, 0, 0, 1), 1 ≤ vt1 ≤ 1).

In this case, the constraints on the variables corresponding to the transitions
specify the time which possibly passed since the transitions became enabled.

t2t1

t2

t3 t3t3

t3t3

t2

t2
t2

t3

t3 t1

C0

C1

C2

C3

C4

C5

C6 C7

C8

Fig. 5.13. The strong state class graph for the net in Fig. 5.7

14 It is worth noticing that checking the above conditions is, in practice, not easy
to implement. Thus, the SSCG is built in the following way: if a transition t is
fired at a class C and the resulting class C′ needs to be relaxed, then C gets
multiple t-successors, each of which corresponds to one element of Rlx(C′). The
equivalence of classes is then implemented analogously to the case of finite Lfts
(see p. 113).

5.2 Model Generation for Timed Automata 115

The class C0 corresponds to the start of the net (i.e., it contains the initial
state (σF)0 only). The set of inequalities of its successor C1, obtained by
firing t1, makes the class to contain the state which can be reached from the
initial one by passing one time unit and then firing t1 (which implies that the
time elapsed since t2 became enabled is equal to 1, whereas t3 became newly
enabled). The rest of the classes can be analysed in a similar way.

�

If we are not interested in preserving all the LTL formulas, then the process
of building the above graph can be further improved, e.g., by checking whether
a new class C is included in an existing one and not generating its successors if
so; or by grouping together the classes (with the same marking) whose union
is convex [79]. These solutions correspond usually to abstractions for timed
automata described in Sect. 5.2.3. The resulting models preserve reachability
properties.

Strong Atomic State Class Graph

In order to obtain a strong atomic state class graph, (i.e., a strong class graph
satisfying AE), the above model is refined in a way similar to that of a geo-
metric region graph, i.e., its classes are partitioned until all of them become
atomic. However, unlike in an atomic geometric region graph, the classes sat-
isfy EE1, EE2 and AE, but not necessarily EA, as an inequality, added to the
set I of some class C = (m, I) which is partitioned, is not propagated to the
descendants of C.

5.1.2 Other Approaches – an Overview

Besides the state class methods, other approaches to building abstract mod-
els for time Petri nets also exist. In many cases they correspond to the solu-
tions known for timed automata and described in the following section. This
includes, e.g., the detailed region graph for time Petri nets [111, 163] (see
Sect. 5.2.1 for a corresponding definition for TA), or a method for computing
the state spaces of time Petri nets based on a construction of the forward-
reachability graph for timed automata (see Sect. 5.2.3) [73]. Another branch
includes methods defined for time Petri nets which do not have any counter-
part for timed automata, like a method for building reachability graph based
on the so-called firing points of the transitions [43].

5.2 Model Generation for Timed Automata

In this section we define abstract models for timed automata, which can be
used for both enumerative and SAT-based symbolic verification. We start with

116 5 Abstract Models

a detailed region graph approach. The main reason for this is that some of
SAT-related methods (see Chap. 7) are based on a propositional encoding of
detailed regions.

5.2.1 Detailed Region Graphs

Given a timed automaton A = (A,L, l0, E, X , I) and a TCTL or TCTLC
formula ϕ. We consider later two interval semantics for TCTL: weakly and
strongly monotonic. Let CA ⊆ C�

X be a non-empty set containing all the clock
constrains occurring in any enabling condition or in any state invariant of A,
and let cmax(A) denote the largest constant appearing in them. Moreover, let
cmax(A, ϕ) be the largest constant15 appearing in CA and in any time interval
in ϕ of TCTL and in any clock constraint in ϕ of TCTLC . For δ ∈ IR0+,
frac(δ) denotes the fractional part of δ, and �δ� denotes its integral part.

Definition 5.10 (Equivalence of clock valuations). For two clock valu-
ations v, v′ ∈ IRnX

0+ , v
CA,ϕ
v′ iff for all x, x′ ∈ X the following conditions

are met:

1. v(x) > cmax(A, ϕ) iff v′(x) > cmax(A, ϕ),
2. if v(x) ≤ cmax(A, ϕ) then

a) �v(x)� = �v′(x)�,
b) frac(v(x)) = 0 iff frac(v′(x)) = 0,

3. for each clock constraint cc ∈ C�
X of the form x − x′ ∼ c with c ∈ IN,

∼ ∈ {<, ≤,=≥, >}, and c ≤ cmax(A, ϕ) we have (v |= cc ⇐⇒ v′ |= cc).

When A is diagonal-free (i.e., CA ⊆ CX), the condition 3. in the above defini-
tion is replaced by

3’. if v(x) ≤ cmax(A, ϕ) then frac(v(x)) ≤ frac(v(x′)) iff frac(v′(x)) ≤
frac(v′(x′)).

Intuitively, the conditions 1., 2., 3’. specify that two clock valuations are equiv-
alent if either

• the values of the same clocks are greater than cmax(A, ϕ),
or

• they agree on their integral parts, and the orderings of the fractional parts
are the same.

The reason for such a definition is that the integral parts allow to determine
whether or not a particular invariant or enabling condition is satisfied, whereas
the ordering of the fractional parts is necessary to decide which clock will
change its integral part first when the time passes.

15 Obviously, ∞ is not considered as a constant.

5.2 Model Generation for Timed Automata 117

The intuition behind the conditions 1., 2., 3. in Definition 5.10 is similar,
besides that the equivalent clock valuations are additionally required to satisfy
the same atomic constraints in which the difference of two clocks is compared
with a value not exceeding cmax(A, ϕ), even in the case when the value of a
single clock is greater than cmax(A, ϕ). This follows from the form of invari-
ants and enabling conditions of the automaton considered. Notice that the
condition 3’ can be seen as a restriction of the condition 3. of Definition 5.10
to the case of clock valuations in which none of the clocks exceeds cmax(A, ϕ).

Having defined the equivalence of clock valuations, we can formulate the
main lemma guaranteeing preservation of TCTL formulas for both the weakly
and strongly interval semantics as well as of TCTLC formulas.

Lemma 5.11 (Preserving TCTL [7, 83]). Let A = (A,L, l0, E, X , I) be a
timed automaton, VA be a valuation function for A, Mc(A) be the concrete
dense model of A, and ϕ be a TCTL or TCTLC formula. Moreover, let l ∈ L,
and v, v′ ∈ IRnX

0+ with v
CA,ϕ
v′. Then, we have

Mc(A), (l, v) |= ϕ iff Mc(A), (l, v′) |= ϕ.

Next, we define finite abstract models preserving TCTL and TCTLC . The
equivalence classes of the relation
CA,ϕ

are called detailed zones. The set of
all the detailed zones is denoted by DZ(nX). As it is easy to see, detailed
zones are time zones, so DZ(nX) ⊆ Z(nX). Moreover, it is possible to find an
upper bound on the number of detailed zones: e.g., for the diagonal-free case
it is not greater than nX ! × 2nX × (2cmax(A, ϕ) + 2)nX .

The set of detailed zones for cmax(A, ϕ) = 1 and (respectively) a non-
diagonal-free and a diagonal-free TA of two clocks x1, x2 is presented in
Fig. 5.14.

(a) (b)

Fig. 5.14. Detailed zones for cmax(A, ϕ) = 1: (a) for a non-diagonal free TA (b)
for a diagonal-free TA

A detailed zone Z ∈ DZ(nX) is final if for all v ∈ Z and x ∈ X we have
v(x) > cmax(A, ϕ) and for each c > cmax(A, ϕ) there is v ∈ Z such that
v(x) > c for all x ∈ X . A detailed zone Z ∈ DZ(nX) is open if there is

118 5 Abstract Models

x ∈ X such that all v ∈ Z satisfy the condition v(x) > cmax(A, ϕ) and for
each c > cmax(A, ϕ) there is v ∈ Z and x ∈ X such that v(x) > c. The initial
detailed zone Z0 ∈ DZ(nX) is defined as Z0 = {v0}.

A detailed region is a pair (l, Z), where l ∈ L and Z ∈ DZ(nX). The action-
and time successor relation in the set of the detailed regions can be defined via
representatives, which gives us a finite abstract model, called the (detailed)
region graph (DRG). The model preserves TCTL or TCTLC , provided that its
transition relation reflects the definition of the weakly or strongly monotonic
semantics used to interpret the formulas of the logic. Below we introduce the
two alternative approaches.

The definition of the detailed region graph corresponding to the weakly
monotonic semantics looks as follows:

Definition 5.12. The (detailed) region graph of a timed automaton A is a
finite transition system

DRG(A) = (W,w0, →�),

where

• W = L × DZ(nX),
• w0 = (l0, Z0) and
• →� ⊆ W × (A ∪ {τ}) × W is defined as follows:

1. (l, Z) τ→� (l, Z ′) iff there is v ∈ Z and v′ ∈ Z ′ such that
a) (l, v) δ→c (l, v′) for some δ ∈ IR0+, and

b) if (l, v) δ′
→c (l, v′′) δ′′

→c (l, v′) with δ′, δ′′ ∈ IR0+ and (l, v′′) ∈ w with
w ∈ W , then v
CA,ϕ

v′′ or v′
CA,ϕ
v′′, and

c) if v
CA,ϕ
v′, then v
CA,ϕ

v′ + δ′′ for each δ′′ ∈ IR0+

(time successor),
2. (l, Z) a→� (l′, Z ′) iff there is v ∈ Z and v′ ∈ Z ′ such that (l, v) a→c

(l′, v′) (action successor).

The condition 1(a) says that the region (l, Z ′) is a time successor of (l, Z),
whereas 1(b) specifies that it is the immediate one. By 1(c) we know that
Z = Z ′ for final regions only. The interpretation of the condition 2 is straight-
forward. An illustration of the definition is shown in Fig. 5.15, where all the
arrows (both the solid and the dashed ones) denote the successor relation be-
tween detailed regions. The dashed lines are used to mark the successors of the
regions which are treated differently in the alternative definition introduced
below.

In order to define a detailed region graph reflecting the strongly monotonic
runs we need to distinguish between boundary and non-boundary regions. A
detailed region (l, Z) is called boundary if for each positive δ ∈ IR and each
v ∈ Z we have ¬(v
CA,ϕ

v + δ), which means that the region contains no

5.2 Model Generation for Timed Automata 119

l × l ×

time successors action successors

by a transition l
a,true,{x1}

−→ l

l′ ×l ×

action successor by a transition l
a,true,∅

−→ l′

Fig. 5.15. Time- and action successor relation for detailed regions. The invariants
of l and l′ are assumed to be equal to true

time-successors of any of its states. An example of such regions are the points
as well as the horizontal and vertical lines shown in Fig. 5.14. In this case the
definition of the detailed region graph DRGb(A) looks as follows:

Definition 5.13. The boundary-distinguishing (bd-) (detailed) region graph
of a timed automaton A is a finite transition system

DRGb(A) = (W,w0, →�b),

where

• W = L × DZ(nX),
• w0 = (l0, Z0) and
• →�b ⊆ W × (A ∪ {τ}) × W is defined by

1. (l, Z) τ→�b (l, Z ′) iff (l, Z) τ→� (l, Z ′) in DRG(A) (time successor),
2. (l, Z) a→�b (l′, Z ′) iff the following conditions hold:

a) (l, Z) is not boundary and
b) there is v ∈ Z and v′ ∈ Z ′ such that ((l, v) a→c (l′, v′) or there is

Z ′′ and v′′ ∈ Z ′′ such that (l, Z) τ→� (l, Z ′′) and (l, v′′) a→c (l′, v′)),
for a ∈ A

(action successor).

The condition 1 means that the time successor relation is defined analogously
to Definition 5.12. The condition 2(a) expresses the fact that action successors

120 5 Abstract Models

can be executed from non-boundary regions only. This is to ensure that there
are no two consecutive action successors in a run. But, to guarantee that all
the strongly monotonic runs are represented in the region graph, the a-action
successors of the concrete states in a boundary region (l, Z ′′) that could be
reached by a time successor from another region (l, Z), are represented as the
a-action successor (l, Z ′) of (l, Z) (see the condition 2(b)). This is correct since
no boundary region can be a time successor of a boundary region.

An illustration of this definition is given in Fig. 5.16. All the arrows (both
the solid and the dashed ones) denote the successor relations. The dashed lines
in the pictures for the action successors correspond to the relation between a
region whose time successor is a boundary region (l, Z) and the region which
contains the action successors of concrete states in (l, Z) (notice that each of
these lines has its dashed counterpart in Fig. 5.15, “anchored” in the boundary
region).

l ×

1x

2x

1

0 1

l ×

time successors action successors

by a transition l
a,true,{x1}

−→ l

l′ ×l ×

action successor by a transition l
a,true,∅

−→ l′

Fig. 5.16. Time- and action successor relation for detailed regions when boundary
regions are distinguished. The invariants of l and l′ are assumed to be equal to true

Examples of the detailed region graphs for both the semantics are given below.

Example 5.14. Fig. 5.17 depicts a timed automaton of three locations (l0, l1, l2)
and three clocks x1, x2, x3 (this is the product automaton of Fig. 2.5). In
Fig. 5.18, the reachable part of its detailed region graph, built for a formula

5.2 Model Generation for Timed Automata 121

ϕ such that cmax(A, ϕ) = 1 and the weakly monotonic semantics, is shown.
Fig. 5.19 presents the reachable part of the detailed region graph built for the
same value of cmax(A, ϕ) and the strongly monotonic semantics. The initial
location of the automaton as well as the initial regions of the graphs are
coloured. In the picture of the region graph DRGb the boundary regions are
marked with bold frames.

�

a b

cc

d e
x2 = 1

x2 > 1

x3 < 1 x3 := 0

x3 < 1
x2 := 0

x1 := 0

l0 l1 l2

x2 := 0

x3 < 1
x1 ≥ 1
x1 := 0

Fig. 5.17. The timed automaton of Example 5.14

x2 > 1 ∧ x3 > 1
l2 0 < x1 < 1 ∧

l1

l1 l1 l2

l2 x1 = 0 ∧
x2 = 1 ∧ x3 = 1

x1 = x2 = x3 = 1 x1 = x2 = x3 = 1

x1 = x2 = x3 = 0

x1 = x2 = x3

0 < x1 < 1 ∧

a

τ

τ

τ

b

e

τ

τ

τ

a0 < x1 < 1 ∧
x1 = x2 = x3

l0

x2 = 0 ∧

x1 = x2 = x3 = 0

l1

x1 = x3 ∧
0 < x2 < x1 < 1

τ

τ

0 < x2 < 1 ∧
τ

τ

x2 > 1 ∧
d

x2 = 0 ∧

τ

τ
x1 > 1 ∧ x3 > 1

x1 > 1 ∧ x3 > 1
x2 = 1 ∧

l0

x1 = x3 = 1

l1

l1

l1

l1

l1

l1 0 < x2 < 1 ∧

0 < x1 = x3 < 1 x1 > 1 ∧ x3 > 1

x2 > 1 ∧ x3 > 1

τ

e

l2 x1 = 0 ∧

τ

l2
x2 > 1 ∧ x3 > 1

x1 > 1 ∧

l2 x2 = 1 ∧
x1 > 1 ∧ x3 > 1

l2 x1 = 0 ∧
x2 = 1 ∧ x3 > 1

τ

x2 > 1 ∧ x3 > 1
l2 x1 = 1 ∧τ

b

e

τ

τ

τ

x1 > 1 ∧ x3 > 1

e

Fig. 5.18. The reachable part of the detailed region graph for the automaton of
Fig. 5.17 and a formula ϕ such that cmax(A, ϕ) = 1

In Sect. 7.1 we show how to encode detailed regions and the transition relation
in a symbolic way to accomplish bounded model checking.

122 5 Abstract Models

x2 > 1 ∧ x3 > 1
l2 0 < x1 < 1 ∧

τ

a0 < x1 < 1 ∧
x1 = x2 = x3

l0

x2 = 0 ∧

x1 = x2 = x3 = 0

l1

x1 = x3 ∧
0 < x2 < x1 < 1

τ

τ

0 < x2 < 1 ∧
τ

τ

x2 > 1 ∧
d

x2 = 0 ∧

τ

τ
x1 > 1 ∧ x3 > 1

x1 > 1 ∧ x3 > 1
x2 = 1 ∧

l0

x1 = x3 = 1

l1

l1

l1

l1

l1

l1 0 < x2 < 1 ∧

0 < x1 = x3 < 1 x1 > 1 ∧ x3 > 1

x2 > 1 ∧ x3 > 1

τ

e

l2 x1 = 0 ∧

τ

l2
x2 > 1 ∧ x3 > 1

x1 > 1 ∧

l2 x2 = 1 ∧
x1 > 1 ∧ x3 > 1

τ

x2 > 1 ∧ x3 > 1
l2 x1 = 1 ∧

τ

τ

e

τ

x1 > 1 ∧ x3 > 1

b

x2 = 1 ∧ x3 > 1
x1 = 0 ∧l2 τ

Fig. 5.19. The reachable part of the boundary-distinguishing detailed region graph
for the automaton of Fig. 5.17 and a formula ϕ such that cmax(A, ϕ) = 1

5.2.2 Partition Refinement

Partition refinement (minimization) is an algorithmic method for constructing
abstract models for timed automata in the on-the-fly manner, i.e., without
building concrete models first. Typically, the algorithm starts from an initial
partition Π = Π0 of the state space Q of A (i.e., from a set of disjoint classes
the union of which equals Q, cf. Footnote 3 in Sect. 2), which respects (at least)
the valuation of the propositions of interest16. The successor relation between
the classes of Π satisfies the condition EE. The partition Π is then successively
refined until Π (or its reachable part, depending on the algorithm) becomes
stable, i.e., satisfies the conditions required on the model to be generated, or,
more precisely, until the elements of Π become equivalence classes of some
equivalence relation that guarantees to preserve the property to be verified.
As a result, we obtain an abstract model Ma = (G,Va) with G = (W,w0, →a),
where

• the elements of W are (reachable) classes of a stable partition Π,
• w0 is the initial class containing the state q0 of A,
• the successor relation →a is induced by that on Π, and
• Va assigns to each class of Π the propositions (or at least these of interest)

true at the states of this class.

Usually, either a concrete discrete model for A, or a time-abstracted concrete
dense model (see p. 94) is exploited as an underlying concrete model for
defining the valuation function and the successor relation in Π. Moreover,
weakly monotonic semantics is assumed.

16 This means that for any proposition ℘ ∈ PV of A (or at least for these ℘ ∈ PV
which are used to express the properties to be checked) and for any class Y ∈ Π
the proposition holds either in all the concrete states q ∈ Y , or in none of them.

5.2 Model Generation for Timed Automata 123

The classes of partitions are usually represented by regions. If the val-
uations of the clocks in a region do not exceed cmax(A),17 then the re-
gion is a union of detailed regions. Formally, given a timed automaton
A = (A,L, l0, E, X , I) of nX clocks, a region R ∈ L × Z(nX), denoted by
(l, Z) for l ∈ L and Z ∈ Z(nX), is a set of concrete states

R = {(l, v) ∈ L × IRnX
0+ | v ∈ Z}.

The set of all the regions is denoted by R(nX , L). A concrete state q′ = (l′, v′)
of A is an element of (l, Z) (denoted q′ ∈ (l, Z)) iff l′ = l and v ∈ Z. For two
regions R = (l, Z) and R′ = (l, Z ′) we define their difference as

R \ R′ = {(l, Z ′′) | Z ′′ ∈ Z \ Z ′}.

Computing \ is of an exponential complexity in the number of clocks [159],
which means that it can result in the exponential number of regions. This
operation potentially returns a set of regions which consists of more than
one element. This can cause an important inefficiency of partition refinement
algorithms.

Below, we present the main partitioning algorithms and characterize ab-
stract models generated by them. To this aim, we need some additional no-
tions. Given a timed automaton A and its (discrete or a time-abstracted dense)
concrete model Mc(A) = ((Q, q0, →c), VC) whose successor relation is labelled
by the elements of a set B. Let

b(q), b−1(q) ⊆ Q,

where q ∈ Q and b ∈ B, denote, respectively, the set of concrete states which
are b-successors of q, and the set of concrete states for which q is a b-successor.
For a partition Π of Q and Y, Y ′ ∈ Π let

postb(Y, Y ′) = {q′ ∈ Y ′ | (∃q ∈ Y) q′ ∈ b(q)},

and
preb(Y, Y ′) = {q ∈ Y | (∃q′ ∈ Y ′) q ∈ b−1(q′)}.

Moreover, we establish a successor relation →Π ⊆ Π × B × Π for the classes
of the partition Π, given by

Y
b→Π Y ′ iff there is q ∈ Y such that b(q) ∩ Y ′ �= ∅

(which corresponds to the condition EE(Y, Y ′)). Next, for a class Y ∈ Π we
define the sets of all its successors and predecessors in Π, i.e.,

PostΠ(Y) = {Y ′ ∈ Π | (∃b ∈ B) Y
b→Π Y ′}

and
PreΠ(Y) = {Y ′ ∈ Π | (∃b ∈ B) Y ′ b→Π Y }.

17 The formula to be tested is not taken into account at this stage.

124 5 Abstract Models

Bisimulating Models

Three main minimization algorithms were introduced by Paige and Tarjan
[112], Bouajjani at al [40], and Lee and Yannakakis [101]. They are aimed at
generating bisimulating models, i.e., models which satisfy EE and AE.

The Algorithm of Bouajjani et al.

Since the method of [112] stabilizes all the classes of the partition, whereas
these of [40, 101] – the reachable part only, mainly the last two are applied
to timed systems in the literature. The algorithm of [40] serves building all
the types of bisimulating models mentioned above (i.e., discrete and time-
abstracted dense ones). Its generic pseudo-code is presented in Fig. 5.20. The
algorithm maintains two variables which store subsets of classes of a current
partition Π: reachable, which keeps the classes considered as reachable in a
given step, and stable, which collects the elements Y of reachable satisfy-

Input arguments:

a timed automaton A = (A, L, l0, E,X , I) of nX clocks
an initial partition Π0

Global variables:

Π, reachable, stable: 2R(nX ,L)

Return values:

minimization bisim(), Split(): 2R(nX ,L)

1. procedure minimization bisim(A, Π0) is
2. begin
3. Π := Π0; reachable := {[q0]}; stable := ∅;
4. while (∃Y ∈ reachable \ stable) do
5. CY := Split(Y, Π);
6. if CY = {Y } then
7. stable := stable ∪ {Y };
8. reachable := reachable ∪ PostΠ(Y);
9. else
10. PY := {Y ′ ∈ Π | Y ′ has been split};
11. reachable := reachable \ PY ∪ {Y ′ ∈ PY | q0 ∈ Y ′};
12. stable := stable \ {Y ′ ∈ Π | (∃Y ′′ ∈ PY) Y ′ ∈ PreΠ(Y ′′)};
13. Π := (Π \ PY) ∪ CY ;
14. end if;
15. end do;
16. end minimization bisim;

Fig. 5.20. A generic minimization algorithm

5.2 Model Generation for Timed Automata 125

ing the condition AE(Y, Y ′) for all their →Π -successors Y ′ in the current
partition. It starts from the class [q0] ∈ Π0 containing the initial state of A,
and then successively searches and refines reachable classes. A class Y1 ∈ Π
that is unstable w.r.t. its successor Y2 (in the case of bisimulating models
unstability of Y1 w.r.t. Y2 means that for some b ∈ B we have Y1

b→Π Y2, but
the condition AE(Y1, Y2) does not hold, i.e.,

(∃b ∈ B) preb(Y1, Y2) �∈ {Y1, ∅})

is partitioned into Y ′
1 containing all the concrete states which have b-successors

in Y2 (i.e., Y ′
1 = preb(Y1, Y2)), and Y1 \ Y ′

1 (see Fig. 5.21). The function
Split(Y,Π), used in the algorithm, returns either the classes obtained by
splitting Y ∈ Π due to its unstability w.r.t. a selected successor, or the class Y
if it satisfies AE(Y, Y ′) for all the successor classes Y ′. Notice that partitioning
of a class can result in unstability of its predecessors, and that some new classes
obtained by splitting of a given (reachable) one can be unreachable. This is
handled in the lines 11–12 of the algorithm.

b b

Y1

Y2

b b

Y2

Y ′
1

Y1 \ Y ′
1

(a): unstability of Y1 w.r.t. Y2 (b): partitioning of the class Y1

Fig. 5.21. Partitioning of the classes to preserve AE

Example 5.15. The pictures in Fig. 5.22 illustrate the partitioning process
while building a bisimulating model, for a part of a partition consisting of the
following four classes: Y1, Y2, Y3, Y4.

�

Implementations of the above algorithm require to define how to compute
the image and the inverse image of a class w.r.t. b ∈ B (or, in other words,
preb and postb for b ∈ B), as well as computing PreΠ and PostΠ . These
constructions depend on the type of a bisimulating model to be generated
(i.e., whether it is a discrete [66] or a time-abstracted one [8, 9, 66, 157, 159]).
Typically, all the implementations deal with a partition of the part of the
state space of the automaton which could possibly be reachable, i.e., with the
set

{(l, v) ∈ Q | v ∈ [[I(l)]]}.

Moreover, to improve on efficiency, in the case of time-abstracted models
they consider as time successors of a given class (l, Z) ∈ Π only these time
successors (l, Z ′) ∈ Π of (l, Z) which satisfy Z ⇑ Z ′ �= ∅ (so-called immediate
time successors).

126 5 Abstract Models

a a

cb b c

a
Y1

Y2

Y3 Y4

a a

cb b c

a
OK?

Y1

Y2

Y3 Y4

a a

cb b c

a
OK

Y1

Y2

Y3 Y4

(a): the classes (b): checking stability (c): AE(Y1, Y2) satisfied

before stabilizing of Y1 w.r.t. Y2

a a

cb b c

a

OK?

Y1

Y2

Y3 Y4

a a

cb b c

a

WRONG

Y1

Y2

Y3 Y4

a a

cb b c

a a
Y1

Y 2
2

Y3 Y4

Y 1
2

(d): checking stability (e): Y2 is unstable (f): splitting Y2
of Y2 w.r.t. Y3 w.r.t Y3

a a

cb b c

a aOK?
Y1

Y 2
2

Y3 Y4

Y 1
2

a a

cb b c

a aOK
Y1

Y 2
2

Y3 Y4

Y 1
2

a a

cb b c

a aOK?
Y1

Y 2
2

Y3 Y4

Y 1
2

(g): checking stability (h): AE(Y1, Y 1
2) satisfied (i): checking stability

of Y1 w.r.t. Y 1
2 of Y1 w.r.t. Y 2

2

a a

cb b c

a aOK
Y1

Y 2
2

Y3 Y4

Y 1
2

a a

cb b c

a a

OK?

Y1

Y 2
2

Y3 Y4

Y 1
2

a a

cb b c

a a

OK

Y1

Y 2
2

Y3 Y4

Y 1
2

(j): AE(Y1, Y 2
2) satisfied (k): checking stability (l): AE(Y 1

2 , Y3) satisfied

of Y 1
2 w.r.t. Y3

a a

cb b c

a a

OK?

Y1

Y 2
2

Y3 Y4

Y 1
2

a a

cb b c

a a

OK

Y1

Y 2
2

Y3 Y4

Y 1
2 b

a a

cb c

a a

Y 1
2

Y4

Y1

Y 2
2

(m): checking stability (n): AE(Y 2
2 , Y3) satisfied (o): all the classes

of Y 2
2 w.r.t. Y3 are stable,

partitioning finished

Fig. 5.22. A partitioning process for bisimulating models

5.2 Model Generation for Timed Automata 127

A Convexity-Preserving Technique

As it has been already stated, computing differences of classes while generat-
ing a model, together with the requirement of convexity of zones18, can lead to
inefficiency of the partitioning algorithm, since the result of the above opera-
tion is exponential in the number of clocks. A solution to this problem, which
is applicable to building strong ta-bisimulating models for timed automata,
was presented by Tripakis and Yovine in [158,159]. Given a timed automaton
A = (A,L, l0, E, X , I) of nX clocks, the main idea consists in starting from an
initial partition Π0 which respects the invariants and the enabling conditions
of A, i.e., is chosen such that for each Y ∈ Π0, each e ∈ E and each l ∈ L we
have

Y ∩ [[I(l)]], Y ∩ [[guard(e)]] ∈ {Y, ∅}
(notice that for obtaining such an initial partition, computing differences may
be necessary), and then refining it such that each class is stabilized simul-
taneously w.r.t. all its time successors, or w.r.t. all the action successors for
a given action. Since for each Y ∈ Π, where Π is a refinement of Π0, if an
action a ∈ A can be performed at a state q ∈ Y , then a can be performed at
all the states of the class, the set

{prea(Y, Y ′) | Y
a→Π Y ′}

constitutes a partition of Y . Thus, the class is stabilized w.r.t. all its a-
successors by computing the inverse images and intersections, but with no
need of computing differences. A similar result can be obtained in the case of
time successors, but to this aim Π0 has to contain all the concrete states of A,
even these which violate the invariants (i.e., the optimisation mentioned on
p. 125 cannot be applied). For a partition Π the classes (l, Z) ∈ Π which sat-
isfy Z ∩ [[I(l)]] = ∅ are called pseudoclasses, and Πps denotes the set of all the
pseudoclasses of Π. Thus, given a class (l, Z) ∈ Π, when stabilizing the class
w.r.t. the time successor relation we take into account all these (l, Z ′) ∈ Π
which satisfy Z ⇑ Z ′ �= ∅, even if, in fact, they are not time successors of
(l, Z) (i.e., there are no δ ∈ IR0+, q ∈ (l, Z), q′ ∈ (l, Z ′) such that q

δ→c q′,
due to Z ′ ∩ [[I(l)]] = ∅). The reason for this construction will become clear in
Example 5.16.

A pseudo-code of the algorithm is shown in Fig. 5.23. Similarly to that of
Fig. 5.20, the algorithm deals with two sets of classes stable and reachable,
starts from an initial class containing the initial state, and then successively
searches and refines reachable classes (notice that pseudoclasses are not added
to reachable). However, in this case testing stability of a class is a two-stage
procedure. Stability of a class Y w.r.t. its time-successors is always checked
first, and then, if no unstability occurs, the algorithm checks whether the
class satisfies AE(Y, Y ′) for all its action successors Y ′. The above tests and
18 Recall that the classes of a partition are usually represented by regions.

128 5 Abstract Models

Input arguments:

a timed automaton A = (A, L, l0, E,X , I) of nX clocks
an initial partition Π0

Global variables:

Π, reachable, stable: 2R(nX ,L)

Return values:

minimization bisconvex(), TimeSplit(), ActionSplit(): 2R(nX ,L)

1. procedure minimization bisconvex(A, Π0) is
2. begin
3. Π := Π0; reachable := {[q0]}; stable := ∅;
4. while (∃Y ∈ reachable \ stable) do
5. CY := TimeSplit(Y, Π);
6. if CY ∈ {Y, ∅} then
7. for each a ∈ A do
8. CY := ActionSplit(Y, a, Π);
9. if CY �∈ {Y, ∅} then break; end if;
10. end do;
11. end if;
12. if CY = {Y } then
13. stable := stable ∪ {Y };
14. reachable := reachable ∪ (PostΠ(Y) \ Πps);
15. else
16. PY := {Y ′ ∈ Π | Y ′ has been split};
17. reachable := reachable \ PY ∪ {Y ′ ∈ CY | q0 ∈ Y ′};
18. stable := stable \ {Y ′ ∈ Π | (∃Y ′′ ∈ PY) Y ′ ∈ PreΠ(Y ′′)};
19. Π := (Π \ PY) ∪ CY ;
20. end if;
21. end do;
22. end minimization bisconvex;

Fig. 5.23. A minimization algorithm for building strong ta-bisimulating models for
TA without computing differences

the partitionings (if necessary) are performed, respectively, by the functions
TimeSplit and ActionSplit.

• TimeSplit(Y,Π) is a function which for Y = (l, Z) ∈ Π, where l ∈ L and
Z ∈ Z(nX), returns either Y if it satisfies AE w.r.t. all its immediate time
successors Y ′ ∈ Π \ Πps, or

{preτ (Y, Y ′) | Y ′ = (l, Z ′) ∧ Z ⇑ Z ′ �= ∅}

otherwise. Similarly,

5.2 Model Generation for Timed Automata 129

• ActionSplit(Y, a,Π) is a function which for Y = (l, Z) ∈ Π and a ∈ A
returns either Y if it satisfies AE w.r.t. all its a-action successors Y ′ ∈
Π \ Πps, or

{prea(Y, Y ′) | Y ′ ∈ Π ∧ Y
a→Π Y ′}

otherwise.

Example 5.16. Figure 5.24 displays the partitionings caused by the functions
TimeSplit and ActionSplit. The part (a) shows a set of time zones corre-
sponding to a location l with I(l) = (x1 ≤ 5). The class (l, Zps) belongs to
the set Πps. It is easy to see that (l, Z1) is unstable w.r.t. its time successors
(the condition AE((l, Z1), (l, Zj)) for j ∈ {2, 3} does not hold), and there-
fore it needs to be refined. Applying the function TimeSplit results in the
set of classes consisting of (l, Z1

1), (l, Z2
1), (l, Z3

1) and shown in the part (b)
of the figure. The classes obtained form a partition of (l, Z). Notice that for
computing this partition, taking pseudoclasses into account was necessary.

Z1
2

Z

Z1

2 Z3

Zps

5

Z2 Z3

Zps

Z
Z

1
1

3
1

5
(a) (b)

TimeSplit

x1x1

x2

x1

x2

l× l×

(c)

1Z’

Z’3
ZZ

Z

Z

Z

2
3

1
1Z’

Z’3
ZZ 2Z’2Z’

(d)

ActionSplit

x1

x2

a

a

a

x1

x2 x2

l× l′×

x1

l′×l′×

x1

x2

a

a

a

Fig. 5.24. The functions TimeSplit and ActionSplit

The bottom part of the figure shows the way the function ActionSplit
works. The class (l, Z) has the three a-successors (l′, Z ′

1), (l′, Z ′
2) and (l′, Z ′

3)
(see (c)), and is unstable w.r.t. each of them. Applying ActionSplit gives
us the set of classes shown in the part (d) of the figure, consisting of (l, Z1),
(l, Z2) and (l, Z3) and constituting a partition of (l, Z).

�

130 5 Abstract Models

The Lee–Yannakakis Algorithm

Another general partitioning algorithm was introduced in [101]. Its adapta-
tion to the case of timed automata and strong ta-bisimulating models was
presented in [172] (the general algorithm, however, seems also to be ap-
plicable to generating other kinds of bisimulating models for TA). Given a
timed automaton A = (A,L, l0, E, X , I) of nX clocks, and its concrete model
Mc(A) = ((Q, q0, →c), VC) whose successor relation is labelled by the elements
of a set B, the algorithm starts from an initial partition Π0 of Q which re-
spects the invariants19 and the enabling conditions of A, and stabilizes only
the reachable classes. To ensure this, each reachable class Y is marked with a
representative rY ∈ Q, which is guaranteed to be a reachable state of A. Un-
like the approaches described before, the algorithm gives priority to searching
than to splitting: its first stage consists in searching the initial partition and
marking the reachable classes. Initially, only the initial class [q0] is marked
with r[q0] = q0.

Fig. 5.25. A generic minimization algorithm by Lee and Yannakakis (continued on
the next page)

Input arguments:

a timed automaton A = (A, L, l0, E,X , I) of nX clocks
an initial partition Π0

Global variables:

Π: 2R(nX ,L), stack, queue: (R(nX , L))∗

Return values:

minimization LY(): 2R(nX ,L)

pop(), remove(): R(nX , L)

1. procedure minimization LY(A, Π0) is
2. begin
3. Π := Π0; stack := ∅; queue := ∅;
4. r[q0] := q0; stack := [q0];

5. SEARCH:
6. while stack �= ∅ do
7. Y := pop(stack);
8. for each b ∈ B do
9. for each Y1 ∈ Π s.t. b(rY) ∩ Y1 �= ∅ do

19 Our approach extends the automata of [172], defined with no invariant function.

5.2 Model Generation for Timed Automata 131

10. if preb(Y, Y1) �= Y then queue := queue + Y ; end if;
11. if Y1 is not marked then
12. select q ∈ Y1 ∩ b(rY); rY1 := q;
13. stack := stack + Y1;
14. end if;

15. add edge Y
b→ΠL Y1;

16. end do;
17. end do;
18. end do;

19. SPLIT:
20. while queue �= ∅ do
21. Y := remove(queue);

// computing the set of states which have the successors in the same classes rY has ...

22. Y ′ = Y ;
23. for each b ∈ B do

24. for each Y1 ∈ Π s.t. Y
b→ΠL Y1 do

25. Y ′ := preb(Y
′, Y1);

26. end do;
27. end do; // ... computed.

28. rY ′ := rY ;
29. PY := Y \ Y ′;
30. Π := Π ∪ PY ∪ {Y ′};
31. for each b ∈ B do

32. for each Y1 ∈ Π s.t. Y1
b→ΠL Y do

33. if b(rY1) ∩ Y ′ �= ∅ then

34. add edge Y1
b→ΠL Y ′;

35. if preb(Y1, Y
′) �= Y1 then queue := queue + Y1; end if;

36. end if;

37. delete edge Y1
b→ΠL Y ;

38. for each Y2 ∈ PY do
39. if b(rY1) ∩ Y2 �= ∅ then
40. if Y2 is not marked then
41. select q ∈ b(rY1) ∩ Y2; rY2 := q;
42. stack := stack + Y2;
43. end if;

44. add edge Y1
b→ΠL Y2;

45. if preb(Y1, Y2) �= Y1 then queue := queue + Y1; end if;
46. end if;
47. end do;
48. end do;
49. end do;
50. Π := Π \ {Y };
51. if stack �= ∅ then goto SEARCH; end if;
52. end do;
53. end minimization LY;

132 5 Abstract Models

For a partition Π of Q, the searching procedure looks as follows: given
a representative rY of a marked class Y = (l, Z) ∈ Π, where l ∈ L and
Z ∈ Z(nX), the algorithm computes the image b(rY) for each b ∈ B, and if
some Y ′ ∈ Π with Y ′ ∩ b(rY) �= ∅ is not marked, then it becomes marked
with an element of b(rY) ∩ Y ′. In the case when B = A ∪ {τ} (i.e., if a
ta-bisimulating model is to be generated) and the time successor relation
is considered, the algorithm marks only these classes (l, Z ′) ∈ Π for which
Z ⇑ Z ′ is non-empty. The procedure establishes also “step by step”a successor
relation →ΠL⊆ Π × B × Π between classes,, defined by

Y
b→ΠL Y ′ iff ((∃q′ ∈ Y ′) rY

b→c q′ ∧ Y ′ is marked)

(this means that only marked classes can be related). Again, in the case of
B = A ∪ {τ} only immediate time successors of a class are taken into acount.
This relation is used in the algorithm besides →Π introduced before.

When no other existing class can be marked, the algorithm starts the stage
aimed at partition refinements. If for a marked class Y ∈ Π and some Y ′ ∈ Π

such that Y
b→ΠL Y ′ for some b ∈ B the condition AE(Y, Y ′) does not hold,

then Y is split into a class Y1, which contains the representative rY and all
the states which for each b′ ∈ B have their b′-successors in the same classes
as rY does, and Y \ Y1 (see Fig. 5.26). Notice that Y \ Y1 can possibly be a
set of classes. The class Y1 is computed as

Y1 =
⋂

{preb′(Y, Y ′) | (∃b′ ∈ B) Y
b′→ΠL Y ′}

and marked by rY , whereas each of the elements of Y \ Y1 is marked only
if it contains a state which can be its representative, i.e., a successor of a
representative of another class of Π. This, obviously, results in rebuilding
→ΠL. Partitioning of a class can cause unstability of its predecessors, whereas
creating new marked classes requires executing the searching procedure. The
above two steps are repeated until all the classes become stable.

b
rY

Y \ Y1

Y1

Y ′Y

Fig. 5.26. Partitioning of a class in the Lee-Yannakakis algorithm

A pseudo-code of the algorithm, based on [101], is presented in Fig. 5.25.
The algorithm maintains two additional structures: stack collecting classes
of a current partition Π for which the successors are to be searched for, and
queue which keeps unstable classes of Π. The functions pop and remove re-
turn, respectively, the element (class) removed from top of the stack or from
the beginning of the queue. The operation + denotes adding an element to

5.2 Model Generation for Timed Automata 133

the above structures (i.e., putting it on the top of the stack or at the end
of the queue) if it is not present there. The relation →ΠL and its updated
versions obtained when the model is generated are represented by edges be-
tween classes, which are removed and created when the algorithm operates.
A representative of a class Y ∈ Π is denoted by rY . [q0] ∈ Π0 denotes the
class of the initial partition which contains the initial state of A.

The paper [172] proposes also a solution to the problem of computing
differences of regions. This solution is based on a forest structure, which keeps
the history of partitionings. Therefore, instead of computing a difference of
classes and representing the result explicitly, one can only remember that such
a difference exists in the partition.

The first two of the above algorithms were modified to build other kinds
of abstract models which preserve more restricted classes of properties. The
solutions differ in the information stored together with the partition of Q, in
the stability conditions and in the methods of refining unstable classes. Below,
we sketch the main of them.

Simulating Models

The paper [66] provides a modification of the minimization algorithm of [40],
aimed at building simulating models, i.e., the models satisfying the conditions
EE and U. The new algorithm requires to store, together with the partition Π,
also a function cor : Π → 2Q assigning cores to the classes. The pseudo-code
differs from that in Fig. 5.20 in two lines:

• line 10 is replaced by

10. PY := {Y ′ ∈ Π | Y ′ has been split or cor(Y ′) changed };

• line 12 is replaced by

12. stable := stable \ {Y ′ ∈ Π | (∃Y ′′ ∈ PY) Y ′ ∈ PreΠ(Y ′′)} \ PY ;

the latter following from the fact that a stable class can be split if another
class is unstable w.r.t. it (see below). Moreover, the stability condition and
the way classes are partitioned differ. Unstability of a class Y1 ∈ Π w.r.t. its
successor Y2 means that the condition U(Y1, Y2) does not hold, i.e.,

(∃b ∈ B) (preb(Y1, Y2) �= ∅ ∧ preb(cor(Y1), cor(Y2)) �= cor(Y1)).

Stabilizing Y1 w.r.t. Y2 can result in splitting one or both the classes, or
modifying their cores (see Fig. 5.27).

More formally, handling the possible cases can be described by the function
Sps(Y1, Y2, b,Π), defined for the classes Y1, Y2 ∈ Π satisfying preb(Y1, Y2) �= ∅
and preb(cor(Y1), cor(Y2)) �= cor(Y1), and given by

134 5 Abstract Models

b

Y1

Y2

b

Y1

Y2

b

Y1

Y2

b

Y2

Y1

pseudo-b-stable pseudo-b-unstable semi-b-unstable b-unstable

b

Y1

Y2

b

Y1
′

Y1
′′

Y2

b

Y1

Y2
′′

Y2
′

b

Y2
′′

Y1
′

Y1
′′

Y2
′

modify cor(Y1) split Y1 split Y2 split Y1 and Y2

and modify cor(Y1)

(a) (b) (c) (d)

Fig. 5.27. Partitioning of the classes to preserve U

(a) if Y1 is pseudo-b-stable w.r.t. Y2, i.e.,
preb(cor(Y1), cor(Y2)) �= ∅, then

Sps(Y1, Y2, b,Π) = {Y1 with the core equal to preb(cor(Y1), cor(Y2))},

(b) if Y1 is pseudo-b-unstable w.r.t. Y2, i.e.,
preb(cor(Y1), cor(Y2)) = ∅ ∧ preb(Y1, cor(Y2)) �= ∅, then

Sps(Y1, Y2, b,Π) = {Y1 \ cor(Y1) with the core equal to preb(Y1, cor(Y2)),
cor(Y1) with the core equal to cor(Y1)},

(c) if Y1 is semi-b-unstable w.r.t. Y2, i.e.,
preb(cor(Y1), cor(Y2)) = preb(Y1, cor(Y2)) = ∅ ∧ preb(cor(Y1), Y2) �= ∅,
then

Sps(Y1, Y2, b,Π) = {Y1 with the core equal to preb(cor(Y1), Y2),
cor(Y2) with the core equal to cor(Y2),

Y2 \ cor(Y2) with the core equal to Y2 \ cor(Y2)},

(d) if Y1 is b-unstable w.r.t. Y2, i.e.,
preb(cor(Y1), cor(Y2)) = preb(Y1, cor(Y2)) = preb(cor(Y1), Y2) = ∅, then

Sps(Y1, Y2, b,Π) = {preb(Y1, Y2) with the core equal to preb(Y1, Y2),
Y1 \ preb(Y1, Y2) with the core equal to cor(Y1),
cor(Y2) with the core equal to cor(Y2),
Y2 \ cor(Y2) with the core equal to Y2 \ cor(Y2)}.

5.2 Model Generation for Timed Automata 135

Therefore, the function Split(Y,Π) used in the algorithm returns either the
class Y ∈ Π if Y satisfies the condition U(Y, Y ′) for all its successor classes Y ′,
or the value of the function Sps(Y, Y ′, b,Π), where Y ′ is a selected successor
of Y w.r.t. which the class is unstable. Again, partitioning of a class can result
in unstability of its predecessors.

Similarly to that in Fig. 5.20, the algorithm can be implemented to gen-
erate various kinds of discrete and time-abstracted models [66]. However, the
problem of computing differences while generating them has not been solved
so far.

Pseudo-bisimulating Models

The paper [125] introduces a method for building pseudo-bisimulating models
(i.e., models satisfying EE and pAE), preserving reachability properties. This,
again, is a modification of the algorithm by Bouajjani et al. [40]. In this case,
together with a partition Π, a function dpt : Π → IN ∪ {∞} is stored. The
function assigns to each class in the set reachable its potential depth in
the model (or, roughly speaking, its depth in the part of Π which has been
visited so far), whereas the classes in Π \ reachable are assigned the value
∞. Unstability of a class Y1 w.r.t. its successor Y2 means that Y2 has no
predecessor Y ′ of the depth not greater than Y1 such that AE(Y ′, Y2) holds,
i.e.,

(∃b ∈ B) preb(Y1, Y2) �= ∅ ∧ (∀b′ ∈ B)(∀Y ′ ∈ Π s.t. Y ′ b′→Π Y2 ∧

dpt(Y ′) = min{dpt(Y ′′) | Y ′′ ∈ PreΠ(Y2)}) preb′(Y ′, Y2) �= Y ′.

Stabilizing Y1 w.r.t. Y2 is performed by selecting a predecessor Y ′ of Y2 of

a smallest depth, and b′ ∈ B such that Y ′ b′→Π Y2, and then partitioning
Y ′ into Y ′

∗ containing all the concrete states which have successors in Y2

(i.e., Y ′
∗ = preb′(Y ′, Y2)), and Y ′ \ Y ′

1 . However, in practice the algorithm
can operate in a mode similar to breadth first search (BFS), which allows
to partition exactly the class Y1, without testing depths of other predeces-
sors of Y2. Such a behaviour is achieved by sorting the set reachable w.r.t.
the values of the function dpt, such that while selecting a class from the set
reachable \ stable a class of a smallest depth is always chosen first. This,
additionally, enables an on-the-fly reachability analysis: when a state satisfy-
ing the property of interest is reached, generating the model can be stopped
(recall that a property is expressed in terms of propositional variables and
logical connectives, and therefore its satisfiability can be tested locally in a
given state).

A pseudo-code of the algorithm for generating a model and performing on-
the-fly reachability analysis is presented in Fig. 5.28. The differences between
this code and that in Fig. 5.20 are underlined. Notice that the algorithm

136 5 Abstract Models

Input arguments:

a timed automaton A = (A, L, l0, E,X , I) of nX clocks
an initial partition Π0

a propositional formula p
Global variables:

Π, reachable, stable: 2R(nX ,L)

Return values:

reachability minim pb(): {REACHABLE, UNREACHABLE}
Split() : 2R(nX ,L)

1. function reachability minim pb(A, Π0, p) is
2. begin
3. Π := Π0; reachable := {[q0]}; dpt([q0]) := 0; stable := ∅;
4. while (∃Y ∈ reachable \ stable) do
5. CY := Split(Y, Π);
6. if CY = {Y } then
7. stable := stable ∪ {Y };
8. for Y ′ ∈ PostΠ(Y) do

9. dpt(Y ′) := min{dpt(Y) + 1, dpt(Y ′)}; end do;

10. reachable := reachable ∪ PostΠ(Y);
11. if (∃Y ′ ∈ PostΠ(Y) s.t. Y ′ |= p) then

12. return REACHABLE; end if;

13. else
14. PY := {Y ′ ∈ Π | Y ′ has been split};
15. for Y1 ∈ {Y2 ∈ CY | q0 �∈ Y2} do dpt(Y1) := ∞; end do;

16. reachable := reachable \ PY ∪ {Y ′ ∈ PY | q0 ∈ Y ′};
17. stable := stable \ {Y ′ ∈ Π | (∃Y ′′ ∈ PY) Y ′ ∈ PreΠ(Y ′′)};
18. Π := (Π \ PY) ∪ CY ;
19. end if;
20. end do;
21. return UNREACHABLE;

22. end reachability minim pb;

Fig. 5.28. A minimization algorithm for testing reachability on pseudo-bisimulating
models

stops if a state satisfying the property p is reached (obviously, the pseudo-
bisimulating model is not generated in this case). Otherwise, it returns the
answer UNREACHABLE, and the set classes contains a stable partition
of Q, whose classes constitute a pseudo-bisimulating model for A.

Similarly to the algorithm for bisimulating models, also this one can be
implemented for discrete or time-abstracted dense cases.

5.2 Model Generation for Timed Automata 137

A Convexity-Preserving Technique

The algorithm for building pseudo-bisimulating models suffers from the same
drawback as other minimization algorithms, i.e., computing differences of
classes leads to a meaningful inefficiency. However, for strong time-abstracted
pseudo-bisimulating models the solution of [159] can be applied. To this aim,
the algorithm of Fig. 5.23 is modified in a way similar to that in Fig. 5.20:
the function dpt is stored together with the partition, the set reachable is
sorted w.r.t. the values of the function dpt which makes the algorithm operate
in a BFS-like mode, and the underlined parts of the pseudo-code in Fig. 5.28
are added to the corresponding places of the code in Fig. 5.23. Additionally,
the functions TimeSplit and ActionSplit are modified. Recall that unsta-
bility of a class Y1 w.r.t. its successor Y2 means that Y2 has no predecessor Y ′

which satisfies AE(Y ′, Y2) and dpt(Y ′) ≤ dpt(Y1) (see p. 135). Given a class
Y = (l, Z) ∈ Π with l ∈ L and Z ∈ Z(nX),

• the function TimeSplit(Y,Π) returns either Y if no unstability of Y w.r.t.
its immediate time successor Y ′ ∈ Π \ Πps occurs, or

{preτ (Y, Y ′) | Y ′ = (l, Z) ∧ Z ⇑ Z ′ �= ∅}

otherwise. Similarly,
• for a ∈ A the function ActionSplit(Y, a,Π) returns either Y if there is

no unstability of Y w.r.t. its a-successors, or

{prea(Y, Y ′) | Y ′ ∈ Π ∧ Y
a→Π Y ′}

otherwise.

Note that since the algorithm operates in the BFS-like mode the functions
are defined correctly, since if unstability of Y w.r.t. its successor Y ′ occurs, Y
is a predecessor of Y ′ of the smallest depth.

Pseudo-simulating Models

As it has been already stated, the definitions of simulating and pseudo-
bisimulating models were combined, resulting in the notion of reachability-
preserving pseudo-simulating models. Similarly, the above-described mini-
mization algorithms for these two kinds of models can be put together, giv-
ing a method for building pseudo-simulating ones and on-the-fly reachability
analysis [126]. In this book this is left to the reader as an easy exercise.

Pseudo-simulating models generated by the minimization algorithm can be
discrete or time-abstracted dense, in both the cases for the weakly monotonic
semantics. A solution of the problem of explosion which occurs while comput-
ing differences of classes has not been found for these models so far.

138 5 Abstract Models

Other Minimization Techniques

Besides the methods based on the minimization algorithms presented above,
some other solutions exist. One of the approaches exploits splitting histories
instead of a region-based representation, and operates on a product of the
specification of a system and a property [146]. Another technique [94] builds
reachability-preserving abstract models, exploiting (timed and untimed) his-
tories of concrete states. The solution is based on a different definition of a
concrete state of an automaton, which is represented by a location and a se-
quence of pairs (transition, time) forming a (timed) history of the state. An
abstract model is generated by collecting into classes the concrete states with
the same untimed histories (i.e., obtained by executing the same transitions),
and with the same future (i.e., the ones which are in a transition bisimulation
relation, see [94]).

5.2.3 Forward-reachability Graphs

Verification based on reachability analysis is usually performed on an abstract
model known as simulation graph or forward-reachability graph. The nodes of
this graph can be defined as (not necessarily convex) sets of detailed regions
(see Sect. 5.2.1) [41] or as regions (see Sect. 5.2.2) [63, 98, 173]. Usually, the
latter approach is used, which follows from a convenient representation of
zones by Difference Bound Matrices (DBMs)20 [68].

Given a timed automaton A = (A,L, l0, E, X , I) of nX clocks, let a ∈ A,

l ∈ L, e : l
a,cc,X−→ l′ ∈ E, and Z ∈ Z(nX), and let

Succa((l, Z)) = (l′, ((Z ∩ [[cc]])[X := 0]) ↗ ∩ [[I(l′)]])

The simulation graph can be defined21 as the smallest transition system G =
(W,w0, →a) such that

• w0 = (l0, Z0) with Z0 = v0↗ ∩ [[I(l0)]];

• for any w = (l, Z) ∈ W , and any a ∈ A such that e : l
a,cc,X−→ l′ ∈ E, if

w′ = Succa(w) �= ∅, then w′ ∈ W and w
a→a w′.

The pair (G,Va), where Va is a valuation function defined as on p. 90, is a sur-
jective22 abstract model for the timed automaton A, for the weakly monotonic
semantics. The model preserves the LTL formulas (and so reachability prop-
erties).
20 We discuss DBMs in details in Sect. 5.3
21 This definition follows [63]. There are also other approaches, with different notions

of Z0 and the successor relation. For example, in [98], time- and action successors
of a node are distinguished, whereas [45] reports Z0 = (l0, v0) and Succa((l, Z)) =
(l′, ([[cc]] ∩ (Z ↗))[X := 0]).

22 Recall that this means that the model satisfies the conditions EE1, EE2 and EA,
and its initial state is required to contain q0 and successors of q0 only; see p. 91.

5.2 Model Generation for Timed Automata 139

Input arguments:

a timed automaton A = (A, L, l0, E,X , I) of nX clocks
a propositional formula p

Global variables:

visited, waiting: 2R(nX ,L)

Return values:

reachability forward(): {REACHABLE, UNREACHABLE}

1. function reachability forward(A, p) is
2. begin
3. visited := ∅; waiting := {w0};
4. while waiting �= ∅ do
5. get w from waiting;
6. if w |= p then return REACHABLE; end if;
7. if (∀w′ ∈ visited) w �= w′ then
8. visited := visited ∪ {w};
9. for each a ∈ A s.t. (w′ = Succa(w) ∧ w′ �= ∅) do
10. waiting := waiting ∪ {w′};
11. end do;
12. end if;
13. end do;
14. return UNREACHABLE;
15. end reachability forward;

Fig. 5.29. A general reachability algorithm

Simulation graphs are usually generated using a forward-reachability al-
gorithm which, starting from w0, successively computes all the successors
Succa(w) for all w ∈ W generated in earlier steps. A pseudo-code of the algo-
rithm is presented in Fig. 5.2923. The algorithm maintains two sets of abstract
states: waiting (initially equal to {w0}), which contains all these abstract
states obtained in the earlier steps which neither have been tested w.r.t. sat-
isfaction of a propositional property p nor have their successors generated,
and visited (initially empty), which underwent both the above procedures.
Notice that the algorithm can be terminated if a state satisfying p is reached
before the whole graph is built. If no state satisfying p can be reached, the
algorithm tries to build the whole model for the automaton (i.e., it works as
long as the set waiting is non-empty). However, such a model can be infi-
nite (see the example below). Therefore, practical implementations are usually
augmented with a termination condition which bounds the number of abstract
states to be generated.
23 This algorithm (slightly modified) is also used in backward reachability analysis

[173].

140 5 Abstract Models

Example 5.17. Figure 5.30 shows a timed automaton [63], for which the for-
ward reachability graph is infinite. The graph is presented in Fig. 5.31. The
initial state is coloured.

�

ab l0

x1 ≥ 1
x1 := 0

x2 = 2

Fig. 5.30. The timed automaton used in Example 5.17

. . .l0
1 ≤ x2 − x1 ≤ 2 x2 = x1 + 2

l0l0 x2 ≥ 2 ∧
2 ≤ x1 = x2

l0
x1 = x2

l0
x2 ≥ x1 + 1 x2 ≥ x1 + 2

l0 l0
x2 ≥ x1 + 3

b w6w5

w1 w2 w3

w4

a

b

b
b

a

a b

a

a

b

a

a

w0

Fig. 5.31. The forward-reachability graph for the automaton of Fig. 5.30

Abstractions for Forward-reachability Graphs

In order to ensure a more efficient reachability verification (but at the cost of
loosing preservation of all the LTL formulas), various abstractions, enabling
to reduce the size of the above model, were defined [25, 26, 63, 98]. Some of
them are sketched below.

Inclusion Abstraction

The first solution, which allows to reduce the size of the forward-reachability
graph still enabling reachability checking, is called an inclusion abstraction
[63, 98,173]. It consists in replacing w �= w′ by

w �⊆ w′

in the line 7. of the algorithm in Fig. 5.29. The idea behind it is that if w
is included in an already generated abstract state w′, then its successors are
a subset of these of w′, and therefore generating them adds nothing to the
reachability information. An example of a graph obtained this way is shown
in the example below:

5.2 Model Generation for Timed Automata 141

Example 5.18. Figure 5.32 displays a forward reachability graph for the au-
tomaton of Fig. 5.30 after applying the inclusion abstraction. Comparing it
with that of Fig. 5.31, the abstract state (region) w4 = (l0, [[2 ≤ x1 = x2]]) is
included in the initial one, and therefore is not present here. Similarly, the state
w6 = (l0, [[x2 = x1 + 2]]) is included in w5 = (l0, [[x2 ≥ 2 ∧ 1 ≤ x2 − x1 ≤ 2]]).
Moreover, all the states of the form (l0, [[x2 ≥ x1 + c]]) with c ≥ 2 are included
in the state w1 = (l0, [[x2 ≥ x1 + 1]]). Notice, however, that the graph is not
of the minimal size, since a further reduction is possible.

�

l0
x1 = x2

l0
x2 ≥ x1 + 1

1 ≤ x2 − x1 ≤ 2
l0 x2 ≥ 2 ∧

b

a

b a

a

b

w0 w1

w5

Fig. 5.32. A forward-reachability graph with the inclusion abstraction built for the
automaton of Fig. 5.30

It is worth noticing that applying this abstraction does not necessarily make
a forward-reachability graph finite (see Example 5.19) and can result in dif-
ferent models for the same automaton, depending on the order the classes are
processed.

Example 5.19. Consider the automaton shown in Fig. 5.33 over the three
clocks x1, x2, x3. The initial state of its forward-reachability graph is given

b

a

l1l0

x1 ≤ 1

x1 = 1
x1 := 0

x2 ≤ 2
x3 := 0

Fig. 5.33. A timed automaton whose forward-reachability graph with the inclusion
abstraction is infinite

by w0 = (l0, [[x1 = x2 = x3 ∧ x1 ≤ 1]]). The a-successor w1 of w0 is equal to
Succa(w0) = (l0, [[x1 = x2 = x3 = 1]][{x1} := 0] ↗ ∩[[x1 ≤ 1]]) = (l0, [[x1 ≤
1 ∧ 1 ≤ x2 = x3 ≤ 2]]). Next, Succa(w1) = (l0, [[x1 = 1 ∧ x2 = x3 = 2]][{x1} :=
0] ↗ ∩[[x1 ≤ 1]]) = (l0, [[x1 ≤ 1 ∧ 2 ≤ x2 = x3 ≤ 3]]). It is easy to see that
the i-th execution of the action labelled with a gives us the abstract state
(l0, [[x1 ≤ 1 ∧ i ≤ x2 = x3 ≤ i + 1]]). The number of the abstract states is thus
infinite, and since they are not included one in another, applying the inclusion
abstraction does not change this feature of the forward-reachability graph.

�

142 5 Abstract Models

Extrapolation Abstraction

Another technique, aimed at ensuring finiteness of the model, is a so-called
extrapolation abstraction (known also as maximization, normalisation, or k-
approximation, where k stands for the maximal constant appearing in the
constraints of A, i.e., cmax(A)). Definitions of this abstraction are different
for diagonal-free and non-diagonal-free timed automata.

Given a zone Z = [[cc]] defined by a clock constraint cc ∈ C�
X of such a

form that none of the atomic constraints in cc can be strengthened24 without
reducing [[cc]]. In the case of diagonal-free automata the extrapolation of Z,
denoted extr(Z), is a zone extr(Z) = [[cc1]], where cc1 is a clock constraint
obtained from cc by

• removing all the atomic constraints of the form x ∼ c and x−y ∼ c, where
∼ ∈ {≤, <} and c > cmax(A) (i.e., upper bounds greater than cmax(A)
are eliminated),

• replacing all the atomic constraints of the form x ∼ c and x−y ∼ c, where
∼ ∈ {≥, >} and c > cmax(A), by x > cmax(A) and x − y > cmax(A),
respectively (i.e., the lower bounds greater than cmax(A) are replaced by
cmax(A)),

• leaving the rest of atomic constraints in cc untouched.

The intuition behind this approach, and simultaneously an explanation for
the correctness of this abstraction, is twofold. Firstly, for any constraint of A
involving a clock x, the exact value of v(x) is insignificant if greater than the
maximal value this clock is compared with. Secondly, if the intersection of a
region R and a detailed region r is non-empty, then extending R to contain
all the states of r does not change the reachability information. Thus, the
abstraction modifies the zones whose intersections with open detailed zones
(defined for a diagonal-free automaton and cmax(A, ϕ) = cmax(A)) are non-
empty. It is easy to see that Z ⊆ extr(Z). Some examples of extrapolations
of zones are presented in Fig. 5.34.

2 2 2

222

x2

Z = extr(Z)

x2

x1 x1 x1

x2
extr(Z)

Z

extr(Z)

Z

Fig. 5.34. Extrapolations of zones for cmax(A) = 2 (diagonal-free TA)

24 By the strengthening of an atomic constraint xi − xj ∼ c or xi ∼ c, where
∼ ∈ {≤, <}, we mean replacing ≤ by <, or c by c′ with c′ < c.

5.2 Model Generation for Timed Automata 143

It is also important to notice that in practice, instead of one common constant
cmax(A), a maximal constant for each clock can be used.

When the extrapolation abstraction is applied, in the generated simulation
graph:

• Z0 is replaced by extr(Z0), and
• Succa((l, Z)) is redefined to be of the form

Succa((l, Z)) = (l′, extr(((Z ∩ [[cc]])[X := 0]) ↗ ∩ [[I(l′)]])).

This makes the number of nodes of the abstract states in the graph finite,
since the number of extrapolated zones is so.

Example 5.20. Figure 5.35 shows a forward-reachability graph for the automa-
ton A in Fig. 5.30 obtained by applying the extrapolation abstraction. Since
cmax(A) = 2, the zone [[x2 ≥ x1 + 3]], obtained while generating the graph, is
replaced with [[x2 > x1 + 2]].

�

l0
2 ≤ x1 = x2 1 ≤ x2 − x1 ≤ 2 x2 = x1 + 2

l0l0 x2 ≥ 2 ∧

l0
x1 = x2

l0
x2 ≥ x1 + 1

l0
x2 ≥ x1 + 2

l0
x2 > x1 + 2

a

a

a a

b

a

b

w6w5

w1 w2

w4

w0 w′
3

bb a b a

b

Fig. 5.35. A forward-reachability graph with the extrapolation abstraction built
for the automaton of Fig. 5.30

In [45] it was proven that the above method does not work for automata
whose constraints contain comparisons of clocks (i.e., incorrect results for
reachability analysis can be obtained). This is shown in the example below.

Example 5.21. Figure 5.36 shows a timed automaton whose forward-reachabil-
ity graph is presented in Fig. 5.37. The location l6 of the automaton is not
reachable, which can be easily derived from the clock constraint describing
the final state of the model: if we assume that the condition x4 < x3 + 2 (i.e.,
the second conjunct of the guard of the transition labelled with a6) holds,
then from the above and from the constraint describing the state w5 we have

x2 − x1 = (x2 − x4) + (x4 − x3) + (x3 − x1) < −5 + 2 + 5 = 2,

and therefore the first conjunct of the guard of the action labelled with a6

is not satisfied. However, if the extrapolation abstraction described above is
applied, then the atomic constraints x2 − x4 ≤ −5 and x3 − x1 ≤ 5 occurring

144 5 Abstract Models

l0
a1

x3 ≤ 3
x1 := 0
x3 := 0

l1 l3
a3

x1 = 2
x1 := 0

l2
a2

x2 = 3
x2 := 0

a4

x2 = 2
x2 := 0

l6 l4
x1 = 3
x1 := 0

l5
a6

x2 > x1 + 2
∧ x4 < x3 + 2

a5

Fig. 5.36. A timed automaton with clock differences

in the description of w5 are replaced by x2 −x4 ≤ −3 and x3 −x1 ≤ ∞, which
allows to execute the action a6 and reach the location l6.

�

l0

x1 = x2 = x3 = x4 ∧ x1 = x3 ∧ x2 = x4

l1

x1 ≤ x2 ∧ x2 ≤ x1 + 3 x1 ≤ x2 + 3 ∧ x2 + 3 = x4

∧ x2 ≤ x1 ∧ x1 = x3

l2

l3l5 l4

x1 ≤ x2 + 2 ∧ x2 + 5 = x4

∧ x1 ≤ x2 ∧ x2 ≤ x1 + 2
x2 + 3 = x4 ∧ x1 + 2 = x3

∧ x2 ≤ x1 ∧ x1 + 2 = x3

x2 ≤ x1 + 3 ∧ x1 + 1 ≤ x2

x2 + 5 = x4 ∧ x1 + 5 = x3

∧
a5

a1 a2

a3

a4

w0 w1 w2

w3w4w5

Fig. 5.37. The forward-reachability graph for the automaton of Fig. 5.36

An extrapolation abstraction for automata with diagonal constraints were
described in [25–27]. Its main idea is that if an atomic constraint of A which
compares two clocks is not satisfied by any clock valuation of a zone, then
it should not be satisfied by any clock valuation of the extrapolated one.
Similarly, if all the clock valuations of a zone satisfy a difference constraint,
then so should also all the clock valuations of the extrapolated one.

Let D be a set of the atomic constraints which compare clocks and appear
in the enabling conditions and invariants of A. Given a zone Z = [[cc]] defined
by a clock constraint cc ∈ C�

X of such a form that none of the atoms in cc

can be strengthened without reducing [[cc]], we build its diagonal-preserving
extrapolation extrd(Z) by applying the following steps:

• splitting Z in such a way that in every resulting part Z ′, each constraint
of D either holds for each v ∈ Z ′, or for none of them. The resulting set
of zones is denoted split(Z),

• for each zone Z ′ ∈ split(Z)
– collecting all the constraints cc′ ∈ D such that

– [[cc′]] ∩ Z ′ = ∅ (i.e., none of the clock valuations in Z ′ satisfies cc′),
– [[¬cc′]] ∩ Z ′ = ∅ (i.e., all the clock valuations of Z ′ satisfy cc′),

5.2 Model Generation for Timed Automata 145

and defining the set

Dunsat(Z ′) =
{cc′ ∈ D | [[cc′]] ∩ Z ′ = ∅} ∪ {¬cc′ | [[¬cc′]] ∩ Z ′ = ∅ ∧ cc′ ∈ D},

– computing

exd(Z ′) = extr(Z ′) ∩ [[
∧

cc′∈Dunsat(Z′)

¬cc′]]

(i.e., using all the constraints in Dunsat(Z ′) to “cut” the extrapolation
of the zone Z ′),

• the diagonal-preserving extrapolation of Z is the union

extrd(Z) =
⋃

Z′∈split(Z)

exd(Z ′).

In the simulation graph generated for the automaton A:

• Z0 is replaced by extrd(Z0) (notice, however, that this equals to extr(Z0)),
• Succa((l, Z)) is redefined to be of the form

Succa((l, Z)) = {(l′, Z ′) | Z ′ ∈ extrd(((Z ∩ [[cc]])[X := 0]) ↗ ∩ [[I(l′)]])},

• the successor relation →a of p. 138 is redefined to be of the form
– for any w = (l, Z) ∈ W , and any a ∈ A such that e : l

a,cc,X−→ l′ ∈ E,
if Succa(w) �= ∅, then for each w′ ∈ Succa(w) we have w′ ∈ W and
w

a→a w′,
and

• the line 9. of the algorithm in Fig. 5.29 is replaced by

9. for each a ∈ A s.t. w′ ∈ Succa(w) ∧ w′ �= ∅ do ...

(i.e., the equality is replaced by “ ∈ “).

Again, the graph computed this way is finite.

Other Abstractions

Besides the abstractions described above, some other solutions exist. One of
them, called convex-hull abstraction, consists in keeping a single region (l, Zch)
for each l ∈ L, where Zch is the convex hull of all the zones appearing in
the abstract states of the form (l, ·) generated by the algorithm, where the
convex hull of two zones Z ′, Z ′′ is their smallest superset (see Fig. 5.38). This,
however, allows for proving unreachability only, since some states which are
not reachable in the concrete state space can be reachable in the abstracted
one.

146 5 Abstract Models

x2

Z2

x1 x1

x2

Z1

Zch = Z1 ∪ Z2

Zch

Z1
Z2

Fig. 5.38. Convex hulls for zones Z1, Z2

Other solutions are based on the idea of identifying a set of location-based
maximal constants (i.e., counterparts of cmax(A) that depend on the partic-
ular locations of the automaton), or on exploiting both the minimal and the
maximal constants the clocks of A are compared with [22,23]. There are also
many approaches aimed at reducing the memory usage while generating the
model. These concern storing the valuations of active clocks only (a clock is
considered active if it usefully counts time, i.e., from a time point where it
is reset up to the time point where it is tested), modifications introduced to
Waiting and V isited, for example storing only some nodes sufficient for pre-
serving reachability information [98], applying memory-saving data structures
and many others [25,98].

To store and operate on abstract models usually Difference Bound Matrices
[68] are used for regions of TA.

5.3 Difference Bounds Matrices

Difference Bounds Matrices are used for representing states of abstract models
for timed systems. Therefore, we give a quite detailed account of them below.

Recall that each time zone Z ∈ Z(nX) is a (possibly unbounded) polyhe-
dron in IRnX

0+ defined by a clock constraint cc, i.e., Z = [[cc]]. Notice, moreover,
that cc ∈ C�

X is a conjunction of a finite number of atomic clock constraints.
For the sake of convenience, we assume that a zone is given by a normalised
clock constraint (i.e., cc ∈ C�

X+ , see Chap. 2). Then, we introduce the domain
of bounds. Thus, a bound is an ordered pair

(c, r) ∈ (ZZ × {<, ≤}) ∪ {(∞, <), (−∞, <)}.

The symbols < and ≤ are totally ordered, i.e., < is taken to be strictly less
than ≤. The ordering of bounds is defined as

(c, r) 	 (c′, r′) if either c < c′, or c = c′ and r ≤ r′.

Then, we introduce the notion of Difference Bounds Matrices [68].

5.3 Difference Bounds Matrices 147

Definition 5.22 (Difference Bounds Matrix). A difference bounds ma-
trix (DBM) in IRnX

0+ is an (nX + 1) × (nX + 1) matrix of bounds, with rows
and columns indexed from 0 to nX . The DBM

D = (dij),

where for each i, j ∈ {0, . . . , nX } dij = (dij , ∼ij), represents the zone

Z = [[
nX∧

i=0

nX∧

j=0

xi − xj ∼ij dij]].

The zone of D will be denoted by [[D]].

It is known that for each zone Z there is a DBM D s.t. Z = [[D]], but there
could be possibly many such D’s. Thus, in order to implement the operations
on zones defined in Sect. 2.1, we need to deal with canonical DBMs. For such
DBMs all upper bounds are as “tight” as possible.

Definition 5.23 (Canonical form). The canonical form of a DBM D =
(dij) in IRnX

0+ , denoted by cf(D), is a DBM

Dc = (dc
ij)

in IRnX
0+ such that

• [[D]] = [[Dc]], and
• for each DBM D′ = (d′

ij) in IRnX
0+ with [[Dc]] = [[D′]] for each i, j ∈

{0, . . . , nX } we have dc
ij 	 d′

ij.

The DBM in the canonical form is also called a canonical DBM.

Fig. 5.39 shows a graphical interpretation of bounds of the canonical form
of a DBM. Let [[D]] ∈ Z(nX) be a non-empty zone25 defined by a canonical
DBM matrix D = (dij) with the elements dij = (dij , ∼ij), where i, j ∈
{1, . . . , nX }, di,j ∈ ZZ∪ {∞} and ∼ij∈ {<, ≤}. The zone in the picture, which
is the projection of the zone [[D]] onto the plane given by the clocks xi, xj ∈ X ,
is constrained by the dashed lines given in the picture and corresponding to
the bounds in D. If for some m, k ∈ {0, i, j} we have dmk = ∞, then the
corresponding line does not exist.

The canonical form of a DBM can be computed by applying the shortest-
path algorithm [68]. Representation via DBMs enables very efficient tests for
equality and emptiness of zones, i.e., for DBMs D,D′,

[[D]] = [[D′]] iff cf(D) = cf(D′),

and
[[D]] = ∅ iff the bound (−∞, <) appears in cf(D).

25 Thanks to the assumption about non-emptiness of the zone we do not need to
consider the bounds of the form (−∞, <) in the example.

148 5 Abstract Models

−d0j

xi

xj

−dij

dji

dj0

−d0i di0

Fig. 5.39. A graphical interpretation of bounds of the canonical DBM

5.3.1 Operations on Zones Using DBMs

In order to implement some algorithms for generating abstract models for
timed automata or time Petri nets, the operations of computing intersection
of two zones, (immediate) time-predecessor and time-successor of a zone, clock
resets, and difference of two zones have to be applied. Below, we show how to
implement these operations. In general, the ideas behind the implementations
have been taken from [8,157], but our presentation differs in some details.

Intersection

Let Z,Z ′ ∈ Z(nX) be two zones, and let D = (dij) and D′ = (d′
ij) be two

DBMs such that Z = [[D]] and Z ′ = [[D′]]. Computing the matrix Dis = (dis
ij)

such that [[Dis]] = Z ∩ Z ′, consists in taking the lower of the bounds for each
pair of clock differences, that is, for all i, j ∈ {0, . . . , nX },

dis
ij = min(dij ,d′

ij).

D,D′ need not be canonical, and Dis, in general, is not canonical either.
Notice that also the canonical forms of D and D′ do not imply canonical
form of their intersection. An example is shown in Fig. 5.40. The dashed lines
correspond to the bounds in Dis, computed as presented above, which remain
unchanged also in cf(Dis). The solid line indicates the bound computed for
the intersection and resulting in a non-canonical form of the matrix Dis.

Clock Resets

Let D = (dij) be a canonical DBM for a zone Z ∈ Z(nX), and let X ⊆ X be
a set of clocks to be reset. A DBM D′ = (d′

ij) satisfying [[D′]] = Z[X := 0] is
given by

5.3 Difference Bounds Matrices 149

Z’

Z
x2

x1

Fig. 5.40. A non-canonical DBM for intersection of two zones represented by canon-
ical DBMs

d′
i0 = d′

0i = (0, ≤) if xi ∈ X
d′

ji = (∞, <) if xi ∈ X ∧ xj �∈ X
d′

ij = dij otherwise.

In general, D′ does not need to be canonical.

Computing a DBM D′′ = (d′′
ij) such that [[D′′]] = [X := 0]Z is performed

in three steps:

• Firstly, we check whether d0i = (0, ≤) for all xi ∈ X (if the condition
is not satisfied, then [X := 0]Z = ∅), and if so, set to 0 all the upper
bounds of the values of clocks to be reset, which is done by creating a
DBM D′ = (d′

ij) with

d′
i0 = (0, ≤) if xi ∈ X

d′
ij = dij otherwise.

• Secondly, we compute the canonical form for D′.
• Finally, we compute the matrix D′′ by setting

d′′
ij = (∞, <) for all xi ∈ X and j ∈ {0, . . . , nX } with i �= j, and

d′′
ij = d′

ij in all the other cases.

An example is shown in Fig. 5.41. The result does not need to be canonical.

2 5

5

52

2

Z 5

2

2 5

2

5

x2

x1

x2

x1

x2

x1 x1

the result of step 3the result of step 1 and 2the zone

Fig. 5.41. The steps of computing [{x1} := 0]Z

150 5 Abstract Models

Time Successor

Let D = (dij) be a canonical DBM, corresponding to a zone Z ∈ Z(nX). The
DBM D′ = (d′

ij) such that [[D′]] = Z ↗ is computed by removing in D all
the upper bounds on the values of clocks, i.e., setting

d′
i0 = (∞, <) for all 1 ≤ i ≤ nX , and

d′
ij = dij otherwise.

The output is canonical.
The example in Fig. 5.42 shows that the requirement of a canonical form

of the matrix D, for which the time successor is computed, is necessary. The
DBM D = (dij), corresponding to the zone Z, contains the bounds d10 =
d20 = (5, ≤), d01 = d02 = (−2, ≤), and the bounds corresponding to the
dashed lines given in the picture. Notice that the zones Z ′ and Z ′′, represented
by the DBMs computed by the above algorithm applied to the canonical (see
part (a)) and non-canonical (part (b)) DBM representing the zone Z, are
different.

5

52

2
Z Z

Z’ Z"

2 5

2

5

(a) (b)
x1

x2 x2

x1

Fig. 5.42. (a) A correct time-successor of the zone represented by a canonical DBM,
(b) an incorrect time-successor of the zone represented by a non-canonical DBM

Time Predecessor

Let D = (dij) be the canonical DBM corresponding to a zone Z ∈ Z(nX). A
DBM D′ = (d′

ij) such that [[D′]] = Z ↙, is computed by replacing by 0 all
the lower bounds on the values of the clocks, i.e, by setting

d′
0i = (0, ≤) for all i ∈ {1, . . . , nX }, and

d′
ij = dij otherwise.

In general, the result is not canonical (see Fig. 5.43).

Immediate Time Predecessor

Let Z,Z ′ ∈ Z(nX). The implementation of Z ⇑ Z ′ is more involved. To this
aim we need some auxiliary operations.

5.3 Difference Bounds Matrices 151

(a) (b)
x1x1

x2 x2

Fig. 5.43. A non-canonical result of computing Z ↙ (b) in spite of the canonical
input (a). The dashed lines represent constraints appearing in DBMs

Let D = (dij) and D′ = (d′
ij) be two canonical DBMs representing,

respectively, the zones Z,Z ′ ∈ Z(nX). The first operation to be introduced is
the closure of the zone Z, denoted by Closure(Z). The matrix Dcl = (dcl

ij)
such that [[Dcl]] = Closure(Z), is given by

dcl
ij = (dij , ≤) if dij = (dij , <), where dij �= ∞, and

dcl
ij = dij otherwise.

The output is canonical.

The next operation is Fill(Z), which consists in replacing < by ≤ in all
the lower and upper bounds of the values of clocks. The matrix Dfi = (dfi

ij)
such that [[Dfi]] = Fill(Z) is given by

dfi
i0 = (di0, ≤) if di0 = (di0, <) ∧ di0 �= ∞

dfi
0i = (d0i, ≤) if d0i = (d0i, <) ∧ di0 �= ∞

dfi
ij = dij otherwise.

In the case of canonical input, the output of this operation is canonical as
well.

Next, for two disjoint zones Z,Z ′ ∈ Z(nX) we define their border as follows:

border(Z,Z ′) = {v ∈ IRnX
0+ |

((v ∈ Z and (∃δ > 0) s.t. (v +δ ∈ Z ′ ∧ (∀0 < δ′ < δ) v +δ′ ∈ Z ′))) ∨
((v ∈ Z ′ and (∃δ > 0) s.t. (v − δ ∈ Z ∧ (∀0 < δ′ < δ) v − δ′ ∈ Z)))}

(notice that the ordering of arguments is important). In case when the zones
Z,Z ′ are not disjoint,

border(Z,Z ′) = Closure(Z ∩ Z ′).

Five examples of borders of two zones are presented in Fig. 5.44.

In order to compute a DBM Dbd = (dbd
ij) such that [Dbd] =

border(Z,Z ′) we apply the following algorithm:

• if Z ∩ Z ′ �= ∅, then compute Dbd to get [[Dbd]] = Closure(Z ∩ Z ′);
• otherwise:

152 5 Abstract Models

5

52

2
Z

Z’

5

Z’

2 5

2

5

Z

Z’

2

Z

5

2

5

52

2
Z

Z’
5

52

2
Z

Z’

(a) (b) (c)

(d) (e)

x1

x2

Z ∩ Z ′ �= ∅
border(Z, Z ′) = Z ∩ Z ′

x1
Z: x1 < 2 ∧ x2 ≤ 5
Z ′: x1 ≥ 2 ∧ x2 > 5

border(Z, Z ′) = ∅

Z ′: x1 ≥ 2 ∧ x2 ≥ 2

x2

x1

border(Z, Z ′)

Z: x1 < 2 ∧ x2 ≤ 5

x2

x2

Z: x1 < 2 ∧ x2 ≤ 5
Z ′: x1 ≥ 2 ∧ x2 ≥ 5

Z: x1 ≤ 2 ∧ x2 ≤ 5
Z ′: x1 > 2 ∧ x2 > 5

x1

border(Z, Z ′)

x1

border(Z, Z ′)

x2

Fig. 5.44. Examples of borders of two zones

– if there exists 1 ≤ i ≤ nX and a constant c ∈ ZZ such that

di0 = (c,<) ∧ d′
0i = (−c, ≤)

then
· if there exists 1 ≤ j ≤ nX with j �= i and a constant c′ ∈ ZZ such

that
dj0 = (c′, ≤) ∧ d′

0j = (−c′, <),

then [[Dbd]] = ∅ (see Fig. 5.44 (b));
· otherwise compute Dbd to get [[Dbd]] = Fill(Z) ∩ Z ′ (see Fig. 5.44

(c,d)),
– otherwise if there exists 1 ≤ i ≤ nX and a constant c ∈ ZZ such that

di0 = (c, ≤) ∧ d′
0i = (−c′, <)

then compute Dbd to get [[Dbd]] = Z ∩ Fill(Z ′) (see Fig. 5.44 (e)),
– else [[Dbd]] = ∅.

The result, in general, is not canonical.
Finally, we can compute the DBM D′′ = (d′′

ij), representing the zone
Z ⇑ Z ′, from

[[D′′]] = Z ∩ (border(Z,Z ′) ↙).

5.3 Difference Bounds Matrices 153

Notice that for computing this, the canonical form of the matrix representing
border(Z,Z ′) is required. The matrix D′′, in general, is not canonical.

The above algorithm is a slight modification of the one shown in [157].

Zone Difference

The implementation of difference of two zones Z,Z ′ ∈ Z(nX) represented
by the canonical DBMs D = (dij) and D′ = (d′

ij), respectively, consists in
generating a partition of Z \ Z ′ by successively slicing off these parts of Z
which do not lie in Z ′. We consider in turn each bound d′

ij = (dij , ∼) with
i �= j, dij �= ∞ and ∼∈ {<, ≤} in D, as a potential face along which to slice
Z. Slicing along this face is necessary if it “touches” any points in Z. By the
operation restrict(Z, cc), for cc ∈ C�

X+ , we mean restriction of the zone Z to
the clock valuations which satisfy cc (i.e., restrict(Z, cc) = Z ∩ [[cc]]). By ∼
we mean “≤” if ∼=<, and “<” otherwise. The set of DBMs representing the
elements of Z \ Z ′ can be generated using the algorithm shown in Fig. 5.45.

Pseudo-codes for (efficient) implementations of operations on DBMs can
be found in [25,27].

Further reading

Some overviews of the techniques of generating abstract models for timed
systems can be found e.g. in [27,159,176].

154 5 Abstract Models

Input arguments:

a set of clocks X with |X | = nX
zones Z, Z′ represented by DBMs D = (dij) and D′ = (d′

ij), respectively
Return values:

zone difference(): 2Z(nX),
restrict(): Z(nX)

1. procedure zone difference(Z, Z′,X) is
2. begin
3. done := false;
4. Z \ Z′ := ∅;
5. compute the DBM DC st [[DC]] = Closure(Z′);
6. for each xi, xj ∈ X+ s.t. xi �= xj do
7. if (¬done) then
8. compute the DBM DB s.t. [[DB]] = Z ∩ Z′;
9. if [[DB]] = ∅ then
10. Z \ Z′ := (Z \ Z′) ∪ {[[D]]};
11. done := true;
12. else
13. if [[DB]] = Z then done := true;
14. else
15. compute the DBM DD s.t. [[DD]] =

restrict([[DC]], xi − xj ≤ d′
ij ∧ xj − xi ≤ −d′

ij); // equality
16. if [[DD]] ∩ Z �= ∅ then
17. compute the DBM DE s.t.
18. [[DE]] = restrict(Z, xj − xi∼− d′

ij);
19. Z \ Z′ := (Z \ Z′) ∪ {[[DE]]};
20. compute the DBM D for Z := restrict(Z, xi − xj ∼ d′

ij);
21. end if;
22. end if;
23. end if;
24. end if;
25. end do;
26. end zone difference;

Fig. 5.45. An algorithm for computing difference of zones

6

Explicit Verification

The aim of this chapter is to show how one can explicitly verify the common
properties of timed systems expressible in TCTL (TCTLC) and its sublogics.
It turns out that most of the approaches is based on translations of the model
checking problem of TCTL to the model checking problem of CTL. Thus, the
first section of this chapter deals with several methods of model checking for
CTL over finite Kripke models, whereas the second section shows translations.

We discuss also whether and how the model checking methods for CTL can
be extended to CTL∗ and modal µ-calculus. Notice that our general model
checking algorithms for CTL can be directly applied to verifying timed sys-
tems, as we defined finite-state abstract models of timed automata and time
Petri nets in the previous chapter.

The last two sections of this chapter overview other explicit approaches to
model checking of TCTL, which are not based on a translation to CTL model
checking, as well as some verification tools exploiting the above approaches.

6.1 Model Checking for CTL

There are several model checking methods for CTL. To make an easy intro-
duction to these methods, we start with showing the simplest model checking
algorithm based on a state labelling. Next, we present an automata-theoretic
approach to CTL model checking.

6.1.1 State Labelling

If we do not bother about the size of the model, then the simplest approach
to CTL model checking, called state labelling, can be used. Below, we show a
deterministic algorithm, based on state labelling, for determining whether a

W. Penczek and A. Pó�lrola: Explicit Verification, Studies in Computational Intelligence (SCI)

20, 155–180 (2006)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006

156 6 Explicit Verification

CTL formula ϕ is true at a state s ∈ S in a finite model M = ((S, s0, →), V),
of complexity O(|ϕ|×(|S| + |→|)).1

The algorithm shown here is designed so that when it finishes, each state s
of M is labelled with the subformulas of ϕ which are true at s. The algorithm
operates in stages. The i-th stage handles all subformulas of ϕ of length i for
i ≤ |ϕ|. Thus, at the end of the last stage each state will be labelled with
all subformulas of ϕ which are true at it. In this process we use the following
equivalences (cf. p. 71):

• A(ϕUψ) ≡ ¬(E(¬ψU(¬ϕ ∧ ¬ψ)) ∨ EG(¬ψ)),
• A(ϕRψ) ≡ ¬E(¬ϕU¬ψ),
• E(ϕRψ) ≡ ¬A(¬ϕU¬ψ).

Thus, each of the operators of CTL can be expressed in terms of the three
operators EX,EG, and EU. Because of that only six cases have to be consid-
ered, depending on whether ϕ is a proposition or is in one of the following
forms: ¬ψ, ψ1 ∧ψ2, EXψ, E(ψ1Uψ2), or EGψ. The algorithm is discussed for
the last two cases only, as the others are straightforward.

To handle a formula of the form ϕ = E(ψ1Uψ2), the algorithm first finds
all the states which are labelled with ψ2 and labels them with ϕ. Then, it
goes backwards using the relation →−1 and finds all the states which can be
reached by a path in which each state is labelled with ψ1. All such states are
labelled with ϕ. This step requires time O(|S| + |→|).

Now, the case when ϕ = EGψ is considered. Firstly, the graph (S′, →′) is
constructed, where S′ = {s ∈ S | M, s |= ψ} and →′ = →∩(S′×S′). Secondly,
(S′, →′) is partitioned into strongly connected components2 and those states
which belong to the components of size greater than 1 or with a self-loop are
selected. Finally, the algorithm goes backwards from these states using →−1

and finds all those states which can be reached by a path in which each state is
labelled with ψ. This step also requires time O(|S|+|→|). In order to handle an
arbitrary CTL formula ϕ, the state labelling algorithm is successively applied
to the subformulas of ϕ, starting with the shortest and most deeply nested
ones. Since each pass takes time O(|S| + |→|) and since ϕ has at most |ϕ|
different subformulas, the algorithm requires time O(|ϕ|×(|S| + |→|)).

Example 6.1. Consider the model M shown in Fig. 6.1, and the CTL for-
mula ϕ = E(℘1U(EG℘2)). The stages of the state-labelling algorithm checking
whether ϕ holds in M are shown in Fig. 6.2. At the beginning, the states of M
are labelled with the most nested and shortest subformulas of ϕ. i.e., with the
1 The complexity of an algorithm is often described using the so-called “big–O

notation”, which is a theoretical measure of how an algorithm will execute, in
terms of the time or computer memory required, given the size of the problem
itself (see [113]).

2 A strongly connected component of a directed graph G = (V, E) is a maximal
subgraph G′ = (V ′, E′) of G such that each two vertices in V ′ are connected by
a path in G′.

6.1 Model Checking for CTL 157

M

℘1

℘2

s0

Fig. 6.1. The model M considered in Example 6.1

propositions ℘1 and ℘2. This is shown in part (a) of the figure. Then, the sub-
formulas of ϕ of length i = 2 should be considered. In our example, this is only
ϕ′ = EG℘2. In order to label the states of M with ϕ′, we build the subgraph
(S′, →′) whose vertices are the states labelled with ℘2 (see Fig. 6.2(b)) and
identify its strongly connected components (denoted SCCi with i = 1, 2, 3 in
Fig. 6.2(b)). Then, the algorithm labels with ϕ′ all the states which either be-
long to SCC1, SCC3 (notice that SCC2 is a singleton without a self-loop) or
can be reached going backwards (i.e., using →−1) from the states in SCC1 or
SCC3 by a path whose states are labelled with ϕ′. This is shown in Fig. 6.2(c)

s0

℘2

℘1

℘1

℘1

℘2

℘2

℘1

℘2

℘2

℘2

℘2

℘2

SCC3SCC2

SCC1

℘2

℘2

(a) (b)

s0

℘2, ϕ
′

℘1

℘1

℘1

℘2, ϕ
′

℘1

℘2, ϕ
′

℘2, ϕ
′℘2, ϕ

′

s0

℘2, ϕ
′, ϕ

℘1

℘1, ϕ

℘2, ϕ
′, ϕ

℘1, ϕ

℘2, ϕ
′, ϕ

℘2, ϕ
′, ϕ℘2, ϕ

′, ϕ

℘1, ϕ

(c) (d)

Fig. 6.2. The stages of labelling M with subformulas of ϕ = E(℘1U(EG℘2))

158 6 Explicit Verification

(the states which are labelled in this step are additionally marked with the
grey background). The next stage consists in labelling the states of M with
the formula ϕ, which is of the form E(℘1Uϕ′). Thus, the algorithm labels
with ϕ all the states which have already been marked with ϕ′, as well as these
which can be reached from them by the relation →−1 on a path labelled with
℘1. This is shown in Fig. 6.2(d) (again, the states labelled in this step are
marked with the grey background). Finally, we conclude that M |= ϕ, since
the state s0 is labelled with the formula ϕ.

�

6.1.2 Automata-Theoretic Approach

When the state labelling method is used for verifying a CTL property ϕ, it
requires, in principle, to build a model first, and then to check the formula
over this model. This can obviously make verification infeasible, especially
when the size of the model for a system is prohibitive. Therefore, there are
approaches which offer on-the-fly solutions, i.e., a formula is checked over
a model while its construction. One of such approaches exploits automata
theory3. Intuitively, this method consists in checking non-emptiness of the
automaton4 which is the product of two automata: one corresponding to the
model and the other one obtained from a translation of the formula ϕ. Non-
emptiness of the product automaton can be sometimes checked even before
this automaton is completely built [164], which means that a part of the model
is used only.

For ϕ ∈ CTL such a translation is made to WAA (weak alternating au-
tomata), whereas for ϕ ∈ CTL∗ to HAA (hesitant alternating automata).
Alternating automata do not accept all the models for a given formula, but
only these with a branching degree (i.e., the number of the →-successors of a
state) limited by some constant k. For model checking, the limit for k is taken
as the maximal branching degree in the model.

Alternating Automata

Alternating automata (AA) [30] generalise standard non-deterministic au-
tomata. This is obtained by defining a transition function in AA by means of
positive boolean formulas. Non-determinism in the transition function is asso-
ciated with the existential choice. The generalisation provides the means for
dealing with the universal choice.

3 We assume a basic knowledge of automata theory, and introduce only the notions
which are essential for understanding this book. Definitions of the complementary
notions can be found in [97,164].

4 Non-emptiness of an automaton means that the language it accepts is non-empty,
see p. 163.

6.1 Model Checking for CTL 159

For a given set Y let B+(Y) be a set of positive boolean formulas over Y ,
defined as follows:

β := true | false | y | β ∨ β | β ∧ β,

where y ∈ Y .
Notice that no negation is applied to the elements of B+(Y). For a subset

Y ′ ⊆ Y we say that Y ′ satisfies β ∈ B+(Y) iff β is satisfied when assigning true
to the elements y ∈ Y ′ and false to elements y′ ∈ Y \Y ′. For example, for Y =
{y0, y1, y2, y3} the subset Y ′ = {y0, y1} satisfies the formula (y0∨y3)∧(y1∨y2),
and it does not satisfy the formula (y0 ∨ y1) ∧ (y2 ∨ y3).

Let IN∗ denote the set of all the finite sequences of natural numbers, and
· denote the concatenation operation. A tree is a subset T ⊆ IN∗ such that if
η·c ∈ T for η ∈ IN∗ and c ∈ IN, then also η ∈ T, and η·c′ ∈ T for all 0 ≤ c′ < c
(see Fig. 6.3).

. . .

ε

0·0 0·1

20

0·2

1

2·22·0 2·32·1

Fig. 6.3. A tree

The elements of T are called nodes. The empty sequence ε is the root of
T. For every η ∈ T, the nodes η·c ∈ T with c ∈ IN are the successors of η. The
number of the successors of η (denoted d(η)) is called the degree of η. A leaf
is a node with no successors. A path π of a tree T is a set π ⊆ T such that
ε ∈ π and for every η ∈ π, either η is a leaf or there exists a unique c ∈ IN
such that η·c ∈ π. For D ⊆ IN a tree T is a D-tree if d(η) ∈ D for all η ∈ T.

Example 6.2. An example of a tree is shown in Fig. 6.3. The node 1 is a leaf
so its degree is 0, i.e., d(1) = 0. Notice that d(ε) = d(0) = 3, and d(2) = 4.
One of the paths in the tree is {ε, 0, 0·0, . . .}. The tree is a D-tree, for some D
with {0, 3, 4} ⊆ D.

�

An A-labelled tree, for a finite alphabet A, is a pair (T, VT), where T is a tree,
and VT : T −→ A assigns to every node of T a label in A. In the setting used
in the model checking, an A-labelled tree with A = 2PV (PV – a finite set
propositional variables) is called a computation tree.

An infinite word over a set A is an infinite sequence a0a1a2 . . . such that
ai ∈ A for all i ≥ 0. Notice that an infinite word over A can be viewed as a
A-labelled tree in which the degree of all the nodes is 1.

160 6 Explicit Verification

Definition 6.3. An alternating automaton over infinite trees (ATA) is a 6-
tuple

A = (A, D,Q, q0,∆, F),

where

• A is a finite input alphabet,
• D ⊆ IN is a finite subset of IN,
• Q is a finite set of states,
• q0 ∈ S is an initial state,
• ∆ : Q × A × D −→ B+(IN × Q) is a partial transition function, where

∆(q, a, k) ∈ B+({0, . . . , k − 1} × Q}) if defined,
• F ⊆ Q is an acceptance condition5.

Alternating automata over infinite words can be viewed as restrictions of al-
ternating automata over infinite trees, where D = {1}. Then, a transition
function simplifies to a partial function:

∆ : Q × A −→ B+(Q).

An intuition behind the transition function of an ATA is the following. If A

is in a state q, and reads a node η of a tree T labelled with a ∈ A which has k
successors, then it applies the transition function ∆(q, a, k). This means that
the automaton can send its copies, each of which moves to its own new state, to
such successor states of η that, when paired with the state of the corresponding
copy of the automaton, make the formula ∆(q, a, k) satisfied. This way several
nodes of T can be visited simultaneously, and A can be in more than one state
at the same time (e.g., if ∆(q, a, k) contains a conjunction). This can be also
viewed as running several copies of A, each of which is in one current state.

Example 6.4. An example of alternating automaton is the following: A =
(A, D,Q, q0,∆, F) with A = {a1, a2}, D = {0, 1, 3, 4, 5}, Q = (q0, q1, q2),
F = {q1} and the transition function given by

∆(q0, a1, 3) = (2, q1) ∨ (1, q2),
∆(q1, a2, 0) = true,

∆(q1, a2, 1) = (0, q1) ∧ (0, q2),
∆(q1, a2, 3) = (2, q1) ∨ (1, q2),
∆(q2, a1, 4) = ((3, q0) ∨ (1, q1)) ∧ (2, q1),
∆(q2, a2, 3) = true.

The transition function of A is graphically depicted in Fig. 6.4.
�

5 An acceptance condition can be also defined as a pair of states.

6.1 Model Checking for CTL 161

q0

a1, 3

(2, q1) ∨ (2, q2)

(2, q1) ∨ (1, q2)true
a2, 1

(0, q1) ∧ (0, q2)

q1

true

q2
a2, 3 a2, 3a1, 4a2, 0

((3, q0) ∨ (1, q1)) ∧ (2, q1)

Fig. 6.4. The transition function of the automaton A of Example 6.4

A run r of an alternating automaton A on a leafless A-labelled tree (T, VT)
is a tree labelled by elements of IN∗ × Q. The root of r is labelled with (ε, q0)
Formally, a run r = (Tr, Vr) is an Ar-labelled tree, where Ar = IN∗ × Q, and
(Tr, Vr) satisfies the following:

1. ε ∈ Tr and Vr(ε) = (ε, q0).
2. Let ηr ∈ Tr with Vr(ηr) = (η, q) and ∆(q, VT(η), d(η)) = β. Then there is

a possibly empty set

O = {(c0, q0), (c1, q1), . . . , (cn, qn)} ⊆ {0, . . . , d(η) − 1} × Q,

such that the following hold:
• O satisfies β, and
• for all 0 ≤ i ≤ n, we have ηr · i ∈ Tr and Vr(ηr·i) = (η·ci, qi).

Example 6.5. Consider the automaton A of Example 6.4 and a tree T a part
of which is shown in Fig. 6.5(a). The labels of the nodes of T (given in square
brackets) are taken from the set A = {a1, a2}. A part of a run of A on the
tree T is shown in Fig. 6.5(b).

Computing the run shown in the picture is done in the following steps:

• Initially, A is in its initial state, and reads the root of the tree T that is
labelled with the input letter a1. Since the degree of ε in T is 3, ∆(q0, a1, 3)
is of our interest. As ∆(q0, a1, 3) = (2, q1) ∨ (1, q2), the set O can consist
either of (2, q1), or (1, q2), or of both of them. Let us say that O = {(2, q1)}.
Thus, A moves to q1, and the node 2 of T is visited. This gives us the node
0 of Tr with Vr(0) = (2, q1).

• Next, when the node 2 labelled with a2 is read, we have O = {(0, q1), (0, q2)}
due to the value of ∆(q1, a2, 1). Therefore, A sends its copies to q1 and
q2. The node 2·0 of T is visited. As a result, the node 0 of Tr has two
successors with Vr(0·0) = (2·0, q1) and Vr(0·1) = (2·0, q2).

• In the next step both the copies of the automaton read the node 2·0 of T,
which is labelled with a2. Since ∆(q2, a2, 3) = true , the set O computed for
this case can be empty, and therefore the node 0·1 labelled with (2·0, q2)
is a leaf of Tr.
However, the node 0·0 is not a leaf, since ∆(q1, a2, 3) = (2, q1)∨ (1, q2). So
we take the set O = {(2, q1), (1, q2)}, and therefore A sends its copies to

162 6 Explicit Verification

. . .

. . .

. . .

. . .
.

0

ε

21

2·00·0 0·1 0·2
[a2]

2·0·1·0
2·0·1·2

[a2][a2]
[a2]

2·0·12·0·0 2·0·2
[a2][a1]

2·0·1·3 2·0·2·0
[a2] 2·0·1·1 [a2]

(T, VT)

[a2] [a2]

[a1]

[a2] [a1] [a2]

[a1]

[a2]

(a)

.
[(2·0·1·1, q1)]

[(ε, q0)]

0

(Tr, Vr)

[(2, q1)]

[(2·0·2·0, q2)][(2·0·2·0, q1)]
0·0·0·0

[(2·0·2·0, q1)]
0·0·1·0 0·0·1·10·0·0·1

ε

[(2·0, q1)] [(2·0, q2)]
0·0 0·1

0·0·0 0·0·1
[(2·0·1, q2)][(2·0·2, q1)]

(b)

Fig. 6.5. A run r = (Tr, Vr) of the automaton A of Example 6.4 (part (b)) on a
tree (T, VT) (part (a))

6.1 Model Checking for CTL 163

q1 and q2. In the tree T the nodes 2·0·1 and 2·0·2 are visited. Thus, in Tr

we obtain two nodes: 0·0·0 and 0·0·1.
• Then, the copy of A which is in the state q1 reads in the node 2·0·2 labelled

with a2. We obtain O = {(0, q1), (0, q2)}, and again A sends its copies to
q1 and q2. Both of them visit the node 2·0·2·0 in T. The node 0·0·0 of Tr

has therefore two successors.
• Simultaneously, the copy of A which is in the state q2 (i.e., the one corre-

sponding to the node 0·0·1 in Tr) reads the node 2·0·1 (of T) labelled with
a1. Taking O = {(2, q1), (1, q1)}, the automaton A sends its two copies to
q1, and ’visits’ the nodes 2·0·1·1 and 2·0·1·2 in T. The node 0·0·1 of Tr is
therefore of two successors.

Obviously, the process can be continued, since the tree T is infinite.
�

A run r is accepting if each its infinite path satisfies the acceptance condi-
tion F , which, in our case, means that some state of F repeats infinitely often
in the path. An automaton accepts a tree if there exists a run that accepts it.
By L(A) we mean the language of A, i.e., the set of all the trees accepted by
an automaton.

Weak alternating automata (WAA, for short) are an important subclass
of alternating automata over infinite trees. Let A = (A, D,Q, q0,∆, F) be an
ATA. Then, for A to be a WAA, F ⊆ Q denotes the standard Büchi acceptance
condition and the set of states Q can be partitioned into a finite number of
disjoint sets Qi, partially ordered by ≤ such that for every q ∈ Qk and q′ ∈ Ql

such that q′ occurs in ∆(q, a, d) for some a ∈ A and d ∈ D we have Ql ≤ Qk.

WAA are used for defining a translation from CTL. As far as CTL∗ is
concerned we need a more powerful class of automata, called hesitant alter-
nating tree automaton (HAA). Firstly, HAA have a more restricted transition
structure than WAA, and secondly they use the Streett acceptance condition
(see [97, 164]). Similarly the formulas of modal µ-calculus can be efficiently
(i.e., in linear time6) translated to alternating Streett tree automata, i.e., us-
ing Streett acceptance condition. The reader is referred to [97] for more details
about the above translations.

6 Algorithms are often described as having “linear”, “logarithmic”, “polynomial”,
or “exponential” complexity, which in big-O notation is expressed as O(n),
O(log n), O(nk), and O(kn), where k is a constant, and n is the size of the
input. Generally, for a given size of the input, linear algorithms require least
resources (i.e., time or memory), exponential algorithms, the most complex, re-
quire most, whereas logarithmic and polynomial are in the middle, less to more
resource-consuming (see [113]).

164 6 Explicit Verification

Translation from CTL to WAA

For a given CTL formula ϕ in a positive normal form and a set D ⊆ IN, a
WAA

AD,ϕ = (2PV (ϕ), D, SF (ϕ), ϕ,∆, F)

can be defined such that L(AD,ϕ) is the set of all the D-trees satisfying ϕ.
Below we define ∆ and F of AD,ϕ:

• F is the set of all ER and AR formulas in SF (ϕ),
• The transition function is given by

∆(℘, a, k) =
{

true iff ℘ ∈ a,

false iff ℘ �∈ a

∆(¬℘, a, k) =
{

true iff ¬℘ ∈ a,

false iff ¬℘ �∈ a,

∆(ϕ1 ∨ ϕ2, a, k) = ∆(ϕ1, a, k) ∨ ∆(ϕ2, a, k),

∆(ϕ1 ∧ ϕ2, a, k) = ∆(ϕ1, a, k) ∧ ∆(ϕ2, a, k),

∆(EXϕ, a, k) =
∨k−1

c=0 (c, ϕ),

∆(AXϕ, a, k) =
∧k−1

c=0 (c, ϕ),

∆(E(ϕ1Uϕ2), a, k) = ∆(ϕ2, a, k) ∨ (∆(ϕ1, a, k) ∧
∨k−1

c=0 (c,E(ϕ1Uϕ2))),

∆(A(ϕ1Uϕ2), a, k) = ∆(ϕ2, a, k) ∨ (∆(ϕ1, a, k) ∧
∧k−1

c=0 (c,A(ϕ1Uϕ2))),

∆(E(ϕ1Rϕ2), a, k) = ∆(ϕ2, a, k) ∧ (∆(ϕ1, a, k) ∨
∨k−1

c=0 (c,E(ϕ1Rϕ2))),

∆(A(ϕ1Rϕ2), a, k) = ∆(ϕ2, a, k) ∧ (∆(ϕ1, a, k) ∨
∧k−1

c=0 (c,A(ϕ1Rϕ2))).

It is also useful to show the transition function for the derived operators:

∆(EFϕ, a, k) = ∆(ϕ, a, k) ∨
∨k−1

c=0 (c,EFϕ),

∆(AFϕ, a, k) = ∆(ϕ, a, k) ∨
∧k−1

c=0 (c,AFϕ),

∆(EGϕ, a, k) = ∆(ϕ, a, k) ∧
∨k−1

c=0 (c,EGϕ),

∆(AGϕ, a, k) = ∆(ϕ, a, k) ∧
∧k−1

c=0 (c,AGϕ).

To see that AD,ϕ is a WAA, we define a partition of Q into disjoint sets
and the partial order over them. Each formula ψ ∈ SF (ϕ) is a singleton set
{ψ} in the partition. The partial order is defined as follows: {ψ1} ≤ {ψ2} iff
ψ1 ∈ SF (ψ2).

Example 6.6. Consider a CTL formula

E(℘1U(EG℘2)),

6.1 Model Checking for CTL 165

which expresses that there is a path along which ℘1 holds until a path starts,
at which ℘2 holds forever. The WAA for E(℘1U(EG℘2)) is over the alphabet
equal to {∅, {℘1}, {℘2}, {℘1, ℘2}}. It contains four states q0 = E(℘1U(EG℘2))
(the initial state), q1 = EG℘2, q2 = ℘1, and q3 = ℘2, whereas its accep-
tance condition is F = {EG℘2} (due to EG℘2 being an abbreviation for
E(falseR℘2), see p. 67). The transition function is computed in the following
way:

• For q = q3 = ℘2 and a ∈ {∅, {℘1}}, as well as for q = q2 = ℘1 and
a ∈ {∅, {℘2}}, we have ∆(q, a, k) = false, since q �∈ a in any of the above
cases;

• Similarly, for q = q3 and a ∈ {{℘2}, {℘1, ℘2}}, as well as for q = q2 and
a ∈ {{℘1}, {℘1, ℘2}}, we have ∆(q, a, k) = true,

• Due to q1 = EGq3, we have
∆(q1, a, k) = ∆(q3, a, k) ∧

∨k−1
c=0 (c,EGq3) = ∆(q3, a, k) ∧

∨k−1
c=0 (c, q1).

This gives us:
– for a ∈ {∅, {℘1}}

∆(q1, a, k) = false ∧
∨k−1

c=0 (c, q1) = false;
– for a ∈ {{℘2}, {℘1, ℘2}}

∆(q1, a, k) = true ∧
∨k−1

c=0 (c, q1) =
∨k−1

c=0 (c, q1);

• Due to q0 = E(q2Uq1), we have
∆(q0, a, k) = ∆(q1, a, k) ∨ (∆(q2, a, k) ∧

∨k−1
c=0 (c, q0)).

This gives us:
– ∆(q0, ∅, k) = false ∨ (false ∧

∨k−1
c=0 (c, q0)) = false,

– ∆(q0, {℘1}, k) = false ∨ (true ∧
∨k−1

c=0 (c, q0)) =
∨k−1

c=0 (c, q0),
– ∆(q0, {℘2}, k) =

∨k−1
c=0 (c, q1) ∨ (false ∧

∨k−1
c=0 (c, q0)) =

∨k−1
c=0 (c, q1),

– ∆(q0, {℘1, ℘2}, k) =
∨k−1

c=0 (c, q1) ∨ (true ∧
∨k−1

c=0 (c, q0)) =
∨k−1

c=0 (c, q1) ∨
∨k−1

c=0 (c, q0).

The above-computed transition function is summarized in the table below:

∆(q, a, k)

q a = ∅ a = {℘1} a = {℘2} a = {℘1, ℘2}

q0 false
∨k−1

c=0 (c, q0)
∨k−1

c=0 (c, q1)
∨k−1

c=0 (c, q1) ∨
∨k−1

c=0 (c, q0)

q1 false false
∨k−1

c=0 (c, q1)
∨k−1

c=0 (c, q1)

q2 false true false true

q3 false false true true

�

166 6 Explicit Verification

Example 6.7. Consider a CTL formula

AGEF℘,

which expresses that a state satisfying ℘ is reachable from each state. The
WAA for AGEF℘ is over the alphabet {∅, {℘}}, it contains three states q0 =
AGEF℘ (the initial state), q1 = EF℘, and q2 = ℘, whereas the acceptance
condition F = {AGEF℘}. The transition function is given in the table below:

q ∆(q, ∅, k) ∆(q, {℘}, k)

q0

∨k−1
c=0 (c, q1) ∧

∧k−1
c=0 (c, q0)

∧k−1
c=0 (c, q0)

q1

∨k−1
c=0 (c, q1) true

q2 false true

�

Model Checking with WAA

Recall that the model checking problem for CTL is stated as: given a CTL
formula ϕ and a system represented by its model M , check whether M, s0 |= ϕ.
Since each model corresponds to a single tree, model checking is reduced to
checking the membership of that tree in the models of the formula which
are accepted by the WAA AD,ϕ, where D is the minimal set containing the
degrees of all states of M .

The semantics of CTL was defined over Kripke models. For the purpose of
automata model checking this definition has to be extended to specific infinite
trees, which are at the same time models for the formula and input trees for a
formula automaton. This enables a reduction to checking the non-emptiness
of automata over an alphabet of one letter only (called 1-letter non-emptiness
checking). A model M = ((S, s0, →), V) can be viewed as a tree (TM , VM)
that corresponds to the unwinding of M from s0 such that if M is a model
for a formula, so is (TM , VM).

Let succ(s) = (s0, . . . , sd(s)−1) be an ordered list of the →-successors of a
state s. Then, TM and VM are defined as follows:

1. ε ∈ TM and VM (ε) = s0,
2. For η ∈ TM with succ(VM (η)) = (s0, . . . , sn) and for 0 ≤ i ≤ n, we have

η·i ∈ TM and VM (η·i) = si.

The model checking algorithm for ϕ proceeds as follows:

1. Construct an alternating automaton on infinite words7 AM×ϕ = M×AD,ϕ

(the product automaton). This automaton simulates a run of AD,ϕ over
7 Recall that this means on infinite trees such that the degree of each state is equal

to 1.

6.1 Model Checking for CTL 167

(TM , VM). Notice that the alternating automaton AD,ϕ does not need to
be constructed a priori, which can be seen in the next subsection, where
we define the product automaton directly.

2. If L(AM×ϕ) �= ∅, then the formula ϕ is true in the model M . Otherwise,
it is false.

The efficiency of this approach follows from the fact that AM×ϕ can be de-
fined over an alphabet consisting of a single symbol only, thus allowing for the
1-letter non-emptiness testing. Since the product automaton can be defined
as a 1-letter alternating automaton over words, its non-emptiness can be ef-
fectively tested in linear time and in logarithmic space complexity. In general,
checking for non-emptiness of a non-deterministic automaton can be reduced
to checking non-emptiness of a 1-letter non-deterministic automaton, but this
does not hold for alternating tree automata. Fortunately, it was shown in [30]
that taking a product with the tree representing a model allows to extend this
reduction to the case of our product alternating automata.

Product Automaton

Given a model M = ((S, s0, →), V) and a CTL formula ϕ, a 1-letter product
automaton WAA

AM×ϕ = ({a},Q, q0,∆, F)

is defined as follows:

• Q = S × SF (ϕ),
• q0 = (s0, ϕ),
• F is the set of all the pairs (s,O(ϕ1Rϕ2)) with s ∈ S and O(ϕ1Rϕ2) ∈

SF (ϕ), for O ∈ {E,A},
• the transition function is given by (notice that this automaton has a sim-

plified transition function, cf. p. 160)

∆((s, ℘), a) =
{

true iff ℘ ∈ V (s),
false iff ℘ �∈ V (s),

∆((s, ¬℘), a) =
{

true iff ℘ �∈ V (s),
false iff ℘ ∈ V (s),

∆((s, ϕ1 ∨ ϕ2), a) = ∆((s, ϕ1), a) ∨ ∆((s, ϕ2), a),

∆((s, ϕ1 ∧ ϕ2), a) = ∆((s, ϕ1), a) ∧ ∆((s, ϕ2), a),

∆((s,EXϕ), a) =
∨

s′∈succ(s)(s
′, ϕ),

∆((s,AXϕ), a) =
∧

s′∈succ(s)(s
′, ϕ),

∆((s,E(ϕ1Uϕ2)), a) = ∆((s, ϕ2), a) ∨
(∆((s, ϕ1), a) ∧

∨
s′∈succ(s)(s

′,E(ϕ1Uϕ2))),

168 6 Explicit Verification

∆((s,A(ϕ1Uϕ2)), a) = ∆((s, ϕ2), a) ∨
(∆((s, ϕ1), a) ∧

∧
s′∈succ(s)(s

′,A(ϕ1Uϕ2))),

∆((s,E(ϕ1Rϕ2)), a) = ∆((s, ϕ2), a) ∧
(∆((s, ϕ1), a) ∨

∨
s′∈succ(s)(s

′,E(ϕ1Rϕ2))),

∆((s,A(ϕ1Rϕ2)), a) = ∆((s, ϕ2), a) ∧
(∆((s, ϕ1), a) ∨

∧
s′∈succ(s)(s

′,A(ϕ1Rϕ2))).

The function for derived operators is provided below:

∆((s,EFϕ), a) = ∆((s, ϕ), a) ∨
∨

s′∈succ(s)(s
′,EFϕ),

∆((s,AFϕ), a) = ∆((s, ϕ), a) ∨
∧

s′∈succ(s)(s
′,AFϕ),

∆((s,EGϕ), a) = ∆((s, ϕ), a) ∧
∨

s′∈succ(s)(s
′,EGϕ),

∆((s,AGϕ), a) = ∆((s, ϕ), a) ∧
∧

s′∈succ(s)(s
′,AGϕ).

Example 6.8. Consider the product automaton AM×ϕ of the WAA for the
formula

ϕ = E(℘1U(EG℘2))

of Example 6.6 and the model M considered in Example 6.1 and recalled in
Fig. 6.6.

M

℘1

℘2

s0

s1

s2

s3

s4

s5 s6

s7

s9

s8

Fig. 6.6. The model M considered in Example 6.8

Let ϕ′ denotes the subformula EG℘2 of ϕ. The set of states of AM×ϕ

is given by Q = {s0, s1, . . . , s9} × {ϕ,ϕ′, ℘1, ℘2}, F = {(s,EG℘2) | s ∈
{s0, s1, . . . , s9}}, and the initial state q0 is (s0,E(℘1U(EG℘2)). The transi-
tion function of AM×ϕ is built iteratively according to the rules above. Its
beginning part is graphically shown in Fig. 6.7 as an and/or graph8. To ex-
plain the method of building the graph of Fig. 6.7, consider the initial state
(s0, ϕ). Due to ϕ = E(℘1U(EG℘2)) = E(℘1Uϕ′) we have
8 This is a graph with additional nodes enabling to express existential and universal

choices over successor states.

6.1 Model Checking for CTL 169

∆((s0, ϕ), a) = ∆((s0, ϕ′), a) ∨ (∆((s0, ℘1), a) ∧ (s1, ϕ)),

since s1 is the only successor of s0. Then, ∆((s0, ϕ′), a) = ∆((s0,EG℘2), a) is
further transformed into

∆((s0, ϕ′), a) = ∆((s0, ℘2), a) ∧ (s1, ϕ
′) = false ∧ (s1, ϕ

′),

since ℘2 does not hold at s0. On the other hand, ∆((s0, ℘1), a) is replaced by
true, since this proposition holds at the initial state of M . This “unwinding”
of the transition function corresponds to the first level of the and/or graph.
Computing the further levels of the graph (i.e., the values of the transition
function for other states) is done in a similar way.

�

. . .
. . .

. . .

. . .

true

(s0, ϕ)

∨∧

∨

false true

∧

(s1, ϕ
′)

∧

(s1, ϕ)

∨

∨

∧

false (s7, ϕ
′)

∧

false (s8, ϕ)

∧

true (s9, ϕ
′)

∧∨

(s2, ϕ
′) (s3, ϕ

′) (s4, ϕ
′) ∨

(s4, ϕ)(s3, ϕ)(s2, ϕ)

true

∧

(s4, ϕ
′)

∧

∨true

false

∧

∨

(s7, ϕ
′)

∧

true (s8, ϕ
′)

∧

true (s8, ϕ
′)

(s7, ϕ)

(s3, ϕ
′)

(s3, ϕ
′)

(s2, ϕ
′)

false

Fig. 6.7. A part of the and/or graph of the automaton AM×ϕ for the model of
Fig. 6.6 and ϕ = E(℘1U(EG℘2))

170 6 Explicit Verification

Checking Non-emptiness of 1-Letter Word WAA

The 1-letter non-emptiness problem for WAA over words is of linear time
complexity. Below we sketch an algorithm [97] solving this problem for a
product automaton.

The algorithm labels the states Q ∪ {true, false} of the OR/AND graph
of the product automaton with True or False. The idea is that a state q is
labelled True iff the language accepted by the automaton, provided q is an
initial state, is non-empty. Therefore, the language of the product automaton
is non-empty when q0 is labelled with True.

We know (cf. p. 163) that there is a partition of Q ∪ {true, false} into
disjoint sets Qi such that transitions from a state in Qi lead either to states
of the same Qi or to states of a lower Qj (i.e., Qj < Qi) 9. Moreover, each set
Qi ⊆ Q can be defined such that all its states share the second component.
Then, we define accepting and rejecting states. The state true constitutes an
accepting state, whereas the state false constitutes a rejecting state, both
minimal in the partial order. Next, a set Qi is defined as accepting if Qi ⊆ F
and rejecting if Qi ∩ F = ∅.

Let Q1 < Q2 < . . . Qn be an extension of the partial order to a total
order. The algorithm works in phases starting from the minimal set in the
total order, which has not yet been labelled. The states belonging to Q1 are
labelled with True if Q1 is accepting and with False if Q1 is rejecting. For each
state q ∈ Qi which has been already labelled, a transition function in which q

occurs is simplified, i.e., a conjunction with a conjunct False is simplified to
False and a disjunction with a disjunct True is simplified to True. Thus, if
a transition function for some state can be simplified to True or False, the
state is then labelled in the same way, and simplification propagates further.

As the algorithm operates up to the total order, when it reaches a state
q ∈ Qi which is not labelled, it is guaranteed that all the states in the sets
Qj < Qi have already been labelled. The algorithm then labels q and all the
unlabelled states in ∆(q, a) according to the classification of Qi, i.e., True if
Qi is accepting and False if Qi is rejecting. Notice that when the algorithm
visits such a state q as above, this state leads to a cycle or belongs to a cycle
of the states of the same status, so its labelling depends on the classification
of the set Qi.

Example 6.9. Consider the product automaton built in Example 6.8. After
labelling the state true with True, and false with False, the above algo-
rithm labels all the states of {s6, s7, s8, s9} × {ϕ′} with True, all the states of
{s1, s2, s3, s4, s5}×{ϕ′} with False, and consequently, exploting the simplified
transition relation, the state (s0, ϕ) is labelled with True. This means that ϕ
holds at s0. The above process is depicted in Fig. 6.8, where the states labelled
in the second step are in bold frames, wheras these labelled with True are
coloured. �
9 Clearly, we regard true and false as states with self-loops.

6.2 Model Checking for TCTL over Timed Automata 171

. . .
. . .

. . .

. . .

true

∨∧

∨

∨

∨

false

∧∨

(s2, ϕ
′) (s3, ϕ

′) (s4, ϕ
′) ∨

(s4, ϕ)(s3, ϕ)(s2, ϕ)

true

∧

(s4, ϕ
′)

∧

∨true

false

∧

∨

(s7, ϕ
′)

∧

true (s8, ϕ
′)

∧

true (s8, ϕ
′)

(s7, ϕ)

∧

true (s9, ϕ
′)

∧

false (s7, ϕ
′)

(s8, ϕ)

∧

false

true

∧

(s1, ϕ
′)

∧

(s1, ϕ)

(s3, ϕ
′)

(s0, ϕ)

(s2, ϕ
′) (s3, ϕ

′)

false

Fig. 6.8. Labelling the states while testing non-emptiness of the automaton AM×ϕ

for the model of Fig. 6.6 and ϕ = E(℘1U(EG℘2))

6.2 Model Checking for TCTL over Timed Automata

In this section we discuss different approaches to TCTL model checking. Our
focus is on timed automata only, since the approaches for time Petri nets are
mainly based on existing translations to timed automata (see Chap. 3).

6.2.1 Verification Using Translation from TCTL to CTL

We start with showing a translation from TCTL to CTL model checking for
timed automata which, when combined with model checking methods of the
previous section, gives us model checking algorithms for TCTL. First, we
define a translation for the strongly monotonic interval semantics and then

172 6 Explicit Verification

discuss its adaptation for the weakly monotonic semantics and for the logic
TCTLC . In fact, we show the translation from TCTL to a slightly modified
CTL−X (denoted CTLr

−X). Model checking for CTLr
−X is an easy adaptation

of model checking for CTL−X. In general, the model checking problem for
TCTL can be translated to the model checking problem for a fair10 version of
CTL [7]. However, since we have assumed that we deal with progressive timed
automata only, we can define a translation to the CTLr

−X model checking
problem [159].

First, we show the translation for model checking over region graph models.
Then, we discuss how to adapt this translation to perform model checking over
abstract models obtained by partition refinement.

Model Checking over Region Graph Models

The idea of the translation for the strongly monotonic interval semantics is as
follows. Given a timed automaton A, a valuation function VA, and a TCTL
formula ϕ. First, we extend A with some new clocks11, actions, and transitions
to obtain an automaton Aϕ. The aim of the new transitions is to reset the
new clocks, which correspond to all the timing intervals appearing in ϕ. These
transitions are used to start the runs over which subformulas of ϕ are checked.
Then, we take the bd-region graph model for Aϕ and augment its valuation
function. Finally, we translate the TECTL formula ϕ to an ECTLr

−X formula
ψ = cr(ϕ) such that model checking of ϕ over the bd-region graph model of
A can be reduced to model checking of ψ over the bd-region graph model of
Aϕ with the augmented valuation function.

Formally, let X be the set of clocks of A, and I1, . . . , Ir be a sequence
of the successive intervals appearing in ϕ starting from the beginning of the
formula. The automaton Aϕ extends A such that

• the set of clocks is given by

X ′ = X ∪ {y1, . . . , yr},

• the set of actions is
A′ = A ∪ {ay1 , . . . , ayr

},

• the transition relation E′ ⊆ L × A′ × CX ′ × 2X
′ × L is defined as follows:

E′ = E ∪ {l
ayi

,true,{yi}
−→ l | l ∈ L, 1 ≤ i ≤ r}.

10 In fair CTL path quantifiers are restricted to selected subsets of paths, called fair.
11 One clock is sufficient for some methods using the translation.

6.2 Model Checking for TCTL over Timed Automata 173

Example 6.10. Consider a timed automaton A shown in Fig. 5.17 and the
formula ϕ = EG[2,3]℘1, where ℘1 ∈ PV is a proposition true at the location
l1. In order to build the automaton Aϕ we extend the set of clocks of A by
one additional clock y1, and add a loop edge which resets this clock to each
of the locations. The resulting automaton Aϕ is depicted in Fig. 6.9. The new
edges are marked with the arrows of white arrow-heads.

�

a b

cc

e
d

x2 = 1

x3 < 1

x3 < 1
x2 := 0

l0 l1 l2

x3 < 1
x1 ≥ 1

y1 := 0 y1 := 0

x2 > 1
x2 := 0

x3 := 0
x1 := 0

y1 := 0
ay1

ay1
ay1

x1 := 0

Fig. 6.9. The timed automaton Aϕ augmenting that of Fig. 5.17 to verify TCTL
formulas with one timing interval

Let MDRGb
(Aϕ) = (z(W,w0, →�b), Va) be the bd-region graph model for Aϕ

modified such that

• the action transitions labelled with ayi
are executed from the boundary

regions as well,
• a region is considered as boundary in Aϕ if its projection12 on the clocks

in X is a boundary region of A.

Denote by →�bA the part of →�b where transitions are labelled with elements
of A ∪ {τ}, and by →�byi

the transitions that reset the clocks yi, i.e., labelled
with ayi

for 1 ≤ i ≤ r. Next, we extend the set of propositional variables
PV to PV ′ and the valuation function Va to V ′

a. By ℘yi∈Ii
we denote a new

proposition for every interval Ii appearing in ϕ, and by PVϕ the set of the new
propositions. The proposition ℘yi∈Ii

is true at a state (l, Z) of MDRGb
(Aϕ) if

v(yi) ∈ Ii for v ∈ Z. Let Vϕ be a function labelling each state of MDRGb
(Aϕ)

with the set of propositions from PVϕ true at that state, and labelling with
℘b each region whose projection on the clocks in X is a boundary region of
A. Next, set

PV ′ = PV ∪ PVϕ ∪ {℘b}

and define the valuation function V ′
a : W → 2PV ′

as

V ′
a = Va ∪ Vϕ.

12 By the projection of a region R on the clocks in X we mean the region obtained
from R by removing from the clock valuations the values of all the clocks yi.

174 6 Explicit Verification

The model obtained from MDRGb
(Aϕ) by replacing Va with V ′

a is denoted by
M ′

DRGb
(Aϕ).

In order to translate a TCTL formula ϕ to the corresponding CTL−X

formula ψ we need to modify the language of CTL−X to CTLr
−X by reinter-

preting the operators U and R, denoted now by Uyi
and Ryi

for all 1 ≤ i ≤ r,
where we assume that r is the number of the intervals appearing in ϕ. This
language is interpreted over the bd-region graph model for Aϕ defined above.

Each operator Uyi
and Ryi

for 1 ≤ i ≤ r is interpreted on paths over all
the transitions except for the new ones, but starting with states where the
new clock yi is set to 0, which is ensured by new transitions that reset this
clock.

Formally, for ℘ ∈ PV ′, the set of CTLr
−X formulas is defined inductively

as follows:

ψ := ℘ | ¬℘ | ψ ∧ ψ | ψ ∨ ψ | E(ψUyi
ψ) | E(ψRyi

ψ) | A(ψRyi
ψ) | A(ψUyi

ψ).

A path in M ′
DRGb

(Aϕ) is a maximal sequence π = (w0, w1, . . .) of states such
that wi →�bA wi+1 for each i ∈ IN. Note that only →�bA -steps are considered
here. The relation |= is defined like in Sect. 4.2 for all the CTLr

−X formulas
except for Uyi

and Ryi
, which is given as follows:

• w |= O(φUyi
ψ) iff (∃w′ ∈ W) w →�byi

w′ ∧ w′ |= O(φUψ),
• w |= O(φRyi

ψ) iff (∃w′ ∈ W) w →�byi
w′ ∧ w′ |= O(φRψ),

for O ∈ {E,A}.

Next, the TCTL formula ϕ is translated inductively to the CTLr
−X formula

cr(ϕ) as follows:

cr(℘) = ℘, for ℘ ∈ PV ′,

cr(¬φ) = ¬cr(φ),

cr(φ ∨ ψ) = cr(φ) ∨ cr(ψ),

cr(φ ∧ ψ) = cr(φ) ∧ cr(ψ),

cr(O(φUIi
ψ)) = O(cr(φ)Uyi

(cr(ψ) ∧ ℘yi∈Ii
∧ (℘b ∨ cr(φ)))),

cr(O(φRIi
ψ)) = O(cr(φ)Ryi

(¬℘yi∈Ii
∨ (cr(ψ) ∧ (℘b ∨ cr(φ))))),

for O ∈ {E,A}.

It is easy to show that the validity of the TCTL formula ϕ in the concrete
dense model of A for the valuation function VA (using strongly monotonic
semantics) is equivalent to the validity of the corresponding CTLr

−X formula
cr(ϕ) in the bd-region graph model M ′

DRGb
(Aϕ) defined above [7].

Example 6.11. Consider the timed automaton A shown in Fig. 5.17, and the
formula γ = E(ϕU[1,∞)ψ). The reachable part of the boundary-distinguishing

6.2 Model Checking for TCTL over Timed Automata 175

τ

a0 < x1 < 1 ∧
x1 = x2 = x3

l0

x2 = 0 ∧

x1 = x2 = x3 = 0

l1

x1 = x3 ∧
0 < x2 < x1 < 1

τ

τ

0 < x2 < 1 ∧
τ

τ

x2 > 1 ∧
d

x2 = 0 ∧

τ

τ
x1 > 1 ∧ x3 > 1

x1 > 1 ∧ x3 > 1
x2 = 1 ∧

l0

x1 = x3 = 1

l1

l1

l1

l1

l1

l1 0 < x2 < 1 ∧

0 < x1 = x3 < 1 x1 > 1 ∧ x3 > 1

x2 > 1 ∧ x3 > 1

τ

e

l2 x1 = 0 ∧

τ

l2
x2 > 1 ∧ x3 > 1

x1 > 1 ∧

l2 x2 = 1 ∧
x1 > 1 ∧ x3 > 1

τ

x2 > 1 ∧ x3 > 1
l2 x1 = 1 ∧

τ

τ

e

τ

x1 > 1 ∧ x3 > 1

b

R4

R0

R2

R3

R1

x1 = 0 ∧
x2 = 1 ∧ x3 > 1

τ

R5

R6

R7

R8

x2 > 1 ∧ x3 > 1
l2 0 < x1 < 1 ∧

R9

R10

R11

R12

R13

l2

R14

Fig. 6.10. The reachable part if the boundary-distinguishing detailed region graph
for the automaton of Fig. 5.17 and cmax(A, ϕ) = 1

region graph model for A and ϕ is shown in Fig. 6.10. The regions are anno-
tated with their names (i.e., with Ri for i = 0, . . . , 13), and these which are
boundary are marked with bold frames.

time
1 2 30

...τ

ψ
ϕ

[1, ∞)

q

q |= E(ϕU[1,∞)ψ)

τ

a

τ

τ

τ

d

τ

τ

τ

τ

τ

τ

e

τ

b

R0

R4

R2

R3

R1

τ

R5

R6

R7

R8 R9

R10

R11

R12

R13R14

bτ e

δ3

δ1 δ2 δ3 δ4

δ1

δ2

q

q1 q2

q3

q4

q5

δ4

δ1 + δ2 + δ3

Fig. 6.11. Testing whether q |= γ

176 6 Explicit Verification

In order to check whether γ (interpreted in the strongly monotonic se-
mantics) holds in some arbitrary state q of A (which is performed, e.g., if
γ is a nested subformula of another one, and therefore needs to be tested
also in non-initial states), one should find a run starting at q such that
γ holds along the dense path corresponding to that run. This is shown in
Fig. 6.11. Consider a state q belonging to the region R3. A run found is
q

δ1+δ2+δ3−→
c

q3
b→c q4

δ4→c q5 →c In the figure the states of the run are
marked by coloured dots, whereas the white dots denote the “intermediate”
representatives of the detailed regions traversed by the run. Notice, however,
that in practice searching for such a run can be difficult, since it is possible
that no value of a clock of A shows the time passed in the run.

Next, consider the translation of γ to the CTLr
−X formula as described

above. The new clock introduced by the translation is denoted by y1, and the
resulting formula is cr(γ) = E(cr(ϕ)Uy1(cr(ψ)∧℘y1∈[1,∞) ∧(℘b ∨cr(ϕ)))). The
upper part of Fig. 6.12 shows a fragment of the detailed region graph of the

x1 > 1 ∧ x3 > 1

x1 > 1 ∧ x3 > 1 x1 > 1 ∧ x3 > 1 ∧

x1 > 1 ∧ x3 > 1

l1
∧ 0 < x2 < x1 < 1

x1 = x3 ∧ y1 = 0

τ τ τ

R3
with

τ τ

y1 = 0 ℘y1∈[1,∞)

τ τ τ

R3
with

τ τ

y1 = x1 < 1 added

y1 = x1 < 1 added

l1 l1x1 = x3 < 1 ∧
0 < y1 < x2 < x1 0 < y1 < x2 < x1

x1 = x3 = 1 ∧

l1 x1 > 1 ∧ x3 > 1

∧ 0 < y1 < x2 < 1

τ

∧ 0 < y1 < x2 = 1 x2 > 1 ∧ 0 < y1 < 1
l2

∧ x2 > 1 ∧ y1 > 1

∧ x2 > 1 ∧ y1 = 1

τ

l2

l2

l2

τ

τ

℘b ℘b

q |= E(cr(ϕ)Uy1
(cr(ψ) ∧ ℘y1∈[1,∞) ∧ (℘b ∨ cr(ϕ))))

cr(ϕ) ∧ cr(ψ)

cr(ϕ)

b

b

ay1

ay1

R′
9R′

4

R′′′
10

R′′
10

R′
10

R′
5R′

3

R′′
3

R′
9R′

4

R′′′
10

R′′
10

R′
10

R′
5R′

3

R′′
3

℘y1∈[1,∞)

q

q

Fig. 6.12. Testing γ translated to CTLr
−X

6.2 Model Checking for TCTL over Timed Automata 177

augmented automaton which is of our interest. The regions whose projections
on the clocks in X are boundary regions are marked with bold frames (notice
that certain boundary regions of the region graph for the augmented automa-
ton are not marked, i.e., the value of the clock y1 is not taken into account).
The bottom part of the figure displays the same regions labelled with the new
propositions ℘b and ℘y1∈[1,∞). Notice that the region with the clock y1 equal
to zero is not labelled by ℘b. The above example justifies also the requirement
(℘b ∨ cr(ϕ)) for the region where cr(ψ) ∧ ℘y1∈[1,∞) holds: if a region R is not
boundary, then its borders are open, and therefore the region of each state
belonging to R contains also some time predecessors. Thus, if we require that
cr(ψ) holds at some states of R and cr(ϕ) holds continuously until them, then
this means that cr(ϕ) must hold at all the states of the region R (recall that
all the states of a detailed region are equivalent w.r.t. TCTL formulas, so if
cr(ψ) holds a state of R, then it holds at all the states of R).

�

In order to translate TCTL over the weakly monotonic semantics, a bd-
region graph is replaced with a region graph in the above method. Moreover,
we do not need to use the proposition ℘b for encoding the boundary regions
and the last two rules of the function cr are modified as follows:

cr(O(φUIi
ψ)) = O(cr(φ)Uyi

(cr(ψ) ∧ ℘yi∈Ii
)),

cr(O(φRIi
ψ)) = O(cr(φ)Ryi

(¬℘yi∈Ii
∨ cr(ψ)))

)
,

for O ∈ {E,A}.

Consider now a translation for TCTLC . First, we extend the language of
CTL by separation predicates in the standard way. So, we do not need to use
the propositions ℘yi∈Ii

for encoding the values of the clocks yi anymore. In
order to translate a TCTLC formula ϕ to the corresponding CTL formula ψ
we need to modify the language of CTL to CTLz by reinterpreting the next-
step operators, denoted now by Xzi

for all 1 ≤ i ≤ r, where we assume that r
is the number of of the specification clocks zi ∈ SC used in ϕ. This language
is interpreted over the region graph model for Aϕ defined above. Each next
step operator Xzi

for 1 ≤ i ≤ r is interpreted only over the new transitions
that reset the new clock zi, whereas the other operators are interpreted over
all the transitions except for the new ones. The relation |= is defined like in
Sect. 4.2 for all the CTLz formulas except for Xzi

, which is given as follows:

w |= Xzi
ψ iff (∃w′ ∈ W) w →�bzi

w′ ∧ w′ |= ψ.

Then, we need to translate only the reset operator in the following way:

cr(zi.ψ) = Xzi
(cr(ψ)) for 1 ≤ i ≤ r.

178 6 Explicit Verification

Model Checking over (Bi)simulating Models

The above translation can be used for model checking TCTL (TACTL) over
abstract models which are coarser than detailed region graphs. To this aim,
bisimulating (simulating, respectively) models built for the automaton Aϕ

can be applied (obviously, in this case we can deal with the weakly monotonic
semantics only, for which these models can be generated). However, in order
to label the states of a given abstract model with the propositions of PV ′,
they have to respect the timing intervals appearing in the tested formula
ϕ and distinguish between zero and non-zero values of the additional clocks.
Formally, each state w of the given model has to satisfy the following condition:

(∀i ∈ {1, . . . , r}){(l, v) ∈ w | v(yi) = 0}, {(l, v) ∈ w | v(yi) ∈ Ii} ∈ {w, ∅},

where r denotes the number of extra clocks. Intuitively, the above means that
the valuations v in the states w are consistent w.r.t. the values of the cloks
yi, which either all are equal to 0 or all belong to Ii, or none of them is
equal to 0 or belongs to Ii. To achieve this, we can, for instance, build models
using partition refinement algorithms, starting from an initial partition whose
classes satisfy the condition given above [9, 159].

It is easy to notice that one extra clock is sufficient for the method. In this
case, the initial partition has to satisfy the condition

(∀i ∈ {1, . . . , r}){(l, v) ∈ w | v(y) = 0}, {(l, v) ∈ w | v(y) ∈ Ii} ∈ {w, ∅},

where y is the additional clock, and r denotes the number of timing intervals
appearing in ϕ.

6.2.2 Overview of Other Approaches to TCTL Verification

Bouajjani et al. [41] defined an algorithm, which starts with building a simu-
lation graph for a timed automaton. Then, the cycles of this graph are refined.
This process is guided by a formula. If a stable cycle is found, then this means
that the formula holds and at that point the verification ends.

Another solution has been suggested by Dickhofer and Wilke [67] and
Henzinger et al. [96]. The idea follows the standard approach to automata-
theoretic model checking for CTL. So, first an automaton accepting all the
models for a TCTL formula is built and the product of this automaton with
the automaton corresponding to the detailed region graph is constructed while
its non-emptiness is checked [67]. The method of [96] is slightly different as
the product is constructed without building the automaton for a formula first.

6.3 Selected Tools

There are many tools using the approaches considered in this and the former
section. Below, we list some of them and give pointers to the literature, where
more detailed descriptions can be found.

6.3 Selected Tools 179

6.3.1 Tools for TPNs

Some of the existing tools for Petri nets with time are listed below:

• CPN Tools [134] (a replacement for Design/CPN [55]) – a software
package for modelling and analysis of both timed and untimed Coloured
Petri Nets, enabling their simulation, generating occurrence (reachability)
graphs, and analysis by place invariants.

• INA (Integrated Net Analyser) [136] – a Petri net analysis tool, supporting
place/transition nets and coloured Petri nets with time and priorities. It
offers edition and simulation, as well as analysis of structural properties
(i.e., liveness, safeness, boundedness etc.), computation of reachability and
coverability graphs and unfolding of coloured Petri nets. Among others,
INA provides verification by analysis of paths for TPNs [128] .

• PEP (Programming Environment based on Petri nets) [149] – a
comprehensive set of modelling, compilation, simulation and verification
components, linked together within a graphical user interface. The com-
ponents enable designing of parallel systems, generating Petri nets from
these models, simulation of high- and low-level nets, various verification
algorithms (e.g., reachability and deadlock-freeness checking, partial-order
based model checking), and interfaces to some other tools (like the INA
package, FC2Tools [42], SMV [104] and SPIN [85]).

• Romeo [137] – a tool for time Petri nets analysis, which provides several
methods for translating TPNs to TA [52, 103] and computation of state
class graphs [73].

• Tina [34] is a toolbox for analysis of (time) Petri nets. It constructs state
class graphs [32,33] and performs LTL or reachability verification. In addi-
tion, Tina builds atomic state class graphs [35] to be used for verification
of CTL formulas. Tina includes an editor for Petri nets and time Petri
nets, as well as a tool for structural analysis for nets.

6.3.2 Tools for TA

Some of the existing tools for timed automata are listed below:

• Cospan is a tool for verifying the behaviour of designs written in the in-
dustry standard design languages like VHDL and Verilog. Besides verifying
that behaviours are correct, the tool identifies deadlocks and livelocks. It
implements an automata-based approach to model checking including an
on-the-fly enumerative search (using zones in the timed case), as well as
symbolic search using BDDs13. A detailed description of timed verification
can be found in [15].

13 Binary Decision Diagrams [50].

180 6 Explicit Verification

• Kronos [175] is a tool which performs verification of TCTL formulas using
forward or backward analysis, and behavioural analysis, which consists in
building bisimulating abstract models (using partitioning), and then check-
ing whether the abstract model of the system simulates or is equivalent to
that of the specification. DBMs are used for representing zones. In order to
improve on the time and memory consumption, some additional improve-
ments like abstractions and reductions in the number of clocks [63, 64],
using an on-the-fly approach [41] or binary decision diagrams [48] are im-
plemented as well.

• UppAal2k [121] (a successor of UppAal) is a tool for modelling, simula-
tion and verification of timed systems, appropriate for systems which can
be described by a collection of non-deterministic processes with finite con-
trol structure and real-valued clocks, communicating through channels or
shared variables. The tool consists of three parts: a description language, a
simulator (a validation tool which enables examination of possible dynamic
executions of a system), and a model checker, which tests invariant and
bounded-liveness properties by exploring the symbolic state space of the
system. i.e., reachability analysis in terms of symbolic states represented
by constraints. Forward reachability analysis, deadlock detection and ver-
ification of properties expressible in a subset of TCTL are available.

• VerICS [65] implements partition refinement algorithms for verifying
TCTL (over bisimulating or simulating models) and reachability (over
pseudo-bismulating or pseudo-simulating models) for timed automata.
DBMs are used to represent zones. VerICS includes an editor and simu-
lator for time Petri nets and a translator to timed automata.

Further Reading

The interested reader is referred to several recently published books on au-
tomated verification of concurrent systems [57,90,115]. A chapter comparing
and evaluating some selected tools can be found in [28].

7

Verification Based on Satisfiability Checking

Similarly to Chap. 6 our aim is to show how one can verify the common prop-
erties of timed systems expressible in TCTL (TCTLC) and some its sublogics,
but, here, using SAT-based symbolic methods. SAT-based model checking is
the most recent symbolic approach that has been motivated by a dramatic
increase in efficiency of SAT-solvers, i.e., algorithms solving the satisfiability
problem for propositional formulas [179]. The main idea of SAT-based meth-
ods consists in translating the model checking problem for a temporal logic to
the problem of satisfiability of a formula in propositional or separation logic.
This formula is typically obtained by combining an encoding of the model and
of the temporal property. In principle, there are two different approaches. In
the first one, a model checking problem for TCTL (LTL or reachability prop-
erties) is translated to a formula in separation logic [20,110,145] or quantified
separation logic [140] and then either solved by MathSAT1 or translated fur-
ther to propositional logic and solved by a SAT-solver. The second approach
exploits a translation of the model checking problem from TCTL to CTL and
then further to a propositional formula [120].

On the other hand, the approaches to SAT-based symbolic verification
can be viewed as bounded (BMC) or unbounded (UMC). BMC [110, 120]
applies to an existential fragment of TCTL (i.e., TECTL) on a part of the
model, whereas UMC [140] is for unrestricted TCTL (or timed µ-calculus)
on the whole model. However, it is possible to use the bounded approach for
verifying some universal properties as well, which is shown for unreachability
properties in [177].

To our knowledge, there are very few approaches to a (direct) SAT-based
verification of TPNs [39], which mainly consist in describing the state space
of a net in a way which is accepted by an existing symbolic tool. Other ap-
proaches (listed below) use a construction of a detailed region graph2 for
a time Petri net in many ways. A BDD-based CTL model checking is dis-

1 MathSAT is a solver checking satisfiability of SL.
2 This notion is inherited from timed automata.

W. Penczek and A. Pó�lrola: Verification Based on Satisfiability Checking, Studies in Computa-

tional Intelligence (SCI) 20, 181–230 (2006)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006

182 7 Verification Based on Satisfiability Checking

cussed in [111], a SAT-based approach to checking reachability is described
in [118], whereas explicit TCTL verification on detailed region graphs is shown
in [123,163]. Therefore, in the following sections we focus on SAT-based meth-
ods for timed automata, assuming that these provide solutions for time Petri
nets when combined with translations.

In the next section, we discuss BMC for TECTL3, for unreachability prop-
erties4 of TA as well as for LTL. An adaptation of BMC to the existential
fragment of TCTLC is an easy exercise left to the reader. Then, we look at
the UMC approach. We discuss this approach for the logics TCTLC and Tµ.
Since our algorithm is based on the symbolic model checking method by Hen-
zinger et al. [84], it applies only to timed logics over the weakly monotonic
semantics.

Next, we show how to decide formulas of separation logic (Sect. 7.4) and
propositional logic (Sect. 7.5).

7.1 Bounded Model Checking Using Direct Translation
to SAT

BMC for TCTL consists in translating the model checking problem of an
existential TCTL formula (i.e., containing only existential quantifiers) to the
problem of satisfiability of a propositional formula. This translation is based on
bounded semantics satisfaction, which, instead of using possibly infinite paths,
is limited to finite prefixes only. Moreover, it is known that the translation of
the existential path quantifier can be restricted to finitely many computations
[119].

In this section we describe how to apply BMC to TECTL. The main idea
of our method consists in translating the TECTL model checking problem to
the model checking problem for a branching time logic [7, 159] and then in
applying BMC for this logic [119]. To this aim we start with showing a dis-
cretization of TA. Then, a translation from TCTL to CTLr

−X on discretized
region graphs models is applied, so that we can restrict ourselves to BMC for
CTLr

−X. Finally, the BMC method for checking reachability and unreachabil-
ity for TA is discussed.

7.1.1 Discretization of TA

We define a discretized model for a timed automaton, which is based on the
discretization of [177] (a generalisation of these of [18, 76]). The idea behind
this method is to represent detailed zones of a timed automaton by one or
more (but finitely many) specially chosen representatives.

3 We consider both the semantics for TCTL i.e., the time is weakly or strongly
monotonic.

4 For the time to be weakly monotonic.

7.1 Bounded Model Checking Using Direct Translation to SAT 183

Let A = (A,L, l0, E, X , I) be a diagonal-free5 timed automaton with nX
clocks, VA be a valuation function, and ϕ be a TCTL formula. As before,
let Mc(A) = (Cc(A), VC) be the concrete dense model for A. We choose the
discretization step

∆ = 1/d,

where d is a fixed even number6 not smaller than 2nX . The discretized clock
space is defined as D

nX , where

D = {k∆ | 0 ≤ k∆ ≤ 2cmax(A, ϕ) + 2}.

This means that the clocks cannot go beyond 2cmax(A, ϕ) + 2, which follows
from the fact that for evaluating the TCTL formula ϕ over diagonal-free
timed automata we do not need to distinguish between clock valuations above
cmax(A, ϕ)+1. Similarly, the maximal values of time delays can be restricted
to cmax(A, ϕ)+1, since otherwise they would make the values of clocks greater
than cmax(A, ϕ) + 1. Thus, the set of values that can change a valuation in a
detailed zone is defined as

E = {k∆ | 0 ≤ k∆ ≤ cmax(A, ϕ) + 1}.

To make sure that the above two definitions can be applied we will guarantee
that before taking any time transition, the value of every clock does not exceed
cmax(A, ϕ) + 1. In what follows, by E+ we denote E \ {0}.

Next, we define the set U
nX of valuations that are used to “properly”

represent detailed zones in the discretized model, i.e., we take a subset of
the valuations v of D

nX that preserve time delays by insisting that either the
values of all the clocks in v are only even or only odd multiplications of ∆. To
preserve action successors we will later use “adjust” transitions. The set U

nX

is defined as follows:

U
nX = {v ∈ D

nX | (∀x ∈ X)(∃k ∈ IN) v(x) = 2k∆ ∨
(∀x ∈ X)(∃k ∈ IN) v(x) = (2k + 1)∆}.

Example 7.1. Consider a timed automaton over two clocks x1, x2. Figure 7.1
shows how to discretize a part (consisting of [0, 1)2) of the set of its clock
valuations. The discretization step chosen is ∆ = 1/4. The points (both the
squares and the dots) represent elements of D

2. The dots are elements of
U

2. Notice that the discretization, i.e., the dots, preserve the time-successor
relation (see Fig. 7.2), if not-open regions are concerned. For representatives
of open regions we need to apply a special technique, which “freezes” the
valuations of clocks as soon as they become bigger than cmax(A, ϕ) + 1.
5 A discretization for non diagonal-free timed automata has been recently defined

by Zbrzezny in [178]. This new discretization was applied to checking reachability
and unreachability.

6 A good choice for d is the minimal number, which equals to 2j for some j.

184 7 Verification Based on Satisfiability Checking

x2

0 1

1

3
4

2
4

1
4

2
4

x13
4

1
4

0 1

3
4

1
4

2
4

2
4

3
4

1
4

x2

1

x1

the elements of D
2 the elements of U

2

Fig. 7.1. Discretizing [0, 1)2. The dots mark the elements of U
2, while the squares

belong to D
2 \ U

2

0 1

3
4

2
4

2
4

3
4

1
4

1
4

x2

1

x1

l×

0 1

3
4

2
4

2
4

3
4

1
4

1
4

x2

1

x1

l×

time successors action successors

by a transition l
a,true,{x1}

−→ l

Fig. 7.2. Time- and action successor relation vs. discretization. Left: the elements
of U

2 preserve the time-successor relation. Right: the action successor relation is not
preserved

Using only the squares is not possible, as there is no representation of the
detailed zone x1 = x2 = 0 by a point from D

2 \ U
2. On the other hand, the

elements of D
2 would not preserve the time-successor relation; for example,

if we consider the detailed zone Z = [[x1 = 0 ∧ 0 < x2 < 1]] and its
representative (0, 3/4), then there is no δ ∈ E such that (0 + δ, 3/4 + δ) ∈ D

2

and (0 + δ, 3/4 + δ) is a representative of the time successor of Z (i.e., of
[[0 < x1 < x2 < 1]]).

Unfortunately, the elements of U
2 do not preserve action successors. In

order to solve this problem adjust transitions are used, which we discuss later.
�

7.1 Bounded Model Checking Using Direct Translation to SAT 185

Discretized Model for (Un)reachability Verification

Now, we are ready to define a discretized model for A that is later used for
checking reachability and unreachability of a propositional formula p, for the
weakly monotonic semantics. Notice that, as we have already mentioned,
reachability of p can be expressed by the CTL formula ϕ = EFp (or alter-
natively by the TCTL formula EF[0,∞)p) for the weakly monotonic seman-
tics. Note also that in this case cmax(A, ϕ) depends only on A (i.e., equals
cmax(A)).

Definition 7.2 (Discretized (concrete) model). The discretized (con-
crete) model for A is a structure

DM(A) = ((S
D
, s0, →dc

), VDc
),

where

• S
D

= L × D
nX ,

• s0 = (l0, v0) is the initial state,
• the labelled transition relation →dc

⊆ S
D

× (A ∪ E ∪ {ε}) × S
D

is defined as
1. (l, v) δ→dc

(l, v′) iff
– (∀x ∈ X)(v(x) ≤ cmax(A, ϕ) + 1),
– v′ = v + δ and
– v, v′ ∈ [[I(l)]],
for δ ∈ E (time delay transition),

2. (l, v) a→dc
(l′, v′) iff

– (l, v) a→c (l′, v′) in Cc(A), for a ∈ A
(action transition),

3. (l, v) ε→dc
(l, v′) iff

– v′ ∈ U
nX ,

– (∀x ∈ X)(v′(x) ≤ cmax(A, ϕ)+ 1), and
– v
CA,ϕ

v′

(adjust transition),
and

• the valuation function VDc
: S

D
−→ 2PV is given by

VDc
((l, v)) = VA(l).

Notice that the transitions in DM(A) are labelled with actions of A, time
delays of E, or with the epsilon label ε �∈ A ∪ E. The first two types of labels
correspond exactly to labels used in the concrete model. The adjust transitions
are used for moving within detailed zones to a valuation in U

nX . The reason for
defining separately adjust transitions with action- and time delay transitions
consists in increasing efficiency of the implementation for checking reachability
in timed automata.

186 7 Verification Based on Satisfiability Checking

a b

cc

d e
x2 = 1

x2 > 1

x3 < 1 x3 := 0

x3 < 1
x2 := 0

x1 := 0

l0 l1 l2

x2 := 0

x3 < 1
x1 ≥ 1
x1 := 0

Fig. 7.3. The timed automaton used in Example 7.3

Example 7.3. Consider again the automaton A over three clocks x1, x2, x3

used in Example 5.14 and shown in Fig. 7.3. Its detailed region graph for the
weakly monotonic semantics (shown in Fig. 5.18) is recalled in Fig. 7.4. The
right upper corners of the rectangles representing the regions are annotated
with their names (i.e., with Ri for i = 0, . . . , 19).

In order to build a discretized model for reachability verification, we chose
the discretization step ∆ = 1/8 (notice that this is the maximal possible step
for three clocks such that its denominator is a power of two, since 2nX = 6).
Due to cmax(A) = 1, we obtain D = { 1

8k | 0 ≤ 1
8k ≤ 4}, E = { 1

8k | 0 ≤ 1
8k ≤

2} and U
3 = {v ∈ D

3 | (∀x ∈ X)(∃k ∈ IN) v(x) = 2k
8 ∨ (∀x ∈ X)(∃k ∈

IN) v(x) = 2k+1
8 }.

Assume that the clock valuations for A are triples of the form v =
(v(x1), v(x2), v(x3)). One of the possible sequences of transitions in DM(A) is

(l0, (0, 0, 0))
1/8−→

dc
(l0, (1

8 , 1
8 , 1

8)) a−→
dc

(l1, (1
8 , 0, 1

8))
9/8−→

dc
(l1, (10

8 , 9
8 ,

10
8)) d−→

dc
(l1, (10

8 , 0, 10
8))

9/8−→
dc

(l1, (19
8 , 9

8 , 19
8)) d−→

dc
(l1, (19

8 , 0, 19
8))

ε−→
dc

(l1, (10
8 , 0, 10

8)) −→
dc

. . ..

A symbolic presentation of this sequence is shown in Fig. 7.5. In the back-
ground, the regions of the detailed region graph are depicted. The states
are denoted sequentially by s0, s1, Similarly as in the previous example,
the dots represent the elements of L × U

3, whereas the squares – these of
L × (D3 \ U

3). The states are placed in the regions they belong to. Notice
that the time delay transitions do not necessarily correspond to the successor

relation between detailed regions, e.g., the step s2
9/8−→

dc
s3 is a counterpart

of the sequence R2
τ→� R3

τ→� R4
τ→� R5

τ→� R6
τ→� R7. Similarly, the step

s4
9/8−→

dc
s5 is a counterpart of the sequence R8

τ→� R5
τ→� R6

τ→� R7.
Notice, moreover, that the state s7 = (l1, (10

8 , 0, 10
8)) obtained by the adjust

transition is not the only possible one – e.g., the state (l1, (12
8 , 0, 12

8)) could
have been selected as well.

�

7.1 Bounded Model Checking Using Direct Translation to SAT 187

x2 > 1 ∧ x3 > 1
l2 0 < x1 < 1 ∧

l1

l1 l1 l2

l2 x1 = 0 ∧
x2 = 1 ∧ x3 = 1

x1 = x2 = x3 = 1 x1 = x2 = x3 = 1

x1 = x2 = x3 = 0

x1 = x2 = x3

0 < x1 < 1 ∧

a

τ

τ

τ

b

e

τ

τ

τ

a0 < x1 < 1 ∧
x1 = x2 = x3

l0

x2 = 0 ∧l1

x1 = x3 ∧
0 < x2 < x1 < 1

τ

τ

0 < x2 < 1 ∧
τ

τ

x2 > 1 ∧
d

x2 = 0 ∧

τ

τ
x1 > 1 ∧ x3 > 1

x1 > 1 ∧ x3 > 1
x2 = 1 ∧

l0

x1 = x3 = 1

l1

l1

l1

l1

l1

l1 0 < x2 < 1 ∧

0 < x1 = x3 < 1 x1 > 1 ∧ x3 > 1

x2 > 1 ∧ x3 > 1

τ

e

l2 x1 = 0 ∧

τ

l2
x2 > 1 ∧ x3 > 1

x1 > 1 ∧

l2 x2 = 1 ∧
x1 > 1 ∧ x3 > 1

l2 x1 = 0 ∧
x2 = 1 ∧ x3 > 1

τ

x2 > 1 ∧ x3 > 1
l2 x1 = 1 ∧τ

b

e

τ

τ

τ

x1 > 1 ∧ x3 > 1

R4

R2

R3

R5

R6

R7

R8 R9

R10

R11

R12

R13R14

x1 = x2 = x3 = 0

e

R15

R16 R17 R18

R19

R1

R0

Fig. 7.4. The reachable part of the detailed region graph for the automaton of
Fig. 7.3 and cmax(A, ϕ) = 1

...ε

τ

a

τ

τ

τ

τ

d

τ

τ

τ

s1

1
8

a 9
8

9
8 d

s0

s2

s3

s4

s6

s7

s5

d

a

τ

τ

τ

b

e
τ

R17 R18

R19

R15

R16

τ

e

τ

τ

τ

b

e

τ

τ

R4

R2

R3

R1

R5

R6

R7

R8 R9

R10

R11

R12

R13R14

e

τ
R0

Fig. 7.5. The sequence of transitions considered in Example 7.3 in the reachable
part of the discretized model for the automaton in Fig. 7.3

188 7 Verification Based on Satisfiability Checking

Discretized Model for TCTL Verification

However, for verification of more complex TCTL7 formulas we need to
put some restrictions on DM(A) by defining the discretized region graph
(discretized-rg) model.

Definition 7.4 (Discretized region graph model). The discretized re-
gion graph model (discretized rg-model) for A is a structure

DMDRG(A) = ((S, s0, →d), VD),

where

• S = L × U
nX ,

• s0 = (l0, v0) is the initial state,
• VD = VDc

|S, and
• the transition relation →d ⊆ S × (A ∪ {τ}) × S is given as

1. (l, v) τ→d (l, v′) iff
– (l, v) δ→dc

; ε→dc
(l, v′) for some δ ∈ E+, and

– if (l, v) δ′
→dc

(l, v′′) δ′′
→dc

(l, v′) with δ′, δ′′ ∈ E and (l, v′′) ∈ S, then
v
CA,ϕ

v′′ or v′
CA,ϕ
v′′, and

– if v
CA,ϕ
v′, then v
CA,ϕ

v′ + δ′′ for each δ′′ ∈ E+

(time successor),
2. (l, v) a→d (l′, v′) iff

– (l, v) a→dc
; ε→dc

(l′, v′)
(action successor).

Intuitively, time successor corresponds to a move by a time delay transition
to the time-successor region, if its zone is not final (adjusted by ε-transition
in order to decrease the valuations of clocks to cmax(A, ϕ) + 1 if necessary),
whereas action successor corresponds to a move by an action transition (ad-
justed by ε-transition in order to stay in U

nX).

Example 7.5. Consider again the automaton shown in Fig. 7.3. In order to
build a discretized region graph model applicable to verification of TCTL
formulas with cmax(A, ϕ) = 1, we chose again the discretization step ∆ = 1/8,
and define the sets D

3, E and U
3 as in Example 7.3.

One of the possible sequences of transitions in DMDRG(A), correspond-
ing, in a sense, to that considered in Example 7.3, is

(l0, (0, 0, 0))
1/8−→

d
(l0, (1

8 , 1
8 , 1

8)) a−→
d

(l1, (2
8 , 0, 2

8))
1/8−→

d
(l1, (3

8 , 1
8 , 3

8))
5/8−→

d
(l1, (1, 6

8 , 1))
1/8−→

d
(l1, (9

8 , 7
8 , 9

8))
1/8−→

d
(l1, (10

8 , 1, 10
8))

1/8−→
d

(l1,

(11
8 , 9

8 , 11
8)) d−→

d
(l1, (10

8 , 0, 10
8))

3/8−→
d

(l1, (13
8 , 3

8 , 13
8))

5/8−→
d

(l1, (10
8 , 1,

7 This is still for the weakly monotonic semantics.

7.1 Bounded Model Checking Using Direct Translation to SAT 189

10
8))

1/8−→d (l1, (11
8 , 9

8 , 11
8)) d−→

d
(l1, (10

8 , 0, 10
8)) −→

d
. . ..

Another sequence is

(l0, (0, 0, 0))
1/8−→

d
(l0, (1

8 , 1
8 , 1

8)) a−→
d

(l1, (2
8 , 0, 2

8))
1/8−→

d
(l1, (3

8 , 1
8 , 3

8))
5/8−→

d
(l1, (1, 6

8 , 1))
1/8−→

d
(l1, (9

8 , 7
8 , 9

8))
1/8−→

d
(l1, (10

8 , 1, 10
8))

1/8−→
d

(l1,

(11
8 , 9

8 , 11
8)) d−→

d
(l1, (10

8 , 0, 10
8))

3/8−→
d

(l1, (13
8 , 3

8 , 13
8))

5/8−→
d

(l1, (10
8 , 1,

10
8)) b−→d (l1, (10

8 , 1, 10
8)) −→d

Notice that in both the sequences each state which results from an action
successor is obtained by a combination of an action- and (non-trivial) adjust
transition of DM(A).

Both the sequences are symbolically depicted in Fig. 7.6. The states of
the first one are denoted by s′0, s

′
1, The second sequence corresponds to

s′0, . . . , s
′
10, s

′′, Notice that in this case, unlike in DM(A), the successor re-
lation between pairs of states needs to correspond to that between the regions
the states belong to.

......

s′8

s′9

s′11

s′12
τ

a

τ

τ

τ

τ

τ

d

s′10

d

3
8

1
8

1
8

5
8

τ

τ
1
8

b

a

τ

τ

τ

b

e
τ

R17 R18

R19

R15

R16

τ

s′0

s′2

s′3

s′4

s′7

s′6

s′5

s′1

1
8

a

5
8

d1
8

1
8

s′′

τ

e

τ

τ

τ

b

e

τ

τ

R4

R2

R3

R1

R5

R6

R7

R8 R9

R10

R11

R12

R13R14

R0

e

Fig. 7.6. Sequences of transitions in the reachable part of the discretized rg-model
for the automaton in Fig. 7.3 and cmax(A, ϕ) = 1

�

190 7 Verification Based on Satisfiability Checking

In order to define the discretized boundary-distinguishing region graph
model (discretized rgb-model)

DMDRGb
(A) = ((S, s0, →d), VD)

for the strongly monotonic semantics, the definition of the action successor
becomes a bit more complicated:

2. (l, v) a→d (l′, v′) iff the following conditions hold:
– (l, v) is not boundary and
– ((l, v) a→dc

; ε→dc
(l′, v′) or (l, v) τ→d;

a→dc
; ε→dc

(l′, v′)), for a ∈ A
(action successor).

Intuitively, an action successor corresponds to a move by an action transi-
tion (adjusted by ε-transition in order to stay within U

nX), taken from non-
boundary regions, possibly preceded by the time successor step (to compensate
for not executing actions from boundary regions).

Example 7.6. Consider again the automaton shown in Fig. 7.3. The boundary-
distinguishing detailed region graph for this automaton and cmax(A, ϕ) = 1
has been shown in Fig. 5.19. In order to build a corresponding discretized
rgb-model, we chose the discretization step ∆ = 1/8. Again, the sets D

3, E

and U
3 are defined as in Example 7.3.

Consider the sequences of transitions shown in Example 7.5. The first of
them is also a proper sequence in DMDRGb

(A). However, the second is not,
since the region R6 is boundary. Its counterpart in DMDRGb

(A) is of the form

(l0, (0, 0, 0))
1/8−→

d
(l0, (1

8 , 1
8 , 1

8)) a−→
d

(l1, (2
8 , 0, 2

8))
1/8−→

d
(l1, (3

8 , 1
8 , 3

8))
5/8−→

d
(l1, (1, 6

8 , 1))
1/8−→

d
(l1, (9

8 , 7
8 , 9

8))
1/8−→

d
(l1, (10

8 , 1, 10
8))

1/8−→
d

(l1,

(11
8 , 9

8 , 11
8)) d−→

d
(l1, (10

8 , 0, 10
8))

3/8−→
d

(l1, (13
8 , 3

8 , 13
8)) b−→d (l1, (10

8 , 1,
10
8)) −→d

Both the sequences are depicted in Fig. 7.7. The states of the first one are
denoted by s′0, s

′
1, . . ., whereas the second consists of s′0, . . . , s

′
9, s

′′. Notice that
also in this case the successor relation between states needs to correspond to
that between the regions the states belong to.

�

Since our definition is based on the notion of the detailed region graph
(Def. 5.13 (5.12)) for the strongly (weakly, respectively) monotonic seman-
tics, it is easy to notice that DMDRGb

(A) (DMDRG(A), respectively) is its
discretization, and as such, it can be used for checking the TCTL formula ϕ.

Basing on the translation from TCTL to ECTLr
−X (see Sect. 6.2.1) it is

sufficient to show a BMC method for ECTLr
−X over discretized rg (rgb) models

for TA. This way we obtain a BMC method for TECTL.

7.1 Bounded Model Checking Using Direct Translation to SAT 191

... ...

τ

a

τ

τ

τ

τ

d

τ

τ

τ

e

τ

τ

τ

τ

e

τ

b

x2 = 1 ∧ x3 > 1
τ

b

l2 x1 = 0 ∧

s′0

s′2

s′3

s′4

s′6

s′5

s′11

s′12

s′10

s′9

s′1 s′7
3
8

1
8

a 1
8

5
8

1
8

d

1
8

1
8

d

1
8

5
8

s′8 s′′

R4

R2

R3

R1

R5

R6

R7

R8 R9

R10

R11

R12

R13R14

R0

Fig. 7.7. Sequences of transitions in the reachable part of the discretized rgb-model
for the automaton in Fig. 7.3 and cmax(A, ϕ) = 1

7.1.2 Bounded Model Checking for ECTLr
−X

In this section we present a SAT-based approach to ECTLr
−X model checking

over discretized rg(b) models for timed automata, to which we refer as to
models from now on. We start with giving a bounded semantics for ECTLr

−X

in order to define the bounded model checking problem and to translate it
subsequently into a satisfiability problem [119].

Let ϕ be a TECTL formula, ψ = cr(ϕ), and M = ((S, s0, →d), VD) be
a discretized rg(b) model for Aϕ with the extended valuation function (see
the text starting from p. 172). By →dA we denote the part of →d where the
transitions are labelled with elements of A ∪ {τ}, and by →dy

the transitions
that reset the clock y, i.e., labelled with ay. For each state s ∈ S by s[y := 0]
we denote the state s′ ∈ S such that s →dy

s′. Notice that in the present
approach one extra clock is sufficient as we will always check subformulas
over fresh finite sequences of states.

We start with some auxiliary definitions. For k ∈ IN+ a k-path in M is
finite sequence of k + 1 states

π = (s0, s1, . . . , sk)

such that (si, si+1) ∈ →dA for each 0 ≤ i < k (see Fig. 7.9). For a k-path
π = (s0, s1, . . . , sk), let π(i) = si for each i ≤ k. By Πk(s) we denote the
set of all the k-paths starting at s. This is a convenient way of representing
a k-bounded subtree, rooted at s, of the tree resulting from unwinding the
model M from s.

Definition 7.7 (k-model). The k-model for M is a structure

Mk = ((S, s0, Pk, Py), VD),

192 7 Verification Based on Satisfiability Checking

where Pk is the set of all the k-paths of M , i.e., Pk =
⋃

s∈S Πk(s), and Py is
the set of all the pairs consisting of a state s and s[y := 0], i.e., Py = {(s, s′) ∈
S × S | s →dy

s′}.

The intuition behind this definition is shown in Fig. 7.8. The left-hand side
part of the figure shows the set of all the k-paths starting at the state s, for
k = 2. On the right, the set Pk of the 2-model is depicted.

ks

. . .

s0

Πk(s) for k = 2 Pk of the k-model Mk for k = 2

Fig. 7.8. Elements of the k-model for k = 2

Define a function loop : Pk −→ 2IN

loop(π) = {h | 0 ≤ h ≤ k ∧ π(k) →dA π(h)},

which returns the set of all the indices of the states for which there is a
transition from the last state of π. Satisfaction of the temporal operator Ry

on a k-path π in the bounded case can depend on whether or not π represents
a path8, i.e., loop(π) �= ∅.

. . .
s0 s2 sks1

. . .
s0 s2 sks1

a k-path with loop(π) = ∅ a k-path with loop(π) = {1}

Fig. 7.9. Two kinds of k-paths

Next, we define a k-bounded semantics. The main reason for reformulating
the semantics of the modalities in the following definition in terms of elements
of k-paths rather than states and paths themselves is to restrict the semantics
to a part of the model.

8 Note that a path is infinite by definition.

7.1 Bounded Model Checking Using Direct Translation to SAT 193

Definition 7.8 (k-bounded semantics for ECTLr
−X). Let Mk be a k-

model and α, β be ECTLr
−X subformulas of ψ.

Mk, s |= α

denotes that α is true at the state s of Mk. Mk is omitted if it is clear from
the context. The relation |= is defined inductively as follows:

s |= ℘ iff ℘ ∈ VD(s), for ℘ ∈ PV ′,
s |= ¬℘ iff ℘ �∈ VD(s), for ℘ ∈ PV ′,
s |= α ∧ β iff s |= α ∧ s |= β,
s |= α ∨ β iff s |= α ∨ s |= β,
s |= E(αUyβ) iff (∃s′ ∈ S)

(
(s, s′) ∈ Py ∧ (∃π ∈ Πk(s′))

(
(∃0 ≤ j ≤ k)

(
π(j) |= β ∧ (∀0 ≤ i < j) π(i) |= α

)))
,

s |= E(αRyβ) iff (∃s′ ∈ S)
(
(s, s′) ∈ Py ∧ (∃π ∈ Πk(s′))

((
(∃0 ≤ j ≤ k)

(
π(j) |= α ∧ (∀0 ≤ i ≤ j) π(i) |= β

))

∨
(
(∀0 ≤ j ≤ k)(π(j) |= β ∧ loop(π) �= ∅)

)))
.

Some examples of ECTLr
−X formulas which hold in the state s0, in the k-

bounded semantics, are shown in Fig. 7.10.

s0

s′0 s′1 s′2 s′3 s′4

ay

α β

s0 |= E(αUyβ)

s0

ay

s′0 s′1 s′2 s′3 s′4

s0

ay

s′0 s′1 s′2 s′3 s′4

s0 |= E(αRyβ) s0 |= E(αRyβ)

Fig. 7.10. Examples of ECTLr
−X formulas

Next, we describe how the model checking problem (M |= ψ) can be
reduced to the bounded model checking problem (Mk |= ψ). In this setting
we can prove that for k equal to the number of the states of M satisfiability
in the k-bounded semantics is equivalent to the unbounded one.

Theorem 7.9. Let M = ((S, s0, →d), VD) be a model, ψ be an ECTLr
−X for-

mula, and k = |S|. Then, M, s0 |= ψ iff Mk, s0 |= ψ.

194 7 Verification Based on Satisfiability Checking

The rationale behind the method is that for particular examples checking
satisfiability of a formula can be done on a small fragment of the model.

Next, we show how to translate the model checking problem for ECTLr
−X

on a k-model to a problem of satisfiability of some propositional formula. Our
method is based on [119], but we use a variant of the operator E(·R·) rather
than of the less expressive EG(·). Proofs of correctness of our approach are
based on the corresponding proofs in [119,170].

We assume the following definition of a submodel:

Definition 7.10. Let Mk = ((S, s0, Pk, Py), VD) be the k-model of M . A
structure

M ′
k = ((S′, s0, P ′

k, P ′
y), V ′

D)

is a submodel of Mk if

• P ′
k ⊆ Pk,

• S′ = States(P ′
k) ∪ {s0},

• P ′
y ⊆ Py ∩ (S′ × S′), and

• V ′
D = VD|S′ ,

where
States(P ′

k) = {s ∈ S | (∃π ∈ P ′
k)(∃i ≤ k) π(i) = s}.

Some examples of the sets P ′
k of submodels of the k-model of Fig. 7.8 are

given in Fig. 7.11. The parts of Pk corresponding to P ′
k are coloured in grey.

. . .

s0

. . .

s0

Fig. 7.11. Sets P ′
k of submodels of Mk (k = 2)

The bounded semantics of ECTLr
−X over submodels M ′

k is defined as for
Mk (see Def. 7.8). Our present aim is to give a bound on the number of k-
paths in M ′

k such that the validity of ψ in Mk is equivalent to the validity of
ψ in M ′

k. Let FECTLr
−X

be a set of the formulas of ECTLr
−X.

Definition 7.11. Define a function fk : FECTLr
−X

→ IN as follows:

• fk(℘) = fk(¬℘) = 0, where ℘ ∈ PV ′,
• fk(α ∨ β) = max{fk(α), fk(β)},

7.1 Bounded Model Checking Using Direct Translation to SAT 195

• fk(α ∧ β) = fk(α) + fk(β),
• fk(E(αUyβ)) = k×fk(α) + fk(β) + 1,
• fk(E(αRyβ)) = (k + 1)×fk(β) + fk(α) + 1.

The function fk determines the number of k-paths of a submodel M ′
k sufficient

for checking an ECTLr
−X formula. An intuitive explanation for the above

formulas can be derived from the picture in Fig. 7.12. Notice that for checking
formulas of the form E(αUyβ) we need to use k paths for checking α’s on the
first k states of the current path and one more for checking β in its last state.
For formulas of the form E(αRyβ) the intuition behind the function fk is
similar (we need k paths for checking β’s on the first k states, and two paths
to check α and β on the state k + 1 of the current path; see Fig. 7.13).

1

k 1

. . .

︸ ︷︷ ︸
α ? β ?α ?α ?

s0 s′0 s′1 s′k−1 s′k

Fig. 7.12. An intuition behind the number of k-paths in fk(E(αUyβ))

1

k + 1 1

. . .

︸ ︷︷ ︸
β ? β ? β ? β ?

s0 s′0 s′1 s′ks′k−1

α ?

Fig. 7.13. An intuition behind the number of k-paths in fk(E(αRyβ))

Now, we are ready to check ϕ over Mk. The main idea is that this can be
translated to checking the satisfiability of the propositional formula

[M,ψ]k = [Mψ,s0
]k ∧ [ψ]Mk

,

where the first conjunct represents (a part of) the model under consideration
and the second a number of constraints that must be satisfied on Mk for ψ

196 7 Verification Based on Satisfiability Checking

to be satisfied. Once this translation is defined, checking satisfiability of an
ECTLr

−X formula can be done by means of a SAT-checker. Although from
a theoretical point of view the complexity of this operation is not lower, in
practice the efficiency of modern SAT-checkers makes the process worthwhile
in many instances.

We now give details of this translation. We begin with the encoding of
the transitions in the model under consideration. Since the set of states S
of our model is finite, every element of S can be encoded as a bit vector
(s[1], . . . , s[lb]) of length lb depending on the number of locations in L, the
size of the set D and the number of clocks. The bit vector consists of two
parts, the first of which is used to encode the location of a state of the au-
tomaton, whereas the second encodes the timed part of that state (i.e., the
clock valuation)9. We do not give more details of this encoding here. The in-
terested reader is referred to [119, 120, 177]. Each state s can be represented
by a valuation of a vector

w = (w[1], . . . , w[lb])

(called a global state variable), where w[i], for i = 1, . . . , lb, is a propositional
variable (called state variable). Notice that we distinguish between states of S
encoded as sequences of 0’s and 1’s (we refer to these as valuations of w) and
their representations in terms of propositional variables w[i]. A finite sequence

(w0, . . . , wk)

of global state variables is called a symbolic k-path.
In general we shall need to consider not just one but a number of symbolic

k-paths. This number depends on the formula ψ under investigation, and it
is returned as the value fk(ψ) of the function fk.

To construct [M,ψ]k, we first define a propositional formula [Mψ,s0
]k that

constrains the fk(ψ) symbolic k-paths to be valid k-paths of Mk. The j-th
symbolic k-path is denoted as

(w0,j , . . . , wk,j),

where wi,j are global state variables for 1 ≤ j ≤ fk(ψ), 0 ≤ i ≤ k. Let PVs be
a set of state variables, F be a set of propositional formulas over PVs, and let
lit : {0, 1} × PVs → F be a function defined as follows:

• lit(0, ℘) = ¬℘ and lit(1, ℘) = ℘.

Furthermore, let w,w′ be global state variables. We define the following propo-
sitional formulas:

9 If the system considered consists of n automata, each part of the vector can be
divided into n subvectors, each of which encodes respectively the location and
the valuation of the local clocks for the i-th component, for i = 1, . . . , n.

7.1 Bounded Model Checking Using Direct Translation to SAT 197

• Is(w) :=
∧lb

i=1 lit(s[i], w[i])
is a formula over w, which is true for the valuation s, (encodes the state
s of the model M , i.e., s[i] = 1 is encoded by w[i], and s[i] = 0 is encoded
by ¬w[i]),

• ℘(w)
is a formula over w, which is true for a valuation sw of w iff ℘ ∈ VD(sw),
where ℘ ∈ PV ′ (encodes the proposition ℘),

• H(w,w′) :=
∧lb

i=1(w[i] ⇔ w′[i])
is a formula over w,w′, which is true for two valuations, sw of w and sw′

of w′ iff sw = sw′ (equality of the two state encodings),
• R(w,w′)

is a formula over w,w′, which is true for two valuations, sw of w and sw′

of w′, iff sw →dA sw′ (encodes the transition relation of the paths),
• Rx(w,w′)

is a formula over w,w′, which is true for two valuations, sw of w and sw′ of
w′, iff the state s′w is like sw with the clock x ∈ X ′ reset. Notice that in the
case of x = y the formula is true iff sw →dy

sw′ (encodes the transitions
resetting the clock y),

• Lj(k, h) := R(wk,j , wh,j)
is a formula over wk,j , wh,j , which is true for two valuations, sk of wk,j and
wh of wh,j , iff sk →dA sh (encodes a backward loop from the k-th state to
the h-th state in the symbolic k-path j, for 0 ≤ h ≤ k).

The translation of [Mψ,s0
]k, representing the transitions in the k-model is

given by the following definition:

Definition 7.12 (Encoding of Transition Relation). Let Mk = ((S, s0,
Pk, Py), VD) be the k-model of M , and ψ be an ECTLr

−X formula. The propo-
sitional formula [Mψ,s0

]k is defined as follows:

[Mψ,s0
]k := Is0(w0,0) ∧

fk(ψ)∧

j=1

k−1∧

i=0

R(wi,j , wi+1,j),

where w0,0, and wi,j for 0 ≤ i ≤ k and 1 ≤ j ≤ fk(ψ) are global state variables.
[Mψ,s0

]k constrains the fk(ψ) symbolic k-paths to be valid k-paths in Mk.

The next step of our algorithm is to translate an ECTLr
−X formula ψ

into a propositional formula. We use [α][m,n]
k to denote the translation of an

ECTLr
−X subformula α of ψ at wm,n to a propositional formula, where wm,n

is a global state variable with (m,n) ∈ {(0, 0)} ∪ {0, ...,m} × {1, ..., fk(ψ)}.
Note that the index n denotes the number of a symbolic path, whereas the
index m the position at that path.

198 7 Verification Based on Satisfiability Checking

[℘][m,n]
k := ℘(wm,n), for ℘ ∈ PV ′,

[¬℘][m,n]
k := ¬℘(wm,n), for ℘ ∈ PV ′,

[α ∧ β][m,n]
k := [α][m,n]

k ∧ [β][m,n]
k ,

[α ∨ β][m,n]
k := [α][m,n]

k ∨ [β][m,n]
k ,

[E(αUyβ)][m,n]
k :=

∨
1≤i≤fk(ψ)

(
Ry(wm,n, w0,i) ∧
∨k

j=0

(
[β][j,i]k ∧

∧j−1
l=0 [α][l,i]k

))
,

[E(αRyβ)][m,n]
k :=

∨
1≤i≤fk(ψ)

(
Ry(wm,n, w0,i) ∧
(∨k

j=0

(
[α][j,i]k ∧

∧j
l=0[β][l,i]k

)
∨

∧k
j=0 [β][j,i]k ∧

∨k
l=0 Li(k, l)

))
.

Some intuitions behind the translations are presented in Fig. 7.14. For sim-
plicity, the numbers in the subscripts of [α][·]k , [β][·]k are omitted.

Given the translations above, we can now check ψ over Mk by checking
satisfiability of the propositional formula

[Mψ,s0
]k ∧ [ψ]Mk

,

where [ψ]Mk
= [ψ][0,0]

k . The translation presented above can be shown to be
correct and complete. This can be done in a way similar to [119].

Theorem 7.13. Let M be a model, Mk be a k-model of M , and ψ be an
ECTLr

−X formula. Then, M |=k ψ iff [ψ]Mk
∧ [Mψ,s0

]k is satisfiable.

We have all ingredients in place to give the algorithm for BMC of TECTL.
Its pseudo-code is presented in Fig. 7.16.

Since we have defined the translation cr from TCTLC to CTLz, the above
method could be adapted to the TECTLC formulas. This requires to redefine
the k-bounded semantics (an intuition behind this is shown in Fig. 7.17), to
extend the function fk to deal with Xzi

by

fk(Xzi
α) = fk(α) + 1,

define the translation for Xzi
α (see below and Fig. 7.15):

[Xzi
α][m,n]

k :=
∨

1≤i≤fk(ψ)

(
Rzi

(wm,n, w0,i) ∧ [α][0,i]
k

)
,

and the translations for EU and ER by modifying the translations for EUy

and ERy changing Ry to H. The rest of the details is left as an exercise to
the reader.

7.1 Bounded Model Checking Using Direct Translation to SAT 199

.

. . .
. . .

.

. . .

.

.
. [α]

[·]
k[α]

[·]
k

R R R R R R R R
w0,fk(ψ) wk,fk(ψ)

[β]
[·]
k

R R R R R R R R
w0,1 wk,1

R R R R R R R R
w0,n wk,nwm,n

R R R R R R R R
w0,i wk,i

Ry

[α]
[·]
k [α]

[·]
k

[E(αUyβ)]
[m,n]
k

.

. . .
. . .

.

. . .

.

.
. [β]

[·]
k ∧ [α

[·]
k[β]

[·]
k [β]

[·]
k

R R R R R R R R
w0,fk(ψ) wk,fk(ψ)

R R R R R R R R
w0,1 wk,1

R R R R R R R R
w0,n wk,nwm,n

R R R R R R R R
w0,i wk,i

Ry

[β]
[·]
k [β]

[·]
k

or

.

. . .
. . .

.
. . .

.

.
. [β]

[·]
k [β]

[·]
k

R R R R R R R R
w0,fk(ψ) wk,fk(ψ)

R R R R R R R R
w0,1 wk,1

R R R R R R R R
w0,n wk,nwm,n

R R R R R R R R
w0,i wk,i

Ry

[β]
[·]
k [β]

[·]
k[β]

[·]
k[β]

[·]
k

[E(αRyβ)]
[m,n]
k

Fig. 7.14. An intuition behind the translations of TCTL formulas into ECTLr
−X

formulas

. . .

.

. . .

.

.

. . .

.

R R R R R R R R
w0,1 wk,1

R R R R R R R R
w0,fk(ψ) wk,fk(ψ)

R R R R R R R R
w0,n wk,nwm,n

R R R R R R R R
w0,i wk,i

Rzi

[α]
[·]
k

[Xziα]
[m,n]
k

Fig. 7.15. An intuition behind the translation of Xziα

200 7 Verification Based on Satisfiability Checking

Input arguments:

a timed automaton A = (A, L, l0, E,X , I) of nX clocks
a valuation function VA for A
a TECTL formula ϕ

Global variables:

ψ: an ECTLr
−X formula

k: IN+

Return values:

BMC for TECTL(): {Mc(A) |= ϕ, Mc(A) �|= ϕ}

1. function BMC for TECTL(A, VA, ϕ) is
2. begin
3. construct the automaton Aϕ;
4. ψ := cr(ϕ);
5. k := 1;
6. while k ≤ |M | do
7. select the k-model Mk;
8. select the submodels M ′

k of Mk with |P ′
k| ≤ fk(ψ) and |P ′

y| ≤ fk(ψ);
9. encode the transition relation of all k-paths of Mk

by a propositional formula [Mψ,s0
]k;

10. translate ψ over all M ′
k into a propositional formula [ψ]Mk ;

11. check the satisfiability of [M, ψ]k := [Mψ,s0
]k ∧ [ψ]Mk ;

12. if [M, ψ]k is satisfiable then
13. return Mc(A) |= ϕ;
14. end if;
15. k := k + 1;
16. end do;
17. return Mc(A) �|= ϕ;
18. end BMC for TECTL;

Fig. 7.16. A BMC algorithm for TECTL

s′0 s′2 s′4s′1 s′3

s0s0

α
azi

s0 s2 s4s1 s3

β

s0 |= Xyα s0 |= E(αUβ)

s0 s2 s4s1 s3 s0 s2 s4s1 s3

s0 |= E(αRβ) s0 |= E(αRβ)

Fig. 7.17. Examples of ECTLr
−X formulas

7.1 Bounded Model Checking Using Direct Translation to SAT 201

7.1.3 Checking Reachability with BMC

Reachability of a propositional formula p in a timed automaton A can be
specified by the ECTL formula EFp. So, in principle, reachability can be ver-
ified using the above approach over DMDRG(A) or DMDRGb

(A) depending
on the semantics considered.

It turns out, however, that a slight change in the technique can dramat-
ically influence efficiency of the method in this case. We explain the idea
in detail for the weakly monotonic semantics. Again, an adaptation of this
method for the alternative semantics is left as an exercise to the reader.

First of all, we consider k-paths over DM(A), rather than over DMDRG(A)
or DMDRGb

(A), which means that adjust transitions are not combined with
action- and time successor transitions, and the delay transition relation is
transitive. Secondly, we use the notion of a special k-path10 which satisfies the
following conditions:

• It begins with the initial state.
• The first transition is a time delay one.
• Each time delay transition is directly followed by an action one.
• Each action transition is directly followed by an adjust one.
• Each adjust transition is directly followed by a time delay one.
• The above three rules do not apply only to the last transition of a special

k-path.

An example of a special k-path is shown in Fig. 7.18.

. . .
s0 = s0 s4s2s1 sksk−1s3

δ1 δ4a2 ε a5 akδk−1

Fig. 7.18. A special k-path

Obviously, it is sufficient to use only one symbolic path to encode all the
special k-paths. Thus, the reachability problem is translated to conjunction
of the encoding of the symbolic path and the encoding of the propositional
property p at the last state of that path. If this conjunction is satisfiable, then
p is reachable.

7.1.4 Checking Unreachability with BMC

Unreachability of a propositional formula p in a timed automaton A means
that the ACTL formula AG¬p holds in A. Again, for verification, we could

10 This means that our bound on k = |S| in Theorem 7.9 should be extended to
3|S| in order to ensure that all the states of S can appear in a path.

202 7 Verification Based on Satisfiability Checking

check the ECTL formula EFp over DMDRG(A) or DMDRGb
(A), but, in this

case, we have to prove that this formula does not hold in the model. This
is, obviously, one of the major problems with BMC, as in the worst case the
algorithm needs to reach the upper bound for k, i.e., 3|S| + 1 in this case.

There is, however, another approach to checking unreachability, which in
many cases (the method is not complete) gives striking results. The idea is to
use a SAT-solver to find a minimal (possible) k such that if ¬p holds at all
the k-paths, then it means that p is unreachable. The method described below
finds such a k, if each path at which p holds only at the final state is finite.
To this aim, a free special k-path is defined. It satisfies all the conditions on
a special k-path except for the first one, i.e., it does not need to start at the
initial state.

In addition we require that for a special k-path the following conditions
hold:

• p holds only at the last state if the last transition is an action one,
• p holds only at the last two states if the last transition is an adjust one,
• p holds only at the last three states if the last transition is a time delay

one.

An example of a free special k-path is depicted in Fig. 7.19.

. . .
s0 s4s2s1 sksk−1s3

δ1 δ4a2 ε a5 akδk−1
¬p ¬p ¬p ¬p ¬p ¬p p

Fig. 7.19. A free special k-path

Notice that if p holds in our model, then it holds at a path of length
restricted by the length of a longest special k-path. So, using one symbolic
k-path, we encode all the free special k-paths in order to find the length of
a longest one satisfying the above three conditions. If the above encoding is
unsatisfiable for some k (denoted by k0), then it means that we have found a
longest free path. It is easy to see that we can look for such a k by running
the algorithm for the values of k satisfying k mod 3 = 2 only, since only the
transitions from sk−1 to sk with k satisfying the above condition can change
the location (which influences reachability). Then, when we find k0 for which
the encoding is unsatisfiable, we can run the check for reachability of p up to
k = k0 − 3. If the reachability algorithm does not find the formula satisfiable
for such a k, then it means that p is indeed unreachable.

Unfortunately, the above method is not complete, it fails when there are
loops in the unreachable part of the state space involving states satisfying ¬p,
from which a state satisfying p is reachable. A solution to make the method
complete by encoding that a free special path is loop-free [38], i.e., no state
repeats at the path, turns out to be sometimes ineffective in practice [177].

7.2 Bounded Model Checking via Translation to SL 203

7.2 Bounded Model Checking via Translation to SL

There is another approach to BMC for timed automata, which consists in
translating the model checking problem to the question of satisfiability of
some SL formula. It seems that such an approach could be applied to TACTL,
but since it has been only defined for LTL [20], and TCTL and LTL are not
comparable w.r.t. expressiveness, it is interesting to discuss it.

In the presentation below, we follow the method of [20] defined for the
LTL properties of networks of timed automata A = {Ai | i ∈ I}, where Ai =
(Ai, Li, l

0
i , Ei, Xi, Ii), I = {i1, . . . , inI

}, over the weakly monotonic semantics.
Let A = (A,L, l0, E, X , I) denote the product of the component automata
{Ai | i ∈ I}. We use the notations concerning boolean encodings defined in
the previous section, but in addition we need more boolean and real variables.

• Boolean variables
– For each label a ∈ A, the boolean variable a is introduced which holds

iff A executes a transition labelled a,
– For each transition e ∈ Ei we use the boolean variable e, which holds

iff e is executed,
– The boolean variable eδ is used to denote that the time elapses by some

δ > 0,
– The boolean variable ei

null is used to denote that Ai is idle.
• Real variables

– The clocks X of A are represented by real variables in the encoding,
– The real variable z (called absolute time reference), whose negation,

i.e., −z, is used to denote the time elapsed from the beginning of the
execution, i.e., from the start of the system. This means that z = 0 at
the start of the system and then z is continuously decreasing.

– For each clock x of A we define the variable ox, whose negated value is
equal to the absolute time when the clock was last reset. So, the value
of x is obtained as −z − (−ox) = ox − z.

We use r′ to denote the value of the real variable r after a transition of
the automaton. The fact that a transition resets a clock is encoded by the
constraint ox′ = z′, which says that after executing a transition the absolute
time is equal to the absolute time when the clock was last reset.

7.2.1 Encoding k-Paths

As before k-paths are encoded as sequences of encoded transitions, but now for
each component Ai separately, and then formulas are added, which disallow
execution of transitions labelled by different actions in the same step. So, it
is crucial to this method to encode transitions in each component automaton.
This encoding for the component i is shown below. Notice that unlike in
the BMC encoding for TACTL, where state variables were used to encode

204 7 Verification Based on Satisfiability Checking

concrete state, here state variables w,w′ are used to encode locations only.
The time components of the states are described by SL formulas. Moreover,
we are dealing with one symbolic k-path only. The subscript j ∈ IN of a state
variable wj denotes its position on the path.

The formulas used to encode the component i are as follows:

• Il0
i
(w0) ∧

∧
x∈Xi

(ox = z)
encodes the initial location and the value of each clock set to 0,

•
∧

l∈Li
(Il(w) ⇒ I(l))

encodes the invariants of all the locations,
• for e ∈ Ei and e = l

a,cc,X−→ l′

e ⇒
(
Il(w)∧a∧ cc∧ Il′(w′)∧

∧
x∈X(x′ = z′)∧

∧
x∈Xi\X(x′ = x)∧ (z′ = z)

)

encodes execution of the transition e, so change of the locations from l to
l′, execution of a, resetting the clocks of X ⊆ Xi, and the requirements
that the other clocks do not change their values, the guard cc holds, and
no time elapses which makes z = z′,

• ei
δ ⇒

(
(z′ − z < 0)∧

∨
l∈Li

Il(w)∧H(w,w′)∧
∧

x∈Xi
(x′ = x)∧

∧
a∈Ai

(¬a)
)

encodes δ-time transitions, so the requirements that time elapse must be
greater than 0, the location does not change, the values of clocks do not
change (no resetting of clocks), no action transition can occur at the same
time,

• ei
null ⇒

(
(z′ = z) ∧

∨
l∈Li

Il(w) ∧ H(w,w′) ∧
∧

x∈Xi
(x′ = x) ∧

∧
a∈Ai

(¬a)
)

encodes the null transition, so time elapse is equal to 0, the location does
not change, the values of clocks do not change (no resetting of clocks), no
action transition can occur at the same time,

• (
∨

e∈Ei
e) ∨ eδ ∨ ei

null

encodes that at least one transition occurs, i.e., either an action transition,
or a δ-time transition, or the null transition,

•
∧

a,b∈Ai,a
=b(¬a ∨ ¬b),
encodes that no two different actions can be executed simultaneously,

•
∧

e,e′∈Ei, e
=e′(¬e ∨ ¬e′)
encodes that no two different action transitions can be executed simulta-
neously.

A k-path (w0, . . . , wk) is called an h-loop (0 ≤ h ≤ k) if there is a transition
from the k-th to h-th state of the k-path. An h-loop of a k-path w0, . . . , wk is
encoded by imposing that each propositional variable has the same value at
wk and wh. For each clock we require that ox(k) − z(k) = ox(h) − z(h), where
the superscripts (k), (h) mean the values at the states wk and wh, respectively.

7.2.2 Product Encoding

The encoding for the product automaton A = Ai1 || . . . ||AinI
is defined as

conjunction of the encodings for each Ai together with the following formula

7.2 Bounded Model Checking via Translation to SL 205

∧

i,i′∈I,i
=i′

∧

a∈Ai\Ai′ , b∈Ai′\Ai

(¬a ∨ ¬b)

which prevents two different local actions to occur simultaneously.

For a given model M and k > 0, let [M]k denote the SL formula represent-
ing all the k-paths of M , and L(k, h) be the encoding of the h-loop condition.
The BMC problem is formulated as

Mk |= Eϕ,

where ϕ is an LTL path formula, stating that there is a k-path in M starting
at the initial state satisfying ϕ. This is again equivalent to the satisfiability
of the SL formula

[M]k ∧ [ϕ]k,

where [ϕ]k is defined as

[ϕ]0k ∨
k∨

h=0

(L(k, h) ∧ h[ϕ]0k),

with [ϕ]0k and h[ϕ]0k denoting translations of ϕ on k-paths. Recall that unlike
in the BMC encoding for TACTL we are dealing with one symbolic k-path,
so only one superscript is used with [ϕ]k to denote the position at this k-path.
The translation of ϕ on a k-path is defined below for two cases, where either
there is no loop ([ϕ]0k) or there is a loop from k to h (h[ϕ]0k)).

7.2.3 Encoding of LTL Formulas

First, we show a translation of ϕ on the m-th position of a k-path (m ≤ k),
which is not a loop, and then for a loop from k to h.

No loop case

The translation for the case when the k-path is not a loop looks as follows:

[℘][m]
k := ℘(wm),

[¬℘][m]
k := ¬℘(wm),

[α ∧ β][m]
k := [α][m]

k ∧ [β][m]
k ,

[α ∨ β][m]
k := [α][m]

k ∨ [β][m]
k ,

[Xα][m]
k := [α][m+1]

k if m < k and false otherwise,
[αUβ][m]

k :=
∨k

j=m

(
[β][j]k ∧

∧j−1
i=m[α][i]k

)
,

[αRβ][m]
k :=

∨k
j=m

(
[α][j]k ∧

∧j
i=m[β][i]k

)
.

Intuitions behind the last two cases of the translation are illustrated in
Fig. 7.20. For simplicity, the numbers in the subscripts in [α][·]k , [β][·]k are
omitted.

206 7 Verification Based on Satisfiability Checking

.
.

[α]
[·]
k

R R R R R R R R
[β]

[·]
k

w0 wm wk

[α]
[·]
k [α]

[·]
k

[αUβ]
[m]
k

.
. [β]

[·]
k ∧ [α]

[·]
k

R R R R R R R R
w0 wkwm

[β]
[·]
k [β]

[·]
k[β]

[·]
k

[αRβ]
[m]
k

Fig. 7.20. An intuition behind the translations of ϕ = αUβ and ϕ = αRβ when
the k-path is not a loop

.
.

R R R R R RRR RR R
w0 wkwm wh

h[β]
[·]
kh[α]

[·]
k h[α]

[·]
k h[α]

[·]
k

or

.
.

R R R R R R R RRR R
w0 wm wkwh

h[β]
[·]
kh[α]

[·]
k h[α]

[·]
k h[α]

[·]
k h[α]

[·]
k

h[αUβ]
[m]
k

.........
.

RRRRRR RRRRRR
w0

w0 wkwm wh
wkwmwh

h[β]
[·]
k h[β]

[·]
kh[β]

[·]
k h[β]

[·]
kh[β]

[·]
k h[β]

[·]
k

or

.
.

R R R R R RRR RR R
w0 wkwm wh

h[β]
[·]
k ∧ h[α]

[·]
kh[β]

[·]
k h[β]

[·]
k h[β]

[·]
k

or

.
.

R R R R RR R RRR R
w0 wm wkwh

h[β]
[·]
k ∧ h[α]

[·]
kh[β]

[·]
k h[β]

[·]
kh[β]

[·]
kh[β]

[·]
k

h[αRβ]
[m]
k

Fig. 7.21. An intuition behind the translations of ϕ = αUβ and ϕ = αRβ when
the k-path is a loop

7.3 Unbounded Model Checking for Tµ 207

Loop case

In the case when a k-path is a loop from k to h, the translation is given by
the following formulas:

h[℘][m]
k := ℘(wm),

h[¬℘][m]
k := ¬℘(wm),

h[α ∧ β][m]
k := h[α][m]

k ∧ h[β][m]
k ,

h[α ∨ β][m]
k := h[α][m]

k ∨ h[β][m]
k ,

h[Xα][m]
k := h[α][m+1]

k if m < k and h[α][h]
k otherwise,

h[αUβ][m]
k :=

∨k
j=m

(
h[β][j]k ∧

∧j−1
i=m h[α][i]k

)
∨

∨m−1
j=h

(
h[β][j]k ∧

∧k
i=m h[α][i]k ∧

∧j−1
i=h h[α][i]k

)
,

h[αRβ][m]
k :=

∧k
j=min(m,h) h[β][j]k ∨

∨k
j=m

(

h
[α][j]k ∧

∧j
i=m h[β][i]k

)

∨
∨m−1

j=h

(
h[α][j]k ∧

∧k
i=m h[β][i]k ∧

∧j
i=h h[β][i]k

)

Intuitions behind some parts of the above translation are presented in Fig. 7.21.
Again, for simplicity, the numbers in the subscripts in [α][·]k , [β][·]k are omitted.

7.2.4 Optimizations of the Encoding

Different optimizations to the above encoding have been defined. Firstly, sev-
eral mathematical formulas can be added, which encode that some constraints
imply others. By making this information explicit in the encoding, a SAT-
solver saves time on avoiding branching on the truth value of mathematical
constraints. Secondly, parallelism of operations can be exploited by encoding
their parallel execution, which can result in making counterexamples shorter.
Moreover, symmetry reduction can be encoded. The detailed discussion of the
above optimizations can be found in [20].

7.3 Unbounded Model Checking for Tµ

There are several model checking methods based on the symbolic encoding
(presented below) of the model checking problem for Tµ. In what follows we
discuss a combination of the approach by Bryant [140] and McMillan [105].
So, the translation from QSL to QPL is combined with the translation from
QPL to propositional logic.

Given a timed automaton A, a valuation function VA : L −→ 2PV , and a
TCTLC or Tµ formula ϕ. In order to check whether the formula ϕ holds in the
initial state of the dense concrete model Mc(A), we first find a characteristic
(state) predicate (i.e., an SL formula) ψ, which characterises all the states of
the model Mc(A) where ϕ holds. Formally, define

[[ψ]] = {s ∈ S | Mc(A), s |= ϕ}.

208 7 Verification Based on Satisfiability Checking

Then, we need to check whether the initial state is characterised by ψ, which
means to check whether s0 ∈ [[ψ]]. This, for example, can be solved by testing
whether the formula

encSL(s0) ∧ ψ

is satisfiable, where encSL(s0) denotes an SL encoding of the state s0.

The model checking algorithm given by Henzinger et al. [84] generates a
characteristic predicate [[ϕ]] for a TCTLC formula ϕ in two steps. Firstly, the
formula ϕ is translated into an equivalent Tµ formula ϕ′. Secondly, one applies
the algorithm p, shown in Fig. 7.22, which computes a characteristic predicate
for ϕ′ by a successive approximation of fixpoints.

Before providing the above-mentioned algorithm for computing the char-
acteristic state predicate, we introduce some additional operations. Assume
that the (Q)SL formulas considered below are >-normalised, and ψ + δ de-
notes the formula obtained by adding δ to all the clock variables (except for
x0) occurring in ψ. The model checking algorithm uses the following three
operators on SL formulas:

• Time elapse:
ψ1 � ψ2

encodes the set of states from which the state set [[ψ2]] is reachable by
allowing time to elapse, while staying in the state set [[ψ1]] at all the time
points in between. It is given by the formula

ψ1 � ψ2 := ∃δ(δ ≥ x0 ∧ ψ2 + δ ∧ ∀δ′(x0 ≤ δ′ ≤ δ ⇒ ψ1 + δ′)).

Note that δ is a fresh real time variable. The formula encoding the time
elapse is not in QSL as it includes expressions involving the sum of real
variables, but it can be transformed to QSL by using, instead of δ and δ′,
variables δ and δ′ representing their negations. The corresponding trans-
formation is as follows:

ψ1 � ψ2 := ∃δ(δ ≤ x0 ∧ψ2[x0 ← δ]∧¬∃δ′(δ′ ≤ x0 ∧δ ≤ δ′∧¬ψ1[x0 ← δ′]).

The above formula can be understood as decreasing the absolute time
reference, and this way increasing the value of any clock variable which
is relative to the absolute time. Note that the substitution ψ2[xi ← xi +
(−δ), 1 ≤ i ≤ n] (i.e., ψ2 + δ) can be computed as ψ2[x0 ← δ], since
subtracting from the value of each clock δ is equivalent to setting x0 to δ.
Intuitively, this corresponds to the clock z previously used in Sect. 7.2.

• Assignment:
ψ[A],

where A is sequence of assignments α1 ← β1, . . . , αn ← βn, denotes the
formula obtained by substituting in ψ each formula αi with βi, for all
1 ≤ i ≤ n.

7.3 Unbounded Model Checking for Tµ 209

• Weakest precondition:
preA(ψ)

denotes the weakest precondition of ψ with respect to the timed automaton
A, i.e., characterises the set of states from which a state satisfying ψ can
be obtained either by doing nothing or by executing some action. It is
given by

preA(ψ) := IA ∧ (ψ ∨
∨

e∈E

pree(IA ∧ ψ)),

with
pree(α) := φ ∧ α[A],

where φ is conjunction of the formula guard(e) and the boolean encoding
of the source location encPL(source(e)). A is a sequence of assignments in
which all the clock variables in reset(e) are assigned 0 and the encoding
of the location variable is assigned the encoding of the target location.
Moreover,

IA :=
∧

l∈L

(encPL(l) ⇒ I(l)),

with encPL(l) denoting a boolean encoding of l. Intuitively, pree(α) char-
acterises the set of states from which a state satisfying α can be obtained
either by doing nothing11 or by executing the action labelling e.

The model checking algorithm computes the characteristic state predicate
[[ϕ]] for a given Tµ formula ϕ. This is defined by the recursive function p
operating on the structure of the formula. A pseudo-code of this function
is presented in Fig. 7.22. We assume that if a formula is covered by several
entries of the instruction case, then the instructions of the first matching case
are executed only.

The main components of the algorithm p require quantifier elimination in
the time elapse operation, substitution of state variables in an assignment, and
the decision procedure to check containment in the fixed-point computation.
In order to define a symbolic model checker that represents sets of states as
SL formulas, these operations are defined as operations in QSL. So, p((p(ψ1)∨
p(ψ2)) � preA(p(ψ2))) uses a method for eliminating (existential) quantifiers
over real variables from a QSL formula. This is discussed in Sect. 7.3.1.

Notice that checking containment of the set of states encoded by φnew in
the set φold (φold in φnew), is obtained by deciding the validity of φnew ⇒ φold

(φold ⇒ φnew, respectively) or, alternatively, satisfiability of ¬(φnew ⇒ φold)
(¬(φold ⇒ φnew), respectively). Procedures for deciding separation formulas
[19,110,151] are described in Sect. 7.4.

One thing that remains to be discussed is an implementation of substitu-
tion of a clock variable. For a clock variable xi, the substitution [xi ← d] is

11 The time cannot elapse then.

210 7 Verification Based on Satisfiability Checking

Input arguments:

a Tµ formula ψ
Global variables:

ψ′, ψ1, ψ2, φold, φnew: Tµ formulas
Return values:

p(): an SL formula

1. function p(ψ) is
2. begin
3. case ψ is
4. when an SL formula => return IA ∧ ψ;
5. when ¬ψ′ => return IA ∧ ¬p(ψ);
6. when ψ1 ∧ ψ2 => return p(ψ1) ∧ p(ψ2);
7. when ψ1 ∨ ψ2 => return p(ψ1) ∨ p(ψ2);
8. when ψ1 � ψ2 => return p((p(ψ1) ∨ p(ψ2)) � preA(p(ψ2)));
9. when z.ψ′ => return p(ψ′)[z ← 0];
10. when µZ.ψ′ => φnew := false;
11. repeat
12. φold := φnew;
13. φnew := p(ψ′[Z ← φold]);
14. until (φnew ⇒ φold);
15. return p(φold);
16. when νZ.ψ′ => φnew := true;
17. repeat
18. φold := φnew;
19. φnew := p(ψ′[Z ← φold]);
20. until (φold ⇒ φnew);
21. return p(φold);
22. end case;
23. end p;

Fig. 7.22. An algorithm computing the characteristic state predicate for a Tµ for-
mula

performed by replacing all the boolean variables corresponding to formulas
involving xi with variables corresponding to the substituting formulas, using
fresh variables if necessary.

Next, we discuss the main ideas behind an implementation of the above-
discussed operations using a boolean encoding of QSL. Firstly, quantification
of real variables is replaced by quantification of boolean variables. Secondly,
SL formulas are represented by boolean formulas and model checking is im-
plemented as operations in QPL.

7.3 Unbounded Model Checking for Tµ 211

7.3.1 From Real to Boolean Quantification

Below we show a method for eliminating existential quantifiers over real vari-
ables from a QSL formula. This is applicable to the formulas of the form
∃xa.ψ, where xa, with a ∈ IN, is a real time (clock) variable, and ψ is a >-
normalised SL formula. The formula ∃xa.ψ is transformed to an equivalent
QSL formula, with quantifiers over boolean variables only, in the following
three steps:

1. Each separation predicate xi ∼ xj + c in ψ (where a ∈ {i, j}) is encoded
by the boolean variable ℘∼,c

i,j . The separation predicates that are negations
of each other are represented by boolean literals12 that are negations of
each other. The resulting formula is denoted by ψa

bool.
2. In order to disallow satisfying boolean assignments that do not have corre-

sponding assignments to the real-valued variables, transitivity constraints
are added to some pairs of boolean literals that encode predicates having
at least one real variable in common. A transitivity constraint for xa can
be of the following types:
• ℘∼1,c1

i,a ∧ ℘∼2,c2
a,j ⇒ (xi ∼ xj + c1 + c2),

where if ∼1 = ∼2, then ∼:=∼1, otherwise we have to write the above
constraint for both the ∼ := ∼1 and ∼:=∼2 (∼ ∈ {>, ≥}),

• ℘∼1,c1
i,j ⇒ ℘∼2,c2

i,j ,
where c1 > c2 and a ∈ {i, j},

• ℘>,c1
i,j ⇒ ℘≥,c1

i,j ,
where a ∈ {i, j}.

After generating all the transitivity constraints for xa, we conjoin them
to get the formula ψa

cons.
3. The resulting formula is the conjunction of the above formulas preceded

by the existential quantifiers over all the boolean variables added in the
step 1.

This is shown in detail in Example 7.14.

Example 7.14. Let αa = ∃xa.ψ, where ψ = xa ≤ x0 ∧x1 ≥ xa ∧x2 ≤ xa. After
transforming ψ to the >-normalised version we get

ψ = x0 ≥ xa ∧ x1 ≥ xa ∧ xa ≥ x2.

Define the boolean variables ℘≥,0
0,a , ℘≥,0

1,a , ℘≥,0
a,2 corresponding respectively to the

above SL formulas occurring in the conjunction. Then,

ψa
bool = ℘≥,0

0,a ∧ ℘≥,0
1,a ∧ ℘≥,0

a,2 .

The formula ψa
cons is the conjunction of the following constraints:

• ℘≥,0
0,a ∧ ℘≥,0

a,2 ⇒ x0 ≥ x2,

12 By a literal we mean both a propositional variable and its negation.

212 7 Verification Based on Satisfiability Checking

• ℘≥,0
1,a ∧ ℘≥,0

a,2 ⇒ x1 ≥ x2.

Note that the transitivity constraints are built only for the pairs of boolean
variables in which a occurs at the second and at the first position in the
list of the subscripts. Thus, we do not have a transitivity constraint for
℘≥,0

0,a ∧ ℘≥,0
1,a , where a occurs at the second position only. Note that the transi-

tivity constraints of the last two types do not need to be added (there are no
℘∼1,c1

i,j , ℘∼2,c2
i,j with c1 > c2 or with c1 = c2, ∼1= “>“ and ∼2= “≥“).

Then, we obtain the formula

αbool = ∃℘≥,0
0,a , ℘≥,0

1,a , ℘≥,0
a,2 .[ψa

bool ∧ ψa
cons],

which evaluates to x0 ≥ x2 ∧ x1 ≥ x2. This is easily seen when, according to
the semantics of ∃, we replace the quantified variables with true.

�

7.3.2 From QSL Formulas Without Real-Time Quantification
to Equivalent Boolean Formulas

Since the formula obtained after the above translation is in QSL, but it con-
tains only existential quantifiers over boolean variables, we can eliminate the
quantifiers, translate the SL formula to a boolean formula (see Sect. 7.4) and
use a SAT-solver to decide the resulting boolean formula. Existential quan-
tifiers can be eliminated using a translation to BDDs, or using a method
described in Sect. 7.6, where we show a translation from QPL to boolean for-
mulas. This translation is for universal quantifiers, but each existentially quan-
tified QPL formula ∃℘.ψ can be replaced by the equivalent universally quanti-
fied QPL formula ¬∀℘.¬ψ. Alternatively, one could use a QBF-solver [122] to
decide QPL formulas. Several optimizations to the above method are applied
in [140].

7.4 Deciding Separation Logic (MATH-SAT)

There are several methods of deciding SL formulas (see [19, 110, 151, 154]).
In what follows we show in detail the method of [151], which consists in
translating the problem of satisfiability of an SL formula to the problem of
satisfiability of a propositional formula. Then, we briefly discuss the other
existing approaches.

7.4.1 From SL to Propositional Logic

We start with the general idea of the method and an instructive example. So,
assume that ϕ is a >-normalised SL formula. The decision procedure consists
of the following three stages:

7.4 Deciding Separation Logic (MATH-SAT) 213

1. Propositional encoding. Deriving a propositional formula ϕ′ from ϕ
such that all the ϕ predicates are encoded by fresh propositional variables.

2. Building the inequality graph Gϕ. The vertices of the graph are de-
fined by the SL variables in ϕ and the edges correspond to the proposi-
tional variables and their duals.

3. Transitivity constraints. Adding to the conjunction of the proposi-
tional variables all the transitivity constraints for every simple cycle in
Gϕ.

Next, we give details of the above method.

Propositional Encoding

This step involves replacing all predicates with fresh propositional variables.
So, each predicate xi ∼ xj+c, where ∼ ∈ {>,≥}, is replaced by the proposition
℘∼,c

i,j . Notice that by such a translation we loose all the transitivity constraints
between predicates. The simplest example illustrating this is when we trans-
late xi > xj and xj > xk. Then, the constraint xi > xk is lost. In order
to compensate for the lost we use a graph-theoretic approach for deriving
propositional variables corresponding to the transitivity constraints.

Building the Inequality Graph

Let Gϕ = (X ,E) be a weighted directed multigraph, where each edge e ∈ E is
a four-tuple

(xi, xj , ∼, c),

where xi is the source node, xj is the target node, ∼ ∈ {>, ≥} – the type
of edge, and c – the weight. For each edge e, its components are denoted by
source(e), target(e), iqsgn(e) and weight(e), respectively. Moreover, the dual
edge of e = (xi, xj , ∼, c) is defined as

e = (xj , xi, ∼, −c),

where > := “ ≥ “ and ≥ := “ > “. Notice that for the edge e = (xi, xj , ∼, c)
corresponding to ℘∼,c

i,j the dual edge of e corresponds to the negation of ℘∼,c
i,j .

The graph Gϕ = (X ,E) is constructed as follows:

• X is a set of all the real variables in ϕ,
• E is a set of edges e = (xi, xj , ∼, c) and their duals e, for each predicate

xi ∼ xj + c appearing in ϕ.

214 7 Verification Based on Satisfiability Checking

Transitivity Constraints

The idea is to add new propositions encoding the transitivity constraints
imposed by separation predicates (see [132, 143]). We start with analyzing
a simple cycle of size 2 in Gϕ, i.e., a cycle composed of two edges. Let cc =
x1 ∼ x2 + c and cc′ = x2 ∼′ x1 + c′ be two clock constraints in ϕ. Notice
that x1 − x2 ∼ c and x2 − x1 ∼′ c′, so 0 ≥ c + c′. Thus, if c + c′ > 0, then
obviously cc∧ cc′ is unsatisfiable. Additionally, if c+ c′ = 0 and at least one of
∼, ∼′ is equal to “>“, then cc∧ cc′ is also unsatisfiable. The constraints in the
other direction can be inferred by applying the above constraints to the duals
of cc and cc′. So, if c + c′ < 0, then obviously (¬cc) ∧ (¬cc′) is unsatisfiable.
Additionally, if c + c′ = 0 and at least one of ∼, ∼′ is equal to “ > “, then
(¬cc) ∧ (¬cc′) is also unsatisfiable.

In order to generalize the above analysis on more complex cycles composed
of more than two edges we need to define some auxiliary notions.

Definition 7.15. A directed path in Gϕ of length m from x to x′ is a sequence
of edges (e1, . . . , em) in Gϕ such that

• x = source(e1),
• x′ = target(em),
• target(ei) = source(ei+1) for each 1 ≤ i ≤ m − 1.

The notations source(), target(), weight() and iqsgn() are extended to the
path ξ such that

• source(ξ) = source(e1),
• target(ξ) = target(em),
• weight(ξ) = Σm

i=1weight(ei), and

• iqsgn(ξ) =

⎧
⎨

⎩

“≥“ iff iqsgn(ei) = “≥“ for each 1 ≤ i ≤ m,
“>“ iff iqsgn(ei) = “>“ for each 1 ≤ i ≤ m,
“!“ otherwise.

Below, we give the transitivity constraints of a simple cycle C, i.e., a directed
path ξ such that source(ξ) = target(ξ) and each sub-cycle in ξ is iterated
only once13. They are given by the following conditions:

• if iqsgn(C) = “≥“, then apply R1,R2,
• if iqsgn(C) = “>“, then apply R3,R4,
• if iqsgn(C) = “!“, then apply R2,R3,

where the rules R1,R2,R3,R4 are defined as follows (we identify the edges
with the corresponding constraints):

R1. if weight(C) > 0, then
∧

ei∈C ei = false,
R2. if weight(C) ≤ 0, then

∨
ei∈C ei = true,

13 It is clear that iterations over cycles do not add transitivity constraints.

7.4 Deciding Separation Logic (MATH-SAT) 215

R3. if weight(C) ≥ 0, then
∧

ei∈C ei = false,
R4. if weight(C) < 0, then

∨
ei∈C ei = true.

The above rules express additional (implied) conditions that should be satis-
fied, which in turn requires to add some additional constraints to the trans-
lation of the original SL formula. Therefore, the rules should be understood
as follows. The rule R1 (R3) requires to generate a constraint, which when
satisfied implies that

∧
ei∈C ei = false. So, we take the formula

∨
ei∈C ¬ei.

The rule R2 (R4) requires to generate a constraint, which when satisfied im-
plies that

∨
ei∈C ei = true. So, we take the formula

∧
ei∈C ¬ei. This is shown

in Example 7.16 for R3.

It turns out that we can concentrate on simple cycles only, as if there is
an assignment AC to a non-simple cycle C which does not satisfy it, then
there is a simple cycle C′, which is a subgraph of C, such that AC does not
satisfy C′ either. Thus, the last step of our translation consists in adding to
the conjunction of the propositional variables corresponding to the separation
predicates all the transitivity constraints for every simple cycle in Gϕ.

Example 7.16. Consider the formula

ϕ = x1 > x2 − 1 ∨ ¬(x3 > x2 − 2) ∨ ¬(x1 ≥ x3 − 3).

Notice that ¬(x3 > x2−2) is equivalent to x2 ≥ x3+2, whereas ¬(x1 ≥ x3−3)
to x3 > x1 + 3. After the step 1 (see p. 213) we have

ϕ′ = ℘>,−1
1,2 ∨ ¬℘>,−2

3,2 ∨ ¬℘≥,−3
1,3 .

The variable dual to ℘>,−2
3,2 is ℘≥,2

2,3 . The other dual variables are ℘≥,1
2,1 and

℘>,3
3,1 . The graph Gϕ (see Fig. 7.23) contains only one simple cycle C such its

weight, i.e., weight(C), is equal to 4, iqsgn(C) = “!“, and consisting of the
vertices x1, x2, x3; and the dual of this cycle. Therefore, following R3, we add
to ϕ′ the transitivity constraint ¬℘>,−1

1,2 ∨ ¬(¬℘>,−2
3,2) ∨ ¬(¬℘≥,−3

1,3). Note that
applying the rules to the dual cycle gives exactly the same constraints.

�

≥, 2>, 3 >
,−

2

≥, 1
x2

x3

>, −1

x1

≥
,−

3

Fig. 7.23. An inequality graph for Example 7.16

216 7 Verification Based on Satisfiability Checking

Complexity and Optimization

The complexity of enumerating constraints for all the simple cycles is linear
in the number of cycles. But, there may be an exponential number of such
cycles (see Fig. 7.24).

.

Fig. 7.24. The structure of a graph with exponentially many simple cycles

The optimization suggested in [151] consists in adding to the graph Gϕ new
edges (called chords) connecting nodes of the cycles of size 4 and more which
were originally not connected by a single edge. Thanks to this construction
one can then consider only simple cycles of size 2 and 3. Below, we give a
short description of the above method.

Definition 7.17. Let C be a simple cycle in Gϕ and xi and xj be two non-
adjacent nodes in C. Denote the path from xi to xj in C by ξi,j. A chord e
from xi to xj is called ξi,j-accumulating if the following two requirements are
satisfied:

• weight(e) = weight(ξi,j), and
• iqsgn(e) = “ ≥ “ if iqsgn(ξi,j) = “ ≥ “ or if (iqsgn(ξi,j) = “ ! “ and

iqsgn(ξj,i) = “>“). Otherwise, iqsgn(e) = “>“.

Example 7.18. The edge from x1 to x3 is ξ1,3-accumulating chord in the graph
in Fig. 7.25. The edge from x3 to x1 is the dual one.

�

x2

x1

x4

x3
∼, c1+c2

∼1, c1
∼2, c2

∼, −c1−c2

∼3, c3∼4, c4

Fig. 7.25. An accumulating chord

7.4 Deciding Separation Logic (MATH-SAT) 217

Definition 7.19. The graph Gϕ is called chordal if all the simple cycles in
Gϕ of size greater or equal to 4 contain an accumulating chord.

It turns out that for each simple cycle C and an assignment AC , if AC does
not satisfy C, then there is a simple cycle C′ of size (at most) 3 such that AC
does not satisfy C′. Then, one can concentrate only on cycles of size 2 and 3.

The graph construction phase of p. 213 is extended by a step of making
the graph chordal.

• Make the graph chordal:

1. unmarked := X ;
2. while (∃xi ∈ unmarked) do
3. mark the vertex xi; unmarked := unmarked \ {xi};
4. for each (xj , xi, ∼1, c1), (xi, xk, ∼2, c2) ∈ E

s.t. (xj , xk ∈ unmarked ∧ j �= k) do
5. add (xj , xk, ∼1, c1 + c2) and its dual to E;
6. if ∼1 �=∼2 then
7. add (xj , xk, ∼2, c1 + c2) and its dual to E;
8. end if;
9. end do;
10. end do;

In the worst case, the process of making the graph chordal can add an expo-
nential number of edges, but in many cases, the chordal method can reduce
complexity. For example this happens when all weights are equal to 0.

7.4.2 Other Approaches to Deciding SL

A quite different method was presented in [19]. The whole algorithm is de-
composed into 5 layers L0–L5. The idea is to refine the process of finding a
satisfying assignment from layer to layer. If at some layer the formula appears
unsatisfiable, then it is indeed unsatisfiable. Otherwise, it has to be considered
at the next layer. The layers are shortly described below:

L0 considers only propositional connectives in an SL formula ϕ. Mathematical
atoms are abstracted into propositional literals. The process is realized by
a DPLL-like procedure14, which is discussed in Sect. 7.5.

L1 considers also equalities, performing equality propagation, building equal-
ity-driven clusters of variables and detecting equality-driven unsatisfiabil-
ities.

L2 handles also inequalities of the form xi ∼ xj +c for unrestricted relational
∼, by a variant of the Bellman–Ford minimal path algorithm.

14 DPLL is a SAT-solver algorithm. Its name comes from the first letters of the
names of its authors (Davis, Putnam, Logemann and Loveland).

218 7 Verification Based on Satisfiability Checking

L3 takes into account also general inequalities (i.e., variables may have coef-
ficients) using the standard simplex algorithm.

L4 considers also negated equalities.

Another algorithm was given in [110]. The key idea of this approach is that
a conjunction of clock constraints can be represented by a DBM. The Floyd–
Warshall algorithm is used to normalize the constraints, to find contradiction
in the set of numerical clauses, and to extract a solution from a consistent set
of inequalities in polynomial time. Whereas typical SAT-solvers perform both
syntactic transformations of formulas that may simplify clauses and remove
variables as well as search in the state space of valuations for the remaining
variables, their solver gives priority to the former and resorts to search only
when simplifications are impossible. It is based on Davis–Putnam procedure.

7.5 Deciding Propositional Formulas (SAT)

This section aims at explaining the main principles followed by propositional
SAT-solvers, i.e., algorithms testing satisfiability of propositional formulas.
Our presentation is based on [38,109].

Assume we are given a propositional formula ϕ. The aim of a SAT-solver
is to find a satisfying assignment for ϕ if it exists, or return “unsatisfiable”
otherwise. It is well known that the problem of establishing whether a formula
is satisfiable or not (known as a SAT-problem) is NP-complete. Therefore, in
general, one cannot expect that a SAT-solver will return a result in a poly-
nomial time. We should be aware of the fact that a SAT-solver is a heuristics
only, but it can be very “clever”. Modern SAT-solvers can decide formulas
composed of hundreds of thousands of propositional variables in a reasonable
time.

Typically, SAT-solvers accept formulas in conjunctive normal form (CNF),
i.e., a conjunction of clauses, where a clause is a disjunction of literals. Such a
form is quite useful for checking satisfiability, as any valuation, which makes
at least one literal of each clause satisfied, makes the whole formula satisfied.

Every propositional formula ϕ can be translated to a CNF formula in
two ways. Either the resulting CNF formula preserves only satisfiability of
ϕ or it is logically equivalent to ϕ. Clearly, the former translation is much
easier than the latter and it is used for checking satisfiability of ϕ, what is
the main subject of this section. If we need to operate further on ϕ, then an
equivalence-preserving translation is necessary. In Sect. 7.6 we show how to
use it for translating a fragment of QPL to PL.

We start with some basic definitions and formalizations. Then, we describe
how to construct a satisfiability-preserving CNF formula for ϕ.

Consider a set of propositional variables PV extended by two constants
true and false with the standard meaning. A disjunction of zero literals is

7.5 Deciding Propositional Formulas (SAT) 219

taken to mean the constant false. A conjunction of zero clauses is taken
to mean the constant true. An assignment A is a partial function from PV
to {true, false}. The domain of an assignment A is denoted by dom(A).
An assignment is said to be total (ϕ-total) when its domain is PV (PV (ϕ),
respectively). A ϕ-total assignment A is said to be satisfying for ϕ when
A |= ϕ,15 i.e., the value of ϕ given by A is true. It is convenient to generalize
an assignment A to the formulas over the propositions of dom(A) such that
A(ϕ) = true iff A |= ϕ.

Next, we equate also an assignment A with the conjunction of a set of
literals, specifically the set containing ¬℘ for all ℘ ∈ dom(A) such that A(℘) =
false, and ℘ for all ℘ ∈ dom(A) such that A(℘) = true. For example for
A = {(℘1, true), (℘2, false)}, we get the conjunction of the literals of the
set {℘1, ¬℘2}. In the following we show a polynomial algorithm that, given

a propositional formula ϕ, constructs a CNF formula which is unsatisfiable
exactly when ϕ is valid. The procedure works as follows. First of all, for every
subformula ψ of the formula ϕ, we introduce a distinct propositional variable
lψ. Furthermore, if ψ is a propositional variable from PV , then

lψ = ψ.

Next, we assign the formula toCNF (ψ) to every subformula ψ of ϕ according
to the following rules:

• if ψ is a propositional variable, then toCNF (ψ) = true,
• if ψ = ¬φ, then

toCNF (ψ) = toCNF (φ) ∧ (lψ ∨ lφ) ∧ (¬lψ ∨ ¬lφ),
• if ψ = φ1 ∨ φ2, then

toCNF (ψ) = toCNF (φ1) ∧ toCNF (φ2) ∧
(lψ ∨ ¬lφ1) ∧ (lψ ∨ ¬lφ2) ∧ (¬lψ ∨ lφ1 ∨ lφ2),

• if ψ = φ1 ∧ φ2, then
toCNF (ψ) = toCNF (φ1) ∧ toCNF (φ2) ∧

(¬lψ ∨ lφ1) ∧ (¬lψ ∨ lφ2) ∧ (lψ ∨ ¬lφ1 ∨ ¬lφ2),

and for derived boolean operators

• if ψ = φ1 ⇒ φ2 then
toCNF (ψ) = toCNF (φ1) ∧ toCNF (φ2) ∧

(lψ ∨ lφ1) ∧ (lψ ∨ ¬lφ2) ∧ (¬lψ ∨ ¬lφ1 ∨ lφ2),
• if ψ = φ1 ⇔ φ2 then

toCNF (ψ) = toCNF (φ1) ∧ toCNF (φ2) ∧ (lφ1 ∨ ¬lφ2 ∨ ¬lψ) ∧
(¬lφ1 ∨ lφ2 ∨ ¬lψ) ∧ (lφ1 ∨ lφ2 ∨ lψ) ∧ (¬lφ1 ∨ ¬lφ2 ∨ lψ).

It can be shown [105] that the formula ϕ is valid when the CNF formula

toCNF (ϕ) ∧ ¬lϕ

15 A ϕ-total assignment coincides with a valuation function, which motivates the
notion |=.

220 7 Verification Based on Satisfiability Checking

is unsatisfiable. This follows from the fact that for any assignment A with
dom(A) = PV (ϕ) there is a unique satisfying assignment A′ of toCNF (ϕ)
consistent with A such that A′(lϕ) = A(ϕ).

Notice also that the CNF formula

toCNF (ϕ) ∧ lϕ

preserves satisfiability, but is not equivalent to ϕ. The reason is that toCNF (ϕ)
∧ lϕ is defined over an extended set of propositional variables and there exist
assignments which make ϕ satisfied and toCNF (ϕ) ∧ lϕ not satisfied.

Example 7.20. Let ϕ = ℘1 ∧ ℘2. Then,

toCNF (ϕ) ∧ lϕ = (¬lϕ ∨ ℘1) ∧ (¬lϕ ∨ ℘2) ∧ (lϕ ∨ ¬℘1 ∨ ¬℘2) ∧ lϕ.

Consider the assignment A = {℘1, ℘2, ¬lϕ}. We have A(ϕ) = true and
A(toCNF (ϕ) ∧ lϕ) = false.

�

There are several approaches used to check satisfiability of propositional for-
mulas. They can be based on St̊almarck’s method [141], use methods of soft
computing (Monte Carlo, evolutionary algorithms) or exploit the theory of
resolution [71]. Here, we discuss the algorithm proposed by Davis and Put-
nam [62] and later improved by Davis, Logemann and Loveland [61], known as
DPLL. The solution is based on a backtracking search algorithm through the
space of possible assignments of a CNF formula. The algorithm uses the meth-
ods of boolean constraint propagation (BCP), conflict-based learning (CBL),
and variable selection (VS).

A template of the generic SAT algorithm is given in Fig. 7.26. Below, we
explain in detail the procedures it uses and the ideas behind them.

7.5.1 Boolean Constrain Propagation

The idea behind the algorithm is to identify assignments that are necessary for
satisfiability of the CNF formula and to efficiently propagate each variable’s
assignment found this way.

The algorithm starts with identifying the unit clauses of the CNF formula,
i.e., the clauses of one unassigned literal only and the other literals evaluating
to false. Obviously, a clause composed of one unassigned literal is the unit
clause. All the unassigned literals in the unit clauses are assigned true by the
algorithm. This is obviously necessary for any potential satisfying assignment.
Then, the algorithm computes all the immediate implications of the assign-
ment just made by iteratively assigning the unassigned literals of the newly
created unit clauses. Consider the formula

℘1 ∧ (¬℘1 ∨ ¬℘2).

7.5 Deciding Propositional Formulas (SAT) 221

Input arguments:

a propositional formula ϕ
Global variables:

d: IN
χ: a set of clauses over PV (ϕ)

A: 2PV (ϕ)

Return values:

SAT(): 2PV (ϕ)

decide(): {DECISION, ALL-ASSIGNED}
deduce(): {OK, CONFLICT}
diagnose(): Integer ×2PV (ϕ)

1. function SAT(ϕ) is
2. begin
3. d := 0; χ := clauses(ϕ); A := ∅;
4. deduce(d);
5. while true do
6. d := d + 1;
7. if decide(d) = ALL-ASSIGNED then return A; end if;
8. if deduce(d) = CONFLICT then
9. (dl, cl) := diagnose(d);
10. d := dl;
11. if d = 0 then return ∅; end if;
12. erase(d);
13. χ := χ ∪ {cl};
14. end if;
15. end do;
16. end SAT;

Fig. 7.26. A generic SAT algorithm

The first (implied) decision is (℘1, true). This in turn implies (℘2, false),
which for our formula produces the satisfying assignment and means that the
algorithm stops.

When no more unit clauses can be found, the algorithm selects an unas-
signed literal and assigns it a boolean value, which could be either true or
false. Then, again the algorithm applies the unit clause rule. The above is
realized by the procedures decide and deduce. By a decision variable we
mean a propositional variable which could have been assigned both the values
at the moment of the decision, i.e., its assignment was not implied by other
assignments. Every assigned variable ℘ is given the decision depth, which is

222 7 Verification Based on Satisfiability Checking

equal to the number of the decision variables assigned so far, i.e., before ℘
was assigned.

Such a procedure can likely make a clause unsatisfiable. This would for
example happen for the formula

℘1 ∧ (℘2 ∨ ℘3) ∧ (℘2 ∨ ¬℘3).

After assigning (℘1, true) and selecting ℘2 and its value as false and then
assigning (℘3, true), the clause ℘2 ∨ ¬℘3 becomes unsatisfiable. This is called
a conflict, as having the variables ℘1 and ℘2 assigned as above there is no
assignment of ℘3 leading to a satisfying total assignment. Then, clearly the
decision (℘2, true) must be changed and the implications of the new decision
must be recomputed. Notice that backtracking implicitly prunes parts of the
search tree, which is of size 2n in case n unassigned literals remain in a point of
starting backtracking. When a conflict occurs, the technique of conflict based-
learning (see below) is used to deduce a new clause (called a conflict clause),
which is added to the working set if clauses, denoted by χ in our algorithm in
Fig. 7.26. This mechanism prevents similar conflicts from reoccurring, as the
algorithm backtracks immediately if such an assignment is repeated.

7.5.2 Conflict-Based Learning

We explain the CBL mechanism of deriving conflict clauses using a more
complicated example. Let

ϕ = c1 ∧ c2 ∧ c3 ∧ c4,

where

• c1 = (¬℘1),
• c2 = (℘1 ∨ ℘4 ∨ ¬℘5),
• c3 = (¬℘2 ∨ ℘3), and
• c4 = (℘4 ∨ ℘5).

Notice that at the start of the procedure the assignment of ℘1 is implied,
which follows from the unit clause rule. Thus, we have A = {¬℘1}. Now, no
more unit clauses exist. So, the algorithm decides an assignment for another
unassigned variable, say A(℘2) = true (it could have decided as well an
assignment for ℘3, ℘4 or ℘5). This implies the assignment of ℘3, namely
A(℘3) = true, so that the clause (¬℘2 ∨ ℘3) is satisfied. Next, the assignment
A(℘4) = false is decided, but notice that this implies both ℘5 (because of
the clause (℘4 ∨ ℘5)) and ¬℘5 (because of the clause (℘1 ∨ ℘4 ∨ ¬℘5)). So,
whatever assignment comes first, i.e., either A(℘5) = true or A(℘5) = false,
we have a conflict.

When such a conflict is identified, the procedure diagnose is responsible
for finding the assignments that are directly responsible for the conflict and
could have been potentially selected differently in order to find a satisfying

7.5 Deciding Propositional Formulas (SAT) 223

assignment. In our example these are {¬℘1, ¬℘4}, which we explain below. The
conjunction of these assignments gives a sufficient condition for the conflict
to occur. Consequently, the negation of this conjunction must be satisfied if
our formula is satisfiable. Notice that ¬℘1 clearly cannot be changed as it is
equal to the clause c1 of one literal only. Thus, we generate the new clause

c5 = (℘1 ∨ ℘4),

remove ℘1 (in order to optimize on c5), and add the clause ℘4 to the working
set of clauses of ϕ. The above process is performed by the procedure diagnose,
which returns an (optimised) learned clause cl that corresponds to an assign-
ment found, and in addition computes the decision level dl to which the search
has to backtrack. The procedure erase(d) (called for d=dl) cancels all the
assignments of the variables that were assigned at the decision levels greater
than d and leaves the others intact.

In order to find a conflict clause we use the implication graph, which records
the unit clause propagation process implied by the decision assignment. Each
node in this graph corresponds to a variable assignment, so is represented by
a literal. The incoming directed edges (l1, lj), . . . , (li, lj) labelled by a clause
c represent the fact that

c = (¬l1 ∨ . . . ∨ ¬li ∨ lj),

which means that lj has been implied by the unit clause rule. Thus, the
vertices without incoming edges correspond to decision assignments, while
the others correspond to implied assignments. A graph represents a conflict if
it contains two vertices l and ¬l for some literal l. The conjunction of the roots
of the graph backwards reachable from the above two vertices (excluding these
which belong to one-literal clauses) represents the assignment responsible for
the conflict.

℘3

¬℘1

¬℘5

℘5

℘2 c3

c4

c2

¬℘4
c2

Fig. 7.27. An implication graph for ϕ

The implication graph for the above example is shown in Fig. 7.27. Its
roots are ¬℘1, ℘2, and ¬℘4, and the edges between literals are labelled by the

224 7 Verification Based on Satisfiability Checking

clauses that induced the assignments. So, the edge from ℘2 to ℘3 is labelled
by the clause c3, whereas the edges from ¬℘1 and ¬℘4 to ¬℘5 are labelled
by c2. The edge from ¬℘4 to ℘5 is labelled by c4. The conflict in the graph
is represented by two contradictory vertices, namely ℘5 and ¬℘5. The search
shows that the above vertices are reachable only from the roots ¬℘1 and ¬℘4.
Therefore, the conjunction of them, i.e., ¬℘1 ∧ ¬℘4, is a sufficient condition
for a conflict. Thus, the negation of this conjunction must be satisfied if our
formula is satisfiable.

Next, the algorithm backtracks and withdraws from the assignment of
¬℘4, returning to A = {¬℘1, ℘2, ℘3}. Notice that the learned conflict clause
c5 implies A(℘4) = true. Then, the algorithm decides an assignment for ℘5,
say A(℘5) = true. This is a ϕ-total assignment, which does not produce a
conflict. Thus, a satisfying assignment that is found is

A = {¬℘1, ℘2, ℘3, ℘4, ℘5}.

It is important to mention that the original Davis–Putnam algorithm back-
tracks one step at a time (i.e., dl = d−1), whereas modern SAT-solvers exploit
non-chronological backtracking search strategies (i.e., dl = d − j, for j ≤ d),
which allows them to skip many irrelevant assignments.

Still several details of the algorithm in Fig. 7.26 remain to be discussed.
This is done in the next section.

7.5.3 Variable Selection (VS)

At each decision level d in the search, a propositional variable ℘d is assigned
either true or false. This assignment is selected by the procedure decide(d).
Many heuristics may serve this aim. For example the authors of [109] suggest
the following procedure: “At each node in the decision tree evaluate the num-
ber of clauses directly satisfied by each assignment to each variable. Choose
the variable and the assignment that directly satisfies the largest number of
clauses.”

If all the variables have been already assigned and no conflict occurs (indi-
cated by ALL–ASSIGNED), then SAT returns a satisfying assignment A. Oth-
erwise, the implied assignments are identified by the procedure deduce(d).
If this terminates without a conflict, the procedure SAT increases the deci-
sion level and looks for a new variable to assign. Otherwise, the procedure
diagnose(d) analyses the conflict and decides on the next step. If ℘d was as-
signed only one boolean value so far, the other one is decided and the process
is repeated. If the other assignment also fails, then it means that the value of
℘d is not responsible for the conflict. Then, the procedure diagnose(d) iden-
tifies the assignment responsible for the conflict and computes the decision
level dl which SAT must backtrack to. The procedure will backtrack d − dl

times, each time erasing (the procedure erase(d)) the current decision and
its implied assignments in line 12.

7.6 From a Fragment of QPL to PL 225

7.6 From a Fragment of QPL to PL

For defining a translation from a fragment of QPL to propositional logic,
we need to know how to compute a CNF formula which is equivalent to a
given propositional formula ϕ. In order to do this we use a version of the
algorithm toCNF [105], which is known is a cube reduction. We refer the
reader to [53, 72], where alternative solutions can be found. We present the
algorithm equCNF, which is a slight modification of the SAT algorithm, but in
fact it could be presented in a general way, abstracting away from the specific
realization of SAT.

Assume that ϕ is an input formula. Initially, the algorithm equCNF (see
Fig. 7.28) builds a satisfying assignment for the formula

toCNF (ϕ) ∧ ¬lϕ,

i.e., the assignment which falsifies ϕ. If such one is found, instead of terminat-
ing, the algorithm constructs a new clause that is in conflict with the current
assignment (i.e., it rules out the satisfying assignment). This new clause is
called a blocking clause and it has to meet the following properties:

• it contains only input variables, i.e., the propositional variables of PV (ϕ),
• it is false in the current assignment A,
• it is implied by toCNF (ϕ) ∧ lϕ.

In the algorithm, each time a satisfying assignment is obtained, a blocking
clause is generated by the algorithm blocking clause and added to the work-
ing set of clauses χ (line 9) and then in line 10 to the formula ψ. This clause
rules out a set of cases where ϕ is false. Thus, on termination, when there is
no satisfying assignment for the current set of clauses, ψ is a conjunction of
the blocking clauses and precisely characterises ϕ.

A blocking clause could in principle be generated using the conflict-based
learning procedure. However, we require the blocking clause to contain only
input variables, i.e., literals of PV (ϕ). To this aim one could use an (alterna-
tive) implication graph [105], in which all the roots are input literals. However,
here we show another method introduced by Szreter [152, 153]. Before we go
into details of this method, let us consider the simplest approach to generat-
ing blocking clauses. Assume that the procedure SAT(ψ) returned a ψ-total
satisfying assignment A of ψ. Then, a blocking clause cb could be defined as
the disjunction of literals l corresponding to PV (ϕ) such that ℘ (¬℘) is an
element of cb iff A(℘) = false (A(℘) = true, respectively). Formally,

cb =
∨

℘∈PV (ϕ)

N(℘),

where N(℘) = ℘ iff A(℘) = false and N(℘) = ¬℘ iff A(℘) = true. This
is clearly very simple, but highly inefficient. It is easy to notice that this

226 7 Verification Based on Satisfiability Checking

Input arguments:

a propositional formula ϕ
Global variables:

χ: a set of clauses over 2PV (toCNF (ϕ))

A: 2PV (toCNF (ϕ))

Return values:

equCNF(): the formulas in CNF over 2PV (ϕ)

SAT(): 2PV (ϕ)

blocking-clause(): the clauses over 2PV (ϕ)

1. function equCNF(ϕ) is
2. begin
3. χ := ∅;
4. ψ := toCNF (ϕ) ∧ l¬ϕ;
5. while true do
6. A := SAT (ψ);
7. if A = ∅ then return χ; end if;
8. cb := blocking clause(A);
9. χ := χ ∪ {cb};
10. ψ := ψ ∧ cb;
11. end do;
12. end equCNF;

Fig. 7.28. A generic equCNF algorithm

way we could likely generate exponentially many blocking clauses, each one
of the length equal to the number of propositions of ϕ. So, the question is
how to generate shorter blocking clauses, which would block more than one
assignment at the same time.

The idea is to represent the formula ϕ by a directed acyclic graph (dag),
where the leaves are its literals, the other nodes correspond to the boolean
operators, while the edges point to the arguments of these operators. Rather
than formalizing the above intuitive description, we show in Fig. 7.29 a dag
representing the formula

ϕ = ℘1 ∨ ψ,

where
ψ = ℘2 ∧ ℘3 ∧ (℘4 ⇔ ℘5).

Then, for a given assignment A, this dag of ϕ is searched with the DFS algo-
rithm in order to identify a minimal number of its leaves (i.e., subformulas of
ϕ being literals), which under the assignment A make already ϕ evaluate to
false. The search is guided by properties of the boolean operators. That is, if
a node corresponding to ∧ is considered and one of its descendants is false,

7.6 From a Fragment of QPL to PL 227

∨

∧

∧

⇔

℘1

℘3

℘2

℘4 ℘5

Fig. 7.29. A dag for the formula ϕ = ℘1 ∨ (℘2 ∧ ℘3 ∧ (℘4 ⇔ ℘5))

then the whole conjunction is false irrespectively on the other descendant.
Similarly, if a node corresponding to ∨ is considered and one of its descen-
dants is true, then the whole disjunction is true irrespectively on the other
descendant. Again, rather than formalizing the above algorithm, we show how
it works on a simple formula:

Example 7.21. Consider again the formula

ϕ = ℘1 ∨ ψ,

where
ψ = ℘2 ∧ ℘3 ∧ (℘4 ⇔ ℘5).

For the assignment
A = {¬℘1, ¬℘2, ¬℘3, ℘4, ℘5}

found by the algorithm SAT(ϕ), the algorithm searching through the dag of
ϕ identifies the blocking clause ℘1 ∨ ℘2 (see Fig. 7.30). This follows from the
fact that ϕ evaluates to false when ℘1 is false and ψ is false, but for ψ to
evaluate to false it is sufficient when ℘2 is false.

∨

∧

∧

⇔

℘1

℘3

℘2

℘4 ℘5

Fig. 7.30. Identifying the blocking clause ℘1 ∨ ℘2

For the assignment

A = {¬℘1, ℘2, ¬℘3, ¬℘4, ℘5}

228 7 Verification Based on Satisfiability Checking

found by the algorithm SAT(ϕ), the algorithm searching through the dag of
ϕ identifies the blocking clause ℘1 ∨ ℘3 (see Fig. 7.31). Similarly, this follows
from the fact that ϕ evaluates to false when ℘1 is false and ψ is false, but
for ψ to evaluate to false it is sufficient when ℘3 is false.

∨

∧

∧

⇔

℘1

℘3

℘2

℘4 ℘5

Fig. 7.31. Identifying the blocking clause ℘1 ∨ ℘3

We do not analyse the other satisfying assignments and the resulting block-
ing clauses, but show the final result.

equCNF (ϕ) = (℘1 ∨ ℘2) ∧ (℘1 ∨ ℘3) ∧ (℘1 ∨ ¬℘4 ∨ ℘5) ∧ (℘1 ∨ ℘4 ∨ ¬℘5).

�

Now our aim is to compute a propositional formula equivalent to a given
QPL formula containing only universal quantifiers.

We will use the notation ∀℘.ϕ, where ℘ = (℘[1], . . . , ℘[m]) is a vector of
propositional variables, to denote ∀℘[1].∀℘[2] . . . ∀℘[m].ϕ. What is important
here, is that for a given QPL formula ∀℘.ϕ, we construct a CNF formula
equivalent to it by using a version the algorithm forall [105]. This algorithm
constructs a formula ψ equivalent to ∀℘.ϕ and eliminates the quantified vari-
ables on-the-fly. This is sufficient since ψ is in conjunctive normal form. The
algorithm forall(ϕ, ℘) differs from equCNF in the line 8 only, where the
procedure blocking clause generates a blocking clause and deprives it of
the propositional variables either from ℘ or the negation of these. On termi-
nation, the formula ψ is a conjunction of the blocking clauses without the
propositions of ℘ and precisely characterises ∀℘.ϕ.

Example 7.22. Consider once more the formula ϕ = ℘1 ∨ ψ, where ψ = ℘2 ∧
℘3 ∧ (℘4 ⇔ ℘5). Then,

forall(ϕ, (℘1)) = (℘2) ∧ (℘3) ∧ (¬℘4 ∨ ℘5) ∧ (℘5 ∨ ¬℘6).

�

7.8 Selected Tools 229

7.7 Remaining Symbolic Approaches - Overview

A standard symbolic approach to representation of state spaces and model
checking of untimed systems is based on Binary Decision Diagrams (BDDs)
[50]. A similar approach is to apply BDDs to encoding discretizations of TA
using the so-called Numeric Decision Diagrams (NDDs) [18]. Discretizations
of TA can be also implemented using propositional formulas (see Sect. 7.1).

Another approach follows the solution suggested by Henzinger et al. [84],
where the characteristic function of a set of states is a formula in separation
logic (SL). SL formulas can be represented using Difference Decision Diagrams
(DDDs) [107,108]. A DDD is a data structure using separation predicates with
the ordering of predicates induced by the ordering of the clocks. A similar
approach is taken in [140], where a translation from quantified SL to quantified
boolean logic [151] is exploited.

One can use also Clock Difference Diagrams (CDDs) to symbolically rep-
resent unions of regions [24, 99]. Each node of a CDD is labelled with the
difference of clock variables, whereas the outgoing edges with intervals bound-
ing this difference. Alternatively, model checkers are based on data structures
called Clock Restriction Diagrams (CRD) [168]. CRD is like CDD except for
the fact that for each node the outgoing edges are labelled with an upper
bound rather than with the interval of the corresponding difference of clock
variables.

7.8 Selected Tools

There are many tools using the approaches considered so far. Below, we list
some of them and give pointers to the literature, where more detailed descrip-
tions can be found.

• HyTech [82] is an automatic tool for the analysis of embedded systems.
The tool computes the condition under which a linear hybrid system satis-
fies a temporal requirement. Hybrid systems are specified as collections of
automata with discrete and continuous components, and temporal require-
ments are verified by symbolic model checking. If the verification fails, a
diagnostic error trace is generated. Real-time requirements are specified
in the logic TCTL and its modification - ICTL (Integrator Computation
Tree Logic), used to specify safety, liveness, time-bounded and duration re-
quirements of hybrid automata. Verification is performed by a successive
approximation of the set of states satisfying the formula to be checked,
by iterating boolean operations and weakest-precondition operations on
regions (see [14]).

• NuSMV [56] (an extension of SMV [104]) is a symbolic model checker
which combines BDD-based model checking and SAT-based model check-
ing. The tool offers an analysis of invariants (on-the-fly for reachability

230 7 Verification Based on Satisfiability Checking

analysis), partitioning methods, and model checking for CTL Real-Time
CTL, and LTL extended with past operators. Moreover, Bounded Model
Checking for LTL and for checking invariants is available.

• Rabbit [36] - a tool for BDD-based verification of real-time systems, de-
veloped for an extension of TA, called Cottbus Timed Automata, and
providing reachability analysis.

• Red [167] is a fully symbolic model checker based on data structures
called Clock Restriction Diagrams (CRD) [168]. It supports TCTL model
checking and backward reachability analysis.

• UppAal2k [121] (a successor of UppAal [100]) is a tool for checking reach-
ability and for verification of properties expressible in a subset of TCTL.
Many optimizations are implemented, e.g. application of Clock Difference
Diagrams (CDDs) to symbolically represent unions of clock regions [24].
Moreover, cost-optimal search based on Priced Timed Automata, and pa-
rameterized verification are available as well [17].

• VerICS [65] - implements SAT-based BMC and UMC for verifying TCTL
and reachability for timed automata and Estelle programs.

Further Reading

Some symbolic approaches to verification of time Petri Nets and timed au-
tomata are discussed in [54]. A survey on most recent approaches to SAT-
based formal verification, also combined with BDDs, can be found in [131].

An overview of model checking techniques and tools for verifying timed
automata can be found in [28].

Concluding Remarks and Future Research
Directions

Time-dependent computer systems are used for controlling traffic lights, air-
craft navigations, power-stations, nuclear submarines as well as tomographs
and other sophisticated medical equipment. Usually, we believe that computer
systems are less prone to errors than a human being operating the same system
or machine. Unfortunately, the number of mistakes in software is growing with
the number of the code lines. Moreover, it is clear that potential errors could
result in fatal consequences for both people and hardware.

Formal methods are used in order to enhance reliability of time-dependent
computer systems. It is very well known that proving full correctness of a
system is a difficult and frequently unachievable task. Therefore, the formal
methods aim mostly at detecting and eliminating errors. In principle, one
could use all the formal methods like testing, deductive verification, and model
checking in the verification process. This would increase the probability of
finding an error, or when no error is found, the probability that the system is
really correct. It is very interesting and tempting to combine tools based on
fully automated methods like model checking with methods based on theorem
proving or/and deductive verification.

Since model checking methods are usually applied to finite models, which
does not mean that infinite models cannot be verified, it is important to inves-
tigate methods for obtaining finite abstract models and deductive methods for
proving that correctness can be lifted from finite abstractions to actual time-
dependent systems. It seems that even verification over finite models can still
be improved. There are several ways of attacking this problem for models
generated for timed systems. First of all, several reduction techniques known
for untimed system verification, e.g. partial order and symmetry reductions,
can be applied on-the-fly in the process of verification. Secondly, the existing
symbolic verication methods, based on variants of BDDs and on SAT, can be
combined. Potentially, there is still room for new symbolic methods known
for solving other PSPACE-hard problems known in complexity theory.

Another important issue concerns methods for formal description tech-
niques. They include higher-order languages like SDL, LOTOS, ESTELLE,

232 Concluding Remarks and Future Research Directions

and Timed-UML. The languages usually provide visual and textual repre-
sentation, and quite recently several methods for translating from these for-
malisms to networks of timed automata and time Petri nets have been devel-
oped. It is more than necessary to combine these translations with different
reduction techniques, e.g. slicing, in order to generate timed systems, au-
tomated verification of which would be feasible. It is obviously a trade-off
between the expressiveness of higher-order languages and the efficiency of the
translating methods.

Future research directions will include new areas of application of verifica-
tion methods. Obviously, the most promising and exciting area of applications
is connected with web-services and electronic commerce. Proving correctness
of new internet protocols as well as of web-services will be soon unavoidable.
Moreover, since security of internet protocols is frequently a source of fear of
the suppliers and the customers in the e-commerce transactions, each party
in a serious transaction has to be confident about several security properties.
Methods developed for timed systems can be extended and applied to verify
such properties. These will call for improving the existing verification tools as
well as for the construction of new verification methods and tools.

References

1. W. van der Aalst. Interval timed coloured Petri nets and their analysis. In Proc.
of the 14th Int. Conf. on Applications and Theory of Petri Nets (ICATPN’93),
volume 961 of LNCS, pages 452–472. Springer-Verlag, 1993.

2. M. Abadi and L. Lamport. An old-fashioned recipe for real time. In REX
workshop on Real-Time: Theory in Practice, volume 600 of LNCS, pages 1–27.
Springer-Verlag, 1991.

3. P. A. Abdulla and A. Nylén. Timed Petri nets and BQOs. In Proc. of the 22nd
Int. Conf. on Applications and Theory of Petri Nets (ICATPN’01), volume
2075 of LNCS, pages 53–70. Springer-Verlag, 2001.

4. R. Alur. Timed automata. NATO-ASI 1998 Summer School on Veri-
fication of Digital and Hybrid Systems; http://www.cis.upenn.edu/∼alur/
onlinepub.html, 1998.

5. R. Alur. Timed automata. In Proc. of the 11th Int. Conf. on Computer Aided
Verification (CAV’99), volume 1633 of LNCS, pages 8–22. Springer-Verlag,
1999.

6. R. Alur, C. Courcoubetis, and D. Dill. Model checking for real-time systems.
In Proc. of the 5th Symp. on Logic in Computer Science (LICS’90), pages
414–425. IEEE Computer Society, 1990.

7. R. Alur, C. Courcoubetis, and D. Dill. Model checking in dense real-time.
Information and Computation, 104(1):2–34, 1993.

8. R. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and H. Wong-Toi. An imple-
mentation of three algorithms for timing verification based on automata empti-
ness. In Proc. of the 13th IEEE Real-Time Systems Symposium (RTSS’92),
pages 157–166. IEEE Computer Society, 1992.

9. R. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and H. Wong-Toi. Minimiza-
tion of timed transition systems. In Proc. of the 3rd Int. Conf. on Concurrency
Theory (CONCUR’92), volume 630 of LNCS, pages 340–354. Springer-Verlag,
1992.

10. R. Alur and D. Dill. Automata for modelling real-time systems. In Proc. of the
17th Int. Colloquium on Automata, Languages and Programming (ICALP’90),
volume 443 of LNCS, pages 322–335. Springer-Verlag, 1990.

11. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

234 References

12. R. Alur and T. Henzinger. Logics and models of real time: A survey. In Proc.
of REX Workshop ‘Real Time: Theory and Practice’, volume 600 of LNCS,
pages 74–106. Springer-Verlag, 1992.

13. R. Alur and T. Henzinger. Modularity for timed and hybrid systems. In Proc.
of the 8th Int. Conf. on Concurrency Theory (CONCUR’97), volume 1243 of
LNCS, pages 74–88. Springer-Verlag, 1997.

14. R. Alur, T. Henzinger, and P. Ho. Automatic symbolic verification of embedded
systems. IEEE Trans. on Software Eng., 22(3):181–201, 1996.

15. R. Alur and R. Kurshan. Timing analysis in COSPAN. In Hybrid Systems III,
volume 1066 of LNCS, pages 220–231. Springer-Verlag, 1996.

16. C. Amer-Yahia, N. Zerhouni, A. El Moundi, and M. Ferney. On finding dead-
locks and traps in Petri nets. In Proc. of System Analysis-Modelling-Simulation
(SAMS’99), pages 495–507, 1999.

17. T. Amnell, G. Behrmann, J. Bengtsson, P. D’Argenio, A. David, A. Fehnker,
T. Hune, B. Jeannet, K. G. Larsen, M. O. Möller, P. Pettersson, C. Weise, and
W. Yi. Uppaal - now, next, and future. In Proc. of the 4th Summer School
’Modelling and Verification of Parallel Processes’ (MOVEP’00), volume 2067
of LNCS, pages 99–124. Springer-Verlag, 2001.

18. E. Asarin, M. Bozga, A. Kerbrat, O. Maler, A. Pnueli, and A. Rasse. Data-
structures for the verification of timed automata. In Proc. of Int. Workshop
on Hybrid and Real-Time Systems (HART’97), volume 1201 of LNCS, pages
346–360. Springer-Verlag, 1997.

19. G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani. A
SAT based approach for solving formulas over boolean and linear mathemat-
ical propositions. In Proc. of the 18th Int. Conf. on Automated Deduction
(CADE’02), volume 2392 of LNCS, pages 195–210. Springer-Verlag, 2002.

20. G. Audemard, A. Cimatti, A. Kornilowicz, and R. Sebastiani. Bounded model
checking for timed systems. In Proc. of the 22nd Int. Conf. on Formal Tech-
niques for Networked and Distributed Systems (FORTE’02), volume 2529 of
LNCS, pages 243–259. Springer-Verlag, 2002.

21. K. Barkaoui and J-F. Pradat-Peyre. Verification in concurrent programming
with Petri nets structural techniques. In Proc. of the 3rd IEEE Symp. on
High-Assurance Systems (HASE’98), pages 124–133. IEEE Computer Society,
November 1998.

22. G. Behrmann, P. Bouyer, E. Fleury, and K. G. Larsen. Static guard analysis
in timed automata verification. In Proc. of the 9th Int. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’03), volume
2619 of LNCS, pages 254–277. Springer-Verlag, 2003.

23. G. Behrmann, P. Bouyer, K. G. Larsen, and R. Pelánek. Lower and upper
bounds in zone based abstractions of timed automata. In Proc. of the 10th Int.
Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’04), volume 2988 of LNCS, pages 312–326. Springer-Verlag, 2004.

24. G. Behrmann, K. G. Larsen, J. Pearson, C. Weise, and W. Yi. Efficient timed
reachability analysis using Clock Difference Diagrams. In Proc. of the 11th Int.
Conf. on Computer Aided Verification (CAV’99), volume 1633 of LNCS, pages
341–353. Springer-Verlag, 1999.

25. J. Bengtsson. Clocks, DBMs and States in Timed Systems. PhD thesis, Dept.
of Information Technology, Uppsala University, 2002.

26. J. Bengtsson and W. Yi. On clock difference constraints and termination
in reachability analysis in timed automata. In Proc. of the 5th Int. Conf. on

References 235

Formal Methods and Software Engineering (ICFEM’03), volume 2885 of LNCS,
pages 491–503. Springer-Verlag, 2003.

27. J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools.
In Lectures on Concurrency and Petri Nets: Advances in Petri Nets, volume
3098 of LNCS, pages 87–124. Springer-Verlag, 2004.

28. B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, P. Schnoe-
belen, and P. McKenzie. Systems and Software Verification: Model-Checking
Techniques and Tools. Springer-Verlag, 2001.

29. B. Bérard, F. Cassez, S. Haddad, D. Lime, and O. H. Roux. Comparison
of the expressiveness of timed automata and time Petri nets. In Proc. of
the 3rd Int. Workshop on Formal Analysis and Modeling of Timed Systems
(FORMATS’05), volume 3829 of LNCS, pages 211–225. Springer-Verlag, 2005.

30. O. Bernholtz, M. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. In Proc. of the 6th Int. Conf. on Computer
Aided Verification (CAV’94), volume 818 of LNCS, pages 142–155. Springer-
Verlag, 1994.

31. B. Berthomieu. Private communnication.
32. B. Berthomieu and M. Diaz. Modeling and verification of time dependent

systems using time Petri nets. IEEE Trans. on Software Eng., 17(3):259–273,
1991.

33. B. Berthomieu and M. Menasche. An enumerative approach for analyzing time
Petri nets. In Proc. of the 9th IFIP World Computer Congress, volume 9 of
Information Processing, pages 41–46. North Holland/ IFIP, September 1983.

34. B. Berthomieu, P-O. Ribet, and F. Vernadat. The tool TINA - construction of
abstract state spaces for Petri nets and time Petri nets. International Journal
of Production Research, 42(14), 2004.

35. B. Berthomieu and F. Vernadat. State class constructions for branching analy-
sis of time Petri nets. In Proc. of the 9th Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’03), volume 2619 of
LNCS, pages 442–457. Springer-Verlag, 2003.

36. D. Beyer. Rabbit: Verification of real-time systems. In Proc. of the Workshop
on Real-Time Tools (RT-TOOLS’01), pages 13–21, 2001.

37. B. Bieber and H. Fleischhack. Model checking of time Petri nets based on
partial order semantics. In Proc. of the 10th Int. Conf. on Concurrency Theory
(CONCUR’99), volume 1664 of LNCS, pages 210–225. Springer-Verlag, 1999.

38. A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model
checking. In Highly Dependable Software, volume 58 of Advances in Computers.
Academic Press, 2003. Pre-print.

39. A. Bobbio and A. Horváth. Model checking time Petri nets using NuSMV. In
Proc. of the 5th Int. Workshop on Performability Modeling of Computer and
Communication Systems (PMCCS5), pages 100–104, September 2001.

40. A. Bouajjani, J-C. Fernandez, N. Halbwachs, P. Raymond, and C. Ratel. Min-
imal state graph generation. Science of Computer Programming, 18:247–269,
1992.

41. A. Bouajjani, S. Tripakis, and S. Yovine. On-the-fly symbolic model checking
for real-time systems. In Proc. of the 18th IEEE Real-Time Systems Symposium
(RTSS’97), pages 232–243. IEEE Computer Society, 1997.

42. A. Bouali, A. Ressouche, V. Roy, and R. de Simone. The FC2Tools set. In
Proc. of the 8th Int. Conf. on Computer Aided Verification (CAV’96), volume
1102 of LNCS, pages 441–445. Springer-Verlag, 1996.

236 References

43. H. Boucheneb and G. Berthelot. Towards a simplified building of time Petri
nets reachability graph. In Proc. of the 5th Int. Workshop on Petri Nets and
Performance Models, pages 46–55, October 1993.

44. H. Boucheneb and R. Hadjidj. CTL∗ model checking for time Petri nets.
Theoretical Computer Science, 2006. http://www/sciencedirect.com.

45. P. Bouyer. Timed automata may cause some troubles. Technical Report LSV-
02-9, ENS de Cachan, Cachan, France, July 2003.

46. F. D. J. Bowden. Modelling time in Petri nets. In Proc. of the 2nd Australia-
Japan Workshop on Stochastic Models (STOMOD’96), July 1996.

47. F. D. J. Bowden. A brief survey and synthesis of the roles of time in Petri
nets. Mathematical and Computer Modelling, 31(10-12):55–68, 2000.

48. M. Bozga, O. Maler, A. Pnueli, and S. Yovine. Some progress in the symbolic
verification of timed automata. In Proc. of the 9th Int. Conf. on Computer
Aided Verification (CAV’97), volume 1254 of LNCS, pages 179–190. Springer-
Verlag, 1997.

49. M. C. Browne, E. Clarke, and O. Grumberg. Characterizing finite Kripke
structures in propositional temporal logic. Theoretical Computer Science, 59(1/
2):115–131, 1988.

50. R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transaction on Computers, 35(8):677–691, 1986.

51. F. Cassez. Private communnication.
52. F. Cassez and O. H. Roux. Structural translation of time Petri nets to timed

automata. In Proc. of the 4th Int. Workshop on Automated Verification of Crit-
ical Systems (AVoCS’04), volume 128(6) of ENTCS, pages 145–160. Elsevier,
2005.

53. P. Chauhan, E. Clarke, and D. Kroening. Using SAT-based image computation
for reachability analysis. Technical Report CMU-CS-03-151, Carnegie Mellon
University, July 2003.

54. A. M. K. Cheng. Real-Time Systems: Scheduling, Analysis, and Verification.
John Wiley & Sons, 2002.

55. S. Christensen, J. Jørgensen, and L. Kristensen. Design/CPN - a computer tool
for coloured Petri nets. In Proc. of the 3rd Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’97), volume 1217 of
LNCS, pages 209–223. Springer-Verlag, 1997.

56. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV2: An open-source tool for symbolic
model checking. In Proc. of the 14th Int. Conf. on Computer Aided Verification
(CAV’02), volume 2404 of LNCS, pages 359–364. Springer-Verlag, 2002.

57. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
58. F. Commoner. Deadlocks in Petri nets. Technical Report CA-7206-2311,

Massachusetts Computer Associates, Wakefield, Mass., June 1972.
59. J. Coolahan and N. Roussopoulos. Timing requirements for time-driven sys-

tems using augmented Petri nets. IEEE Trans. on Software Eng., SE-9(5):603–
616, 1983.

60. L. A. Cortés, P. Eles, and Z. Peng. Modeling and formal verification of em-
bedded systems based on a Petri net representation. Journal of Systems Ar-
chitecture, 49(12-15):571–598, 2003.

61. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem
proving. Journal of the ACM, 5(7):394–397, 1962.

References 237

62. M. Davis and H. Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7(3):201–215, 1960.

63. C. Daws and S. Tripakis. Model checking of real-time reachability properties
using abstractions. In Proc. of the 4th Int. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’98), volume 1384 of LNCS,
pages 313–329. Springer-Verlag, 1998.

64. C. Daws and S. Yovine. Reducing the number of clock variables of timed
automata. In Proc. of the IEEE Real-Time Systems Symposium (RTSS’96),
pages 73–81. IEEE Computer Society, 1996.

65. P. Dembiński, A. Janowska, P. Janowski, W. Penczek, A. Pó�lrola, M. Szreter,
B. Woźna, and A. Zbrzezny. VerICS: A tool for verifying timed automata and
Estelle specifications. In Proc. of the 9th Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’03), volume 2619 of
LNCS, pages 278–283. Springer-Verlag, 2003.

66. P. Dembiński, W. Penczek, and A. Pó�lrola. Verification of timed automata
based on similarity. Fundamenta Informaticae, 51(1-2):59–89, 2002.

67. M. Dickhofer and T. Wilke. Timed alternating tree automata: The automata-
theoretic solution to the TCTL model checking problem. In Proc. of the 26th
Int. Colloquium on Automata, Languages and Programming (ICALP’99), vol-
ume 1664 of LNCS, pages 281–290. Springer-Verlag, 1999.

68. D. Dill. Timing assumptions and verification of finite state concurrent systems.
In Automatic Verification Methods for Finite-State Systems, volume 407 of
LNCS, pages 197–212. Springer-Verlag, 1989.

69. E. A. Emerson. Handbook of Theoretical Computer Science, volume B: Formal
Methods and Semantics, chapter Temporal and Modal Logic, pages 995–1067.
Elsevier, 1990.

70. E. A. Emerson and C-L. Lei. Efficient model checking in fragments of the
propositional mu-calculus. In Proc. of the 1st Symp. on Logic in Computer
Science (LICS’86), pages 267–278. IEEE Computer Society, 1986.

71. M. Fitting. First-Order Logic and Automated Theorem Proving. Springer-
Verlag, 1990.

72. M. Ganai, A. Gupta, and P. Ashar. Efficient SAT-based unbounded sym-
bolic model checking using circuit cofactoring. In Proc. of the Int. Conf. on
Computer-Aided Design (ICCAD’04), pages 510–517, 2004.

73. G. Gardey, O. H. Roux, and O. F. Roux. Using zone graph method for com-
puting the state space of a time Petri net. In Proc. of the 1st Int. Workshop
on Formal Analysis and Modeling of Timed Systems (FORMATS’03), volume
2791 of LNCS, pages 246–259. Springer-Verlag, 2004.

74. R. Gawlick, R. Segala, J. Søgaard-Andersen, and N. Lynch. Liveness in timed
and untimed systems. In Proc. of the 21st Int. Colloquium on Automata,
Languages and Programming (ICALP’94), volume 820 of LNCS, pages 166–
177. Springer-Verlag, 1994.

75. R. Goldblatt. Logics of Time and Computation. CSLI Lecture Notes. CSLI
Publications, Stanford University, 1992.

76. A. Göllü, A. Puri, and P. Varaiya. Discretization of timed automata. In Proc.
of the 33rd IEEE. Conf. on Decision and Control (CDC’94), pages 957–958,
1994.

77. Z. Gu and K. Shin. Analysis of event-driven real-time systems with time Petri
nets. In Proc. of the Int. Conf. on Design and Analysis of Distributed and

238 References

Embedded Systems (DIPES’02), volume 219 of IFIP Conference Proceedings,
pages 31–40. Kluwer, 2002.

78. S. Haar, L. Kaiser, F. Simonot-Lion, and J. Toussaint. On equivalence be-
tween timed state machines and time Petri nets. Technical Report RR-4049,
INRIA Rhône-Alpes, 655, avenue de l’Europe, 38330 Montbonnot-St-Martin,
November 2000.

79. R. Hadjidj and H. Boucheneb. Much compact time Petri net state class spaces
useful to restore CTL∗ properties. In Proc. of the 5th Int. Conf. on Application
of Concurrency to System Design (ACSD’05), pages 224–233. IEEE Computer
Society, 2005.

80. H-M. Hanisch. Analysis of place/transition nets with timed arcs and its appli-
cation to batch process control. In Proc. of the 14th Int. Conf. on Applications
and Theory of Petri Nets (ICATPN’93), volume 691 of LNCS, pages 282–299.
Springer-Verlag, 1993.

81. T. Henzinger. It’s about time: Real-time logics reviewed. In Proc. of the
9th Int. Conf. on Concurrency Theory (CONCUR’98), volume 1466 of LNCS,
pages 439–454. Springer-Verlag, 1998.

82. T. Henzinger and P. Ho. HyTech: The Cornell hybrid technology tool. In Hybrid
Systems II, volume 999 of LNCS, pages 265–293. Springer-Verlag, 1995.

83. T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-time systems. In Proc. of the 7th Symp. Logics in Computer Science
(LICS’92), pages 394–406. IEEE Computer Society, 1992.

84. T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-time systems. Information and Computation, 111(2):193–224, 1994.

85. G. J. Holzmann. The model checker SPIN. IEEE Trans. on Software Eng.,
23(5):279–295, 1997.

86. G. E. Hughes and M. J. Cresswell. An Introduction to Modal Logic. Methuen,
1968.

87. G. E. Hughes and M. J. Cresswell. A Companion to Modal Logic. Methuen,
1984.

88. M. Huhn, P. Niebert, and F. Wallner. Verification based on local states. In
Proc. of the 4th Int. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’98), volume 1384 of LNCS, pages 36–51.
Springer-Verlag, 1998.

89. H. Hulgaard and S. M. Burns. Efficient timing analysis of a class of Petri
nets. In Proc. of the 7th Int. Conf. on Computer Aided Verification (CAV’95),
volume 939 of LNCS, pages 923–936. Springer-Verlag, 1995.

90. M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning
about Systems. Cambridge University Press, 2004.

91. R. Janicki. Nets, sequential components and concurrency relations. Theoretical
Computer Science, 29:87–121, 1984.

92. K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practi-
cal Use. Monographs in Theoretical Computer Science. Springer-Verlag, 1995/
96.

93. N. D. Jones, L. H. Landweber, and Y. E. Lien. Complexity of some problems
in Petri nets. Theoretical Computer Science, 4(3):277–299, 1977.

94. I. Kang and I. Lee. An efficient state space generation for the analysis of real-
time systems. In Proc. of Int. Symposium on Software Testing and Analysis,
1996.

References 239

95. D. Kozen. Results on the propositional mu-calculus. Theoretical Computer
Science, 27:333–354, 1983.

96. O. Kupferman, T. Henzinger, and M. Vardi. A space-efficient on-the-fly algo-
rithm for real-time model checking. In Proc. of the 7th Int. Conf. on Concur-
rency Theory (CONCUR’96), volume 1119 of LNCS, pages 514–529. Springer-
Verlag, 1996.

97. O. Kupferman, M. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. Journal of the ACM, 47(2):312–360, 2000.

98. K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. Efficient verification of
real-time systems: Compact data structures and state-space reduction. In Proc.
of the 18th IEEE Real-Time System Symposium (RTSS’97), pages 14–24. IEEE
Computer Society, 1997.

99. K. G. Larsen, J. Pearson, C. Weise, and W. Yi. Clock Difference Diagrams.
Nordic Journal of Computing, 6(3):271–298, 1999.

100. K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. International
Journal of Software Tools for Technology Transfer, 1(1/2):134–152, 1997.

101. D. Lee and M. Yannakakis. On-line minimization of transition systems. In
Proc. of the 24th ACM Symp. on the Theory of Computing, pages 264–274,
May 1992.

102. J. Lilius. Efficient state space search for time Petri nets. In Proc. of MFCS
Workshop on Concurrency, Brno’98, volume 18 of ENTCS. Elsevier, 1999.

103. D. Lime and O. H. Roux. State class timed automaton of a time Petri net.
In Proc. of the 10th Int. Workshop on Petri Nets and Performance Models
(PNPM’03). IEEE Computer Society, September 2003.

104. K. L. McMillan. The SMV system. Technical Report CMU-CS-92-131,
Carnegie Mellon University, February 1992.

105. K. L. McMillan. Applying SAT methods in unbounded symbolic model check-
ing. In Proc. of the 14th Int. Conf. on Computer Aided Verification (CAV’02),
volume 2404 of LNCS, pages 250–264. Springer-Verlag, 2002.

106. P. Merlin and D. J. Farber. Recoverability of communication protocols – im-
plication of a theoretical study. IEEE Trans. on Communications, 24(9):1036–
1043, 1976.

107. J. Møller, J. Lichtenberg, H. Andersen, and H. Hulgaard. Difference Deci-
sion Diagrams. In Proc. of the 13th Int. Workshop Computer Science Logic
(CSL’99), volume 1683 of LNCS, pages 111–125. Springer-Verlag, 1999.

108. J. Møller, J. Lichtenberg, H. Andersen, and H. Hulgaard. Fully symbolic model
checking of timed systems using Difference Decision Diagrams. In Proc. of the
2nd Federated Logic Conference (FLoC’99), volume 23(2) of ENTCS, 1999.

109. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineer-
ing an efficient SAT solver. In Proc. of the 38th Design Automation Conference
(DAC’01), pages 530–535, June 2001.

110. P. Niebert, M. Mahfoudh, E. Asarin, M. Bozga, O. Maler, and N. Jain. Ver-
ification of timed automata via satisfiability checking. In Proc. of the 7th
Int. Symp. on Formal Techniques in Real-Time and Fault Tolerant Systems
(FTRTFT’02), volume 2469 of LNCS, pages 226–243. Springer-Verlag, 2002.

111. Y. Okawa and T. Yoneda. Symbolic CTL model checking of time Petri
nets. Electronics and Communications in Japan, Scripta Technica, 80(4):11–
20, 1997.

112. R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM Journal
on Computing, 16(6):973–989, 1987.

240 References

113. C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
114. D. Park. Concurrency and automata on infinite sequences. In Proc. of the

5th GI Conf. on Theoretical Computer Science, volume 104 of LNCS, pages
167–183. Springer-Verlag, 1981.

115. D. Peled. Software Reliability Methods. Springer-Verlag, 2001.
116. W. Penczek. Branching time and partial order in temporal logics. In L. Bolc

and A. Sza�las, editors, Time and Logic: A Computational Approach, pages
179–228. UCL Press Ltd., 1995.

117. W. Penczek and A. Pó�lrola. Abstractions and partial order reductions for
checking branching properties of time Petri nets. In Proc. of the 22nd Int.
Conf. on Applications and Theory of Petri Nets (ICATPN’01), volume 2075
of LNCS, pages 323–342. Springer-Verlag, 2001.

118. W. Penczek, A. Pó�lrola, B. Woźna, and A. Zbrzezny. Bounded model check-
ing for reachability testing in time Petri nets. In Proc. of the Int. Workshop
on Concurrency, Specification and Programming (CS&P’04), volume 170(1) of
Informatik-Berichte, pages 124–135. Humboldt University, 2004.

119. W. Penczek, B. Woźna, and A. Zbrzezny. Bounded model checking for the
universal fragment of CTL. Fundamenta Informaticae, 51(1-2):135–156, 2002.

120. W. Penczek, B. Woźna, and A. Zbrzezny. Towards bounded model checking
for the universal fragment of TCTL. In Proc. of the 7th Int. Symp. on Formal
Techniques in Real-Time and Fault Tolerant Systems (FTRTFT’02), volume
2469 of LNCS, pages 265–288. Springer-Verlag, 2002.

121. P. Pettersson and K. G. Larsen. Uppaal2k. Bulletin of the European Associ-
ation for Theoretical Computer Science, 70:40–44, February 2000.

122. D. Plaisted, A. Biere, and Y. Zhu. A satisfiability procedure for quantified
boolean formulae. Discrete Applied Mathematics, 130(2):291–328, 2003.

123. E. A. Pokozy. Toward verification of concurrent properties of time Petri nets.
Preprint 61 of the A. P. Ershow Institute of Informatics Systems, Siberian
Division of the Russian Academy of Sciences; http://www.iis.nsk.su/preprints/
POKOZ/preprint/preprint eng.html, 1999. In Russian.

124. A. Pó�lrola and W. Penczek. Minimization algorithms for time Petri nets.
Fundamenta Informaticae, 60(1-4):307–331, 2004.

125. A. Pó�lrola, W. Penczek, and M. Szreter. Reachability analysis for timed au-
tomata using partitioning algorithms. Fundamenta Informaticae, 55(2):203–
221, 2003.

126. A. Pó�lrola, W. Penczek, and M. Szreter. Towards efficient partition refinement
for checking reachability in timed automata. In Proc. of the 1st Int. Workshop
on Formal Analysis and Modeling of Timed Systems (FORMATS’03), volume
2791 of LNCS, pages 2–17. Springer-Verlag, 2004.

127. L. Popova. On time Petri nets. Elektronische Informationsverarbeitung und
Kybernetik, 27(4):227–244, 1991.

128. L. Popova and S. Marek. TINA - a tool for analyzing paths in TPNs. In
Proc. of the Int. Workshop on Concurrency, Specification and Programming
(CS&P’02), volume 110 of Informatik-Berichte, pages 195–196. Humboldt Uni-
versity, 1998.

129. L. Popova-Zeugmann. Essential states in time Petri nets. Informatik-Bericht
96, Humboldt University, 1998.

130. L. Popova-Zeugmann and D. Schlatter. Analyzing paths in time Petri nets.
Fundamenta Informaticae, 37(3):311–327, 1999.

References 241

131. M. Prasad, A. Biere, and A. Gupta. A survey of recent advances in SAT-based
formal verification. International Journal of Software Tools for Technology
Transfer, 7(2):156–173, 2005.

132. V. R. Pratt. Two easy theories whose combination is hard. Memo sent to
Nelson and Oppen concerning a preprint of their paper, available at http://
boole.stanford.edu/abstracts.html, September 1977.

133. C. Ramchandani. Analysis of asynchronous concurrent systems by timed Petri
nets. Technical Report MAC-TR-120, Massachusetts Institute of Technology,
February 1974.

134. A. Ratzer, L. Wells, H. Lassen, M. Laursen, J. Qvortrup, M. Stissing, M. West-
ergaard, S. Christensen, and K. Jensen. CPN Tools for editing, simulating, and
analyzing coloured Petri nets. In Proc. of the 24th Int. Conf. on Applications
and Theory of Petri Nets (ICATPN’03), volume 2679 of LNCS, pages 450–462.
Springer-Verlag, 2003.

135. W. Reisig. Petri Nets. An Introduction, volume 4 of EACTS Monographs on
Theoretical Computer Science. Springer-Verlag, 1985.

136. S. Roch and P. Starke. INA: Integrated Net Analyser. Version 2.2, 1999. Man-
ual; http://www.informatik.hu-berlin.de/ ∼starke/ina.html.

137. Romeo: A tool for time Petri net analysis. http://www.irccyn.ec-nantes.fr/
irccyn/d/en/equipes/TempsReel/logs, 2000.

138. S. Samolej and T. Szmuc. Modelowanie systemów czasu rzeczywistego z zas-
tosowaniem czasowych sieci Petriego. In Mat. IX Konf. Systemy Czasu Rzeczy-
wistego (SCR’02), pages 45–54. Instytut Informatyki Politechniki Śla̧skiej,
2002. In Polish.

139. P. Sénac, M. Diaz, and P. de Saqui Sannes. Toward a formal specification of
multimedia scenarios. Annals of Telecommunications, 49(5-6):297–314, 1994.

140. S. Seshia and R. Bryant. Unbounded, fully symbolic model checking of timed
automata using boolean methods. In Proc. of the 15th Int. Conf. on Computer
Aided Verification (CAV’03), volume 2725 of LNCS, pages 154–166. Springer-
Verlag, 2003.

141. M. Sheeran, S. Singh, and G. St̊almarck. Checking safety properties using
induction and a SAT-solver. In Proc. of the Int. Conf. on Formal Methods in
Computer-Aided Design (FMCAD’00), volume 1954 of LNCS, pages 108–125.
Springer-Verlag, 2000.

142. N. V. Shilov and K. Yi. On expressive and model checking power of proposi-
tional program logics. In Proc. of the 4th Int. Ershov Memorial Conf. ’Per-
spective of System Informatics’ (PSI’01), volume 2244 of LNCS, pages 39–46.
Springer-Verlag, 2001.

143. R. E. Shostak. Deciding linear inequalities by computing loop residues. Journal
of the ACM, 28(4):769–779, 1981.

144. J. Sifakis and S. Yovine. Compositional specification of timed systems. In Proc.
of the 13th Annual Symposium on Theoretical Aspects of Computer Science
(STACS’96), volume 1046 of LNCS, pages 347–359. Springer-Verlag, 1996.

145. M. Sorea. Bounded model checking for timed automata. In Proc. of the 3rd
Workshop on Models for Time-Critical Systems (MTCS’02), volume 68(5) of
ENTCS. Elsevier, 2002.

146. R. L. Spelberg, H. Toetenel, and M. Ammerlaan. Partition refinement in real-
time model checking. In Proc. of the 5th Int. Conf. on Formal Techniques in
Real-Time and Fault Tolerant Systems (FTRTFT’98), volume 1486 of LNCS,
pages 143–157. Springer-Verlag, 1998.

242 References

147. J. Srba. Timed-arc Petri nets vs. networks of timed automata. In Proc. of
the 26th Int. Conf. on Applications and Theory of Petri Nets (ICATPN’05),
volume 3536 of LNCS, pages 385–402. Springer-Verlag, 2005.

148. P. Starke. Analyse von Petri-Netz-Modellen. Teubner Verlag, 1990.
149. Ch. Stehno. PEP version 2.0. In Tool Demonstrations on the 22nd Int. Conf.

on Applications and Theory of Petri Nets (ICATPN’01), 2001.
150. C. Stirling. Comparing linear and branching time temporal logics. In Proc.

of the Int. Colloquium on Temporal Logic in Specification ’87, volume 398 of
LNCS, pages 1–20. Springer-Verlag, 1989.

151. O. Strichman, S. Seshia, and R. Bryant. Deciding separation formulas with
SAT. In Proc. of the 14th Int. Conf. on Computer Aided Verification (CAV’02),
volume 2404 of LNCS, pages 209–222. Springer-Verlag, 2002.

152. M. Szreter. Selective search in bounded model checking of reachability prop-
erties. In Proc. of the 3rd Int. Symp. on Automated Technology for Verifica-
tion and Analysis (ATVA’05), volume 3707 of LNCS, pages 159–173. Springer-
Verlag, 2005.

153. M. Szreter. Generalized blocking clauses in unbounded model checking.
In Proc. of the 3rd Int. Workshop on Constraints in Formal Verification
(CFV’05), 2006. To appear in ENTCS.

154. M. Talupur, N. Sinha, O. Strichman, and A. Pnueli. Range allocation for
separation logic. In Proc. of the 16th Int. Conf. on Computer Aided Verification
(CAV’04), volume 3114 of LNCS, pages 148–161. Springer-Verlag, 2004.

155. A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285–309, 1955.

156. S. Tripakis. L’Analyse Formelle des Systèmes Temporisés en Pratique. PhD
thesis, Joseph Fourier University, Grenoble, 1998.

157. S. Tripakis. Minimization of timed systems. http://verimag.imag.fr/∼tripakis/
dea.ps.gz, 1998.

158. S. Tripakis and S. Yovine. Analysis of timed systems based on time-abstracting
bisimulations. In Proc. of the 8th Int. Conf. on Computer Aided Verification
(CAV’96), volume 1102 of LNCS, pages 232–243. Springer-Verlag, 1996.

159. S. Tripakis and S. Yovine. Analysis of timed systems using time-abstracting
bisimulations. Formal Methods in System Design, 18(1):25–68, 2001.

160. S. Tripakis, S. Yovine, and A. Bouajjani. Checking timed Büchi automata
emptiness efficiently. Formal Methods in System Design, 26(3):267–292, 2005.

161. J. Tsai, S. Yang, and Y. Chang. Timing constraint Petri nets and their ap-
plication to schedulability analysis of real-time system specifications. IEEE
Trans. on Software Eng., 21(1):32–49, 1995.

162. K. Varpaaniemi. Efficient detection of deadlocks in Petri nets. Technical Report
HUT-TCS-A26, Helsinki University of Technology, Digital Systems Laboratory,
Espoo, Finland, October 1993.

163. I. B. Virbitskaite and E. A. Pokozy. A partial order method for the verification
of time Petri nets. In Fundamental of Computation Theory, volume 1684 of
LNCS, pages 547–558. Springer-Verlag, 1999.

164. W. Visser. Efficient CTL∗ Model Checking Using Games and Automata. PhD
thesis, Faculty of Science and Engineering, University of Manchester, 1998.

165. B. Walter. Timed Petri nets for modelling and analysing protocols with real-
time characteristics. In Proc. of the 3rd IFIP Workshop on Protocol Specifica-
tion, Testing, and Verification, pages 149–159. North Holland, 1983.

References 243

166. F. Wang. Region Encoding Diagram for fully symbolic verification of real-time
systems. In Proc. of the 24th Int. Computer Software and Applications Conf.
(COMPSAC’00), pages 509–515. IEEE Computer Society, October 2000.

167. F. Wang. Red: Model checker for timed automata with clock-restriction di-
agram. In Proc. of the Int. Workshop on Real-Time Tools (RT-TOOLS’01),
2001.

168. F. Wang. Verification of timed automata with BDD-like data structures. In
Proc. of the 4th Int. Conf. on Verification, Model Checking, and Abstract Inter-
pretation (VMCAI’03), volume 2575 of LNCS, pages 189–205. Springer-Verlag,
2003.

169. J. Wang. Timed Petri Nets: Theory and Applications. Kluwer Academic Pub-
lishers, 1998.

170. B. Woźna, A. Lomuscio, and W. Penczek. Bounded model checking for knowl-
edge and real time. Submitted to Journal of Artificial Intelligence Research.

171. B. Woźna, A. Zbrzezny, and W. Penczek. Checking reachability properties for
timed automata via SAT. Fundamenta Informaticae, 55(2):223–241, 2003.

172. M. Yannakakis and D. Lee. An efficient algorithm for minimizing real-time
transition systems. In Proc. of the 5th Int. Conf. on Computer Aided Verifica-
tion (CAV’93), volume 697 of LNCS, pages 210–224. Springer-Verlag, 1993.

173. W. Yi, P. Pettersson, and M. Daniels. Automatic verification of real-time
communicating systems by constraint-solving. In Proc. of the 7th IFIP WG6.1
Int. Conf. on Formal Description Techniques (FORTE’94), volume 6 of IFIP
Conference Proceedings, pages 243–258. Chapman & Hall, 1994.

174. T. Yoneda and H. Ryuba. CTL model checking of time Petri nets using geo-
metric regions. IEICE Trans. Inf. and Syst., 3:1–10, 1998.

175. S. Yovine. KRONOS: A verification tool for real-time systems. International
Journal of Software Tools for Technology Transfer, 1(1/2):123–133, 1997.

176. S. Yovine. Model checking timed automata. In Embedded Systems, volume
1494 of LNCS, pages 114–152. Springer-Verlag, 1997.

177. A. Zbrzezny. Improvements in SAT-based reachability analysis for timed au-
tomata. Fundamenta Informaticae, 60(1-4):417–434, 2004.

178. A. Zbrzezny. SAT-based reachability checking for timed automata with diag-
onal constraints. Fundamenta Informaticae, 67(1-3):303–322, 2005.

179. L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven
learning in a boolean satisfiability solver. In Proc. of Int. Conf. on Computer-
Aided Design (ICCAD’01), pages 279–285, 2001.

Index

absolute time reference, 203
abstract model, 89

depth of state, 92
AE, see condition AE
alternating automaton, 160

accepting a tree, 163
hesitant, 163
language of, 163
over infinite words, 160
run

accepting, 163
run on a tree, 161
weak, 163

ASCG, see atomic state class graph
assignment, 219

ϕ-total, 219
satisfying for ϕ, 219

total, 219
ATA, see alternating automaton
atomic model for TPN, 103
atomic state class, 103
atomic state class graph, 107

algorithm for generating, 108
automaton

alternating, see alternating automa-
ton

BDD, 229
Binary Decision Diagram, 229
bisimulating model, 92

partition refinement, 124–133
convexity-preserving alg., 127
Lee-Yannakakis alg., 130

boolean constraint propagation, 220
bound, 146
bounded model checking problem, 191
bounded semantics for ECTLr

−X, 191

CBL, 222
CDD, 229
characteristic (state) predicate, 207
chord, 216

ξi,j-accumulating, 216
class, see class of partition
clause, 218

unit, 220
clock constraints, 29, 65

atomic, 29
Clock Difference Diagram, 229
Clock Restriction Diagram, 229
clock valuation, 29
clocks, 29
CNF, see conjunctive normal form
computation tree, 159
concrete states of Cc(A), 38
condition

AE, 91
bisimulation, 92
EA, 91
EE, 90
EE1, 90
EE2, 90
pAE, 92
pU, 92
simulation, 92
U, 91

246 Index

conflict, 222
conflict clause, 222
conflict-based learning, 222
conjunctive normal form, 218
consistent set of inequalities, 97
convex hull, 145
core, 92
CRD, 229
CTL

fair, 172
modified to CTLr

−X, 172

D-tree, 159
dag, 226
DBM, see difference bound matrix
DDD, 229
decision depth, 221
decision variable, 221
delay time-abstracted

model, 95
successor relation, 95

detailed region, 118
boundary, 118

detailed region graph, 118
for time Petri nets, 115
of TA

bd-, see boundary-distinguishing
region graph

boundary-distinguishing, 119
strongly monotonic semantics, 119
weakly monotonic semantics, 118

detailed zone, 117
difference bound matrix, 147

canonical, 147
canonical form, 147
implementing operations on zones

Closure(Z), 151
Fill(Z), 151
Z[X := 0], 148
Z ⇑ Z′, 150
Z ↗, 150
Z ↙, 150
[X := 0]Z, 149
restrict(Z, cc), 153
border(Z, Z′), 151
difference, 153
intersection, 148

Difference Decision Diagram, 229
directed path, 214

discretization of TA
discretization step, 183
discretized clock space, 183

discretized concrete model, 185
adjust transition, 185

discretized region graph model, 188
boundary-distinguishing, 190

discretized rgb-model, 190
discretized rg-model, 188
DPLL, 220
DRG, see detailed region graph

EA, see condition EA
EE, see condition EE
EE1, see condition EE1

EE2, see condition EE2

enabling time, 7
equivalence of clock valuations, 116

for diagonal-free TA, 116

firing domain, 97
firing time, 6
fixed point, 72
forest structure, 133
forward-reachability graph, 138

abstractions, 140
k-approximation, see extrapolation

abstraction
active clocks, 146
convex hull, 145
extrapolation, 142
extrapolation for TA with diagonal

constraints, 144
inclusion, 140
maximization, see extrapolation

abstraction

geometric region graph, 103
computing successor class, 104
definition of state class, 103
equivalence of classes, 104
firability of transition at a class, 104
parent of transition, 104

h-loop, 204
HAA, see hesitant alternating

automaton
hesitant alternating automaton, 163
holding time, 6

Index 247

implication graph, 223
inequality graph, 213

chordal, 217
initial state of Cc(A), 38
interval, 172

k-bounded semantics, 193
k-model, 191

submodel of, 194
k-path, 191

special, 201
free, 202

symbolic, 196

LCSG, see linear state class graph
literal, 211
logic

modal
µ-calculus, 71
environment, 72
semantics of µ-calculus, 72
syntax of µ-calculus, 71

model
total, 69

propositional, 63
formulas, 64
model, 64
semantics, 64
syntax, 63
variables, 64

quantified propositional, 65
model, 65
semantics, 65
syntax, 65

quantified separation, 65
semantics, 66

reachability, 74
separation, 65

>-normalised SL formulas, 65
formula, 65
predicates, 65
semantics, 66
syntax, 65

temporal
ACTL, 68
ACTL∗, 68
CTL, 68
CTL∗, 67
ECTL, 68

ECTL∗, 68
LTL, 68
initialised validity, 71
length of a CTL formula, 69
positive normal form, 67
semantics of CTL∗, 69
timed, 75

timed
TCTL, 75
TCTLC , 82
dense path corresponding to ρ, 76
model checking, 77
semantics of TCTL, 76
semantics of Tµ, 80
strongly monotonic interval

semantics, 76
syntax of TCTL, 75
syntax of Tµ, 80
timed µ-calculus, 80
weakly monotonic interval seman-

tics, 78
untimed, 66

model checking, 74

minimization, see partition refinement
model

abstract, see abstract model
bisimulating, see bisimulating model
CTL∗, 69

path, 70
size, 70

pseudo-bisimulating, see pseudo-
bisimulating model

pseudo-simulating, see pseudo-
simulating model

simulating, see simulating model
surjective, see surjective model
time-abstracted dense, 94

delay, 95
observational, 95
strong, 95

NDD, 229
non-chronological backtracking search,

224
normalised (atomic) clock constraints,

30
Numeric Decision Diagram, 229

observational time-abstracted

248 Index

model, 95
successor relation, 95

on-the-fly, 122

pAE, see condition pAE
partition, 122

class, 122
marked with a representative, 130
representative, 130

pseudoclass, 127
respecting invariants and enabling

conditions of A, 127
stable, 122

partition of a set, 31
partition refinement, 122

bisimulating model
unstability of classes, 125

bisimulating models, 124–133
convexity-preserving alg., 127
Lee-Yannakakis alg., 130

pseudo-bisimulating models, 135
convexity-preserving alg., 137

pseudo-simulating models, 137
simulating models, 133

Petri net, 3
bounded, 5
concurrently enabled, 5
flow function, 3
initial marking, 3
input places of transition t, 4
marking, 4
one-safe, 6
ordinary, 6
output places of transition t, 4
places, 3
postset, 4
preset, 4
reachable marking, 5
sequential, 6
token, 4
transitions, 3

(safely) enabled, 5
Petri net with time, 6

strong earliest firing rule, 7
strong latest firing rule, 7
timed coloured Petri nets, 7

time stamps, 7
weak firing rule, 7

positive boolean formulas, 159

predicate, 72
predicate transformer, 72

greatest fixed point, 72
least fixed point, 72
monotonic, 72

PRES+ models, 53
proposition, 63
propositional formula

satisfiable, 64
valid, 64

pseudo-atomic state class graph, 111
pseudo-bisimulating model, 92

partition refinement, 135
convexity-preserving alg., 137

pseudo-simulating model, 92
partition refinement, 137

pU, see condtion pU

region, 123
difference, 123
element of, 123
immediate time successor, 125
projection, 173

region graph model
modified, 173

SCG, see state class graph
set

of concrete states
reachable, 89

simple cycle, 214
simulating model, 92

partition refinement, 133
unstability of classes, 133

simulation graph, see forward-
reachability graph

SSCG, see strong state class graph
state

a-successor of, 17
state class graph, 96

algorithm for generating, 100
atomic, see atomic state class graph
computing successor class, 97
definition of state class, 96
equivalence of classes, 98
firing domain of a class, 97
linear, see state class graph
pseudo-atomic, see pseudo-atomic

state class graph

Index 249

strong, see strong state class graph
atomic, see strong atomic state

class graph
sufficient condition for finiteness, 99
transition firable at a class, 97

state labelling, 155
state variable, 196

global, 196
strong atomic state class graph, 115
strong state class graph, 112

atomic, see strong atomic state class
graph

class relaxation, 113
computing successor class, 112
definition of state class, 112
equivalence of classes, 113
firability condition, 112

strong time-abstracted
model, 95
successor relation, 95

strongly connected component, 156
surjective model, 91
symbolic k-path, 196

time Petri net, 7
bounded, 27
concrete model, 23

dense, 23
discrete, 23

concrete state, 11
concrete state space

bisimilar, 17
bisimulation, 17
dense, 11, 12, 14, 16
discrete, 22
reachable state, 19

deadlock-free, 23
distributed, 9
earliest firing time, 8
firing interval, 15
latest firing time, 8
multiple enabledness of transitions,

27
one-safe, 8
process, 9
progressive, 20
reachable marking, 19, 20
reachable state, 21
run

dense, 19
discrete, 21
progressive, 19
strongly monotonic, 20
suffix, 19
weakly monotonic, 19

semantics
clocks assigned to the places, 12
clocks assigned to the processes, 14
clocks assigned to the transitions,

11
dense, 11, 12, 14, 15
firing interval, 15
strongly monotonic, 20
weakly monotonic, 20

sequential, 8
state class graph, 52

state classes, 52
state machines, 10
structural loop, 26
translation

clocks assigned to the places, 55
clocks assigned to the processes, 59
clocks assigned to the transitions,

53
timed automaton, 33

actions, 33
component, 35
concrete model, 42

dense, 42
discrete, 42

concrete state space
dense, 38
discrete, 40
reachable state, 39, 40

deadlock, 42
deadlock-free, 43
diagonal free, 33
extended to verify TCTL, 172
initial location, 33
location invariant, 33
networks, 34
product, 35
progressive, 39
run, 38

dense, 38
discrete, 40
progressive, 39
strongly monotonic, 39

250 Index

weakly monotonic, 39

semantics

dense, 38

discrete, 40

strongly monotonic, 39

weakly monotonic, 39

set of the locations, 33

structural loop, 44

strongly progressive, 44

timelock, 42

timelock-free, 43

transition relation, 33

urgent transition, 52

tools

Cospan, 179

CPN Tools, 179

Design/CPN, 179

HyTech, 229

Kronos, 180

NuSMV, 229

PEP, 179

Rabbit, 230

Red, 230

Romeo, 179

SMV, 229

Tina, 179

UppAal, 180, 230

UppAal2k, 180, 230

VerICS, 180, 230

transition relation of Cc(A), 38

transitivity constraint, 211
translation to CTLr

−X

TCTL, strongly monotonic semantics,
174

TCTL, weakly monotonic semantics,
177

translation to CTLz

TCTLC , 177
tree, 159

A-labelled, 159
leaf, 159
node, 159

degree, 159
successors, 159

path, 159
root, 159

U, see condition U

WAA, see weak alternating automaton
weak alternating automaton, 163
word

infinite, 159

zone, 31
detailed, 117

final, 117
initial, 118
open, 117

time, 31
border of two, 151

Author Index

Aalst, W. van der 6, 233
Abadi, M. 49, 233
Abdulla, P. A. 6, 233
Alur, R. VII, VIII, 29, 31, 32, 40, 49, 75, 85, 92, 117, 125, 148, 172, 174, 178,

179, 182, 229, 233, 234
Amer-Yahia, C. 24, 234
Ammerlaan, M. 138, 241
Amnell, T. 230, 234
Andersen, H. VII, 229, 239
Asarin, E. VII, VIII, 40, 75, 181, 182, 209, 212, 218, 229, 234, 239
Ashar, P. 225, 237
Audemard, G. VIII, 181, 203, 207, 209, 212, 217, 234

Barkaoui, K. 24, 234
Behrmann, G. VII, 146, 229, 230, 234
Bengtsson, J. 140, 144, 146, 153, 230, 234, 235
Bérard, B. 62, 180, 230, 235
Bernholtz, O. 158, 167, 235
Berthelot, G. 7, 115, 236
Berthomieu, B. VII, VIII, 7, 8, 15, 18, 21, 24, 27, 52, 91, 96, 97, 99, 103, 112,

113, 179, 235
Bertoli, P. 209, 212, 217, 234
Beyer, D. 230, 235
Bidoit, M. 180, 230, 235
Bieber, B. 7, 235
Biere, A. 202, 212, 218, 230, 235, 240, 241
Bobbio, A. 7, 181, 235
Bouajjani, A. VIII, 42, 124, 133, 135, 138, 178, 180, 235, 242
Bouali, A. 179, 235
Boucheneb, H. 7, 91, 115, 236, 238

252 Author Index

Bouyer, P. 92, 138, 143, 146, 234, 236
Bowden, F. D. J. 6, 27, 236
Bozga, M. VII, VIII, 40, 75, 180–182, 209, 212, 218, 229, 234, 236, 239
Browne, M. C. 51, 92, 236
Bryant, R. VIII, IX, 179, 181, 207, 209, 212, 216, 229, 236, 241, 242
Burns, S. M. VIII, 238

Cassez, F. VIII, 11, 49, 52, 62, 179, 235, 236
Chang, Y. 7, 242
Chauhan, P. 225, 236
Cheng, A. M. K. 27, 230, 236
Christensen, S. 179, 236, 241
Cimatti, A. VIII, 181, 202, 203, 207, 209, 212, 217, 218, 229, 234–236
Clarke, E. 51, 73, 92, 180, 202, 218, 225, 229, 235, 236
Commoner, F. 24, 236
Coolahan, J. 6, 7, 236
Cortés, L. A. VIII, 53, 236
Courcoubetis, C. VII, VIII, 31, 32, 40, 75, 85, 92, 117, 125, 148, 172, 174,

178, 182, 233
Cresswell, M. J. 85, 238

Daniels, M. 138–140, 243
D’Argenio, P. 230, 234
David, A. 230, 234
Davis, M. 220, 236, 237
Daws, C. 92, 138, 140, 180, 237
Dembiński, P. VIII, 125, 133, 135, 180, 230, 237
Diaz, M. VII, VIII, 7, 15, 21, 24, 27, 51, 52, 91, 96, 99, 112, 179, 235, 241
Dickhofer, M. 178, 237
Dill, D. VII, VIII, 29, 31, 32, 40, 49, 75, 85, 92, 117, 125, 138, 146–148, 172,

174, 178, 182, 233, 237

Eles, P. VIII, 53, 236
Emerson, E. A. 73, 85, 237

Farber, D. J. VII, 6, 7, 239
Fehnker, A. 230, 234
Fernandez, J-C. 124, 133, 135, 235
Ferney, M. 24, 234
Finkel, A. 180, 230, 235
Fitting, M. 220, 237
Fleischhack, H. 7, 235
Fleury, E. 146, 234

Ganai, M. 225, 237
Gardey, G. VIII, 7, 115, 179, 237

Author Index 253

Gawlick, R. 49, 237
Giunchiglia, E. 229, 236
Giunchiglia, F. 229, 236
Goldblatt, R. 85, 237
Göllü, A. 182, 237
Grumberg, O. 51, 73, 92, 180, 236
Gu, Z. 52, 237
Gupta, A. 225, 230, 237, 241

Haar, S. VIII, 7, 62, 238
Haddad, S. 62, 235
Hadjidj, R. 91, 115, 236, 238
Halbwachs, N. VIII, 31, 32, 85, 92, 124, 125, 133, 135, 148, 178, 233, 235
Hanisch, H-M. 6, 7, 238
Henzinger, T. 48, 49, 75, 81, 82, 85, 117, 178, 182, 208, 229, 234, 238, 239
Ho, P. 229, 234, 238
Holzmann, G. J. 179, 238
Horváth, A. 7, 181, 235
Hughes, G. E. 85, 238
Huhn, M. 8, 238
Hulgaard, H. VII, VIII, 229, 238, 239
Hune, T. 230, 234
Huth, M. 180, 238

Jain, N. VIII, 181, 209, 212, 218, 239
Janicki, R. 10, 238
Janowska, A. 180, 230, 237
Janowski, P. 180, 230, 237
Jeannet, B. 230, 234
Jensen, K. 7, 179, 238, 241
Jones, N. D. 27, 99, 238
Jørgensen, J. 179, 236

Kaiser, L. VIII, 7, 62, 238
Kang, I. 138, 238
Kerbrat, A. VII, 40, 75, 182, 229, 234
Kornilowicz, A. VIII, 181, 203, 207, 209, 212, 217, 234
Kozen, D. 71, 73, 80, 239
Kristensen, L. 179, 236
Kroening, D. 225, 236
Kupferman, O. 158, 163, 170, 178, 239
Kurshan, R. 179, 234

Lamport, L. 49, 233
Landweber, L. H. 27, 99, 238
Laroussinie, F. 180, 230, 235

254 Author Index

Larsen., K. G. 180, 230, 240
Larsson, F. 92, 138, 140, 146, 239
Lassen, H. 179, 241
Laursen, M. 179, 241
Lee, D. 124, 130, 132, 133, 239, 243
Lee, I. 138, 238
Lei, C-L. 73, 237
Lichtenberg, J. VII, 229, 239
Lien, Y. E. 27, 99, 238
Lilius, J. VIII, 7, 239
Lime, D. VIII, 7, 11, 52, 62, 179, 235, 239
Logemann, G. 220, 236
Lomuscio, A. 194, 243
Loveland, D. 220, 236
Lynch, N. 49, 237

Madigan, C. IX, 181, 218, 224, 239, 243
Mahfoudh, M. VIII, 181, 209, 212, 218, 239
Maler, O. VII, VIII, 40, 75, 180–182, 209, 212, 218, 229, 234, 236, 239
Malik, S. IX, 181, 218, 224, 239, 243
Marek, S. 179, 240
McKenzie, P. 180, 230, 235
McMillan, K. L. IX, 179, 207, 219, 225, 228, 229, 239
Menasche, M. 7, 15, 21, 96, 112, 179, 235
Merlin, P. VII, 6, 7, 239
Møller, J. VII, 229, 239
Möller, M. O. 230, 234
Moskewicz, M. IX, 181, 218, 224, 239, 243
Moundi, A. El 24, 234

Nicollin, X. 48, 75, 81, 82, 85, 117, 182, 208, 229, 238
Niebert, P. VIII, 8, 181, 209, 212, 218, 238, 239
Nylén, A. 6, 233

Okawa, Y. VIII, 7, 11, 20, 25, 53, 55, 115, 182, 239

Paige, R. 124, 239
Papadimitriou, C. H. 156, 163, 240
Park, D. 51, 240
Pearson, J. VII, 229, 230, 234, 239
Pelánek, R. 146, 234
Peled, D. 73, 180, 236, 240
Penczek, W. VIII, IX, 7, 11, 17, 21, 27, 40, 53, 55, 57, 61, 62, 85, 92, 111,

125, 133, 135, 137, 180–182, 191, 194, 196, 198, 230, 237, 240, 243
Peng, Z. VIII, 53, 236
Petit, A. 180, 230, 235

Author Index 255

Petrucci, L. 180, 230, 235
Pettersson, P. 92, 138–140, 146, 180, 230, 234, 239, 240, 243
Pistore, M. 229, 236
Plaisted, D. 212, 240
Pnueli, A. VII, 40, 75, 180, 182, 212, 229, 234, 236, 242
Pokozy, E. A. VIII, 7, 11, 25, 53, 55, 115, 182, 240, 242
Pó�lrola, A. VIII, 7, 17, 27, 40, 53, 55, 57, 61, 62, 92, 135, 137, 182, 240
Popova, L. 7, 18, 179, 240
Popova-Zeugmann, L. 7, 18, 240
Pradat-Peyre, J-F. 24, 234
Prasad, M. 230, 241
Pratt, V. R. 214, 241
Puri, A. 182, 237
Putnam, H. 220, 237

Qvortrup, J. 179, 241

Ramchandani, C. 6, 7, 241
Rasse, A. VII, 40, 75, 182, 229, 234
Ratel, C. 124, 133, 135, 235
Ratzer, A. 179, 241
Raymond, P. 124, 133, 135, 235
Reisig, W. 27, 241
Ressouche, A. 179, 235
Ribet, P-O. 179, 235
Roch, S. 179, 241
Roussopoulos, N. 6, 7, 236
Roux, O. F. VIII, 7, 115, 179, 237
Roux, O. H. VIII, 7, 11, 52, 62, 115, 179, 235–237, 239
Roveri, M. 229, 236
Roy, V. 179, 235
Ryan, M. 180, 238
Ryuba, H. VIII, 7, 11, 21, 103, 104, 107, 243

Samolej, S. 6, 241
Saqui Sannes, P. de 51, 241
Schlatter, D. 7, 240
Schnoebelen, P. 180, 230, 235
Sebastiani, R. VIII, 181, 203, 207, 209, 212, 217, 229, 234, 236
Segala, R. 49, 237
Sénac, P. 51, 241
Seshia, S. VIII, IX, 181, 207, 209, 212, 216, 229, 241, 242
Sheeran, M. 220, 241
Shilov, N. V. 85, 241
Shin, K. 52, 237

256 Author Index

Shostak, R. E. 214, 241
Sifakis, J. VIII, 48, 51, 55, 75, 81, 82, 85, 117, 182, 208, 229, 238, 241
Simone, R. de 179, 235
Simonot-Lion, F. VIII, 7, 62, 238
Singh, S. 220, 241
Sinha, N. 212, 242
Søgaard-Andersen, J. 49, 237
Sorea, M. 181, 241
Spelberg, R. L. 138, 241
Srba, J. 6, 7, 62, 242
St̊almarck, G. 220, 241
Starke, P. 27, 179, 241, 242
Stehno, Ch. 179, 242
Stirling, C. 91, 242
Stissing, M. 179, 241
Strichman, O. 202, 209, 212, 216, 218, 229, 235, 242
Szmuc, T. 6, 241
Szreter, M. VIII, 40, 92, 135, 137, 180, 225, 230, 237, 240, 242

Tacchella, A. 229, 236
Talupur, M. 212, 242
Tarjan, R. 124, 239
Tarski, A. 72, 242
Toetenel, H. 138, 241
Toussaint, J. VIII, 7, 62, 238
Tripakis, S. VIII, 32, 39, 42, 44–48, 92, 96, 123, 125, 127, 137, 138, 140, 148,

153, 172, 178, 180, 182, 235, 237, 242
Tsai, J. 7, 242

Varaiya, P. 182, 237
Vardi, M. 158, 163, 167, 170, 178, 235, 239
Varpaaniemi, K. 24, 242
Vernadat, F. VIII, 7, 8, 15, 21, 24, 96, 112, 113, 179, 235
Virbitskaite, I. B. VIII, 7, 11, 25, 53, 55, 115, 182, 242
Visser, W. 158, 163, 242

Wallner, F. 8, 238
Walter, B. 6, 7, 242
Wang, F. VII, 229, 230, 243
Wang, J. 27, 243
Weise, C. VII, 229, 230, 234, 239
Wells, L. 179, 241
Westergaard, M. 179, 241
Wilke, T. 178, 237
Wolper, P. 158, 163, 167, 170, 235, 239

Author Index 257

Wong-Toi, H. VIII, 31, 32, 85, 92, 125, 148, 178, 233
Woźna, B. VIII, IX, 53, 180–182, 191, 194, 196, 198, 230, 237, 240, 243

Yang, S. 7, 242
Yannakakis, M. 124, 130, 132, 133, 239, 243
Yi, K. 85, 241
Yi, W. VII, 92, 138–140, 144, 146, 153, 229, 230, 234, 235, 239, 243
Yoneda, T. VIII, 7, 11, 20, 21, 25, 53, 55, 103, 104, 107, 115, 182, 239, 243
Yovine, S. VIII, 32, 39, 42, 44, 46, 48, 51, 55, 75, 81, 82, 85, 96, 117, 123,

125, 127, 137, 138, 153, 172, 178, 180, 182, 208, 229, 235–238, 241–243

Zbrzezny, A. VIII, IX, 53, 180–183, 191, 194, 196, 198, 202, 230, 237, 240,
243

Zerhouni, N. 24, 234
Zhang, L. IX, 181, 218, 224, 239, 243
Zhao, Y. IX, 218, 224, 239
Zhu, Y. 202, 212, 218, 235, 240

